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Preface

Extended message-passing style parallel programming with MPI remains the
most important and successful paradigm for programming hybrid, distributed
memory parallel systems and achieving high application efficiency. MPI, the
Message-Passing Interface, introduced more than 20 years ago, has been an ex-
tremely efficient and productive interface (both in qualitative and quantitative
terms), and proven surprisingly robust in the face of very radical changes in
systems configurations, capabilities, and scale over the past decades. This has
entailed an immense amount of work, both in improvement of the implementa-
tions of MPI, mostly done by research labs and in academic environments, but
also in part by commercial vendors (that often base their developments on open
implementations from labs and academe), and in exploration and extension of
the standard itself often as driven by application needs. The EuroMPI confer-
ence series has provided and will continue to provide an important forum for
MPI developers, researchers in message-passing parallel programming, applica-
tion developers, users, and students to meet and discuss specific issues related
to MPI; always with a look towards new trends and developments of related
or alternative interfaces for high-performance parallel programming, and often
in quite close interaction with important HPC vendors. In the past five years
the MPI Forum has been active in revising and extending the MPI standard,
addressing among others issues of scalability, and has brought out consolidated
versions of MPI 2, as well as drafts for more significant extensions to go into an
upcoming MPI 3.0 version of the standard. In this process EuroMPI has played
a role in testing new proposals for MPI 3, for example on fault-tolerance, col-
lective communication, interaction with threads, and other matters. EuroMPI
is one of the few meetings where these kinds of specific explorations related to
the concrete MPI standard can be discussed, and should be used also in the fu-
ture for more such research. It is a community conviction that other paradigms
and interfaces for highly parallel distributed memory programming must do as
well as MPI in order to be successful, and that there is consequentially much
to learn from MPI and ongoing research activities as presented at the EuroMPI
conference.

EuroMPI 2012 featured 22 technical presentations on MPI implementation
techniques and issues, benchmarking and performance analysis, programming
models and new architectures, run-time support, fault-tolerance, message-passing
algorithms, and applications. A special session on Improving MPI User and De-
veloper Interaction (IMUDI), introduced with EuroMPI 2011, was dedicated to
intensifying interaction between users and implementors of MPI, in particular to
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make user expectations and desiderata regarding the standard (and its imple-
mentations) explicit. The conference also featured four invited talks on MPI 3
and beyond (Gropp), the Fujitsu petaflop K computer and its MPI (Sumimoto),
the impact of MPI on design of efficient interconnect hardware (Brüning), and
the prospects of applying advanced compiler optimizations to MPI programs
(Danalis), as well as two tutorials on advanced MPI and performance engineer-
ing. The conference was rounded off with a vendor session, a report from the
MPI Forum, discussion slots, and a poster exhibition. Papers and abstracts can
be found on the following pages. The meeting program and (most of) the talks
can be found at www.eurompi2012.org.

EuroMPI is the successor to the EuroPVM/MPI user group meeting series
(since 2010), making EuroMPI 2012 the 19th event of this kind. EuroMPI takes
place each year at a different European location; the 2012 meeting was held in Vi-
enna, Austria, organized jointly by Vienna University of Technology (TU Wien)
and the University of Vienna. Previous meetings were held in Santorini (2011),
Stuttgart (2010), Espoo (2009), Dublin (2008), Paris (2007), Bonn (2006), Sor-
rento (2005), Budapest (2004), Venice (2003), Linz (2002), Santorini (2001), Bal-
atonfüred (2000), Barcelona (1999), Liverpool (1998), Cracow (1997), Munich
(1996), Lyon (1995), and Rome (1994). The meeting took place at the Austrian
Academy of Sciences, during September 23–26, 2012.

In reaction to the call for papers that was first published late 2011, we re-
ceived a total of 47 submissions by the (extended) submission deadline on May
16th, clearly fewer than hoped for. The low number of submissions possibly
reflects the universally more difficult funding situation for conference travel.
EuroMPI has so far had a very good record with respect to attendance and
presentation with as good as no no-shows; potential contributors who knew in
advance that they might not be able to travel may have chosen to submit to
geographically closer forums. It might also reflect the (positive) fact that good
MPI work, whether in implementations or applications, can also be presented
at broader parallel processing conferences. All 47 submissions were in scope,
and were reviewed by program committee members (with only relatively few
external referees) with each paper getting between 3 and 5 reviews. An effort
was made to provide informative and helpful feedback to authors. Based on the
reviews, the program chairs selected 22 submissions as regular papers, and 7
papers for presentation as posters. Regular papers were allotted 10 pages in the
proceedings, and a 30 minute slot for presentation. Among the regular papers, a
handful of the strongest and best presented are invited for a Special Issue of the
Springer “Computing” journal. These extended papers will again be reviewed by
members of the EuroMPI 2012 program committee as well as by new external
reviewers.
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The program chairs and general chair would like to thank all authors who
submitted their contributions to EuroMPI 2012; the program committee mem-
bers for their work in getting the submissions reviewed, mostly in time and with
good-quality, informative reviews; our sponsors who contributed significantly
toward making the conference feasible; and all who attended the meeting in Vi-
enna. We hope that the EuroMPI 2012 conference had something to offer for all,
and will remain a solid forum for high-quality MPI-related work as it goes into
its third decade.

September 2012 Jesper Larsson Träff
Siegfried Benkner

Jack Dongarra
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Carolina Gómez-Tostón Gutiérrez, and Álvaro Cortés Fácila
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Jesús Carretero

Revisiting Persistent Communication in MPI . . . . . . . . . . . . . . . . . . . . . . . . 296
Yutaka Ishikawa, Kengo Nakajima, and Atsushi Hori

StarPU-MPI: Task Programming over Clusters of Machines Enhanced
with Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Cédric Augonnet, Olivier Aumage, Nathalie Furmento,
Raymond Namyst, and Samuel Thibault

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301



MPI 3 and Beyond: Why MPI

Is Successful and What Challenges It Faces�

William Gropp

University of Illinois at Urbana-Champaign
wgropp@illinois.edu

Abstract. The Message Passing Interface (MPI) was developed over
eighteen years ago and continues to be the preferred programming model
for scientific computing. Contributing to that success was a combination
of forward-looking features, precise definition, and judgment based on
the experience of developers, vendors and users. Today, MPI continues
to adapt to the changing needs of parallel programming, with MPI-3
introducing enhancements for collective and one-sided communication,
multi-threaded programming, support of performance tools for MPI pro-
gramming, etc. However, MPI faces many challenges as the nature of par-
allel computing changes more radically than at any time in the history of
MPI. This talk will touch on some of the less obvious but important rea-
sons for MPI success, discuss some of the challenges that MPI faces, and
makes suggestions for future directions in MPI and parallel programming
language research.

The Message Passing Interface (MPI) has been tremendously successful. First
released over eighteen years ago, it continues to be the preferred programming
model for parallel scientific computing. MPI is used in applications ranging from
astronomy to zoology and on systems ranging from laptops to the world’s fastest
supercomputers. Yet MPI faces many challenges. Processor architectures are
evolving dramatically as the end of Moore’s Law approaches. The complexity of
parallel programming, always considered a weak point of low-level programming
models such as message passing, has become a major issue as all systems become
parallel computers. And nearly two decades is a long time in computing — MPI
represents the best ideas of an earlier era. This paper will discuss some of the
reasons for the success of MPI and some of the challenges faced by MPI.

1 A Strong Base

One of the major reason for the success of MPI is that the original MPI standard
(now called MPI-1) was built around a relatively small number of well defined
and forward looking concepts. The core, two-sided message passing and collec-
tive communication and computation, had been well-established as an effective

� This work was supported in part by the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy award DE-FG02-08ER25835
and award DE-SC0004131.

J.L. Träff, S. Benkner, and J. Dongarra (Eds.): EuroMPI 2012, LNCS 7490, pp. 1–9, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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programming model. The MPI Forum built on this standard practice, but ex-
tended it in several ways. For example, MPI datatypes were introduced because
it was recognized that data motion is expensive and there was an opportunity
to eliminate some data motion by describing the data to be moved, even if non-
contiguous, in the MPI communication routines. This can eliminate a extra copy
performed by the user into a separate buffer (unfortunately, still commonly used,
as in the NAS Parallel Benchmarks [1]), and permits the MPI implementation to
pipeline data transfers. While MPI datatypes provided little performance benefit
initially because few implementations optimized the use of MPI datatypes (and
even those that did, such as MPICH, only did a small subset of possible types),
it provided several important benefits. Perhaps most important, datatypes were
critical to the description of parallel I/O in MPI-2, providing a way to concisely
describe data motion from a file to a collection of processes in a way that enables
high performance while preserving a canonical structure in a file. In addition,
as the relative cost of memory motion has increased, the value of optimizations
tied to MPI datatypes has increased, and this has been borne out in recent
papers [2–5]. This is particularly important to note, because the value of MPI
datatypes was based on a forward-looking view of where parallel computing was
likely to go, not on measurements of the benefit of some implementation on the
platforms of the day.

Similarly, the MPI communicator, and especially the communication context,
provided a way to build modular software and encouraged an ecosystem of par-
allel software libraries by ensuring that software components could ensure that
communication was not accidentally intercepted by the user’s code or by an-
other software component. Again, this was a forward-looking approach. There
were few parallel libraries and the communication context added a small but
real additional time cost to communication.

However, perhaps the most important feature of MPI has been the precise
description of the behavior of each MPI routine. While there are some areas
of ambiguity, particularly with respect to what is often called progress, what
data gets moved and when that data can and cannot be referenced is precisely
defined [6]. Not all parallel computing models have such precision. This has been
critical for the long-term success of MPI because those precise semantics have
ensured that, even with nearly two decades of change in computer hardware,
programs continue to work and produce the same result.

Of course, other features of MPI were important in its success. Features such
as portability, performance, support for modularity and composibility, and com-
pleteness of the interface were critical for the success of MPI [7], and it is the
combination of all of these features into a single programming model that was
important. MPI is by no means perfect; there are several key weaknesses of
MPI. Perhaps the two most often mentioned are MPI’s specification as a library,
preventing close integration with the language, and MPI’s lack of support for
distributed (global) data structures.
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1.1 Myths about MPI

Before discussing some of the challenges facing MPI, there are some persistent
myths that should be dispelled.

MPI Requires p2 Buffering for p Processes. This is a typical claim that
confuses decisions taken by a particular implementation with requirements
of the MPI standard. There is no such requirement in MPI. However, there
are some performance tradeoffs for the implementation; the use of an internal
buffer for each process simplifies the code and can reduce the complexity of
the critical path. Providing a fast yet scalable approach is a challenge [8].

MPI Is Not Fault-Tolerant. What is meant by this is that the standard does
not describe what happens when certain kinds of faults or errors occur [9].
Few standards do. The efforts of the MPI Forum at providing fault tolerance
strive to specify the behavior of MPI after certain types of faults (primarily
so that the failure of an MPI process does not force the other processes to
fail).

MPI Does Not Have Scalable Startup. Like statements about buffering,
this myth comes from examining how one or even several MPI implemen-
tations currently manage process startup and then making a blanket claim
based on that examination. MPI in fact does not say anything about how
processes are started, and different implementations have selected different
tradeoffs between scalability and simplicity. A scalable startup mechanism,
particularly one that is robust in the face of errors, is more complex to design,
build, and maintain.

MPI RMA Has Complex Rules. This statement is correct, but the infer-
ence that this makes MPI RMA (Remote Memory Access) more complex to
use than some other one-sided programming mode is highly misleading. The
MPI RMA model strives for precision about when data can be referenced
with used with one-sided operations, and in the standard, provides detailed
information that an implementor of MPI needs when considering possible
optimizations. Like many other one-sided programming models, there are
simple subsets that are often all that a programmer needs (it is in that sense
that the statement that “MPI RMA has complex rules” is incorrect).

MPI Requires Ordering of Messages in the Network. This statement is
incorrect. MPI requires that some operations be ordered with respect to
others, but says nothing about the order in which data is moved on the
network. It is true that an easy way to ensure the ordering that MPI requires
is to use a transport layer that provides ordering, but this is not necessary.
This permits an MPI implementation to make efficient use of fast networks
for data transfers.

What most of these myths have in common is that an examination of the current
behavior of some version of MPI is used to draw conclusions about the MPI pro-
gramming model. This kind of faulty reasoning is still seen in papers published
today that compare different approaches (not just those about MPI), and can
lead to decisions based on short term features of current hardware and software.
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In contrast, the evaluation of current implementations can provide valuable in-
sight into implementation issues and can be critical in identifying directions for
implementation research. Perhaps the major challenge facing any designer is to
balance quantitative thinking about the future with experiments that can be run
today.

2 Challenges for MPI 3 and Beyond

As MPI approaches its third decade, it faces greater challenges than ever before.
The end of Dennard (frequency) scaling and the growing challenges of power
consumption and heat dissipation in processors are forcing radical changes in
processor architecture. In turn, programming models and algorithms are chang-
ing rapidly, perhaps more radically than anytime since vectorization over thirty
years ago.

2.1 Changes in Processor Architecture

MPI was defined in an era when a single processor often required multiple chips
and there was at most one program counter per chip. Many systems ran ex-
actly one user process on each processor, leading to the confusion in many early
works on MPI between process and processor (MPI describes communication be-
tween processes, not processors). Today, there are no single “core” chips. There
are many different ways to organize processing elements, including multicore,
“manycore”, GPU, FPGA, and embedded memory processing (also called pro-
cessor in memory). The MPI programming model remains a single process pro-
gramming model (with one exception in MPI-3, discussed below), and leaves
the details of programming the processor to the programming language used for
that process; this is only C, Fortran, and in MPI-2, C++. All of these languages
are quite old and have few if any features to support parallel programming
within a process. This approach of relying on a composition of programming
models has been both a strength and a weakness of MPI. The strength is that
MPI and the languages can evolve independently. The weakness is that MPI
depends on the language and cannot take full advantage of it. One example that
illustrates this is the decisions made in MPI-2 about non-blocking operations
and threading. Nonblocking routines are provided in MPI for two reasons: they
significantly simplify correctness with respect to point-to-point communication
and internal buffering and they provide for performance for critical routines, by
permitting communication/computation overlap and eliminating extra memory
copies to internal buffers. However, they introduce complexity into the program-
ming model, in part because the programming languages do not have corre-
sponding language features (such as futures). For nonblocking operations that
the MPI Forum felt were less performance sensitive, and for which correctness
in the blocking case was easier to ensure, the MPI-2 Forum expected program-
mers to use threads and that this would spur MPI implementations to offer
full thread safety (MPI THREAD MULTIPLE). Unfortunately, this was not the case.
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The thread model introduces significant overheads as well as programmer com-
plexity, and several major HPC systems choose to limit processes to one thread
per core. This makes threads useless as a portable method to implement non-
blocking communication and collective I/O, and has led to a substantial increase
in the number of MPI routines in MPI-3. In addition, users that have tried us-
ing threads for computation, for example, by mixing MPI with OpenMP, have
found that the composition of programming models introduces a new challenge,
that of coordinating the use of resources. In this case, the MPI and OpenMP
runtimes may assume that their runtime is the only performance critical run-
time, and optimized the use of cores under that assumption. This can lead to
competition between programming models for resources and remains a challenge
for programming models.

2.2 Remote Direct Memory Access

Remote Direct Memory Access (RDMA) challenges MPI in two ways: making
efficient use of RDMA hardware and providing an effective (for the user) RDMA
programming model. In hardware, the development of RDMA (also called one-
sided) hardware has a long history, including distributed shared memory and
explicit remote put/get support. Infiniband provides a commodity network that
supports RDMA, making hardware for this model widely available and not just
limited to the very high end of computing systems. The challenge here is in
the details. While the basic operations for moving data are similar in different
hardware, the handling of control and synchronization information is different,
and performance is extremely sensitive to subtle details of these choices. This
of course impacts the programming model, which can specify a one-sided model
that is difficult to implement efficiently.

The one-sided programming model can be a better match to distributed data
structures where it is easy for each process or thread to determine where a data
item resides on another process. Two-sided works well when that is not the case,
as is true in more dynamic data structures. The challenge is to develop a pro-
gramming model that can make efficient use of RDMA hardware, not just now
but five to ten years in the future, provides a clean way to reason about one-
sided operations (which means providing a precise definition of the behavior, or
at least a precise specification of the ambiguities), and interfaces cleanly with
the two-sided and collective communication in MPI (see [10] for an evaluation
of the MPI-2 RMA interface from the point of view of a parallel language imple-
mentor). Programming correctly with one sided operations is difficult; see [11]
for an introduction to some of the issues in the context of shared memory. Any
RDMA programming model must address correctness as well. MPI-3 introduces
a few features to enable MPI processes to share memory; to address some of the
issues of shared memory programming, the MPI RMA model is used to enforce
completion of shared memory operations.
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2.3 Issues at Scale

MPI was originally designed when a massively parallel system had 128 nodes
(with one core per node). While MPI was designed to be scalable, some collective
operations have arguments whose size is proportional to the number of processes
(e.g., MPI Alltoallv). Such interfaces are not viable as system exceed a million
processes [12]. Of course, in many ways, these very operations are not scalable.
The challenge here is to determine how best to replace or supplement these
collectives; the topological or sparse collectives in MPI-3 are one possibility. The
implementation of collective operations in a way that is scalable, works efficiently
with complex processor architectures (and composed programming models) and
provides effective communication/computation overlap for scalable algorithms
remains a challenge.

A more difficult issue is that of matching the algorithm and program to the
interconnect topology. MPI provides some support for virtual process topologies
(and extended it in MPI-2.2 [13]), but it tries to both provide performance and
a specific abstract model, and cannot excel at either. Complicating this is that
mapping a process (or thread) to compute resource (core) depends on many fea-
tures of the code and algorithm, and may be affected by dynamic events outside
of the programmers control. A challenge is to develop an effective approach for
this problem and provide the support for it from the programming models (MPI
and anything with which it is composed).

Systems at extreme scale are likely to experience failures. The best way to
handle this is not clear. Many current systems cause a process to exit when there
is a failure; many MPI implementations then abort the parallel program. But in
the future, failures might be finer grained — processes may recover from some
faults without failing; other failures may be more widespread. A challenge here
is to define the fault model and the programming model features that address
the likely faults.

2.4 Library and Language

Because MPI is a library, it appears easy to add routines. However, each routine
needs to be written, tested, tuned, and documented, and users must be sup-
ported. In addition, there is the potential of interference with other routines or
unanticipated performance impacts. A challenge is to strike a balance between
“My user needs X, and I want MPI to provide it” and the potential impacts.
Also, as noted above, one of the strengths of MPI is completeness: there are a
limited number of basic concepts; MPI (in most cases) specifies all of the rou-
tines that apply those concepts. Adding individual routines breaks this model
and introduces additional complexity for the programmer.

The interaction between MPI and the programming language used for the
MPI process has become more complex. Most obvious from the changes to the
MPI standard in MPI 2.2 is the proliferation of language datatypes. When MPI-
1 was created, both C and Fortran had a small number of basic datatypes.
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Now there are many types, some with specific sizes (representing a convergence
in computing to 8-bit bytes) and some whose size is specified only in relation to
others. MPI 2.0 attempted to handle this for Fortran by specifying routines to
create a datatype matching parameters, such as precision and range, given by
the user and matching those in Fortran. This approach is more easily extensible
but more complex for both implementors and users. MPI 2.2 added a large set
of specific MPI datatypes to match new types in C.

Many difficulties remain. For example, there was until very recently no way to
support nonblocking operations within the Fortran standard (even for nonblock-
ing I/O; this was not only a limitation for MPI). The travails of the MPI binding
for C++ illustrate another problem. MPI provides a very low-level model; this
has been one reason for its success. But more modern programming models pro-
vide a rich set of operations. A challenge is how to match MPI to a modern
programming language. The MPI-2 binding for C++ took a low-level approach;
however, many people felt that this did not offer enough benefit over the C
binding. In addition, some C++ features, such as throwing exceptions instead
of returning an error code, can cause problems when MPI code using C++ is
mixed with code in C or Fortran. Higher level bindings are possible, but often
are specialized to particular domains. How should such a language binding be
defined?

2.5 Productivity

Despite the success of MPI, many complain about the low-productivity of MPI.
Some have argued that this is really due to the complexity of parallel program-
ming. Others, including this author, have noted that, since programs are expres-
sions of data structures and algorithms, and parallel programs require parallel
(thus distributed) data structures, providing support for distributed data struc-
tures is important for a productive programming environment. MPI (with the
partial exception of the darray and subarray MPI datatypes) provides no sup-
port for distributed data structures. It was the expectation of the MPI Forum
that libraries would be written to provide such support, and in some cases, that
has happened (e.g., PETSc and Trilinos). However, where no library exists, the
developer using MPI must start from scratch.

Parallel programming languages such as HPF, CoArray Fortran (now part of
Fortran), and UPC all provide some set of distributed data structures and conve-
nient operations on them. The advantage is that if those are the data structures
you want, then the language is likely to be more productive for you. The dis-
advantage is that if those are not what you need, then productivity is lost. The
challenge for any parallel programming approach is to provide aids to productiv-
ity without limiting the applicability of the language, or alternately, providing
some subset and the ability to work with programming models providing other
distributed data structures.
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3 Conclusions

This paper has touched on some of the challenges facing MPI as a programming
model. Many of these apply to any parallel programming model; the successes
and failures of MPI provide valuable guidance for the future. Some of the key
items include:

– Better support for composition of programming models, including resource
sharing, precise memory model,

– Language support for nonblocking operations (e.g., futures),
– Support for both static and dyanamic analysis of correctness,
– Performance as a first class object (recognizing that parallelism is used to

achieve performance), permitting formal analysis of performance correctness.

While there are many challenges, MPI’s focus on programming in the large,
with support for software libraries, programming with multiple programming
languages, and support for threads, positions MPI well for the future.
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Abstract. High performance computing requires optimized intercon-
nects in order to serve the increasing computing power from multi and
many core CPUs. MPI is one of the most prominent programming mod-
els used for HPC systems. In order to achieve very low latency and high
message rates, the functions of MPI must be implemented in a very ef-
ficient way. The specification of various MPI functions is analyzed and
the impact to interconnect hardware is presented. A careful analysis of
latency components and pipeline structure must be done in order to map
the MPI functions to hardware in an efficient way.
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Abstract. This talk presents the overall design and implementation of
the MPI communication library for the K computer. The K computer
introduces the Tofu interconnect, 6D torus/mesh topology, for higher
performance and availability for peta-scale systems, however, present
several issues to increase performance, availability and usability. In this
talk, these issues, approaches, designs and implementations are discussed.
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MPI has been the de facto standard for parallel computing for over a decade
now, and remains mostly unchallenged as the only viable options for harnessing
the processing power of massively parallel supercomputers. Alternative parallel
programming paradigms have existed for quite some time, mainly in the form
of PGAS languages [4,7], but have yet to deliver the necessary performance,
robustness and portability needed to drive developers away from MPI.

However, despite its success, MPI has several shortcomings, some in its very
design, that could be addressed if we learn from the experiences gained by the
PGAS languages. Specifically, MPI is focused strictly on the library, run-time
and operating system layers and makes no effort to utilize advanced compiler
technologies. Research has shown that the data-flow of MPI programs can be
analyzed [1,2,6,5], albeit with limitations, and compiler technology can modify
MPI programs to reduce the communication delays through techniques such as
communication-computation overlapping [10,3] and communication restructur-
ing [8,9].

As we move to increasingly complicated hardware systems, developers will
need all the help they can get in order to achieve high efficiency at scale. One
way to achieve this is to rely on more sophisticated run-time systems, such as
task scheduling engines, that run on top of MPI and try to dynamically adapt
the execution and communication to the hardware resources. However, pure MPI
applications can remain competitive, if we utilize the whole development stack,
from kernel modules to compilers and auto-tuning benchmarks. This integration
can be achieved by exposing to the compiler and auto-tuning layers more infor-
mation about the internals of MPI libraries and the way MPI functions interact
with, and modify, the application that calls them.
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Abstract. This tutorial will cover several advanced topics in MPI. We
will cover one-sided communication, dynamic processes, multithreaded
communication and hybrid programming, and parallel I/O. We will also
discuss new features in the newest version of MPI, MPI-3, which is ex-
pected to be officially released a few days before this tutorial. The tutorial
will be heavily example driven; we will introduce concepts by using code
examples based on scenarios found in real applications. The example
codes will be available for attendees to run on their laptops.

J.L. Träff, S. Benkner, and J. Dongarra (Eds.): EuroMPI 2012, LNCS 7490, p. 14, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Hands-on Practical Hybrid Parallel Application

Performance Engineering

Markus Geimer1, Michael Gerndt2, Sameer Shende3,
Bert Wesarg4, and Brian Wylie1
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This tutorial presents state-of-the-art performance tools for leading-edge HPC
systems founded on the Score-P community instrumentation and measurement
infrastructure, demonstrating how they can be used for performance engineering
of effective scientific applications based on standard MPI or OpenMP and now
common mixed-mode hybrid parallelizations. Parallel performance evaluation
tools from the Virtual Institute – High Productivity Supercomputing (VI-HPS)
are introduced and featured in hands-on exercises with Periscope, Scalasca, Vam-
pir and TAU. We cover all aspects of performance engineering practice, including
instrumentation, measurement (profiling and tracing, timing and hardware coun-
ters), data storage, analysis and visualization. Emphasis is placed on how tools
are used in combination for identifying performance problems and investigating
optimization alternatives, illustrated with a case study using a major application
code.

To prepare participants to locate and diagnose performance bottlenecks in
their own parallel programs, the tutorial prominently features hands-on exer-
cises with the tools. Participants will use their own notebook computers with
a provided Linux Live-ISO image booted natively from DVD/USB or running
within a virtual machine (e.g., VirtualBox). Due to limited time and network
bandwidth available during tutorials, those who intend to install a virtual ma-
chine and download the 4GB ISO disk image to their notebook computers should
do so in advance.

For further information visit http://www.vi-hps.org/training/material.
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Abstract. The one-sided communication model supported by MPI-2
can be more convenient to use than the regular two-sided communica-
tion model and has potential to provide better performance. The MPI-2
standard gives flexibility about when RMA operations can be issued
and completed. The current MPICH2 implementation employs a lazy
approach, in which operations are queued up and issued in the later syn-
chronization phase. This has certain benefits for small data transfers be-
cause of reduced network operations, but for large data transfers, issuing
operations in an eager fashion could achieve better performance. In this
paper we describe our design and implementation of an adaptive strategy
for one-sided operations and synchronization mechanisms (fence, post-
start-complete-wait, lock-unlock) supported by MPI-2, which combines
benefits from both lazy and eager approaches. Our performance results
demonstrate that our approach performs as well as the lazy approach
for small data transfers and achieves similar performance as the eager
approach for large data transfers. In addition, it achieves good overlap
of communication with computation.

Keywords: One-sided communication, MPI implementation, adaptive
strategy, MPI-2.

1 Introduction

The original MPI standard provided only two-sided and collective communica-
tion. The MPI-2 standard, released in 1997, added functionality for one-sided
communication (also called remote memory access (RMA)). One-sided commu-
nication allows one process to specify all communication parameters, both for
the source and destination processes (called origin and target in the MPI-2 stan-
dard). One-sided communication also has the potential to deliver higher per-
formance than regular two-sided communication, particularly on networks that
natively support one-sided communication.

MPI-2 provides three operations (put, get, accumulate) and three synchro-
nization mechanisms (fence, post-start-complete-wait, lock-unlock) for one-sided
communication. These synchronization mechanisms ensure the correct semantics
of one-sided operations. The MPI-2 standard gives much flexibility on when a
one-sided operation completes, which permits an MPI implementation to be
optimized internally, particularly in terms of when data transfers are initiated
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within one communication epoch (an epoch is the period between synchroniza-
tion calls; MPI further distinguishes between access and exposure epochs but
in the interests of space, we will use the term epoch). A detailed description of
one-sided communication in MPI-2 can be found in [1].

For small number of operations with short data, issuing them at the end
of the epoch (the closing synchronization call) permits aggregation of the RMA
operations into fewer communication steps, significantly improving performance.
For either large number of operations or significant amounts of data, however,
issuing them as early as possible may be beneficial, since their transmission
latency is expensive, and issuing them early provides opportunities to overlap
communication with computation within the epoch.

In many situations, it is not obvious beforehand whether issuing operations
early or late is better, due to the nature of communication pattern. Therefore, it
is desirable to design an adaptive strategy that can automatically select the most
suitable one. In this paper, we address this issue by designing and implementing
an adaptive approach for one-sided communication in MPI.

2 Related Work

There are several studies regarding the implementation of one-sided communica-
tion in MPI-2. Some MPI-2 implementations which support one-sided communi-
cation are MPICH2 [2], OpenMPI [3] and NEC [4]. In [11,12], the design choices
and issues in implementing one-sided communication in MPI are described. The
authors in [13] have studied optimizations for reducing the synchronization over-
head involved in implementing one-sided communication. Designs for MPI RMA
in InfiniBand clusters is described in [14,15]. In [16,17], the authors describe a de-
sign for efficient passive synchronization using hardware support from InfiniBand
atomic operations. In [18], some performance guidelines for one-sided communi-
cation in MPI are discussed. Besides MPI, other programming models that also
provide one-sided communication include CRAY SHMEM [5], ARMCI [6], GAS-
NET [7] and BSP [8]. Some BSP papers, particularly [9,10], discuss the benefits
of aggregating and scheduling communication operations for better performance
as well as contention avoidance.

3 Adaptive Strategy Design

3.1 Lock-Unlock

The existing implementation of lock-unlock in MPICH2 uses a lazy strategy. In
MPI Win lock, the origin process does nothing but enqueues the lock request.
During the following epoch, the origin process also enqueues puts, gets and
accumulates. In MPI Win unlock, the origin process issues the lock request and
waits for the lock granted message from the target. After that, it issues all
queued operations to the target and sets a field in the packet header of the last
operation to notify the target that all operations have already been issued out.
In this way, the lazy approach combines the last synchronization message with
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the last operation. The lazy approach also includes an optimization for single
short operation: if there is only one operation between lock and unlock, the data
size is small and the MPI data type is predefined, the origin process sends that
operation together with the lock request in MPI Win unlock. In this case, both
synchronizations at the beginning and at the end are eliminated.

Another choice for lock-unlock is an eager approach. In MPI Win lock, the ori-
gin process issues the lock request immediately and waits for lock to be granted.
For the following puts, gets and accumulates, it issues them as soon as they oc-
cur. In MPI Win unlock, the origin process sends an additional 0-byte message
to release the lock. The eager approach needs two synchronizations (and three
messages): one for the lock request and the lock grant, and one for the unlock
at the end. Besides, since it issues the lock request and operation separately,
optimization for single operation is impossible.

Our design for lock-unlock eliminates the synchronization message at the end
and preserves the optimization for single short operation. In MPI Win lock, the
origin process enqueues the lock request, just like lazy. Subsequent RMA op-
erations are also enqueued (lazy mode). If the number of queued operations
reaches the threshold, which is a certain value of operation number or message
size, the origin first issues the lock request, but does not wait for the lock-
granted response. Instead, it continues to enqueue RMA operations until the
lock is granted. Once the lock is granted, it issues all queued operations, switches
from lazy to eager mode, and issues the following operations immediately. Even
though the rest of operations are issued in an eager fashion, we still avoid the
last synchronization message by introducing a last rma op pointer, which keeps
one operation not being issued until MPI Win unlock. We also preserve the op-
timization of single short operation, because the lock request is not issued in
MPI Win lock, if only one short operation exists, it will be issued together with
the lock request in MPI Win unlock.

The semantic of MPI Win unlock requires that when the function returns, one-
sided operations are completed at both origin and target. We use an optimization
strategy in the original implementation to guarantee this. For shared lock, when
it encounters a get operation, the origin keeps it in a buffer and issues it at last,
otherwise the target needs to send an acknowledgement message to the origin
after receiving the last operation. This strategy assumes that the network is
ordered. If the network is unordered, the acknowledgement message is always
needed. For exclusive lock, no acknowledgement is needed.

3.2 Post-Start-Complete-Wait (PSCW)

The current implementation of PSCW in MPICH2 also uses a lazy strategy. In
MPI Win post, processes in the target group sends a synchronization message to
each process in the origin group, and sets the counter of the window to the size
of the origin group. In MPI Win start, processes in the origin group do nothing.
The subsequent puts, gets and accumulates are enqueued. In MPI Win complete,
every process in the origin group is blocked until it receives the synchronization
message from all processes in the target group, and then it issues all queued
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operations. For target process of each operation, the origin process sets a field in
the packet header of the last operation to decrement the counter of the window.
In MPI Win wait, every process in the target group is blocked until the counter
reaches zero. For each pair of processes, only one synchronization message is
needed. If the origin process has no operation destined to a target process, it
needs to send an additional 0-byte message to that target, which means they
need two synchronization messages in total.

Another choice for the implementation of PSCW is an eager approach. In
MPI Win start (or the first one-sided operation function, if exists), the origin
process is blocked until it receives the post message from all processes in the
target group. After that, puts, gets and accumulates are issued immediately
without queuing. Because of this, in MPI Win complete, the origin process needs
to send an additional 0-byte message to all processes in the target group to
decrement the counter. The eager approach always needs two synchronization
messages.

Like the lazy approach, our design for PSCW needs one synchronization if the
origin process has operations to a target process, and needs two synchronizations
when the origin has no operation destined to a target. In MPI Win start, pro-
cesses in the origin group do nothing. During the following epoch, each origin
process begins with the lazy mode: queuing up operations. When number of
queued operations reaches the threshold, the origin process is blocked to wait
for the synchronization message from all target processes of those queued op-
erations, and then issues all queued operations and switches from lazy to eager
mode. For the following puts, gets and accumulates, the origin process issues
them as they occur. Like lock-unlock, we avoid sending another synchronization
message by introducing a last rma op pointer for each target.

3.3 Fence

As for the lock-unlock and PSCW cases, the current implementation of fence
in MPICH2 also uses a lazy approach. In the MPI Win fence that begins an
RMA epoch, the processes perform no communication. The following puts, gets
and accumulates are enqueued. In the next MPI Win fence, each process first
goes through all queued operations to determine, for each other process i, how
many operations have i as the target, and it stores this information in an array.
Then all processes perform a reduce-scatter communication (with sum operation
on this array) over the communicator of the window. After that, each process
knows how many processes have operations targeting this process, and stores this
information in the counter of the window. Then each process issues all queued
operations, and the counter is decremented when all operations from the same
process have been arrived (indicated by the packet header of the last operation
from that process). Thus, in the lazy approach, only one synchronization (reduce-
scatter) is needed.

Another choice for implementing fence is an eager approach, in which all one-
sided operations are issued as early as possible. In the MPI Win fence that begins
an epoch, all processes perform a barrier synchronization over the communica-
tor of the window. After that, every process issues operations as they occur.
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At the next MPI Win fence, all processes perform another barrier synchroniza-
tion to guarantee that no process leaves this fence before all other processes have
finished accessing the window. Therefore, in the eager approach, two synchro-
nizations (barriers) are needed. Our design for fence needs one synchronization

Fig. 1. Adaptive fence

(reduce-scatter) when number of operations is small, and two synchronizations
(one barrier and one reduce-scatter) when number of operations reaches the
threshold. As is shown in Fig. 1, in the beginning MPI Win fence, every process
does no communication. For the following puts, gets and accumulates, the pro-
cess initially enqueues them. If number of queued operations does not reach the
threshold (the case for PE0), the process just goes into the next MPI Win fence

and is blocked at the reduce-scatter in it. If the number reaches the threshold
during the epoch (the case for PE1 and PE2), the process is blocked at the
reduce-scatter in the operation function. Therefore, PE1 and PE2 are synchro-
nized by reduce-scatter with PE0. After the reduce-scatter completes, PE0 issues
all queued operations, whereas PE1 and PE2 also immediately issue queued op-
erations as well as the operations after the reduce-scatter. When PE1 and PE2
enter the next fence, they do not need to perform the reduce-scatter in it. At the
end of fence, all processes need to be synchronized again by calling a barrier. This
strategy applies to ordered networks, or networks with remote completion mech-
anisms, in which processes can wait for all remote completion events and then
call barrier. On an unordered network without such mechanisms, however, bar-
rier cannot guarantee the correct completion and all processes need to perform
an all-to-all communication acknowledgement after completing all operations in-
stead. It is notable that full ordering for all data is not required to be imposed on
the communication, just ordering of particular transfers with respect to others
should be respected.

If every process has small number of operations (fence is always in lazy mode),
they only need one synchronization, which is the reduce-scatter in the second
fence. An additional value in the reduce-scatter is used to indicate whether some



Adaptive Strategy for One-Sided Communication in MPICH2 21

process called reduce-scatter before the closing MPI Win fence; this is how the
processes know whether a barrier synchronization is also required.

3.4 Comparison

For all three synchronization mechanisms discussed above, the general approach
for lazy is to do nothing in the first synchronization, enqueue the following oper-
ations, and do everything in the second synchronization. The general approach
for eager is to perform synchronization in the first call, issue the following opera-
tions as they occur, and do another synchronization at end. Compared with lazy,
eager has more synchronization steps and there is no opportunity to aggregate or
schedule operations. However, eager eliminates the cost of enqueuing operations
and has the advantage of issuing operations immediately, which means they can
arrive the target and be completed as early as possible. This is desirable when
there are large number of operations and/or the amount of data to transfer is
large. Eager also enables the overlap of communication and computation which
is not possible in lazy. Our adaptive design combines features of lazy and eager,
while introducing a modest overhead.

4 Performance Results

We implemented our adaptive approach based on the MPICH2-1.4.1p1 release
and added a new configure option: --enable-hybridrma. For each synchroniza-
tion mechanism, we also implemented the eager version(with--enable-eagerrma
option) to compare with lazy and adaptive. Our implementation uses the CH3
device in MPICH2.

We run benchmarks on two different architectures: (i) an SMP machine with
4 Intel Core i5 CPU (2.67 GHz) and 8GB memory, we use it to simulate a
architecture with a very fast interconnect network; (ii) the “breadboard” cluster
at Argonne National Laboratory on which each node has two Intel Xeon quad-
core processors (2.66 GHz) and 16GB memory, and nodes are connected with
Ethernet, we use it to examine the performance on a slow interconnect network.

While all experiments make use of a simple communication layer, the idea
applies even to one-sided transports, particularly those that can implement the
one-sided semantics by directly exploiting the hardware features. Note that the
lazy mode allows the use of a single remote direct memory access operation (as
long as the MPI semantics are observed) while the eager mode permits the use
of asynchronous communication for one-sided communication.

4.1 Latency Impact

Single-op Results. We first measured the latency between two processes when
only one operation issued between synchronization calls. Fig. 2 (log-log plot)
shows the put latency for lock-unlock, with message size varying from 1 byte
to 218 bytes. On SMP and breadboard, adaptive and lazy perform better than
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Fig. 2. Single-op results on SMP and breadboard

eager when message size is small, because of the optimization for single short
operation. Similar results are observed for get and accumulate operation, in the
interests of space we do not show them here.

Many-ops Results. We also measured the latency with increased number of
short operations between synchronization calls. Fig. 3 and Fig. 4 show the put
latency for lock-unlock and PSCW on SMP and breadboard. Since fence is com-
monly used for communication with many neighbors, we did not tested it here.

On SMP, when number of operations is small, data transmission speed is very
fast and there is no distinct difference between lazy and eager. When number
of operations is large, eager and adaptive are better than lazy. This is due to
the extra queuing overhead in lazy. On breadboard, Fig. 4 shows that lazy and

Fig. 3. Many-ops results on SMP

adaptive are better than eager when number of operations is small, because of
the extra synchronization cost in eager ; when number of operations is large,
eager and adaptive are better than lazy, because the extra synchronization cost
can be ignored due to the large number of operations. Here we used number of
operations as the threshold for adaptive. Similar results are observed for get and
accumulate operations, in the interests of space we do not show them here.
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Fig. 4. Many-ops results on breadboard

4.2 Overlapping Impact

We validated overlapping performance by modifying the previous many-ops
benchmark. We first measured the latency (t1) for fixed number of operations
plus synchronization calls between two processes, with no computation inserted.
After that, we inserted after one-sided operations certain amount of compu-
tation corresponding to t1. If the total latency does not change, it means all
computation is absorbed and the overlapping percentage is 100%. If not, we
decreased the amount of computation until it is completely absorbed by com-
munication. Suppose now time corresponding to the inserted computation is
t2, then the overlapping percentage equals to t2

t1
. Table. 1 shows the overlap-

ping results of the adaptive approach for put operation on breadboard (number
of operations is 4096). Percentage for accumulate operation is similar with put

Table 1. Overlapping results on breadboard

Message Size(bytes) Put(lock) Put(fence) Put(pscw)

210 30% 30% 15%
211 25% 25% 20%
212 60% 50% 50%
213 70% 60% 60%
214 70% 70% 65%
215 70% 75% 80%
216 70% 85% 80%
217 70% 70% 75%
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operation, whereas percentage for get operation is half that of put operation. This
is because for get operation, the second synchronization needs to spend certain
amount of time waiting for returning data, which cannot be overlapped with the
computation in between. For lazy, there is nearly no overlapping observed and
for eager, the overlapping percentage is similar to adaptive.

4.3 Performance Impact

We measured the performance impact of adaptive strategy on Graph 500 bench-
mark [19] and MPPTEST benchmark [20]. Graph 500 benchmark is designed to
demonstrate the suitability of systems for data-intensive applications (by run-
ning BFS on a randomly generated graph). The one-sided version of BFS in
Graph 500 is implemented by fence and accumulate operations. Between each
pair of fence calls, every process issues multiple short operations to many other
neighbors. MPPTEST benchmark includes an implementation of halo exchange,
which can reflect common communication pattern in many simulation applica-
tions. In halo exchange, one process exchanges data with several neighbors with
multiple short data transfers in between. We use halo exchange to measure the
impact of adaptive PSCW. All benchmarks are run on breadboard machine.

Fig. 5. Graph 500 results on breadboard

Fig. 6. Halo exchange results on breadboard
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Fig. 5 shows the results of Graph 500 and Fig. 6 shows the results of halo
exchange with 128 processes and 8 neighbors. For halo exchange, we use message
size instead of number of operations as the threshold in adaptive approach.

5 Conclusion and Future Work

In this paper, we describe the design and implementation of an adaptive strategy
for one-sided communication in MPI, which combines features of lazy and eager
approach while introducing a modest overhead. The queuing threshold must be
chosen appropriately for a given system and runtime condition. Currently we use
a fixed value for it. We are considering to build a reasonable model for choosing
threshold and to dynamically adjust it during runtime. We will explore these
possibilities in future.
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Abstract. Message passing paradigms provide for many to one messag-
ing patterns that result in receive side resource exhaustion. Traditionally,
MPI implementations layered over the Portals network programming in-
terface provided a large default unexpected receive buffer space, the user
was expected to configure the buffer size to the application demand, and
the application was aborted when the buffer space was overrun. The
Portals 4 design provides a set of primitives for implementing scalable
resource exhaustion recovery without negatively impacting normal oper-
ation. A resource exhaustion recovery protocol for MPI implementations
is presented, as well as performance results for an Open MPI implemen-
tation of the protocol.

1 Introduction

The usage model for message passing paradigms inherently makes it possible for
a large number of tasks in a system to overwhelm a single node with traffic and
cause resource exhaustion at the receiver. In the two-sided MPI semantics, re-
source exhaustion is most likely to occur due to a large number of “unexpected
messages”. For network APIs that directly implement two-sided matching se-
mantics, there is often a fixed pool of resources to deal with unexpected mes-
sages. Historically, the Portals network API [2,4] handled resource exhaustion by
dropping the offending message and notifying the receiver that the message had
been dropped. At that point, MPI had little choice but to abort the application,
since the ordering semantics could no longer be guaranteed. The philosophy was
that applications could code to a finite buffering requirement and could allocate
a sufficient receive buffer to meet that requirement. In practice, most appli-
cations had no problem with this; however, some applications have infrequent,
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J.L. Träff, S. Benkner, and J. Dongarra (Eds.): EuroMPI 2012, LNCS 7490, pp. 27–36, 2012.
� Springer-Verlag Berlin Heidelberg 2012



28 B.W. Barrett, R. Brightwell, and K.D. Underwood

transient demands on network resources that require more resources than can (or
should) be dedicated in steady state. In these cases, the alternative to aborting
the application is invoking some form of flow-control.

In a connectionless model like Portals 4, it is challenging to create a mech-
anism to properly implement flow-control. For example, the receiver-not-ready
(RNR) approach used in InfiniBand depends on a connection context, since a
single process running out of resources cannot be allowed to impact the entire
node. Building a flow-control mechanism that can easily be used in a design
exploiting extensive parallelism can also pose challenges. As with other types
of processing, processing network packets is increasingly dependent on paral-
lelism. As hardware architecture evolves, both pipelined parallelism and task
parallelism become critical. Pipelined datapaths will be needed for functionality
that is shared across a “node”, such as end-to-end reliability, and then multi-
ple processing elements will be needed to handle per process functionality like
matching logic.

In the Portals 4 design, two principles were treated as sacrosanct. First, the
solution must be scalable. Flow-control issues are most prominent at scale, and
traditional approaches work worst at scale. Second, the solution must not pe-
nalize the performance of applications that worked well with a limited, fixed
buffer, but it may have a high cost for recovery. The solution we chose has two
key components: new message reception is disabled in a compartmentalized way
when flow-control is invoked, and the sender is informed of all messages that
are dropped due to flow-control. Together, these capabilities enable MPI to re-
cover from flow-control events without incurring any overhead during normal
operation.

2 Related Work

Flow control for user-level networks has been an active area of research for nearly
two decades. Flow control strategies for Fast Messages (FM) were studied in [5].
A single pool of packet buffers was managed between all communicating peers,
and a dynamic flow control protocol was employed to ensure that these buffers
were not exhausted. Originally, FM used a static credit-based scheme where peers
were given a fixed allocation of packet buffers. This scheme limited the achievable
link bandwidth and caused bandwidth to degrade as the system size increased.
The dynamic credit-based approach would allocate credits to senders based on
the size of and number of incoming messages. The dynamic scheme improved
the achievable bandwidth as the number of network endpoints increased.

The popularity of user-level networking hardware and the emergence of MPI
as the de facto standard for message passing created a new flow control challenge.
Because MPI is a fully-connected model that supports the concept of unexpected
messages, flow control was needed to manage the amount of space needed for
unexpected message buffers.

The Quadrics [8] networkmapped a segment of the host’s address space into the
network interface controller (NIC) to use for unexpected messages. If this buffer
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space was about to be exhausted, the driver would simply allocate more mem-
ory for the NIC to use. Eventually, the driver would move the physical memory
pages to disk and map them into the host process’ address space when the un-
expected messages needed to be received. This approach allowed for a nearly un-
limited amount of memory to be used for unexpected messages, albeit at a large
performance cost if message buffers were paged out to disk.

Liu [7] explored different software-based flow control strategies for MPI over
InfiniBand, examining the trade-offs between static and dynamic credit-based
approaches. For the static approach, the number of buffers per connection is
established during MPI initialization and does not change. Control messages,
which can either be sent explicitly or piggy-backed on other messages, are used to
communicate the number of free credits back to the sender. The dynamic credit-
based strategy they employed in this work increased the number of credits, and
hence message buffers, when a low-water mark was reached. The dynamic scheme
was shown to outperform a static credit-based scheme in terms of latency and
bandwidth performance. Unlike the previous work mentioned above, this work
focused on point-to-point flow control within a single connection. The problem
of managing a set of buffers used for all potential senders in a connectionless
environment is more complex.

Farreras [6] explored an acknowledgment-based protocol that considers the
amount of memory available for unexpected messages and employs different pro-
tocols when memory is abundant versus when it is scarce. The key insight in this
work is that the receiver can update the MPI matching structures independent
of message delivery. In this strategy, a sender will send a control message con-
taining the MPI envelope information. The receiver will process this message,
updating the MPI matching structures. If there is room to buffer an unexpected
message, the receiver will send a control message back to the sender indicating
that the message can be sent. If there is no room, the control message will in-
stead tell the sender to buffer the message locally and try to send it again at a
later time.

The fundamental assumption in these user-level credit- and acknowledgment-
based approaches is that senders need to be constrained so that they do not
overwhelm receivers with too many unexpected messages. In our experience, a
large number of unexpected messages is a characteristic of a poorly designed
application whose performance and scalability will be inherently limited. Rather
than constrain well-behaved applications with protocols designed for misbehav-
ing applications, our strategy of recovering when the space for unexpected mes-
sages has been exhausted preserves correctness for the applications that need it
without impacting the applications that do not.

3 MPI Flow Control with Portals 4.0

The implementation of MPI over Portals 4.0 is similar to the implementation
over Portals 3.3 [3]; however, unlike Portals 3.3, Portals 4.0 provides support for
managing unexpected message queues as part of its interface. Figure 1 shows
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the Portals constructs used to build MPI matching. An incoming message first
traverses the match list entries in the priority list, which provide matching infor-
mation and pointers to user buffers to enable direct data delivery for expected
messages. Each match list entry in the priority list corresponds to a single posted
MPI receive. If a match is not found, the overflow list is then traversed. Short
messages match overflow list entries that are configured to deliver the message
data for a number of incoming messages in a temporary buffer provided by MPI,
while long messages match an entry that causes the data to be discarded. In
either case, the match information for the incoming message is placed in the
unexpected headers list.

When the user posts a new MPI receive, the unexpected headers list is first
searched for a matching header. If a match is found, an event notifying the MPI
is generated and the MPI moves the data into the user buffer, either copying it
from the short message buffer or issuing an RDMA get from the sender for a
long message. If no match in the unexpected headers list is found, a new match
list entry is posted in the priority list. The search and post behavior is handled
atomically by the Portals implementation. Portals will generate an event when a
match in the unexpected headers list is found, when no match in the unexpected
headers list is found and the match list entry is appended to the priority list,
and when an incoming message matches the priority list. Events are delivered
into a fixed-sized event queue (not shown in Figure 1).

Unexpected Headers ListOverflow ListPriority List

Fig. 1. Portals structures used in implementing receive side message handling

The buffers in the overflow list for temporarily storing short unexpected mes-
sages, the unexpected headers list, and the event queue are all of finite size. In
large systems, any one of the resources may be exhausted, either by many-to-
one communication patterns or by communication during periods of application
non-responsiveness to the network. Traditionally, such resource exhaustion in
Portals 3.3 has resulted in an application abort, which lead to very high static
resource allocation to prevent what are often transient spikes in resource usage.

In addition to the handling of unexpected messages, Portals 4.0 added a mecha-
nism for handling this resource exhaustion. A portal table index (similar to a TCP
port, used for selecting the proper match list) may optionally enable flow control.
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If an incoming message was not matched in the priority or overflow list, exhausts
the unexpected headers list, or exhausts space in the event queue, the portal table
entry is disabled. The offending message and all future messages are dropped with
an error delivered to the sender (similar to InfiniBand’s RNR ACK mechanism,
but without automatic recovery). A new operation, PtlPTEnable(), allows the
receiver to re-enable the portal table entry for handling incoming messages after
the exhaustion situation is solved. If it is necessary to prevent the reordering of
messages that are in flight, the receiver should wait for all pending messages to
complete before re-enabling the portal table entry. This typically requires coordi-
nation with the senders.

Two options were examined for handling flow control in a pipelined, parallel
network architecture: a credit based transfer protocol and a receiver managed
protocol.

3.1 Credit-Based Flow Control

A credit based flow control protocol avoids resource exhaustion by limiting the
number of messages in transit at any time. The receiver must allocate sufficient
unexpected buffer space, event queue space, and unexpected header space for
each available send credit. A straight-forward static allocation of credits results
in memory usage scaling according to the following equation:

memory = credits× eager threshold× number of peers (1)

The number of peers is growing rapidly with increasing processor counts and
cores per processor. At the same time, the increasing bandwidth delay product
of networks is increasing the eager threshold. Therefore, maintaining a reason-
able memory footprint yields a very small number of credits available to each
peer. Multiple strategies are available for controlling the number of outstanding
credits, including lazy connection establishment and dynamic sharing of credit
pools across multiple nodes. However, these strategies all suffer from scalability
losses during the all-to-all or all-to-one patterns most likely to result in resource
exhaustion.

3.2 Receiver-Managed Flow Control

The ability of a portal table entry to disable matching based on resource ex-
haustion provides the possibility of a more scalable flow control protocol. Unlike
credit based flow control, in which resources are constrained to prevent resource
exhaustion from occurring, receiver managed flow control allows resource ex-
haustion and provides the capability to gracefully recover.

As described in Section 3, communication operations notify the upper layer
protocol of completion by generating events in an event queue. An application
may utilize a number of event queues and the communication API allows the
upper layer protocol to determine where an operation’s completion notification
will be delivered. In the case of MPI over Portals 4, three event queues are
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utilized: a receive queue for all receive queue related events, a send queue for all
send events and for retrieving data for long unexpected messages, and a small
event queue for handling flow control recovery.

Flow control is enabled for the portal table entry used for incoming MPI
messages and the Portals implementation therefore ensures that the receive event
queue will not overflow.1 A credit protocol is utilized to ensure that the send
event queue does not overflow. The event queue can be sized to cover the worst
case in outstanding credits, since the resource utilized (event queue entry space)
is small, all credits will be returned without requiring remote processes to enter
the MPI library (that is, they are returned in bounded time), and the sizing of
the event queue is based on message rate of the network interface and not the
number of nodes in the system. All communication in the flow control recovery
protocol is log(N), so the flow control event queue may be sized extremely small
without worry of overflow.

If a receiver side generated acknowledgement indicates that the remote pro-
cess has entered flow control, the message is queued for later delivery and the
process enters flow control recovery. As part of the message generate process,
each outgoing message is assigned a 64 bit sequence number, which can be used
by the sender to retransmit messages in order after a flow control event.

When a process receives an event indicating that its receive portal table entry
has been disabled due to resource exhaustion, it notifies all connected processes
through an asynchronous broadcast based on triggered operations [9] to enter
flow control recovery. The steps in flow control recovery are outlined below:

1. All new MPI send operations are queued locally.
2. The triggered operations necessary for the notification broadcast are reset

for the next occurrence of resource exhaustion.
3. MPI waits for acknowledgments from all in-flight send operations and sends

which were not successfully delivered are queued for retransmission.
4. The receive event queue is drained to recover receive resources.
5. If required, more buffer space for short unexpected messages is posted.
6. All processes enter a barrier to signal the end of flow control recovery.
7. The list of messages queued for retransmission is sorted based on sequence

number, ensuring message ordering on the receiver and are retransmitted.

The receiver maintains MPI message ordering semantics by disabling all incom-
ing messages on the receiver experiencing resource exhaustion until the network
is completely quiesced. The sender only needs to track the number of currently
in-flight messages and a rolling 64-bit message counter in steady state. When
the sender enters flow control recovery, it can determine no in-flight messages
remain through the counter of in-flight messages, and can later determine the
original transmission order based on the 64 bit counter.

The flow control recovery protocol may be executed in either a dedicated ex-
ception handling thread or as part of the normal message event handling path.

1 Event queues are fixed size and an overflow results in lost events, which likely results
in lost messages. Portals reports such a loss to the MPI implementation, which is
likely to abort, as recovery is extremely difficult without flow control.
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Portals 4 provides a blocking mechanism for waiting on new events PtlEQWait(),
allowing the exception handling thread to sleep until recovery is necessary, re-
sulting in low steady-state overhead. Although point-to-point message transmis-
sion is disabled during recovery, other communication mechanisms which are not
layered on point-to-point messaging may progress during recovery.

4 Results

This section measures the impact of flow control on steady-state performance.
Recovery from resource exhaustion is expected to be a rare event and, while
the protocol has been thoroughly tested for correctness, performance results
during recovery are not presented. All experiments were run on a cluster of dual
socket Intel Xeon X5570 processors with InfiniBand ConnectX adapters. The
Intel X5570 is a 2.93 GHz, quad-core part and the nodes have 24 GB of memory.
Development versions of both Portals 4 over InfiniBand and Open MPI were
used, with subversion revision numbers r1844 and r26439, respectively.
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Fig. 2. Effect of available credits on message rate for a credit based flow control protocol

Figure 4 demonstrates the effect of limited credit availability on message rate.
The peak message rate of approximately 750,000 messages per second is achiev-
able with as few as 16 send credits. At 8 send credits, there is a drop in message
rate, and at 2 credits, only half of the peak message rate is achieved. The results
suggest that while 16 credits per connected peer is the minimum necessary to
avoid impacting message rate performance, satisfactory results may be found
with 8 credits if necessary.

The Portals 4 over InfiniBand implementation is still in development and
currently provides a message rate well under that of MPI over raw InfiniBand.
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Fig. 3. Effect of credit management on receive-side buffer memory usage. We assume
a 9,216 node machine with a 1 KB eager threshold.

As the message rates of Portals 4 implementations improve, greater numbers of
send credits will be required to maintain peak message rates.

Figure 4 highlights the dangers of increasing credit counts on large scale ma-
chines. Assuming a 1 KB eager message threshold and a 9,216 node machine,2

the effect of varying available send credits on message rate is compared to the
computed effect of send credit count on receive buffer memory usage. Three use
cases are demonstrated: one process per node (1 PPN), one process for every
four cores (4 PPN), and one process per core (16 PPN). While 16 PPN may
seem extreme if multi-threaded programming models are employed on modern
systems, future many core systems are likely to leverage more than one process
per node. The graph shows how much memory each process will need for the
unexpected message state at each credit level, and indicates an unsustainable
trend as core counts and socket counts grow — even if a small number of credits
are used. Even dynamic credit schemes typically allocate at least a few credits
to every peer.

The ping-pong bandwidth of a Open MPI with no flow control, credit-based
flow control, and receiver managed flow control are presented in Figure 4. The 8
byte half round trip latency for the three protocols is consistent at 3.92 �s. Not
surprisingly, there is little difference in performance between the three protocols,
as none have more than one message in flight at a given time.

Unlike ping-pong bandwidth, streaming bandwidth is affected by the limited
resources available in the credit based flow control protocol, as seen in Figure 4.
Having only 8 available credits provides nearly the performance of the no flow
control or receiver managed flow control cases. However, the 2 credit case sees a
decrease in bandwidth due to the gap necessitated by waiting for credits.

2 The ASC Cielo machine, Sandia’s current generation supercomputer, is 9,216 nodes.
All road maps point to larger node counts in the next 5 years.
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5 Conclusions

The Portals 4 specification adds a mechanism for handling resource exhaustion
suitable for use by a number of different upper layer protocols. By disabling the
portal table entry to all new incoming operations automatically until the upper
layer protocol explicitly re-enables message handling, Portals allows the upper
layer protocol to determine how to handle message retransmission. MPI’s strict
message ordering requirements requires an ordered retransmission after quiesc-
ing the traffic to the affected node. In contrast, the active message protocol in
GASNet[1] can create similar infrequent, transient resource exhaustion scenar-
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ios; however, GASNet active messages do not require ordering and the receiver
can re-enable the portal table entry as soon as resources have been replenished.

This paper presents a receiver managed protocol for handling resource ex-
haustion in Open MPI running over Portals 4. The protocol requires a minimal
amount of additional sends-side state that is independent of the system size and
no additional receive-side state. Performance impacts are negligible, particularly
when compared to a credit based flow control protocol. Unlike credit based flow
control protocols, the protocol does not require unexpected receive buffer space
that expands in a non-scalable fashion. Further, because resource exhaustion is
no longer a fatal event for MPI implementations over Portals, the buffer space
allocated for unexpected receive messages can actually be reduced compared to
previous implementations.
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Abstract. With the rise of parallel applications complexity, the needs
in term of computational power are continually growing. Recent trends in
High-Performance Computing (HPC) have shown that improvements in
single-core performance will not be sufficient to face the challenges of an
Exascale machine: we expect an enormous growth of the number of cores
as well as a multiplication of the data volume exchanged across compute
nodes. To scale applications up to Exascale, the communication layer
has to minimize the time while waiting for network messages. This pa-
per presents a message progression based on Collaborative Polling which
allows an efficient auto-adaptive overlapping of communication phases
by performing computing. This approach is new as it increases the ap-
plication overlap potential without introducing overheads of a threaded
message progression.

Keywords: HPC, Overlap, MPI, High-Speed Network, Polling.

1 Introduction

The scalability of a parallel application is mainly driven by the amount of time
wasted in the communication library. One solution to decrease the communication
cost is to hide communication latencies by performing computation during com-
munications. From the application developer’s point of view, parallel program-
ming models offer the ability to express this mechanism through non-blocking
communication primitives. One of the most popular communication libraries, Mes-
sage Passing Interface (MPI), allows the programmer to use non-blocking send
and receive primitives (i.e., MPI Isend and MPI Irecv) to enable overlapping of
communication with computation. For example, Figure 1-a exposes one MPI task
performing a non-blocking communication without overlapping capabilities. In
such a situation, the message is actually received from the network during the
MPI Wait call. On the other hand, the same example with overlapping shows a
significant improvement reducing the overall time consumed (see Fig. 1-b).

Achieving overlap usually requires a lot of code restructuring and transforma-
tions. Users are often disappointed after spending a lot of time to enforce over-
lap because the runtime does not provide an efficient support for asynchronous
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-a- No Overlapping -b- Overlapping

Fig. 1. Influence of Communication/Computation Overlapping in MPI

progress [1,2]. The MPI standard does not define a clear implementation rule for
asynchronous communications but only gives recommendations. Most of the cur-
rent MPI libraries does not support true asynchronous progression and performs
message progression within MPI calls (i.e., inside MPI Wait or MPI Test func-
tions). The main difficulty with these implementations occurs when an MPI task
performs a time consuming function with no call to MPI routines for progressing
messages (i.e., calls to BLAS).

In this paper, we propose a collaborative polling approach for improving the
communication overlap without disturbing compute phases. This runtime opti-
mization has been implemented inside a thread-based MPI runtime called MPC
(Multi-Processor Computing [3]). Collaborative polling allows message progres-
sion when a task is blocked waiting for a message, enabling overlapping with any
other task within the same compute node. This method expresses a significant
message-waiting reduction on scientific codes. In this paper, we focus on the MPI
standard and Infiniband network but the collaborative polling could be adapted
to any network interconnect and could be extended to other distributed-memory
programming models.

2 Related Work

2.1 Message Progression Strategies

Researches provide significant speedups using overlap of communication on large
scale scientific applications [4, 5]. For common MPI runtimes, message progres-
sion is accomplished when the main thread calls a function from the MPI library.
To achieve overlap at user level, MPI applications may be instrumented with
repeated calls to the MPI Test function to test all outstanding requests for com-
pletion. This solution is not convenient for the developer and irrelevant for not
MPI-aware functions. For implementations supporting the MPI THREAD MULTIPLE
level of thread safety, Thakur et al. [6] present an alternative overlapping tech-
nique. Hager et al. [7] investigate a Hybrid MPI/OpenMP implementation with
explicit overlap optimizations. However, both techniques rely on source-code
modifications and involve multiple programming models.

Recent Host Channel Adapters (HCAs) provide hardware support for total
or partial independent progress but rely on specific network hardware capabili-
ties [8]. To enable software overlapping without user source code modifications,
MPI libraries investigate a threaded messages progression. Additional threads



Improving MPI Communication Overlap with Collaborative Polling 39

(also known as progression threads) are created to retrieve and complete out-
standing messages even if large computation loops prevent the main thread to
call the runtime library. For accessing the network hardware, progression threads
may be set to use the polling or the interrupted-driven methods.

The polling access approach increases performance on a spare-core thread sub-
scription where the progression thread is bound on a dedicated core. It was for
example adopted by IBM in the Bluegene systems [9]. Because only a part of the
cores participates to computation, the spare-core mode is barely used on regular
HPC clusters. MPI is often used in a fully subscribed mode sharing the progres-
sion thread and the user thread on the same core. However the decision when and
how often the polling function should be called is non-trivial. Too many calls may
cause overhead and not enough calls may waste the overlap potential.

The interrupted-driven message detection is different from the polling ap-
proach since it allows the sender or the receiver to have an immediate notification
of completed messages [10]. If no work has to be done, the progression thread
enters into the wait queue and goes to sleep. When a specific event is generated
from the network card (i.e., an incoming message), an interruption is emitted
and the progression thread goes back to the run queue. Because generating an
interruption for each message may be costly, MPI runtimes often implement a
selective interrupt-based solution [11, 12]. Only messages which are critical for
overlapping performance may generate an interruption.

For the fairness of the CPU resource sharing, each process has a maximum
time to run on a CPU: the time-slice. For example on a Linux kernel, it varies
from 1 to 10 milliseconds. Once the time-slice is elapsed, the scheduler interrupts
the current running thread, places it at the end of the run queue for its static
priority and schedules a new runnable thread. When an interruption occurs, the
progression thread has to be immediately scheduled, raising two main concerns.
First, it is unclear how much time is required to switch from the active thread
to the progression thread: the scheduler may wait for the running thread to
finish its time-slice and it is uncertain that the progression thread is the next
to be scheduled. Second, one time-slice may be insufficient to receive the en-
tire message. One solution to increase the reactivity would be to use real-time
threads. However, this might increase the context switching overheads since the
progression thread is scheduled every time an interrupt occurs [13].

The approach most closely related to ours is described in the I/O Manager
PIOMan [14] where the preemptive scheduler is able to run tasks in order to make
the communication library progress. This previous work is able to efficiently
overlap messages in a multi-threaded context but does not allow a MPI rank to
steal tasks from another MPI rank.

2.2 Thread-Based MPI

In a thread-based MPI library, each MPI rank is a thread. All threads (MPI
ranks) share the same memory address space within a unique UNIX process on
a compute node. AMPI [15], AzequiaMPI [16], MPC [3], TOMPI [17], TMPI [18],
USFMPI are some thread-based MPI implementations.



40 S. Didelot et al.

Because of the implicit shared-memory context among tasks, thread-based
runtimes are well suited for implementing global policies, such as message pro-
gression, within a compute node. We implemented our contribution in the MPC
framework, an hybrid parallelism framework exposing a thread-based MPI 1.3
runtime. According to our needs, MPC brings two main features:

– Customizable two-level thread scheduler (help for tuning the message pro-
gression strategies).

– Support for a high-speed and scalable network (access to the Infiniband
network using the OFA IBverbs library with an OS-bypass technology).

3 Our Contribution: Collaborative Polling

During the execution of a parallel MPI application, the time spent while waiting
for messages or collective communications is wasted. This idle time is often
responsible for the poor scalability of the application on a large number of cores.
Even on a well balanced application at user level, some imbalance between tasks
may appear from several factors such as:

– The distance between communicating MPI peers.
– The number of neighbors.
– Micro-imbalance of communication (network links contentions, topology).
– Micro-imbalance of computation (non-deterministic events such as preemp-

tion) [5].

The main idea of the collaborative polling is to take advantage of idle cycles
due to imbalance for progressing messages at the compute node level. During its
unused waiting cycles, an MPI task is able to collaborate on the message progres-
sion of any other MPI task located on the same compute node. Fig. 2 compares
the processing of messages arriving from a Network Interface Controller (NIC)
with a regular message progression and with the collaborative polling method.

The algorithm depicted in Fig. 2 at application level is the following: each
MPI task executes a non MPI-aware function (Compute) with an unbalanced
workload between tasks before waiting for a message and calling a synchroniza-
tion barrier. On the left part, a regular message progression is presented. On
the right part, the collaborative polling method is used. Collaborative polling
allows task 1 to benefit from the unused cycles while waiting its message: it
can poll, receive and match messages for task 0 which is blocked into a non-
interruptible computation loop. Once the computation loop is done on task 0,
the expected message has already been retrieved by task 1 and the MPI Wait
primitive immediately returns.

As described in section 2.1 most message progression methods require to sus-
pend the computing phase (with an interruption, an explicit call to MPI or a
context switch to the progression thread) to perform progression. Collaborative
polling does not require these interruptions as it only uses idle time to per-
form progression. Thus, the impact of collaborative polling on compute time
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Fig. 2. MPI runtime without collaborative polling (left) and MPI with collaborative
polling (right)

is reduced compared to other methods. Collaborative polling also provides an
auto-adaptive polling frequency. Indeed, the frequency of calls to polling method
is directly linked to the amount of tasks waiting for a communication. For ex-
ample, when the number of tasks waiting on a barrier increases, the frequency
of calls to the message progression method increases as well.

4 Implementation

We designed and implemented our collaborative polling approach into MPC.
Since the Infiniband implementation of MPC uses the Reliable Connection (RC)
service, the message order is guaranteed and messages are reliably delivered
to the receiver. Three message transfer protocols are available: eager, buffered
eager (split a message into several eager messages) and Rendezvous based on
RDMA write. To guarantee the order across these three protocols, the high level
reordering interface of MPC is in charge of sorting incoming messages.

Modern interconnects such as Infiniband usually exploit Event Queues. When
a message is completed by the NIC, a new completion descriptor is posted to
the corresponding completion queue (CQ). Then, the CQ is polled to read in-
coming descriptors and process messages. MPC implements two CQ: one for
send, another for receive. Both of them are shared among tasks meaning that
all notifications are received and multiplexed into the same CQ.

As depicted on Fig. 3, each MPI task implements two pending lists: one private
for point-to-point messages and one global for collective operations. To ensure
the message progression, the MPC scheduler calls the polling function every time
a context switch occurs. The polling function is divided into three successive
operations. First the task tries to access the CQ and returns if another task is
already polling the same CQ. We limit to one the number of tasks authorized
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Fig. 3. Collaborative-Polling Implementation inside MPC Infiniband Module

to simultaneously poll the NIC because we observed a performance-loss with a
concurrent access to the same CQ. Then, each completed Work Request (WR)
found from the CQ is disseminated and enqueued to the corresponding pending
list. At this time, the message is not processed. Secondly, the global and the
private pending lists are both polled. Thirdly, with collaborative polling, if a
task does not find any message to process, it tries to steal a WR for a task
located on the same NUMA node before lastly trying another NUMA node.

4.1 Extension to Process-Based MPI

Collaborative polling requires the underlying MPI runtime to share some internal
structures among tasks located on the same node. Within a regular process-based
MPI runtime, collaborative polling could be implemented by mapping the same
shared-memory segment in each process. The cumbersome job here is to extract
the polling-related structures from the existing runtime and place them into
the shared memory. Another approach would to use the Linux XPMEM Linux
kernel that enables a process to expose its virutal address space to other MPI
processes [19].

5 Experiments

This section presents the impact of collaborative polling on three MPI appli-
cations: EulerMHD [20], BT from the NAS Parallel Benchmark suite [21], and
Gadget-2 [22] from the PRACE benchmarks. These codes run on the Curie su-
percomputer owned by GENCI and operated into the TGCC by CEA. This is a
QDR Infiniband cluster with up to 360 nodes equipped with 4 Intel Nehalem EX
processors for a total of 32 cores per node. We compare our approach (MPC w/
CP) against the regular version of MPC (MPC w/o CP), MVAPICH 1.7, Open
MPI 1.5.4 and Intel MPI 4.0.3.088.
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5.1 Block Tridiagonal Solver (NAS-BT)

The Block Tridiagonal Solver solves three sets of uncoupled systems of equations.
It uses a balanced three-dimension domain partition in MPI and performs coarse-
grained communications.

Fig. 4. BT Evaluation (class D)

Function w/o CP w/ CP Speedup

Execution time 83.73 66.19 1.26
Compute time 42.59 41.19 1.03

MPI time 41.14 25 1.65
MPI Waitall 8.06 6.6 1.22

MPI Reduce 1.29 · 10−3 1.28 · 10−2 0.1

MPI Allreduce 2.39 · 10−2 6.59 · 10−2 0.36
MPI Wait 30.11 15.97 1.89
MPI Isend 2.65 2.01 1.32
MPI Irecv 0.29 0.33 0.88

MPI Barrier 4.37 · 10−3 1.53 · 10−2 0.29

MPI Bcast 1.12 · 10−2 3.5 · 10−3 3.2

Fig. 5. BT MPI Time Showdown (class D)

Figure 4 illustrates the results obtained running the BT benchmark with class
D on 1024 cores on several MPI implementations. It decomposes the time spent
inside the MPI runtime from the computational time. Collaborative polling al-
lows a significant speed-up compared to regular MPC implementation. In com-
parison to other MPI implementations, we can however notice an overhead in
MPC with collaborative polling. This is because the Message Passing layer of
MPC is not well-optimized for the message sizes used by the NAS-BT benchmark
in this configuration. We are currently investigating this issue.

Figure 5 exposes the details of the time spent in the MPI runtime. The gain
comes from the time spent inside the wait functions (MPI Wait and MPI Waitall)
because the messages have already been processed by another task when reaching
such function. Indeed, Fig. 6 shows the amount of messages stolen per task
(locally on the same NUMA node or remotely on another NUMA node located
on the same computational node). It clearly states that the number of stolen
messages is high, leading to the acceleration of the wait functions.

Fig. 6. Steal statistics (BT)
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5.2 EulerMHD

EulerMHD is an MPI application solving both the Euler and the ideal magneto-
hydrodynamics (MHD) equations at high order on a two dimensional Cartesian
mesh. At each iteration, the ghost cells are packed into contiguous buffers and
sent to neighbors through non-blocking calls with no-overlap capabilities. Fur-
thermore, each timestep, a set of global reductions on one float number each is
performed.

Fig. 7. EulerMHD Evaluation

Function w/o CP w/ CP Speedup

Execution time 159.41 143.74 1.11
Compute time 133.66 131.8 1.01

MPI time 25.76 11.94 2.16
MPI Allreduce 3.12 2.75 1.13

MPI Wait 21.86 8.45 2.59
MPI Isend 0.57 0.49 1.16
MPI Irecv 0.21 0.24 0.87

Fig. 8. EulerMHD MPI Time Showdown

In these experiments, we use a mesh of size 4096 × 4096 for a total of 1024
MPI tasks and 193 timesteps. As depicted in Fig. 7, the collaborative polling
decreases the time spent in MPI functions by a factor of 2. Details of time de-
composition is illustrated in Table 8. The first time-consuming MPI call, the
MPI Wait function, shows a significant speedup by more than 2.5. The compu-
tation loop is also impacted and exhibits a minor improvement. This may be
due to the polling function which is less aggressive while waiting messages with
collaborative polling enabled, diminishing the memory traffic.

5.3 Gadget-2

Gadget-2 is an MPI application for cosmological N-body smoothed particle hy-
drodynamic simulations. At each timestep, the domain is decomposed and the
work-load is balanced across MPI tasks using a combination of Allgather, All-
gatherv and Ssend/Recv functions. During the force computation, each task
exchanges the number of outgoing particles with a call to MPI Allgather before
sending a point-to-point message to each neighbor containing the new positions
of the moving particles. From a task to another, the construction of the local
tree differs causing an imbalanced work-load and a variation in the number of
neighors. The configuration simulates 1e7 particles for 16 timesteps on 256 cores.

Collaborative polling exhibits an improvement in message-waiting time (see
Fig. 9). Table 10 details the time acceleration of MPI functions: collaborative
polling allows speed-up on MPI Recv and MPI Sendrecv functions leading to a
7% improvement for the MPI time compared to regular MPC run.
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Fig. 9. Gadget Evaluation

Function w/o CP w/ CP Speedup

Execution time 109.87 106.8 1.03
Compute time 61.18 61.09 1

MPI time 48.69 45.7 1.07
MPI Reduce 1.03 0.83 1.25

MPI Allreduce 3.81 4.24 0.9
MPI Recv 2.62 1.31 2

MPI Barrier 6.55 6.56 1
MPI Bcast 0.32 0.25 1.26

MPI Allgather 9.07 9.22 0.98
MPI Sendrecv 6.25 5.06 1.24

MPI Gather 4.62 · 10−3 3.8 · 10−3 1.21
MPI Ssend 0.18 0.18 0.99

MPI Allgatherv 18.85 18.05 1.04

Fig. 10. Gadget MPI Time Showdown

6 Conclusion and Future Work

In this paper, we proposed a transparent runtime optimization called Collabora-
tive Polling. This solution does not require to modify the source code of the appli-
cation nor the programming model. The experiments on scientific codes show a
significant improvement of the MPI time with collaborative polling. Many kinds
of MPI calls can benefit from this optimization: blocking/non-blocking point-to-
point as well as global collectives such as barrier and allreduce. Additionally to
this paper, collaborative polling was designed for MPI and Infiniband but may
be extended to any programming model and any interconnect which does not
implement a full independent message progression.

In the worst case of a perfectly well-balanced application, collaborative polling
fails to progress message asynchronously. We plan to investigate a mixed-solution
with an interrupt-based polling in a future work. We also plan to focus on hy-
drid MPI/OpenMP code where idle OpenMP would participate to collaborative
polling and progress messages of any MPI task located on the same compute node.
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Abstract. Many-core architecture draws much attention in HPC com-
munity towards the Exascale era. Many ongoing research activities using
GPU or the Many Integrated Core (MIC) architecture from Intel ex-
ist worldwide. Many-core CPUs have a great deal of impact to improve
computing performance, however, they are not favorable for heavy com-
munications and I/Os which are essential for MPI operations in general.

We have been focusing on the MIC architecture as many-core CPUs to
realize a hybrid parallel computer in conjunction with multi-core CPUs.
We propose a delegation mechanism for scalable MPI communications
issued on many-core CPUs so as to play delegated operations on multi-
core ones. This architecture also minimizes memory utilization of not
only many-core CPUs but also multi-core ones by deploying multi-layered
MPI communicator information. Here we evaluated the delegation mech-
anism on an emulated hybrid computing environment. We show our
innovative design and its performance evaluation on the emulated en-
vironment in this paper.

Keywords: many-core architecture, MPI, inter-core communication,
delegation, multi-layered MPI communicator information.

1 Introduction

MPI [8] is the de-facto standard communication interface in parallel computing
nowadays. Especially collective communications are widely used in large scale
parallel computations.

Towards the exascale era, we should tackle serious problems in poor scalabil-
ity and large inter-process communication overhead. For example, collective MPI
communication functions include optimized communication algorithms. Even in
the optimized method, we may have large overhead due to hardware heterogene-
ity in parallel computers consisting of large number of computing nodes. As a
result, increasing the number of computing nodes or multi-core CPUs does not
scale effectively.
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Recently many-core CPUs has been focused for its highly optimized architec-
ture. For example, the MIC architecture from Intel will play a big role as a com-
puting accelerator in 10 PFlops class parallel computer named Stampede [11].

When we have more than millions of CPU cores, we may have difficulty in
managing an MPI communicator information because its size per MPI process
is proportional to the number of MPI processes in the current MPI implemen-
tations [1]. The authors pointed out some possibilities or technical challenges to
have scalability.

We believe that a hybrid parallel computer with many-core and multi-core
architectures will reach to the Exaflops era. We consider to utilize the MIC ar-
chitecture [5] as computing accelerators for the hybrid computer. Our motivation
for this research activity is having an MPI library which harnesses existing MPI
applications from current homogeneous supercomputers to the state-of-art hy-
brid parallel computer with many-core CPUs based on the MIC architecture. In
the hybrid architecture, MPI processes will be initiated on every core of many-
core CPUs. We do not handle any threads in our framework.

For this purpose, we have been implementing a delegation mechanism which
transfers an MPI function request from MPI processes on many-core CPUs to
multi-core ones seamlessly. The delegation mechanism will also minimize com-
munication cost by merging MPI requests from many-core CPUs on every del-
egatee process running on a multi-core CPU. We have started this research in
parallel with R&D of our OS kernel to organize the whole system software with
forthcoming MIC architecture as soon as possible. Therefore, we have evaluated
performance of the delegation-based MPI infrastructure on a PC cluster which
imitated our target hybrid architecture. Here we observed not only its perfor-
mance advantages but also effective memory utilization relative to the original
MPI implementation.

In this paper, we describe our motivation for this research and development,
and explain software design of the delegation one in Sec. 2. Later we discuss
performance evaluation results in Sec. 3. Related work is mentioned in Sec. 4,
and finally we summarize our paper in Sec. 5.

2 Delegation-Based MPI Communication Infrastructure:
Motivation and Design

It is expected to achieve Exaflops performance around 2018, and one of the key
devices is a many-core CPU which is so-called a computation accelerator. In
general, multi-core CPUs as host managers control the many-core CPUs in the
form of a PCIe card. GPGPU is one of the advanced techniques for this purpose,
and it is widely used in high performance computing community. Meanwhile Intel
has announced the MIC in 2010, where the first substantiation named Knights
Ferry was announced [5]. It is a development platform to evaluate scientific
applications and system software to prepare for the forthcoming products. Intel
will soon release a product based on the MIC architecture named Knights Corner
later, and a parallel computer named Stampede [11] in TACC will utilize it as a
computing accelerator.
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When we use many-core CPUs based on the MIC architecture, we may de-
ploy computation threads by using Pthreads, OpenMP, or Cilk plus in general.
However we address to deploy an MPI process on every computing core, thus
eliminating to have computation threads at least in the MPI program layer for
sustainable use of existing MPI programs. In order to exploit high performance
computing power of many-core CPUs, we propose a delegation-based MPI mid-
dleware for our target hybrid supercomputer. We are expecting that most of
user’s MPI applications can run faster with the help of the middleware.

A system architecture of our target parallel computer is shown in Figure 1. We
have been designing a hybrid operating system for this architecture [10]. Every
node has multi-core CPUs as host CPUs and many-core ones on PCIe cards for
high performance computations. We will have a newly designed light-weight OS
and a customized common Linux kernel for many-core and multi-core ones, re-
spectively. R&D of them is in progress at this moment [10]. Communications in
a user space between multi-core and many-core CPUs via a PCIe bus are realized
by the inter-kernel communication support. We call this “inter-core communi-
cation” in a user level. Every process on many-core CPUs (hereafter many-core
process) can access a sort of virtual memory address space of processes on multi-
core CPUs (hereafter multi-core processes) and vice versa. Furthermore every
many-core process has a shared memory address space on the same many-core
CPU. Thus, such address space can be used for MPI communications inside the
same many-core CPU in order to minimize latency of MPI communications.

Multi-Core OS
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Many-Core OS
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Inter-Node Network I/F

(InfiniBand)

PCI Express 
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Multi-
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Process
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Memory

Hardware
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System
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User
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Fig. 1. Architecture of a target hybrid parallel computer system

We propose to deploy delegation processes (hereafter delegatees) to realize
flexible and scalable MPI communications among computation nodes instead of
direct communications among many-core processes as shown in Figure 2. Once
an MPI start-up program is initiated (1), every delegatee is invoked by the MPI
start-up program (2), followed by invocation of many-core processes by each
delegatee (3).
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Fig. 2. Delegation mechanism in MPI communications

Another technical challenge is effective management of MPI communicator
information. We can not keep existing MPI communicator management scheme
in the Exascale era due to the limited memory resources of many-core CPUs.
Therefore, we need to minimize communicator information on many-core CPUs
by delegating most of the information to multi-core CPUs. In this strategy, we
have been designing a multi-layered MPI communicator.

Figure 3 depicts a rough sketch of our multi-layered communicator table. The
communicator table consists of four hierarchy according to node grouping man-
ner in the current design; (1) a top-node table, (2) a delegatee-group table, (3) a
delegatee table, and (4) a many-core table from top to bottom layers. The reason
why we separate into four layers was coming from hardware hierarchy in the hy-
brid system. Information in every many-core table such as the number of cores,
an assigned unique-ID of each core, MPI rank-ID, or an MPI attribute are stored
in it. This table is managed by “super-process” on a dedicated core on a many-
core CPU for delegation-based communications. Every delegatee shares a delega-
tee table which stores a pointer to an assigned many-core table. Besides, every
slot has the number of processes which the assigned delegatee has in order to fig-
ure out the number of processes. Inside a delegatee group, one of the delegatees is
assigned for “super-delegatee” which manages every delegatee table information
and data communications among delegatee groups. Data communication from/to
other group are carried out by the super-delegatee. The top-node table has infor-
mation about every delegatee-group and we can easily access every group.

For preliminary performance evaluation in this paper, we have just imple-
mented a pseudo communicator information table which consisted of node and
many-core tables. The full-scale MPI communicator information mechanism was
not implemented yet because we did not have enough number of processes to
use the four-layered MPI communicator information. When we have more than
1 million processes for example, we may need such multi-layered table.
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Fig. 3. Design of our multi-layered communicator table

3 Performance Evaluation on an Emulated Environment

We deployed an emulated environment which imitated the proposed hybrid archi-
tecture on a PC cluster system at Information Technology Center, the University
of Tokyo. Every node had two Intel 6-core Xeon X5680 CPUs with 96GB mem-
ory. PC nodes were connected via 4×QDR InfiniBand. MVAPICH2ver. 1.6rc1 [12]
was used on 24 nodes for this evaluation. MPI start-up program initiated one
pseudo delegatee process on each node, thus one delegatee per node. Later every
delegatee invoked pseudo many-core processes on vacant CPU cores with the
help of CPU affinity control API. Polling scheme by using a user-level shared
memory emulated inter-core communications.

We have evaluated our preliminary implementation in several collective MPI
communications with and without delegatees, hereafter we describe delegation
mode and normal mode, respectively. We deployed pseudo many-core processes
in (a) round-robin and (b) block manner to evaluate impact of process locality.
Every node had one delegatee process each, which managed multiple pseudo
many-core processes.
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Figure 4 shows communication times obtained by MPI Bcast. Here deleg and
normal denote the delegation mode and normal mode, respectively. Operation
sequence of MPI Bcast in the delegation mode is as follows: (1) Once many-core
processes issue the MPI function, delegatees catch this function call and issue
MPI Bcast. The delegatee which manages the root many-core process works as
a root process. (2) After the data communication, non-root many-core processes
copy the received data from the delegatee to a local receive-buffer.
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Fig. 4. Communication time of MPI Bcast with and without delegatees, where (a) 3
and (b) 10 many-core processes per node

Vertical and horizontal axes denote communication time and message size
specified in the MPI function, respectively. With more than 16MB message size,
Fig. 4(a) shows performance degradation in the delegation mode relative to the
normal mode in a block manner. However the delegation mode outperformed
the normal mode in round-robin manner. This performance gap was coming
from process placement mismatch regarding communication scheme used in the
function. The delegation mode in Fig. 4(b) outperformed the normal one in both
placement manners.

Here, we note that the delegation mode could minimize communication time
independent of process placement patterns because the delegatee eliminated un-
necessary communications by many-core processes inside the same node.

We also evaluated MPI Allgather as shown in Figure 5. Operation sequence
of MPI Allgather in delegation mode is as follows: (1) Once many-core processes
issue the MPI function, every delegatee gathers data to be sent from many-core
processes and stores them together to delegatee’s send-buffer. (2) Delegatees
issue MPI Allgather. (3) If the many-core processes are allocated in round-robin
manner, delegatees rearrange the received data in order of rank-ID. (4) Many-
core processes copy the received data from the delegatee to a local receive-buffer
specified in the MPI function.

With the help of collecting small data in the delegation mode, the delegation
mode outperformed the normal mode with smaller message size less than 2KB.
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Fig. 5. Communication time of MPI Allgather with and without delegatees, where (a)
3 and (b) 10 many-core processes per node

On the other hand, for larger message size more than 256KB, delegation
mode in each allocation manner were inefficient compared to the normal mode
in Fig. 5(a) because the impact of additional processing such as memory copy
is large. Whereas, Fig. 5(b) shows that the delegation mode outperformed the
normal mode in each allocation manner.

The evaluation results show that the delegation mechanism could provide ef-
fective communication with the larger number of many-core processes. Since our
target hybrid computer will have around 50 many-core processes per many-core
CPU, the delegation mechanism is expected to provide efficient data communi-
cation for the target computer.

At this moment, we have just two-layers separated into many-core and node
tables as we mentioned in Sec. 2. However we believed that it was worth to
know how much MPI processes consumed memory resources. We have evaluated
utilized memory resources of our implementation and the normal MVAPICH2
library by extracting /proc interface information. Since utilized physical memory
size was observed only as a total value, we could not distinguish used memory size
for a delegatee process and many-core processes in our implementation. There-
fore we discuss size of mapped virtual memory space of each process through
/proc interface.

Figure 6 shows measured values. Here the original MPI increased resource
utilization with an increase in the number of MPI processes. While our delegation
scheme did not increase as the original one did. It is noted that the delegation
mode could minimize size of used memory on many-core processes, while the
delegatees exhausted a sort of memory because every delegatee should have
almost of all the communicator information.

Once we suppose to have 1EFlops with 1TFlops many-core CPUs, we may
need 1M CPUs. In this case, there will be 50M processes in total if one many-
core CPU has 50 cores. In case of 4 CPUs per computation node, we need 250,000
nodes. When we have one delegatee process per one many-core CPU, we need
1,000,000 delegatees. Since every delegatee process is an MPI process, it is very
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Fig. 6. Utilized memory size in collective MPI communications

hard to organize a flat MPI due to limited memory resources because we may
need about 200GB per process according to our estimation based on the evalu-
ation in Fig. 6. Therefore we propose to divide a delegatee table into “delegatee
groups” along with hardware affinity such as computation nodes under the same
interconnection switch, for example, in order to minimize memory utilization. We
also expect that this approach will minimize information retrieval time accord-
ing to the nature of data-locality. Every delegatee group has a “super delegatee”
to manage every delegatee information in the same group. In this scheme, we
may have about 200MB per group if each delegatee group has 1,000 delegatees.
Towards the Exascale era, we are considering to have more layers by grouping
in the node table layer.

4 Related Work

Kamal et al. have realized a scalable MPI implementation in communicator and
group management [6]. They have focused on reducing memory utilization for
communicator and groups towards effective and scalable management of a large
number of MPI processes. Their principal idea is based on multi-layered commu-
nicator management, and it is similar with ours, however our target computer
is different from their target. Since we have heterogeneity not only in hardware
architecture but also among OSs, we should pay much attention to seamless op-
erations among a light-weight OS on many-core architecture and a normal Linux
kernel OS on multi-core one.

Locality-aware deployment is a very important aspect in such hybrid archi-
tecture. Authors in [4] proposed Locality-Aware Mapping Algorithm named
LAMA to deploy MPI processes with locality-awareness across processing el-
ements spreading among compute nodes. Their basic idea to utilize hwloc [2] is
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coming from a NUMA architecture of recent multi-core CPUs. It has incorpo-
rated in OpenMPI [9]. KNEM [7] is also focusing on locality-awareness, however
its interest is within intra-node MPI communications.

On the other hand, our proposed communication infrastructure has addressed
to have scalable MPI communications on a hybrid architecture with many-core
and multi-core CPUs. We should pay attention to heterogeneity not only among
the same kind of CPUs but also between many-core and multi-core CPUs. Primal
goal of this infrastructure is work-sharing by delegating MPI communications
from many-core to multi-core units.

Reducing memory utilization for MPI communicator information is a critical
issue in scalability aspects. Goodell et al. proposed a virtual connection in the
MPICH2 implementation [3]. Our multi-layered communicator management is
similar with their scheme. However our proposal is based on delegation mecha-
nism for MPI communications from many-core CPUs to multi-core ones.

5 Concluding Remarks

In this paper, we describe design of our delegation-based MPI communication
middleware suitable for a hybrid parallel computer consisting of many-core and
multi-core CPUs. We have addressed to utilize the MIC architecture from Intel
as accelerators in our target parallel computers. Due to concurrent R&D with
a light-weight OS for the MIC architecture, we evaluated our implementation
on an emulated hybrid parallel computing system. Through the evaluation, we
observed that our delegation mechanism was better than the communications
without delegatees in mismatch process placement. Furthermore performance of
our mechanism was not degraded by process placement patterns because dele-
gatees minimized communication cost by merging MPI function calls and data
movement by many-core processes.

We also proposed multi-layered MPI communicator management for the hy-
brid parallel computer. Since we did not have enough computing nodes on the
emulated computing environment, we had only two layers in the communicator.
However minimization of memory utilization was observed in our multi-layered
MPI communicator management. Because many-core CPUs will have very lim-
ited memory resources in general, it is effective to deploy most of the communi-
cator information on multi-core CPUs by using the communicator management
scheme.

We also argued technical challenges to be done in our design through the
evaluation and we will evaluate the full-scale MPI communicator information
mechanism on a big parallel computer as a future work. Implementation of other
MPI functions is also our future work.
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Abstract. An important aspect of support for multithreaded MPI ex-
ecutions is the management of communication context identifiers (IDs),
which are used to associate MPI communication operations with a com-
municator. New communicator creation functionality in MPI 3.0 adds
complexity to this core resource management problem. We present an
efficient algorithm for multithreaded context ID allocation that builds on
an existing production algorithm developed to support MPI 2.2. Through
this work, we have discovered a subtle concurrency bug in the existing
algorithm that can result in deadlock. We correct this bug and develop
methods to overcome the performance impact of deadlock prevention.
We evaluate the performance of the new algorithm and prove that it is
free from deadlock.

1 Introduction

Hybrid parallel programming that combines MPI with a shared-memory pro-
gramming model, such as threads or OpenMP, has become a popular paradigm
for constructing scalable and efficient high-performance applications. In this
model, MPI is used for internode coordination and data movement, while
hardware-supported shared memory is leveraged to achieve efficient intranode
execution. The adoption of such hybrid programming techniques has been driven
by sustained increases in the number of cores and hardware threads provided
per processor. This trend indicates not only that MPI must interoperate well
with a variety of shared-memory programming models but also that MPI must
efficiently manage increasing levels of concurrency within the MPI library [6].

The MPI 2.2 standard [7] defined the interaction of MPI with threads, and
significant effort was invested to extend MPI implementations to support this
new hybrid execution model [5,8,9]. An important component of this effort was
the development of multithreaded context identity (ID) allocation algorithms [5].
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MPI uses context IDs internally to match communication operations with com-
municators; a new context ID must be generated each time MPI constructs a
new communicator.

The MPI 3.0 specification that is nearing completion contains new functional-
ity that will require modification to how anMPI implementation allocates context
IDs. Among these changes is a new, noncollective communicator creation routine
that supportsmultiple concurrent invocations that are differentiated by using a tag
argument [3]. Traditional communicator creation routines are collective over all
processes in a parent communicator; in contrast, this new routine is collective over
only the group of processes that will be members of the new communicator. The
functionality of this routine is expected to address several key application needs, as
explained in detail in [3]. For example, when a node failure occurs, processes must
create a new communicator to re-establish collective communication; however, tra-
ditional communicator creation would require participation from failed processes.
This routine also enables the use of load balancing techniques that asynchronously
reassign idle processes to heavily loaded execution teams [2]. Moreover, this rou-
tine can significantly reduce the cost of communicator creation by including only
processes that will be members of the new communicator.

We have extended the MPICH2 [1] multithreaded context ID allocation rou-
tine to support this new functionality. Through this work, we discovered a bug
in the production algorithm that can result in deadlock. We correct this bug
and discuss techniques to eliminate the performance impact of deadlock preven-
tion. We prove that the new algorithm meets all constraints and is free from
deadlock. We compare the performance of native noncollective communicator
creation with the user-level algorithm [3] and demonstrate that the native imple-
mentation provides a significant speedup by eliminating O(log n) communicator
creation operations. Furthermore, we show that noncollective communicator cre-
ation can provide a several-fold speedup over collective communicator creation
when the output group is smaller than the parent communicator.

This paper is organized as follows. In Section 2 we discuss the interaction
of MPI with threads and the new, noncollective communicator creation routine
that will be added in MPI-3. Section 3 presents the enhanced multithreaded
context ID allocation algorithm, which prevents the deadlock condition that
was possible in the existing algorithm. In Section 4 we prove correctness and
deadlock freedom for this new routine. An optimization to eliminate deadlock
prevention overheads is presented in Section 5. We evaluate the performance of
our implementation in Section 6 and summarize our conclusions in Section 8.

2 Multithreading and MPI

The MPI 2.0 standard defined MPI’s interaction with threads; several lev-
els of multithreading are supported depending on the needs of the applica-
tion. In this work, we consider the case where MPI is initialized to support
MPI THREAD MULTIPLE because other, more restrictive threading levels don’t
subject the MPI implementation to a level of concurrency that necessitates these
techniques.
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Of particular importance to this work is the interaction of MPI collectives
with threads. The MPI standard states that a program may perform only one
collective operation per communicator at a time. If the application uses threads,
the programmer must ensure that threads do not perform multiple collectives
concurrently on the same communicator. However, multiple collectives can be
issued concurrently on different communicators. In the MPI-2 standard, commu-
nicator construction is a collective operation that is performed on a parent com-
municator. Thus, when threads are in use, multiple communicator construction
operations can be issued concurrently if the parent communicators are different.

A new routine, MPI Comm create group, which was proposed by the authors, is
anticipated in MPI 3.0. The input to this routine is a parent communicator, a
group of processes (represented by an MPI Group object) that will be members
of the new communicator, and a tag argument. All processes in the input group
must call this routine with the same arguments. A new communicator containing
the processes in this group is returned as output; if a process is not a member
of the group, MPI COMM NULL is returned. In contrast with other collective
operations, this routine can be invoked concurrently by multiple threads on the
same parent communicator. In such a case, each call must use a distinct tag
argument, which is used to distinguish operations. Communication generated by
this routine is defined not to interfere with other point-to-point communication
on the parent communicator, even if the same tag (or MPI ANY TAG) is already
in use.

3 Multithreaded Context ID Allocation Algorithm

Communicators are internally identified by an integer context ID in most MPI
runtime systems. The context ID value uniquely identifies a given communicator
on all processes that are members of the communicator’s group. This value is
included as a part of the message envelope and is used to ensure that communi-
cation operations match only within the same communicator. Allocation of the
context ID is at the core of all communicator creation operations. To ensure
efficient message matching, all known MPI implementations use context ids that
are unique and uniform across all involved processes.

In MPI-2, a parent communicator that contains all processes in the output
communicator’s group is used to perform any communication needed to select
the context ID—typically a collective allreduce operation. Multiple communi-
cator creation operations can be issued concurrently by different threads on
different parent communicators; however, the user must ensure that operations
are ordered such that only one collective operation is performed on a given
parent communicator at any time. In contrast with these semantics, the new
MPI Comm create group routine permits threads to issue multiple such operations
concurrently on the same parent communicator, and individual operations are
distinguished through an additional tag argument.
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1 /* Input: my_comm , my_group , my_tag. Output: integer context ID */
/* Shared variables ( shared by threads at a each process ) */

3 mask /* Bit array , indicates if each context ID is free */
mask_in_use = 0 /* Flag , indicates if mask is in use */

5 lowest_ctx_id = MAXINT /* Indicates which thread has the highest priority */
lowest_tag /* Breaks lowest_ctx_id priority ties */

7

/* Private variables ( not shared across threads ) */
9 local_mask /* Thread private copy of the mask */

i_own_the_mask = 0 /* Flag indicating if this thread holds the mask */
11 context_id = 0 /* Output context ID */

13 MPIR_Barrier_group(my_comm , my_group , my_tag) /* new barrier , prevents deadlock */
while ( context_id == 0 ) {

15 Mutex_lock ()
if ( my_comm ->context_id < lowest_ctx_id

17 || ( my_comm ->context_id == lowest_ctx_id && my_tag < lowest_tag ) ) {
lowest_ctx_id = my_comm -> context_id

19 lowest_tag = my_tag
}

21 if ( !mask_in_use
&& my_comm ->context_id == lowest_ctx_id && my_tag == lowest_tag ) {

23 local_mask = mask
mask_in_use = 1, i_own_the_mask = 1

25 }
else {

27 local_mask = 0, i_own_the_mask = 0
}

29 Mutex_unlock ()
MPIR_Allreduce_group ( local_mask , MPI_BAND , my_comm , my_group , my_tag )

31 if ( i_own_the_mask ) {
Mutex_lock ()

33 if ( local_mask != 0 ) {
context_id = location of first set bit in local_mask

35 mask[context_id] = 0
if ( lowest_ctx_id == my_comm ->context_id && lowest_tag == my_tag ) {

37 lowest_ctx_id = MAXINT
}

39 }
mask_in_use = 0

41 Mutex_unlock ()
}

43 }

Listing 1.1. Multithreaded context ID allocation algorithm

We have extended the existing multithreaded MPICH2 context ID allocation
algorithm [5] to include support for MPI Comm create group; we present the mod-
ified algorithm in Listing 1.1. In this algorithm, the state of all context IDs is
tracked through a vector of Boolean entries, called mask. The context ID mask
vector is an array of bits, where the nth bit identifies whether the context ID
value n is unused. To allocate a context ID, processes perform a bitwise AND
allreduce on the full vector and select the first context ID corresponding to the
first nonzero bit.

Group-collective allreduce and barrier routines were created that include only
the processes specified by a group argument. Multiple group-collective operations
can occur concurrently in different threads, and operations are distinguished by
using the tag argument provided by the user. One bit in the tag space was
reserved to indicate messages using the given tag correspond to group-collective
operation traffic. Thus, we ensure that messages generated during context ID
allocation do not conflict with application-generated point-to-point operations.

Concurrent attempts to allocate context IDs by multiple threads in the same
process are managed by allowing only one thread to access the context ID mask
at any given time. If a thread is not able to gain access to the mask, it must
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still participate in the allreduce to prevent another thread in its communicator
creation operation from blocking indefinitely while holding the mask. Threads
that are unable to access the context ID mask pass a vector of zeroes to the
allreduce, indicating that no context IDs are currently available and effectively
aborting the attempt to allocate the context ID. Thus, multiple attempts may
be needed for a successful allreduce to occur; threads continue to retry until a
context ID is successfully allocated. In order to prevent livelock where threads
cause each other to mutually abort indefinitely, a simple prioritization scheme is
used where the threads whose parent communicator has the lowest context ID
are given priority for access to the context ID mask.

Two components of the existing algorithm were modified to support the new
MPI Comm create group routine. A group-collective version of allreduce was sub-
stituted for the communicator-collective implementation. In addition, the prior-
itization scheme was modified to prioritize threads based on the 〈context id , tag〉
pair.

Freeing a given context ID, n, requires simply acquiring the mutex and mark-
ing mask [n] = 1 without waiting for the mask to be available. Threads update
only one bit in the mask at a time while holding the mutex. If a context ID, n,
is freed during a concurrent allocation attempt, the ongoing allocation attempt
will continue to use the initial value n = 0 of the given context ID. Context ID
n will be observed as available during the next allocation attempt.

3.1 Deadlock Issue and Prevention Mechanism

The existing version of this multithreaded context ID algorithm has been de-
ployed in production for several years in MPICH2, and it was verified by a
student collaborator using model checking [5]. However, while extending the al-
gorithm to support noncollective communicator creation, we discovered a subtle
bug that can lead to deadlock in the multithreaded case The existence of this
bug for several years indicates that the algorithm may not have been used ex-
tensively in the field in multithreaded situations, and that the model used for
verification did not capture the case that leads to the deadlock.

The existing algorithm did not contain the beginning in Listing 1.1, line 13.
In the absence of the barrier, a thread is permitted to reserve the context ID
mask and perform the collective allreduce even though the other threads may
not have made matching calls to the communicator creation routine, introducing
the possibility of a hold-and-wait scenario. If another thread in the same process
attempts to perform a second communicator creation operation, a circular wait
can occur, resulting in deadlock. One such scenario is illustrated in Figure 1,
where there are two processes and two threads per process; each thread executes
the following code.

if (thread_id == mpi_rank ) { MPI_Comm_dup(MPI_COMM_SELF , &self_dup ); }
MPI_Comm_dup(thread_comm , &thread_comm_dup);
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Fig. 1. Deadlock scenario with two processes and two threads per process. Blocked
threads hold the mask, preventing other threads from making matching collective calls.

Here, thread comm is a communicator of the threads at all processes with the same
thread ID. In this scenario, calls to duplicate thread comm block in the allreduce
while holding the mask, preventing the calls to duplicate MPI COMM SELF from
successfully allocating a context ID.

To avoid this deadlock scenario, we break the hold-and-wait condition by
ensuring that all threads have arrived before allowing them to reserve the mask.
This is accomplished by performing a barrier before entering the allocation loop.
Once threads have completed the barrier, they can perform the allreduce and
reserve the mask without risk of deadlock. The addition of the barrier, can have
a negative impact on performance; in Section 5 we present an optimization that
avoids this barrier in many cases while still avoiding the deadlock.

4 Proof of Correctness

We demonstrate that the multithreaded context ID allocation algorithm guar-
antees progress and ensures that allocation invariants are not violated under
a failure-free assumption. MPICH2 requires that the following conditions are
satisfied for a context ID allocation to be correct.

Property 1. For a given operation, all processes select the same context ID and
this ID is allocated at most once at every process.

Uniform context IDs are guaranteed through the allreduce, which ensures that
the output mask is the same at all processes. In addition, the locking discipline
and bitwise AND reduction operation ensure that if the given context ID is
unavailable (the corresponding bit is zero) at any process, it will be observed as
unavailable in the output mask at all processes.

4.1 Proof of Progress

To prove global progress, we must first prove the following liveness property,
which did not hold in the original version of the algorithm:
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Property 2. No thread can block indefinitely.

The initial barrier added to the algorithm ensures that all processes with the
same parent communicator, group, and tag arguments are present before they
can reserve the mask or be prioritized for access to the mask. If the mask has
been reserved by another thread, threads supply a zero mask to indicate that the
mask is locally unavailable. These mechanisms ensure that all necessary threads
participate in the ensuing allreduce operation.

Property 3. Threads with the globally highest priority will eventually succeed.

Access to the mask is prioritized according to the 〈context id, tag〉 pair. This
prioritization is critical to ensure that threads do not enter a livelock situation
where allocation attempts repeatedly fail because all threads in a given group are
unable to obtain the mask at the same time. As threads iterate in the allocation
loop, they update the 〈context id , tag〉 pair when their value is less than the cur-
rent minimum. Threads are permitted to reserve the mask only when they have
the highest priority, and they must release the mask after an allocation attempt
if they no longer have the highest priority. A total 〈context id, tag〉 ordering can
be imposed across all threads. The prioritization scheme ensures that threads
with the globally highest priority will eventually be able to acquire the mask
at all processes involved in the given operation. Assuming that a common, free
context ID exists, the globally highest priority operation will eventually succeed.

Property 4. The highest priority thread at a process will eventually succeed.

Once the globally highest priority operation succeeds, the priority variables are
reset, and the next 〈context id , tag〉 pair in the total ordering has the highest
priority. A consequence of a prioritization scheme based on such a total ordering
of operations is that a low-priority operation can be starved by repeated arrivals
of higher-priority operations. Since realistic MPI programs perform a finite num-
ber of communicator creation operations, this starvation is bounded in practice.
If we assume such finite MPI programs, we observe that as the globally highest-
priority operations complete, a locally highest-priority operation will eventually
become the globally highest priority and also complete.

Property 5. Every allocation attempt will eventually succeed.

When a locally highest-priority operation completes, the next highest-priority
operation becomes the locally highest priority. Thus, assuming finite MPI pro-
grams, every operation eventually gains the locally highest priority and com-
pletes.

5 Eliminating the Overhead of Deadlock Avoidance

As discussed in Section 3, a synchronization step before entry to the context ID
allocation loop is necessary to avoid deadlock. In Listing 1.1 a barrier is used as a
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/* Shared variables ( shared by threads at a each process ) */
2 eager_split /* Reserves mask [0.. eager_split -1] for eager alloc.*/

eager_mask_in_use = 0 /* Flag , indicates if eager mask is already in use */
4

/* Private variables ( not shared across threads ) */
6 i_own_eager_mask = 0 /* Flag , indicates if this thread has eager mask */

8 Mutex_lock ( eager_lock )
if ( ! eager_mask_in_use ) {

10 eager_mask_in_use = 1, i_own_eager_mask = 1
local_mask = mask [0.. eager_split -1]

12 } else {
local_mask = 0

14 }
Mutex_unlock ( eager_lock )

16 MPIR_Allreduce_group ( local_mask , MPI_BAND , my_comm , my_group , my_tag )
if ( i_own_eager_mask ) {

18 Mutex_lock ( eager_lock )
eager_mask_in_use = 0, i_own_eager_mask = 0

20 context_id = location of first set bit in local_mask
mask[context_id] = 0

22 Mutex_unlock ( eager_lock )
}

Listing 1.2. Multithreaded context ID allocation algorithm

simple solution; however, any operation that synchronizes all threads is sufficient
to prevent them from entering the context ID allocation loop until all threads
have made matching calls. We use this observation to attempt allocation of a
context ID during the synchronization step itself. In most MPI programs, this
method results in successful context ID allocation in a single step and eliminates
the additional overhead incurred by the new synchronization step.

This eager mode of context ID allocation is achieved by splitting the con-
text ID mask into eager and base segments. During the synchronization step, an
allreduce on the eager context ID space is performed. If eager allocation fails,
the allreduce effectively acts as a barrier and threads proceed to the base allo-
cation algorithm, which utilizes the base segment of the mask. Many variations
of this optimization are possible, and an important property is the method used
to divide the context ID space between eager and base protocols. Dynamic ap-
proaches where each process selects the first n available context IDs are possible.
However, fragmentation in the context ID mask due to repeated communicator
creation and destruction can cause individual masks to diverge and render this
approach ineffective. Static allocation approaches are not as susceptible to this
issue, but they limit the number of context IDs available to each protocol.

We define a static allocation strategy that reserves the first n context IDs for
eager allocation and utilizes the remaining max id−n IDs for the base protocol,
where n is a configurable parameter. This strategy maximizes the likelihood of
successful eager allocation and, as a tradeoff, in the worst case reduces the size
of the context ID space to max id − n. The algorithm is shown in Listing 1.2,
and this code is substituted in place of the barrier in Listing 1.1, line 13. In
addition, line 23 in Listing 1.1 must be modified as follows.

local_mask[ 0..eager_split -1 ] = 0
local_mask[eager_split..MAXID] = mask
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Fig. 2. Comparison of native MPI Comm create group (CCG) performance with two
other communication creation routines. The impact of eager versus baseline context
ID allocation is shown for each algorithm.

6 Experimental Evaluation

We compare the cost of several communicator-creation operations on a QDR In-
finiBand cluster. Each node is configured with two 2.6 GHz, quad-core Intel Ne-
halem processors, and 36 GB memory. In Figure 2, we use MPI COMM WORLD as
the parent communicator and vary the size of the output communicator.We com-
pare the execution time of MPI Comm create with MPI Comm create group (CCG)
in Figure 2a. Two implementations of MPI Comm create group are evaluated in
Figure 2b, a user-level implementation that performs recursive intercommuni-
cator merging presented in [3] and a direct implementation that uses the new
context ID allocation algorithm. For each comparison, we show the impact of
the eager allocation optimization.

From these results, we see that MPI Comm create group provides a significant
performance advantage over MPI Comm create, whose cost is always proportional
to the size of the parent communicator. In addition, we see that there is a O(log p)
performance advantage of the direct O(log p) MPI Comm create group algorithm
over the O(log2 p) user-level algorithm. Moreover, the eager-allocation protocol
accomplishes allocation in one, rather than two, allreduce operations, yielding a
factor of two or more improvement in communicator-creation cost.

7 Related Work

Open MPI [4] utilizes a similar approach to context ID allocation, however rather
than considering the full context ID mask when performing allocation, one con-
text ID is evaluated at a time. In this algorithm, each thread starts with its lowest
available context ID and aMAX allreduce is performed. A second AND allreduce is
performed to determine if the operation succeeded at all threads and, if not, the
process is repeated with the next highest context ID. Assuming a fixed-size con-
text ID space, this algorithm is also susceptible to the deadlock scenario presented
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in Section 3.1 when the number of threads attempting allocation approaches the
number of available context IDs at any process. In comparison with the algorithm
presented in this work, the algorithm currently used by Open MPI always per-
forms two allreduce operations (on a single integer, rather than the full mask)
and can require multiple iterations if the context ID space becomes fragmented.
This algorithm can also be extended to support MPI Comm create group through
the same the priority and tag space approaches presented in Section 3.

8 Conclusions

We have presented an efficient, multithreaded context ID allocation routine that
includes support for new functionality in MPI 3.0. This work builds on the
existing MPICH2 algorithm that was found to contain a subtle deadlock bug.
We corrected this bug and proposed an eager allocation protocol that eliminates
the performance impact of deadlock avoidance. We prove correctness of the new
algorithm and evaluate its performance relative to existing approaches. Results
indicate that the MPI Comm create group routine built on top of the multithreaded
context ID allocation algorithm significantly reduces the cost of communicator
creation when the output group is smaller than the parent communicator’s group.
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Abstract. Collectives are an important component of parallel programs,
and have a significant impact on performance and scalability of an appli-
cation. To obtain best performance, platform specific implementations of
various parallel programming frameworks, such as MPI and Charm++,
are done. As a result, when systems with new network topologies are
built, new topology aware algorithms for collectives are added to these
frameworks that also contain the topology oblivious algorithms. In this
paper, we propose topology aware algorithms for collectives performed
on two-tier direct networks such as IBM PERCS and Dragonfly. We ob-
serve that, for large message operations, significant performance gains
can be made by taking advantage of large number of links in a two-
tier direct network. We evaluate proposed algorithms using an analytical
model based on link utilization.

Keywords: Collectives, Topology, Two-tier networks, PERCS, Dragon-
fly.

1 Introduction

On the road to Exascale, there is a strong possibility that parallel machines of
the future will have a large number of fast cores on each node and a low network
bytes-to-flop ratio. Communication is becoming expensive whereas computation
continues to become cheaper. Hence, scalable, low-diameter and fast networks
will be desirable for building multi-Petaflop/s and Exaflop/s capability machines.
New designs have been proposed recently by IBM (the PERCS topology [2]), and
by the DARPA sponsored Exascale Computing Study on technical challenges in
hardware (the dragonfly topology [6]). Both these topologies are two-tier direct
networks with all-to-all connections at each level.

Many scientific applications use data movement collectives such as Broadcast,
Scatter, Gather, Allgather, All-to-all, and computation collectives such as Re-
duce, Reduce-scatter, and Allreduce [1]. The performance of these MPI collectives
is critical for improved scalability and efficiency of parallel scientific applications.
In recent years, there have been an increasing number of applications such as
web analytics, micro-scale weather simulation and computational nanotechnol-
ogy, that involve processing extremely large scale data requiring collective op-
erations with large messages. Performance of such large message collectives is
significantly affected by network bandwidth constraints.
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Fig. 1. The PERCS network – the right side shows first-level connections within a
supernode; the left side shows second-level connections across supernodes (we show
connections of only one node and one supernode respectively for clarity)

Most of the existing networks such as torus and fat-trees are low radix, and
have constant number of links attached to a node. As such, transmitting pack-
ets from a source to destination involve traversal through a large number of
nodes/switches. The multiplicity of hops makes these networks congestion prone,
especially when performing collectives on large data/messages. To counter the
effects of congestion, carefully designed topology aware algorithms have been
used for collectives on such networks [4,5]. In addition, there is a set of topol-
ogy oblivious algorithms which perform reasonably well on most systems [7,8,3].
However, most of these algorithms do not seem to be a good fit for two-tier direct
networks as they may not be able to make full use of the all-to-all connectiv-
ity in two-tier direct networks. In this paper, we propose a new set of topology
aware algorithms, which we refer to as two-tier algorithms, for collectives on two-
tier direct networks for large messages. These algorithms exploit the high radix
nodes and the multi-level structure of a two-tier direct network. Hence, they are
better suited for two-tier direct networks, and as we demonstrate later should
perform significantly better than other algorithms. A cost model based on the
link utilization is used to evaluate the effectiveness of proposed algorithms in
comparison to general topology oblivious algorithms. To best of our knowledge,
this is the first paper which deals with collectives on two-tier direct networks.

2 Two-Tier Direct Networks

In this section, we provide an introduction to two-tier networks using IBM’s
PERCS network as an example. The elementary unit is called a node: a multi-
core chip with connection to and from the system network. Any communication
initiated by the cores is sent to the network manager of the node. In a two-
tier direct network, nodes at the first level are grouped logically to form cliques.
These cliques are further grouped to form larger clusters. In the PERCS topology,
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these logical groups are called drawers and supernodes whereas in the dragonfly
topology they are called groups and racks (or cabinets). The supernodes are
connected at the second level to form a larger clique.

As a concrete example, in the right side of Figure 1, we show one supernode
of the PERCS topology. Within the supernode, a circle represents a node. Eight
nodes in each quadrant constitute a drawer. Every node has a hub/switch that
has three types of links originating from it - LL, LR and D links. LL and LR
links constitute the first tier connections that enable communication between any
two nodes in one hop. On the left side of Figure 1, the second tier connections
between supernodes are shown. Every supernode is connected to every other
supernode by a D or L2 link. These inter-supernode connections originate and
terminate at hub/switches connected to a node; a given hub/switch is directly
connected to only a fraction of the other supernodes. Any packet which is to be
sent from a node (N1) in a supernode( S1) to a node (N2) in another supernode
(S2) first need to be sent to that node in S1 which is connected to S2. Thereafter,
the packet is sent to S2 and forwarded to N2 if required using the first level links.

In this paper, we do not differentiate among first level links (LL and LR) and
denote them by L1 links. The links at second level are denoted as L2 links. We
also stick to core, node and supernode terminology of PERCS, but the same prin-
ciples apply to Dragonfly or any other two-tier direct network. We also assume
that a node is capable of sending data simultaneously on all links originating
from it.

3 Cost Model and Assumptions

We assume an inorder mapping of MPI ranks or cores onto the system. Consider
a system with sn supernodes, each consisting of nps (nodes per supernode) nodes
with cpn (cores per node) cores each. Hence, we have p = sn ∗ nps ∗ cps cores
whose inorder mapping is performed as following. Consider a global numbering
of supernodes from 0 to sn−1. Within a supernode and a node, nodes and cores
are locally numbered from 0 to (nps − 1) and from 0 to (cpn − 1) respectively.
In the global space, cores are numbered (by MPI) from 0 to (p − 1) using the
core’s supernode, node and position within the node as the key. For example,
cores in supernode 0 get ranks from 0 to (nps ∗ cpn− 1). Following which, cores
in supernode 1 get ranks from nps ∗ cpn to (2 ∗ nps ∗ cpn− 1) and so on.

Further, we assume a two-tier network with round robin connection for L2
links at node level. A connection from supernode S1 to supernode S2 origi-
nates at node (S2 modulo nps) in supernode S1. This link connects to node
(S1 modulo nps) in supernode S2. Therefore, each node is connected to spn =
sn
nps supernodes. We consider the case in which job allocation onto nodes and
supernodes happen in a uniform manner. To keep things simple, we assume the
cases where the entire machine is being used by an application. Algorithms and
results for the other case, where allocation is not uniform, can be derived with
minor variations and will be discussed in a future work.

As we focus on large message collectives, we use a bandwidth based model to
estimate the cost of a collective algorithm. The start up cost and latency effects
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are ignored as the bandwidth term dominates for large messages. We assume
that the time taken to send a message between any two nodes is nβ, where β is
the transfer time per byte, if only 1 link is being used to send n bytes of data. In
case of a computation operation, we add a γ computation cost component per
byte. We also use a two step approach to find link utilization which provides a
more accurate estimate of performance of an algorithm. In the first step, given a
collective operation, the algorithm to use, number of MPI ranks or cores and the
data length information (required by the operation), pattern-generator generates
a list of communication exchange between every pair of MPI ranks. The data
generated by pattern-generator is fed to linkUsage. Given a list of communication
exchange, linkUsage generates the amount of traffic that will flow on each link
in the given two-tier network.

4 Topology Oblivious Algorithms

This section lists the algorithms which are generally used to perform various
collective operations in a topology oblivious manner for large message sizes.
Many of these algorithms, which are listed in Table 1, are used in MPICH as
the default option [8].

Table 1. Commonly used Algorithms

Operation Algorithm Cost (n bytes)

Scatter Binomial Tree p−1
p

nβ

Gather Binomial Tree p−1
p

nβ

Allgather Ring, Recursive Doubling p−1
p

nβ

Broadcast DeGeijn’s Scatter with Allgather [3] 2 p−1
p

nβ

Reduce-Scatter PairWise Exchange p−1
p

(nβ + nγ)

Reduce Rabenseifner’s Reduce-Scatter with Gather [7] p−1
p

(2nβ + nγ)

5 Two-Tier Algorithms

Given the clique property and the multiple levels of connections, the two-tier
networks naturally leads to a new set of algorithm which we refer to as two-tier
algorithms. The common idea in any two-tier algorithm is stepwise dissemi-
nation, transfer or aggregation (SDTA) of data. SDTA refers to simultaneous
exchange of data within a level in order to optimize the over all data exchange.
Performing SDTA ensures that the algorithms use maximum possible links for
best bandwidth, and collate information to minimize the amount of data ex-
changed at higher levels. Without loss of generality let us assume that the root
of any operation is core 0 of node 0 of supernode 0. In our discussion, we use
core to refer to any entity which takes part in the collective operation. An MPI
Rank and Charm++ Chare are examples of such entities.
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5.1 Scatter and Gather

Scatter is a collective operation used to disseminate core specific data from a
source core to every other core. The two-tier algorithm for Scatter using SDTA
is as follows:

1. Core 0 of node 0 of supernode 0 sends data to core 0 of every other node
in supernode 0. The data sent to a core is the data required by the cores
residing in the supernodes connected to the node of that core.

2. Core 0 of every node within supernode 0 sends data to core 0 of every node
outside supernode 0 that the node is connected to. The data sent to a node
is the data required by the cores in the supernode to which this destination
node belongs.

3. Core 0 of every node that has data (including node 0 of supernode 0) sends
data to core 0 of every other node within its supernode. This data is required
by the cores within the node that the data is being sent to.

4. Core 0 of every node shares data, required by the other cores, with all other
cores in their node.

The four step process described above implies that the source core first spreads
the data within its supernode. The data is then sent to exactly one node of every
other supernode by the nodes which received the data. Thereafter, nodes which
have data to be distributed within their supernode spreads the data within their
supernodes. Gather can be performed using this algorithm in the reverse order.

For collectives with personalized data for each core such as Scatter, the dis-
semination of data can also be done using direct message send. The data will
take exactly the same path as described in the above scheme. We have described
our approach using Scatter because of its simplicity, and ease of understanding.

5.2 Broadcast

Broadcast can be performed using the approach used for Scatter if the entire
data, without personalization, is sent in the four steps. We refer to this type of
Broadcast as base broadcast. However, using the following scheme better perfor-
mance can be obtained.

1. Core 0 of node 0 of supernode 0 divides the data to be broadcasted into nps
chunks and sends chunk i to core 0 of node i of supernode 0.

2. Core 0 of every node within supernode 0 sends data to core 0 of exactly one
node outside supernode 0 that the node is connected to. Exactly one node
is chosen to avoid duplication of data delivery in following steps.

3. Core 0 of every node that received data in the previous step sends data to
core 0 of every other node within their supernode.

4. Core 0 of all the nodes that received data in Step 2 and Step 3 send data to
core 0 of all other nodes outside their supernode that they are connected to.

5. Now, these cores share data with core 0 of all other nodes in their supernode.
6. Core 0 of every node shares data with all other cores in their node.
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This algorithm begins with the source core dividing the data into chunks, and
distributing it within its supernode (as if performing Scatter over a limited set
of cores). In the second step, every node in supernode 0 share the chunk with
exactly 1 node outside their supernode. Thereafter, the nodes which received the
chunk in the previous step share the data with other nodes in their supernode.
As a result, all nodes in some of the supernodes have a chunk of initially divided
data which needs to be sent to other supernodes. This is done in the next step,
following which all nodes, which have received a chunk so far, share these chunks
with other nodes in their supernode.

5.3 Allgather

An Allgather operation is equivalent to Broadcast being performed by all cores
simultaneously. The SDTA based algorithm begins with all cores within every
node exchanging data and collecting it at core 0 of the node. In the second step,
all nodes within a supernode exchange data in an all-to-all manner using L1
links, and thus every node in every supernode contains the data which a supern-
ode wants to broadcast to other supernodes. In the following step, supernodes
exchange data in an all-to-all manner in parallel. Finally the nodes which re-
ceive data in the previous step disseminate this data to other nodes within its
supernode. In addition, core 0 of every node has to share this data with all other
cores in its node. This algorithm can be seen as a base broadcast being done by
all nodes simultaneously (refer to §5.2).

Please note that many a times, multiple steps of SDTA can be performed
by a send from the source of one step to eventual destination of the following
step. An example case will be when core 0 of node 0 of supernode 0 has to send
data to core 0 of nodes that are connected to other nodes of supernode 0. We
have presented them as separate steps in which initially core 0 of node 0 sends
the data to core 0 of other nodes of supernode 0. These nodes then forward the
data to core 0 of nodes of other supernodes. This has been done only for ease of
understanding, and comparison results will not reflect them.

5.4 Computation Collectives

Although the same two-tier approach presented in the previous section can be
used to perform computation collectives such as Reduce, it may not result in
the best performance. The inefficiency in the previous approach derives from
the fact that computation collectives require some computation on the incoming
data, and therefore if some node receives a lot of data from multiple sources, the
computation it has to perform on the incoming data will become a bottleneck.
We assume that the multiple cores do not share memory, and hence will not be
able to assist in the computation to be performed on the incoming data. Also, the
presented algorithms assume commutative and associative reduction operation.

Let us define an owner core as the core that has been assigned a part of
the data that needs to be reduced. This core receives the corresponding part
of the data from all other cores and performs the reduction operation on them.
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Consider a clique of k cores on which a data of size m needs to be reduced, and
be collected at core 0. The algorithm we propose for such a case is the following:

1. Each core is made owner of m
k data - assume a simple rank based ownership.

2. Every core sends the data corresponding to the owner cores (in their data)
to the owner cores.

3. The owner cores reduce the data they own using the corresponding part in
their data, and the data they receive.

4. Every owner core sends the reduced data to core 0.

Essentially, what we are doing is a divide and conquer strategy. The data is
divided among cores, and they are made responsible for reduction on that data.
Every core divides their data, and sends the corresponding portion to the owner
cores. The owner cores reduce the data, and eventually send it to core 0.

Reduce - The above strategy can be used in multiple stages to perform the
overall reduction in a two-tier network:

1. Perform reduction among cores of every node; collect the data at core 0.
2. Perform reduction among nodes of every supernode - owners among nodes

are decided such that instead of collecting data at node 0, the data can be
left with the owner nodes and directly exchanged in the next step. This may
require a node to be owner of scattered chunks in the data depending on the
supernode connections.

3. Perform reduction among supernodes and collect the data at supernode 0.

Reduce-Scatter - We can use the same algorithm as above to perform Reduce-
scatter with a minor modification. Since the Reduce-scatter requires the reduced
data to be scattered over all cores, in the last phase of reduction (i.e. reduction
among supernodes), we decide owners of data such that a supernode becomes
owner of the data which its cores are required to receive in a reduce-scatter.
Thereafter, instead of collecting all data at supernode 0 in the final step, the al-
gorithm scatters the data within every supernode as required by Reduce-scatter.

6 Experiments

This section presents the details and results of the experiments we have con-
ducted. The two-tier network that has been simulated for these experiments
consists of 64 supernodes. Each supernode consists of 16 nodes each of which
has 16 cores. The given configuration implies that there are 4032 L2 links and
15360 L1 links in the system. Note that we ignore the time spent in sharing data
within a node by the cores.

6.1 Cost Comparison

In Table 2, we present comparison of the two-tier algorithms with other algo-
rithms using the cost model mentioned in §3. Among the data collectives, for
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Scatter and Gather, we observe that the two-tier algorithms which distributes
data using all L1 links simultaneously within a source supernode provides the-
oretical speedup of factor nps i.e. nodes per supernode. This speedup may be
affected by sn, i.e., the number of supernodes. If there are too few L2 links, they
may become the bottleneck, and the speedup hence is bounded by min{nps, sn}.
For Allgather, we find that the speedup provided by two-tier algorithms depends
on both sn and nps. For Broadcast, which happens in three phases, the theo-
retical speedup is nps

3 . Finally, for computation collectives, we observe that our
approach leads to more computation being performed. This is because the re-
duction happens in two phases and some computation, which could have been
avoided, is performed. However, as with data collectives, the speedup for data
transfer is substantial and should mask the effect of increase in computation.

Table 2. Cost Model based Comparison

Operation Base Cost Two Tier Cost

Scatter p−1
p nβ nβ ∗max{ 1

nps ,
1
sn}

Gather p−1
p nβ nβ ∗max{ 1

nps ,
1
sn}

Allgather p−1
p nβ nβ( 1

nps + 1
sn + 1

sn∗nps )
Broadcast 2 p−1

p nβ nβ( 3
nps )

Reduce-Scatter p−1
p (nβ + nγ) nβ( 1

nps + 1
sn + 1

sn∗nps ) + 2nγ

Reduce p−1
p (2nβ + nγ) nβ( 1

nps + 2
sn ) + 2nγ

6.2 Scatter, Gather and Broadcast

We consider a Scatter operation in which the root sends 64 KB data to each
of the remaining cores. In Table 3, we present a comparison of binomial algo-
rithm link utilization with the two-tier algorithm. The important thing to note
in the comparison is the maximum load binomial algorithm puts on a link in
comparison to what two-tier algorithm puts. For L1 links, we find that two-tier
algorithm puts a maximum load of 64 MB whereas binomial algorithm performs
much worse, and puts a load of 141 MB. The difference is much more significant
when it comes to L2 links where binomial algorithm puts a factor 32 times more
load. Exactly same results are found for Gather operation due to its inverse
nature to Scatter.

We also present the link utilization statistics for a 1 GB Broadcast in Table 3.
Link utilization improves substantially both in terms of number of links used
and the load which is put on links when two-tier algorithm is used. We expect
an order of magnitude improvement in the execution time as the worst case link
load goes down from 1.1 GB to 128 MB.

6.3 Allgather

As mentioned earlier, we study the performance of Allgather using two al-
gorithms - recursive doubling and ring. The amount of data that each MPI
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Table 3. Link Usage Comparison for Scatter and Broadcast

Scatter Broadcast
Binomial Two-tier DeGeijn Two-tier

L1 Links Used 1036 960 1588 15360
L1 Links Min Traffic 1 MB 1 MB 2 MB 64 MB
L1 Links Max Traffic 141 MB 64 MB 1.1 GB 128 MB

L2 Links Used 56 63 95 3937
L2 Links Min Traffic 16.7 MB 1 MB 32 MB 64 MB
L2 Links Max Traffic 520 MB 16 MB 1.09 GB 64 MB

rank/core wants to send is 64 KB. In Table 4, we present comparison of two-tier
algorithm with the recursive doubling and ring algorithm. It can be seen that
while two-tier algorithms uses all the available L1 and L2 links in the system, the
other two algorithms use a very small fraction of available links. Moreover, the
load which two-tier algorithm puts on the links is orders of magnitude smaller
in comparison to the other algorithms. It strongly suggests that the two-tier
algorithm will outperform the other two algorithms. These results also conforms
with the fact that for large messages, ring algorithm is better than recursive-
doubling [8].

Table 4. Link Usage Comparison for Allgather

Recursive Doubling Ring Two-tier Algorithm
L1 Links Used 10496 1080 15360

L1 Links Min Traffic 16 MB 1 GB 65 MB
L1 Links Max Traffic 15.1 GB 1 GB 65 MB

L2 Links Used 384 634 4032
L2 Links Min Traffic 4.2 GB 1 GB 16 MB
L2 Links Max Traffic 4.3 GB 1 GB 16 MB

6.4 Computation Collectives

In the Table 5, we present a comparison of link utilization for Reduce-scatter
and Reduce. For this experiment, the overall reduction size is 1 GB, and hence
each core receives 64 KB reduced data when Reduce-Scatter is performed. We
observe an order of magnitude difference in the load put on the links by two-tier
algorithms in comparison to other algorithms. This can be attributed to the step
wise manner in which two-tier algorithms perform reduction. Only the necessary
data go out of a node or a supernode, and hence two-tier algorithm reduces the
load put on the links significantly. Given this large difference in communication
load, two-tier algorithms should outperform most other algorithms despite the
additional computational load they put on the cores.
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Table 5. Link Usage Comparison for Reduce-scatter and Reduce

Reduce-Scatter Reduce
Pairwise Exchange Two-tier Rabenseifner Two-tier

L1 Links Used 15360 15360 15360 15360
L1 Links Min Traffic 2 GB 65 MB 2 GB 66 MB
L1 Links Max Traffic 2 GB 65 MB 3 GB 130 MB

L2 Links Used 4032 4032 4032 4032
L2 Links Min Traffic 4 GB 16 MB 4 GB 16 MB
L2 Links Max Traffic 4 GB 16 MB 5 GB 32 MB

7 Conclusion and Future Work

In this paper, we presented a new set of algorithms for two-tier networks, which
takes advantage of the topology. A comparison, based on a cost model and
network utilization, has been done to assess the performance of these new al-
gorithms in comparison to well know algorithms. We focused on collectives for
large data sizes, and showed that the two-tier algorithms significantly outper-
form most other algorithms for a two-tier direct network. In future, we plan to
focus on collectives for small data sizes, and potentially improve the performance
for large data size. We also plan to look at cases in which only a (non uniform)
part of system is allocated to an application.
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Abstract. Barrier is a collective operation used by many scientific ap-
plications and parallel libraries for synchronization. Typically, a Barrier
operation is implemented by exchanging a short data message that re-
quires demultiplexing, thereby adding undesired latency to the opera-
tion. In this work, we reduce the latency of Barrier operations for Cray
XE/XK systems by leveraging the atomic operations provided by the
Gemini interconnect, tailoring algorithms to utilize these capabilities,
and utilizing a hierarchical design to arrive at an efficient implemen-
tation. Our micro-benchmark evaluation shows that for a 4,096 process
Barrier operation, the atomic-operations-based Barrier outperforms the
data exchange Barrier by 52% and the native Barrier by 111%.

Keywords: Collectives, Barrier, Cray, Gemini, Atomic Operations, MPI.

1 Introduction

The Barrier collective is used by many scientific applications and parallel system
software stacks for synchronization purposes. Typically, a Barrier collective is
implemented by exchanging a short data message amongst all participating pro-
cesses. The data sent typically includes a small amount of header information
used for message demultiplexing and dispatch. For example, Open MPI adds
20 bytes of header information when exchanging a message over the Gemini
network interface [1].

Many modern network interfaces provide atomic network operations that can
be used to implement collective operations. For example, in addition to the
Gemini network, InifiniBand networks also provide atomic network operations
enabling processes to perform many simple arithmetic and boolean operations
remotely and atomically. Using atomic operations for non-data collectives, such
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as Barrier , can potentially reduce collective latency, as there is no need for net-
work message demultiplexing by the communication library to determine mes-
sage completion. Instead, message completion is determined by simply polling
on atomic counters.

Implementing a Barrier with atomic operations, however, presents two chal-
lenges. The first being the management of intra-node Barrier latency. Network
atomic operations involve traversing the network interface for communication and
may not be faster than a conventional shared-memory-aware Barrier . The sec-
ond challenge is in managing the overhead associated with atomic counter initial-
ization. For example, an atomic Barrier requires a memory buffer that acts as a
counter whose initial value must be agreed upon by all participating processes.

In this paper, we optimize the Barrier operation for Cray XE/XK systems
by 1) leveraging atomic operations on Gemini 2) using a hierarchical design to
provide an efficient implementation for multi-core systems and 3) tailoring algo-
rithms to take advantage of parallelism in the network interface card (NIC). We
generalize the commonly used recursive doubling algorithm to a Recursive K’ing
algorithm, which reduces to the common case when k = 2. Further, we compare
the Recursive K’ing algorithm with the n-ary algorithm, which like the Recur-
sive K’ing, provides flexibility by allowing the radix to be varied, but requires
2logk(n) steps. We implement both blocking and non-blocking versions of the
Barrier operation. All implementations of the Barrier operation in this paper
refer to MPI Barrier() and MPI Ibarrier(), as defined in the message passing
interface (MPI) specification1.

The rest of the paper is organized as follows. Section 2 provides the relevant
background and related works information. Section 3 describes the collectives
framework, various Barrier algorithms and their implementations. Section 4 de-
scribes the experimental test bed and provides an evaluation of various Barrier
implementations. Section 5 analyzes the results. Section 6 concludes and dis-
cusses future work.

2 Background and Related Work

Gemini Network Interface and Atomic Operations: The Cray XE/XK
network infrastructure is arranged as a 3D torus built from Gemini application-
specific integrated circuits (ASICs) that provide two network interface controllers
(NICs) and a 48-port router [2]. Each Gemini provides ten torus connections and
connects two Opteron nodes [2].

Cray exposes two application programming interfaces (APIs) for Gemini : the
Generic Network Interface (GNI) and DMAPP. The GNI is designed for message
passing communication models, and DMAPP for PGAS communication models.
GNI exposes low-level interfaces that provide two mechanisms for remote di-
rect memory access (RDMA): Fast Memory Access (FMA) and Block Transfer
Engine (BTE). In addition to the RDMA interfaces, GNI exposes an interface

1 The non-blocking version of Barrier is slated for inclusion into the MPI 3.0
specification.
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for two-sided communication called Short message (SMSG) and an interface for
atomic operations. GNI supports atomic operations such as ADD, AND, Com-
pare and Swap (CSWAP), XOR, OR, and atomic AND and XOR (AX). Details
regarding the use of this API can be found in [3].

Open MPI: A popular open source implementation of the MPI specification,
Open MPI’s design and implementation revolves around the concept of a modu-
lar component architecture (MCA). Functionality is provided by self-contained
software modules with well-defined interfaces. Within Open MPI exists the fol-
lowing three important communication abstractions: the point-to-point man-
agement layer (PML), byte transfer layer (BTL), and the BTL management
layer (BML). The PML layer provides MPI like semantics, the BML layer is
responsible for multiplexing MPI messages, and the BTL layer is responsible
for transferring data between communication endpoints. More details regarding
Open MPI’s architecture and implementation can be found in [1].

Related Work: There is a large body of research on Barrier algorithms [4]
[5] and some research on Barrier implementations based on hardware primi-
tives. Multiple network interfaces, including InfiniBand, Quadrics/Elan3, and
BlueGene/L’s network, provide hardware support or atomic operations [6] [7].
Hoefler [4] studied a broad range of synchronization algorithms, including the
MPI barrier implementation based on the InfiniBand atomic operations. Yu et
al. [8] compared network offloaded Barrier on Myrinet LANai-XP and Qlogic
Elan3, which were based on a set of atomic operations implemented on the NIC.
Almasi [6] et al. showed the advantage of using BlueGene/L’s hardware support
for implementing MPI Barrier().

Our research here explores leveraging the Gemini interconnect’s atomic
operations to implement a logarithmic tree-based MPI Barrier() algorithm. In
addition, we study the advantages of using a Hierarchical design, where we com-
bine an atomic-operations-based Barrier for inter-node synchronization with a
shared-memory-aware Barrier for intra-node synchronization. As far as we are
aware, this is the first such study to explore the use of Gemini atomic operations
to implement a Barrier primitive on Cray XE/XK system.

3 Design

Barrier algorithms are implemented in Cheetah, a framework for implement-
ing scalable hierarchical collectives. Cheetah provides infrastructure for imple-
menting both blocking and non-blocking versions of collectives. This section first
provides a brief overview of the Cheetah framework, and extensions to the frame-
work to implement Barrier operations based on Gemini ’s atomic operations.

3.1 Cheetah: A Framework for Collective Operations

Cheetah is implemented as an extension to Open MPI. In Cheetah, a hierar-
chical collective is expressed as a group of independently progressed collective



Atomic Barrier Operations 81

OMPI

BCOL SBGP COLL

U
M
A

IB
O
F
F
LO

A
D

P
T
P
C
O
LL

U
M
A

S
O
C
K
E
T

IB
N
E
T

P
2P

M
L

D
E
FA
U
LT

Cheetah 

Open MPI 

uG
N
I

Fig. 1. The figure shows various components in the Cheetah framework and how com-
ponents fit with other Open MPI components. The blue component, uGNI BCOL, was
added for implementing atomic-operations-based Barrier operations.

primitives over different communication substrates, which include caches, inter
central processing unit (CPU) socket communication interfaces, and network
topologies. Figure 1 shows the various frameworks and components that make
up the Cheetah framework. The Cheetah framework consists of two frameworks,
BCOL and SBGP, and a component, ML.

The BCOL framework provides a collection of components, where each compo-
nent represents a particular communication substrate and contains implementa-
tions of the collective primitives optimized for that particular level. In the current
implementation, the Cheetah framework supports the BASESMUMA, IBOF-
FLOAD, and PTPCOLL components. The collective primitives in the BASES-
MUMA component are tailored for shared-memory communication, the primi-
tives in IBOFFLOAD take advantage of Mellanox CORE-Direct ’s [9] collective
offload capabilities, and PTPCOLL is a generic point-to-point component. PT-
PCOLL uses Open MPI’s PML component for communication, and, as a result,
supports all the network interfaces supported by Open MPI.

SBGP provides the functionality responsible for grouping processes into sub-
groups based on the communication substrate shared by them. The Cheetah
framework currently supports UMA, SOCKET, IBNET, and P2P subgroups.
The UMA subgroup is defined over processes sharing the same memory, the
SOCKET subgroup is defined over processes sharing the same CPU socket, the
IBNET subgroup is defined over processes that can communicate over Mellanox
CORE-Direct , and the P2P subgroup is defined over processes sharing network
interfaces that are supported by Open MPI.

The ML component combines the collective primitives provided by BCOL
and the subgrouping functionality provided by SBGP, and implements collective
operations over these subgroups. This design decouples the collective operation
implementation from the topological organization of the processes. For example,
an MPI Barrier() operation over a multi-core cluster can be defined by combining
a shared-memory barrier primitive (BASESMUMA BCOL and UMA subgroup)
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and a network barrier primitive (PTPCOLL BCOL and P2P subgroup). More
details about Cheetah’s design and implementation are provided in one of our
previous papers [9].

uGNIBCOL and Subgroup for theGemini Interface: To take advantage of
Gemini ’s atomic operations for collectives, we extended the Cheetah framework
with uGNI BCOL and subgrouping support over the Gemini interconnect. uGNI
BCOL provides collective primitives that leverage Gemini atomic operations. In
the next subsections, we provide details of the memory store required for atomic
operations and various Barrier implementations available in the uGNI BCOL.

3.2 Memory Store for Atomic Operations

The uGNI BCOL provides a memory store, which implements the counters re-
quired for Barrier implementations based on atomic operations. Each process
in the P2P subgroup, during job initialization, registers a block of memory with
its Gemini , and shares this registration information with all other processes in
the job. This memory block is divided into banks, which are further divided
into buffers that act as counters. Each invocation of Barrier consumes only
one memory buffer. When a Barrier consumes the last buffer in the bank, the
buffers are recycled and reinitialized. Buffer recycling and reinitialization is a
local operation, but does, however, require global synchronization to ensure that
all processes have recycled their buffers. During recycling and reinitialization,
the buffers from a different bank can be used without the need to block the
Barrier operation. The size of the memory store, buffers, number of buffers in
the bank, and the number of banks are all configurable during runtime.

The per-process memory footprint of the memory store is insignificant, as each
atomic counter only requires eight bytes of memory. The number of counters
required by a Barrier operation is dependent on the algorithm. For example,
the n-ary Barrier and Recursive K’ing Barrier described below require two and
�logk(n)� counters per process, respectively. For a 300,000-process Barrier , the
memory required for the n-ary algorithm is 16 bytes, and 152 bytes for the
Recursive K’ing algorithm with radix 2.

3.3 Barrier Algorithms and Implementations

The atomic-based MPI Barrier is implemented within the uGNI BCOL. Mem-
bers participating in this operation are contained in the P2P subgroup. We ex-
plored four implementations of the Barrier in Cheetah, namely Recursive K’ing
Atomic Barrier , n-ary Atomic Barrier , Recursive K’ing p2p Barrier , and Hi-
erarchical Barrier .

Recursive K’ing Atomic Barrier (Recursive K’ing Barrier): Figure 2
shows the communication pattern of a nine-process Barrier with radix 3 where
at each step all processes must synchronize with k − 1 processes. In total, the
algorithm requires �logk(n)� such steps. When n is not a power of k, the algo-
rithm requires two extra steps.
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Fig. 2. The communication pattern of the Recursive K’ingBarrier with nine processes
and radix 3

The Recursive K’ing Barrier implementation uses atomic operations pro-
vided by GNI. For n = km processes and radix k, the Recursive K’ing Barrier
implementation requires �logk(n)� counters, when n is a power of k. When n is
not a power of k, the implementation requires �logk(n)� + 1 counters. In step
s, a process participating in the Barrier operation synchronizes with k − 1 pro-
cesses by updating the counter, s, on the remote processes, and waiting until
its counter reaches k − 1. The processes update the counter by posting Gemini
atomic ADD operation using the GNI PostFMA() primitive.

n-ary Atomic Barrier (n-ary Barrier): The processes participating in an
n-ary Barrier are organized into an n-ary tree for communication. Each process
is designated as either a leaf, root, or interior process. The Barrier operation
here is a two-phase process: fan-in and fan-out. The n-ary Barrier requires only
two counters irrespective of the radix – one for the fan-in phase and one for the
fan-out phase.

During the fan-in phase, the leaf processes update a fan-in counter on their
interior, or parent process, using an atomic ADD operation. The interior pro-
cesses, after receiving updates from their k children (where k is the radix of the
tree), update their respective parents. The root process, after receiving updates
from its k children, switches to the fan-out phase. During the fan-out phase of
the algorithm, the root process updates its children’s fan-out counters and exits,
thus completing the Barrier operation. The interior processes, after receiving
the update from their respective parents, update their children’s fan-out coun-
ters and exit the Barrier . The leaf processes, after receiving the update from
their respective parents, exit the Barrier , thus completing the Barrier operation.

Recursive K’ing p2p Barrier (p2p Barrier): The communication pattern
of this algorithm is similar to Recursive K’ing Barrier ’s, however the implemen-
tation varies. Instead of using Gemini ’s atomic operations for synchronization, it
uses Gemini RDMA or SMSG for synchronization. For two processes to synchro-
nize using SMSG, the sender sends a message using GNI SmsgSendWTag()
and the receiver polls the local completion queue for message arrival.
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Hierarchical Barrier : This Barrier is implemented by combining one of
the above Barrier primitives with a shared-memory Barrier primitive. On a
system with multiple cores on single node, the intra-node Barrier will use a
shared-memory-aware Barrier and the inter-node Barrier will use one of the
above Barrier primitives. The shared-memory Barrier usesmmaped memory for
shared-memory communication. We implement and evaluate three hierarchi-
cal Barriers, namely Two-level Recursive K’ing Barrier (Recursive K’ing Bar-
rier for inter-node synchronization and shared-memory Barrier for intra-node
synchronization), Two-level n-ary Barrier (n-ary Barrier for inter-node syn-
chronization and shared-memory Barrier for intra-node synchronization), and
Two-level p2p Barrier (p2p Barrier for inter-node synchronization and shared-
memory Barrier for intra-node synchronization).

4 Evaluation

This section presents results evaluating the performance of various Barrier im-
plementations after describing the experimental test bed. First, the overhead of
native atomic operations is compared with the overhead of native data exchang-
ing operations on Gemini . Next, the latency of the shared-memory Barrier is
compared with the latency of the atomic-operations-based Barrier . Finally, the
performance characteristics of various Barrier implementations are evaluated.

4.1 Test Bed

System Description: To evaluate the performance of the various Barrier im-
plementations we used Jaguar, a Cray XK6 system located at the National Cen-
ter for Computational Sciences (NCCS) at ORNL. It has 18,688 compute nodes,
each containing one 2.2 GHz AMD Opteron Interlagos processor along with 32
GB of memory. Each AMD Opteron processor has 16 compute cores and 3 levels
of cache memory. Out of the 18,688 compute nodes, 960 nodes also have a single
NVIDIA graphical processing unit (GPU). Jaguar uses the Gemini interconnect
for network communication.

Micro-benchmarks: To establish the performance of the native operations on
Gemini , we implemented a simple benchmark, Native perf, where one process
is designated as the leader and all other processes as non-leaders. A non-leader
communicates with the leader by either atomically updating a counter or sending
a message (we implemented both versions for our experiments). The leader blocks
until it gets an update from all other processes in the job, and reports its wait
time.

To evaluate the latency of the Barrier operations, we ran MPI Barrier() in
a tight loop and measured its execution time. The performance reported is an
average latency over many thousands of iterations. We further averaged these
average latencies over three runs to in an attempt to account for variable network
loads.
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Fig. 3. Graph 3(a) shows the latency of native atomic and data operations as the
number of processes are increased. Graph 3(b) shows the latency of the shared-memory
Barrier alongside the atomic-based Barrier .

4.2 Performance Characteristics

Performance of Native Atomic and Data Exchange Operations: Figure
3(a) shows the overhead of native atomic and native data exchanging operations.
The experiment is aimed at measuring the overhead for a process to receive
synchronization information from other processes. The overhead is measured
using Native perf, as the number of synchronizing processes are increased. In
the case of atomic operations, the leader waits for its counter to reach the target
value, which indicates that all other processes have updated the counter. In
the case of data exchanging operations, the leader counts message completions
from all other processes. For the 16-process configuration, the latency of atomic
operations is 1.2 μs and data exchanging operations is 2.69 μs. For the 1024-
process configuration, the latency of atomic operations is 35.93 μs and data
operations is 81.05 μs.

Performance of Shared-Memory Barrier : Figure 3(b) shows the latency
of the shared-memory Barrier compared with the Recursive K’ing Barrier . As
expected, the shared-memoryBarrier performed better than the atomic Barrier .
For a 16-process Barrier operation, the shared-memory Barrier ’s latency is 7.77
μs and the Recursive K’ing Barrier ’s latency is 8.47 μs.

Performance of Barrier Implementations: Figure 4(a) shows the latency
of various Barrier implementations. The Recursive K’ing Barrier and Two-
level Recursive K’ing Barrier perform the best. For the 4096-process Barrier
operation, the latency of Recursive K’ing Barrier , Two-level Recursive K’ing
Barrier , n-ary Barrier , Two-level n-ary Barrier , Two-level p2p Barrier, and
Cray MPI’s Barrier are 52.27 μs, 52.74 μs, 73.25 μs, 75.40 μs, 79.49 μs, and
110.48 μs, respectively. The performance of the Recursive K’ing Barrier is 52%
and 111% better than the data-passing Two-level p2p Barrier and Cray MPI’s
Barrier , respectively. For this experiment, all our Barrier implementations used
a radix of 2 for the tree. The non-blocking and blocking versions of the Barrier
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Fig. 4. Graph 4(a) shows the performance of the Cheetah uGNI Barrier compared to
the Cheetah p2p Barrier as a function of problem size. Graph 4(b) shows the latency
of the 4,096 process Barrier as the radix of the tree is varied.

implementations exhibit similar performance characteristics and, as a result,
have not been included.

Latency of Barrier with Varying Radix: In this experiment, we varied
the radix of n-ary Barrier and Recursive K’ing Barrier to understand how the
tree’s topology affects performance. Figure 4(b) shows the performance of a 4,096
process Barrier operation as we vary the radix of the tree. n-ary Barrier has
the best performance when the radix of the tree is 4 and 8. Similarly, Recursive
K’ing Barrier performs best when the radix of the tree is 4.

5 Analysis

Results in Figure 3(a) and 4(a) demonstrate the advantage of using atomic oper-
ations for Barrier operations. The Recursive K’ing atomic Barrier outperforms
the data exchanging Barrier and Cray MPI’s Barrier by 52% and 111%, respec-
tively. The n-ary atomic Barrier outperforms the data exchanging Barrier by
8%, even though the runtime of the n-ary algorithm is 2log n and data exchang-
ing Barrier is log n. Providing further basis for this performance advantage are
the results shown in 3(a). We can observe that as we increase number of synchro-
nizing processes, the atomic operations provide lower latency when compared to
the data exchanging operations. From the results, we see that having 1023 pro-
cesses sending updates to a single process required 35.93 μs when using atomic
operations and 81.05 μs when using data exchanging operations.

Results in Figure 3(a) and 3(b) indicate that it would be advantageous to
use a hierarchical design. That is, a shared-memory Barrier for intra-node syn-
chronization and an atomic-operations-basedBarrier for inter-node synchroniza-
tion (Two-level Recursive K’ing Barrier). Figure 3(b) shows that for intra-node
Barrier implementations, the shared-memory-based Barrier outperforms the
atomic-operations-based Barrier . The Two-level Recursive K’ing Barrier per-
forms better than the one-level atomic Barriers up to 512 processes. At 1024
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processes and above, however, the performance of the one-level atomic Barrier
and Two-level Recursive K’ing Barrier is very similar.

Hierarchical Barrier performing on-par with the one-level atomic Barrier at
scale is surprising. It could very well be that for non-data type collectives the
better scaling and cache characteristics of the atomic operations coupled with
the relatively small performance difference between shared-memory Barrier and
atomic Barrier may negate the performance advantages of the shared-memory
Barrier at higher scale.

Results in 4(b) show the advantage of the flexibility provided by the Recursive
K’ing and n-ary Barrier . As the degree of algorithms’ graphs are increased, the
Barrier implementation takes advantage of the network hardware’s parallelism
up to certain limit, which translates into decreased latency. The performance of
n-ary Barrier is best at radix 4 and 8, and is diminished at other radices. The
performance of Recursive K’ing Barrier is best at radix 4.

6 Conclusion and Future Work

The experimental results demonstrate that using atomic operations to imple-
ment a Barrier collective on Cray XE/XK systems provides better scalability
and performance. The atomic-operations-based Barrier performed 52% better
than the data-passing-based Barrier , and 111% better than the native imple-
mentation’s Barrier . Furthermore, the advantages of leveraging atomic opera-
tions combined with a hierarchical design was explored. The two-level Recursive
K’ing Barrier performed better than the one-level Recursive K’ing Barrier at
smaller scales and on-par at higher scales. In the future, we plan to evaluate this
implementation within scientific applications, and extend this work to explore
the advantages of using the Gemini interconnect’s atomic operations for other
collective operations (e.g., short-data MPI Allreduce and MPI Reduce).
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Abstract. MPI programs are often challenged to scale up to several
million cores. In doing so, the programmer tunes every aspect of the ap-
plication code. However, for large applications, this is often not practical
and expensive tracing tools and post-mortem analysis are employed to
guide the tuning efforts finding hot-spots and performance bottlenecks.
In this paper we revive the use of compiler analysis techniques to auto-
matically unveil opportunities for communication/computation overlap
using the result of exact data dependence analysis provided by the poly-
hedral model. We apply our technique to a 5-point stencil code showing
performance improvements up to 28% using 512 cores.

Keywords: Message passing, Compiler Analysis, Data Dependence
Analysis, Polyhedral Model.

1 Introduction

The Message Passing Interface (MPI [12]) Standard defines a distributed mem-
ory library interface for use in performance-critical environments such as High
Performance Computing (HPC). One of its main strengths is that the interface
spans several abstraction layers, from very low level constructs (e.g., point-to-
point messaging or simple one sided accesses) to high level performance-portable
functionality (e.g., collective operations or derived datatypes). Highly optimized
implementations exist for several supercomputer architectures and interconnects
(e.g., Myrinet, InfiniBand). Performance and scalability are becoming critical as-
pects for tackling the challenges of exascale computing [14]. Thus, most of the
latest research efforts have been spent in the runtime system.

However, the runtime system cannot overcome performance bugs in the appli-
cation code. Performance analysis and profiling tools have been proposed over
the years with the goal of helping developers to improve scalability of their

� This research has been partially funded by the Austrian Research Promotion Agency
under contract nr. 824925 (OpenCore) and under contract 834307 (AutoCore).
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1 for(unsigned iter=0; iter <NUM_ITERS; iter++) { S0

2 MPI_Sendrecv(&A[ROWS -2][0] , COLS , MPI_DOUBLE , top , 0,

3 &A[0][0] , COLS , MPI_DOUBLE , bottom , 0, MPI_COMM_WORLD ,
&s);

4 S1 MPI_Sendrecv(&A[1][0] , COLS , MPI_DOUBLE , bottom , 1,

5 &A[ROWS -1][0] , COLS , MPI_DOUBLE , top , 1, MPI_COMM_WORLD
, &s);

6 for(unsigned i = 1; i<ROWS -1; ++i)

7 for(unsigned j = 1; j<COLS -1; ++j)

8 S2 tmp[i][j] = A[i][j] + 1/4*(A[i+1][j]+A[i-1][j]+A[i][j-1]+A[i
][j+1]);

9 double ** ttemp=A; A=tmp; tmp=ttemp; // swap arrays

10 }

Listing 1.1. 5-points stencil code

codes [13,15,7]. Such tools are often very helpful to determine performance bot-
tlenecks or root causes for performance issues, however, the programmer has to
adapt the code eventually. In addition, tracing and post mortem analysis, may
be extremely time- and resource-consuming. Tuning the code for a particular
architecture (e.g., determine software pipeline depths and optimal loop arrange-
ment) is thus a very labor-intensive process and is often simply not applied in
production environments.

Compiler technology has been used in the past to optimize MPI programs
[6,4,2,3,11]. The main idea is to extend the compiler analysis module to un-
derstand the semantics of MPI routines and treat them not just like a library
call but as a language construct. In doing so, existing compiler analysis can be
utilized to uncover optimization potentials hidden within the input code.

In this work we show an approach based on compiler analysis, and specifically
exact data dependency analysis to maximize the computation/communication
overlap for a given input code. Indeed, increasing the time window on which
computation and communication can be performed in parallel (or overlapped) is
one of the well known rules of thumb used to optimize MPI codes. As opposed
to the previous compiler-based approaches, we utilize finer-grain exact analyses
using the polyhedral model [1]. Unlike the traditional dependence graph, which
contains data dependency information between the program statements, the de-
pendence polyhedron lists dependencies on the basis of statement instances [16].
An instance of a statement is a particular dynamic execution of that statement.
For example, the body of a loop has as many instances as there are iterations.
By using this more detailed analysis our approach increases the overlap window
between generating the data or buffer availability and the final consumption of
the data.

2 Motivation and State of the Art

MPI programs often exhibit recurring code patterns which are direct conse-
quences of the programming paradigm. For example, many programs read the
data right after receiving it from a peer process by iterating over the received ar-
ray elements. Similarly, data is usually sent right after the sender process finishes
the computation that writes to array elements being transmitted. A concrete and
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relevant example is represented by a standard parallelization of a 5-point stencil
code depicted in Listing 1.1. Stencil codes are very important in computational
sciences and we show a common way to parallelize such a code [9]. We have
communication statements at the beginning of the loop, statements S0 and S1,
which exchange data being computed in the previous iteration. Right after the
communication is performed, data is updated by a computational loop, state-
ment S2. In both case the compiler sees a true, or Read-After-Write (RAW), data
dependence on the elements of array A from statement S0 to S2 and between S1

and S2.
Traditional compiler analyses usually derive dependence information on a per-

statement basis. For the 5-point stencil code in Listing 1.1 the data dependence
graph (DDG) built by classical data dependence analysis [10] is represented in
Figure 1(a). We neglect, in this analysis, the swap statements in line 10 since
it introduces data dependencies between successive iterations of the iter loop
which are irrelevant since our focus is in maximizing the overlap within the loop
body. The DDG shows three types of dependencies present in the code:

RAW : Read-After-Write dependencies (a.k.a. true-dependencies);
WAR : Write-After-Read dependencies (a.k.a. anti-dependencies);
WAW : Write-After-Write dependencies (a.k.a. output-dependencies);

Each dependence type is associated with a distance vector represented in brack-
ets which, in the case of non loop-carried dependencies, is zero. We see that there
are two, non loop-carried, RAW dependencies from statement S0 to S2 and be-
tween S1 and S2, respectively. This is caused by the receive operation (implicit
in the MPI Sendrecv routine) writing elements of the array A. More precisely, the
receive operation in S0 writes A’s array elements in the range A[0][0 : COLS).
Same elements which are going to be read later in the first iteration of the sten-
cil loop – and thus Read-After-Write – by statement S2. Although correct,these
results are too conservative and coarse grained inhibiting any kind of automatic
optimization. As a matter of fact, every dependence in the DDG exists for all
the dynamic executions, or instances, of interested statements, however this is
not the case. For example the dependence between S0 and S2 only applies to
the first iteration of the stencil loop, all the remaining dynamic executions of
statement S2 are not dependent on S0. Similar considerations can be done for
statement S1, for which the data dependence applies solely to the last iteration
of the stencil loop.

The polyhedral model enables novel data analysis and transformation tech-
niques by representing dependencies at the finest detail in an instance-based
fashion. This technique is also referred to as exact data dependence analysis [16].
This allow a compiler to relax some of the constraints and apply more aggressive
transformations at the array element level which would not be supported by a
more coarse level of analysis at the object level. An example of the dependence
polyhedron for the stencil code is shown in Figure 1(b). The graph contains the
exact same key dependencies but it carries more information for each of them.
An expression predicate states which subset of the statement instances are af-
fected by the dependence. When the predicate is missing, then the dependence
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S0 WAW(1) 

S2

RAW(0)

S1 WAW(1)

RAW(0)

WAR(1)

WAR(1)

WAW(1) 

(a) Statement-based
DDG

S0 WAW(1)

S2

RAW(0)
if: 1  j  COLS-2 ^

i = 1

S1 WAW(1)

RAW(0)
if: 1 j  COLS-2 ^

i = ROWS-2

WAR(1)
if: 1 j  COLS-2 ^

i = 1

WAR(1)
if: 1 j  COLS-2 ^

i = ROWS-2

WAW(1)

(b) Instance-based DDG

Fig. 1. Data Dependency Graph (DDG) for 5-points stencil code in Listing 1.1

applies to every instance of that couple of statements. For example, the non
loop-carried RAW dependence between statements S0 and S2 exists for all the
instances of S2 where iterator i is 1 and j is between 1 and COLS-2 inclusive.
This means that the remaining instance of the stencil loop are not dependent on
the communication statements and therefore can be used to hide communication
costs.

3 The Polyhedral Model and Integration of MPI
Semantics

The polyhedral model represents, in an algebraic way, the execution of a program
composed of arbitrary nested loops with affine loop indexes. It captures both
the control-flow and data-flow of a program using three compact linear algebraic
structures, i.e. the iteration domain, the scheduling (or scattering) function and
the access function. The main idea is to define, for a statement S, a space in
ZN where each point correspond to an execution, or instance, of S. The value of
the coordinates of a point within this space represents the value of the N loop
iterators spawning statement S. In order to keep the representation compact,
the space, called polyhedron, is defined by a set of bounding affine inequalities.

Iteration Domain. The space on which a statement is defined is also referred to
as its Iteration Domain, DS . For example consider the stencil code in Listing 1.1.
Each statement is defined within an iteration domain which is bound by the
surrounding control flow statements. For example the iteration domains for S0,
S1 and S2 are defined as follows:

DS0 ={ iter | 0 ≤ iter < NUM ITERS}
DS1 ={ iter | 0 ≤ iter < NUM ITERS}
DS2 ={ iter, i, j | 0 ≤ iter < NUM ITERS ∧ 1 ≤ i < ROWS − 1 ∧ 1 ≤ j < COLS − 1}
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Iteration domains are represented by an integer matrix A, multiplied by a so
called iteration vector x. The iteration vector determine the dimensionality of
the space on which a statement is defined (composed by the loop iterators en-
closing that statement). For example the iteration domain for statement S2 in

Listing 1.1 is defined by the vector xS2 =

⎛
⎝
iter
i
j

⎞
⎠.

Scheduling Function. The second piece of information which is required to
describe the semantics of a program are the so-called scheduling (or scattering)
functions. Intuitively, statements belonging to a loop body, and subject to the
same control flow, will share identical iteration domains. The information of the
order on which statement instances are executed is not represented. A schedule,
θ(x), is a function which associates a logical execution date, or time-stamp, to
each instance of a statement. This allows the ordering of the instances defined by
the iteration domain and furthermore it defines an execution order for instances
of different statements.

Access Function. One last function is also required to capture the data loca-
tions on which a statement operates. The access (or subscript) function describes
the index expression utilized to access an array, and therefore memory locations,
within a statement. For compactness reasons, it is represented as a matrix. Ac-
cess functions also store the information whether a particular memory location
is being read (i.e., USE) or written (i.e., DEF). This kind of information is utilized
by the polyhedral model to compute exact data dependency analysis for a given
input code.

3.1 Instance-Based Data Dependence Analysis

A statement R depends on a statement S if there exists an operation S(x1), an
operation R(x2), and a memory location m such that:

– S(x1) and R(x2) refer to the same memory location m, and at least one of
them writes to that location;

– x1 and x2 respectively belong to the iteration domain of S and R;
– S(x1) precedes R(x2).

Dependence information is computed on the basis of the three data structures
presented earlier in this section. Intuitively, every point of the iteration domain is
projected into a different space using the affine linear transformation represented
by the access functions. The domain of this transformation is defined by the
statement instances and the co-domain is the memory elements being accessed
by that particular statement. Intersecting the co-domains obtained for every
statement yields the set of memory elements for which a data dependence may
occur. Finally combining this information with the statement execution dates,
given by the scheduling matrix, makes it possible to determine the source and
the sink for every dependence.



94 S. Pellegrini, T. Hoefler, and T. Fahringer

This complex capability to perform data dependence analysis is implemented
in the majority of the libraries supporting the polyhedral model. In our work we
utilized the Integer Set Library (ISL) [17] currently employed in several main-
stream compilers like GCC and LLVM.

3.2 Limitations of the Polyhedral Model

As mentioned above, the polyhedral model requires affine constraints to describe
control- and data-flow. Thus, not every program can be completely represented
in the polyhedral model. To maximize the applicability to arbitrary programs,
the program is typically split into Static Control Parts (SCoPs) that are de-
fined to be the maximal set of consecutive instructions such that: loop bounds,
conditionals, and subscript expression are all affine functions of the surrounding
loop iterators and global variables; loop iterators and global variables cannot be
modified [1]. Girbal et al. demonstrated that SCoPs capture a large portion of
the computation time in scientific applications [8].

3.3 Integration of MPI Semantics

Another limitation of a SCoP is the absence of any function or library call.
However, if the body of the invoked function is available at compile time, in-
lining can be used to increase the size of the SCoP. This technique is appli-
cable only if the function is not recursive and it has a single-entry and single-
exit point. In order to overcome the problem with library routines, for which
the source code is not available at compile time, our compiler pre-processes
the input program and replaces MPI communication routines with semanti-
cally equivalent loop statements. Indeed our prototype deals with MPI Send

and MPI Recv statements using plain datatypes for now. Under these circum-
stances, a send(&buff[offset], size) operation is semantically equivalent to
a for loop reading, i.e., USE, elements buff[i] ∀ i ∈ [offset, offset + size).
Similarly, a receive(&buff[offset], size) operation will be replaced by a
loop writing, i.e., DEF, the same range of array elements. In this form, programs
containing MPI routines can be handled by the polyhedral model and existing
analysis and transformation tools can be utilized. While this transformation is
sound for most MPI codes, it neglects the message tag and the communicator.
To maintain the original relative ordering, additional data dependencies must be
introduced between the generated loops for communication routines to enforce
MPI’s matching rules. Determining the value of the message tag at a specific
program point requires, in the general case, dataflow analysis reaching beyond
the SCoP boundaries (e.g. aliasing detection).

4 Implementation and Evaluation

In this section we propose a compiler transformation which based on the result of
the instance based data dependence analysis obtained by the polyhedral model,
maximize the communication/computation overlap by accordingly transforming
the input program.
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Algorithm 1. Transformation flow for maximizing communication/computa-
tion overlap
1: Input: P = Syntax Tree of the input program; MOD = modified AST
2: Output: T = Syntax Tree of the transformed program
3: T = P
4: repeat
5: MOD = false; G = extractDDG(T )
6: for all dep ∈ G do
7: if dist(dep) is 0 && src(dep) is MPI routine && sink(dep) is loop body && dep applies

to a subset of the instances then
8: T = applyLoopFission(T, sink(dep), findCut(dep)); MOD = true
9: end if
10: end for
11: until MOD is false
12: for all dep ∈ G do
13: if dist(dep) is 0 && src(dep) is MPI routine && sink(dep) is loop body then
14: {COMM STMT,WAIT STMT} = toAsynchronous(src(dep))
15: T = removeStmt(T, src(dep))
16: T = moveToEarliestSchedule(T, COMM STMT )
17: T = moveToLatestSchedule(T, {WAIT STMT, sink(dep)})
18: end if
19: end for

4.1 Implementation

The entire approach is implemented in the Insieme Compiler and Runtime in-
frastructure [5]. The Insieme project aims to provide an easy to use, powerful
framework for source-to-source transformations and program analysis for hetero-
geneous multi-core parallel computers. It consists primarily of two components:
the Insieme Compiler and the Insieme Runtime System. The Insieme Compiler,
on which our work relies, fully integrates the polyhedral model analysis and
transformations and provides a foundation for source-to-source program opti-
mization. Its architecture is designed to support the processing of hybrid input
codes that can include MPI, OpenMP and OpenCL written in C/C++.

Normal Form. Before applying any transformation, the input code is pre-
processed into a normal form. In this, an MPI program only contains MPI Send

and MPI Recv statements so that successive steps of the analysis process are
simplified. It is worth noting that the normalized program could have different
buffering requirements and therefore may lead to deadlocks if executed. However,
the program is kept in this normalized form only for the sake of performing
static analysis. The shape of an MPI program in normal form is described by
the following rules:

– Non-blocking point-to-point operations are rewritten to use the correspond-
ing blocking version. This is obtained by replacing every asynchronous rou-
tine with the synchronous counterpart and by removing every MPI Wait

statement in the input code.
– MPI Sendrecv operations are split into the corresponding MPI Send and

MPI Recv operations.
– MPI Ssend, MPI Rsend or MPI Bsend are rewritten to plain MPI Send.
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1 for(unsigned iter=0; iter <NUM_ITERS; iter++) {

2 MPI_Request __req0, __req1;

3 MPI_Irecv(&A[0][0] ,COLS ,MPI_DOUBLE ,bottom ,0,com ,&__req0);

4 MPI_Irecv(&A[ROWS -1][0] ,COLS ,MPI_DOUBLE ,top ,1,com ,&__req1);

5 MPI_Send (&A[1][0] ,COLS ,MPI_DOUBLE ,bottom ,1,com);

6 MPI_Send (&A[ROWS -2][0] ,COLS ,MPI_DOUBLE ,top ,0,com);

7 // stencil loop after fission

8 for(unsigned i = 2; i<ROWS -2; ++i)

9 for(unsigned j = 1; j<COLS -1; ++j)

10 tmp[i][j] = A[i][j] + 1/4*(A[i+1][j]+A[i-1][j]+A[i][j-1]+A[i
][j+1]);

11 MPI_Wait (&__req0, MPI_STATUS_IGNORE);

12 // first iteration of stencil

13 for(unsigned j = 1; j<COLS -1; ++j)

14 tmp[1][j] = A[1][j] + 1/4*(A[2][j]+A[0][j]+A[1][j-1]+A[1][j
+1]);

15 MPI_Wait (&__req1, MPI_STATUS_IGNORE);

16 // last iteration of stencil loop

17 for(unsigned j = 1; j<COLS -1; ++j)

18 tmp[ROWS -2][j] = A[ROWS -2][j] + 1/4*(A[ROWS -1][j]+

19 A[ROWS -3][j]+A[ROWS -2][j-1]+A[ROWS -2][j+1]);

20 double ** ttemp=A; A=tmp; tmp=ttemp; // swap arrays

21 }

Listing 1.2. 5-points stencil code after code optimization

Handling of MPI Routine Semantics. Once the program is in normal form,
we replace MPI statements with their semantically equivalent loops as described
in Section 3.3. From this representation of the input program (which does not
contain MPI statements anymore), we proceed with the extraction of the SCoP
and the dependence polyhedron associated to it. In doing so we keep a link to
the communication statement being replaced internally.

Code Transformation. Once the instance-based DDG is generated, we apply
a sequence of transformations as described in Algorithm 1. The idea is to iterate
through all the non loop-carried dependencies which have an MPI communica-
tion statement as the source and a loop body as sink. If the dependence applies
to a subset of the instances of the sink then we split the loop, applying the loop
fission transformation [10], at the range provided by the dependence analysis. In
this way the iterations which are dependent on the MPI communication state-
ment are isolated into a new loop statement. Notice that fission is possible as
long as there are no dependencies in the loop body that conflict with the trans-
formation being applied. The transformation framework in the Insieme Compiler
implements a pre-condition analysis which determine whether a transformation
can be safely applied.

The procedure repeats until a fix-point is reached where every dependence
in the DDG applies to all the instances of the source and sink statement. The
next step is to consider all dependencies between communication statements and
computational loops based on the transformed code. For each of them, the source
of the dependence – the communication statement – is removed from the code
and the corresponding asynchronous version of the routine is scheduled in its
earliest position (which is determined by constraints in the DDG). Listing 1.2
shows the transformed stencil code from Listing 1.1. The receive is scheduled at
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Table 1. Evaluation of the transformed code on the VSC2 and LEO3 cluster, fixed
problem size of 4Kx4K and NUM ITERS=10

VSC2 LEO3

# of MPI
Original

(in
msecs.)

Transformed
(in msecs.)

Improvement
(in %)

# of MPI
Original

(in
msecs.)

Transformed
(in msecs.)

Improvement
(in %)

16 219 218 0.3 12 264.9 264.5 0.09
32 89.7 89.0 0.8 24 118.7 118.9 -0.01
64 35.1 32.0 9.5 48 37.4 37.0 0.9
128 20.1 17.9 12.6 96 21.0 20.2 4.0
256 13.1 11.5 13.5 192 11.3 9.8 15.3
512 12.0 9.3 27.9 384 7.6 6.4 19.1

the beginning of the loop body as shown in lines 3 and 4. The loop depending
on the communication statement, i.e., the sink, is scheduled lazily prepending to
it an MPI Wait operation placed to preserve the semantics of the program, lines
11 – 19 of Listing 1.2. The remaining non-dependent loop iterations will be, by
the end of the transformation, confined between the issuing of the asynchronous
communication operations and the consumption of the received data (lines 8–10).
Therefore maximizing the overlap window.

The transformation can be easily extended to take into account loop-carried
dependencies, in that case the distance of the data dependence, d, defines the
number of loop cycles which can be executed between the source and the sink of
the dependence. This can be handled by automatically allocating an array of d
requests objects for each communication routine where the MPI Wait statement
of a request generated by a communication statement at iteration i happens at
iteration i + d. This transformation, also known as software pipelining [10], re-
quires additional control code, therefore overhead, to be inserted by the compiler
to correctly fill and unload the pipeline. A compiler can employ static heuristics
in order to determine when software pipelining is beneficial for a given input
code.

4.2 Evaluation

We tested the transformed 5-point stencil code, depicted in Listing 1.2, on two
production clusters and compared its execution time with the original code
shown in Listing 1.1. The (i) Vienna Supercomputing Cluster 2 (VSC2) is a
HPC system which consists of 1,314 nodes, with 2 AMD 8-cores Opteron 6132
HE processors each; the (ii) LEO3 cluster which consists of 162 compute nodes,
with 2 Intel 6-cores Xeon X5650 CPUs. Both clusters use InfiniBand 4x QDR
high speed interconnect.

The code has been executed keeping the problem size constant, 4K by 4K ele-
ments, and varying the number of MPI processes, results for both architectures
are shown in Table 1. We see that, as expected, the transformed code has overall
a better performance. Additionally, the improvement increases with the number
of cores since the smaller problem slice assigned to each processor is, the more
dominant the communication overhead becomes. Since our transformation aims
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at hiding communication costs, its benefit grows as the computation/communi-
cation ratio diminishes.

5 Conclusions and Outlook

In this paper we showed a compiler optimization which leverages instance-based
data dependence analysis, based on the polyhedral model, to isolate loop it-
erations which are dependent on MPI communication statements. Consecutive
proper rescheduling of statements allows the communication/computation over-
lap to be maximized.

Differently from classic data dependence analysis results, which state depen-
dence relationships at statement level, our approach finds overlap opportunities
within loop iterations and therefore at a more finer grain level.

We implemented the entire approach in the Insieme source-to-source com-
piler [5] and showed how the transformed code has an improved performance,
up to 28% faster with 512 cores, because of the increased overlap.
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Abstract. We discuss a new, stand-alone MPI benchmark program (for
now called mpicroscope) for assessing the performance of collective com-
munication patterns, in particular of the standard MPI 2.2 collective op-
erations. The benchmark is intended to facilitate comparisons between
different ways of expressing the same functionality towards perform-
ing automatic detection of violations of self-consistent MPI performance
guidelines. The benchmark can be used by MPI library developers for
assessing the relative quality of new algorithms and implementations. It
can also be used to make users aware of aspects of their MPI library
where performance (portability) problems may lurk. The current version
of the benchmark automatically detects, for any measured communi-
cation pattern, two universal, self-consistent guidelines that encourage
monotone and split-robust performance.

The benchmark aims to employ sound benchmarking procedures and
is controlled via command-line options. It covers the MPI 2.2 collective
operations, and a number of alternative patterns that express MPI col-
lective functionality. In contrast to many other benchmarks data can be
structured as described by an MPI derived datatype. We present results
from a small InfiniBand cluster with a vendor MPI library, showing per-
formance guideline violations that were detected and highlighted with
mpicroscope.

1 Introduction

Despite the ubiquitousness and universality of the Message-Passing Interface
(MPI) standard [12], there seem to be no commonly agreed upon and broadly
covering benchmark for thoroughly benchmarking the performance of given MPI
libraries, although there have been many initiatives in this direction. Also, there
are only few studies that compare quantitatively and qualitatively the many ex-
isting MPI benchmarks [8,11]. For an established and practically dominant in-
terface as MPI is in the HPC domain, this is a curious state of affairs. It makes it
difficult to compare MPI communication performance on different HPC systems
on which application codes may run or have to be ported. It makes it difficult to
assess whether the features of MPI that are exploited on one system will yield
similarly good performance on another [19]. For MPI researchers it makes it
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tedious to perform performance measurements; current practice unfortunately
seems to be that each developer uses his own benchmark, which makes it diffi-
cult (depending on the degree to which details of the benchmark are known) to
compare results. This is obviously detrimental to scientific work. An easy to use
tool with community agreed functionality and solid benchmarking procedures
would go along way towards remedying this situation.

Another important role of benchmarking is to assist in evaluating the internal
performance consistency of MPI libraries. MPI provides many different ways to
express the same functionality, often, however, with a clear, intended perfor-
mance preference. A benchmark with which natural alternatives can be readily
compared would be of help to check whether such implicit expectations – which
we formalize as self-consistent performance guidelines [19] – are fulfilled. For all
MPI communication operations there are unstated performance assumptions,
for instance that communication time is non-decreasing with message length,
and likewise a benchmark could easily validate (as will be shown) whether such
expectations are fulfilled. Such meta-principles can all be defended by the argu-
ment that if they were violated, there would be an easy way for the MPI user
to improve performance. This is undesirable, since such improvements per hand
might not carry over to other systems and MPI libraries. MPI offers a huge num-
ber of possibilities to formulate performance expectations by relating different
implementation alternatives, and as argued fulfillment of such expectations will
support application performance portability [19]. The role of a benchmark tool
would be to validate the expectations, formulated as self-consistent performance
guidelines, and make the application programmer and MPI library developer
aware of violations that could lead to performance portability problems.

Towards addressing these problems, we are developing yet another MPI bench-
mark with focus on assessing consistent performance of collective communication
patterns. The benchmark first and foremost incorporates the 17 MPI 2.2 [12]
collective operations, and supplements these with natural, alternative ways of
expressing these patterns. This facilitates comparison with the implicit assump-
tion that the specific MPI collective should be best. The benchmark is intended
as a quick-and-dirty tool for the MPI library developer, and is controlled with
commandline options with defaults that make it easy to selectively investigate
any, some or all of the supported collective patterns. The same, sound (or at
least: explicit) benchmarking procedures are used for all patterns under all cir-
cumstances. In contrast to many other benchmarks it covers also the derived
datatype mechanism of MPI by providing a simple way of expressing hierarchi-
cal, regular data layouts with the different MPI datatype constructors [5]. For
now we call this benchmark the mpicroscope.

1.1 Related Work

The mpicroscope benchmark has evolved from a handwritten benchmark used
by the author over a number of years. As a proposal it is available to anyone
interested for use, scrutiny and critical comment. Regarding benchmarking prin-
ciples it is heavily inspired by mpptest as described in [4] and, of course, the
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“Special Karlsruher MPI” benchmark, SKaMPI, as described in [1,2,13,14,15].
These benchmarks are fairly precise in stating their principles. Common pit-
falls and problems with benchmarking collective operations are dealt with in [9],
which among other things also introduces mechanisms for better synchroniza-
tion. Some other, often used benchmarks (e.g, some versions of Intel’s MPI
Benchmark, IMB) apply unsound (pipelined rather than individual collective
performance) or intransparent principles, and some are scantily documented
(MPBench, MPIBench [7]). Other well-known benchmarking initiatives have
other objectives, e.g., NetPIPE is rather for assessing network performance [20].
An interesting, recent benchmarking initiative that aims at providing library
support for selective benchmarking from other tools or applications is described
in [10]. The literature on comparing MPI benchmarks is unfortunately not ex-
tensive [8,11]. Self-consistent MPI performance guidelines as a means for ensur-
ing performance portability of applications and MPI libraries were introduced
in [18,19], and subsequently extended to other aspects of MPI [5,6].

2 Terminology and Methodology

In MPI all communication is wrt. a fixed set of processes represented by a com-
municator. Communication is out of/into fixed buffers allocated in user mem-
ory either by a standard memory allocator, e.g., malloc, or by the special
MPI Alloc mem allocator. All communication operations can employ a datatype
to describe the structure of the communicated data. Some collective patterns,
e.g., MPI Reduce, have a distinguished root process from which data originates
or end up. Collective reduction operations employ a binary reduction operator.
An mpicroscope experiment fixes all these parameters. For each experiment the
role of the benchmark is to measure, as accurately as possible and as detailed as
desired, the communication performance for a selection of datasizes. The range
and overall structure of the datasizes are given as experiment parameters (see
Section 3). Each run of the benchmark goes through a set of selected collective
patterns, per default all of the predefined patterns, and performs the experiment
for each of these.

The datasize unit is bytes, and each datasize is translated to a corresponding,
largest possible count of the experiment datatype. For each datasize all pro-
cesses measures the execution time using MPI Wtime. Processes are currently
synchronized with MPI Barrier [1,9]. The time for the slowest process is recorded
as the completion time for that count. We call this an individual measurement.
Measurements are performed in order of increasing count, that is for all counts
ci in an experiment ci < ci+1. Individual measurements are repeated until a
stable, reproducible result is found. For this we use the notion of tail, a number
of repetitions during which the minimum completion time is not supposed to
change; if this is the case, this minimum completion time is taken as the “cor-
rect” time for the given count. If instead a better minimum completion time
is found, the measurement is repeated for another tail of iterations. Over the
course of the experiment the tail decays (linearly or exponentially), and when
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tail reaches one all measurements will terminate. The recorded completion time
of the collective for count ci is denoted by T (ci). We believe (and would like
to prove) that this approach under reasonable assumptions ensures stable and
reproducible measurements for each count. It is worth emphasizing that the mpi-
croscope benchmark measures the performance of individual collective patterns.
The performance of repeated sequences of operations (e.g., several consecutive
MPI Bcast operations) is a different matter (there could be pipelining effects
leading to entirely different results than a single, isolated call); if such behavior
is of interest, a separate pattern capturing this must be added to the mpicroscope.

3 The Benchmark

The benchmark is written in C with macro support for implementing new com-
munication patterns. It is controlled by command line options by which the ex-
periment parameters (communicator, memory allocator, root process etc.) can
be set and/or modified. Also data ranges and distributions can be set. A com-
mon benchmarking pitfall is to restrict sizes to only powers of two. To avoid this
the mpicroscope offers exponential and linear distributions of measure points,
with additional constant offsets. In an exponential distribution a base r is set
together with the number of measure points in each interval [rk, rk+1]. In the
linear distribution, upper limit and number of subdivisions is set. For each mea-
sure point c additional measure points c−ε and c+ε′ can be requested. If options
are repeated, either they have a cumulative effect, or the last one takes effect.
For example, -range=0,10000 -exp=2,7 -exp=10,10 -range=10000,1000000

-lin=10 overlaps two exponential distributions in the range from 0 to 10,000
Bytes with a linear distribution with 10 measure points in the range from 10,000
to 1,000,000 Bytes.

The benchmark per default generates a file of raw completion times; there are
options for splitting this into individual files for each pattern (as there is to select
subsets of patterns) and to generate output with gnuplot commands for direct
generation of plots (see Section7). There is also a simple “report generator” for
taking these plots into a LaTeX document.

Correctness of the patterns is eminently important (no benchmarking of incor-
rect functionality!), but currently the benchmark offers no support for correct-
ness checking. Likewise communication buffers are initialized only once; there
is not support for controlling buffer placement and cache usage. This definitely
needs to be included. To be detailed and accurate the benchmark is intended
to do automatic refinement between counts where a linear interpolation shows
unexpected change in performance. This has not been implemented yet, but
SKaMPI and mpptest employ such mechanisms [4,14].

4 Meta-performance Guideline Verification

We use the semi-formal notation MPI A(n) 	 MPI B(n′) to state performance
guidelines. This expresses that execution of MPI function A with significant
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arguments (typically data sizes) of total size n is for almost all values of n not
slower than MPI function B with arguments of size n′, where n′ is some function
of n – all other things being equal (which they are of course not) [19]. The next
sections introduce two universal guidelines with simple linear-time verification
algorithms.

4.1 The Monotone Guideline

MPI A(n) 	 MPI B(n+ k) (1)

The self-consistent, monotone performance guideline is applicable to all com-
munication operations, and stipulates that the time for communicating n bytes
be no larger than communicating n + k bytes for any k > 0. Adherence to this
guideline can easily be checked. Assume completion times are stored in order of
increasing c. We scan backwards starting from the largest c. If a monotone viola-
tion T (ci−1) > T (ci) is found, we scan backwards until a j with T (ci−j) ≤ T (ci)
is found. The counts from ci−j to ci violate the monotone property.

4.2 The Split-Robust Guideline

MPI A(n) 	 kMPI B(n/k) (2)

The self-consistent split-robust performance guideline is likewise universally ap-
plicable [19]. It states that splitting data should not make a performance im-
provement, that is sending n bytes in k parts, k > 1, should not be faster than
just sending the n bytes. We can partially check adherence to this principle
in linear time. We scan forward, and for each ci find the largest k for which
jT (ci) < T (jci) for 1 < j ≤ k. If there is no measurement exactly for T (icj) lin-
ear interpolation between cj−1 < ici < cj is applied to estimate the completion
time.

5 Collective Patterns

The mpicroscope benchmark includes all 17 MPI 2.2 collective operations, and a
number of additional patterns expressing the same functionality as native MPI
collectives. For instance, the well-known algorithm for broadcast in terms of a
scatter followed by an allgather operation [3] as used in some MPI libraries [16],
allreduce expressed as reduce followed by broadcast, allgather in terms of gather
and broadcast or simply multiple, concurrent broadcasts, alltoall communication
expressed by one-sided communication, and so on, are included as collective
patterns.
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The mpicroscope has a common framework for writing patterns and provides
some macro support which should make it possible for users to extend the bench-
mark with new patterns. The ambition is to provide a collection of sensible im-
plementations for at least torus/mesh and fully connected architectures for each
MPI collective. Benchmarking the native MPI collectives against these patterns
would ensure a certain baseline performance, and guide against immediate per-
formance portability problems.

A general expectation that can readily be checked with the benchmark is
that each regular collective operation is not slower than the same pattern ex-
pressed by the corresponding, irregular (vector) operation, that is MPI C(n) 	
MPI Cv(n) where C ∈ {MPI Gather,MPI Scatter,MPI Allgather,MPI Alltoall},
similarly for MPI Reduce scatter block. We list a number of more or less evi-
dent, self-consistent performance guidelines that can at the moment be checked
with mpicroscope; this list is not exhaustive.

MPI Bcast(n) 	 MPI Scatter(n) +MPI Allgather(n) (3)

MPI Reduce(n) 	 MPI Reduce scatter(n) +MPI Gather(n) (4)

MPI Allreduce(n) 	 MPI Reduce scatter(n) +MPI Allgather(n) (5)

MPI Allreduce(n) 	 MPI Reduce(n) +MPI Bcast(n) (6)

MPI Reduce scatter(n) 	 MPI Reduce(n) +MPI Scatterv(n) (7)

MPI Reduce scatter block(n) 	 MPI Reduce(n) +MPI Scatter(n) (8)

MPI Scan(n) 	 MPI Exscan(n) +MPI Reduce local(n) (9)

MPI Gather(n) 	 pMPI Recv(n/p) (10)

MPI Scatter(n) 	 pMPI Send(n/p) (11)

MPI Allgather(n) 	 MPI Gather(n) +MPI Bcast(n) (12)

MPI Allgather(n) 	 ‖pMPI Bcast(n/p) (13)

MPI Alltoall(n) 	 pMPI Sendrecv(n/p) (14)

MPI Alltoall(n) 	 MPI Win fence+ pMPI Put(n/p) +

MPI Win fence (15)

6 Datatypes

Per default all data are communicated as MPI INT but other base datatypes
are supported, e.g., MPI CHAR, MPI FLOAT, MPI DOUBLE. Performance of collective
patterns with structured data can also be assessed. The idea is to define a strided
layout, much as can be captured with the MPI vector datatype constructor, in
terms of a stride, a data block size (that must be no larger than the stride),
and a number of repetitions. These three parameters can be given as options to
the benchmark. Now, either of the MPI constructors can be selected as the way
to describe this layout to the MPI library in order to make it possible to asses
whether datatype performance guidelines as discussed in [5] are met. Hierarchical
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datatypes can be built up by repeating constructors, e.g., -vector -indexwould
indicate that an indexed type is built over a vector, at each level using the
given values of the three structural parameters. In addition there are patterns
for benchmarking the performance of the MPI Pack and MPI Unpack routines.
The supported binary operators for reductions operations are MPI MAX, MPI MIN,
MPI SUM, MPI BAND; for derived datatypes a generic user-defined operation is
used – we note that MPI support for defining such generic operators is severely
lacking.

7 A Few Results

We give here two examples of how the mpicroscope can be used to investigate
violations of performance guidelines and highlight potential performance (porta-
bility) problems with a specific MPI implementation on a specific system. Need-
less to say this should be followed by differential comparisons between different
MPI libraries on the same system, and libraries on different systems.

The system at hand is a small InfiniBand based cluster with 36 nodes each
equippedwith two 8-coreAMDOpteron 6134 “magny cours” processors (2.3GHz),
and 32 GBytes of memory per node. The MPI library is the vendor library. All ex-
periments used 30 nodes with 16 MPI processes on each. We ran the tool with the
command mpirun [nodes, processes, pinning] mpicro -exp=2,5 -exp=10,10

-gnuplot-log which measures at powers of 2 with 5 measure points inbetween
powers, and powers of 10, with 10 measure points inbetween. Per default the regu-
lar MPI COMM WORLD communicator is used, with communication buffers allocated
with malloc. The run generates a stand-alone data file with gnuplot commands
for doubly logarithmic time/datasize plots. The default tail is 10 repetitions with
linear decay. The full run with all patterns required a number of repetitions rang-
ing from 32 (Reducescatter+Gather, for Guideline 4) to 57 (Scatter+Allgather,
for Guideline 3). Several executions were tried, and with a relatively unloaded but
not exclusively reserved system, results seem reproducible.
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Fig. 1. Performance of MPI Reduce scatter block vs. MPI Reduce scatter and the pat-
tern MPI Reduce+MPI Scatterv (Guideline 7)
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In Figure 1 we compare the regular MPI Reduce scatter block (left) against
the more general MPI Reduce scatter and an implementation of same in terms of
MPI Reduce and MPI Scatterv (Guideline 7). In MPI Reduce scatter block there
are some violations of both monotone and split-robustness guidelines. More se-
riously, MPI Reduce scatter has a range around one KByte where the trivial
implementation is significantly better. Also, better algorithms in terms of band-
width [17] seems not to exploited; and especially for large data the regular
MPI Reduce scatter block operation is a factor of almost two slower than the
more general MPI Reduce scatter collective.
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Fig. 2. Performance of MPI Alltoall vs. MPI Alltoallv vs. MPI Alltoallw, vs. send-receive
vs . one-sided put vs. one-sided get (Guidelines 14 and 15)

Finally, Figure 2 compares the current implementations of the alltoall com-
munication pattern. The natural expectation is for MPI Alltoall to be fastest,
and this is indeed the case for messages up to about 2KBytes where there is an
unfortunate switch point (this would also be seen in split-robustness violations)
from which MPI Alltoall performs the worst. Contrary to what the guidelines
state, MPI Alltoallw seems to fare the best. The send-receive pattern performs
as well as the implementations in terms of one-sided puts and gets (these two
are similar), with a curious decrease in performance around 20KBytes.

8 Summary and Outlook

The mpicroscope benchmark is a basis for a project that will continue over the
next few years. The aim is to develop a fast, accurate, detailed performance mi-
croscope for use primarily by MPI developers. Interesting tradeoffs that will be
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explored are between speed and accuracy, in particular when automatic refine-
ment is employed, as well as the reproducibility of the benchmark methodology.
Also, we would like to put the methodology on a more firm statistical foundation.
Other immediate issues concern the automatic refinement, outlier detection and
elimination, and synchronization of timers.

The benchmark automatically detects violations of the monotone and split-
robustness guidelines. Comparisons between different patterns were here done
by hand. The idea is to augment the benchmark tool with scripts to facilitate
these comparisons and possibly provide concise reports on violations. This will
be more helpful to application programmers to avoid performance portability
pitfalls.

Communication patterns have to be specified at compile time and explicitly
programmed with the provided macro support. We envisage higher-level facilities
for expressing performance guidelines that can be compiled directly into the
required experiments.
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Abstract. General-Purpose Graphics Processing Units (GPGPUs) are becoming
a common component of modern supercomputing systems. Many MPI applica-
tions are being modified to take advantage of the superior compute potential of-
fered by GPUs. To facilitate this process, many MPI libraries are being extended
to support MPI communication from GPU device memory. However, there is lack
of a standardized benchmark suite that helps users evaluate common communica-
tion models on GPU clusters and do a fair comparison for different MPI libraries.
In this paper, we extend the widely used OSU Micro-Benchmarks (OMB) suite
with benchmarks that evaluate performance of point-point, multi-pair and collec-
tive MPI communication for different GPU cluster configurations. Benefits of the
proposed benchmarks for MVAPICH2 and OpenMPI libraries are illustrated.

Keywords: MPI, GPGPU, micro-benchmarks, clusters.

1 Introduction

General-purpose Graphics Processing Units (GPGPUs) are increasingly being used in
the field of High End Computing. Many modern supercomputers are offering multiple
GPUs per node to provide higher compute density and performance per watt. Taking
advantage of this trend, many parallel scientific applications are being modified to take
advantage of the GPGPUs offered by these modern systems.

MPI has been the most popular model for developing parallel scientific applications.
The initial fact that GPGPUs had an independent memory address space complicated
the process of porting MPI applications to these devices. The developers had to use
multiple programming models for data movement: accelerator-specific programming
models, such as CUDA or OpenCL, for CPU-GPU data movement and MPI for data
transfer across nodes. Later versions of CUDA removed this restriction for NVIDIA
GPUs, by providing a uniform virtual address space for both the GPU and host mem-
ory. This currently allows MPI libraries to support communication directly from device
memory, without requiring any extensions to the MPI interface.

NVIDIA is one of the leading providers of GPU technology and CUDA is the
most popular standard for programming their GPU devices. Currently, most of the
popular open-source MPI libraries either have support for MPI communication from
device memory of NVIDIA GPUs or efforts are underway to add such a support
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[18,17,14,13,6,9]. However, a standard benchmark suite that allows end users to com-
pare these different implementations and use the one that delivers the best performance
for a given use-case does not exist. Modern node architectures allow multiple ways of
configuring GPUs. For example, two GPUs on a system based on Intel architecture can
be connected to the same PCIe interface, the same I/O hub or different I/O hubs. Dif-
ferent libraries make different design choices and deliver different performance based
on the GPU configuration. The performance of GPU-GPU communication can also
vary based on factors like buffer usage pattern, process to GPU binding among others.
A standard benchmark suite should provide flexibility to compare the performance of
different MPI libraries in these different scenarios.

The OSU Micro-benchmark (OMB) suite has been the most widely used set of
benchmarks to compare the performance of different MPI libraries on modern clus-
ters [10]. In this paper, we design and implement OMB-GPU, an extension to OMB
that allows users to compare the performance of MPI libraries on GPU clusters. We
make the following key contributions:

1. We design and implement OMB-GPU, a micro-benchmark suite to compare per-
formance of MPI libraries on GPU clusters.

2. We provide benchmarks to measure performance of point-to-point, multi-pair and
collective MPI communication from/to GPU devices.

3. We add infrastructure that displays the GPU configuration on a node and supports
process-GPU mapping. This allows users to measure performance between differ-
ent pairs of GPUs.

4. We provide different runtime options for buffer location and buffer reuse to emulate
different communication patterns.

To the best of our knowledge, OMB-GPU is the first micro-benchmark suite that sup-
ports evaluation of communication performance using MPI libraries on GPU clusters.

2 Background and Related Work

In this section, we will discuss the necessary background and the related work. In this
paper, we use CUDA as the accelerator-centric programming model, and we would like
to note that the benchmarks can be easily extended to support OpenCL.

2.1 Programming on Heterogeneous Cluster with GPGPUs

In the heterogeneous cluster with GPGPUs, GPUs are connected to the local nodes
as the peripherals via PCI express. The nodes are connected by the high performance
network, such as InfiniBand. Using CUDA programming model, GPUs can read/write
memory attached to the local node. But it is necessary to move the data from GPU
device memory to the host memory before sending the data to the remote node. Usu-
ally, MPI is used to communicate the data across nodes. Multiple programming models
for the data movement and management have increased the programming complexity.
GPU-GPU MPI communication is proposed to use the standard MPI interfaces to unify
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the device memory and the host memory. It hides the GPU-CPU data movement and
optimizes GPU-CPU data movement and management inside MPI library. The popular
MPI libraries (MPICH2 [7], OpenMPI [9], and MVAPICH2 [8]) are adopting it in their
open source libraries. But there is not a suite of benchmarks to evaluate the GPU-GPU
MPI communication.

2.2 Related Work

Recently, many benchmarks have been proposed to evaluate the performance for GP-
GPUs. Gbench [2] has been proposed to compare the GPU and CPU performance for
the common Matlab computations. Parboil benchmark [11] and Rodinia benchmark [4]
have the similar motivation as the Gbench, but include more diverse applications. OMB-
GPU focuses on the common communication models in the applications instead of the
computation. SHOC benchmark suite [5] has been proposed to test the performance
and stability of the heterogeneous clusters with GPGPUs. It is a general benchmark
suite using applications on the heterogeneous clusters. As illustrated in our previous
research [17], the communication design and implementation will badly affect the entire
application performance. It is necessary to provide a new benchmark focusing on the
general communication models in these common applications.

In the existing benchmarks for MPI, such as Intel MPI Benchmarks [1], NAS Paral-
lel Benchmarks [3], SPECMPI [16], both the source and the destination addresses are
resided in the host memory. If programmers want to run these benchmarks on GPGPUs
cluster, the additional CPU-GPU data movement and management have to be added. At
the same time, since there are many factors to affect the data communication perfor-
mance, such as the pinned or pageable host memory, the exclusive or shared usage for
one GPU, the shared or not shared I/O Hub among GPUs and network NICs, and so on,
it is hard to write the test programs and do a fair comparison on different MPI libraries
in an ad-hoc manner. Moreover, it is necessary to identify these important architecture
related parameters and understand how the benchmarks respond to changes of these
parameters. In this paper, we will propose OMB-GPU to evaluate communication for
the GPGPUs cluster.

3 Design Considerations

The performance of MPI communication from GPUs is influenced by a range of factors
such as node configuration, process-to-GPU affinity, buffer usage pattern and others. We
consider these aspects described below in designing the OMB-GPU benchmark suite.

GPU Configuration: It is becoming common for clusters to have multiple GPU de-
vices installed per node. The way two GPUs are connected on a node decides the chan-
nels that are available for communication between these GPUs. Different channels have
different performance as discussed in [15]. CUDA 4.1 makes it easier for processes us-
ing different GPUs to communicate with one another when the GPUs are connected
to the same I/O Hub chip (on Intel architectures). It provides Inter-Process Commu-
nication (IPC) through which a process can directly read from or write to another
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process’s buffer. The other communication channels available between GPUs on the
same IOH are shared host memory and loop-back through the network adapter (Mel-
lanox IB adapters, for example). Similar options are available when the GPUs are con-
nected directly to an IOH or through a PCI-e switch. On the other hand, CUDA IPC
mechanism is not supported when GPUs are connected to different I/O Hubs. The com-
munication have to use the shared host memory or the network loop-back channels.
Though the aforementioned channels are available between different pairs of GPUs,
which of these channels are actually implemented depends on the MPI library. The user
has to depend on commands/tools like lspci and nvidia-smi to get the configuration of
GPUs on a give node. Tools like Portable Hardware Locality (hwloc) [12] are starting
to provide this information but are not complete from our experience. We also observed
that the system architecture itself may not give the idea if channels like IPC are available
between two GPUs. For example, we have seen that CUDA IPC does not work on some
AMD platforms though an IOH like limitation is not documented for AMD platforms.
For this reason, we have added infrastructure as part of the OMB-GPU suite, to detect
the availability of IPC between different GPUs on a node. Figure 1 depicts a multi-GPU
configuration with two Intel nodes and the available communication channels between
different pairs of GPUs.
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Fig. 1. A multi-GPU configuration and the available communication channels

GPU Context Creation: A CUDA context is analogous to a process on a CPU. All
the resources allocated and actions performed by a process on a GPU are encapsulated
inside a CUDA context. A context can be created using explicit context creation calls
or is created when the first call to CUDA runtime happens. CUDA requires some of
the device properties (selection of scheduling, availability of pinned host memory and
others) to be set before the context is created. On the other hand, MPI libraries usually
need to make some CUDA calls from inside MPI Init for tasks like buffer allocation,
buffer registration, IPC channel detection and others. Some of these calls will require
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a context to be created. To allow for this, applications normally set the required device
properties and initialize the context before they call MPI Init. MPI launchers provide
information about MPI process rank (within a node and across the job) through an en-
vironment variable to allow application to take care of GPU binding during the context
creation process. The benchmarks in OMB-GPU mimic the behavior of the application
of selecting a device and creating a context before MPI Init is called. The process-GPU
affinity, as discussed later in this section, is done by reading the local MPI rank infor-
mation provided by different MPI libraries.

Buffer Location: Some of the GPU clusters are truly heterogeneous in the sense that
some nodes are equipped with GPUs while others are not. In such a case, some MPI
processes might be using the GPUs while other run a purely host based code. Depending
upon an application’s necessities there may arise situations where the application needs
to transfer data: a) from a GPU device buffer to a GPU device buffer, b) from a GPU
device buffer to a host buffer, c) from a host buffer to a GPU device buffer and d) from
a host buffer to another host buffer. To facilitate the characterization of performance of
communication primitives under different circumstances we design OMB-GPU bench-
mark suite to allow for users to use simple parameters to indicate the location of buffers
involved in the communication.

Affinity: As discussed earlier, the communication channels and hence the communi-
cation performance varies depending on how the GPUs are configured on the system.
When there are several GPUs on the node, it will be important to understand the perfor-
mance characteristics of communication within the same GPU, between different pairs
of GPUs or among groups of GPUs. Processes incur context switching overheads when
they share a GPU. This is expected to be alleviated in the future version of CUDA. Due
to context creation requirements mentioned earlier, GPU device selection and context
creation has to be taken care of by the application, or the benchmark in this case, before
MPI Init is called. Most MPI libraries expose the MPI rank information through the
launchers, even before MPI Init is called. We use this information to provide a process-
GPU binding interface in OMB-GPU. We provide information about the interface in
Section 4.

Buffer Reuse: The usage pattern of communication buffers can vary from one applica-
tion to another. Also, the performance of several designs in MPI libraries can vary based
on the communication buffers are reused or not. A popular example is the registration
cache in the case of networks like IB. We can see similar cases with GPU communi-
cation. When IPC-based designs used for communication between GPUs connected to
the same IOH, IPC handle caching can benefit performance when there is buffer reuse
and when buffers are not freed until when the application exits. However such an op-
timization is not possible when communication buffers are not reused and are freed
intermittently in applications or benchmarks. We provide an option to enable or disable
buffer reuse in OMB-GPU, to enable study of these performance characteristics.
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4 Benchmarks for GPU-GPU MPI Communication

We add a set of benchmarks to compare the performance of different MPI implemen-
tations for GPU clusters. The standard OSU point-to-point Latency, Bandwidth, Bidi-
rectional and Multi-pair benchmarks are extended to evaluate the MPI communication
performance with GPU devices. Each of these benchmarks takes two input parameters.
The first parameter indicates the location of the buffers at rank 0 and the second param-
eter indicates the location of the buffers at rank 1. The value of each of these parameters
can be either .H. or .D. to indicate if the buffers are to be on the Host or on the Device,
respectively. When no parameters are specified, the buffers are allocated on the host.

OMB-GPU provides an option for users to set process-to-GPU affinity. The user
can specify the GPUs to be used by each MPI process as a colon separated list, using
the GPU MAPPING parameter. For example, GPU MAPPING=0:1 maps MPI process
with local rank 0 (rank within a node) to GPU0 and MPI process with local rank 1 to
GPU1. OMB-GPU currently uses launcher specific parameters to get local rank infor-
mation of a process. OMB-GPU also provides information about GPU configuration on
a node. Each of the benchmarks provides an option that displays IPC capabilities be-
tween every pair of GPUs on the node. This allows users to select the appropriate GPUs
through process-to-GPU binding. Figure 2 shows the sample output on dual-socket In-
tel Westmere node with three GPUs where the first GPU is connected to one IOH chip
and the other two GPUs are connected to another IOH chip.

-------------------------------------------- 
      CUDA IPC Access Matrix 
--------------------------------------------- 
     GPU  |      0          1           2   
--------------------------------------------- 
       0      |    Yes      No        No   
       1      |     No      Yes      Yes 
       2      |     No      Yes      Yes 
--------------------------------------------- 

Fig. 2. CUDA IPC access matrix as displayed by OMB-GPU on a dual-socket Intel Westmere
node with 3 GPUs

4.1 Point-to-Point Communication

Latency: The latency benchmark is carried out in a ping-pong fashion. The sender
sends a message with a certain data size to the receiver and waits for a reply from the
receiver. The receiver receives the message from the sender and sends back a reply with
the same data size. Many iterations of this ping-pong test are carried out and average
one-way latency numbers are obtained. Blocking version of MPI functions (MPI Send
and MPI Recv) with GPU device or host buffers are used in the benchmark.

Bandwidth: The bandwidth benchmark is carried out by having the sender sending
out a fixed number of back-to-back messages to the receiver and then waiting for a re-
ply from the receiver. The receiver sends a reply only after receiving all these messages.
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This process is repeated for several iterations and the bandwidth is calculated based on
the elapsed time. Non-blocking version of MPI functions (MPI Isend and MPI Irecv)
with GPU device or host buffers are used in the benchmark.

Bidirectional Bandwidth: The bidirectional bandwidth benchmark is similar to the
bandwidth test, except that both the nodes involved send out a fixed number of back-to-
back messages and wait for the reply. This benchmark measures the maximum sustain-
able aggregate bandwidth between two processes.

4.2 Multi-pair Communication

Multiple Bandwidth (Message Rate Benchmark): The multi-pair bandwidth and
message rate test evaluates the aggregate uni-directional bandwidth and message rate
between multiple pairs of processes. Each of the sending processes sends a fixed num-
ber of messages back-to-back to the paired receiving process before waiting for a reply
from the receiver. This process is repeated for several iterations. A process of rank r is
paired with a process with rank (r + comm size/2)%comm size. This benchmark can
be used to measure the aggregate bandwidth and message rate within a node or across
nodes by arranging the host file accordingly.

Multi-pair Latency Benchmark: This test is very similar to the latency test. However,
at the same instant multiple pairs are performing the same test simultaneously.

4.3 Collective Communication

The collective benchmarks for various MPI collective operations MPI Allgather, MPI
Alltoall, MPI Allreduce, MPI Bcast, MPI Gather, MPI Reduce, MPI Reduce scatter,

MPI Scatter and vector collectives to measure the latency of collective operations in
GPU device buffers. These benchmarks measure the min, max and the average latency
of the collective operation across N processes, for various message lengths, over a large
number of iterations. All the processes either use GPU device or host buffers for com-
munication.

5 Experimental Results

5.1 Experimental Setup

We used a two node cluster for point-to-point benchmark evaluation. Each node is
equipped with 12-core Intel Westmere CPUs with two NVIDIA Tesla C2075s. The
CPUs are clocked at 2.40 GHz and the node has 24 GB host memory. The node runs
Red Hat Linux 5.4, OFED 1.5.1, MVAPICH2-1.8, OpenMPI-trunk (r26442)and CUDA
Toolkit 4.1. Each GPU has 6GB of memory and ECC is enabled. We also use a clus-
ter with eight node GPU cluster for our collective benchmark evaluation. Each node
is equipped with dual Intel Xeon Quad-core Westmere CPUs operating at 2.53 GHz,
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12 GB host memory, and NVIDIA Tesla C2050 GPUs with 3 GB DRAM. The Infini-
Band HCAs used on this cluster are Mellanox QDR MT26428. Each node has Red
Hat Linux 5.4, OFED 1.5.1, MVAPICH2-1.8, OpenMPI-trunk (r26442) and CUDA
Toolkit 4.1.

5.2 Impact of Design considerations

GPU Configuration: Figures 3(a) and 3(b) show the impact of GPU configuration
on MPI latency and Bandwidth performance. An intra-IOH configuration offers better
performance than an inter-IOH configuration. As it is explained in Section 3, this is due
to the support for peer-to-peer memory copies, when two GPUs are connected to the
same IOH chip. As illustrated in Figure 3(b), for the intra-IOH bandwidth, OpenMPI
is better in large data size, while MVAPICH2 is better in others. It is due to the cached
IPC handle used in OpenMPI design. Through the different performance results, our
benchmarks provide the insights of different designs in MPI libraries.

Buffer Location: Figures 3(c) and 3(d) compare MPI latency performance with com-
munication buffers located in ’Host’ or ’Device’ memory.

Affinity: Figure 3(e) shows the impact of process-to-GPU affinity on MPI latency per-
formance. It compares the case where both processes are bound to the same GPU with
the case where they are bound to different GPUs. As explained in Section 3, there is
a high context switch overhead when both MPI ranks access the same GPU simultane-
ously. The effect of context switch is dominated by the copy latencies at larger message
sizes.

Buffer Reuse: In Figure 3(f), we show that buffer reuse patterns have a significant
impact on the intranode GPU-GPU performance in some MPI implementations. This
impact is mostly because of caching mechanisms employed by MPI implementations
when CUDA IPC is used.

5.3 Micro-Benchmark Results

Point-to-Point Benchmarks: We show the basic internode and intranode latency per-
formance results with OMB-GPU in Figures 4(a) and 4(b). Figures 4(c), 4(d), 4(e)
and 4(f) show internode and intranode bandwidth and bi-directional bandwidth per-
formance results.

Multi-pair Benchmark: Figure 6(a) shows the bandwidth results with one pair and two
pairs of processes between two nodes. The effective communication channel utilization
is improved with multiple pairs.

Collective Benchmarks: In OMB-GPU, we provide a set of benchmarks to measure
the performance of various MPI collective communication primitives on GPU device
memory. Figures 5(a), 5(b) and 5(c) show results with some of the most frequently used
collectives: AlltoAll, Scatter and Gather using OMB-GPU.
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Fig. 4. Point-to-Point Performance
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6 Conclusion

In this paper, we proposed extensions to the popular OSU Micro-Benchmark suite that
will help in evaluating MPI libraries on GPU clusters. We provided benchmarks to mea-
sure latency, bandwidth, bidirectional bandwidth performance of point-to-point MPI
communication. We also provided benchmarks to measure multi-pair and collective
MPI communication. We designed a flexible benchmark infrastructure and provided
runtime options to measure the impact of GPU configuration, GPU affinity, buffer loca-
tion and buffer reuse on GPU-GPU MPI communication. To the best of our knowledge,
this is the first micro-benchmark suite that helps MPI implementers and end users to
compare performance of different MPI libraries on GPU clusters.

Some of the benchmarks introduced in this paper have been made available to the
community through OMB-3.6 and MVAPICH2-1.8 releases. We plan to release the rest
of the features and benchmarks in the future releases.
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Abstract. Data is often communicated from different locations in ap-
plication memory and is commonly serialized (copied) to send buffers or
from receive buffers. MPI datatypes are a way to avoid such interme-
diate copies and optimize communications, however, it is often unclear
which implementation and optimization choices are most useful in prac-
tice. We extracted the send/recv-buffer access pattern of a representa-
tive set of scientific applications into micro-applications that isolate their
data access patterns. We also observed that the buffer-access patterns in
applications can be categorized into three different groups. Our micro-
applications show that up to 90% of the total communication time can
be spent with local serialization and we found significant performance
discrepancies between state-of-the-art MPI implementations. Our micro-
applications aim to provide a standard benchmark for MPI datatype im-
plementations to guide optimizations similarly to SPEC CPU and the
Livermore loops do for compiler optimizations.

1 Introduction

The MPI (Message Passing Interface) Standard [14] has become the de-facto
standard to write distributed high-performance scientific applications. The ad-
vantage of MPI is that it enables a user to write performance-portable codes.
This is achieved by abstraction: Instead of expressing a communication step as a
set of point-to-point communications in a low-level communication API it can be
expressed in an abstract and platform independent way. MPI implementers can
tune the implementation of these abstract communication patterns for specific
machines. MPI plays a similar role in the development of performance portable
codes than high-level languages: Instead of coding a loop in inline assembly and
using SIMD instructions the same loop can be expressed in a high-level lan-
guage, using auto-vectorization features of the compiler. The programmer does
not have to understand the details of the target platform and possible optimiza-
tion techniques to write efficient application kernels.

MPI Derived Datatypes (DDTs), allow the specification of arbitrary data
layouts in all places where MPI functions accept a datatype argument (i.e.,
MPI_INT). We give an an example for the usage of DDTs to send/receive a
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vector of integers in Figure 1. All elements with even indices are to replaced by
the received data, elements with odd indices are to be sent. Without the usage
of MPI DDTs one would have to allocate temporary buffers and manually pack-
/unpack the data. The usage of MPI DDTs greatly simplifies this example. If the
used interconnect supports non-contiguous transfers (such as Cray Gemini [2])
the two copies can be avoided completely. Therefore the usage of DDTs not only
simplifies the code but also can improve the performance due to the zero-copy
formulation.

Fig. 1. An example use case for MPI derived datatypes

Not many scientific codes leverage MPI DDTs, even though their usage would
be appropriate in many cases. One of the reasons might be that current MPI
implementations in some cases still fail to deliver the expected performance, as
shown by Gropp et al. in [9], even though a lot of work is done on improving
DDT implementations [18, 6, 20]. Most of this work is guided by a small num-
ber of micro-benchmarks. This makes it hard to gauge the impact of a certain
optimization on real scientific codes.

Coming back to the high-level language analogy made before and comparing
this situation to the that of people developing new compiler optimizations tech-
niques or microachitecture extensions we see that, unlike for other fields, there is
no application derived set of benchmarks to evaluate MPI datatype implementa-
tions. Benchmark suites such as SPEC [8] or the Livermore Loops [13] are used
by many (e.g., [1]) to evaluate compilers and microarchitectures. To address this
issue, we developed a set of micro applications1 that represent access patterns
of representative scientific applications as optimized pack loops as well as MPI
datatypes. Micro applications are, similarly to mini-applications [3, 10, 5], ker-
nels that represent real production level codes. However, unlike mini-applications
that represent whole kernels, micro-applications focus on one particular aspect
(or “slice”) of the application, for example the I/O, the communication pattern,
the computational loop structure, or, as in our case, the communication data
access pattern.

1.1 Related Work

Previous work in the area of MPI derived datatypes focuses on improving its
performance, either by improving the way derived datatypes are represented
1 Which can be downloaded from http://unixer.de/research/datatypes/ddtbench

http://unixer.de/research/datatypes/ddtbench
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in MPI or by using more cache efficient strategies for packing and unpacking
the datatype to and from a contiguous buffer [6]. Interconnect features such
as RDMA Scatter/Gather operations [20] have also been considered. However,
performance of current datatype implementations remains suboptimal and has
not received as much attention as latency and bandwidth, probably due to the
lack of a reasonable and simple benchmark. For example Gropp et al. found that
several basic performance expectations are violated by MPI implementations in
use today [9].

The performance of MPI Datatypes is often measured using micro-
benchmarks such as those proposed by Reussner [16]. Several application studies
demonstrate that MPI datatypes can outperform explicit packing in real-world
application kernels [11, 12]. Those results are often either artificial (randomly
chosen access patterns) or too complex to compare different implementations
efficiently (part of a large application for which the performance is influenced by
too many factors such as CPU speed). For example, many datatype optimization
papers ignore the unstructured access class that we identify in this work com-
pletely even though this access pattern is found in many molecular dynamics
and finite element codes.

However, the issue of preparing the communication buffer has received very
little attention compared to tuning the communication itself. In this work, we
show that the serialization parts of the communication can take a share of up to
90% of the total communication overheads because they happen at the sender
and at the receiver.

Our micro-applications offer three important features: (1) they represent a
comprehensive set of application use cases, (2) they are easy to compile and
use on different architectures, and (3) they isolate the data access and commu-
nication performance parts and thus enable the direct comparison of different
systems. They can be used as benchmarks for tuning MPI implementations as
well as for hardware/software co-design of future (e.g., exascale) network hard-
ware that supports scatter/gather access.

2 Representative Communication Data Access Patterns

We analyzed many parallel applications, miniapps and application benchmarks
for their local access patterns to send and receive memory. Our analysis covers
the domains of atmospheric sciences, quantum chromodynamics, molecular dy-
namics, material science, geophysical science, and fluid dynamics. We created
7 micro apps to span all application areas. Table 1 provides an overview of in-
vestigated application classes, their test cases, and a short description of the
respective data access patterns. In detail, we analyzed the complex applications
WRF [17], SPECFEM3D_GLOBE [7], MILC [4] and LAMMPS [15], represent-
ing the fields of weather simulation, seismic wave propagation, quantum chromo-
dynamics and molecular dynamics. We also included existing parallel computing
benchmarks and mini-apps, such as the NAS [19], the Sequoia benchmarks as
well as the Mantevo mini apps [10].
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Table 1. Overview of the Application Areas, Represented Scientific Applications, and
Test Names for our Micro-Applications

Application Class Testname Access Pattern

Atmospheric Science

WRF_x_vec struct of 2D/3D/4D face exchanges in
different directions (x,y), using different
(semantically equivalent) datatypes: nested
vectors (_vec) and subarrays (_sa)

WRF_y_vec
WRF_x_sa
WRF_y_sa

Quantum Chromodynamics MILC_su3_zd 4D face exchange, z direction, nested vectors

Fluid Dynamics

NAS_MG_x 3D face exchange in each direction (x,y,z)
with vectors (y,z) and nested vectors (x)NAS_MG_y

NAS_MG_z

NAS_LU_x 2D face exchange in x direction (contiguous)
and y direction (vector)NAS_LU_y

Matrix Transpose FFT 2D FFT, different vector types on send/recv side

SPECFEM3D_mt 3D matrix transpose,

Molecular Dynamics LAMMPS_full unstructured exchange of different particle
types (full/atomic), indexed datatypesLAMMPS_atomic

Geophysical Science SPECFEM3D_oc unstructured exchange of acceleration data
for different earth layers, indexed datatypesSPECFEM3D_cm

We found that MPI derived datatypes (DDTs) are rarely used and thus we
analyzed the data access patterns of the (pack and unpack) loops that are used
to (de-)serialize data for sending and receiving. Interestingly, the data access
patterns of all those applications can be categorized into three classes: Cartesian
Face Exchange, Unstructured Access and Interleaved Data.

In the following we will describe each of the three classes in detail and give
specific examples of codes that fit each category.

2.1 Face Exchange for n-dimensional Cartesian Grids

Many applications store their working set in n-dimensional arrays that are dis-
tributed across one or more dimensions. In a communication face, neighboring
processes then exchange the “sides” of “faces” of their part of the working set.
For this class of codes, it is possible to construct matching MPI DDTs using the
subarray datatype or nested vectors. Some codes in this class, such as WRF,
exchange faces of more than one array in each communication step. This can
be done with MPI DDTs using a struct datatype to combine the sub-datatypes
that each represents a single array.

The Weather Research and Forecasting (WRF) application uses a regu-
lar three-dimensional Cartesian grid to represent the atmosphere. Topographical
land information and observational data are used to define initial conditions of
forecasting simulations. WRF employs data decompositions in the two horizon-
tal dimensions only. WRF does not store all information in a single data struc-
ture, therefore the halo exchange is performed for a number of similar arrays.
The slices of these arrays that have to be communicated are packed into a single
buffer. We create a struct of hvectors of vector datatypes or a struct of subarrays
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datatypes for the WRF tests, which are named WRF_{x,y}_{sa,vec}, one test
for each direction, and each datatype choice (nested vectors or subarrays).

NAS MG communicates the faces of a 3d array in a 3d stencil where each
process has six neighbors. The data access pattern for one direction is visualized
in Figure 2(a). The pack function in MG could be replaced by constructing an ap-
propriate subarray datatype or using vector datatypes. Our NAS_MG micro-app
has one test for the exchange in each of the three directions NAS_MG_{x,y,z}
using nested vector datatypes.

(a) NAS MG (b) NAS LU

Fig. 2. Data Layout of the NAS LU and MG benchmark

The NAS LU application benchmark solves a three dimensional system of
equations resulting from an unfactored implicit finite-difference discretization of
the Navier-Stokes equations. In the dominant communication function, LU ex-
changes faces of a four-dimensional array. The first dimension of this array is of
fixed size (5). The second (nx) and third (ny) dimension depend on the prob-
lem size and are distributed among a quadratic processor grid. The fourth (nz)
dimension is equal to the third dimension of the problem size. Figure 2(b) visu-
alizes the data layout. Our NAS_LU micro-app represents the communication
in each of the two directions NAS_LU_{x,y}.

The MIMD Lattice Computation (MILC) Collaboration studies Quan-
tum Chromodynamics (QCD), the theory of strong interaction, a fundamental
force describing the interactions of quarks and gluons. The MILC code is publicly
available for the study of lattice QCD. The su3_rmd application from that code
suite is part of SPEC CPU2006 and SPEC MPI. Here we focus on the CG solver
in su3_rmd. Lattice QCD represents space-time as a four-dimensional regular
grid of points. The code is parallelized using domain decomposition and must
be able to communicate with neighboring processes that contain off-node neigh-
bors of the points in its local domain. MILC uses 48 different MPI DDTs [11] to
accomplish its halo exchange in the 4 directions. The MILC_su3_zd micro-app
performs the communication done for the −z direction.

An important observation we made from constructing datatypes for the ap-
plications in the face-exchange class is that the performance of the resulting
datatype heavily depends on the data-layout of the underlying array. For exam-
ple, if the exchanged face is contiguous in memory (e.g., for some directions in
WRF and MG), using datatypes can essentially eliminate the packing overhead
completely. That is the reason we included tests for each direction applicable.



126 T. Schneider, R. Gerstenberger, and T. Hoefler

2.2 Exchange of Unstructured Elements

The codes in this class maintain some form of scatter-gather lists which hold the
indices of elements to be communicated. Molecular Dynamics applications (e.g.,
LAMMPS) simulate the interaction of particles. Particles are often distributed
based on their spatial location and particles close to boundaries need to be
communicated to neighboring processes. Since particles move over the course
of the simulation each process keeps a vector of indices of local particles that
need to be communicated in the next communication step. This access pattern
can be captured by an indexed datatype. A similar access pattern occurs in
Finite Element Method (FEM) codes (i.e., Mantevo MiniFE/HPCCG) and the
Seismic Element Method (SEM) codes such as SPECFEM3D_GLOBE. Here
each process keeps a mapping of mesh points in the local mesh defining an
element and the global mesh. Before the simulation can advance in time the
contributions from all elements which share a common global grid point need to
be taken into account.

LAMMPS is a molecular dynamics simulation framework which is capable
of simulating many different kinds of particles (i.e., atoms, molecules, polymers,
etc.) and the forces between them. Similar to other molecular dynamics codes
it uses a spatial decomposition approach for parallelization. Particles are mov-
ing during the simulation and may have to be communicated if they cross a
process boundary. The properties of local particles are stored in vectors and
the indices of the particles that have to be exchanged are not known a priori.
Thus, we use an indexed datatype to represent this access. We created two tests,
LAMMPS_{full,atomic}, that differ in the number of properties associated with
each particle.

SPECFEM3D_GLOBE is a spectral-element application that allows the
simulation of global seismic wave propagation through high resolution earth
models. It is used on some of the biggest HPC systems available [7]. Grid
points that lie on the sides, edges or corners of an element are shared between
neighboring elements. The contribution for each global grid point needs to be
collected, potentially from neighboring processes. Our micro-app representing
SPECFEM3D has two tests, SPECFEM3D_{oc,cm}, which differ in the amount
of data communicated per index.

Our results show that current derived datatype implementations are often
unable to improve such unstructured access over packing loops. Furthermore,
the overheads of creating datatypes for this kind of access (indexed datatypes)
are high.

2.3 Interleaved Data or Transpose

Fast Fourier Transforms (FFTs) are used in many scientific applications
and are among the most important algorithms in use today. For example, a
two-dimensional FFT can be computed by performing 1d-FFTs along both di-
mensions. If the input matrix is distributed among MPI processes along the first



Micro-applications for Communication Data Access Patterns 127

dimension, each process can compute one a 1d-FFT without communication.
After this step the matrix has to be redistributed, such that each process now

Fig. 3. Datatype for
2D-FFT

holds complete vectors of the other dimension, which effec-
tively transposes the distributed matrix. After the second
1d-FFT has been computed locally the matrix is trans-
posed again to regain the original data layout. In MPI the
matrix transpose is naturally done with an MPI_Alltoall
operation. Hoefler and Gottlieb presented a zero-copy im-
plementation of a 2d-FFT using MPI DDTs to eliminate
the pack and unpack loops in [11] and demonstrated per-
formance improvements up to a factor of 1.5 over manual
packing. The FFT micro-app captures the communication
behavior of a two-dimensional FFT.

SPECFEM3D_GLOBE exhibits a similar pattern, which is used to trans-
pose a distributed 3D array. We used Fortran’s COMPLEX datatype as the base
datatype for the FFT case in our benchmark and a single precision floating point
value for the SPECFEM3D_MT case. The MPI DDTs used in those cases are
vectors of the base datatypes where the stride is the matrix size in one dimen-
sion. To interleave the data this type is resized to the size of one base datatype.
An example for this technique is given in Figure 3.

3 Micro-applications for Benchmarking MPI Datatypes

We implemented all data access schemes that we discussed above as micro appli-
cations with the various tests. For this, we use the original data layout and pack
loops whenever possible to retain the access pattern of the applications. We also
choose array sizes that are representing real input cases. The micro-applications
are implemented in Fortran (the language of most presented applications) and
compiled with highest optimization.

We then perform a ping-pong-like benchmark between two hosts using
MPI_Send() and MPI_Recv() utilizing the original pack loop and our datatype
as shown in Figure 4. We also perform packing with MPI using MPI_Pack() and
MPI_Unpack(), cf. Figure 4(c). For comparison we also perform a traditional
ping-pong of the same data size as the MPI DDTs type size.

The procedure runs two nested loops: the outer loop creates a new datatype in
each iteration and measures the overhead incurred by type creation and commit;
the inner loop uses the committed datatype a configurable number of times. Time
for each phase (rectangles in Figure 4) is recorded to a result file and is analyzed
with statistical software packages such as GNU R, for which we provide some
example scripts. Measurements are done only on the client side, so the benchmark
does not depend on synchronized clocks.

Let tpp be the time for a round-trip including all packing operations (implicit
or explicit) and tpack the time to perform explicit packing (manual loop or pack-
/unpack). In the DDT case is tpack = 0. The network communication part can
then be expressed as tnet = tpp − tpack and is equivalent to a traditional normal
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(a) Manual Pack Loop (b) Send/Recv with DDTs (c) MPI_Pack

Fig. 4. Measurement Loops for the Micro-Applications

ping-pong result. The overhead for packing relative to the communication time
can be expressed as ovh = tpp−tnet

tpp
.

The serial communication time tnet was practically identical for the tested
MPI implementations (< 5% variation). This enables us to plot the relative
overheads for different libraries into a single diagram for a direct comparison.
Figure 5 shows those relative pack overheads for some representative micro-
application tests performed with Open MPI 1.6 as well as MVAPICH 1.8 on
a cluster with AMD Opteron 270 HE dual core CPUs and an SDR Infiniband
interconnect; we always ran one process per node to isolate the off-node com-
munication. We observe that the datatype engine of Open MPI performs better
than MVAPICH’s implementation. We also see that the dimensions/direction
in which face exchanges occur have a significant impact on their performance
(cf. WRF tests where the y direction has a much smaller packing overhead).
This can be explained if we consider the memory layout of the underlying array
- for some dimensions contiguous “strips” of data can be sent, while for others
each element to be sent has a large stride. The SPECFEM3D tests show that
unordered accesses with indexed datatypes are not implemented efficiently by
both Open MPI and MVAPICH. This benchmark shows the importance of opti-
mizing communication memory accesses: up to 80% of the communication time
of the WRF_x_vec test case are spend with packing/unpacking data, which
can be reduced to 70% with MPI DDTs. In the NAS_LU_x case, which sends
a contiguous buffer, using MPI DDTs reduce the packing overhead from 40% to
15%.

Note that the overhead for the creation of the datatype was not included in
the calculations of the packing overheads in Figure 5. We show the creation
overheads and the absolute times for small number of tests in Figure 6 (the
available space does not allow for presenting all collected results). We plot tnet as
the communication time for the manual packing case. We note that the explicit
packing numbers in the plot were doubled for a comparison with DDTs because
DDTs implicitly pack at the sender and unpack at the receiver. Our results
indicate that Open MPI’s DDT engine is faster than manual packing for WRF,
even if the datatypes were created for each communication (which is unnecessary
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in this case). But we also see that Open MPI has a much higher overhead for
creating indexed datatypes, as used in SPECFEM3D, than MVAPICH.

4 Conclusions and Future Work

We analyzed a set of scientific applications for their communication buffer ac-
cess patterns and isolated those patterns in micro-applications to experiment
with MPI datatypes. In this study, we found three major classes of data ac-
cess patterns: Face exchanges in n-dimensional Cartesian grids, irregular access
of datastructures of varying complexity based on neighbor-lists in FEM, SEM
and molecular dynamics codes as well as access of interleaved data in order to
redistribute data elements in the case of matrix transpositions. In some cases
(such as WRF) several similar accesses to datastructures can be fused into a
single communication operation through the usage of a struct datatype. We pro-
vide the micro-applications to guide MPI implementers in optimizing datatype
implementations and to aid hardware-software co-design decisions for future in-
terconnection networks.
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We demonstrated that the optimization of data packing (implicit or explicit)
is crucial, as packing can make up up to 90% of the communication time with the
data access patterns of real world applications. We showed that in some cases
zero-copy formulations can help to mitigate this problem.

In the future we plan to extend our benchmark to allow for assessment of the
overlap potential of different datatype engines. Another interesting possibility is
studying how well different MPI DDT implementations make use of the available
cache hierarchy. Of course the benchmark can also be extended by incorporating
more application derived access patterns, for example by investigating parallel
graph algorithms and codes.
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Abstract. Hybrid parallel programming with MPI for internode com-
munication in conjunction with a shared-memory programming model
to manage intranode parallelism has become a dominant approach to
scalable parallel programming. While this model provides a great deal of
flexibility and performance potential, it saddles programmers with the
complexity of utilizing two parallel programming systems in the same
application. We introduce an MPI-integrated shared-memory program-
ming model that is incorporated into MPI through a small extension
to the one-sided communication interface. We discuss the integration of
this interface with the upcoming MPI 3.0 one-sided semantics and de-
scribe solutions for providing portable and efficient data sharing, atomic
operations, and memory consistency. We describe an implementation of
the new interface in the MPICH2 and Open MPI implementations and
demonstrate an average performance improvement of 40% to the com-
munication component of a five-point stencil solver.

1 Introduction

MPI [1] has been the dominant parallel programming model since the mid-1990s.
One important reason for this dominance has been its ability to deliver portable
performance on large, distributed-memory massively parallel processing (MPP)
platforms, large symmetric multiprocessing (SMP) machines with shared mem-
ory, and hybrid systems with tightly coupled SMP nodes. For the majority of
these systems, applications written with MPI were able to achieve acceptable
performance and scalability. However, recent trends in commodity processors,
memory, and networks have created the need for alternative approaches. The
number of cores per chip in commodity processors is rapidly increasing, and
memory capacity and network performance are not able to keep up the same
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pace. Because memory capacity per core is decreasing, mapping a single operat-
ing system process to an MPI rank and assigning a rank per core severely limit
the problem size per rank. In addition, MPI’s single-copy model for both message
passing and one-sided communication exacerbate the memory bandwidth prob-
lem by using intranode memory-to-memory copies to share data between ranks.
Moreover, network interfaces are struggling to support the ability for all cores
on a node to use the network effectively. As a result, applications are moving
toward a hybrid model mixing MPI with shared-memory models that attempt
to overcome these limitations [2, 3].

A relatively straightforward and incremental approach to extending MPI to
support shared memory has recently been approved by the MPI Forum. Several
functions were added, which enable MPI ranks within a shared memory domain
to allocate shared memory for direct load/store access. The ability to directly ac-
cess a region of memory shared between ranks is more efficient than copying and
reduces stress on the memory subsystem. Sharing a region of memory between
ranks also overcomes the per core memory capacity issue and provides more
flexibility in how the problem domain is decomposed. This approach reduces
the amount of memory consumed for some data structures such as read-only
databases that replicate state across all ranks. From a programming standpoint,
providing shared memory supports structured programming, where data is pri-
vate until it is explicitly shared. The alternative, where data is shared and must
be explicitly made private, introduces more complexity into an existing MPI ap-
plication and the associated MPI implementation. Shared memory is also nearly
ubiquitous, given the prevalence of multicore processors.

This paper describes these recent extensions to the MPI Standard to sup-
port shared memory, discusses implementation options, and demonstrates the
performance advantages of shared memory for a stencil benchmark.

Motivation and Related Work

Support for shared memory in MPI has been considered before, but a number
of factors have made such support increasingly compelling. In particular, al-
though POSIX shared memory can be used independently from MPI, the POSIX
shared-memory model has several limitations that can be overcome by expos-
ing it through MPI. First, POSIX shared-memory allocation is not a collective
operation. One process creates a region of memory and allows other processes
to attach to it. Making shared-memory creation collective offers an opportunity
to optimize the layout of the memory based on the layout of the ranks. Since
the MPI implementation has knowledge of the layout of the shared-memory
region, it may be able to make message-passing operations using this region
more efficient. For example, MPI may be able to stripe messages over multiple
network interfaces, choosing the interface that is closest to the memory being
sent. Integration between the MPI runtime system and shared memory sim-
plifies shared-memory allocation and cleanup. Relying on an application using
POSIX shared memory directly to clean up after abnormal termination has been
problematic. Having the MPI implementation be responsible for allocating and
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freeing shared memory is a better solution. Knowledge of shared memory inside
the MPI implementation also provides better support and integration with MPI
tools, such as correctness and performance debuggers. Furthermore, nearly all
MPI implementations already have the infrastructure for allocating and manag-
ing shared memory since it is used for intranode data movement, so the burden
on existing implementations is light.

Previous work on efficiently supporting MPI on shared-memory systems has
concentrated mostly on mapping an MPI rank to a system-level or user-level
thread [4–7]. This approach allows MPI ranks to share memory inside an oper-
ating system process, but it requires program transformation or knowledge on the
part of the programmer to handle global and static variables appropriately. Sys-
tems specifically aimed at mixing MPI and shared memory have been developed,
effectively augmenting MPI with shared-memory capabilities as the new exten-
sions do. LIBSM [8] and the Unified Parallel System [9] are two such systems
developed to support the ability for applications to use both MPI and shared
memory efficiently. However, neither of these systems actually made internal
changes to the MPI implementation; rather, they provided an application-level
interface that abstracted the capabilities of message passing and shared memory.

The need for shared memory in MPI was brought up at the Forum by R.
Brightwell, who proposed a malloc/free interface which did not define synchro-
nization semantics. T. Hoefler later proposed to merge this functionality into
the newly revamped one-sided communication interface. Hoefler and J. Dinan
brought forward a concrete proposal, which the Forum eventually voted for in-
clusion in MPI-3. The interface described in this paper is what will be included
in MPI-3.

2 Extending MPI with Integrated Shared Memory

MPI’s remote memory access (RMA) interface defines one-sided communication
operations, data consistency, and synchronization models for accessing memory
regions that are exposed through MPI windows. The MPI-2 standard defined
conservative, but highly portable semantics that would still guarantee correct
execution on systems without a coherent memory subsystem. In this model,
the programmer reasons about the data consistency and visibility in terms of
separate private (load/store access) and public (RMA access) copies of data
exposed in the window.

The MPI-3 RMA interface extends MPI-2’s separate memory model with a
new unified model, which provides relaxed semantics that can reduce synchro-
nization overheads and allow greater concurrency in interacting with data ex-
posed in the window. The unified model was added in MPI-3 RMA to enable
more efficient one-sided data access in systems with coherent memory subsys-
tems. In this model, the public and private copies of the window are logically
identical, and updates to either “copy” automatically propagate. Explicit syn-
chronization operations can be used to ensure completion of individual or groups
of operations.
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Fig. 1. Interprocess shared-memory extension using MPI RMA; an execution with two
nodes is shown, and a shared memory window is allocated within each node

The unified memory model defines an efficient and portable mechanism for
one-sided data access, including the needed synchronization and consistency op-
erations. We observe that this infrastructure already provides several important
pieces of functionality needed to define a portable, interprocess shared-memory
interface. We now discuss the additional functionality, illustrated in Figure 1,
that is needed to extend the RMA model in order to support load/store ac-
cesses originating from multiple origin processes to data exposed in a window.
In addition, we discuss new functionality that is needed to allow the user to
query system topology in order to identify groups of processes that communi-
cate through shared memory.

2.1 Using the RMA Interface for Shared Memory

In the MPI-2 one-sided communication interface, the user first allocates mem-
ory and then exposes it in a window. This model of window creation is not
compatible with the interprocess shared-memory support provided by most op-
erating systems, which require the use of special routines to allocate and map
shared memory into a process’s address space. Therefore, we have created a new
routine, MPI Win allocate shared, that collectively allocates and maps shared
memory across all processes in the given communicator.

CPU load and store instructions are similar to one-sided get and put oper-
ations. In contrast with get/put, however, load/store operations do not pass
through the MPI library; and, as a result, MPI is unaware of which locations
were accessed and whether data was updated. Therefore, the separate mem-
ory model conservatively defines store operations as updating to full window in
order to prevent data corruption on systems whose memory subsystem is not
coherent. However, an overwhelming majority of parallel computing systems do
provide coherent memory, and on these systems this semantic is unnecessar-
ily restrictive. Therefore, MPI-3 defines a unified memory model where store
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operations do not conflict with accesses to other locations in the window. This
model closely matches the shared-memory programming model used on most
systems, and windows allocated by using MPI Win allocate shared are defined to
use the unified memory model.

2.2 Mapping of Inter-process Shared Memory

Each rank in the shared-memory window provides an allocation size, and a
shared memory segment of at least the sum of all sizes is created. Specifying a
per rank size rather than a single, global size allows implementations to optimize
data locality in nonuniform memory architectures. By default, the allocated
shared-memory region is required to be contiguous. That is, the memory region
associated with rank N in a given window must be directly before the memory
region associated with rank N + 1. The info key alloc shared noncontig allows
the user to relax this allocation constraint. When this key is given, MPI can
map the segments belonging to each process into noncontiguous locations. This
can enable better performance by allowing MPI to map each segment on a page
boundary, potentially eliminating negative cache and NUMA effects.

Many operating systems make it difficult to ensure that shared memory is
allocated at the same virtual address across multiple processes. The MPI one-
sided interface, which encourages the dynamic creation of shared-memory regions
throughout an application’s life, exacerbates this problem. MPI Win allocate
shared does not guarantee the same virtual address across ranks, and it returns
only the address of the shared-memory region for the local rank.MPI Win shared
query provides a query mechanism for determining the base address in the current
process and size of another process’s region in the shared-memory segment. The
address of the absolute beginning of the window can be queried by providing
MPI PROC NULL as the rank argument to this function.

2.3 Querying Machine Topology

The MPI Win allocate shared function expects the user to pass a communica-
tor on which a shared-memory region can be created. Passing a communicator
where this is not possible is erroneous. In order to facilitate the creation of
such a “shared memory capable” communicator, MPI-3 provides a new rou-
tine, MPI Comm split type. This function is an extension of the MPI Comm split
functionality, with the primary difference being that the user passes a type for
splitting the communicator instead of a color. Specifically, the MPI-3 standard
defines the type MPI COMM TYPE SHARED, which splits a communicator into
subcommunicators on which it is possible to create a shared-memory region.

The MPI Comm split type functionality also provides an info argument that
allows the user to request for architecture-specific information that can be used
to restrict the communicator to span only a NUMA socket or a shared cache
level, for example. While the MPI-3 standard does not define specific info keys,
most implementations are expected to provide NUMA and cache management
capabilities through these info keys.
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3 Implementation of Shared-Memory RMA

The shared-memory RMA interface has been implemented in both MPICH and
Open MPI by using similar techniques. In this section we describe the steps
required for the MPI library to allocate a shared window; we also provide im-
plementation details.

The root (typically the process with rank 0 in the associated communicator) al-
locates a shared-memory region that is large enough to contain all of the window
segments of all processes sharing the window. Once the shared-memory region
has been created, information identifying the shared-memory region is broadcast
to the member processes, which then attach to it. At any process, the base pointer
of a window segment can be computed by knowing the size and base pointer of
the previous window segment: the base pointer of the first window segment, seg-
ment 0, is the address of where the shared-memory segment was attached; and
the base pointer of segment i is base ptri = base ptri−1 + seg sizei−1.

Scalability needs to be addressed for two implementation issues: (1) comput-
ing the sum of the shared window segments in order to determine the size of
the shared-memory segment and (2) computing the base pointer of a window
segment. For windows with a relatively small number of processes, an array of
the segment size of each process can be stored locally at each process by using
an all-gather operation. From this array, the root process can compute the size
of the shared-memory segment, and each process can compute the base pointer
of any other segment. For windows with a large number of processes, however,
the offsets may be stored in a shared-memory segment, with scalable collectives
(reduce, broadcast, exscan) used to compute sizes and offsets.

When the alloc shared noncontig info key is set to “true,” the implementation
is not constrained to allocate the window segments contiguously; instead, it
can allocate each window segment so that its base pointer is aligned to optimize
memory access. Individual shared-memory regions may be exposed by each rank,
an approach that can be used to provide optimal alignment and addressing but
requires more state. An alternative implementation would be to allocate the
window as though it was allocated contiguously, except that the size of each
window segment is rounded up to a page boundary. In this way each window
segment is aligned on a page boundary, and shared state can be used to minimize
resource utilization. Both MPICH and Open MPI use the latter approach.

Figure 2 shows the three shared-memory allocation strategies discussed above.
In Figure 2(a) we see the contiguous memory allocation method. The figure shows
four processes each of which has the entire memory region attached. The shared-
memory region contains four window segments of different sizes. Figures 2(b)
and 2(c) show noncontiguous allocations. In Figure 2(b) each window segment
is allocated in a separate shared-memory region. Each process attaches all the
memory regions. In Figure 2(c) a single shared-memory region is attached by
each process. Each window segment is padded out to a window boundary. The
first and third segments do not end on a page boundary; thus, we see that those
segments are padded so that the next window segment starts on a page boundary.
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(a) Contiguous

0 1 2 3

(b) Noncontig Separate

1 2 30

(c) Noncontig Padded

Fig. 2. Shared-memory window allocation strategies. Dotted lines in (a) and (c) rep-
resent page boundaries. In (b) each window segment is allocated in a separate shared-
memory region and is page aligned.

Synchronization operations must provide processor memory barriers to ensure
consistency semantics but otherwise are straightforward to implement. Because
of the direct memory access available for all target operations, communication
calls may be implemented as memory copies performed during the communi-
cation call itself. While an implementation could choose to implement the ac-
cumulate operations by using processor atomics, locks and memory copies can
also provide the required semantics. Both MPICH and Open MPI use a spinlock
per target memory region to implement accumulate operations, because of the
simplicity of implementation and greater portability.

4 Use Cases and Evaluation

Shared-memorywindows in MPI programs havemultiple effects on future parallel
programming techniques. Current scientific applications often use OpenMP to en-
able sharing of large data structures (e.g., hash tables or lookup tables/databases)
among cores inside a compute node. This approach requires using two different
models of parallelization: MPI and a carefully crafted OpenMP layer that enables
scalability to the large core counts (32–64) in today’s architectures. This often re-
quires an “MPI-style” domain decomposition of the OpenMP parts, effectively
leading to a complex two-stage parallelization of the program. Shared-memory
windows allow a structured approach to this issue in that OpenMP can be used
where it is most efficient (e.g., at the loop level) and shared memory can be shared
across different MPI processes with a single level of domain decomposition.

A second use-case is to use shared-memory windows for fast intranode commu-
nications. Here, the user employs a two-level parallelization in order to achieve
the highest possible performance using true zero-copy mechanisms (as opposed
to MPI’s mandated single-copy from send buffer to receive buffer). This has the
advantage over a purely threaded approach that memory is explicitly shared and
heap corruptions due to program bugs are less likely (cf. [10]). An example of
this benefit explored with an early prototype of the shared-memory extensions
can be found in [11]. This work demonstrates the incremental approach of incor-
porating shared memory into an MPI application in order to reduce the iteration
count of the linear solver portion of an application. The rest of the application,
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which performs and scales well, can remain unchanged and largely unaware of
the use of shared memory.

Shared-memory regions can also help better support the use of accelerators
within an MPI application. For example, if an application is running with one
MPI rank per core and all ranks wish to transfer data to a GPU, it can be
challenging to coordinate the transfer of data between the host memory of each
rank and GPU memory. Using shared memory, one rank can be responsible
for transferring data between the host and the device, reducing the amount of
coordination among ranks.

Five-Point Stencil Kernel Evaluation

We will now evaluate the performance improvements that can be achieved with
shared-memory windows using an application kernel benchmark. We prefer not
to show the usual ping-pong benchmarks because they would simply show the
MPI overhead versus the performance of the memory subsystem while hiding
important effects caused by the memory allocation strategy. Instead, we use
a simple, two-dimensional Poisson solver, which computes a heat propagation
problem using a five-point stencil. The N ×N input grid is decomposed in both
dimensions by using MPI Dims create and MPI Cart create. The code adds
one-element-deep halo zones for the communication. The benchmark utilizes
nonblocking communication of 8 ·N Bytes in each direction to update the halo
zones and MPI Waitall to complete the communication. It then updates all local
grid points before it proceeds to the next iteration.

The shared-memory implementation utilizes MPI Comm split type to create
a shared-memory communicator and allocates the entire work array in shared
memory. Optionally, it provides the alloc shared noncontig info argument to
allow the allocation of localized memory. The communication part of the original
code is simply changed to MPI Win fence in order to ensure memory consistency
and direct memory copies from remote to local halo zones. To simplify the ex-
ample code, we assume that all communications are in shared memory only. The
following listing shows the relevant parts of the code (variable declarations and
array swapping are omitted for brevity).

MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &shmcomm);

MPI_Win_allocate_shared(size*sizeof(double), info, shmcomm, &mem, &win);

MPI_Win_shared_query(win, north, &sz, &northptr);

// ... south, east, west directions

for(iter=0; iter<niters; ++iter) {

MPI_Win_fence(0, win); // start new access and exposure epoch

if(north != MPI_PROC_NULL) // the "communication"

for(int i=0; i<bx; ++i) a2[ind(i+1,0)] = northptr[ind(i+1,by)];

// ... south, east, west directions

update_grid(&a1, &a2); // apply operator and swap arrays

}
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We ran the benchmark on a six-core 2.2 GHz AMD Opteron CPU with two
MPI processes and recorded communication and computation times separately.
Open MPI and MPICH perform similarly because of the similar implementa-
tions; we focus on experimentation with the MPICH implementation.

Figure 3(a) shows the communication times of the send/recv version (red line
with dots) and the shared-memory window versions (green line with triangles),
as well as the communication time improvement of the shared-memory window
version (blue crosses). In general, we show that the communication overhead for
shared-memory window version is 30-60% lower than for the traditional message-
passing approach. This is due to the direct memory access and avoided matching
queue and function call costs.
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Fig. 3. Communication and computation performance for the five-point stencil kernel

Figure 3(b) shows the computation time of the shared-memory window ver-
sion, that is, the time to update the inner grid cells relative to the computation
time of the send/recv version. We observe a significant slowdown (up to 8%) of
the computation without the alloc shared noncontig argument. This is partially
due to false sharing and the fact that the memory is local to rank 0. Indeed, the
slowdown of the computation eliminated any benefit of the faster communication
and made the parallel code slower. Specifying alloc shared noncontig eliminates
the overhead down to the noise (< 1.7%) and leads to an improvement of the
overall runtime.

5 Conclusions and Outlook

In this work, we described an MPI standard extension to integrate shared mem-
ory functionality into MPI-3.0 through the remote memory access interface. We
motivated this new interface through several use-cases where shared memory
windows can result in improved performance, scaling, and capabilities. We dis-
cussed the design space for this new functionality and provided implementations
in two major MPI implementations which will both be available shortly in the
official releases.
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To evaluate the application-level impact of shared memory windows, we per-
formed a performance study using a heat-propagation 5-point stencil benchmark.
The benchmark illustrated two important aspects: (1) an average 40% reduc-
tion in data movement time compared with a traditional send/recv formulation
and (2) the potentially detrimental slowdown of computation if false sharing
and NUMA effects are ignored. By allowing the MPI implementation to auto-
matically adjust the shared memory mapping, we showed that these negative
performance effects can be eliminated.

For future work, we plan to further investigate NUMA-aware allocation strate-
gies, direct mapping of shared memory (e.g., XPMEM), and the effective use
of the info argument to MPI Comm split type to expand this routines topology
querying capabilities. We also plan to apply the shared memory extensions to
incomplete factorization codes, as well as to a human heartbeat simulation code.
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Abstract. The number of cores in future CPUs is expected to increase
steadily. Balanced CPU designs scale hardware cache coherency func-
tionality according to the number of cores, in order to minimize bottle-
necks in parallel applications. An alternative approach is to do away with
hardware coherence entirely; the Single-chip Cloud Computer (SCC), a
48 core experimental processor from Intel labs, does exactly that. A wait-
free protocol for message passing on non-coherent buffers was introduced
with the RCKMPI library, in order to support MPI on the SCC. In this
work, the message passing performance of the protocol is modeled. Ad-
ditionally, a port for symmetric multi-processors is introduced and used
for comparison with MPICH2-Nemesis and Open MPI. Performance is
analyzed based on statistics collected on a 4-dimensional space composed
of source rank, target rank, message size and frequency.

Keywords: MPI, message passing, communication protocol, non-coherent
shared memory, non-blocking, wait-free.

1 Introduction

Parallelism has been steadily increasing in CPUs. Embedded, desktop and server
CPUs today contain multiple cores, and in some cases two or more hardware
threads per core. As a consequence, application performance today is closely
related to the available parallelism of the algorithms used. When implement-
ing parallel software, several programming models are available. The message
passing parallel programming model can be used to develop for both shared and
distributed memory systems. The Message Passing Interface (MPI) is a standard
for message passing that is widely used in industry and academia.

Most multi- and many-core CPUs today offer a shared and coherent memory
address space to the programmer. The Single-chip Cloud Computer (SCC) [17]
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is one exception: it offers a separate memory address space per each core and
some shared memory that is not kept coherent by the hardware. In that sense,
the SCC can be seen as a distributed memory system on a chip. In addition,
384KB (8KB per core) of on-die directly addressable SRAM is available; this
memory is referred to as the Message Passing Buffer(MPB) and can be used for
low-latency and high-bandwidth communication. The SCC cores are based on
the P54C design and can reach frequencies of 800MHz. The number of transistors
required for each P54C core allows the SCC to integrate 48 cores, a relatively
large number when compared to currently available commercial CPUs. Because
of the moderate performance of these cores, results of parallel applications on the
SCC are better evaluated in terms of scaling rather than absolute performance.

In order to efficiently support MPI, Intel Labs introduced a customized MPI
library for the SCC: RCKMPI [14]; it is an MPICH2 [4] implementation extended
with SCC specific channels. RCKMPI provides protocol implementations that
rely on the MPB only, shared memory only, and a combination on both. When
using SCC Linux, a single OS image with a private address space is run per core.
Current shared memory MPI implementations, that require a single OS image
across the participating cores, do not work on the SCC. In order to measure how
the protocols of the RCKMPI library compare to existing MPICH2 and Open
MPI [6] implementations, a port to symmetric multi-processors is necessary.

In this work, a detailed description of the protocol used in the recently re-
leased RCKMPI2 is presented and its message passing performance is modeled.
Furthermore, a port to X86 symmetric multi-processors is used to evaluate the
effectiveness of the design when compared to Open MPI and MPICH2-Nemesis.
Performance results are presented and analyzed based on statistics collected in
a 4-dimensional space composed of: source rank, target rank, message size and
frequency.

2 Related Work

The SCC maps naturally to message passing programming models. There are
standard and non-standard message passing libraries available for it. The first
non-standard library available for the platform is called RCCE [18] and there
is a non-blocking version of it (iRCCE [12] from RTWH Aachen). Additionally,
other projects have implemented their own message passing based communica-
tion protocols, like the TACO [19] and X10 [9] ports to the SCC.

There are currently two MPI projects for the SCC: the RCKMPI [14] and
the SCC-MPICH [11] libraries. Christgau [10] et al. presented improvements to
RCKMPI, by the addition of topology-awareness to the library. An improved
communication protocol was recently released with RCKMPI2 [13], which is the
focus of this paper, as a result of cooperation between the Technical University
of Munich (TUM) and Intel Labs Braunschweig.
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3 Communication Protocol

The protocol originally developed for the SCC in RCKMPI2 [13] is presented
in this section. The main goal of the design is to avoid the use of operating
system managed locks. As a secondary goal, the protocol should be light in com-
putational requirements, given the modest performance of the SCC cores. The
protocol consists of 2 simple sub-protocols. In this section, both sub-protocols
and their interaction are described in detail.

3.1 Base Sub-Protocol

The base sub-protocol utilizes buffers that are statically allocated at initialization
and are placed at the receiver (labeled internally as Exclusive Write Sections).
One is allocated for each hardware thread in the node; this allows for efficient
support for MPI-2 dynamic processes, since no allocations are necessary for extra
processes when they are spawned (important for resource aware applications
based on the invasive programming model [15]). These buffers have a single
writer (remote sender) and a single reader (local receiver); this setup allows for
a non-blocking design that consists of a set of single-writer single-reader pairs
per process. Progress is achieved through polling of metadata found in these
dedicated buffers. The metadata consist of:

– Extended Sub-Protocol Bit-Field:Used to control access to the general-
purpose EWS (gEWS) used by the extended sub-protocol.

– Extended Sub-Protocol control:Used to control the extended sub-
protocol mode of operation (normal, serialized or spin-buffer).

– Message Size: Bytes of payload currently available.
– Packet Size: Total bytes of the MPICH2 packet in transit.
– Receive Sequence: Receive acknowledge sequence.
– Send Sequence: Sequence number of the message in the payload area.

The only requirement for this protocol is that all memory operations are done
before the metadata is updated. In the SCC, this is trivial since all memory op-
erations are serialized. In SMPs, a store fence needs to be issued before updating
the metadata. There are no other hardware requirements to ensure consistency
and no OS managed locks are necessary. The base sub-protocol is wait-less, since
the number of steps required to transmit a message is bounded by the size of
the dedicated buffers. In a real-time system, the size of EWSs can be adjusted
to meet timing constraints.

3.2 Extended Sub-Protocol

The extended sub-protocol uses a dedicated buffer that is located at the sender,
and labeled internally as the general-purpose EWS (gEWS). It can be used to
send messages to several receivers at the same time. This buffer can be locked for
use in optimized collectives (or even process management operations as described
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in [15]). Progress based on the base sub-protocol is not interrupted when the
gEWS is explicitly locked or when not available due to a late receiver.

The bit-field and mode of operation are specified through the base sub-
protocol. Set bits indicate that a chunk of the gEWS is used for the current
message. The gEWS is owned by the sender, and the bit-field is therefore speci-
fied by the sender alone. In the SCC, this has the advantage that the sender can
keep the global state of the bit-field in its private memory space, and is therefore
not subject to races.

4 Protocol Characterization

The original release of RCKMPI [14] used only the base sub-protocol (although
with dedicated buffers larger than 64 bytes, based on the number of processes in
an MPI job). The time required to transfer an MPICH2 packet with the original
protocol can be approximated with the following equation:

Tx(B, n) = [tsp(n) + tw(b(n)) + trp(n) + tr(b(n))]

⌈
B

b(n)

⌉
+ th(B) (1)

where B is the size of the MPICH2 packet to send and n is the number of
processes of the MPI job. The size of the EWS (in bytes), dependent on the
number of processes, is represented by b(n). To send a packet, the sender needs
to poll the receive flag for the target process; this time is represented by tsp. After
the target EWS is available for writing, the bytes are written in tw seconds. At
the receiver, the progress engine polls the metadata to detect new messages; trp
seconds are spent in doing this and tr seconds of CPU time are used reading
the available payload. Polling operations are done in round-robin fashion and
therefore their time depends on the number of processes n. These operations are
done for each round trip of the communication protocol. The handling time th is
done only once when the packet is complete at the receiver; handling of a packet
depends on its type and number of bytes (only the number of bytes are taken
into account in this model).

The number of round trips required is the ceiling of the size of the packet B

divided by the size of the EWS b(n) (the
⌈

B
b(n)

⌉
factor in formula 1). The time

required to write at the sender and to read at the receiver is the same: tw(b(n)) =
tr(b(n)). These are memcpy operations and their aggregated time trw(B) is
assumed to depend on the total number of bytes to transfer, independently of
the number of round trips. The time required for polling (in an n process MPI
job) at the sender and receiver can be represented by a single variable for their
combined time as tp(n). With these observations, 1 can be simplified as:

Tx(B, n) = trw(B) + tp(n)

⌈
B

b(n)

⌉
+ th(B) (2)

The term tp(n)
⌈

B
b(n)

⌉
scales poorly with the number of processes, since it mul-

tiplies two expressions that increase with the number of processes. The polling
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Fig. 1. OSU multi-latency test results and model predictions (40 processes)

overhead tp depends on the process count and increases linearly with it. The

number of round trips
⌈

B
b(n)

⌉
depends on the process count as well, since the

size of b(n) is determined at initialization based on the MPI job size.
The new design can be modeled similarly to the original one. The effect of the

gEWS in the protocol, is that depending on its available bytes, the round trips
required to transfer a packet are greatly reduced:

Tx(B, n, t) = trw(B) + tp(n)

⌈
B

bs(t) + bd

⌉
+ th(B) (3)

where bs(t) is the amount of available bytes in the shared buffer at a particular
instant in time and is application dependent, while bd is the size of the dedicated
buffer.

It can be observed that in both the new and older design, communication
between a pair or processes is never stopped. If the gEWS is not available due to
a late receiver, performance is just degraded based on the size of the dedicated
receive buffer bd.

5 Performance Evaluation

A port of the RCKMPI2 channel to SMPs was developed. This allows for the
comparison with mature message passing solutions: MPICH2-Nemesis and Open
MPI. All applications and libraries were compiled with GCC version 4.5 and the
-O3 flag. The SuperMUC’s fat nodes [3] were used for evaluation, which consist
of four Intel Xeon E7-4870 10-core CPUs attached to 256GBs of RAM; this limits
our experiments on shared memory to 40 cores or less. RCKMPI2 was config-
ured with 32KB shared buffers for the extended sub-protocol and 256B dedicated
buffers for the base sub-protocol. The SCC was configured with 800MHz for the
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cores, 1600MHz for the mesh and 1066MHz for the DDR3 memory. MPICH2
version 1.4.1p1 was configured with –enable-fast=all, while Open MPI 1.6 had
the –with-mpi-param-check=never flag set.
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Fig. 2. NPB performance for sizes W, A, B and C (name and process count)

5.1 Synthetic Benchmarks and Model Verification

Point-to-point performance data collected with the OSU [5] micro-benchmarks’
multi-latency test are presented in figure 1, together with the predicted values
from the model presented in section 4. For the model, the following values were
plugged in (based on zero byte and large message latency): trw(B) + th(B) =
B ∗ 10−3 μS and tp(40) = 1 μS. The buffers bs(t) and bd were set at 32KB and
256B respectively; bs(t) was assumed to be fully available at all times (which is
indeed the case for the multi-latency test).

Performance is comparable for all SMP implementations (except RCKMPI)
for small messages. Nemesis and Open MPI lead for larger messages since both
utilize KNEM [2,8]. It can be observed that the model predicts the general
behavior of both the old RCKMPI and new RCKMPI2 implementations.

5.2 NAS Parallel Benchmarks

The NAS parallel benchmarks[20] are useful for evaluating parallel computers.
The algorithms used by it are found very often in scientific applications. Re-
sults for the NAS parallel benchmarks are presented here. In addition to the
results, message passing statistics are introduced to understand the effect of the
workloads on the new protocol design.

The statistical method for message passing traffic analysis was done in the
library, at the channel interface of MPICH2. This provides insight into the actual
traffic generated by the CH3 device, in contrast to tools that collect data at the
PMPI layer such as IPM [16]. The analysis requires low computational overhead,
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and could be used in the future to adjust buffer sizes at run-time. Additionally,
the sparse patterns in communication can be used to compute optimal topologies
that may be passed to process managers.

Figure 2 presents results for different NPB benchmarks (with maximum pro-
cess counts given our nodes). It can be observed that the RCKMPI2 protocol
is competitive with Nemesis in LU. To gain insight as to why this is the case,
the communication pattern of the application is analyzed in terms of outgoing
messages per rank and message size combinations. Figure 3 shows the results
for LU size C with 32 processes at rank 0. The actual bytes transfered can be
seen in figure 4. Both of these figures (as well as the following BT ones) contain
little information, but are still purposely presented to illustrate the sparseness in
these spaces. In the case of the NPB’s LU and BT benchmarks discussed here,
the spaces tend to become more sparse as process counts are increased. For LU,
the probability of the shared buffer being available was recorded to be 100% for
each run, which indicates zero contention.

Performance results of the BT benchmark for 36 processes are also presented
in figure 2. As can be seen, the new channel implementation is outperformed by
Nemesis and Open MPI for size C. The reason behind this can be determined by
doing the same statistical analysis introduced previously. Figure 5 presents the
frequency of outgoing messages and figure 6 the total amount of bytes. It can be
seen that MPI traffic is less sparse than in the LU case. The probability of the
shared buffer being available was measured per size as: 100% for W; 24.52% for
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Fig. 6. Outgoing traffic in bytes at rank 0 for BT size C (36 processes)

A; 19.21% for B; and 13.57% for C. These measurements have high variance, but
are useful to identify contention of the shared buffer. Time information would be
expensive in terms of storage, but correlation data of events related to congestion
can be of interest for future analyses.

6 Conclusion and Future Work

A description and analysis of the latest communication protocol of RCKMPI,
an MPICH2 based implementation that targets the SCC, was presented. The
protocol is composed of 2 sub-protocols that operate together; the first sub-
protocol uses dedicated buffers placed at the receiver while the second utilizes a
shared buffer placed at the sender. The main advantage of the design is that it
can be easily mapped to hardware buffers that are non-coherent (as in the case
of the SCC).

A port of the scheme was done to symmetric multi-processors through the
use of shared memory segments, in order to compare its performance to other
MPI implementations. Performance results of the OSU multi-latency test and
the NAS parallel benchmarks were presented. The protocol has comparable per-
formance to Open MPI and MPICH2-Nemesis for small messages, with a small
performance advantage under certain circumstances. Large message performance
is clearly more efficient on MPICH2-Nemesis and Open MPI, due in part to the
use of KNEM (not useable in the SCC due to lack of a DMA controller).
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To better explain the performance of the different benchmarks, a statistical
method was presented that is based on 4 dimensions: source rank, target rank,
message size and frequency. It was shown that the vast majority of the MPI
traffic (generated by the applications tested) goes to a few target ranks and
under a few message sizes. This indicates that buffer sizes for communication
between particular ranks in an application can be a target for optimization.
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Abstract. The technique of user-level communication, where incoming
messages wait in a busy loop, is used in most MPI implementations
to achieve high communication performance. However, in some cases
a kernel-level blocking receive is preferred. Some MPI implementations
have an option to switch from user-level to kernel-level blocking with
the sacrifice of communication performance. This paper identifies the
problems when implementing kernel-level blocking receiving and pro-
poses several techniques to avoid these problems. Evaluations show that
the proposed kernel-level blocking techniques may achieve comparable
performance with user-level communication.

Keywords: user-level communication, kernel-level blocking, MVAPICH,
two-phase wait, NAS parallel benchmark.

1 Background

In MPI, a blocking function call means the function call only returns when the
goal of the function has been reached. The MPI Recv() function, for example,
is a blocking function that waits inside the function until the matching message
is received. When the TCP protocol is used for the underlying communication
layer, incoming messages are first received in the OS kernel, then passed to the
user program by a system call. When no message is received, the receiving system
call blocks in the kernel and the receiving process relinquishes its processor.
This is called kernel-level blocking. Eventually, another process eligible to run
may be scheduled, or the processor falls into a sleep when no other processes
are eligible to run. An alternative way to implement the blocking receive is to
wait for an incoming message in a tight loop of calls to a low-level, non-blocking
receive function in the process. This is called user-level blocking. In this way, the
receiving process keeps running. This paper discusses kernel-level blocking and
user-level blocking.

The user-level communication technique, first proposed by von Eicken[1], has
generated a wide variety of user-level communication libraries[2,3,4]. In user-level
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communication, the significant overheads of handling interrupts and system calls,
which are mandatory for kernel-level blocking, are eliminated and thus its com-
munication performance can be better than that of kernel-level communication.

Busy-waiting in user-level blocking can be problematic for two reasons. 1) If
the number of running processes and/or threads is larger than the number of
cores, then the other processes or threads eligible to run cannot be scheduled
until the time slice of the currently running process is exhausted. 2) Busy-waiting
consumes significant electric power while the processing core is doing nothing
meaningful but is waiting for incoming messages.

This paper shows that the kernel-level blocking receive can be implemented
with performance comparable to that of the user-level busy-wait receive, if the
MPI implementation is right. A naive kernel-level blocking implementation, even
with two-phase blocking[5], where a short busy-wait loop is followed by a blocking
system call, can result in poor parallel application performance. The key to
avoiding this poor application performance is in the progress routine of the
MPI implementation. This paper proposes several techniques to improve the
performance of the kernel-level blocking MPI.

In the following sections, evaluations were done on a 16-node cluster. Each
node has two Nehalem processors (2.67 GHz), 2 sockets with 4 cores each for a
total of 8 cores, and is connected with the QDR Infiniband network. In the fol-
lowing sections, two MPI implementations are used. One is MVAPICH2 (v1.7)[6]
and the other is SCore MPI[7] based on MPICH2-1.2.1. Both MPI implementa-
tions support the kernel-level blocking receive. In SCore MPI, PMX[8] is used as
a multiprotocol, low-level communication library supporting Shmem, Ethernet,
Myrinet (Myri10G), and Infiniband. PMX also supports the kernel-level blocking
receive. The evaluations are done with 16 nodes and 4 processes on each node.
The bindings between the CPU core and the process are the same in all cases
of MVAPICH2 and SCore MPI. Unfortunately, MVAPICH2 with the blocking
option has a problem when running a parallel program having more than 64
processes.
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Fig. 1. Comparison of User-Level and Naive Kernel-Level Blocking
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2 Kernel Level Blocking

Figure 1 shows the performance graphs of NAS parallel benchmark (NPB) pro-
grams, FT, IS, CG, LU, and MG[9], with class B (left graph) and class C (right
graph). These programs were chosen because they can run on the same number
of processes and thus be compared in a fair manner. In NPB, a problem size
can be chosen for running the benchmark program. Class C is a larger prob-
lem size than is Class B. In the legend of the graphs, MVAPICH2 denotes the
NPB programs run with the MVAPICH2 library, and SCore denotes the NPB
program runs with SCore MPI. MV-BLK denotes using MVAPICH2 with the
MV2 USE BLOCKING option [10] enabled, and SC-BLK denotes using SCore MPI
with a blocking option. The numbers above the top of the MVAPICH2 bars
are the execution times in seconds measured by the NPB programs. The Y-axes
represent the relative performance to the MVAPICH2 (user-level blocking) cases.

As easily seen in Figure 1, the kernel-level blocking receive can severely de-
grade the application performance. The blocking performance of SCore MPI
appears to have higher sensitivity with applications, since its performance num-
bers diverge. The possible reason for this phenomenon is discussed in Section
2.2.

In the following subsections, several techniques to avoid this performance
degradation in the kernel-level blocking receive are proposed. Eventually, it is
shown that, by combining the proposed techniques and applying them to the
SCore MPI, the NPB application performance with the kernel-level blocking
MPI becomes comparable with the performance of the non-blocking MPI.

2.1 Two-Phase Blocking

A two-phase technique[5] was previously proposed to avoid the high overhead
of kernel-level blocking. In the two-phase technique, first, the user-level busy-
wait is used to wait a while for an event, and then a system call sets a block
in the kernel. Figure 2 shows the NPB results using the SCore MPI with the
two-phase technique. The threshold values, which are the number of iterations in
the busy loop until calling the blocking system call for receiving, are as follows:
immediate (0), 1,000, 10,000, 100,000, and 1,000,000. The performance numbers
of the immediate cases, which are equivalent to the threshold value of zero, in
this graph are the same as those in the SCore MPI naive blocking cases in Figure
1. The Y-axis is the relative performance to the user-level blocking cases.

In the cases of IS and MG, the performance is improved, especially with the
threshold value of105. However, the performance is worse when the threshold
value is set to 106. This is unexpected, since the number of non-blocking it-
erations can be considered to be an infinite value. In user-level blocking, the
larger the threshold value, the closer the performance is to the corresponding
performance of the non-blocking case.
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2.2 The Progress Routine

The phenomenon in Figure 2 can be explained as follows. Figure 3 is the pseudo-
code of a typical MPI progress routine in an MPI library. This function is basi-
cally called at least once every time an MPI function is called so that communi-
cating processes can progress.

MPID_progress_function( ... ) {
try_recv_message( recv_queue );
if( send_queue ) send_message( send_queue );

}

Fig. 3. An example of an MPI progress routine

An MPICH implementation has a send queue and a receive queue. The send
queue holds pending message send requests, and the receive queue hold the
receive requests.

A naive implementation of kernel-level blocking can be carried out by a sim-
ple replacement of the user-level try recv message() function with the kernel-
blocking blocking recv message() function. When the process can be blocked
in the blocking recv message() function, even if some entries are present in the
send queue, the message send in the send queue is postponed until the blocking
receive returns. This also postpones the execution of the other process waiting
for a message in the send queue. This message sending delay due to the two-
phase technique can spread to the entire parallel program execution. Putting the
send message() function before calling the blocking recv message() function
does not help much, because the progress function is called repeatedly in the
context of a blocking function, such as the MPI Waitall() function, until the
conditions are met to return. Thus, the phenomenon in Figure 2 can be ex-
plained. The smaller threshold value can decrease the frequency of calling the
kernel-blocking receiving, and the larger threshold value can increase the latency
of message sending.

In general, the blocking receive function must not be called when something
is to be done as soon as possible in the progress routine. Figure 4 shows the
modified version of the progress routine. Here, the blocking receive function is
called only when the nothing todo but receiving() predicate returns true.
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MPID_progress_function( ... ) {
if( !nothing_todo_but_receiving() ) {

send_message( send_queue );
try_recv_message( recv_queue );

} else {
blocking_recv_message( recv_queue );

}
}

Fig. 4. Modified Blocking MPI Progress Routine

In an MPICH implementation, the progress routine is an interface function
called the Abstract Device Interface (ADI) between the MPI body and a low-
level communication layer. Remember that the progress routine is typically called
every time an MPI function is called by a user program. However, in some
cases the progress routine must return immediately without calling the blocking
receive function. The above nothing todo but receiving() predicate comes
from two sources. One is originated in the software layer above the progress
routine, and the other is originated in the ADI itself.

User Program

MPI Library (User-Level Blocking)

ADI Device

ProgressRoutine() {
    MsgReceiving();
    HouseKeeping();
}

User Program

MPI Library (Kernel-Level Blocking)

ADI Device

ProgressRoutine() {
    if( AbleToBlock() &&
        NoHouseKeeping() ) {
        while( Iter++ < Threshold ) {
            if( MsgReceiving() ) return;
        }
        BlockingRecv();
    } else {
        MsgReceiving();
        HouseKeeping();
    }
}

Fig. 5. MPICH Progress Routine Implemenation

When the MPI Irecv() function is called, for example, the progress routine
does not block. In contrast, when the MPI Wait() function is called, the progress
routine may block. The information to determine whether the progress routine
can block comes from the context in which the MPI function is called by a user
program. In MVAPICH2, no such send queue exists because MVAPICH2 mostly
uses RDMA and the send queue is not needed. In the MVAPICH2 progress rou-
tine, clean-up of the Completion Queue[11] is still required as the post processing
of RDMA. In the SCore MPI, in some cases message sending cannot take place
immediately and therefore the send queue is required.

Thus, this “housekeeping” process in the progress routine depends on the low-
level communication device to be used. The implementation difference between
MVAPICH2 and SCore MPI can be explained by the effect of the kernel-level
blocking on the application performance, as shown in Figure 1.
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Another point to implementing an efficient kernel-level blocking receive is the
handling of multiple protocols. Recent clusters consist of nodes having multi-core
CPUs and multiple MPI processes can run simultaneously in the node. Most
MPI implementations support multiple protocols of intra-node communication
and inter-node communication. The kernel-level blocking progress routine must
wait for incoming messages in a single system call. Cascading calls of the blocking
system calls for each low-level communication device can cause a large delay of
message receiving or even a deadlock.

As already mentioned, SCore MPI uses the PMX low-level communication
library that supports multiple protocols. The Shmem PMX device is used for
intra-node communication and the Infiniband PMX device is used for inter-node
communication in the evaluations in this paper. PMX has a routing table to
select the appropriate device according to the index of the destination node,
and thus multiple protocols are combined as one abstracted PMX device. By
enabling the kernel-level blocking receive, the PMX can return a set of file de-
scriptors (FD SET) with which the user program can block the point of calling the
(p)select() system call and then wait for incoming messages coming through
various PMX devices. In this way, the cascaded blocking problem can be avoided.
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Fig. 6. Comparison of Blocking Techniques (Class B, NP=64)

2.3 Improved Blocking Receive

By considering all the techniques (right-hand side of Figure 5), Figure 6 shows
the graphs of the NPB programs running with the SCore MPI. On the X-axes,
TwoPhase means that the bars show the relative performance to the non-blocking
performance with only the two-phase technique, as already shown in Figure 2.
EmptySend means that kernel-level blocking takes place when the send queue is
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empty in the progress routine, in addition to the two-phase technique.WaitEvent
means that blocking takes place if the upper MPI layer allows blocking receive,
in addition to the two-phase technique. The right-most All means that the bars
show the performance of the cases using all of the above techniques.

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
28233 hori 20 0 654m 398m 3644 R 99.4 1.6 0:08.39 is.D.64
28234 hori 20 0 656m 399m 3636 R 96.4 1.7 0:08.19 is.D.64
28235 hori 20 0 656m 397m 3660 R 95.4 1.6 0:08.17 is.D.64
28236 hori 20 0 654m 399m 3644 R 95.4 1.7 0:08.15 is.D.64

Fig. 7. Screenshot of the top Command in the is.D.64 Program

The phenomenon where the performance drops with the threshold value of 106

in TwoPhase disappears in the cases with the other techniques. In many cases,
except FT and IS, WaitEvent performs better than does EmptySend, and All
performs as well as does WaitEvent. All performs better than does WaitEvent in
the FT and IS cases, when the threshold value is larger than 105. The blocking
performance with All is almost equal to the performance of non-blocking cases
when the threshold value is 105, except in the FT case. With the threshold value
of 106, the performance is almost equal to the non-blocking performance.

A micro benchmark, which measured the time of 106 busy-wait iterations in
the blocking receive routine with the same configuration as the evaluations in
this section, took 89 msec. This seems too long and does not have any possibility
of calling the kernel-level blocking system call. Figure 7 shows a screenshot of the
Linux top command while running the is.D.64 benchmark program of the NPB
with the threshold value of 106. Class D was chosen because the execution times
of the smaller classes are too short to take a screenshot. The CPU percentage
number is always greater than 99% when the user-level communication takes
place. However, some of the percentage numbers of the screenshot indicate 95.4%
in this figure. This means that kernel-level blocking takes place on those processes
having a lower CPU percentage.

Figure 8 shows the graphs of the number of blocking times in the left column
and the graphs of the accumulated time of blocking in the right column for each
threshold while running with 128 processes (16 nodes, 8 processes). The X-axes
and Y-axes are log scales and the zero values are not shown in these graphs. The
number of blocking times and the accumulated time of blocking are the average
numbers of each process in a single run. As expected, the larger the threshold
value, the less the number of blocking times and the shorter the accumulated time
of blocking. The larger the problem size, the higher the possibility of blocking.

The number of blocking times decreases drastically from some (ten) thousands
to some tens or less, when the threshold value gets higher. The overhead of
kernel-level blocking is very high. Thus, the key point to achieving negligible
overhead of kernel-level blocking is when to block while waiting for messages
having large latencies. The two-phase blocking is not optimal, although it is
easy to implement. As shown in Figure 8, the optimal threshold value depends
on the communication pattern, the problem size, and possibly the number of
processes.
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3 Related Work

Damianakis et al. investigated various blocking techniques in a cluster environ-
ment and reported that the two-phase spin-block technique was the best[12].
Their evaluation was done on a distributed file system.

Vishnu et al. investigated the relation of performance and energy consump-
tion by comparing kernel-level communication and user-level communication[13].
They developed their own software layer on top of the one-sided communication
library, ARMCI[14]. They reported the case where two-phase kernel-level receiv-
ing is more power efficient than is user-level communication.

In contrast to the above two papers, this paper notes the problems of when to
implement kernel-level blocking in the MPI. It is shown that a carefully designed
MPI may avoid the performance degradation due to kernel-level blocking.

4 Discussion

One may argue that kernel-level blocking may not be needed if the performance
of the kernel-level blocking MPI is no better than that of the user-level blocking
MPI. From MPI specification version 2[15], MPI Spawn() functions are intro-
duced and an MPI program may spawn additional processes. When the newly
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created process is eligible to run on the same core where an existing MPI process
is already running, then user-level blocking can cause significant overhead. Or,
when an MPI process creates a new thread and when the number of threads on a
node exceeds the number of CPU cores, then user-level blocking can result in low
performance. Modern operating systems can handle the situation that the num-
ber of processes and/or threads eligible to run exceeds the number of cores on
a node. However, most of the current HPC programming environments ignore
this situation and utilize user-level communication. In this sense, kernel-level
blocking is the correct procedure.

Recent Intel CPUs support the MONITOR and MWAIT instructions[16] to wait
for hardware events in a deeper sleep mode and thus power consumption can
be reduced. Recent Linux kernels also support these instruction pairs and have
successfully reduced the idling power. Kernel-level blocking can fall into a deeper
sleep mode. According to the IESP roadmap[17], the power wall can be a major
obstacle to implement exa-scale machines. Thus, kernel-level blocking may help
save power, while the busy loop of user-level blocking simply wastes power.

5 Summary

The user-level blocking communication technique, currently used in most
MPI implementations, can be problematic when spawning new process(es) or
thread(s), and can needlessly consume electric power. In contrast, the kernel-
level blocking communication may run processes and/or threads in a more effi-
cient way, and thus may save electric power. However, the kernel-level blocking
communication has been said to have low communication performance due to
its interrupt handling and system call overhead.

This paper shows that if an MPI implementation is designed carefully, then
the kernel-level blocking communication may result in a comparable performance
with that using the user-level communication. It is shown that the widely used
two-phase blocking technique can be of some help; however, it can also lead to
other overhead. The progress routine in the MPI library must be re-designed
so that kernel-level blocking does not interfere with other functions in an MPI
implementation.

The proposed techniques to implement an efficient kernel-level blocking MPI
were implemented in SCore MPI and evaluated by using NAS parallel benchmark
programs. The results show that the performances of the benchmark programs
using kernel-level communication are almost the same as those using user-level
communication.

Acknowledgment. This research is partially supported by the CREST project
of JST (Japan Science and Technology Agency).



162 A. Hori et al.

References

1. von Eicken, T., Basu, A., Buch, V., Vogels, W.: U-net: a user-level network interface
for parallel and distributed computing. SIGOPS Oper. Syst. Rev. 29, 40–53 (1995)

2. von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active messages:
a mechanism for integrated communication and computation. In: Proceedings of
the 19th Annual International Symposium on Computer Architecture, ISCA 1992,
pp. 256–266. ACM, New York (1992)

3. Pakin, S., Karamcheti, V., Chien, A.A.: Fast messages: Efficient, portable com-
munication for workstation clusters and mpps. IEEE Parallel Distrib. Technol. 5,
60–73 (1997)

4. Tezuka, H., Hori, A., Ishikawa, Y., Sato, M.: Pm: AnOperating System Coordinated
High Performance Communication Library. In: Hertzberger, B., Sloot, P.M.A. (eds.)
HPCN-Europe 1997. LNCS, vol. 1225, pp. 708–717. Springer, Heidelberg (1997)

5. Ousterhout, J.: Scheduling techniques for concurrent systems. In: 3rd International
Conference on Distributed Computing Systems, pp. 22–30. IEEE (1982)

6. Liu, J., Wu, J., Kini, S.P., Wyckoff, P., Panda, D.K.: High performance RDMA-
based MPI implementation over InfiniBand. In: Proceedings of the 17th Annual
International Conference on Supercomputing, ICS 2003, pp. 295–304. ACM, New
York (2003)

7. PC Cluster Consortium: SCore, http://www.pccluster.org/
8. Hori, A.: PMX Specification –DRAFT–,

http://www.pccluster.org/score_doc/score-7.0.2/pdf/PMX-spec.pdf

9. NASA: NAS Parallel Benchmarks,
http://www.nas.nasa.gov/Resources/Software/npb.html

10. MVAPICH Team: MVAPICH2 1.7 User Guide (2012)
11. OpenFabrics Alliance: OFED, http://www.openfabrics.org/
12. Damianakis, S., Chen, Y., Felten, E.W.: Reducing waiting costs in user-level com-

munication. In: 11th International Parallel Processing Symposium, pp. 381–387.
IEEE Computer Society Press (1997)

13. Vishnu, A., Song, S., Marquez, A., Barker, K., Kerbyson, D., Cameron, K.,
Balaji, P.: Designing energy efficient communication runtime systems for data cen-
tric programming models. In: Proceedings of the 2010 IEEE/ACM Int’l Conference
on Green Computing and Communications & Int’l Conference on Cyber, Physical
and Social Computing, GREENCOM-CPSCOM 2010, pp. 229–236. IEEE Com-
puter Society, Washington, DC (2010)

14. Nieplocha, J., Tipparaj, V., Krishnan, M., Panda, D.K.: High performance remote
memory access communication: The armci approach. Int. J. High Perform. Com-
put. Appl. 20(2), 233–253 (2006)

15. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing In-
terface (2003), http://www.mpi-forum.org/docs/mpi2-report.pdf

16. Intel Corporation: Intel 64 and IA-32 Architectures Software Developer’s Manual
(2011)

17. Dongarra, J., Choudhary, A., Kale, S., et al.: The International Exascale Software
Project Roadmap. White paper, Argonne National Laboratory (October 2010)

http://www.pccluster.org/
http://www.pccluster.org/score_doc/score-7.0.2/pdf/PMX-spec.pdf
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.openfabrics.org/
http://www.mpi-forum.org/docs/mpi2-report.pdf


Automatic Resource-Centric Process

Migration for MPI

Amnon Barak, Alexander Margolin, and Amnon Shiloh

The Hebrew University of Jerusalem, Department of Computer Science, 91904, Israel
{amnon,alexam02,amnons}@cs.huji.ac.il

Abstract. Process migration refers to the ability to move a running
process from one node and make it continue on another. The MPI stan-
dard prescribes support for process migration, but so far it was imple-
mented mostly via checkpoint-restart. This paper presents an automatic
and transparent process migration framework that can be used for MPI
processes. This framework is advantageous when migration of individ-
ual processes for purposes such as load-balancing is more adequate than
checkpointing the whole job. The paper describes this framework for
process migration in clusters and multi-clusters, how it was tuned for
Open MPI and the performance of migrated MPI processes.

Keywords: Cluster, MPI, process migration, load-balancing, checkpoint.

1 Introduction

The term “process migration” refers to the ability to stop a running process
on one node and make it continue from the same point on another. The main
advantage of process migration is run-time flexibility. This includes redistribu-
tion of processes for improved performance and resource utilization, e.g., for
load-balancing; and flexible cluster configuration, including orderly shutdown,
addition of nodes and inclusion in a multi-cluster. In spite of the advantages,
the main drawbacks of process migration are the complexity of maintaining mi-
grated processes seamlessly and the need for an adequate policy to decide when,
where and which process(es) to migrate.

The MPI standard [1] prescribes support for process migration, but so far
direct support was implemented mostly via Checkpoint-Restart (CR) of a whole
job, using a package such as the Berkeley Lab BLCR [2]. In the CR approach,
all the processes of a job are stopped and their images are saved to persistent
storage. The CR approach is reasonable when the demand for resources is rela-
tively stable, but inadequate when resources and/or demand for resources change
frequently, such as when running processes with uneven loads; when processes
change their demand for resources (cores, GPUs, memory); when temporarily
oversubscribing; when nodes are reclaimed by users with higher priority; and
when CPUs slow down due to overheating. In such cases, direct migration of
individual processes is lighter and more adequate because it does not stop the
whole job. This is the main contribution of the current paper.
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As an example where process migration can benefit queued MPI jobs, consider
a situation where a job is scheduled to start on a given time, but few of its
designated nodes are not available at that time, either because they are down
or because they are used by overdue jobs. When process migration is available
and memory is sufficient, the processes of the scheduled job can be temporarily
assigned to those nodes that are already available, despite oversubscribing, and
later be migrated to additional nodes as they become available. This avoids
situations where jobs are queued while nodes are available but remain idle.

This paper presents a transparent (proactive) process migration framework
for MPI based on features of MOSIX [3], a management system targeted for HPC
on Linux clusters and multi-clusters. Its relevant features include a decentralized
gossip algorithm that provides each node with information about cluster-wide
resources [4]; a set of online algorithms that use this information to assign and
actively reassign (migrate) processes to nodes, to optimize the performance [5];
and the actual process migration software.

The paper is organized as follows: Sec. 2 describes our process migration
framework, including the run-time environment and the algorithms for initiating
and managing process migrations in clusters and multi-clusters. Sec. 3 describes
how our framework runs migratable Open MPI jobs, including allocation of
resources and direct communication between migrated MPI processes. Sec. 4
presents various performance aspects of our process migration using standard
benchmarks. Related works are described in Sec. 5 and our conclusion in Sec. 6.

2 A Framework for Process Migration

Process migration refers to the ability to stop a running process on one node, pre-
serve all its important elements and then make it continue from the same point
on another node. The elements to be preserved depend on the interface between
the process and its immediate run-time environment. In a previous project, we
developed a process migration framework for general Linux processes [3]. Since
MPI processes run on Linux, we used that framework for migration of MPI
processes.

This section presents relevant features of our process migration framework,
including the run-time environment, the algorithms for initiating and managing
migrations and support of multi-clusters.

2.1 Our Run-Time Environment

In order to support generic Linux processes, it is important that a process sees
the same environment, including files, sockets, process IDs, etc., regardless where
it runs or is migrated to. To achieve that, we developed a virtual environment
(sandbox) in which each migrated process seem to run as if it is still in its original
“home-node”, where it was created. This is accomplished by intercepting all the
system-calls of the process, then forwarding most of them to the home-node,
performing them there and returning the results to the migrated process.
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This approach, which isolates the process from the node in which it is currently
running, provides maximal file and data consistency, as well as support of nearly
all traditional IPC mechanisms such as messages, semaphores pipes, sockets
and signals (with process-IDs kept intact), excluding only shared-memory. The
drawback of this approach is that the maintenance of migrated processes requires
increased management and network overheads.

To reduce the network overhead incurred by the use of home-nodes, we
developed a peer-to-peer “postal” protocol for direct communication between
migrated processes, bypassing their respective home-nodes. This OSI layer 4
protocol guarantees that data always arrives in order and is never lost even
when the senders and receivers migrate several times and even while they are
in mid-migration, all transparent to the program. This is especially efficient for
processes that migrated to the same node.

2.2 Initiating and Managing Process Migration

In our framework, process migration can be triggered either automatically or
manually, including by the process itself. Automatic migrations are supervised by
competitive on-line algorithms that attempt to improve the performance using
a gossip-based information collection and process profiling [4]. Process profiling
is performed by continuously collecting information about each process’ charac-
teristics, such as size, rates of system-calls and volume of I/O. This result in de-
termining the best location for each process, taking into account the respective
speed, current load, available memory in the nodes and the migration cost. As re-
sources and the profile of the process change, and subject to threshold values to
avoid over migrations, processes may be reassigned and migrated to better loca-
tions - which is particularly useful for jobs with unpredictable or changing resource
requirements and when several users run simultaneously. The objective are:

– Load balancing.
– Assigning processes to faster nodes.
– Assigning processes to nodes with sufficient memory.
– Sharing the cluster resources among several users.

While a process can be migrated by the framework at any time, processes can
also explicitly request to be migrated to any desired node. This way, if a process
is expecting to do a significant amount of communication with another pro-
cess, it can request to be migrated to the location of that other process, or it can
“invite” another process (of the same user) to migrate to its current node. Either
way, the goal is to reduce the communication latency and the network overhead.
Obviously, this option is limited by the fact that only a limited number of pro-
cesses can run efficiently on each node.

2.3 Multi-clusters

A multi-cluster is a collection of private clusters that are configured to work
together. Each cluster may belong to a different group that is willing to share
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its computing resources so long as it is allowed to disconnect its cluster at any
time, especially when they are needed by its local users.

The automatic migration algorithms of the previous section also manage
multi-clusters, with only minor adjustments. Note that all migrated processes
still run in the environment of their own home-cluster. Thus, from the user’s per-
spective, it does not matter whether their applications run in their own cluster
or out on a different cluster.

To allow a flexible use of nodes within and among different groups, we de-
veloped a priority scheme, whereby local processes and processes with a higher
priority can always move in and push out processes with a lower priority. By
proper setting of the priority, private clusters can be shared among users. Public
clusters can also be set to be shared among all users.

3 Running Migratable Open MPI Jobs

This section describes an adaptation of our framework for Open MPI jobs.

3.1 Initial Assignment

The standard practice in Open MPI is to rely for resource discovery on an XML
input file provided by each user. This file usually includes the list of nodes and
their resources, e.g., number of cores and total memory. Using this information,
Open MPI usually assigns processes to nodes in a round-robin fashion, regardless
of the current status and availability of these resources.

Our framework provides a dynamic resource discovery system. The simplest
approach is to start all the MPI processes in the same node and let our frame-
work migrate them automatically to different available nodes. A variation of this
approach is to start an equal number of processes on a fixed (small) subset of
nodes and then allow those processes to migrate. Another approach is to find a
set of best-available nodes, then launch the MPI processes on that list of nodes.
We developed a new Resource Allocation Subsystem (RAS) module which does
that. We also added a module under the Open MPI ORTE Daemon’s Local
Launch Subsystem (ODLS) component, which intercepts the process launch and
modifies the arguments so that it uses our framework to launch the Open MPI
processes. The launch command line may include three new flags:

– Disallow automatic migration.

– Allow migration to other clusters - in a multi-cluster configuration.
– Start the process on the best available node, not necessarily its home-node.

3.2 Direct Communication between Open MPI Processes

The main difference between migrating independent processes and MPI processes
is the extensive use of the point-to-point Inter-Process Communication (IPC).
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MPI usually carries its IPC via TCP/IP sockets, which are critical to the perfor-
mance of the entire job. This section presents an emulation of TCP/IP sockets
using Direct COMmunication (DiCOM) between migrated MPI processes.

Since our postal protocol provides a different API based on unidirectional,
per-process mailboxes and not on TCP/IP, translation is therefore required.

The following features of DiCOM are designed to assist this translation:

– A process’s mailbox can accumulate data packets from multiple sources,
which are then read by the process, usually sequentially. However, an op-
tional feature allows reading mailbox data out-of-order according to specified
conditions, such as the PID of the sender process.

– Reading a mailbox can be either blocking or non-blocking.
– Asynchronous notification of message-arrival.

The Byte-Transfer Layer (BTL) component of Open MPI consists of indepen-
dent modules that provide lower level communication, i.e., sending and receiving
raw data for the use of higher layers. Examples of such modules are low-latency
interconnections such as OpenIB (Infiniband); communication over shared mem-
ory; and the fall-back module - TCP/IP. Note that BTL modules are unaware
which MPI function they serve, since this is included in the data itself.

We added a new BTL module for emulating TCP communication using Di-
COM. This OSI layer 5 module is responsible to establish a link to the current
location of the target MPI process and to transfer data to this process. The
module implements a series of functions which are registered and called by the
MPI run-time components. The module functions are called in different phases
of running each MPI process as follows:

– Registration Phase: The module receives low-level communication param-
eters.

– Initialization Phase: The module detects whether it runs under our frame-
work, and if so, receives the necessary details to contact other processes
within that framework (otherwise this module is not used). This is also
where DiCOM’s asynchronous notification of message arrival is turned on.

– Progress Phase: The MPI run-time system informs the module that new
message(s) have arrived. The module then uses DiCOM’s out-of-order and
non-blocking message reading functionalities to direct incoming messages to
those layers of MPI that are waiting to receive the corresponding messages.

– Message Send Phase: Outgoing messages are converted and sent using
the DiCOM API.

– Message Receive Phase: The MPI higher layers register their interest in
receiving incoming messages.

– Finalization Phase: Connections are closed and resources are released.

3.3 Oversubscribing

Oversubscribing is an allocation policy that assigns more than one process per
core [8]. Traditionally, oversubscribing was discouraged for MPI processes, but
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process migration provides a greater incentive to use it. Temporary oversubscrib-
ing with process migration can be beneficial in certain situations, including the
following:

– Allowing a job to start on schedule, even if some designated nodes are not
available, making use of other idle nodes.

– When it is necessary to shut down few nodes, e.g., due to overheating or for
maintenance, without stopping the whole job.

– When CPU speeds are not uniform, new jobs can begin on slower nodes,
then migrate to faster ones as they become available. Also, jobs that are
past their allocated time can be migrated to slower nodes rather then killed.

– When running jobs with processes of uneven CPU demands, including when
CPU usage is unknown in advance.

4 Performance of Process Migration

This section presents various performance aspects of our process migration using
standard benchmarks. The tests were done on a symmetric cluster of Intel’s
Quad-core i7 (2.67 GHz) and 6GB memory nodes, connected by QDR Infiniband.
Each test was performed 5 times and the average of the results is shown.

4.1 IPC between Migrated MPI Processes

To evaluate the performance of our BTL module, described in Sec.3.2, we used
the OSU benchmark [6]. Two MPI processes were migrated to different nodes and
communicatedwith andwithout themodule. The left and right sides of Fig. 1 show
the respective (log scale) latency and bandwidth for message sizes up to 131KB.
The measurements show that the latency with DiCOM was up to 7.5 times less
than without DiCOMwhile the bandwidth was up to 2.3 times higher. This is due
to DiCOM’s success in avoiding the overhead of communicating via home-nodes.
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Fig. 1. Latency and bandwidth between migrated MPI processes
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4.2 Overhead of Migrated Processes

We used the NPB benchmark suite [7] to compare the run-time of class C applica-
tions, initially starting all the processes in different idle nodes, then immediately
migrating away some processes to other idle nodes, from none to all 4.

The results are shown in Table 1. For each application, the “None” column
shows the run-time (in Sec.) of the applications without migrating, while the
remaining columns show the corresponding run-times with 1–4 migrations. Ac-
cordingly, both applications with large memory and applications with higher IPC
volumes incur higher overhead, consisting of migration plus communication.

Table 1. Run-times of NPB applications with different number of migrated processes

Application Number of migrated processes
name None 1 2 3 4

MG 39.3 39.9 39.9 40.1 40.1

LU 313.3 317.1 317.5 315.2 315.1

BT 336.5 342.2 342.7 342.2 343.3

CG 72.8 76.1 75.8 75.9 77.3

SP 352.9 365.1 364.8 365.7 365.9

EP 93.4 93.3 93.1 92.4 92.8

4.3 Migration Speeds

We repeated the previous test, this time migrating only one process 10 times
back and forth, resulting in Table 2. Column 2 shows the run-time (in Sec.)
without migrating, Columns 3, the run-time with 10x2 migrations, then Column
4 shows the average time per migration. Column 5 gives the size of migrated
processes, then the last column shows the migration speeds. It can be seen that
larger processes migrate relatively faster for their size. This is explained by the
fixed cost of initiating and managing a migration.

Table 2. Migration time and speed of NPB applications

Application Run-time With Average Process Migration
name without 10 x 2 migration size speed

migration migrations time MB MB/Sec.

MG 39.2 59.4 1.01 618.2 612.1

LU 313.3 320.4 0.36 196.6 546.1

BT 338.3 355.9 0.88 413.1 469.4

CG 72.8 83.8 0.59 260.6 441.7

SP 353.0 374.9 1.10 352.3 320.3

EP 92.2 93.4 0.06 17.0 283.3
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4.4 Benefiting from Oversubscribing

To show how jobs with non-uniform workload distribution can benefit from over-
subscribing, we ran an application that simulated processes with uneven run-
time. A fixed problem was divided into a variable number of processes, some
short and some long, thus leaving room for improvement by combining over-
subscribing with load balancing. Processes that migrate from a node where all
other processes are active to a node where some processes are idle can get more
CPU cycles, both for themselves and for the processes on their former node, thus
reducing the overall run-time of the job.

We initially ran 4 long (∼1800 Sec.) processes in one 4-core node and 4 short
(∼360 Sec.) processes in the remaining 4-core nodes. We then applied oversub-
scribing by dividing each process into 2 processes of equal time (1800 Sec. to
2x900 Sec. processes and 360 Sec. to 2x180 Sec. processes). We repeated the
test, further dividing the 1800 Sec. processes into 3, 4 and 6 processes of equal
time. Table 3 shows the average run-time (in Sec.) of the application with and
without process migration. For reference, Column 4 shows the optimal (theoret-
ical) run-time with migration (excluding migration overheads).

Table 3. Run-times of a job with non-uniform workload with and without migration

Number of Without With Optimal
processes per core migration migration run-time

1 1798 1799 1798
2 1797 1079 1079
3 1796 839 839
4 1796 722 719
6 1797 608 599

From the table it can be seen that process migration improves performance
and that nearly-optimal run-times were achieved.

4.5 Resolving Memory Pressure

This test demonstrates how process migration can improve the performance
by better utilization of memory resources. In a cluster of multi-cores, although
only one process at most is assigned per core, it is quite possible to arrive at
“memory-oversubscribing” resulting in memory thrashing.

We enforced memory-oversubscribing in an application that simulated pro-
cesses with unpredictable memory demands, initially with one process per core.
As a result, the memory of some 4-core nodes was exhausted, causing them to
thrash. We ran the application twice. Without process migration the average
run-time was 590 Sec. and with process migration it was 369 Sec., an improve-
ment of 37.5%.
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5 Related Work

The migration of processes has been shown to improve the run-time of MPI
jobs [9]. So far, the majority of work was based on Checkpoint-Restart (CR) of
a whole job [10, 11, 12], which was accomplished by user-level or kernel-level
libraries [13], such as BLCR [2]. Using RDMA over Infiniband was shown to
improve the performance of the above [14, 15].

An alternative form of CR is available in Java-MPI [16] using JVMs. In this
approach the process state is captured in one JVM and can then be restored on
another.

Adaptive MPI (AMPI) supports transparent process migration [17], based
on the CHARM++ framework that provides load-balancing through user-
level migratable threads. AMPI requires the applications to be rewritten in the
CHARM++ object oriented language.

A feature that allows an Open MPI process to restart communication over a
different network after a checkpointwas presented in [18]. This feature can improve
the communication between MPI processes that were moved to a common node.

For better load-balancing and other optimizations of MPI process place-
ment, it was shown that processes can hint the underlying MPI implementation
about their expected load, thus allowing the implementation to achieve a better
placement [19].

6 Conclusions

Traditionally, process migration has been associated both with improved per-
formance, by load-balancing and with flexibility, by dynamic reallocation of re-
sources. These two properties seem even more important for the next generation’s
medium/large (Peta/Exa) scale systems that will include thousands of nodes
with diverse resources, where node failures are expected to be quite common. In
large systems, gossip algorithms about the state of the nodes are necessary to
support process migration. This paper presented a proactive process migration
framework for running Open MPI processes in clusters and multi-clusters. The
performance penalty of our framework is reasonable.

One way to reduce the dependency of MPI jobs on our “Archimedes stand”1

home-node, is to start all the processes of a job on a few home-nodes, then
distribute processes to the remaining nodes. A more challenging project would
be to develop a process migration scheme that does not use home-nodes at all.
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Abstract. Fine-Grain MPI (FG-MPI) supports function-level paral-
lelism while staying within the MPI process model. It provides a runtime
that is directly integrated into the MPICH2 middleware and uses light-
weight coroutines to implement an MPI-aware scheduler. Our key ob-
servation is that having multiple MPI processes per OS-process, with
a runtime scheduler can be used to simplify MPI programming and
achieve performance without adding complexity to the program. The
performance part of the program is now outside of the specification of
the program in the runtime where performance can be tuned with few,
if any, changes to the code.

Keywords: MPICH2, Function-level Parallelism, Fine-Grain, MPI-aware
Scheduler, MPI Runtime.

1 Introduction

MPI has the reputation of being difficult to program [6]. Although some of the
difficulties may be inherent to message passing, many of the popular parallel
languages used on multicore processors also use message-passing. However, one
notable difference between MPI and these parallel languages is the granularity
of MPI processes. Processes in MPI are coarse grain and programmed to make it
easy to match the number of processes to the available hardware, whereas many
parallel languages support finer grain to match processes to the structure of the
program. By fine grain we mean function-level parallelism where processes may
have tens of instructions rather than the thousands of instructions in coarse grain
program-level parallelism. One can have function-size programs in MPI but it
is not done because over-subscribing processes to nodes is inefficient due to the
context switch time between OS-level processes and because the OS scheduler is
unaware of the cooperative nature of the processes. There are also OS limitations,
even with lighter-weight OS processes, when there are too many processes on a
node.

We introduced Fine-Grain MPI (FG-MPI) to investigate the extent to which
function-level parallelism can be supported while staying within the MPI pro-
cess model [8,9]. To this end, FG-MPI augments the MPI middleware inside
each OS-process with a runtime that supports hundreds and thousands of finer-
grain MPI processes inside an OS-process. There are more MPI processes than
cores and we still can match the number of OS-processes to number of cores to
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c© Springer-Verlag Berlin Heidelberg 2012



174 H. Kamal and A. Wagner

maximize the parallelism, but now we can map multiple MPI processes to each
OS-process. There is still “over-subscription”, but it is now the FG-MPI runtime
and scheduler that is managing the MPI processes inside each OS-process. This
makes it possible to support the added concurrency that results when functions
are processes.

When writing FG-MPI programs we noticed that we did not need to rely as
much onnon-blocking communication.Non-blocking communicationmakes it pos-
sible to have multiple outstanding messages that increases asynchrony and allows
one to overlap communication with computation. This can reduce the idle time
that results when processes are stuck waiting for a message to arrive. To avoid
idle time the programmer tries to post messages as soon as possible, overlap that
with some computation while periodically checking for new messages to process
as well as posting new ones. Optimizing the messaging in this manner to reduce
idle time and increase “slackness” breaks the cohesion of the program structure,
adds complexity, and is less portable with respect to performance. Our key ob-
servation is that having multiple processes per OS-process with an MPI-aware
scheduler provides an alternativeway to achieve the performancewithout the com-
plications to the program.The runtime scheduler acts as an abstractiondevice that
the programmer can use to replace the hand-coded message scheduling parts of
their program.As a result, the program is easier to understand and the performance-
oriented aspect is outside of the specification of the program in the runtime where
performance can be tuned with few, if any, changes to the code.

In the paper we describe two main design issues in FG-MPI that made it
possible to support this MPI runtime model: (a) the use of coroutines and non-
preemptive threads, (b) the integration of FG-MPI into existing middleware
(MPICH2) rather than a layer running on top of MPI (Section 2). In Section 3, we
describe the design of the scheduler and how it interacts with the MPI progress
engine. Finally in Section 4, we give an example of using FG-MPI to re-structure
a typical use of non-blocking communication and also compare the performance
of the scheduler one to the hand-coded one.

Our hope is that the FG-MPI design and its proof of concept in a working
system may provide a way for other MPI implementations to augment MPI
to support this fine-grain model. Secondly we hope, by way of illustration in
this paper, that extending MPI’s runtime model to fine-grain can make MPI
programming easier and a better overall solution that can seamlessly scale from
multicore inside the box to multiple machines and cores outside of the box.

2 FG-MPI Runtime

One major decision in the design of FG-MPI and the support of multiple MPI
processes within an OS-process was the use of coroutines as a basis for non-
preemptive scheduling of the processes.1 Our system uses a modular approach
and is capable of making use of different coroutine libraries through a con-
figuration option. We currently support Toernig’s coroutine library, and PCL

1 MPI processes sharing the same address space are referred to as collocated processes.
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(Portable Coroutine Library). Capriccio [13] and other systems had shown that
coroutine-based threads have fast context-switching time, low communication
and synchronization overhead and scale to support large numbers of threads.
The benefits of coroutines at the language level are well-known and they are
supported in many languages (Python, Lua) including parallel languages used
on multicore (Erlang, Go Language). Cooperative multithreading can be diffi-
cult in general but for MPI the messaging-passing and calls to the middleware
provide a natural yield point.

With regards to implementation, having non-preemptive processes was cru-
cial. Since only one collocated process is active, it was possible to share the
middleware without using locks and ensure that the middleware is in a con-
sistent state between scheduling points. There have been previous attempts at
pre-emptive thread-based MPI implementations [5,11], but they have remained
largely incomplete due to the complexity of managing synchronization primi-
tives and challenges in scaling. The challenges and overheads of thread-safety of
MPI middleware are well known [2,12] and it is an important problem but the
use of coroutines circumvents the need for locks to support multitasking and the
guaranteed atomicity made it easier to reason about the state of the middleware.

The second major design decision was integration of FG-MPI directly into
MPI rather than an attempt to design a new implementation of MPI or to use
coroutines and layer it on top of MPI. Adaptive MPI is an implementation of
MPI that supports fine-grain processes, however, AMPI [7] implements the MPI
library on top of Charm++ rather than directly into an existing MPI. This re-
quires their own implementation of MPI and the Charm++ runtime also needs
a communication layer. This can result in an MPI sandwich, with MPI running
on top of Charm++ which in turn runs over MPI. In FG-MPI, all MPI commu-
nication directly invokes the corresponding lower level MPI implementation of
the call in the middleware, whereas in the layered approach only a subset of the
MPI communication in the lowest layer is used. More importantly, a scheduler
layered on top of MPI would be MPI-aware but operates independently from the
lower level MPI progress engine. The result is multiple independent control loops
and schedulers, where it is difficult to coordinate their activities with regards to
the scheduling of asynchronous and synchronous messages.

We integrated FG-MPI into MPI by extending the MPICH2 middleware.
Figure 1 shows the integration of FG-MPI in the layered modular architecture of
MPICH2. The MPICH2 ADI3 layer represents the data structures and functions
that are provided by an implementation. Representation in this layer is in terms
of MPI requests/messages and the functions for manipulating those requests.
One of the main considerations in FG-MPI was to support large amounts of
concurrency through scalable sharing of MPI structures among the coroutines.
To this end, a large number of MPI storage structures such as posted receive
queues, unexpected messages queues, communicator and request pools are shared
by the coroutines (see Figure 2). Other structures that are integral to MPI are
communicators and groups and their scalability and sharing is essential to FG-
MPI. In past work [8] we discuss in detail how we share these structures and
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Fig. 1. FG-MPI Architecture. Shading shows the layers of MPICH2 that were aug-
mented in the FG-MPI implementation. Figure adapted from [1].

scale to hundreds and thousands of MPI processes. FG-MPI uses the Nemesis
CH3 channel, which is a highly optimized communication subsystem that pro-
vides multi-network support [3] including fast shared memory communication
between processes on the same node.

MPICH2 is optimized for OS-process level communication, and one interesting
problem that arose as a result was that the message match header did not need to
contain the rank of the destination process, as it is implicit from the OS-process
identifier. In FG-MPI, since there may be multiple MPI processes inside the
OS-process, the destination rank of the process is necessary to de-multiplex the
message from the OS-process network point of attachment to the MPI process.
As a result we had to extend the message match header as well as increase the
packet header size to include the destination rank. Communication in Nemesis
is tuned for better cache performance and although we have not done a low-level
comparison we have not noticed any performance differences at the application
layer as a result of our extension.

Inside the middleware we maintain two separate tables: (a) connection rout-
ing table (point of attachments) and (b) process name table (MPI COMM WORLD

ranks).2 This separates the namespace of the point of attachment from that of
the ranks. We emphasize the separation of these two namespaces because it is
an example of the importance of naming in a distributed system [10]. Separating
the namespace for the point of attachment and ranks is required to de-couple
MPI processes from the hardware. Although we have not yet considered process
mobility, it greatly simplifies that as well. The issue of naming also arises with
respect to mapping where it is easier to map processes when the rank is used as
a semantically pure identifier rather than an integer range from 0 to N − 1.

Based on this experience we believe this type of integration is possible with
other implementations of MPI. Finally note that FG-MPI extends MPICH2 and
the FG-MPI runtime is only set-up when there is more than one MPI process in
an OS-process.

2 We do not support MPI-2 dynamics.
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shared among the collocated MPI processes.

3 Integrated MPI Scheduler

Wemaintain a run queue and a blocked queue for collocated MPI processes inside
each OS-process. Scheduling events inside the middleware invoke the scheduler,
which according to the scheduling policy, blocks the current process or adds it
back onto the run queue, and chooses the next process to resume. We provide a
scheduler framework that allows us to add new policies as the need may arise.
The selection of the scheduler is provided as a command line option to mpiexec.
The most interesting aspect of the scheduler is its integration into the MPI
middleware and interaction with events occurring inside the progress engine.

As Figure 2 shows, many of the key data structures in the middleware, such as
the message queues, request pools and communicator pool, are shared among all
of the collocated MPI processes. In FG-MPI, communication can be both internal
(among collocated processes) and external (between non-collocated processes)
and supports the different types of MPI calls such as blocking, non-blocking etc.
When a process makes an MPI call it will progress its request as far as possible.
For example, if it is a send request, it may match a pre-posted receive from
another collocated process and complete its call, or it may initiate a communi-
cation transfer over the external link to a receiver in another address space. A
message arriving at the message matching layer may complete a pending request
or this may be an unexpected message, which will be queued until a matching
receive request arrives. Most importantly, however, since the state of the progress
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engine is shared, MPI processes can cooperatively progress pending messages for
other collocated processes and notify the scheduler. The scheduler, based on the
notification may add processes to the run queue.

Another example of cooperation is that of a pre-posted receive request for
which a ready-to-send (RTS) arrives to initiate the long message handshake.
It is possible that the MPI process, which posted that receive request, is not
currently executing, but a clear-to-send (CTS) can be sent by the currently
executing process on its behalf.

Internal communication is optimized to take advantage of a single address space,
as well it is an opportunity for the scheduler, depending on the type of communica-
tion, to block one process until the communication can be completed after which
both processes can proceed. For collocated processes, the scheduler follows a nat-
ural order where a send message schedules the corresponding receive process that
can continue to progress the message chain. The communication among collocated
processes involves a single memcpy, avoiding any intermediate system copies. Simi-
larly for external events, once a message is received and completed the correspond-
ing MPI process is scheduled to continue advancing the computation. As well, for
collectives such as barrier, that last collocated process completing the barrier can
gang-schedule all of the processes in the barrier since they can all proceed.

In many cases we have found that even a very basic round-robin (RR) sched-
uler which keeps all the processes on the run queue is adequate [9]. Because the
scheduling overhead is relatively small, as long as the collocated processes are
easy to keep busy, the RR scheduler works well. One more additional advan-
tage of the RR scheduler is that it is deterministic and gives more predictable
executions. This is one of the nice properties of introducing a scheduler over
preemptive threads (either pthreads or OS-threads) where the programmer has
less control on when processes are de-scheduled. The deterministic property of
RR has also proven useful as a tool for debugging programs.

It is not sufficient to have only RR since there are simple cases where RR
does extremely poorly. For example, consider the simple ring program, the for-
ward communication of messages works well when it is the same order as the
scheduling order, however, communication in the reverse direction is slow due to
re-scheduling delay of all of the processes on the run queue. This was our mo-
tivation for introducing a scheduling framework rather than one or more fixed
policies. The policy ultimately depends on the application where ideally pro-
cesses on the critical execution path are scheduled first. Finally, note that the
scheduling policy is local to an OS-process and does not have to be global.

One interesting problem that arises with the scheduler, that allows blocking
of MPI processes, is deadlock. Deadlock can occur, for instance, when all of the
collocated processes are blocked waiting for a external event. One alternative is
simply not to block all processes or to simply keep one or more processes on the
queue. Deciding on whether or not to block a process depending on the state of
other collocated processes is complicated. There are a large number of MPI calls
and different scenarios that would need to be considered and analyzed. However,
there is a simple very scalable solution to this problem.
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We introduced a progress coroutine in our runtime that comes into existence
the first time an MPI process blocks on a receive. Once created, the progress
coroutine remains on the run queue. When called, this coroutine executes the
progress-loop in the middleware and progresses pending incoming and outgoing
messages. Whenever there is a receive that could be matched by a message from
a remote process it ensures that we poll the external link for more data and on
arrival of such a message wakes up the blocked process. As well, as discussed
above, a clear-to-send (CTS) may be sent by the progress coroutine for a pre-
posted receive. A progress coroutine avoids the checking that would have been
necessary when blocking processes and also provides an easy way to measure the
idle time and “slackness” during runtime.

4 Programmability and Non-blocking Communication

As mentioned in Section 1, non-blocking communication adds to the program-
ming complexity of MPI programs. Consider the program in Listing 1.1 showing
a simple use of non-blocking communication, which tries to post as many mes-
sages as possible to keep the process busy.

int main ( int argc , char ∗argv [ ] )
{ . . .

MPI Irecv ( . . . , r e cvRequests ( 2 ) ) ;
do {

compute loca l ( . . . ) ;
MPI Waitany (2 , recvRequests , . . . , r e cvStatus ) ;
switch ( recvStatus−>tag ) {
case tag1 :

compute A ( ) ;
MPI Send ( . . . ) ;
MPI Irecv ( . . . , r e cvRequests ( 1 ) ) ;

case tag2 :
compute B ( ) ;
MPI Send ( . . . ) ;
MPI Irecv ( . . . , r e cvRequests ( 1 ) ) ;

}
}while ( . . . ) ;

. . .
}

Listing 1.1. Scheduling communication and computation by non-blocking operations

As previously described there are three main parts to the program: (a) allocating
and managing message request buffers, (b) checking for message completions and
then processing the messages, (c) a compute part that may or may not depend
on the messages send and received. What are complexities in the above listing:

(i) The compute and communication parts of the code are interleaved and the
programmer needs to balance the computation with the polling of the link
via the middleware.

(ii) The user needs to manage the request buffers for the multiple outstanding
messages. The programmer also needs to be aware of all the different types
of outstanding messages and how messages are matched. This often results
in the use of MPI ANY SOURCE and MPI ANY TAG.
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As shown in Listing 1.2 with FG-MPI we can re-organize the program into
three smaller processes: compute local(), process A() and process B(). The
FGmpiexec call binds the MPI process ranks to concurrent functions through a
user-specified binding func and initiates the runtime.

int main ( int argc , char ∗argv [ ] ){
FGmpiexec(&argc , &argv , &b ind ing func ) ;
return ( 0 ) ;

}
int proce ss A ( int argc , char∗∗ argv ){

do{
MPI Recv ( . . . , tag1 , . . . ) ;
compute A ( ) ;
MPI Send ( . . . ) ;

}while ( . . . ) ;
}
int proce ss B ( int argc , char∗∗ argv ){

do{
MPI Recv ( . . . , tag2 , . . . ) ;
compute B ( ) ;
MPI Send ( . . . ) ;

}while ( . . ) ;
}
int compute loca l ( int argc , char∗∗ argv ){

do{
. . .
i f ( . . . ) MPIX Yield ( ) ;

}while ( . . . ) ;
}

Listing 1.2. Defining MPI processes as concurrent functions all mapped to the same
OS-process. Each MPI process also calls MPI Init and MPI Finalize.

As opposed to Listing 1.1, there are no non-blocking requests and associated
structures in Listing 1.2 and no need to remember that the posted requests have
to be checked for completion. Listing 1.1 has requests that are global over the
entire program and no clear demarcation between different types of requests.
FG-MPI places all of corresponding computation and communication code per-
taining to one activity into one process. This makes it easier to read and easier
to change the code.

The purpose of the control loop in Listing 1.1 is to schedule different parts
of the code based on the message events from MPI Waitany(). In the FG-MPI
version of the code there is no MPI Waitany(). The control loop is now handled
by the FG-MPI scheduler rather than having to be hand-coded into the program.
In Listing 1.2, should process A() now require we receive two messages rather
than one, we only need to add another MPI Recv(), however, for Listing 1.1
there are questions as to whether we need to introduce another case and tag and
how it might be matched.

In both listings it is important that the compute local() code invoke the
progress engine sufficiently often to not unduly delay the remaining computation
and communication. In Listing 1.2, MPIX Yield() can be appropriately placed
when needed to provide an explicit de-scheduling point that automatically re-
sumes at the proper place. Changing the rate at which the network is polled in
Listing 1.1 requires reorganizing the computation, which is not as easy.
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Fig. 3. Performance comparison of non-blocking code using MPI Waitany with
functional-level concurrency in FG-MPI. Number of OS-Processes is same in both
cases. In FG-MPI, the MPI processes are evenly distributed across the OS-Processes.

Expressing additional concurrency in the program gives us the opportunity
to exploit it, however, it does require structuring the code and mapping MPI
processes to functions as we now have the MPMD (Multiple Program Multiple
Data) process model. We have two levels of mapping in FG-MPI. The first level
specifies how OS-processes are mapped to the cores and nodes and the number
of MPI processes mapped to each OS-process. This is done through an nfg

(number of f ine-grain) flag to the standard mpiexec command. The second level
defines MPI processes as functions and this is done through a call to FGmpiexec

in main(). Although we have an extra-level of mapping, this is outside of the
application code and gives us more flexibility in mapping to OS-processes and
nodes. As well, we can match the OS-processes to the cores to minimize the
effect of OS-noise and not rely on the OS scheduler, which introduces yet another
control loop that is unaware of the cooperative nature of MPI processes. Finally,
FG-MPI extends MPI so the programmer can manage as little or as much of the
non-blocking communication as they wish.

We created a benchmark program, similar to the codes in Listings 1.1 and 1.2,
to evaluate the overhead of introducing more MPI processes in FG-MPI. This
benchmark introduced asynchrony on a much larger scale than shown in the two
listings and the total amount of computation and communication increased with
the number of OS-processes. In Figure 3, we compare the FG-MPI code with
multiple MPI processes per OS-process with the non-blocking MPI code. Our
results show that even with the introduction of more than 24,000 fine-grain MPI
processes compared to 156 coarse-grain processes, the performance remains the
same. As we increase beyond this to more than 43,000 processes, there is a small
overhead of 8.7%. A real-world example from the CoSMoS [4] project that uses
FG-MPI and models emergent behaviour through thousands of MPI processes
was presented in past work [9].
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5 Conclusions

Our runtime scheduler, through direct integration in MPICH2, is reactive to
MPI events occurring inside the progress engine and its light-weight design en-
ables definition of MPI processes as functions that can be flexibly mapped to
OS-processes, cores and nodes. This relieves the programmer from scheduling
computation and communication inside the application and focus on “what”
needs to be scheduled rather than “how” to manage it.
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Abstract. With the increase of the number of nodes in clusters, the probability of
failures and unusual events increases. In this paper, we present checksum mech-
anisms to detect data corruption. We study the impact of checksums on network
communication performance and we propose a mechanism to amortize their cost
on InfiniBand. We have implemented our mechanisms in the NEWMADELEINE

communication library. Our evaluation shows that our mechanisms to ensure mes-
sage integrity do not impact noticeably the application performance, which is an
improvement over the state of the art MPI implementations.

Keywords: Checksum, Fault-Tolerance, High-performance networks, Infini-
Band.

1 Introduction

Since the development of large scale supercomputers have led to systems composed
of hundreds of thousands of components, the likelihood of hardware or software failure
becomes embarrassing. The design of future supercomputers foreshadows an increasing
number of components, decreasing the mean time between failure [4]. Multiple causes
of failures exists — software bugs, hardware failures, failed switch, electromagnetic
perturbation, faulty cable shielding — leading to various types of failures — crashed
nodes, lost packets, data corruption. Communication libraries implement a variety of
mechanisms to detect and survive these failures.

We focus in this paper on the detection of data corruption in MPI network commu-
nication through the use of checksums.

On their way from the sender memory through the receiver memory, messages may
be corrupted with some bits flipped. It may occur on the wire, in the NIC, or on the PCIe
bus. Most network hardware use checksums internally to ensure message integrity on
the wire, but corruption may occur at any other given point [7]. To ensure end-to-end
message integrity from sender memory through receiver memory, communication li-
braries use checksums: the sender computes a checksum of the message to be sent and
its headers and sends it with the message headers. The receiver computes the check-
sum on the received messages; if it doesn’t match the one received alongside the data,
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it means corruption occurred: either the data, the headers, or the checksum itself have
been corrupted during the transfer. In this case, the message is considered as lost and
the communication library retransmits the packet.

In this paper, we study the impact of checksuming on communication performance
and propose mechanisms to amortize their cost on InfiniBand.

The remainder of this paper is organized as follows: Section 2 presents related work.
In Section 3, we analyze the cost of checksum on communication performance. Sec-
tion 4 presents the technique we propose to amortize the cost of checksum computation
on InfiniBand. Results are discussed in Section 5 and we draw a conclusion in Section 6.

2 Related Work

Some works have focused on the effectiveness [13,12] of error detection for various
checksums algorithms, or on the performance [8,9] of checksum computation. To our
knowledge, these works have not been integrated into any MPI implementation.

Failure detection in MPI relies usually on heart beat technique [2] or on sender-
based logging [16] that consist in detecting remote activity through the network. Such
techniques detect node or link failures, not data corruption.

LA-MPI [11] and OPENMPI [15] ensure the integrity of messages by computing
checksums. This allows to detect corrupted fragments and to retransmit them, but this
technique suffers from a large overhead that significantly impacts the performance of
applications. Since LA-MPI has been superseded by OPENMPI, in this paper we com-
pare our approach against OPENMPI only.

We have implemented our proposed checksum mechanisms in NEWMADELEINE [1]
since it was more convenient for us to work in our own communication library. How-
ever, these mechanisms are intended to be generic and not specific to NEWMADELEINE,
thus they could probably be implemented in any other MPI implementation.

3 Checksum Cost Analysis

In this Section, we study the cost of various checksum algorithms and their impact on
communication performance.

Computing checksums has a cost that may lower the available bandwidth. The pre-
cise cost depends on the checksum algorithm, the compiler, and the CPU. In this paper,
we consider the following algorithms: sum– plain sum of 32 bits words; XOR– XOR
all 32 bits words; Adler-32, Fletcher-64 [9], Jenkins One-at-a-time [12], FNV1a [10],
Knuth hashing, MurmurHash2a, Paul Hsieh Superfast– a collection of well-known fast
hashing functions that can be used as error-detection (non-cryptographic) checksum;
CRC– 32 bits CRC computed with SSE 4.2 (non-accelerated CRC is too slow to be
considered here). Algorithms sum and XOR are given as performance reference only,
but are not suitable [13] to detect reliably errors on more than one bit; CRC is expected
to be slow but offers the best error detection; other algorithms are expected to be a good
compromise [8].
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Fig. 1. Bandwidth of some checksum algorithms on 32 kB blocks

Figure 1 shows the bandwidth of these checksums on our jack cluster, equipped
with dual-core Xeon X5650 at 2.67 GHz, on 32 kB blocks that fit the L1 cache. The
plain sum and XOR are the fastest, and will likely always be on any hardware. How-
ever, it cannot reliably detect corruption beyond a single bit. For a better error detection,
Fletcher-64, FNV1a, MurmurHash2a and SSE4.2 CRC are good candidates on this par-
ticular machine and compiler. They perform around 6 GB/s which makes 1.5 ns/word,
i.e. 4 cycles per 32-bit word.

We have observed a huge performance discrepancy from one CPU to another, and
from one compiler to another, e.g. Fletcher-64 is 60 % faster with icc than with clang
on Nehalem, and with gcc Fletcher-64 is slower than FNV1a on Nehalem but the
reverse is true on Dunnington. Therefore we use auto-tuning [3] to choose dynamically
the best performing checksum algorithm.

Even when selecting the fastest checksum algorithm, checksum computation has a
huge impact on network performance. Let L be the length of a given message, we
model the checksum time as a linear function in the form Tcsum(L) = L

Bcsum
, and the

network as Tnet(L) = λnet+
L

Bnet
with λnet and Bnet the latency and bandwidth of the

network. Both sender and receiver must compute the checksum to ensure data integrity.
For a naive approach — the sender computes the checksum, then sends data, then the
receiver computes the checksum — the total transfer time is: T (L) = L

Bcsum
+ λnet +

L
Bnet

+ L
Bcsum

. The apparent bandwidth converges asymptotically towards 1
1

Bnet
+ 2

Bcsum

On the jack cluster, we have Bnet = 3GB/s and Bcsum = 6GB/s for Fletcher-64,
thus the apparent bandwidth of the naive approach is 1.5GB/s which is 50 % of the
network bandwidth. We get results in this order of magnitude on most contemporary
hardware.

4 Amortizing the Cost of Checksum Computation

In this Section, we present our approach which consists in amortizing the cost of check-
sum computation by combining the checksum and the memory copy wherever it hap-
pens, and in overlapping computation and network transfer.

We have implemented our mechanisms in the NEWMADELEINE communication li-
brary, which decouples upper layers communication requests from network interface.
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It applies optimization strategies inbetween in order to use more efficiently the net-
work [1]. For instance, multiple small messages from the application may be aggregated
and sent as a single packet on the network. Another optimization consists in using si-
multaneously multiple links by splitting large messages. To survive network failures, a
sender-based logging mechanism [16] was implemented in NEWMADELEINE. When a
data corruption is detected, the message sent through the faulty link is retransmitted.

4.1 Combining Checksum and Memory Copy

On the jack machine used in the previous Section, the memory bandwidth for read-
ing is 9700 MB/s and the copy bandwidth is 4530 MB/s. Thus, the simplest checksum
algorithms are memory-bound and the others are in the same order of magnitude as
memory bandwidth. It is then expected that a large part of the cost of a naive approach
for checksums will be actually memory access. For multiplexing and to apply opti-
mization strategies, NEWMADELEINE always copies small packets. Even large packets
sent with rendez-vous over InfiniBand go through a super-pipelined protocol [6] using
a copy.

 0

 2

 4

 6

 8

 10

 12

 14

 16

16KB 64KB 256KB 1MB 4MB 16MB 64MB

B
a
n
d
w

id
th

 (
G

B
/s

)

Message size (bytes)

sum
xor

adler
fletcher
jenkins

knuth
fnv1a

murmurhash2a
hsieh

crc

(a) copy, then checksum

 0

 2

 4

 6

 8

 10

 12

 14

 16

16KB 64KB 256KB 1MB 4MB 16MB 64MB

B
a
n
d
w

id
th

 (
G

B
/s

)

Message size (bytes)

sum
fletcher
jenkins

knuth
fnv1a

crc

(b) combined checksum and copy

Fig. 2. Performance of copy and checksum on cluster jack

We propose to take benefit from these copies to amortize the cost of checksum, i.e. re-
duce the memory accesses needed for checksuming by combining copy and checksum,
and overlap memory accesses and checksum computation thanks to CPU being super-
scalar. We propose to compute the checksum on the fly at every place where data is
copied in NEWMADELEINE. Two approaches are possible: copy data then compute
checksum, relying on data having been fetched in cache by the copy; combine check-
sum computation and memory copy, i.e. for each word fetch from memory, compute
checksum, store at destination.

We have implemented the first approach with the full collection of checksum func-
tions; the benchmarks results are presented in Figure 2(a). We have implemented the
second approach with a selection of checksums; the benchmarks results are depicted in



High Performance Checksum Computation for Fault-Tolerant MPI over Infiniband 187

Figure 2(b). We observe that combining the checksum and the memory copy is always
beneficial, except for SSE 4.2 CRC where the checksum-only implementation is opti-
mized in assembly where the combined version is written in C with compiler intrinsics
for SSE. Once again, we rely on auto-tuning to dynamically decide which version to
use.

4.2 Checksums for Small Messages (Eager Send)

In NEWMADELEINE, small packets are sent with an eager protocol: data is copied to
add the headers and to apply optimization strategies such as aggregation of multiple
messages into one packet. To add checksuming, we simply change this copy into the
combined checksum and copy. On the receiver side, NEWMADELEINE receives packets
in its internals buffers, then parses headers, performs matching, and unpacks data to its
final destination in the user buffers. Here again we change the copy into a combined
checksum and copy.

Let λnet and Bnet be the latency and bandwidth of the network; Bcsum+copy the
bandwidth of the combined memory copy and checksum computation, then the total
transfer time for a message of length L sent with eager mode is T (L) = 2×L

Bcsum+copy
+

λnet +
L

Bnet

On the jack cluster, equipped with ConnectX2 InfiniBand QDR HCA, we have
λnet = 1.4μs; Bnet = 3GB/s; Bcsum+copy = 6GB/s. Then we can compute the
expected overhead of checksums to be 34 % on 4 kB messages. This cost is quite high,
but lower than the asymptotic cost since network latency cannot be neglected for small
packets. A pipeline to overlap checksum computation and network transfers wouldn’t
be beneficial since fragmentation overhead would not compensate for the checksum
cost on such small packets.

4.3 Checksums for Large Messages (rendez-vous)

Large messages are sent through a rendez-vous protocol in NEWMADELEINE. On In-
finiBand, we use a variable depth super-pipeline [6] to fetch data into registered mem-
ory. We propose to combine the checksum computation with the copy performed by
the super-pipeline on both sender and receiver sides. We expect it would amortize the
memory transfers needed for checksum, and overlap checksum computation and net-
work transfers.

As depicted in Figure 3, this protocol overlaps copy and RDMA. The chunk size
Cn = qn is growing from chunk to chunk, as a geometric series with a ratio q being
equal to the bandwidth ratio between network and copy. The size of the first chunkC0 is
determined so as its copy perfectly overlaps the rendez-vous round-trip ( C0

Bcopy
= 2λnet

computed by auto-tuning). A sub-blocking mechanism amortizes the cost of the copy
of the last chunk.

We have shown [6] that the total transfer time of the superpipeline protocol is:

Tsuperpipeline(L) =
b

Bcopy(L)
+ g × n+ λnet +

L

Bnet
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Fig. 3. Super-pipeline for memory copy: a pipeline with a variable chunk size

with the number of gaps:

n = logq

(
1 +

L

C0
(q − 1)

)

and L is the message length, λnet the network latency, Bnet the network bandwidth,
g the gap as in the LogP model [5], q the ratio of the finite geometric series of chunk
size, and b the sub-block size. The overhead of this protocol compared to the raw net-
work performance is comprised of: the copy of the first sub-block of size b; the n gaps
between packets.

The addition of checksum to the copy has an impact on the first term (copy of the
first sub-block) and on q. The impact on the first term consists in the checksum of a
4 KB sub-block, which is half a micro-second on our jack cluster with FNV1a. The
impact on q used as the base of a logarithm is limited, e.g. with the parameters of the
jack cluster for a 1 MB message, it adds an overhead of one gap, i.e. 300 ns. The total
overhead of checksuming on this example is less than 1 % according to the theoretical
model.

5 Evaluation

In this Section, we present the experimental results obtained by comparing the
checksum-enabled NEWMADELEINE with the original NEWMADELEINE and OPEN-
MPI (ob1 and csum). We used MPICH2-nmad [14] as an MPI interface over NEW-
MADELEINE, and compared against latest stable release OPENMPI 1.4.5. We evaluate
the raw overhead of checksums computation as well as their impact on NAS Parallel
Benchmarks.

The results we present were obtained on the jack and graphene clusters. Clus-
ter jack is equipped with dual-core Xeon X5650 at 2.67 GHz and ConnectX2 QDR
(MT26428) InfiniBand; compiler is icc 12.1. Cluster graphene features ConnectX
DDR (MT26418) InfiniBand cards on quad-core nodes equipped with Intel Xeon
X3440; compiler is gcc 4.4.

5.1 Raw Checksum Overhead

We used Netpipe to measure the raw MPI performance on InfiniBand on both clus-
ters. Bandwidth results for NEWMADELEINE with various checksum algorithms are
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Fig. 4. NEWMADELEINE bandwidth with various checksums algorithms

depicted in Figure 5.1. On both clusters, for small packets before the rendez-vous
threshold (16 KB), the impact of checksums is quite high, around 30 %, which is con-
sistent with our model in Section 4. For these packet sizes, there is no pipelining nor
any mechanism to amortize the cost of checksuming except the combination of copy
and checksum. The performance of these combined operations cannot be higher than
the peak checksum performance, which is much lower than copy for such packet size
that fit the cache.

For messages larger than 16 KB, the bandwidth overhead ranges from 3 % for 64 KB
to less than 0.5 % asymptotically for the fastest checksum algorithms. FNV1a is a
sensible default choice on most machines and compilers if auto-tuning has not been
performed yet, but auto-tuning may still improve performance by a few percents,
e.g. Fletcher is 2 % faster than FNV1a on cluster jack (but Fletcher is 40 % slower on
graphene).

We compared our checksum-enabled MPI implementation against OPENMPI. The
bandwidth results are depicted in Figure 5 and 6. On cluster jack (Figure 5), NEW-
MADELEINE and OPENMPI get roughly the same bandwidth without checksums.
When checksums are enabled, the bandwidth is lowered by 20 % for OPENMPI, and
by at most 3 % for NEWMADELEINE, thanks to the super-pipeline protocol. On clus-
ter graphene (Figure 6), OPENMPI is slightly faster than NEWMADELEINE when
checksums are disabled. When checksums are enabled, OPENMPI suffers a perfor-
mance drop of 60 % while the overhead is below 2 % for NEWMADELEINE.

5.2 NAS Parallel Benchmarks

We also run the NAS Parallel Benchmarks on the graphene cluster. Table 1 reports
results for class B on 16 nodes. We report raw performance results (median time from
10 runs) as well as time differences as percentage.

The results show that OPENMPI is slightly faster than MPICH2-nmad when check-
sums are disabled. This can be explained by NEWMADELEINE optimization strategies
causing a longer software stack, thus a higher latency, with no gain when there is a
single communication flow as in the NAS Parallel Benchmarks.
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Table 1. NAS results on cluster graphene

is.B.16 lu.B.16 ft.B.16 cg.B.16 mg.B.16
MPICH2-nmad (no checksum) 0.37 s 18.54 s 5.06 s 5.72 s 0.71 s

MPICH2-nmad FNV1a 0.37 s 18.57 s 5.05 s 5.69 s 0.72 s
OPENMPI ob1 0.35 s 17.89 s 4.89 s 5.60 s 0.71 s

OPENMPI csum 0.43 s 19.30 s 5.45 s 6.59 s 0.79 s
OPENMPI csum / OPENMPI ob1 +22.86% +7.88% +11.45% +17.68% +11.27%

MPICH2-nmad FNV1a / MPICH2-nmad no checksum +0% +0.16% -0.20% -0.52% +1.41%
MPICH2-nmad FNV1a / OPENMPI csum -13.95% -3.78% -7.34% -13.66% -8.86%
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When checksums are enabled, OPENMPI suffers a performance penalty from 7 % to
more than 22 %. On the other hand, enabling checksums in MPICH2-nmad (FNV1a is
selected by auto-tuning here) has a negligible impact on performance.

When comparing both checksum-enabled OPENMPI and MPICH2-nmad, MPICH2-
nmad is faster by 3 % to 14 %. This demonstrates that our approach to amortize the cost
of checksum computation is competitive.

6 Conclusion and Future Work

The advent of large scale supercomputers composed of hundreds of thousands of com-
ponents have raised reliability issues. Beside node failures, the interconnection system
may suffer from errors leading to data corruption. The classical solution to detect such
errors is the use of checksums, which have an impact on network performance.

In this paper, we have proposed a mechanism that amortizes the cost of checksum
computation in MPI implementations for InfiniBand. We have implemented and eval-
uated this mechanism. Our evaluation shows that it causes a performance degradation
of at most a few percents in the worst case for micro-benchmarks, and the difference is
negligible on NAS benchmarks. This is a huge improvement over the state of the art.

In the future, we plan to study the integration of these techniques in upper layers of
the software stack. For instance, parallel file systems – such as PVFS – that need reliable
communication subsystems may also benefit from the message integrity mechanism we
proposed.
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Abstract. As the scale of computing platforms becomes increasingly
extreme, the requirements for application fault tolerance are increasing
as well. Techniques to address this problem by improving the resilience
of algorithms have been developed, but they currently receive no support
from the programming model, and without such support, they are bound
to fail. This paper discusses the failure-free overhead and recovery impact
aspects of the User-Level Failure Mitigation proposal presented in the
MPI Forum. Experiments demonstrate that fault-aware MPI has little
or no impact on performance for a range of applications, and produces
satisfactory recovery times when there are failures.

1 Introduction

In a constant effort to deliver steady performance improvements, the size of High
Performance Computing (HPC) systems, as observed by the Top 500 ranking1,
has grown tremendously over the last decade. This trend is unlikely to stop, as
outlined by the International Exascale Software Project (IESP) [9] projection
of the Exaflop platform, a milestone that should be reached as soon as 2019.
Based on the foreseeable limits of the infrastructure costs, an Exaflop capable
machine is expected to be built from gigahertz processing cores, with thousands
of cores per computing node, thus requiring millions of computing cores to reach
the mark. Even under the most optimistic assumptions about the individual
components’ reliability, probabilistic amplification from using millions of nodes
has a dramatic impact on the Mean Time Between Failure (MTBF) of the entire
platform. The probability of a failure happening during the next hour on an
Exascale platform is disturbingly close to 1; thereby many computing nodes will
inevitably fail during the execution of an application [7]. It is even more alarm-
ing that most popular fault tolerant approaches see their efficiency plummet at
Exascale [3,4], calling for application centric failure mitigation strategies [15].

The prevalence of distributed memory machines promotes the use of the
message passing model. An extensive and varied spectrum of domain science

1 http://www.top500.org/
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applications depend on libraries compliant with the MPI standard2. Although
unconventional programming paradigms are emerging [18,20], most delegate
their data movements to MPI and it is widely acknowledged that MPI is here to
stay. However, MPI has to evolve to effectively support the demanding require-
ments imposed by novel architectures, programing approaches, and dynamic
runtime systems. In particular, its support for fault tolerance has always been
inadequate [13]. To address the growing interest in fault-aware MPI, a work-
ing group has been formed in the context of the MPI Forum. Their User-Level
Failure Mitigation (ULFM) [1] proposal features the basic interface and new
semantics to enable applications and libraries to repair the state of MPI and
tolerate failures. The purpose of this paper is to evaluate the tradeoffs that are
needed for the integration of this fault mitigation specification and its impact (or
lack thereof) on MPI performance and scalability. The contributions of this work
are to evaluate the difficulties faced by MPI implementors, and demonstrate the
feasibility of a low-impact implementation on the failure-free performance as well
as an estimate of the recovery time of the MPI state after a failure.

The remainder of this paper is organized as follows: the next section intro-
duces a short history of fault tolerance in MPI; Section 3 presents the constructs
introduced by the proposal; Section 4 discusses the challenges faced by MPI im-
plementors; then the performance impact of the implementation in Open MPI
is discussed in Section 5 before we conclude in Section 6.

2 Related Work

Efforts toward fault tolerance in MPI have previously been attempted. Auto-
matic fault tolerance [5,6] is a compelling approach for users, as failures are
completely masked and handled internally by the MPI library, which requires
no new interfaces to MPI or application code changes. Unfortunately, many re-
cent studies point out that automatic approaches, either based on checkpoints
or replication, will exhibit poor efficiency on Exaflop platforms [3,4].

Application Based Fault Tolerance (ABFT) [8,10,15] is another approach that
promises better scalability, at the cost of significant algorithm and application
code changes. Despite some limited successes [2,13], MPI interfaces need to be
extended to effectively support ABFT. The most notable past effort is FT-
MPI [11]. Several recovery modes were available to the user. In the Blank mode,
failed processes were replaced by MPI_PROC_NULL; messages to and from them
were silently ignored and collective algorithms had to be significantly modified.
In the Replace mode, faulty processes were replaced with new processes. In all
cases, only MPI_COMM_WORLDwould be repaired and the application was in charge
of rebuilding any other communicators, leading to difficult library composition.
No standardization effort was pursued, and it was mostly used as a playground
for understanding the fundamental concepts.

A more recent effort to introduce failure handling mechanisms was the Run-
Through Stabilization proposal [16]. This proposal introduced many new

2 http://mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
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constructs for MPI including the ability to “validate” communicators as a way
of marking failure as recognized and allowing the application to continue us-
ing the communicator. It included other new ideas such as Failure Handlers for
uniform failure notification. Because of the implementation complexity imposed
by resuming operations on failed communicators, this proposal was eventually
unsuccessful in its introduction to the MPI Standard.

3 New MPI Constructs

This section succinctly presents the prominent interfaces proposed to enable
effective support of User-Level Failure Mitigation for MPI applications. The
interested reader can refer to the technical document for a complete description
of the interfaces [1] and to the amended standard draft3.

Designing the mechanism that users would use to manage failures was built
around three concepts: 1) simplicity, the API should be easy to understand and
use in most common scenarios; 2) flexibility, the API should allow varied fault
tolerant models to be built as external libraries and; 3) absence of deadlock, no
MPI call (point-to-point or collective) can block indefinitely after a failure, but
must either succeed or raise an MPI error. Two major pitfalls must be avoided:
jitter prone, permanent monitoring of the health of peers a process is not actively
communicating with, and expensive consensus required for returning consistent
errors at all ranks. The operative principle is then that errors (MPI_ERR_PROC_-
FAILED) are not indicative of the return status on remote processes, but are
raised only at a particular rank, when a particular operation cannot complete
because a participating peer has failed. The following functions provide the basic
blocks for maintaining consistency and enabling recovery of the state of MPI.

MPI_COMM_FAILURE_ACK & MPI_COMM_FAILURE_GET_ACKED: These two calls al-
low the application to determine which processes within a communicator have
failed. The acknowledgement function serves to mark a point in time which will
be used as a reference. The function to get the acknowledged failures refers back
to this reference point and returns the group of processes which were locally
known to have failed. After acknowledging failures, the application can resume
MPI_ANY_SOURCE point-to-point operations between non-failed processes, but op-
erations involving failed processes (such as collective operations) will likely con-
tinue to raise errors.

MPI_COMM_REVOKE: Because failure detection is not global to the communicator,
some processes may raise an error for an operation, while others do not. This
inconsistency in error reporting may result in some processes continuing their
normal, failure-free execution path, while others have diverged to the recovery
execution path. As an example, if a process, unaware of the failure, posts a recep-
tion from another process that has switched to the recovery path, the matching
send will never be posted. Yet no failed process participates in the operation

3 http://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323

http://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323
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and it should not raise an error. The receive operation is effectively deadlocked.
The revoke operation provides a mechanism for the application to resolve such
situations before entering the recovery path. A revoked communicator becomes
improper for further communication, and all future or pending communications
on this communicator will be interrupted and completed with the new error code
MPI_ERR_REVOKED. It is notable that although this operation is not collective (a
process can enter it alone), it affects remote ranks without a matching call.

MPI_COMM_SHRINK: The shrink operation allows the application to create a new
communicator by eliminating all failed processes from a revoked communicator.
The operation is collective and performs a consensus algorithm to ensure that
all participating processes complete the operation with equivalent groups in the
new communicator. This function cannot return an error due to process failure.
Instead, such errors are absorbed as part of the consensus algorithms and will
be excluded from the resulting communicator.

MPI_COMM_AGREE: This operation provides an agreement algorithm which can
be used to determine a consistent state between processes when such strong
consistency is necessary. The function is collective and forms an agreement over
a boolean value, even when failures have happened or the communicator has
been revoked. The agreement can be used to resolve a number of consistency
issues after a failure, such as uniform completion of an algorithmic phase or
collective operation, or as a key building block for strongly consistent failure
handling approaches (such as transactions).

4 Implementation Issues

In this section, we detail the challenges and advantages of the aforementioned
MPI constructs. They unfold along three main axes, the amount of supplemen-
tary state and memory to be kept within the MPI library, the additional op-
erations to be executed on the critical path of communication routines, and
the algorithmic cost of failure recovery routines. We discuss, in general, options
available to implementors, and highlight issues with insight from a prototype
implementation in Open MPI [12].

4.1 Impact on Communication Routines

Memory: Because a communicator cannot be repaired, tracking the state of
failed processes imposes a minimal memory overhead. From a practical perspec-
tive each node needs a global list of detected failures, shared by all communi-
cators; its size grows linearly with the number of failures, and it is empty as
long as no failures occur. Within each communicator, the supplementary state
is limited to two values: whether the communicator is revoked or not, and an
index in the global list of failures denoting the last acknowledged failure (with
MPI_COMM_FAILURE_ACK). For efficiency reasons, an implementation may decide
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to cache the fact that some failures have happened in the communicator so that
collective operations and MPI_ANY_SOURCE receptions can bail out quickly. Over-
all, the supplementary memory consumption from fault tolerant constructs is
small, independent of the total number of nodes, and unlikely to affect the cache
and TLB hit rates.

Conditionals: Another concern is the number of supplementary conditions on
the latency critical path. Indeed, most completion operations require a supple-
mentary conditional statement to handle the case where the underlying commu-
nication context has been revoked. However, the prediction branching logic of
the processor can be hinted to favor the failure free outcome, resulting in a single
load of a cached value and a single, mostly well-predicted, branching instruction,
unlikely to affect the instruction pipeline. It is notable that non-blocking opera-
tions raise errors related to process failure only during the completion step, and
thus do not need to check for revocation before the latency critical section.

Matching Logic: MPI_COMM_REVOKE does not have a matching call on other pro-
cesses on which it has an effect. As such, it might add detrimental complexity
to the matching logic. However, any MPI implementation needs to handle un-
expected messages. The order of revocation message delivery is loose enough
that the handling of revocation notices can be integrated within the existing
unexpected message matching logic. In our implementation in Open MPI, we
leverage the active message low level transport layer to introduce revocation as
a new active message tag, without a single change to the matching logic.

Collective Operations: A typical MPI implementation supports a large number of
collective algorithms, which are dynamically selected depending on criteria such
as communicator or message size and hardware topology. The loose requirements
of the proposal concerning error reporting of process failures in collective oper-
ations limits the impact it has on collective operations. Typically, the collective
communication algorithms and selection logic are left unchanged. The only new
requirement is that failures happening at any rank of the communicator cause all
processes to exit the collective (successfully for some, with an error for others).
Due to the underlying loosely-connected topologies used by some algorithms, a
point-to-point based implementation of a collective communication is unlikely
to detect all process failures. Fortunately, a practical implementation exists that
does not require modifying any of the collective operations: when a rank raises
an error because of a process failure, it can revoke an internal, temporary com-
munication context associated with the collective operation. As the revocation
notice propagates on the internal communicator, it interrupts the point-to-point
operations of the collective. An error code is returned to the high level MPI
wrapper, which in turn raises the appropriate error on the user’s communicator.

4.2 Recovery Routines

Some of the recovery routines described in Section 3 are unique in their ability
to deliver a valid result despite the occurrence of failures. This specification of
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correct behavior across failures calls for resilient, more complex algorithms. In
most cases, these functions are intended to be called sparingly by users, only
after actual failures have happened, as a means of recovering a consistent state
across all processes. The remainder of this section describes the algorithms that
can be used to deliver this specification and their cost.

Agreement: The agreement can be conceptualized as a failure-resilient reduc-
tion on a boolean value. Many agreement algorithms have been proposed in the
literature; the log-scaling two-phase consensus algorithm used by the ULFM pro-
totype is one of many possible implementations of MPI_COMM_AGREE operation
based upon prior work in the field. Specifically, this algorithm is a variation of
the multi-level two-phase commit algorithms [19]. The algorithm first performs
a reduction of the input values to an elected coordinator in the communica-
tor. The coordinator then makes a decision on the output value and broadcasts
that value back to all of the alive processes in the communicator. The complex-
ity of the agreement algorithm appears when adapting to an emerging process
failure of the coordinator and/or participants. A more extensive discussion of
the algorithmic complexity has been published by Hursey, et.al. [17]. The algo-
rithmic complexity of this implementation is O(log(n)) for the failure free case,
matching that of an MPI_ALLREDUCE operation over the alive processes in the
communicator.

Revoke: Although the revoke operation is not collective, the revocation notifica-
tion needs to be propagated to all alive processes in the specified communicator,
even when new failures happen during the revoke propagation. These require-
ments are not without recalling those from the reliable broadcast [14]. Among the
four defining qualities of a reliable broadcast (Termination, Validity, Integrity,
Agreement), the termination and integrity criteria can be relaxed in the context
of the revoke algorithm. If a failure during the Revoke algorithm kills the initia-
tor as well as all the already notified processes, the Revoke notification is indeed
lost, but the observed behavior, from the view of the application, is indiscernible
from a failure at the initiator before the propagation started. As the algorithm
still ensures agreement, there are no opportunities for inconsistent views.

In the ULFM implementation, we used a naive flooding algorithm for sim-
plicity. The initiator marks the communicator as revoked and sends a Revoke
message to every processes in the groups (local and remote) of the communicator.
Upon reception of a revoke message, if the communicator is not already revoked,
it is revoked and the process acts as a new initiator. Better algorithms exist,
but even this naive approach provides reasonable performance (see Section 5)
considering it is called only in response to an actual failure.

Shrink: The Shrink operation is, algorithmically, an agreement on which the
consensus is done on the group of failed processes. Hence, the two operations
have the same algorithmic complexity. Indeed, in the prototype implementation,
MPI_COMM_AGREE and MPI_COMM_SHRINK share the same internal implementation
of the agreement.
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5 Performance Analysis

The following analysis used a prototype of the ULFM proposal based on the
development trunk of Open MPI [12] (r26237). The test results presented were
gathered from the Smoky system at Oak Ridge National Laboratory. Each node
contains four quad-core 2.0 GHz AMD Opteron processors with 2 GB of memory
per compute core. Compute nodes are connected with gigabit Ethernet and
InfiniBand. Some shared-memory benchmarks were conducted on Romulus, a
6× 8-core AMD Opteron 6180 SE with 256GB of memory (32GB per socket) at
the University of Tennessee.

The NetPIPE benchmark (v3.7) was used to assess the 1-byte latency and
bandwidth impact of the modifications necessary for the ULFM support in Open
MPI. We compare the vanilla version of Open MPI (r26237) with the ULFM
enabled version on Smoky. Table 1 highlights the fact that the differences in
performance are well below the noise limit, and that the standard deviation is
negligible proving the performance stability and lack of impact.

Table 1. NetPIPE results on Smoky

1-byte Latency (microseconds) (cache hot)
Interconnect Vanilla Std. Dev. Enabled Std. Dev. Difference
Shared Memory 0.8008 0.0093 0.8016 0.0161 0.0008
TCP 10.2564 0.0946 10.2776 0.1065 0.0212
OpenIB 4.9637 0.0018 4.9650 0.0022 0.0013

Bandwidth (Mbps) (cache hot)
Interconnect Vanilla Std. Dev. Enabled Std. Dev. Difference
Shared Memory 10,625.92 23.46 10,602.68 30.73 -23.24
TCP 6,311.38 14.42 6,302.75 10.72 -8.63
OpenIB 9,688.85 3.29 9,689.13 3.77 0.28

The impact on shared memory systems, which are sensitive even to small mod-
ifications of the MPI library, has been further assessed on the Romulus machine
– a large shared memory machine – using the IMB benchmark suite (v3.2.3).
As shown in Figure 1, the duration difference of all the benchmarks (point-to-
point and collective) remains below 5%, thus within the standard deviation of
the implementation on that machine.

To measure the impact of the prototype on a real application, we used the
Sequoia AMG benchmark4. This MPI intensive benchmark is an Algebraic Mult-
Grid (AMG) linear system solver for unstructured mesh physics. A weak scaling
study was conducted up to 512 processes following the problem Set 5. In Fig-
ure 2, we compare the time slicing of three main phases (Solve, Setup, and
SStruct) of the benchmark, with, side by side, the vanilla version of the Open
MPI implementation, and the ULFM enabled one. The application itself is not
fault tolerant and does not use the features proposed in ULFM. The goal of
this benchmark is to demonstrate that a careful implementation of the proposed
semantic does not impact the performance of the MPI implementation, and ul-
timately leaves the behavior and performance of legacy applications unchanged.
The results show that the performance difference is negligible.

4 https://asc.llnl.gov/sequoia/benchmarks/#amg

https://asc.llnl.gov/sequoia/benchmarks/#amg
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Fig. 1. The Intel MPI Benchmarks: relative difference between ULFM and the vanilla
Open MPI on shared memory (Romulus). Standard deviation ≈5% on 1,000 runs.
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To assess the overheads of recovery constructs, we developed a synthetic
benchmark that mimics the behavior of a typical fixed-size tightly-coupled fault-
tolerant application. Unlike a normal application it performs an infinite loop,
where each iteration contains a failure and the corresponding recovery procedure.
Each iteration consists of 5 phases: in the first phase (Detection), all processes
but a designated victim enter a Barrier on the intracommunicator. The victim
dies, and the failure detection mechanism makes all surviving processes exit the
Barrier, some with an error code. In Phase 2 (Revoke), the surviving processes
that detected a process-failure related error during the previous phase invoke the
new construct MPI_COMM_REVOKE. Then they proceed to Phase 3 (Shrink) where
the intracommunicator is shrunk using MPI_COMM_SHRINK. The two other phases
serve to repair a full-size intracommunicator using spawn and intercommunicator
merge operations to allow the benchmark to proceed to the next round.
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In Figure 3, we present the timing of each phase, averaged upon 50 iterations
of the benchmark loop, for a varying number of processes on the Smoky ma-
chine. We focus on the three points related to ULFM: failure detection, revoke
and shrink. The failure detection is mildly impacted by the scale. In the proto-
type implementation, the detection happens at two levels, either in the runtime
system or in the MPI library (when it occurs on an active link). Between the two
detectors, all ranks get notified within 30ms of the failure (this compares to the
1s timeout at the link level). Although the revoke call will inject a linear number
of messages (at each rank) in the network to implement the level of reliability
required for this operation, the duration of this call itself is under 50μs and is
not visible in the figure. The network is disturbed for a longer period, due to the
processing of the messages, but this disturbance will appear in the network only
after a failure occurred. The last call shown in the figure is the shrink operation.
Although its duration increases linearly with the number of processes (the figure
has a logarithmic scale on the x-axis), this cost must only be paid after a failure,
in order to continue using collective operations. In its current implementation,
shrink requires an agreement, the allocation of a new communicator identifier,
and the creation of the communicator (with MPI_COMM_SPLIT). Most of the time
spent in the shrink operation is not in the agreement (which scales logarithmi-
cally), but in the underlying implementation of the communicator creation.

6 Conclusion

Many responsible voices agree that sharp increases in the volatility of future,
extreme scale computing platforms are likely to imperil our ability to use them
for advanced applications that deliver meaningful scientific results and maximize
research productivity. Moreover, it is clear that any techniques developed to
address this volatility must be supported in the programming and execution
model. Since MPI is currently, and will likely continue to be – in the medium-
term – both the de-facto programming model for distributed applications and the
default execution model for large scale platforms running at the bleeding edge,
MPI is the place in the software infrastructure where semantic and run-time
support for application faults needs to be provided.

The ULFM proposal is a careful but important step forward toward accom-
plishing this goal. It not only delivers support for a number of new and innovative
resilience techniques, it provides this support through a simple, straightforward
and familiar API that requires minimal modifications of the underlying MPI
implementation. Moreover, it is backward compatible with previous versions of
the MPI standard, so that non fault-tolerant applications (legacy or otherwise)
are supported without any changes to the code. Perhaps most significantly, ap-
plications can use ULFM-enabled MPI without experiencing any degradation in
their performance, as we demonstrate in this paper.

Several applications, ranging from Master-Worker to tightly coupled, are cur-
rently being refactored to take advantage of the semantics in this proposal. Be-
yond applications, the expressivity of this proposal is investigated in the context
of providing extended fault tolerance models as convenience, portable libraries.
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Abstract. We study different approaches to implement an optimal, sta-
ble two-way merge algorithm for distributed-memory parallel architec-
tures. The algorithm takes as input two ordered sequences, which are
distributed blockwise across all available processes such that each pro-
cess owns a block of elements of each sequence. The task for each process
is to produce an ordered block of elements from the stable merge of the
input sequences. We present an optimal, perfectly load-balanced, stable
parallel algorithm that accomplishes this task. We describe three differ-
ent implementation alternatives using one-sided communication of the
Message-Passing Interface (MPI). Further, we discuss problematic issues
with the current MPI 2.2 one-sided interface and enabling features that
may be found in future versions of the MPI standard. Experimental re-
sults on a large IBM Blue Gene/P supercomputer show perfect scalability
of our implementation: with a fixed input size per process the running
time remains (almost) constant with increasing number of processes, and
with a fixed total problem size our implementation improves the time to
solution for up to 32,768 MPI processes.

1 Introduction

Merging of ordered sequences is a fundamental operation in many applications
and a key ingredient for many parallel, notably sorting algorithms. As such
it has been studied intensively. However, most parallel merging algorithms are
designed for shared-memory architectures [1–3, 5, 6, 10, 11], and only few algo-
rithms have been described [4] and fewer implemented for distributed-memory
architectures. For instance, the latter BSP algorithm builds on shared-memory
algorithms that are both unnecessarily complicated and potentially inefficient,
in terms of both non-dominant splitting overhead and achieved load balance.
Although this algorithm could be implemented in MPI, we are not aware of any
such implementation. In this paper we describe an algorithm that is both sim-
pler to implement and better in terms of load balance and overhead. Although
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similar in nature to the algorithm presented in [2], our algorithm was discov-
ered independently. A specific improvement is that our algorithm is stable, a
desirable property for inputs with duplicate elements. The algorithm employs
a logarithmic time preprocessing step, very similar to binary search, which can
be naturally expressed with one-sided communication. The specific contribution
for the MPI community is that we analyze and experimentally compare imple-
mentation alternatives with the one-sided communication model of MPI 2.2 [7];
and show that some of the resulting problems can be resolved with the one-sided
model proposed for the upcoming MPI 3.0 standard (see www.mpi-forum.org).

2 Distributed, Stable Two-Way Merging

Let stable merge(A,B) denote the stable merge of two ordered arrays A and
B. Stability means that elements of A that are equal to elements of B are
placed before the elements of B in the output, and that the relative order of
any sequence of equal elements in either A or B is preserved in the output. The
distributed, stable merging problem is the following. The two ordered arrays
A and B with m and n elements, respectively, are distributed blockwise across
the available p processes, such that process r for 0 ≤ r < p has a block of
mr consecutive elements A[sAr , . . . , s

A
r +mr − 1] and a block of nr consecutive

elements B[sBr , . . . , s
B
r + nr − 1] with start indices sAr =

∑r−1
i=0 mi and sBr =∑r−1

i=0 ni, respectively. Each process r produces a block C[sAr +sBr , . . . , s
A
r +sBr +

mr + nr − 1] of consecutive elements of C = stable merge(A,B).
All parallel merge algorithms divide the input sequences into smaller, dis-

joint, consecutive sequences, that can be merged pairwise in parallel into the
corresponding positions of the output array. Our algorithm accomplishes this
by using the following idea: given an index i (say the start index sAr + sBr in
C for process r) in the output array C, determine the two indices j and k in
the input arrays A and B, such that stably merging the prefixes A[0, . . . , j − 1]
and B[0, . . . , k − 1] will produce exactly the prefix C[0, . . . , i − 1] of the stably
merged result C = stable merge(A,B). We call j and k the co-ranks of i. Put
differently, j and k index the first elements of A and B that are not among the
first i elements of the stably merged output C. For any process r the co-ranks
of the start indices ir = sAr + sBr and ir+1 = sAr+1 + sBr+1 will determine exactly
the blocks of A and B needed to produce the output sequence of C for process
r. Based on these co-ranks, process r can also determine from which processes
to get the input blocks, and perform a local merge on them to produce the final
result. All that is needed is an efficient algorithm for computing the co-ranks for
any given index i in C. We present and discuss such an algorithm below.

The sequential co-ranking algorithm is given as a C program fragment in
Figure 1. It maintains the invariant that i = j + k. For both j and k indices
lower bound indices are also maintained. For any given input index i with 0 ≤
i < m + n it chooses the largest possible j index in A, and starts out with
the assumption that A[j − 1] ≤ B[k], meaning that all elements of A up to j
have to come before the B elements in stable merge(A,B). If this is not the case,
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// initialize start indices, invariant i = j+k, j as large as possible

j = min(i,m); k = i-j; j_low = max(0,i-n); // k_low set in first iteration

active = 1;

do {

// converge indices to the co-ranks

if (j>0&&k<n&&A[j-1]>B[k]) {

delta = (1+j-j_low)/2;

k_low = k;

j -= delta; k += delta;

} else if (k>0&&j<m&&B[k-1]>=A[j]) {

delta = (1+k-k_low)/2;

j_low = j;

k -= delta; j += delta;

} else active = 0; // co-ranks found

} while (active);

Fig. 1. Algorithm to find the co-ranks j and k for an index i in the output array C

the index j in A is decreased by halving the interval between j and its lower
index j low. Should it turn out that B[k − 1] ≥ A[j] then instead the k index
in B is decreased. To maintain the invariant, whenever either index is halved,
the other index is increased by the same amount. The lower bound indices are
chosen such that the array bounds m and n cannot be exceeded when an index
is increased. Note that the lower index k low for k does not need to be initialized
separately, since at the beginning only the first if condition may be true, which
will cause this index to be initialized properly.

Analysis shows that the algorithm takes at most �log2(min(m,n))� + 1 it-
erations, since the value delta is halved in each iteration, regardless of which
branch is taken, and delta is initially at most min(m,n). For brevity, we omit
the proof that the co-ranks indeed correspond to the indices for the prefixes
needed to produce a stable merge here, although it is not difficult to see.

The distributed version of the algorithm has the input arrays A and B dis-
tributed over all processes. The accesses to the array fields therefore potentially
entail remote accesses to the memory of other processes. The fully distributed,
stable merge algorithm for each process r can be stated as follows:

1. Let ir = sAr + sBr be the start index for process r in the output array C.
Compute the co-ranks jr and kr via a distributed version of Algorithm 1.

2. Get the co-ranks jr+1 and kr+1 from process r+1 (the last process r = p−1
sets jr+1 = jr +mr = m and kr+1 = kr + nr = n).

3. Get A[jr . . . jr+1−1] and B[kr . . . kr+1−1] from the processes that own these
array blocks via communication.

4. Locally compute stable merge(A[jr . . . jr+1−1], B[kr . . . kr+1−1]) to produce
the final result C[ir . . . ir+1 − 1].

Theorem 1. Let mr+nr be the maximum number of elements for some process.
The above algorithm merges two sequences in time O(log(min(m,n))+mr+nr).



Efficient MPI Implementation of a Parallel, Stable Merge Algorithm 207

Proof. We assume the co-ranking algorithm used in Step 1 is correct. It com-
pletes in O(log(min(m,n)) iterations with at most 4 single-element remote mem-
ory accesses per iteration. Step 2 requires a communication of only two values.
The data exchange in step 3 communicates a total volume of mk +nk elements.
With a balanced distribution of the arrays, each array block A[jr , . . . , jr+1 − 1]
spans a constant number of processes, so getting the block takes a constant num-
ber of communication steps with a total volume of mk + nk elements. The local
stable merge in Step 4 takes O(mk + nk) operations. In total, our distributed
merge algorithm therefore completes in time O(log(min(m,n)) +mr + nr). ��
The proof assumes that any concurrent read accesses that may occur during
Step 1 and Step 3 can be handled efficiently.

3 Implementation Alternatives

The distributed merge algorithm has a straight-forward implementation with
any communication interface that supports one-sided communication. Indeed,
the MPI 2.2 one-sided communication model [7, Chapter 11] should in princi-
ple enable an efficient, highly portable implementation. It offers different im-
plementation alternatives, which we evaluate for our algorithm. The algorithm
consists of two main communication phases: first, the co-ranking algorithm re-
quires O(log(min(m,n))) potentially remote single-word accesses per process.
The binary search like pattern is data dependent, therefore irregular, and in
each iteration only the source process knows which data elements to assess on
which processes. This phase is thus a paradigmatic case for one-sided communi-
cation. We note that a standard binary search follows much the same pattern,
which makes our implementation alternatives also relevant for distributed binary
searches in general. During the other main communication phase in Step 3, each
process copies the array blocks needed for the local merge. This step can also be
expressed conveniently with one-sided communication.

For the implementation alternatives that use the MPI 2.2 one-sided model,
we assume that the input arrays A and B are exposed in (two disjoint) com-
munication windows. The alternatives differ in how accesses to the windows are
synchronized. We assume that for any global array index i each process r can
efficiently (that is, in constant time) compute both: the rank of the target pro-
cess that owns the corresponding block of A and B, and the local index in the
block. This can easily be done for regular distributions of the A and B arrays.
Note, however that the correctness of our implementations does not require any
specific distribution. Each iteration in Step 1 performs up to four MPI Get oper-
ations, namely to access array elements A[j−1], B[k] and A[j], B[k−1]. This can
be optimized further by aggregating two or more accesses, if they are located
on the same process. For ease of exposition, we do not discuss such (minor)
improvements.
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3.1 Active Target Synchronization with an Upper Bound of Fences

The first implementation variant uses active target synchronization via a col-
lective fence operations. Each iteration of Algorithm 1 becomes a global access
epoch, which is surrounded by MPI Win fence for each window. In an epoch, each
process performs up to four remote memory accesses with MPI Get. The actual
number of iterations that is needed to determine the co-ranks is data-dependent.
Therefore, the processes do not necessarily perform the same number of itera-
tions. This is a problem because the collective MPI Win fence operation must
be called by all processes. One solution is shown in Algorithm 2: it imposes a
worst-case upper bound on the number of epochs. Processes that complete the
co-ranking procedure early, perform empty epochs to keep in sync with the re-
maining, potentially still active, processes. An upper bound on the number of
iterations is �log2(min(m,n))�+ 1.

j = min(i,m); k = i-j; j_low = max(0,i-n);

upper = ceil(log2(min(m,n)))+1; active = 1;

do {

MPI_Win_fence(MODE_NOPUT|MODE_NOPRECEDE); // (1) start access epoch

// on both A and B window (not shown)

if (j>0) a1=GET(A[j-1]); if (k<n) b1=GET(B[k]);

if (k>0) b2=GET(B[k-1]); if (j<m) a2=GET(A[j]);

MPI_Win_fence(MODE_NOSTORE|MODE_NOSUCCEED); // (2) end access epoch

if (j>0&&k<n&&a1>b1) {

delta = (1+j-j_low)/2;

k_low = k;

j -= delta; k += delta;

} else if (k>0&&j<m&&b2>=a2) {

delta = (1+k-k_low)/2;

j_low = j;

k -= delta; j += delta;

} else active = 0;

upper--;

} while (active);

// execute epochs until upper bound is reached

while (upper-- > 0) {

MPI_Win_fence(MODE_NOPUT|MODE_NOPRECEDE); // mimic (1)

MPI_Win_fence(MODE_NOSTORE|MODE_NOSUCCEED); // mimic (2)

}

Fig. 2. Co-ranking using collective fences and an upper bound on number of iterations

The GET functionality determines both the target process and the local in-
dex on that process for a given global index. It calls MPI Get to remotely ac-
cess this element. Since all (local and remote) accesses to the input arrays are
read-only, we use the MPI assertions MPI MODE NOPUT and MPI MODE NOSTORE as
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optimization hints to the MPI library. The additional MPI MODE NOPRECEDE and
MPI MODE NOSUCCEED assertions indicate that there is no active epoch before the
opening and after the closing fence. An optimization not considered here would
use only a single fence between iterations, but the last assertion pair could be
expected to ensure this behavior. With the Blue Gene/P MPI implementation
however, there was no performance difference whether these assertions were used
or not, which suggests some room for improvement within the MPI library.

3.2 Active Target Synchronization with Global Reduction

Our first implementation variant uses a precalculated upper bound on the num-
ber of iterations. However, this is a theoretical worst case and might in practice
be too large. If all processes find their co-ranks faster, all extraneous fences
consume unnecessary time. To avoid these superfluous fences, we determine at
the end of each epoch whether all processes have finished co-ranking. This is
accomplished by an MPI Allreduce at the end of each iteration. Each process
contributes its local active flag. Local flag values are combined with a logical
“or”, and the result tells every process whether there are still active processes.
This variant is shown in Algorithm 3. Everything in [...] is as in Algorithm 2.

[...]

active = 1;

do {

MPI_Win_fence(MODE_NOPUT|MODE_NOPRECEDE); // (1) start access epoch

if (j>0) a1=GET(A[j-1]); if (k<n) b1=GET(B[k]);

if (k>0) b2=GET(B[k-1]); if (j<m) a2=GET(A[j]);

MPI_Win_fence(MODE_NOSTORE|MODE_NOSUCCEED); // (2) end access epoch

[...]

MPI_Allreduce(MPI_IN_PLACE,&active,1,MPI_INT,MPI_LOR,MPI_COMM_WORLD);

} while (active);

Fig. 3. Active one-sided variant with MPI Allreduce to determine termination

This variant can never use more iterations than the first implementation.
However, whenever the number of iterations of some rank is close to the up-
per bound, the extra MPI Allreduce calls are “pure overhead”. Unfortunately,
without doing the actual co-ranking, there is no way to tell in advance whether
Algorithm 2 or 3 is preferable. The MPI standard might be able to help with
the general problem exposed by this example, namely to detect epochs where
there is no communication activity. A fence operation could report back whether
the epoch had any one-sided communication activity – in many cases, the MPI
library implementation would have to detect this internally anyway.

Both variants so far have the drawback of adding a collective call to each iter-
ation of the co-ranking algorithm, thus increasing the worst-case complexity by
a factor reflecting the time for a collective fence and global reduction operation.
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3.3 Passive Target Synchronization with Shared Locks

The third implementation variant uses passive target synchronization. The ad-
vantage here is that no collective operations as in the previous variants are
required. Since we need the actual data directly after the GET call, each MPI Get
is encapsulated by MPI Win lock() and MPI Win unlock() operations. All remote
accesses are read operations, thus we can allow concurrent accesses by specifying
the lock to be shared. Although this implementation involves lock overhead, the
processes can now work and terminate independently. The optional assertion
MPI MODE NOCHECK indicates to the MPI library that accesses are not conflict-
ing (shared and exclusive). On the Jugene system (see Section 4), this assertion
improves the performance of the co-ranking by up to 640% at 32k MPI processes.

double GET(global_pos, window)

{

target_rank = ...global_pos...; // compute rank from global index

local_pos = ...global_pos...; // compute local index

MPI_Win_lock(MPI_LOCK_SHARED,target_rank,MPI_MODE_NOCHECK,window);

MPI_Get(result,1,MPI_DOUBLE,target_rank,local_pos,1,MPI_DOUBLE,window);

MPI_Win_unlock(target_rank,window);

return result;

}

Fig. 4. The GET functionality for the lock variant implementation

The MPI 2.2 one-sided model allows to perform the lock on only one process
at a time, which limits concurrency between MPI Get calls within each iteration.
A different interface might potentially yield better performance. One-sided com-
munication interfaces such as ARMCI [8] or SHMEM [9] define their one-sided
communication operations to be explicitly blocking or nonblocking, which gives
further opportunities to increase concurrency as discussed in the next section.

3.4 MPI 3.0

The proposed MPI 3.0 standard (available at www.mpi-forum.org) considerably
extends the MPI 2.2 one-sided communication model and does address some of
the problems discussed above. In particular, it introduces new MPI Rget and
MPI Rput one-sided communication operations, which return a request object.
Inside the epoch it is possible to complete such operations by issuing anMPI Wait
on this request. With this feature, the whole merge algorithm could be performed
in a single MPI Win fence epoch. Each process would independently iterate, and
enforce completion of the MPI Rget calls in each iteration.

www.mpi-forum.org
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Fig. 5. Co-ranking performance with the three implementation variants, weak scaling

4 Experimental Results

We have implemented the distributed, stable merging algorithm with all three
alternatives for the co-ranking step. The implementations have been evaluated
on a large distributed-memory supercomputer: the “Jugene” IBM Blue Gene/P
installation in Jülich/Germany with 73,728 nodes, each equipped with a 4-way
PowerPC processor (850 MHz) and 2 GiB memory.

All experiments used double-precision floating-point elements with sorted ran-
dom inputs, and were conducted in SMP mode with one MPI process per node.
We performed both strong and weak scaling experiments. Figure 5 shows weak
scaling results for the three co-ranking implementation variants. The two input
arrays have 10 and 20 million elements per process, respectively. Therefore, the
total number of elements is p times these local sizes. Since the number of it-
erations of the co-ranking algorithm is logarithmic in the minimum number of
elements, we would expect its running time for an increasing number of processes
to grow with at least O(log p). The passive target variant seems to achieve this
slow growth while the curves for the two active target variants show a steeper
ascent. Both variants with the collective fence synchronization are by far slower
than the lock variant, reaching a factor of 29 difference at 8,192 processes. We
therefore choose the lock variant as our implementation for the co-ranking step.

In Figures 6 and 7, we present the individual times for the three main steps
of the complete merge algorithm: co-ranking, copying of remote data, and local
merge. We determined the running time of the local merge Tseqmerge(n,m) to be
0.0484 · (n+m) μsec. We use this sequential time to calculate the parallel effi-
ciency of our merge implementation E(n,m, p) as Tseqmerge(n,m)/(p ·Tparmerge),
which is given as a percentage above the total running time.
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Fig. 6. Merging performance on Jugene, weak scaling
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Fig. 7. Merging performance on Jugene, strong scaling

Figure 6 shows the weak-scaling behavior for the individual steps of the par-
allel merge algorithm, including its total running time. Note that the co-ranking
step is indeed about a thousand times faster than the data copy and local merge.
With a fixed input size per process, we would expect the running time for the
data copy and local merge to remain constant, which is indeed the case. Only
the time of the co-rank step increases very slowly with p. The overall parallel
efficiency stays at around 80%.

Figure 7 presents results from a strong scaling experiment. The total number
of elements for the two input arrays are 32 · 220 and 48 · 220, respectively. This
means that we always use only 640 MiB of input data and distribute this over
an increasing number of processes. Even with such a relatively small amount of
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data (note that this Blue Gene/P system has only 2 GiB of memory available
per node), our lock-based co-ranking implementation scales up to 32,768 pro-
cesses, where only a few thousand input elements exists per process, albeit with
decreasing efficiency from around 2k processes.

5 Summary and Outlook

We presented a stable, distributed-memory parallel merge algorithm, and in
particular discussed implementation alternatives in the MPI 2.2 and MPI 3.0
one-sided communication models. The alternatives have been implemented and
we reported on initial experiments on a Blue Gene/P system. To our surprise,
the lock-based variant used for the co-ranking preprocessing step showed con-
siderably better performance than the other possibilities considered. However,
this still needs stronger experimental support, and we are continuing the exper-
imental work with the distributed merge algorithm.

Acknowledgments. The authors want to thank the anonymous reviewers for
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Abstract. Given two long strings S and T , representing two genomic sequences,
and given a user defined threshold �, the problem of computing maximal exact
matches (MEMs) is to find each triple (p1, p2, l) specifying two matching sub-
strings S[p1..p1 + l − 1] = T [p2..p2 + l − 1], such that l ≥ � and S[p1 − 1] �=
T [p2 − 1] and S[p1 + l] �= T [p2 + l]. Computing MEMs is a major problem
in bioinformitcs, because it is a primary step in identifying regions of common
similarity among genomic sequences. Faster solutions to this problem are still
demanded to overcome the ever increasing amount of genomic sequences to be
compared to each other. In this paper, we present a parallel version of the MEM
algorithm running on a computer cluster. Our experimental results show that our
algorithm is efficient and scalable.

Keywords: Maximal Exact Matches, Bioinformatics, Computer Cluster, MPI.

1 Introduction

Genomes are made up of DNA and they are represented as strings over an alphabet
of four characters, where each character refers to a chemical unit called nucleotide.
Genome comparison is the task of identifying the regions of similarity between two or
multiple genomes. This task is the next logical step after the raw genomic sequence
data become available, because it helps in annotating genomic regions and elucidating
their functions. The idea is that the common regions are likely of common functions
and the unique regions refer to genetic traits unique to each genome. This task is a
computationally challenging due to the following main reasons:

1. The large size of individual genomes deposited in public databases. To take one
example, the size of the human genome is three Gbp (i.e., three Giga base pairs,
which means three Giga characters), divided into 23 strings called chromosomes.
The mouse genome is of similar size and it is divided into 21 chromosomes. Com-
paring the two multi-chromosomal genomes requires running 483 pairwise com-
parisons. This will take several days using the best sequential algorithm [3].

2. The ever increasing amount of genomic data. To date (April 2012), there are 3173
complete genomes in addition to other 10479 genome projects that are still ongo-
ing [4]. The current challenge therefore is no longer in data acquisition but in the
analysis step to turn this overwhelming amount of data into useful knowledge.

J.L. Träff, S. Benkner, and J. Dongarra (Eds.): EuroMPI 2012, LNCS 7490, pp. 214–223, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Genome comparison software tools have depended on the computation of maximal
exact matches (MEMs) as a first step to identify regions of similarity [6, 8, 13, 14]. The
idea is that regions without MEMs are not similar and can be excluded from consider-
ation, while regions including MEMs are candidate regions of similarity. The MEMs in
these regions are further clustered and processed to verify that each region is of enough
similarity. The final output is an alignment of these regions, where the MEMs are among
the parts that exactly match. To speed up the computation of MEMs, the comparison
tools resort to linear-space indexing data structures such as the suffix tree or the suffix
array [1,2,7]. Based on these data structures, the running time for computing all MEMs
for two strings S and T with lengths ns and nt, respectively, is O(ns + nt + z), where
z is the number of reported MEMs.

The sequential algorithms for computing the MEMs already reached the optimal time
complexity. The only way to cope with the increasing data size is the use of parallel and
distributed architecture. In this paper, we present a parallel algorithm to compute MEMs
using a computer cluster, based on MPI. Our algorithm is based on (compressed) index-
ing data structures to achieve the optimal running time within each node. Our algorithm
is also suitable when the amount of memory in each node is limited, which holds true
for massively parallel architectures, like some versions of Blue Gene. Furthermore, we
introduce an interesting theoretical result in which there will be no need for indexing
data structures when the number of processors is high enough.

2 Review of Sequential MEMs Algorithm

2.1 Basic Notions and Definitions

Let S denote a string with length n = |S| over a finite alphabet Σ. We write S[i] to
denote the ith character of S, and we write S[i..j] to denote the substring starting at
position i and ending at position j in S, 0 ≤ i ≤ j < n. The ith suffix of S, denoted by
S(i), is the substring S[i..n− 1].

Let S and T be two strings over the same alphabet and of lengths ns and nt, respec-
tively. A match of length l is a substring that occurs in both S and T . An occurrence
of this match is defined by the triple (p1, p2, l), which specifies the l-length substring
S[p1..p1 + l − 1] in S that matches the l-length substring T [p2..p2 + l − 1] in T .

Definition 1. A maximal exact match, MEM, is a match (p1, p2, l) such that S[p1−1] �=
T [p2 − 1] and S[p1 + l] �= T [p2 + l]; i.e., there are no further matching characters on
the left and on the right side of the MEM.

Property 1. Assume a 2D space and assume that string S is aligned to the x-axis and
T is aligned to the y-axis. A MEM defined by (p1, p2, l) can be specified in this space
by the two points (p1, p2) and (p1 + l − 1, p2 + l − 1). The line connecting these two
points has a slope of 45 degree and is parallel to the diagonal of this space. Figure 1
shows some MEMs plotted in a 2D space.
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Fig. 1. (A) Maximal exact matches in a two dimensional space. The x and y axes refer to the
input strings and the MEMs are specified by lines with a slope of 45 degree. The grid defines the
partitioning of this space, where each grid cell includes the matches between the segments Si of
S and Tj of T . Each node in the computer cluster is responsible for one grid cell. Some MEMs
can be distributed over multiple nodes and these should be stitched together. (B) Stitching a MEM
within a 2x2 sub-grid. The gray matches touch the borders of the outer grid boundaries.

2.2 Sequential Computation of MEMs

Definition 2. Given two strings S and T and a threshold �, the problem of computing
MEMs is to identify all triples (p1, p2, l) representing the MEMs such that l ≥ �.

Computing MEMs is a well studied problem and there are many sequential algorithms
for solving it [1,2,5,7,9–11]. Assuming that T is shorter than S, a space efficient algo-
rithm for computing MEMs works as follows: First, an index data structure (suffix tree,
suffix array, or compressed versions of them) is constructed for T . Then S is streamed
against the index of T to match each suffix S(i) against the index and to report MEMs
if exist. To avoid repeating computation when moving to suffix S(i + 1), some links
are kept to use the matching information obtained at position i. The construction of the
index takes O(nt) time and space. The matching algorithm takes O(ns + z), where z is
the number of output MEMs. That is, the complexity of this algorithm is O(ns+nt+z).
Note that z is very large with theoretical bound of O(nsnt).

3 Parallelization of the MEMs Algorithm

Our strategy for parallelizing the computation of MEM is to partition the input string S
and T into N ≥ 1 and M ≥ 1 segments, respectively. Then each pair of segments is
processed by one processor. At first glance, this strategy seems to be straightforward.
But, as we shall see, there is a challenge in handling the MEMs that cross the bound-
ary between the segments to guarantee that no match will be missing in the output.
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Algorithm 1 (ParallelMEM)
1. Arrange the processing nodes logically into a 2D N×M grid, each node is

denoted by Px,y

2. Divide S into N partitions (segments) and T into M partitions (segments)
3. Copy the ith segment of S (denoted by Si) to all the Pi,y , y ∈ [1..M ]

4. Copy the jth segment of T (denoted by Tj) to all the Px,j , x ∈ [1..N ]
5. In each processor, ComputeMEM(Si, Tj , �)
6. Store each match that lies on the boundary of Si or Tj (call these matches Boundary

Matches) and output the others
7. StitchBoundaryMatches()

Figure 1 shows an example of the general partitioning and some of the matches dis-
tributed over more than one segment. The step of collecting border matches into MEMs
and further implementation details will be the focus of the coming sections.

Algorithm 1 describes our strategy for computing the MEMs in parallel. In this algo-
rithm, ComputeMEM(S′, S′′) specifies a function of computing MEMs with minimum
length � between two strings S′ and S′′, using any of the algorithms cited in Section
2. Steps 1-4 of this algorithm for partitioning the data and distributing it on the clus-
ter nodes will be handled in the following subsection. Step 7 defined by the function
StitchBoundaryMatches() will be handled in detail in the subsequent subsections.

3.1 Cluster Topology and Data Partitioning

We logically arrange the given processors in an N×M 2D grid. In our implementation,
N and M are specified by the user according to the infrastructure at hand. Each pro-
cessor in this grid is denoted by Px,y , x ∈ [1..N ] and y ∈ [1..M ]. We assume that the
sequences S and T are aligned with the x- and y-axis of the grid, respectively. There are
two strategies to run Steps 2-4 in Algorithm 1 in parallel. In the first, each processor can
fetch its data from the storage. With a parallel file system and suitable infrastructure,
this step will take O(ns

N + nt

M ) time. In the second strategy, where the storage access is a
bottleneck, the processors of the first row of the grid read the respective segments from
the file storing the sequence S. Then each processor P1,y broadcasts its segments to the
M processors in its column, y ∈ [1..M ]. Similarly, the processors of the first column
read the respective segments from the file storing the sequence T . Then each processor
Px,1 broadcasts its segments to the N processors in its row, x ∈ [1..N ]. The broadcast
operation takes O(n logP ), where n is the data size and P is the number of processors.
Hence, Steps 2-4 in this algorithm takes O(ns

N + nt

M ) using the former strategy, and
O(ns+

ns

N logN +nt+
nt

M logM) using the latter one. In our complexity analysis, we
will assume that the first strategy is the one in use.

3.2 Stitching the Matches: Collect on Quartets

If the overall number of the matches touching the grid boundaries is not so large, then
one processor can simply gather all these matches and process them to produce the final
set of MEMs. Otherwise, a more sophisticated strategy is needed. In this subsection, we
introduce an optimal method, which we call Collect on Quartets.
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In each node, we arrange the boundary matches in four lists Ll, Lr, Lu, and Ld to
store the border matches touching the left, right, upper, and lower boundary, respec-
tively. For ease of presentation and to avoid tedious mathematical details, we assume
that the grid size is a power of two and the segments in each node are of equal length.
First, we will consider the general case in which N > 1 and M > 1. Then, we will
discuss the case in which N = 1 or M = 1.

Algorithm 2 includes the major steps of the Collect on Quartet method. Here, we
explain how the algorithm works and clarify the communication pattern among the
cluster nodes. The algorithm iteratively processes matches in sub-grids of increasing
sizes such that the sub-grid size is a power of four. In the first iteration, matches in each
sub-grid of size 2×2 are processed. In the second iteration, remaining matches in each
sub-grid of size 4×4 are processed. This goes on until there is just one single large grid
including all the processors. Figure 2 shows the sub-grids of increasing sizes.

The tagging step (Line 5) specifies that the processors only on the boundary of these
sub-grids will take part in the computation. That is, these processors will be involved
in stitching the matches with the processors lying in the boundaries of the contiguous
sub-grids. In this step, each processor identifies itself and its position in the grid. This
can be done using simple arithmetic operations. The tagged processors are highlighted
in the right part of Figure 2. Once the processors are tagged, the matches can be stitched
into MEMs as explained in the following paragraphs.

To ease the presentation, we will start with explaining the first iteration of the algo-
rithm, where matches within sub-grids of size 2×2 are processed. Let Pll, Plr, Pul,
Pur denote the lower-left, lower-right, and upper-left, and upper-right processors of a
sub-grid of size 2×2. An example of such sub-grid is illustrated in Figure 2. This part
of the algorithm is composed of three major phases: 1) Connecting matches between
Pll, Plr, and Pul, 2) connecting matches between Plr, Pul, and Pur , and 3) updating
information of matches ending in both Pll and Pur. The three phases collectively cor-
respond to Lines 6 and 7 of the algorithm, and they are illustrated in the right part of
Figure 1. The details of these phases are explained in the following paragraphs.

Phase 1: Consider the three processors Pll, Plr, and Pul. We conduct the following
two steps in parallel: 1) The matches in the lists Lr of Pll are stitched with the matches
in Ll of Plr . 2) The matches in the lists Lu of Pll are stitched with the matches in Ld

of Pul. Stitching the matches between two processors does not involve establishment
of pointers but just the identification of the corresponding matches and updating the
respective match lengths. This is achieved by the following steps:

1. Update the lengths of the corresponding matches in Lr of Pll and in Ll of Plr . This
step is achieved in linear time using an algorithm similar to the merge algorithm.

2. If a match occurs also in Lu of Plr , then it is identified in this Lu and its length is
updated. In this case, we say (for a certain reason that will be made clear below) that
the processor communicates with itself to update the information in Lu. Similarly,
if a match occurs in Ld of Pll, we update its length in this list.

3. Update the lengths of the corresponding matches in Ld of Pul and Lu of Pll. This
step is also achieved in linear time as in Step 1 above.

4. If a match occurs also in Lr of Pul, then it is identified in this Ll and its length is
updated. Similarly, if a match occurs in Ll of Pll, we update its length in this list.
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Algorithm 2 (StitchBoundaryMatches: Collect on Quartets)
1. In each node Pij , i ∈ [1..N ] and j ∈ [1..M ], create four lists Ll, Lr , Lu, Ld

to store border matches of the left, right, up, and down borders, respectively.
2. k = 2
3. while (k ≤ M )
4. Set sub-grid size to k×k
5. Tag the processors on the borders of each sub-grid
6. Connect matches (in tagged processors) among sub-grids
7. Update match length for all matches in all lists
8 Report all matches touching none of the sub-grid borders
9. k = 2k

Phase 2: We conduct other two analogous steps to that in Phase 1: 1) The matches in
the lists Ll of Pur are stitched with the matches in Lr of Pul. 2) The matches in the
lists Ld of Pur are stitched with the matches in Lu of Plr . After finishing these steps,
the following lists can be deleted: Lr of Pll and Pul, Ll of Plr and Pur, Lu of Pll and
Plr, and Ld of Pul and Pur.

Phase 3: Consider the two gray matches in Figure 1(b). These gray matches touch the
outer boundaries of the sub-grid. The match length in Lu and Lr of Pur is updated
by the steps of the previous two phases. But this information is not yet up-to-date in
Ld and Ll of Pll. This means that Pll and Pur should communicate together to update
the match length in Ld of Pll, and this is important for subsequent iterations of the
algorithm.

Now, consider the step of processing 4×4 sub-grids and consider the MEM in Fig-
ure 2 that extends from processor P3,1 to processor P8,8, passing through the tagged
processors P4,2, P5,2, P6,4, and P6,5. In Phase 1 of connecting and updating the match,
P4,2 communicates with P5,2 to update match lengths in Lr of the former and Ll of
the latter. Then P4,2 communicates with P3,1 to update the match length in Ld of P3,1.
Finally, P5,2 communicates with P6,4 to update match length in Lu of P6,4. In phase 2,
P6,4, and P6,5 communicate with each other to update Lu of the former and Ld of the
latter. Then P6,5 communicates with P8,8 to update Lr of P8,8. In phase 3, P8,8 com-
municates with P3,1 to update Ld of P3,1. Grids of size larger than 4×4 are processed
in an analogous way.

As we have seen, not all messaging steps take place between contiguous processors,
which could make a problem in identifying the messaging partner. To solve this prob-
lem, we make use of the property that the MEMs are specified in this space by lines
with 45 degree slope, and we identify the communication partner of a node in con-
stant time using some geometric-based arithmetic operations. For example, in Phase 1
and for sub-grids of size 4×4, the processor P4,y on the same column including P4,2

communicates with the processor Py,1.

3.3 The Case of M = 1 or N = 1

Without loss of generality, assume that M = 1. In this case, the whole T is matched
against segments of S. This simplifies the processing, because it is enough to have



220 M. Abouelhoda and S. Seif

Fig. 2. Connecting matches over a set of 64 processors. Highlighted cells refer to the respective
tagged processors, which take part in computation at the respective iteration. In the first iteration
(left), matches in sub-grids of size 2×2 are stitched. In the second iteration (right), matches in
sub-grids of size 4×4 are stitched. In the third iteration (not shown), the remaining matches are
reported.

just two lists Ll and Lr in each node. The communication pattern involves contiguous
and non-contiguous processors to connect matches touching the boundaries at each
iteration. More details about this case will be given in an extended version of this work.

3.4 Shorter MEMs on the Boundary

The function ComputeMEM(Si, Tj, �) in Algorithm 1 computes matches with mini-
mum length �, where in practice � � |S| and � � |T |. This can lead to the problem
that the MEMs, which are distributed on two processors and the length of their matches
in each processor is l < �, will be missing. To overcome this bottleneck, we use over-
lapping partitions (segments) and run the ComputeMEM function on the concatenated
strings S′

i + Si + S′′
i and T ′

j + Tj + T ′′
j , where S′

i and S′′
i are two �-length strings

contiguous to Si, and T ′
j and T ′′

j are two �-length strings contiguous to Tj . The matches
in the four lists Ll, Lr, Lu, and Ld in each processor still store the matches with respect
to the boundaries of Si and Tj , as discussed before.

3.5 Algorithm Complexity

As we mentioned in Subsection 2.2, the time for computing MEMs in each processor is
O( S

N + T
M + z′), where z′ is the number of matches in a partition (node). In practice,

z′ is a fraction of the whole number of matches z; a rough assumption of it for large
datasets and shorter � is that z′ → O( z

N×M ).
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Table 1. The string datasets used in our experiments and their sizes in million characters. The
first 5 datasets are real and the last two ones are artificial. The alphabet size in all datasets is 4.

Dataset Description Size

hchrx Human Chromosome X 49 M
cchrx Chimpanzee Chromosome X 42 M
hchr2 Human Chromosome 2 76 M
mchr1 Mouse Chromosome 1 62 M

Dataset Description Size

rchr9 Rodent Chromosome 9 34 M
art1 Artificial Data 1 616 M
art2 Artificial Data 2 616 M

The time complexity of function StitchBoundaryMatches in Algorithm 2 is derived
as follows: Connecting the match set between two lists in (two contiguous or non-
contiguous) processors requires O(z′) time. Because the number of iterations in this
algorithm is O(max{log4 N, log4 M}), the total time complexity of the StitchBound-
aryMatches function is O(z′(max{log4 N, log4 M})). Adding the complexity of par-
titioning and distributing the segments on the grid nodes to the above two complexi-
ties, the overall complexity of computing the MEMs in parallel is O( S

N + T
M + z′ +

z′max{log4 N, log4 M}).

4 The Case for Large Number of Processors

Consider the case in which the number of processors available is in the order of
O(ns×nt

�2 ) or when � ≥ min{ |S|
N , |T |

M }. In this case, all MEMs will be distributed over
more than one processor or at least touch the boundaries of the node. In this case, there
will be no need to use an indexing data structure and it will be enough to use a string
matching algorithm where we find the substrings of a given string that matches a prefix
of the other. For example, the Ll list of a processor is filled with matches computed
between the prefix of Si and all substrings of Tj . To find these matches in linear time,
one can use the Z-algorithm [7] over the concatenated string SiTj .

5 Implementation and Experimental Results

We conducted some experiments over real and artificial data to evaluate the performance
of our algorithm. Our algorithm in this paper is implemented using MPICH2 and runs
on a computer cluster of 64 nodes connected through 1G Ethernet switches. Each node
includes a 2.3GHz AMD CPU and 64 GB RAM. The datasets used in our experiments
are described in Table 1. The function ComputeMEM is based on the suffix array and it
is implemented as described in [2].

Table 2 summarizes the results of our experiments for computing the MEMs be-
tween different pairs of the strings in Table 1. The minimum length parameter � = 10,
which leads to large number of matches. The experiment were conducted over a varying
number of nodes and different grid configurations. The resulting MEMs are kept in the
nodes and not collected in a central location. Also the time for transferring the genomic
segments was not included as it is negligible compared to the computation time.
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Table 2. Running times in minutes for comparing different pairwise strings on different cluster
sizes and configurations. The column “SeqTime” includes the sequential running times. The col-
umn “GridSize” includes the size of the cluster and its configuration in a 2D grid. The columns
“CompTime”, “ComTime”, “TotalTime” include the computation, communication, and total time
of the experiment, respectively. The column titled “Speedup” includes the achieved speed up. Fi-
nally, the columns titled “Border-Matches” and “TotalMatches” include the number of matches
lying on the border of the grid and the number of all MEMs, respectively; (’M’=“million”).

S T SeqTime Grid Size CompTime ComTime TotalTime Speedup Border
Matches

Total
Matches

hchrx cchrx 214.91 4x4 13.06 6.34 19.4 11 7705 6565M
hchrx cchrx 214.91 8x4 8.21 8.37 16.58 12.6 6899 6565M
hchrx cchrx 214.91 6x6 6.3 4.77 11.1 19.5 11959 6565M
hchrx cchrx 214.91 8x6 4.33 4.38 8.7 24.4 16854 6565M
hchrx cchrx 214.91 8x8 2.05 2.48 4.5 43.1 25694 6565M

hchr2 mchr1 385.47 4x4 20.99 16.48 37.5 10.1 34276 1193M
hchr2 mchr1 385.47 8x4 13.67 14.36 28.1 14.5 19243 1193M
hchr2 mchr1 385.47 6x6 9.84 10.68 20.2 19.5 21119 1193M
hchr2 mchr1 385.47 8x6 6.63 6.16 12.8 29.6 25941 1193M
hchr2 mchr1 385.47 8x8 5.57 5.65 11.1 35 35041 1193M

mchr1 rchr9 191.04 4x4 15.89 16.06 32.0 5.2 27024 5760M
mchr1 rchr9 191.04 8x4 9.78 9.47 19.1 10.1 9933 5760M
mchr1 rchr9 191.04 6x6 6.75 6.94 13.6 13.6 66915 5760M
mchr1 rchr9 191.04 8x6 4.15 5.14 9.3 20.5 32422 5760M
mchr1 rchr9 191.04 8x8 3.02 3.35 6.4 29.8 78620 5760M

art1 art2 283.72 4x4 17.44 96.76 114.1 2.5 2939742 7900M
art1 art2 283.72 8x4 11.37 56.57 68.9 5.1 2939696 7900M
art1 art2 283.72 6x6 7.94 39.64 47.4 6.0 4239662 7900M
art1 art2 283.72 8x6 4.94 29.81 35.0 6.5 4239726 7900M
art1 art2 283.72 8x8 1.90 19.81 21.7 13.5 8537736 7900M

From the results we observe good scalability of our algorithm, especially with real
datasets. We also observe that the number of border matches increases with the number
of nodes, which leads to higher communication time. In some cases, we observe super-
linear speedup in the computation time compared to the sequential time. This is because
the index data structure is built for only segments of T and we match segments of S
against them, which leads to better cache performance and faster matching.

6 Conclusions

In this paper, we have presented a parallel distributed algorithm for computing maximal
exact matches. Over a grid of N×M processors, our algorithm takes O( S

N + T
M + z′+

z′max{log4 N, log4 M}) time and linear space.
Our algorithm is suitable for the case in which the amount of memory in each node

is limited. This makes it a good choice for massively parallel architectures, like some
versions of Blue Gene. The current version of our implementation is based on the suffix
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array. In a future version, we will integrate compressed versions of this data structure
to further reduce the space. This space reduction will affect the running time, but could
solve a memory problem at the user’s infrastructure.

Our parallel algorithm presented here can also be used with other variations of MEMs
such as rare MEMs and maximal unique matches [2, 12], provided that the function
ComputeMEM is modified to produce these matches.
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Abstract. Current implementations of process groups (subcommuni-
cators) have non-scalable (O(group size)) memory footprints and even
worse time complexities for setting up communication. We propose system-
ranked process groups, where member ranks are picked by the runtime
system, as a cheaper and faster alternative for a subset of collective op-
erations (barrier, broadcast, reduction, allreduce).

This paper presents two distributed algorithms for balanced, k-ary
spanning tree construction over system-ranked process groups obtained
by splitting a parent group. Our schemes have much smaller memory
footprints and also perform better, even at modest process counts. We
demonstrate performance results up to 131, 072 cores of BlueGene/P.

Keywords: distributed algorithms, exascale, spanning trees, process
groups, sub-communicators.

1 Introduction

Process Groups are subsets of processes (ranks) in a parallel program that partic-
ipate in specific portions of the parallel execution and are addressable as a unified
entity. Most parallel programming models provide entities equivalent to process
groups (communicators in MPI) and mechanisms to create, store and manage
these entities. Several existing parallel runtime implementations require O(n)
storage and O(n log n) computation per process to create and manage a process
group with n members [5,6]. They will consume prohibitive amounts of memory
and reach scalability limits on current and future extreme-scale architectures.
Parallel programs typically compound this problem by creating and using many
such groups. Trends in high performance system architecture point to a slower
growth in the available memory than in the number of threads of execution [12].
Thus, it is imperative that runtime software adopt leaner, resource-conserving
algorithms and book-keeping mechanisms to manage process groups.

The work presented in this paper is motivated by these realizations, and fo-
cuses on mechanisms for the creation of process groups. In order to remain rele-
vant to multiple parallel programming systems, we do not consider MPI-specific
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solutions, nor do we bind ourselves to the current standard. We preface our
work by making a case for system-ranked process groups with a reduced feature
set that can be realized by simply constructing spanning trees over the group
(Section 2). We then explore distributed algorithms for the creation of commu-
nication trees spanning new groups obtained by enrolling a subset of members
from a parent group. To ensure support for nested (or recursive) partitioning of a
parent group, we assume that initial communication for spawning a new process
group will occur over the spanning tree of the parent. We base our algorithms
on the assumption that memory is a constrained resource, and impose limits on
its transient and final consumption.

Our efforts have resulted in two distributed tree construction algorithms:
a Shrink-and-Balance algorithm (Section 4), and a Rank-and-Hash algorithm
(Section 5). They consume just O(log n), O(1) memory per process andO(log2 n),
O(log n) time respectively. To corroborate our analysis with actual measure-
ments, we implement our algorithms and compare their performance (Section 6)
with a reference “centralized” implementation (Section 3) that exhibits O(m)
space and O(m+ logn) time complexity; and with a comm split from a vendor-
tuned MPI implementation. Our algorithms scale well to large supercomputers
and exhibit competitive performance at large process counts.

2 System-Ranked Process Groups

We propose that unranked or system-ranked process groups be supported in par-
allel programming systems as they will satisfy a portion of use-cases for process
groups at a much lower resource cost.

Motivations. Our stance germinates from the observation that user-assigned
ranks within a process group are not always necessary to express parallel al-
gorithms. This is especially true of a subset of collective operations: barrier,
broadcast, reduce and allreduce. The results of these collectives are independent
of the ranks from which the individual data contributions arise (assuming com-
mutative operations). There is also evidence that a sizable fraction of collective
communication in applications involve these operations [1,13,15]. We enumerate
a few examples of algorithms and applications that use just these collectives:

Parallel Linear Algebra: Several algorithms for manipulating linear systems of
equations use block or compressed representations of matrices. The algorithms

Terminology

– n Number of processes in parent process group.

– m Number of processes participating in the new process group.

– k Branching factor (degree) of the spanning tree.

– di,k Depth of a rank i process in a balanced spanning tree of branching factor k.

– f fraction of members of original process group participating in new group.
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are then expressed by collectively addressing processes that own a row or col-
umn of matrix elements/blocks. For eg, recent work has demonstrated a high
performance dense LU factorization using only the aforementioned collectives on
non-trivially defined groups of processes, in a parallel programming paradigm
that supports unranked and system-ranked process groups [10].

Master-Worker Algorithms: A master-worker expression of several parallel algo-
rithms primarily use broadcasts and reductions during their execution. Many of
these have use for process groups in efficiently expressing parallel logic. Some
examples include: a) Map-Reduce b) Histogram sorting c) some Divide-and-
Conquer algorithms, and d) Monte Carlo computations.

Ab-initio Quantum Chemistry: OpenAtom is a massively parallel quantum chem-
istry application with several phases of computation in a step. A description of
the parallel structure [3] demonstrates the use of multiple process groups just
for performing broadcasts, reductions and allreduces among members.

Approach. Since the collectives of interest can be expressed as operations over
a communication tree spanning the members of the group, we chose a tree-based
representation of groups and cast the problem of efficient group construction
into the efficient construction of trees spanning the members of a new group.

Possible Functionality. System-ranked process groups are primarily for sup-
porting the aforementioned collectives. User-specified roots for the collectives
can be supported by: a) forwarding data from the tree root to the user-specified
root b) tolerating some imbalance by using any vertex in the tree as a broadcast
root c) constructing multiple (but a small number of) trees with different roots.
Point-to-point messaging can be supported by discovering and caching the ids
of the (typically) small number of frequent communication partners. Finally, in
keeping with a pay-only-for-use policy, user-supplied ranks can be supported
atop system-ranked groups by performing the sort as an additional step.

Benefits. Letting the runtime system assign ranks to processes enrolling in
a group liberates it from having to sort user-supplied keys to identify ranks.
Avoiding this O(m logm) computation can result in significant speedups of group
creation mechanisms. Tailoring the communicators (groups) to subsets of use-
cases will permit implementations that are less resource-intensive and faster. It
may also permit optimization of the communication operations themselves.

3 The Reference Centralized Algorithm

Group creation in MPI typically performs an allgather followed by a sort. Re-
moving support for user-assigned ranks eliminates the sorting, but still requires
an allgather which takes O(m) storage on each process. Our reference “central-
ized” implementation replaces this allgather with a gatherv-scatter that only
has an O(m+logn) time and O(m) transient memory footprint. We believe this
represents a conservative baseline for comparing our distributed algorithms.



Scalable Algorithms for Constructing Balanced Spanning Trees 227

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

(a)

0

1

7 4

9

2

5 6

13 14

(b)

0

1

7 4

9

13

6

14

(c)

9

1

7 4

13

6

14

(d)

Fig. 1. Tree shrinking in the Shrink-and-Balance scheme using leaves as fillers. Red:
non-participating process (hole); Green: participating process.

The implementation performs an upward pass (gatherv) over the original
spanning tree in which only members of the new group contribute their pro-
cess ids. The resulting list is sent to the root process of the new group (picked
from the list). This is followed by a downward pass (scatter) over the spanning
tree under construction. A vertex’s immediate children are picked from the list
of members and the remaining list partitioned among them to populate their
sub-trees.

4 The Shrink-and-Balance Algorithm

Upward Pass. The Centralized scheme collects enrollment information, but
does not act on it until it reaches the root of the parent spanning tree. Because
we’d like to avoid gathering O(n) enrollment data, we base our first algorithm
on the idea of using information earlier. The Shrink-and-Balance scheme im-
mediately uses enrollment data during the upward pass to shrink the original
spanning tree by excluding non-participating processes. This results in holes at
the vertices of the original tree where processes choose to drop out of the new
group. In order to maintain a contiguous tree structure, these holes are “filled”
with processes that are members in the new group. Fillers are either a participat-
ing leaf process (Figure 1) or a participating immediate child process. Using leaf
vertices as fillers requires a process v with rank i to send min(subtree(v), di,k)
leaves as candidate fillers to its parent; to potentially fill holes at each of its
di,k (1) direct ancestors. Since at most logn vertices may be sent, the space
and time complexity of the upward pass is O(log n) and O(log2 n), respectively.
Space constraints prevent a description of using immediate children as fillers.

Downward Pass. Although the upward pass yields a contiguous, participants-
only spanning tree, there are no guarantees on its quality. To obtain a balanced
tree with the desired branching factor, the algorithm continues into a downward
pass. All further communication now occurs over the newly constructed tree.

In the downward pass, the scheme balances the tree while minimizing the
number of vertex migrations. The size of the new group is used to compute
the ideal height h (dm−1,k + 1) of a perfectly balanced tree spanning tree (1).
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Fig. 2. Assignment of ranks in the Rank-and-Hash scheme

This target height yields the maximum size of each of the subtrees of the root (2).
If the size of a subtree is greater than its maximum capacity, some vertices must
move out of it in order to limit its height to h− 1. All such subtrees (i.e. their
roots) are marked as vertex suppliers. Similarly, child vertices whose subtrees are
smaller than their maximum permitted sizes, are marked as potential consumers.

di,k = �logk(i(k − 1) + 1)� (1)

max size =
kh − 1

k − 1
(2)

Each vertex V (starting with the root), performs a “matchmaking” step, ensur-
ing that each of its supplier subtrees is assigned one or more consumers that can
absorb the excess vertices of the supplier within their subtrees. If V has missing
children, it requests vertices from supplier(s) for itself. Once these supplier ver-
tices are assigned, each subtree is within its size limits. The vertex V concludes
its role by invoking a balancing step on each of its subtrees. The downward pass
thus recurses down the tree, ensuring a tree that is as shallow as possible. By
checking the current height of a subtree against its maximum permissible height,
the algorithm avoids striving unnecessarily for perfect balance.

Our experiments show that the memory footprint of the downward pass is
very small, although a theoretical upper bound is yet to be established. For e.g,
on 128K cores of BG/P, there were at most 13 suppliers for process groups of
sizes ranging from 0.1% to 99% of the parent group. Identifying (and moving)
an excess vertex may take O(log n) time in the worst case. Since this can happen
at every level of the shrunk tree, the time complexity of the scheme is O(log2 n).

5 The Rank-and-Hash Algorithm

The Rank-and-Hash scheme works by assigning ranks to the participating pro-
cesses in the downward pass, and then enabling the discovery of the process ids
corresponding to any rank via a hash function.
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Upward Pass. The upward pass is a simple reduction up the original spanning
tree. Each vertex receives participation information from its children, stores this
information and passes a reduced count (including its participation decision) up
the spanning tree. This leaves each vertex with the size of each of its subtrees.

Downward Pass. The size of the tree determines the available ranks [0,m).
This range is split among the subtrees based on their sizes. Splitting continues
down the original spanning tree until all the available ranks are divided among
all the participating processes. Non-participating processes are not assigned any
ranks. Figures 2a and 2b show the subtree size and rank information after the
upward and the downward passes respectively.

Identifying Tree Neighbors. A process of rank i in the new group can com-
pute the ranks of its parent p (3), and children (4) in the tree. However, the
process ids of these ranks are still unknown. The discovery of ids is done via
intermediary processes that mediate an exchange of ids between a parent and
its children. The id of an intermediary process (Hi) representing rank i, is com-
puted via a function that hashes rank i to id Hi. Each rank i, sends its id to the
intermediaries Hi and Hp, representing the rank i and its parent p. In return, it
receives two messages: one each from Hp and Hi with the ids of its parent and
children, respectively.

p =

{
0, i = 0

� i−1
k �, otherwise

(3)

Ci =

⎧⎪⎨
⎪⎩
[k ∗ i + 1, k ∗ (i + 1)] k ∗ (i+ 1) < m

[k ∗ i + 1,m) k ∗ i+ 1 < m ≤ k ∗ (i+ 1)

φ otherwise

(4)

Memory consumption for each of these phases is small and is independent of
group size (O(1)). The overall time complexity is O(log n) each for the upward
and downward phases, and O(1) for the hashing phase.

6 Results

Experimental Setup. We bracket our algorithms between a broadcast on the
original spanning tree and a reduction on the newly constructed tree and time
the whole phase. The size of the new group is specified via a participation frac-
tion f . All processes sample from a uniform distribution u(0, 1) and use f to
determine their participation in the new group. For fair comparisons, we use
repeatable seeds to ensure identical groups across multiple runs. We also apply
the same sequential optimizations to all implementations. The runs were per-
formed on “Intrepid”, an IBM BlueGene/P supercomputer at Argonne National
Laboratory. These algorithms were implemented using the Charm++ [7] parallel
programming framework. We report results only for spanning trees with branch-
ing factor 3 but similar patterns were observed with other branching factors.
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Fig. 3. Scaling behavior of the three algorithms on IBM BG/P at various participation
fractions (f) with n ranging from 4, 096 to 131, 072K processes

Performance. Figure 3 compares the scalability of the two algorithms with the
baseline centralized scheme for process groups of different sizes. The results show
that except at very low participation fractions (e.g. at f = 0.01), the distributed
schemes outperform the baseline even at modest process counts. The Shrink-and-
Balance scheme is slower than the Rank-and-Hash scheme because of a longer
critical path. However, both attain the goal of reduced memory footprint.

Message Counts. The total number of messages for a reduce or gather over the
original spanning tree is n−1; for a broadcast or scatter over the new tree ism−1.
Hence, the centralized scheme sends O(n + m) messages. The Rank-and-Hash
scheme has an additional phase for id exchange. All m vertices send 2 messages
to intermediary processes and receive 1 message with parent information. The m

k
non-leaf vertices also receive a message with child information. The total message
count is hence n+4m+m

k = O(n+m). The Shrink-and-Balance scheme requires
additional messages to fill holes during the upward pass, and to identify and move
excess vertices during the downward pass. An upper bound on message counts
is elusive because it depends on the location of the holes and the quality of the
shrunk tree. Our experiments show that counts are far fewer than the Rank-and-
Hash scheme. At 128K processes and f = 0.6 the number of messages sent by the
Centralized, Shrink-and-Balance and the Rank-and-Hash scheme were 2.1, 2.6
and 4.9× 105, respectively. Figure 4 compares message counts in both schemes
with the reference. We expect that at extreme scales, when multiple groups are
being formed simultaneously, or when group formation occurs concurrently with
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other communication in the application, the Shrink-and-Balance scheme may
have an advantage over the Rank-and-Hash scheme.

Comparison with MPI Comm split. In the two widely-used open-source
MPI implementations: MPICH and OpenMPI, MPI Comm split is implemented
as an O(n) allgather followed by O(nc log

n
c ) sort, where c is the number of colors

(assuming splits of equal size). To compare, we implemented a multi-color ver-
sion of the Rank-and-Hash scheme. During the upward-pass member counts of
each color are gathered at the root, which takes O(min(c logn, n)). If the original
tree is shrunk into c pieces, dissemination in the downward pass can be accom-
plished in O(log n), totaling to a time complexity of O(min(c logn, n)). As the
number of colors approaches n, time complexity of the Rank-and-Hash scheme
approaches that of MPI Comm split. In Table 1, we compare the performance
of MPI Comm split with Rank-and-Hash scheme on 32, 768 cores of BG/P.
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Table 1. Execution times (ms)
of the Rank-and-Hash scheme and
MPI Comm split from vendor’s imple-
mentation on 32K cores of BG/P

splits
(c)

MPI
Comm-
split

Rank-
and-Hash

1 134.968 0.708
2 106.573 0.713
4 96.989 0.760
8 93.536 0.785

7 Related Work

Balaji et al [2] discuss the memory overheads of subcommunicator storage in
MPI and note that memory usage increases with process count, significantly
affecting the number of subcommunicators that can be created. They report
that, on BlueGene/P, the number of new communicators that can be created at
128K processes drops to as low as 264 from 8189 at 1K processes. Their findings
strengthen the argument for cheap process groups.

Sack et al [14] propose a distributed algorithm for ordered subcommunicator
construction that uses O(n/p) memory and O(p log n + log2 n + n

p log p) time
where p is the number of processes used for parallel key sorting. They reduce
storage requirements to O(n/p) by using distributed tables for storing the ranks.

Recent work by Moody et al [11] mentions a generalized MPI Comm split
They propose creating and storing process groups as chains in O(1) memory and
O(log n) construction time. They perform collectives by exchanging appropriate
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process ids during the operation. Our work exhibits several differences. First, we
avoid the extra O(n) messaging required to exchange process ids during every
collective call. This also results in lesser dependencies on remote information for
the progress of the collective, which should lead to lesser wait times and faster
completion of the operation. We believe this benefit will become more prominent
for implementations that exploit one-sided data transfer calls provided by some
network messaging APIs [4,9]. Second, our schemes can construct and use com-
munication trees of arbitrary branching factors. Achieving this using chains will
be difficult, and will effectively amount to constructing a spanning tree. This is
of practical consequence for collectives on many architectures as binary trees do
not always perform as well as other k-ary trees.

Other work [8,16] describes several techniques for the compact representation
of MPI groups. They are quite effective in the presence of exploitable patterns in
the member ranks. In contrast, we do not design specific data structures or com-
paction mechanisms, nor do we provide a complete solution for the current MPI
standard. We believe several use cases can be met by the altered functionality
we propose; and our work explicitly targets relevance beyond MPI.

8 Summary and Future Work

In this paper, we have motivated support for system-ranked process groups and
discussed how they are suited to a subset of collectives. We have developed two
algorithms, Shrink-and-Balance and Rank-and-Hash, for creating balanced, k-
ary tree based process groups while consuming small amounts of memory. We
discovered that our algorithms are also faster than a reference implementation
even on 128K processes of a terascale supercomputer1; and significantly faster
than the comm split implementation of the native MPI library. We summarize
our analysis in Table 2.

Table 2. Space and time complexities for different group creation schemes

MPI(typical) Centralized Shrink-and-Balance Rank-and-Hash

Space O(n) O(m) O(log n) O(1)
Time O(n+m logm) O(m+ log n) O(log2 n) O(log n)
Msg Count n log n n+m Ω(n+m) n+ 4m+ m

k

Max Msg Size O(n) O(m) O(log n) O(1)

There are several immediate extensions to the work described here. The
Shrink-and-Balance scheme sends fewer messages despite having a longer criti-
cal path than the Rank-and-Hash scheme. We intend to evaluate performance in
the presence of other communication and computation akin to real application
execution scenarios. We also plan further experiments with larger numbers of

1 ALCF compute resources were used under DOE contract DE-AC02-06CH11357.
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splits. We believe these experiments will throw more light on the relative merits
of the two algorithms discussed here, and possibly lead to further improvements.

Another planned direction is to account for network-topology. The algorithms
described here can be executed hierarchically, such that each subtree is restricted
to a small neighborhood of the network. This can reduce the number of network
links traversed along the tree and improve performance of the targeted collec-
tives. The complexity will be very similar to the current schemes.

Acknowledgement. This work was supported in part by DOE DE-SC0001845
and NSF ITR-0833188.
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Abstract. This paper presents the parallelization of FARM, a 3D
Eulerian chemical-transport model on structured and nested grids. The
parallelization has been developed using the MPI library and OpenMP
directives implementing a Master-Worker strategy. Benchmarking in dif-
ferent architectures is also discussed.

Keywords: Hybrid Parallelization, Derived Datatypes, Multigrid,
Scalability.

1 Introduction

European Directives [1] for air quality impose increasingly strict control of the air
pollutant concentrations. To develop efficient plans to control the emissions and
achieve meaningful abatements of air concentrations, the use of Air Quality Mo-
dels (AQMs) is highly recommended. While AQMs allow to model and forecast
the behaviour of chemical constituents that have an impact on the air pollutant
concentrations, they are computationally intensive applications. Incorporation
of detailed chemistry and physics significantly increase the computing time, as
do the need to describe the phenomena with sufficient resolution over a given
domain or the need to perform long-term and/or multiple runs for scenario
analyses. With this work we show that the computing time of an AQM can be
considerably reduced with an efficiently parallelization of the code.

The paper is organized as follows: in Section 2 we describe the AQM that we
have used; in Sections 3 and 3.2 we describe parallelizations within MPI and
OpenMP; in Section 3.3 we describe a parallelization mode implemented with
both schemes, the hybrid parallelization. In Section 4 we give our main results
and conclusions.

2 Flexible AiR Quality Model

Flexible AiR quality Model (FARM) is a 3D Eulerian chemical-transport model
(CTM) written in Fortran 77/90 used to study the transport, chemical conversion

J.L. Träff, S. Benkner, and J. Dongarra (Eds.): EuroMPI 2012, LNCS 7490, pp. 235–245, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



236 G.F. Marras, C. Silibello, and G. Calori

and deposition of atmospheric pollutants. The code can be configured to be used
in a variety of applications, according to specific problem features, computational
resources and data availability. FARM allows management of multiple grids with
different resolution. Each grid is structured, that is to say that they are logically
mapped onto a parallelepiped lattice with Nx ·Ny ·Nz points. For convenience
we denote the three spatial dimensions by x, y, z but the grids do not have to be
aligned with the geographic coordinate system. For each simulation grid, a set
of input files must be provided in form of regularly time-varying data archives
(e.g.: hourly based). As output, FARM produces NetCDF-files1 containing 2D
and 3D gas- and aerosol phase time-dependent concentrations of selected species,
a restart file, which is usually used for long-term applications, and a log file.

2.1 Model Formulation

Within FARM, physical and chemical processes influencing the concentration
field within the modelling domain are described by a system of partial differen-
tial equations (PDE). Each equation describes the time dependency of the i-th
chemical species average concentration, ci, within each grid cell volume as the
sum of the contributions given by all the chemical and physical processes in that
volume. For a single-phase atmosphere (e.g. gas) this system has the form:

∂ci
∂t

= −u
∂ci
∂x

−v
∂ci
∂y

−w
∂ci
∂z

+Kxx
∂2ci
∂x

+Kyy
∂2ci
∂y

+
∂

∂z

(
Kzz

∂ci
∂z

)
+Si+Ci+Ri (1)

where u, v and w are the components of the wind velocity vector Kxx, Kyy and
Kzz are the diagonal terms of the diffusivity tensor Si is the source term, Ci the
gas phase reaction term and Ri is the removal term due to dry and wet deposition
processes. The lateral diffusivities are assumed to be space independent and
coherent (Kxx = Kyy = KH ; Kzz = KV ).

Numerical integration is performed following operator splitting, a method that
subdivides the multidimensional problem into time-dependent one-dimensional
problems, which are then solved sequentially over the time step Δt. According
to this technique the time evolution of the i-th chemical species over the time is
computed as follows:

ci(x, t+Δt) = Lx(Δt)Ly(Δt)Lz(Δt)Lc(Δt)ci(x, t) (2)

where Lx, Ly are advection-diffusion operators along the two horizontal axes, Lz

is the vertical operator taking into account transport, diffusion, source injection
and dry deposition processes in the adopted coordinates system, and Lc the
operator containing all chemical conversion terms.

1 NetCDF is a set of software libraries and self-describing, machine-independent data
formats that support the creation, access, and sharing of array-oriented scientific
data (http://www.unidata.ucar.edu/software/netcdf/).

http://www.unidata.ucar.edu/software/netcdf/
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2.2 Numerical Algorithms

PDE involved in horizontal and vertical advection-diffusion operators are solved
using finite elements schemes [2]. In horizontal directions a method based on
Blackman cubic polynomials [3] is used, while the numerical integration of the
vertical equation is performed using a hybrid method employing a hybrid semi-
implicit Crank-Nicolson/fully implicit scheme [3]. The equations describing the
chemical mechanism are generally highly complex and nonlinear, forming a stiff
system of ordinary differential equations (ODEs). Starting from a formal de-
scription of the involved reactions and rates, Kinetic Pre-Processor [4] (KPP),
is used to generate the production and destruction terms which are the included
into the model. These resulting equations are solved in FARM by means of
Rosenbrock [5] and LSODE [6] integrators, also provided by KPP.

2.3 Nesting

FARM allows one-way and two-way grid nesting. In the one-way mode, at each
given calculation, time interval concentrations calculated on a coarse domain
feed the fine domain through the assignment of lateral boundary conditions. In
the two-way mode, at the end of each time interval, concentrations values of the
fine grid are used to update the concentrations values of the parent grid over the
region of overlap. The number of nested grids is not limited, although there are
restrictions and constraints:

• nesting can be applied only in the horizontal directions, therefore all grids
must share the same vertical levels;

• each grid must be nested completely within its parent coarser grid;
• the horizontal spacing of a fine grid must be a finite interval of the coarser
grid within which is embedded;

• the edges of a given fine grid domain must correspond to a coarse grid cell
edge;

• fine grids inside a given parent grid cannot overlap each other.

3 Parallelization

The first version of FARM was a serial code. Afterwards, the growth of the
computational time, due to the increasing complexity of the equations describ-
ing the chemical mechanisms, but even more to the expanding need of longer
and multiple runs, required a parallelization phase to reduce execution time and
permit efficiently production runs. In a first phase OpenMP [7] directives were
added to quickly exploit shared memory systems. To overcome node limit and
scale to cluster architectures a complete parallelization with Message Passing
Interface [8] (MPI) was successively implemented. So currently, FARM can be
run in four different modes: serial, MPI, OpenMP and Hybrid mode. This work
has furthermore improved the flexibility of FARM allowing the porting on dif-
ferent platforms (Linux, Windows and AIX systems) and the possibility to use
it in many architectures. Here we will describe the parallelization with MPI,
OpenMP and Hybrid modes and the advantages of the latter.
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3.1 MPI Implementation

Master-Worker Strategy. For every grid we use a Master-Worker strategy [9]
where the Master process reads the input files, scatters data along the workers,
collects the results and writes the output files. The Master is the same task for all
the nested grids that may be employed in a given run. Worker processes can be
either H-workers (horizontal operators) and/or V-workers (vertical operator) of
the i-th nesting level grid. This strategy allows the overlapping of input/output
time with computations. Master process, H- and V-workers are defined at the
start-up of the computation time and depend on the number of points of each
grid along x, y and z directions.

Domain Decomposition. The domain cannot be decomposed in one or more
directions in a static way over the whole time step because the operator used
for the transport along the considered direction requires the whole data set. In-
stead, we have decomposed the domain in two ways. Each grid is partitioned
among the available processes along z (H-decomposition), and along x and y
(V-decomposition) directions. In the H-decomposition the H-workers compute
the transport along x and y. In a serial code this takes about 20% of the com-
putational time. In the V-decomposition the V-workers compute the transport
along z and the chemistry. At each time step a shuffling of the data from H-
to V-decomposition and vice-versa is needed. In H-decomposition the scalabil-
ity is limited by the number of grid points along the direction z, while in V-
decomposition it is limited by the product of number of points along x and y
directions. This decomposition ensures scalability for large number of processors,
because the computational time of the chemistry and transport along z direc-
tion takes more than 70% of the total CPU time. This decomposition is called
HV-partitioning [9]. Fig. 1 shows the partitioning along the workers processes.
Currently the partitioning is automatically determined by the code during its
startup phase, and cannot be changed by the user, while in the future alternative
strategies will be also explored. The phases of a single time step of a parallel
computation are listed in Table 1.

Fig. 1. Domain decomposition for HV-partitioning
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Table 1. Phases of a single step of a parallel computation

Step Processes Mpi
routine

Description Domain

1. Master Distribution
or scattering

The Master reads the input files and dis-
tributes data to the workers.

H

H- & V-Workers Workers receive data from the Master.

2. H-workers Workers compute x and y transport. H

3. H- & V-Workers Shuffling Workers redistribute data from H-domain
to V-domain.

H to V

4. V-Worker Workers compute z transport and chem-
istry.

V

5. V- & H-Workers Shuffling Workers redistribute data from V-domain
to H-domain.

V to H

6. V-workers Gathering Workers send data to the Master. V
Master The Master collects all the data and write

them in output files.

Communication Routines. For each MPI routine we have used derived
datatypes (DDT) to specify arbitrary memory layouts for sending and receiving
messages using a zero-copy mechanism [10]. Since the data are non-contiguous,
the specification of DDT is needed in order to avoid manual copying of non-
contiguous data in a buffer or the use of pack/unpack MPI routines. Therefore
non-contiguous data with different size and different type can be transferred
without additional copies using a single MPI message. Next we describe the
communication routines written to distribute, scatter, gather and shuffle the
arrays (see Table 1).

Distribution Routine. At the beginning the master process reads from files
all the input data which are then scattered among the worker processes. In a
single non-blocking MPI send routine, the Master send all the input data to
all the H- and V- workers of the i-th grid. The workers wait for the message
with a blocking MPI receive routine (Step 1).

Scattering Routine. At regular time steps, the Master sends to the H- and
V-workers specific data fields. This routine is similar to the distribution
routine, except that the Master process sends only one input data field to
the workers, so it is called only when a specific field needs to be updated
(Step 1).

Gathering Routine. At regular time steps, the Master must write the output
files, usually concentration fields of the chemical species of interest for the
user. In a single non-blocking MPI receive, the master process waits for the
output data while all the workers send the field with a blocking MPI send
routine (Step 6).
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Shuffling Routine. From the H- to the V- domain the concentration fields
must be sent and ordered from H- to V-worker processes (see Fig. 1). This
routine is performed by a specific MPI alltoall routine (MPI Alltoallw). We
need this routine because it has the possibility to send and receive data of
different DDT for all the workers. At each time step this routine is called
two times: the first to send and reorder the concentration fields from the H-
to the V-domains (Step 3), the second to send and reorder the same data in
the reverse mode (Step 5).

3.2 OpenMP Implementation

In this implementation we have added parallel constructs and workshare direc-
tives to distribute the work among the threads.

The transport and the chemistry equations are divided among the threads in
the following way:

• transport along x: iterations of the DO loop in the y direction are distributed
among the threads through loop constructs;

• transport along y: iterations of the DO loop in the x direction are distributed
among the threads through loop constructs;

• transport along z and chemistry: iterations of the DO loop in the y direction
are distributed among the threads through loop constructs.

The scalability is limited only by the number of the available threads, which in
shared memory systems or inside a single cluster’s node is limited by the number
of available cores.

3.3 Hybrid Implementation

The fusion of MPI with OpenMP implementation has been realized without
further changes in the source code. The two implementations have been written
in a way that the OpenMP directives and the MPI routines are completely
separated.

The transport and the chemistry equation are therefore partitioned in the
following way:

• In the H-domain:
− transport along x: the z direction is partitioned among the H-workers

processes while the y direction is distributed among the threads through
OpenMP loop constructs;

− transport along y: the z direction is partitioned among the H-workers
processes while the x direction is distributed among the threads through
OpenMP loop constructs;

• In the V-domain:
− transport along z and chemistry: the x and y directions are partitioned

among V-workers processes while the y direction is distributed among
the threads through OpenMP loop constructs;
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Fig. 2. Difference of number of messages for an alltoall routine between MPI and
Hybrid implementation on four nodes (cyan rectangles) each one with four cores (yellow
circles). Black lines represent all the messages related to a single core.

This implementation is useful to decrease the number of the processes, inherent
synchronizations and exchange data size involved in the MPI alltoall routine
(see Fig. 2).

4 Results

We have tested the scalability of a simulation with three nested grids on two
different clusters (Tab. 2). The first grid has 61 × 56 × 12 points, the second
102 × 84 × 12, the third one 64 × 56 × 12. The code has been compiled with
Open MPI [11] (Version 1.4.4 compiled with Intel 12.1). In the MPI mode the
number of mpi task is equal to the number of the available cores; in the hybrid
mode the number of mpi task is equal to the number of the available nodes,
and for each node the number of threads is equal to the number of the available
cores. In Fig. 3 and 4 we report the simulation times and the speedup2 in MPI
and Hybrid mode for an increasing number of cores. Figures show that on both
clusters FARM has a better scalability in the hybrid mode. In this mode the
scalability improves mainly because the number of sent messages in an alltoall
routine decreases by a factor of approximately n2, with n being the number of
threads inside each node. Another reason that contributes to the improvement
of the scalability is that in the hybrid mode a higher number of cores can be

2 Speedup is defined as Ts/Tp where Ts and Tp are respectively the computational
time of the serial and parallel code.
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Table 2. Clusters description

PLX

Processors Type: 2 six-cores Intel Xeon (Esa-Core Westmere) E5645 2.4 GHz

Number of nodes: 274

Number of cores: 3288

Internal Network: Infiniband with 4x QDR switches (40 Gbps)

RAM: 14 TB (48 GB/Compute node)

Operating System: Red Hat 4.1.2-50

ARPAP

Processors Type: 2 quad-cores Intel Xeon (Nehalem) E5520 2.27 GHz

Number of nodes: 32

Number of cores: 256

Internal Network: Infiniband with 4x DDR switches (20 Gbps)

RAM: 160 GB (4 GB/Compute node)

Operating System: Red Hat 4.1.2-44

Fig. 3. CPU time and Speedup for an increasing number of workers on cluster PLX.
MPI configuration is started with 12 MPI process for node while hybrid configuration
is started with one MPI process and 12 threads for node.

available in the h-domain. While in the MPI mode the scalability in the h-domain
is limited by the number of grid points along the direction z, in the hybrid mode
the scalability is limited by the number of grid points along z times the number
of the available threads for each node, and therefore the performance improves
by a factor equal to the number of threads; in modern architectures this is an
order of magnitude (see Sect. 3.3). Furthermore, in the hybrid mode the OpenMP
directives improve the load balancing within the MPI tasks because the workload
is redistributed at runtime among the threads. These results are also confirmed
by profiling measures.
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Fig. 4. CPU time and Speedup for an increasing number of workers on cluster ARPAP.
MPI configuration is started with 8 MPI process for node while hybrid configuration
is started with one MPI process and 8 threads for node.

Currently, we are testing particular configurations where we measure a signif-
icant performance improvement: by using the same number of CPU but different
configurations on the node (e.g. on PLX, one mpi task and twelve threads versus
two mpi tasks and six threads each) we find that the performance improves of
∼ 20%. This is likely to be caused by memory affinity effects on the NUMA3

node. Namely on PLX, in case of one mpi task and twelve threads, the threads
have different access times to different regions of memory; while in case of two
mpi tasks, each with six threads, and each task working in a specific socket, the
threads have only access directly to the local memory of the socket. These are
however preliminary results since further testing is currently being carried out.

5 Conclusions and Future Work

In this work we have described the parallelization of FARM with MPI, OpenMP
and Hybrid (MPI+OpenMP) paradigms. The Hybrid parallelization resulted in
a better scalability because the number of sent messages in an alltoall routine
decreases by a factor of n2, with n equal to the number of threads inside each
node. With the hybrid parallelization the scalability improves also because the
number of available cores in the H-domain can be significantly higher than with
the MPI parallelization.

In the future we will implement the possibility of modifying the domain de-
composition parameters in order to choose alternative configurations to possibly

3 Non Uniform Memory Access.
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reach better performances. Furthermore, to decrease the number of all2all rou-
tines for time step, Eq. 2 will be transformed as follows:

ci(x, t+2Δt) = Lx(Δt)Ly(Δt)Lz(Δt)Lc(2Δt)ciLz(Δt)Ly(Δt)Lx(Δt)(x, t) (3)

In the above equation the splitting operator is symmetric; the different operators
are calculated first in direct, then in reverse order. In this way, for two time
steps (2Δt) the all2all routines are called two times, opposite to Eq. 2 where
they are called two times for single time integration (Δt). This will possibly
reduce the computational time up to the 15%, according to the CPU time for
MPI tests performed with 120 workers4. The envisaged feature is suitable for
both parallelizations, MPI and Hybrid.

A further improvement can be obtained by rearranging the access to the
input and output files. By using the most recent versions of netCDF libraries
(e.g netCDF 4.0 or higher) with parallel I/O, each worker can directly read or
write its own domain region. With this feature all the MPI calls between the
master and the workers are avoided. However in order to implement this feature
a parallel filesystem is needed. In our case this would only be possible on PLX
since ARPAP does not have a parallel filesystem.
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While for many researchers MPI itself remains an active research topic, for many
others it has become an invaluable tool to extract useful science from some of
the most powerful machines available. Unfortunately these MPI application de-
velopers – and their highly valued experience and use cases – do not always find
their way to the EuroMPI conference. The 2nd Special Session on Improving
MPI User and Developer Interaction (IMUDI 2012) once again aims to improve
the balance by actively reaching out to the application developer communities.
By evaluating the MPI standard from the perspective of the MPI end-user (ap-
plication and library developers) we hope to provide application developers the
opportunity to highlight MPI issues that might not be immediately obvious to
the developers of the various MPI implementations, while at the same time en-
abling the MPI developers to solicit feedback regarding future MPI development,
such as the MPI-3 standardization effort.

This year’s keynote speaker, Prof. Matthias Troyer (ETH Zurich), gracefully
accepted to share his experiences in developing Boost.MPI. We peer-reviewed
and selected four papers from the six papers submitted to the IMUDI 2012
session. These papers cover several topics that address software development
challenges associated with the MPI standard: a discussion of MPI support for
multi-application interaction, a study on the usability of the MPI shared file
pointer routines, communication algorithms for data analysis and an analysis of
efficient adjoints of one-sidedMPI communication. We believe that the discussion
of these topics in the IMUDI 2012 session will bring together MPI developers and
MPI end-users, and help MPI users and implementors understand the challenges
in developing MPI-based software and how to effectively use MPI in parallel
software products.

We are grateful for the support and help provided by our colleagues for
this event. While we cannot list them all, we especially thank the EuroMPI
2012 conference organizers, including Jack Dongarra (University of Tennessee -
Knoxville), Siegfried Benkner (University of Vienna) and Jesper Larsson Träff
(Vienna University of Technology) for their invaluable feedback. We also thank
the members of the IMUDI 2012 program committee for reviewing the session
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Quincey Koziol (The HDF Group), Sreeram Potluri (The Ohio State Univer-
sity), Terry Jones (Oak Ridge National Laboratory), Theron Voran (University
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Abstract. We present a generic approach to transforming one-sided
MPI communication in the context of adjoint code. The adjoint allows
us to compute gradients of multivariate function implementations at a
computational cost that is independent of the size of these gradients. In
this paper, we apply the adjoint model to codes containing one-side MPI
communication. The Partitioned Global Address Space notation is used
to derive the corresponding adjoint code. Our adjoint solutions rely on
certain workarounds due to limited adjoint support in the current MPI
standard. To avoid these, we provide a wish list for future MPI standards
that potentially lead to a more efficient adjoint communication.

Keywords: Algorithmic Differentiation, adjoint, gradient, one-sided
communication.

1 Introduction and Review of Related Work

The motivation for adjoining or reversing MPI communication arises in Algo-
rithmic Differentiation (AD) where derivatives are computed by transforming or
overloading source code of an original function implementation F . Without loss
of generality we assume F to be a multivariate scalar vector function y = F (x),
R

n → R, where the inputs x and the output y are of size n and 1, respectively.
By exploiting the associativity of the chain rule of differential calculus, adjoints
are computed according to the adjoint model

x̄ = x̄ + ∇F (x)ᵀ · ȳ, (1)

where x̄ and ȳ are the adjoints of x and y. ∇F denotes the gradient that contains
the partial derivatives of the output with respect to all inputs. Without going
into the details, it is crucial to understand that we can compute the gradient in
one sweep whereas for finite difference we need to rerun the entire code n times
while each time perturbing one input xi. In terms of time complexity, this is an
improvement to O(1) · cost(F ) compared to O(n) · cost(F ) [3,8].
� This work was supported by the Fond National de la Recherche of Luxembourg

under grant PHD-09-145.
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The downside of the adjoint model is its higher complexity reflected by a
higher constant overhead in O(1). The reason is that the evaluation of the ad-
joints is in reverse order to the computation of the values (see (1)). We illustrate
this with an example implementing the adjoint model applied to the function
y = F (x) = sin(x1 ·x2), R

2 → R in Table 1. The values t and y are evaluated in
the forward section. In the reverse section the adjoint incremental assignments
are executed in reverse order to the value assignments in the forward section,
amounting to a control flow reversal. In terms of MPI this implies a tracing of
all communications. Additionally, the variables of the right hand side of each
value assignment (e.g. x[0], x[1] in line 1) each become a left hand side of one
incremental adjoint assignment (x̄[0] and x̄[1] in line 2 and 3). This represents
a complete data flow reversal implying a reversal of all MPI communications
in our code. Finally, the values of x[0], x[1] and t need to be recorded in the
forward section since they are required for computation of the adjoints in the
reverse section. Setting ȳ to 1 results in a gradient computation with the partial
derivatives of dx

dy contained in x̄[0] and x̄[1].

Table 1. Adjoint implementation of y = F (x) = sin(x1 · x2)

forward section reverse section
y = F (x) x̄ = x̄ + ∇F (x)ᵀ · ȳ

1 t=x [ 0 ] ∗x [ 1 ]
2 y=s i n (t)

1 t̄+=cos (t) ∗ȳ
2 x̄[0]+=x [ 1 ] ∗ t̄
3 x̄[1]+=x [ 0 ] ∗ t̄

The adjoint code may be written by hand. However, from a non trivial code
size onwards, this tends to be very error prone and difficult to maintain. Tools
for AD aim at differentiating code semi-automatically, avoiding the tedious and
mechanical application of the adjoint code generation rules. This may be achieved
using a derivative code compiler [10,11,15] or by linking overloaded operator
libraries [2,1,6]. Either way, the same logic of reversing the original program in
order to compute adjoints, also applies to the MPI communication. There has
been a steady effort to efficiently adjoin MPI communication. First attempts
involved manual differentiation, transforming MPI calls by hand [5]. Later this
was achieved automatically by source transformation or overloading [14,13] up
to second-order derivatives [12].

In this paper, we specifically cover the adjoining of one-sided communication
as described by the MPI 2.2 standard [4]. Although MPI is a symmetric interface
and therefore allows a more or less efficient reversal of all communication, this
does not imply that the interface allows an efficient reversal with respect to the
chain rule of differential calculus. The reason is the incremental nature of the
adjoint model which transforms assignments into reversed incremental assign-
ments. This will pose some problems if applied to one-sided MPI communication.
We try to expose those shortcomings of MPI with regard to incremental reversal
and formulate a wish list to remedy the current situation.
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2 Method

There are three one-sided communication calls MPI Put, MPI Get and
MPI Accumulate. We refer to these functions as Put,Get and Accumulate.

Put(Variable ,Target,Displacement,Window)

Get(Variable ,Target,Displacement,Window)

Accumulate(Variable,Operation,Target,Displacement,Window)

Fence

Additionally, we use reduced signatures to solely focus on the adjoining of a given
communication. Put, Get and Accumulate are used on the origin’s Variable (e.g.
x[i],. . . ) with the target process id Target (P1,P2,. . . ), target window displacement
Displacement (0,1,. . . ) and the target window Window. Accumulate has the MPI
operation as an additional argument (MPI PROD, MPI SUM,. . . ). All fences are
assumed to be global and have no arguments or options.

A prerequisite for this paper is a basic knowledge on one-sided MPI commu-
nication. We do not cover all three synchronization methods put forward by the
MPI 2.2 standard. These are Fence, Lock and Expose. They are all brought down
to a Fence. All solutions presented in this paper will work by analogy with all
three synchronization methods.

To validate our proposed adjoint communication we rely on the PGAS (Parti-
tioned Global Address Space) notation. Therein, each communication amounts
to an assignment of variables with distinct prefixes. Sending the value of a vari-
able x on process P1 to the variable y on process P2 is equivalent to the assign-
ment P2.y=P1.x. Note that the nature of a communication is hidden. It may be
blocking, non blocking or one-sided. In this paper, we will only cover the latter.
Consider the following MPI program in Table 2 running on two processes P1 and
P2.

Table 2. Pseudocode of the value of k being sent from process P1 to P2 and saved in l
and its corresponding PGAS code

P1 P2 PGAS code

1 Win crea te (NULL , win )
2 x [0 ]=k
3 Fence
4 Put (x [ 0 ] , P2 , 0 , win )
5 Fence
6 Win f r ee ( win )

1 Win crea te (y , win )
2 Fence
3 Fence
4 l=y [ 0 ]
5 Win f r ee ( win )

1 P1 .x [0 ]=P1 .k
2 Fence
3 P2 .y [0 ]=P1 .x [ 0 ]
4 Fence
5 P2 . l=P2 .y [ 0 ]

It describes a common use case where a buffer array element x[0] is filled with
the value k on process P1. The value of x[0] is then sent over to process P2 using
a Put. There it is received inside the window win mapped to array y. Finally, it
is read by an assignment to variable l.
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We convert this code into PGAS as shown in Table 2. The two codes of
both processes are actually merged into one code. All variables are prefixed
by their residing process id (here P1, P2). All statements involving no parallel
communication remain unchanged, except for the prefix. As defined by the MPI
standard, the period between two synchronizations (Fence) is an access epoch.
We want to keep the notion of an access epoch in PGAS and therefore take the
synchronization routines over to the PGAS code. The Put in pseudocode of P1

in Table 2 line 4 has become an assignment in the PGAS code of Table 2 line 3.
There are multiple possible outcomes for the PGAS notation. The order of the
PGAS statements is defined by the following rules:

– The order of execution of statements on one process stays the same. If state-
ment si is executed before statement sj (si < sj), the same holds true in
PGAS notation.

– The order of execution of two statements involving two or more processes is
undefined in PGAS notation inside of access epochs.

– The access epochs are synchronized by the synchronization routine Fence.
Matching synchronizations in pseudocode are merged into one synchroniza-
tion call in PGAS code (e.g. in the pseudocode of Table 2 line 3 for P1 and
line 2 for P2 are merged to line 2 of the PGAS code).

The only difference to standard PGAS code is the synchronization routine Fence,
restricting the reordering of the statements in PGAS notation and thus illus-
trating the effect of synchronization on the possible outcome of the code. The
one-sided communication assignment (line 3) is actually only executed on the
origin (here P1).

Our robustness goal is that a deterministic program yields deterministic ad-
joints after it has been differentiated using AD [9]. If the adjoint computation is
deterministic it is enough to prove that the program yields correct adjoints for
one instance of its PGAS code.

In Sect. 3 we develop the adjoints to the Put and Get communication routines
while in Sect. 4 we deal with the Accumulate call. In both sections we elabo-
rate potential performance losses due to the incremental nature of the adjoint
communication and suggest solutions to address these issues.

3 Adjoining Put and Get

The MPI standard specifically states that no overlapping local access and Re-
mote Memory Access (RMA) store operation is allowed during an access epoch.
Furthermore, no more than one store RMA operation is allowed on one mem-
ory location in one access epoch, with the exception of Accumulate. These two
rules are essentially rules on the deterministic behaviour of a program. Non-
deterministic behaviour is only possible if the order of two overlapping store
operations on a memory location is unclear [9]. The MPI standard states:
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“It is erroneous to have concurrent conflicting accesses to the same mem-
ory location in a window; if a location is updated by a put or accu-
mulate operation, then this location cannot be accessed by a load or
another RMA operation until the updating operation has completed at
the target.”[7]

Therefore we assume that any correct one-sided MPI code, restricted to Put and
Get, is guaranteed to be deterministic. Furthermore, we assume that inside of an
access epoch, a variable is at most read once. This breaks down to no overlapping
RMA at all.

The only required prior knowledge about adjoint differentiation is that a com-
munication via Put and Get amounts to an assignment in PGAS, with its adjoint
being an incremental assignment according the adjoint model (see (1)). We take
the code of Table 2 as a code base. It only has one single access to each memory
location inside an access epoch. Any deterministic RMA MPI program, with no
overlapping local access or RMA is a decomposition and concatenation of this
code. In essence, each variable is only accessed at most once during an access
epoch. Hence, there are at most one of such code snippets for each variable. The
PGAS notation of the forward section matches Table 2.

Table 3.

forward section reverse section

y=x x̄+=ȳ

(a) Adjoint mode rule for an assign-
ment.

forward section reverse section

1 P1 .x [0 ]=P1 .k
2 Fence
3 P2 .y [0 ]=P1 .x [ 0 ]
4 Fence
5 P2 . l=P2 .y [ 0 ]

1 P2 . ȳ[0]+=P2 . l̄
2 Fence
3 P1 . x̄[0]+=P2 . ȳ [ 0 ]
4 Fence

5 P1 . k̄+=P1 . x̄ [ 0 ]

(b) Forward section with the derived re-
verse section in PGAS.

By applying the adjoint mode rule for assignments of Table 3a we end up with
the following reverse section in Table 3b.

Due to the incremental assignment in line 3 of the reverse section it does
not equate to a Get operation, but has instead become something similar to an
Accumulate. As a first guess, we might use an Accumulate on process P2 to add
the adjoint ȳ via an MPI SUM operation to the adjoint of process P1. This is not
possible, because at runtime, process P2 does not know if and whom to send
the adjoints to. Only process P1 has this knowledge based on the forward run.
Therefore, the Accumulate has to be on process P1. Unfortunately, MPI only al-
lows an Accumulate where the data is being transferred from the origin to the
target, and added to the target’s value. What we need, is an Accumulate that gets
the value of the target and adds it to the origin’s value. This is not supported,
hence we need to circumvent this. Note that if we used a Get in the original code,
the adjoint operation would have become an incremental put which is a regular
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Accumulate combined with an MPI SUM operation. With Put, the incremental
statement is actually an incremental Get which, for now, has to be decomposed
into an assignment (Get) followed by a sum. Thus we wrote the adjoint code in
Table 4.

Table 4. Reverse section of process P1 and P2 in pseudocode

P1 P2

1 Win crea te (NULL , win )
2 Fence
3 Get ( buf [ 0 ] , P2 , 0 , win )
4 Fence
5 Sync ( buf , x̄)

6 k̄+=x̄ [ 0 ]
7 Win f r ee ( win )

1 Win crea te ( ȳ , win )

2 ȳ [0]+=l̄
3 Fence
4 Fence
5 Win f r ee ( win )

The increment and the assignment are split up into a Get in line 3 and a
synchronization Sync in line 5. The received values of ȳ are first buffered in buf.
Only after the access epoch has finished, that is after the Fence, the values of
buf are added to x̄ in a separate synchronization routine Sync. Since we know
that each memory location is updated or read only by one RMA operation, we
know that we need exactly one increment for each touched adjoint at the end
of an access epoch. The same applies to the other two synchronization meth-
ods, Unlock and Complete/Wait. This obviously undermines the idea of one-sided
communication. If there are several Get’s and Put’s during an access epoch, the
actual synchronization may become a bottleneck as all the increments happen
in one single function call of Sync.

Table 5. Adjoint mode rules for one-sided communication involving Put and Get

original adjoint (now) adjoint (wished)

Win create Win free Win free
Win free Win create Win create

Put Get Accumulate =̂ incremental get
Get Accumulate Accumulate

Fence Fence + Sync Fence

As a summary, we have developed the rules in Table 5 to adjoin a one-sided
MPI code with no overlapping local and RMA’s and we added the conversion
rules we would like in the future: an incremental get amounting to an Accumulate

from target to origin. Allowing overlapping RMA reads only worsens the sit-
uation, requiring even more sophisticated synchronization steps and further
decreasing the performance.
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4 Accumulate

As mentioned before, overlapping local stores and RMA are generally not allowed
according to the MPI standard. However, Accumulate is an exception to this rule.
Because MPI operations (MPI SUM,MPI MAX,MPI PROD,. . . ) are all commuta-
tive, their order of execution has no effect, with the exception of some numerical
rounding differences. Hence, in this case, MPI allows more than one Accumulate

on one memory location of the target, the sole constraint being that only one
type of MPI operation is allowed on that memory location. These operations do
not break the determinism of a program. However, there is one exception to this
rule. The MPI REPLACE operation replaces the value at the target with the one
from the origin. This renders a given code potentially not deterministic. We will
not cover this issue in this paper and stick to the commutative operations. All
the adjoints of the commutative MPI operations may be computed efficiently as
shown in Table 6. For MPI SUM and MPI MAX only the adjoint of the results x̄m

and ȳ are needed. Hence, a Get is unavoidable. However, there is one particu-
larity when adjoining the MPI PROD operation. If we differentiated the product
straightforwardly we would end up with x̄i+ =

∏
j!=i xj · ȳ. This however is not

efficient, since not all processes do have local access to all xj ’s. Therefore, we
compute the adjoints with x̄i = y

xi
· ȳ. This guarantees that we only need local

access to the value of xi. Yet, as a trade-off, we need access to the global result
of y. Hence, we need to save y at the end of all the Accumulate operations and
send it back from the target to the origins. This has to take place in the forward
section during the computation of the values, since y is a value.

Table 6. Commutative MPI operations and their corresponding adjoint computation

operation forward section reverse section

MPI SUM y =

n∑
i=1

xi x̄i+ = ȳ

MPI MAX/MPI MIN xm = max/min(x1, . . . , xn) x̄i+ = x̄m

MPI PROD y =
n∏

i=1

xi x̄i+ =
∏
j!=i

xj · ȳ =
y

xi
· ȳ

Table 7a is an example code with three processes. Note that it may be ex-
tended to an arbitrary number of processes p. Process P1 and P2 send their
local contribution x[ i ] to process P3 where the multiplication will take place.
The accumulation amounts to a “*=” operation where the left-hand side resides
on a process different than the right-hand side. The adjoint to the “*=” op-
eration has been explained in Table 6. Hence we end up with the PGAS code
in Table 7b As mentioned before, we need to somehow transfer the end result
of P3.y[0] to the processes P1 and P2 in order to compute P1.x̄[0] and P2.x̄[0].
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We propose to do this in the second Fence operation in the forward section of
process P1 and P2. Therefore this time, the forward section of P1 and P2 is
structurally different from the original code:

Table 7.

P1 P2 P3

1 Win crea te (NULL , win )
2 x [0 ]=3
3 Fence
4 Accumulate (x [ 0 ] , MPI PROD ,
5 P3 , 0 , win )
6 Fence
7 Win f r ee ( win )

Win c r ea te (NULL , win )
x [0 ]=4
Fence
Accumulate (x [ 0 ] ,MPI PROD ,

P3 , 0 , win )
Fence
Win f r ee ( win )

Win c r ea te (NULL , win )
y [0 ]=2
Fence
Fence
l=x [ 0 ]
Win f r ee ( win )

(a) Pseudocode of P1, P2 and P3.

forward section reverse section

1 P1 .x [0 ]=3
2 P2 .x [0 ]=4
3 P3 .y [0 ]=2
4 Fence
5 P3 .y [0]∗=P1 .x [ 0 ]
6 P3 .y [0]∗=P2 .x [ 0 ]
7 Fence
8 P3 . l=P3 .y [ 0 ]

1 P3 . ȳ [0]+=P3 . l̄
2 Fence
3 P2 . x̄[0]+=(P3 . y [ 0 ] / P2 .x [ 0 ] ) ∗P3 . ȳ [ 0 ]
4 P1 . x̄[0]+=(P3 . y [ 0 ] / P1 .x [ 0 ] ) ∗P3 . ȳ [ 0 ]
5 Fence

(b) Forward and reverse section in PGAS code

Table 8. Amended forward section of process P1 and P2 in pseudocode

P1 P2

1 Win crea te (NULL , win )
2 x [0 ]=3
3 Fence
4 Accumulate (x [ 0 ] ,MPI PROD , P3 , 0 , win )
5 Fence + Get ( p r o d r e s ,MPI PROD , P3 , 0 ,

win )
6 Fence
7 Win f r ee ( win )

1 Win crea te (NULL , win )
2 x [0 ]=4
3 Fence
4 Accumulate (x [ 0 ] ,MPI PROD , P3 , 0 , win )
5 Fence + Get ( p r o d r e s ,MPI PROD , P3 , 0 ,

win )
6

7 Win f r ee ( win )

The result of the Accumulate and the MPI PROD operation resides on process
P3 in window win at disparity 0. Hence, we can pull this value with a Get on P1

and P2 at line 5. The ”+” symbolizes that this Get must happen after the Fence

and before the next access epoch begins. As Accumulate is roughly equivalent to
a one-sided MPI Reduce, it becomes clear that what we need here is an equivalent
to a one-sided MPI Allreduce. The final result of the MPI PROD operation has to
be distributed among all the processes. We propose the adjoint code in Table 9.
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Table 9. Reverse section of process P1, P2 and P3 in pseudocode

P1 P2 P3

1 Win c r ea t e (NULL , win )
2 Fence
3 Get ( buf [ 0 ] , P3 , i , win )
4 Fence + Adj Op ( x̄ , buf , p r o d r e s )
5 Win f r e e ( win )

Win c r ea t e (NULL , win )
Fence
Get ( buf [ 0 ] , P3 , i , win )
Fence + Adj Op ( x̄ , buf , p r o d r e s )
Win f r e e ( win )

Win c r ea t e (y , win )

ȳ [ i ]=l̄
Fence
Fence
Win f r e e ( win )

Again there needs to be a separation between the assignment and the in-
crement of x̄. This has two reasons. First, as with Put in Sect. 3, there is no
way to increment the adjoint from target to origin. Second, we may not do the
adjoint operation of MPI PROD in Table 6 using derived MPI operations, since
this is not allowed while using one-sided communication. Therefore, along the
same way as before, we introduce an Adj Op routine which does the incremental
adjoint operation. It uses the product result prod res , the buffer buf where the
incoming adjoint P3.ȳ is stored and finally the to be incremented adjoints P1.x̄

and P2.x̄. All in all, we have two requests with regard to the efficient adjoining of
Accumulate. We need an equivalent of a one-sided MPI Allreduce and customizable
MPI operations.

5 Summary

This paper examines the structural requirements for adjoining MPI programs us-
ing one-sided communication. It concludes that there is a potential performance
loss due to the additional synchronization steps when sticking to the current
MPI 2.2 interface for the adjoint code. We analyzed in detail the adjoint struc-
ture of MPI Put, MPI Get and MPI Accumulate. We drew a wish list of three
requests that may potentially provide huge performance gains to the adjoint
code of one-sided MPI communication. This is

– an incremental Get essentially amounting to an Accumulate call with the
operation MPI SUM where the data is sent from target to origin and added
to the origins value,

– a one-sided equivalent to a MPI Allreduce,
– and derived MPI operations for one-sided communication.

The current solution, while involving a considerable amount of workarounds,
is integrated into the adjoint MPI library (AMPI) at our institute. Although
our development is mainly application driven, we realize that applying AD on
a one-sided MPI enabled code is still future work. Currently, our in-house AD
overloading tool dco together with Adjoint MPI is being integrated into the par-
allel solver PETSc. A prototype is also in the works via an in-house implemented
code for the simulation of a 3D unsteady incompressible flow [6].
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9. Naumann, U., Hascoët, L., Hill, C., Hovland, P., Riehme, J., Utke, J.: A Framework
for Proving Correctness of Adjoint Message-Passing Programs. In: Lastovetsky, A.,
Kechadi, T., Dongarra, J. (eds.) EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 316–321.
Springer, Heidelberg (2008)
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Abstract. The MPI-2 standard defines a class of file access routines
providing a shared file pointer. All processes using those routines update
the same file pointer when accessing the file. Coordination between ranks
happens implicitly in the MPI library, relieving the application developer
of this responsibility. The shared file pointer routines, however, have
found little interest from developers because of several issues ranging
from routine usability and portability to performance. We consider the
use of these routines in the HDF5 library, a high-level I/O library built on
top of MPI, and in Vampir, a performance analysis toolkit. We highlight
some of the reasons preventing their adoption and discuss how these
routines could be modified to increase their usability. We also propose
a novel implementation using the new MPI one-sided routines provided
by the upcoming MPI-3.0 standard.

1 Introduction

MPI [11] introduced the notion of parallel I/O in version two of the specification.
Although its adoption by end users has been modest, research has shown that,
in combination with parallel file systems, MPI I/O can significantly improve the
I/O performance compared with other I/O interfaces. Furthermore, higher-level
scientific data libraries such as HDF5 [4] and Parallel netCDF (PnetCDF) [10]
rely heavily on MPI I/O to provide users with parallel access to the file system.

MPI I/O provides several data access routines that differ in a number of as-
pects. The first aspect is related to how the offset at which processes access the
file is determined: by using individual file pointers or shared file pointers or by
explicitly specifying the offset. The second aspect is coordination with indepen-
dent and collective operations. The third aspect is synchronism with blocking
and nonblocking operations. This paper focuses on data access operations that
manipulate shared file pointers. We focus on independent access with shared file
pointers because collective access is something we are trying to avoid in the use
cases presented. Furthermore, collective access with shared file pointers can be
easily implemented by using a combination of MPI Scan and collective access
with explicit offsets. The MPI Scan allows each process to add the amount of
data it wishes to read/write to the ones before it (with a lower rank); and, upon
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completion, each process knows its subsequent offset for I/O. All processes then
call MPI File write at all or MPI File read at all in order to perform the
required I/O.

For shared file pointer operations, each rank in the group that opened the
file manipulates a single, shared file pointer. Coordinating access to the shared
file pointer is handled by the MPI library. Usage scenarios for those operations
include generating event logs in parallel applications and organizing individual
additions to a file in such as way that subsequent additions do not overwrite
older ones (in effect, a distributed form of the POSIX O APPEND mode). Another
scenario could be assigning work to a set of ranks using a common file, where a
rank reads in some work to be done from that file and advances the shared file
pointer to the next chunk of work. Unfortunately, the actual use of shared file
pointer operations by application developers is rare because of issues of porta-
bility and performance (discussed in Section 3). Instead, in the case of shared
file pointer writes, applications typically resort to writing a unique file per rank,
making use of the fact that for a file opened by a single rank, the shared file
pointer degrades to an individual file pointer, something that is well supported
by all MPI implementations. However, the evolution to increased concurrency in
high-performance computing systems is quickly rendering the one-file-per-rank
model unsustainable.

The remainder of this paper is organized as follows. Section 2 discusses some of
the work done on implementing shared file pointer operations. Section 3 presents
two real-life use cases for the shared file pointer routines and analyzes some of the
reasons that the routines in their current form cannot be used easily. Section 4
addresses how the shared file pointer routines can be modified to enhance their
usability; it presents a novel, library-based implementation of the shared file
pointer routines and discusses how the recent MPI 3.0 standard can be utilized
for this purpose. Section 5 summarizes the paper and briefly presents plans for
future work.

2 Related Work

The most widely used implementation of MPI I/O today is ROMIO [13]. ROMIO
is part of the MPICH [3] distribution and is the basis for many I/O libraries
used in other public-domain MPI libraries and commercial MPI implementa-
tions. To implement shared file pointer functionality, ROMIO stores the value
of the shared file pointer in an additional hidden file. It requires this file to be
on a file system accessible by all ranks that opened the file. In order to properly
serialize access to the shared file pointer (and thus to the hidden file), each access
to the shared file pointer by any rank involves locking the hidden file, updat-
ing its contents, and unlocking the hidden file. These operations typically have
a high cost, severely reducing performance of the shared file pointer routines.
Furthermore, not all file systems support distributed file locking; thus, for those
file systems, shared file pointer operations will not function correctly.
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In order to address those situations, some work has been done to implement
shared file pointers without requiring support for file locking. In [9,12], MPI-2
one-sided operations were utilized to atomically update a shared file pointer.
Since the MPI-2 one-sided operations do not offer direct support for atomically
retrieving and incrementing a value, Latham et al. citeatomics describe how
the one-sided operations can be used to build a mutex instead. The mutex is
subsequently used to serialize access to the shared file pointer, which is stored
at one of the participating ranks.

In [7], three methods are presented for implementing shared file pointer op-
erations without file system support. The first method uses an extra process in
order to maintain the status of the shared file pointer; the second uses a separate
file per process when writing with shared file pointers; and the third method uti-
lizes also a separate file per process but combines the data of multiple MPI files
into a single individual file. Only the first method fully supports implementing
the shared file pointer routines as described by the standard. The second and
third methods put additional restrictions on the use of the file. Specifically, they
require a synchronized clock, and they support only writing with a shared file
pointer.

Cope et al. [2], instead of relying on a set-aside process, delegate the man-
agement of the shared file pointer to the I/O forwarding layer found in many
machines, providing a solution that does not depend on support from the un-
derlying file system or the MPI library. In [8], a similar approach is taken, but
in this case the file system itself is augmented with the operations needed to
properly implement a shared file pointer.

Despite all the research devoted to implementing shared file pointers, in prac-
tice application developers cannot rely on the widespread availability of reason-
ably performing shared file pointer routines, even though these routines have
been part of the MPI standard for over 14 years. Part of the problem is that
no single technique will work on all platforms. In addition, the current MPI im-
plementations does not offer the functionality needed to construct a reasonably
performing, portable shared file pointer without resorting to a set-aside process
or thread, a sacrifice most application developers are not willing to make. As
a result, many of the techniques described in this section are simply best-effort
solutions.

Chaarawi et al. [1] observe that all known methods for providing shared file
pointer support have a narrow usability window, depending on the platform,
the underlying file system, the progress model of the MPI library, the set of
ranks manipulating the shared file pointer, or any combination of these factors.
The researchers describe a framework that, based on the exact circumstances,
selects an appropriate technique for providing the shared file pointer routines.
Unfortunately, this approach only increases the chances of finding a working
shared file pointer technique on a given system. It does not guarantee a suitable
method can be found for every supported platform or situation.
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3 Motivation

The lack of reliable, well-performing shared file pointer routines has created a sit-
uation in which applications avoid using these routines, while MPI implementers
don’t consider the routines a priority because of the lack of application demand.
The rest of this section provides two examples showing that shared file pointer
access is an I/O pattern worth supporting.

3.1 Parallel HDF5

Parallel HDF5 [4], a high-level I/O library, is positioned above MPI-I/O in the
application’s software stack. Instead of treating a file as a simple stream of bytes
(the model presented by MPI-I/O), it provides the application with a more
structured view of a file. The user organizes a file using different HDF5 objects
(groups, datasets, etc.) and dependencies (links) between those objects. The
HDF5 library is responsible for maintaining information about the file structure
in the form of metadata, which is also stored in the file.

Parallel HDF5 allows all ranks that opened the file to access dataset elements
independently or collectively. However, because of synchronization issues, oper-
ations that need to modify the structure of the file (i.e., the files metadata) must
be collective. Space allocation is an operation requiring careful synchronization
between the ranks in order to avoid a situation where multiple ranks attempt
to claim the same space simultaneously. When a user creates HDF5 objects, the
HDF5 library allocates space to store data values, as well as the necessary ad-
ditional file metadata. When a user removes HDF5 objects from an HDF5 file,
the space associated with those objects becomes free space. The HDF5 library
file space management activities encompass both the allocation of space and
the management of free space. The HDF5 library implements several file space
management strategies; the strategy used for a given HDF5 file is set when the
file is created.

Currently, space within the HDF5 file is allocated either from a free list (con-
sisting of previously used and released blocks within the file) or from the end
of the files allocated space (EOA). Recycling space within the file is complex as
well as unusual in parallel HDF5 applications and therefore typically is disabled
for parallel applications. Thus, all space allocation must be performed at the files
EOA. In serial HDF5 applications, allocating space at the files EOA is simple.
The EOA value begins at offset 0 in the file; and when space is required, the
EOA value is incremented by the size of the block requested. In parallel HDF5
applications, however, space allocation using the EOA value can result in a race
condition if ranks do not synchronize with each other, causing multiple ranks to
believe that they are the sole owner of a range of bytes within the HDF5 file.

Shared file pointer operations have the potential to greatly simplify the space
allocation issue in the HDF5 library and to remove the existing collective re-
quirement (an important first step in breaking the collective requirement for all
operations that modify metadata); however, such operations have many limita-
tions. In theory, whenever a rank needs to allocate space at the EOA, it would
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just need to get the current position of the shared file pointer and advance it by
the amount of space needed atomically. MPI File write shared can be used to
advance the shared file pointer independently of all other ranks (MPI will handle
the synchronization issue). However, MPI does not provide any information on
where the write actually happened, nor does it indicate the current state of the
shared file pointer after the write completes.

While MPI File get position shared can be used to query the current po-
sition of the shared file pointer, this routine does not execute atomically with
MPI File write shared. Consider the following example in which two ranks
attempt to allocate space, each executing the following sequence of operations:

(1) MPI_File_get_position_shared()

(2) MPI_File_iwrite_shared()

If both ranks retrieve the current position of the shared file pointer at the same
time before one of them initiates the write operation, they will both obtain the
same value for the position of the shared file pointer. Even though the MPI li-
brary will correctly serialize each write operation—resulting in non-overlapping
writes—each rank now believes that it owns an allocation starting at the off-
set returned from MPI File get position shared, resulting in corruption of
the HDF5 file. Any other execution schedule interleaving (1) and (2) likewise
results in file corruption. The only valid execution schedules are those where
(1) and (2) execute atomically with respect to the other ranks. In order to
enforce atomicity, however, extra synchronization (outside of the shared file
pointer routines) is required, for example by using a collective operation such as
MPI Barrier. Essentially, then, for the purpose of implementing space allocation,
the MPI File write shared is no longer independent, negating its usefulness in
trying to break the collective space allocation restriction.

3.2 VampirTrace

Performance analysis is a difficult problem, particularly for parallel software.
Many packages aid in this task. One such package is Vampir [6], a sophisticated
performance analysis infrastructure for parallel programs. The Vampir toolset
relies on event trace recording, which allows detailed analysis of the parallel
behavior of target applications. At run time, Vampir’s monitoring component
collects the events, which include entry/exit events for user code subroutines,
message send/receive events, collective communication events, shared-memory
synchronization, and I/O events. Event trace data is written to disk at carefully
selected times in order to avoid disturbing the behavior of the application being
traced. Likewise, to avoid introducing additional synchronization, trace data
is typically written by using independent I/O routines. After the application
completes, the trace is analyzed. For the rest of this section, we will limit the
discussion to the recording of the trace.

At first glance, the I/O pattern of the Vampir tracing toolkit seems to be
a perfect match for the shared file pointer functionality: each rank could use
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the shared file pointer to append a set of events to the trace file. Once again,
however, two major issues prevent the use of the shared file pointer routines
in their current form. The first problem is that, for an analysis tool, it is vital
that the overhead introduced by the tracing layer be kept to a minimum. Unless
a relatively efficient shared file pointer implementation can be expected, these
routines cannot be used effectively by the tracing toolkit. Unfortunately, on many
existing systems the correct behavior of these routines cannot be guaranteed, let
alone reasonable performance.

The second problem is more than an implementation quality issue. In order
to efficiently analyze the trace file, before the analysis stage begins, an index of
the trace file is constructed. In order to do so efficiently, each rank appending
events to the trace file needs to know—at the time the data is written—at which
offset in the trace log the events were appended. As explained in Section 3.1,
the current form of the shared file pointer routines makes it impossible to do so
without introducing further synchronization, voiding the independent nature of
the routine.

Because of the lack of portable, reasonably performing shared file pointer
routines, Vampir resorts to writing a single file per rank. In [5], Ilsche et al.
discuss how using one file per rank fails to scale to the current generation of
parallel machines. Instead, by employing the technique described in [2], combined
with an augmented shared file pointer routine capable of atomically updating
and returning its value before the update, they demonstrate the ability to scale
Vampir to full system size (over 200,000 MPI ranks) while at the same time
improving the performance compared with that of the one-file-per-process model
for smaller numbers of processes.

4 Proposed Solution

In this section, a number of improvements to the shared file pointer routines are
proposed. We show how these improved routines can be implemented using the
recently added MPI-3 one-sided routines.

4.1 Fixing the API

The two use cases detailed in Section 3 required the ability to atomically retrieve
and update the shared file pointer. However, the MPI standard only provides a
way to either retrieve or update, but not both.

The same problem exists for MPI File seek shared. This routine takes
a whence argument and an offset value that indicates by how much the
pointer needs to be updated. Using that capability followed by a write oper-
ation using explicit offsets (MPI File write at) would appear to provide the
atomic operation needed for the use cases; however, the standard states that
MPI File seek shared is a collective operation. Furthermore, the routine does
not return any information about the current state of the shared file pointer
(similar to the access operations). Both restrictions would render this routine
useless for our problem.
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The easiest and most logical solution is to have the MPI library return the
current offset that it is writing to when MPI File write shared is called. The
MPI library already needs to have this information, since—to the best of our
knowledge—no file systems natively support shared file pointers. No extra work
is needed and no performance penalties are incurred if we change the API for
shared file pointer operations to return a written-to/read-from offset.

We therefore propose the following new routines, each of which enables re-
trieving the value of the shared file pointer before the modification:

int MPIX_File_write_and_get_shared (MPI_File mpi_fh, void *buf,

int count, MPI_Datatype datatype, MPI_Offset *position,

MPI_Status *status);

int MPIX_File_read_and_get_shared (MPI_File mpi_fh, void *buf,

int count, MPI_Datatype datatype, MPI_Offset *position,

MPI_Status *status);

int MPIX_File_seek_and_get_shared (MPI_File mpi_fh,

MPI_Offset offset, int whence, MPI_Offset *position);

Except for the extra parameter (position) used to return the position of the
shared file pointer before the data was written, these routines are the same as
the corresponding MPI routines. MPIX File seek and get shared is similar to
MPI File seek shared except that it is not collective and that it returns the
value of the shared file pointer before the update. This routine enables applica-
tion developers to claim a region in the shared file without having to read or
write the region at the same time or in a single access. Furthermore, this en-
hanced seek routine can be used in order to easily implement any of the existing
shared file pointer routines; and it enables application developers to create their
own, specialized shared file pointer routines.

4.2 Scalable and Efficient Shared File Pointers

A closer investigation of the shared file pointer routines reveals that all these
functions can be implemented, in effect, by an atomic update of the integer value
representing the shared file pointer, followed by the corresponding explicit offset
I/O operation. In this section, we investigate how the former can be implemented
using one-sided operations, in particular those provided by MPI-3.

In order to support the full range of shared file pointer operations, the shared
integer counter representing the current position of the shared file pointer must
be able to support asynchronous and atomic set, get, and fetch-and-add opera-
tions. Given the need for asynchrony and atomicity, a library-level implementa-
tion of shared file pointers using the MPI passive target one-sided communication
interface seems natural. Such an implementation was developed for the MPI-2
remote memory access (RMA) interface [9]. However, its space and communica-
tion volume grow linearly with the number of processes, and performance was
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unsatisfactory because the implementation could not leverage fetch-and-add op-
erations, since these were not available in MPI-2. In addition, the algorithm
performs poorly when contention is high.

MPI-3 brings several significant enhancements to the one-sided communica-
tion interface that enable a library-level shared counter implementation that is
more space, time, and communication efficient. In particular, MPI-3 defines sev-
eral new atomic and accumulate operations, including MPI Fetch and op, which
directly provides atomic fetch-and-add through the MPI SUM operation. The ear-
lier, nonscalable algorithm was constructed specifically to address the lack of
atomic fetch-and-add capabilities in MPI-2 RMA. In addition, this operation
can provide atomic get and put through the MPI NO OP and MPI REPLACE oper-
ations, respectively.

The MPI Fetch and op routine is more restrictive than the new
MPI Get accumulate function and can be applied only to predefined MPI
datatypes (e.g., MPI LONG). Although it duplicates the functionality of
MPI Get accumulate, this function was added specifically to enable imple-
menters to take advantage of interconnect-supported atomic operations,
which can yield a truly one-sided implementation with low latency and
hardware-supported asynchronous progress.

In MPI-2 RMA, multiple concurrent atomic and accumulate operations can
target the same location only if the same MPI operation (e.g., MPI SUM) is used
in every concurrent invocation. MPI-3 has relaxed this restriction by allowing all
atomic and accumulate operations to target the same location with any opera-
tion. Allowing greater concurrency among these operations enables the program-
mer to relax the synchronization operations used to maintain data integrity and
consistency. In the case of a window that holds a single shared-integer location,
the programmer can lock the window in MPI LOCK SHARED mode and keep the
epoch open for the entire life of the shared file pointer. Completion and ordering
of individual operations are accomplished with the new MPI Win flush oper-
ation. Moreover, new request-based, nonblocking RMA operations have been
added in MPI-3 that can be used to implement nonblocking shared file pointer
updates. The combination of these semantics with new atomic communication
functionality enables building an efficient, one-sided shared file pointer that can
portably leverage modern interconnect features.

Optimizing for Shared Memory. The MPI-3 standard will also include a
portable, interprocess shared-memory interface. This interface extends the RMA
interface with a window creation routine that allocates a shared-memory segment
and maps it into the address spaces of all processes. Once the shared-memory
window has been created, processes can perform “one-sided” load and store in-
structions to locations in the window. Data consistency and atomic operations
are provided by using the existing MPI-3 RMA interface. Given a shared memory
window, the MPI implementation can utilize an implementation of the atomic
operations that directly performs host CPU atomic operations. In the case of
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a general RMA window, atomic operations may need to be performed by the
network interface, since interconnect-provided atomic operations may not be
atomic with respect to the CPU’s atomic operations.

The interprocess shared-memory functionality provided by many operating
systems requires the use of a special memory allocator. Thus, in order to ensure
a portable implementation, the MPI-3 shared-memory window creation routine
must also allocate the memory that will be exposed in the window. Traditional
window creation, where a user-supplied buffer is utilized as the window buffer,
cannot be used to enable optimized host CPU atomic operations. MPI-3 also
adds a new window creation routine that allocates and creates the window;
however, implementations may not check whether the given window spans only
a shared-memory domain because of the overhead of this check.

It is expected that programs utilizing the shared-memory RMA interface will
use hierarchical intranode and internode levels of parallelism. When this in-
terface is combined with I/O operations, we anticipate the need for intranode
shared file pointers. The new MPI Comm split type routine, combined with the
MPI COMM TYPE SHARED argument, can be used to generate a communicator that
is able to create a shared-memory window. A shared file pointer implementation
can check whether the communicator input to a shared file pointer creation rou-
tine is a subset of the shared-memory communicator. If it is, the implementation
can create a shared-memory window instead of a traditional window, enabling
MPI to use host CPU atomic operations.

5 Conclusion and Future Work

As demonstrated in [5], efficient shared file pointer routines are becoming critical
as concurrency in contemporary high-performance computing systems continues
to increase. In this paper, we discussed two well-established, real-life candidates
for the MPI shared file pointer routines. We have demonstrated why— even
when overlooking portability or performance issues0–the inability to manipulate
and retrieve the value of the shared file pointer in a race-free manner effectively
precludes the use of these routines. We proposed a set of simple extensions
improving the usability of the shared file pointer routines. We showed how,
for the first time, by building on the new routines provided by MPI-3.0, one
can provide a reasonably performing, portable implementation of the shared file
pointer routines outside of the MPI library. We outlined the implementation of
such a library.

Once implementations of the MPI-3.0 standard become available, we plan
to evaluate and release a library implementing the functionality described in
this paper, unlocking the improved shared file pointer concept for application
developers.
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Abstract. Current scientific workflows consist of generally several com-
ponents either integrated in situ or as completely independent, asyn-
chronous components using centralized storage as an interface. Neither of
these approaches are likely to scale well into Exascale. Instead, separate
applications and services will be launched using online communication
to link these components of the scientific discovery process. Our experi-
ences with coupling multiple, independent MPI applications, each with
separate processing phases, exposes limitations preventing use of some
of the optimized mechanisms within the MPI standard. In this regard,
we have identified two shortcomings with current MPI implementations.
First, MPI intercommunicators offer a mechanism to communicate across
application boundaries, but do not address the impact this operating
mode has on possible programming models for each separate applica-
tion. Second, MPI Probe offers a way to interleave both local messaging
and remote messages, but has limitations as MPI Bcast and other collec-
tive calls are not supported by MPI Probe thus limiting use of optimize
collective calls in this operating mode.

1 Introduction

The move toward exascale is changing how the scientific computing process
works. Currently, one of two approaches is used. Most commonly, separate,
independent applications are combined into a single process with scripting or
workflow software to ease connecting the output from one component with an-
other as illustrated in Figure 1(a). In a production environment, this is nearly
exclusively done using a centralized storage system shared between pairs of con-
necting components. In general, this is a single storage system. In this approach,
each component can scale independently, but is at the mercy of the file system
performance for end-to-end scalability. Alternatively, applications can incorpo-
rate additional processing pieces, such as analysis or visualization components,
in situ as illustrated in Figure 1(b). In this case, these additional processing
pieces must scale as easily as the host simulation or scaling the combination will
be artificially limited.

The alternative approach to address both of these cases is to use the best of
each while avoiding the penalties of both. By using online data processing areas
(see Figure 2) to create an online workflow, typically called data staging, hybrid
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Fig. 1. Traditional Scientific Workflow Architectures

staging, or ‘in flight’ processing, the speed penalty of a centralized file system
is avoided and the scalability limitations of a single, integrated, executable are
avoided. This approach, while not without its own challenges, has proven to work
well for both tightly coupled and loosely coupled workflows.
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Analysis/Viz 
Analysis/Viz Analysis/Viz 

Fig. 2. Online Processing

MPI provides the concept of an inter-communicator to connect two applica-
tions with MPI messages. This feature works well enough for the inter-application
communication, but MPI does not adequately address the potential impact of
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connecting applications on their operating model. Each application, particularly
shared services-style applications, offers a collection of operations to process
data. For shared services applications, one or more of these operations may be
in process or at least a possible next step at any time. This requires the external
interface to seamlessly support any possible message at any time including the
corresponding memory use for each of these messages. For all of these cases, if any
currently processing task issues a collective call, all processes must participate
for the program to continue. The serious implication is that being responsive to
messages from the other application requires periodic checks for waiting mes-
sages. For a services-style application, this external communication may drive
what local processing is performed by different portions of the local application.
To optimize the communication between applications, it becomes more efficient
to probe for the inter-application messages as well as the local messages on the
communicating processes. The lack of complete support of message types in the
MPI Probe call limits the kinds of operations that can be used within these
applications.

The rest of the paper is structured as follows. In Section 2 we discuss some
of the related work as well as work that motivates the need for these changes.
Section 3 discusses the current design and the implications of these decisions for
programming of participating application components. The proposed solution is
presented next in Section 4. Finally, conclusions are presented in Section 5.

2 Related Work

Separate MPI applications operating as a single workflow using isolated applica-
tions to isolate failures has been demonstrated previously. The C-MPI project [11]
uses DHTs to connect MPI applications. The LDM [10] offers a similar approach
to data staging techniques as demonstrated in the LEAD [2] project. In this case,
the various data processing components are linked together to form the process-
ing workflow.

Offline workflows have been built using a variety of tools. For example, Dag-
man [5], Pegasus [7], and Kepler [4] each provide a way to connect various compo-
nents in an ordered way to process scientific data. Scientists have also assembled
similar systems less formally using scripts. They each work by providing a way
to trigger a component at a given time given a set of conditions, such as a prior
dependency component has completed processing. In all of these cases, the use of
centralized storage as an integration point introduces a performance bottleneck.

The alternative approach of in situ processing, such as is done by ParaView [6]
and VisIt [9], has its own problems. For example, the CTH [3] shock physics
code in use at Sandia easily can scale to 100,000 cores with an executable size of
around 30 MB. When incorporating ParaView for in situ processing and visual-
ization, the executable grows to around 300 MB and has difficulty scaling beyond
around 30,000 cores. While ParaView is actively working to correct these scaling
limitations, those fixes will not solve the increased memory footprint fully.

PreDatA [12] offers ‘in flight’ data processing from the simulation to disk by
hosting the processing in various locations along the data path. Alternatively,
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DataSpaces [1] and the related projects at Rutgers focus on attempting to store
data in an online repository for querying by another application. These ap-
proaches currently rely on custom connections between components and do not
offer the portability offered by MPI intercommunicators. The Network Scalable
Services Infrastructure [8] offers an RPC-style interface to efficiently connect be-
tween separate applications using native interconnect techniques, but offers no
default services.

3 Current Design Attributes

Current applications that wish to participate in an online workflow would in-
corporate some minor changes. For example, an additional interface that com-
municates with the related applications is added and then incorporated into the
processing loop. This simplifies the application changes by limiting the number
of places where code to check for inter-application messaging may occur. This
isolates these changes while allowing the application to run as it is originally
written. While this is simple in itself, scenarios such as when there is active
processing in one or more of the participating applications causes problems. The
difficulty with message probing is the lack of support to detect any collective
operations. For our motivating example, a mass data transfer from one appli-
cation to another requires some configuration information to be sent across the
inter-application control message interface to indicate the number of variables,
their types, extents, and data types. The amount of data in this message is un-
known and only slightly bounded. Another message type coming across the same
interface will be a variable itself being sent across the application boundary. In
this case, the size could be as much as 10% or more of the node’s local memory.
The kinds of processing that may occur for a variable may require that all pieces
of the global variable are processed simultaneously to generate some summary
or derived value. Frequently these operations are performed using collective calls
as part of a larger processing sequence.

Efficiency strongly suggests that the configuration information is sent across
once and distributed out to participating processes locally. This distribution of
messages among the processes of one application is generally performed using an
MPI Bcast or similar mechanism to take advantage of the optimizations incorpo-
rated into the MPI standard. The difficulty here is two fold. First, the processes
operate out of step with each other, so not all subsets of processes will expect the
same types of messages. Second, while under the proposed MPI 3.0 standard,
it is possible for processes to pre-post for asynchronous collective operations,
it is assumed that the processes know what to expect a head of time. In the
case of a general processing situation, it is unpredictable what the specifics of
the collective call would be rendering this ineffective for this situation. Instead,
to implement this functionality, a manual asynchronous broadcast must be im-
plemented. This problem is worse if the processing incorporates other collective
operations, such as all-to-all, gather, scatter, or all-reduce operations. None of
these pending operations can be detected through the use of an MPI Probe call.
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4 Proposed Extensions

One possible solution to this scenario is relatively straightforward. The current
MPI Probe implementation could be expanded to include all of the collective
calls. While this maintains a simpler API, the additional possibilities for types
of messages and the change in the behavior that may affect current applications
makes this approach less than desirable. Instead, an identical pair of API calls,
MPI Cprobe and MPI Icprobe that look the same as the MPI Probe equivalents,
would be sufficient. In this case, instead of identifying pending point to point
messages, these calls would only detect all of the collective calls that the current
probe implementation supports. With this extension, it would be possible to
remove re-implentation of collective calls as point-to-point calls and associated
operations such as performing the all-reduce operation. Additionally, this would
afford potentially leveraging hardware features, such as the collectives network
on the BlueGene platform.

The potential performance impact of blocking many or even all processes
waiting for a collective call to complete is serious. It is certainly likely that
collectives were not included in MPI Probe for exactly this concern. However,
the introduction of asynchronous collective communication largely alleviates
this concern. The potential performance penalty of poorly written replacements
for the collective calls should outweigh these concerns. Their direct impact of
these calls on an MPI application’s performance will generally be limited. With
sufficient warnings about only using these calls as ways to detect collective
calls will cause all processes to stall until the corresponding collective calls are
issued.

5 Conclusions

The move to exascale is motivating moving offline workflows online and coupling
the various components more tightly while maintaining separate applications to
enhance resilience. This communication and processing intensive software archi-
tecture requires the ability to both probe for new messages as well as communi-
cate among all of the processes within an application simultaneously. The ability
to probe for unexpected messages of all types rather than simply point-to-point
messages will enable MPI applications to more easily participate in this software
architecture. The inclusion of collective calls such as MPI Bcast both simplifies
the implementation as well as offers the performance advantage of efficient col-
lectives implementations offered by MPI and potentially the ability to leverage
hardware features such as dedicated collectives networks.
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Abstract. Large-scale parallel data analysis, where global information from a
variety of problem domains is resolved in a distributed memory space, relies
on communication. Three communication algorithms motivated by data analy-
sis workloads—merge based reduction, swap based reduction, and neighborhood
exchange—are presented, and their performance is benchmarked. These algo-
rithms communicate custom data types among blocks assigned to processes in
flexible ways, and their performance is optimized by tunable parameters. Perfor-
mance is compared with an MPI implementation and with previous communica-
tion algorithms on an IBM Blue Gene/P supercomputer at a variety of message
sizes and process counts.

Keywords: communication for large-scale parallel data analysis.

1 Introduction

Large-scale parallel data analysis and visualization often involve intense communica-
tion of information in a distributed-memory HPC architecture, for example, when data
are analyzed in situ during a computational simulation. Thus, efficient and usable
communication algorithms are fundamental to scalable data analysis. While MPI’s col-
lectives suffice for some of these tasks, MPI alone does not provide custom domain
decompositions, partial reductions, or neighborhood exchanges. Even when a compa-
rable MPI function does exist, configurable algorithms that allow tuning for a target
architecture and data movement pattern may outperform MPI implementations for the
same task. Our solution is to write such algorithms in a library built on top of MPI.

This paper examines three communication algorithms implemented in such a library.
We describe how these algorithms offer capabilities beyond MPI’s stock functions.
These capabilities include the ability to communicate among blocks instead of pro-
cesses, so that blocks can be mapped to processes in flexible ways. For example, mul-
tiple blocks can be mapped to one MPI process. Reductions are based on configurable
radices and rounds and can be either partial or complete depending on these parameters.
Neighborhood communication is also included.

Although these communication algorithms have been successfully applied in our
prior work to a variety of data analysis tasks, the contribution of this paper is a thorough
benchmarking of their performance. We compare with a popular MPI implementation
for test configurations where a comparable MPI function can be used. We also compare
performance with previous visualization algorithms, in particular, with a highly tuned
image compositing algorithm and with our previous implementation of neighborhood
exchange in parallel particle tracing.
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Table 1. Examples of Communication Patterns in Data Analysis

Analysis Kernel Communication Pattern
Particle tracing [5] Neighborhood exchange
Information entropy [6] Merge based reduction
Morse-Smale complex [7] Merge based reduction
Computational geometry [8] Neighborhood exchange
Region growing [9] Neighborhood exchange
Sort-last rendering [3] Swap based reduction

2 Background and Related Work

Many algorithms for collectives have been published in the message-passing literature,
including [1, 2]. The visualization community has developed similar communication
algorithms for image compositing [3].

Parallel scientific data analysis and visualization algorithms share a common set of
communication patterns. Table 1 shows a representative sample of data analysis ker-
nels and the communication pattern used in each. Some analyses also generate multi-
ple combinations and iterations of these same core patterns. The right-hand column of
the table reveals three common communication kernels: merge based reduction, swap
based reduction, and neighborhood exchange. These patterns are described further in
Section 3.

Algorithms for these three patterns are implemented in a prototype library called DIY
(Do-It-Yourself analysis) [4] that the user calls in conjunction with custom local analy-
sis operations. DIY is lightweight, consisting of approximately 15 K lines of code and
800 KB as a statically linked library. DIY’s communication algorithms have hooks for
custom reduction operators that act on user-defined data types, as in MPI. Additionally,
DIY allows communication among arbitrary subsets of the domain, which are called
blocks, without the user having to worry about which process actually owns a given
block. Blocks are assigned to processes during the initialization of DIY, and a process
may own more than one block. In the remainder of this paper, we will follow DIY’s
terminology and say that blocks communicate with each other rather than processes.

Deciding which communication pattern to select for a particular task depends on sev-
eral factors. If the operation is not associative and the order of information flow through
the domain is data-dependent, then global reduction cannot be used, and neighborhood
communication is selected instead. For associative operations, swap based reduction is
appropriate when data items are homogeneous, contiguous buffers that can be subdi-
vided, and the user wants a distributed result, as in MPI Reduce scatter. When data
items are heterogeneous and cannot be scattered, merge based reduction is used, similar
to MPI Reduce.

3 Method

DIY’s merge and swap based reductions allow configurable radix messaging. Commu-
nication occurs in rounds; and in each round, groups are formed of blocks that commu-
nicate with each other. The number of blocks per group in a round is called the k-value.
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By selecting the number of rounds and the k-value in each round, the user can tailor the
communication pattern to the hardware characteristics of the architecture. One also can
select a smaller number of rounds than a full reduction would require. Partial reductions
are useful for some applications, such as simplification of topological structures [7].

3.1 Merge Based Reduction

The merge based communication pattern is used for associative reduction of heteroge-
neous data that cannot be readily distributed and instead must be merged in place at
a smaller number of blocks during each round. Topological graph structures such as
Morse-Smale complexes are reduced this way [7]. Algorithm 1 was first published in
2011 [4]. The inset at the right shows an example of a partial reduction with two rounds
of merging using k = 4 in the first round and k = 2 in the second round.

Algorithm 1. Merge algorithm
1: mark all my local blocks as active
2: for all rounds do
3: for all my local active blocks do
4: identify blocks in same group as this block
5: select one block of the group to be the root
6: if block is not root of this group then
7: post nonblocking send to the root block
8: mark block as inactive
9: else

10: post nonblocking receive for all other blocks of
the group

11: end if
12: end for
13: wait for all sends/receives to complete
14: for all local root blocks of groups do
15: collect messages from blocks in this group
16: call user-defined merge operation
17: end for
18: end for
19: return number of finished blocks

3.2 Swap Based Reduction

The swap based communication pattern is used for associative reduction of homoge-
neous contiguous data buffers that remain distributed instead of being merged into a
smaller number of blocks. This case occurs in sort-last parallel rendering, when multi-
ple image buffers are blended together. In fact, Algorithm 2 is a generalization of the
radix-k image compositing algorithm first published in 2009 [10]. The inset at the right
shows an example of a partial reduction with two rounds of swapping using k = 4 in the
first round and k = 2 in the second round.
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Algorithm 2. Swap algorithm
1: for all rounds do
2: for all my local blocks do
3: identify other blocks in same group as this block
4: compute fraction of item to exchange
5: for all member blocks in same group as this block

do
6: post asynchronous send of fraction of item
7: end for
8: for all member blocks in same group as this block

do
9: post asynchronous receive of fraction of item

10: end for
11: end for
12: wait for sends/receives to complete
13: for all blocks do
14: collect messages from blocks in this group
15: call user-defined reduce operation
16: end for
17: end for
18: return location of reduced fraction within each block

3.3 Neighborhood Communication

For nonassociative operators, information traverses a domain iteratively, one neighbor-
hood at a time. An example is tracing streamlines through a flow dataset, when the
communication pattern depends entirely on the input vector field. Algorithm 3 is a
generalization of the particle exchange algorithm first published in 2011 [5]. The in-
set at the right shows an example of two rounds of neighborhood exchange. In the
PostMessages procedure, blocks post nonblocking messages to their neighbors, and
return to check on the status of received messages in the TestMessagesprocedure. The
number of messages for which to wait during each call to TestMessages is adjustable,
and this adjustable level of synchrony is a key reason for the performance improvement
of this algorithm over its predecessors.

4 Performance

Our tests were run on Intrepid, a 557-teraflop IBM Blue Gene/P supercomputer op-
erated by the Argonne Leadership Computing Facility (ALCF) at Argonne National
Laboratory. The test program was compiled with the IBM xlcxx r compiler using -O3

-qarch=450d -qtune=450 optimizations.

4.1 Reduction

The parameters for our tests were chosen so that our results could be compared against
MPI; hence, the merge and swap algorithms performed a full reduction. This means that
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Algorithm 3. Neighborhood Exchange Algorithm
1: procedure PACK MESSAGES

2: for all my local blocks do
3: for all all processes in my neighborhood do
4: pack message of block IDs and item counts des-

tined for that process
5: pack message of item payloads destined for that

process
6: end for
7: end for
8: end procedure
9: procedure POST MESSAGES

10: for all packed ID and count messages do
11: post nonblocking send of counts message
12: post nonblocking send of payloads message
13: post nonblocking receive of counts message
14: end for
15: end procedure
16: procedure TEST MESSAGES

17: while number of arrived messages < desired number
of arrivals do

18: wait for some more counts messages to arrive
19: parse counts message and post blocking send for

matching payload message
20: end while
21: end procedure

the number of rounds and k-values per round produced a merged result in a single block,
and the swapped result was scattered among all blocks and was equivalent to all blocks
communicating with each other. We used one DIY block per MPI process and tested
block counts that were powers of two. Tests were run in symmetric multiprocessor
mode, one MPI process per node.

Since the swap based reduction is a generalization of the radix-k image compositing
algorithm, we also wanted to configure our tests to be able to compare against radix-k.
Thus, our reduction operator is the noncommutative over operator [11], a linear com-
bination of elements in a floating-point buffer that represents the red, green, blue, and
opacity channels of pixels in an image. Our message sizes are based on images of vari-
ous resolutions at 16 bytes per pixel.

We first disabled the reduction operator and tested only the communication cost.
Figure 1 shows this result for merge and swap reduction compared with MPI Reduce

and MPI Reduce scatter, respectively. For merging, we found k = 2 to perform best;
for swapping, k = 8 was used. In the merge test, DIY was approximately 10% faster
than the BG/P MPI implementation; in the swap test, DIY was up to 60% faster at
1,024 processes.
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Fig. 1. Communication time only for our merge algorithm compared with MPI’s reduction algo-
rithm (left) and our swap algorithm compared with MPI’s reduce-scatter algorithm (right)

Next, we enabled the reduction operator, with the results in Figure 2 for k = 2 merge
reduction and k = 8 swap reduction. The difference between MPI and DIY is minimal
because the cost of computing the over operator is expensive enough to mask the gains
in the communication algorithm. Moreover, when k = 8, the computation is performed
by looping over the eight blocks that need to be reduced locally, which serializes the
computation.

Having eight blocks available for reduction, however, opens new possibilities for
thread-level parallelism that did not exist when k = 2 or in MPI Reduce scatter.
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Fig. 2. Communication and single-threaded compositing operator for our merge algorithm com-
pared with MPI’s reduction algorithm (left) and our swap algorithm compared with MPI’s reduce-
scatter algorithm (right)
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Fig. 3. Communication and multithreaded compositing operator for our swap algorithm compared
with MPI’s reduce-scatter algorithm (left) and compared with the radix-k algorithm of [10] (right)

When the loop over the eight blocks is multithreaded with openMP in the DIY ver-
sion, the graph on the left of Figure 3 results. The multithreaded DIY swap algorithm is
up to 1.8 times faster than MPI Reduce scatter at 1024 processes, and approximately
1.4 times faster than the single-threaded DIY swap in Figure 2.

Within the local over operator of the DIY swap version, the outer loop over the blocks
that were received was thread-parallelized, and this loop exists only in the DIY version.
The inner loop over block elements remained serial in both DIY and MPI. Since the
over operator is noncommutative, we wanted to ensure that the same reduction order
was maintained in both versions. In our tests, this order is in increasing block global
identification number. To maintain this order, we employed a local tree reduction as
shown in Figure 4. The idea of reducing local blocks in a tree as opposed to a linear
order was introduced by Moreland et al. [12], and we borrowed that idea for our thread
ordering.

Fig. 4. Local multithreaded tree reduction of eight blocks
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Fig. 5. Strong scaling performance for compute plus communicate time shows three times im-
provement over previously published results (left) for particles traced in a thermal hydraulics
flow field (right)

The right-hand side of Figure 3 compares our multithreaded swap performance with
the standalone version of the the radix-k algorithm [10]. It shows that DIY’s perfor-
mance is approximately two times slower than radix-k. Our swap reduction is more
general than radix-k because it supports multiple blocks per process and generic data
items, and this generality comes with some overhead. We expect that some of this per-
formance gap can be recovered through further optimization of DIY, and some will
remain. Motivated by this comparison, we will continue to work to improve perfor-
mance.

4.2 Neighborhood Exchange

To demonstrate the scalability of the nearest neighbor communication algorithm, and
in particular its use of tunable synchronization, we present an example from parallel
particle tracing. A common and intuitive way to visualize a static or time-varying flow
field is to trace paths that are derived from the trajectory of massless particles injected
into the field and advected through it using numerical integration. In a data-parallel
distributed-memory environment, the communication pattern that results is a neighbor-
hood exchange. Local computation of integral curves within a block is interleaved with
the exchange of particles across block boundaries in an iterative fashion.

The test shown in Figure 5 was run in virtual node mode with one MPI process per
core and eight DIY blocks per process. The left side of the figure shows strong scaling
of the compute plus communicate time and excludes file I/O. It compares Algorithm 3
with a previous algorithm published in 2011 [5]. The main improvement is due to the
adjustable number of arrivals parameter in line 17 of Algorithm 3. This algorithm is
approximately three times faster than the original in 2011.

The test dataset comes from a computational fluid dynamics simulation of thermal
hydraulics in a nuclear reactor. The problem is large in data size (20483 grid points), in
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the number of particles traced (256 K), and in the computation applied to each particle
(1000 integration steps). While 0.25 million particles are too many to visualize, a very
dense tracing such as this is necessary for accurate follow-on analysis of the field lines.
A much smaller number of particles traced in the same flow field is shown in the right
side of Figure 5.

5 Summary

We presented three communication patterns that are common to many data analysis
tasks. For global reduction, we designed configurable algorithms for merging and swap-
ping that feature configurable number of rounds and k-value per round. The neighbor-
hood exchange pattern features a configurable degree of synchronization and flexible
identification of blocks that constitute a neighborhood. Implemented in a design that
communicates user-defined data items among blocks instead of processes, the result
is a set of versatile communication algorithms that have proven to be very useful in
numerous data analysis applications.

Performance and scalability benchmarks were presented for all three algorithms. We
compared the two reductions with MPI. While we designed the experiment to be com-
parable with MPI’s reductions (one block per process and full reduction), it is important
to realize that DIY provides richer functionality that in general cannot be expressed by
a few MPI calls. Nevertheless, our algorithms were faster than the MPI implementation
in almost all the cases tested. The neighborhood exchange was compared with an earlier
algorithm, with three times faster performance in a test of parallel particle tracing of a
scientific dataset.

DIY’s versatility also accounts for lower performance compared with single-purpose
algorithms such as radix-k for image compositing. In particular, DIY does not overlap
communication and computation deep in the communication loop the way radix-k does,
because the reduction operator is in the user’s code.

In our ongoing work, we are continuing to look for ways to overlap communica-
tion and computation in our general-purpose library, to approach the performance of
algorithms like radix-k. We are also continuing to add new features to DIY, including
versatile information exchange patterns within a neighborhood. For example, blocks
may talk to only a subsets of blocks within a neighborhood, and these subsets can be
chosen in various ways. We also continue to build new analysis applications on top of
DIY, which in turn drives further innovation in the library.
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MPI is the most generally accepted API in HPC. Today, a typical HPC plat-
form provides a hierarchy of parallelism and networks, from OnChip Networks,
SMPs, SAN to WAN. The MPI protocol stack has been optimized for shared
memory plat-forms, InfiniBand etc. WAN MPI still is an extension of LAN MPI
and thus uses TCP. MPI in WANs is important because large cross-site re-
source pools often are used in Cloud and Grid Computing. Therefore MPI per-
formance/reliability/security in WANs must be addressed, and that’s what we
do and present here.

Using TCP in WAN environments raises problems: large latencies and the dif-
ficulty to utilize the full available bandwidth [1]. Scalability is another significant
problem, since a large number of TCP connections have to be established for
communication. Therefore, TCP is not well matched of MPI applications in wide
area networks. SCTP associations and streams closely match the message order-
ing semantics of MPI. For instance, contexts in an MPI program, which identify
communicating processes, can be represented as a one-to-many socket in SCTP
that establishes associations with that set of processes. Furthermore, mapping
associations each with multiple streams to rank of processes within a context in
MPI is another significant property of SCTP which directly corresponds with
message ordering semantics in MPI. More importantly, the multi-homing feature
of SCTP leads to increase the efficient use of all available communication paths
and makes it interesting for use in clusters. There is a project which investi-
gated the CMT feature of SCTP based middleware in MPICH2 but it is still
difficult to schedule messages based on message size in order to minimize latency
[2]. The recent innovative concurrent multipath communication method (CMC-
SCTP) which is an extension to the SCTP protocol provides an end-to-end fast
and efficient use of all available communication paths simultaneously [3]. This
method uses the fastest path for exchanging the control and coordination data
and provides minimum communication delay but with higher bandwidth up to
the summation of all available compute nodes’ network injection bandwidth.

The main objective of the proposed project is to improve performance and
scalability of communication in wide area network for HPC applications. Due to
the striking similarities between SCTP and MPI, we propose to replace TCP by
SCTP in the protocol stack of WAN MPI. This is to be achieved by providing
a wide area MPI that is based on CMC-SCTP extension protocol. CMC-SCTP
will be integrated into the modular structure of Open MPI in order to provide an
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infrastructure for in-depth evaluation using real-world programs. Open MPI is
chosen because it does not impose any restrictions on the communication mech-
anisms or protocols of the implementation and its modular structure supports
easy integration of new modules. We call this project CSM (Concurrent Multi-
path Communication SCTP for OpenMPI). CSMwill be a point-to-point concur-
rent multi-path communication module in OpenMPI that supports multi-homing
and the ability to stripe and share transferred data across multiple available inter-
faces. We plan to complement the real-world environment by a simulation-based
environment that allows us to evaluate aspects that cannot be addressed appro-
priately in a real-world. New functions that support re-source management and
performance analysis and optimization tools will be provided at little or no extra
cost by using monitoring functions of the SCTP protocol. A resource management
system allows users to set options for resource allocation that take into account
their preferences for a job execution. A performance optimizer might monitor all
available resources for communication performance. It may re-allocate resources
to the running application if paths with higher bandwidth or lower latency be-
come available. Finally, an application may execute under the control of an auto-
matic performance optimization tool that observes both the application and the
available resources and triggers the appropriate actions at run-time. Therefore,
an application may be able to reconfigure itself based on performance data.

Since the cost of WAN connections could be an important aspect in a Grid
environment, we propose the use of Concurrent Multipath Communication for
SCTP as a robust transport protocol extension, which also will provide an au-
tomatic performance optimization at runtime that take into account the current
load of processors, links and other criteria in order to improve bandwidth, scal-
ability, and especially reducing overall communication delay for MPI in WAN.

Energy costs over the lifetime of an HPC system are in the range of the ac-
quisition costs of the system. Therefore, energy efficiency is an important issue
for compute centers and Cloud providers. Our project provides excellent oppor-
tunities for the development of a method of applying energy saving techniques
in compute centers.Future resource management systems could allow a user to
specify minimum energy consumption (and thus minimum cost) under the con-
straint that the job will be done before a given deadline. They would be able to
provide highly dynamic Grid environments with reasonable overhead, reasonable
intrusion, and reasonable accuracy for HPC systems.
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1 Motivation

According to top 500 list, in November 2010 processors with four or more cores
were used in the 92% of the HPC systems, while systems using six or more cores
per processor have increased from 19% to 62% until November 2011. In the
next years it is expected hundreds of cores per processor competing for memory
bandwidth and aggravatting the problem known as memory wall, the decrease
of memory bandwidth relative to a processor that make applications to reach
just a few percent of its peak performance.

Incoming architectures appear to encourage the use of the Hybrid model.
OpenMP is the representative of the shared memory programming paradigm,
avoiding explicit communication. Nevertheless, up to now, the fact is that MPI
is still used for building HPC applications and libraries on multicore clusters,
due to application portability and performance.

Mainstream MPI implementations such as MPICH2 and Open MPI run each
rank as an operating system process. A message between two processes usually
goes through a shared memory region mapped by both address spaces, and it
therefore needs two copies. This approach can be self-defeating because of cache
pollution and memory bandwidth harnessing. This issue gets worse in collective
operations whose performance is critical in the global application behavior.

Therefore, mechanisms have been developed for saving copies in the trans-
mission of messages in shared memory, as SMARTMAP, based on hardware
capabilities, or KNEM, based on a operating system module which increases
latency because of the cost of system calls, but highly improves bandwidth of
medium to large sized messages.

Thread-based MPI implementations propose another model. Implementing an
MPI process as a thread fit MPI Standard 1.3 requirements with changes in the
code to eliminate static variables and enforcing the use of thread-safe libraries.
Benefits coming from one-copy message transfers and in-site reducing operations,
besides of improved scalability due to high reduction of memory consumption of
the library internals, or better handling of non-contiguous messages.

2 CAS : Common Address Space Component

CAS (Common Address Space) is an early implementation of a new Open MPI
collective component trying to mimic the performance and algorithms of the
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threaded shared memory model. By invoking MPI Alloc mem, the user allocates
the buffer to send in a memory region mapped to all the processes in the commu-
nicator. New algorithms avoiding intermediate copies can be devised for improv-
ing performance based on this configuration. Up to now, we have implemented
broadcast and reduce algorithms. In broadcast, root sends the address of the
user buffer to the rest of ranks, while receivers copy data directly from the user
buffer in parallel. Message fragmentation is not required. Our Reduce algorithm
is similar to current Open MPI SM (Shared Memory) component, and it is still
to be improved for taking full advantage of the new component facilities. Root
process is charged to apply the computation operation on all buffers, but no data
movement is needed, because buffers are in common address space. Our position
is that allowing all processes collaborate in applying the operation by sharing
out buffers, and taking into account the memory placement, performance could
be dramatically improved.

First attempts of implementing algorithms in this new component shows an
improvement for both operations respect to Open MPI collective SM component,
as shown in Fig. 1. Intel IMB benchmark is used on an eight core Nehalem
machine, without cache effects.
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Fig. 1. Broadcast and Reduce bandwidth in a 8-core Nehalem with 8 processes

The most important drawback of the component is the requirement of user
involvement in allocating buffers correctly for performance and memory saving.
For instance, in MPI Bcast only root needs to allocate the send buffer in shared
memory via MPI Alloc mem. Preprocessing techniques are being faced for assist-
ing on the allocation of buffers and applying different kinds of algorithms based
on their arrangement. As these techniques mature, we expect to move them to-
wards mainstream use. In the meanwhile, only buffers with a size greater than
a threshold are allocated in shared memory, leaving to double-copy methods
the smaller ones. Study of applications and libraries profiles are necessary for
clarifying where CAS component can be applied, as well as its overall benefits.
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Abstract. Checkpoint/restart (C/R) is a classical approach to intro-
duce fault tolerance in large HPC applications. Although it is relatively
easy as compared to other fault tolerance approaches, its overhead hin-
ders its wide usage. We present an application-level checkpointing tech-
nique that significantly reduces the checkpoint overhead. The checkpoint
I/O is overlapped with the computation of the application by following
a two-stage checkpointing mechanism with dedicated threads for doing
I/O.

1 Algorithm and Implementation

With each step closer towards the exascale barrier, the mean time between fail-
ure (MTBF) of these futuristic systems reduces. This raises the importance of
checkpoint/restart techniques [1]. As IO bandwidths cannot be increased arbitrar-
ily, it is important to investigate approaches which can hide IO time of checkpoint-
ing. One of these approaches is to utilize non-blocking asynchronous MPI-IO for
creating checkpoints. However, neither asynchronous non-blocking point-to-point
communication [2] nor asynchronous non-blocking MPI-IO is supported by most
of the MPI implementations. Therefore, we implement asynchronous checkpoint-
ing manually by creating a two-stage checkpointing mechanism and a dedicated
checkpoint thread (CP-thread) as shown in Fig. 1. Each MPI process is divided
into two threads, a worker thread and a CP-thread. The CP-thread of each MPI
process is pinned to a simultaneous multi-threaded (SMT) core for the present
Intel processor architectures, while the worker threads are pinned to the physi-
cal cores. If SMT is not available, physical cores may be oversubscribed. When
a checkpoint is triggered, an in-memory checkpoint is made first by the worker
thread. The second stage of checkpointing involves the copying of the in-memory
checkpoint to the external file system and is carried out by the CP-thread. For
benchmarking, we have utilized an MPI application based on a stencil type algo-
rithm with toggle grids. Thus, it is obvious to introduce an additional checkpoint-
ing grid (CP-grid) which is responsible for temporarily storing the in-memory
checkpoint. By switching the grid pointers, the extra in-memory copy of the CP-
grid from the most updated grid is completely avoided.
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CP-thread

Write CP-grid to PFS

Worker task

Procs. 1

Procs. 2

Procs. N

iter 1 iter 2 iter 'n-1' iter 'n'

copy CP-Grid
to Memory

Make CP

... idle ... idle ...

Fig. 1. Diagram of the program flow.
Each MPI process is divided into worker
and checkpoint threads. At checkpoint
iteration, the worker thread signals the
checkpoint thread to write the check-
point.
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Fig. 2. Checkpoint overhead for 128
LiMa nodes (1536 MPI-processes, 1 CP-
th./SMT-core) with aggregated check-
point size of 800GB/checkpoint

2 Results

Benchmarks were performed on an Intel based Infiniband cluster (LiMa)1, which
is connected to a Lustre parallel file system. In a näıve synchronous checkpoint-
ing technique, each MPI process interrupts its computation for the duration of
writing checkpoints, i.e., the complete IO time is added as overhead to the total
runtime. Figure 2 shows the checkpoint overhead comparison between a näıve
synchronous checkpointing and our presented asynchronous checkpointing tech-
nique for our application on 128 LiMa nodes with an aggregated checkpoint size
of 800GB. Each synchronous checkpoint adds ≈22% overhead to the applica-
tion, whereas each asynchronous checkpoint costs ≈0.6% overhead, i.e., almost
all the IO time is effectively hidden. This significantly reduces the checkpoint
overhead. The maximum number of low overhead asynchronous checkpoints can

be calculated as:
application runtime without checkpoints

IO time for a single checkpoint
.
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Developing safe, concurrent (and parallel) software systems is a hard task in multiple
aspects, particularly the sharing of information and the synchronization among multi-
ple participants of the system. In the message passing paradigm, this is achieved by
sending and receiving messages among different participants, raising a number of ver-
ification problems. For instance, exchanging messages in a wrong order may prevent
the system from progressing, causing a deadlock. MPI is the most commonly used pro-
tocol for high-performance, message-based parallel programs, and the need for formal
verification approaches is well acknowledged by much recent work (e.g., see [1]).

Our proposal for verification of MPI programs is based on session types [3]. The
methodology considers the specification of a global interaction protocol among mul-
tiple participants, from which we can derive an endpoint protocol for each individual
participant, e.g., as in Scribble [2]. A well-formed protocol can be verified in polyno-
mial time and ensures type safety, communication safety, and deadlock freedom [4].
The idea is that we can ensure these properties for an MPI program by verifying con-
formance of the program against a given session type specification. This contrasts with
other state-of-the-art methodologies considered for MPI, like model checking or sym-
bolic execution [6], that require program-level analysis for all properties of interest, and
inherently lead to a state-explosion problem as the number of participants grows.

Session type

process r :
r in {0, ..., P-1},
N > 0

= loop {
float[N] to (r+1) % P
float[N] from (P+r-1) % P
float allreduce

}

MPI fragment

float err, localErr, sbuf[N], rbuf[N];
int r, P;
MPI_Comm_rank(MPI_COMM_WORLD, &r);
MPI_Comm_size(MPI_COMM_WORLD, &P);
...
for (i=0; i < MAX_ITER && err > MAX_ERROR; i++) {
MPI_Sendrecv(sbuf, N, MPI_FLOAT, (r+1) % P, 0,

rbuf, N, MPI_FLOAT, (P+r-1) % P, 0,
MPI_COMM_WORLD, &status);

// computation
...
MPI_Allreduce(&localErr, &err, 1, MPI_FLOAT,

MPI_MAX, MPI_COMM_WORLD);
}

To illustrate our proposal we sketch a ring pattern that can be found in many MPI pro-
grams, e.g., n-body pipeline computations, shown above. We depict a pseudo-session
type specification (left) and a corresponding MPI program fragment (right). The session
type specifies that in every turn each participant r should send a float array of size N
to its right neighbor and receive another array of the same size from its left neighbor.
Then, after some local computation involving the received data, all participants perform
a collective reduction (using MPI Allreduce).
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We have identified two key challenges. The first is to refine session type abstrac-
tions to capture the general traits of MPI programs, e.g., rank-based communication,
collective operations, typical communication patterns (e.g., ring, mesh), and other MPI
operations that may correspond to multiple steps in the protocol (like MPI Sendrecv
in the example). Other features impose additional complexity, such as nondeterministic
operations (e.g., wildcard receives) or the possible choice/coexistence between block-
ing and nonblocking operations (e.g., an MPI Send operation can be matched by a
MPI Irecv/MPI Wait operation pair). Important work such as dependent-types or
parameterized multiparty session types [7] can provide insights on these topics.

Session types have already been used to describe and verify parallel programs, e.g.,
Session C [5]. The proposals so far, however, require that programs are specified using
a session type-specific programming abstraction and provide no support for common
traits of message-based parallel programs such as collective operations. In contrast, we
propose checking the conformance of standard MPI programs against session types.
This second challenge is far from trivial. In essence, we need to determine a sound
correspondence between a session type specification and the control flow graph of a
program for any process. The communication flow is dependent on the numerical rank
of each process, i.e., for any r in the example the endpoint type must be matched against
the concrete control flow of the MPI program when executed for rank r. Moreover, a
control flow synchrony needs to be established between processes. In the example we
would need to infer that the same number of loop iterations is executed for all ranks,
based on the assertion that err and i always have the same value in all processes
per each iteration (note that err results from MPI Allreduce). Beyond this simple
example, other MPI programs easily make this type of assertions more complex to infer,
e.g., manager-worker programs which combine such a parameterization with distinct
branches and communication operations for different process groups.
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1 Introduction

The work we present in this paper focuses on dynamic provisioning of computa-
tional resources depending on the performance requirements of the application
and the characteristics of the cluster available for execution. We target applica-
tions which exhibit variable performance over time. The idea is to dynamically
optimize the cost (total CPU-time) / performance (program execution time) ra-
tio of parallel applications by (1) reducing the number of processors when the
computation requirements decrease enough to justify it, and (2) moving compu-
tation onto those processors that can compute faster but don’t require extensive
remapping of the data. This approach adapts well to time-shared platforms in
which many applications may need to execute on the same cluster at the same
time, and allows users to implement different cost / performance tradeoffs.

The approach we are proposing differs from AMPI [1] in that they exploit
process virtualization while we employ non-virtualized MPI processes. It also
differs from DynMPI [4], which drops those nodes from computation which most
degrade the performance of the application. In contrast, our approach removes
processes only when the computation requirements of the application decrease.

2 The Basic Architecture

The main components of our runtime environment are the decision module,
the scheduler, and the monitoring layer which tracks the performance of the
application and feeds this data to the decision module. The decision module im-
plements heuristics to establish how many resources to assign to the application
at different points during its execution. This decision is communicated to the
scheduler, which elects the set of processes that will continue executing such that
they are located on the compute nodes with fastest execution time and which
involve minimum data remapping. For space reasons we skip most details of the
runtime environment [2] and focus on the decision module.

We have evaluated our framework for EpiGraph [3], an iterative, distributed
simulator for infectious diseases which exhibits a significant variability in the
iteration cost during its execution. Our heuristic Throughput-Based algorithm
(TB) starts from the assumption that the user provisions a maximum number of
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processors (Pmax) for executing an application. Using this amount of resources,
as the iteration time increases the throughput decreases and reaches its minimum
value. This is the point where the application reaches maximum speedup, after
which this decreases. A low speedup implies using many resources for a low
performance improvement. The idea of TB is to reduce the number of processors
to meet the cost/performance requirements.

The TB algorithm takes as input from the monitoring layer the current execu-
tion time of the program ts. Based on the previous (ts−1) and current execution
times, TB predicts the execution time for the next iteration interval (ts+1). The
number of processes that will execute during this interval (Ps+1) is computed
by the formula Ps+1 = Pmax

ts+1

α∗ts . α controls the program throughput rate such
that larger values of α imply fewer processes and, as a result, achieve smaller
throughputs. Fig.1(a) shows the aggregated CPU time and the overall program
execution time for TB on a cluster of 16 compute nodes. For α=0.2 we reduce
the aggregated CPU time by 19% with a degradation in overall execution time
of 11% when compared to executing EpiGraph on 16 processes without the sup-
port to our runtime environment. For the same setup, Fig.1(b) illustrates the
progression of the number of resources used over time and the iteration times.
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Fig. 1. (a) Impact of α on execution time, (b) number of resources for TB
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The implementation of persistent communication provided in MPI is reconsid-
ered to provide low latency and true overlapping communication and computa-
tion. In the persistent communication facility, the end-points of both the sender
and the receiver are set up by issuing MPI Send init and MPI Send recv primi-
tives prior to actual communication triggered by the MPI Start or MPI Startall
primitive. The same communication pattern is reused without reissuing the ini-
tialization. Thus, at the start of actual communications in persistent communi-
cation, the runtime system already knows all the communication patterns, i.e.,
peers and message sizes if both sender and receiver have issued persistent com-
munication primitives. Several enhancements utilizing network interfaces can be
achieved as follows:

1. RDMA
If the receiver’s buffer address is sent to the sender before the start of the
communication, the remote DMA mechanism is utilized.

2. Optimization of synchronization
If a process does not need to synchronize with other processes upon is-
suing the MPI Start or MPI Startall function, the synchronization at that
point can be eliminated. For example, in the case where a reduction function
has been issued to check the computational convergence before the start of
the persistent communications, it may start without synchronization among
peers.

3. Scheduling network interfaces
Because the runtime system already has known communication patterns, i.e,
peers and message sizes, upon starting the communications, it has a chance
to utilize network interfaces if each node has more than one network interface,
e.g., four DMA engines are equipped in K computer[1]. Moreover, if a low-
level network library provides an API for issuing multiple communication
operations, low latency communication is carried out.

In order to achieve the first two optimizations, a new communication protocol
and an implementation for persistent communication, called PRDMA (Persistent
Remote Direct Memory Access), has been deigned and implemented in Fujitsu
FX10, a commercialized version of K computer[1].

Information about remote memory address must be obtained prior to issuing a
remote DMA primitive. Because the initialization of persistent communication
is not a global operation, this information is not always available during the
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initialization, but it is informed asynchronously. When this information has not
arrived at the first communication, the MPI Start/MPI Startall primitives wait
for this arrival.

Fig. 1. Efficiency

PRDMA was evaluated using a simple benchmark program, whose commu-
nication pattern is parallel two-dimensional stencil computation, i.e., communi-
cating with four neighbors simultaneously during the communication phase, to
reveal how the facility carries out overlapping communication and computation.
In this benchmark, the persistent communication is initialized by both sender
and receiver sides followed by the main computation and communication loop.
In the main loop, the start primitive is issued followed by the local computation.
After finishing the computation, completion of the communications is waited for.

The results of the benchmark are shown in Fig. 1. These results are derived
from executions carried out five times. Efficiency on the y-axis represents how
total performance is slowed down if communications are involved during the
execution. For example, if the time with communications is 1.25 seconds and
the time without communications is 1 second, its efficiency is 0.8 (1 divided by
1.25). The results show that our proposed mechanism, PRDMA, outperforms
the original one.

The PRDMA proposed in this paper has a big limitation because it assumes
both sender and receiver sides issue persistent communication primitives. The
protocol is currently being redesigned to eliminate this limitation.
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Abstract. GPUs clusters are becoming widespread HPC platforms.
Exploiting them is however challenging, as this requires two separate
paradigms (MPI and CUDA or OpenCL) and careful load balancing
due to node heterogeneity. Current paradigms usually either limit them-
selves to offload part of the computation and leave CPUs idle, or require
static CPU/GPU work partitioning. We thus have previously proposed
StarPU, a runtime system able to dynamically scheduling tasks within a
single heterogeneous node. We show how we extended the task paradigm
of StarPU with MPI to easily map the task graph on MPI clusters and
automatically benefit from optimized execution.

Keywords: Accelerators, GPUs, MPI, Task-based model.

1 Adapting the StarPU Paradigm to Clusters of GPUs

A lot of research has been conducted to allow MPI applications to offload kernels
on GPU devices. StarPU [1] is a runtime scheduler for heterogeneous architec-
tures. A StarPU program is written as a graph of tasks, each task working on a
set of data. The computation part of the task, the codelet, wraps different imple-
mentations of the task for each type of device (CPU core, GPU, etc.). StarPU
uses a virtual shared memory for automated data transfers between all the het-
erogeneous processing units to enable scheduling tasks over all these units. By
carefully combining StarPU with MPI, we now benefit from both paradigms:
scheduling tasks over CPUs and GPUs, and using clusters equipped with GPUs.

The integration of StarPU and MPI uses two strategies, depending on whether
we accelerate existing MPI codes, or we add distribution to existing single node
applications for exploiting clusters. The first strategy uses a small library we
presented in [2], to extend the StarPU’s data management layer with MPI-like
semantics. The second strategy builds on the task-oriented model of StarPU.

2 Mapping Task Graphs on Clusters

Task graphs are indeed a convenient and portable representation which is not
only suited to hybrid accelerator-based machines, but also to clusters of nodes
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enhanced with accelerators. The first step is to partition the graph into multiple
sub-graphs of tasks that will be executed by the different instances of StarPU.
Data dependencies that cross the boundary between the nodes are fulfilled by
replacing the dependency with a MPI data transfer that is performed by the
means of our MPI-like library. In other words, a node that generates a piece of
data required by its neighbour(s) makes a send call. Similarly, a node that needs
a piece of data that was generated on another node makes a receive call. Provided
an initial partitioning of the DAG, this shows that our task-based paradigm is
also suited for clusters of multicore nodes enhanced with accelerators.

The source code below shows the StarPU-MPI version of the Cholesky de-
composition. The MAGMA reference linear algebra library is currently being
extended to clusters by using this paradigm.

1 for (x = 0 ; x < X; x++) for (y = 0 ; y < Y; y++)
2 starpu matrix data register(&A[ x ] [ y ] , 0 , &A t i l e [ x ] [ y ] , ld , t i l e s , t i l e s ) ;
3 starpu data set rank (A[ x ] [ y ] , ( y%Y BLK)∗X BLK + (x%X BLK) ) ;
4 for (k = 0 ; k < Nt ; k++)
5 starpu mpi insert task (MPI COMM WORLD, &potr f , RW, A[ k ] [ k ] , 0) ;
6 for (m = k+1; m < Nt ; m++)
7 starpu mpi insert task (MPI COMM WORLD, &trsm , R, A[ k ] [ k ] , RW, A[m] [ k ] , 0) ;
8 for (m = k+1; m < Nt ; m++)
9 for (n = k+1; n < m; n++)

10 starpu mpi insert task (MPI COMM WORLD, &gemm,
11 R, A[m] [ k ] , R, A[ n ] [ k ] , RW, A[m] [ n ] , 0) ;
12 starpu mpi insert task (MPI COMM WORLD, &syrk , R, A[m] [ k ] , RW, A[m] [m] , 0) ;
13 starpu task wait for a l l ( ) ;

The plot below shows the strong scalability obtained by the Cholesky decom-
position on a cluster of machines enhanced with accelerators. Each machine has
two Intel Nehalem X5650 sockets with 6 cores each, running at 2.67GHz, as well
as 3 NVIDIA Fermi M2070 GPUs each.
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