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Abstract. The previous perception and control system of smart wheelchairs 
normally doesn’t distinguish different objects and treats all objects as obstacles. 
Consequently it is hard to realize the object related navigation tasks such as 
furniture docking or door passage with interference from the obstacle avoidance 
behavior. In this article, a local 3D semantic map is built online using a 
low-cost RGB-D camera, which provides the semantic and geometrical data of 
the recognized objects to the shared control modules for user intention estima-
tion, target selection, motion control, as well as parameters adjusting of weight 
optimization for addressing different target. With the object information pro-
vided by 3D semantic map, our control system can choose different behaviors 
according to user intention to implement object related navigation. A smart 
wheelchair prototype equipped with a Kinect is developed and tested in real en-
vironment. The experiments showed that the 3D semantic map-based shared 
control can effectively enhance the smart wheelchair’s mobility, and improve 
the collaboration between the user and the smart wheelchair. 
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1 Introduction 

To improve the mobility of the smart wheelchair and the collaboration between the user 
and the smart wheelchair is a currently important research topic worldwide, especially 
facing unknown indoor environment and accurate tasks. Smart wheelchair is required 
to cognize the environment, to estimate the intention of user, and to timely adjust the 
control strategies, so as to achieve accurate and complex operations such as door pas-
sage and furniture docking. Previous shared control cannot solve these problems, 
because it has weak environment perception, which means that it cannot distinguish 
different objects so that treats all objects as obstacles. Taking door passage as an  
example, in order to ensure safety, the best method is to pass through it along the 
perpendicular bisector of the door, but the previous control algorithm does not guar-
antee this. Another example is the docking into the table, which need to detect the table 
and determine the docking position and orientation. Previous shared control is almost 
impossible to solve such problem. In this article, we used shared control and 3D  
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semantic map on smart wheelchair to improve its environment perception and hence 
mobility and collaboration. 

Various shared control has been proposed since 1990s [1]. They can be divided into 
two categories according to the control level a user takes part in: behavior level sharing 
and planning level sharing. 

Behavior level sharing is a commonly used method in the early stage. There are 
usually two ways for a wheelchair to cooperate with a human. The first way is that a 
wheelchair goes towards a direction that a user points out and the assistive system 
provides some obstacle avoidance algorithm to ensure safety [2]. In the second way, the 
user’s commands are treated as a behavior which is executed with other autonomous 
behaviors (e.g. obstacle avoidance behavior, wall follow behavior). 

Planning level sharing takes the user’s intention into account while doing planning. 
The wheelchair follows orders coming from a planner, and user expresses his or her 
intention by moving the joystick. When the user’s intention conflicts with the planner’s 
order, the control system will modify the user’s command [3] or re-plan the task [4], 
[5]. The user’s intention of doing a certain task (e.g. door passage) is measured by 
defining intention prediction functions [4]. 

A new kind of shared control method was recently proposed in [6] and [7]. They 
defined an efficiency function to evaluate the user’s control ability and adjusted the 
user’s control weight according to the function value. Inspired by above works, in our 
previous work [8], we proposed a minimax algorithm for optimizing the weights of 
both commands of user and machine. All methods mentioned above, however, don’t 
distinguish objects in environment but consider them all as obstacles. 

Many 3D technologies have been applied to smart wheelchair since 2005. Stereo 
vision-based SLAM is used for the smart wheelchair navigation in [9]. But the maps 
only contained geometry information without object information. The 3D model is 
segmented into distinct potentially traversable ground regions and fitted planes to the 
regions in [10]. The planes and segments were analyzed to identify safe and unsafe 
regions and the information was captured in an annotated 2D grid map called a local 
safety map. But they still cannot distinguish different objects either. 

Rusu et al. [11] proposed a novel framework for semantic 3D object model acquired 
from point cloud data. The functionality of this framework included robust alignment 
and integration mechanisms for partial data views, fast segmentation into regions based 
on local surface characteristics, and reliable object detection, categorization, and re-
construction. The computed models were semantic, i.e. they inferred structures in the 
data, which are meaningful with respect to the robot task. Such objects include doors, 
handles, supporting planes, cupboards, walls, and movable smaller objects. The point 
clouds are resulting from a 3D laser scanner. For smart wheelchair application, the 
mapping approach is still facing the issues on real-time computation, low-cost sensor 
and human-wheelchair cooperation. 

In this article, system architecture of shared control for smart wheelchair is pre-
sented. A local 3D semantic map is online built with use of a low-cost RGB-D camera, 
which provides the semantic and geometrical data of the recognized objects to the 
shared control modules for user intention estimation, target selection, motion control, 
as well as parameters resetting of weight optimization for addressing different target, A 
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smart wheelchair equipped with a Kinect is developed as experimental platform for 
studying the effectiveness of the proposed method. 

2 System Architecture 

As shown in Fig. 1, our approach is based on the previous shared control (below the 
dash). 3D semantic map contain the target information from 3D object detection and 
object feature extraction. At the same time, user intention is estimated to determine 
whether the user would like to reach the target. If not, the shared control will work as 
usual; if yes, the 3D semantic map will plan the motion to drive the wheelchair to the 
target, and the output of motion control (linear and angular velocity commands) will 
replace the output of joystick, meanwhile the 3D semantic map will adjust the internal 
parameters of the shared control to adapt to the different situations. 

ቐ݊݅ሬሬሬԦ ∙ Ԧݖ = ݅ݖ0 ∈ ሾ݊݅݉ݖ , ݔܽ݉ݖ ሿܿܽ݀ݎሺܱሻ ∈ ሾܿ݉݅݊ , ݔܽ݉ܿ ሿ 

 

Fig. 1. System architecture 

3 3D Semantic Map Building 

In this article, we use shape-based method to build 3D semantic map. The point cloud 
data obtained from the RGB-D camera is firstly filtered and down-sampled to reduce 
the amount of data. Secondly, RANSAC algorithm is used to segment the data in 
accordance with the horizontal plane and vertical plane, then European clustering is 
used to make segmentation region finer. Finally, each region is matched using a priori 
model library in order to identify object, and to extract object feature for navigation. 
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Pass Through Filter. Pass through filter is used to reduce the amount of date by re-
moving the useless points, such as the points which are too far or the points higher than 
the wheelchair and the user. ௜ܱ  is the point cloud and p (x, y, z) is a point: 

 ௜ܱ = ሼ݌ሺݔ, ,ݕ ݔ|ሻݖ ∈ ሺݔଵ, ,ଶሻݔ ݕ ∈ ሺݕଵ, ,ଶሻݕ ݖ ∈ ሺݖଵ,  ଶሻ ሽ .             (1)ݖ

Sparse Outlier Removal. Using RGB-D camera, measurement errors lead to sparse 
outliers which corrupt the results even more. They complicate the estimation of local 
point cloud characteristics such as surface normals or curvature changes, leading to 
erroneous values. The sparse outlier removal module corrects these irregularities by 
computing the mean µ and standard deviation σ of the nearest neighbor distances, and 
trimming the points which fall outside the µ േ α ڄ σ [11]. The value of α depends on 
the size of the analyzed neighborhood. 

Down Sample. The point cloud data obtained from RGB-D camera has high resolution 
and uneven density, which increase the amount of data. Space can be divided into voxel 
grids with some scale, and each grid contains at most one point. Such treatment can 
reduce the resolution and uniform the point cloud. 

Point Cloud Segmentation. In our approach, objects we interested in are usually 
structured by a set of planes, particular the planes perpendicular or parallel to the 
ground. We use RANCAS algorithm first to extract the above-mentioned planes [12]. 

RANSAC is an abbreviation for "RANdom SAmple Consensus". It is an iterative 
method to estimate parameters of a mathematical model from a set of observed data 
which contains outliers. 

The planes perpendicular and parallel to the horizontal plane can be constrained by 
the following equation, where ݊పሬሬሬԦ is the normal of each point in the point cloud data, 
and z-axis perpendicular to the ground: 

 ݊పሬሬሬԦ ൈ Ԧݖ = 0 . (2) 

 ݊పሬሬሬԦ ∙ Ԧݖ = 0 . (3) 

RANSAC doesn’t consider the continuity of data. The extracted results usually 
contain many separate areas. Therefore, the Euclidean cluster is needed to get the 
biggest continuity region of the result of RANSAC. 

Model Matching. Common objects of the indoor environment can usually be de-
scribed with some common-sense constraints, which include the plane normal, the 
range of area and height, etc. For example, a table can be described as follow: 

 ቐnనሬሬሬԦ ∙ zԦ = 0z୧ ∈ ሾz୫୧୬, z୫ୟ୶ሿcardሺOሻ ∈ ሾc୫୧୬, c୫ୟ୶ሿ . (4) 

where ܿܽ݀ݎሺܱሻ is the number of points in the plane. Because each voxel grid contains 
at most one point after down sample, the number of points can be estimated to a plane 
area. So ܿܽ݀ݎሺܱሻ ∈ ሾܿ௠௜௡, ܿ௠௔௫ሿ is the constraint of the desktop area.  
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In last step, RANSAC extracts the plane ܽݔ ൅ ݕܾ ൅ ݖܿ = ݀ . Hence ݔ = 0 and ݕ = 0 will get ݖ௜ = ݀/ܿ. And ݊పሬሬሬԦ ∙ Ԧݖ = 0 is the constraint using RANSAC to extract 
planes parallel to the horizontal plane. 

As result the algorithm have detected the object and marked the points in the point 
cloud which belong to the object to build 3D semantic map. These objects are candi-
dates for the target selection module. 

Object Feature Extraction for Navigation. Since our aim is to improve the wheel-
chair mobility, the details should be extracted according to different objects. One of the 
important details is to obtain the current goal for motion control in navigation, such as 
the orientation and the midpoint of the door, the position and orientation for docking, 
and the size of free space of the table. 

4 Shared Control 

The share control has two key parts: the reactive control and the weight optimization. 
The reactive control provides basic obstacle avoidance using MVFH&VFF methods 
[3], [4]. The weight optimal algorithm optimizes three indicators which will be dis-
cussed in the following section to obtain weight of reactive control and user. 

Weight Optimization. In our previous work [8], indicators of wheelchair’s perfor-
mance were proposed: safety, comfort and obedience. safety measures the probability 
of collision. comfort measures the variation of angular velocity. obedience measures 
the degree of obedience to the user’s control intention. These indicators are defined as: 

ݕݐ݂݁ܽݏ  = 1 െ expሺെߙ ∙  ሻ . (5)ݏ݅݀

ݐݎ݋݂݉݋ܿ  = expሺെߚ|߱ െ ߱଴|ሻ . (6) 

ܾ݁ܿ݊݁݅݀݁݋  = expሺെߦ|ߛ െ  ሻ . (7)|כߦ

where, dis measured the distance between the wheelchair and the nearest obstacle in its 
path; ߱ and ߱଴ are the desired and current angular velocity; ξ* is the orientation of 
user command calculated from the user’s input ݒ௠௔௖௛ and ߱௠௔௖௛; ξ is the orientation 
of final command determined by ݒ and ߱; ߚ ,ߙ and ߛ are constants. 

The aim of weight optimization is to maximize all three indicators. However, these 
indicators are usually contradictory to each other. Therefore, there is no absolute op-
timum solution for maximize the three indicators at the same time. So we proposed of 
solving this problem is: always improve the smallest indicator among the three. In 
accordance with this principle we choose the minimax method to simplify this mul-
ti-objective optimization problem to a single objective one (Eq. 8). 

۔ۖەۖ 
,ݕݐ݂݁ܽݏmax఑ሺminሺۓ ,ݐݎ݋݂݉݋ܿ .ݏሻሻܾ݁ܿ݊݁݅݀݁݋ ሻݐሺݒ.ݐ = ሻݐሻ߱ሺݐ௨௦௘௥ሺݒ = ሻݐ௨௦௘௥ሺ߱ߢ ൅ ሺ1 െ ሻ1ݐሻ߱௠௔௖௛ሺߢ ൒ ߢ ൒ 0  . (8) 
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where, ߢ and ሺ1 െ  ሻ is the linear and angular velocity to be sent to the wheelchair. This equationݐሻ and ߱ሺݐሺݒ ;ሻ is the user weight and the reactive control weightߢ
means that finding the user weight is equivalent to finding the proper ߢ to maximize 
the objective function minሺݕݐ݂݁ܽݏ, ,ݐݎ݋݂݉݋ܿ ሻܾ݁ܿ݊݁݅݀݁݋  under the restrictions 
stated after s.t.. As the linear velocity in MVFH is equal to ݒ௨௦௘௥ሺݐሻ as long as there is 
no possible collision, we restrict ݒሺݐሻ to be equal to ݒ௨௦௘௥ሺݐሻ. 

Eq. 8 as a linearly constrained nonlinear programming problem, there is generally no 
analytical solution, since we use one-dimensional search algorithm to solve the opti-
mization: First, use rough search algorithm to determine the interval that contain the 
maximum of the objective function minሺݕݐ݂݁ܽݏ, ,ݐݎ݋݂݉݋ܿ ሻܾ݁ܿ݊݁݅݀݁݋ ; Second, 
implement Golden section search algorithm in the interval mentioned above to find the ߢ at maximum of the objective function. 

Intention Estimation and Target Selection. Human should always be dominant in 
shared control. The command of machine plays a role of optimizing or revising user’s 
order, which is why it is necessary to estimate user’s intention. 

Our proposal uses interactive method for user intention estimation. A local map is 
shown in system interface. A red arrow in the interface represents the orientation of the 
joystick on wheelchair. Once an object is detected as the destination, the object will be 
marked by green frame. At this moment, if the user holds the joystick pointing toward 
the object, the system will understand that the user intends to approach and the green 
frame will turn red to feedback to the user. This process is called target selection. 
Otherwise, pointing away from the object or releasing the joystick mean rejecting target 
and treating the object as obstacle, just as the previous shared control. 

Motion Control. Target selection results in two effects. One is replacing the user 
commands by motion control commands to control the wheelchair automatically. The 
user’s order through joystick is considered as user’s intention on destination rather than 
direct control for velocity of the wheelchair. The velocity is calculated by motion 
control according to the position and orientation of the wheelchair and the goal. The 
other is the modification on parameters of shared control. For example, the threshold of 
obstacle avoidance is decreased to succeed passing through the narrow door or to 
perform fine manipulation; increase the obedience indicator to improve the accuracy of 
the tracking trajectory of the wheelchair. 

We use a real-state feedback controller [13] to calculates the linear and angular 
velocity according to the relative position of the wheelchair and the target (Eq. 9). 

۔ۖەۖ 
ۓ v = ݇௥ݎω = ݇௔ܽ ൅ ݇௕ܾr = ඥ∆ݔଶ ൅ ଶܽݕ∆ = െߠ ൅ atan2ሺ∆ݔ, ሻܾݕ∆ = െߠ െ ܽ  . (9) 

where ∆ݔ and ∆ݕ are position difference between the wheelchair and the target, ߠ is 
the orientation of wheelchair. The three variables above are with reference to the world 
coordinate system. ݇௥, ݇௔ and ݇௕ are constants. 
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Fig. 3. D semantic map building and target selection 

Table 1. Processing time for each step 

 Table Door 
Down Sample 0.23s 0.23s 
Segmentation 0.01s 0.05s 
Model Matching 0.15s 0.96s 
Detail Information Extraction 0.39s 0.02s 
Total 0.78s 1.26s 

Shared Control. Fig. 4 illustrates the accuracy of our control system. The width of 
wheelchair is 0.5m. It can be docked into the table with a 0.67m width free space. 

 

Fig. 4. Docking into the table 

Fig. 5(b) shows the comparison of trajectories with and without the 3D semantic 
map. As shown, when passing through the doorway, the wheelchair controlled with 3D 
semantic map took an arc to align the center of the door and passed through the 
doorway vertically. The wheelchair controlled without 3D semantic map, however, 
passed very close to one side, which is very dangerous. When docking into the table, 
the wheelchair controlled with 3D semantic map docked autonomously and precisely. 
On the opposite, the wheelchair couldn’t approach to the table and failed to dock. 
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(a) 

 

 
                      (b) 

Fig. 7. (a) Diagram of the indicators changes with user weight; (b) Convergence process of 
search algorithm 

6 Conclusion and Future Works 

This paper presents a 3D semantic map based-shared control for smart wheelchair. 3D 
semantic map is used to enhance the environment perception of wheelchair. The 
wheelchair is able to recognize different objects in unknown indoor environments, and 
with this information the wheelchair can assist the use to implement object related 
navigation tasks such as door passage or furniture docking. Further, the cooperation 
between human and wheelchair is improved based on the map. The experiments with 
real wheelchair and in real world illustrate the validity of the proposed method. In the 
future, the robustness and stability of the system for more complex environments will 
be further investigated. 
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