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Abstract. For the vision of a Smart Grid to materialize, substantial
advances in intelligent decentralized control mechanisms are required.
We propose a novel class of autonomous broker agents for retail elec-
tricity trading that can operate in a wide range of Smart Electricity
Markets, and that are capable of deriving long-term, profit-maximizing
policies. Our brokers use Reinforcement Learning with function approx-
imation, they can accommodate arbitrary economic signals from their
environments, and they learn efficiently over the large state spaces re-
sulting from these signals. Our design is the first that can accommodate
an offline training phase so as to automatically optimize the broker for
particular market conditions. We demonstrate the performance of our
design in a series of experiments using real-world energy market data,
and find that it outperforms previous approaches by a significant margin.

Keywords: Agents, Smart Electricity Grid, Energy Brokers, Reinforce-
ment Learning.

1 Introduction

Liberalization efforts in electricity markets and the advent of decentralized power
generation technologies are challenging the traditional ways of producing, dis-
tributing, and consuming electricity. The Smart Grid “aims to address these
challenges by intelligently integrating the actions of all users connected to it
. . . to efficiently deliver sustainable, economic and secure electricity supplies.” [3]
This ambitious vision requires substantial advances in intelligent decentralized
control mechanisms that increase economic efficiency, while keeping the physical
properties of the network within tight permissible bounds [17].

A promising approach to enable the critical real-time balance between supply
and demand within the network is the introduction of electricity brokers, inter-
mediaries between retail customers and large-scale producers of electricity, [8].
Electricity brokers serve as information aggregators, they fulfill risk pooling and
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management functions, and they help attain socially desirable market outcomes
given proper economic incentives. Brokers trade in multiple interrelated mar-
kets simultaneously – a structure that Bichler et al. [1] refer to as Smart Mar-
kets. As such, Smart Markets constitute a novel class of complex, fast-paced,
data-intensive markets, in which participants employ (semi-)autonomous trading
agents to attain good trading results. Importantly, because there is considerable
variability in the structure that a future Smart Electricity Market might have,
it is imperative that the design of an autonomous electricity broker agent can
accommodate a wide variety of market structures and conditions.

We propose a novel class of autonomous Electricity Broker Agents for retail
electricity trading that operate in a wide range of market structures, and that
are capable of deriving long-term, profit-maximizing policies. Our brokers use
Reinforcement Learning with function approximation, they can accommodate
arbitrary economic signals from their environments, and they learn efficiently
over the large state spaces resulting from these signals. Previous approaches are
limited in the state space size they can accommodate, and are consequently con-
strained by the economic environments they could be deployed into. For example,
previous works [11,12] do not consider customers’ daily load profiles (assuming
fixed consumption) and the broker’s wholesale trading, both core challenges for
real-world electricity brokers. We alleviate these assumptions in our simulation
model. Our broker design is also the first that can accommodate an offline train-
ing phase to automatically optimize the broker for various market conditions.
We demonstrate the benefits of this procedure by evaluating automatically con-
structed brokers for different customer populations.

The empirical evaluations we report here are based on real-world electricity
market data from the OntarioWholesale Market and industry-standard load pro-
files for private households. Our empirical results demonstrate that our design
is effective and that it outperforms prior approaches despite the additional chal-
lenges we consider here. We hope that our broker agents contribute to current
research on economic mechanism design for the Smart Grid by providing effec-
tive strategies against which such mechanisms can be validated, e.g. [16]. More
generally, research on autonomous Electricity Broker Agents for the Smart Grid
constitutes a nascent, emerging field, in which most of the challenges are largely
unexplored. Thus, in addition to the development of a novel broker agent design,
important objectives of this work are to discuss key design decisions that allow
broker agents to operate effectively in the Smart Grid, and to inform future work
of challenges and promising research directions.

2 Smart Electricity Market Simulation

We begin with an overview of the key entities in our Smart Electricity Market,
followed by a description of the models representing them in our simulation.

Smart Electricity Markets aim to intelligently integrate the actions of
Customers, Generating Companies, and the Distribution Utility. One promis-
ing approach to achieving this integration is introducing Electricity Brokers as
intermediaries.
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Customers are small-to-medium-size consumers and/or producers of electric-
ity, such as private households and small firms. Customers buy and sell elec-
tricity through a tariff market, where electricity retailers publish standard-
ized tariff offerings, including fixed-rate, time-of-use (ToU), and variable-rate
tariffs.

Generating Companies (GenCos) are large-scale producers of energy, such as
operators of fossil-fueled power plants and wind parks. GenCos are whole-
salers of future electricity production commitments.

The Distribution Utility (DU) is responsible for operating the electric grid in
real-time. In particular, the DU manages imbalances between the energy con-
sumption and the total outstanding production commitments at any given
time. To this end, the DU buys and sells energy on short notice and charges
the responsible retailer imbalance penalties for its balancing services.

Electricity Brokers are profit-seeking intermediaries trading for their own ac-
count. They are retailers of electricity in the tariff market, and they offset
the consumption of their tariff subscribers by acquiring production commit-
ments in either the tariff market (small-scale producers) or the wholesale
market (GenCos). The portfolio of contractual arrangements that brokers
build in this way is executed in real-time by the DU. Brokers aim to build
a portfolio of high-volume, high-margin tariff subscriptions with predictable
consumption patterns that can be offset with production commitments at a
low cost.

We developed a data-driven Smart Electricity Market simulation based on
wholesale prices from a real-world electricity market in Ontario and electricity
consumption patterns based on industry-standard load profiles. An important
property of our simulation, with implications for the broker we design to operate
in this environment, is to alleviate the assumption in previous works that con-
sumers exhibit fixed demand [11,12]. Fixed demand simplifies the broker’s task,
however the resultant brokers may not offer an adequate response to the realities
of electricity markets. In particular, a key challenge for real-world brokers is to
effectively deal with patterns in consumer demand. This is important because
some patterns (e.g. highly variable ones) are more costly for the broker to offset
in the wholesale market than others.

Our simulation model is constructed from the following entities:

Electricity Broker Agents B = {Bi} or brokers contract with customers
through the tariff market and procure offsetting amounts of energy in the
wholesale market. Brokers publish one fixed-rate tariff at any given time.
This design reflects the fact that fixed rates are currently still the dominant
tariff model, mainly due to the absence of advanced metering capabilities
among electricity customers. We are interested in the performance of meth-
ods for autonomous retail electricity trading. To this end, we endow both, our
own strategies and our benchmark strategies, with a fixed wholesale trading
strategy based on exponentially averaged load forecasts, and brokers learn
to develop a profitable retail trading strategy against this backdrop.
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Customers C = {Cj}, where Cj denotes a population of customers with similar
characteristics and a joint, aggregate consumption profile. We describe our
customer model in more detail below. Presently, only a small proportion of
electricity is produced decentrally1 and central production will continue to
play a significant role in the near future. To accommodate this design we
consider customers to be exclusively consumers of electricity in this paper.

The Distribution Utility (DU) is responsible for real-time grid operation.
The Simulation Environment is responsible for coordinating brokers, cus-

tomers, and the DU. It manages the tariff market, and it provides a whole-
sale market based on actual market data from Ontario’s independent sys-
tem operator (http://www.ieso.ca) which has also been used in a related
study [12]. The wholesale market in our simulation determines prices by
randomly selecting a window of appropriate size from almost ten years of
real-world wholesale market pricing data. Once these prices have been de-
termined, broker orders have no impact on them.2

The simulation runs over T timeslots 1, . . . , t, . . . , T which are structured as
described in Figure 1:

Fig. 1. Sequence diagram for one simulation timeslot

1. Each broker Bi receives information about its current customers Ct(Bi), the
history of wholesale prices W1, . . . ,Wt−1, the tariffs offered by all brokers

1 As a liberal upper bound consider that, of the 592 TWh of electricity produced in
Germany in 2009, merely 75 TWh were produced decentrally under the country’s
Renewable Energy Act (12.6%) [4].

2 Considering brokers as price-takers is reflective of liberalized retail electricity mar-
kets, where an increasing number of small brokers compete against each other. For
2008, for example, the European Commission reported close to 940 non-main elec-
tricity retailers in Germany that shared 50% of the German market [4].
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at the end of the last timeslot Tt−1 = {τB1 , . . . , τB|B|}, and its current cash
account balance.

2. Each broker indicates the volume of energy V̂ c
t that it wishes to procure in

the current timeslot. Note, that the broker has no previous knowledge of its
customers’ actual consumption nor of the wholesale prices for the current
timeslot. There is no acquisition uncertainty; the indicated volume V̂ c

t is
always filled by the simulation.

3. Each customer Cj decides the volume of electricity V c
t (Cj) to consume given

its current tariff, and announces this volume to the simulation. The volume
consumed, V c

t (Cj), is derived from the corresponding customer’s consump-
tion model, which we describe below.

4. Based on the consumption decisions of its customers, its current tariff, and
its acquisition in the wholesale market, each broker’s cash account is credited
(debited) with a trading profit (loss) τc(V c

t )− V̂ c
t ·Wt, where τ

c(V c
t ) denotes

the cost of consuming V c
t under the current tariff τc to the customers (i.e.

the revenue of the broker), and V̂ c
t ·Wt denotes the cost of procuring V̂ c

t units
of energy at the prevailing wholesale price Wt. Any imbalance between the
broker’s forecast, and the actual amount of energy consumed by its customers
is made up for by the Distribution Utility. An imbalance penalty of I per
unit of mismatch, or |V c

t − V̂ c
t | · I in total, is debited from the cash account

of the broker for this service.

5. Each broker receives ex-post information on the actual aggregate consump-
tion volume of its customers in the current timeslot V c

t , its trading profit, its
imbalance penalty, and its cash account balance at the end of the timeslot.

6. Each broker is queried if it wishes to change its offered tariff.

7. Each customer is queried if it wishes to subscribe to a different tariff.

Customers in our simulation are represented by a customer model, each instance
of which represents the aggregate behavior of group of customers. The customer
model consists of a consumption model, which computes the amount of energy
consumed in a given timeslot, and a tariff evaluator, which defines how customers
select a tariff from a set of offered tariffs.3

The consumption model is based on the standard load profile (SLP) for a
group of private households. SLPs are commonly used in the industry to cap-
ture characteristic load patterns under defined circumstances, e.g. [6]. To our
knowledge, SLPs are the best representation available for household electricity
consumption. Figure 2a shows a single day load profile generated by our con-
sumption model. The profile reflects the characteristic consumption peaks ex-
hibited by private households around noon and during the early evening hours.

3 Note, that separating the consumption decision from the tariff selection decision
is economically well-motivated. In the short run, the electricity demand of private
households is unresponsive to changes in price level. There is some empirical evidence
for customers’ willingness to shift electricity consumption over the day in response
to changing electricity prices, e.g. [7]; however, this phenomenon does not apply to
our scenario of a fixed-rate tariff.
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(a) One-day load profile from our con-
sumption model.
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Example:
At τ=2.0, 82 percent of customers
choose one of the three best tariffs.

τ = 0.5
τ = 1.0
τ = 2.0
τ = 10.0

(b) CDF for the Boltzmann distribution.

Fig. 2. Properties of our customer model

The consumption model can also be parametrized to include an arbitrary noise
term around the base SLP.

Our tariff evaluator works as follows: If the tariff that a customer is currently
subscribed to is still available, the customer considers selecting a new tariff with
a fixed probability q. With probability 1 − q it remains in its current tariff
without considering any other offers. This behavior captures customers’ inertia in
selecting and switching to new tariffs. If the tariff that the customer is currently
subscribed to is not available any longer, the customer selects a new tariff with
probability 1.

To select a new tariff, the customer ranks all tariffs according to their fixed
rates; ties are broken randomly. A perfectly informed and rational customer
would simply select the lowest-price tariff from this ranking, because the lowest-
rate tariff minimizes the expected future cost of electricity. In reality, however,
customer decisions will tend to deviate from this theoretical optimum for differ-
ent reasons, including (1) customers do not possess perfect information about all
tariffs, either because it is unavailable to them, or because they eschew the effort
of comparing large numbers of tariffs; and (2) they make decisions based on non-
price criteria such as trust and network effects that are absent from our model.
We capture these deviations from a simple price rank-order using a Boltzmann
distribution.

Assume a customer has to decide among a total of |T | tariffs. Then the prob-

ability of selecting the r-th best tariffs is: Pr(Rank = r) = e−r/τ

∑|T |
i=1 e−i/τ

Here,

τ is the so-called temperature parameter with τ ∈ (0,∞). The temperature
can be interpreted as the customers’ degree of irrationality relative to the the-
oretically optimal tariff decision. Consider the Cumulative Distribution Func-
tions (CDF) depicted in Figure 2b for different values of τ . For τ → 0, only
the best-ranked tariff has considerable mass, i.e. the tariff decision is perfectly
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rational. For τ →∞ the distribution approaches a discrete uniform distribution,
i.e. customers select their tariff at random.

3 Markov Decision Processes and Reinforcement
Learning

To operate effectively in the Smart Electricity Market outlined in Section 2, an
Electricity Broker Agent ought to learn from its environment in multiple ways.
Firstly, it needs to learn about potential customers and their behavior in terms
of tariff selection and electricity consumption. Secondly, it needs to learn about
the behavior of its competitors and derive tariff pricing policies that strike a
balance between competitiveness and profitability. And finally, it needs to learn
ways of matching tariff market actions with wholesale trading strategies in order
to maximize its profit. Note, that the broker’s only means of learning is its ability
to act in the markets it trades in, and to observe the (long-term) consequences
that its actions entail.

Reinforcement Learning (RL) offers a suitable set of techniques to address
these challenges, where the learner’s objective is to collect the highest net present
value of all present and future rewards. This could entail foregoing some imme-
diate rewards for higher rewards in the future [13]. Numerous algorithms have
been proposed for finding good policies [14]. In our scenario we use SARSA, an
algorithm from the class of Temporal Difference algorithms that is well-suited for
online control problems such as our retail electricity trading task. The algorithm
starts out with some initial model of an action-value function Q(s, a), acts (ap-
proximately, except for occasional exploration) according to the policy implied
by Q, and updates Q with the true feedback it receives from the environment in
each timeslot by Q(s, a)← Q(s, a) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] where
α denotes the learning rate. In general, SARSA only converges to a precise es-
timate of Q when each state-action pair is visited an infinite number of times,
and when the policy followed by the learner converges to a fixed policy. In our
empirical evaluation we show that our learner performs well in spite of not fully
meeting these theoretical requirements.

A key challenge of using RL for the problem we address here pertains to defin-
ing an effective state space. Because it is not well understood which state features
are useful for capturing changes in the action-value, it is beneficial to employ a
wide array of features so as to avoid the exclusion of particularly relevant ones.
However, even with a limited number of features, the state space quickly be-
comes too large to hold in memory. Furthermore, when the state space is large,
the extent of exploration required for the learner to arrive at a reliable estimate
of the action values Q(s, a) for each a ∈ A becomes prohibitive. Previous work
has dealt with this challenge by introducing derived features that combine multi-
ple environmental features into a single feature for the learner [11,12]. However,
these derived features are inherently less informative, and there is no principled
approach to constructing them.

We alleviate these challenges by learning the broker’s strategies via function
approximation, i.e. a parametrized, functional representation of Q(s, a). This
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approach offers an attractive alternative to an explicit representation of the value
in each state-action pair, thus allowing the broker to explore the effectiveness of
strategies over a wider array of potentially relevant states. One type of function
approximation uses the representationQ(s, a) = θF(s, a)′ whereQ(s, a) is linear
in F(s, a), a vector of selected features of the current state s given an action a.
The reinforcement learner continually updates the weights in θ to make Q more
representative of the experiences gathered from the environment. Other types of
function approximation can be used instead of this linear scheme, e.g. [2].

4 Learning Strategies

In this section, we first introduce our function approximation based reinforce-
ment learners, LinFA and AutoLinFA. We show how the flexible design of our
learners accommodates both manual state space construction and the automatic
construction of state spaces through optimization techniques. A thorough em-
pirical evaluation of our learners in comparison to strategies proposed in the
literature follows in Section 5.

4.1 Linear Function Approximation

Our first candidate strategy is LinFA, a reinforcement learner based on linear
function approximation. In this setting, the broker uses the discrete action set
shown in Table 1, which offers the broker important freedom for action:

The broker can set its tariffs relative to other tariffs in the market. In doing
so, the broker can choose among attacking its competitors (MarginLeader), posi-
tioning itself in the middle of the market (MarginAvg), and avoiding competition
altogether by posting the most expensive tariff (MarginTrailer). Alternatively,
rather than setting its tariffs relative to the market, the broker can set its tariffs
in an absolute fashion, choosing between LowMargin and HighMargin, regard-
less of the competing tariffs in the market. We chose the specific margins in
Table 1 for their good observed performance in our experiments. Finally, the
broker also has the option to leave its current tariff unchanged (NoOp).

Note, that while the brokers’ ultimate action will be to set an absolute rate
on its tariff, we designed the action space exclusively in terms of margins over
the wholesale rate. Interestingly, we found that normalization of the rates in this
manner improved the learning results drastically; otherwise, the learner can be
overburdened by simultaneously learning the variability in the wholesale price-
level as well as the variability among its competitors.

As state space, we first manually selected the following key features from the
environment: (1) |C(B)| the number of customers that are currently subscribed
to broker B’s tariff, (2) μ(τ) the margin of the offered tariff over the prevailing

wholesale rate, and (3) d|C(B)|
dt the change in the number of customers subscribed

to a broker’s tariff over time. These features arguably reflect some of the most
important pieces of economic information in the environment.
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Table 1. Action set for LinFA and AutoLinFA

Action Margin over Wholesale Price

MarginLeader Slightly lower than cheapest competitor
MarginAvg Average of all competitors
MarginTrailer Slightly higher than most expensive competitor
LowMargin Constant 10% margin
HighMargin Constant 20% margin

NoOp Keep the current tariff rate. This could lead to changes in the
margin if wholesale prices change.

4.2 Offline Optimization

While LinFA’s manually constructed state space is economically well-motivated,
it has a number of disadvantages:

– It is unclear which other environmental features should be included in the
state space, what type of feature coding should be used, and which features
should be ignored for better learning performance.

– It is unclear how the set of included features depends on environmental fac-
tors such as customer characteristics, or the presence of other brokers. Cer-
tain environments might call for the inclusion of features that are otherwise
distracting to the learner.

– The process of manual state space construction and validation is laborious.

Moreover, even after fixing the state space, parameters such as the learning rate
α and the discount parameter γ need to be chosen manually by the user.

We aimed to address these challenges by employing heuristic optimization
to identify an advantageous state space and learning parameters. Formally, let
F(s, a) be a set of n candidate features of the current state-action pair, and θ a
vector of m learning parameters. Then

BLinFA = {BLinFA(φ1, . . . , φn, θ1, . . . , θm)‖Φ ∈ {0, 1}n, Θ ∈ R
m}

is a class of linear function approximation based RL brokers that use the feature
(F(s, a))i as part of their state space iff φi = 1.

To measure how well a particular broker, B ∈ BLinFA, competes in a partic-
ular environment, we define the fitness function F : B �→ [0, 1] as the average
profit share that B captures in a given number of sample simulations. The best
broker B∗ for the given environment is then B(argmaxΦ,ΘF (B(Φ,Θ))).

Our second strategy, AutoLinFA, pertains to a class of brokers BLinFA with
the same action space as LinFA and a set of 29 candidate features to represent a
given state-action pair. These features include the average wholesale price and
the gradient of the broker’s cash account. Due to space limitations, we omit the
complete list of candidate features. For a given BLinFA ∈ BLinFA, the associated
fitness function F evaluates 50 simulation runs over 240 timeslots. In principle,
different (heuristic) optimization methods can be used to identify effective values
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for Φ and Θ with respect to F . However, particularly because our parameter
space consists of mostly binary features, in the experiments we report here we
employed a Genetic Algorithm (GA). The results we show were produced by
running the GA over 100 generations with 20 candidates per generation.

4.3 Nonlinear Function Approximation

In addition to a linear function approximation, we also explored the performance
of a broker agent learnt via RL with nonlinear function approximation. Specif-
ically, the resultant strategy, AutoNNFA, refers to a class of brokers BNNFA

that use Neural Networks with one hidden layer and a hyperbolic tangent sig-
moid transfer function to approximate the action-value function Q. Interestingly,
in our empirical evaluations we found that AutoNNFA exhibited some desirable
properties under some environmental conditions; however, its performance was
not consistently superior across different environments. Specifically, AutoNNFA
exhibited lower variability in performance for environments with low customer
switching probabilities q and low customer irrationalities τ . For environments
with higher variability and noise levels, however, AutoNNFA’s performance ap-
proached that of a simple fixed-markup strategy. Its linear counterpart, Au-
toLinFA, competed successfully over a substantially wider range of environments.
In part we attribute AutoNNFA’s inconsistent performance across different en-
vironments to its slow reaction to sudden changes. In addition, in the presence
of high levels of noise in the environment, we found that AutoNNFA is more
likely to derive erratic policies with oscillating tariff-rates than does AutoLinFA.
Because inconsistent performance is undesirable, we do not recommend its use
and henceforth focus our discussion on the linear brokers.

4.4 Reference Strategies

We evaluate our Electricity Broker Agent against the table-based RL strategies
proposed in [12]. To address the need for a limited state space, their strategies
are learned from derived features, referred to as PriceRangeStatus and Port-
folioStatus. Their simulation model does not include an explicit representation
of a wholesale market, and the brokers’ only sources of electricity production
commitments are small-scale producers. Brokers offer one producer tariff in ad-
dition to the consumer tariff used by the brokers in our study. These differences
make some of their results difficult to interpret in the context of the scenario we
explore here.4

The most relevant benchmark strategies for evaluating our Electricity Broker
Agent are (1) Fixed: a strategy which charges a constant markup μ over the
smoothed wholesale price, and (2) Learning: a table-based reinforcement learner

4 To incorporate these strategies in our simulation setting we used wholesale prices for
producer prices, and suppressed actions pertaining to small-scale producer tariffs.
We also excluded the state of PortfolioStatus, which is not meaningful for learning
the TableRL strategy in our simulation model.
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operating over the reduced, manually constructed state space outlined above.
For clarify, henceforth we refer to the Learning strategy as TableRL. We refer
the reader to [12] for complete details on these strategies.

5 Experimental Evaluation

We evaluated LinFA, our reinforcement learner with a manually constructed
state space, and different automatically constructed AutoLinFA learners against
the benchmark strategies from Section 4.4 in a series of experiments.

Each experiment ran over 30 simulated days (720 timeslots), in which the per-
formance of each individual broker is computed as the share of the overall profits
they captured. In the experiments we report below, the customer population is
fixed to five instances of our customer model, each representing the aggregate
behavior of a group of households.5 The so-called markup parameter [12] of the
reference strategies Fixed and TableRL was set to 0.05, at which we found that
these strategies performed best.

5.1 Function Approximation

Figure 3 shows the performance of one LinFA broker in competitions against
one Fixed and one TableRL broker for different customer switching probabili-
ties q (left panel), and different levels of customer irrationality τ (right panel).
LinFA is highly successful in many of these environments, and it beats both
reference strategies by a statistically significant margin in all cases except for
τ ≥ 2.0.6 It is interesting to note that TableRL’s performance lags not only
behind LinFA, but also behind the Fixed strategy. This does not contradict the
good performance results reported in [12], as our implementation contains only
parts of their original state space (see Section 4.4). But it shows the sensitivity
of RL results to a well-chosen state space, and the need for a broker design that
is flexible enough to accommodate the best state space for a given environment.

For high levels of customer irrationality, the performance of LinFA approaches
that of the Fixed strategy. This result may seem counter-intuitive, because even
for the limiting case of customers choosing their tariffs at random, there is a

5 We found that a larger numbers of customer groups had no significant impact on
the results as they did not change the diversity of the population, while with fewer
customer groups the simulation produced an unrealistic “winner takes it all” com-
petition. Each customer model instance was parametrized with the same switching
probability q and degree of irrationality τ as indicated in the figures, and noise of
σ = 5% around the basic load profile. Note, that equal parameter settings only im-
ply equal levels of switching probability and irrationality among customer groups,
whereas the actual decisions made by each group still vary between groups.

6 The p-value for equal profit share means of LinFA and Fixed at q = 0.5 in the
left panel is p = 0.0067. In the right panel, p = 0.6513 (τ = 2.0), p = 0.5362
(τ = 3.0), and p = 0.9690 (τ = 6.0). All other mean differences are statistically
highly significant.
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Fig. 3. Average profit share for LinFA, 70 runs per parameter combination, learning
parameters α = 0.3 (square root decay), ε = 0.3 (linear decay), γ = 1.0, error bars
indicate 95% confidence interval, τ = 0.5 (left), q = 0.1 (right)

winning strategy: by raising tariff rates, a broker can increase its profit margin
without affecting its customer base. The diminishing performance of LinFA here
stems from an implicit assumption behind its manually constructed state space.
Recall from Section 4.1 that LinFA’s state space is constructed from the number
of customers, the customer gradient, and its own profit margin. This is a well-
chosen set of features for an environment where the broker should learn to attract
additional customers conditional on positive margins. Yet, the random customer
fluctuations in environments with large values of τ will be detrimental to such a
broker’s learning performance. In the next section, we will see how an alternative
state space representation derived by AutoLinFA can be used to overcome this
problem.

In further experiments we analyzed LinFA’s performance for different sim-
ulation lengths, for different numbers of customers, for different values of the
markup parameter μ of the reference strategies, for different settings of the
learning parameters, and for different competitive settings including competi-
tion between multiple LinFA instances. We omit details here for the sake of
brevity, but we do note that LinFA competes successfully in all cases except for
pathological choices of learning parameters.

5.2 Offline Optimization

In our next experiment, we used a Genetic Algorithm to optimize AutoLinFA’s
state space and learning parameters for an environment with moderate customer
switching probabilities (q = 0.1) and relatively rational customers (τ = 0.5). We
call the resulting broker instance AutoLinFA1. Interestingly, the optimization
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Fig. 4. Average profit share for AutoLinFA1, 70 runs per parameter combination,
learning parameters α = 0.62 (decaying at t0.13), ε = 0.08 (decaying at t0.77), γ = 0.85,
error bars indicate 95% confidence interval, τ = 0.5 (left), q = 0.1 (right)

procedure chooses a very high-dimensional state space where 15 of the 29 candi-
date features are present, and a very high learning rate of α = 0.62. This choice
is a consequence of the comparatively stable environment for which AutoLinFA1
is optimized. A high level of environmental stability allows AutoLinFA1 to con-
stantly adjust its policy to the current environment without running the risk of
following pure chance developments. The result is not a single, overarching pol-
icy for different states of the environment, but a policy that tracks, and adjusts
to, the current environmental state. This behavior is sometimes referred to as
non-associative learning [13].

AutoLinFA1 performs better than LinFA, both for its target environment and
for many other environments, as illustrated in Figure 4. It is important to note
that these are out-of-sample results: we tested AutoLinFA1 in an environment
with the same parameters, but different random influences on the wholesale
market and on customer choice than in the offline training phase.

To confirm our findings, we optimized a second AutoLinFA instance, Au-
toLinFA2, for an environment where customers’ tariff choices are much more
irrational (τ = 2.0). The corresponding performance results are given in Fig-
ure 5. AutoLinFA2’s performance is again very strong for its target environment.
These strong results come, however, at the cost of underperformance for market
environments where customers act more rationally. In terms of learning param-
eters, the optimization procedure opted for a low learning rate of α = 0.03,
and higher exploration and discount rates (ε = 0.22, γ = 0.97) as compared to
the previous experiment. These choices are natural for an environment that is
characterized by high degrees of uncertainty. The lower learning rate entails that
actions must be rewarded many times before their likelihood of being selected
rises in the learner’s policy, and a large value of γ puts heavy emphasis on future
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Fig. 5. Average profit share for AutoLinFA2, 70 runs per parameter combination,
learning parameters α = 0.03 (decaying at t0.71), ε = 0.22 (decaying at t0.76), γ = 0.97,
error bars indicate 95% confidence interval, τ = 2.0 (left), q = 0.5 (right)

rewards as estimated by the inert action-value function. Together, these settings
lead to a policy that is not easily swayed by random influences from the envi-
ronment. The high exploration rate allows the broker to frequently deviate from
its current optimal policy early in the simulation. This makes intuitive sense in
an environment where exploration comes cheap (the high level of randomness
lowers the value of acting greedily with respect to the current policy), and where
it is potentially hard to find a good policy.

6 Related Work

To date, research on retail electricity trading has received relatively little atten-
tion. To our knowledge, Reddy et al. [12] were the first to suggest RL as an ap-
propriate framework for constructing such brokers for retail electricity markets.
A key distinguishing feature of the approach we present here is the automated,
data-driven construction of the feature space. In contrast, the strategies devel-
oped in [12] are derived frommanually constructed features and are limited in the
number of economic signals they can accommodate as well as in their ability to
incorporate new signals when the market environment changes. Another key dis-
tinction is that the brokers presented in [12] are derived for an environment with
fixed rates of electricity consumption and production for all market participants
where brokers source electricity exclusively from small-scale producers. Conse-
quently, the broker agent learns to steer towards an optimal consumer/producer
ratio among its subscribers by changing tariff rates. These settings yield a broker
which is unable to develop appropriate responses to any variability of consump-
tion and production over time or between different customers.
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Reinforcement Learning has been used on a wide range of problems in elec-
tronic commerce in which agents aim to learn optimal policies through inter-
action with the environment. For example, [9] develop a data-driven approach
for designing electronic auctions based on notions from RL. In the electricity
domain, RL has primarily been used to derive wholesale trading strategies, or
to build physical control systems. Examples of electricity wholesale applications
include [5] and [10], who derive bidding strategies for electricity wholesale auc-
tions. Physical control applications of RL include load and frequency control
within the electric grid and autonomous monitoring applications, e.g. [15].

Whiteson et al. [18] provide interesting insights into the role of environment
overfitting in empirical evaluations of Reinforcement Learning applications. They
argue that fitting, i.e. the adaptation of a learner to environmental conditions
known to be present in the target environment, is an appropriate strategy. Over-
fitting, i.e. the adaptation of the learner to conditions only present during eval-
uation, on the other hand, is inappropriate. These insights suggest that LinFA
is a good general-purpose broker for settings in which little is known about cus-
tomer characteristics in the target environment. Whenever prior knowledge is
available, our offline optimization procedure is able to exploit this information
and fit AutoLinFA brokers accordingly.

7 Conclusions

The Smart Grid vision relies critically on intelligent decentralized control mech-
anisms. In this paper, we explored a novel design for autonomous Electricity
Broker Agents in future electricity retail markets.

We formalized a class of Smart Electricity Markets by means of a simulation
model, and argued that our model represents the current state of the Smart Grid
transition well. We then framed the broker problem as optimal control problem
and used RL with function approximation to derive broker policies. We found
that learning tariff-setting policies can be simplified significantly by normalizing
tariff rates to the prevailing wholesale price, whereby strategies are formed with
respect to profit margins. We demonstrated the efficacy of our broker design for a
range of Smart Electricity Markets which varied substantially in terms of tariff
choice behaviors among their customer populations. Our experimental results
confirm that state space choice plays an important role in optimizing broker
performance for a given environment, and that our brokers are significantly more
flexible in this regard than previously suggested strategies.

In future work we aim to further explore the performance of our Electricity
Broker Agent design in increasingly complex Smart Electricity Markets. Among
the key features we aim to incorporate are advanced tariff structures, renewable
energy sources, and customer models derived from behavioral economics. We
believe that our proposed strategies can serve as an important benchmarks for
future work and that this work offers a meaningful contribution to our under-
standing of key design decisions for broker agents to operate effectively in the
Smart Grid.
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