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Abstract. The well known influence maximization problem [1] (or viral market-
ing through social networks) deals with selecting a few influential initial seeds to
maximize the awareness of product(s) over the social network. In this paper, we
introduce a novel and generalized version of the influence maximization prob-
lem that considers simultaneously the following three practical aspects: (i) Often
cross-sell among products is possible, (ii) Product specific costs (and benefits)
for promoting the products have to be considered, and (iii) Since a company of-
ten has budget constraints, the initial seeds have to be chosen within a given
budget. We refer to this generalized problem setting as Budgeted Influence Maxi-
mization with Cross-sell of Products (B-IMCP). To the best of our knowledge, we
are not aware of any work in the literature that addresses the B-IMCP problem
which is the subject matter of this paper. Given a fixed budget, one of the key
issues associated with the B-IMCP problem is to choose the initial seeds within
this budget not only for the individual products, but also for promoting cross-sell
phenomenon among these products. In particular, the following are the specific
contributions of this paper: (i) We propose an influence propagation model to
capture both the cross-sell phenomenon and product specific costs and benefits;
(ii) As the B-IMCP problem is NP-hard computationally, we present a simple
greedy approximation algorithm and then derive the approximation guarantee of
this greedy algorithm by drawing upon the results from the theory of matroids;
(iii) We then outline two efficient heuristics based on well known concepts in the
literature. Finally, we experimentally evaluate the proposed approach for the B-
IMCP problem using a few well known social network data sets such as WikiVote
data set, Epinions, and Telecom call detail records data.

Keywords: Social networks, influence maximization, cross-sell, budget constraint,
matroid theory, costs, benefits, and submodularity.

1 Introduction

The phenomenon of viral marketing is to exploit the social connections among the
individuals to promote awareness for new products [2–4]. One of the key issues in viral
marketing through social networks is to select a set of influential seed members (also
called as initial seeds) in the social network and give them free samples of the product
(or provide promotional offers) to trigger cascade of influence over the network [5].
The problem is, given an integer k, how should we choose a set of k initial seeds so
that the cascade of influence over the network is maximized? This problem is known as
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influence maximization problem [1]. This problem is shown to be a NP-hard problem
in the context of certain information diffusion models such as linear threshold model
and independent cascade model [1]. Influence maximization problem is well studied in
the literature [5, 6, 1, 7–15] in the context of a single product and multiple independent
products; and we refer to the section on the relevant work for more details.

However, the existing work in the literature on viral marketing of products through
social networks ignores the following important aspects that we often experience in
several practical settings:

– Cross-sell Phenomenon: Certain products are complementary to each other in the
sense that there is a possibility of cross-sell among these products,

– Product Specific Costs and Benefits: There is a cost associated with each product
in order to provide promotional offers (or discounts) to each of the initial seeds.
Similarly, there is a benefit associated with each product, when someone buys that
product, and

– Budget Constraint: Companies have often have budget constraints and hence the
initial seeds have to be chosen within a given budget.

To the best of our knowledge, we are not aware of any work in the literature that simul-
taneously deals with the cross-sell phenomenon, the product specific costs and benefits,
and the budget constraint while addressing the influence maximization problem. We
address this generalized version of the influence maximization problem in this paper.

In particular, we consider the following framework. Let P1 be a set of t1 independent
products and similarly P2 be another set of t2 independent products. We assume that
cross-sell is possible from the products in P1 to the products in P2 and, in particular,
we consider the following specific form for the cross-sell phenomenon. The need for
buying any product in P2 arises only after buying some product in P1. A real life in-
stance of this type of cross-sell is as follows. Consider the context of computers and
printers; in general, the need for buying any printer arises after buying a computer. In-
formally, cross-sell is the action or practice of selling an additional product (or service)
to an existing customer. Typically, the additional product (i.e. in P2) is of interest to the
customer only because of a prior product (i.e. in P1) purchased by the customer. From
a social network diffusion model standpoint, the purchase of products in P1 causes a
lowering of threshold for buying certain products in P2. It is this phenomenon that we
explore in this paper.

We consider different costs and benefits for each product in P1 and P2. Since com-
panies owning the products often have budget constraints, we can offer free samples (or
promotional offers) of the products to the initial seeds within a given budget B. In this
setting, one of the key issues is to choose the initial seeds not only for each individual
product in P1, but also for promoting the cross-sell phenomenon from the products in
P1 to the products in P2. We refer to the above problem of selecting, within budget
B, a set of initial seeds to maximize influence through the social network and hence
to maximize the revenue to the company as the budgeted influence maximization with
cross-sell of products (B-IMCP) problem. In what follows, we highlight the main chal-
lenges associated with the B-IMCP problem that make it non-trivial to address and also
summarize the main contributions of this paper:
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(A) Modeling Aspects: How to model the propagation of influence in social networks
in the context of cross-sell of products? We note that the variants of the linear threshold
model [16, 17, 1, 14] in their current form are not sufficient to model the cross-sell
phenomenon.

In this paper, we address this issue by proposing a simple model of influence propa-
gation over social networks in the context of cross-sell of products by naturally extend-
ing the well known linear threshold model [1]. We call this linear threshold model for
cross-sell of products (LT-CP). We then prove a few important properties of the LT-CP
model such as monotonicity and submodularity.

(B) Algorithmic Aspects: We note that the B-IMCP problem, in the context of the LT-
CP model, turns out to be a computationally hard problem, i.e. NP-hard (see Section 3
for more details). This calls for designing an approximation algorithm to address the B-
IMCP problem. In this paper, we propose a greedy approximation algorithm to address
the B-IMCP problem. Assume that B is the budget for the company. Let c1M and c2M
be the maximum cost of providing a free sample of any product in P1 and P2 respec-
tively. On similar lines, let c1m and c2m be the minimum cost of providing a free sample
of any product in P1 and P2 respectively. We show that the approximation guarantee
of the proposed greedy algorithm for the B-IMCP problem is Bcm

B(cM+cm)+cMcm
, where

cM = max(c1M , c2M ) and cm = min(c1m, c2m). Interestingly, the approximation factor
of the greedy algorithm is independent of the number of products and it only depends on
(a) the budget B, and (b) the maximum and the minimum costs to provide free samples
of products in P1 and P2 respectively.

We use the techniques from the theory of submodular function maximization over
Matroids [18] to derive the approximation guarantee of the proposed greedy algorithm.
We must note that the body of relevant work in the literature works with the framework
of approximations for maximizing submodular set functions [19] to derive the approxi-
mation guarantee of the algorithms for the variants of the influence maximization prob-
lem with a single product and multiple independent products [1, 7, 14]. However, these
techniques are not sufficient for the B-IMCP problem setting as (i) we have to work
with cross-sell of products, (ii) product specific costs and benefits, and (ii) we have to
deal with the budget constraint.

(C) Experimental Aspects: We experimentally observe that the proposed greedy ap-
proximation algorithm for the B-IMCP problem runs slow even on moderate size net-
work data sets. We must note that similar observations are reported in the literature
in the context of the greedy algorithm [1] for the well known influence maximization
problem [7, 8]. The existing scalable and efficient heuristics [7, 8] for the influence
maximization problem do not directly apply to the context of the B-IMCP problem.
How to alleviate this scalability issue of determining a solution for the B-IMCP prob-
lem on large social network data sets? In this paper, we present an efficient heuristic
for the B-IMCP problem. We experimentally evaluate the performance of the greedy
approximation and heuristic algorithms using experimentation on several social net-
work data sets such as WikiVote trust network, Epinions trust network, and Telecom
call detail records data. We also compare and contrast the performance of the greedy



584 R. Narayanam and A.A. Nanavati

approximation and the heuristic algorithms with that of two well known benchmark
heuristics.

1.1 Novelty of This Paper

The primary contribution and the novelty of this paper is three fold: (i) Introducing the
phenomenon of cross-sell of products and product specific costs and benefits while ad-
dressing the influence maximization problem, (ii) Naturally extending the well known
linear threshold model to capture the cross-sell phenomenon, and (iii) Performing non-
trivial analysis of the simple greedy algorithm for the B-IMCP problem to derive the
approximation guarantee of the same.

2 Relevant Work

There are two well known operational models in the literature that capture the underly-
ing dynamics of the information propagation in the viral marketing process. They are
the linear threshold model [17, 16, 1] and the independent cascade model [20, 1]. In
the interest of space constraints, we only present the most relevant work on the influ-
ence maximization problem in the literature and we categorize this into three groups as
follows.

Influence Maximization with Single Product: Domingos and Richardson [5] and
Richardson and Domingos [6] were the first to study influence maximization prob-
lem as an algorithmic problem. Computational aspects of the influence maximization
problem are investigated by Kempe, Kleinberg, and Tardos [1] and they showed that the
optimization problem of selecting the most influential nodes is NP-hard. The authors
proposed a greedy approximation algorithm for the influence maximization problem.

Leskovec, et. al. [7] proposed an efficient algorithm for the influence maximization
problem based on the submodularity of the underlying objective function that scales
to large problems and is reportedly 700 times faster than the greedy algorithm of [1]
and later Chen, Wang, and Yang [8] further improved this result. Even-Dar and Shapira
[11], Kimura and Saito [9], Mathioudakis et.al. [10], Ramasuri and Narahari [21] con-
sidered various interesting extensions to the basic version of the influence maximization
problem in social networks.

Influence Maximization with Multiple Products: Recently, Datta, Majumder, and
Shrivastava [12] considered the influence maximization problem for multiple indepen-
dent products.

Viral Marketing with Competing Companies: Another important branch of the re-
search work in viral marketing is to study the algorithmic problem of how to introduce a
new product into the market in the presence of a single or multiple competing products
already in the market [13–15].

3 The Proposed Model for the B-IMCP Problem

Here we first present the LT-CP model for the B-IMCP problem. We must note that this
model is a natural extension of the well known linear threshold model [17, 16, 1].
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3.1 The LT-CP Model

Let G = (V,E) be a directed graph representing an underlying social network where V
represents a set of individuals and E is a set of directed edges representing friendship
relations among these individuals. Let |V | = n and |E| = m. For each edge (i, j) ∈
E, we define a weight wij and this indicates the probability with which the available
information at individual i passes to individual j. Another interpretation of this weight
wij is the probability with which individual j is influenced by the recommendation of
the individual i. If there is no confusion, here onwards, we refer to individuals and nodes
interchangeably. Similarly, we also refer to graphs and networks interchangeably.

In this context, we consider the following setting as introduced in Section 1. Note that
P1 = {1, 2, . . . , t1} is a set of t1 independent products and similarlyP2 = {1, 2, . . . , t2}
is another set of t2 independent products. Cross-sell is possible from the products in P1

to the products in P2. For the simplicity of the technical analysis, we assume that (i)
t1 = t2 and call this common value t; and (ii) there exists an onto function from P1 to
P2, call it H : P1 → P2, such that for each product k ∈ P1 there exists exactly one
product in P2 (namely H(k)). That is, for each product k ∈ P1, there exists a product
H(k) ∈ P2 such that cross-sell is possible from product k ∈ P1 to product H(k) ∈ P2.
A company, call it M , owns the products in P1 and P2 and it has a fixed budget B for
conducting viral marketing campaign for these products.

In particular, a free sample (or promotional offer) of product k in P1 incurs a cost of
c1k and similarly a free sample (or promotional offer) of product z in P2 incurs a cost of
c2z . Also, when an item of product k in P1 is sold, it leads to a benefit b1k to the company.
On the similar lines, when an item of product z in P2 is sold, it leads to a benefit b2z to
the company. Now, we define a few important notations and terminology as follows:

– We call an individual (and is represented by a node in the graph) in the network
active if he/she buys any product in P1 or P2, and inactive otherwise. For each
node i ∈ V , let Ni be the set of its neighbors. Node i is influenced by any neighbor
j according to a weight wji. Assume these weights are normalized in such a way
that

∑
j∈Ni

wji ≤ 1.
– We define the following for each node i ∈ V . For each product k ∈ P1 and for

each i ∈ V , we define Ak
i to be the set of node i’s active neighbors who bought

product k ∈ P1. On similar lines, for each product z ∈ P2 and for each i ∈ V ,
we define Az

i to be the set of node i’s active neighbors who have initially bought
product H(z) ∈ P1 and then bought product z ∈ P2.

We now define when the individual nodes buy the products in P1 and P2. Recall that the
products in P1 are independent. The decision of a node i ∈ V to buy product k ∈ P1

is based on a threshold function (fk
i ), which is dependent on Ni and a threshold (θki )

chosen uniformly at random by node i from the interval [0, 1]. This threshold represents
the minimum amount of influence required from the active neighbors of node i (who
bought product k ∈ P1) in order for node i to become active. Note that fk

i : 2Ni →
[0, 1] is defined as fk

i (S) =
∑

j∈S wji, ∀S ⊆ Ni. Now, we say that node i buys product
k ∈ P1 if fk

i (A
k
i ) ≥ θki .

Recall that cross-sell is possible from the products in P1 to the products in P2 and this
cross-sell relationship is defined using the function H which is onto. For each z ∈ P2
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and for each i ∈ V , we initially set the threshold θzi of node i for buying the product z
to be a very high quantity to model the fact that no node i ∈ V buys product z in P2

before buying productH(z) in P1. Now assume that node i ∈ V has bought the product
H(z) ∈ P1 and since cross-sell is possible from product H(z) to product z ∈ P2, we
decrease the threshold θzi by defining that θzi is chosen uniformly at random from the
interval [0, a] where 0 ≤ a < 1. Now the decision of node i to buy product z ∈ P2

is based on a threshold function (fz
i ), which is dependent on Ni and the threshold θzi .

This threshold represents the minimum amount of influence required from the active
neighbors of node i (who have initially bought product H(z) ∈ P1 and then bought
product z ∈ P2) in order for node i to become active. Note that fz

i : 2Ni → [0, 1] is
defined as fz

i (S) =
∑

j∈S wji, ∀S ⊆ Ni. Now, we say that node i buys product z ∈ P2

if fz
i (A

z
i ) ≥ θzi .

3.2 The B-IMCP Problem

In the presence of the above model, we now define the following. For each product
k ∈ P1, let Sk

1 be the initial seed set. We define the influence spread of the seed set
Sk
1 , call it Γ (Sk

1 ), to be the expected number nodes that buy the product k ∈ P1 at the
end of the diffusion process, given that Sk

1 is the initial seed set. On similar lines, for
each product z ∈ P2, let Sz

2 be the initial seed set. We define the influence spread of
the seed set Sz

2 , call it Δ(Sz
2 ), to be the expected number of nodes that initially buy the

product H(z) ∈ P1 and then buy the product z ∈ P2 at the end of the diffusion process,
given that Sz

2 is the initial seed set. For any specific choice of the initial seed sets Sk
1

for each k ∈ P1 and Sz
2 for each z ∈ P2, we now define the objective function, call it

σ(S1
1 , . . . , S

t
1, S

1
2 , . . . , S

t
2), to be the expected revenue to the company at the end of the

diffusion process. That is,

σ(S1
1 , . . . , S

t
1, S

1
2 , . . . , S

t
2) =

∑

k∈P1

Γ (Sk
1 )b

1
k +

∑

z∈P2

Δ(Sz
2 )b

2
z. (1)

Given the budget B, the B-IMCP problem seeks to find the initial seed sets S1
1 , . . . , S

t
1,

S1
2 , . . . , S

t
2 such that the objective function is maximized.

We now show that the B-IMCP problem is a computationally hard problem.

Lemma 1. The B-IMCP problem in the presence of the LT-CP model is NP-hard.

Proof. By setting |P1| = t = 1, P2 = φ, c1k = 1 for each k ∈ P1, and b1k = 1 for
each k ∈ P1, we get that any arbitrary instance of the B-IMCP problem with the LT-CP
model reduces exactly to an instance of the influence maximization problem with the
linear threshold model [1]. It is already known that the influence maximization problem
with the linear threshold model is NP-hard [1].

3.3 Properties of the Proposed Model

We show that the objective function σ(.) is monotone and submodular. The proof of
monotonicity of σ(.) is immediate, as the expected number of individuals that buy the
product(s) does not decrease when we increase the number of initial seeds. Thus we
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now focus on the proof of submodularity of σ(.) and we note that this can be proved
easily using the results from Kempe et al. [1]. However, for the sake of completeness,
we give a sketch of the proof of this result.

Lemma 2. For any arbitrary instance of the LT-CP model, the objective function σ(.)
is submodular.

Proof Sketch: There are two main steps in this proof. First, for each k ∈ P1, we have
to show that Γ (Sk

1 ) is submodular. Second, for each z ∈ P2, we have to show that
Δ(Sz

2 ) is submodular. Recall that (i) multiplying a submodular function with a positive
constant results in a submodular function; and (ii) the sum of submodular functions is
also a submodular function. This implies that the objective function σ(.) is submodular.

Since the products in P1 are independent, for each k ∈ P1, it is straight forward to
see that Γ (Sk

1 ) is submodular due to Theorem 2.5 in Kempe et al. [1].

Claim 2: Δ(Sz
2 ) is submodular.

Since cross-sell is possible from the product H(z) ∈ P1 to the product z ∈ P2, we
can compute Δ(Sz

2 ) after the diffusion of H(z) finishes. We model the spread of H(z)
using the technique of live-edge paths as in Theorem 2.5 in [1]. Suppose that every node
i picks at most one of its incoming edges at random, selecting the edge from neighbor
j with probability wji and selecting no edge with probability 1 − ∑

j wji. Each such
selected edge in G is declared to be live and all other edges are declared to be blocked.
Let G

′
be the graph obtained from the original graph G by retaining only the live-edges

and let Π(G) be the set of all such G
′
. Let P (G

′
be the probability of obtaining G

′

from G using the process of live edges. Note that each G
′

models a possible trace of
the spread of the product H(z) ∈ P1.

Now consider G
′ ∈ Π(G) and a node i in G

′
. Recall that each node i in the original

graph G picks at most one of its incoming edges at random, selecting the edge from
neighbor j with probability wji and selecting no edge with probability 1 − ∑

j wji.

For this reason, each node i in G
′

has at most one incoming edge. Now if node i in
G

′
has an incoming edge, call it from node j, then i picks this only incoming edge

with probability wji and picks no edge with probability 1 − wji. Each such selected
edge in G

′
is declared to be live and all the other edges are declared to be blocked.

Using the arguments exactly similar to that in Kempe et al. [1], it turns out that proving
this claim is equivalent to reachability via live-edge paths in G

′
. Let G

′′
be the graph

obtained from G
′

by retaining only the live-edges and assume that Π(G
′
) is the set of

all such G
′′

. Let P (G
′′
) be the probability of obtaining G

′′
from G

′
using the process

of live edges. For each G
′′ ∈ Π(G

′
), we define aG′′ (Sz

2 ,m) to be the number of nodes
that are exactly m steps away on any path starting from some node in Sz

2 in G
′′

; i.e.
aG′′ (Sz

2 ,m) = |{v ∈ V | dG′′ (Sz
2 , v) = m}| where dG′′ (Sz

2 , v) is the length of the
shortest distance from any node in Sz

2 to v. We can now write Δ(Sz
2 ) as follows:

Δ(Sz
2 ) = EG′∈Π(G)

[
EG′′∈Π(G′ )

[ ∞∑

m=0

aG′′ (Sz
2 ,m)

]]
(2)

=
∑

G′∈Π(G)

∑

G′′∈Π(G′ )

P (G
′
)P (G′′)

∞∑

m=0

aG′′ (Sz
2 ,m) (3)
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Now let us define h(Sz
2 , G

′′
) =

∑∞
m=0 aG′′ (Sz

2 ,m) for all Sz
2 ⊆ V . If we can show

that h(.) is submodular, then Δ(Sz
2 ) is also submodular as it is a non-negative linear

combination of h(., .). It is not difficult to show that h(.) is submodular and, in the
interest of space, we do not present the proof of the same.
Note: It is important to note that the submodularity of σ(.) may break down if we change
the way to model the cross-sell relationships among the products.

4 Greedy Approximation Algorithm for the B-IMCP Problem

Motivated by the greedy algorithm [1] for the well known influence maximization
problem, we now present a simple greedy algorithm for the B-IMCP problem. Let

Algorithm 1. Greedy Algorithm to Select the Initial Seeds for the B-IMCP Problem

1: Initially set Sk
1 = φ ∀k ∈ P1 and Sz

2 = φ ∀z ∈ P2.
2: while B > 0 do
3: Pick a node v1 ∈ V \ ∪k∈P1S

k
1 such that v1 maximizes valx =

σ

(
∪k∈P1

Sk
1

⋃{v1}
⋃∪z∈P2

Sz
2

)
−σ

(
∪k∈P1

Sk
1

⋃∪z∈P2
Sz
2

)

c1i
, when we active it with

some product i ∈ P1

4: Pick a node v2 ∈ V \ ∪z∈P2S
z
2 such that v2 maximizes valy =

σ

(
∪k∈P1

Sk
1

⋃∪z∈P2
Sz
2

⋃{v2}
)
−σ

(
∪k∈P1

Sk
1

⋃∪z∈P2
Sz
2

)

c2j
, when we active it with

some product j ∈ P2.
5: if valx ≥ valy and B − c1i ≥ 0 then
6: Set Si

1 ← Si
1 ∪ {v1}, and B ← B − c1i

7: As cross-sell is possible from from product i ∈ P1 to product H(i) ∈ P2, update the
value of θH(i)

v1 for node v1
8: end if
9: if valy > valx and B − c2j ≥ 0 then

10: Set Sj
2 ← Sj

2 ∪ {v2}, and B ← B − c2j
11: end if
12: end while
13: Return

(
S1
1 , S

2
1 , . . . , S

t
1, S

1
2 , S

2
2 , . . . , S

t
2

)
as the initial seed set

S1
1 , S

2
1 , . . . , S

t
1 be the sets of initial seeds for the t products in P1 respectively. Let

S1
2 , S

2
2 , . . . , S

t
2 be the sets of initial seeds for the t products in P2 respectively. Initially

set Sk
1 = φ for each k ∈ P1 and Sz

2 = φ for each z ∈ P2. Algorithm 1 presents the
proposed greedy algorithm and the following is the main idea of the same. The algo-
rithm runs in iterations until the budget B is exhausted to select the initial seeds. The
following is performed in each iteration of the algorithm:

(i) Let v1 ∈ V \∪k∈P1S
k
1 be the next best seed for P1 in the sense that when we activate

it with product i ∈ P1, v1 maximizes the ratio of increase in the expected revenue gain to

the cost c1i ; that is, v1 maximizes
σ

(
∪k∈P1

Sk
1

⋃{v1}
⋃∪z∈P2S

z
2

)
−σ

(
∪k∈P1

Sk
1

⋃∪z∈P2S
z
2

)

c1i
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and call this valx;
(ii) Let v2 ∈ V \∪z∈P2S

z
2 be the next best seed in the sense that when we activate it with

some product j ∈ P2, v2 maximizes the ratio of increase in the expected revenue gain to

the cost c1j ; that is, v2 maximizes
σ

(
∪k∈P1

Sk
1

⋃∪z∈P2S
z
2

⋃{v2}
)
−σ

(
∪k∈P1

Sk
1

⋃∪z∈P2S
z
2

)

c2j

and call this valy;
(iii) If valx ≥ valy and B − c1i ≥ 0, then we add v1 to the set of seeds for Si

1 and
also decrease B by an amount c1i . To take care of the cross-sell phenomenon, we also

update the threshold θ
H(i)
v1 for node v1;

(iv) If valy > valx and B − c2j ≥ 0, then we add v2 to the set Sj
2 and decrease B by

an amount c2j .

Finally, the greedy algorithm returns
(
S1
1 , S

2
1 , . . . , S

t
1, S

1
2 , S

2
2 , . . . , S

t
2

)
as the initial

seed set for the B-IMCP problem.

Running Time of Algorithm 1. Let c = min{c11, c12, . . . , c1t , c21, c22, . . . , c2t} and t =
B
c . Note that Algorithm 1 runs at most t rounds. In each iteration of this algorithm,

we have to check at most O(n) nodes to determine the best seed for P1 and P2. To
determine valx (or valy) in each iteration, we have to essentially count the number of
nodes that are reachable from the initial seed elements using the live edges in the graph
and it takes at most O(m) time where m is the number of edges. Also, as underlying
information diffusion process is a stochastic process, we have to repeat the experiment
a number of times (call it R times) and take the average to determine values for valx
and valy in each iteration. With all this in place, the running time of Algorithm 1 is
O(tnRm) where t = B

c .

4.1 Analysis of Algorithm 1

We now analyze Algorithm 1 and derive the approximation guarantee of the same. Our
analysis uses results from matroid theory and Calinescu, et al. [18]. Towards this end,
we first recall the definition of a matroid.

Matroid: A Matroid is a pair M = (U, I), where I ⊆ 2U is a subset of the power
set (all possible subsets) of U that satisfies the following constraints:

– I is an independent set system: φ ∈ I and A ∈ I , any set B ⊂ A then B ∈ I (All
subsets of any independent set is also independent).

– ∀A,B ∈ I and |A| > |B|: ∃x ∈ A−B s.t. B ∪ {x} ∈ I .

The first constraint defines an independent set system, and each set S ∈ I is called an
independent set. The problem of maximizing a sub-modular function on a Matroid is
to find the independent set S ∈ I , s.t. f(S) is maximum over all such sets S. If the
input set is a Matroid, it is known that the sub-modular function maximization can be
approximated within a constant factor ( 12 or (1−1/e) in certain cases) using the greedy
hill climbing approach (Nemhauser, Wolsey, and Fisher [19]).

The independent set system essentially defines the feasible sets over which the ob-
jective function is defined. In the context of B-IMCP problem, we call an initial seed
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set
(
S1
1 , S

2
1 , . . . , S

t
1, S

1
2 , S

2
2 , . . . , S

t
2

)
feasible, when the sum of costs of providing free

samples of the products in this initial seed set is within the budgetB. It is easy to see that
the feasible seed sets form an Independent set system, I . However, the feasible seed sets
in I do not form a matroid since they can violate the second condition in the definition
of matroid due to the budget constraint. The following example validates this fact.

Example 1. Consider a graph with 10 individuals, i.e. V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
There are 4 products in P1; i.e., P1 = {t11, t12, t13, t14}. There are 4 products in P2; i.e.,
P2 = {t21, t22, t23, t24}. Also let B = 20, c11 = 4, c12 = 3, c13 = 5, c14 = 6, c21 = 2, c22 = 4,
c23 = 2, and c24 = 4. Now consider two feasible initial seed sets as follows:

Consider a feasible seed set
(
S1
1 , S

2
1 , . . . , S

4
1 , S

1
2 , S

2
2 , . . . , S

4
2

)
as follows. S1

1 = φ,

S2
1 = {2, 3, 4}, S3

1 = {6}, S4
1 = φ, S1

2 = φ, S2
2 = {2}, S3

2 = {6}, S4
2 = φ.

Note that the cost of providing the free samples of products in the initial seed set(
S1
1 , S

2
1 , . . . , S

4
1 , S

1
2 , S

2
2 , . . . , S

4
2

)
is 3 + 3 + 3 + 5 + 4 + 2 = 20. Given that B = 20,

it is clear that
(
S1
1 , S

2
1 , . . . , S

4
1 , S

1
2 , S

2
2 , . . . , S

4
2

)
is a feasible seed set.

Consider another feasible seed set
(
S̄1
1 , S̄

2
1 , . . . , S̄

4
1 , S̄

1
2 , S̄

2
2 , . . . , S̄

4
2

)
as follows. S̄1

1 =

φ, S̄2
1 = φ, S̄3

1 = {3, 9}, S̄4
1 = {6}, S̄1

2 = φ, S̄2
2 = φ, S̄3

2 = φ, S̄4
2 = {6}.

Note that the cost of providing the free samples of products in the initial seed set(
S̄1
1 , S̄

2
1 , . . . , S̄

4
1 , S̄

1
2 , S̄

2
2 , . . . , S̄

4
2

)
is 5 + 5 + 6 + 4 = 20. Given that B = 20, it is

clear that
(
S̄1
1 , S̄

2
1 , . . . , S̄

4
1 , S̄

1
2 , S̄

2
2 , . . . , S̄

4
2

)
is a feasible seed set.

Note that the cardinality of the first feasible set is |{2, 3, 4, 6}| = 4 and that of the
second feasible set is |{3, 6, 9}| = 3. Moreover, observe that node 2 is an initial seed
for product 2 in P1 in the first feasible seed set and it is not an initial seed for any
product in the second feasible seed set. However, we cannot add node 2 to the seed set
of any product in P1 and P2 in the second feasible seed set without violating the budget
constraint.

This example immediately leads to the following simple result.

Proposition 1. For an arbitrary instance of the B-IMCP problem, the independent set
system consisting of the feasible seed sets is not necessarily a Matroid.

Hence we opt for a slightly weaker definition on an independent set system, called a p-
system, defined as follows [12]. Informally, p-system says that for any set A ⊆ V , the
sizes of any two maximal independent subsets of A do not differ by a factor more than
p. Then according to Calinescu, et al. [18] the hill climbing gives a 1

(p+1) approximation
of submodular function maximization for any p-system.

Towards this end, we first prove an useful result. Before proceeding further, we in-
troduce the following notation. Assume that (i) c1M is the maximum cost among all
c1k, k ∈ P1; i.e., c1M = maxk∈P1 c1k, (ii) c2M is the maximum cost among all c2z ,
z ∈ P2; i.e., c2M = maxz∈P2 c2z , (iii) c1m is the minimum cost among all c1k, k ∈ P1;
i.e., c1m = mink∈P1 c1k, and (iv) c2m is the minimum cost among all c2z , z ∈ P2; i.e.,
c2m = minz∈P2 c2z .
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Lemma 3. The feasible seed sets for the B-IMCP problem form cM

(
1
cm

+ 1
B

)
-system

where cM = max(c1M , c2M ) and cm = min(c1m, c2m).

Proof. Consider an arbitrary instance of the B-IMCP problem. Note that V is the set of

nodes in the graphG and let A be any subset of V . Let
(
S1
1 , S

2
1 , . . . , S

4
1 , S

1
2 , S

2
2 , . . . , S

4
2

)

and
(
S̄1
1 , S̄

2
1 , . . . , S̄

4
1 , S̄

1
2 , S̄

2
2 , . . . , S̄

4
2

)
be any two maximal feasible sets in A with max-

imum and minimum sizes respectively. Also let S = S1
1

⋃
. . .

⋃
St
1

⋃
S1
2

⋃
. . .

⋃
St
2

and S̄ = S̄1
1

⋃
. . .

⋃
S̄t
1

⋃
S̄1
2

⋃
. . .

⋃
S̄t
2. If |S| ≤ |S̄|, then S and S̄ are of same size

and hence the independent set system with all feasible seed sets forms a matroid. It is
contradiction to Proposition 1 (see the Example 1). Hence we consider the case where
|S̄| < |S|. We will now bound how much the cardinality of S is greater than that of S̄
in the worst case. We consider the following four cases.

Case 1 (c1M > c2M and c1m > c2m ): The cardinality of S is much larger, in the worst
case, than that of S̄ when:

– All the seed elements in S̄ are part of S̄j
1 for some product j ∈ P1 such that c1j =

c1M .
– All initial seed elements of S are the initial seeds for some product k ∈ P2 having

cost c2k = c2m.

Let |S| = α and |S̄| = β. Then the above construction of S and S̄ leads to the following
inequality

αc2m ≤ βc1M + c2m. (4)

Note that the term c2m appears at right hand of the above inequality because there might
be some budget left out after constructing the minimum cardinality feasible set S̄ and it
is at most c2m. Now equation (4) implies that

⇒ α

β
≤ c1M

c2m
+

1

β
. (5)

Note that β ≥ B
c1M

. This fact and expression (5) imply that

⇒ α

β
≤ c1M

c2m
+

c1M
B

⇒ |S|
|S̄| ≤ c1M

( 1

c2m
+

1

B

)
. (6)

On similar lines as above, we can also deal with the remaining three cases: (a) c1M > c2M
and c1m ≤ c2m; (b) c1M ≤ c2M and c1m > c2m; and (c) c1M ≤ c2M and c1m ≤ c2m. This
completes the proof of the lemma.

Theorem 1. The proposed greedy algorithm determines the initial seeds for the B-
IMCP problem that is at least Bcm

B(cM+cm)+cMcm
times the optimum solution, where

cM = max(c1M , c2M ) and cm = min(c1m, c2m).

Proof. It is known that the greedy hill climbing algorithm gives a 1
(p+1) approximation

of submodular function maximization for any p-system (Calinescu, Chekuri, Pal, and
Vondrak (2007)). The proof of this theorem follows immediately as a consequence of
this fact and Lemma 3.
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In the view of the above results, we now present a few important observations as fol-
lows: (i) The approximation guarantee of the proposed greedy algorithm is independent
of the number of products in P1 and P2. Also the approximation guarantee only de-
pends on the budget and the minimum and maximum costs for providing free samples
of the products in P1 and P2. (ii) If the cost of each product in P1 and P2 is 1, then
cM = cm = 1. This implies that the greedy approximation algorithm returns a solution
to the B-IMCP problem that is at least B

2B+1 times that of the optimum solution.

5 Heuristics for the B-IMCP Problem

We observe that the proposed greedy approximation algorithm runs slow even with data
sets consisting of a few thousands of nodes (refer to Section 6 for more details). Though
the design of a scalable heuristic for the B-IMCP problem is not the main focus of this
paper, we here outline three heuristics for the proposed problem and we refer to the full
version of this paper [22] for complete details about these heuristics.

(a) Maximum Influence Heuristic (MIH): The main idea behind this heuristic is moti-
vated by Aggarwal et al. [23] and Chen et al. [8]. We now briefly present the main steps
involved in the maximum influence heuristic as follows: (i) For each node i ∈ V , de-
termine its influence spread; (ii) Sort the nodes in the network in non-increasing order
of their influence spread values; and (iii) Pick nodes one by one as per the above sorted
sequence and choose them as the initial seeds for appropriate products based on the
ideas similar to that in Algorithm 1.

(b) Maximum Degree Heuristic: Following this heuristic, we first determine the nodes
with high degree and then use steps similar to those presented in Algorithm 1 to con-
struct the initial seed set.

(c) Random Heuristic: Following this heuristic, we select nodes uniformly at random
to construct the initial seed set for the B-IMCP problem.

6 Experimental Evaluation

The goal of this section is to present experimental evaluation of the algorithms for the
B-IMCP problem. We compare and contrast the performance of the proposed approxi-
mation algorithm, maximum influence heuristic, maximum degree heuristic and random
heuristic. Throughout this section, we use the following acronyms to represent various
algorithms: (i) GA to represent the proposed greedy approximation algorithm (i.e., Al-
gorithm 1), (ii) MIH to represent the maximum influence heuristic, (iii) MDH to repre-
sent the maximum degree heuristic, and (iv) Random to represent the random heuristic.
All the experiments are executed on a desktop computer with (i) Intel(R) Core (TM) i7
CPU (1.60 GHz speed) and 3.05 GB of RAM, and (ii) 32-bit Windows XP operating
system. Each experimental result is taken as the average over R = 1000 repetitions of
the same experiment. Further, we note that all the algorithms are implemented using
JAVA.
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6.1 Description of the Data Sets

Here we briefly describe the social network data sets that we use in our experiments.

WikiVote: This network data set contains all the users and discussion from the incep-
tion of Wikipedia till January 2008. Nodes in the network represent wikipedia users and
a directed edge from node i to node j represents that user i voted on user j. This data
set contains 7115 nodes and 103689 edges [24].

High Energy Physics (HEP): This is a weighted network of co-authorship between
scientists posting preprints on the High-Energy Theory E-Print Archive between Jan
1, 1995 and December 31, 1999. This is compiled by Newman [25]. This network has
10748 nodes and 52992 edges.

Epinions: This is a who-trust-whom online social network of a general consumer re-
view site Epinions.com. This data set consists of 75879 nodes and 508837 edges [26].

Telecom Call Data: This data set contains all the details pertaining to a call such as
the time, duration, origin, and destination of the phone call. This data is collected from
one of the largest mobile operators in a emerging market. We construct a graph from
this data using the approach proposed in Nanavati et al. [27]. This data set consists of
354700 nodes and 368175 edges.

A summary of all the data sets described above is given in Table 6.1.

Table 1. Summary of the data sets used in the experiments

Data Set Number of Nodes Number of Edges

WikiVote 7115 103689
HEP 10748 52992

Epinions 75879 508837
Telecom Call Data 354700 368175

6.2 Experimental Setup

We follow the proposed LT-CP model of information diffusion. Given a weighted and
directed social graph G = (V,E) with a probability/weight wij for each edge (i, j)
in E, we normalize these probabilities/weights as follows. Assume that node i ∈ V
has directed edges coming from nodes j1, j2, . . . , jx with weights qj1i, qj2i, . . . , qjxi
respectively. These weights represent the extent the neighbors of node i influence node
i. Now let q = qj1i + qj2i + . . . + qjxi; then the probability that node j1 influence
node i is given by wj1i =

qj1i

q , the probability that node j2 influence node i is given by

wj2i =
qj2i

q , and so on. Thus note that wj1i + wj2i + . . . + wjxi ≤ 1 and this setting
coincides with the proposed model in Section 3.1.

We have carried out the experiments with several configurations of the parameters
and we obtained similar results for each of these configurations. In the interest of space,
we in particular present the results for the following configuration of the parameters.
We consider two products each in P1 and P2 respectively; i.e. |P1| = |P2| = t = 2.
Also we consider that B = 100, c11 = 5, c12 = 4.5, b11 = 7, b12 = 6.5, c21 = 3, c22 = 2.5,
b21 = 5, b22 = 4.5.
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Fig. 1. Performance comparison of GA, MIH, MDH, and Random when the first variant of cross-
sell is considered and (i) Dataset is HEP and cross-sell threshold is [0, 0.5], (ii) Dataset is HEP
and cross-sell threshold is [0, 0.2], (iii) Dataset is WikiVote and cross-sell threshold is [0, 0.5],
and (vi) Dataset is WikiVote and cross-sell threshold is [0, 0.2]

We also work with two intervals for the cross-sell thresholds by setting a = 0.2 and
a = 0.5 (refer to Section 3.1). This implies that the cross-sell thresholds come from
two types of intervals, namely [0, 0.2] and [0, 0.5].

6.3 Experimental Results

We would like to compute the value of the objective function for the B-IMCP problem
by varying the budget level using the four algorithms, namely GA, MIH, MDH, and
Random. The experimental results in this setting are shown in Figure 1. These graph
plots are obtained using HEP and WikiVote data sets and when the cross-sell thresholds
come from the intervals [0,0.5] and [0,0.2] respectively. From all these graph plots, it is
clear that the performance of MIH and MDH is almost same as that of GA. However,
note that the performance of Random is very poor compared to that of GA.

Experiments with Large Network Data Sets. In this section, we focus on the running
time of GA. Table 2 shows the running times of GA and MIH on HEP and WikiVote
data sets. Clearly, the running time of GA is slower than MIH about 20 times.

Table 2. Running Times of GA and MIH on HEP and WikiVote Datasets

Data Set Running Time Running Time
of GA (in Sec.) of MIH (in Sec.)

HEP 66563 2590
WikiVote 148736 7200
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Fig. 2. Performance Comparison of MIH and MDH on Two Large Network Data Sets, namely (i)
Epinions and (ii) Telecom Call Detail Records Data Sets

We now present experimental results with large network data sets using MIH and
MDH. Figure 2 shows the budget versus the expected value of the objective function
curves for MIH and MDH using Epinions and Telecom data sets, when the first variant
of cross-sell is used and cross-sell thresholds for nodes come from the interval (0, 0.5).
It is immediate to see that the performance is MIH is superior than that of MDH on
these two data sets.

7 Conclusions and Future Work

In this paper, we introduced a generalized version of the influence maximization prob-
lem by simultaneously considering three aspects such as cross-sell phenomenon, prod-
uct specific costs and benefits and budget constraints. We proposed a simple greedy
algorithm to address this generalized version of the influence maximization problem.
There are several ways to extend this work in this paper. First, it is interesting to exam-
ine other types of possibility of the cross-sell among the products. Second, we consid-
ered an onto function to represent the cross-sell relationships in this paper. However, it
is important to work with other types of functions to represent the cross-sell relation-
ships while retaining the properties of the diffusion model such as monotonicity and
submodularity.
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