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Abstract. Towards the real-world application of multifunctional prostheses based 
on electromyography (EMG) signal, an unsupervised adaptive myoelectric control 
approach was presented in order to improve the long-time classification 
performance of EMG pattern recognition. The widely-used linear discriminant 
analysis (LDA) was improved to three new different classifiers separately termed 
as linear discriminant analysis with single pattern updating (SPLDA), linear 
discriminant analysis with multiple patterns updating (MPLDA), and linear 
discriminant analysis with selected data updating (SDLDA). The experimental 
result showed that the three new classifiers significantly outperformed the original 
version. MPLDA and SDLDA provided two different methods to decrease the 
influence of misclassification and got lower classification error rates than SPLDA. 
Strategies to decrease the influence of misclassification are the key to the 
application of unsupervised myoelectric control in the future. 
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1 Introduction 

Surface electromyography (EMG) signal, which is noninvasive and contains rich 
information associated with the muscle electrical activities, is considered to be an 
important input for the control of electrically powered prostheses [1]. To increase the 
number of functions of prostheses, much attention has been drawn to a pattern 
recognition based approach to the myoelectric control in last two decades and some 
promising results have been achieved [2-4]. 

By learning the nature of muscle contraction patterns for the intended movements 
of a specific user, pattern recognition can provide the advantage of recognizing the 
subtleties of the user’s muscular activity at a particular instance in time. However, it 
does not accommodate changes in the EMG patterns over time and the good 
performance cannot maintain for a long time because of the EMG variations, due to 
electrodes condition, muscle fatigue, sweating and so on [5]. This problem has 
become an obstacle for the commercialization of advanced myoelectric controlled 
prostheses developed in laboratory environment. 

The conventional pattern recognition method is accomplished in two parts, training 
and testing. The parameters acquired at the training contain limited information, and 
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they cannot be representative to the data of the whole temporal span in application 
period including testing step. It is the main cause to the above remarked problem. 
Therefore, how to make the parameters more representative to the EMG signal is the 
key to improve the long-time performance. 

In this paper, we exploited EMG information in the testing part, and an 
unsupervised adaptive myoelectric control approach was presented to improve the 
long-time classification performance of EMG pattern recognition. As the Linear 
Discriminant Analysis (LDA) is a computationally efficient algorithm with similar 
performance to more complex algorithms [4], it was improved with this approach and 
the new classifier, linear discriminant analysis with single pattern updating (SPLDA), 
was constructed. The experimental results showed a significant improvement in long 
time performance, compared with the original version. However, the existence of 
misclassification would bring adverse effect on the classifier and lead to a bad result. 
To reduce its influence, two different methods were proposed, which were separately 
from the aspects of data selection and multiple patterns updating. The corresponding 
classifiers were called linear discriminant analysis with multiple patterns updating 
(MPLDA), and linear discriminant analysis with selected data updating (SDLDA). 
The performance of MPLDA and SDLDA would compare with SPLDA, and they 
could be used in the control of multifunctional prostheses.  

2 Methods 

2.1 Overview  

The traditional myoelectric control based on pattern recognition generally contains 
segmentation, feature extraction, and classification [6]. The decision streams are 
finally generated for the motion controller. Unlike the traditional method, a feedback 
to the classifier is added in the unsupervised adaptive myoelectric control and it is 
illustrated in Figure. 1. Samples tagged with the results of the classifier were used to 
retrain the classifier to make it adaptive to the changes of EMG signal over time. 
 

 

Fig. 1. Block diagram of the unsupervised adaptive myoelectric control scheme 
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2.2 Linear Discriminant Analysis (LDA) 

A widely-used classification algorithm in EMG research is the LDA. A linear 
classifier, in general, tries to establish a hyperplane separating the signal space into  
individual subspaces for all classes [7]. It can be found in literature [8] that the 
formulae of LDA based on a multivariate normal distribution to each group, with a 
pooled estimate of covariance. 

2.3 Adaptive Linear Discriminant Analysis 

The main parameters of the LDA classifier are the mean vector of each class and the 
pooled covariance matrix. Suppose that there are N patterns used for training the 
classifier, and the new-coming testing EMG feature patterns are acquired as xN+1, 
xN+2, xN+3, cet. Let the pattern xN+1 be z and labeled as class k by the original classifier. 
The updated mean vector  for class k is 

1 , (1) 

where n  is the number of future patterns for class k, and  is the original mean 
vector. 

The pooled covariance matrix ΣW is updated by 

 1 1 1 1 , (2) 

where  is the original pooled covariance matrix. 

2.4 Decrease of Influence of Misclassification 

There are different strategies to update the classifier. The most common one is to 
recalculate the parameters when one single pattern is generated, and we call it 
adaptive LDA with single pattern updating (SPLDA). However, it is known that the 
classification error is inevitable and patterns with wrong tags may damage the 
classifier during the process of feedback and lead to a bad result. To reduce its 
influence, we propose two different methods from aspects of data selection and 
multiple patterns updating. 

An entropy function is introduced to test the confidence of classification and only 
the data that is of high confidence will be used to update the classifier. That is 
intended to reduce the number of wrong-tagged pattern and decrease its adverse 
influence. We call it adaptive LDA with selected data updating (SDLDA). 

The entropy function used for data selection in SDLDA is [9] , (3) 
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where K is the number of classes to be considered and  is the probability of 
class k in future pattern n defined as follows, 1∑ 1 , (4) 

, (5) 

Another way is to use more than one pattern to update the classifier. In SPLDA, if one 
pattern is attached with a wrong label, its influence will be immediately reflected on 
the next pattern’s calculation. It may lead to accumulative error and impair the 
classifier. However, if we decrease the frequency of updating and update the classifier 
after more than one pattern is calculated. Then the right-tagged pattern will weaken 
the influence of the wrong-tagged and reduce the accumulative error of the classifier. 
In this way, the influence of misclassification is reduced. It is called adaptive LDA 
with multiple patterns updating (MPLDA). 

Therefore, three adaptive LDA classifiers were developed, which were separately 
called SPLDA, SDLDA, and MPLDA. MPLDA and SDLDA are better than SPLDA 
theoretically. 

2.5 EMG Data Acquisition 

The data were collected from three able-bodied subjects with four bipolar electrodes 
placed on palmaris longus, flexor carpi ulnaris, flexor digitorum supercifialis, and 
extensor digitorum. The motion classes were consisted of wrist flexion/extension, 
forearm pronation/supination, hand open/close, radial flexion, ulnar flexion and 
resting (no motion). Motions are shown in Figure. 2. Signals were pre-amplified and 
filtered using a commercial myoelectric system (Delsys Inc., TrignoTM Wireless 
System, 20-450 Hz band pass filter) and recorded at a sampling rate of 2 kHz. Four 
time-domain EMG features (mean absolute value, waveform length, zero crossings, 
and slope changes) [3] extracted from 200 ms windows of filtered EMG from each 
channel resulted in a 16-element feature vector. The feature vector was calculated at 
25 ms intervals (175 ms of overlapping data per window). 

A single experimental trial is defined as follows. Subjects perform each of the  
nine contraction classes for 5 seconds with a 5-second rest between contractions. For 
each hour, five consecutive trials were performed and the whole temporal span  
of the experiment for each subject was 7 hours (40 trials of data were collected). The 
first five trials were assigned as a training set and the next thirty-five trials as a testing 
set. 
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Fig. 2. Photo of different types of motions. (a) Forearm pronation. (b) Forearm supination. (c) 
Hand close. (d) Hand open. (e) Radial flexion. (f) Ulnar flexion. (g) Wrist flexion. (h) Wrist 
extension. 

3 Results and Discussion 

To compare the performance of different types of classifiers, the classification error 
rate was used as a measure, which was defined as Number of incorrectly classified samplesTotal number of testing samples 100 % . 
The average classification error rate of different classifiers for each subject is listed in 
Table. 1, and the best performance for each subject is highlighted in bold. 

Table 1. Average classification error rate of different classifiers 

 Error Rate (%) 
Subject LDA SPLDA MPLDA SDLDA 

S1 11.01 5.49 3.24 2.68 
S2 20.15 11.55 8.44 8.81 
S3 29.93 22.52 19.67 19.58 

mean 20.36 13.19 10.45 10.36 

 
 
From this table, it can be seen that the performance of each subject was different 

for a certain classify. The average classification error rate across subjects of LDA is 
20.36%, whereas SPLDA, MPLDA and SDLDA are 13.19%, 10.45%, 10.36%, 
respectively. It can be concluded that SPLDA, MPLDA and SDLDA significantly 
outperform LDA. In addition, the performance of SPLDA is approximately the same 
as MPLDA, which is superior to LDA. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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Fig. 3. Classification error rate of different classifiers. Result is averaged across all subjects. 

The error rate of different classifiers over time is shown in Figure. 3. A one-way 
Analysis of Variance (ANOVA) was applied to analyze the classifier factor. By 
analyzing the performance of LDA and SPLDA, it is showed that pattern updating 
significantly decreases the error rate (p < 0.01). Meanwhile, by analyzing the results 
of SPLDA, MPLDA and SPLDA, SDLDA, it can be concluded that decrease of 
influence of misclassification has the same effect (p < 0.05) as pattern updating. 

To determine the quality of EMG signal, the concept of minimum error was 
introduced [5]. It was defined as the classification error rate which was used for 
assessing the performance of a classifier trained and tested by the same data set. Of 
the three subjects, the quality of signal of subject 1 was the best and subject 3 was the 
worst. The classification error rate over time for S1 and S3 was shown in Figure. 4. 

 

Fig. 4. Classification error rate over time. (a) Subject 1, which has the best performance.  
(b) Subject 3, which has the worst performance. 

It can be seen that the classification error of LDA increased over time, which was 
caused by the variations of EMG signal. For the signal with low minimum error, the 
performance of SPLDA was similar to MPLDA and SDLDA. However, it was quite 
different from the signal of high minimum error. The different performance of 
SPLDA was caused by the feedback of wrong tagged samples. With the signal of high 
quality, the classification error was low and most of samples were right tagged. So the 
classifier can adapt to the changes of signal and produce better results. On the 
contrary, with the signal of low quality, the classification error was high and most of 
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samples were wrong tagged. The classifier may be impaired and the results were bad. 
So it was necessary to decrease the influence of misclassification.  

MPLDA and SDLDA provided two ways to reduce the influence of 
misclassification. SDLDA was slightly better than MPLDA from the aspect of 
classification error. However, MPLDA outperformed SDLDA during hour 5-7 in 
Figure. 4 (b). The update rate of SDLDA was slow for the low-quality signal, of 
which data with high confidence was not much, while the update rate of MPLDA was 
constant. As the time went by, SDLDA could not follow the trend of changes of EMG 
signal as well as MPLDA. So we recommended SDLDA for the high-quality signal, 
while MPLDA for the low-quality. 

It can be inferred that supervised adaptive myoelectric control approach can 
achieve better results than unsupervised. However, it will increase the burden of users 
of prostheses and is impractical in the real world. So towards the application of 
prostheses in the real world, unsupervised adaptive myoelectric approach is the 
mainstream. SDLDA and MPLDA present two different ways to degrade the 
influence of misclassification. However, both of them have a coeffiecent to adjust and 
may not be easy enough to be applied in the real world. So further study should be 
done to develop a new method that is convenient and easy to use in the unsupervised 
myoelectric control. 

4 Conclusions 

The long-time performance of EMG pattern recognition is an important issue in the 
research of EMG controlled prostheses. Various supervised adaptation methods have 
been reported to overcome this problem. However, in practical application, the actual 
intention of the subject is not always known to the system, and unsupervised 
adaptation methods are needed. In this paper, the preliminary study of the 
unsupervised adaptive myoelectric control was presented. A new classifier derived 
from LDA was constructed and achieved a better performance than the original one in 
the following experiment. This confirms the effectiveness of our method. Different 
from supervised method, misclassification exists in unsupervised method, and it may 
cause big problems for the practical application of unsupervised myoelectric control. 
So two different strategies, data selection and multiple patterns updating, were 
proposed to reduce the influence of misclassification, and the performance of the 
classifiers was improved further. Towards the real-world application, our future work 
will focus on the method to eliminate the misclassification influence and improve the 
online performance of the long-time adaptive myoelectric control. 
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