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Abstract. Advances in sequencing have greatly outpaced experimen-
tal methods for determining a protein’s structure and function. As a
result, biologists increasingly rely on computational techniques to in-
fer these properties of proteins from sequence information alone. We
present a sequence classification framework that differs from the common
SVM/kernel-based approach. We introduce a type of artificial neural net-
work which we term the Subsequence Network (SN) that incorporates
structural models over sequences in its lowest layer. These structural
models, which we call Sequence Scoring Models (SSM), are similar to
Hidden Markov Models and act as a mechanism to extract relevant fea-
tures from sequences. In contrast to SVM/kernel methods, which only
allow learning of linear discrimination weights, our feed-forward struc-
ture allows linear weights to be learned in conjunction with sequence-level
features using standard optimization techniques.

1 Introduction

Advances in sequencing have greatly outpaced experimental methods for de-
termining a protein’s structure as well as its role within the complex network
of interactions taking place inside living organisms. As a result, biologists in-
creasingly rely on computational techniques to infer structural and functional
properties of proteins from sequence information alone.

Popular and successful approaches for protein classification employ Support
Vector Machines (SVM) [9,10,11,17,15,2]. Performance of SVM-based classifiers
is highly dependent on the kernel function, which can be difficult to specify
and to interpret. Kernel functions often have free parameters that must be set
either through cross validation or heuristics. Further, ad hoc techniques are
often employed to normalize pre-computed kernels so that the algorithm can
learn larger margins between classes.

We present a sequence classification framework that differs from the SVM/
kernel-based approach.We construct a type of neural network called a Subsequence
Network (SN) that incorporates structural models over subsequences.These struc-
tural models, called Sequence Scoring Models (SSMs), are similar to Hidden
MarkovModels and act as amechanism to extract relevant features from sequences.
Our feed-forward structure allows standard optimization techniques to be used for
learning linear discrimination weights in conjunction with sequence-level features.
We compare our algorithm against state of the art kernel methods on a set of canon-
ical datasets for structural and functional protein sequence classification.
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2 Background

2.1 Support Vector Machines and Kernels

Support Vector Machines (SVMs) are linear classifiers; they assume that an
input space, X , can be partitioned by a hyperplane so that positive examples lie
on one side of the plane and negative examples on the other. SVMs can capture
nonlinear boundaries by mapping data into a transformed space, ϕ : X → X ′,
where X is the original input space and X ′ is the transformed input space. Instead
of computing this mapping directly, we can substitute the inner product between
training examples in the transformed space, 〈ϕ (xi) , ϕ (xj)〉, with a kernel function,
K (xi, xj), where K : X ×X → R and xi, xj ∈ X [19].

String kernels extend the SVM to problem domains of variable-length sequences
andalso allowprior knowledge over aparticularproblemdomain tobe incorporated
into the classifier. Examples of string kernels include the following: The spectrum
kernel [9] computes, for a pair of sequences, xi and xj, the count of subsequences of
length k that are present in both sequences. The mismatch kernel [10] can be best
described as a fuzzy version of the spectrum kernel. For two sequences, xi and xj ,
the mismatch kernel computes the number of subsequences of length kacross xi and
xj that contain at most m mismatches. The local alignment kernel (LA-kernel)[17]
computes the sum over all possible alignment scores between two sequences. Align-
ment scores generalize edit distance and score pairs of individual amino acids using
a predefined distance matrix, commonly the BLOSUM62 matrix [4]. Profile kernels
[15,7] are semi-supervised methods that augment training and test sequences with
unlabeled sequences in the Protein Data Bank (PDB).

2.2 Hidden Markov Models

The Hidden Markov Model (HMM) [14] defines a probability distribution over
sequences. The HMM assumes: (i) Each symbol in the sequence was generated
from a mixture distribution; the mixture components are referred to as hidden
states. (ii) The Markov property holds over hidden states i.e., the hidden state
generating the current observation depends on the past only through the hidden
state of the previous observation.

The joint probability of a sequence, x1:T of length T , and a set of hidden states,
z1:T , under an HMM is given as follows:

p(x1:T , z1:T ) =
T∏

t=1

p(zt|zt−1)p(xt|zt) =
T∏

t=1

θtrans
zt−1,zt

θemit
xt,zt

, (1)

where θtrans is a set of transition probabilities and θemit is a set of emission prob-
abilities. Detailed descriptions of parameters are given in Table 1. Converting
transitions from adjacent hidden states over the length of the sequence to counts
of emissions and transitions gives

p(x1:T , z1:T ) =
∏

k,k′

(
θtrans

k,k′
)ntrans

k,k′
∏

k,m

(
θemit

k,m

)nemit
k,m

(2)
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Table 1. Description of HMM parameters

K ��� ������ 	
 ��� �
���� ������

M ��� ������ 	
 �	��
��� ��
�	 ��
��

N ��� ������ 	
 ��	��
� ���������

Tn ��� ������ 	
 ��� nth ��������

xn 
� ��� nth ��
�	 ��
� ��������� xn,t 
� ��� tth ����	� 
� ��� nth ��������

yn 
��
����� ��� �����	�� ���	�
���� �
�� ��� nth ��������� yn ∈ Y� ����� Y 
� ��� ��� 	
 ��� �����	�
��

zn 
� ��� nth �������� 	
 �
���� ������� zn,t 
� ��� ����� 	
 ��� �
���� ����� 
	� ��� nth �������� ��

�	�
�
	� t� zn ∈ Z� ����� Z ��� ��� 	
 ��� �	��
��� �
���� ����� ����������

θtransk,k′ ��� ��	���
�
�� 	
 �
���� ����� k 	����
�� �� �	�
�
	� t ���� �
���� ����� k′ ������� �� �	�
�
	�

t+ 1
wtran

k,k′ ������ �� log θtransk,k′

θemit
k,m ��� ��	���
�
�� 	
 ��
��
�� ����	� m �� �	�
�
	� t ���� �
���� ����� �� �	�
�
	� t 
� k

wemit
k,m ������ �� log θemit

k,m

w ������ ��
[
wtrans

1,: . . . wtrans
K,: wemit

1,: . . . wemit
K,:

]�
� � ����	� �	���
�
�� �	�� ��� �����
�
	� ��� ��
��
	�

��
���� � ��� ������
���� � :� 
� ������ �	���
	� 
	� ��� ����	� 	��� ��� �������� 
�����

nemit
k,m ��� ������ 	
 �
��� �
���� ����� k 	����� 
� �	� ����
	� �
�� 	������� ����	� m

ntrans
k,k′ ��� ������ 	
 �
��� �
���� ����� k 	����� ��
	�� �
���� ����� k′

In the logarithm, the joint probability of a sequence and associated hidden states
under the HMM is a linear function:

log p(x1:T , z1:T ) =
∑

k,k′
ntrans

k,k′ log θtrans
k,k′ +

∑

k,m

nemit
k,m log θtrans

k,m (3)

def
=
∑

k,k′
ntrans

k,k′ wtrans
k,k′ +

∑

k,m

nemit
k,m wemit

k,m

where we define w
def
= log θ for both emissions and transitions. HMMs are proba-

bility distributions and thus require that ∑X ,Z p(x, z) = 1, where X indicates the
set of all possible sequences with alphabet size M , and Z indicates the set of all
hidden states assignments for a sequence x1:T . This constraint is satisfied as long
as ∑k′ θtrans

k,k′ = 1 and ∑
m θemit

k,m = 1.
It is often useful to find the maximum probability assignment of values to hid-

den states, i.e., argmax
z1:T

p (x1:T , z1:T ). The maximum can be computed efficiently

by distributing the addition operator over max function to create the following
recurrence:

max
z1:t

log p (x1:t, z1:t) = max
zt

[(
max

z1:t−1
log p (x1:t−1, z1:t−1)

)
+ log p (zt|zt−1) + log p (xt|zt)

]
(4)

The algorithm that uses this recurrence to compute the maximum over z1:T is
known as the Viterbi algorithm [14].

2.3 Neural Networks

A feed-forward artificial neural network (ANN) is a nonlinear classifier or regres-
sion function where the input to output transformation is a composition of differ-
entiable functions: f(H)

(
. . .
(
f(1) (x)

)
. . .
)
. We assume a dataset {(xn, yn)}N

n=1, x ∈ X ,
y ∈ Y where xn is an input vector associated with an output yn. We denote the vec-
tor valued output of each layer as f (h), which we call “layer h” of the neural network.
The top layer of the network (layer H) is compared against the true output, y, using
a loss function �

(
f (H), y

)
. In a standard ANN, f

(h)
i , the ith element of the vector f (h),
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is computed by passing a linear combination of the values from the previous layer
through a squashing function (usually the hyperbolic tangent function). Each f

(h)
i

is computed independently of f
(h)
j , i �= j given values from layer h − 1 :

f (h) =
[
f

(h)
1

(
f (h−1)

)
, . . . , f (h)

nh

(
f (h−1)

)]�
, (5)

where nh is the number of elements in layer h and f
(h)
i denotes the composition

of squashing and linear functions used to compute the ith element of f (h).
Convolutional Neural Networks (CNNs) [8] are inspired by neural connections

in the human visual cortex. In CNNs, lower levels of the network respond to local
portions of the input. For instance, the Time Delay Neural Network (TDNN)
[20] is a type of CNN used in speech recognition. In the TDNN, the first hidden
layer of the network is computed from a set of overlapping windows of an input
sequence i.e., f (1) is computed from an input sequence x1:T :

f (1) =

[
f

(1)
1 (x1:ncnv ) , f

(1)
1 (x2:ncnv+1) , . . . , f

(1)
1 (xT−ncnv :T ) , . . . ,

f (1)
nh

(x1:ncnv ) , f (1)
nh

(x2:ncnv+1) , . . . , f (1)
nh

(xT−ncnv:T )

]�
(6)

where nh−1 indicates the number of elements in the vector f (h−1) and ncnv is the
size of the “convolutional window” (the number of elements from the input, x,
which contribute to produce the value of layer 1). We use Matlab slice notation,
xi1:i2 , to indicate a sub-vector of the input sequence starting at index i1 and
ending at index i2.

3 Sequence Classification with Subsequence Networks

Our family of feed-forward classification models are convolutional neural net-
works that assume a protein’s structural or functional category can be predicted
by the presence of a set of subsequences. We call these models Subsequence Net-
works (SN). In a Subsequence Network, the convolutional layer learns the degree
to which a subsequence is present in a protein sequence. The degree of presence
of a subsequence acts as a feature, which can be input to a linear classification
layer, allowing combinations of these subsequence features to be detected.

Convolutional units in the Subsequence Network are structured like HMMs, ex-
cept that we relax the constraint that the output of each unit defines a probability
distribution over sequences. That is, we perform unconstrained optimization with
respect to wtrans

k,k′
def
= log θtrans

k,k′ and wemit
k,m

def
= log θemit

k,m rather than enforcing the con-
straint that each θ vector sums to one. We refer to these unnormalized models as
“Sequence Scoring Models” (SSM). Figure 1 shows a diagram of our Subsequence
Network using an SSM convolutional layer.

3.1 Pair-SSMs

The Pair-SSM is an unnormalized version of the Pair HMM [5]. Pair HMMs
probabilistically extend the concept of edit distance by assigning probabilities
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tanh
(
f
(2)
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)
tanh

(
f
(2)
2

)
tanh

(
f
(2)
1

)
. . .tanh

(
f
(2)
3

)

x1 x2 x3 x4 x5 x6 xN. . . Protein Sequence

Squashing Layer

∑
i w

(lin)
|Y|,i f

(3)
i

∑
i w

(lin)
2,i f

(3)
i

∑
i w

(lin)
1,i f

(3)
i . . .

∑
i w

(lin)
3,i f

(3)
i

log
(∑

y′ exp
(
f
(4)
y′

))
− f

(4)
y

Linear Layer

Softmax loss

function

. . .

max
z

(SSMNs
(x, z))max

z
(SSM2(x, z))max

z
(SSM1(x, z)) . . .max

z
(SSM3(x, z)) Max and Conv

Layers

Fig. 1. A diagram illustrating a Subsequence Network being applied to an input se-
quence. In the bottom row of the network, the maximum of the scores from each SSM
are taken over the input sequence. The Conv layer is defined by a score from an SSM.
In the second row, a squashing function is applied to the maximum SSM scores. The
third row computes the distance of these squashed scores from hyperplanes used to
define boundaries between sequence categories. Finally, the loss function compares the
category given by the hyperplane to the true sequence category.

to a symmetric set of insertions, deletions, and substitutions that allows one
sequence from a pair to be created from the other.

The log probability of a pair of sequences, xi and xj , in the Pair HMM can
be given by a linear model in the log of the distribution parameters:

log p(xi,xj , z) =
∑

k,k′
ntrans

k,k′ wtrans
k,k′ +

∑

m,m′
nemit

m,m′wemit
m,m′ (7)

where nemit
m,m′ indicates the number of times we substituted an amino acid, m, from

sequence xi with m′ from sequence xj , and wemit
m,m′ is the associated cost of this sub-

stitution. The expression in Equation 7 differs from the probability of the standard
HMM (Equation 3) in that we replace counts of emissions from a hidden state by
counts of substitutions of amino acid m from sequence i with amino acid m′ from se-
quence j i.e., nemit

k,m becomes nemit
m,m′ and wemit

k,m becomes wemit
m,m′ . The Pair-SSM includes

three types of hidden states: In an Insert hidden state, the model emits a symbol
from sequence xi. In a Delete hidden state the model emits a symbol from sequence
xj. In aMatch hidden state, themodel emits a symbol fromboth sequences.Toallow
the model to capture relevant subsequences, we add additional hidden states Istart

and Iend. These hidden states emit symbols of either xi or xj from a background
distribution, allowing the main portion of the Pair-SSM to emit symbols from the
relevant subsequence. We show a diagram of hidden state transitions in Figure 2a.
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If used in the convolutional layer of a Subsequence Network, the Pair-SSM ex-
tracts features using a similar technique as the LA-kernel. In this type of network,
subsequences that best match an input sequence are selected from within each
training set sequence by the Pair-SSMs.This view is closely related to the empirical
kernel map [18,17]. In the empirical kernel map, a feature vector associated with
an unknown sequence is given by a vector of kernel evaluations over the training
set i.e., we map the sequence x to the vector [K (x1, x) , . . . , K (xN , x)]�, where K (·, ·)
is the kernel function and {xn} , n ∈ [1 . . . N ] is the set of training sequences. In the
first layer of empirical kernel map, a feature vector is computed from an input se-
quence by evaluating a fixed kernel function on the input sequence paired with each
training set sequence. This set of values are then combined linearly using weights,
wn, to produce an overall score for the query sequence: s(x) =

∑
n wnK(xn, x). As in

all linear classifiers, we classify the query sequence, x, as a member of the positive
class if s(x) > 0 and as a member of the negative class otherwise. In SVM/kernel
classification, kernel evaluations for all pairs of sequences are computed indepen-
dently. Then, given K(xi, xj), ∀i, j, the SVM learning algorithm solves a (convex)
quadratic program to compute the linear weights, wn.

Although optimization over the Subsequence Network with a Pair-SSM con-
volutional layer is tractable, it is not yet practical without distributing computa-
tion over multiple processors. For each SGD epoch we must compute the Viterbi
paths over N2 pairs of sequences, xi and xj , at a cost of O(|xi| × |xj |) (where N is
the number of training sequences and |x| is the length of a sequence).

M

I D

(I, start) (I, end) End

(M,K)(M, 1)(M, 0)

(I, 1)(I, 0)

. . .

. . .

(D,K)(D, 1) . . .

(M, 2)

(I, 2)

(D, 2)

(I, start) (I, end) End

(a) (b)

(M,K)(M, 1)(M, 0) . . .(M, 2)(I, start) (I, end) End

(c)

Fig. 2. A diagram of the deterministic finite-state automaton associated with (a) the
Pair-SSM (b) the Local SSM (L-SSM) and (c) the Simplified Local SSM (SL-SSM).
Match states are indicated with a white background, Insert states with a light-gray
background, and Delete states with a dark-gray background.

3.2 Local SSM (L-SSM)

The Local SSM (Figure 2b) is an unnormalized version of the Profile HMM
(pHMM) adapted to model a single subsequence within an observed sequence.
Profile HMMs [6] are a variation of the standard HMM commonly used for
modeling biological sequences. They are left-to-right, non-ergodic HMMs [14]
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that represent sequences in relation to an archetypal sequence encoded in the
emission distributions of the pHMM’s hidden states. Profile HMMs use three
types of hidden states: (1) Match (M) states encode individual symbols of the
archetypal sequence, (2) Insert (I) states allow additional symbols to be inserted
between matched symbols, and (3) Delete (D) states allow matched symbols to
be skipped. Hidden states of the archetypal sequence are expressed as pairs of
symbols (s, k), where s ∈ {M, I, D} indicates a Match (M), Insert (I), or Delete
(D), paired with a base state, k ∈ [1 . . . K], which can be thought of as index-
ing a symbol in the archetypal sequence. The form of the archetypal sequence
is encoded by the emission distributions from each of the K match states. In
the local version of the pHMM, which models a single subsequence within the
observed sequence, Istart and Iend are special insert states that allow portions
of the sequence before the archetypal sequence to be skipped. We fix transition
and emission probabilities from Istart and Iend, allowing these to be ignored dur-
ing optimization. In addition, we explicitly include an End state to mark the
end of the observed sequence. We must include the End state because without
transition from Iend to End, the model favors archetypal subsequences positioned
near the beginning of the observed sequence. As in the standard pHMM, in our
L-SSM, emissions occur only from Match and Insert states.

3.3 Simplified Local SSM (SL-SSM)

Like the L-SSM, the SL-SSM models relevant subsequences within a set of se-
quences. The SL-SSM (Figure 2c) simplifies the L-SSM by removing Insert and
Delete states from the model. This change in the model results in contiguous
subsequences of match states. This structural change speeds inference i.e., the
highest scoring set of hidden states can be efficiently computed by sliding the
window of K match states over a sequence and returning the position with the
highest probability. We use the same parametrization of hidden states as in the
L-SSM: {Istart,(M, 1),. . . ,(M, K),Iend,END}, where the pair (M, k), indicates a hid-
den state that emits the kth symbol of the archetypal sequence. Transitions from
the Match state (M, k) , k < K to (M, k + 1) and transitions from the state (M, K)

to the state Iend occur with probability one.
The L-SSM or SL-SSM convolutional layer in the Subsequence Network can

be interpreted as a simplification of the SN with a Pair-SSM convolutional layer.
This simplification is motivated by two assumptions about the domain of protein
sequences: (i) the set of protein sequences lies on a lower-dimensional manifold
within the sequence space and (ii) the basis given by the training set spans the
manifold of our domain and is redundant. With these assumptions it becomes
reasonable to simplify the Pair-SSM convolutional layer by creating a model
with a lower-dimensionality basis independent of the training examples. For our
model, we choose this basis to be a fixed set of L-SSMs or SL-SSMs.

When we replace Pair-SSMs with (S)L-SSMs, additional computational effi-
ciencies become possible because the (S)L-SSM allows us to store only the locally
relevant pattern rather than an entire sequence. Computing the score of a se-
quence under an (S)L-SSMs where hidden states are restricted to small, fixed



426 S. Blasiak, H. Rangwala, and K.B. Laskey

lengths therefore requires less computation time than evaluating the Pair-SSM
between pairs of sequences. A disadvantage of these simplifications is that new
parameters are added to the model. In particular, the number of (S)L-SSMs and
the number of hidden states for each (S)L-SSM must be specified in advance. In
the results section, we show that these simplifications not only maintain much
of the accuracy of the Pair-SSM layer, but they are also robust to variations in
parameter choices.

3.4 Subsequence Network Objective Function

The objective function for our model includes a loss for each sequence in the
dataset and a regularization term that penalizes large parameter values:

F (x) =
∑

n

�
(
xn, yn;wall

)
+

λ

2
||wall||2 (8)

where wall is an agglomeration of all of the SSM weight vectors in the model
(the composition of wall varies depending on which type of SSM is used for the
convolutional layer) and linear combination weights associated with each SSM;
�(x, y;wall) is a loss function. The λ term determines the trade off between the
loss and magnitude of the weights.

A loss function compares the output of a CNN with the label of a single
protein sequence. In our model, we use the a softmax loss, shown in the first row
of Table 3. The output of the network is given by

f (4)
def
= f(4)

(
f(3)

(
f(2)

(
f(1) (xn)

)))
def
= Lin (Tanh (Max (Conv (xn)))) (9)

where Conv is a convolutional layer containing multiple convolutional units, Max
computes the maximum over the responses of each convolutional unit, Tanh is
the hyperbolic tangent function and maps values in the range (−∞,∞) to (−1, 1),
Lin is a linear layer. As in Section 2.3, we denote the output from hidden layer
h as f (h). Table 3 gives the full form of each layer of the network, and Table 2
gives a description of network parameters.

If the number of hidden states for each SSM, |Z(i)|, across an individual net-
work is the same (|Z(i)| = |Z(j)| ∀i, j) layer f (1) becomes a matrix of size Ns ×|Z|,
where Ns is the number of SSMs in the convolutional layer. In the L-SSM and

Table 2. Subsequence Network parameters

��������� ���	
�
�	

Ns 	��
�� �� ���� 
	 ��� ��	�����
�	�� �����

f (h) ��� ������ �� ������ ���� �����
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���	 ����� h
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	�� ������ �� ��� ��� �	� �
	��� ��
�����[(

w(lin)
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(
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)�
, . . . ,

(
w(Ns)

)�]�
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	��� 
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�����	 ������� �������
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(lin)
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, . . . , w
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|Y|,1, . . . , w
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]

w(i) � ������ �� ���	�
�
�	 �	� ��
��
�	 ��
���� ��� ��� ith ����

w(i) =
[(
wtrans

1,:

)(i)
, . . . ,

(
wtrans

K,:

)(i)
,
(
wemit

1,:

)(i)
, . . . ,

(
wemit

K,:

)(i)]�

����� K 
� ��� 	��
�� �� �
���	 ������ 
	 ��� ���

Z(i) ��� ��� �� �
���	 ������ ��� ��� ith ���



A Family of Feed-Forward Models for Protein Sequence Classification 427

Table 3. The table above describes the composition of each layer in the Subsequence
Network and gives an expression for the Jacobian with respect to the layer’s input.
The values of each layer are given by the vector f (h) for hidden layer h. The Jacobian
of the first layer (Conv) with respect to the input is not used during inference.

����� ����	
	�� ��
��	�� �	
� �����

 
� f (h)

�
(
f (4), y

)
log

∑
i exp

(
f
(4)
i

)
− f

(4)
y

⎡
⎢⎢⎢⎢⎢⎢⎣
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∑
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) , . . . ,
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Pair-SSMs, |Z| is exponential in the size of the input sequence. We make the
feed-forward and backpropagation steps for the network tractable by computing
the composition Max(Conv(x)) directly using the Viterbi algorithm [14]. The
locations of the non-zero indicator functions in the Jacobian of the Max layer
are then given by the Viterbi path [14] through the SSM.

Our Subsequence Network incorporates the hyperbolic tangent squashing func-
tion, tanh (x) = e−2x+1

e−2x−1
. We denote the derivative of this function with respect to

the hyperbolic tangent input as d tanh (x) = 1 − tanh2
(x). In the Max layer, the

function max (v) returns the largest scalar element of the vector v.

3.5 Training Subsequence Networks

Training is performed using the stochastic gradient descent (SGD) algorithm.
In SGD, the gradient of the objective is evaluated for each training example.
The gradient is then scaled by a learning rate and subtracted from the current
set of parameters to obtain a new set of parameters. This procedure contrasts
with batch gradient learning where the gradient is computed for the entire set of
training examples. We compute gradients using the backpropagation procedure
[16]. Our model includes a locally non-smooth Max function, causing the the
gradient of the objective to be undefined at the non-smooth points. To deal with
this potential issue, we skip the gradient update in these non-smooth areas [3].

SGD updates take the form

wall
t ← wall

t−1 − ηt
∂F (xn)

∂wall
(10)

where F (xn) = �
(
xn, yn;wall

)
+ λ

2

∣∣∣∣wall
∣∣∣∣2 is the objective for a single sequence, t

indicates the iteration number in the SGD algorithm, wall
t indicates the value of
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the weights at the tth iteration, and ηt is the learning rate at iteration t and has
the form ηt = η0 (1 + λη0t)−1, where λ is the regularization parameter.

The gradient with respect to the linear weights is given by

∂F (xn)

∂w
(lin)
yi

= −
∂�
(
xn, yn;wall

)

∂f
(4)
y

f
(3)
i (11)

This leads to an update where wyi (the linear weight associated with the ith

SSM and category y) is increased if the current training example matches the
weight’s category and decreased otherwise. The change in the weight’s value is
proportional to, f

(3)
i , the squashed response of the ith SSM. The expression for

∂�
(
xn,yn;wall

)

∂f
(4)
y

is given in Table 3.
The gradient with respect to the SSM weights is given by
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The gradient of f
(3)
i with respect to the SSM weights, w(i), is given by ∂f

(3)
i

∂w(i) =

dtanh
(
SSMi (xn)

)
n

(i)
zmax where n

(i)
zmax is a vector of counts of emissions and tran-

sitions associated with the set of hidden states that maximizes the value of
SSMi (xn, z) and dtanh is the derivative of the tanh function with respect to its
input. As in the HMM, zmax for the SSM can be computed efficiently with the
Viterbi algorithm [14]. Gradient steps therefore change w(i) in proportion to the
counts of emissions and transitions in the highest scoring set of hidden states.
The factor of proportionality is ∂�

∂f
(3)
i

. This factor can be viewed as a measure of

how much the ith linear weight of the ground truth class, w
(lin)
yni , differs from its

expected value.

4 Experiments

We perform classification experiments on four protein datasets. Of these datasets,
two are derived from the Structural Classification of Proteins (SCOP) [12] ver-
sion 1.53. SCOP is a database that categorizes proteins with known structure
into a hierarchy with levels denoted by class, fold, superfamily, and family, from
broadest level to the most narrow respectively. The first structural dataset [11],
denoted by SF, defines 54 fixed superfamily partitions. The second dataset [15],
FD, consists of 23 predefined partitions at the fold level. Both of the SCOP
datasets were constructed so that no overlap between lower levels in the hierar-
chy occurs between training and test sets.

The other protein datasets divide sequences into functional, rather than struc-
tural, categories. The enzyme classification dataset [13], which we refer to as EC,
contains sequences from six enzyme categories and a set of non-enzymes for a
total of 7 one-versus-rest datasets. The fourth dataset [13] categorizes proteins
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Table 4. Datasets Sizes - # Train indicates the average number of sequences in the
training set over all categories, # Test indicates the average number of test set se-
quences, and # Categories indicates the number of one-versus-rest classification prob-
lems defined by the dataset

Dataset # Train # Test # Categories

SF 2948 1366 54

FD 2196 2155 23

EC 379 110 7

GO 115 57 23

by Gene Ontology. We refer to this dataset as GO. Information about the protein
datasets is given in Table 4.

4.1 Comparative Classifiers

We compared the three SVM string kernels to our Subsequence Network. The
BLAST kernel was computed by performing a BLAST [1] database search on
each sequence. If another sequence from the training set was returned by the
BLAST search, then we set the corresponding Kernel value to the returned E-
value. The mismatch kernel was described in Section 2.1 and has two parameters.
We denote a mismatch evaluation by Mismatch(k,m), where k is the subsequence
length and m is the number of allowable mismatches. The LA-Kernel was also
described in Section 2.1. For all experiments, the LA-Kernel’s temperature pa-
rameter, β, was set to 0.2.

4.2 Models and Parameters

We compared three variations of our Subsequence Network. In the first variation,
“Pair-SSM,” the convolutional layer consisted of Pair-SSMs associated with each
training sequence in the model. Similarly, the “L-SSM” and “SL-SSM” variations
use L-SSMs and SL-SSMs in the convolutional layer respectively.

For the Pair-SSM network, we initialized pairwise weights using a scaled ver-
sion of the BLOSUM62 matrix [4] and ran inference for 5 epochs on the FD
dataset and 10 epochs on the EC and GO datasets. We set the precision param-
eter associated with the Gaussian regularizer to λ = .005. We set multiplicative
factor in the learning rate (Section 3.5) η0 = .1 for the linear weights. For the
Pair-SSM parameters, we set η0 = .1

10×(#Train)
, where # Train is the number of

training set sequences. To allow training of the Pair-SSM model to take place in
a reasonable amount of time, we distributed gradient computations of SSMs in
the convolutional layer within each backpropagation step over 50 machines1.

Choices of parameters were the same for the L-SSM and SL-SSM networks:
We used 96 SSMs in the convolutional layer and set K (the number of states
1 Training the (S)L-SSM networks was significantly faster than the Pair-SSM network.

To give a rough comparison, SL-SSM network training with the parameters described
was faster than computing the Mismatch(5,2) kernel.
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for each SSM) to 11. We set the precision parameter to λ = .005 for both SSM
weights and linear weights, and we set η0 = .1. For each experiment, we ran
inference for 30 epochs.

The weight vector for these models were set by generating subsequences, x,
of length K uniformly and at random. For position k in the subsequence, weight
wkxk

was set to 1
K

and weights wkm, m �= xk was set to − 1
K

.
To compensate for unbalanced numbers of positive and negative examples, we

oversampled the positive training set so that the same number of positive and
negative examples were presented to the SGD trainer during each epoch. In the
(S)L-SSM networks, we found that initializing the linear weights so that half of
the SSMs were associated with the positive class and the other half associated
with the negative class improved performance of our algorithm.

4.3 Evaluation Metrics

We measured the performance of our algorithm by computing the average ROC
scores for eachof the one-versus-rest classificationproblemsdefinedbyourdatasets.
ROC, also known as Area Under the Curve (AUC), is defined as the area under the
receiver operating characteristic (ROC) curve. The ROC curve plots the percent-
age of true positives against the percentage of false positives.We also reportROC50

and ROC10% which are the area under the ROC curve excluding all but the top 50
negative examples or 10 percent of the negative examples respectively. To compare
the performance of different models, we performed the Wilcoxson signed rank tests
at a 5% significance level using each one-versus-rest category. We report ROC re-
sults based on the algorithm’s scoring of sequences on the test sets.

4.4 Synthetic Experiments

We constructed a synthetic dataset to verify that our network can detect the
relevant subsequence features that we propose will lead to good protein sequence
classification performance. Specifically, we generated 1000 sequences with lengths
generated from a Poisson distribution with a mean of 50 symbols. Each sequence
contained between one and three fixed relevant subsequences, with the positive
class containing all three subsequences and the negative class containing either
one or two sequences of any type. The relevant subsequences were arranged in
random order within the sequence. After placement of the relevant sequences,
noise was added - we replaced each every relevant subsequence amino acid with
a random amino acid with 10% probability. Amino acids outside relevant subse-
quences were generated from a uniform multinomial distribution.

Figure 3 shows responses of the lowest layer in the SL-SSM network on two
example sequences from the synthetic dataset. Strong responses in portions of
the sequences that contain relevant subsequences indicate that our model is able
to effectively learn features that discriminate well for a dataset where categories
are determined based on the presence of subsequences. The SL-SSM achieves an
ROC of .9998 and ROC50 of .997 on the test portion of the synthetic dataset,
showing that after detecting relevant subsequences, our model has the ability
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(a) (b)

Fig. 3. The figures above show responses from each of the 48 unnormalized SL-SSMs
over each length 7 subsequence for a sequence generated from the positive class (a) and
the negative class (b). The positive example contains all three relevant subsequences
while the negative example contains only one relevant sequence. The first 24 SL-SSMs
(top half both figures) were constrained to be associated with the positive category,
while the last 24 were constrained to be associated with the negative category. The
heat maps show that sets of positive SL-SSMs have adapted to each of the three
relevant subsequences in the synthetic dataset - both the three relevant subsequences
in the positive example and the one relevant subsequence in the negative example were
detected by subsets of the first 24 SL-SSMs. In contrast, SL-SSMs associated with the
negative category learn a background distributions of symbols.

to effectively classify sequences generated according to a relevant subsequences
assumption on the dataset.

4.5 Parameter Adjustment

We adjusted the parameters of (S)L-SSM models by comparing both the number
of SSMs in each network and the number of hidden states for the SSMs (we used
the same number of hidden states for all SSMs) in experiments on the FD dataset.
Table 5 shows results from these comparisons. Within a relatively wide range

Table 5. Average ROC results for different settings of the SL-SSM network on the
FD dataset. ROCs were averaged over ten independent trials initialized with random
pattern weights. When varying the number of SL-SSM hidden states in (a), 96 SL-
SSMs were used in the network. In (b), 11 hidden states were used for each SL-SSM
when varying the number of SL-SSMs.

Hidden States ROC ROC50

7 .801 .146

9 .813 .145

11 .815 .153

13 .815 .153

15 .807 .163

# SL-SSMs ROC ROC50

64 .812 .144

80 .812 .156

96 .814 .153

112 .816 .145

128 .816 .147

(a) (b)
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of parameter settings, the performance of the model stays roughly the same,
showing that, although our method may require some adjustment using cross
validation, micromanagement of parameter settings is not critical to maintaining
acceptable performance. For the results shown in Table 6, we selected parameter
settings for the other experiments (K = 11 with 96 convolutional units) that
performed best on FD.

4.6 Protein Classification Experiments

We compared four subsequence models used in the convolutional layer of our Sub-
sequence Network. The lower rows of Table 6a and b show results for the L-SSM
and the SL-SSM. These indicate that the simpler model, the SL-SSM outperforms
the L-SSM. Superior performance of the SL-SSM results from unstable inference
in the L-SSM when attempting to learn insert transition weights. If these weights
grow above zero for the positive class, then the model tends to explain every pro-
tein sequence using long sequences of insert states. For this reason, we fix the insert
transition weights in the L-SSM to small negative values (− 1

2K
where K is the num-

ber of Match states in the L-SSM), but this fix affects the flexibility of the model.
On the FD dataset, the Pair-SSM outperforms our other models in both ROC and
ROC50. However, on the functional datasets, both L-SSM and SL-SSM outperform
the Pair-SSM. These results indicate that the simpler (S)L-SSM assumptions may
be better models of protein structure in certain cases.

Table 6 also compares our subsequence networks to SVM/kernel methods from
the literature. Compared to the LA-kernel on the FD dataset, the Pair-SSM model
is statistically equivalent in bothROCandROC50 measurements.Compared to the
Mismatch kernel on the FD dataset, the Pair-SSM model performs better in ROC
but is equivalent for ROC50. We note, however, that the β parameter used for the
LA-kernel is the best ofmany settings onboth the SFandFDtraining/test set split.
Due to this extensive adjustment on the FD dataset, it is likely that the LA-kernel
overfits. In contrast, Pair-SSM network performance is only weakly dependent on
parameter settings (the regularization parameter) and we did not perform exten-
sive adjustment of these values, so overfitting likely to be less problematic for our
Pair-SSM on the FD test set. The Pair-SSM is equivalent to both the LA-kernel and
Mismatch kernel on the EC dataset in both ROC and ROC10%. On the GO dataset,
the the Pair-SSM is outperformed by the LA-kernel in both ROC and ROC10% but
is equivalent to the Mismatch kernel.

In ROC, the LA-kernel outperforms the L-SSM and SL-SSM models on the SF
and GO datasets but is statistically equivalent for the FD and EC datasets. In
ROC50, the LA-kernel outperforms the L-SSM and SL-SSM on both the SF and FD
datasets at a 5% significance level. In ROC10%, both of our methods outperform
the LA-kernel on the EC dataset. On the GO dataset, the LA-kernel’s performance
is statistically equivalent to the SL-SSM but outperforms the L-SSM. Compared
to the Mismatch(5,2) kernel, both the L-SSM and SL-SSM models have equivalent
performance in SF and FD in both ROC and ROC50. Our algorithms outperform
the Mismatch kernel in ROC10% on both of the functional datasets.
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Table 6. ROC results for the FD and SF datasets (a) and the EC and GO datasets (b).
Because our model is non-convex,we report means and standard deviations of ROCs from
multiple starting points in the SSM weight space. Ten trials were averaged for both the
L-SSMand SL-SSMmodels for both structural and functional datasets. Due to the length
of P-SSM network’s runtime, we report results from only a single trial.
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For the EC dataset, none of the algorithms perform particularly well. It is
possible that both the size of the dataset and weak correlations between sequence
and function cause subsequence-based approaches to fail. A class of methods
based on a different set of assumptions may be necessary to achieve strong
functional classification performance.

5 Conclusions

The empirical kernel map applied in conjunction with SVM classifiers is strongly
related to feed-forward models like convolutional neural networks. Based on this
relationship, we show how to construct a family of models, which we call Subse-
quence Networks, where kernel parameters can be learned in conjunction with
linear classification boundaries. Our Subsequence Networks operate differently
from state-of-the-art protein sequence classification models yet can achieve com-
parable performance. We hope that Subsequence Networks can shift the focus
in biological sequence classification from increasingly fine-tuned kernel methods
toward developing structures with self-tuning abilities.

Our networks also contribute to existing neural network literature by extend-
ing the convolutional layer to a maximization over latent parameter spaces in
standard sequence models. The effectiveness of this framework for protein se-
quence classification shows that it has potential in other classification domains.

A straightforward and potentially useful modification to our networks involves
adapting them to take Psi-BLAST profiles, rather than sequences, as input. This
shift to a semi-supervised structure has the potential to improve classification
performance to the same degree as it has for kernel methods [15].



434 S. Blasiak, H. Rangwala, and K.B. Laskey

References

1. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J.: Gapped blast and psi-blast: a new generation of protein database
search programs. Nucleic acids research 25(17), 3389–3402 (1997)

2. Blasiak, S., Rangwala, H.: A hidden markov model variant for sequence classifica-
tion. In: International Joint Conference on Artificial Intelligence (2011)

3. Bottou, L.: Online algorithms and stochastic approximations. Online Learning and
Neural Networks (1998)

4. Durbin, R.: Biological sequence analysis: probabilistic models of proteins and nu-
cleic acids. Cambridge Univ. Pr. (1998)

5. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis. Cam-
bridge University Press, Cambridge (2002)

6. Eddy, S.R.: Profile hidden markov models. Bioinformatics 14(9), 755 (1998)
7. Kuang, R., Ie, E., Wang, K., Siddiqi, M., Freund, Y., Leslie, C.: Profile-based

string kernels for remote homology detection and motif extraction. In: 2004 IEEE
Proceedings of Computational Systems Bioinformatics Conference, CSB 2004, pp.
152–160 (2004)

8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

9. Leslie, C., Eskin, E., Noble, W.S.: The spectrum kernel: a string kernel for svm pro-
tein classification. In: Pacific Symposium on Biocomputing, Hawaii, USA, vol. 575,
pp. 564–575 (2002)

10. Leslie, C.S., Eskin, E., Cohen, A., Weston, J., Noble, W.S.: Mismatch string kernels
for discriminative protein classification. Bioinformatics 20(4), 467 (2004)

11. Liao, L., Noble, W.S.: Combining pairwise sequence similarity and support vector
machines for detecting remote protein evolutionary and structural relationships.
Journal of computational biology 10(6), 857–868 (2003)

12. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural clas-
sification of proteins database for the investigation of sequences and structures.
Journal of molecular biology 247(4), 536–540 (1995)

13. Qiu, J., Hue, M., Ben-Hur, A., Vert, J.P., Noble, W.S.: A structural alignment
kernel for protein structures. Bioinformatics 23(9), 1090–1098 (2007)

14. Rabiner, L., Juang, B.: An introduction to hidden markov models. IEEE ASSP
Magazine 3(1), 4–16 (1986)

15. Rangwala, H., Karypis, G.: Profile-based direct kernels for remote homology de-
tection and fold recognition. Bioinformatics 21(23), 4239 (2005)

16. Rumelhart, D.E., Hintont, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533–536 (1986)

17. Saigo, H., Vert, J.P., Ueda, N., Akutsu, T.: Protein homology detection using string
alignment kernels. Bioinformatics 20(11), 1682–1689 (2004)

18. Schölkopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Müller, K.R., Rätsch, G.,
Smola, A.J.: Input space versus feature space in kernel-based methods. IEEE Trans-
actions on Neural Networks 10(5), 1000–1017 (1999)

19. Smola, A.J., Schölkopf, B.: Learning with kernels. Citeseer (1998)
20. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.J.: Phoneme recog-

nition using time-delay neural networks. IEEE Transactions on Acoustics, Speech
and Signal Processing 37(3), 328–339 (1989)


	A Family of Feed-Forward Models for ProteinSequence Classification
	Introduction
	Background
	Support Vector Machines and Kernels 
	Hidden Markov Models
	Neural Networks 

	Sequence Classification with Subsequence Networks
	Pair-SSMs
	Local SSM (L-SSM) 
	Simplified Local SSM (SL-SSM)
	Subsequence Network Objective Function
	Training Subsequence Networks 

	Experiments
	Comparative Classifiers
	Models and Parameters
	Evaluation Metrics
	Synthetic Experiments
	Parameter Adjustment
	Protein Classification Experiments

	Conclusions
	References




