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Abstract. Influence maximization is the problem of finding a small set
of seed nodes in a social network that maximizes the spread of influence
under a certain diffusion model. The Greedy algorithm for influence max-
imization first proposed by Kempe, later improved by Leskovec suffers
from two sources of computational deficiency: 1) the need to evaluate
many candidate nodes before selecting a new seed in each round, and 2)
the calculation of the influence spread of any seed set relies on Monte-
Carlo simulations. In this work, we tackle both problems by devising
efficient algorithms to compute influence spread and determine the best
candidate for seed selection. The fundamental insight behind the pro-
posed algorithms is the linkage between influence spread determination
and belief propagation on a directed acyclic graph (DAG). Experiments
using real-world social network graphs with scales ranging from thou-
sands to millions of edges demonstrate the superior performance of the
proposed algorithms with moderate computation costs.

1 Introduction

The social network of interactions among a group of individuals plays a funda-
mental role in the spread of information, ideas, and influence. Such effects have
been observed in real life, when an idea or an action gains sudden widespread
popularity through “word-of-mouth” or “viral marketing” effects. For example,
free e-mail services such as Microsoft’s Hotmail, later Google’s Gmail, and most
recently Google’s Google+ achieved wide usage largely through referrals, rather
than direct advertising. Another more recent example is the Hewlett-Packard
(HP) TouchPad fire sale event [1]. The company slashed the price of TouchPad
by 75% to clear out inventory. Without any mass media advertisement or pub-
lic announcement, the move inadvertently generated an Internet phenomenon
– with Twitter and Facebook users sharing tips on websites where the product
was still in stock – and long lines at retailers as consumers jostled to pick up
TouchPads.

In viral marketing, one important question is given limited advertisement
resources, which set of customers should be targeted such that the resulting in-
fluenced population is maximized. Consider a social network modeled as a graph
with vertices representing individuals and edges representing connections or re-
lationship between two individuals. Under a specific diffusion model, the goal
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of influence maximization (IM) is to find k vertices (seed nodes) in the graph
such that the expected number of vertices influenced by the k seeds is maxi-
mized [2,3,4]. Kempe et al. proved the submodularity of the influence spread
function and suggested a greedy scheme (henceforth referred to as Greedy al-
gorithm) with an incremental oracle that identifies, in each iteration, a new
seed that maximizes the incremental spread. The approach was proven to be
a (1 − 1/e)-approximation of the IM problem. However, there are major limi-
tations with this method as previously mentioned. Follow-up works either only
addresses one of the deficiencies [5,6] or sacrifices accuracy for less computation
time [7].

In this work, we first establish the linkage between influence spread compu-
tation and belief propagation on a Bayesian network (modeled as a directed
acyclic graph – DAG), where the marginal conditional dependency corresponds
to the influence probabilities. Belief propagation has been extensively studied in
literatures, and thus many exact or approximation algorithms can be leveraged
to estimate the influence spread. For a general graph that contains loops, we
propose two approximation algorithms that prune some edges in the graph to
obtain a DAG that captures the bulk of influence spread. To reduce the number
of candidate seed nodes, we localize the influence spread region such that at each
round, only nodes that are affected by the previous selected seed need to be eval-
uated. Experimental study shows that the proposed algorithms can scale up to
massive graphs with millions of edges with high accuracy. On real-world social
network graphs, the proposed algorithms can achieve influence spread compa-
rable to that by Greedy algorithm and incur significant less computation costs.
They also outperform the scheme in [8] in achievable influence spread at the
expense of marginal increase in computation time.

The main contributions of this paper are summarized as follows:

– We cast the problem of inference spread computation on a DAG as an in-
stance of belief propagation on a Bayesian Network.

– We prove the #P-hardness of inference spread computation on a DAG.
– Two heuristics are proposed to construct DAGs from a general graph that

capture the bulk of influence spread.
– A fast algorithm is devised to incrementally update the DAG as more seeds

are added, and select candidate seeds.

The rest of this paper is organized as follows. In Section 2, we give a com-
prehensive review of the existing literature on influence spread maximization.
Section 3 presents theoretical results concerning influence spread on DAGs. In
Section 4, we devise two heuristics to reduce a general directed graph into a DAG
which captures the majority of influence spread. Improvements on seed selection
are discussed in Section 5. In Section 6, extensive experiment results are pre-
sented. Finally we conclude the paper and discuss future research directions in
Section 7.
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2 Related Work

In an effort to improve Greedy, Leskovec et al. [5] recognized that not all remain-
ing nodes need to be evaluated in each round and proposed the “Cost-Effective
Lazy Forward” (CELF) scheme. Experimental results demonstrate that CELF
optimization could achieve as much as 700-time speed-up in selecting seeds. How-
ever, even with the CELF, the number of candidate seeds is still large. Recently,
Goyal et al. proposed CELF++ [6] that has been shown to run from 35% to 55%
faster than CELF. However, the improvement comes at the cost of higher space
complexity to maintain a larger data structure to store the look-ahead marginal
gains of each node.

Chen et al. devises several heuristic algorithms for influence spread computa-
tion [7,8,9]. In Degree Discount [7], the expected number of additional vertices
influenced by adding a node v in the seed set is estimated based on v’s one
hop neighborhoods. It also assumes that the influence probability is identical
on all edges. In [8] and [9], two approximation algorithms, PMIA and LDAG
are proposed to compute the maximum influence set under IC and LT models,
respectively. In LDAG, it has been proven that under the LT model, computing
influence spread in a DAG has linear time complexity, and a heuristic on lo-
cal DAG construction is provided to further reduce the compute time. We have
proven in Section 3 that computing influence spread in a DAG under the IC
model remains #P-hard. The marked difference between the two results arises
from the fact that in the LT model, the activation of incoming edges is coupled
so that in each instance, only one neighbor can influence the node of interest in
an equivalent random graph model.

Another line of work explores diffusion models beyond LT and IC. Even-Dar et
al. [10] argue that the most natural model to represent diffusion of opinions in a
social network is the probabilistic voter model where in each round, each person
changes his opinion by choosing one of his neighbors at random and adopting
the neighbor’s opinion. Interestingly, they show that the straightforward greedy
solution, which picks the nodes in the network with the highest degree, is optimal.
Sylvester [11] studies the spread maximization problem on dynamic networks and
examines the use of dynamic measures with Greedy algorithm on both LT and
IC models. Chen et al. [12] consider a new model that incorporates negativity
bias and design an algorithm to compute influence on tree structures.

3 Influence Spread on Directed Acyclic Graphs

In this section, we consider the problem of computing influence spread given a
fixed seed set when the underlying social network is a DAG. We first show the
problem remains #P-hard, and then establish its equivalence to the computation
of marginal probabilities in a Bayesian network.

3.1 Problem Formulation

We consider a directed graph G = (V,E) with |V | = n vertices and |E| = m
edges. For every edge (u, v) ∈ E, p(u, v) denotes the probability of influence
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being propagated on the edge. In this paper, we adopt the Independent Cascade
(IC) model. Given a seed set S ⊆ V , the IC model works as follows. Let St ⊆ V
be the set of node (newly) activated at time t, with S0 = S and St∩St−1 = ∅. At
round t+1, every node u ∈ St tries to activate its neighbors in v ∈ V \⋃0≤i≤t Si

independently with probability p(u, v). The influence spread of S, denoted by
σ(S), is the expected number of activated nodes given seed set S.

Kempe et. al [4] proved two important properties of the σ(·) function: 1) σ(·)
is submodular, namely, σ(S ∪{v})− σ(S) ≥ σ(T ∪{v})−σ(T ) for all v ∈ V and
all subsets S and T with S ⊆ T ⊆ V ; 2) σ(S) is monotone, i.e. σ(S) ≤ σ(T ) for
all set S ≤ T . For any given spread function σ(·) that is both submodular and
monotone, the problem of finding a set S of size k that maximizes σ(S) can be
approximated by a simple greedy approach.

3.2 Hardness of Computing Influence Spread on DAGs

In [4], Kempe et. al proposed an equivalent process of influence spread under
the IC model, where at the initial stage, an edge (u, v) in G is declared to be live
with probability p(u, v) resulting in a subgraph of G. A node u is active if and
only if there is at least one path from some node in S to u consisting entirely of
live edges. In general graphs, the influencer-influencee relationship may differ in
one realization to another for bi-directed edges. In a DAG, on the other hand,
such relationship is fixed and is independent of the outcome of the coin flips at
the initial stage (other than the fact that some of the edges may not be present).
Let xu, u ∈ V denotes the binary random variable of the active state of node u,
namely, P (xu = 1) = p(u). For each node v in S, P (xv = 1) = 1. If a node u 	∈ S
does not have any parent in G then P (xu = 1) = 0. From G, the conditional
probability p(xu|xPar(u)) is uniquely determined by the edge probability, where
xPar(u) denotes the states of the parents of node u. In other words, influence
spread can be modeled as a Bayesian network. If node u does not have any
parent, p(xu|xPar(xu)) = p(xu). The joint distribution is thus given by,

p(x1, x2, . . . , xn) =

n∏

i=1

p(xi|xPar(xi)). (1)

Given the outcome of coin flips C, σC(S) =
∑

u∈V xu. Therefore,

σ(S) = E(σC(S)) =
∑

u∈V

E(xu) =
∑

u∈V

p(u). (2)

The second equality is due to the linearity of expectations. To compute p(u), we
can sum (1) over all possible configurations for xv, v ∈ V \u. Clearly, such a naive
approach has complexity that is exponential in the network’s treewidth. In fact,
the marginalization problem is known to be #P-complete on a DAG. However,
since computing influence spread on a DAG can be reduced to a special instance
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of the marginalization problem, it remains to be shown if the former problem is
#P-complete. The main result is summarized in the following theorem1.

Theorem 1. Computing the influence spread σ(S) on a DAG given a seed set
S is #P-complete.

3.3 Estimating σ(·) via Belief Propagation

Belief propagation is a message passing algorithm for performing inference on
graphical models, such as Bayesian networks and Markov random fields. It cal-
culates the marginal distribution for each unobserved node, conditional on any
observed nodes [13]. For singly-connected DAGs, where between any two ver-
tices there is only one simple path, the belief propagation (BP) algorithm [14]
computes the exact solution with O(n) complexity. For multi-connected DAGs,
where multiple simple paths may exist between two vertices, belief propagation
and many of its variants [13,15,16] have been shown to work well in general.
Exact solutions such as junction tree [15] may incur the worst case complexity
exponential to the number of vertices due to the need to enumerate all cliques
in the DAG.

BP algorithms take as input a factor graph or a Bayesian Network. For each
factor in the graph or a Bayesian node, a conditional probability table (CPT) is
constructed. For a node v with the parent set Par(v) = {par1, par2, . . . , park},
its CPT consists of one column for each state and one row for each set of states
its parents may assume. In influence spread, each state has two states: active
(1) and inactive (0). Thus the number of rows in a CPT is 2k. An illustrative
example of a factor graph and one of its CPT’s is given in Figure 1 and 2.

S1

A B

C

S2 S1

A B

C

S2

0.
5 0.40.3 0.4

0.5
0.4

0.5

Fig. 1. Converting a DAG into a factor graph

Once the factor graph and CPT’s associated with each factor are available,
we can apply a suitable BP algorithm to calculate the active probability of each
node in the DAG. σ(·) can then be determined by (2).

1 All proofs are omitted due to lack of space but can be found on the full technical
report at http://arxiv.org/abs/1204.4491

http://arxiv.org/abs/1204.4491
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States of C
A B 0 1

0 0 1 0
0 1 0.5 0.5
1 0 0.6 0.4
1 1 0.3 0.7

Fig. 2. CPT of C with two parents A, B

Computation Complexity. The complexity of σ(·) calculation is dominated
by the execution of the BP algorithm. A variety of BP algorithms exist. In our
evaluation, we adopt the Loopy Belief Propagation (LBP) algorithm which was
shown to perform well for various problems [17,18]. LBP’s complexity to estimate
the active probability of a node v is O(Md), where M is the number of possible
labels (states) for each variable (M = 2), and d is the number of neighbors of v.

3.4 A Single Pass Belief Propagation Heuristic for σ(·) Estimation

Calculating σ(·) with LBP produces highly accurate results, but the computation
time remains to be high when the graph is multi-connected. The main complexity
arises from the fact that the activation of parents of a node may be correlated in
a multi-connected graph. Thus, in computing the activation probability of the
node, one needs to account for the joint distribution of its parent nodes. Next,
we propose a single pass belief propagation (SPBP) algorithm that ignores such
correlation in determining σ(·). Note that the heuristic is exact when the graph
is singly-connected. Let D(·) be the input DAG. Consider a node v ∈ D(·). Given
the activation probabilities of its parents Par(v), we approximate p(v) as,

p(v) = 1−
∏

u∈Par(v)

(1− p(u)p(u, v)).

The algorithm is summarized in Algorithm 1. It starts with the seed nodes
and proceeds with the topological sorting order. Clearly, the algorithm has a
complexity of O(d · n), where d is the maximum in-degree.

Algorithm 1. Single-Pass Belief Propagation (SPBP)

input : D(S)

1 σ(S) = 0;
2 foreach v ∈ D(S) do
3 if v ∈ S then
4 p(v) = 1

else
5 p(v) = 1 − ∏

u∈Par(v)(1 − p(u)p(u, v))

6 σ(S) = σ(S) + p(v)

output: σ(S)
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4 DAG Construction

In general, real social networks are not DAGs (with the exception of advisor-
advisee and parent-child relationship, for instance, which exhibit a natural hier-
archy). To apply the BP algorithm in computing influence spread, one needs to
selectively prune edges and reduce the graph to a DAG. Clearly, there are many
ways to do so. The challenge is to find a DAG that approximates well the original
graph in influence spread. In this section, we introduce two DAG construction
algorithms, both retaining important edges where influences are likely to travel.

4.1 Localizing Influence Spread Region

One important observation in [8] is that the influence of a seed node diminishes
quickly along a path away from the seed node. In other words, the “perimeter”
of influence or the influence region of a seed node is in fact very small. One way
to characterize the influence region of a node v is through the union of maximum
influence paths defined next.

Definition 1. (Path Propagation Probability)

For a given path P (u, v) = {u1, u2, . . . , ul} of length l from a vertex u to v, with
u1 = u, ul = v and u2, . . . , ul−1 are intermediate vertices, define the propagation
probability of the path, p(P ), as:

p(P (u, v)) =
l−1∏

i=1

p(u1, ui+1). (3)

Definition 2. (Maximum Influence Path)

Denote by P(G, u, v) the set of all paths from u to v in G. The maximum influence
path MIP (G, u, v) from u to v is defined as:

MIP (G, u, v) = argmax
P

{p(P )|P ∈ P(G, u, v)}. (4)

Ties are broken in a predetermined and consistent way such that MIP (G, u, v)
is always unique, and any sub-path in MIP (G, u, v) from x to y is also the
MIP (G, x, y).
Definition 3. (Maximum Influence Out-Arborescence)

For a graph G, an influence threshold θ, the maximum influence out-arborescence
of a node u ∈ V,MIOA(G, u, θ), is defined as:

MIOA(G, u, θ) =
⋃

v∈V,p(MIP (G,u,v))≥θ

MIP (G, u, v). (5)

One can think ofMIOA(G, u, θ) as a local region where u can spread its influence
to. MIOA(G, u, θ) can be computed by first finding the Dijkstra tree rooted at
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u with edge weight − log(p(u, v)) for edge (u, v), and then removing the paths
whose cumulative weights are too high. By tuning the parameter θ, influence
regions of different sizes can be obtained. For a single node, its MIOA is clearly
a tree. For multiple seed nodes, we build upon the idea of local influence region
and propose two algorithms.

4.2 Building DAGs

DAG 1. We observe that any DAG has at least one topological ordering. Con-
versely, given a topological ordering, if only edges going from a node of low rank
to one with high rank are allowed, the resulting graph is a DAG.

To obtain the topological ordering given seed set S, we first introduce a (vir-
tual) super root node R that is connected to all seed nodes with edge probability
1. Let GR = (VGR , EGR) where VGR = V ∪{R} and EGR = E∪{(R,Sk)|∀Sk ∈ S}.
We build MIOA(GR, R, θ) by calculating a Dijkstra tree from R. After remov-
ing R and its edges from MIOA(GR, R, θ), we obtain a singly connected DAG
D1 = (VD1 , ED1) on which BP algorithms can be directly applied and used to
estimate the influence spread from S. However, D1(·) is very sparse (with n− k
edges) since many edges are removed.

We then augment D1(·) with additional edges. Note that MIOA(GR, R, θ)
provides a topology ordering. More specifically, let the rank of node v be the
sum weight of the shortest path from R, namely,

r(v) = min(− log(p(P (s, v)))), ∀s ∈ S. (6)

Rank grows as the node is further away from R. We include in D1(·) all edges
in G whose end points are in D1(·) and go from a node with lower rank to one
with higher rank. Clearly, the resulting graph is a DAG. The DAG constructing
procedure is illustrated in Figure 3 and summarized in Algorithm 2.

Algorithm 2. Calculate D1(S) from a seed set S
input : G, S, θ

1 Build GR = (VGR
, EGR

)

2 D1(S) = MIOA(GR, R, θ)\R
3 Calculate r(v),∀v ∈ VD1 (Eq. (6))

4 foreach (u, v) ∈ VGR
do

5 if r(u) < r(v) and (u, v) ∈ E then
6 D1(S) = D1(S) ∪ (u, v)

output: D1(S)

DAG 2. In the second algorithm, we first compute the MIOA from each seed
node and take the union of MIOA(G, s, θ), ∀s ∈ S. Denote the resulting graph
D2(S) = (VD2 , ED2). Note that D2(S) is not necessary a DAG as there could be
circles. To break the cycles, certain edges need to be removed. We adopt a similar
approach as in Algorithm 2. A node v is associated with a rank r(v) as in (6). Only
edges that connect a lower rankednode to higher rankednode are retained. Clearly,
the resulting graph is a DAG. The approach is summarized in Algorithm 3.

The next proposition provides the relationship between DAGs constructed by
Algorithm 2 and 3.
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S1

A B

C

S2 S1

A B

C

0.
5 0.40.3 0.4

0.5
0.4

0.5

R

S2

p 
= 

1 p = 1

Node S1 S2 A B C
r(Node) 0 0 0.301 0.398 0.699

Fig. 3. DAG due to Algorithm 2. S1 and S2 are seed nodes. Edges in MIOA(GR, R, θ)
are in bold. (S1, B), (S2, A), (A,B), and (B,C) are added into D1(S) to improve
inference accuracy. θ = 0.0001.

Algorithm 3. Calculate D2(S) from a seed set S

input : G, S,MIOA(G, v, θ), ∀v ∈ V

1 D2(S) =
⋃

∀s∈S MIOA(G, s, θ)
2 Calculate r(v),∀v ∈ VD2 (Eq. (6))

3 foreach (u, v) ∈ D2(S) do
4 if r(u) ≥ r(v) then
5 D2(S) = D2(S)\(u, v)

output: D2(S)

Proposition 1. Given a fixed influence threshold θ, let D1(·) = (VD1 , ED1) and
D2(·) = (VD2 , ED2) be the DAGs constructed by Algorithm 2 and Algorithm 3.
Then, VD1 = VD2 and ED2 ⊆ ED1 .

Computation Complexity. The computation complexity of a Dijkstra tree
is O(n2). When a new seed node is added, the worst cast computation time is
O(n2) (if the corresponding MIOA needs to be computed anew). The union
operation in DAG 2 takes O(n − 1) time, and the edge pruning in DAG 1 and
DAG 2 take O(m) and O(min(m, k(n− 1)), respectively.

5 Accelerated Greedy Algorithm

In the original Greedy algorithm [4], in each round, a seed node with the max-
imum increment on influence spread is selected, namely, v = maxv∈V \S(σ(S ∪
{v})−σ(S)). We call δS(v) = σ(S∪{v})−σ(S) the spread increment of v under
S. Initially, when S = ∅, δS(v) = σ(v).

To accelerate the execution of Greedy algorithm, one can try to improve
on two aspects, namely, 1) limiting the set of nodes to pick from for the next
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Node S1 S2 A B C
r(Node) 0 0 0.301 0.398 0.699

Fig. 4. DAG due to Algorithm 3. S1 and S2 are seed nodes. D2(S) is the union of
MIOA(G, S1, θ) (solid edges) and MIOA(G, S2, θ) (dashed edges). θ = 0.0001.

seed, and 2) reducing the complexity of computing the spread increments. CELF
algorithm [5] eliminates many nodes from being evaluated. We focus on the
second aspect. The proposed mechanism can be used in conjunction with CELF.

Recall in Section 4.1, we use MIOA to localize the influence region of a node.
Consider for now that influence from a node can only reach nodes in its MIOA.
Then, we make the following claim.

Proposition 2. Given the current seed set S, adding u to S will not change
the spread increment of v, namely, δS(v) = δS∪{u}(v) if MIOA(G, u, θ) and
MIOA(G, v, θ) have no common vertex.

As a result of Proposition 2, each time we select a new seed, only the influence
increments of nodes that have overlapping influence regions with the newly se-
lected seed need to be re-evaluated. Formally, we define the set of Peer Seeds
(PS) of a vertex v ∈ V as follow:

PS(G, v, θ) = {s ∈ V |MIOA(G, s, θ) ∩MIOA(G, v, θ) 	= ∅} . (7)

PS(G, v, θ) can be computed efficiently just once at the beginning when all
MIOA(G, v, θ)’s are available. To this end, we summarize the complete proce-
dure to determine the optimal seed set in Algorithm 4.

6 Evaluation

In this section, we evaluate the performance of the proposed algorithms. Large
scale social networks are used to evaluate the maximum influence spread of
different algorithms. In addition to the two DAG models and two methods
to compute influence spread (a total of 4 combinations DAG1–LBP, DAG1–
SPBP, DAG2–LBP, and DAG2–SPBP), we make comparison with the following
algorithms:

– PMIA(θ) [8]: a very fast heuristic that builds a tree-like structure model
on which influence is spread. We set the influence threshold θ = 1/160.
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Algorithm 4. Accelerated Greedy Algorithm
input : network graph G(V,E) and seed set size k

// initialization
1 S = ∅, σ0 = 0, θ = influence threshold
2 foreach v ∈ V do
3 build MIOA(G, v, θ)
4 D(v) = MIOA(G, v, θ)
5 calculate σ(v) (LBP or Algorithm 1)
6 δ(v) = σ(v)
7 δold(v) = 0

8 build PS(G, v, θ), ∀v ∈ V

// main loop
9 for i = 1, . . . , k do

// select the i’th seed
10 u = argmaxv∈V \S(δ(v))
11 S = S ∪ {u}
12 σ0 = σ(S)
13 δold(v) = δ(v), ∀v ∈ V \S

// update incremental influence spread
14 δmax = 0
15 foreach v ∈ PS(G, u, θ)\S do
16 if δold(v) > δmax then
17 build D(S ∪ {v}) (Algorithm 2 or 3)
18 calculate σ(S ∪ {v}) (LBP or Algorithm 1)
19 δ(v) = σ(S ∪ {v}) − σ0

20 if δ(v) > δmax then
21 δmax = δ(v)

output: selected seed set S

– Greedy: The Greedy approach from [4] with CELF optimization in [5]. The
number of simulation rounds for each σ(·) estimation is 10,000.

– Weighted Degree: The simple heuristic that selects k seeds that have
maximum total out-connection weight.

We do not compare with other heuristics such as SP1M, SPM [19], PageR-
ank [20], Random, DegreeDiscountIC [12] or Betweenness centrality [21] since
they have been reported in previous studies [8,4,6] to be either unscalable or
have poorer performance.

We have implemented the proposed algorithms in C++. All experiments are
conducted on a workstation running Ubuntu 11.04 with an Intel Core i5 CPU
and 2GB memory. In order to implement LBP algorithm, we use libDAI [22] and
Boost [23] libraries. We find out through the implementation that constructing
the CPT can be very costly when the in-degree of a node is high, and thus only
include the parents with highest 10 influence probabilities in the factor graph.
The implementation of PMIA is obtained from its authors. Note that with code
optimization, the running time of our algorithms can be further reduced.

Datasets. We use four real-world network datasets from [24] and [25] to com-
pare the experimented algorithms. Details are summarized in Table 1.

Probability Generation Model. Two models that have been used in previous
work [4,8,12,6] are: 1) the WC model where p(u, v) = 1/d(v) where d(v) is
the in-degree of v and 2) the TRIVALENCY model where p(u, v) is assigned
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Table 1. Network datasets

Name Email p2p-Gnutella soc-Slashdot Amazon

Nodes 447 6,301 82,168 262,111

Edges 5,731 20,777 948,464 1,234,877

Density 0.04 1e–03 1.6e–03 2.6e–05

Max Degree 195 97 5064 425

Mean Degree 25.64 6.59 23.09 9.42

Email exchanged Gnutella peer to Slashdot social Amazon product
Description in a research lab peer network from network from purchasing network

during a year August 2002 February 2009 from March 2003
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Fig. 5. Influence spread of the best seed sets on 4 datasets

a small value for any (u, v) ∈ E. We argue that both models are not truthful
reflections of the probability model in practice. The WC model assign a very high
probability for a connections to nodes with small number of incoming connections
while the TRIVALENCY model assigns a similar probability to all edges. In our
evaluation, we consider the RANDOM model where p(u, v) is randomly selected
in the range [0.001, 0.1].

Influence Spread and Running Time. Figure 5 shows the influence spread
generated by the best seed sets in different algorithms as the seed size changes.
Since Greedy does not scale with large datasets, we only run Greedy on Email
and p2p-Gnutella. In this set of experiments, the influence spread from the seed
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Fig. 6. Computation time on 4 datasets
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Fig. 7. Size of DAGs and RMSE of activation probabilities. Results are averages of
50 runs with different seed selections and symmetric error bars indicate standard
deviations.

set selected by each algorithm is determined by 10,000 rounds of Monte Carlo
simulations on the original graphs.

In Figure 5(a), the performance of DAG1–LBP and Greedy (known to be
within a constant ratio of the optimal) are not distinguishable (and thus are
represented in one curve). The influence spread of DAG1–SPBP and DAG2–
LBP/SPBP are shortly behind, all outperforming PMIA and Weighted Degree.
We observe on Email dataset (a small but dense network) that both the structure
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of the DAG (DAG 1 vs. DAG 2) as well as the BP algorithm used (LBP vs.
SPBP) will affect performance of the proposed methods. In contrast, as shown
in Figure 5(b) – (d), the influence spreads of the four approaches DAG1/2–
LBP/SPBP are identical for sparser networks, and is the same as Greedy in
p2p-Gnutella dataset.

In terms of running time, Weighted Degree is the fastest. Among the four
proposed approaches, DAG2–SPBP is the fastest, next are DAG2–LBP, DAG1–
SPBP, and finally DAG1–LBP. DAG2–SPBP and PMIA have comparable order
in running time with DAG2–SPBP being 30-40% slower than PMIA in most
cases. Again, this may be primarily attributed to the lack of code optimization
in our proposed methods.

Interestingly, influence spread on Amazon grows linearly with the seed size.
Our result matches with that in [8]. This can be explained by the sheer scale
of the network, and thus the small number of selected seeds are likely to have
non-overlapping influence regions.

Comparison of the Two DAG Models. To understand the behavior of the
proposed algorithms, we conduct further experiments on Email dataset as it
gives the most performance difference between the experimented algorithms.

Figure 7 (a) gives the number of vertices and edges as the result of the two
DAG models with varying size of seed sets. Since both have the same number of
vertices, only one curve is shown. It it clear that DAG 1 is much bigger from DAG
2 due to the inclusion of more edges. As the seed set grows, the gap becomes
smaller.

We use Root Mean Square Error (RMSE) to compare the activation proba-
bilities on nodes. RMSE is defined as,

RMSE(p, p′) =

√∑
∀v∈V (p

′(v)− p(v))2

n
/

∑n
∀v∈V p(v)

n
,

where p′(·) is the inferred result from the propose algorithms. The ground truth
p(·) is determined by Monte Carlo simulations. When p′(v) = p(v), ∀v ∈ V then
RMSE(p, p′) = 0.

Figure 7(b) shows that DAG 1 methods have smaller RMSE since they are
based on a denser graph. More edges clearly help increase quality of the seed
selection process. In the context of LBP vs. SPBP, LBP is slightly better since
SPBP get rid of the state correlation between nodes. DAG 1 and LBP can help
produce better inference result, but entails more computation complexity. The
results are consistent with those in Figure 5(a).

Summary. From the conducted experiments, Weighted Degree gives the best ef-
ficiency in terms of spread/complexity. However, there are cases (Email dataset)
in which Weight Degree performs poorly. Our proposed schemes works well in
all the experimented datasets. They also offer more application flexibility: one
would apply the best performed algorithm (DAG1–LBP) on static networks
(e.g.: network of connections between co-workers) to identify the most influen-
tial nodes, or apply the fastest algorithm (DAG2–SPBP) on rapidly changing



Influence Spread in Large-Scale Social Networks 529

communities (e.g.: network of connections between people in a social group) to
obtain immediate result.

7 Conclusion

In this paper, we considered the IM problem on social networks where the objec-
tive is to find a set k of nodes that can maximize the influence spread. We estab-
lished the linkage between influence spread computation and BP on a Bayesian
network. With 2 DAG models and 2 BP algorithms, 4 methods are proposed of-
fering the flexibility between computation time and accuracy. Simulations using
real-world social network graphs show that the proposed schemes achieve higher
influence spread compared to the best known solutions. Interestingly, DAG 2
model, although being much smaller than DAG 1, gives a good approximation
result that is comparable to DAG 1 with only a marginal computation cost.
Result also exhibits the dependency of algorithm performance over the experi-
mented network. Thus suggesting an interesting research direction to study the
impact of graph structure in IM problem.
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