


Lecture Notes in Artificial Intelligence 7524

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany



Peter A. Flach Tijl De Bie
Nello Cristianini (Eds.)

Machine Learning and
Knowledge Discovery
in Databases

European Conference, ECML PKDD 2012
Bristol, UK, September 24-28, 2012
Proceedings, Part II

13



Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Peter A. Flach
Tijl De Bie
Nello Cristianini
University of Bristol
Intelligent Systems Laboratory
Merchant Venturers Building
Woodland Road
Bristol BS8 1UB, UK
E-mails:
peter.flach@bristol.ac.uk
tijl.debie@bristol.ac.uk
nello.cristianini@bristol.ac.uk

© Cover illustration by www.zedphoto.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33485-6 e-ISBN 978-3-642-33486-3
DOI 10.1007/978-3-642-33486-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998):
I.2.6, H.2.8, I.5.2, G.2.2, G.3, I.2.4, I.2.7, H.3.4-5, I.2.9, F.2.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

These proceedings contain the technical papers presented at the 2012 European
Conference on Machine Learning and Principles and Practice of Knowledge Dis-
covery in Databases (ECML-PKDD 2012), held in Bristol, UK, during the week
of 24–28 September 2012. ECML-PKDD is a highly successful and selective in-
ternational conference series, which was first organised in its present form in 2001
in Freiburg, Germany, when it joined together the hitherto separate ECML and
PKDD conferences. Since then, the two strands of machine learning and data
mining have been increasingly integrated in the joint conference, and today it is
well-known as the only top-tier international conference that exploits the synergy
between these two exciting fields. It is therefore particularly pleasing that the
achieved level of synergy is evident from the list of topics in which the research
track papers are categorised in these pages: Association Rules and Frequent Pat-
terns; Bayesian Learning and Graphical Models; Classification; Dimensionality
Reduction, Feature Selection and Extraction; Distance-Based Methods and Ker-
nels; Ensemble Methods; Graph and Tree Mining; Large-Scale, Distributed and
Parallel Mining and Learning; Multi-relational Mining and Learning; Multi-task
Learning; Natural Language Processing; Online Learning and Data Streams;
Privacy and Security; Rankings and Recommendations; Reinforcement Learn-
ing and Planning; Rule Mining and Subgroup Discovery; Semi-supervised and
Transductive Learning; Sensor Data; Sequence and String Mining; Social Net-
work Mining; Spatial and Geographical Data Mining; Statistical Methods and
Evaluation; Time Series and Temporal Data Mining; and Transfer Learning.

The format of the 2012 conference follows the tried-and-tested format of pre-
vious instalments, with workshops and tutorials on Monday and Friday; research
papers in parallel tracks on Tuesday, Wednesday and Thursday; and plenary
keynote talks on each of the five conference days. The proceedings start with
abstracts and bios of our five eminent invited speakers: Pieter Abbeel, Luc De
Raedt, Douglas Eck, Daniel Keim and Padhraic Smyth. The bulk of the proceed-
ings is then taken up by 105 research papers. These were carefully selected from
443 submitted papers (acceptance rate 23.7%) on the basis of reviews by 275
Programme Committee members and 36 Area Chairs, assisted by 161 additional
reviewers. In acknowledgment of their essential contribution to the success of the
conference you will find their names on the following pages.

The final sections of the proceedings are devoted to Demo and Nectar papers.
Ten system demonstration papers were selected from 19 submissions to the Demo
track by a small committee chaired by Bettina Berendt and Myra Spiliopoulou.
The Nectar track is new this year and features significant machine learning and
data mining results published or disseminated no earlier than 2010 at different
conferences or in journals. One goal of this track is to offer conference atten-
dees the opportunity to learn about results published in other communities but
related to machine learning or data mining (or both). Submissions compactly
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presenting well-founded results which appeared in a series of publications that
advanced a single novel influential idea or vision were also welcomed. A ded-
icated committee chaired by Gemma Garriga and Thomas Gärtner selected 4
Nectar papers from 14 submissions. Our sincere thanks to everyone involved for
these valuable additions to the conference.

Elements of the conference not directly represented in the proceedings in-
clude 11 workshops (Mining Ubiquitous and Social Environments; New Frontiers
in Mining Complex Patterns; The Silver Lining – Learning from Unexpected
Results; Instant Interactive Data Mining; Learning and Discovery in Symbolic
Systems Biology; Sentiment Discovery from Affective Data; Active Learning in
Real-world Applications; Mining and Exploiting Interpretable Local Patterns;
Community Mining and People Recommenders; Collective Learning and Infer-
ence on Structured Data: and the Discovery Challenge workshop), as well as 8
tutorials (Understanding and Managing Cascades on Large Graphs; Advanced
Topics in Data Stream Mining; Mining Deep Web Repositories; PAC-Bayesian
Analysis in Supervised, Unsupervised, and Reinforcement Learning; Random
Projections for Machine Learning and Data Mining; Decomposing Binary Ma-
trices; Advanced Topics in Ensemble Learning; and Probabilistic Modeling of
Ranking). Many thanks to the workshop organisers and tutorial presenters, as
well as the Workshop Chairs Arno Knobbe and Carlos Soares and the Tutorial
Chairs Alessandro Moschitti and Siegfried Nijssen for putting together this ex-
citing programme. We would also like to draw attention to the programme of
presentations by representatives from industry put together by Industry Track
Chairs Cédric Archambeau and David Barber, consisting of a series of talks cen-
tred around Big Data as well as a programme of ‘Startup Stories’ sponsored by
the PASCAL2 Network of Excellence.

Finally, it is our pleasure to announce the winners of the best paper awards, as
selected by a small committee chaired by the Awards Chair Johannes Fürnkranz.
The paper ‘Active Evaluation of Ranking Functions based on Graded Relevance’
by Christoph Sawade, Steffen Bickel, Timo von Oertzen, Tobias Scheffer and Niels
Landwehr wins the best machine learning paper award sponsored by the Machine
Learning journal. The paper ‘Socioscope: Spatio-Temporal Signal Recovery from
Social Media’ by Jun-Ming Xu, Aniruddha Bhargava, Robert Nowak and Xiao-
jin Zhu receives the best data mining paper award sponsored by Data Mining
and Knowledge Discovery. Our congratulations to the authors of both papers
and in particular to their student main authors. We also continue the tradition
started at ECML-PKDD 2011 in Athens of selecting a most influential paper pub-
lished at the conference 10 years ago. Following a poll organised by the Awards
Chair among selected participants the most influential paper presented at ECML-
PKDD 2002 in Helsinki is ‘Mining All Non-derivable Frequent Itemsets’ by Toon
Calders and Bart Goethals. We look forward to finding out which paper from
these proceedings will be deemed to have been most influential in 2022!

July 2012 Peter Flach
Tijl De Bie

Nello Cristianini
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Dunja Mladenić Jožef Stefan Institute, Slovenia
John Shawe-Taylor University College London, UK
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Abstract. Spurred by developments such as cloud computing, there
has been considerable recent interest in the data-mining-as-a-service
paradigm. Users lacking in expertise or computational resources can out-
source their data and mining needs to a third-party service provider
(server). Outsourcing, however, raises issues about result integrity: how
can the data owner verify that the mining results returned by the server
are correct? In this paper, we present AUDIO, an integrity auditing
framework for the specific task of distance-based outlier mining outsourc-
ing. It provides efficient and practical verification approaches to check
both completeness and correctness of the mining results. The key idea
of our approach is to insert a small amount of artificial tuples into the
outsourced data; the artificial tuples will produce artificial outliers and
non-outliers that do not exist in the original dataset. The server’s answer
is verified by analyzing the presence of artificial outliers/non-outliers, ob-
taining a probabilistic guarantee of correctness and completeness of the
mining result. Our empirical results show the effectiveness and efficiency
of our method.

1 Introduction

Advances in networking technologies have triggered a new computing paradigm
called cloud computing. It allows data owners, especially the ones who have large
volume of data but limited budget for data analysis, to outsource their data and
data mining needs to a third-party service provider. This is referred as the data-
mining-as-a-service (DMAS) model [26,30]. The model allows data owners to
leverage hardware and software solutions provided by DMAS providers, without
developing their own. There are a few active cloud-based DMAS projects in
industry. For example, Google provides cloud-based Google Prediction APIs [2].

Among various types of data mining applications, outlier mining, a classic
data mining problem, has seen the possibility to be married with the DMAS
paradigm. Outlier mining has been in critical need in many real-world applica-
tions such as credit card fraud detection, discovery of criminal activities, weather
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prediction, marketing and customer segmentation. The task of outlier mining is
to find data objects that do not comply with the general patterns of the ma-
jority. Sometimes outliers are data errors whose existence may affect the data
analysis [8,9]. The problem of outlier detection has been widely studied in the
data mining community [3,6,17,27]. It has been shown that detecting outliers
is of high computational complexity [17], becoming prohibitive for data of high
dimensionality [3]. Although researchers have identified several important op-
timization techniques [4,27] to improve the efficiency of outlier detection, it is
difficult for the data owner who lacks of professional expertise to implement
these techniques. DMAS provides a natural solution for such data owner who
desires to find outliers from her datasets for analysis purpose.

Although outsourcing is advantageous for the data owner of limited capabil-
ities to achieve sophisticated analysis on their large volume of data, it triggers
serious security concerns. One of the major security issues is result integrity; the
question to be answered is how the data owner (client) of weak computational
power can be assured that a service provider (server) returns faithful mining re-
sults [1,7]. There are many reasons that the server may return wrong answer. For
example, a server may return wrong mining result accidentally due to software
bugs, or keep part of the mining result to itself intentionally so that it can sell
the retained result to the competitors of the client for profit. There also exists a
strong financial incentive for the server to return incorrect answers that require
less work and are unlikely to be detected by the client.

We consider two types of service providers, the semi-honest server and the
malicious server, that may return wrong result. The semi-honest server executes
the mining algorithm honestly; however, it may modify the outlier mining result
by accident. The malicious server executes the mining algorithm unfaithfully
(e.g., runs the algorithm on a portion of the dataset) and returns the incorrect
result on purpose. Our goal of integrity verification is to enable the client, who
is of weak computational power, to verify whether the server that is potentially
semi-honest or malicious returns correct and complete outlier mining result. By
correctness, we mean that each returned tuple is a true outlier. By completeness,
we mean that all true outliers are returned by the server.

We design and implement AUDIO, a lightweight integrity auditing framework
for outlier mining-as-a-service. AUDIO includes two entities, the client and the
remote, untrusted third-party server. To catch the semi-honest server, before
outsourcing, the client constructs a set of artificial tuples that consist of arti-
ficial outliers (AOs) and artificial non-outliers (ANOs). Both AOs and ANOs
are inserted into the original dataset and sent together to the server. Meanwhile,
the client maintains a small piece of auxiliary information locally. After receiving
the result from the server, the client verifies the correctness and completeness of
the result by analyzing the returned outliers against AOs and ANOs, and quan-
tifies the probabilistic guarantees of completeness and correctness. There are a
few nice properties of our verification techniques. First, incorrect and incomplete
answers from the server can be caught with high confidence by a small number of
AOs and ANOs. Second, the complexity of our solution is linear to the number
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of AOs and ANOs, which are independent from the database size. This makes
it feasible to efficiently verify the outlier mining results of large databases.

Although it is not new to accomplish verification by inserting counterfeit tu-
ples in other contexts [28,32] and other data mining problems (e.g., association
rule mining [31]), it has not been explored of how to verify the result of out-
sourced outlier mining via counterfeit tuples. Indeed, inserting counterfeit tuples
leads to unique challenges to outlier mining. For example, since some outliers
in the original dataset may not be outliers anymore in the new dataset after
insertion, how to construct counterfeit tuples and design verification techniques
to ensure all original outliers are still discoverable in the dataset with newly
inserted counterfeit tuples? None of the existing techniques based on insertion
of counterfeit tuples can address such challenge.

To our best knowledge, we are the first to address the problem of providing
integrity assurance for outsourcing of outlier mining. Our contributions include
the following:

(1) To catch the semi-honest server, we propose an artificial-tuple (AT ) based
approach providing both correctness and completeness guarantee by inserting
artificial outliers (AOs) and non-outliers (ANOs) into the original data. We
formally quantify both correctness and completeness guarantees, and discuss
how to design AOs and ANOs so that the outlierness of AOs and non-outlierness
of ANOs do not need to be verified by mining of the dataset.

(2) Inserting AOs and ANOs may change the (non)outlierness of the real
tuples. We propose a verification mechanism that will not eliminate any true
outlier. We also discuss how to remove the false positive outliers (i.e., the non-
outliers returned as outliers) introduced by AOs and ANOs and recover all true
outliers efficiently.

(3) We define the possible misbehaviors by the malicious server, and show
how the malicious server can defeat the AT -based approach. We also discuss the
challenges of designing efficient verification approaches to catch the malicious
server.

(4) We complement our analytical results with an extensive set of experiments
showing the efficiency and the effectiveness of our AT -based approach.

The paper is organized as following. Sec.2 discusses related work. Sec.3 intro-
duces the preliminaries. Sec.4 presents our AT -based approach to catch the semi-
honest server. Sec.5 discusses the limits of our AT -based approach to catch the
malicious server, as well as the design of deterministic approaches. Sec.6 presents
our experimental results. Sec.7 concludes the paper.

2 Related Work

The issue of integrity assurance for database management was initially raised in
the database-as-a-service (DAS) paradigm [14]. The studied problem is how to
assure the integrity of SQL query evaluation over the hosted relational databases.
The proposed solutions include Merkle hash trees [20,23], signatures on a chain
of paired tuples [25], challenge tokens [28], and counterfeit records [32]. [33,34]
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extend the security concerns to the data in a metric space and spatial domain.
These work share the same integrity concerns in the outsourcing paradigm. How-
ever, their focus is different from ours.

The problem of how to protect sensitive data and data mining results in the
data-mining-as-a-service (DMAS) paradigm has caught much attention recently.
Wong et al. [30] consider utilizing a one-to-n item mapping together with non-
deterministic addition of cipher items to protect the identification of individual
items in the scenario that frequent pattern mining task is outsourced. Unfortu-
nately, this work has potential privacy flaws; Molloy et al. [22] show how privacy
can be breached in the framework of [30]. Tai et al. [29] consider the same sce-
nario and proposed a database transformation scheme that is based on a notion
of k-support anonymity. To achieve k-support anonymity, they introduced a
pseudo taxonomy tree; the third party server will discover the generalized fre-
quent itemsets instead. Giannotti et al. [12] define a similar privacy model as
k-support that requires each item must be indistinguishable from the other k−1
items regarding their frequencies. They provide formal privacy analysis of their
k-privacy model on both items and frequent patterns. Although these works fo-
cus on frequent pattern mining, their encryption techniques can be applied to
our work to provide further protection on data and mining results.

Our problem falls into the category of integrity assurance of data-mining-as-
a-service (DMAS) paradigm. However, there is very little work in this category.
Wong et al. [31] propose auditing techniques for outsourcing of frequent itemset
mining. They generate a (small) artificial database such that all itemsets in
the database are guaranteed to be frequent and their exact support counts are
known. By hosting the artificial database with the original one and checking
whether the server has returned all artificial itemsets, the data owner can verify
whether the server has returned correct and complete frequent itemsets. To our
best knowledge, Wong et al. [31] are the first (and the only) work that addresses
the integrity auditing issue of the DMAS paradigm. Their techniques on frequent
itemset mining cannot be directly applied to our problem of outlier mining.

3 Preliminaries

Distance-Based Outlier Mining. In this paper, we focus on distance-based
outliers, which is well-defined for datasets of any dimension and more suitable
for real-world applications where the data distribution does not fit any standard
distribution [17]. In particular, an object O in a dataset D is a (p, d)-outlier if at
least p% of the objects in D lie greater than distance d from O [17]. Otherwise, O
is a non-outlier with regard to the (p, d) setup. For simplicity, we say O is a non-
outlier if it is not a (p, d)-outlier. We assume p% ∗ |D| always returns an integer,
as it indicates the number of tuples. We use Euclidean distance to measure the
distance between two tuples. In particular, given two tuples t(a1, . . . , ak) and

t′(a′1, . . . , a
′
k), dist(t, t

′) =
√∑k

i=1(ai − a′i)
2.
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Outsourcing Setting. In the outlier-mining-as-a-service framework, the data
owner (client) outsources her data D, with the configuration of p and d values
for (p, d)-outlierness, to the server. The server discovers (p, d)-outliers from D
and returns them to the client. We assume the server will return exact outliers
instead of approximate ones [16,18].

Types of Dishonest Servers and Assurance Goal. We consider two types
of servers that may return invalid answer.

– The semi-honest server that runs the outlier mining algorithm on the out-
sourced dataset faithfully. However, it may return wrong outliers accidentally
due to software bugs or human mistakes when collecting the answer.

– The malicious server that returns wrong answer intentionally. For example,
it may only examine a portion of the outsourced dataset and returns cheaper
(and incorrect) answer. Furthermore, the malicious server tries to escape the
verification if it knows the details of the verification mechanism.

Let O be the real outliers in the outsourced data D, and OS be the outliers

returned by the server. We define the precision of O as P = |O∩OS |
|OS| (i.e., the

percentage of returned outliers that are correct), and the recall of O as R =
|O∩OS |

|O| (i.e., the percentage of correct outliers that are returned). Our aim is to

catch incorrect answer (i.e., P < 1) and incomplete answer (i.e., R < 1) with high
probability. To this end, we define (α, a)-completeness and (β, b)-correctness.

Definition 1. Given a dataset D and a verification method M , let prp and prr
be the probabilities that M catches the server that returns the result of precision
P ≤ a and recall R ≤ b respectively, where a, b ∈ [0, 1] are given thresholds. We
say M can verify (α, a)-correctness if prp ≥ α, and can verify (β, b)-completeness
if prr ≥ β, where α, β ∈ [0, 1] are given thresholds.

4 Artificial Tuple (AT) Based Verification

We develop a verification mechanism using artificial tuples (ATs) to catch the
semi-honest server. In particular, before outsourcing the dataset D, the client
generates a set of artificial outliers AO and a set of artificial non-outliers ANO
respectively. Then the client inserts AO and ANO into the original dataset D,
and sends the new dataset D+ = D ∪AO ∪ANO to the server. Since the semi-
honest server cannot distinguish AOs and ANOs from the real tuples in D, it
should return all AOs but no ANOs, if it is honest. Thus by checking against
AOs and ANOs, the client will be able to obtain probabilistic guarantees of
completeness and correctness. How to measure the probabilistic guarantees will
be discussed in Section 4.2. Next, we first discuss how to construct AOs and
ANOs efficiently for preparation of verification (Section 4.1). Second, we discuss
how to use AOs and ANOs to accomplish verification (Section 4.2).
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4.1 Verification Preparation

Construction of Artificial Non-outliers (ANOs). Our ANO construction
procedure is based on the concept of close tuples that we will define soon. Given
a tuple t and a distance d, we define two sets, TL(t, d) that stores all tuples whose
distance to t is less than d, and TU (t, d) that stores all tuples whose distance to
t is greater than d. Formally, TL(t, d) = {t′|t′ ∈ D, dist(t, t′) < d}, and TU (t, d)
= {t′|t′ ∈ D, dist(t, t′) > d}. We say a tuple t′ ∈ TL(t, d) is the farthest close
neighbor of tuple t with regard to distance d, if the distance between t and t′ is
the largest among all tuples in TL(t, d), and a tuple t′ ∈ TU (t, d) is the closest
distant neighbor of tuple t with regard to distance d, if the distance between t
and t′ is the smallest among all tuples in TU (t, d). Then we have:

Definition 2. Given the dataset D of r dimensions and a tuple t ∈ D, let ta ∈ D
be the farthest close neighbor of t, and tb ∈ D be the closest distant neighbor of t.
Let P be an r-sphere with t as the centroid, and min(d−da

2 , db−d
2 ) as the radius,

where d is the distance parameter of (p, d)-outlier mining, da = dist(t, ta), and
db = dist(t, tb). Then we call any tuple t ∈ P a close tuple to t.

Next, we show that the close tuples of t have the same distance property as t.

Lemma 1. Given a tuple t and a close tuple tc of t, for each tuple t′ �= t, tc, it
must be true that: (1) if dist(t, t′) < d, then dist(tc, t

′) < d; (2) if dist(t, t′) > d,
then dist(tc, t

′) > d.

Proof: Since ta is the farthest close neighbor of t, for any t′ s.t. dist(t, t′) < d,
we have dist(t, t′) ≤ da < d, and dist(t, tc) < d−da

2 , leading to dist(t′, tc) ≤
dist(t, t′)+dist(t′, tc) < da+

d−da

2 = d+da

2 . Since da < d, then it must be true that

dist(tc, t
′) < d. Similarly, we have dist(t, t′) ≥ db > d, and dist(t, tc) < db−d

2 .

Thus, dist(tc, t
′) ≥ dist(t, t′)−dist(t, tc) > db− db−d

2 = db+d
2 . Since db > d, then

it must be true that dist(tc, t
′) > d. �	

Based on Lemma 1, next, we prove that any close tuple of tuple t always has
the same non-outlierness as t.

(a) ANO construction (b) AO construction

Fig. 1. Construction of ANOs and AOs



AUDIO 7

Theorem 1. Given a dataset D and any tuple t ∈ D that is a non-(p, d)-outlier,
any close tuple of t must be a non-(p, d)-outlier in D.

The correctness of Theorem 1 is straightforward as tc and t have the same
number of tuples whose distances is greater than the given distance threshold d.

We make use of Theorem 1 to construct ANOs. In particular, we pick a seed
tuple tseed that is a non-outlier tuple in the original dataset D, and construct its
close tuples as ANOs. Fig. 1(a) illustrates the construction procedure of ANOs.
To pick tseed, we repeatedly pick a tuple from the dataset randomly, and verify
its non-outlierness, until a non-outlier tuple is reached. The probability that tseed
will be picked at the x-th trial is g(x) = (1 − fto

n )( fton )x−1, where fto and n are
the number of outliers and the number of tuples in D. It is straightforward that
1 ≤ x ≤ n−fto. Define φ = fto

n . Then g(x) = (1−φ)φx−1, where 1 ≤ x ≤ n−nφ.

The expected value of x equals to E(x) = (n−φn)φn−φn+1−(n−φn+1)φn−φn+1
(φ−1)2 . As

the outliers always take a small portion of the database, φ is a small number
(e.g., φ = 0.05% [24]). Therefore, E(x) ≈ 1. In other words, it is highly likely
that tseed can be picked by the first random trial.

Construction of Artificial Outlier (AOs). Our construction procedure is
based on the definition of distant tuples. To be more specific, given a r-dimension
dataset D and a set of tuples S ⊆ D, we say a tuple t /∈ S is a distant tuple
of S if for each tuple t′ in S, dist(t, t′) > d, where d is the parameter setting of
(p, d)-outlierness. We have the following lemma to show what kind of tuples can
be distant tuples.

Lemma 2. Given a r-dimension dataset D and a set of tuples S ⊆ D, let mini

and maxi be the minimum and maximum value of the i-th (1 ≤ i ≤ r) attribute
of S. Then any tuple t(a1, . . . , ar) /∈ S is a distant tuple of S if there are k
(1 ≤ k ≤ r) attributes such that on each attribute Ai, t[Ai] < (mini − d√

k
) or

ai > (maxi +
d√
k
).

The correctness of Lemma 2 follows naturally from the distance functions and
the properties of the distant tuples. Next, we show that (p, d)-outliers can be
generated from the distant tuples.

Theorem 2. Given the dataset D and a set of tuples S ⊆ D, any distant tuple
t of S must be a (p, d)-outlier in D if |S| ≥ p|D|.

The correctness of Theorem 2 is straightforward as the tuple t of S is of distance
of d to p percentage of tuples in D. Based on Theorem 2, we design the AO
construction procedure as follows. First, the client picks a sample S of size [p|D|]
tuples randomly fromD. Second, the client treats S as an r-dimension hypercube
R. In R, the edge at the i-th dimension represents the range [mini,maxi] of
the data values in S. Then the client randomly picks k dimensions (possibly
k = 1) of R. Last, the client expands the k dimensions of R by d√

k
(i.e., change

the minimum and maximum value of the i-th attribute to be mini − d√
k
and

maxi +
d√
k
). Let the expanded hypercube be R′. Then any tuple tao that is
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created outside of R′ must be a (p, d)-outlier of D. Fig. 1(b) illustrates the
construction procedure in a 2-dimensional dataset.

Complexity Analysis. ANOs can be constructed with at most two passes of
the original dataset. The complexity of constructing AOs is O(n), where n is
the size of D. Therefore, the complexity of the verification preparation is O(n).

4.2 Verification

We realized that (p, d)-outliers in the original dataset D may not be (p, d)-
outliers in D+ = D ∪ ANO ∪ AO, as inserting tuples into the original dataset
D may change the (non)outlierness of some true tuples in the original dataset.
This may ruin the verification method as the semi-honest server may be wrongly
caught as returning incorrect answer. Therefore, the client should ensure that
all (p, d)-outliers in D appear in mining of D+. In this section, we discuss: (1)
how the client configures the p parameter so that the true (p, d)-outliers in D are
still present in D+, and (2) how to eliminate the false positives (i.e., the tuples
returned according to the new p parameter but not (p, d)-outliers in D).

First, we show how to guarantee that the (p, d)-outliers in D are still outliers
in D+ by changing the parameter p of (p, d)-outlier mining.

Theorem 3. Given a dataset D and a set of AOs and ANOs, any (p, d)-outlier

in D must be a (p1, d)-outlier in D+ = D ∪ AO ∪ ANO, where p1 = p|D|
|D+| .

Fig. 2. (p1, d)-outliers and (p2, d)-outliers in D+ VS. (p, d)-outlier in D; O1: (p1, d)-
outliers in D+, O2: (p2, d)-outliers in D+.

Proof: For a true tuple t ∈ D, let m and f be the number of true and artificial
tuples (including both AOs and ANOs) whose distance to t is at least d in D+.

Now we prove that it must be true that m+f
|D+| ≥ p1 = p|D|

|D+| . This can be proven by

the following. Since tuple t is a (p, d)-outlier in D, it must be true that m ≥ p|D|.
This naturally leads to that m+f

|D+| ≥
p|D|
|D+| , with f ≥ 0. �	

Following Theorem 3, the client asks for (p1, d)-outliers in the outsourced dataset
D+; all outliers in D must appear in the answer if the server is honest. Note
that all AOs must be appear in (p1, d)-outliers of D

+ too. However, it is not true
that all (p1, d)-outliers in D+ must be (p, d)-outliers in D. To eliminate those
(p1, d)-outliers in D+ that are not (p, d)-outliers in D, we have:
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Theorem 4. Given a dataset D, let |AO| and |ANO| be the numbers of inserted
AOs and ANOs respectively. Then any (p2, d)-outlier in D+ = D ∪AO ∪ANO

must be a (p, d)-outlier in D, where p2 = p|D|+|AO|+|ANO|
|D+| .

Proof: For a tuple t ∈ D+, let m and f be the number of true and artificial tuples
(including both AOs and ANOs) whose distance to t is at least d in D+. Since
the m true tuples must exist in D, we aim to prove that m

|D| ≥ p. This can be

proven as follows. Since t is a (p2, d)-outlier in D+, it must hold that m+f
|D+| ≥ p2.

This leads to that m + f ≥ p|D| + |AO| + |ANO|. Since f ≤ |AO| + |ANO|, it
must be true that m ≥ p|D|. Then the theorem follows. �	

Following Theorem 4, all constructed ANOs must be (p2, d)-non-outliers in D+.
Fig. 2 illustrates the relationship among (p1, d), (p2, d) outliers in D+ and

(p, d)-outliers in D. For a given tuple t, let pert be the percentage of tuples in
D+ = D ∪ AO ∪ ANO whose distance to t is at least d (d: the d parameter for
(p, d)-outlierness). Then t will fall into one of the following three categories:

– t is a (p, d)-outlier in D, if pert ≥ p2 = p|D|+|AO|+|ANO|
|D+| ;

– t is a (p, d)-non-outlier in D, if pert < p1 = p|D|
|D+| ;

– t is either a (p, d)-outlier or a (p, d)-non-outlier in D, otherwise.

Based on both Theorem 3 and Theorem 4, the outsourcing and the verification
procedures are designed the following.When outsourcingD+ = D∪AO∪ANO to

the server, the client asks for (p1, d)-outliers and (p2, d)-outliers, where p1 = p|D|
|D+| ,

and p2 = p|D|+|AO|+|ANO|
|D+| . Note that O2 ⊆ O1; therefore the client can get both

sets of outliers by outsourcing the task once.
After receiving the (p1, d)-outliers O1 and (p2, d)-outliers O2 from the server,

the client verifies the completeness and correctness as the following.

Completeness Verification. To verify whether the server has returned all
true outliers, the client checks whether AO ⊆ O1. If AO �⊆ O1, the client catches
the incomplete outlier answer with 100%; otherwise, the client computes the
completeness probability prr = 1 − α|AO|. To satisfy (α, a)-completeness (i.e.,
prr ≥ a), the client has to construct AOs of size

|AO| = �logα(1 − a). (1)

Correctness Verification. For the correctness verification, the client checks
whether ANO ∩O2 is empty. If it is not, the client catches the incorrect answer
with 100%; otherwise, the client returns the correctness probability prp = 1 −
β|ANO|. To meet the (β, b)-correctness (i.e., prp ≥ b) requirement, |ANO| must
satisfy that

|ANO| = �logβ(1− b). (2)

Equation 1 and 2 show that |AO| and ANOs are independent of the size of
the original dataset; thus our mechanism is especially useful for large datasets.



10 R. Liu et al.

Furthermore, we observe that it does not need large number of |ANO| and |AO|
to catch with high correctness probability the server that changes a small fraction
of result. For instance, when α = 0.99 (i.e., the server changes 1% of the outliers)
and a = 0.99 (i.e., the probability to catch such answer is at least 0.99), we only
need to add 459 AOs.

Overhead Analysis. The complexity of distinguishing ANOs and AOs from
real tuples in the returned result is O(|ANO| + |AO|). Both correctness and
completeness verification take O(1) complexity. Therefore, the complexity of
verification isO(|ANO|+|AO|). Our empirical study shows that |ANO| and |AO|
are relatively small even for large datasets (Section 6), this enables the client to
accomplish verification on resource-constrained devices (e.g., smart phones).

4.3 Recovery of True (p, d)-Outliers at Client Side

Since the returned (p1, d)-outliers may contain some false positive tuples that
are not (p, d)-outliers in D, the client will recover the real (p, d)-outliers in D
from the returned (p1, d)-outliers O1 and (p2, d)-outliers O2. To achieve this,
first, the client eliminates all AOs (if there is any) from O2 and O2 (how to
distinguish real tuples, AOs, and ANOs will be discussed in Section 4.4). Let
the remaining (p2, d)-outliers be O′

2. Second, the client examines each tuple in
O1 −O2, and keeps those that are (p, d)-outliers in D. Let these tuples be O12.
Then O12 ∪O′

2 includes all true (p, d)-outliers in D. As will shown in Section 6,
the tuples in O1−O2 takes a negligible portion of D (less than 0.2%). Therefore,
the complexity of outlierness examination of tuples in O12 should be O(|D|).

4.4 Auxiliary Data for Verification

Auxiliary Data Sent to the Server. Before the data owner (client) sends
out her dataset, she signs each tuple with a cryptographic signature. The sig-
nature consists of two sub-signatures: Siga and Sigt. Siga provides authenticity
guarantee, so that any modification on the original tuples can be caught, while
Sigt is used to distinguish the true tuples from the artificial ones that will be
inserted for verification of completeness and correctness. In particular, given a
tuple t(a1, . . . , an), Siga = H(a1 ⊕ . . . an), and

Sigt =

⎧⎨⎩H(Siga ⊕ c1), If t is a true tuple in D;
H(Siga ⊕ c2), If t is an AO;
H(Siga ⊕ c3), If t is an ANO.

The client predefines three constants c1, c2, and c3, for the true tuples, the
AOs, and the ANOs respectively. The client stores the three constants and the
hash function H locally. We require that the hash function H is an efficiently
computable collision-resistance hash function. It takes a variable-length input
and returns a fixed length binary sequence. Furthermore, it should be difficult
to reverse the hash value, i.e., given H(x), it is computational infeasible to
compute x. Therefore, the server cannot easily modify the signature.
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After completes the computation of signatures, the client sends the dataset to
the server. Each tuple in the dataset is associated with its two signatures Siga
and Sigt. When the server returns the outlier tuples to the client, he is required
to return the two signatures of these tuples too.

Auxiliary Data at the Client Side. The client maintains the hash function
H , the number of AOs and ANOs, and the three constants c1, c2, and c3 that are
used to construct the signatures. It is straightforward that the space overhead
of these auxiliary information is negligible. For each outlier tuple t returned
by the server, the client computes its signature Siga, and the three signatures
Sig1t = H(Siga ⊕ c1), Sig2t = H(Siga ⊕ c2), and Sig3t = H(Siga ⊕ c3), by using
the three constants c1, c2, and c3 that it has stored locally. Then by comparing
the signatures Sig1t , Sig2t , Sig3t against the Sigt that is attached to t, the client
can distinguish whether t is a true tuples, an AO or an ANO.

5 Discussion

5.1 Dealing with Malicious Server

We consider the following two types of misbehaviors by the malicious server:

(1) Cheap computation: The server picks a portion of the dataset D′ ⊆ D
and return outliers of D′ as the outliers of D;
(2) Verification-aware cheating: The server is aware of the details of the ver-
ification mechanism, and escapes from verification by returning incorrect mining
result that fits what the verification mechanism expects.

Unfortunately, our AT-based approach cannot catch the two types of mis-
behaviors by the malicious server. First, our AT-based approach cannot catch
cheap computation. If the dataset portion D′ that the server picks satisfies that
D′ ⊆ S, where S is the sample that is used to construct AOs (Section 4.1),
the outliers of D′ should contain all AOs, i.e., the server can succeed to es-
cape from the completeness verification. Since the probability that D′ ⊆ S is
prob = |S|/|D| = p, where p is the parameter used for (p, d)-outlier mining that
is close to 1 in practice [17], the server can escape the completeness verification
with very high probability even by mining a small portion of dataset. On the
other hand, if the portion D′ contains tseed (i.e., the seed tuple that is used to
construct ANOs), none of the ANOs will be returned, and thus the server can
escape the correctness verification. The probability that the server picks D′ that

contains tseed is prob = |D′|
|D| . The server has to pick a large portion of D if it

tries to escape the correctness verification with high probability.
Second, our AT-based approach cannot catch verification-aware cheating.

When the server knows the verification mechanism, especially how AOs/ANOs
are constructed, it is able to identify AOs/ANOs. First, it can find all AOs eas-
ily by two passes of the outsourced dataset. In particular, due to the fact that
the p value of the (p, d)-outlierness setup is always very close to 1 in practice, the
sample S used to construct AOs (Section 4.1) is close to the entire dataset D.
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Therefore, the constructed AOs will be the skyline points ofD. Based on this, the
malicious server can easily identify the tuples that have the maximum/minimum
values of each attribute as AOs. This can be done by traversing the dataset twice
(one pass to find maximum/minimum values of each attribute and another one
to decide AOs). On the other hand, due to the fact that all ANOs must be the
close tuples (Definition 2) to a non-outlier tuple, the malicious server can iden-
tify all ANOs by searching for non-outlier tuples that are close to at least one
non-outlier. This requires the server to find all non-outliers, whose complexity is
at least as high as the cost of mining all outliers. Though expensive, this enables
the server to identify ANOs and escape from the correctness verification.

Intuitively, any verification based on transformation of the original dataset
(e.g., inserting tuples) may not be able to catch the malicious server as it may
launch verification-aware cheating. On the other hand, randomly picking tu-
ples from the original dataset as samples and verifying the outlierness of the
samples may resist the verification-based cheating. However, to return high cor-
rectness/completeness guarantee, it needs to find a large portion of real outliers,
which may not be affordable by the client with limited computational power. We
conjecture that to catch a malicious server, especially to catch the verification-
aware cheating, the complexity of verification is as expensive as outlier mining.

5.2 From Probabilistic Approach to Deterministic Approach

It is possible that the client may require verification guarantee of 100% certainty.
For this case, our AT-based approach cannot meet the requirement, even though
it can provide a high probabilistic guarantee. Intuitively, let OS be the outliers
returned by the server, the client can verify the correctness of OS with 100%
certainty by checking whether each tuple in OS is an outlier in D. The complexity
is O(kn), where k is the size of OS , and n is the size of D. To verify completeness,
the client checks whether there exist any tuple in D−OS that is an outlier. The
complexity of completeness verification is O((n− k)n). The total complexity of
the deterministic approach is O(n2), which is as high as outlier mining itself.
Although we can optimize the outlier detection procedure [4,27], we have to pay
for additional space overhead.We conjecture that the complexity of deterministic
approach (in terms of both time and space) is as expensive as outlier mining
itself.

6 Experimental Evaluation

We conducted an extensive set of experiments to evaluate both the assurance guar-
antee and performance of our approach. In particular, we measured: (1) the com-
pleteness and correctness guarantee; (2) the verification overheadat the client side,
including a) the construction time for AOs and ANOs, b) the verification time to
check AOs and ANOs, and c) the time of examining the outlierness of tuples to
eliminate false positives; (3) the mining overhead at the server side.



AUDIO 13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5% 10% 15% 20% 25%

D
et

ec
tio

n 
pr

ob
ab

ili
ty

 (
%

)

Corruption Ratio (=1-a)

α=0.75
α=0.80
α=0.85
α=0.90
α=0.95

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

a 5% 10% 15% 20% 25%

D
et

ec
tio

n 
pr

ob
ab

ili
ty

 (
%

)

Corruption Ratio (=1-a)

α=0.75
α=0.80
α=0.85
α=0.90
α=0.95

(a) Completeness: Letter Dataset (b) Completeness: KDDCUP Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5% 10% 15% 20% 25%

D
et

ec
tio

n 
pr

ob
ab

ili
ty

 (
%

)

Corruption Ratio (=1-b)

β=0.75
β=0.80
β=0.85
β=0.90
β=0.95

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5% 10% 15% 20% 25%
D

et
ec

tio
n 

pr
ob

ab
ili

ty
 (

%
)

Corruption Ratio (=1-b)

β=0.75
β=0.80
β=0.85
β=0.90
β=0.95

(c) Correctness: Letter dataset (d) Correctness: KDDCUP dataset

Fig. 3. Robustness of AT -based Approach

Setup. In our experiment, we used two datasets, the Letter dataset1 from UCI
MLC++ Library that contains 20k tuples, and the KDDCUP dataset2 that
contains 100k tuples. The Letter dataset has 16 numerical (integer) attributes.
The KDDCUP dataset contains 41 (numerical or categorical) attributes. In our
experiments, we used five numerical attributes, including duration, dst bytes,
flag, count, and serror rate attributes, of the KDDCUP dataset. For Letter
dataset, we used p = 0.8 and d = 15 that return 1% of the tuples as outliers, while
for KDDCUP dataset, we used p = 0.99 and d = 5000 that return 2% of the
tuples as outliers. All of our experiments are evaluated on a PC with a 2.4GHz
Intel Core 2 Duo CPU and 4GB RAM running Windows 7. We implemented
the algorithm in Java.

Robustness of the AT -Based Approach. We simulate the incomplete result
by the semi-honest server as removing 5%, 10%, 15%, 20%, and 25% outliers
randomly (i.e., a = 95%, 90%, 85%, 80%, and 75%), and the possible incorrect
result as picking 5%, 10%, 15%, 20%, and 25% non-outliers randomly as outliers
(i.e., b = 95%, 90%, 85%, 80%, and 75%). Then, we measure the probability
of catching these incomplete and incorrect results by our AT -based approach
by the following: we repeat 500 trials on the Letter dataset and 100 trials on
the KDDCUP dataset. For each trial, first, we insert AOs and ANOs that are
constructed by using our AT -based approach. Second, we randomly pick a set of
outliers to remove (for producing incomplete answer) and non-outliers to insert
(for producing incorrect answer).

1 http://www.sgi.com/tech/mlc/db/letter.all
2 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

http://www.sgi.com/tech/mlc/db/letter.all
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Fig. 4. AO&ANO Construction Time and Verification Time, Letter dataset

For completeness verification, we examine if all the AOs are returns. If at
least one AO is missing, we count the trial as a detected one. Similarly, for
correctness verification, we check if the result contains any ANO, and count the
trial as detected if it does. After we finish all trials, we calculate the detection
probability as the prd = ndet

ntr
, where ndet is the number of detected trials and

ntr is the total number of trials.
First, we measured the detection probability of incomplete answer. Figure 3

(a) shows the result on the Letter dataset. We observe that the detection proba-
bility is always higher than the required α value (i.e., the probability threshold).
The same observation also holds for the KDDCUP dataset (Figure 3 (b)). We
also measured the detection probability of incorrect result. Figure 3 (c) & (d)
show the detection probability for Letter dataset and KDDCUP dataset re-
spectively. It can be easily observed that the detection probability of incorrect
result is always better than the required β value, i.e., the correctness probabil-
ity threshold. This proves the robustness of our AT -based approach for both
completeness and correctness verification.

Cost Analysis at Client Side. First, we measured the time performance of
constructing AOs and ANOs. Figure 4 (a) shows the AO construction time on
Letter dataset. We observe that the AO construction is extremely fast, which
needs 0.012 seconds at most even when α = 0.95 and a = 0.95. Furthermore,
when α and a values increase, AO construction time increases too, but only
slightly. Figure 4 (b) shows the ANO construction time on Letter dataset. It
takes more time than AO construction since it needs to find the tseed and verifies
whether it is a non-outlier. Nevertheless, it is still fast; it only needs 0.022 seconds
at most even when β = 0.95 and b = 0.95. Compared with the mining time
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(around 200 seconds for the Letter dataset), the construction time of AOs and
ANOs is negligible. We also measured the construction time on KDDCUP
dataset. The construction time of the KDDCUP dataset is longer than that
of the Letter dataset, as the size of the KDDCUP dataset is four times larger
than that of the Letter dataset. However, the AO/ANO construction is still
fast; AO construction only needs 0.16 seconds at most, while ANO construction
only needs 0.035 seconds at most. We omit the result due to limited space.

Second, we measured the verification time at the client side. Figure 4 (c)
shows the time of completeness verification on Letter dataset. We observed that
the time grows when α and a increase. This is straightforward as higher α and
a require larger number of AOs. Figure 4 (d) shows the time of correctness
verification on Letter dataset. Contrast to completeness verification, the time of
correctness verification decreases with the growth of β and b. This is because with
increasing b value, there are fewer real non-outliers inserted as incorrect answer
(for simulation). Even though meanwhile larger b value requires more ANOs,
the number of inserted real non-outliers decreases faster than that of ANOs.
This leads to the decreasing number of outliers (including real non-outliers and
ANOs) that the client receives, and consequently less verification time.

Table 1. Number of Tuples Whose Outlierness Are Examined during Post-Processing

a, b α, β α, β α, β α, β α, β
0.75 0.8 0.85 0.9 0.95

0.75 1 1 1 2 2
0.80 1 1 2 2 4
0.85 2 2 4 4 5
0.90 4 4 5 5 6
0.95 5 6 6 8 8

a, b α, β α, β α, β α, β α, β
0.75 0.8 0.85 0.9 0.95

0.75 2 4 4 6 13
0.80 4 4 6 13 14
0.85 6 8 14 17 23
0.90 14 19 23 23 48
0.95 47 70 77 101 167

(a) Letter Dataset (20K tuples) (b) KDDCUP Dataset (100K tuples)

Third, we measured the performance of outlier recovery at the client side. We
first measured the number of tuples whose outlierness needs to be examined in
the dataset. Table 1 (a) & (b) show the result of Letter dataset and KDDCUP
dataset respectively. Both tables show that the number of tuples whose outlier-
ness needs to be examined only takes a small portion of the dataset. For example,
at most 8 tuples in Letter dataset (0.04% of the dataset) and at most 167 tuples
in KDDCUP dataset (0.16% of dataset) that were examined. Furthermore, we
noticed that though it is possible that the tuples that need to be examined can
contain true and false positive outliers, in our experiments, all examined tuples
are false positive outliers (real non-outliers).

Overhead at Server Side.We measured the mining overhead at the server side
as |TD+ − TD|/TD, where TD and TD+ are the time of mining outliers from the
original database D and the dataset D+ = D∪AO∪ANO. Figure 5 (a) and (b)
show the result of the Letter dataset and KDDCUP dataset respectively. We
observed that adding AOs and ANOs does not introduce much mining overhead.
For example, it leads to at most additional 1.2% of the original mining time on
the Letter dataset, and at most additional 0.25% of the original mining time on
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Fig. 5. Mining overhead

the KDDCUP dataset. The overhead on KDDCUP dataset is much smaller
because we insert the same number of artificial tuples for the same α, β, a, b
values into a larger dataset. This proves that our AT -based approach is more
suitable for datasets of large size.

7 Conclusion

Outsourcing mining tasks to a third-party data-mining-as-a-service (DMAS)
provider which is potentially untrusted arises serious concern on the integrity
of the mining results. In this paper, we focused on verifying the integrity of
outlier mining result. We consider two types of server, namely the semi-honest
server and the malicious server, that may return incorrect/incomplete outliers.
We proposed AUDIO, a practical and efficient integrity auditing framework that
can provide high correctness and completeness guarantees for the semi-honest
server in the DMAS paradigm. We designed efficient approaches of construct-
ing artificial tuples for verification purpose, and demonstrated the efficiency and
effectiveness of our approach via an extensive set of experiments.

In the future, we will continue to explore the verification methods for the
malicious server. We will investigate whether it is feasible to design efficient
verification mechanisms if the server only knows partial details of the verification
mechanism, e.g., the server knows there are artificial tuples in the dataset but
does not know how these tuples are constructed. We will also examine how to
design verification techniques to deal with datasets with updates.
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Abstract. Privacy concerns are among the major barriers to efficient
secondary use of information and data on humans. Differential privacy is
a relatively recent measure that has received much attention in machine
learning as it quantifies individual risk using a strong cryptographically
motivated notion of privacy. At the core of differential privacy lies the
concept of information dissemination through a randomized process. One
way of adding the needed randomness to any process is to pre-randomize
the input. This can yield lower quality results than other more specialized
approaches, but can be an attractive alternative when i. there does not
exist a specialized differentially private alternative, or when ii. multiple
processes applied in parallel can use the same pre-randomized input.

A simple way to do input randomization is to compute perturbed his-
tograms, which essentially are noisy multiset membership functions. Un-
fortunately, computation of perturbed histograms is only efficient when
the data stems from a low-dimensional discrete space. The restriction
to discrete spaces can be mitigated by discretization; Lei presented in
2011 an analysis of discretization in the context of M-estimators. Here
we address the restriction regarding the dimensionality of the data. In
particular we present a differentially private approximation algorithm for
selecting features that preserve conditional frequency densities, and use
this to project data prior to computing differentially private histograms.
The resulting projected histograms can be used as machine learning in-
put and include the necessary randomness for differential privacy. We
empirically validate the use of differentially private projected histograms
for learning binary and multinomial logistic regression models using four
real world data sets.

1 Introduction

Concerns regarding individual privacy are among the major barriers to efficient
secondary use of information and data on humans. One of the main difficulties
associated with implementation of privacy preserving measures is the quantifica-
tion of incurred risk to the individual. Differential privacy [5] is a relatively recent
measure that has received much attention in the machine learning community
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as it quantifies individual risk using a strong and cryptographically motivated
notion of privacy. For an overview of contributions to the growing number of dif-
ferentially private methods and theory, we defer to [4,6]. Central to differential
privacy is the notion of information dissemination through a randomized pro-
cess. For a given process that accesses private data and produces information,
randomization can be introduced in several places: input perturbation before the
data flows into the process, during the computation such as in objective func-
tion perturbation [3], and after the process has computed the results but before
they are presented [5]. For a given process, analyzing and modifying it so that it
yields differential privacy at a given level, and providing a quantification of the
inevitable loss in result quality, can be difficult and require sophisticated analy-
sis. These analyses sometimes impose restrictions, as in the type of regularizer
in Chaudhuri et al.’s empirical risk minimization [3], and sometimes particular
processes cannot be made differentially private in a useful manner, for example
computing all k-way marginals [20].

As we will see, achieving a specified level of privacy by perturbing the input
to an unconstrained process can yield lower quality results than applying a spe-
cialized differentially private version at a fixed privacy level. Nevertheless, this
approach to achieving differential privacy can be attractive when i. there does
not exist a specialized and tailored differentially private alternative, or when ii.
multiple applications of differentially private processes can be replaced by one or
more non-private processes that use a single perturbed instance of the input; the
reason is that differential privacy risk for parallel processes composes additively
in general. Furthermore, input perturbation can be seen as a noisy information
release; having access to information an analysis is based on allows reproduction
of results, a very important principle in science and research.

A simple way of producing randomized input from data is to compute a per-
turbed histogram [5], which essentially is a noisy multiset membership function
for the collection of points constituting the data. In order to achieve differen-
tial privacy in a histogram by perturbation, noise is added not only to non-zero
multiset memberships, but also to originally zero-valued memberships. Conse-
quently, the support of a perturbed histogram extends to virtually all possible
elements. This, and the fact that the goal of histogram perturbation includes
making originally zero-valued entries indistinguishable from unit-valued entries,
perturbed histograms are in practice only applicable to low dimensional and dis-
crete spaces where data is “concentrated”, i.e., when there are many duplicates.

The restriction to discrete data can be mitigated by discretization; Lei [15]
analyzes discretized histograms in the context of M-estimators and shows con-
sistency results when the discretization bandwidth is chosen carefully. In the fol-
lowing we address the restriction to low dimensionality in the context of learning
classifiers. In particular we a. present a differentially private approximation al-
gorithm for projecting data onto k features that maximally preserve conditional
frequency densities, b. show how we can combine projection with thresholded
histogram computation to produce histograms that can be used for learning
probabilistic classifiers, and c. empirically show the viability of building binary
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and multinomial logistic regression classifiers on differentially private projected
histograms. We also show how to compute thresholded histograms in a way that
exhibits optimal asymptotic time complexity for data from bounded size spaces.

Other Related Work. Jagadish et al. [13] study binning for histograms in a non-
private setting and present optimality results for broad classes of query types.
Mohammed et al. [17] and Xiao et al. [25] approach the coarsening of infor-
mation granularity for differentially private histograms by clustering attribute
codomains in a hierarchical manner much like in construction of classification
trees. Hay et al. [12] explore tailoring of histograms for answering multiple queries
for which we have consistency constraints, for example given as subset sums
of query results. Similarly, Xu et al. [26] address the clustering of attribute
codomains for a given sequence of counts from a data base, using among others
ideas from [13]. The approach presented here is complementary to attribute
codomain clustering methods in that the principal method for achieving courser
information granularity is instead projection onto a subset of dimensions, conse-
quently not requiring any binning or clustering for categorical attributes. Barak
et al. [1] investigate differentially private k-way contingency tables. The pro-
jection algorithm in this work can be used as an approximation algorithm for
finding a k-way contingency table that reflects a partition of the data with maxi-
mum discrimination among elements, and in this sense is related to rough set [18]
“reducts”. This suggests that projected histograms as computed in this work can
also contribute to differentially private rough set theory.

2 Methods

Let [n] = {1, 2, . . . , n}, and let Vi ⊆ U for i ∈ [d] be d > 0 finite subsets of some
set U . Also let |Vi| ≥ 2 for all i. We then define V = V1 × V2 × · · · × Vd to be a d-
dimensional space of size m =

∏
i∈[d] |Vi|. A data set D is a collection or multiset

of points (records) from V and can be represented by a function hD : V → N

counting the number of occurrences of a point in D. A histogram is a function
h : V → R, and as such can be seen as a generalization of a multiset. The definition
of privacy we use is Differential Privacy [7] and can be stated as follows.

Definition 1. A randomized algorithm A is ε-differentially private if for any
measurable set of outputs S,

P (A(D) ∈ S) ≤ eεP (A(D′) ∈ S)

where D,D′ are any two databases of n records that share n− 1 records in com-
mon. The probability is taken over the randomness in A.

The value ε is the quantification of individual privacy risk. An important proba-
bility distribution in the context of Differential Privacy is the Laplace distribu-
tion Lap(μ, λ) with density

fLap(r|μ, λ) =
1

2λ
exp

(
−|r − μ|

λ

)
. (1)
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The mean of this distribution is μ and the variance is 2λ2. Let L ∼ Lap(0, 2/ε).
Then

P (L > x) =

{
1
2 exp

(
− εx

2

)
if x > 0

1− 1
2 exp

(
εx
2

)
otherwise.

(2)

In the following we defer proofs to appendix A.

2.1 Differentially Private Histograms

We can create a perturbed version of hD by adding a perturbation r(x) dis-
tributed according to the Laplace distribution, and subsequently threshold by a
data-value independent τ to suppress small as well as negative entries. Thresh-
olding by τ has practical implications: the multi-set analogy breaks down with
negative entries, learning predictive models from histograms with negative val-
ues becomes non-standard, and both the computational effort and space needs
associated with thresholded histograms is in practice reduced. Lei [15] proposes
τ = A logn/ε on the intuition that the maximal noise will be O(log n/ε). We
follow Lei in this definition of τ . Formally,

h̃D,ε(x) = hD(x) + r(x) (3)

h̃τ,ε,D(x) =

{
h̃D,ε(x) if h̃D,ε(x) > τ

0 otherwise.
(4)

As we do not consider the size of D private, the subsequent proposition follows
directly from results in [5].

Proposition 1. If τ is only dependent on n and r(x) is distributed according
to Lap(0, 2/ε), then (3) and (4) yield ε-differential privacy.

Since h̃τ,ε,D is constructed in a privacy preserving manner, the data set D̃ ob-

tained by hD̃(x) = �h̃τ,ε,D(x) − 0.5 is privacy preserving.

We have that the value h̃τ,ε,D(x) is distributed according to Lap(hD(x), 2/ε)

if r(x) is distributed according to Lap(0, 2/ε). Consequently, P (h̃D,ε(x) > τ) =
P (L > τ − hD(x)), where L ∼ Lap(0, 2/ε). Applying (2), the probability of a
point x in V making it into the support S of h̃τ,ε,D is

P (x ∈ S) = P (L > τ − hD(x)) =

⎧⎪⎪⎨⎪⎪⎩
1
2

(
exp

(
εhD (x)

2

)
nA/2

)
if τ > hD(x),

1− 1
2

(
exp

(
εhD (x)

2

)
nA/2

)−1

otherwise.

(5)

If we now let Yi ∼ Bernoulli(pi), where pi = P (h̃D,ε(xi) > τ) for xi ∈ V , we get
that the expected size of S is

E[|S|] = E[
∑
i

Yi] =

∞∑
j=0

|h−1
D (j)|P (L > τ − j). (6)
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Let n′ = |Supp(hD)| =
∑∞

j=1 |h
−1
D (j)|. If we assume that τ = A log(n)/ε > 1,

then by (5) and (6)

n′ +
m− n′

2nA/2
≥ E[|S|] ≥

n′ exp( ε2 )

2nA/2
+

m− n′

2nA/2
=

(
exp( ε2 )− 1

)
n′ +m

2nA/2
. (7)

In (7) we see that E[|S|] grows linearly in m and consequently exponentially in d.

Efficient Construction and Representation. Since V of size m is a product of
d finite sets Vi of sizes vi, we can implement a bijection enc between V and
[m] using a multi-base positional number system that maps an element in O(d)
time. In our application, the assumption that d and vi’s are small enough so
that m can be bounded to fit into a machine word (of typically 64 bits) is mild.
Under this assumption, we now show how construct h̃τ,ε,D in expected time
that is linear in the size of D and the output histogram. This is asymptotically
optimal since any algorithm computing a histogram from data must input the
data and output the histogram. The bounded integer encoding lets us use radix
sort to sort a list of integers in linear time, forming the basis of linear time set
related operations. Furthermore, given two small constants c1 and c2 (≤ 2) and
a size z set of keys Z from [m], we can in O(z) time compute a perfect hash
function fz : Z → [�c1z] that require O(c2z) bits of space and has constant
evaluation time [2]. Given this result, we can construct a constant access time
and O(z) size “hash map” data structure for Z ⊆ [m] in O(z) time. Let D′ be
the encoded version of D created in O(nd) time, and let S′ be the set of n′

unique elements in D′, which we can extract from D′ in O(n) time using radix
sort. Given S′, and the hash map data structure we construct the restriction
of h̃τ,ε,D′ to S′ in O(n) time. Naive computation of the remainder of h̃τ,ε,D′

would require enumerating [m]− S′. We can avoid this explicit enumeration by
first determining how many elements from [m] − S′ will enter the histogram.
This number is the number q̂ of successes in m− n′ Bernoulli trials with equal
success probability p = P (L > τ). Then we uniformly sample q̂ points S′′ from
[m] − S′ without replacement, and assign each a value v in (τ,∞) chosen with
probability proportional to fLap(v|0, 2/ε), forming the second part of h̃τ,ε,D′. The
efficiency of this scheme depends on the efficiency of sampling the distinct points
from [m]−S′. Using an efficient method [24] for sequential random sampling we
sample q̂ + n′ elements Q without replacement from [m] in expected O(q̂ + n′)
time. We then compute Q′ = Q−S′ in O(max(q̂, n′)) time using radix sort, and
finally sample q̂ elements S′′ from Q′ without replacement in expected O(q̂) time
using the efficient method. Noting that using hash maps to store the two parts
of h̃τ,ε,D′, we can merge them in time linear in the sum of their sizes which is

O(n′) and O(q̂), respectively. Consequently, the total time to construct h̃τ,ε,D′

is expected O(nd) +O(q̂ + n′). We can now let h̃τ,ε,D(x) = h̃τ,ε,D′(enc(x)).

Numeric Data. Numeric data is in general too fine-grained to be suitable for
direct applications of histogram-based methods, and discretization is required.
There is a trade-off between the granularity of the discretization, dictating the
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preservation of properties of the original data, and suitability for use in the
differentially private histogram sampling approach. Lei [15] studies this trade-
off in the context of M-estimators, and shows consistency results for differentially
private histograms with non-negative counts (i.e., 0-thresholded) when predictors

in [0,1] are discretized with bandwidth bw(n, d) =
(

log(n)
n

)1/(d+1)

. Based on

this, we assume that numeric predictors are bounded. This means that they can
scaled into [0,1] in a data-independent manner, and subsequently be discretized
into �1/bw(n, d− 1)− 0.5 interval bins. In order to “reverse” the discretization
after histogram sampling, we replace each bin identifier with the bin interval
midpoint.

2.2 Differentially Private Discernibility

Let X = {x1, x2, . . . , xn} be a set of n points xi from some set U , and let
A = {a1, a2, . . . , ad−1} and f = ad be d functions ai : U → Vi. Also, let = be an
equivalence relation on V (and Vi). In this formulation, we can say that point
xi in D is simply (a1(xi), . . . , ad−1(xi), f(xi)).

From a classification perspective, we can think of D as a lookup table: given
A(x) = (a1(xi), . . . , ad−1(xi)) look up the conditional relative frequency densi-
ties of labels Vd in D (the distribution of labels associated with elements in D
matching A(x)). This approach will fail for a fraction (1 − n

|V |) ≥ (1 − n
2d−1 ) of

possible points we could want to classify, which becomes a problem if n is much
smaller than |V |. For fixed n this fraction can be improved by decreasing d, the
number of dimensions used. In the following, we present an approach to doing
this in a differentially private manner.

We say that a function g discerns a pair (x, y) ∈ U2 if g(x) �= g(y), further-
more, for X ⊆ U

πX(g) = {(x, y) ∈ X2|g(x) �= g(y)}
πX(S) = ∪a∈SπX(a), for S ⊆ A. (8)

For any set S ⊆ A we have that EX(S) = X2−πX(S) is an equivalence relation
on X . We denote the equivalence class containing x ∈ X as EX(S)(x). We can
now express the conditional relative frequency density of f(x) = v for any x ∈ U
and v ∈ Vf given X and S as

p̂(f(x) = v|S,X) =

{ |EX(S)(x)∩f−1(v)|
|EX(S)(x)| if |EX(S)(x)| > 0,

|f−1(v)∩X|
|X| otherwise.

The above uses the unconditional relative frequency density if we have not seen
the covariate pattern S(x) before.

Proposition 2. Let S ⊆ A. Then,

πX(S) ∩ πX(f) ⊇ πX(A) ∩ πX(f) =⇒ p̂(f(x) = v|S,X) = p̂(f(x) = v|A,X).

for any x ∈ X and any v ∈ Vf .
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Proposition 2 characterizes subsets S of A that preserve conditional relative
frequency densities. Note that finding a minimum size S such that πX(S) ∩
πX(f) ⊇ πX(A) ∩ πX(f) is NP-hard, as it essentially is the problem of cov-
ering πX(f) by sets πX(a), a ∈ S. Motivated by Proposition 2, we formalize
our attribute selection problem as finding S ⊆ A with cardinality k, that max-
imizes |πX(S) ∩ πX(f)|. We call this problem k-discernibility, and in the fol-
lowing present an algorithm for it. To start, note that we can partition any
R ⊆ X2 into n (possibly empty) sets R(xi) = {y|(xi, y) ∈ R}. Therefore,
|R| =

∑
i |R(xi)|. Let πX(S)(x) = {y|(x, y) ∈ πX(S)}. Then we have that

(x, y) ∈ πX(S) ∩ πX(f) ⇐⇒ y ∈ πX(S)(x) ∩ πX(f)(x). Consequently,

F (S) =
|πX(S) ∩ πX(f)|

n
=

n∑
i=1

Fi(S) (9)

where

Fi(S) =
|πX(S)(xi) ∩ πX(f)(xi)|

n
.

Lemma 1. F is submodular and non-decreasing for any constant n > 0.

Now consider the function PrivateKD in Algorithm 1, and let F be defined by
(9) with n being the number of elements in the data base. If we had picked a such

Algorithm 1. The differentially private algorithm for the k-discernibility prob-
lem.

PrivateKD(A,F, k, ε′)
S ← ∅
A′ ← A
for i = 1 to k do

Pick a from A′ with P (a) ∝ exp(ε′(F (S ∪ {a})− F (S)))
S ← S ∪ {b}
A′ ← A′ − {b}

end for
return S

that it maximized F (S∪{a})−F (S) at each step, the resulting NonPrivateKD

would have been a (1 − 1/e) approximation algorithm for k-discernibility since
F is submodular [8]. The formulation of k-discernibility in terms of F and
PrivateKD allows us to essentially reuse Theorem 8.2 in Gupta et al. [10] as
follows.

Theorem 1. PrivateKD is 4kε′-differentially private. Furthermore, if m =
d− 1 then except with probability O(1/poly(m)), PrivateKD returns a solution
not worse than (1− 1/e)OPT−O(k logm/ε′) where OPT = F (S∗) where S∗ is
an optimal solution.
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Corollary 1. If we set ε′ = ε/(4k) then PrivateKD is ε-differentially private,
and has expected solution quality (1− 1/e)OPT− O(k2 logm/ε).

We note that n(F (S ∪{a})−F (S)) = |πX(f)−πX(S)|− |πX(f)−πX(S∪{a})|,
and that |πX(f) − πX(S)| can be computed in terms of the refinement of the
partition of X in induced by S by f . We can exploit this to implement the above
algorithm to run in O(k(d − 1)n) time by at each step keeping track of, and
refining, the partition of X induced by the current solution S.

2.3 Projected Histograms

For data D with target attribute f , and parameters k, ε, and γ ∈ (0, 1], we
can construct projected histogram as follows. First we spend εp = (1 − γ)ε of
the risk on PrivateKD, finding a k + 1 size set of dimensions (including f) to
project D onto. Subsequently we use the remaining risk εh = γε to construct a
differentially private histogram from the projected D. We now discuss how to
estimate k and γ if they are not given.

Choosing k. Ideally, we are looking for a minimal size k set S ⊆ A such that

|πD(S) ∩ πD(f)|
|πD(f) ∩ πD(A)| ≥ 1− σ (10)

for some σ ≥ 0. The parameter σ can be seen as a noise suppressing parame-
ter [22]. From a viewpoint of the empirical conditional probability, increasing σ
yields a step towards the unconditional prior as equivalence classes are collapsed.
Given a σ, we can approximate S for a data set D by using the NonPrivateKD

to find a minimum size set S such that F (S)/F (A) ≥ 1−σ. Call this algoritm for
finding a minimum size set of discerning attributes MDA. Given a non-private
data set D′ that is sufficiently close in structure to D we can now compute
k = |MDA(f,D′, σ)|. This approach allows the use of non-private data sets
deemed appropriate, if they exist. Based on our experience with non-private use
of projections [22,23], σ ∈ [0.1, 0.01] is appropriate. We choose σ = 0.1.

If such a public and representative set is not available, we propose using a
simulated artificial data set D′ instead. Assuming that the size q of the range
of f is not considered private (a reasonable assumption), we construct D′ by
sampling n i.i.d. points as follows. For a point x = (x1, x2, . . . , xd) the label xd

is uniformly sampled from [q], and each predictor i < d is assumed distributed as
P (xi = j|xd) ∼ N(0, 1), where N(0, 1) is the standard normal distribution. After
sampling, all predictors are scaled into [0,1], and discretized using a bandwidth
bw(n, d− 1). We then estimate k as |MDA(f,D′, 0.1)|.

An alternative to the above is to apply the parameter selection method of
Chaudhuri et al. [3]. In this approach, we decide on l possibilities of values for
k, and partition D into l+1 parts. Using PrivateKD with privacy εp, we then
compute Si from Di using value ki, and evaluate each Si on Dl+1, yielding a

utility ui based on
|πDl+1

(Si)∩πDl+1
(f)|

|πDl+1
(f)∩πDl+1

(A)| and ki. Finally, we use the exponential
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mechanism to choose Si with probability proportional to exp(εpui). According to
results by Chaudhuri et al. this procedure yields εp-differential privacy. As each
Si is computed only using a fraction 1

l+1 of the available data, this approach is
only suitable when n/l is large.

Choosing γ. The parameter γ distributes the privacy budget ε between the
two tasks of projection and histogram sampling. Intuitively, projecting poorly
yields bad model instances even when the modeling is done non-privately. On
the other hand, a very diffuse histogram, even when it is on a good projection,
will make learning good classifiers difficult. From the above, we know that the
quality of projection for a fixed k is determined in part by the fraction of pairs l
from πD(f) that are not discerned due to privacy. The quality of the histogram
sampling is determined by two probabilities: the probability of a point x ∈ D
making it into the support S = Supp(h̃τ,ε,D) of the sampled histogram, and the
probability of a point y �∈ D making it in as well. However, applying hD(y) = 0
to (5) we get that P (y ∈ S) = (2nA/2)−1 and consequently does not depend on
ε. Hence we will concentrate on finding two values: εh that yield an acceptable
p = P (x ∈ S), and εp that yields an acceptable value for l. Once these have been
determined we compute γ as

γ =
εh

εh + εp
. (11)

Determining εp. We know from Corollary 1 of Theorem 1 that with a high
probability, the solution quality our projection algorithm is OPT(1−exp(−1))+
O(k2 log(d−1)/ε). This quality is on the scale of F , this means that the number
of pairs not discerned due to privacy is O(nk2 log(d−1)/ε). Note that the upper

bound of the number of pairs f can discern given n elements is π̂(q) = n2(q−1)
2q .

Using a tuning parameter B > 0, we use

l ≤ nBk2 log(d− 1)

εpπ̂(q)

to relate the fraction of pairs l “lost” due to privacy at level εp. Consequently,
we get

εp ≥
nBk2 log(d− 1)

lπ̂(q)

for a fixed l. Note that l can be seen as having a similar role as the “overfitting”
parameter σ in (10). As the algorithm incurs a loss in discerned pairs of at most
OPT(1− exp(1)−1) without privacy, we choose l = 0.05, half the value of σ used
for selecting k in order to compensate for this to some degree. We also choose
B = 1/2 in an ad-hoc manner.



28 S.A. Vinterbo

Determining εh. For a point x ∈ D, we have that P (x ∈ S) is given by (5). If
we let z = hD(x), then if

εh ≥ max

⎛⎝ log (n) A− 2 log
(

1
2 p

)
z

,
log (n) A− 2 log (2− 2 p)

z

⎞⎠
we get P (x ∈ S) ≥ p. What remains is to determine which value z to use. In the
absence of other information, we estimate a value for z as follows. Recall that the
target is labelled with q labels. We assume that these are uniformly distributed,
meaning that the expected number of points in D that are labelled with the
same label is n/q. Furthermore, the projection algorithm aims at approximating
the partition induced by the target f , ideally such that all points within an
equivalence class induced by the predictors are a subset of an equivalence class
induced by f . Also, we assume that predictors are independent given the target.
This means that if px denotes the probability that a randomly and independently
chosen point falls into the equivalence class of x, we can estimate the size of the
equivalence class containing x as zx = pxn/q. Finally, we assume that each of the
d−1 predictors is produced from discretizing truncated normally distributed i.i.d.
random variables into 1/b equally spaced bins after scaling the values to fall into
[0,1]. As above, we compute the discretization bandwidth as b = bw(n, d − 1),
yielding s = �1/b − 0.5 bins. Let pi be the probability mass of bin i. Then,
px = (

∑s
i=1 p2i )

k for k predictors. The pi can be estimated by sampling N points

from N(0, 1), scaling these into [0,1], partition into s bins ci, and letting p̂i =
|ci|
N .

3 Experiments

As stated in Section 2.1, given a privacy preserving histogram h̃τ,ε,D, we can

generate a privacy preserving data set D̃ by letting hD̃(x) = �h̃τ,ε,D(x) − 0.5.
We performed experiments to elicit the utility of projected histograms as a non-
classifier specific platform to build differentially private classifiers on. We did
this by comparing the performance of binary and multinomial logistic regression
classifiers build on D̃ versus built on the original D, as well with classifiers based
on a particular method for differentially private logistic regression trained on D.
We used the R environment environment for statistical computing [19] for all
our experiments.

3.1 Setup

Classifiers. The classification tasks in our experiments are both binary and
multinomial. For both we used three different classifier learning algorithms. In
particular, for binary classification these are OLR – non-private logistic regres-
sion using the generalized linear modeling glm function of the stats [19] library,
HLR – an OLR classifier trained on data created from a differentially private pro-
jected histogram, and PLR – logistic regression using the differentially private
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empirical risk minimization [3]. For multinomial classification these are OMLR
– non-private multinomial logistic regression using the multinom function of the
nnet [21] package, HMLR – an OMLR classifier trained on data created from a
differentially private projected histogram, and PMLR – a classifier constructed
from learning an ε/q-differentially private PLR classifier for each of the q classes
and applying them in parallel to obtain normalized probabilities for each class.

Data Sets. In the experiments we used four data sets. Two intended for binary
prediction and two for multi-class prediction. For each of binary and multi-class,
one data set is smaller and one is larger.

Iris – a 3 class data set of 4 predictor attributes on 150 cases. The data set
describes 4 measurements of three different types of iris plants. The data set is
available from the UCI Machine Learning Repository [9] as the “Iris Data Set”.

Satellite – a 6-class data set of 36 predictor attributes on 6435 cases. The data
set describes a 3x3 neighborhood of pixels in a Landsat satellite multi-spectrum
digital image. The six classes are soil types. The data set is available from the UCI
Machine Learning Repository [9] as the “Statlog (Landsat Satellite) Data Set”.

Infarct – a 2 class data set of 44 predictor attributes on 1753 cases. The data
set describes 44 measurements taken from patients presenting with chest pain
at the emergency rooms of two hospitals, one in Sheffield, England, and one
in Edinburgh, Scotland. The classification is according to whether the patients
received a diagnosis of myocardial infarction or not. The data set is not publicly
available, and has been used in [14].

Adult – a 2 class data set of 14 predictor variables on 45083 cases. The data
set describes measurements on cases taken from the 1994 Census data base. The
classification is whether or not a person has an annual income exceeding 50000
USD. The data set is available from the UCI Machine Learning Repository [9]
as the “Adult Data Set”.

Estimation of Performance. In order to be able to relate performances
across binary and multinomial classification tasks, we assessed binary classifi-
cation quality using the area under the receiver operating curve (AUC), and the
generalization of the AUC given by Hand et al. [11] for the multinomial tasks.

Construction of a projected histogram has parameters ε – the differential pri-
vacy level, k – the number of sub-dimensions to project onto, and γ – which
decides the distribution of ε among projection and histogram creation. Given ε,
and the size of the input data, the algorithm can estimate the two latter param-
eters k and γ. We ran separate ten-fold cross-validation experiments stratified
on class labels to i. compare classifier performances given a baseline privacy re-
quirement ε = 1 and using estimated k and γ, and ii. investigate the quality
of the estimation applied to produce k and γ, as well as behavior of histogram
based classifiers under varying privacy requirements ε. Each parameter variation
was investigated in independent experiments where the other parameters were
set to either to baseline (ε = 1) or left for the algorithm to estimate (k and γ).
The tuning parameters A and B were left fixed at A = 1/2 and B = 1/2.
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3.2 Results

Figure 1 shows box-and-whisker plots of the cross-validation AUCs for the clas-
sifiers on all four data sets (upper row: multi-class, lower row: binary class, left
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Fig. 1. Box-and-whisker plots of the 10-fold cross-validation AUC performance values
for the classifiers on the four data sets. The quantiles in the plots are the standard
25%, 50%, and 75%. The whiskers denote the most extreme points within 1.5 times
the respective interquartile ranges (i.e., the 1.5 “rule”), while outliers are denoted by
dots.
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Fig. 2. The median cross-validation AUC for the histogram based method as we vary
parameters ε, k, and γ on each of the four data sets. The dots represent the base-
line/estimated value for the parameter and the AUC value taken from the ε series of
cross-validation experiments.
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column: smaller, right column: larger). Figure 2 shows the behavior of the me-
dian cross-validation AUC for the projected histogram method H(M)LR as we
vary parameters ε, k, and γ.

4 Discussion

We presented a differentially private feature selection algorithm and used it to
project data before computing differentially private histograms. We provided a
method for distributing the allowed privacy risk between the two tasks.

We experimented with logistic regression in order to investigate the classifier
performance loss between using perturbed projected histograms for input per-
turbation over a specialized differentially private method. While loss is present,
as can be seen in the bottom row of Figure 1, projected perturbed histograms
offer utility as the performance still is arguably good.

To demonstrate the use of projected histograms when there are no specialized
alternatives available, we used projected histograms to construct differentially
private multinomial logistic regression models. We know of no differentially pri-
vate and available algorithm for learning non-binary probabilistic classifiers; as
the alternative for q classes, we used estimates from q differentially private bi-
nary logistic regression models (we also experimented with using parameters
from q − 1 models in a softmax function, but this is sensitive to base class se-
lection and performed worse than using q binary model estimates directly). The
models learned from perturbed projected histograms outperformed the private
multi-model alternative as seen in the top row in Figure 1. This supports that
considering using perturbed projected histograms for input perturbation over
using multiple applications of specialized methods that each incur separate and
additive risk is warranted.

A limitation of our approach is that the parameter k must be estimated. In
the middle panel of Figure 2 we see that while in general k = 4 yields good
performance, it is not optimal. In particular, for the smaller binary class data
set, In fact, k = 2 would have increased the competitiveness of the binary lo-
gistic regression based on histograms significantly. However, the right panel in
Figure 2 shows that for the estimated k, the distribution of the allowed privacy
risk between projection and histogram computation is near optimal.

For both binary and multinomial regression we chose two data sets, one
smaller and one larger. The leftmost panel in Figure 2 shows the expected im-
provement of histogram based models with increase in allowed privacy risk. This
improvement is much stronger for smaller data. Our intuition for this is that for
larger data sets, the reduction in performance due to privacy is dominated by
the privacy independent loss in performance due to projection and discretiza-
tion. We speculate that projected histograms might be even better suited for
classification tasks in discrete spaces.

As the size of differentially private histograms grows exponentially in the
dimensionality of the feature space, efficient representation and computation
is of importance. For spaces of size bounded by 2B where B is the machine
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word length, we presented an efficient approach to both computation as well as
representation of these histograms.
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A Proofs

Proof of Proposition 2. For readability, let EB(x) = EX(B)(x) for all B ⊆ A,
and let Ef (x) = EX(f)(x). First, we note that EA(x) ⊆ ES(x). If ES(x) ⊆ Ef (x)
for any S ⊆ A we have that the proposition holds as

ES(x) ∩ f−1(v) =

{
ES(x) if f(x) = v, and

∅ otherwise.

Hence, in order to prove the proposition we need to show that for S ⊆ A

(π(S) ∩ π(f) ⊇ π(A) ∩ π(f) ∧ ES(x) �⊆ Ef (x)) =⇒ ES(x) = EA(x). (12)

We start by noting that for all x ∈ X π(S) ∩ π(f) ⊇ π(A) ∩ π(f) =⇒ Es(x) ∪
Ef (x) ⊆ EA(x) ∪ Ef (x), which in turn implies that (ES(x) − Ef (x)) ⊆ EA(x).
This means that as ES(x) �⊆ Ef (x) we can pick y ∈ ES(x) ∩ EA(x) such that
y �∈ Ef (x). Assuming the negation of (12) (giving ES(x) �= EA(x)) we can
pick an additional point z ∈ ES(x) ∩ Ef (x) such that z �∈ EA(x). This means
(y, z) �∈ π(S) and (y, z) ∈ π(A)∩π(f) which creates a contradiction, from which
we conclude that (12) must hold. �	

Proof of Lemma 1. (Sketch:) The requirement for F being submodular is that
F (S ∪ S′) + F (S ∩ S′) ≤ F (S) + F (S′) for any S, S′ ⊆ A. For π defined by (8),
we have that A ⊆ B =⇒ π(A) ⊆ π(B), and π(A∪B) = π(A)∪π(B)). We then
have that π(A) ∩ π(B) = (π(A − B) ∪ π(A ∩ B)) ∩ (π(B − A) ∪ π(B ∩ A)) ⊇
π(A∩B). Consequently, m(S) = |π(S)| is submodular and non-decreasing, as is
F (S) = |π(S) ∩ π(f)|/n for fixed f and n. �	
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Proof of Theorem 1. Consider any X ′ ⊆ U such that (X ′ ∪X)− (X ′ ∩X) =
{xi}. This means that X ′ and X only differ in the element xi. Changing xi

leads to change in FX
i (S) = |π(S)(xi) ∩ π(f)(xi)|/n at most 1, while in FX

j (S)

at most 1/(n − 1) for j �= i. This means that FX =
∑

i F
X
i yields Δ(F ) ≤ 2.

The probability p(a) of selecting a from A− S is

p(a) =
eε

′(F (S∪{a})−F (S))∑
a′∈A−S eε′(F (S∪{a′})−F (S))

=
eε

′F (S∪{a})∑
a′∈A−S eε′F (S∪{a′}) (13)

As in the standard argument for privacy of the exponential mechanism, we note
that a change of Δ(F ) contributes at most eε

′Δ(F ) to the numerator of (13),
and at least e−ε′Δ(F ) to the denominator, yielding 2Δ(F )ε′-differential privacy.
We are selecting k times, each with 4ε′-differential privacy, hence 4kε′ total
differential privacy.

Similarly toMcSherry and Talwar’s analysis of the exponential mechanism [16],
let s(a) = F (S ∪ {a}) − F (S) for a fixed S ⊆ A, let OPT = maxa s(a), and
St = {a| exp(εs(a)) > t}. Then we have that

P (S(t/ε′)) ≤
P (S(OPT−t/ε′))

P (SOPT)
=

∑
a∈S(OPT−t/ε′)

exp(ε′s(a))∑
a∈SOPT

exp(ε′s(a))

≤
∑

a∈S(OPT−t/ε′)
exp(ε′(OPT− t/ε′))∑

a∈SOPT
exp(ε′OPT)

=
|S(OPT−t/ε′)|
|SOPT|

exp(−t)

≤ |A− S| exp(−t) ≤ m exp(−t). (14)

If we let t = log(m) + t′, we get that P (S(OPT−(log(m)+t′)/ε′)) ≤ exp(−t′). If we

now let t′ = a log(m), we get that P (S(OPT−((a+1) log(m))/ε′)) ≤ exp(−a log(m)) =
1/ma, and P (S(OPT−((a+1) log(m))/ε′)) ≥ 1 − 1/ma. This means that the prob-
ability that the algorithm chooses k times within S(OPT−((a+1) log(m))/ε′) is at
least 1 − k/ma, i.e., we choose well except with a probability O(k/ma) =
O(1/poly(m)). When we choose well, since F is sub-modular, every choice adds
at most a factor (1− 1/k)OPT to the final solution quality gap while adding at
most (a + 1) log(m)/ε′ to the same. Consequently the gap is OPT(1 − 1/e) +
O(k log(m)/ε′). �	
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Abstract. With the spread of data mining technologies and the accu-
mulation of social data, such technologies and data are being used for
determinations that seriously affect individuals’ lives. For example, credit
scoring is frequently determined based on the records of past credit data
together with statistical prediction techniques. Needless to say, such de-
terminations must be nondiscriminatory and fair in sensitive features,
such as race, gender, religion, and so on. Several researchers have re-
cently begun to attempt the development of analysis techniques that are
aware of social fairness or discrimination. They have shown that simply
avoiding the use of sensitive features is insufficient for eliminating biases
in determinations, due to the indirect influence of sensitive information.
In this paper, we first discuss three causes of unfairness in machine learn-
ing. We then propose a regularization approach that is applicable to any
prediction algorithm with probabilistic discriminative models. We fur-
ther apply this approach to logistic regression and empirically show its
effectiveness and efficiency.

Keywords: fairness, discrimination, logistic regression, classification,
social responsibility, information theory.

1 Introduction

Data mining techniques are being increasingly used for serious determinations
such as credit, insurance rates, employment applications, and so on. For exam-
ple, credit scoring is frequently determined based on the records of past credit
data together with statistical prediction techniques. Needless to say, such serious
determinations must guarantee fairness in both social and legal viewpoints; that
is, they must be unbiased and nondiscriminatory in relation to sensitive features
such as gender, religion, race, ethnicity, handicaps, political convictions, and
so on. Thus, sensitive features must be carefully treated in the processes and
algorithms for data mining.
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There are reasons other than the need to avoid discrimination for prohibiting
the use of certain kinds of features. Pariser pointed out a problem that friend
candidates recommended to him in Facebook were biased in terms of their po-
litical convictions without his permission [15]. For this problem, it would be
helpful to make recommendations that are neutral in terms of the user’s speci-
fied feature, i.e., the candidate friends’ political convictions. Further, there are
features that cannot legally be exploited due to various regulations or contracts.
For example, exploiting insider information and customer data are respectively
restricted by stock trading regulation and privacy policies.

Several researchers have recently begun to attempt the development of ana-
lytic techniques that are aware of social fairness or discrimination [17,3]. They
have shown that the simple elimination of sensitive features from calculations
is insufficient for avoiding inappropriate determination processes, due to the in-
direct influence of sensitive information. For example, when determining credit
scoring, the feature of race is not used. However, if people of a specific race live
in a specific area and address is used as a feature for training a prediction model,
the trained model might make unfair determinations even though the race fea-
ture is not explicitly used. Such a phenomenon is called a red-lining effect [3] or
indirect discrimination [17].

In this paper, we formulate causes of unfairness in data mining, develop widely
applicable and efficient techniques to enhance fairness, and evaluate the effec-
tiveness and efficiency of our techniques. First, we consider unfairness in terms
of its causes more deeply. We describe three types of cause: prejudice, underesti-
mation, and negative legacy. Prejudice involves a statistical dependence between
sensitive features and other information; underestimation is the state in which
a classifier has not yet converged; and negative legacy refers to the problems of
unfair sampling or labeling in the training data. We also propose measures to
quantify the degrees of these causes.

Second, we then focus on indirect prejudice and develop a technique to reduce
it. This technique is implemented as regularizers that restrict the learner’s be-
haviors. This approach can be applied to any prediction algorithm with discrim-
inative probabilistic models, such as logistic regression. In solving classification
problems that pay attention to sensitive information, we have to consider the
trade-off between the classification accuracy and the degree of resultant fairness.
Our method provides a way to control this trade-off by adjusting the regular-
ization parameter. We propose a prejudice remover regularizer, which enforces a
determination’s independence from sensitive information.

Finally, we perform experiments to test the effectiveness and efficiency of our
methods. We evaluate the effectiveness of our approach and examine the balance
between prediction accuracy and fairness. We demonstrate that our method can
learn a classification model by taking into account the difference in influence of
different features on sensitive information.

Note that in the previous work, a learning algorithm that is aware of social
discrimination is called discrimination-aware mining. However, we hereafter use
the terms, “unfairness” / “unfair” instead of “discrimination” / “discriminatory”
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for two reasons. First, as described above, these technologies can be used for
various purposes other than avoiding discrimination. Second, because the term
discrimination is frequently used for the meaning of classification in the data
mining literature, using this term becomes highly confusing.

We discuss causes of unfairness in section 2 and propose our methods for
enhancing fairness in section 3. Our methods are empirically compared with a
2-näıve-Bayes method proposed by Calders and Verwer in section 4. Section 5
shows related work, and section 6 summarizes our conclusions.

2 Fairness in Data Analysis

After introducing an example of the difficulty in fairness-aware learning, we show
three causes of unfairness and quantitative measures.

2.1 Illustration of the Difficulties in Fairness-Aware Learning

We here introduce an example from the literature to show the difficulties in
fairness-aware learning [3], which is a simple analytical result for the data set
described in section 4.2. The researchers performed a classification problem. The
sensitive feature, S, was gender, which took a value, Male or Female, and the
target class, Y , indicated whether his/her income is High or Low. There were
some other non-sensitive features, X . The ratio of Female records comprised
about 1/3 of the data set; that is, the number of Female records was much
smaller than that of Male records. Additionally, while about 30% of Male records
were classified into the High class, only 11% of Female records were. Therefore,
Female–High records were the minority in this data set.

In this data set, we describe how Female records tend to be classified into the
Low class unfairly. Calders and Verwer defined a discrimination score (hereafter
referred to as the Calders-Verwer score (CV score) by subtracting the conditional
probability of the positive class given a sensitive value from that given a non-
sensitive value. In this example, a CV score is defined as

Pr[Y=High|S=Male]− Pr[Y=High|S=Female].

The CV score calculated directly from the original data is 0.19. After training
a näıve Bayes classifier from data involving a sensitive feature, the CV score on
the predicted classes increases to about 0.34. This shows that Female records
are more frequently misclassified to the Low class than Male records; and thus,
Female–High individuals are considered to be unfairly treated. This phenomenon
is mainly caused by an Occam’s razor principle, which is commonly adopted
in classifiers. Because infrequent and specific patterns tend to be discarded to
generalize observations in data, minority records can be unfairly neglected. Even
if the sensitive feature is removed from the training data for a näıve Bayes clas-
sifier, the resultant CV score is 0.28, which still shows an unfair treatment for
minorities. This is caused by the indirect influence of sensitive features. This
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event is called by a red-lining effect [3], a term that originates from the his-
torical practice of drawing red lines on a map around neighborhoods in which
large numbers of minorities are known to dwell. Consequently, simply removing
sensitive features is insufficient, and another techniques have to be adopted to
correct the unfairness in data mining.

2.2 Three Causes of Unfairness

In this section, we discuss the social fairness in data analysis. Previous works
[17,3] have focused on unfairness in the resultant determinations. To look more
carefully at the problem of fairness in data mining, we shall examine the under-
lying causes or sources of unfairness. We suppose that there are at least three
possible causes: prejudice, underestimation, and negative legacy.

Before presenting these three causes of unfairness, we must introduce sev-
eral notations. Here, we discuss supervised learning, such as classification and
regression, which is aware of unfairness. Y is a target random variable to be
predicted based on the instance values of features. The sensitive variable, S, and
non-sensitive variable, X , correspond to sensitive and non-sensitive features, re-
spectively. We further introduce a prediction model M[Y |X,S], which models
a conditional distribution of Y given X and S. With this model and a true
distribution over X and S, Pr∗[X,S], we define

Pr[Y,X, S] =M[Y |X,S]Pr∗[X,S]. (1)

Applying marginalization and/or Bayes’ rule to this equation, we can calculate
other distributions, such as Pr[Y, S] or Pr[Y |X ]. We use P̃r[·] to denote sample
distributions. P̂r[Y,X, S] is defined by replacing a true distribution in (1) with
its corresponding sample distribution:

P̂r[Y,X, S] =M[Y |X,S]P̃r[X,S], (2)

and induced distributions from P̂r[Y,X, S] are denoted by using P̂r[·].

Prejudice. Prejudice means a statistical dependence between a sensitive vari-
able, S, and the target variable, Y , or a non-sensitive variable, X . There are three
types of prejudices: direct prejudice, indirect prejudice, and latent prejudice.

The first type is direct prejudice, which is the use of a sensitive variable in
a prediction model. If a model with a direct prejudice is used in classification,
the classification results clearly depend on sensitive features, thereby generating
a database containing direct discrimination [17]. To remove this type of preju-
dice, all that we have to do is simply eliminate the sensitive variable from the
prediction model. We then show a relation between this direct prejudice and
statistical dependence. After eliminating the sensitive variable, equation (1) can
be rewritten as

Pr[Y,X, S] =M[Y |X ]Pr∗[S|X ]Pr∗[X ].

This equation states that S and Y are conditionally independent given X , i.e.,
Y⊥⊥S—X. Hence, we can say that when the condition Y �⊥⊥ S—X is not satis-
fied, the prediction model has a direct prejudice.
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The second type is an indirect prejudice, which is statistical dependence be-
tween a sensitive variable and a target variable. Even if a prediction model lacks
a direct prejudice, the model can have an indirect prejudice and can make an
unfair determination. We give a simple example. Consider the case that all Y ,
X , and S are real scalar variables, and these variables satisfy the equations:

Y = X + εY and S = X + εS ,

where εY and εS are mutually independent random variables. Because
Pr[Y,X, S] is equal to Pr[Y |X ] Pr[S|X ] Pr[X ], these variables satisfy the con-
dition Y⊥⊥S—X, but do not satisfy the condition Y⊥⊥S. Hence, the adopted
prediction model does not have a direct prejudice, but may have an indirect prej-
udice. If the variances of εY and εS are small, Y and S become highly correlated.
In this case, even if a model does not have a direct prejudice, the determina-
tion clearly depends on sensitive information. Such resultant determinations are
called indirect discrimination [17] or a red-lining effect [3] as described in sec-
tion 2.1. To remove this indirect prejudice, we must use a prediction model that
satisfies the condition Y⊥⊥S.

We next show an index to quantify the degree of indirect prejudice, which
is straightforwardly defined as the mutual information between Y and S. How-
ever, because a true distribution in equation (1) is unknown, we adopt sample
distributions in equation (2) over a given sample set, D:

PI =
∑

(y,s)∈D
P̂r[y, s] ln

P̂r[y, s]

P̂r[y]P̂r[s]
. (3)

We refer to this index as a (indirect) prejudice index (PI for short). For conve-
nience, the application of the normalization technique for mutual information
[21] leads to a normalized prejudice index (NPI for short):

NPI = PI/(
√
H(Y )H(S)), (4)

where H(·) is an entropy function. PI/H(Y ) is the ratio of information of S used
for predicting Y , and PI/H(S) is the ratio of information that is exposed if a
value of Y is known. This NPI can be interpreted as the geometrical mean of
these two ratios. The range of this NPI is [0, 1].

The third type of prejudice is latent prejudice, which is a statistical depen-
dence between a sensitive variable, S, and a non-sensitive variable, X . Consider
an example that satisfies the equations:

Y = X1 + εY , X = X1 +X2, and S = X2 + εS ,

where εY⊥⊥εS and X1⊥⊥X2. Clearly, the conditions Y⊥⊥S—X and Y⊥⊥S are
satisfied, but X and S are not mutually independent. This dependence doesn’t
cause a sensitive information to influence the final determination, but it would
be exploited for training learners; thus, this might violate some regulations or
laws. Removal of latent prejudice is achieved by making X and Y independent
from S simultaneously. Similar to a PI, the degree of a latent prejudice can be
quantified by the mutual information between X and S.
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Underestimation. Underestimation is the state in which a learned model is
not fully converged due to the finiteness of the size of a training data set. Given
a learning algorithm that can acquire a prediction model without indirect preju-
dice, it will make a fair determination if infinite training examples are available.
However, if the size of the training data set is finite, the learned classifier may
lead to more unfair determinations than that observed in the training sample
distribution. Though such determinations are not intentional, they might awake
suspicions of unfair treatment. In other words, though the notion of convergence
at infinity is appropriate in a mathematical sense, it might not be in a social
sense. We can quantify the degree of underestimation by assessing the resultant
difference between the training sample distribution over D, P̃r[·], and the distri-
bution induced by a model, P̂r[·]. Along this line, we define the underestimation
index (UEI) using the Hellinger distance:

UEI =

√√√√1
2

∑
y,s∈D

(√
P̂r[y, s]−

√
P̃r[y, s]

)2
=

√√√√1−
∑

y,s∈D

√
P̂r[Y, S]P̃r[Y, S]. (5)

Note that we did not adopt the KL-divergence because it can be infinite and
this property is inconvenient for an index.

Negative Legacy. Negative legacy is unfair sampling or labeling in the training
data. For example, if a bank has been refusing credit to minority people without
assessing them, the records of minority people are less sampled in a training data
set. A sample selection bias is caused by such biased sampling depending on the
features of samples. It is known that the problem of a sample selection bias can
be avoided by adopting specific types of classification algorithms [24]. However,
it is not easy to detect the existence of a sample selection bias only by observing
training data. On the other hand, if a bank has been unfairly rejecting the loans
of the people who should have been approved, the labels in the training data
would become unfair. This problem is serious because it is hard to detect and
correct. However, if other information, e.g., a small-sized fairly labeled data set,
can be exploited, this problem can be corrected by techniques such as transfer
learning [10].

Regulations or laws that demand the removal of latent prejudices are rare.
We investigate UEIs in the experimental sections of this paper, but we don’t
especially focus on underestimation. As described above, avoiding a negative
legacy can be difficult if no additional information is available. We therefore
focus on the development of a method to remove indirect prejudice.

3 Prejudice Removal Techniques

We here propose a technique to reduce indirect prejudice. Because this technique
is implemented as a regularizer, which we call a prejudice remover, it can be
applied to wide variety of prediction algorithms with probabilistic discriminative
models.
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3.1 General Framework

We focused on classification and built our regularizers into logistic regression
models. Y , X , and S are random variables corresponding to a class, non-sensitive
features, and a sensitive feature, respectively. A training data set consists of
the instances of these random variables, i.e., D = {(y,x, s)}. The conditional
probability of a class given non-sensitive and sensitive features is modeled by
M[Y |X,S;Θ], where Θ is the set of model parameters. These parameters are
estimated based on the maximum likelihood principle; that is, the parameters
are tuned so as to maximize the log-likelihood:

L(D;Θ) =
∑

(yi,xi,si)∈D
lnM[yi|xi, si;Θ]. (6)

We adopted two types of regularizers. The first regularizer is a standard one
to avoid over-fitting. We used an L2 regularizer ‖Θ‖22. The second regularizer,
R(D,Θ), is introduced to enforce fair classification. We designed this regularizer
to be easy to implement and to require only modest computational resources. By
adding these two regularizers to equation (6), the objective function to minimize
is obtained:

−L(D;Θ) + ηR(D,Θ) +
λ

2
‖Θ‖22, (7)

where λ and η are positive regularization parameters.
We dealt with a classification problem in which the target value Y is binary

{0, 1}, X takes a real vectors, x, and S takes a discrete value, s, in a domain S.
We used a logistic regression model as a prediction model:

M[y|x, s;Θ] = yσ(x
ws) + (1− y)(1− σ(x
ws)), (8)

where σ(·) is a sigmoid function, and the parameters are weight vectors for
x, Θ = {ws}s∈S . Note that a constant term is included in x without loss of
generality. We next introduce a regularizer to reduce the indirect prejudice.

3.2 Prejudice Remover

A prejudice remover regularizer directly tries to reduce the prejudice index and
is denoted by RPR. Recall that the prejudice index is defined as

PI =
∑
Y,S

P̂r[Y, S] ln
P̂r[Y, S]

P̂r[S]P̂r[Y ]
=
∑
X,S

P̃r[X,S]
∑
Y

M[Y |X,S;Θ] ln
P̂r[Y, S]

P̂r[S]P̂r[Y ]
.

∑
X,S P̃r[X,S] can be replaced with (1/|D|)

∑
(xi,si)∈D, and then the scaling

factor, 1/|D|, can be omitted. The argument of the logarithm can be rewritten
as P̂r[Y |si]/P̂r[Y ], by reducing P̂r[S]. We obtain

∑
(xi,si)∈D

∑
y∈{0,1}

M[y|xi, si;Θ] ln
P̂r[y|si]
P̂r[y]

.
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The straight way to compute P̂r[y|s] is to marginalizeM[y|X, s;Θ]Pr∗[X |s] over
X . However, if the domain of X is large, this marginalization is computationally
heavy. We hence take an approach by which this marginalization is replaced with
a sample mean. More specifically, this marginalization is formulated by

P̂r[y|s] =
∫
dom(X)

Pr∗[X |s]M[y|X, s;Θ]dX,

where dom(X) is the domain of X . We approximated this formula by the fol-
lowing sample mean:

P̂r[y|s] ≈
∑

(xi,si)∈D s.t. si=sM[y|xi, s;Θ]

|{(xi, si) ∈ D s.t. si = s}| . (9)

Similarly, we approximated P̂r[y] by

P̂r[y] ≈
∑

(xi,si)∈DM[y|xi, si;Θ]

|D| . (10)

Note that in our preliminary work [12], we took the approach of replacing X
with x̄s, which is a sample mean vector of x over a set of training samples whose
corresponding sensitive feature is equal to s. However, we unfortunately failed
to obtain good approximations by this approach.

Finally, the prejudice remover regularizer RPR(D,Θ) is

∑
(xi,si)∈D

∑
y∈{0,1}

M[y|xi, si;Θ] ln
P̂r[y|si]
P̂r[y]

, (11)

where P̂r[y|s] and P̂r[y] are equations (9) and (10), respectively. This regularizer
becomes large when a class is determined mainly based on sensitive features;
thus, sensitive features become less influential in the final determination. In the
case of logistic regression, the objective function (7) to minimize is rewritten as

∑
(yi,xi,si)

lnM[yi|xi, si;Θ] + ηRPR(D,Θ) +
λ

2

∑
s∈S

‖ws‖22, (12)

where M[y|x, s;Θ] is equation (8) and RPR(D,Θ) is equation (11). In our ex-
periment, parameter sets are initialized by applying standard logistic regression
to training sets according to the values of a sensitive feature, and this objective
function is minimized by a conjugate gradient method. After this optimization,
we obtain an optimal parameter set, {w∗

s}.
The probability of Y = 1 given a sample without a class label, (xnew, snew)

can be predicted by

Pr[Y=1|xnew, snew; {w∗
s}] = σ(x


neww
∗
snew ).
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4 Experiments

We compared our method with Calders and Verwer’s method on the real data
set used in their previous study [3].

4.1 Calders-Verwer’s 2-näıve-Bayes

We briefly introduce Calders and Verwer’s 2-näıve-Bayes method (CV2NB for
short), which was found to be the best of three methods in the previous study
using the same dataset [3]. The generative model of this method is

Pr[Y,X, S] =M[Y, S]
∏
i

M[Xi|Y, S]. (13)

M[Xi|Y, S] models a conditional distribution of Xi given Y and S, and the
parameters of these models are estimated in a similar way as in the estimation
of parameters of a näıve Bayes model. M[Y, S] models a joint distribution Y
and S. Because Y and S are not mutually independent, the final determination
might be unfair. While each feature depends only on a class in the case of the
original näıve Bayes, every non-sensitive feature, Xi, depends on both Y and S
in the case of CV2NB. M[Y, S] is then modified so that the resultant CV score
approaches zero. Note that we slightly changed this algorithm as described in
[12], because the original algorithm may fail to stop.

4.2 Experimental Conditions

We summarize our experimental conditions. We tested a previously used real
data set [3], as shown in section 2.1. This set includes 16281 data in an adult.test
file of the Adult / Census Income distributed at the UCI Repository [7]. The tar-
get variable indicates whether or not income is larger than 50M dollars, and the
sensitive feature is gender. Thirteen non-sensitive features were discretized by
the procedure in the original paper. In the case of the näıve Bayes, parameters of
models,M[Xi|Y, S], are estimated by a MAP estimator with multinomial distri-
bution and Dirichlet priors. In our case of logistic regression, discrete variables
are represented by 0/1 dummy variables coded by a so-called 1-of-K scheme.
The regularization parameter for the L2 regularizer, λ, is fixed to 1, because the
performance of pure logistic regression was less affected by this parameter in our
preliminary experiments. We tested six methods: logistic regression with a sen-
sitive feature (LR), logistic regression without a sensitive feature (LRns), logistic
regression with a prejudice remover regularizer (PR), näıve Bayes with a sensitive
feature (NB), näıve Bayes without a sensitive feature (NBns), and Calders and
Verwer’s 2-näıve-Bayes (CV2NB). We show the means of the statistics obtained
by the five-fold cross-validation.

4.3 Experimental Results

Table 1 shows accuracies (Acc), NPI and UEI in section 2, and CV scores (CVS).
MI denotes mutual information between sample labels and predicted labels; NMI
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Table 1. A summary of experimental results

method Acc NMI NPI UEI CVS PI/MI

LR 0.851 0.267 5.21E-02 0.040 0.189 2.10E-01
LRns 0.850 0.266 4.91E-02 0.039 0.184 1.99E-01
PR η=5 0.842 0.240 4.24E-02 0.088 0.143 1.91E-01
PR η=15 0.801 0.158 2.38E-02 0.212 0.050 1.62E-01
PR η=30 0.769 0.046 1.68E-02 0.191 0.010 3.94E-01

NB 0.822 0.246 1.12E-01 0.068 0.332 4.90E-01
NBns 0.826 0.249 7.17E-02 0.043 0.267 3.11E-01
CV2NB 0.813 0.191 3.64E-06 0.082 -0.002 2.05E-05

NOTE: 〈n1〉E〈n2〉 denotes n1 × 10n2 . L2 regularizer: λ = 1.

was obtained by normalizing this MI in a process similar to NPI. PI/MI quantifies
a prejudice index that was sacrificed by obtaining a unit of information about
the correct label. This can be used to measure the efficiency in the trade-off
between prediction accuracy and prejudice removal. The smaller PI/MI value
indicates higher efficiency in this trade-off.

We first compare the performance of our method with that of baselines in
Table 1. Compared with NBns, our method was superior both in accuracy and
NPI at η = 5; and hence, ours was superior in the efficiency index, PI/MI.
When comparing LRns, the prejudice in decisions was successfully removed by
our prejudice remover in exchange for the prediction accuracy. We next moved
on to the influence of the parameter, η, which controls the degree of prejudice re-
moval. We expected that the larger the η, the more prejudice would be removed,
whereas accuracy might be sacrificed. According to Table 1, as η increased, our
PR generally become degraded in accuracy.

To further investigate the change of performance depending on this parameter
η, we demonstrated the variations in accuracy (Acc), normalized prejudice in-
dex (NPI), and the trade-off efficiency between accuracy and prejudice removal
(PI/MI) in Figure 1. We focus on our PR method. The increase of η generally
damaged accuracy because the prejudice remover regularizer is designed to re-
move prejudice by sacrificing accuracy in prediction. This effect was observed
by the increase in NPI. The peak in trade-off efficiency was observed at η = 15.
More prejudice could be removed by increasing η, but the accuracy in prediction
was fairly damaged.

We next compared our PR with other methods. By observing Figure 1(c),
our PR demonstrated better performance in trade-offs between accuracy and
prejudice removal than the NBns. When compared to the baseline LRns, more
prejudice was successfully removed by increasing η. The Figure 1(a) showed that
this was achieved by sacrificing the prediction accuracy. The efficiencies in the
trade-offs of our PR was better than those of LRns if η ranged between 0 and
20. The performance of CV2NB was fairly good, and our PR was inferior to it
except for accuracy at the lower range of η.
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Fig. 1. The change in performance for the Adult / Census Income data according to η

NOTE: Horizontal axes represent the parameter η, and vertical axes represent statis-
tics in each subtitle. Solid, chain, dotted, and broken lines indicate the statistics of
PR, CV2NB, LRns, and NBns, respectively. Larger Acc values indicate better per-
formance, and smaller NPI and PI/MI values indicate better performance. NPI and
PI/MI of CV2NB were out of the bounds of these charts and are properly noted in
Table 1.
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Fig. 2. The change in performance for our synthetic data according to η

NOTE: The meanings of axes and line styles are the same as in Figure 1.

To show how the difference in the prejudice removal between CV2NB and PR
is brought about by the ability of our method to take into account the difference
in influence of different features on sensitive information, we applied our PR
to a synthetic data set. To synthesize data, εi was sampled from the normal
distribution N (0, 1), and si ∈ {0, 1} was sampled uniformly at random. The
first feature xai = εi, and the second feature xbi = 1 + εi if si = 1; otherwise
xbi = −1+εi. The class yi was set to 0 if xai+xbi < 0; otherwise 1. We generated
20 000 samples and applied CV2NB and our PR by changing η from 0 to 300.
Because xai and xbi are equivalent up to bias, these two features are comparable
in usefulness for class prediction. The first feature, xai, is independent from si,
while the second feature, xbi, depends on si.

We showed the change in three indexes, accuracy, NPI, and PI/MI, on inde-
pendently generated test data according to the parameter η in Figure 1. Unfor-
tunately, results became unstable if η is larger than 200 because the objective
function (12) has many local minima for large η. However, when comparing the
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Table 2. The learned weight vectors w0 and w1 in equation (8)

w0 w1

η = 0 [11.3, 11.3 ,−0.0257] [11.3, 11.4 ,0.0595]
η = 150 [55.3,−53.0, −53.6 ] [56.1,−54.1, 53.6 ]

NOTE: The first, second, and third elements of ws were weights for the first feature,
xai, the second feature, xbi, and a bias constant, respectively.

results in Table 1 with those in this figure, the differences in NPI derived by
CV2NB and PR became much smaller.

To exemplify the reason for these differences, we then showed the learned
weight vectors w0 and w1 in equation (8) in Table 2. By observing the weights
more carefully, the weights for xai and xbi were roughly equal when η = 0.
However, when η = 150, the absolute values of weights for xbi were smaller than
those for xai. This indicates that to remove prejudice, our PR tries to ignore
features that depend on a sensitive feature. Therefore, if there are features that
are useful for classification and additionally independent from a sensitive feature,
our PR can remove prejudice effectively. In other words, our method is designed
to learn a classification model by taking into account difference in influence of
different features on sensitive information. On the other hand, according to the
generative model (13), CV2NB treats all features equally and simply modifies the
M[Y, S] for removing prejudice. Therefore, CV2NB cannot learn a model that
reflects such differences.

This difference would cause the following effect in practical use. When consid-
ering a case of credit scoring, because CV2NB treats all features equally, scores of
all individuals who are in a sensitive state would be raised equally. However, the
repayment capacities of these individuals are certainly unequal, and our method
can change credit scoring by taking into account individuals’ repayment capacity.
On the other hand, if the repayment capacities of all individuals in a sensitive
state are nearly equal, our method cannot reduce prejudice without degrading
prediction accuracy. However, CV2NB can remove prejudice independently of the
states of individuals’ repayment capacity. Note that fair decision-making that
takes into account the differences in effects of features has also been discussed
in [13,23].

In summary, our PR could successfully reduce indirect prejudice when com-
pared with baseline methods. Our method is inferior to CV2NB in its efficiency
of prejudice removal, but it can learn a classification rule by taking into ac-
count the difference in influence of different features on sensitive information.
Additionally, our framework has the advantage that it can be applied to any
probabilistic discriminative classifier.

5 Related Work

Several analytic techniques that are aware of fairness or discrimination have
recently received attention. Pedreschi et al. emphasized the unfairness in
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association rules whose consequents include serious determinations [17].They
advocated the notion of α-protection, which is the condition that association
rules were fair. Given a rule whose consequent exhibited determination is dis-
advantageous to individuals, it would be unfair if the confidence of the rule
substantially increased by adding a condition associated with a sensitive feature
to the antecedent part of the rule. The α-protection constrains the rule so that
the ratio of this increase is at most α. They also suggested the notions of direct
discrimination and indirect discrimination. A direct discriminatory rule directly
contains a sensitive condition in its antecedent, and while an indirect discrimi-
natory rule doesn’t directly contain a sensitive condition, the rule is considered
to be unfair in the context of background knowledge that includes sensitive in-
formation. Their work has since been extended [18]. Various kinds of indexes
for evaluating discriminatory determinations were proposed and their statistical
significance has been discussed. A system for finding such unfair rules has been
proposed [20].

Calders and Verwer proposed several methods to modify näıve Bayes for en-
hancing fairness as described in section 4.1 [3]. Kamiran et al. developed algo-
rithms for learning decision trees while taking fairness consideration [11]. When
choosing features to divide training examples at non-leaf nodes of decision trees,
their algorithms take care of the information gain regarding sensitive informa-
tion as well as about target decisions. Additionally, the labels at leaf nodes are
changed so as to avoid unfair decisions.

Luong et al. proposed a notion of situation testing, wherein a determination
is considered unfair if different determinations are made for two individuals all
of whose features are equal except for sensitive ones [13]. Such unfairness was
detected by comparing the determinations for records whose sensitive features
are different, but are neighbors in non-sensitive feature space. If a target deter-
mination differs, but non-sensitive features are completely equal, then a target
variable depends on a sensitive variable. Therefore, this situation testing has
connection to our indirect prejudice.

Dwork et al. argued a data transformation for the purpose of exporting data
while keeping aware of fairness [5]. A data set held by a data owner is transformed
and passed to a vendor who classifies the transformed data. The transformation
preserves the neighborhood relations of data and the equivalence between the
expectations of data mapped from sensitive individuals and from non-sensitive
ones. In a sense that considering the neighborhood relations, this approach is
related to the above notion of situation testing. Because their proposition 2.2 im-
plies that the classification results are roughly independent from the membership
in a sensitive group, their approach has relation to our idea of prejudice.

Žliobaitė et al. discussed handling conditional discrimination [23]. They con-
sidered the case where even if the difference between probabilities of receiving
advantageous judgment given different values of sensitive features, some extent
of the difference can be explained based on the values of non-sensitive features.
For example, even though females are less frequently admitted to a university
than males, this decision is considered as fair if this is due to the fact that
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females tend to try more competitive programs. They proposed a sampling tech-
nique to remove the unfair information from training samples while excluding
such explainable factors.

In a broad sense, fairness-aware learning is related to causal inference [16],
because the final decision becomes unfair if the decision depends on a sensitive
status. Fairness in data mining can be interpreted as a sub-notion of legitimacy,
which means that models can be deployed in the real world [19]. Gondek and
Hofmann devised a method for finding clusters that were not relevant to a given
grouping [8]. If a given grouping contains sensitive information, this method can
be used for clustering data into fair clusters. Independent component analysis
might be used to maintain the independence between features [9].

The removal of prejudice is closely related to privacy-preserving data min-
ing [1], which is a technology for mining useful information without exposing
individual private records. The privacy protection level is quantified by mutual
information between the public and private realms [22]. In our case, the degree
of indirect prejudice is quantified by mutual information between classification
results and sensitive features. Due to the similarity of these two uses of mutual
information, the design goal of fairness-aware learning can be considered the
protection of sensitive information when exposing classification results. In our
case, the leaked information is quantified by mutual information, but other cri-
teria for privacy, such as differential privacy [14], might be used for the purpose
of maintaining fairness.

Techniques of cost-sensitive learning [6] might be helpful for addressing un-
derestimation problems.

As described in section 2.2, the problem of negative legacy is closely related
to transfer learning. Transfer learning is “the problem of retaining and applying
the knowledge learned in one or more tasks to efficiently develop an effective
hypothesis for a new task” [10]. Among many types of transfer learning, the
problem of a sample selection bias [24] would be related to the negative legacy
problem. Sample selection bias means that the sampling is not at random, but
biased depending on some feature values of data. Another related approach to
transfer learning is weighting samples according the degree of usefulness for the
target task [4]. Using these approaches, if given a small amount of fairly labeled
data, other data sets that might be unfairly labeled would be correctly processed.

6 Conclusions and Future Work

The contributions of this paper are as follows. First, we proposed three causes of
unfairness: prejudice, underestimation, and negative legacy. Prejudice refers to
the dependence between sensitive information and the other information, either
directly or indirectly. We further classified prejudice into three types and de-
veloped a way to quantify them by mutual information. Underestimation is the
state in which a classifier has not yet converged, thereby producing more unfair
determinations than those observed in a sample distribution. Negative legacy is
the problem of unfair sampling or labeling in the training data. Second, we devel-
oped techniques to reduce indirect prejudice. We proposed a prejudice remover
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regularizer, which enforces a classifier’s independence from sensitive information.
Our methods can be applied to any algorithms with probabilistic discriminative
models and are simple to implement. Third, we showed experimental results
of logistic regressions with our prejudice remover regularizer. The experimental
results showed the effectiveness and characteristics of our methods.

Research on fairness-aware learning is just beginning, and there are many
problems yet to be solved: for example, the definition of fairness in data analysis,
measures for fairness, and maintaining other types of laws or regulations. The
types of analytic methods are severely limited at present. Our method can be
easily applied to regression, but fairness-aware clustering and ranking methods
are also needed. Because of the lack of convexity of the objective function, our
method is occasionally trapped by local minima. To avoid this, we plan to try
other types of independence indexes, such as kurtosis, which has been used for
independent component analysis. If a sensitive feature is a multivariate variable
whose domain is large or is a real variable, our current prejudice remover cannot
be applied directly; these limitations must be overcome.

The use of data mining technologies in our society will only become greater
and greater. Unfortunately, their results can occasionally damage people’s lives
[2]. On the other hand, data analysis is crucial for enhancing public welfare. For
example, exploiting personal information has proved to be effective for reducing
energy consumption, improving the efficiency of traffic control, preventing infec-
tious diseases, and so on. Consequently, methods of data exploitation that do not
damage people’s lives, such as fairness/discrimination-aware learning, privacy-
preserving data mining, or adversarial learning, together comprise the notion of
socially responsible mining, which it should become an important concept in the
near future.
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Abstract. We present the results of a multi-phase study to optimize
strategies for generating personalized article recommendations at the
Forbes.com web site. In the first phase we compared the performance
of a variety of recommendation methods on historical data. In the sec-
ond phase we deployed a live system at Forbes.com for five months on
a sample of 82,000 users, each randomly assigned to one of 20 methods.
We analyze the live results both in terms of click-through rate (CTR)
and user session lengths. The method with the best CTR was a hy-
brid of collaborative-filtering and a content-based method that leverages
Wikipedia-based concept features, post-processed by a novel Bayesian
remapping technique that we introduce. It both statistically significantly
beat decayed popularity and increased CTR by 37%.

Keywords: personalization, recommender systems, collaborative filter-
ing, content analysis, live user trial.

1 Introduction

We performed an extensive study on generating personalized recommendations
of articles on the Forbes.com web site. Of the many algorithms available, which
is the best to deploy in practice? While each research paper on the topic forwards
its own opinion, the answer is certainly that it depends on the specific situation.
A study done on movie recommendation might draw different conclusions than
one conducted on news articles, which have a much shorter half-life and suggest
a stronger recency factor in scoring. Even a study conducted specifically on news
recommendation may draw different conclusions than one specifically targeting
a website like Forbes.com, which includes magazine articles and other long-lived
content, such as how-to articles and profiles of top colleges and business people.
Even a typical questionnaire-style study with a few volunteer Forbes users is
unlikely to generalize well to real use by live users. In short, there is no substitute
for trying a variety of methods in situ for selecting the best method(s) for one’s
situation. That said, only a small number of methods can be tested in a live
trial, so they should be from among the most likely to succeed.

We conducted our study in two phases. In the first phase, we used a historical
dataset of 8.5 million article URL clicks by 1 million unique de-identified users
in order to quickly test a wide variety of recommendation methods, including
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variants and parameterizations. From this study we determined a short list to
evaluate in live testing in the second phase. Evaluation with historical datasets
is reproducible and convenient to test many methods, but it has a variety of
shortcomings and may not generalize to real-world performance [24,4,22]. If an
algorithm gives top scores to articles not in the user’s history, they may be more
desirable to the user than the recorded clicks...or less desirable—only live testing
can distinguish. In the worst case, the historical data represents less what users
actually like than which links were available or promoted on the home page at
the time the user visited, which can have a very strong effect on popularity [16].

In the second phase—the primary focus of this paper—we conducted a five-
month live trial on the Forbes.com web site involving 2.1 million URL clicks by
a sample of 82,000 de-identified users, each assigned randomly to one of twenty
competing methods. Our goals and constraints included the following: It must
deal with only de-identified user numbers, not requiring user demographics or
any personal profile information. It should be scalable to 100,000 users, 100,000
articles, and dozens of competing methods running simultaneously with sub-
second latency for months. The study was made viable by minimizing the changes
needed by Forbes.

The winning method involves a hybrid of item-item collaborative filtering and
a content-based TF·IDF method, including Wikipedia-based features and a novel
Bayesian score remapping technique that takes into account the models of other
users that read—or were inferred to have chosen not to read—the article. We
also evaluated pure versions of each method as well as various lesions, in order
to determine the usefulness of the different aspects. Because our goal was to seek
the best methods rather than to restrict ourselves to comparing only variants
of one technique, we have good confidence that the best method we found is
actually quite strong for our situation. Live trials of this kind and scale are
relatively scarce in the literature. This work demonstrates a successful pattern
for live trial research for researchers who do not themselves work for a major
content company with a large user population.

Section 2 describes the recommender algorithms we considered in both Phase I
and Phase II, including novel techniques for score remapping and Wikipedia-
based concept features. Section 3 describes the live trial, our experiment protocol,
and the results, including lesion variants to determine how much certain features
of the best hybrid are contributing. Section 4 discusses the findings and lists some
of the lessons learned. Section 5 discusses related work, and Section 6 concludes
and offers future directions.

Further details and discussion of topics omitted for reasons of space may be
found in a longer technical report version of this article available from HP Labs.

2 Recommendation Methods

In the first phase of the experiment, we analyzed a historical snapshot, provided
by Forbes Media, of 8.5 million de-identified user visits to the Forbes.com website
in order to determine promising candidate recommendation methods for the live
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trial in the second phase. The snapshot was split into a training set consisting of
8.2 million visits to articles published from May, 2010, through November, 2010,
and a testing set consisting of 285,000 visits to articles published in December,
2010, by 117,000 unique users. As there was no possibility of actually making
recommendations and due to other constraints imposed by the data set—most
notably that the visits were not timestamped—the score given each candidate
recommendation method was based on a determination, for each visit, as to
whether the article visited would have been one of the top-scoring articles pub-
lished within five days of the publication date of the visited article (reasoning
that the “relevancy window” for an article is approximately five days and so the
visit was likely within five days after publication and the competing articles were
published fewer than five days before the visit).

In the first phase we ran approximately 15,000 trials, each testing a particu-
lar parameterization of a particular scoring method. Among the content-based
methods, we tested variants of Näıve Bayes and TF·IDF, each with a variety of
feature set combinations and other parameters, such as variants on how exactly
Inverse Document Frequency is computed. Among the feature sets tested were
unigram words-only and words+bigrams from the text of the article, from its
title, and/or from its URL. We also included four classes of features generated by
two Wikipedia-based concept extractors developed previously, the best of which
we describe briefly in Sect. 2.2. Among collaborative filtering methods [24], we
tested Item-Item collaborative filtering and User-User collaborative filtering, pa-
rameterized by several similarity metrics: Cosine, Jaccard, Euclidean, Pearson
correlation, and conditional probability in each direction. We also tested the one-
class collaborative filtering methods weighted Alternating Least Squares (ALS)
and sampled ALS ensembles, whose regularized matrix factorizations seek to
learn latent factors across the entire population [19]. As our control method, we
investigated using article popularity. We also investigated linear- and non-linear
combinations of article popularity with various scoring methods, as well as a
novel score remapping technique, which we discuss next.

2.1 Bayesian Score Remapping Technique

For this experiment, we developed a new technique, based on Bayes’ Rule, that
adjusts a score from any underlying scoring method by estimating the likelihood
that a user with that particular score would actually be interested enough to
visit the article. In this way, we are able to distinguish between articles that are
broadly popular (i.e., that empirically appeal to users whose underlying scores
are relatively low) and those that are narrowly popular (i.e., that only appeal
to users with high underlying scores), allowing us to reorder our estimates of a
user’s rank interest from what the underlying method would recommend.

To accomplish this, for each article we keep track of two score distributions,
modeled as normal distributions. The first distribution contains the scores for
this article of all users who have read it, based on the current underlying model
for those users. This allows us to compute the conditional probability that a
user who was interested to read the article has a given score for it. The second
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distribution similarly contains scores for the article, but in this case, the scores
are for users who did not read the article. Rather than take the scores of all such
users, we use the scores of users who were active on the site shortly after the
article appeared (the article’s “relevancy window”) but who did not view the
article. These users are taken to be ones who would likely have read the article
had they been interested and so are inferred to not have been interested. From
this second distribution, we can compute the conditional probability that a user
who was not interested in the article has a given score for it. Note that in a
live system, users’ scores for articles will change frequently and when users view
the article they move from the non-interested- to the interested-distribution, so
these distributions need to be dynamically maintained.

By Bayes’ Rule,

Pr[A | B ]

Pr[A | B ]
=

Pr[B | A ] · Pr[A ]

Pr[B | A ] · Pr[A ]
. (1)

In our context, for a particular underlying score s, the conditional likelihood
ratio

R =
Pr[ interesting | s ]

Pr[ not interesting | s ] (2)

=
Pr[ s | interesting ] · Pr[ interesting ]

Pr[ s | not interesting ] · Pr[ not interesting ] (3)

=
Pr[ s | interesting ]

Pr[ s | not interesting ] ·
Pr[ interesting ]

1− Pr[ interesting ]
, (4)

which can be computed directly with our stored distributions. Since

Pr[ interesting | s ] = 1− Pr[ not interesting | s ] , (5)

Pr[ interesting | s ] = R

R+ 1
, (6)

by use of equation (2) again. Equation (6) is used as an adjusted score indicating
the likelihood that a user with a particular underlying score s will be interested
in reading the article. This works for any underlying monotonic scoring method.

Some care must be taken when one or both of the distributions for an article
contain too few values for the conditional probabilities to be statistically mean-
ingful. In this case, we consider that we do not yet have enough information
about the article and do not recommend it.

2.2 Wikiconcept Features

For a prior project we had developed a Wikipedia-based concept extractor [12]
that takes unstructured text as input and constructs an analysis that includes
a set of concepts, identified by Wikipedia articles, each associated with a score
indicative of the degree to which the text is “about” that concept, with higher
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scores indicating that the concept is central to the text and lower scores indicat-
ing that, although the concept is mentioned in the text, it is relatively incidental.

The details of the concept extractor are beyond the scope of this paper,
but roughly, the text is broken up into sentences (or sentence-equivalents) and
scanned for the presence of 1–5 word anchor phrases, taken from the text
displayed on intra-Wikipedia hyperlinks and implicating (often ambiguously)
concepts associated with the Wikipedia articles the hyperlinks point to. For ex-
ample, the anchor phrase “Clinton” is associated with “Bill Clinton” and “Hillary
Clinton”, along with “George Clinton”, “Henry Clinton”, “DeWitt Clinton”,
“Clinton, Iowa”, and “Clinton County, NY”, each with a prior degree of likeli-
hood based on the number of times the phrase was used within Wikipedia to
link to the concept’s article.

The evidence from the detected anchor phrases is passed to an iterative con-
sensus algorithm that determines, based on the evidence and on the conditional
likelihood that pairs of Wikipedia articles will both be link targets within a
Wikipedia article, the most likely concept referent for each anchor phrase (if any
is deemed sufficiently likely). Each concept the extractor knows about is also
associated with a set of categories, and based on the coocurrence of concepts
associated with different categories, one or two (occasionally more) categories
are chosen to describe the context of the particular concept. Categories are also
inferred directly using a support vector machine trained with non-Wikipedia
articles from the Open Directory Project (www.dmoz.org).

The tables used to drive the extractor are generated automatically from a
Wikipedia snapshot obtained periodically from Freebase.com. The system used
for the live trial includes 6.7 million normalized anchor phrases that impute
3.3 million concepts. The category set includes 913 categories in a hand-crafted
hierarchy.

The concept extractor outputs four classes of features for consideration by the
content-based methods: (1) detected anchor phrases, annotated by occurrence
count, (2) extracted concepts, annotated by centrality score and confidence of de-
tection, (3) recognized categories, associatedwith categorizer scores, and (4) iden-
tified concept/category pairs, annotated by concept centrality and confidence.

2.3 Phase II Methods

Based on the Phase I trials, the details of which must be omitted for space, the
clear winner was Bayesian-adjusted TF·IDF, with no IDF component (so just
TF), with a logarithmic transformation on the TF counts, and L2 normalization
on the length of the feature vector. Its best-performing feature set included
anchor phrases and concepts from the concept extractor (see Sect. 2.2), words
from the article title, and words and bigrams from the article URL, but not,
interestingly, words or bigrams from the article body. We therefore chose to use
TF·IDF, variously parameterized, for our content-based methods. As we also
wanted to investigate collaborative filtering in the live trial, we chose the most
competitive method: Item-Item collaborative filtering where a user’s score for
an unread article U is the conditional probability that other users have read U,
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Table 1. Phase II methods

Baseline Methods

1. Decayed popularity
2. Unpersonalized decayed popularity
3. Raw (undecayed) popularity
4. Unadjusted TF·IDF(“bag of words”

features, no Wikiconcepts features)
5. Unadjusted Item-Item collaborative

filtering

Experimental Methods

6. Popularity-adjusted TF
7. Bayesian-adjusted TF
8. 50%-popularity-adjusted Item-Item
9. 10%-popularity-adjusted Item-Item

10. Popularity-adjusted TF/CF hybrid
11. Bayesian-adjusted TF/CF hybrid

Lesion Methods

12. Popularity-adjusted TF (no concepts)

13. Bayesian-adjusted TF (no concepts)

14. Popularity-adjusted TF·IDF (no Wiki
features)

15. Bayesian-adjusted TF·IDF (no Wiki
features)

16. Unadjusted TF

17. Bayesian-adjusted TF (no recency fo-
cus)

18. Popularity-adjusted TF (no negative
interest filter)

19. Bayesian-adjusted TF (no negative in-
terest filter)

20. Bayesian-adjusted TF (using CDF)

given that they also read an article R that the user has read, averaged over all
articles R the user has read so far.

Based on anticipated traffic volume and experiment duration, we estimated
that we could test 20 methods in parallel in Phase II, with each newly-observed
user randomly assigned to a recommendation method in a balanced manner,
and expect to be able to statistically significantly distinguish between better-
performing and worse-performing methods. We considered it important to run
all of the methods at the same time so that we could be confident that differences
we found were due to the methods themselves and not due to changes in the set
of candidate articles (e.g., that one recommendation method had a popular and
easily recommendable candidate article not available to another method, were
we to use sequential A-B testing).

In Phase II, our recommendationmethods consisted of a scoring function, which
produced a numeric score for each of a set of candidate articles, a set of filters,
which constrained the set of candidate articles, and a selection method, which
seclected the articles to recommend based on the computed scores and possibly
other information associated with the articles. Unless otherwise mentioned, all
Phase II methods included filters that removed from consideration any article that
the user had already read or for which the user had at least twice selected a rec-
ommended article further down in a recommendation list. Except for Bayesian-
adjusted methods, the selection method selected articles with the highest associ-
ated scores. For Bayesian-adjustedmethods, unless specified, the selectionmethod
selected themost recently-published articles fromamong the 25 highest (adjusted)-
scoring articles, with all articles published in the last 48 hours considered to be
equally recent. This is an attempt to capture the notion of recency, which is built
in for methods that mixed with decayed popularity.

The Phase II methods are listed in Table 1.
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Baseline Methods. Five of the twenty methods were chosen as representing
state of practice. Method 1 prefers articles that have been visited the most times,
with an exponential decay. As with all of the Phase II methods that involved
decayed popularity, the smooth decay parameter was chosen such that a visit is
worth 10% of one 24 hours later. This decay value was empirically chosen as sub-
stantially optimal based on an observational period prior to the start of Phase II,
during which we observed user visits but did not make recommendations.

Method 2 is like Method 1, except that popular articles are recommended to
a user even if the user has previously read the article or if the user has selected
articles below that article in prior recommendation lists—this represents the
commonplace, unpersonalized most popular lists at many sites. In Method 3,
the most popular articles are recommended to a user with no popularity decay.

For the other two baseline methods we chose one content-based method and
one collaborative filtering method. The content-based method, Method 4, is un-
adjusted TF·IDF (including the typical IDF component and logarithmic TF
transform), with L2 normalization over the usual “bag of words” features taken
from the article’s body, title, and URL. The collaborative filtering method,
Method 5, is unadjusted Item-Item collaborative filtering, as described above.

Experimental Methods. The next six methods are the ones that we expected
to be serious contenders. Two of them are content-based methods using L2-
normalized, logarithmically-transformed TF over extracted concepts, detected
anchor phrases, title words, and URL words and bigrams. The resulting score is,
in Method 6, averaged evenly with the score fromMethod 1 (decayed popularity),
while in Method 7, the Bayesian adjustment described in Sect. 2.1 is applied.
Even though the Bayesian adjustment outperformed mixing with popularity in
the static Phase I trials, we wanted to leave ourselves open to the possibility that
in live trials we might get a different result, and so included popularity-adjusted
variants to the Bayesian-adjusted methods.

Two experimental methods used a weighted average of Item-Item collabo-
rative filtering with decayed popularity. Method 8 weights them evenly, while
Method 9 gives just 10% weight to the popularity component.

In the final two experimental methods, we use both content-based (TF) and
collaborative filtering (CF). In Method 10, the scores from TF (as in Method 6),
Item-Item collaborative filtering, and decayed popularity are averaged evenly. In
Method 11, the scores from TF and Item-Item collaborative filtering are averaged
evenly and Bayesian adjustment is applied to the resulting score.

Lesion Methods. Finally, we included nine methods that investigate leaving
out or otherwise altering some aspect of one of the experimental methods in
order to determine whether that aspect is important. In Methods 12 and 13, we
investigate leaving out concepts as features from Methods 6 and 7. While the
concept extractor is quite efficient, there is a runtime and software-complexity
cost for including the algorithm, and so if it turned out that concepts were need-
less, omitting them would be an appreciable simplification in feature extraction.
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In Methods 14 and 15, we further leave out anchor phrases as features. While
the time required to detect these phrases is negligible, if neither concepts nor
anchor phrases is required, then there is no need to expend the effort to obtain
Wikipedia snapshots and build the required tables. To give these methods the
best chance, we chose the best-performing parameterization from Phase I over
TF·IDF runs that did not use concept extractor features. The IDF component
is included, and the features are title words, URL words and bigrams, and body
words and bigrams.

Method 16 is chosen to validate whether there is an on-line benefit for the
popularity or Bayesian adjustments in Methods 6 and 7 by running the TF
algorithm, with the same parameterization, unadjusted.

In Method 17, we investigate the impact of the recency-biased selection method
by running Bayesian-adjusted TF but selecting the top-scoring articles regardless
of age.

In Methods 18 and 19 we investigate the benefit of including the “negative
interest filter.” Recall that in other methods (with the exception of Method 2)
if the user accepted two recommendations that were listed below a given recom-
mended article, we inferred that the user was not interested in that article and
refrained from recommending it in the future.

Finally, in Method 20, we make an adjustment to Method 7. In all of the other
Bayesian-adjusted methods, when we figure the conditional Pr[s|(not)interested],
we use a probability density function (PDF) to determine the probability of
getting precisely that score. In Method 20, by contrast, we use a cumulative
density function (CDF) to determine the probability of getting a score at least
that high.

3 Live Trial

In Phase II we received information about user visits in real time and had the
opportunity to recommend articles that the user might be interested in and
learn when our recommendations were taken. We were interested in answering
two questions:

Question 1: Do any of the experimental methods described in Sect. 2.3 rep-
resent a significant improvement over the baseline methods in terms of the
click-through rate (CTR)? That is, are users significantly more likely to ac-
cept recommendations made by certain methods than others?

Question 2: Do good recommendations increase the amount of time a user
spends on the site? That is, do users who take recommendations have longer
session lengths than users who do not, and is there a significant difference
in user behavior after the user begins to take recommendations?

Click-through rate was chosen over metrics such as accuracy, precision, recall,
or F-measure because in a live trial ground truth is unavailable for recommen-
dations not taken and because users’ preferences may change over time, so a
recommendation skipped and later taken may still have been a mistake.
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3.1 Experiment Protocol

For the live trial, Forbes Media identified a subset of visitors to the Forbes.com
website whom they could stabily identify and made two changes to their served
pages. First, whenever one of these users visited a page representing an article
or slide deck, JavaScript code within the page made an asynchronous (Ajax) call
to an HP Labs server passing in the URL of the visited page and an opaque
numeric identifier representing the user. (The call requested an image, which
was not displayed but which directed users worried about privacy concerns to a
page explaining the experiment.) Second, whenever one of these users visited the
Forbes.com homepage, the HP Labs server was requested to populate an HTML
iframe with five recommended articles for the user identified in the request.

When a visit notification was received, the server first determined whether
the associated user was already known and if not, selected a recommendation
method to be used for them. Next, if the associated URL was not tied to a known
article, the server requested the web page from the Forbes.com server and used it
to extract features, including calling the concept extractor described in Sect. 2.2.
If an analysis of the HTML code for the retrieved page indicated that it was part
of a multi-page article, the server determined the entire “constellation” of URLs
associated with the article and based the concept extraction on the text from
all of the HTML pages.

The server then informed all of the recommendation methods about the visit,
allowing them to update their models. Note that even though only one method
would be used to make recommendations for a given user, other methods might
also want to make use of the information. For example, in order to ensure that
the score distributions used by the Bayesian adjustment were large enough, the
positive distributions made use of visits from users assigned to any method, not
merely those assigned to Bayesian-adjusted methods. Similarly, collaborative
filtering methods made use of all visits, not merely visits by users assigned to
collaborative filtering methods. It should be noted that in order to not impact
the Forbes.com users, the actual visit notification was replied to immediately,
with the described processing taking place as soon as possible after the fact.

When a recommendation iframe request was received, the server identified the
recommendation method associated with the user (selecting one if necessary and
associating it with the user for the future) and asked that method for five or-
dered articles to recommend. As noted above in Sect. 2.3, each recommendation
method consisted of a scoring function, a set of filters, and a selection method.
First, the current set of recommendable articles was passed through the filters,
which typically did things like removing candidate articles that the user had
already read. Next, the remaining candidates were passed to the scoring func-
tion, which, often using a constructed model for the user, computed a numeric
score for each of them (possibly indicating for some of them that no score can
be computed). Finally the selection method took the candidates and associated
scores and picked a ranked list of five articles to recommend.

The list was then formatted as an HTML iframe containing links to the recom-
mended articles, identified by their titles. The URLs of the articles were modified
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by the addition of an HTTP query parameter so that if the user clicked on one
of them, the resulting visit notification received by the server would be seen to
be an accepted recommendation, with the particular recommendation set and
the rank within the list identified. The recommendation set itself, along with
the user identifier, recommendation method, and timestamp, were stored on the
server for later analysis.

The set of recommendable articles was taken to be those mentioned on a set of
approximately 85 RSS feeds identified by Forbes Media, filtered to exclude those
pages for which we would not receive a visit notification if a recommendation
was taken. As with visit notifications, if the server did not already know about
an article, it was fetched from Forbes.com, its page constellation determined,
and its features extracted.

The system began receiving visit notifications on Sept. 29, 2011, and began
making recommendations on Nov. 29, 2011. Phase II ended on Mar. 11, 2012.
Excluding data associated with users involved in running the experiment and
those whose behavior made them appear to be robots, we received 2.1 million
visit notifications from 82,412 unique users (18% had a single visit). We made
388,392 recommendations, of which 3,118 (0.80%) were taken overall.

3.2 Comparison of Recommenders

As most non-trivial recommendation methods require a model of the user, and
as building such a model typically requires observing user behavior, we are pri-
marily concerned with the relative performance of different methods for recom-
mendations given when a minimum number of observations have been made. For
purposes of evaluation, we set our threshold at having observed the user visit
at least five distinct articles. With this threshold, the system provided 311,015
recommendation lists, with a median of 13,789 recommendations given per rec-
ommendation method (max = 25, 022, min = 8, 416). Of these, 2,060 resulted
in a recommendation being taken for an overall click-through rate of 0.66%. The
click-through rates for all methods can be seen in Fig. 3.2. (Refer to Table 1 and
Sect. 2.3 for descriptions of the various recommendation methods.)

Method 1, decayed popularity, represented the best of the baseline methods
and was significantly (p < 0.01) better than any other baseline method, achiev-
ing a click-through rate of 1.02%. Three of the experimental methods exceeded
this level—Method 6 (popularity-adjusted TF, at 1.14%), Method 7 (Bayesian-
adjusted TF, at 1.11%), and Method 11 (Bayesian-adjusted TF/CF hybrid, at
1.40%)—but the first two comparisons are not significant (p = 0.16 and 0.24).

Method 11, the Bayesian-adjusted hybrid of content-based (TF) and collab-
orative filtering (CF) methods, however, was significantly better than decayed
popularity and, indeed, all other methods (p < 0.05 vs. Methods 6 and 7 and
p < 0.01 vs. all other methods). It achieved a click-through rate of 1.40%, which
is a 37% improvement over decayed popularity and a 23% improvement over the
next best method.

A full table of the significance of pairwise comparisons can be found in Ta-
ble 2. Of particular interest is the relatively poor performance of using simple
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Fig. 1. Click-through rates by method for recommendations given with at least five
articles viewed. See Sect. 2.3 and Table 1 for method descriptions.

undecayed popularity (Method 3), TF·IDF with plain “bag-of-words” features
(Method 4), and simple Item-Item collaborative filtering (Method 5)—although
between these “pure” methods, collaborative filtering was significantly (p < 0.01)
better than TF·IDF.

Lesion Comparisons. Turning to the lesion methods described in Sect. 2.3,
nearly all of them performed significantly worse than the experimental methods
they were compared to.

The content-based methods that did not include Wikipedia concepts as fea-
tures (Methods 12 and 13) performed significantly worse than the corresponding
methods that did (p < 0.01 for popularity adjustment and p < 0.05 for Bayesian
adjustment). The content-based methods that further did not include anchor
phrases as features (Methods 14 and 15) performed significantly worse (p < 0.01)
than either those with the full complement of features or those lacking concept
features.

The adjustments themselves were helpful, as unadjusted TF (Method 16)
performed significantly worse (p < 0.01) than either popularity-adjusted TF
(Method 6) or Bayesian-adjusted TF (Method 7).

The recency focus for Bayesian-adjusted methods was useful, as the method
that used it (Method 7) performed significantly better (p < 0.01) than the one
that did not (Method 17).
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Table 2. Significance levels of click-through rate comparisons by method for recom-
mendations given with at least five articles viewed, ordered by click-through rate of
method. See Sect. 2.3 and Table 1 for method descriptions.

6 0.04
7 0.02 0.40
1 0.00 0.16 0.24

19 0.00 0.17 0.25 0.47
20 0.00 0.11 0.18 0.38 0.41
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The negative interest filter, in which articles are suppressed that the user
has bypassed twice in selecting a recommendation lower on the list, was a mixed
bag. With popularity adjustment, the method that used it (Method 6) performed
significantly better (p < 0.01) than the method that did not (Method 18). But
with Bayesian adjustment, while the method that used it (Method 7) outper-
formed the method that did not (Method 19), the difference was not significant
(p = 0.25). Finally, concerning the Bayesian adjustment, using PDFs (Method 7)
was insignificantly better (p = 0.18) than using CDFs (Method 20).

3.3 Session Lengths

The second question we wanted to address was whether good recommendations
translated into more page views. To measure this, we put all of the users into
the same group, ignoring differences in their assigned recommendation methods,
reasoning that regardless of method, a recommendation can be considered good
if the user clicks on it.

To measure the number of page views, we broke each user’s history into a
number of sessions, with a session considered to have ended if more than sixty
minutes elapsed between successive clicks. For each session, we noted whether
at least one of the clicks was the result of taking a recommendation.

We found that sessions in which a recommendation was taken averaged 7.58±
0.35 clicks (n = 2, 750), while sessions in which a recommendation was not taken
averaged 3.56±0.14 clicks (n = 319, 024), for an increase of 4.02 clicks per session
on average. Many of the sessions were very short, as users often visited the site by
following a link, read an article, and left, never having been shown a recommenda-
tion. If such “trivial” sessions are excluded by setting a minimum session length
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of 3 clicks, sessions in which a recommendation was taken averaged 10.72± 0.51
clicks (n = 1, 822), while sessions in which no recommendationwas taken averaged
8.08± 0.42 (n = 106, 221), for an increase of 2.30 clicks on average.

A reasonable question to ask is whether this difference is simply due to users
who take recommendations being more likely to have longer sessions. This ten-
dency does, indeed, exist. Sessions for users who ever took recommendations
averaged 1.99 clicks longer (5.22 ± 0.05 as opposed to 3.24 ± 0.17) than ses-
sions for those who never did. Indeed, even before the experiment proper began,
when we were simply observing visits and not making recommendations, ses-
sions for users who would eventually go on to take recommendations averaged
0.95 clicks longer (3.82 ± 0.08 as opposed to 2.87 ± 0.05). But this is unlikely
to be the whole story, as when focusing on users who ever took clicks, their
sessions averaged 4.45± 0.06 clicks before they took their first recommendation
and 5.69± 0.08 clicks afterwards, for an increase of 1.24 clicks per session. For
non-trivial sessions, the increase was greater, from 8.29± 0.11 clicks per session
to 10.26± 0.15, for an average increase of 1.97 clicks per session.

All comparisons in this section are significant at the p < 0.01 level.

4 Discussion

The click-through rates presented in Sect. 3.2 are almost certainly underesti-
mates. When our system was asked to make a recommendation, it had no in-
formation about articles that were displayed elsewhere on the page, and thus
often recommended articles that were already among those selected by Forbes
editors to appear on their page. When this happened, it is quite likely that users
who agreed with our recommendations would choose the editor’s link, which was
larger and accompanied by a picture, unlike our title-only recommendations. Our
system conservatively treats this situation as a miss.

Our experiments confirmed that sophisticated methods can (and, indeed, may
be required to) beat simple popularity-based recommendation approaches. At a
broad level, this collaboration demonstrates that, by partnering with a popular
commercial website, it is possible to runmeaningful large-scale experiments. Prob-
ably the biggest lesson we learned is that for experiments like these, up-front plan-
ning is key. This is drilled into medical researchers, but is somewhat foreign to
most computer scientists. We are very grateful to Forbes Media for trusting us
with their customers and their image. Being live on a commercial site meant that
we had to be enormously careful that nothing that we did would cause them harm
or embarrassment. Also, the scale of the experiment, particularly the amount of
time that would be required to gather data to establish significance meant that
we had to be prepared to turn it on and walk away for months, with only minor
maintenance. This meant that we had to be confident that our code could handle
the scale, but it also meant that we had to decide ahead of time what things we
were going to want to compare and engineer the system so that we could test them
all based on a single period of data collection. This meant that we spent more time
than was normal before we began, but the delays were worthwhile.
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5 Related Work

For a broad survey of recommendation methods see [1,23]. Our finding that hy-
brid methods excel is consistent with a broad literature. The Netflix competition
enabled a large scale search of methods, of which the superior methods were con-
sistently ensembles of many models, and the work turned toward optimization of
these mixtures, e.g. [10]. Further, our finding that features fromWikipedia-based
concepts [12] and a category hierarchy are consistent with others who have used
taxonomies to attack the data sparseness, e.g. [11,14,18].

The vast majority of research publications evaluate methods using only his-
torical datasets. While this may work for explicit user ratings of movies or books,
passively collected datasets of user clicks on unrated news or other short-lived
content may not represent user preference as much as which specific links were
available or promoted on the web site at that time. A study of Digg popularity
found this to be a very strong effect [16], and we have seen some confirming anec-
dotes in our datasets. Thus, we believe live trials are essential in this domain.
Published studies using live feedback are relatively rare and often involve only
small sets of users (e.g. 44 users in [3], 50 in [2], 57 in [18], 141 in [6], 239 in [20]).
These sizes may support comparisons of content-analysis methods, but they give
a large disadvantage to collaborative-filtering methods that depend on learning
from a large user population. Further, such studies sometimes include in-depth
questionnaires of perceptions and explicit rating by volunteers in a setting that
does not match the intended live environment. Two studies of live news recom-
mendation for large user populations (>10,000 users) were reported at Google.
Their live trials compared relatively few methods: Liu et al. [17] reported test-
ing a single method against their existing baseline in an A-B comparison; Das
et al. [5] compared three algorithms, and also preceded their live trial with a
broader search using their historical data.

One barrier to conducting such live studies is that researchers of recommen-
dation methods are typically not situated within media companies. Our study
shows that this bridge can be crossed with relatively little complication. A novel
workaround proposed recently is to hire a user base via Mechanical Turk [21,13].
While this may be the best approach for some studies, it will always differ sub-
stantially from the intended production setting and its typical users.

A great deal of thoughtful work has been published on ways to evaluate rec-
ommendation methods, e.g. [7,8], including aspects of accuracy, novelty, diver-
sity, explainability, and avoiding embarrassment. Koren [15] demonstrates that
although most papers focus on error measures, esp. root-mean-squared-error
(RMSE) for compatibility with the Netflix competition and its many papers,
methods that optimize RMSE do not correspond to those that optimize the
hit rate in the top-N list of recommendations—the common use-case for pro-
duction. Hurley and Zhang [9] demonstrate that some increased emphasis on
diversity can improve top-N recommendation. Online studies in recommenda-
tion and advertisement (another form of recommendation) usually measure by
CTR, which aligns with financial incentives and implicitly factors in accuracy,
novelty, diversity, etc., according to the preferences of the distribution of users.
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6 Conclusions and Future Work

From the results of this substantial real-world experiment we can see that it is
possible for a recommender system to outperform recommending recently pop-
ular articles and to do so not merely statistically significantly but also meaning-
fully, as our winning method had a click-through rate that represented a 37%
improvement over the best popularity-based method. On the other hand, doing
so is not easy. Our winning method made use of both content-based reasoning
and collaborative filtering, and it required sophisticated analysis of the article
text in order to provide the Wikipedia-based concept features it needed. More-
over, our lesion studies demonstrated that all of these attributes appear to be
required.

We also saw in Sect. 3.3 that providing good recommendations can be useful
from a business standpoint, as users who take recommendations stay on the site
longer, which likely translates to more loyal customers and potentially greater
advertising revenue.

In future experiments, it would be interesting to add a feedback mechanism
that would allow the users to directly indicate when they found a listed rec-
ommendation to be poor and what they felt about an article (whether or not
they viewed it via a recommendation link). In the current work, we could only
infer that the user found an article interesting if and only if they viewed it, but
there’s always the possibility that the user was “tricked” into clicking on the
headline of an article they actually were not interested in. With direct feedback,
the recommendation methods would be expected to be more accurate and more
dynamic, and users might well find recommendations more appealing if they felt
that they had a measure of control.

In the same vein, future experiments would profit from being told what other
articles were referred to on pages. This would allow the system to more accu-
rately detect lack of interest in articles or that one article is less interesting than
another, and it would allow the recommender to avoid duplicating articles that
are already displayed on the page.

In the current experiment, the only thing the recommenders knew about the
users came from the pages they viewed on the site. In future experiments, it
could be useful to add other sources of information, e.g., demographics or other
behavior known by the site.

Finally, in this experiment recommendations were produced only on the site’s
main page. This meant that unless the user navigated back to that page rather
than taking a link from the article page, the system had no chance to make
use of the article being viewed to immediately display options for where to go
next. Indeed, the system may never get the chance to make a recommendation
to users that arrive at the site from inward-pointing links and do not use the
main page. In future experiments, it would be helpful to be allowed to make
recommendations on article pages as well.

Acknowledgments. We would like to thank David Dunlop, Carol Ozaki, Craig
Sayers, Sherry Xia, and the staff at Forbes who helped this project be a success.
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Abstract. Albeit the implicit feedback based recommendation
problem—when only the user history is available but there are no
ratings—is the most typical setting in real-world applications, it is much
less researched than the explicit feedback case. State-of-the-art algo-
rithms that are efficient on the explicit case cannot be straightforwardly
transformed to the implicit case if scalability should be maintained.
There are few implicit feedback benchmark datasets, therefore new ideas
are usually experimented on explicit benchmarks. In this paper, we pro-
pose a generic context-aware implicit feedback recommender algorithm,
coined iTALS. iTALS applies a fast, ALS-based tensor factorization learn-
ing method that scales linearly with the number of non-zero elements
in the tensor. The method also allows us to incorporate various contex-
tual information into the model while maintaining its computational effi-
ciency. We present two context-aware implementation variants of iTALS.
The first incorporates seasonality and enables to distinguish user behav-
ior in different time intervals. The other views the user history as sequen-
tial information and has the ability to recognize usage pattern typical
to certain group of items, e.g. to automatically tell apart product types
that are typically purchased repetitively or once. Experiments performed
on five implicit datasets (LastFM 1K, Grocery, VoD, and “implicitized”
Netflix and MovieLens 10M) show that by integrating context-aware
information with our factorization framework into the state-of-the-art
implicit recommender algorithm the recommendation quality improves
significantly.

Keywords: recommender systems, tensor factorization, context aware-
ness, implicit feedback.

1 Introduction

Recommender systems are information filtering algorithms that help users in
information overload to find interesting items (products, content, etc). Users get
personalized recommendations that contain typically a few items deemed to be
of user’s interest. The relevance of an item with respect to a user is predicted by
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recommender algorithms; items with the highest prediction scores are displayed
to the user.

Recommender algorithms are usually sorted into two main approaches: the
content based filtering (CBF) and the collaborative filtering (CF). CBF algo-
rithms use user metadata (e.g. demographic data) and item metadata (e.g. au-
thor, genre, etc.) and predict user preference using these attributes. In contrast,
CF methods do not use metadata, but only data of user–item interactions. De-
pending on the nature of the interactions, CF algorithms can be further classified
into explicit and implicit feedback based methods. In the former case, users pro-
vide explicit information on their item preferences, typically in form of user
ratings. In the latter case, however, users express their item preferences only im-
plicitly, as they regularly use an online system; typical implicit feedback types
are viewing and purchasing. Obviously, implicit feedback data is less reliable
as we will detail later. CF algorithms proved to be more accurate than CBF
methods, if sufficient preference data is available [1].

CF algorithms can be classified into memory-based and model-based ones.
Until recently, memory-based solutions were concerned as the state-of-the-art.
These are neighbor methods that make use of item or user rating vectors to
define similarity, and they calculate recommendations as a weighted average of
similar item or user rating vectors. In the last few years, model-based methods
gained enhanced popularity, because they were found to be much more accurate
in the Netflix Prize, a community contest launched in late 2006 that provided
the largest explicit benchmark dataset (100M ratings) [2] for a long time.

Model-based methods build generalized models that intend to capture user
preference. The most successful approaches are the latent factor algorithms.
These represent each user and item as a feature vector and the rating of user u
for item i is predicted as the scalar product of these vectors. Different matrix
factorization (MF) methods are applied to compute these vectors, which approx-
imate the partially known rating matrix using alternating least squares (ALS)
[3], gradient [4] and coordinate descent method [5], conjugate gradient method
[6], singular value decomposition [7], or a probabilistic framework [8].

Explicit feedback based methods are able to provide accurate recommenda-
tions if enough ratings are available. In certain application areas, such as movie
rental, travel applications, video streaming, users have motivation to provide
ratings to get better service, better recommendations, or award or punish a cer-
tain vendor. However, in general, users of an arbitrary online service do not tend
to provide ratings on items even if such an option is available, because (1) when
purchasing they have no information on their satisfaction (2) they are not mo-
tivated to return later to the system to rate. In such cases, user preferences can
only be inferred by interpreting user actions (also called events). For instance, a
recommender system may consider the navigation to a particular product page
as an implicit sign of preference for the item shown on that page [9]. The user
history specific to items are thus considered as implicit feedback on user taste.
Note that the interpretation of implicit feedback data may not necessarily reflect
user satisfaction which makes the implicit feedback based preference modeling a
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difficult task. For instance, a purchased item could be disappointing for the user,
so it might not mean a positive feedback. We can neither interpret missing navi-
gational or purchase information as negative feedback, that is, such information
is not available.

Despite its practical importance, this harder but more realistic task has been
less studied. The proposed solutions for the implicit task are often the algorithms
for the explicit problems that had been modified in a way that they can handle
the implicit task.

The classical MF methods only consider user-item interaction (ratings or
events) when building the model. However, we may have additional information
related to items, users or events, which are together termed contextual infor-
mation, or briefly context. Context can be, for instance, the time or location of
recommendation, social networks of users, or user/item metadata [10]. Integrat-
ing context can help to improve recommender models. Tensor factorization have
been suggested as a generalization of MF for considering contextual information
[11]. However, the existing methods only work for the explicit problem. In this
work, we developed a tensor factorization algorithm that can efficiently handle
the implicit recommendation task.

The novelty of our work is threefold: (1) we developed a fast tensor factoriza-
tion method—coined iTALS—that can efficiently factorize huge tensors; (2) we
adapted this general tensor factorization to the implicit recommendation task;
(3) we present two specific implementations of this general implicit tensor fac-
torization that consider different contextual information. The first variant uses
seasonality which was also used in [11] for the explicit problem. The second
algorithm applies sequentiality of user actions and is able to learn association
rule like usage patterns. By using these patterns we can tell apart items or item
categories having been purchased with different repetitiveness, which improves
the accuracy of recommendations. To our best knowledge, iTALS is the first
factorization algorithm that uses this type of information.

This paper is organized as follows. Section 2 briefly reviews related work on
context-aware recommendation algorithms and tensor factorization. In Section 3
we introduce our tensor factorization method and its application to the implicit
recommendation task. Section 4 shows two application examples of our factoriza-
tion method: (1) we show how seasonality can be included in recommendations
and (2) we discuss how a recommendation algorithm can learn repetitiveness
patterns from the dataset. Section 5 presents the results of our experiments, and
Section 6 sums up our work and derive the conclusions.

1.1 Notation

We will use the following notation in the rest of this paper:

– A◦B◦. . .→ The Hadamard (elementwise) product of A, B, . . . The operands
are of equal size, and the result’s size is also the same. The element of the
result at (i, j, k, . . .) is the product of the element of A, B, . . . at (i, j, k, . . .).
This operator has higher precedence than matrix multiplication in our
discussion.
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– A•,i/Ai,• → The ith column/row of matrix A.
– Ai1,i2,... → The (i1, i2, . . .) element of tensor/matrix A.
– K → The number of features, the main parameter of factorization.
– D → The number of dimensions of the tensor.
– T → A D dimensional tensor that contains only zeroes and ones (preference

tensor).
– W → A tensor with the exact same size as T (weight tensor).
– Si → The size of T in the ith dimension (i = 1, . . . , D).
– N+ → The number of non-zero elements in tensor T .
– M (i) → A K × Si sized matrix. Its columns are the feature vectors for the

entities in the ith dimension.

2 Related Work

Context-aware recommender systems [12] emerged as an important research
topic in the last years and entire workshops are devoted to this topic on ma-
jor conferences (CARS series started in 2009 [13], CAMRA in 2010 [14]). The
application fields of context-aware recommenders include among other movie
[15] and music recommendation [16], point-of-interest recommendation (POI)
[17], citation recommendation [18]. Context-aware recommender approaches can
be classified into three main groups: pre-filtering, post-filtering and contextual
modeling [10]. Baltrunas and Amatriain [16] proposed a pre-filtering approach by
partitioned user profiles into micro-profiles based on the time split of user event
falls, and experimented with different time partitioning. Post-filtering ignores the
contextual data at recommendation generation, but disregards irrelevant items
(in a given context) or adjust recommendation score (according to the context)
when the recommendation list is prepared; see a comparison in [19]. The ten-
sor factorization based solutions, including our proposed approach, falls into the
contextual modeling category.

Tensor factorization incorporates contextual information into the recommen-
dation model. Let us have a set of items, users and ratings (or events) and assume
that additional context of the ratings is available (e.g. time of the rating). Hav-
ing C different contexts, the rating data can be cast into a C + 2 dimensional
tensor. The first dimension corresponds to users, the second to items and the
subsequent C dimensions [3, . . . , C + 2] are devoted to contexts. We want to
decompose this tensor into lower rank matrices and/or tensors in a way that the
reconstruction the original tensor from its decomposition approximates well the
original tensor. Approximation accuracy is calculated at the known positions of
the tensor using RMSE as error measure. In [11], a sparse HOSVD [20] method
is presented that decomposes a D dimensional sparse tensor into D matrices and
a D dimensional tensor. If the size of the original tensor is S1×S2×· · ·×SD and
the number of features is K then the size of the matrices are S1×K, S2×K, . . . ,
SD ×K and the size of the tensor is K ×K × · · · ×K. The authors use gradient
descent on the known ratings to find the decomposition, and by doing so, the
complexity of one iteration of their algorithm scales linearly with the number of
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non-missing values in the original tensor (number of rating) and cubically with
the number of features (K). This is much less than the cost of the dense HOSVD,
which is O(K ·(S1+· · ·+SD)D). A further improvement was proposed by Rendle
et al [21], where the computational complexity was reduced so that their method
scales linearly both with the number of explicit ratings and with the number of
features. However, if the original tensor is large and dense like for the implicit
recommendation task then neither method scales well.

3 ALS Based Fast Tensor Factorization

In this section we present iTALS, a general ALS-based tensor factorization al-
gorithm that scales linearly with the non-zero element of a dense tensor (when
appropriate weighting is used) and cubically with the number of features. This
property makes our algorithm suitable to handle the context-aware implicit rec-
ommendation problem.

Let T be a tensor of zeroes and ones and let W contain weights to each
element of T . Tu,i,c1,··· ,cC is 1 if user u has (at least one) event on item i while
the context-state of jth context dimension was cj , thus the proportion of ones
in the tensor is very low. An element of W is 1 if the corresponding element in
T is 0 and greater than 1 otherwise. Instead of using the form of the common
HOSVD decomposition (D matrices and a D dimensional tensor) we decompose
the original T tensor into D matrices. The size of the matrices are K × S1,K ×
S2, . . . ,K × SD. The prediction for a given cell in T is the elementwise product
of columns from M (i) low rank matrices. Equation 1 describes the model.

T̂i1,i2,...,iD = 1TM
(1)
•,i1 ◦M

(2)
•,i2 ◦ · · · ◦M

(D)
•,iD (1)

We want to minimize the loss function of equation 2:

L(M (1), . . . ,M (D)) =

S1,...,SD∑
i1=1,...,iD=1

Wi1,...,iD

(
Ti1,...,iD − T̂i1,...,iD

)2
(2)

If all but one M (i) is fixed, L is convex in the non-fixed variables. We use this
method to minimize the loss function. L reaches its minimum (in M (i)) where
its derivate with respect to M (i) is zero. Since the derivate of L is linear in M (i)

the columns of the matrix can be computed separately. For the (i1)
th column of

M (1):

0 =
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= −2
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It takes O(DKN+
i1
) time to compute O in equation 3, because only N+

i1
cells of T

for i1 in the first dimension contain ones, the others are zeroes. For every column
it yields a complexity of O(DKN+). The naive computation of I however is very

expensive computationally: O(K
∏D

i=2 Si). Therefore we transform I by using
Wi2,...,iD = W ′

i2,...,iD + 1 and get:

I =
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i2=1,...,iD=1

W ′
i2,...,iD

(
M

(2)
•,i2 ◦ · · · ◦M

(D)
•,iD
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J

M
(1)
•,i1

(4)
The first part in equation 4 can be calculated in O(K2N+

i1
) as W ′

i2,...,iD
=

(Wi2,...,iD − 1) and the weights for the zero elements of T are ones. This step is
the generalization of the Hu et. al ’s adaptation of ALS to the implicit problem
[22]. The total complexity of calculating all columns of the matrix is O(K2N+).
J is the same for all columns of M (1) (independent of i1) and thus can be pre-

computed. However the cost of directly computing J remains O(K
∏D

i=2 Si).
Observe the following:
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Using equation 5 we can transform the second part from equation 4 into the
following form:
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The members of equation 6 can be computed in O(SiK
2) time. From the M(i)

matrices the expression can be calculated in O(K2D) time. Note that the M(i)

is needed for computing all but the ith matrix but only changes if M (i) changed.
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Therefore we count the cost of computingM(i) to the cost of recomputing M (i).
To get the desired column of the matrix we need to invert a K×K sized matrix
per column (see equation 3). That requires O(K3S1) time for all columns of
M (1). The columns of the other matrices can be calculated similarly.

Algorithm 1. Fast ALS-based tensor factorization for implicit feedback recom-
mendations
Input: T : a D dimensional S1 × · · · × SD sized tensor of zeroes and ones; W : a D
dimensional S1 × · · · × SD sized tensor containing the weights; K: number of features;
E: number of epochs
Output: {M (i)}i=1,...,D K × Si sized low rank matrices
procedure iTALS(T , W , K, E)

1: for i = 1, . . . , D do
2: M (i) ← Random K × Si sized matrix
3: M(i) ←M (i)(M (i))T

4: end for
5: for e = 1, . . . , E do
6: for i = 1, . . . , D do
7: C(i) ←M(�1) ◦ · · · ◦M(�D−1), (i 	∈ {�1, . . . , �D−1})
8: T (i) ← UnfoldTensor(T ,i)
9: for ji = 1, . . . , Si do
10: C

(i)
ji
← C(i)

11: O
(i)
ji
← 0

12: for all t : {t ∈ T
(i)
ji

, t 	= 0} do
13: {j�|� 	= i} ← Indices of t in T
14: Wt ← GetWeight(W ,t)
15: v ← M (�1) ◦ · · · ◦M (�D−1), (i 	∈ {�1, . . . , �D−1})
16: C

(i)
ji
← C

(i)
ji

+ vWtv
T and O

(i)
ji
← O

(i)
ji

+Wtv
17: end for
18: M

(i)
•,ji ← (C

(i)
ji

+ λI)−1O
(i)
ji

19: end for
20: M(i) ←M (i)(M (i))T

21: end for
22: end for
23: return {M (i)}i=1...D

end procedure

The total cost of computing M (i) is O(K3Si +K2N+ +KDN+) that can be
simplified to O(K3Si + K2N+) using that usually D � K. Therefore the cost

of computing each matrix once is O
(
K3
∑D

i=1 Si +K2N+
)
. Thus the cost of

an epoch is linear in the number of the non-zero examples and cubical in the
number of features. The cost is also linear in the number of dimensions of the
tensor and the sum of the length of the tensors in each dimension. We will also
show in Section 5.1 that the O(K2) part is dominant when dealing with practical
problems. The complexity of the gradient descent method for implicit feedback
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is O(K
∏D

i=1 Si) that is linear in the number of features but the
∏D

i=1 Si part
makes impossible to run it on real life datasets. Sampling can be applied to
reduce that cost but it is not trivial how to sample in the implicit feedback case.

The pseudocode of the suggested iTALS (Tensor factorization using ALS for
implicit recommendation problem) is given in Algorithm 1. There we use two
simple functions. UnfoldTensor(T, i) unfolds tensor T by its ith dimension.
This step is used for the sake of clarity, but with proper indexing we would not
need to actually unfold the tensor. GetWeight(W, t) gets the weight from the
weight tensor W for the t element of tensor T and creates a diagonal matrix
from it. The size of Wt is K × K and it contains the weight for t in its main
diagonal and 0 elsewhere. The pseudocode follows the deduction above. In line 3
we precomputeM(i). We create the column independent part from equation 4 in
line 7. We add the column dependent parts to each side of equation 3 in lines 12–
17 and compute the desired column in line 18. In this step we use regularization
to avoid numerical instability and overfitting of the model. After each column
of M (i) is computed M(i) is recomputed in line 20.

4 Context-Aware iTALS Algorithm

In this section we derive two specific algorithms from the generic iTALS method
presented in Section 3. The first method uses seasonality as context, the sec-
ond considers the user history as sequential data, and learns meta-rules about
sequentiality and repetitiveness.

4.1 Seasonality

Many application areas of recommender systems exhibit the seasonality effect,
therefore seasonal data is an obvious choice as context [23]. Strong periodicity
can be observed in most of the human activities: as people have regular daily
routines, they also follow similar patterns in TV watching at different time of a
day, they do their summer/winter vacation around the same time in each year.
Taking the TV watching example, it is probable that horror movies are typically
watched at night and animation is watched in the afternoon or weekend morn-
ings. Seasonality can be also observed in grocery shopping or in hotel reservation
data.

In order to consider seasonality, first we have to define the length of season.
During a season we do not expect repetitions in the aggregated behavior of users,
but we expect that at the same time offset in different seasons, the aggregated
behavior of the users will be similar. The length of the season depends on the
data. For example it is reasonable to set the season length to be 1 day for VoD
consumption, however, this is not an appropriate choice for shopping data, where
1 week or 1 month is more justifiable. Having the length of the season determined,
we need to create time bands (bins) in the seasons. These time bands are the
possible context-states. Time bands specify the time resolution of a season, which
is also data dependent. We can create time bands with equal or different length.
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For example, every day of a week are time bands of equal length, but ’morning’,
’around noon’, ’afternoon’, ’evening’, ’late evening’, ’night’ could be time bands
of a day with different length. Obviously, these two steps require some a-priori
knowledge about the data or the recommendation problem, but iTALS is not
too sensitive to minor deviations related to the length and the resolution of the
season.

In the next step, events are assigned to time bands according to their time
stamp. Thus, we can create the (user, item, time band) tensor. We factorize this
tensor using the iTALS algorithm and we get feature vectors for each user, for
each item and for each time band. When a recommendation is requested for user
u at time t, first the time band of t is determined and then the preference value
for each item using the feature vector of user u and the feature vector of time
band tbt is calculated.

4.2 Sequentiality

Recommendation algorithms often recommend items from categories that the
user likes. For example if the user often watches horror movies then the algo-
rithm will recommend her horror movies. This phenomenon is even stronger if
time decay is applied and so recent events have greater weights. Pushing newer
events can increase accuracy, because similar items will be recommended. This
functioning can be beneficial in some application fields, like VoD recommen-
dation, but will fail in such cases where repetitiveness in user behavior with
respect to items can not be observed. A typical example for that is related to
household appliance products: if a user buys a TV set and then she gets further
TV sets recommended, she will not probably purchase another one. In such a
case, complementary or related goods are more appropriate to recommend, DVD
players or external TV-tuners for example. On the other hand, the purchase of
a DVD movie does not exclude at all the purchase of another one. Whether
recommendation of similar items is reasonable, depends on the nature of the
item and behavior of the user. Next, we propose an approach to integrate the
repetitiveness of purchase patterns into the latent factor model.

Using association rules is a possible approach to specify item purchase pat-
terns. Association rules [24] are often used to determine which products are
bought frequently together and it was reported that in certain cases association
rule based recommendations yield the best performance [25]. In our setting, we
can extract purchase patterns from the data using association rule mining on
the subsequent user events within a given time window. There are two possibili-
ties: we can generate category–category rules, or category–item rule, thus having
usage patterns:

– if a user bought an item from category A then she will buy an item from
category B next time, or

– if a user bought an item from category A then she will buy an item X next
time.
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We face, however, with the following problems, when attempting to use such
patterns in recommendations: (1) the parameter selection (minimum support,
minimum confidence and minimum lift) influences largely the performance, their
optimization may be slow; (2) rules with negated consequents (e.g. bought from
A will not buy from B) are not found at all; (3) with category–category rules
one should devise further weighting/filtering to promote/demote the items in
the pushed category; (4) the category–item rules are too specific therefore either
one gets too many rules or the rules will overfit.

We show how repetitiveness related usage patterns can be efficiently integrated
into recommendation model using the the iTALS algorithm. Let us now consider
the category of last purchased item as the context for the next recommendation.
The tensor has again three dimensions: users, items and item categories. The
(i, u, c) element of the tensor means that user u bought item i and the user’s latest
purchase (before buying i) was an item from category c. Using the examples
above: the user bought a given DVD player after the purchase of a TV set. After
factorizing this tensor we get feature vectors for the item categories as well.
These vectors act as weights in the feature space that reweight the user–item
relations. For example, assuming that the first item feature means “having large
screen” then the first feature of the TV category would be low as such items
are demoted. If the second item feature means “item can play discs” then the
second feature of the TV category would be high as these items are promoted.

The advantage of this method is that it learns the usage patterns from the
data globally by producing feature vectors that reweight the user–item relations.
One gets simple but general usage patterns using the proposed solution that inte-
grates seamlessly into the common factorization framework: no post-processing
is required to define promotional/demotional weights/filters.

We can generalize the concept described above to take into account sev-
eral recent purchases. We could create a C + 2 dimensional tensor, where the
[3, . . . , C + 2] dimensions would represent the item categories of the last C pur-
chases, but the resulting tensor would be very sparse as we increase C. Instead
we remain at a three dimensional tensor but we set simultaneously C item cat-
egories to 1 for each user–item pair. We may also decrease the weights in W
for those additional C − 1 cells as they belong to older purchases. Thus we may
control the effect of previous purchases based on their recency. When recom-
mending, we have to compute the (weighted) average of the feature vectors of
the corresponding categories and use that vector as the context feature vector.

5 Experiments

We used five databases to validate our algorithms. Three of them contain genuine
implicit feedback data (LastFM 1K and 2 proprietary), while the other two
are implicit variants of explicit feedback data. The LastFM 1K [26] dataset
contains listening habits of ∼1 000 users on songs of ∼170 000 artists (artists are
considered items). The training set contains all events until 28/04/2009. The
test set contains the events of the next day following the training period. In VoD
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Table 1. Recall@20 for all datasets and algorithms using factorization with 20 and
40 features; in each row, the best and second best results are highlighted by bold and
slanted typesetting, respectively

Dataset iALS
iCA baseline iTALS iTALS iTALS iTALS
time bands time bands seq. seq. (2) seq. (5)

VOD (20) 0.0632 0.0847 0.1125 0.0689 0.0678 0.0666
VOD (40) 0.0753 0.0910 0.1240 0.0855 0.0930 0.0883

Grocery (20) 0.0656 0.0803 0.1032 0.1261 0.1223 0.1153
Grocery (40) 0.0707 0.0872 0.1081 0.1340 0.1351 0.1189

LastFM 1K (20) 0.0157 0.0249 0.0352 0.0747 0.0793 0.0733
LastFM 1K (40) 0.0333 0.0351 0.0418 0.0785 0.0851 0.0800

Netflix (20) 0.0540 0.0593 0.0724 0.0512 0.0534 0.0537
Netflix (40) 0.0552 0.0561 0.0671 0.0503 0.0527 0.0538

MovieLens (20) 0.0494 0.0553 0.0896 0.0406 0.0450 0.0457
MovieLens (40) 0.0535 0.0494 0.0937 0.0361 0.0480 0.0498

consumption dataset, with 8 weeks of training data we tested on the data of the
next day. Thus, all test events occurred after the last train event. The training
set contains 22.5 million events and 17000 items. The online grocery dataset
contains only purchase events. We used a few years’ data for training and one
month for testing. The training set contains 6.24 million events and 14000 items.
The two explicit feedback datasets are the Netflix [2] and the MovieLens 10M
[27]. We kept the five star ratings for the former and ratings of 4.5 and above
for the latter and used them as positive implicit feedback. For train-test splits
we used the splitting dates 15/12/2005 and 01/12/2008, respectively.

We determined the seasonality for each dataset, that is, the periodicity pat-
terns observed in the data. As for the VoD data, we defined a day as the season
and defined custom time intervals as time bands (’morning’, ’around noon’, ’af-
ternoon’, ’evening’, ’late evening’, ’night’ and ’dawn’), because people watch and
channels broadcast different programs at different time of the day. For LastFM
1K and MovieLens we also used a day as the season and time bands of 30 min-
utes. For the Grocery data we defined a week as the season and the days of the
week as the time bands. The argument here is that people tend to follow differ-
ent shopping behavior on weekdays and weekends. For the Netflix data only the
day of the rating is available, so we decided to define a week as the season and
the days of the week as time bands.

In our next experiment, we used item category with Grocery and Netflix
datasets, genre with VoD and MovieLens and artists for LastFM as the category
of the item for the meta-rule learning algorithm. We experimented with using
the last 1, 2, 5 events prior to the current event of the users.

We compared the two iTALS variants to the basic iALS as well as to a context-
aware baseline for implicit feedback data. This method, referred as implicit CA
(iCA) baseline, is the composite of several iALS models. For each context state
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we train a model using only the events with the appropriate context, e.g., with
the VoD we train 7 models for the 7 time bands. The context of the recommenda-
tion request (e.g. time of day) selects the model for the prediction. This baseline
treats context-states independently. Due to its long running time we used iCA
only with seasonality, as #(time bands) � #(preceding item categories).

Every algorithm has three common parameters: the number of features, the
number of epochs and the regularization parameter. We set the number of fea-
tures to 20 and 40 commonly used in literature [1,7]. The number of epochs was
set to 10 as the ranked list of items hardly changes after 10 epochs. The regular-
ization was proportional to the support of the given item/user/context. We did
not use any other heuristics like time decay to focus on the pure performance
of the algorithms. The weights in W were proportional to the number of events
belonging to the given cell of the tensor.

We measured recall and precision on the N = 1, . . . , 50 interval. We con-
sider items relevant to a user if the user has at least one event for that item in
the test set. Recall@N is the ratio of relevant items on the ranked topN rec-
ommendations for the user relative to the number of the user’s events in the
test set. Precision@N is the ratio of the number of returned relevant items (for
each user) and the number of total returned items. Greater values mean better
performance.

Table 1 contains recall@20 values for every experiment. Recall@20 is impor-
tant in practical application as the user usually sees maximum the top 20 items.
Using context, the performance is increased overall. The selection of the appro-
priate context is crucial. In our experiments seasonality improved performance
on all datasets. The sequentiality patterns caused large improvements on the
Grocery and LastFM 1K datasets (significantly surpassed the results with the
seasonality) but did not increased performance on the movie databases (VoD,
Netflix, MovieLens). By including seasonality the performance is increased by an
average of 30% for the VoD data. This agrees with our assumption that the VoD
consumption has a very strong daily repetitiveness and the behavior in different
time bands can be well segmented. The results increased by an additional 35%
when we used iTALS instead of the context-aware baseline. The genre of the
previously watched movies can also improve performance, however its extent is
only around 10%. On the other two movie datasets iCA did not improve the
performance significantly. We assume that this is due to the explicit–implicit
transformation because the transformed implicit feedback is more reliable and
also results a sparser tensor. The iTALS using seasonality however could achieve
30% and 80% improvement on Netflix and MovieLens respectively.

Inclusion of the sequentiality patterns increased the performance on Grocery
and LastFM 1K datasets by more than 90% and 300% (compared to iALS, recall
that no sequential iCA baseline is calculated). Interestingly, the model using the
last category is the best with 20 features, but with 40 features the model using
last two categories becomes better. We conjecture that this is connected to the
greater expressive power of the model with more features. With seasonality the
performance also improved by more than 50% and 75%, respectively, on these



Fast ALS-Based Tensor Factorization for Context-Aware Recommendation 79

Fig. 1. Precision–recall curves for all datasets and algorithms using factorization with
K = 20 (blue) and K = 40 (orange) factors. The y axis corresponds to precision and
x to recall.

Fig. 2. Running times of iTALS compared to iALS on the Grocery and LastFM 1K
datasets

datasets. We expected that the usage pattern learning will perform better on
Grocery and LastFM 1K datasets than on the movie datasets as sequentiality is
rather important in shopping and music listening than seasonality.

Figure 1 shows the precision–recall curves. The order of the performance of
the algorithms is the same as with the recall@20. Observe that the distance
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between the curves of the iTALS variants and the curve of the iALS is larger
when we use 40 features. Recall that the feature vectors of the context works as a
reweighting of the user–item relation. If the resolution of this relation is finer, the
reweighting can be more efficient and each factor describes a more specific item
property, so the behavior in different context can be described more specifically.
Thus, increasing the number of features results in larger performance increase
for the context-aware iTALS variants than for iALS.

5.1 Running Times

We compared the running times of the iTALS and iALS algorithms in terms of K
(see Figure 2). The experiments were run on a laptop with an Intel Core i5 2410M
2.3GHz processor using only one core. We depict only curves for 2 datasets, since
others are similar. We made several runs for each K; the median of the epoch
running times are shown (dashed lines). The solid lines show the computation
time for one feature matrix. Observe that iTALS scales quadratically with K
as iALS; the (re)computation time of one feature matrix is basically the same.
Since iTALS recomputes more feature matrices its running time per epoch is
larger. Importantly, even if the number of context-states is large (as with the
sequential iTALS on LastFM 1K) the O(K2) part of the complexity remains
dominant. This is because the number of non-zero elements in T is much larger
than the number of different items/users/contex-states in every case where the
usage of context-aware approaches is justified.

6 Conclusion

In this paper we presented an efficient ALS-based tensor factorization method
for the context-aware implicit feedback recommendation problem. Our method,
coined iTALS, scales linearly with the number of non-zeroes in the tensor, thus
it works well on implicit data. We presented two specific examples for context-
aware implicit scenario with iTALS. When using the seasonality as context,
we efficiently segmented periodical user behavior in different time bands. When
exploiting sequentiality in the data, the model was able to tell apart items having
different repetitiveness in usage pattern. These variants of iTALS allow us to
analyze user behavior by integrating arbitrary contextual information within
the well-known factorization framework. Experiments performed on five large
datasets show that proposed algorithms can greatly improve the performance.
Compared to iALS and iCA, our algorithm attained an increase in recall@20 up
to 300% and 35%.

One should, however, avoid creating a high dimensional tensors because the
number of non-zero elements remains the same no matter how many context
types are integrated; so tensors with more dimensions become sparser and thus
the results may be poorer than with only a few context dimensions used. Our
work opens up a new path for context-aware recommendations in the most com-
mon implicit feedback task when only the user history but no rating is available.
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Future work will include the characterization of the relation between reweight-
ing, context features and the number of features (K) as well as the design of
further context-aware iTALS-based recommendation algorithms.
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Abstract. We consider the problem of probability estimation in the
setting of multi-class classification. While this problem has already been
addressed in the literature, we tackle it from a novel perspective. Exploit-
ing the close connection between probability estimation and ranking, our
idea is to solve the former on the basis of the latter, taking advantage of
recently developed methods for label ranking. More specifically, we ar-
gue that the Plackett-Luce ranking model is a very natural choice in this
context, especially as it can be seen as a multinomial extension of the
Bradley-Terry model. The latter provides the basis of pairwise coupling
techniques, which arguably constitute the state-of-the-art in multi-class
probability estimation. We explore the relationship between the pairwise
and the ranking-based approach to probability estimation, both formally
and empirically. Using synthetic and real-world data, we show that our
method does not only enjoy nice theoretical properties, but is also com-
petitive in terms of accuracy and efficiency.

1 Introduction

The problem of classification is normally understood as learning a model that
maps instances to class labels. While useful for many purposes, there are nu-
merous applications in which the estimation of the probabilities of the different
classes is more desirable than just selecting one of them. Application areas of
this kind include safety-critical domains such as medical decision making, where
probabilities are useful as a measure of the reliability of a classification, or ap-
plications like computational advertising, where they allow one to focus on the
most promising alternatives. Moreover, given a probability for each class, it is
in principle possible to minimize any loss function, that is, to derive (or at least
approximate) Bayes-optimal decisions. This is especially useful in cost-sensitive
classification, where different types of misclassification may incur different costs
[12]. Simply minimizing the standard 0/1 loss will normally not produce desir-
able results in this setting.

As discussed in more detail in Section 2, the problem of probability estimation
is rather challenging and in a sense even more difficult than conventional classi-
fication. In the field of machine learning, the problem has been approached from
different directions. Specifically interesting in this regard is the idea of exploit-
ing the connection between probability estimation and ranking, another type of
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prediction problem that has attracted increasing attention in recent years. In-
deed, ranking is in a sense in-between classification and probability estimation
or, stated differently, can be seen as an intermediate step from classification to
probability estimation [8]. In particular, the maximization of ranking measures
like the AUC requires sorting a given set of alternatives from most probable pos-
itive to most probable negative [5]. Thus, although precise probability degrees
of all alternatives are not necessarily needed, at least their order relation must
be predicted correctly.

For far, most work on the connection between probability estimation and
ranking, including AUC maximization, has focused on the binary case, distin-
guishing only between two classes (positive and negative). Essentially, this means
that only a single value needs to be estimated for each instance, namely the prob-
ability of belonging to the positive class. In this paper, we establish a connection
between probability estimation and ranking for the case of multiple classes. To
this end, we refer to another type of ranking problem, namely label ranking [3,4].
While the binary case is intimately connected with bipartite ranking, in which
the instances are ranked themselves, the problem of label ranking consists of
ranking the class labels given an instance.

The rest of the paper is organized as follows. In the next section, we discuss
the problem of multi-class probability estimation and recall the basic ideas of
pairwise coupling and classifier calibration. In Section 3, we introduce the prob-
lem of label ranking. Then, in Section 4, we establish a tight link between label
ranking and probability estimation, taking advantage of a probabilistic ranking
model called Plackett-Luce. In Section 5, we show how the label ranking prob-
lem can be approached on the basis of this model. Building on the connection
established in Section 4 and the PL-based label ranking method introduced in
Section 5, we then introduce a method for probability estimation based on label
ranking in Section 6. Experimental results are presented in Section 7, before
concluding the paper in Section 8.

2 Multi-class Probability Estimation

Consider the standard setting of multi-class classification with an instance space
X and a set of classes Y = {y1, . . . , yK}. We are interested in learning a proba-
bilistic classifier, that is, a model that estimates the conditional probabilities of
classes given an instance x ∈ X:

(p1, . . . , pK) = (PY(y1 |x), . . . ,PY(yK |x)) (1)

Since true probability degrees are rarely available for training, probabilistic clas-
sifiers are typically trained on standard classification data, that is, observations
of the form (x, y) ∈ X × Y, where the class label y is assumed to be generated
according to PY(· |x).

Probability estimation is known to be a quite hard problem, especially in com-
parison to standard classification. This comes at no surprise, noting that proper
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probability estimation is a sufficient but not necessary condition for proper clas-
sification: If the conditional class probabilities (1) are predicted accurately, an
optimal classification can simply be made by picking the class with highest prob-
ability:

ŷ = argmax
yi∈Y

P̂(yi |x) (2)

More generally, the Bayes decision can be taken so as to minimize any loss
in expectation. On the other hand, a correct classification can also be obtained
based on less accurate probability estimates. In fact, the classification will remain
correct as long as the estimated probability is highest for the true class. Or, stated
differently, an estimation error will remain ineffective unless it changes the result
of the argmax operation in (2). This is also the reason for why methods like
naive Bayes show competitive performance in classification despite producing
relatively inaccurate probability estimates [7].

Methods like naive Bayes and decision trees are multi-class classifiers and
can in principle be used to produce probability estimates in this setting. In
practice, however, one often prefers to estimate probabilities in the two-class
setting, especially because estimating a single probability (of the positive class)
is much simpler than estimating K − 1 probabilities simultaneously. Moreover,
the binary case is amenable to a broader spectrum of classifiers, including logistic
regression, which is a proven method for probability estimation. On the other
hand, the reduction of multinomial to binomial probability estimation obviously
involves an aggregation problem, namely the need to combine probabilities on
pairs of classes into probabilities on the label set Y. This is the idea of “pairwise
coupling” techniques.

2.1 Pairwise Coupling

As a special type of binary decomposition technique, pairwise coupling allows
one to tackle multi-class problems with binary classifiers. The key idea is to
transform a K-class problem into K(K − 1)/2 binary problems, one for each
pair of classes. More specifically, a separate model Mi,j is trained for each pair
of labels (yi, yj) ∈ Y × Y, 1 ≤ i < j ≤ K, using the examples from these two
classes as their training set; thus, a total number of K(K−1)/2 models is needed.
Mi,j is intended to separate the objects with label yi from those having label yj .

At prediction time, a query instance x ∈ X is submitted to all models Mi,j .
The predictions pi,j = Mi,j(x) are typically interpreted by means of the Bradley-
Terry model [1], a probabilistic choice model expressing the probability that “yi
wins against yj” as follows:

pi,j = P(yi � yj) = PY(yi | {yi, yj}) =
pi

pi + pj
(3)

Based on the relationship (3), the unconditional probabilities pi can be derived
from the conditional (pairwise) probabilities pi,j . Obviously, however, it will not
always be possible to find a distribution (p1, . . . , pK) such that the equality
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pi,j = pi/(pi + pj) holds for all 1 ≤ i < j ≤ K, simply because this system of
equations is over-constrained: K variables have to satisfy K(K − 1)/2 equations
(plus the constraint p1+ . . .+pK = 1). In fact, one should notice that the models
Mi,j are learnt independently of each other, so that the predictions pi,j are not
necessarily coherent.

Pairwise coupling techniques therefore seek to solve the above reconstruction
problem approximately. Different methods for putting this idea into practice
have been proposed and compared in [21]. For example, the following system
of linear equations can be derived by “averaging” over the identities PY(yi) =
PY(yi | {yi, yj}) ·PY({yi, yj}):

PY(yi) =
1

K − 1

∑
j �=i

PY(yi | {yi, yj}) ·PY({yi, yj})

=
1

K − 1

∑
j �=i

PY(yi | {yi, yj}) · (PY(yi) +PY(yj))

Or, in terms of the pi an pi,j :

(K − 1)pi =
∑
j �=i

pi,j · (pi + pj)

In conjunction with the constraint p1+. . .+pK = 1 and the non-negativity of the
pi, this system has a unique solution provided that pi,j > 0 for all 1 ≤ i, j ≤ K.
Among the methods compared in [21], this approach turned out to perform
specifically well.

2.2 Classifier Calibration

As mentioned earlier, the scores produced by conventional classification methods
are typically quite biased: Although they might be good enough for correct
classification, they do not provide accurate probability estimates. This is true
even for methods with an inherently probabilistic interpretation, such as logistic
regression [24]. Among a number of possible reasons, let us mention that all such
methods are based on rather strong model assumptions that will commonly
be violated in practice. In naive Bayes, for example, this is the assumption
of conditional independence of the attributes given the class. Likewise, logistic
regression assumes that the log of the odds ratio is a linear function of the
attributes. Another reason is the fact that for commonly used loss functions
such as 0/1 loss or hinge loss, the true probability is not a risk minimizer [2].

To overcome this problem, several methods for “classifier calibration” have
been proposed in the literature [18,22]. These are post-processing methods whose
idea is to find a mapping that turns classifier scores into meaningful probability
estimates. As an example, we mention the method of isotonic regression [23],
which, due to its nature as a nonparametric approach, is less susceptible to
the aforesaid problem of model misspecification. Besides, it has been shown to
perform quite well in practice [16].
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Isotonic regression finds a monotone mapping from scores to probabilities or,
say, from poorly estimated probabilities to hopefully better ones. Monotonic-
ity assures that the order of classes can never be reversed: If class yi receives a
higher score by the classifier than yj , then the calibrated probability estimate for
the former cannot be smaller than the estimate for the latter. Against the back-
ground of our discussion about the relationship between ranking and probability
estimation, this is clearly a desirable property.

3 Label Ranking

In the setting of label ranking, each instance x from the instance space X is
associated with a total order of all class labels, that is, a total, transitive, and
asymmetric relation �x on Y, where yi �x yj indicates that yi precedes yj in the
order. Since a ranking can be considered as a special type of preference relation,
we shall also say that yi �x yj indicates that yi is preferred to yj given the
instance x.

Formally, a total order �x can be identified with a permutation πx of the set
[K] = {1, . . . ,K}. We define πx such that πx(i) is the index j of the class label
yj put on the i-th position in the order (and hence π−1

x (j) = i the position of
the j-th label). This permutation thus encodes the (ground truth) order relation

yπx(1) �x yπx(2) �x . . . �x yπx(K) .

The class of permutations of [K] (the symmetric group of order K) is denoted
by Ω. By abuse of terminology, though justified in light of the above one-to-one
correspondence, we refer to elements π ∈ Ω as both permutations and rankings.

In analogy with the classification setting, we do not assume the existence of
a deterministic X −→ Ω mapping. Instead, every instance is associated with a
probability distribution over Ω. This means that, for each x ∈ X, there exists a
probability distribution PΩ(· |x) such that, for every π ∈ Ω, PΩ(π |x) is the
probability that πx = π.

The goal in label ranking is to learn a “label ranker” in the form of an X −→ Ω
mapping. As training data, a label ranker uses a set of instances xn, n ∈ [N ],
together with information about the associated rankings πxn

. Ideally, complete
rankings are given as training information. From a practical point of view, how-
ever, it is important to allow for incomplete information in the form of a ranking

yπx(1) �x yπx(2) �x . . . �x yπx(k) , (4)

where k < K and {π(1), . . . , π(k)} ⊂ [K]. For example, for an instance x, it
might be known that y2 �x y1 �x y5, while no preference information is given
about the labels y3 or y4. By definition, we let π−1(yi) = π−1(i) = 0 if yi is
not present in the ranking π; thus, the presence of a class yi is equivalent to
π−1(i) > 0.
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Table 1. A distribution of rankings with three labels

π PΩ(π |x)
y1 � y2 � y3 0.10
y1 � y3 � y2 0.25
y2 � y1 � y3 0.20
y2 � y3 � y1 0.20
y3 � y1 � y2 0.25
y3 � y2 � y1 0

4 Label Ranking vs Classification: A Probabilistic Link

In contrast to conventional classification, the setting of label ranking does not
assume the existence of a “true class label” of an instance. In fact, while the out-
put space in classification is given by the set Y of class labels, and a probability
vector of conditional class probabilities (1) can be associated with every instance
x ∈ X , the output space in label ranking is the class of permutations Ω. Yet,
as will be explained in the following, label ranking can be interpreted as a gen-
eralization of conventional classification or, the other way around, classification
can be seen as a special case of label ranking. Most naturally, this connection
is obtained by associating the “true class” in classification with the top-ranked
label in label ranking. For the ease of exposition, we shall subsequently drop the
conditioning on the instance x.

4.1 From Probabilities on Rankings to Class Probabilities

Formally, the connection between label ranking and classification is established
by means of a mapping between the spaces P(Y) and P(Ω), that is, the space
of probability distributions on Y and the space of probability distributions on
Ω. Associating the observed class in classification with the top-ranked label in
label ranking then comes down to mapping a measure PΩ ∈ P(Ω) to a measure
PY ∈ P(Y) such that

pj = PY(yj) =
∑

π∈Ω:π(1)=j

PΩ(π) . (5)

For example, the probability distribution PΩ in Table 1 is mapped to the dis-
tribution PY = (p1, p2, p3) = (0.35, 0.4, 0.25). Note that the most probable class
(y2) differs from the top-label in the most probable ranking (y1).

The other way around, there are several ways of embedding P(Y) in P(Ω)
(indeed, note that |Ω| is in general much larger than |Y|); we will come back to
this issue when discussing the so-called Plackett-Luce model below.

4.2 The Plackett-Luce Model

So far, no specific assumptions about the probability measure PΩ on Ω were
made. Needless to say, due to the large cardinality of the space Ω, it is practically
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impossible to work with the full class of distributions P(Ω). For that reason,
different types of parametrized classes of probability distributions on rankings
have been proposed in statistics [15].

A prominent example is the Mallows model [14], a distance-based probabil-
ity model belonging to the family of exponential distributions. The standard
Mallows model is determined by two parameters:

PΩ(π | θ, π0) =
exp(−θD(π, π0))

φ(θ)
(6)

The ranking π0 ∈ Ω is the location parameter (mode, center ranking) and θ ≥ 0
is a spread parameter. Moreover, D(·) is a distance measure on rankings, and
the constant φ = φ(θ) is a normalization factor that depends on the spread (but,
provided the right-invariance of D(·), not on π0).

In the following, we shall focus on another model that was first studied by
Luce [13] and subsequently by Plackett [17]. The Plackett-Luce (PL) model
appears to be especially appealing for our purpose, as it establishes a natural
bridge between label ranking and classification. The PL model is specified by a
parameter vector v = (v1, v2, . . . , vK) ∈ RK

+ :

PΩ(π |v) =
K∏
i=1

vπ(i)
vπ(i) + vπ(i+1) + . . .+ vπ(K)

(7)

Obviously, this model can be seen as a generalization of the above-mentioned
Bradley-Terry model (3) for the pairwise comparison of alternatives. Indeed, a
natural interpretation of the PL model is a stage-wise construction of a ranking:
A ranking is produced by a sequence of choices, where each choice problem
consists of selecting one among the labels that have not been picked so far, and
the probability of a label yi being selected is always proportional to its “skill”
parameter vi. First, the top label is chosen, and the probability of each label yi
to be selected is given by vi/(v1+v2+ . . .+vK). Then, the second label is chosen
among those still available, using the same selection principle, and so on and so
forth. In other words, with probabilities pi defined as “normalized skills”

pi = PY(yi) =
vi

v1 + v2 + . . .+ vK
, (8)

the probability of yi to be chosen among a set C ⊆ Y of remaining candidates
exactly equals the conditional probability PY(yi |C). Consequently, the proba-
bility (7) can also be written as follows:

PΩ(π |v) = PΩ(π |p) =

K∏
i=1

PY
(
yπ(i) |Ci

)
, (9)

where Ci = {yπ(i), . . . , yπ(K)} is the set of remaining candidates and p = v/||v||
is the probability vector obtained by normalizing the parameter vector v.

Thus, with a PL model v = (v1, . . . , vK), one can simultaneously associate
a distribution PY on Y and a distribution PΩ on Ω that are closely connected
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with each other. In particular, this model is coherent with the mapping (5) in the
sense that PY(yi) = PΩ(π(1) = i). Moreover, the PL model defines a specific
though natural embedding of P(Y) in P(Ω) via (9). Last but not least, it allows
for computing the probability of incomplete rankings (which normally requires
an expensive marginalization, i.e., summation over all linear extensions) in a
quite convenient way: The probability of an incomplete ranking (4) is given by

P(π |v) =
k∏

i=1

vπ(i)

vπ(i) + vπ(i+1) + . . .+ vπ(k)
.

As an aside, we mention that the appealing properties of the PL model as out-
lined above are closely connected with the “choice axioms” of Luce [13]. In fact,
it is known that the PL model is the only ranking model satisfying these axioms.

5 Label Ranking Based on the PL Model

A label ranking method based on the PL model has been proposed in [3]. The key
idea of this method is to define the PL parameters v as a function of the input
attributes specifying an instance: v = (v1, . . . , vK) = f(x). More specifically,
log-linear models are used to guarantee non-negativity, that is, the logarithm of
each parameter vi is modeled as a linear function:

vi = exp
(
〈w(i),x〉

)
= exp

⎛⎝ d∑
j=1

w
(i)
j · xj

⎞⎠ , (10)

where an instance is assumed to be represented in terms of a feature vector
x = (x1, . . . , xd) ∈ X ⊆ Rd.

5.1 Parameter Estimation

Learning a label ranking model then comes down to estimating the parameters

w
(i)
j (i ∈ [K], j ∈ [d]) in (10). This can be accomplished by means of maximum

likelihood estimation. More precisely, given a training data set

T =
{(

x(q), π(q)
)}N

q=1
(11)

with x(q) =
(
x
(q)
1 , . . . , x

(q)
d

)
, the parameters are determined by maximizing the

log-likelihood function

L =

N∑
q=1

nq∑
i=1

⎡⎣log v
(
π(q)(i), q

)
− log

nq∑
j=i

v
(
π(q)(j), q

)⎤⎦ , (12)

where nq is the number of labels in the ranking π(q), and

v(i, q) = exp
(
〈w(i),x(q)〉

)
. (13)

For algorithmic details, we refer to [3].
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5.2 From Label Ranking to Logistic Regression

Interestingly, we can show that the standard multinomial logistic regression ap-
proach for classification can be seen as a special case of the PL-based label rank-
ing method introduced above. To this end, consider the case of classification,
where a single class label is observed for each training instance. An observation
of this kind can be interpreted as a label ranking, of which only the top-position
is known. Or, stated differently, the probability of this observation corresponds
to the probability of selecting yi in the first step of the choice process:

PY(yi |x;w) = PΩ(π(1) = i |x;w) =
exp

(
〈w(i),x〉

)∑K
j=1 exp

(
〈w(j),x〉

) (14)

The log-likelihood function of the data is then given by

L =

N∑
q=1

K∑
i=1

tqi

⎡⎣〈w(i),x〉 − log

K∑
j=1

exp
(
〈w(j),x〉

)⎤⎦ , (15)

where t is a coding matrix with tqi = 1 if the class of the q-th instance is yi
and tqi = 0 otherwise. This model exactly corresponds to the standard model of
multinomial logistic regression.

6 A Ranking Approach to Probability Estimation

In our discussion so far, we have established a close connection between (label)
ranking and classification. In terms of modeling, this connection mainly rests on
the interpretation of a classification (an observed class label) as a ranking with
the top-label observed. This connection is ideally supported by the PL model,
notably because the ranking parameters of this model are in direct correspon-
dence with class probabilities; besides, probabilities of incomplete rankings (i.e.,
rankings of a subset of the labels) are obtained through simple conditioning. As
a consequence, the PL model is also consistent with our monotonicity assump-
tion: The higher the class probability, the higher the (expected) position of the
corresponding label in the ranking.

In terms of methods, we have noticed that label ranking based on the PL
model can be seen as an extension of conventional multinomial logistic regres-
sion; or, vice versa, logistic regression corresponds to a special case of PL-based
label ranking, namely the case where only top-1 rankings (classes) are observed.
The obvious advantage of the label ranking framework is an increased flexibility
with regard to the exploitation of training information: While standard logistic
regression can only learn from observed class labels, label ranking is also able to
exploit comparative preference information of more general type. This includes,
for example, pairwise comparisons of the kind “for the instance x, class label yi
is more probable than yj”, even if one cannot assure that yi is the most likely
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label. This could be useful in many practical situations, for example if the cor-
rect class label cannot be determined precisely although some candidate classes
can certainly be excluded [6].

More generally, a ranking can be interpreted as a special type of qualitative
probability on Y [20]. The order relation yi �x yj indicates that the conditional
probability of yi given x is higher than the probability of yj given x, though
without specifying any concrete numerical values. By learning a PL-based label
ranking model, these qualitative probabilities are then turned into quantitative
probabilities pi ∝ vi(x). Thus, label ranking can indeed be seen as a natural
bridge between classification and probability estimation.

6.1 PELARA: Probability Estimation via Label Ranking

Our method of Probability Estimation via LAbel RAnking (PELARA) can be
summarized as follows:

– The method assumes as training information a set of data (11) consisting of
instances x ∈ X together with label rankings (4) of varying length k ∈ [K]
(including k = 1 for the special case of a class observation).

– On this data, a label ranker is trained using the method outlined in Section
5 (and explained in more detail in [3]).

– As a result, we obtain a model M ′ that assigns a vector of PL parameters
to each query instance x:

M ′ : x !→ v = v(x) ∈ R
K
+

– To obtain an (uncalibrated) probability estimate, these vectors are normal-
ized, i.e., v(x) is turned into

M(x) = p(x) = (p1(x), . . . , pK(x)) ∝ v(x) (16)

such that ||p(x)|| = 1.

The model M thus obtained defines a probability estimator.

6.2 Comparison with Decomposition Schemes

PELARA offers an appealing alternative to conventional methods such as pair-
wise coupling. Instead of decomposing the problem into a quadratic number of
binary problems first, and combining the predictions of the pairwise models af-
terward, our label ranking method solves the original problem in one go. As a
potential advantage, apart from simplicity, let us mention that the scores (prob-
abilities) thus produced should be well-balanced right away, without the need to
couple them in an approximate manner.

Indeed, one should notice that a pairwise decomposition will normally come
with a loss of information, and the underlying assumptions justifying the reduc-
tion are not entirely clear. For example, while in our approach, the observation of
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class yi for an instance x is modeled in terms of the probability vi/(v1+. . .+vK),
it is split into K−1 binary training examples yi � yj , j ∈ [K]\{i}, in the pairwise
approach. However, selecting yi among the set of candidates Y is obviously not
the same as (independently) selecting yi in the pairwise comparisons between yi
and yj :

vi
v1 + . . .+ vK

�=
∏
j �=i

vi
vi + vj

In the case of a uniform distribution v ≡ 1, for instance, the left-hand side
is 1/K while the right-hand side is (1/2)K−1. Similar arguments apply to the
decomposition of an observed ranking into pairwise preferences.

The most common alternative to the pairwise (all pairs) decomposition scheme
is one-vs-rest (OVR) decomposition [19]: One model is trained for each class
label yi, using this label as positive and all others as negative examples; for
probability estimation, the predictions of these models are simply normalized.
Thus, OVR trains a smaller number of models. The individual models, however,
are typically more complex: Separating a class from all other class simultaneously
is normally more difficult than only separating it from each class individually,
and consequently may call for more complex decision boundaries. Besides, the
individual problems may become quite imbalanced.

Our approach is in a sense in-between pairwise and OVR learning: Like OVR,
it trains a linear number of models, one for each label. Yet, since these models are
all trained simultaneously, without building negative meta-classes, the aforesaid
disadvantage of OVR is avoided.

7 Experiments

This section presents experimental results, starting with a simplified analysis
that is meant to help understand some key differences between the pairwise
coupling and the ranking-based approach to probability estimation. Next, we
compare our method with state-of-the-art approaches to probability estimation
on a set of classification benchmarks.

7.1 On the Reconstruction Error of Pairwise Coupling

In comparison to the pairwise approach to probability estimation, which consists
of decomposing the original multi-class problem into binary problems first and
“coupling” the solutions (probability estimates) of these problems afterward,
our ranking-based method allows for solving the original problem in a single
step: Since all labels are treated simultaneously, there is no need for any type of
aggregation. In principle, this should be seen as an advantage, especially since
the decomposition step in pairwise learning is supposed to come along with a
loss of information.

More concretely, one may wonder to what extent pairwise coupling is able to
reconstruct a probability vector p = (p1, . . . , pK) from its pairwise components
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Fig. 1. Reconstruction error (measured in terms of RMSE) of pairwise coupling as
a function of the level of noise (standard deviation) in the pairwise predictions; K
corresponds to the number of class labels

pi,j = pi/(pi+pj) if these are corrupted with noise; this ability is in fact crucial,
since these pairwise components correspond to the predictions of the binary
classifiers, which are never perfect.

Fig. 1 shows the expected RMSE between the true probability vector p and
its coupled reconstruction (based on the method described in Section 2.1) when
the pairwise probability estimates are given by the pi,j independently corrupted
with additive Gaussian noise (truncated if necessary, so as to assure values in
[0, 1]). More specifically, the figure shows the expected RMSE as a function of
the noise level, measured in terms of the standard deviation. As can be seen, the
reconstruction error does indeed increase almost linearly with the noise level.
What is also interesting to observe, however, is that the error becomes smaller
if the number of classes increases. This effect, which has also been observed
for other types of pairwise learning methods, can be explained by the level of
redundancy produced by the pairwise approach: Since the number of models
(and hence the number of prediction errors) increases quadratically, there is a
good chance to “average out” the individual prediction errors.

On the other side, the ranking-based approach will of course be affected by
prediction errors, too. These errors are not easily comparable to the pairwise
ones, but suppose that we add the same Gaussian noise to the individual com-
ponents pi of the vector p. The “reconstruction” in this case simply comes down
to renormalization. Fig. 2 plots the corresponding reconstruction error r against
the reconstruction error r′ of the pairwise coupling approach; the circles in this
picture are centered at the points (r, r′), where both r and r′ refer to the same
underlying (true) probability vector. Interestingly, while the ranking-based ap-
proach seems to have an advantage in the case of a low number of labels (the
cloud of circles for four labels is above the diagonal), this advantage turns into a
disadvantage if the number of labels increases. Indeed, the larger the number of
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Fig. 2. Reconstruction error of the ranking-based approach (x-axis) versus reconstruc-
tion error of pairwise coupling (y-axis) for K = 4, 8 and 12 labels

labels, the more advantageous the pairwise coupling approach becomes; in the
figure, the cases of eight and twelve labels are shown for illustration.

Needless to say, these results have to be interpreted with caution, since they
are based on very idealized assumptions (e.g., independence of errors). Yet,
they confirm an observation that was already made in previous studies of pair-
wise learning (albeit related to classification, not probability estimation): Due
to the large number of binary models constructed, coming along with a high
level of redundancy, the pairwise decomposition technique exhibits a kind of
error-correction mechanism, and the larger the number of classes, the better
this mechanism works [10].

7.2 Multi-class Classification

In the absence of benchmark data with given probabilities as ground-truth, we
test our approach on standard classification benchmarks using the Brier score
as a performance measure. The Brier score, which is commonly used for this
purpose, compares a predicted probability vector p = (p1, . . . , pK) with a true
class y ∈ Y in terms of the following loss:

L(p, y) =

K∑
i=1

(
pi − �y = yi�

)2
For comparison, we use pairwise coupling (PC) as described in Section 2.1 with
logistic regression as base learner. Additionally, we used the pairwise coupling
technique proposed by Hastie and Tibshirani [11], which is also quite commonly
used for this purpose (PC-HT). Finally, we include one-vs-rest logistic regression
(OVR) as a common approach to multi-class classification.
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Table 2. Results in terms of average Brier score (± standard deviation)

data set #ins. #att. #cls. PC PC-HT OVR PELARA

iris 150 4 3 0.044±0.045 0.044±0.045 0.087±0.042 0.043±0.050
glass 214 9 6 0.439±0.013 0.434±0.018 0.442±0.050 0.432±0.043
wine 178 13 3 0.044±0.028 0.044±0.028 0.037±0.023 0.044±0.025
vowel 528 10 11 0.246±0.054 0.241±0.044 0.555±0.047 0.389±0.063
vehicle 846 18 4 0.241±0.021 0.240±0.020 0.270±0.021 0.240±0.023
segment 2310 19 7 0.060±0.018 0.070±0.015 0.134±0.016 0.068±0.012
dna 2000 180 3 0.140±0.025 0.141±0.021 0.124±0.029 0.157±0.041
pendigits 7494 16 10 0.028±0.002 0.043±0.002 0.094±0.004 0.053±0.003
poker 25010 10 10 0.566±0.002 0.566±0.002 0.567±0.002 0.565±0.002
satimage 4435 36 6 0.189±0.012 0.190±0.012 0.246±0.009 0.198±0.011
svmguide4 300 10 6 0.642±0.015 0.716±0.005 0.715±0.008 0.737±0.006
svmguide2 391 20 3 0.275±0.034 0.259±0.032 0.277±0.032 0.266±0.034
letter 15000 16 26 0.228±0.009 0.291±0.006 0.473±0.005 0.336±0.008
shuttle 43500 9 7 0.068±0.003 0.067±0.002 0.135±0.003 0.061±0.002

Table 3. Runtimes in seconds for training each fold of the data; the relative runtimes
are summarized in the brackets

data set PC PC-HT OVR PELARA

iris 0.19(1.63) 0.23(2.00) 0.13(1.14) 0.12(1)
glass 2.37(1.73) 2.18(1.59) 1.75(1.28) 1.37(1)
wine 0.24(1.88) 0.35(2.70) 0.33(2.51) 0.13(1)
vowel 6.08(1.04) 6.99(1.19) 0.74(0.13) 5.86(1)
vehicle 7.37(2.45) 5.51(1.83) 6.14(2.04) 3.01(1)
segment 18.80(1.77) 14.73(1.39) 17.84(1.68) 10.63(1)
dna 161.57(0.96) 166.18(0.99) 336.30(2.00) 168.54(1)
pendigits 25.87(1.30) 39.52(1.99) 46.09(2.32) 19.91(1)
poker 10.98(0.32) 62.70(1.83) 7.30(0.21) 34.29(1)
satimage 38.52(2.24) 44.13(2.57) 10.08(0.59) 17.16(1)
svmguide4 11.23(6.72) 5.42(3.25) 2.69(1.62) 1.67(1)
svmguide2 8.58(5.55) 3.07(1.98) 3.54(2.29) 1.55(1)
letter 179.76(0.33) 264.75(0.49) 25.13(0.05) 538.56(1)
shuttle 39.16(0.63) 90.00(1.44) 22.93(0.37) 62.32(1)

The results for various data sets from the UCI repository [9] are shown in
Table 2, together with some statistics of the data. These results are averages over
5 repeats of 10-fold cross validation. As can be seen, OVR is clearly outperformed
by the other methods. This is confirmed by a two-tailed sign test, which reports
significance at the level α = 0.05. PC, PC-HT and PELARA are almost perfectly
en par (with similar numbers of wins and losses in each pairwise comparison).

The average runtimes are shown in Tables 3. Here, PELARA performs rather
well and seems to be the most efficient on average. In particular, our ranking-
based approach shows clear advantages over the pairwise coupling methods
(while OVR is often quite fast, too).
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8 Conclusions

While the problem of multi-class probability estimation is commonly tackled by
means of reduction techniques, which decompose the original problem into a set
of binary problems, we have proposed an alternative method that exploits the
intimate connection between probability estimation and ranking. More specifi-
cally, we take advantage of recent work on label ranking, which provides a nat-
ural bridge between classification and probability estimation. This connection
becomes especially apparent when making use of the Plackett-Luce model, a
probabilistic ranking model that links classification and ranking in a seamless
manner (by modeling ranking as a sequence of classifications).

Compared to the pairwise approach, our ranking-based method appears to be
more solid from a theoretical point of view, especially as it does not require any
ad-hoc aggregation mechanism. The corresponding reduction of complexity also
comes with improvements in terms of runtime. Regarding predictive accuracy,
however, the best approaches to pairwise coupling are indeed difficult to beat,
especially if the number of classes is large. A plausible explanation for this ob-
servation, which is also coherent with similar findings for pairwise classification,
is the redundancy produced by the quadratic number of pairwise models. Never-
theless, our results have shown that the ranking-based alternative put forward in
this paper is at least competitive to state-of-the-art pairwise coupling methods.

Due to the lack of proper benchmark data, we could not yet explore what
we suppose to be the main strength of our method, namely the learning of
probability models from incomplete rankings, including pairwise comparisons of
the form “yi is more likely than yj as a class label for x, but also (qualitative)
comparisons involving more than two labels, such as y3 �x y5 �x y1. Currently,
we are looking for data of that kind, which, despite not having been collected
systematically so far, should in principle occur quite naturally in many domains.

Acknowledgments. The authors are supported by German Research Founda-
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Abstract. Solving large scale sequential decision making problems without prior
knowledge of the state transition model is a key problem in the planning litera-
ture. One approach to tackle this problem is to learn the state transition model
online using limited observed measurements. We present an adaptive function
approximator (incremental Feature Dependency Discovery (iFDD)) that grows
the set of features online to approximately represent the transition model. The
approach leverages existing feature-dependencies to build a sparse representation
of the state transition model. Theoretical analysis and numerical simulations in
domains with state space sizes varying from thousands to millions are used to
illustrate the benefit of using iFDD for incrementally building transition models
in a planning framework.

1 Introduction

Increasing the level of autonomy for unmanned aerial vehicles (UAVs) through plan-
ning algorithms is needed to tackle real-life missions such as persistent surveillance,
maintaining wireless network connectivity, and search and rescue [21,27,31]. One of
the common themes amongst these missions is the presence of stochasticity, such as
uncertainty in the outcome of interactions with the environment or the vehicle dynam-
ics. One typical approach for solving these stochastic decision making problems is to
cast them as Markov Decision Processes (MDPs) [23] and then use reinforcement learn-
ing (RL) [30] methods to generate policies without having to know the transition model.
However, a hurdle in applying RL to real-world problems is that RL methods typically
require many interactions with the world in order to find good policies. Model-based RL
techniques address this sample complexity problem by fitting an approximate model to
the data first and then generating simulated samples from the model [29,33]. However,
this approach requires a suitable estimation model with appropriate basis functions.
This paper presents a scalable transition model estimation method that can be used in a
model-based RL framework for solving MDPs with state-correlated uncertainty.

For motivation, consider a robot navigating from a starting point to a goal location
using GPS signals. The GPS is not fully reliable and may fail in each location with
a certain probability. A succesful policy guides the robot away from locations with
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poor signal reception. Yet, as we will see in the numerical results, a planning-modeling
scheme that assumes a uniformly distributed failure rate for the GPS can lead to poor
performance.

A straightforward approach for modeling the uncertainty in such problems is to es-
timate the parameters of the model for every state separately (i.e., use a tabular rep-
resentation). However for large state spaces, this may become intractable. The main
aim of this paper is to present a planning/learning technique to form a good approx-
imation of state-dependent uncertainties with low sample complexity. To this effect,
we employ an adaptive function approximation technique to estimate the uncertainties
that allows flexible representations and alleviates the problem of hand-picking a set
of fixed features. The representation starts with a small number of state correlated ba-
sis (features) and expands the representation in regions where model parameters are
not well captured. This adaptive function approximator is based on the recently devel-
oped incremental feature dependency discovery (iFDD) algorithm [13]. By using iFDD
for model parameter estimation and bootstrapping techniques for replanning, we demon-
strate a substantial sample complexity reduction in learning good policies. In addi-
tion, the proposed methodology also possess asymptotic convergence properties. The
applicability of the proposed method to integrated model estimation and planning is ex-
perimentally demonstrated in a gridworld problem, a block building domain, and a per-
sistent search and track (PST) mission. Simulation results show that the representations
learned by iFDD are sufficiently rich and result in a substantial reduction in the sample
complexity.

2 Related Work

2.1 Robust Dynamic Programming

If the uncertain transition model is assumed to be lying on a priori known set, a robust
policy can be obtained by considering the worst-case situation within this set. This ap-
proach is usually known as robust dynamic programming [15], and different methods
have been developed based on how the uncertainty set is modeled and how the model
is selected from the uncertainty set [22,9,4]. Although policies generated with these
methods usually prevent the catastrophic effects of model-environment mismatch, they
often lead to conservative solutions, since the assumed uncertainty set is usually a pes-
simistic estimate of the actual uncertainty representation. For example in the context of
the robot navigation, this approach may assume a uniform high GPS failure rate for all
states. Hence the planner does not allow the agent to explore the environment.

2.2 Adaptive Dynamic Programming (ADP)

Methods in this category start with an initial representation of the model of the sys-
tem and updates this model as more data is observed from the environment [16]. After
updating the model representation, a new policy is obtained by applying a dynamic pro-
gramming (DP) algorithm suitable to work in real time, such as asynchronous dynamic
programming [14]. A successful application of such an algorithm to PST mission in
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hardware setting can be found in [6], where the authors improve the policy online by
estimating fuel dynamics of UAVs. Bertuccelli [5] managed to improve the performance
of these algorithms by combining robust and adaptive methods, which resulted in an al-
gorithm that estimates the uncertainty set online using the observed data. Existing ADP
methods estimate a fixed set of transition parameters (which can be as large as the state
space). Hence such methods are limited to low-dimensional small-scale systems.

2.3 Model Based Reinforcement Learning (MBRL)

Basic idea of MBRL [7] is similar to ADP, however development of these methods
in different communities led to algorithms with different behaviors and applications.
Dyna architecture [33,29] builds an approximate model of the system based on the
observed data and then uses this model to generate samples. These algorithms tackle
large state space by applying approximation to system dynamics, however finding a
good representation often requires domain expertise.

2.4 Bayesian Non-Parametric Models

Bayesian non-parametric models (BNPM)[11] are probabilistic models that can grow
their complexity in response to measured data. Thus when they are used as prior dis-
tributions over models in MBRL setting, they can alleviate the problem of finding a
good representation to a certain degree since the expressiveness of the representation
grows as more samples are observed. In [2], BNPMs are used for state clustering for an
MRBL algorithm and [17] uses BNPMs to model a rich class of motion patterns. Al-
though these methods offer more flexible models than fixed representations, they also
tend to have higher sample complexity and they may lack asymptotic convergence guar-
antees. Gaussian processes and kernel filters are classes of non-parametric models that
leverage the theory of reproducing kernel Hilbert spaces (see e.g. [24,19]) for regres-
sion and classification problems. The idea is to associate each measured state with a
kernel so that a representation can be built online. Kernel methods need several spar-
sification tools to ensure that the chosen set of kernels does not become intractable as
different parts of the state space are explored. Performing such sparsification online is
a difficult problem, because existing methods require optimization over a set of kernels
which can become computationally intensive. An incremental model expansion method
based on growing hidden Markov models had been proposed by [10], however it has
been verified only in learning and prediction of motion patterns.

This paper addresses the aforementioned shortcomings of existing methods by de-
veloping a model expansion method that has asymptotic convergence properties, which
is sample efficient and is scalable to high dimensional large-scale problems.

3 Problem Definition

The problem of sequential decision making under uncertainty is formulated as an MDP,
which is defined as the tuple M = 〈S,A,Pa

ss′ ,Ra
ss′ , γ〉, where S is the discrete state

space,A is the discrete set of actions, Pa
ss′ is the state transition model that denotes the
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probability of transitioning to state s′ when action a is applied at state s.Ra
ss′ is a known

reward model representing the reward for executing action a in state s and transitioning
to state s′. γ ∈ [0, 1] is the discount factor used to balance relative weights of current
and future rewards. Only MDPs with discrete and finite state space are considered. A
policy is a mapping π : S → A from state to action space. Together with the initial
state s0, a policy forms a trajectory z = {s0, a0, r0, s1, a1, r1, · · · }. For each time-step
t, at = π(st), and both rt and st+1 are sampled from the reward and transition models
correspondingly. The value of each state-action pair under policy π is defined as:

Qπ (s, a) = Eπ

[ ∞∑
t=0

γtrt

∣∣∣∣s0 = s, a0 = a

]
, (1)

which is the expected sum of discounted rewards obtained starting from state s, taking
action a and following the policy π thereafter. The optimal policy π∗ is given by the
solution of the following optimization problem:

π∗(s) = argmax
a

Qπ∗
(s, a). (2)

The optimal solution Q∗ satisfies the Bellman equation

Q∗ (s, a) = E
s′

[
Ra

ss′ +max
a′

γQ∗ (s′, a′)
]
. (3)

3.1 MDPs with Parametric Uncertainties

An MDP with parametric uncertainty is defined by the tuple,Mp = 〈S,A,Pa
ss′ (p),Ra

ss′

, p, γ〉, where p is an unknown mapping of the form S → [0, 1] and Pa
ss′(p) is the tran-

sition model as an explicit function of the unknown mapping p. The rest of elements are
identical to the earlier definition of the MDP. If the mapping p is constant over all states,
it corresponds to the MDP with an unknown parameter framework, which has been ex-
tensively studied in [5]. In a more general setting, p does not necessarily map each state
to the same probability value, resulting in the MDP with state-correlated uncertainty
framework. Solving such MDPs is the central theme of this paper.

From a practical point of view, p usually denotes occurrence probability of some
event E. Here an event E refers to a set of state transitions 〈s, a, s′〉 , s′ ∼ Pa

s , that
satisfy a certain condition. For instance, in the context of the robot navigation problem,
an event may be defined as all state transitions where GPS signal was not received. Since
the probability of the event occurrence depends on the state (i.e., robot’s location), then
the problem needs to be formulated as an MDP with a state correlated uncertainty. In
this setting, p(s) can be written as the following set:

p(s) = P (〈s, a, s′〉 ∈ E|s). (4)

For brevity, we only consider a single event that is action independent. For example
in the robot navigation problem, the event is the GPS signal failure and it is assumed
to be independent of the immediate action taken by the robot. Consequently we have
removed the dependence of p on E and a in Eq 4. The extension is straight forward.
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3.2 The Big Picture of Our Approach

Note that if p is known, then MDP with parametric uncertainty reduces to description
of a regular MDP. Hence the underlying hypothesis of our approach is that the optimal
planning problem for an MDP with parametric uncertainty can be solved by first esti-
mating the mapping p and then solving the corresponding MDP. This is equivalent to
estimating the structure of the mapping p. However the structure of many state depen-
dencies is usually not known beforehand, as some states may be contributing signifi-
cantly to the mapping p(s), while others may be completely independent of it. Hence
our problem definition is as follows: given an MDP with state-correlated uncertainty,
develop an iterative estimation/planning scheme where parameters are estimated from
the environment and a good policy is obtained with small number of total interactions
with the model and the environment.

Environment

Planner Parameter 
Estimator

Simulator
(approximate)

n samples

New model
parameter

Nplan interactions 
with the new Model

Nexec interactions with 
the real world

Fig. 1. Components of the adaptive planning framework

A general layout for this approach is given in Figure 1, for which one iteration of the
algorithm is as follows. At the kth iteration, the simulator model has an estimate p̂k of
the the parameter. The planner interacts with the simulator for Nplan steps in order to
design a policy πk. This policy is executed in the actual environment for Nexec steps,
where it is expected that Nexec � Nplan because collecting samples is much more
expensive from the real world compared to the simulation. The resulting trajectory zk,
which is of length Nexec, is used by the parameter estimator to obtain the new estimate
p̂k+1 with which the simulator model is updated. In the next iteration, the planner com-
putes an improved policy πk+1, and the loop continues. Based on this discussion, when
the model class and policy class include the true model and the optimal policy then
the optimal adaptive planning criteria can be given as: lim

k→∞
p̂k = p, lim

k→∞
πk = π∗,

meaning that the estimate converges to its true value, while the policy converges to the
optimal policy. However most planning and estimation algorithms have only asymptotic
convergence, requiring Nplan, Nexec →∞ to satisfy this criteria.
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4 Estimation and Planning Methods

4.1 Updating the Approximate Uncertainty Representation

An approximate representation of the uncertainty can be formed using linear function
approximation with binary features [8] as follows

p(s) ≈ p̂k(s) = φ
(s)θk, (5)

where p̂k (s) is the approximate representation at kth step and φ (s) is the vector of
features 1. Each component φj is a binary feature characterized by a mapping from
state to a binary value; φj (s) : s → {0, 1} , j = 1, ...,m, where m is the total number
of features and θk ∈ Rm is the weight vector at step k. A feature φj is called active at
state s if φj(s) = 1. Set of active features at state s is given by A (s) = { j|φj (s) = 1}.
Hence, Eq. 5 can be written as:

p̂k (s) =
∑

j∈A(s)

θkj ,

where θkj denotes the jth component of θk.
New estimates are formed by updating the weight vector at each step. For that pur-

pose, define a Bernoulli random variable Ψ (s) with parameter p(s). That is, Ψ(s) is
equal to 1 with probability p(s) and zero otherwise. Let zk be the kth experienced
trajectory with length Nexec, obtained from interacting with the environment. Define
sk,l as the state at the lth time-step of the kth trajectory where l = 1, ..., Nexec. Let
θk,l denote the corresponding weight vector. Define ζ(sk,l) to be the value that random
variable Ψ(sk,l) takes. This value can be gathered from zk based on the occurrence of
the event that is defined in Eq. 4. The weight vector can be updated applying a gradient
descend type update as follows

θk,l+1 = θk,l − 1

2
αk,l ∂

∂θk,l
[p(sk,l)− p̂k,l(sk,l)]2

= θk,l + αk,l[p(sk,l)− p̂k,l(sk,l)]φ(sk,l),

where αk,l is a scalar step-size parameter. Since p is unavailable to the algorithm, it
is replaced by its estimate ζ(sk,l). Define the sampled estimation error at state s as
Δpk,l(s) = ζ(s) − p̂k(s) = ζ(s) − φ(s)T θk,l. Then, the final form of the parameter
update law is

θk,l+1 = θk,l + αk,lΔpk,l(sk,l)φ(sk,l). (6)

Eq. 6 is a variant of the well studied stochastic gradient descent (SGD) algorithm [18].
Since the structure of p is not known beforehand, quality of the resulting approximation
found by SGD depends strongly on the selected set of features.

1 Our methodology can be extended to state-action correlated uncertainties by introducing fea-
ture vectors φ(s, a).
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4.2 Adaptive Function Approximation Using iFDD

Adaptive function approximators also modify the set of features based on the observed
data based on the following general update rule:

p̂k,l(s) = φk,l(s)
θk,l, (7)

φk+1,l+1(s) = h(zk, θk,l, φk,l),

where h is the representation expansion function that adds new features to the feature
vector based on sampled trajectories, weight vector, and previous set of features. Based
on the successful results in representing high dimensional value functions, we employ
iFDD [13,12] as the adaptive function approximator for our framework to represent the
uncertainty. The basic idea of iFDD is to expand the representation by adding conjunc-
tions of the initial features based on an error metric, thus reducing the error in parts of
the state space where the feedback error persists. The general outline of the algorithm
is as follows: given a set of initial binary features, when performing the update for state
s ∈ zk, a conjunction set φc (s) = {φj (s) ∧ φk (s)| j, k ∈ A (s)} is formed. These fea-
tures are referred as candidate features. If the sum of sampled estimation error Δp (s)
over active candidate features exceeds some pre-determined threshold ξ, these conjunc-
tions are added to set of features. The evaluation function learner (ELF) algorithm [32],
expands the representation akin to iFDD that we use, yet candidate features are selected
based on a limited set of heuristically selected features.

4.3 Planning

The goal of the planning algorithm is to find a value function which satisfies the Bellman
equation (i.e., Eq. 3) as closely as possible. Since in our approach an approximate model
is always present, we focus our attention on DP types of planners. A particular property
of interest is the sample efficiency of the algorithm, meaning that a policy with rea-
sonable expected cumulated reward is obtained with small number of interactions with
the model (i.e., Nplan). For this purpose, we compare two DP approaches: 1) classical
Value Iteration (VI) [30] and 2) Trajectory Based Value Iteration (TBVI) [30], which
can be viewed as an specific instance of Real Time Dynamic Programming (RTDP)[1].

Value Iteration. VI is a classic DP algorithm that updates state-action values by sweep-
ing through the whole space, applying the Bellman update

Q(s, a) =
∑
s′∈S

Pa
ss′ [Ra

ss′ + γmaxa′Q(s′, a′)] , (8)

until no significant change is observed.2 In our framework the number of state updates
are limited by Nplan. When Nplan � |S|, VI may not find reasonable approximation
to the value function as Bellman updates may be applied to states with trivial change to

2 This formula represents the asynchronous VI [3], as new estimates are used instantaneously
for future estimates.
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the value function. Prioritized Sweeping [20] addresses this problem, by applying the
Bellman update to the state with the highest predicted value change. While efficient for
performing exact DP, when the number of updates is fixed, this method may also focus
updates in regions of the state space where the Bellman error is high, yet not frequently
visited.

Trajectory Based Value Iteration. Motivated by on-policy RL methods, Trajectory
Based Value Iteration (TBVI), focuses the Bellman updates in states that are sampled
through Monte-Carlo simulations. The policy used for generating trajectories are ε-
greedy with respect to the current value function:

πε(s, a) =

{
1− ε a = argmaxa Q(s, a)
ε

|A| otherwise . (9)

The ε parameter assures that in the limit all state-action pair are updated infinitely,
guaranteeing the convergence to the optimal value function. Notice that both TBVI and
VI apply the Bellman update (i.e., Eq. 8) to Nplan state-action pairs. Their difference
lies on their choice for selecting state-action pairs for the update. TBVI focuses the
Bellman updates in regions of the state space that are deemed important based on the
current policy. We will investigate the effectiveness of TBVI against VI in Section 6.4.

5 Theoretical Analysis

This section investigates the asymptotic properties of iFDD combined with the SGD
algorithm presented in the previous section (iFDD-SGD). For the analysis, we consider
the estimation part, assuming that the iteration number k is fixed and that each state sk,l

and its corresponding random variable Ψ(sk,l) is sampled by following an exploratory
policy that turns the underlying MDP into an ergodic Markov chain.3 For brevity, super-
script k will be dropped from notation since it is fixed. We provide a theoretical proof
showing that iFDD-SGD asymptotically converges to a solution with probability one
using existing results on stochastic gradient descent theory [28,18]. Moreover, we show
that if p can be captured through the representation class, iFDD-SGD converges to this
point. Throughout the section we assume the standard diminishing step-size parameter
for Eq. 6.

5.1 Preliminaries

Define V as space of all functions of the form v : S → R. Define tabular representation
as a set of features of the form φj(si) = δij , where δij is the Kronecker delta func-
tion and si ∈ S, i = 1, 2, ..., |S|. Note that tabular representation forms a basis for this
space, since any v ∈ V can be represented as v =

∑
j=1,2,...,|S| v (sj)φj . It can be eas-

ily shown that φj are orthogonal to each other, hence the dim(V) = |S|. Let f = {φj ∈
3 Here we are restricting ourselves to the class of MDPs that can be turned into an ergodic

Markov Chain.
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V , j = 1, · · · , n} be a set of n linearly independent features. Define Φf ∈ R|S|×n to
be the feature matrix with elements Φ(i,j) = φj(si), i = 1, 2, ..., |S|, j = 1, 2, ..., n. It
can be shown that span(Φf ) is a subspace of V [12], hence the orthogonal projection
operator ΠF : V → F is well defined, where F is the subspace span(Φf ). The weight
matrix used for the projection operator is a diagonal matrix with the steady state dis-
tribution of states as its non-zero elements. More details about the matrix description
of the projection operator can be found in [12]. Moreover, define Ω(f) as the set of all
possible conjunctions of the elements of φj ∈ f and let Ω(F) be the corresponding
subspace. Define C(s) as the total number of non-zero features at state s. Finally define
Dφi as the set of features constituting feature φi. For instance if φi = φj ∧φk ∧φl then
Dφi = {φj , φk, φl}. If φi belongs to set of initial features then, Dφi = {φi}.

5.2 Convergence of iFDD-SGD

Lemma 1. Under the ergodicity and diminishing step-size assumptions, using SGD
with fixed feature representation f , p̂l defined in Eq. 7 converges to ΠFp as l → ∞,
with probability one.

Proof. Ergodicity assumption simply turns the problem into a least-squares parame-
ter estimation problem for p, with infinite amount of data. With the diminishing step-
size assumption, it is sufficient to invoke the results of Thm 5.3.1 in [18] showing that
stochastic approximation algorithm SGD will converge to least-squares solution asymp-
totically. That is p̂l = ΠFp as l→∞. �	

The following lemma states that, when a new feature, which is constructed by taking
conjunctions of existing features is added to the feature set, it will only be activated
at the parts of the state space with more than one active feature. This conclusion will
simplify the development of the convergence theorem.

Lemma 2. Let g ∈ Ω(f) be added to the set of existing features by iFDD. Then ∀s ∈ S
where C(s) ≤ 1 before adding g, then φg(s) = 0.

Proof. If C(s) = 0, proof is trivial since no feature is active at state s including φg . Let
C(s) = 1, and let φj be the corresponding active feature. if Dφg ⊂ Dφj , then φg(s) = 0
due to sparse activation property of iFDD explained in subsection 4.2. Assume that
Dφg �⊂ Dφj , then there exists a φi ∈ f such that φi ∈ Dφg and φi �∈ Dφj . Since only
φj is active at s, φi(s) = 0, which in turn implies that φg(s) = 0. �	

Theorem 1. Under the ergodicity and diminishing step-size assumptions, p̂l, using
SGD (Eq. 6) with iFDD representation with an initial set of features f and discovery
threshold ξ > 0, converges to ΠΩ(f)p as l →∞ with probability one.

Proof. Since the number of conjunctions are finite, there exists a point at time, after
which the set of features is unchanged. Let us call this terminal fixed set of features f †

and the corresponding subspace F†. We show that the claim holds for all possible F†:

• (ΠF†
p = p): This means the representation is rich enough to capture the exact

p vector. Lemma 1 shows that in this case p̂l converges to ΠFp as l → ∞, with
probability one.
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• (ΠF†
p �= p): This means p /∈ F†. Define S− ⊆ S as the set of states for which

Δp(s) = p(s) − p̂(s) �= 0. We argue that ∀s ∈ S−, C(s) ≤ 1. Assume this is not
true and let e(s) denote the cumulative sampled estimation error at state s. Due to
ergodicity of the underlying Markov chain, state s will be visited infinitely many
times, hence after some time e(s) will exceed any pre-defined threshold ξ, and since
C(s) > 1 iFDD algorithm would expand f † with the active features at state s. This
contradicts that f † is the terminal fixed representation.

Now, it is sufficient to show that ΠF†
p = ΠΩ(F)p. We prove this part by show-

ing that the projection of the asymptotic residual (i.e., δp = p − ΠF†
p), on any

unexpanded feature vector (i.e., φq ∈ Ω(f) \ f †) is null. To do so, it is sufficient
to show that δp
φq =

∑
s∈S δp(s)φq(s) = 0. Since ∀s /∈ S− ⇒ δp = 0, we can

write the summation as:
∑

s∈S− δp(s)φq(s). On the other hand, Lemma 2 showed
that ∀φq ∈ Ω(F) \ F†, ∀s ∈ S−, if feature q is added to the representation, then
φq(s) = 0. Hence ∀φq ∈ Ω(f) \ f †, δp
φq = 0. Therefore adding any of the re-
maining features to f † does not help the representation to reduce the residual error
further down. So as l→∞, p̂→ ΠF†

p = ΠΩ(F)p. �	

Theorem 1 proves that given an initial set of features f , iFDD-SGD asymptotically
converges to the best possible approximation with probability one. The analysis also
provides guidance on how to select the set of initial features. If f is chosen such
that dim(Ω(F)) ≥ |S|, iFDD-SGD’s approximation will be exact asymptotically with
probability one. For instance, consider the following process for selecting an initial set
of features for an MDP with finite state space. Let s be represented by a d dimensional
vector, where si corresponds to the ith component. Hence s = (s1, s2, · · · , sd). Let
{v1i , v2i , · · · , vni

i } denote the distinct values that si can take. Then initial features can
be selected selected as follows:

f =
[
φ11 ... φ1n1 φ21 ... φ2n2 ... φdnd

]

,

φij (s) =

{
1 si = vji
0 otherwise

, i = 1, ..., d, j = 1, ..., ni,
(10)

amounting to a total of m =
d∑

i=1

ni features. Geramifard et al. [12] demonstrated that,

for such an initialization, Ω(f) satisfies dim(Ω(F)) ≥ |S|.

5.3 Time Complexity

The per-time-step complexity of the iFDD algorithm has been previously investigated
in [12]. The study showed that, at each step given n features with maximum κ number
of non-zero features, the total complexity of the feature expansion and evaluation is
O(κ2κ) which is independent of the total number of features n. This property is highly
desirable since n may grow to large numbers due to feature expansion, but in turn κ
gets smaller due to the sparsity property of iFDD [12].
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6 Simulation Study

The planning and estimation algorithms described in Section 4 are investigated in three
distinct domains. The first two domains are classical RL problems: 1) gridworld and
2) block building problems motivated by [26]. Both domain descriptions are extended
to include state correlated uncertainty. The third domain is a PST mission with state-
correlated uncertainty in fuel dynamics. Structure of this domain is more complex and
is included to validate our approach on a large-scale stochastic UAV mission planning
problem. In all domains, γ was set to 0.9 and the threshold for iFDD (ξ) was set to 1.

Start

Goal

Pfail = 0.00

Pfail = 0.25

Pfail = 0.50

Pfail = 0.75

(a) Gridworld

1 2 3 4 5

Pfall
increases with height
reduces with width

1 2 3 4 5

(b) Block Building

Communication SurveillanceBase

Advance
Retreat
Loiter

fuel = 10

fuel = 10

fuel = 10

TargetsUAVs

(c) Persistent Search and Track

Fig. 2. Three domains used to generate empirical results. Refer to the text for the description of
each domain.

6.1 Gridworld Navigation with Sensor Management

This domain consists of a robot navigating in a 10×10 gridworld shown in Figure 2(a).
The task for the robot is to reach the goal (�) from the starting position (•). Possible ac-
tions are {←,→, ↑, ↓}. There is 20% chance that the robot moves to one of the adjacent
grids that was not intended. Reward is +10 for reaching the goal and zero for all move-
ment actions. In addition, the robot carries two sensors for navigation: a camera and a
GPS. The GPS is the preferred tool for navigation with no additional cost, although the
probability of receiving the GPS signal is location dependent shown in Figure 2(a) as
pfail highlighted with four colors. If the GPS signal is not received, the robot uses the
camera, incurring an additional−1 reward, while receiving the exact position. The goal
of the adaptive planner is to estimate the structure of the pfail through interactions and
modify the plan accordingly. The size of the state-action space of the domain is about
800.

6.2 Block Building

In this domain, the objective is to distribute 5 blocks to 5 empty slots on a table shown
in Figure 2(b). Initially all blocks are located under the table. The set of possible actions
is defined by picking any of the blocks on or under the table and put it in any of the 5
slots. The episode is finished when there is no blocks under the table. The reward at the
end of an episode is equal to the hight of the tallest tower minus one. However, placing
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a block on the top of the others involves pfall probability of dropping the block under the
table, which is increased by the size of the tower (i.e., the longer the tower is, the harder
is to place another block on top of it) and decreased by the number of blocks in adjacent
slots. Let nslot be the number of blocks in the destination slot, and nadj be the maximum
number of blocks in adjacent towers. Define p̄fall = 0.1× (nslot − nadj)

2
+ 0.1. Then

pfall is calculated as:

pfall =

⎧⎨⎩ 0 p̄fall � 0 or nslot = 0
p̄fall 0 < p̄fall < 1
1 p̄fall � 1

.

The optimal solution is shown in the bottom of Figure 2(b). The state-action size for
this domain is approximately 15× 103.

6.3 Persistent Search and Track Mission

The persistent search and track is a multi-agent UAV mission planning problem, where
a group of UAVs perform surveillance on a group of targets, while maintaining commu-
nication and health constraints [6]. Outline of the mission is displayed in Figure 2(c).
It should be emphasized that, although this is a multi-agent domain, decision making
process is completely centralized and the state-action space consists of combination of
all possible states-action pairs of each UAV. Each UAV’s individual state is given by
its location, fuel, and health. The health is defined by two bits indicating the function-
ality of the sensor and the actruator. There are three available actions for each UAV:
{Advance, Retreat, Loiter}. The objective of the mission is to travel to the surveillance
node and put surveillance on two targets, while one UAV stays at communication to
provide the data link with the base. Each UAV starts with 10 units of fuel and burns
one unit for all actions with probability pnom and 2 units with probability 1 − pnom.
Since UAVs are subject to more aggressive maneuvers in the surveillance area, pnom
should decrease in that region. Similarly when a UAVs health is degraded, maneuver-
ability and fuel consumption degrade accordingly. Therefore pnom is a state correlated
uncertainty shown in the Table 1. If a UAV runs out of fuel, it crashes and can no longer
continue the mission. UAVs are also subject to sensor and actuator failures at each tran-
sition step with probability pfail ∈ [0, 1]. A UAV with failed sensor cannot perform
surveillance whereas a UAV with failed actuator cannot perform neither surveillance
nor communication. When a UAV returns to the base, it is refueled and its failures are
repaired. Hence the objective of the planner is to maximize the number of time steps
that two UAVs with working sensors are located in the surveillance region and having
one UAV with a working actuator in the communication region. The complete MDP de-
scription of the mission can be found in [25]. This domain has approximately 19× 106

state-action pairs.

6.4 Results

First, we evaluated VI and TBVI across all the three domains using their exact models.
The exploration schedule (ε) for the TBVI followed the form: εk = 0.9

(Episode number)εdecay +
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Table 1. Probability of nominal fuel burn for UAVs across different locations and health status

Health Status
Location No Failure Sensor Failed Actuator Failed

Base 1.0 1.0 1.0
Communication 0.95 0.92 0.86
Surveillance 0.88 0.80 0.75
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Fig. 3. Comparison of VI and TBVI across experiment domains using their exact model of the
domain. The X-axis is the number of Bellman update, while the Y-axis represents the performance
of the resulting policy.

0.1, where k is the planning step and εdecay was empirically selected out of {0.01,
0.1, 0.5, 1.0}. Figure 3 depicts the results of running TBVI and VI in all three domains.
The X-axis represents the number of Bellman updates, and the Y-axis corresponds to
the performance of the resulting greedy policy with respect to the estimated value func-
tion. Each point shows the mean and the standard error representing 95% confidence
interval based on 30 runs. Overall, our empirical results coincide with the earlier exper-
iments [30], showing the sample efficiency of TBVI against VI. Notice as the size of
the state space grew, the sample complexity reduction of TBVI over VI became more
evident. In particular, in the largest domain, VI with 5 times more data compared to
TBVI, achieved less than half of the TBVI’s performance. This led us to pick TBVI as
our planner.

Secondly, we tested the performance of model estimation methods with fixed Nplan

and Nexec combined with TBVI. Nplan was selected based on the performance of the
planners in Figure 3, while Nexec was chosen based on the domain properties and to
be a substantially smaller number than Nplan. Figure 4 plots the results. The X-axis is
the number of iterations. Each iteration is a complete cycle of the process displayed in
Figure 1. Each algorithm was executed 30 times and for each execution, after comple-
tion of each iteration the resulting policy was evaluated on the actual domain over 30
runs amounting to 900 samples per data point. The mean of the cumulated reward and
standard deviation is plotted accordingly on the Y-axis.

Five different representation was used to compare various model estimation meth-
ods. In order to emphasize the value of adaptation, fixed model estimators were also
included in the evaluation. Fixed Model Optimistic and Fixed Model Pessimistic ap-
proaches assumed that the unknown parameter is fixed to 0 and 0.6 correspondingly
across all states and did not update this value. Uniform representation ignored the state-
correlation in the problem by utilizing a single fixed feature which was active at all
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Fig. 4. Comparison of five estimation methods combined with TBVI across across experiment
domains. The X-axis is the number of iterations of the process shown in Figure 1, while the
Y-axis represents the performance of the resulting policies.

times and was adapted based on observations. Tabular representation stored a distinct
feature for each state, resulting in a number of of parameters equivalent to the size of the
state space. Initial features for iFDD were selected using Eq. 10. To emphasize the value
of discovering new features, results with the fixed initial features were also included in
the plots.

Gridworld. For adaptive planning experiment, planning and execution horizons were
set to Nplan = 8000 and Nexec = 100. Performance of various estimation schemes
using TBVI planner are displayed in Figure 4(a). In this case uniform estimation con-
verged to the same policy obtained by any fixed model planners. This is due to fact
that with a uniform uncertainty the optimal policy is to move directly towards the goal.
This explains the poor performance of optimistic, pessimistic, and uniform estimators.
Both tabular and iFDD estimators had the capability to capture the pfail accurately. We
conjecture that the dip on the performance of the tabular estimator is due to policy
switching. Initially the agent followed the shortest route to the goal. As more samples
were obtained, the agent explored the safe route from the right side, yet it required
many samples to master the new route. The iFDD estimator performed substantially
better early on compared to tabular estimator due to generalization of the features men-
tioned in section 4.2. In this experiment iFDD started with 22 features and expanded on
average a total of 150 features. iFDD representation also performed better than repre-
sentation that uses only initial features, which emphasizes the importance of expanding
the representation.

Block Building. In this domain Nplan = 6000 and Nexec = 30. Trajectories were
capped at 200 steps. Results are given in Figure 4(b). The optimistic model achieved 0
performance, because it assumed that pfall = 0. Hence it kept trying to build a single
tower which resulted in frequent collapses. The pessimistic approach placed 4 blocks
into 4 slots and placed the final block on one of the placed blocks, achieving perfor-
mance of 1. Uniform estimation eventually converged to the same policy as the pes-
simistic model. Both Tabular and iFDD estimators had the capability to capture the
model exactly. While tabular estimator outperforms previous methods, iFDD estimator
learned the task substantially faster and reached very close to the optimal policy shown
in bottom part of Figure 2(b), using on average∼ 103 features.
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Persistent Search and Track. In this domain Nplan = 105 and Nexec = 1000. Results
are shown in Figure 4(c). Both fixed model approaches perform poorly. The optimistic
model assumed no uncertainty in the fuel dynamics, which resulted in an overly ag-
gressive policy with frequent crashes. The pessimistic model assumed high uncertainty
in the fuel dynamics, which resulted in a conservative policy that called UAVs back to
the base early, resulting in a poor performance. Even though uniform estimation out-
performed both fixed estimators, its performance did not improve after a number of
trajectories due to its inability to capture the state-correleated uncertainty. Representa-
tion with initial features outperformed uniform, optimistic and pessimistic approaches,
yet was not competitive. A similar trend to results presented before was observed be-
tween Tabular and iFDD estimators – the iFDD estimator settled around the best found
accumulated reward among all methods much faster then the tabular estimator due to
its capability to represent the uncertainty with fewer parameters. In particular, iFDD
was∼ 2.5 times more sample efficient than tabular estimation according to Figure 4(c).
In this experiment, iFDD expanded a total of ∼ 104 features on average. The size of
the parameter for the tabular representation was equivalent to the size of the state space
which was larger by about 70 times.

7 Conclusion

The problem of planning for MDPs with unknown state-correlated uncertainties was
considered. Incremental feature dependency discovery (iFDD) was employed as a com-
pact estimator of the state correlated uncertainty together with trajectory based value
iteration (TBVI) as the planner. We proved that with a fixed policy and any set of ini-
tial features our iFDD-SGD approach will converge to the best approximated model
with probability one. In particular, when the true model lies in the space of the fully
expanded features, the approximation becomes exact asymptotically. The performance
of the resulting algorithm was evaluated over three domains and compared against five
uncertainty representations. Numerical experiment results highlighted a statistically sig-
nificant improvement in terms of sample complexity and performance.
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Abstract. This paper focuses on reinforcement learning (RL) with lim-
ited prior knowledge. In the domain of swarm robotics for instance, the
expert can hardly design a reward function or demonstrate the target
behavior, forbidding the use of both standard RL and inverse reinforce-
ment learning. Although with a limited expertise, the human expert is
still often able to emit preferences and rank the agent demonstrations.
Earlier work has presented an iterative preference-based RL framework:
expert preferences are exploited to learn an approximate policy return,
thus enabling the agent to achieve direct policy search. Iteratively, the
agent selects a new candidate policy and demonstrates it; the expert
ranks the new demonstration comparatively to the previous best one;
the expert’s ranking feedback enables the agent to refine the approxi-
mate policy return, and the process is iterated.

In this paper, preference-based reinforcement learning is combined
with active ranking in order to decrease the number of ranking queries
to the expert needed to yield a satisfactory policy. Experiments on the
mountain car and the cancer treatment testbeds witness that a couple
of dozen rankings enable to learn a competent policy.

Keywords: reinforcement learning, preference learning, interactive
optimization, robotics.

1 Introduction

Reinforcement learning (RL) [26,27] raises a main issue, that of the prior knowl-
edge needed to efficiently converge toward a (nearly) optimal policy. Prior knowl-
edge can be conveyed through the smart design of the state and action space,
addressing the limited scalability of RL algorithms. The human expert can di-
rectly demonstrate some optimal or nearly-optimal behavior, speeding up the
acquisition of an appropriate reward function and/or the exploration of the RL
search space through inverse reinforcement learning [23], learning by imitation
[5], or learning by demonstration [19]. The use of preference learning, allegedly
less demanding for the expert than inverse reinforcement learning, has also been
investigated in RL, respectively to learn a reward function [6] or a policy return
function [2]. In the latter approach, referred to as preference-based policy learn-
ing and motivated by swarm robotics, the expert is unable to design a reward

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 116–131, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



APRIL: Active Preference Learning-Based Reinforcement Learning 117

function or demonstrate an appropriate behavior; the expert is more a knowl-
edgeable person, only able to judge and rank the behaviors demonstrated by
the learning agent. Like inverse reinforcement learning, preference-based policy
learning learns a policy return; but demonstrations only rely on the learning
agent, while the expert provides feedback by emitting preferences and ranking
the demonstrated behaviors (section 2).

Resuming the preference-based policy learning (Ppl) approach [2], the con-
tribution of the present paper is to extend Ppl along the lines of active learning,
in order to minimize the number of expert’s ranking feedbacks needed to learn
a satisfactory policy. However our primary goal is to learn a competent policy;
learning an accurate policy return is but a means to learn an accurate policy.
More than active learning per se, our goal thus relates to interactive optimization
[4] and online recommendation [30]. The Bayesian settings used in these related
works (section 2.4) will inspire the proposed Active Preference-based Reinforce-
ment Learning (April) algorithm.

The difficulty is twofold. Firstly, the above Bayesian approaches hardly scale
up to large-dimensional continuous spaces. Secondly, the Ppl setting requires
one to consider two different search spaces. Basically, RL is a search problem on
the policy space X , mappings of the state space on the action space. However, the
literature underlines that complex policies can hardly be expressed in the state ×
action space for tractability reasons [21]. A thoroughly investigated alternative is
to use parametric representations (see e.g. [25] among many others), for instance
using the weight vectors of a neural net as policy search space X (X ⊂ IRd,
with d in the order of thousands). Unfortunately earlier experiments suggest
that parametric policy representations might be ill-suited to learn a preference-
based policy return [2]. The failure to learn an accurate preference-based policy
return on the parametric space is explained as the expert’s preferences essentially
relate to the policy behavior, on the one hand, and the policy behavior depends
in a highly non-smooth way on its parametric description on the other hand.
Indeed, small modifications of a neural weight vector x can entail arbitrarily large
differences in the behavior of policy πx, depending on the robot environment (the
tendency to turn right or left in front of an obstacle might have far fetched impact
on the overall robot behavior).

The Ppl framework thus requires one to simultaneously consider the para-
metric representation of policies (the primary search space) and the behavioral
representation of policies (where the policy return, a.k.a. objective to be opti-
mized, can be learned accurately). The distinction between the parametric and
the behavioral spaces is reminiscent of the distinction between the input and
the feature spaces, at the core of the celebrated kernel trick [7]. Contrasting
with the kernel framework however, the mapping Φ (mapping the parametric
representation x of policy πx onto the behavioral description Φ(x) of policy
πx) is non-smooth1. In order for Ppl to apply the abovementioned Bayesian
approaches used in interactive optimization [4] or online recommendation [30]

1 Interestingly, policy gradient methods face the same difficulties, and the guarantees
they provide rely on the assumption of a smooth Φ mapping [25].
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where the objective function is defined on the search space, one should thus solve
the inverse parametric-to-behavioral mapping problem and compute Φ−1. How-
ever, computing such inverse mappings is notoriously difficult in general [28]; it
is even more so in the RL setting as it boils down to inverting the generative
model.

The technical contribution of the paper, at the core of the April algorithm,
is to propose a tractable approximation of the Bayesian setting used in [4,30],
consistent with the parametric-to-behavioral mapping. The robustness of the
proposed approximate active ranking criterion is first assessed on an artificial
problem. Its integration within April is thereafter studied and a proof of con-
cept of April is given on the classical mountain car problem, and the cancer
treatment testbed first introduced by [32].

This paper is organized as follows. Section 2 briefly presents Ppl for self-
containedness and discusses work related to preference-based reinforcement learn-
ing and active preference learning. Section 3 gives an overview of April. Section
4.2 is devoted to the empirical validation of the approach and the paper con-
cludes with some perspectives for further research.

2 State of the Art

This section briefly introduces the notations used throughout the paper, assum-
ing the reader’s familiarity with reinforcement learning and referring to [26] for a
comprehensive presentation. Preference-based policy learning, first presented in
[2], is thereafter described for the sake of self-containedness, and discussed with
respect to inverse reinforcement learning [1,18] and preference-based value learn-
ing [6]. Lastly, the section introduces related work in active ranking, specifically
in interactive optimization and online recommendation.

2.1 Formal Background

Reinforcement learning classically considers a Markov decision process frame-
work (S,A, p, r, γ, q), where S and A respectively denote the state and the action
spaces, p is the transition model (p(s, a, s′) being the probability of being in state
s′ after selecting action a in state s), r : S !→ IR is a bounded reward function,
0 < γ < 1 is a discount factor, and q : S !→ [0, 1] is the initial state probability
distribution. To each policy π (π(s, a) being the probability of selecting action
a in state s), is associated policy return J(π), the expected discounted reward
collected by π over time:

J(π) = IEπ,p,s∼q

[ ∞∑
h=0

γhr(sh) | s0 = s

]

RL aims at finding optimal policy π∗ = arg max J(π). Most RL approaches,
including the famed value and policy iteration algorithms, rely on the fact that
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a value function Vπ : S !→ IR can be defined from any policy π, and that a policy
G(V ) can be greedily defined from any value function V :

Vπ(s) = r(s) + γ
∑
a

π(s, a)p(s, a, s′)Vπ(s
′) (1)

G(V )(s) = arg max {V (s′)p(s, a, s′), a ∈ A, s′ ∈ S} (2)

Value and policy iteration algorithms, alternatively updating the value function
and the policy (Eqs. (1) and (2)), provide convergence guarantees toward the
optimal policy provided that the state and action spaces are visited infinitely
many times [26]. Another RL approach, referred to as direct policy learning [25],
proceeds by directly optimizing some objective function a.k.a. policy return on
the policy space.

2.2 Preference-Based RL

Preference-based policy learning (Ppl) was designed to achieve RL when the
reward function is unknown and generative model-based approaches are hardly
applicable. As mentioned, the motivating application is swarm robotics, where
simulator-based approaches are discarded for tractability and accuracy reasons,
and the individual robot reward is not known since the target behavior is defined
at the collective swarm level.

Ppl is an iterative 3-step process. During the demonstration step, the robot
demonstrates a policy; during the ranking step, the expert ranks the new demon-
stration comparatively to the previous best demonstration; during the self-
training step, the robot updates its model of the expert preferences, and de-
termines a new and hopefully better policy. Demonstration and policy trajectory
or simply trajectory will be used interchangeably in the following.

Let Ut = {u0, . . .ut; (ui1 ≺ ui2), i = 1 . . . t} the archive of all demonstrations
seen by the expert and all ranking constraints defined from the expert’s pref-
erence up to the t-th iteration. A utility function Jt is defined on the space of
trajectories as

Jt(u) = 〈wt,u〉

where weight vector wt is obtained by standard preference learning, solving
quadratic constrained optimization problem P [28,15]:

Minimize F (w)) = 1
2 ||w||22 + C

∑
1≤i≤t ξi1,i2

s.t. for all 1 ≤ i ≤ t 〈w,ui2 〉 − 〈w,ui1〉 ≥ 1− ξi,j
ξi1,i2 ≥ 0

(P)

Utility Jt defines a policy return on the space of policies, naturally defined as
the expectation of Jt(u) over all trajectories generated from policy π and still
noted Jt by abuse of notations:

Jt(π) = IEu∼π[〈wt,u〉] (3)
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In [2], the next candidate policy πt+1 is determined by heuristically optimizing
a weighted sum of the current policy return Jt, and the diversity w.r.t. archive Ut.
A more principled active ranking criterion is at the core of the April algorithm
(section 3).

2.3 Discussion

Let us discuss Ppl with respect to inverse reinforcement learning (IRL) [1,18].
IRL is provided with an informed, feature-based representation of the state space
S (examples of such features φk(s) are the instant speed of the agent or whether
it bumps in a pedestrian in state s). IRL exploits the expert’s demonstration
u∗ = (s∗0 s∗1 s∗2 . . . s∗h . . .) to iteratively learn a linear reward function rt(s) =
〈wt, Φ(s)〉 on the feature space. Interestingly, reward function rt also defines a
utility function Jt on trajectories: letting u = (s0s1 . . . sh . . .) be a trajectory,

Jt(u) =

∞∑
h=0

γh〈wt, Φ(s
∗
h)〉 = 〈wt,

∞∑
h=0

γhΦ(s∗h)〉 = 〈wt, μ(u)〉

where the k-th coordinate of μ(u) is given by
∑∞

h=0 γhφk(sh). As in Eq. (3), a
policy return function on the policy space can be derived by setting Jt(π) to the
expectation of Jt(u) over trajectories u generated from π.

IRL iteratively proceeds by computing optimal policy πt from reward function
rt (using standard RL [1] or using Gibbs-sampling based exploration [18]), and
refining rt to enforce that Jt(πk) < Jt(u

∗) for k = 1 . . . t. The process is iterated
until reaching the desired approximation level.

In summary, the agent iteratively learns a policy return and a candidate pol-
icy in both IRL and Ppl. The difference is threefold. Firstly, IRL starts with
an optimal trajectory u∗ provided by the human expert (which dominates all
policies built by the agent by construction) whereas Ppl is iteratively provided
with bits of information (this demonstration is/isn’t better than the previous
best demonstration) by the expert. Secondly, in each iteration IRL solves an RL
problem using a generative model, whereas Ppl achieves direct policy learning.
Thirdly, IRL is provided with an informed representation of the state space.

Let us likewise discuss Ppl w.r.t. preference-based value learning [6]. For
each state s, each action a is assessed in [6] by executing the current policy
until reaching a terminal state (rollout). On the basis of these rollouts, actions
are ranked conditionally to s (e.g. a <s a′); the authors advocate that action
ranking is more flexible and robust than a supervised learning based approach
[20], discriminating the best actions in the current state from the other actions.
The main difference with Ppl thus is that [6] defines an order relation on the
action space depending on the current state and the current policy, whereas Ppl
defines an order relation on the policy space.

2.4 Interactive Optimization

During the Ppl self-training step, the agent must find a new policy, expectedly
relevant w.r.t. the current objective function Jt, with the goal of finding as fast as
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possible a (quasi) optimal solution policy. This same goal, cast as an interactive
optimization problem, has been tackled by [4] and [30] in a Bayesian setting.

In [4], the motivating application is to help the user quickly find a suitable vi-
sual rendering in an image synthesis context. The search space X = IRD is made
of the rendering parameter vectors. The system displays a candidate solution,
which is ranked by the user w.r.t. the previous ones. The ranking constraints are
used to learn an objective function, represented as a Gaussian process using a
binomial probit regression model. The goal is to provide as quickly as possible a
good solution, as opposed to, the optimal one. Accordingly, the authors use the
Expected Improvement over the current best solution as optimization criterion,
and they return the best vector out of a finite sample of the search space. They
further note that returning the optimal solution, e.g. using the Expected Global
Improvement criterion [17] with a branch-and-bound method, raises technical
issues on high-dimensional search spaces.

In [30], the context is that of online recommendation systems. The system
iteratively provides the user with a choice query, that is a (finite) set of solutions
S, of which the user selects the one she prefers. The ranking constraints are used
to learn a linear utility function J on a low dimensional search space X = IRD,
with J(x) = 〈w,x〉 and w a vector in IRD. Within the Bayesian setting, the
uncertainty about the utility function is expressed through a belief θ defining a
distribution over the space of utility functions.

Formally, the problem of (iterated) optimal choice queries is to simultane-
ously learn the user’s utility function, and present the user with a set of good
recommendations, such that she can select one with maximal expected utility.
Viewed as a single-step (greedy) optimization problem, the goal thus boils down
to finding a recommendation x with maximal expected utility IEθ[〈w,x〉]. In a
global optimization perspective however [30], the goal is to find a set of recom-
mendations S = {x1, . . . ,xk} with maximum expected posterior utility, defined
as the expected gain in utility of the next decision. The expected utility of se-
lection (EUS) is studied under several noise models, and the authors show that
the greedy optimization of EUS provides good approximation guarantees of the
optimal query.

In [29], the issue of the maximum expected value of information (EVOI) is
tackled, and the authors consider the following criterion, where x∗ is the current
best solution: select x maximizing

EUS(x) = IEθ,x>x∗ [〈w,x〉] + IEθ,x<x∗[〈w,x∗〉] (4)

Eq. (4) thus measures the expected utility of x, distinguishing the case where x
actually improves on x∗ (l.h.s) and the case where x∗ remains the best solution
(r.h.s). This criterion can be understood by reference to active learning and the
so-called splitting index criterion [8]. Within the realizable setting (the solution
lies in the version space of all hypotheses consistent with all examples so far),
an unlabeled instance x splits the version space into two subspaces: that of
hypotheses labelling x as positive, and that of hypotheses labelling x as negative.
The ideal case is when instance x splits the version space into two equal size
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subspaces; querying x label thus optimally prunes the version space. In the
general case, the splitting index associated to x is the relative size of the smallest
subspace: the larger, the better. In active ranking, any instance x likewise splits
the version space into two subspaces: the challenger subspace of hypotheses
ranking x higher than the current best instance x∗, and its complementary
subspace. In the Bayesian setting, considering an interactive optimization goal,
the stress is put on the expected utility of x on the challenger subspace, plus the
expected utility of x∗ on the complementary subspace.

3 April Overview

Like Ppl, Active Preference-based Reinforcement Learning (April) is an itera-
tive algorithm alternating a demonstration and a self-training phase. The only
difference between Ppl and April lies in the self-training phase. This section
first discusses the parametric and behavioral policy representations. It thereafter
presents an approximation of the expected utility of selection criterion (AEUS)
used to select the next candidate policy to be demonstrated to the expert, which
overcomes the intractability of the EUS criterion (section 2.4) with regard to
these two representations.

3.1 Parametric and Behavioral Policy Spaces

As mentioned,April considers two search spaces. The first one noted X , referred
to as input space or parametric space, is suitable to generate and run the policies.
In the following X = IRd; policy πx is represented by e.g. the weight vector x of a
neural net or the parameters of a control pattern generator (CPG) [22], mapping
the current sensor values onto the actuator values. As mentioned, the paramet-
ric space is ill-suited to learn a preference-based policy return, as the expert’s
preferences only depend on the agent behavior and the agent behavior depends
in an arbitrarily non-smooth way on the parametric policy representation. An-
other space, noted Φ(X ) and referred to as feature space or behavioral space,
thus needs be considered. Significant efforts have been made in RL to design a
feature space suitable to capture the state-reward dependency (see e.g. [11]); in
IRL in particular, the feature space encapsulates an extensive prior knowledge
[1]. In the considered swarm robotics framework however, comprehensive prior
knowledge is not available, and the lack of generative model implies that massive
data are not available either to construct an informed representation.

The proposed approach, inspired from [24], takes advantage of the fact that
the agent is given for free the data stream made of its sensor and actuator values,
generated along its trajectories in the environment (possibly after unsupervised
dimensionality reduction). A frugal online clustering algorithm approach (e.g.
ε-means [9]) is used to define sensori-motor clusters. To each such cluster, re-
ferred to as sensori-motor state (sms), is associated a feature. It thus comes
naturally to describe a trajectory by the fraction of overall time it spends in
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every sensori-motor state2. Letting D denote the number of sms, each trajectory
ux generated from πx thus is represented as a unit vector in [0, 1]D (||ux||1 = 1).
The behavioral representation associated to parametric policy x, noted Φ(x),
finally is the distribution over [0, 1]D of all trajectories ux generated from policy
πx (reflecting the actuator and sensor noise, and the presence and actions of
other robots in the swarm).

Note that behavioral representation Φ(X ) does not require any domain knowl-
edge. Moreover, it is consistent despite the fact that the agent gradually discovers
its sensori-motor space; new sms are added along the learning process as new
policies are considered, but the value of new sms is consistently set to 0 for
earlier trajectories.

3.2 Approximate Expected Utility of Selection

Let Ut = {u0, . . .ut−1; (ui1 ≺ ui2), i = 1 . . . t} denote the archive of all demon-
strations seen by the expert up the t-th iteration, and the ranking constraints
defined from the expert preferences. With no loss of generality, the best demon-
stration in Ut is noted ut.

In Ppl the selection of the next policy to be demonstrated was based on
the policy return Jt(πx) = IEu∼πx [〈wt,u〉], with wt solution of the problem (P)
(section 2.2). By construction however, wt is learned from the trajectories in the
archive; it does not reward the discovery of new sensori-motor states (as they are
associated a 0 weight bywt). Instead of considering the only max margin solution
wt, the intuition is to consider the version space Wt of all w consistent3 with
the ranking constraints in the archive Ut, along the same line as the expected
utility of selection (EUS) criterion [30] (section 2.4).

The EUS criterion cannot however be applied as such, since policy return
Jt and the version space refer to the behavioral, trajectory space whereas the
goal is to select an element on the parametric space; furthermore, both the
behavioral and the parametric spaces are continuous and high-dimensional. An
approximate expected utility of selection is thus defined on the behavioral and
the parametric spaces, as follows. Let ux denote a trajectory generated from
policy πx. The expected utility of selection of ux can be defined as in [30], as
the expectation over the version space of the max between the utility of ux and
the utility of the previous best trajectory ut:

EUS(ux) = IEw in Wt [max(〈w,ux〉, 〈w,ut〉)]

Specifically, trajectory ux splits version space Wt into a challenger version space
noted W+

t (including all w with 〈w,ux〉 > 〈w,ut〉)), and its complementary
subspace W−

t . The expected utility of selection of ux thus becomes:

2 The use of the time fraction is chosen for simplicity; one might use instead the
discounted cumulative time spent in every sms.

3 While we cannot assume a realizable setting, i.e. the expert’s preferences are likely to
be noisy as noted by [30], the number of ranking constraints is always small relatively
to the number D of sensori-motor states. One can therefore assume that the version
space defined from Ut is not empty.
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EUS(ux) = IE
w in W+

t
[〈w,ux〉] + IE

w in W−
t
[〈w,ut〉]

The expected utility of selection of policy πx is naturally defined as the expec-
tation of EUS(ux) over all trajectories ux generated from policy πx:

EUS(πx) = IEux∼πx [EUS(ux)]

= IEux∼πx

[
IE

w in W+
t
[〈w,ux〉] + IE

w in W−
t
[〈w,ut〉]

]
(5)

Taking the expectation over all weight vectors w in W+ or W− is clearly in-
tractable as w ranges in a high or medium-dimensional continuous space. Two
approximations are therefore considered, defining the approximate expected util-
ity of selection criterion (AEUS). The first one consists of approximating the
center of mass of a version space by the center of the largest ball in this version
space, taking inspiration from the Bayes point machine [14]. The center of mass
of W+

t (respectively W−
t ) is replaced by w+ (resp. w−) the solution of problem

(P) where constraint ux > ut (resp. ux < ut) is added to the set of constraints
in archive Ut. As extensively discussed by [14], the SVM solution provides a good
approximation of the Bayes point machine solution provided the dimensionality
of the space is “not too high“ (more about this in section 4.1).

The second approximation takes care of the fact that the two version spaces
W+

t and W−
t are unlikely of equal probability (said otherwise, the splitting

index might be arbitrarily low). In order to approximate EUS(ux), one should
thus further estimate the probability of W+

t and W−
t . Along the same line, the

inverse of the objective value F (w+) maximized by w+ (section 2.2, problem
P) is used to estimate the probability of W+

t : the higher the objective value,
the smaller the margin and the probability of W+

t . Likewise, the inverse of the
objective value F (w−) maximized by w− is used to estimate the probability of
W−

t .
Finally, the approximate expected utility of selection of a policy πx is defined

as:

AEUSt(πx) = IEu∼πx

[
1

F (w+)
〈w+,ux〉+

1

F (w−)
〈w−,ut〉]

]
(6)

3.3 Discussion

The fact thatApril considers two policy representations, the parametric and the
behavioral or feature space, aims at addressing the expressiveness/tractability
dilemma. On the one hand, a high dimensional continuous search space is re-
quired to express competent policies. But such high-dimensional search space
makes it difficult to learn a preference-based policy return from a moderate
number of rankings, keeping the expert’s burden within reasonable limits. On
the other hand, the behavioral space does enable to learn a preference-based
policy return from the little available evidence in the archive (note that the di-
mension of the behavioral space is controlled by April) although the behavioral
description might be insufficient to describe a flexible policy.
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The price to pay for dealing with both search spaces lies in the two approx-
imations needed to transform the expected utility of selection (Eq. (5)) into a
tractable criterion (Eq. (6)), replacing the two centers of mass of version spaces
W+

t and W−
t (i.e. the solutions of the Bayes point machine [14]) with the so-

lutions of the associated support vector machine problems, and estimating the
probability of these version spaces from the objective values of the associated
SVM problems.

4 Experimental Results

This section presents the experimental setting followed to validateApril. Firstly,
the performance of the approximate expected utility of selection (AEUS) crite-
rion is assessed in an artificial setting. Secondly, the performance of April is
assessed comparatively to inverse reinforcement learning [1] on two RL bench-
mark problems.

4.1 Validation of the Approximate Expected Utility of Selection

The artificial active ranking problem used to investigate AEUS robustness is
inspired from the active learning frame studied by [8], varying the dimension d
of the space in 10, 20, 50, 100 (Fig. 1).

In each run, a target utility function is set as a vector w∗ uniformly selected
in the d-dimensional L2 unit sphere. A fixed sample S = {u1, . . .u1000} of 1,000
points uniformly generated4 in the d-dimensional L1 unit sphere is built. At
iteration t, the sample u with best AEUS is selected in S; the expert ranks it
comparatively to the previous best solution ut, yielding a new ranking constraint
(e.g. u < ut), and the process is iterated. The AEUS performance at iteration t
is computed as the scalar product of ut and w∗.

AEUS is compared to an empirical estimate of the expected utility of selection
(baseline eEUS). In eEUS, the current best sample u in S is selected from Eq.
(5), computed from 10,000 points w selected in the version spaces W+

t and
W−

t and ut is built as above. Another two baselines are considered: Random,
where sample u is uniformly selected in S, and Max-Coord, selecting with no
replacement u in S with maximal L∞ norm. The Max-Coord baseline was found
to perform surprisingly well in the early active ranking stages, especially for
small dimensions d. The empirical results reported in Fig. 1 show that AEUS
is a good active ranking criterion, yielding a good approximation of EUS. The
approximation degrades gracefully as dimension d increases: as noted by [14],
the center of the largest ball in a convex set yields a lesser good approximation
of the center of mass thereof as dimension d increases. In the meanwhile, the
approximation of the center of mass degrades too as a fixed number of 10,000
points are used to estimate EUS regardless of dimension d. Random selection

4 The samples are uniformly selected in the d-dimensional L1 unit sphere, to account
for the fact that the behavioral representation of a trajectory has L1 norm 1 by
construction (section 3.1).
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Fig. 1. Performance of AEUS comparatively to baselines (see text) vs number of pair-
wise comparisons, depending on the dimension d of the search space (results averaged
over 101 runs)

catches up as d increases; quite the contrary, Max-Coord becomes worse as d
increases.

4.2 Validation of April

The main goal of the experiments is to comparatively assess April with respect
to inverse reinforcement learning (IRL [1], section 2). Both IRL and April

extract the sought policy through an iterative two-step processes. The difference
is that IRL is initially provided with an expert trajectory, whereasApril receives
one bit of information from the expert on each trajectory it demonstrates (its
ranking w.r.t. the previous best trajectory).April performance is thus measured
in terms of “expert sample complexity”, i.e. the number of bits of information
needed to catch up compared to IRL. April is also assessed and compared to
the black-box CMA-ES optimization algorithm, used with default parameters
[12].
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All three IRL, April and CMA-ES algorithms are empirically evaluated on
two RL benchmark problems, the well-known mountain car problem and the
cancer treatment problem first introduced by [32]. None of these problems has
a reward function.

Policies are implemented as 1-hidden layer neural nets with 2 input nodes
and 1 output node, respectively the acceleration for the mountain car (resp. the
dosage for the cancer treatment problem). The hidden layer contains 9 neurons
for the mountain car (respectively 99 nodes for the cancer problem), thus the
dimension of the parametric search space is 37 (resp. 397).

RankSVM is used as learning-to-rank algorithm [16], with linear kernel and
C = 100. All reported results are averaged out of 101 independent runs.

The Cancer Treatment Problem. In the cancer treatment problem, a
stochastic transition function is provided, yielding the next patient state from its
current state (tumor size st and toxicity level tt) and the selected action (drug
dosage level at):

st+1 = st + 0.15max(tt, t0)− 1.2(at − 0.5)× 1(st > 0) + ε
tt+1 = tt + 0.1max(st, s0) + 1.2(at − 0.5) + ε

Further, the transition model involves a stochastic death mechanism (modelling
the possible patient death by means of a hazard rate model). The same setting
as in [6] is considered with three differences. Firstly, we considered a continuous
action space (the dosage level is a real value in [0, 1]), whereas the action space
contains 4 discrete actions in [6]. Secondly the time horizon is set to 12 instead
of 6. Thirdly, a Gaussian noise ε with mean 0 and standard deviation σ (ranging
in 0, 0.05, 0.1, 0.2) is introduced in the transition model. The AEUS of the can-
didate policies is computed as their empirical AEUS average over 11 trajectories
(Eq. 6).

The initial state is set to 1.3 tumor size and 0 toxicity. For the sake of repro-
ducibility the expert preferences are emulated by favoring the trajectory with
minimal sum of the tumor size and toxicity level at the end of the 12-months
treatment.

The average performance (sum of tumor size and toxicity level) of the best
policy found in each iteration is reported in Fig. 2. It turns out that the cancer
treatment problem is an easy problem for IRL, that finds the optimal policy in
the second iteration. A tentative interpretation for this fact is that the target
behavior extensively visits the state with zero toxicity and zero tumor size; the
learned w thus associates a maximal weight to this state. In subsequent iter-
ations, IRL thus favors policies reaching this state as soon as possible. April

catches up after 15 iterations, whereas CMA-ES remains consistently far from
reaching the target policy in the considered number of iterations when there is
no noise, and yields bad results (not visible on the plot) for higher noise levels.
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Fig. 2. The cancer treatment problem: Average performance (cumulative toxicity level
and tumor size after 12-months treatment) of April, IRL and CMA-ES versus the
number of trajectories demonstrated to the expert, for noise level 0, .05, .1 and .2.
Results are averaged over 101 runs.

The Mountain Car. The same setting as in [31] is considered. The car state
is described from its position and speed, initially set to position −0.5 with speed
0. The action space is set to {−1, 0, 1}, setting the car acceleration. For the sake
of reproducibility the expert preferences are emulated by favoring the trajectory
which soonest reaches the top of the mountain, or is closest to the top of the
mountain at some point during the 1000 time-step trajectory.

Interestingly, the mountain car problem appears to be more difficult for IRL
than the cancer treatment problem (Fig.3), which is blamed on the lack of expert
features. As the trajectory is stopped when reaching the top of the mountain and
this state does not appear in the trajectory description, the target reward would
have negative weights on every (other) sms feature. IRL thus finds an optimal
policy after 7 iterations on average. As for the cancer treatment problem, April

catches up after 15 iterations, while the stochastic optimization never catches
up in the considered number of iterations.
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Fig. 3. The mountain car problem: Average performance (number of time steps needed
to reach the top of the mountain) of April, IRL and CMA-ES versus the number of
trajectories demonstrated to the expert. Results are averaged over 101 runs.

5 Discussion and Perspectives

The Active Preference-based Reinforcement Learning algorithm presented in this
paper combines Preference-based Policy Learning [2] with an active ranking
mechanism aimed at decreasing the number of comparison requests to the expert,
needed to yield a satisfactory policy.

The lesson learned from the experimental validation of April is that a very
limited external information might be sufficient to enable reinforcement learning:
while mainstream RL requires a numerical reward to be associated to each state,
while inverse reinforcement learning [1,18] requires the expert to demonstrate a
sufficiently good policy, April requires a couple dozen bits of information (this
trajectory improves/does not improve on the former best one) to reach state of
the art results.

The proposed active ranking mechanism, inspired from recent advances in
the domain of preference elicitation [29], is an approximation of the Bayesian
expected utility of selection criterion; on the positive side, AEUS is tractable
in high-dimensional continuous search spaces; on the negative side, it lacks the
approximate optimality guarantees of EUS.

A first research perspective concerns the theoretical analysis of the April

algorithm, specifically its convergence and robustness w.r.t. the ranking noise,
and the approximation quality of the AEUS criterion. In particular, the com-
putational effort of AEUS could be reduced with no performance loss by using
Berstein races to decrease the number of empirical estimates (considered trajec-
tories in Eq. 6) and confidently discard unpromising solutions [13].

Another research perspective is related to a more involved analysis of the ex-
pert’s preferences. Typically, the expert might (dis)like a trajectory because of
some fragments of it (as opposed to, the whole of it). Along this line, a multiple-
instance ranking setting [3] could be used to learn preferences at the fragment



130 R. Akrour, M. Schoenauer, and M. Sebag

(sub-behavior) level, thus making steps toward the definition of sub-behaviors
and modular RL.

Another further work will be concerned with hybrid policies, combining the
(NN-based) parametric policy and the model of the expert’s preferences. The
idea behind such hybrid policies is to provide the agent with both reactive and
deliberative skills: while the action selection is achieved by the parametric policy
by default, the expert’s preferences might be exploited to reconsider these actions
in some (discretized) sensori-motor states.

On the applicative side, April will be experimented on large-scale robotic
problems, where designing good reward functions is notoriously difficult.
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brion, FET IP 216342, http://symbrion.eu/. This work is also partly funded
by ANR Franco-Japanese project Sydinmalas ANR-08-BLAN-0178-01.

References

1. Abbeel, P., Ng, A.: Apprenticeship learning via inverse reinforcement learning.
In: Brodley, C.E. (ed.) ICML. ACM International Conference Proceeding Series,
vol. 69, ACM (2004)

2. Akrour, R., Schoenauer, M., Sebag, M.: Preference-based policy learning. In:
Gunopulos et al. [10], pp. 12–27

3. Bergeron, C., Zaretzki, J., Breneman, C.M., Bennett, K.P.: Multiple instance rank-
ing. In: ICML, pp. 48–55 (2008)

4. Brochu, E., de Freitas, N., Ghosh, A.: Active preference learning with discrete
choice data. In: Advances in Neural Information Processing Systems, vol. 20, pp.
409–416 (2008)

5. Calinon, S., Guenter, F., Billard, A.: On Learning, Representing and Generalizing
a Task in a Humanoid Robot. IEEE Transactions on Systems, Man and Cybernet-
ics, Part B. Special Issue on Robot Learning by Observation, Demonstration and
Imitation 37(2), 286–298 (2007)
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Abstract. For the vision of a Smart Grid to materialize, substantial
advances in intelligent decentralized control mechanisms are required.
We propose a novel class of autonomous broker agents for retail elec-
tricity trading that can operate in a wide range of Smart Electricity
Markets, and that are capable of deriving long-term, profit-maximizing
policies. Our brokers use Reinforcement Learning with function approx-
imation, they can accommodate arbitrary economic signals from their
environments, and they learn efficiently over the large state spaces re-
sulting from these signals. Our design is the first that can accommodate
an offline training phase so as to automatically optimize the broker for
particular market conditions. We demonstrate the performance of our
design in a series of experiments using real-world energy market data,
and find that it outperforms previous approaches by a significant margin.

Keywords: Agents, Smart Electricity Grid, Energy Brokers, Reinforce-
ment Learning.

1 Introduction

Liberalization efforts in electricity markets and the advent of decentralized power
generation technologies are challenging the traditional ways of producing, dis-
tributing, and consuming electricity. The Smart Grid “aims to address these
challenges by intelligently integrating the actions of all users connected to it
. . . to efficiently deliver sustainable, economic and secure electricity supplies.” [3]
This ambitious vision requires substantial advances in intelligent decentralized
control mechanisms that increase economic efficiency, while keeping the physical
properties of the network within tight permissible bounds [17].

A promising approach to enable the critical real-time balance between supply
and demand within the network is the introduction of electricity brokers, inter-
mediaries between retail customers and large-scale producers of electricity, [8].
Electricity brokers serve as information aggregators, they fulfill risk pooling and

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 132–147, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Autonomous Data-Driven Decision-Making in Smart Electricity Markets 133

management functions, and they help attain socially desirable market outcomes
given proper economic incentives. Brokers trade in multiple interrelated mar-
kets simultaneously – a structure that Bichler et al. [1] refer to as Smart Mar-
kets. As such, Smart Markets constitute a novel class of complex, fast-paced,
data-intensive markets, in which participants employ (semi-)autonomous trading
agents to attain good trading results. Importantly, because there is considerable
variability in the structure that a future Smart Electricity Market might have,
it is imperative that the design of an autonomous electricity broker agent can
accommodate a wide variety of market structures and conditions.

We propose a novel class of autonomous Electricity Broker Agents for retail
electricity trading that operate in a wide range of market structures, and that
are capable of deriving long-term, profit-maximizing policies. Our brokers use
Reinforcement Learning with function approximation, they can accommodate
arbitrary economic signals from their environments, and they learn efficiently
over the large state spaces resulting from these signals. Previous approaches are
limited in the state space size they can accommodate, and are consequently con-
strained by the economic environments they could be deployed into. For example,
previous works [11,12] do not consider customers’ daily load profiles (assuming
fixed consumption) and the broker’s wholesale trading, both core challenges for
real-world electricity brokers. We alleviate these assumptions in our simulation
model. Our broker design is also the first that can accommodate an offline train-
ing phase to automatically optimize the broker for various market conditions.
We demonstrate the benefits of this procedure by evaluating automatically con-
structed brokers for different customer populations.

The empirical evaluations we report here are based on real-world electricity
market data from the OntarioWholesale Market and industry-standard load pro-
files for private households. Our empirical results demonstrate that our design
is effective and that it outperforms prior approaches despite the additional chal-
lenges we consider here. We hope that our broker agents contribute to current
research on economic mechanism design for the Smart Grid by providing effec-
tive strategies against which such mechanisms can be validated, e.g. [16]. More
generally, research on autonomous Electricity Broker Agents for the Smart Grid
constitutes a nascent, emerging field, in which most of the challenges are largely
unexplored. Thus, in addition to the development of a novel broker agent design,
important objectives of this work are to discuss key design decisions that allow
broker agents to operate effectively in the Smart Grid, and to inform future work
of challenges and promising research directions.

2 Smart Electricity Market Simulation

We begin with an overview of the key entities in our Smart Electricity Market,
followed by a description of the models representing them in our simulation.

Smart Electricity Markets aim to intelligently integrate the actions of
Customers, Generating Companies, and the Distribution Utility. One promis-
ing approach to achieving this integration is introducing Electricity Brokers as
intermediaries.
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Customers are small-to-medium-size consumers and/or producers of electric-
ity, such as private households and small firms. Customers buy and sell elec-
tricity through a tariff market, where electricity retailers publish standard-
ized tariff offerings, including fixed-rate, time-of-use (ToU), and variable-rate
tariffs.

Generating Companies (GenCos) are large-scale producers of energy, such as
operators of fossil-fueled power plants and wind parks. GenCos are whole-
salers of future electricity production commitments.

The Distribution Utility (DU) is responsible for operating the electric grid in
real-time. In particular, the DU manages imbalances between the energy con-
sumption and the total outstanding production commitments at any given
time. To this end, the DU buys and sells energy on short notice and charges
the responsible retailer imbalance penalties for its balancing services.

Electricity Brokers are profit-seeking intermediaries trading for their own ac-
count. They are retailers of electricity in the tariff market, and they offset
the consumption of their tariff subscribers by acquiring production commit-
ments in either the tariff market (small-scale producers) or the wholesale
market (GenCos). The portfolio of contractual arrangements that brokers
build in this way is executed in real-time by the DU. Brokers aim to build
a portfolio of high-volume, high-margin tariff subscriptions with predictable
consumption patterns that can be offset with production commitments at a
low cost.

We developed a data-driven Smart Electricity Market simulation based on
wholesale prices from a real-world electricity market in Ontario and electricity
consumption patterns based on industry-standard load profiles. An important
property of our simulation, with implications for the broker we design to operate
in this environment, is to alleviate the assumption in previous works that con-
sumers exhibit fixed demand [11,12]. Fixed demand simplifies the broker’s task,
however the resultant brokers may not offer an adequate response to the realities
of electricity markets. In particular, a key challenge for real-world brokers is to
effectively deal with patterns in consumer demand. This is important because
some patterns (e.g. highly variable ones) are more costly for the broker to offset
in the wholesale market than others.

Our simulation model is constructed from the following entities:

Electricity Broker Agents B = {Bi} or brokers contract with customers
through the tariff market and procure offsetting amounts of energy in the
wholesale market. Brokers publish one fixed-rate tariff at any given time.
This design reflects the fact that fixed rates are currently still the dominant
tariff model, mainly due to the absence of advanced metering capabilities
among electricity customers. We are interested in the performance of meth-
ods for autonomous retail electricity trading. To this end, we endow both, our
own strategies and our benchmark strategies, with a fixed wholesale trading
strategy based on exponentially averaged load forecasts, and brokers learn
to develop a profitable retail trading strategy against this backdrop.
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Customers C = {Cj}, where Cj denotes a population of customers with similar
characteristics and a joint, aggregate consumption profile. We describe our
customer model in more detail below. Presently, only a small proportion of
electricity is produced decentrally1 and central production will continue to
play a significant role in the near future. To accommodate this design we
consider customers to be exclusively consumers of electricity in this paper.

The Distribution Utility (DU) is responsible for real-time grid operation.
The Simulation Environment is responsible for coordinating brokers, cus-

tomers, and the DU. It manages the tariff market, and it provides a whole-
sale market based on actual market data from Ontario’s independent sys-
tem operator (http://www.ieso.ca) which has also been used in a related
study [12]. The wholesale market in our simulation determines prices by
randomly selecting a window of appropriate size from almost ten years of
real-world wholesale market pricing data. Once these prices have been de-
termined, broker orders have no impact on them.2

The simulation runs over T timeslots 1, . . . , t, . . . , T which are structured as
described in Figure 1:

Fig. 1. Sequence diagram for one simulation timeslot

1. Each broker Bi receives information about its current customers Ct(Bi), the
history of wholesale prices W1, . . . ,Wt−1, the tariffs offered by all brokers

1 As a liberal upper bound consider that, of the 592 TWh of electricity produced in
Germany in 2009, merely 75 TWh were produced decentrally under the country’s
Renewable Energy Act (12.6%) [4].

2 Considering brokers as price-takers is reflective of liberalized retail electricity mar-
kets, where an increasing number of small brokers compete against each other. For
2008, for example, the European Commission reported close to 940 non-main elec-
tricity retailers in Germany that shared 50% of the German market [4].



136 M. Peters et al.

at the end of the last timeslot Tt−1 = {τB1 , . . . , τB|B|}, and its current cash
account balance.

2. Each broker indicates the volume of energy V̂ c
t that it wishes to procure in

the current timeslot. Note, that the broker has no previous knowledge of its
customers’ actual consumption nor of the wholesale prices for the current
timeslot. There is no acquisition uncertainty; the indicated volume V̂ c

t is
always filled by the simulation.

3. Each customer Cj decides the volume of electricity V c
t (Cj) to consume given

its current tariff, and announces this volume to the simulation. The volume
consumed, V c

t (Cj), is derived from the corresponding customer’s consump-
tion model, which we describe below.

4. Based on the consumption decisions of its customers, its current tariff, and
its acquisition in the wholesale market, each broker’s cash account is credited
(debited) with a trading profit (loss) τc(V c

t )− V̂ c
t ·Wt, where τc(V c

t ) denotes
the cost of consuming V c

t under the current tariff τc to the customers (i.e.
the revenue of the broker), and V̂ c

t ·Wt denotes the cost of procuring V̂ c
t units

of energy at the prevailing wholesale price Wt. Any imbalance between the
broker’s forecast, and the actual amount of energy consumed by its customers
is made up for by the Distribution Utility. An imbalance penalty of I per
unit of mismatch, or |V c

t − V̂ c
t | · I in total, is debited from the cash account

of the broker for this service.

5. Each broker receives ex-post information on the actual aggregate consump-
tion volume of its customers in the current timeslot V c

t , its trading profit, its
imbalance penalty, and its cash account balance at the end of the timeslot.

6. Each broker is queried if it wishes to change its offered tariff.

7. Each customer is queried if it wishes to subscribe to a different tariff.

Customers in our simulation are represented by a customer model, each instance
of which represents the aggregate behavior of group of customers. The customer
model consists of a consumption model, which computes the amount of energy
consumed in a given timeslot, and a tariff evaluator, which defines how customers
select a tariff from a set of offered tariffs.3

The consumption model is based on the standard load profile (SLP) for a
group of private households. SLPs are commonly used in the industry to cap-
ture characteristic load patterns under defined circumstances, e.g. [6]. To our
knowledge, SLPs are the best representation available for household electricity
consumption. Figure 2a shows a single day load profile generated by our con-
sumption model. The profile reflects the characteristic consumption peaks ex-
hibited by private households around noon and during the early evening hours.

3 Note, that separating the consumption decision from the tariff selection decision
is economically well-motivated. In the short run, the electricity demand of private
households is unresponsive to changes in price level. There is some empirical evidence
for customers’ willingness to shift electricity consumption over the day in response
to changing electricity prices, e.g. [7]; however, this phenomenon does not apply to
our scenario of a fixed-rate tariff.
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Example:
At τ=2.0, 82 percent of customers
choose one of the three best tariffs.
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(b) CDF for the Boltzmann distribution.

Fig. 2. Properties of our customer model

The consumption model can also be parametrized to include an arbitrary noise
term around the base SLP.

Our tariff evaluator works as follows: If the tariff that a customer is currently
subscribed to is still available, the customer considers selecting a new tariff with
a fixed probability q. With probability 1 − q it remains in its current tariff
without considering any other offers. This behavior captures customers’ inertia in
selecting and switching to new tariffs. If the tariff that the customer is currently
subscribed to is not available any longer, the customer selects a new tariff with
probability 1.

To select a new tariff, the customer ranks all tariffs according to their fixed
rates; ties are broken randomly. A perfectly informed and rational customer
would simply select the lowest-price tariff from this ranking, because the lowest-
rate tariff minimizes the expected future cost of electricity. In reality, however,
customer decisions will tend to deviate from this theoretical optimum for differ-
ent reasons, including (1) customers do not possess perfect information about all
tariffs, either because it is unavailable to them, or because they eschew the effort
of comparing large numbers of tariffs; and (2) they make decisions based on non-
price criteria such as trust and network effects that are absent from our model.
We capture these deviations from a simple price rank-order using a Boltzmann
distribution.

Assume a customer has to decide among a total of |T | tariffs. Then the prob-

ability of selecting the r-th best tariffs is: Pr(Rank = r) = e−r/τ∑|T |
i=1 e−i/τ

Here,

τ is the so-called temperature parameter with τ ∈ (0,∞). The temperature
can be interpreted as the customers’ degree of irrationality relative to the the-
oretically optimal tariff decision. Consider the Cumulative Distribution Func-
tions (CDF) depicted in Figure 2b for different values of τ . For τ → 0, only
the best-ranked tariff has considerable mass, i.e. the tariff decision is perfectly
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rational. For τ →∞ the distribution approaches a discrete uniform distribution,
i.e. customers select their tariff at random.

3 Markov Decision Processes and Reinforcement
Learning

To operate effectively in the Smart Electricity Market outlined in Section 2, an
Electricity Broker Agent ought to learn from its environment in multiple ways.
Firstly, it needs to learn about potential customers and their behavior in terms
of tariff selection and electricity consumption. Secondly, it needs to learn about
the behavior of its competitors and derive tariff pricing policies that strike a
balance between competitiveness and profitability. And finally, it needs to learn
ways of matching tariff market actions with wholesale trading strategies in order
to maximize its profit. Note, that the broker’s only means of learning is its ability
to act in the markets it trades in, and to observe the (long-term) consequences
that its actions entail.

Reinforcement Learning (RL) offers a suitable set of techniques to address
these challenges, where the learner’s objective is to collect the highest net present
value of all present and future rewards. This could entail foregoing some imme-
diate rewards for higher rewards in the future [13]. Numerous algorithms have
been proposed for finding good policies [14]. In our scenario we use SARSA, an
algorithm from the class of Temporal Difference algorithms that is well-suited for
online control problems such as our retail electricity trading task. The algorithm
starts out with some initial model of an action-value function Q(s, a), acts (ap-
proximately, except for occasional exploration) according to the policy implied
by Q, and updates Q with the true feedback it receives from the environment in
each timeslot by Q(s, a)← Q(s, a) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] where
α denotes the learning rate. In general, SARSA only converges to a precise es-
timate of Q when each state-action pair is visited an infinite number of times,
and when the policy followed by the learner converges to a fixed policy. In our
empirical evaluation we show that our learner performs well in spite of not fully
meeting these theoretical requirements.

A key challenge of using RL for the problem we address here pertains to defin-
ing an effective state space. Because it is not well understood which state features
are useful for capturing changes in the action-value, it is beneficial to employ a
wide array of features so as to avoid the exclusion of particularly relevant ones.
However, even with a limited number of features, the state space quickly be-
comes too large to hold in memory. Furthermore, when the state space is large,
the extent of exploration required for the learner to arrive at a reliable estimate
of the action values Q(s, a) for each a ∈ A becomes prohibitive. Previous work
has dealt with this challenge by introducing derived features that combine multi-
ple environmental features into a single feature for the learner [11,12]. However,
these derived features are inherently less informative, and there is no principled
approach to constructing them.

We alleviate these challenges by learning the broker’s strategies via function
approximation, i.e. a parametrized, functional representation of Q(s, a). This
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approach offers an attractive alternative to an explicit representation of the value
in each state-action pair, thus allowing the broker to explore the effectiveness of
strategies over a wider array of potentially relevant states. One type of function
approximation uses the representationQ(s, a) = θF(s, a)′ whereQ(s, a) is linear
in F(s, a), a vector of selected features of the current state s given an action a.
The reinforcement learner continually updates the weights in θ to make Q more
representative of the experiences gathered from the environment. Other types of
function approximation can be used instead of this linear scheme, e.g. [2].

4 Learning Strategies

In this section, we first introduce our function approximation based reinforce-
ment learners, LinFA and AutoLinFA. We show how the flexible design of our
learners accommodates both manual state space construction and the automatic
construction of state spaces through optimization techniques. A thorough em-
pirical evaluation of our learners in comparison to strategies proposed in the
literature follows in Section 5.

4.1 Linear Function Approximation

Our first candidate strategy is LinFA, a reinforcement learner based on linear
function approximation. In this setting, the broker uses the discrete action set
shown in Table 1, which offers the broker important freedom for action:

The broker can set its tariffs relative to other tariffs in the market. In doing
so, the broker can choose among attacking its competitors (MarginLeader), posi-
tioning itself in the middle of the market (MarginAvg), and avoiding competition
altogether by posting the most expensive tariff (MarginTrailer). Alternatively,
rather than setting its tariffs relative to the market, the broker can set its tariffs
in an absolute fashion, choosing between LowMargin and HighMargin, regard-
less of the competing tariffs in the market. We chose the specific margins in
Table 1 for their good observed performance in our experiments. Finally, the
broker also has the option to leave its current tariff unchanged (NoOp).

Note, that while the brokers’ ultimate action will be to set an absolute rate
on its tariff, we designed the action space exclusively in terms of margins over
the wholesale rate. Interestingly, we found that normalization of the rates in this
manner improved the learning results drastically; otherwise, the learner can be
overburdened by simultaneously learning the variability in the wholesale price-
level as well as the variability among its competitors.

As state space, we first manually selected the following key features from the
environment: (1) |C(B)| the number of customers that are currently subscribed
to broker B’s tariff, (2) μ(τ) the margin of the offered tariff over the prevailing

wholesale rate, and (3) d|C(B)|
dt the change in the number of customers subscribed

to a broker’s tariff over time. These features arguably reflect some of the most
important pieces of economic information in the environment.
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Table 1. Action set for LinFA and AutoLinFA

Action Margin over Wholesale Price

MarginLeader Slightly lower than cheapest competitor
MarginAvg Average of all competitors
MarginTrailer Slightly higher than most expensive competitor
LowMargin Constant 10% margin
HighMargin Constant 20% margin

NoOp Keep the current tariff rate. This could lead to changes in the
margin if wholesale prices change.

4.2 Offline Optimization

While LinFA’s manually constructed state space is economically well-motivated,
it has a number of disadvantages:

– It is unclear which other environmental features should be included in the
state space, what type of feature coding should be used, and which features
should be ignored for better learning performance.

– It is unclear how the set of included features depends on environmental fac-
tors such as customer characteristics, or the presence of other brokers. Cer-
tain environments might call for the inclusion of features that are otherwise
distracting to the learner.

– The process of manual state space construction and validation is laborious.

Moreover, even after fixing the state space, parameters such as the learning rate
α and the discount parameter γ need to be chosen manually by the user.

We aimed to address these challenges by employing heuristic optimization
to identify an advantageous state space and learning parameters. Formally, let
F(s, a) be a set of n candidate features of the current state-action pair, and θ a
vector of m learning parameters. Then

BLinFA = {BLinFA(φ1, . . . , φn, θ1, . . . , θm)‖Φ ∈ {0, 1}n, Θ ∈ R
m}

is a class of linear function approximation based RL brokers that use the feature
(F(s, a))i as part of their state space iff φi = 1.

To measure how well a particular broker, B ∈ BLinFA, competes in a partic-
ular environment, we define the fitness function F : B !→ [0, 1] as the average
profit share that B captures in a given number of sample simulations. The best
broker B∗ for the given environment is then B(argmaxΦ,ΘF (B(Φ,Θ))).

Our second strategy, AutoLinFA, pertains to a class of brokers BLinFA with
the same action space as LinFA and a set of 29 candidate features to represent a
given state-action pair. These features include the average wholesale price and
the gradient of the broker’s cash account. Due to space limitations, we omit the
complete list of candidate features. For a given BLinFA ∈ BLinFA, the associated
fitness function F evaluates 50 simulation runs over 240 timeslots. In principle,
different (heuristic) optimization methods can be used to identify effective values
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for Φ and Θ with respect to F . However, particularly because our parameter
space consists of mostly binary features, in the experiments we report here we
employed a Genetic Algorithm (GA). The results we show were produced by
running the GA over 100 generations with 20 candidates per generation.

4.3 Nonlinear Function Approximation

In addition to a linear function approximation, we also explored the performance
of a broker agent learnt via RL with nonlinear function approximation. Specif-
ically, the resultant strategy, AutoNNFA, refers to a class of brokers BNNFA

that use Neural Networks with one hidden layer and a hyperbolic tangent sig-
moid transfer function to approximate the action-value function Q. Interestingly,
in our empirical evaluations we found that AutoNNFA exhibited some desirable
properties under some environmental conditions; however, its performance was
not consistently superior across different environments. Specifically, AutoNNFA
exhibited lower variability in performance for environments with low customer
switching probabilities q and low customer irrationalities τ . For environments
with higher variability and noise levels, however, AutoNNFA’s performance ap-
proached that of a simple fixed-markup strategy. Its linear counterpart, Au-
toLinFA, competed successfully over a substantially wider range of environments.
In part we attribute AutoNNFA’s inconsistent performance across different en-
vironments to its slow reaction to sudden changes. In addition, in the presence
of high levels of noise in the environment, we found that AutoNNFA is more
likely to derive erratic policies with oscillating tariff-rates than does AutoLinFA.
Because inconsistent performance is undesirable, we do not recommend its use
and henceforth focus our discussion on the linear brokers.

4.4 Reference Strategies

We evaluate our Electricity Broker Agent against the table-based RL strategies
proposed in [12]. To address the need for a limited state space, their strategies
are learned from derived features, referred to as PriceRangeStatus and Port-
folioStatus. Their simulation model does not include an explicit representation
of a wholesale market, and the brokers’ only sources of electricity production
commitments are small-scale producers. Brokers offer one producer tariff in ad-
dition to the consumer tariff used by the brokers in our study. These differences
make some of their results difficult to interpret in the context of the scenario we
explore here.4

The most relevant benchmark strategies for evaluating our Electricity Broker
Agent are (1) Fixed: a strategy which charges a constant markup μ over the
smoothed wholesale price, and (2) Learning: a table-based reinforcement learner

4 To incorporate these strategies in our simulation setting we used wholesale prices for
producer prices, and suppressed actions pertaining to small-scale producer tariffs.
We also excluded the state of PortfolioStatus, which is not meaningful for learning
the TableRL strategy in our simulation model.
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operating over the reduced, manually constructed state space outlined above.
For clarify, henceforth we refer to the Learning strategy as TableRL. We refer
the reader to [12] for complete details on these strategies.

5 Experimental Evaluation

We evaluated LinFA, our reinforcement learner with a manually constructed
state space, and different automatically constructed AutoLinFA learners against
the benchmark strategies from Section 4.4 in a series of experiments.

Each experiment ran over 30 simulated days (720 timeslots), in which the per-
formance of each individual broker is computed as the share of the overall profits
they captured. In the experiments we report below, the customer population is
fixed to five instances of our customer model, each representing the aggregate
behavior of a group of households.5 The so-called markup parameter [12] of the
reference strategies Fixed and TableRL was set to 0.05, at which we found that
these strategies performed best.

5.1 Function Approximation

Figure 3 shows the performance of one LinFA broker in competitions against
one Fixed and one TableRL broker for different customer switching probabili-
ties q (left panel), and different levels of customer irrationality τ (right panel).
LinFA is highly successful in many of these environments, and it beats both
reference strategies by a statistically significant margin in all cases except for
τ ≥ 2.0.6 It is interesting to note that TableRL’s performance lags not only
behind LinFA, but also behind the Fixed strategy. This does not contradict the
good performance results reported in [12], as our implementation contains only
parts of their original state space (see Section 4.4). But it shows the sensitivity
of RL results to a well-chosen state space, and the need for a broker design that
is flexible enough to accommodate the best state space for a given environment.

For high levels of customer irrationality, the performance of LinFA approaches
that of the Fixed strategy. This result may seem counter-intuitive, because even
for the limiting case of customers choosing their tariffs at random, there is a

5 We found that a larger numbers of customer groups had no significant impact on
the results as they did not change the diversity of the population, while with fewer
customer groups the simulation produced an unrealistic “winner takes it all” com-
petition. Each customer model instance was parametrized with the same switching
probability q and degree of irrationality τ as indicated in the figures, and noise of
σ = 5% around the basic load profile. Note, that equal parameter settings only im-
ply equal levels of switching probability and irrationality among customer groups,
whereas the actual decisions made by each group still vary between groups.

6 The p-value for equal profit share means of LinFA and Fixed at q = 0.5 in the
left panel is p = 0.0067. In the right panel, p = 0.6513 (τ = 2.0), p = 0.5362
(τ = 3.0), and p = 0.9690 (τ = 6.0). All other mean differences are statistically
highly significant.
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Fig. 3. Average profit share for LinFA, 70 runs per parameter combination, learning
parameters α = 0.3 (square root decay), ε = 0.3 (linear decay), γ = 1.0, error bars
indicate 95% confidence interval, τ = 0.5 (left), q = 0.1 (right)

winning strategy: by raising tariff rates, a broker can increase its profit margin
without affecting its customer base. The diminishing performance of LinFA here
stems from an implicit assumption behind its manually constructed state space.
Recall from Section 4.1 that LinFA’s state space is constructed from the number
of customers, the customer gradient, and its own profit margin. This is a well-
chosen set of features for an environment where the broker should learn to attract
additional customers conditional on positive margins. Yet, the random customer
fluctuations in environments with large values of τ will be detrimental to such a
broker’s learning performance. In the next section, we will see how an alternative
state space representation derived by AutoLinFA can be used to overcome this
problem.

In further experiments we analyzed LinFA’s performance for different sim-
ulation lengths, for different numbers of customers, for different values of the
markup parameter μ of the reference strategies, for different settings of the
learning parameters, and for different competitive settings including competi-
tion between multiple LinFA instances. We omit details here for the sake of
brevity, but we do note that LinFA competes successfully in all cases except for
pathological choices of learning parameters.

5.2 Offline Optimization

In our next experiment, we used a Genetic Algorithm to optimize AutoLinFA’s
state space and learning parameters for an environment with moderate customer
switching probabilities (q = 0.1) and relatively rational customers (τ = 0.5). We
call the resulting broker instance AutoLinFA1. Interestingly, the optimization
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Fig. 4. Average profit share for AutoLinFA1, 70 runs per parameter combination,
learning parameters α = 0.62 (decaying at t0.13), ε = 0.08 (decaying at t0.77), γ = 0.85,
error bars indicate 95% confidence interval, τ = 0.5 (left), q = 0.1 (right)

procedure chooses a very high-dimensional state space where 15 of the 29 candi-
date features are present, and a very high learning rate of α = 0.62. This choice
is a consequence of the comparatively stable environment for which AutoLinFA1
is optimized. A high level of environmental stability allows AutoLinFA1 to con-
stantly adjust its policy to the current environment without running the risk of
following pure chance developments. The result is not a single, overarching pol-
icy for different states of the environment, but a policy that tracks, and adjusts
to, the current environmental state. This behavior is sometimes referred to as
non-associative learning [13].

AutoLinFA1 performs better than LinFA, both for its target environment and
for many other environments, as illustrated in Figure 4. It is important to note
that these are out-of-sample results: we tested AutoLinFA1 in an environment
with the same parameters, but different random influences on the wholesale
market and on customer choice than in the offline training phase.

To confirm our findings, we optimized a second AutoLinFA instance, Au-
toLinFA2, for an environment where customers’ tariff choices are much more
irrational (τ = 2.0). The corresponding performance results are given in Fig-
ure 5. AutoLinFA2’s performance is again very strong for its target environment.
These strong results come, however, at the cost of underperformance for market
environments where customers act more rationally. In terms of learning param-
eters, the optimization procedure opted for a low learning rate of α = 0.03,
and higher exploration and discount rates (ε = 0.22, γ = 0.97) as compared to
the previous experiment. These choices are natural for an environment that is
characterized by high degrees of uncertainty. The lower learning rate entails that
actions must be rewarded many times before their likelihood of being selected
rises in the learner’s policy, and a large value of γ puts heavy emphasis on future
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Fig. 5. Average profit share for AutoLinFA2, 70 runs per parameter combination,
learning parameters α = 0.03 (decaying at t0.71), ε = 0.22 (decaying at t0.76), γ = 0.97,
error bars indicate 95% confidence interval, τ = 2.0 (left), q = 0.5 (right)

rewards as estimated by the inert action-value function. Together, these settings
lead to a policy that is not easily swayed by random influences from the envi-
ronment. The high exploration rate allows the broker to frequently deviate from
its current optimal policy early in the simulation. This makes intuitive sense in
an environment where exploration comes cheap (the high level of randomness
lowers the value of acting greedily with respect to the current policy), and where
it is potentially hard to find a good policy.

6 Related Work

To date, research on retail electricity trading has received relatively little atten-
tion. To our knowledge, Reddy et al. [12] were the first to suggest RL as an ap-
propriate framework for constructing such brokers for retail electricity markets.
A key distinguishing feature of the approach we present here is the automated,
data-driven construction of the feature space. In contrast, the strategies devel-
oped in [12] are derived frommanually constructed features and are limited in the
number of economic signals they can accommodate as well as in their ability to
incorporate new signals when the market environment changes. Another key dis-
tinction is that the brokers presented in [12] are derived for an environment with
fixed rates of electricity consumption and production for all market participants
where brokers source electricity exclusively from small-scale producers. Conse-
quently, the broker agent learns to steer towards an optimal consumer/producer
ratio among its subscribers by changing tariff rates. These settings yield a broker
which is unable to develop appropriate responses to any variability of consump-
tion and production over time or between different customers.
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Reinforcement Learning has been used on a wide range of problems in elec-
tronic commerce in which agents aim to learn optimal policies through inter-
action with the environment. For example, [9] develop a data-driven approach
for designing electronic auctions based on notions from RL. In the electricity
domain, RL has primarily been used to derive wholesale trading strategies, or
to build physical control systems. Examples of electricity wholesale applications
include [5] and [10], who derive bidding strategies for electricity wholesale auc-
tions. Physical control applications of RL include load and frequency control
within the electric grid and autonomous monitoring applications, e.g. [15].

Whiteson et al. [18] provide interesting insights into the role of environment
overfitting in empirical evaluations of Reinforcement Learning applications. They
argue that fitting, i.e. the adaptation of a learner to environmental conditions
known to be present in the target environment, is an appropriate strategy. Over-
fitting, i.e. the adaptation of the learner to conditions only present during eval-
uation, on the other hand, is inappropriate. These insights suggest that LinFA
is a good general-purpose broker for settings in which little is known about cus-
tomer characteristics in the target environment. Whenever prior knowledge is
available, our offline optimization procedure is able to exploit this information
and fit AutoLinFA brokers accordingly.

7 Conclusions

The Smart Grid vision relies critically on intelligent decentralized control mech-
anisms. In this paper, we explored a novel design for autonomous Electricity
Broker Agents in future electricity retail markets.

We formalized a class of Smart Electricity Markets by means of a simulation
model, and argued that our model represents the current state of the Smart Grid
transition well. We then framed the broker problem as optimal control problem
and used RL with function approximation to derive broker policies. We found
that learning tariff-setting policies can be simplified significantly by normalizing
tariff rates to the prevailing wholesale price, whereby strategies are formed with
respect to profit margins. We demonstrated the efficacy of our broker design for a
range of Smart Electricity Markets which varied substantially in terms of tariff
choice behaviors among their customer populations. Our experimental results
confirm that state space choice plays an important role in optimizing broker
performance for a given environment, and that our brokers are significantly more
flexible in this regard than previously suggested strategies.

In future work we aim to further explore the performance of our Electricity
Broker Agent design in increasingly complex Smart Electricity Markets. Among
the key features we aim to incorporate are advanced tariff structures, renewable
energy sources, and customer models derived from behavioral economics. We
believe that our proposed strategies can serve as an important benchmarks for
future work and that this work offers a meaningful contribution to our under-
standing of key design decisions for broker agents to operate effectively in the
Smart Grid.



Autonomous Data-Driven Decision-Making in Smart Electricity Markets 147

References

1. Bichler, M., Gupta, A., Ketter, W.: Designing smart markets. Information Systems
Research 21(4), 688–699 (2010)

2. Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement learning and
dynamic programming using function approximators. CRC (2010)

3. ETPSG: European Technology Platform Smart Grids: Strategic deployment doc-
ument for Europe’s electricity networks of the future (April 2010)

4. European Commission: EU energy country factsheet (2011)
5. Gajjar, G., Khaparde, S., Nagaraju, P., Soman, S.: Application of actor-critic learn-

ing algorithm for optimal bidding problem of a genco. IEEE Transactions on Power
Systems 18(1), 11–18 (2003)

6. Gottwalt, S., Ketter, W., Block, C., Collins, J., Weinhardt, C.: Demand side man-
agement - a simulation of household behavior under variable prices. Energy Pol-
icy 39, 8163–8174 (2011)

7. Herter, K., McAuliffe, P., Rosenfeld, A.: An exploratory analysis of california resi-
dential customer response to critical peak pricing of electricity. Energy 32(1), 25–34
(2007)

8. Ketter, W., Collins, J., Reddy, P., Flath, C., de Weerdt, M.: The power trading
agent competition. Tech. Rep. ERS-2011-027-LIS, RSM Erasmus University, Rot-
terdam, The Netherlands (2011), http://ssrn.com/paper=1839139

9. Pardoe, D., Stone, P., Saar-Tsechansky, M., Keskin, T., Tomak, K.: Adaptive auc-
tion mechanism design and the incorporation of prior knowledge. INFORMS Jour-
nal on Computing 22(3), 353–370 (2010)

10. Rahimiyan, M., Mashhadi, H.: An adaptive q-learning algorithm developed for
agent-based computational modeling of electricity market. IEEE Transactions on
Systems, Man, and Cybernetics 40(5), 547–556 (2010)

11. Reddy, P., Veloso, M.: Learned behaviors of multiple autonomous agents in smart
grid markets. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2011 (2011)

12. Reddy, P., Veloso, M.: Strategy learning for autonomous agents in smart grid mar-
kets. In: Proceedings of the Twenty-Second International Joint Conference on Ar-
tificial Intelligence, IJCAI, pp. 1446–1451 (2011)

13. Sutton, R., Barto, A.: Reinforcement learning: An introduction, vol. 116. Cam-
bridge Univ. Press (1998)
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Abstract. Inverse reinforcement learning (IRL) is the task of learning
the reward function of a Markov Decision Process (MDP) given the tran-
sition function and a set of observed demonstrations in the form of state-
action pairs. Current IRL algorithms attempt to find a single reward
function which explains the entire observation set. In practice, this leads
to a computationally-costly search over a large (typically infinite) space
of complex reward functions. This paper proposes the notion that if the
observations can be partitioned into smaller groups, a class of much sim-
pler reward functions can be used to explain each group. The proposed
method uses a Bayesian nonparametric mixture model to automatically
partition the data and find a set of simple reward functions correspond-
ing to each partition. The simple rewards are interpreted intuitively as
subgoals, which can be used to predict actions or analyze which states are
important to the demonstrator. Experimental results are given for simple
examples showing comparable performance to other IRL algorithms in
nominal situations. Moreover, the proposed method handles cyclic tasks
(where the agent begins and ends in the same state) that would break
existing algorithms without modification. Finally, the new algorithm has
a fundamentally different structure than previous methods, making it
more computationally efficient in a real-world learning scenario where
the state space is large but the demonstration set is small.

1 Introduction

Many situations in artificial intelligence (and everyday life) involve learning a
task from observed demonstrations. In robotics and autonomy, there exists a
large body of literature on the topic of learning from demonstration (see [1] for
a survey). However, much of the robotics work has focused on generating direct
functional mappings for low-level tasks. Alternatively, one might consider assum-
ing a rational model for the demonstrator, and using the observed data to invert
the model. This process can be loosely termed inverse decision making, and in
practice it is often more challenging (both conceptually and computationally)
than more direct mapping approaches. However, inverting the decision-making
process may lend more insight as to the motivation of the demonstrator, and
provide a richer explanation of the observed actions. Indeed, similar methodol-
ogy has been increasingly used in psychology and cognitive science for action
understanding and preference learning in humans [2, 3, 4, 5].
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If the problem is formally cast in the Markov decision process (MDP) frame-
work, the rational model described above becomes an agent who attempts to
maximize cumulative reward (in a potentially sub-optimal fashion). Inverse deci-
sion making becomes the problem of finding a state reward function that explains
the observed state-action pairs of the agent, and is termed inverse reinforcement
learning (IRL) in the seminal work of [6].

There have since been a variety of IRL algorithms developed [7, 8, 9, 10,
11, 12, 13]. These algorithms attempt to find one single reward function that
explains the entirety of the observed demonstration set. This reward function
must then be necessarily complex in order to explain the data sufficiently, es-
pecially when the task being demonstrated is itself complicated. Searching for
a complex reward function is fundamentally difficult for two reasons. First, as
the complexity of the reward model increases, so too does the number of free
parameters needed to describe the model. Thus the search is over a larger space
of candidate functions. Second, the process of testing candidate reward func-
tions requires solving for the MDP value function (details in Section 2), the
computational cost of which typically scales poorly with the size of the MDP
state space, even for approximate solutions [14]. Thus finding a single, complex
reward function to explain the observed demonstrations requires searching over
a large space of possible solutions and substantial computational effort to test
each candidate.

One potential solution to these problems would be to partition the obser-
vations into sets of smaller sub-demonstrations. Then, each sub-demonstration
could be attributed to a smaller and less-complex class of reward functions.
However, such a method would require manual partitioning of the data into an
unknown number of groups, and inferring the reward function corresponding to
each group.

The primary contribution of this paper is to present an IRL algorithm that
automates this partitioning process using Bayesian nonparametric methods. In-
stead of finding a single, complex reward function, the demonstrations are parti-
tioned and each partition is explained with a simple reward function. We assume
a generative model in which these simple reward functions can be interpreted as
subgoals of the demonstrator. The generative model utilizes a Chinese Restau-
rant Process (CRP) prior over partitions so that the number of partitions (and
thus subgoals) need not be specified a priori and can be potentially infinite.

As discussed further in Section 5, a key advantage of this method is that
the reward functions representing each subgoal can be extremely simple. For
instance, one can assume that a subgoal is a single coordinate of the state space
(or feature space). The reward function could then consist of a single positive
reward at that coordinate, and zero elsewhere. This greatly constrains the space
of possible reward functions, yet complex demonstrations can still be explained
using a sequence of these simple subgoals. Also, the algorithm has no dependence
on the sequential (i.e. temporal) properties of the demonstrations, instead focus-
ing on partitioning the observed data by associated subgoal. Thus the resulting
solution does not depend on the initial conditions of each demonstration, and
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moreover naturally handles cyclic tasks (where the agent begins and ends in the
same state).

The paper proceeds as follows. Section 2 briefly covers preliminaries, and Sec-
tion 3 describes the proposed algorithm. Section 4 presents experimental results
comparing the proposed algorithm to existing IRL methods, and discussion is
provided in Section 5.

2 Background

The following briefly reviews background material and notation necessary for the
proposed algorithm. Throughout the paper, boldface is used to denote vectors
subscripts are used to denote the elements of vectors (i.e. zi is the ith element
of vector z).

2.1 Markov Decision Processes

A finite-state Markov Decision Process (MDP) is a tuple (S,A, T, γ,R) where S
is a set of M states, A is a set of actions, T : S ×A× S !→ [0, 1] is the function
of transition probabilities such that T (s, a, s′) is the probability of being in state
s′ after taking action a from state s, R : S !→ R is the reward function, and
γ ∈ [0, 1) is the discount factor.

A stationary policy is a function π : S !→ A. From [15] we have the following
set of definitions and results:

1. The infinite-horizon expected reward for starting in state s and following
policy π thereafter is given by the value function V π(s,R):

V π(s,R) = Eπ

[ ∞∑
i=0

γiR(si)

∣∣∣∣∣ s0 = s

]
(1)

The value function satisfies the following Bellman equation for all s ∈ S:

V π(s,R) = R(s) + γ

[∑
s′

T (s, π(s), s′)V π(s′)

]
(2)

The so-called Q-function (or action-value function) Qπ(s, a, R) is defined as
the infinite-horizon expected reward for starting in state s, taking action a,
and following policy π thereafter.

2. A policy π is optimal for M iff, for all s ∈ S:

π(s) = argmax
a∈A

Qπ(s, a, R) (3)

An optimal policy is denoted as π∗ with corresponding value function V ∗

and action-value function Q∗.
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2.2 Inverse Reinforcement Learning

When inverse decision making is formally cast in the MDP framework, the prob-
lem is referred to as inverse reinforcement learning (IRL)[6]. An MDP/R is de-
fined as a MDP for which everything is specified except the state reward function
R(s). Observations (demonstrations) are provided as a set of state-action pairs:

O = {(s1, a1), (s2, a2), ..., (sN , aN )} (4)

where each pair Oi = (si, ai) indicates that the demonstrator took action ai
while in state si. Inverse reinforcement learning algorithms attempt to find a
reward function that rationalizes the observed demonstrations. For example,
find a reward function R̂(s) whose corresponding optimal policy π∗ matches the
observations O.

It is clear that the IRL problem is ill-posed. Indeed, R̂(s) = c ∀s ∈ S, where
c is any constant, will make any set of state-action pairs O trivially optimal.
Also, O may contain inconsistent or conflicting state-action pairs, i.e. (si, a1)
and (si, a2) where a1 �= a2. Furthermore, the “rationality” of the demonstrator
is not well-defined (e.g., is the demonstrator perfectly optimal, and if not, to
what extent sub-optimal).

Most existing IRL algorithms attempt to resolve the ill-posedness by making
some assumptions about the form of the demonstrator’s reward function. For
example, in [7] it is assumed that the reward is a sum of weighted state features,
and finds a reward function to match the demonstrator’s feature expectations.
In [8] a linear-in-features reward is also assumed, and a maximum margin opti-
mization is used to find a reward function that minimizes a loss function between
observed and predicted actions. In [9] it is posited that the demonstrator sam-
ples from a prior distribution over possible reward functions, and thus Bayesian
inference is used to find a posterior over rewards given the observed data. An im-
plicit assumption in these algorithms is that the demonstrator is using a single,
fixed reward function.

The three IRL methods mentioned above (and other existing methods such
as [10, 11, 13]) share a generic algorithmic form, which is given by Algorithm
1, where the various algorithms use differing definitions of “similar” in Step 2c.
We note that each iteration of the algorithm requires re-solving for the optimal
MDP value function in Step 2a, and the required number of iterations (and thus
MDP solutions) is potentially unbounded.

2.3 Chinese Restaurant Process Mixtures

Since the proposed IRL algorithm seeks to partition the observed data, a Chinese
restaurant process (CRP) is used to define a probability distribution over the
space of possible partitions. The CRP proceeds as follows:

1. The first customer sits at the first table.
2. Customer i arrives and chooses the first unoccupied table with probability

η
i−1+η , and an occupied table with probability c

i−1+η , where c is the number
of customers already sitting at that table.
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Algorithm 1. Generic inverse reinforcement learning algorithm

GenericIRL(MDP/R, Observations O1:N , Reward representation R̂(s|w))
1. Initialize reward function parameters w0

2. Iterate from t = 1 to T :
(a) Solve for optimal MDP value function V ∗ corresponding to reward function

R̂(s|w(t−1))
(b) Use V ∗ to define a policy π̂.
(c) Choose parameters w(T ) to make π̂ more similar to demonstrations O1:N in

the next iteration.
3. Return Reward function given by R̂(s|w(T ))

The concentration hyperparameter η controls the probability that a customer
starts a new table. Using zi = j to denote that customer i has chosen table j,
Cj to denote the number of customers sitting at table j, and Ji−1 to denote the
number of tables currently occupied by the first i− 1 customers, the assignment
probability can be formally defined by:

P (zi = j|z1...i−1) =

{
CJ

i−1+η j ≤ Ji−1
η

i−1+η j = Ji−1 + 1
(5)

This process induces a distribution over table partitions that is exchangeable [16],
meaning that the order in which the customers arrive can be permuted and any
partition with the same proportions will have the same probability. A Chinese
restaurant process mixture is defined using the same construct, but each table
is endowed with parameters θ of a probability distribution which generates data
points xi:

1. Each table j is endowed with parameter θj , where θj is drawn i.i.d. from a
prior P (θ).

2. For each customer i that arrives:
(a) The customer sits at table j according to (5) (the assignment variable

zi = j).
(b) A datapoint xi is drawn i.i.d. from P (x|θj).

Thus each datapoint xi has an associated table assignment zi = j and is drawn
from the distribution P (x|θj). Throughout the paper we use i to index state-
action pairs Oi of the demonstrator (“customers” in the CRP analogy). We use
j to index partitions of the state-actions pairs (“tables” in the CRP analogy).
Finally, the table parameters θj in the CRP mixture model presented above
correspond to the simple reward function for each partition, which we interpret
as subgoals throughout the paper.

3 Bayesian Nonparametric IRL Algorithm

The following section describes the Bayesian nonparametric subgoal IRL algo-
rithm. We start with two definitions necessary to the algorithm.
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Definition 1. A state subgoal g is simply a single coordinate g ∈ S of the MDP
state space. The associated state subgoal reward function Rg(s) is:

Rg(s) =

{
c at state g
0 at all other states

(6)

where c is a positive constant.

While the notion of a state subgoal and its associated reward function may seem
trivial, a more general feature subgoal will be defined in the following sections
to extend the algorithm to a feature representation of the state space.

Definition 2. An MDP agent in state si moving towards some state subgoal g
chooses an action ai with the following probability:

P (ai|si, g) = π(ai|si, g) =
eαQ

∗(si,ai,Rg)∑
a

eαQ
∗(si,a,Rg)

(7)

Thus π defines a stochastic policy as in [15], and is essentially our model of
rationality for the demonstrating agent (this is the same rationality model as
in [9] and [4]). In Bayesian terms, it defines the likelihood of observed action ai
when the agent is in state si. The hyperparameter α represents our degree of
confidence in the demonstrator’s ability to maximize reward.

3.1 Generative Model

The set of observed state-action pairs O defined by (4) are assumed to be gen-
erated by the following model. The model is based on the likelihood function
above, but adds a CRP partitioning component. This addition reflects our basic
assumption that the demonstrations can be explained by partitioning the data
and finding a simple reward function for each partition.

An agent finds himself in state si (because of the Markov property, the agent
need not consider how he got to si in order to decide which action ai to take). In
analogy to the CRP mixture described in Section 2.3, the agent chooses which
partition ai should be added to, where each existing partition j has its own
associated subgoal gj . The agent can also choose to assign ai to a new partition
whose subgoal will be drawn from the base distribution P (g) of possible subgoals.
The assignment variable zi is set to denote that the agent has chosen partition
zi, and thus subgoal gzi . As in equation (5), P (zi|z1:i−1) = CRP (η, z1:i−1). Now
that a partition (and thus subgoal) has been selected for ai, the agent generates
the action according to the stochastic policy ai ∼ π(ai|si, gzi) from equation (7).

The joint probability over O1:N , z, and g is given below, since it will be needed
to derive the conditional distributions necessary for sampling:

P (O1:N ,z, g) = P (O1:N |z, g) P (z, g) (8)

= P (O1:N |z, g) P (z) P (g) (9)

=
N∏
i=1

P (Oi|gzi)︸ ︷︷ ︸
likelihood

P (zi|z−i)︸ ︷︷ ︸
CRP

JN∏
j=1

P (gj)︸ ︷︷ ︸
prior

(10)
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where (9) follows since subgoal parameters gj for each new partition are drawn inde-
pendently from prior P (g) as described above. As shown in (10), there are three key
elements to the joint probability. The likelihood term is the probability of taking each
action ai from state si given the associated subgoal gzi , and is defined in (7). The CRP
term is the probability of each partition assignment zi given by (5). The prior term
is the probability of each partition’s subgoal (JN is used to indicate the number of
partitions after observing N datapoints). The subgoals are drawn i.i.d. from discrete
base distribution P (g) each time a new partition is started, and thus have non-zero
probability given by P (gj).

The model assumes that Oi is conditionally independent of Oj for i 	= j given gzi .
Also, it can be verified that the CRP partition probabilities P (zi|z−i) are exchangeable.
Thus, the model implies that the data Oi are exchangeable [16]. Note that this is weaker
than implying that the data are independent and identically distributed (i.i.d.). The
generative model instead assumes that there is an underlying grouping structure that
can be exploited in order to decouple the data and make posterior inference feasible.

The CRP partitioning allows for an unknown and potentially infinite number of
subgoals. By construction, the CRP has “built-in” complexity control, i.e. its concen-
tration hyperparameter η can be used to make a smaller number of partitions more
likely.

3.2 Inference

The generative model (10) has two sets of hidden parameters, namely the partition
assignments zi for each observation Oi, and the subgoals gj for each partition j. Thus
the job of the IRL algorithm will be to infer the posterior over these hidden vari-
ables, P (z,g|O1:N ). While both z and g are discrete, the support of P (z, g|O1:N ) is
combinatorially large (since z ranges over the set of all possible partitions of N inte-
gers), so exact inference of the posterior is not feasible. Instead, approximate inference
techniques must be used. Gibbs sampling [17] is in the family of Markov chain Monte
Carlo (MCMC) sampling algorithms and is commonly used for approximate inference
of Bayesian nonparametric mixture models [18, 19, 20]. Since we are interested in the
posterior of both the assignments and subgoals, uncollapsed Gibbs sampling is used
where both the z and g are sampled in each sweep.

Each Gibbs iteration involves sampling from the conditional distributions of each
hidden variable given all of the other variables (i.e. sample one unknown at a time
with all of the others fixed). Thus the conditionals for each partition assignment zi and
subgoal gj must be derived.

The conditional for partition assignment zi can be derived as follows:

P (zi|z−i, g,O) ∝ P (zi, Oi | z−i, O−i) (11)

= P (zi|z−i, g, O−i)P (Oi|zi, z−i, g,O−i) (12)

= P (zi|z−i) P (Oi|zi, z−i, g, O−i) (13)

= P (zi|z−i)︸ ︷︷ ︸
CRP

P (Oi|gzi)︸ ︷︷ ︸
likelihood

(14)

where (11) is the definition of conditional probability, (12) applies the chain rule, (13)
follows from the fact that assignment zi depends only on the other assignments z−i,
and (14) follows from the fact that each Oi depends only on its assigned subgoal gzi .
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Algorithm 2. Bayesian nonparametric IRL

BNIRL(MDP/R, Observations O1:N , Confidence α, Concentration η)
1. for each unique si ∈ O1:N :

(a) Solve for and store V ∗(Rg), where g = si and Rg is defined by (20)

(b) Sample an initial subgoal g
(0)
1 from prior P (g) and set all assignments z

(0)
i = 1

2. for t = 1 to T :
(a) for each current subgoal g

(t−1)
j : Sample subgoal g

(t)
j from (17)

(b) for each observation Oi ∈ O1:N : Sample assignment z
(t)
i from (14)

3. Return samples z(1:T ) and g(1:T ), discarding samples for burn-in and lag if desired

When sampling from (14), the exchangeability of the data is utilized to treat zi as
if it was the last point to be added. Probabilities (14) are calculated with zi being
assigned to each existing partition, and for the case when zi starts a new partition
with subgoal drawn from the prior P (g). While the number of partitions is potentially
infinite, there will always be a finite number of groups when the length of the data N
is finite, so this sampling step is always feasible.

The conditional for each partition’s subgoal gj is derived as follows:

P (gj |z,O) ∝ P (OIj |gj ,z, O−Ij )P (gj|z, O−Ij ) (15)

=
∑
i∈Ij

P (Oi|gzi) P (gj|z, O−Ij ) (16)

=
∑
i∈Ij

P (Oi|gzi)︸ ︷︷ ︸
likelihood

P (gj)︸ ︷︷ ︸
prior

(17)

where (15) applies Bayes’ rule, (16) follows from the fact that each Oi depends only
on its assigned subgoal gzi , and (17) follows from the fact that the subgoal gj of each
partition is drawn i.i.d. from the prior over subgoals. The index set Ij = {i : zi = j}.

Sampling from (17) depends on the form of the prior over subgoals P (g). When
the subgoals are assumed to take the form of state subgoals (Definition 1), then P (g)
is a discrete distribution whose support is the set S of all states of the MDP. In this
paper, we propose the following simplifying assumption to increase the efficiency of the
sampling process.

Proposition 1. The prior P (g) is assumed to have support only on the set SO of
MDP states, where SO = {s ∈ S : s = si for some observation Oi = (si, ai)}.

This proposition assumes that the set of all possible subgoals is limited to only those
states encountered by the demonstrator. Intuitively it implies that during the demon-
stration, the demonstrator achieves each of his subgoals. This is not the same as assum-
ing a perfect demonstrator (the expert is not assumed to get to each subgoal optimally,
just eventually). Sampling of (17) now scales with the number of unique states in the
observation set O1:N . While this proposition may seem limiting, the experimental re-
sults in Section 4 indicate that it does not affect performance compared to other IRL
algorithms and greatly reduces the required amount of computation. Algorithm 2 de-
fines the proposed Bayesian nonparametric inverse reinforcement learning method. The
algorithm outputs samples which form a Markov chain whose stationary distribution
is the posterior, so that sampled assignments z(T ) and subgoals g(T ) converge to a
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sample from the true posterior P (z,g|O1:N ) as T → ∞ [17, 21]. Note that instead of
solving for the MDP value function in each iteration (as is typical with IRL algorithms,
see Algorithm 1), Algorithm 2 pre-computes all of the necessary value functions. The
number of required value functions is upper bounded by the number of elements in
the support of the prior P (g). When we assume Proposition 1, then the support of
P (g) is limited to the set of unique states in the observations O1:N . Thus the required
number of MDP solutions scales with the size of the observed data set O1:N , not with
the number of required iterations. We see this as an advantage in a learning scenario
when the size of the MDP is potentially large but the amount of demonstrated data is
small.

3.3 Convergence in Expected 0-1 Loss

To demonstrate convergence, it is common in IRL to define a loss function which in
some way measures the difference between the demonstrator and the predictive output
of the algorithm [8, 9, 10]. In Bayesian nonparametric IRL, the assignments z and
subgoals g represent the hidden variables of the demonstration that must be learned.
Since these variables are discrete, a 0-1 loss function is suitable:

L [(z,g), (ẑ, ĝ)] =

{
1 if (ẑ, ĝ) = (z, g)
0 otherwise

(18)

The loss function evaluates to 1 if the estimated parameters (ẑ, ĝ) are exactly equal
to the true parameters (z, g), and 0 otherwise. We would like to show that, for the
Bayesian nonparametric IRL algorithm (Algorithm 2), the expected value of the loss
function (18) given a set of observations O1:N is minimized as the number of iterations
T increases. Theorem 1 establishes this.

Theorem 1. Assuming observations O1:N are generated according to the generative
model defined by (10), the expected 0–1 loss defined by (18) is minimized by the em-
pirical mode of the samples (z(1:T ), g(1:T )) output by Algorithm 2 as the number of
iterations T →∞.

Proof. It can be verified that the maximum a posteriori (MAP) parameter values,
defined here by

(ẑ, ĝ) = argmax
(z,g)

P (z,g|O1:N )

minimize the expected 0–1 loss defined in (18) given the observations O1:N (see [22]).
By construction, Algorithm 2 defines a Gibbs sampler whose samples (z(1:T ), g(1:T ))
converge to samples from the true posterior P (z,g|O1:N ) so long as the Markov chain
producing the samples is ergodic [17]. From [23], a sufficient condition for ergodicity
of the Markov chain in Gibbs sampling requires only that the conditional probabilities
used to generate samples are non-zero. For Algorithm 2, these conditionals are defined
by (14) and (17). Since clearly the likelihood (7) and CRP prior (5) are always non-
zero, then the conditional (14) is always non-zero. Furthermore, the prior over subgoals
P (g) is non-zero for all possible g by assumption, so that (17) is non-zero as well.

Thus the Markov chain is ergodic and the samples (z(1:T ), g(1:T )) converge to samples
from the true posterior P (z,g|O1:N ) as T → ∞. By the strong law of large numbers,
the empirical mode of the samples, defined by

(z̃, g̃) = argmax
(z(1:T ),g(1:T ))

P (z,g|O1:N )
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converges to the true mode (ẑ, ĝ) as T →∞, and this is exactly the MAP estimate of
the parameters which was shown to minimize the 0–1 loss. ��

We note that, given the nature of the CRP prior, the posterior will be multimodal
(switching partition indices does not affect the partition probability even though the
numerical assignments z will be different). As such, the argmax above is used to define
the set of parameter values which maximize the posterior. In practice, the sampler need
only converge on one of these modes to find a satisfactory solution.

The rate at which the loss function decreases relies on the rate the empirical sam-
ple mode(s) converges to the true mode(s) of the posterior. This is a property of the
approximate inference algorithm and, as such, is beyond the scope of this paper (con-
vergence properties of the Gibbs sampler have been studied, for instance in [24]). As
will be seen empirically in Section 4, the number of iterations required for convergence
is typically similar to (or less than) that required for other IRL methods.

3.4 Action Prediction

IRL algorithms find reward models with the eventual goal of learning to predict what
action the agent will take from a given state. As in Algorithm 1, the typical output of
the IRL algorithm is a single reward function that can be used to define a policy which
predicts what action the demonstrator would take from a given state.

In Bayesian nonparametric IRL (Algorithm 2), in order to predict action ak from
state sk, a subgoal must first be chosen from the mode of the samples ĝ = mode(g(1:T )).
This is done by finding the most likely partition assignment zk after marginalizing over
actions using Equation (11):

zk = argmax
zi

∑
a

P (zi | ẑ−i, ĝ, Ok = (sk, a) ) (19)

where ẑ is the mode of samples z(1:T ). Then, an action is selected using the policy
defined by (7) with ĝzk as the subgoal.

Alternatively, the subgoals can simply be used as waypoints which are followed in
the same order as observed in the demonstrations. In addition to predicting actions, the
subgoals in ĝ can be used to analyze which states in the demonstrations are important,
and which are just transitory.

3.5 Extension to Discrete Feature Spaces

Linear combinations of state features are commonly used in reinforcement learning
to approximately represent the value function in a lower-dimensional space [14, 15].
Formally, a k-dimensional feature vector is a mapping Φ : S �→ R

k. Likewise, a discrete
k-dimensional feature vector is a mapping Φ : S �→ Z

k, where Z is the set of integers.
Many of the IRL algorithms listed in Section 2.2 assume that the reward function

can be represented as a linear combination of features. We extend Algorithm 2 to
accommodate discrete feature vectors by defining a feature subgoal in analogy to the
state subgoal from Definition 1.

Definition 3. Given a k-dimensional discrete feature vector Φ, a feature subgoal g(f)
is the set of states in S which map to the coordinate f in the feature space. Formally,



158 B. Michini and J.P. How

g(f) = {s ∈ S : Φ(s) = f} where f ∈ Z
k. The associated feature subgoal reward

function Rg(f)(s) is defined as follows:

Rg(f)(s) =

{
c, s ∈ g(f)
0, s /∈ g(f)

(20)

where c is a positive constant.

From this definition it can be seen that a state subgoal is simply a specific instance
of a feature subgoal, where the features are binary indicators for each state in S.
Algorithm 2 runs exactly as before, with the only difference being that the support
of the prior over reward functions P (g) is now defined as the set of unique feature
coordinates induced by mapping S through φ. Proposition 1 is also still valid should
we wish to again limit the set of possible subgoals to only those feature coordinates in
the observed demonstrations, Φ(s1:N). Finally, feature subgoals do not modify any of
the assumptions of Theorem 1, thus convergence is still attained in 0-1 loss.

4 Experiments

Experimental results are given for three test cases. All three use a 20× 20 Grid World
MDP (total of 400 states) with walls. Note that while this is a relatively simple MDP,
it is similar in size and nature to experiments done in the seminal papers of each of the
compared algorithms. Also, the intent of the experiments is to compare basic properties
of the algorithms in nominal situations (as opposed to finding the limits of each).

The agent can move in all eight directions or choose to stay. Transitions are noisy,
with probability 0.7 of moving in the chosen direction. The discount factor γ = 0.99,
and value iteration is used to find the optimal value function for all of the IRL algo-
rithms tested. The demonstrator in each case makes optimal decisions based on the
true reward function. While this is not required for Bayesian nonparametric IRL, it is
an assumption of one of the other algorithms tested [7]. In all cases, the 0-1 policy loss
function is used to measure performance. The 0-1 policy loss simply counts the num-
ber of times that the learned policy (i.e. the optimal actions given the learned reward
function) does not match the demonstrator over the set of observed state-action pairs.

4.1 Grid World

The first example uses the state-subgoal Bayesian nonparametric IRL algorithm. The
prior over subgoal locations is chosen to be uniform over states visited by the demon-
strator (as in Proposition 1). The demonstrator chooses optimal actions towards each of
three subgoals (x, y) = {(10, 12), (2, 17), (2, 2)}, where the next subgoal is chosen only
after arrival at the current one. Figure 3 shows the state-action pairs of the demonstra-
tor (left), the 0-1 policy loss averaged over 25 runs (center), and the posterior mode
of subgoals and partition assignments (colored arrows denote assignments to the cor-
responding colored boxed subgoals) after 100 iterations (right). The algorithm reaches
a minimum in loss after roughly 40 iterations, and the mode of the posterior subgoal
locations converges to the correct coordinates. We note that while the subgoal locations
have correctly converged after 100 iterations, the partition assignments for each state-
action pair have not yet converged for actions whose subgoal is somewhat ambiguous.
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Fig. 3. Observed state-action pairs for simple grid world example (left), where arrows
indicate direction of the chosen action and X’s indicate choosing the “stay” action. 0-1
policy loss for Bayesian nonparametric IRL (center). Posterior mode of subgoals and
partition assignments (right). Colored arrows denote assignments to the corresponding
colored boxed subgoals.

4.2 Grid World with Features Comparison

In the next test case, Bayesian nonparametric IRL (for both state- and feature-subgoals)
is compared to three other IRL algorithms, using the same Grid World setup as in Sec-
tion 4.1: “Abbeel” IRL using the quadratic program variant [7], Maximum Margin
Planning using a loss function that is non-zero at states not visited by the demonstra-
tor [8], and Bayesian IRL [9]. A set of six features φ1:6(s) are used, where feature k
has an associated state sφk

. The value of feature k at state s is simply the Manhattan
distance (1-norm) from s to sφk

:

φk(s) = ||s − sφk
||1 (21)

The true reward function is defined as R(s) = wTφ(s) where w is a vector of randomly-
chosen weights. The observations consist of five demonstrations starting at state (x, y) =
(15, 1), each having 15 actions which follow the optimal policy corresponding to the
true reward function. Note that this dataset satisfies the assumptions of the three com-
pared algorithms, though it does not strictly follow the generative process of Bayesian
nonparametric IRL. Figure 4 shows the state-action pairs of the demonstrator (left) and
the 0-1 policy loss, averaged over 25 runs versus iteration for each algorithm (right). All
but Bayesian IRL achieve convergence to the same minimum in policy loss by 20 itera-
tions, and Bayesian IRL converges at roughly 100 iterations (not shown). Even though
the assumptions of the Bayesian nonparametric IRL were not strictly satisfied (the
assumed model (10) did not generate the data), both the state- and feature-subgoal
variants of the algorithm achieved performance comparable to the other IRL methods.

Table 1 compares average initialization and per-iteration run-times for each of the
algorithms. These are given only to show general trends, as the Matlab implementa-
tions of the algorithms were by no means optimized for efficiency. The initialization
of Bayesian nonparametric IRL takes much longer than the others, since during this
period the algorithm is pre-computing optimal value functions for each of the possible
subgoal locations (i.e. each of the states encountered by the demonstrator). However,
the Bayesian nonparametric IRL per-iteration time is roughly an order of magnitude
less than the other algorithms, since the others must re-compute an optimal value
function each iteration.
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Observed Demonstrations for Comparison Example
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Fig. 4. Observed state-action pairs for grid world comparison example (left). Compar-
ison of 0-1 Policy loss for various IRL algorithms (right).

Table 1. Run-time comparison for various IRL algorithms

Initialization (sec) Per-iteration (sec)

BN-IRL 15.3 0.21

Abbeel-IRL 0.42 1.65

MaxMargin-IRL 0.41 1.16

Bayesian-IRL 0.56 3.27

4.3 Grid World with Loop

In the final experiment, five demonstrations are generated using subgoals as in Section
4.1. The demonstrator starts in state (x, y) = (10, 1), and proceeds to subgoals (x, y) =
{(19, 9), (10, 17), (2, 9), (10, 1)}. Distance features (as in Section 4.2) are placed at each
of the four subgoal locations. Figure 5 (left) shows the observed state-action pairs. This
dataset clearly violates the assumptions of all three of the compared algorithms, since
more than one reward function is used to generate the state-action pairs. However, the
assumptions are violated in a reasonable way. The data resemble a common robotics sce-
nario in which an agent leaves an initial state, performs some tasks, and then returns to
the same initial state.

Figure 5 (center) shows that the three compared algorithms, as expected, do not
converge in policy loss. Both Bayesian nonparametric algorithms, however, perform
almost exactly as before and the mode posterior subgoal locations converge to the
four true subgoals (Figure 5 right). Again, the three compared algorithms would have
worked properly if the data had been generated by a single reward function, but such a
reward function would have to be significantly more complex (i.e. by including temporal
elements). Bayesian nonparametric IRL is able to explain the demonstrations without
modification or added complexity.

5 Discussion

5.1 Comparison to Existing Algorithms

The example in Section 4.2 shows that, for a simple problem, Bayesian nonparametric
IRL performs comparably to existing algorithms in cases where the data are generated
using a single reward function. Approximate computational run-times indicate that
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Observed Demonstrations for Loop
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Fig. 5. Observed state-action pairs for grid world loop example (left). Comparison of
0-1 Policy loss for various IRL algorithms (center). Posterior mode of subgoals and
partition assignments (right).

overall required computation is similar to existing algorithms. As noted in Section 3.2,
however, Bayesian nonparametric IRL solves for the MDP value function once for each
unique state in the demonstrations. The other algorithms solve for the MDP value
function once per iteration. We see this fundamental difference as an advantage which
will make the new algorithm scalable to real-world domains where the size of the state
space is large and the set of demonstrations is small. Testing in these larger domains
is an area of ongoing work.

The loop example in Section 4.3 highlights several fundamental differences between
Bayesian nonparametric IRL and existing algorithms. While the example resembles the
fairly-common traveling salesman problem, it breaks the fundamental assumption of ex-
isting IRL methods that the demonstrator is optimizing a single reward function. These
algorithms could be made to properly handle the loop case, but not without added com-
plexity or manual partitioning of the demonstrations. Bayesian nonparametric IRL, on
the other hand, is able to explain the loop example without any modifications. The abil-
ity of the new algorithm to automatically partition the data and explain each group with
a simple subgoal reward eliminates the need to find a single, complex temporal reward
function. Furthermore, the Chinese restaurant process prior naturally limits the number
of partitions in the resulting solution, rendering a parsimonious explanation of the data.

5.2 Related and Future Work

Aside from the relation to existing IRL methods, we see a connection to option meth-
ods for MDPs [25]. While the original work explains how to use options to perform
potentially complex tasks in an MDP framework, Bayesian nonparametric IRL could
be used to learn options from demonstrations. Options in this case would take the form
of optimal policies corresponding to each of the learned subgoal rewards. Exploration
of the connection to option learning is an avenue of future work.

There are several other areas of ongoing and future work. First, the results given
here are for simple problems and are by no means exhaustive. Ongoing work seeks to
apply the method in more complex robotics domains where the size of the state space
is significantly larger, and the observations are generated by an actual human demon-
strator. Also, Bayesian nonparametric IRL could be applied to higher-level planning
problems where the list of subgoals found by the algorithm may be useful in more
richly analyzing the human demonstrator.
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Abstract. We consider the problem of using a heuristic policy to im-
prove the value approximation by the Upper Confidence Bound applied
in Trees (UCT) algorithm in non-adversarial settings such as planning
with large-state space Markov Decision Processes. Current improvements
to UCT focus on either changing the action selection formula at the in-
ternal nodes or the rollout policy at the leaf nodes of the search tree. In
this work, we propose to add an auxiliary arm to each of the internal
nodes, and always use the heuristic policy to roll out simulations at the
auxiliary arms. The method aims to get fast convergence to optimal val-
ues at states where the heuristic policy is optimal, while retaining similar
approximation as the original UCT at other states. We show that boot-
strapping with the proposed method in the new algorithm, UCT-Aux,
performs better compared to the original UCT algorithm and its vari-
ants in two benchmark experiment settings. We also examine conditions
under which UCT-Aux works well.

1 Introduction

Monte Carlo Tree Search (MCTS) [1], or more specifically Upper Confidence
Bound applied in Trees (UCT) [2], is a state-of-the-art approach to solving large
state-space planning problems. Example applications of the UCT algorithm in
the games domain include Go [1,3,4], General Game Playing [5], Real-Time
Strategy Game [6], etc.

The algorithm estimates the value of a state by building a search tree using
simulated episodes, or rollouts, via interactions with the simulator. Instead of
sampling every branch equally, the goal is to focus samplings in tree branches
that are more promising. In particular, UCT achieves that by choosing the ac-
tion, or arm, with the highest estimated upper bound to simulate at every in-
ternal node, and randomly selects actions after leaving the tree to finish the
rollout.

Because UCT uses random sampling to discover nodes with good return,
it could take a long time to achieve good performance. To address this prob-
lem, many enhancements have been used to improve the search control of the
algorithm by either (1) tweaking the action selection formula at the internal
nodes [7,3,5,4,8], and/or (2) designing better-informed rollout policies in place
of random sampling at the leaf nodes [3,4].

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 164–179, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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We consider the problem of using a heuristic function to improve the approxi-
mated value function computed by UCT. Taking the approaches above, the first
method is to initialize new tree nodes with heuristic values and the second is to
use the chosen heuristic to roll out simulations at the leaf nodes. As intended,
these two methods could greatly influence the search control by guiding it into
more promising regions that are determined by the heuristic. However, when
the heuristic function does not accurately reflect the prospect of the states, it
could feed the algorithm with false information, thereby leading the search into
regions that should be kept unexplored otherwise.

In this work, we propose a novel yet simple enhancement method. Given a
heuristic in the form of an imperfect policy π, the method adds an additional
arm at every internal node of the search tree. This special arm is labeled by
the action suggested by π and once selected, rolls out the rest of the sampling
episode using π. If the policy π works well at a state, we expect it to quickly
give a good estimate of the value of the state without relying too much on the
other arms. The method aims to get fast convergence to optimal values at states
where the heuristic policy is optimal, while retaining similar approximation as
the original UCT at other states.

We compared this method with two aforementioned techniques in two do-
mains, namely Obstructed Sailing, an extension of the original Sailing problem
previously used to measure UCT’s performance in [2], and Sheep Savior, a large
state-space MDP that characterizes a generic two-player collaborative puzzle
game. The results showed that UCT-Aux the new algorithm (Aux for auxiliary
arms) significantly outperforms its competitors when coupled with reasonable
heuristics.

One nice property of this method is that it does not affect the implementa-
tion of other bootstrapping techniques: No modification of the action selection
formula nor the rollout policy at any leaf nodes except for the added arms is re-
quired. This allows different sources of bootstrapping knowledge to be combined
into one algorithm for more performance boost.

The rest of the paper is structured as follows. We first give a brief overview
of MDP, UCT and its popular enhancements before presenting UCT-Aux. Next,
we describe two experimental setups for comparing the agents’ performance and
analyze the results. We also identify the common properties of the heuristics
used in two experimental domains and provide some insights on why UCT-
Aux works well in those cases. Finally, we conclude the paper by discussing the
possible usage of UCT-Aux.

2 Background

2.1 Markov Decision Process

A Markov Decision Process characterizes a planning problem with tuple (S,A,
T,R, γ), in which

– S is the set of all states,
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– A is the set of all available actions,
– Ta(s, s

′) = P (st+1 = s′|st = s, at = a) is the probability that action a ∈ A
in state s ∈ S at time t will lead to state s′ ∈ S at time t+ 1,

– Ra(s, s
′) is the immediate reward received after the state transition from s

to s′ triggered by action a, and
– γ ∈ [0, 1] is the discount factor; in infinite-horizon settings, γ must be strictly

smaller than 1.

An action policy π is a function, possibly stochastic, that returns an action π(s)
for every state s ∈ S. In infinite-horizon discounted MDPs, the objective is
to choose an action policy π∗ that maximizes some cumulative function of the
received rewards, typically the expected discounted sum

∑∞
t=0 γtRa∗(st, st+1).

An MDP can be effectively solved using different methods, one of which is the
value iteration algorithm based on the Bellman’s equation [9]. The algorithm
maintains a value function V (s), where s is a state, and iteratively updates the
value function using the equation

Vt+1(s) = max
a

(∑
s′

Ta(s, s
′)(Ra(s, s

′) + γVt(s
′))

)
.

This value iteration algorithm is guaranteed to converge to the optimal value
function V ∗(s), which gives the optimal expected cumulative reward of running
the optimal policy from state s.

The optimal value function V ∗ can be used to construct the optimal policy by
taking action a∗ in state s such that a∗ = argmaxa {

∑
s′ Ta(s, s

′)V ∗(s′)}. The
optimal Q-function is constructed from V ∗ as follows:

Q∗(s, a) =
∑
s′

Ta(s, s
′)(Ra(s, s

′) + γV ∗(s′)).

Q∗(s, a) denotes the maximum expected long-term reward of an action a when
executed in state s.

One key issue that hinders MDPs and Value Iteration from being widely used
in real-life planning tasks is the large state space size (usually exponential in the
number of state variables) that is often required to model realistic problems.

2.2 Upper Confidence Bound Applied to Trees (UCT)

UCT [2] is an anytime algorithm that approximates the state-action value in real
time using Monte Carlo simulations. It was inspired by Sparse Sampling [10],
the first near-optimal policy whose runtime does not depend on the size of the
state space. The approach is particularly suitable for solving planning problems
with very large or possibly infinite state spaces.

The algorithm searches forward from a given starting state, building up a tree
whose nodes alternate between reachable future states and state-action pairs
(Figure 1). State nodes are called internal if their child state-action pairs have
been expanded and leaf otherwise. Starting with a root state, the algorithm
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Fig. 1. A sample UCT search tree with two valid actions a0 and a1 at any state.
Circles are state nodes and rectangles are state-action nodes; solid state nodes are
internal while dotted are leafs.

iteratively rolls out simulations from this root node; each time an internal node
is encountered, it is regarded as a multi-armed bandit and UCB1 [11] is used to
determine the action or arm to sample, i.e., the edge to traverse. In particular,
at an internal node s, the algorithm selects an action according to

πUCT (s) = argmax
a

{
QUCT (s, a) + 2Cp

√
logn(s)

n(s, a)

}
, (1)

in which

– QUCT (s, a) is the estimated value of state-action pair (s, a), taken to be the
weighted average of its children’s values.

– Cp > 0 is a suitable hand-picked constant.
– n(s) is the total number of rollouts starting from s.
– n(s, a) is the number of rollouts that execute a at s.

At the chosen child state-action node, the simulator is randomly sampled for
a next state with accompanying reward; new states automatically become leaf
nodes. From the leaf nodes, rollouts are continued using random sampling until a
termination condition is satisfied, such as reaching terminal states or simulation
length limit. Once finished, the returned reward propagates up the tree, with the
value at each parent node being the weighted average of its child nodes’ values;
suppose the rollout executes action a at state s and accumulates reward R(s, a)
in the end.

– at state-action nodes, n(s, i) = n(s, i) + 1 and QUCT (s, a) = QUCT (s, a) +
1

n(s,a) (R(s, a)−QUCT (s, a))

– at state nodes, n(s) = n(s) + 1.

Typically one leaf node is converted to internal per rollout, upon which its child
state-action nodes are generated. When the algorithm is terminated, the root’s
arm with highest QUCT (s, a) is returned

1.

1 In practice, returning the arm with highest n(s, a) is also a common choice.
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When used for infinite-horizon discounted MDPs, the search can be cut off at
an ε0-horizon. Given any ε > 0, with ε0 small enough, the algorithm is proven to
converge to the arm whose value is within the ε-vicinity of the optimal arm [2].

2.3 Enhancement Methods

In vanilla UCT, new state-action nodes are initialized with uninformed default
values and random sampling is used to finish the rollout when leaving the tree.
Given a source of prior knowledge, Gelly and Silver [3] proposed two directions
to bootstrap UCT:

1. Initialize new action-state nodes with n(s, a) = nprior(s, a) andQUCT (s, a) =
Qprior(s, a), and

2. Replace random sampling by better-informed exploration guided by πprior.

We refer to these two algorithms as UCT-I (UCT with new nodes initialized to
heuristic values) and UCT-S (UCT with simulations guided by πprior); UCT-IS
is the combination of both methods. UCT-I and UCT-S can be further tuned
using domain knowledge to mitigate the flaw of a bad heuristic and amplify the
influence of a good one by adjusting the dependence of the search control on the
heuristic at internal nodes. In this work, we do not investigate the effect of such
tuning to ensure a fair comparison between techniques when employed as is.

In the same publication [3], the authors proposed another bootstrapping tech-
nique, namely Rapid Action Value Estimation (RAVE), which we do not examine
in this work. The technique is specifically designed for domains in which an ac-
tion from a state s has similar effect regardless of when it is executed, either at s
or after many moves. RAVE uses the All-Moves-As-First (AMAF) heuristic [12]
instead of QUCT (s, a) in Equation 1 to select actions. Many board games such as
Go or Breakthrough [5] have this desired property. In our experiment domains,
RAVE is not applicable, because the actions are mostly directional movements,
e.g., {N,E, S,W}, thus tied closely to the state they are performed at.

3 UCT-Aux: Algorithm

Given an added policy π, we propose a new algorithm UCT-Aux that follows
the same search control as UCT except for two differences.

1. At every internal node s, besides |A(s)| normal arms with A(s) being the
set of valid actions at state s, an additional arm labeled by the action π(s)
is created (Figure 2).

2. When this arm is selected by Equation 1, it stops expanding the branch but
rolls out a simulation using π; value update is carried out from the auxiliary
arm up to the root as per normal.

The method aims to better manage mixed-quality heuristics. If the heuristic π’s
value estimation at a state is good, we expect the added arm to dominate the
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Fig. 2. Sample search tree of UCT-Aux

distribution of rollouts and quickly give a good estimate of the state’s value
without the need to inspect other arms. Otherwise, the search control will focus
rollouts in ordinary arms, thus retaining similar approximation as vanilla UCT.

For stochastic heuristic policies, at every internal node, not one but κ auxiliary
arms are added, withκ being the number of actions aπ such thatP (π(s) = aπ) > 0.
As such, the number of arms at internal nodes is bounded by 2|A| since κ ≤ |A|.

3.1 Convergence Analysis

We will show that regardless of the added policy’s quality, UCT-Aux converges in
finite-horizon MDPs2. The proof follows closely that of UCT analysis by treating
the auxiliary arms as any other ordinary arms. As a recap, UCT convergence
analysis revolves around the analysis of non-stationary multi-armed bandits with
reward sequences satisfying some drift conditions, which is proven to be the
case for UCT’s internal nodes with appropriate choice of bias sequence Cp

3. In
particular, the drift conditions imposed on the payoff sequences go as follows:

– The expected values of the averages X in = 1
n

∑n
t=1 Xit must converge for

all arms i with n being the number of pulls and Xit the payoff of pull t. Let
μin = E[X in] and μi = limn→∞μin.

– Cp > 0 can be chosen such that the tail inequalities P (Xi,n(i) ≥ μi+ct,n(i)) ≤
t−4 and P (X i,n(i) ≤ μi − ct,n(i)) ≤ t−4 are satisfied for ct,n(i) = 2Cp

√
ln t
n(i)

with n(i) being the number of times arm i is pulled up to time t.

Firstly, we will show that all internal nodes of UCT-Aux have arms yielding
rewards satisfying the drift conditions. Suppose the horizon of the MDP is D,
the number of actions per state is K and the heuristic policy is deterministic
(κ = 1); this can be proven using induction onD. Note that i.i.d. payoff sequences
satisfy the drift conditions trivially due to Hoeffding’s inequality.

2 As mentioned in [2], for use with discounted infinite-horizon MDPs, the search tree
can be cut off at the effective ε0-horizon with ε0 being the desired accuracy at root.

3 Empirically, Cp is often chosen to be an upper bound of the accumulated reward
starting from the current state.
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– D = 1: Suppose the root has already been expanded, i.e., become internal.
It has K +1 arms, which either lead to leaf nodes (ordinary arms) or return
i.i.d. payoffs (auxiliary arm). Since leaf nodes have i.i.d. payoffs, all arms
satisfy drift conditions.

– D > 1: Assume that all internal state nodes under the root have arms
satisfying the drift conditions, e.g., s1 and s3 in Figure 2. Consider any
ordinary arm of the root node (the added arm’s payoff sequence is already
i.i.d.), for instance, (s0, a1). Its payoff average is the weighted sum of payoff
sequences in all leafs and state-action nodes on the next two levels of the
subtree, i.e., leaf s2, arms (s3, a0), (s3, a1) and (s3, π(s3)), all of which satisfy
drift conditions due to either the inductive hypothesis or producing i.i.d.
payoffs. Theorem 4 in [2] posits that the weighted sum of payoff sequences
conforming to drift conditions also satisfies drift conditions; therefore, all
arms originating from the root node satisfy drift conditions.

As a result, the theorems on non-stationary bandits in [2] hold for UCT-Aux’s
internal nodes as well. Therefore, we can obtain similar results to Theorem 6
of [2], with the difference being statistical measures related to the auxiliary
arms such as μaux and Δaux, i.e., the new algorithm’s probability of selecting a
suboptimal arm converges to zero as the number of rollouts tends to infinity.

4 Experiments

We compare the performance of UCT-Aux against UCT, UCT-I, UCT-S and
UCT-IS in two domains: Obstructed Sailing and Sheep Savior. Obstructed Sail-
ing extends the benchmark Sailing domain by placing random blockage in the
map; the task is to quickly move a boat from one point to a destination on a
map, disturbed by changing wind, while avoiding obstacles. Sheep Savior fea-
tures a two-player maze game in which the players need to herd a sheep into its
pen while protecting it from being killed by two ghosts in the same environment.

5 Obstructed Sailing

The Sailing domain, originally used to evaluate the performance of UCT [2],
features a control problem in which the planner is tasked to move a boat from a
starting point to a destination under certain disturbing wind conditions. In our
version, there are several obstacles placed randomly in the map (see Figure 3a).

In this domain, the state is characterized by tuple 〈x, y, b, wprev, wcurr〉 with
(x, y) being the current boat position, b the current boat posture or direction,
wprev the previous wind direction and wcurr the current wind direction. Direc-
tions take values in {N, NE, E, SE, S, SW, W, NW}, i.e. clockwise starting from
North. The controller’s valid action set includes all but the directions against
wcurr, out of the map or into an obstacle. After each time step, the wind has
roughly equal probability to remain unchanged, switch to its left or its right [13].
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(a) Obstructed Sailing sample map (b) SailingTowardsGoal

Fig. 3. Obstructed Sailing domain; (a) a randomized starting configuration, (b) Sail-
ingTowardsGoal heuristic produces near-optimal estimates/policies in good cases but
misleads the search control in others

Depending on the relative angle between the action taken and wcurr, a cost
from 1 to 4 minutes is incurred. Additionally, changing from a port to a starboard
tack or vice versa causes a tack delay of 3 minutes. In total, an action can cost
anywhere from 1 to 7 minutes, i.e., Cmin = 1 and Cmax = 7 [13]. We model the
problem as an infinite-horizon discounted MDP with discount factor γ = 0.99.

5.1 Choice of Heuristic Policies

A simple heuristic for this domain is to select a valid action that is closest to
the direction towards goal position regardless of the cost, thereafter referred to
as SailingTowardsGoal. For instance, in the top subfigure of Figure 3b, at the
starting state marked by “S”, if current wind is not SW, SailingTowardsGoal
will move the boat in the NE direction; otherwise, it will execute either N or E.

This heuristic is used in UCT-I and UCT-IS by initializing new state-action
nodes with values

nSTG(s, a)← 1

QSTG(s, a)← C(s, a) + Cmin
1− γd(s′,g)+1

1− γ

with C(s, a) being the cost of executing action a at state s and d(s′, g) the
minimum distance between next state s′ and goal position g. The initialized
value can be seen as the minimum cost incurred when all future wind directions
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are favorable for desired movement. For UCT-S, the random rollouts are replaced
by π(s) = argmaxa QSTG(s, a).

Heuristic Quality. This heuristic works particularly well for empty spaces,
producing near-optimal plans if there are no obstacles. However, it could be
counterproductive when encountering obstacles. In the bottom subfigure of Fig-
ure 3b, if a rollout from the starting position is guided by SailingTowardsGoal,
it could be stuck oscillating among the starred tiles, thus giving inaccurate esti-
mation of the optimal cost.

5.2 Setup and Results

The trial map size is 30 by 30, with fixed starting and goal positions at respec-
tively (2, 2) and (27, 27) (Figure 3a). We generated 100 randomized instances of
the map, where obstacles are shuffled by giving each grid tile p = 0.4 chance
to be blocked4. Each instance is tried five times, each of which with different
starting boat postures and wind directions.

Fig. 4. Performance comparison of UCT, UCT-S, UCT-I, UCT-IS and UCT-Aux when
coupled with the heuristic SailingTowardsGoal; y-axis is the reward average with error
bars being the standard errors of the means

All UCT variants (UCT, UCT-I, UCT-S, UCT-IS and UCT-Aux) use the
same Cp = Cmax/(1 − γ) = 700 and the search horizon5 is set to be 300; an
optimal path should not be very far from 60 steps as most actions move the boat

4 We tried with different values of p ∈ {0.05, 0.1, 0.2, 0.3, 0.5} and they all yield similar
results as Figure 4; the detailed charts are not presented due to space constraint.

5 The search horizon is chosen to be long enough so that the cost accumulated after
the horizon has small effect to the total cost.
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closer to the goal. The exact optimal policy is obtained using Value Iteration.
Note that the performance of Optimal agent varies because of the randomization
of starting states (initial boat and wind direction) and map configurations.

Given the same number of samplings, UCT-Aux outperforms all competing
UCT variants, despite the mixed quality of the added policy SailingTowards-
Goal when dealing with obstacles (Figure 4). Note that without parameter tun-
ing, both UCT-I and UCT-S are inferior to vanilla UCT, but between UCT-I
and UCT-S, UCT-I shows faster performance improvement when the number of
samplings increases. The reason is because when SailingTowardsGoal produces
inaccurate heuristic values, UCT-I only suffers at early stage while UCT-S en-
dures misleading guidance until the search reaches states where the policy yields
more accurate heuristic values. The heuristic’s impact is stronger in UCT-S than
UCT-I: UCT-IS’s behavior is closer to UCT-S than UCT-I.

6 Sheep Savior

This domain is an extension of the Collaborative Ghostbuster game introduced
in [14] as the testbed for their assistance framework for collaborative games.
The game features two players (a shepherd and a dog) whose task is to herd
a sheep into its pen while avoiding it to be killed by two ghosts in a maze-like
environment. All non-player characters (NPCs) run away from the players within
a certain distance, otherwise the ghosts chase the sheep and the sheep runs away
from ghosts. Since ghosts can only be shot by the Shepherd, the dog’s role is
strictly to gather the NPCs (Figure 5).

Both protagonists have 5 movement actions (no move, N, S, E and W) while
Shepherd has an additional action to inflict damage on a nearby ghost, hence a
total of 30 compound actions. The two players are given rewards for successfully
killing ghosts (5 points) or herding sheep into its pen (10 points). If the sheep
is killed, the game is terminated with penalty -10. The discount factor in this
domain is set to be 0.99.

6.1 Choice of Heuristic Policies

The game can be seen as having three subtasks, each of which is the task of
catching a single ghost or herding a single sheep, as shown in Figure 5. Each of
these subtasks consists of only two players and one NPC, hence has manageable
complexity and can be solved exactly offline using Value Iteration.

A heuristic Q-value can be obtained by taking the average of all individual
subworlds’, or subtasks’, Q-values, as an estimate for one state-action pair’s
value. Specifically, at state s the policy, GoalAveraging, yields

nGA(s, a)← 1

QGA(s, a) =
1

m

m∑
i=1

Qi(si, a)
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Fig. 5. Task decomposition in Sheep Savior

in which si is the projection of s in subtask i, m is the number of subtasks,
i.e. three in this case, and Qi(si, a) are subtasks’ Q-values. The corresponding
heuristic policy can be constructed as πGA(s) = argmaxa QGA(s, a).

Heuristic Quality. GoalAveraging works well in cases when the sheep is well-
separated from ghosts. However, when these creatures are close to each other,
the policy’s action estimation is no longer valid and could yield deadly results.
The under-performance is due to the fact that the heuristic is oblivious to the
interactivity between subtasks, in this case, ghost-killing-sheep scenarios.

6.2 Setup and Results

The map shown in Figure 5 is tried 200 times, each of which with a different ran-
domized starting configurations. We compare the means of discounted rewards
produced by the following agents: Random, GoalAveraging, UCT, UCT-I, UCT-
S, and UCT-Aux. The optimal policy in this domain is not computed due to the
prohibitively large state space, i.e., 1045 ∗ 32 ≈ 1011 since each ghost has at
most two health points. All UCT variants have a fixed planning depth of 300.
In our setup, one second of planning yields roughly 200 rollouts on average, so
we do not run simulations with higher numbers of rollouts than 10000 due to
time constraint. Moreover, in this game-related domain, the region of interest is
in the vicinity of 200 to 500 rollouts for practical use.

As shown in Figure 6, UCT-Aux outperforms the other variants, especially
early on with small numbers of rollouts. UCT-S takes advantage of GA better
than UCT-I, which yields even worse performance than vanilla UCT. Observing
the improvement rate of UCT-S we expect it to approach UCT-Aux much sooner
than others, although asymptotically all of them will converge to the same op-
timal value when enough samplings are given and the search tree is sufficiently
expanded; the time taken could be prohibitively long though.
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Fig. 6. Performance comparison of Random, GoalAveraging, UCT, UCT-S, UCT-I,
and UCT-Aux when coupled with Goal Averaging

7 Discussions

Although UCT-Aux shows superior performances in the experiments above, we
observe that the chosen heuristic policies share a common property that is crucial
for UCT-Aux’s success: they show behaviors of “make it or break it”. In other
words, at most states s, their action value estimate Qπ(s, a) is either near-optimal
or as low as that of a random policy Qrand(s, a).

Specifically, in Obstructed Sailing, if following SailingTowardsGoal can bring
the boat from a starting state to goal position, e.g., when the line of sight
connecting source and destination points lies entirely in free space, the resultant
course of actions does not deviate much from the optimal action sequences.
However when the policy fails to reach the goal, it could be stuck fruitlessly. For
instance, Figure 3b depicts one such case; once the boat has reached either one
of three starred tiles underneath the goal position, unless at least three to five
wind directions in a row are E, SailingTowardsGoal results in oscillating the boat
among these starred tiles. The resultant cost is therefore very far from optimal
and could be as low as the cost incurred by random movement.

In contrast, an example for heuristics that are milder in nature is the policy
StochasticOptimal.0.2 which issues optimal actions with probability 0.2 and ran-
dom actions for the rest. This policy is also suboptimal but almost always yields
better estimation than random movement; it is not as “extreme” as SailingTo-
wardsGoal. Figure 7, which charts the performance histograms of StochasticOp-
timal.0.2 alongside with SailingTowardsGoal, shows that a majority of runs with
SailingTowardsGoal yield costs that are either optimal or worse than Random’s.

Similarly, GoalAveraging in Sheep Savior is also extreme: By ignoring the dan-
ger of Ghosts when around Sheep, it is able to quickly herd the Sheep in the Pen or
kill nearby Ghosts (good), or end the game prematurely by forcing the Sheep into
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Fig. 7. Performance histograms of heuristics in Obstructed Sailing. The returned costs
of a heuristic are allocated relatively into bins that equally divide the cost difference
between Random and Optimal agents; x-axis denotes the bin number and y-axis the
frequency.

Ghosts’ zones (bad). We hypothesize that one way to obtain extreme heuristics
is by taking near-optimal policies of the relaxed version of the original planning
problem, in which aspects of the environment that cause negative effects to the
accumulated reward are removed. For instance, SailingTowardsGoal is in spirit
the same as the optimal policy for maps with no obstacle, while GoalAveraging
should work well if the ghosts do not attack sheep.

As UCT-Aux is coupled with heuristic policies with this “extreme” charac-
teristic, rollouts are centralized at auxiliary arms of states where π(s) is near-
optimal, and distributed to ordinary arms otherwise. Consequently, the value
estimation falls back to the default random sampling where π produces inaccu-
rate estimates instead of relying entirely on π as does UCT-S.

7.1 When Does UCT-Aux Not Work?

Figure 8 charts the worst-case behavior of UCT-Aux when the coupled heuristic’s
estimate is mostly better than random sampling but much worse than that of the
optimal policy, e.g. the heuristic StochasticOptimal.0.2 in Obstructed Sailing.

The reason behind UCT-Aux’s flop is the same as that of UCT, i.e., due
to the overly “optimism” of UCB1, as described in [8]. At each internal node,
samplings are directed into suboptimal arms that appear to perform the best so
far, exponentially more than the rest (Theorem 1 [2]) when convergence has not
started. Even though each arm is guaranteed to be sampled an infinite number
of times when the number of samplings goes to infinity (Theorem 3 [2]), the sub-
polynomial rate means only a tiny fraction of samplings are spent on attempting
bad-looking arms. As a result, in a specially designed binary tree search case,
UCT takes at least Ω(exp(exp(...exp(2)...))) samplings before the optimal node
is discovered; the term is a composition of D − 1 exponential functions with D
being the number of actions in the optimal sequence.
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Fig. 8. Bad case of UCT-Aux when coupled with StochasticOptimal.0.2

Table 1. The average number of tree nodes for UCT variants in Obstructed Sailing
when coupled with StochasticOptimal.0.2

Samplings 500 1000 2000 5000 10000 20000 50000 100000 200000

UCT 268.4 555.4 1134.6 2694.5 5395.7 11041.7 27107.4 53235.9 107107
UCT-S 268.9 558.6 1157.3 2733.2 5424.7 11212.7 27851.2 54382.2 109308
UCT-I 279.2 583 1200.7 2805 5620 11519.4 28123.8 55393.7 111418
UCT-IS 278.6 586 1209.2 2834.8 5657.1 11704.4 28872.5 56401.2 113682
UCT-Aux 159.2 256.7 447.8 889.5 1341.7 1981.3 3117.9 4317.1 5970.11

UCT-Aux falls into this situation when coupled with suboptimal policies
whose estimates are better than random sampling: At every internal node, it
artificially creates an arm that is suboptimal but produces preferable reward
sequences when compared to other arms with random sampling. As a result, the
auxiliary arms are sampled exponentially more often while not necessarily pre-
scribing a good move. Table 1 shows some evidence of this behavior: Given the
same number of samplings, UCT-Aux constructs a search tree with significantly
less nodes than other variants (up to 20 times). That means many samplings
have ended up in non-expansive auxiliary arms because they were preferred.

7.2 Combination of UCT-Aux, UCT-I and UCT-S

UCT-Aux bootstraps UCT in an orthogonal manner to UCT-I and UCT-S, thus
allowing combination with these common techniques for further performance
boost when many heuristics are available. Figure 9 charts the performance of
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Fig. 9. Combination of UCT-Aux with UCT-I/S/IS in Obstructed Sailing

such combinations in Obstructed Sailing. UCT-Aux variants use SailingTowards-
Goal at the auxiliary arms while UCT-I/S variants use StochasticOptimal.0.2
at the ordinary arms. UCT-Aux-S outperforms both UCT-Aux and UCT-S at
earlier stage, and matches the better performer among the two, i.e. UCT-Aux,
in a long run.

8 Conclusion

In this work, we have introduced a novel yet simple technique to bootstrap UCT
with an imperfect heuristic policy in a popular non-adversarial domain, i.e.,
planning in large-state space MDPs. It is shown to be able to leverage on the
well-performing region while avoiding the bad regions of the policy, empirically
outperforming other state-of-the-art bootstrapping methods when coupled with
the right policy, i.e, the “extreme” kind. Our conclusion is that if such property is
known before hand about a certain heuristic, UCT-Aux can be expected to give
a real boost over the original UCT, especially in cases with scarce computational
resource; otherwise, it would be safer to employ the currently prevalent methods
of bootstrapping. As such, a different mentality can be employed when designing
heuristics specifically for UCT-Aux: instead of safe heuristics that try to avoid
as many flaws as possible, the designer should go for greedier and “riskier” ones.
Lastly, since UCT-Aux is orthogonal to other commonly known enhancements,
it is a flexible tool that can be combined with others, facilitating more options
when incorporating domain knowledge into the vanilla MCTS algorithm. In the
future, we plan to examine how to adapt the method to adversarial domains.
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2. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

3. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: ICML
2007: Proceedings of the 24th International Conference on Machine Learning, pp.
273–280. ACM, New York (2007)

4. Chaslot, G., Fiter, C., Hoock, J.-B., Rimmel, A., Teytaud, O.: Adding Expert
Knowledge and Exploration in Monte-Carlo Tree Search. In: van den Herik, H.J.,
Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 1–13. Springer, Heidelberg
(2010)

5. Finnsson, H., Björnsson, Y.: Simulation-based approach to General Game Play-
ing. In: AAAI 2008: Proceedings of the 23rd National Conference on Artificial
Intelligence, pp. 259–264. AAAI Press (2008)

6. Balla, R.K., Fern, A.: UCT for tactical assault planning in real-time strategy games.
In: 21st International Joint Conference on Artificial Intelligence, pp. 40–45 (2009)

7. Bouzy, B., Helmstetter, B.: Monte-Carlo Go developments. In: Advances in Com-
puter Games, vol. 10, pp. 159–174 (2004)

8. Coquelin, P.A., Munos, R.: Bandit algorithms for tree search. In: Proceedings of
the 23rd Conference on Uncertainty in Artificial Intelligence, pp. 67–74 (2007)

9. Bellman, R.: A Markovian Decision Process. Indiana Univ. Math. J. 6, 679–684
(1957)

10. Kearns, M., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for near-optimal
planning in large Markov Decision Processes. Machine Learning 49, 193–208 (2002)

11. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47, 235–256 (2002)
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Abstract. The use of Reinforcement Learning in real-world scenarios
is strongly limited by issues of scale. Most RL learning algorithms are
unable to deal with problems composed of hundreds or sometimes even
dozens of possible actions, and therefore cannot be applied to many real-
world problems. We consider the RL problem in the supervised classifica-
tion framework where the optimal policy is obtained through a multiclass
classifier, the set of classes being the set of actions of the problem. We
introduce error-correcting output codes (ECOCs) in this setting and pro-
pose two new methods for reducing complexity when using rollouts-based
approaches. The first method consists in using an ECOC-based classifier
as the multiclass classifier, reducing the learning complexity from O(A2)
to O(A log(A)). We then propose a novel method that profits from the
ECOC’s coding dictionary to split the initial MDP into O(log(A)) sepa-
rate two-action MDPs. This second method reduces learning complexity
even further, from O(A2) to O(log(A)), thus rendering problems with
large action sets tractable. We finish by experimentally demonstrating
the advantages of our approach on a set of benchmark problems, both
in speed and performance.

1 Introduction

The goal of Reinforcement Learning (RL) and more generally sequential deci-
sion making is to learn an optimal policy for performing a certain task within
an environment, modeled by a Markov Decision Process (MDP). In RL, the
dynamics of the environment are considered as unknown. This means that to
obtain an optimal policy, the learner interacts with its environment, observing
the outcomes of the actions it performs. Though well understood from a theoret-
ical point of view, RL still faces many practical issues related to the complexity
of the environment, in particular when dealing with large state or action sets.
Currently, using function approximation to better represent and generalize over
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the environment is a common approach for dealing with large state sets. How-
ever, learning with large action sets has been less explored and remains a key
challenge.

When the number of possible actions A is neither on the scale of ‘a few’ nor
outright continuous, the situation becomes difficult. In particular cases where
the action space is continuous (or nearly so), a regularity assumption can be
made on the consequences of the actions concerning either a certain smoothness
or Lipschitz property over the action space [1, 2, 3]. However, situations abound
in which the set of actions is discrete, but the number of actions lies somewhere
between 10 and 104 (or greater) — Go, Chess, and planning problems are among
these. In the common case where the action space shows no regularity a priori, it
is not possible to make any assumptions regarding the consequence of an action
that has never been applied.

In this article, we present an algorithm which can intelligently sub-sample
even completely irregular action spaces. Drawing from ideas used in multiclass
supervised learning, we introduce a novel way to significantly reduce the
complexity of learning (and acting) with large action sets. By assigning
a multi-bit code to each action, we create binary clusters of actions through the
use of Error Correcting Output Codes (ECOCs) [4]. Our approach is anchored in
Rollout Classification Policy Iteration (RCPI) [5], an algorithm well know for its
efficiency on real-world problems. We begin by proposing a simple way to reduce
the computational cost of any policy by leveraging the clusters of actions defined
by the ECOCs. We then extend this idea to the problem of learning, and propose
a new RL method that allows one to find an approximated optimal policy by
solving a set of 2-action MDPs. While our first model — ECOC-extended RCPI
(ERCPI) — reduces the overall learning complexity from O(A2) to O(A log(A)),
our second method — Binary-RCPI (BRCPI) — reduces this complexity even
further, to O(log(A)).

The paper is organized as follow: We give a brief overview of notation and
RL in Section 2.1, then introduce RCPI and ECOCs in Sections 2.2 and 2.3
respectively. We present the general idea of our work in Section 3. We show how
RCPI can be extended using ECOCs in 3.2, and then explain in detail how an
MDP can be factorized to accelerate RCPI during the learning phase in 3.3. An
in-depth complexity analysis of the different algorithms is given in Section 3.4.
Experimental results are provided on two problems in Section 4. Related work
is presented in Section 5.

2 Background

In this section, we cover the three key elements to understanding our work:
Markov Decision Problems, Rollout Classification Policy Iteration, and Error-
Correcting Output Codes.
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2.1 Markov Decision Process

Let a Markov Decision ProcessM be defined by a 4-tuple M = (S,A, T, R).

– S is the set of possible states of the MDP, where s ∈ S denotes one state of
the MDP.

– A is the set of possible actions, where a ∈ A denotes one action of the MDP.
– T : S × S ×A → R is the MDP’s transition function, and defines the prob-

ability of going from state s to state s′ having chosen action a: T (s′, s, a) =
P (s′|s, a).

– R : S ×A → R is a reward function defining the expected immediate reward
of taking action a in state s. The actual immediate reward for a particular
transition is denoted by r.

In this article, we assume that the set of possible actions is the same for all
states, but our work is not restricted to this situation; the set of actions can
vary with the state without any drawbacks.

Let us define a policy, π : S → A, providing a mapping from states to actions
in the MDP. In this paper, without loss of generality, we consider that the ob-
jective to fulfill is the optimization of the expected sum of γ-discounted rewards
from a given set of states D: Jπ(s) = E[

∑
k≥0 γkrt+k|st = s ∈ D, π].

A policy’s performance is measured w.r.t. the objective function Jπ. The goal
of RL is to find an optimal policy π∗ that maximizes the objective function:
π∗ = argmaxπJπ.

In an RL problem, the agent knows both S and A, but is not given the
environment’s dynamics defined by T and R. In the case of our problems, we
assume that the agent may start from any state in the MDP, and can run as
many simulations as necessary until it has learned a good policy.

2.2 Rollout Classification Policy Iteration

We anchor our contribution in the framework provided by RCPI [5]. RCPI be-
longs to the family of Approximate Policy Iteration (API) algorithms, iteratively
improving estimates of the Q-function — Qπ(s, a) = E[Jπ(s)|π]. In general, API
uses a policy π to estimate Q through simulation, and then approximates it by
some form of regression on the estimated values, providing Q̃π. This is done first
with an initial (and often random) policy π0, and is iteratively repeated until Q̃π

is properly estimated. Q̃π(s, a) is estimated by running K rollouts i.e. Monte-
Carlo simulations using π to estimate the expected reward. The new policy π′ is
thus the policy that chooses the action with the highest Q̃π-value for each state.

In the case of RCPI, instead of using a function approximator to estimate
Q̃π, the best action for a given s is selected using a classifier, without explicitly
approximating the Q-value. This estimation is usually done using a binary clas-
sifier fθ over the state-action space such that the new policy can be written as:

π′(s) = argmax
a∈As

fθ(s, a). (1)
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The classifier’s training set ST is generated through Monte-Carlo sampling of
the MDP, estimating the optimal action for each state sampled. Once generated,
these optimal state-action pairs (s, a) are used to train a supervised classifier;
the state is interpreted as the feature vector, and the action a as the state’s label.
In other words, RCPI is an API algorithm that uses Monte Carlo simulations to
transform the RL problem into a multiclass classification problem.

2.3 Error-Correcting Output Codes

In the domain of multiclass supervised classification in large label spaces, ECOCs
have been in use for a while [4]. We will cover ECOCs very briefly here, as their
adaptation to an MDP formalism is well detailed in Section 3.2.

Given a multiclass classification task with a label set Y, the |Y| class labels
can be encoded as binary integers using as few as C = log2(|Y|) bits. ECOCs
for classification assume that each label is associated to a binary code of length1

C = γ log(|Y|) with γ ≥ 1.
The main principle of multiclass classifiers with ECOCs is to learn to pre-

dict the output code instead of directly predicting the label, transforming a
supervised learning problem with |Y| classes into a set of C = γ log(|Y|) binary
supervised learning problems. Once trained, the class of a datum x can be in-
ferred by passing the datum to all the classifiers and concatenating their output
into a predicted label code: code(x) = (fθ0(x), · · · , fθC(x)). The predicted label
is thus the label with the closest code in terms of Hamming distance. As a side
note, Hamming distance look-ups can be done in logarithmic time by using tree-
based approaches such as k -d trees [6]. ECOCs for classification can thus infer
with a complexity of O(log(|Y|).

3 Extended and Binary RCPI

We separate this paper’s contributions into two parts, the second part building
on the first one. We begin by showing how ECOCs can be easily integrated into
a classifier-based policy, and proceed to show how the ECOC’s coding matrix
can be used to factorize RCPI into a much less complex learning algorithm.

3.1 General Idea

The general idea of our two algorithms revolves around the use of ECOCs for
representing the set of possible actions, A. This approach assigns a multi-bit
code of length C = γ log(A) to each of the A actions. The codes are organized in
a coding matrix, illustrated in Figure 1 and denoted Mc. Each row corresponds
to one action’s binary code, while each column is a particular dichotomy of the
action space corresponding to that column’s associated bit bi. In effect, each

1 Different methods exist for generating such codes. In practice, it is customary to use
redundant codes where γ ≈ 10.
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b1 b2 b3

a1 + + −
a2 − + −
a3 + − +
a4 − + +
a5 + − −

Fig. 1. An example of a 5-actions, C = 3-bits coding matrix. The code of action 1 is
(+,+,−).

column is a projection of the A-dimensional action space into a 2-dimensional
binary space. We denote Mc

[a,∗] as the ath row of Mc, which corresponds to a’s
binary code. Mc

[a,i] corresponds to bit bi of action a’s binary code.

Our main idea is to consider that each bit corresponds to a binary
sub-policy denoted πi. By combining these sub-policies, we can derive the
original policy π one wants to learn as such:

π(s) = argmin
a∈A

dH(M
c
[a,∗], (π1(s), · · · , πC(s)), (2)

where Mc
[a,∗] is the binary code for action a, and dH is the Hamming distance.

For a given a state s, each sub-policy provides a binary action πi(s) ∈ {−,+},
thus producing a binary vector of length C. π(s) chooses the action a with the
binary code that has the smallest Hamming distance to the concatenated output
of the C binary policies.

We propose two variants of RCPI that differ by the way they learn these sub-
policies. ECOC-extended RCPI (ERCPI) replaces the standard definition of π
by the definition in Eq. (2), both for learning and action selection. The Binary-
RCPI method (BRCPI) relaxes the learning problem and considers that all the
sub-policies can be learned independently on separate binary-actioned MDPs,
resulting in a very rapid learning algorithm.

3.2 ECOC-Extended RCPI

ERCPI takes advantage of the policy definition in Equation (2) to decrease
RCPI’s complexity. The C sub-policies — πi∈[1,C] — are learned simultaneously
on the original MDP, by extending the RCPI algorithm with an ECOC-encoding
step, as described in Algorithm 1. As any policy improvement algorithm, ERCPI
iteratively performs the following two steps:

Simulation Step. This consists in performing Monte Carlo simulations to es-
timate the quality of a set of state-action pairs. From these simulations, a set of
training examples ST is generated, in which data are states, and labels are the
estimated best action for each state.
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Learning Step. For each bit bi, ST is used to create a binary label training
set Si

T. Each Si
T is then used to train a classifier fθi, providing sub-policy π′

i as
in Eq. (1). Finally, the set of C sub-policies are combined to provide the final
improved policy as in Eq. (2).

ERCPI’s training algorithm is presented in Alg. 1.
The Rollout function used by ERCPI is identical to the one used by RCPI

— π is used to estimate a certain state-action tuple’s expected reward, Q̃π(s, a).

Algorithm 1. ERCPI

Data:
SR: uniformly sampled state set; M: MDP; π0: initial policy; K: number of
trajectories; T : maximum trajectory length

1 π = π0

2 repeat
3 ST = ∅
4 foreach s ∈ SR do
5 foreach a ∈ A do

6 Q̃π(s, a)← Rollout(M, s, a,K, π)
7 end

8 A∗ = argmaxa∈A Q̃π(s, a)
9 foreach a∗ ∈ A∗ do

10 ST = ST ∪ {(s, a∗)}
11 end

12 end
13 foreach i ∈ [1, C] do
14 Si

T = ∅
15 foreach (s, a) ∈ ST do
16 ai = Mc

[a,i]

17 Si
T = Si

T ∪ (s, ai)

18 end

19 fθi = Train(Si
T)

20 π′
i from fθi as defined in Eq. (1)

21 end
22 π′ as defined in Eq. (2)
23 π = α(π, π′)
24 until π ∼ π′;
25 return π

Up to line 12 of Algorithm 1, ERCPI is in fact algorithmically identical to
RCPI, with the slight distinction that only the best (s, a∗) tuples are kept, as is
usual when using RCPI with a multiclass classifier.

ERCPI’s main difference appears starting line 13; it is here that the original
training set ST is mapped onto the C binary action spaces, and that each indi-
vidual sub-policy πi is learned. Line 16 replaces the original label of state s by
its binary label in πi’s action space — this corresponds to bit bi of action a’s
code.
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The Train function on line 19 corresponds to the training of πi’s correspond-
ing binary classifier on Si

T. After this step, the global policy π′ is defined ac-
cording to Eq.(2). Note that, to ensure the stability of the algorithm, the new
policy π obtained after one iteration of the algorithm is an alpha-mixture policy
between the old π and the new π′ obtained by the classifier (cf. line 23).

3.3 Binarized RCPI

ERCPI splits the policy improvement problem into C individual problems, but
training still needs π, thus requiring the full set of binary policies. Additonnally,
for each state, all A actions have to be evaluated by Monte Carlo simulation
(Alg. 1, line 5). To reduce the complexity of this algorithm, we propose learning
the C binary sub-policies — πi∈[1,C] — independently, transforming our initial
MDP into C sub-MDPs, each one corresponding to the environment in which a
particular πi is acting.

Each of the πi binary policies is dealing with its own particular representation
of the action space, defined by its corresponding column in Mc. For training,
best-action selections must be mapped into this binary space, and each of the
πi’s choices must be combined to be applied back in the original state space.

Let A+
i ,A−

i ⊂ A be the action sets associated to πi such that:

A+
i = {a ∈ A | Mc

[a,i] = ‘ + ’}
A−

i = A \ A+
i = {a ∈ A | Mc

[a,i] = ‘− ’}.
(3)

For a particular i, A+
i is the set of original actions corresponding to sub-action

+, and A−
i is the set of original actions corresponding to sub-action −.

We can now define C new binary MDPs that we name sub-MDPs, and denote
Mi∈[1,C]. They are defined from the original MDP as follows:

– Si = S, the same state-set as the original MDP.
– Ai = {+,−}.
– Ti = T (s′, s, a)P (a|ai) = P (s′|s, a)P (a|ai), where P (a|ai) is the probability

of choosing action a ∈ Aai , knowing that the sub-action applied on the sub-
MDPMi is ai ∈ {+,−}. We consider P (a|+) to be uniform for a ∈ A+ and
null for a ∈ A−, and vice versa. P (s′|s, a) is the original MDP’s transition
probability.

– Ri(s, ai) =
∑

a∈Aai
i

P (a|ai)R(s, a).

Each of these new MDPs represents the environment in which a particular binary
policy πi operates. We can consider each of these MDPs to be a separate RL
problem for its corresponding binary policy.

In light of this, we propose to transform RCPI’s training process for the base
MDP into C new training processes, each one trying to find an optimal πi for
its corresponding Mi. Once all of these binary policies have been trained, they
can be used during inference in the manner described in Section 3.2.
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The main advantage of this approach is that, since each of the γ log(A)
sub-problems in Algorithm 2 is modeled as a binary-actioned MDP, increas-
ing the number of actions in the original problem simply increases the number
of sub-problems logarithmically, without increasing the complexity of these sub-
problems – see Section 3.4.

Algorithm 2. BRCPI

Data:
SR: uniformly sampled state set; M: MDP; π0: random policy; K: number of
trajectories; T : maximum trajectory length; C: number of binary MDPs

1 foreach i ∈ C do
2 πi = π0

3 repeat
4 ST = ∅
5 foreach s ∈ SR do
6 foreach a ∈ {+,−} do

7 Q̃π(s, a)← Rollout(Mi, s, a,K, πi)
8 end

9 A∗ = argmaxa∈A Q̃π(s, a)
10 foreach a∗ ∈ A∗ do
11 ST = ST ∪ {(s, a∗)}
12 end

13 end
14 fθi = Train(ST)
15 π′

i from fθi as defined in Eq. (1)
16 πi = α(πi, π

′
i)

17 until πi ∼ π′
i;

18 return π as defined in Eq. (2)

19 end

Let us now discuss some details of BRCPI, as described in Algorithm 2. BR-
CPI resembles RCPI very strongly, except that instead of looping over the A
actions on line 6, BRCPI is only sampling Q̃ for + or − actions. However, the
inner loop is run C = γ log(A) times, as can be seen on line 1 of Algorithm 2.

Within the Rollout function (line 7), if πi chooses sub-action ‘+’, an ac-
tion ai from the original MDP is sampled from A+

i following P (a|ai), and the
MDP’s transition function is called using this action. This effectively estimates
the expected reward of choosing action + in state s.

As we saw in Section 3.2, eachAi is a different binary projection of the original
action set. Each of the πi classifiers is thus making a decision considering a
different split of the action space. Some splits may make no particular sense
w.r.t. to the MDP at hand, and therefore the expected return of that particular
πi’s A+

i and A−
i may be equal. This does not pose a problem, as that particular

sub-policy will simply output noise, which will be corrected for by more pertinent
splits given to the other sub-policies.
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3.4 Computational Cost and Complexity

We study the computational cost of the proposed algorithms in comparison with
the RCPI approach and present their respective complexities.

In order to define this cost, let us consider that C(S,A) is the time spent
learning a multiclass classifier on S examples with A possible outputs, and I(A)
is the cost of classifying one input.

The computational cost of one iteration of RCPI or ERCPI is composed of
both a simulation cost — which corresponds to the time spent making Monte
Carlo Simulation using the current policy — and a learning cost which corre-
sponds to the time spent learning the classifier that will define the next policy2.
This cost takes the following general form:

Cost = SAK × TI(A) + C(S,A), (4)

where TI(A) is the cost of sampling one trajectory of size T , SAK × TI(A) is
the cost of executing the K Monte Carlo Simulations over S states testing A
possible actions, and C(S,A) is the cost of learning the corresponding classifier3.

The main difference between RCPI and ERCPI comes from the values of I(A)
and C(S,A). When comparing ERCPI with a RCPI algorithm using a one-vs-all
(RCPI-OVA) multiclass classifier — one binary classifier learned for each possible
action — it is easy to see that our method reduces both I(A) and C(S,A) by a
factor of A

logA — cf. Table 1.

Table 1. Cost of one iteration of RCPI OVA, ERCPI, and BRCPI. S is the number
of states, A the number of actions, K the number of rollouts, T is trajectory length,
C(S,A) is the cost of learning a classifier for S states, A actions

Algorithm Simulation Cost Learning Cost

RCPI-OVA SAK(TA) A.C(S)
ERCPI SAK(Tγ log(A)) γ log(A).C(S)
BRCPI γ log(A) (2SK(2T )) γ log(A)C(S)

Table 2. Complexity w.r.t. the number of possible actions

Method RCPI OVA ERCPI BRCPI

Complexity O(A2) O(A log(A)) O(log(A))

When considering the BRCPI algorithm, I and C are reduced as in ERCPI.
However, the simulation cost is reduced as well, as our method proposes to learn
a set of optimal binary policies on γ log(A) binary sub-MDPs. For each of these
sub-problems, the simulation cost is 2SK(2T ) since the number of possible ac-
tions is only 2. The learning cost corresponds to learning only γ log(A) binary

2 In practice, when there are many actions, simulation cost is significantly higher than
learning cost, which is thus ignored [7].

3 We do not consider the computational cost of transitions in the MDP.
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classifiers resulting in a very low cost — cf. Table 1. The overall resulting com-
plexity w.r.t. to the number of actions is presented in Table 2, showing that the
complexity of BRCPI is only logarithmic. In addition, it is important to note
that each of the BRCPI sub-problems is atomic, and are therefore easily paral-
lelized. To illustrate these complexities, computation times are reported in the
experimental section.

4 Experiments

In this paper, our concern is really about being able to deal with a large num-
ber of uncorrelated actions in practice. Hence, the best demonstration of this
ability is to provide an experimental assessment of ERCPI and BRCPI. In this
section, we show that BRCPI exhibits very important speed-ups, turning days
of computations into hours or less.

4.1 Protocol

We evaluate our approaches on two baseline RL problems: Mountain Car and
Maze.

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

10 23 34 39 46 52 

3 10 30 50 100 200 

A
ve

ra
ge

 (n
eg

at
iv

e)
 R

ew
ar

d 

Number of Actions and Bits 

RCPI OVA 

ERCPI 

BRCPI 

Random 

Fig. 2. Mountain Car: Average reward (negative value: the smaller, the better) ob-
tained by the different algorithms on 3 runs with different numbers of actions. On the
X-axis, the first line corresponds to γ log(A) while the second line is the number of
actions A.

The first problem, Mountain Car, is well-known in the RL community. Its
definition varies, but it is usually based on a discrete and small set of actions
(2 or 3). However, the actions may be defined over a continuous domain, which
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is more “realistic”. In our experiment, we discretize the range of accelerations
to obtain a discrete set of actions. Discretization ranges from coarse to fine in
the experiments, thus allowing us to study the effect of the size of the action set
on the performance of our algorithms. The continuous state space is handled by
way of tiling [8]. The reward at each step is -1, and each episode has a maximum
length of 100 steps. The overall reward thus measures the ability of the obtained
policy to push the car up to the mountain quickly.

The second problem, Maze, is a 50x50 grid-world problem in which the
learner has to go from the left side to the right side of a grid. Each cell of
the grid corresponds to a particular negative reward, either −1, −10, or −100.
For the simplest case, the agent can choose either to move up, down, or right,
resulting in a 3-action MDP. We construct more complex action sets by gener-
ating all sequences of actions of a defined length i.e. for length 2, the 6 possible
actions are up-up, up-right, down-up, etc. Contrary to Mountain Car, there is
no notion of similarity between actions in this maze problem w.r.t. their con-
sequences. Each state is represented by a vector of features that contains the
information about the different types of cells that are contained in a 5x5 grid
around the agent. The overall reward obtained by the agent corresponds to its
ability to go from the left to the right, avoiding cells with high negative rewards.
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Fig. 3. Maze: Average reward (negative value: the smaller, the better) obtained by the
different algorithms on 3 different random mazes with different numbers of actions. On
the X-axis, the first line corresponds to γ log(A) while the second line is the number of
actions A. OVA and ERCPI were intractable for 719 actions. Note that for 243 actions,
RCPI-OVA learns a particularly bad policy.

In both problems, training and testing states are sampled uniformly in the
space of the possible states. We have chosen to sample S = 1000 states for each
problem, the number of trajectories made for each state-action pair is K = 10.
The binary base learner is a hinge-loss perceptron learned with 1000 iterations
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by stochastic gradient-descent algorithm. The error correcting codes have been
generated using a classical random procedure as in [9]. The α-value of the alpha-
mixture policy is 0.5.

4.2 Results

The average rewards obtained after convergence of the three algorithms are
presented in Figures 3 and 2 with a varying number of actions. The average
reward of a random policy is also illustrated. First of all, one can see that RCPI-
OVA and ERCPI perform similarly on both problems except for Maze with 243
actions. This can be explained by the fact that OVA strategies are not able to deal
with problems with many classes when they involve solving binary classification
problems with few positive examples. In this setting, ECOC-classifiers are known
to perform better. BRCPI achieves lower performances than OVA-RCPI and
ERCPI. Indeed, BRCPI learns optimal independent binary policies that, when
used together, only correspond to a sub-optimal overall policy. Note that even
with a large number of actions, BRCPI is able to learn a relevant policy —
in particular, Maze with 719 actions shows BRCPI is clearly better than the
random baseline, while the other methods are simply intractable. This is a very
interesting result since it implies that BRCPI is able to find non-trivial policies
when classical approaches are intractable.

Table 3 provides the computation times for one iteration of the different algo-
rithms for Mountain Car with 100 actions. ERCPI speeds-up RCPI by a factor
1.4 while BRCPI is 12.5 times faster than RCPI, and 23.5 times faster when
considering only the simulation cost. This explains why Figure 3 does not show
performances obtained by RCPI and ERCPI on the maze problem with 719
actions: in that setting, one iteration of these algorithms takes days while only
requiring a few hours with BRCPI. Note that these speedup values increase with
the number of actions.

At last, Figure 4 gives the performance of BRCPI depending on the number of
rollouts, and shows that a better policy can be found by increasing the value of
K. Note that, even if we use a large value of K, BRCPI’s running time remains
low w.r.t. to OVA-RCPI and ERCPI.

Table 3. Time (in seconds) spent for one iteration — during simulation and learning
— of the different variants of the RCPI algorithms using a Xeon-X5690 Processor and
a TESLA M2090 GPU for K = 10 and S = 1000. The total speedup (and simulation
speedup) w.r.t. OVA-RCPI are presented on the last column.

Mountain Car - 100 Actions - 46 bits

Sim. Learning Total Speedup

OVA 4,312 380 4,698 ×1.0
ERCPI 3,188 190 3,378 ×1.4(×1.35)
BRCPI 184 190 374 ×12.5(×23.5)
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Fig. 4. Maze Rollouts: Average reward (negative value: the smaller, the better)
obtained by BRCPI for K = 1, 10, 30, 50

5 Related Work

Rollout Classification Policy Iteration [5] provides an algorithm for RL in MDPs
that have a very large state space. RCPI’s Monte-Carlo sampling phase can be
very costly, and a couple approaches have been provided to better sample the
state space [10], thus leading to speedups when using RCPI. Recently, the effec-
tiveness of RCPI has been theoretically assessed [7]. The well known efficiency of
this method for real-world problems and its inability to deal with many actions
have motivated this work.

Reinforcement Learning has long been able to scale to state-spaces with many
(if infinite) states by generalizing the value-function over the state space [11,
12]. Tesauro first introduced rollouts [13], leveraging Monte-Carlo sampling for
exploring a large state and action space. Dealing with large action spaces has
additionally been considered through sampling or gradient descent on Q [3,
1], but these approaches assume a well-behaved Q-function, which is hardly
guaranteed.

There is one vein of work reducing action-space look-ups logarithmically by
imposing some form of binary search over the action space [14, 15]. These ap-
proaches augment the MDP with a structured search over the action space, thus
placing the action space’s complexity in the state space. Although not inspi-
rational to ERCPI, these approaches are similar in their philosophy. However,
neither proposes a solution to speeding up the learning phase as BRCPI does, nor
do they eschew value functions by relying solely on classifier-based approaches
as ERCPI does.

Error-Correcting Output Codes were first introduced by Dietterich and Bakiri
([4]) for use in the case of multi-class classification. Although not touched upon
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in this article, coding dictionary construction can be a key element to the ability
of the ECOC-based classifier’s abilities[16]. Although in our case we rely on
randomly generated codes, codes can be learned from the actual training data
[17] or from an a priori metric upon the classes space or a hierarchy [18].

6 Conclusion

We have proposed two new algorithms which aim at obtaining a good policy
while learning faster than the standard RCPI algorithm. ERCPI is based on
the use of Error Correcting Output Codes with RCPI, while BRCPI consists in
decomposing the original MDP in a set of binary-MDPs which can be learned
separately at a very low cost. While ERCPI obtains equivalent or better per-
formances than the classical One Vs. All RCPI implementations at a lower
computation cost, BRCPI allows one to obtain a sub-optimal policy very fast,
even if the number of actions is very large. We believe that there are plenty
of high-complexity situations where having a policy that is even slightly better
than random can be very advantageous; in the case of ERCPI we can get sub-
optimal policies rapidly, which provide at least some solution to an otherwise
intractable problem. The complexity of the proposed solutions are O(A log(A))
and O(log(A)) respectively, in comparison to RCPI’s complexity of O(A2). Note
that one can use BRCPI to discover a good policy, and then ERCPI in order to
improve this policy; this practical solution is not studied in this paper.

This work opens many new research perspectives: first, as the performance of
BRCPI directly depends on the quality of the codes generated for learning, it can
be very interesting to design automatic methods able to find the well-adapted
codes, particularly when one has a metric over the set of possible actions. From a
theoretical point of view, we plan to study the relation between the performances
of the sub-policies πi in BRCPI and the performance of the final obtained policy
π. At last, the fact that our method allows one to deal with problems with
thousands of discrete actions also opens many applied perspectives, and can
allow us to find good solutions for problems that have never been studied before
because of their complexity.
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Abstract. The high cost, limited capacity, and long recharge time of batteries
pose a number of obstacles for the widespread adoption of electric vehicles.
Multi-battery systems that combine a standard battery with supercapacitors are
currently one of the most promising ways to increase battery lifespan and reduce
operating costs. However, their performance crucially depends on how they are
designed and operated.

In this paper, we formalize the problem of optimizing real-time energy
management of multi-battery systems as a stochastic planning problem, and we
propose a novel solution based on a combination of optimization, machine learn-
ing and data-mining techniques. We evaluate the performance of our intelligent
energy management system on various large datasets of commuter trips crowd-
sourced in the United States. We show that our policy significantly outperforms
the leading algorithms that were previously proposed as part of an open algorith-
mic challenge.

1 Introduction

Electric vehicles, partially or fully powered by batteries, are one of the most promising
directions towards a more sustainable transportation system. However, the high costs,
limited capacities, and long recharge times of batteries pose a number of obstacles for
their widespread adoption. Several researchers in the field of Computational Sustain-
ability [1] have addressed aspects of this problem. In particular, there is an active line
of research focusing on improving navigation systems with novel routing algorithms,
both by taking into account specific features of electric vehicles [2], and by considering
new aspects such as real-time information about road conditions and traffic lights [3].

In this paper, we focus on a complementary aspect of the problem that is optimizing
the energy efficiency of batteries in electric vehicles. There are two main sources of
inefficiencies in batteries. The first one is that due to internal resistance, battery energy
is partially wasted as heat when it is charged and discharged. The second one is that
due to Peukert’s Law, the actual delivered capacity of a battery depends on the rate at
which it is discharged. Furthermore, current battery technology imposes rather severe
limits on the number of charge/recharge cycles a battery can handle, thus reducing their
lifespan and increasing operating costs.

One promising direction towards addressing these issues are multi-battery systems,
such as the ones proposed in [4] and [5], which integrate a standard battery with one or

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 195–210, 2012.
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more supercapacitors, as depicted in Figure 1. Intuitively, the idea is that while the bat-
tery is good at holding the charge for long times, the supercapacitor is efficient for rapid
cycles of charge and discharge. Using the capacitor as an energy buffer, one can sig-
nificantly increase the battery’s lifespan by reducing its duty. In fact, although superca-
pacitors have low energy densities, they behave like an ideal battery that can efficiently
handle millions of full charge/discharge cycles. The performance of these systems is
heavily dependent on how they are managed. In this direction, there has been recent
work in the automated planning community on the optimal scheduling of multi-battery
systems [6, 7]. However, previous work assumes full knowledge of an underlying prob-
abilistic model describing the system, which is not available for electric vehicles. Since
it would be very difficult to construct such a model using a priori information, we take
a data driven approach to the problem. In particular, we leverage a large dataset of
commuter trips collected across the United States by Chargecar [8], a crowdsourcing
project open to the public, and we construct an efficient management scheme using a
sample-based optimization approach. Specifically, after defining a suitable set of fea-
tures, we learn an empirical Markov Decision Process (MDP) model from the available
data, and we compute a policy that optimizes the average performance. This policy is
represented as a large table of state-action pairs, and is only defined for states that were
previously observed in the dataset, while we wish to construct a more general manage-
ment scheme that applies to a wider range of scenarios. We therefore use this policy
as a training set, and we use supervised learning techniques to learn a new policy that
compactly represents the information available and generalizes to situations previously
unseen in the training set. This policy is shown to outperform the leading algorithms
that were previously proposed as part of an open algorithmic challenge.

2 Sampling-Based Optimization

We consider a probabilistic planning problem formulated as a Markov Decision Process
(MDP). An MDP is a tuple (S,A, P, c) where S is a set of states, A is a set of actions,
P is a set of transition probabilities and c : S × A × S !→ R is an (immediate) cost
function. If an agent executes an action a ∈ A while in a state s ∈ S, then it incurs in
an immediate cost c(s, a, s′) and it transitions to a new state s′ ∈ S with probability
P (s′|s, a). We denote by A(s) ⊆ A the set of actions available while the agent is in
state s. Further, there exists a finite set of goal states G ⊆ S, where the agent stops to
execute actions, and no longer incurs in any cost.

In this paper, we consider a class of factored MDPs where S = X × Y so that any
state s ∈ S has two components s = (x, y) with x ∈ X and y ∈ Y . We assume the
dynamics of the two components are independent, i.e. the transition probabilities can
be factored as follows

P ((x′, y′)|(x, y), a) = Px(x
′|x)Py(y

′|y, a).

Notice that x′ does not depend on the action a, which only affects the component y′.
The two components of the state are however coupled by the immediate cost function
c((x, y), a, (x′, y′)), which can depend on both x and y. We assume that Py(·) and the
immediate cost function c(·) are known but Px(·) is unknown. However, we are given
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a set of K i.i.d. sample trajectories T1, · · · , TK of the x component of the state space,
where

Ti = (xi
0, x

i
1, · · · , xi

Ti−1)

is sampled according to Px(x
′|x) and xi

Ti−1 ∈ Gx is a goal state. For example, in
our battery management application, each trajectory corresponds to one commuter trip.
Given this information, our objective is to find an admissible policy that minimizes the
expected cost for this partially unknown MDP.

Given x, x′ ∈ X , let f(x, x′) be the empirical transition probability from x to x′

according to the available samples (the number of times x′ appears immediately after x
over the number of times x appears). We can define DP equations based on the sampled
transition probabilities as follows

V (x, y) = min
a∈A(x,y)

⎛⎝∑
x′∈X

∑
y′∈Y

f(x, x′)Py(y
′|y, a) (c((x, y), a, (x′, y′)) + V (x′, y′))

⎞⎠
for all observed states x ∈

⋃
Ti. Solving the DP equations, we can compute the “opti-

mal posterior action” a∗(s) = a∗(x, y) for all x ∈ Ti and for all y ∈ Y , that is the action
minimizing the total expected cost according to our maximum-likelihood estimate of
the underlying MDP model. Notice that the “optimal posterior action” a∗(s) converges
to the true optimal action for the MDP as K → ∞ because f(x, x′) → Px(x

′|x)
(assuming the initial states xi

0 are uniformly sampled).
Although the number of distinct states x ∈

⋃
Ti ⊆ X can be very large, the sam-

ples T1, · · · , TK do not necessarily cover the entire state space X . We therefore wish
to obtain a compact representation of the policy a∗(·), that hopefully will be able to
generalize to states x ∈ X such that x /∈

⋃
Ti, i.e. states previously unseen in the set of

available samples. We therefore generate a labeled training set of state-action pairs⋃
i

{((x, y), a∗(s)), x ∈ Ti, y ∈ Y }

and we use supervised learning to learn a policy π : S → A. Notice that the particular
structure of the problem, with independent dynamics and partially known transition
probabilities, allows us to artificially generate |Y | time more training examples than
what we originally started with. This aspect leads to significant improvements in our
battery management application problem.

2.1 Related Work

Sampling-based solutions, where a finite number of sampled trajectories is used to op-
timize performance, are a popular technique in the fields of approximate dynamic pro-
gramming [9] and reinforcement learning [10], especially for complicated systems for
which a model is not known or only available through simulation. However, unlike Re-
inforcement Learning we are dealing with a non-interactive learning scenario, where
we cannot choose how to interact with the system while samples are collected. Specif-
ically, the learning process occurs offline and in batch. Further, since we have partial
knowledge about the MDP (e.g., the immediate cost function), we use a model-based
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method [11] similar to the certainty equivalence method [12] where we estimate the
most likely transition probabilities for the unknown part of the model. Unlike the dom-
inant approach that uses function approximations to represent the value function (or
Q-values) [13–15] and selects the action based on the greedy policy with respect to the
estimated values, we directly represent a policy mapping states to actions. Specifically,
we use supervised learning to train a policy using a dataset of “posterior optimal” ac-
tions computed according to the learned MDP model. The policy compactly represents
the available information and, in our application, empirically performs better than mod-
els fitted to the Q-values. Further, in this way we can directly analyze the structure of
policy being used, thus simplifying the deployment on a vehicle.

Our approach is similar to a line of research in the planning community [6, 16–
18], where researchers have tried to learn strategies to solve planning problems in a
fixed domain by learning from particular solutions to training problems sampled from
the same domain. Specifically, our work is most closely related to [6], where they use
a sample-based approach to learn a policy for a multiple-battery system modeled as
an MDP. However, since we are dealing with electric vehicles we need to optimize
charge/discharge cycles while they focus on the discharge aspect only. Consequently,
we use a quadratic objecting function, while they optimize for the plan length. Further,
their work is based on synthetic data generated from a known model, while we face the
problem of learning a probabilistic model from real-world crowdsourced data, which
creates additional challenges such as feature selection. Furthermore, in [6] they use as
training examples sequences of state-action pairs where the actions are obtained opti-
mizing in hindsight for a single sample realization of the randomness, i.e. the training
set is generated using an optimal omniscient policy that knows the future ahead of time.
Although the method is shown to perform well in practice, it doesn’t provide any theo-
retical guarantee. As a counterexample, consider a simple MDP modeling a lottery with
an expected negative return, where the actions are either bet on a number or not to play
at all. Given any realization of the randomness, the optimal omniscient policy would
always suggest to bet (since it knows the future), but the optimal risk-neutral strategy
is not to play the lottery, and therefore it cannot be learned from such training exam-
ples. In contrast, we also use a form of hindsight optimization, but we jointly consider
all the samples, using a sample-based approximation for the expectation that provably
converges to the true optimal value as the number of samples grows.

In the remainder of the paper, we will describe how we apply this general approach
to the battery management application.

3 Problem Description

There are two main sources of inefficiencies in batteries. The first one is that batteries
have an internal resistance Rint, and therefore they dissipate power as heat as Rinti

2

when charged or discharged with a current i. Secondly, the capacity of a battery is re-
lated to the rate at which it is discharged by Peukert’s Law. In particular, the faster a
battery is discharged with respect to the nominal rate (by pulling out a higher current),
the smaller the actual delivered capacity is. The effect depends on the chemical prop-
erties of the battery and is exponential in the size of the current. Therefore, substantial
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Fig. 1. Architecture of the battery system and sign convention used (a positive number indicates
current flowing in the direction of the arrow)

savings can be obtained by reducing the current output from the battery used to achieve
a certain desired power.

One promising direction towards improving battery efficiency are multiple-battery
systems such as the ones proposed in [4] and [5], which integrate a standard battery
with one or more supercapacitors, as depicted in Figure 1. Intuitively, the idea is that
the battery is good at holding the charge for long times, while the supercapacitor is
efficient for rapid cycles of charge and discharge. Using the supercapacitor as a buffer,
high peaks in the battery’s charge and discharge currents can be reduced, thus reducing
the losses due to Peukert’s Law and the internal resistance. In fact, supercapacitors are
not affected by Peukert’s Law and behave like an ideal battery. Furthermore, this can
substantially increase the lifespan of batteries because of the reduced number of full
charge-discharge cycles the battery must handle (supercapacitors on the other hand can
handle millions of full charge/discharge cycles). Improvements in battery efficiency
lead to reduced costs, increased range, and therefore more practical electric vehicles.

While the savings obtained with multi-battery systems can be substantial, they heavily
depend on how the system is managed, i.e. on the strategy used to charge and discharge
the capacitor. Managing such systems is non-trivial because there is a mix of vehicle
acceleration and regenerative braking (when power can be stored in the battery system)
over time, and there is a constraint on the maximal charge the capacitor can hold. For
instance, keeping the capacitor close to full capacity would allow the system to be ready
for sudden accelerations, but it might not be optimal because there might not be enough
space left to hold regenerative braking energy. Intelligent management algorithms there-
fore need to analyze driving behavior and vehicle conditions (speed, acceleration, road
conditions,..) in order to make informed decisions on how to allocate the power demand.
Intuitively, the system needs to be able to predict future high-current events, preparing
the supercapacitor to handle them and thus reducing the energy losses on the battery. The
results can be quite impressive. In figure 2 we show the battery output over a 2 minutes
window of a real world trip, when no capacitor is used, when it is managed with a naive
buffer policy (charging the capacitor only from regenerative braking, and utilizing the
capacitor whenever there is demand and energy available), and when it is managed by
our novel system DPDecTree. While the total power output is the same in all 3 cases,
when the system is managed by DPDecTree the output tends to be more constant over
time, thus reducing the energy wasted due to battery inefficiencies.
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Fig. 2. Battery power output over time. A smoother more constant-like curve means reduced
losses due to battery inefficiencies.

4 Modeling

To formalize the battery management problem described earlier, we consider a discrete
time problem where decisions need to be taken every δt seconds. A decision is a choice
for the variables (ibc, ibm, icm) in Figure 1, where ibc is the current flowing from the
battery to the capacitor, ibm and icm are the currents from the battery and capacitor
to the motor, respectively. These variables must satisfy certain constraints, namely the
capacitor cannot be overcharged or overdrawn and the energy balance must be pre-
served. As a performance metric, we consider the i2-score proposed in [4] and used in
the Chargecar contest [8], where the objective is to minimize the sum of the squared
battery output current (ibc + ibm)

2 over time. Intuitively, reducing the i2-score means
reducing the energy wasted as heat and due to Peukert’s Law, as well as increasing
battery lifespan [19].

We first consider a simplified setting where we assume to know the future energy
demand of the motor (positive when energy is required for accelerations, negative when
energy is recovered from regenerative braking) ahead of time. This translates into a de-
terministic planning problem because we assume there is no more randomness involved.
By computing the optimal sequence of actions (since the problem is deterministic, we
don’t need a policy), we obtain a lower bound on the i2-score that is achievable in
real-world problems where the future demand is not known.

4.1 A Quadratic Programming Formulation

Consider a single trip, where T is the number of discrete time steps (of size δt) in the
control horizon. Let Cmax be the maximum charge the capacitor can hold. As previ-
ously noted in [20], the problem can be formalized as a Quadratic Program. Specifically,
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we wish to minimize

min

T−1∑
t=0

(ibc(t) + ibm(t))
2

subject to

icm(t) + ibm(t) = d(t), ∀t = 0, · · · , T − 1 (1)

0 ≤
t∑

k=0

ibc(k)− icm(k) ≤ Cmax/δt, ∀t = 0, · · · , T − 1 (2)

where d(t) is the motor demand at time step t. The first set of constraints (1) requires
that the demand d(t) is met at every time step t = 0, · · · , T − 1. The second set of con-
straints (2) ensures that the capacitor is never overcharged or overdrawn (the capacitor
is assumed to be empty at the beginning of the trip, and not to lose charge over time).
Notice that the battery charge level over time is completely determined by the decision
variables, and does not affect the i2-score.

Reducing the Dimensionality. We introduce a new set of variables

Δ(t) = ibc(t)− icm(t), t = 0, · · · , T − 1

and using (1) we can rewrite the objective function as

T−1∑
t=0

(ibc(t) + ibm(t))
2
=

T−1∑
t=0

(ibc(t) + d(t)− icm(t))
2
=

T−1∑
t=0

(Δ(t) + d(t))2

Further, the constraints (2) can be rewritten in terms of Δ(t) as

0 ≤
t∑

k=0

Δ(k) ≤ Cmax/δt, ∀t = 0, · · · , T − 1 (3)

In this way we have simplified the problem from 3T variables {(ibc(t), ibm(t), icm(t)),
t = 0, · · · , T − 1} to T variables {Δ(t), t = 0, · · · , T − 1}.

The resulting Quadratic Programs can be solved to optimality using standard convex
optimization packages, but long trips can take a significant amount of time (see compar-
ison below). Since we will later consider the stochastic version of the planning problem,
we consider an alternative approximate solution technique that takes into account the
sequential nature of the problem and generalizes to the stochastic setting.

4.2 A Dynamic Programming Solution

A faster but approximate solution can be obtained via Dynamic Programming by dis-
cretizing the capacity levels of the supercapacitor with a step δC and then recursively
solving the Bellman equation
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J(t, C) = min
0≤C′<N

{
(d(t) + δC/δt(C

′ − C))
2
+ J(t + 1, C′)

}
for t = 0, · · · , T − 1, with boundary condition

J(T,C) = 0 ∀ C

If the maximum capacity Cmax is discretized with N steps, the complexity is O(N2T )
for a trip of length T . This method is faster than solving the previous Quadratic Program
directly, even though the solution is suboptimal because of the discretization. Further-
more, the DP solution does not just provide a sequence of “optimal” actions, but an
actual policy that gives the action as a function of the current capacity level (for a fixed
load profile).

Choosing the Discretization Step. There is a tradeoff involved in the choice of the
discretization step δC of the capacity level. The smaller δC is, the better is our approxi-
mation to the original QP, but the running time also grows quadratically with 1/δC .

In order to choose the proper value of δC , we solved a representative subset of 54
trips (see below for the dataset description) using the QP solver in the package CVX-
OPT [21]. We obtained a total i2-score of 3.070 · 108 in about 11 minutes. Using our
DP solver with N = 90 steps, we obtained a score of 3.103 · 108 in 15 seconds; with
N = 45 steps we obtained 3.197 · 108 in about 3 seconds. This experiment empirically
shows that our DP based solver is about 2 orders of magnitude faster than solving the
quadratic program directly, and provides solutions that are close to optimal. These ex-
periments will guide the choice of the discretization step also for the original stochastic
setting where the demand is not known ahead of time.

Robustness. Since we will later use supervised learning techniques to learn a policy
from a training set, we are interested in measuring how robust is the policy to implemen-
tation errors on the actions. The sensitivity plot in Figure 3 is obtained by artificially
adding i.i.d. Gaussian noise with variance σ2 to the optimal action given by the opti-
mal omniscient policy. The plot is averaged over a subset of trips and shows that the
performance degrades smoothly as a function of the variance of the implementation
error.

Rolling Horizon. In order to compute the optimal omniscient policy, we need to know
the entire future demand {d(t), t = 0, · · · , T − 1} ahead of time. Relaxing this as-
sumption, we now assume to know the future demand only for a window of M steps.
We then use a rolling horizon policy, where at every step t we replan computing the
optimal sequence of actions for the next M steps, taking the first one. In Figure 4 we
show how the performance improves as the length of the rolling horizon window M in-
creases. In particular, notice that if we were able to predict (exactly) the future demand
for the next 30 steps (corresponding to 30 seconds), on average we would lose less than
5% over the optimal omniscent policy (that knows the entire future demand ahead of
time). This experiment suggests than even a fairly limited probabilistic model that can
predict the future demand for a few seconds could provide substantial energy savings,
and motivates our search for an MDP model.
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Fig. 4. Performance improvement as the length of the rolling horizon window increases

5 Probabilistic Planning

An MDP Model. In general, we cannot know in advance what will be the future de-
mand (load profile), but we can assume the existence of an underlying stochastic model,
from which the trips and driving behaviors we observe are sampled from. Specifically,
we consider a state space S = F × [0, Cmax], where F is a feature space. The idea
is to use a set of features f = (f1, . . . , fK) ∈ F and a capacity level 0 ≤ c ≤ Cmax

to represent the state of the electric vehicle at any given time. The features we use are
driver ID (and type of vehicle), GPS latitude and longitude, direction, speed, accelera-
tion, altitude, instantaneous demand d, past average demand, time of the day. According
to the problem definition, for any state s = (f , c) ∈ S, there exists a set of admissible
actionsA(s) = {Δ,−c ≤ Δ ≤ Cmax−c}, i.e. the admissible changes of the capacitor
level that satisfy the constraints of the problem.

Our underlying assumption is that there exist a probabilistic model describing the
evolution of the state P (st+1|s0, · · · , st, Δ0, · · · , Δt) as a function of the previous his-
tory and the sequence of action Δ0, · · · , Δk taken. Further, we assume that
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P (st+1|s0, · · · , st, Δ0, · · · , Δt) =

P (ft+1|f0, · · · , ft)P (ct+1|ct, Δt) (4)

that is the evolution of ft is independent of ct and the actions Δt taken (equivalently,
we assume the driving behavior and road conditions do not depend on the capacitor
charge levels). On the other hand, according to the problem description ct+1 depends
deterministically on the past, specifically ct+1 = ct+Δt. In this way, P (ct+1|ct, Δt) =
1 if and only if ct+1 = ct +Δt.

In this MDP framework, a energy management system is a function mapping his-
tories to a feasible action, i.e. a history-dependent feasible policy [22]. Upon defining
an immediate cost c(Δ, s, s′) = (d + Δ)2 for transitioning from state s to state s′

when taking action Δ (equal to the squared current output from the battery), an optimal
energy management system can be defined as one minimizing the total expected cost.

A Sample-Based Approach. Since the probabilistic model P (ft+1|f0, · · · , ft) is un-
known, we use a sample-based approach where we leverage a large dataset of commuter
trips crowdsourced in the United States and available online [8] in order to learn it from
the data. Specifically, we assume that each trip in the dataset corresponds to one particu-
lar realization of the underlying stochastic process, e.g. a sampled trajectory of length Ti

in the feature spaceF . In particular, we project the trip data on the feature spaceF , gen-
erating a trajectory Ti = (f0, f1, · · · , fTi−1) where for each time step ft ∈ F . Then, for
any sequence of actions (Δ0, · · · , ΔTi−1) and initial capacity level c0, we can generate
the corresponding trajectories in the state space ((f0, c0), (f1, c1), · · · , (fT−1, cT−1))
according to (4).

Let T1, · · · , TK be the sample trajectories available. For any state s = (f , c) ∈ S we
define the multiset

N (f) =

K⋃
i=1

{ft+1|ft ∈ Ti, ||ft − f ||∞ < ε} ⊆ F

that when ε = 0 corresponds to the set of feature vectors that we have observed occur-
ring immediately after f in the sample trajectories. In practice, since our feature space
is continuous we choose ε > 0 to discretize the space, so that two feature vectors are
considered to be the same if they are close enough (e.g., when a driver comes to an in-
tersection with approximately the same speed, acceleration, etc.). We use k-d trees [23]
to speed up the computation of N (f) for all observed feature vectors f ∈

⋃
Ti, and

in our experiments ε is set to one thousandth of the average distance between consec-
utive feature vectors in the available trajectories. Similarly, we can define a multiset of
possible successors in the state space as

S(s) = S(f , c) =
Cmax⋃
c′=0

{(h, c′)|h ∈ N (f)}
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Posterior Optimal Actions. We can then define sample-based Dynamic Programming
equations as follows

V (s) = min
Δ∈A(s)

⎛⎝ 1

|S(s)|
∑

s′∈S(s)

V (s′) + c(Δ, s, s′)

⎞⎠
and solve for the “posterior optimal action”

Δ∗(s) = arg min
Δ∈A(s)

⎛⎝ 1

|S(s)|
∑

s′∈S(s)

V (s′) + c(Δ, s, s′)

⎞⎠
This approach has the nice theoretical property that the sample-based approximation
converges to the true DP equations (for the discretized MDP) in the limit of infinite sam-
ples. Similarly, Δ∗(s) converges to the optimal action as more samples are collected. In
contrast, separately optimizing for the single realizations as in [6] (which corresponds
to choosing N (ft) = ft+1) doesn’t necessarily converge to the true optimal action as
K →∞, although it has been shown to work well in practice.

Regressing the Optimal Policy. Using the available sample trajectories T1, · · · , TK ,
we generate a labeled training set1 of (state,optimal action) pairs by solving the cor-
responding sample-based DP equations using value iteration (notice that the “empiri-
cal” MDP can have loops, so we cannot solve it in one pass). Specifically, we compute
Δ∗(f , c) for every f ∈ Ti and for every capacity level c ∈ [0, Cmax]. We then use super-
vised learning to learn the relationship between a state s = (f , c) = (f1, . . . , fK , c) ∈
S and the corresponding optimal action Δ. Notice that the particular structure of the
problem allows us to artificially generate N times more data points than what we orig-
inally started with. Experimentally, we have seen this to be a crucial improvement in
order for the supervised learning algorithm to correctly understand the role of the ca-
pacity level c. In particular, we found that generating a dataset just using the optimal
sequence of actions a∗ for each trajectory (f0, f1, · · · , fT−1) is not sufficient to achieve
good performance.

The quadratic nature of the cost function gives us further insights on the performance
of the supervised learning method used. In particular, the mean-squared error (MSE) is
an important error metric in this case, because by reverse triangular inequality

||(a∗ + d)− (â+ d)||2 = ||a∗ − â||2 ≥ ||â+ d||2 − ||a∗ + d||2

where a∗ = (Δ∗
0, · · · , Δ∗

T−1) is the optimal sequence of actions, â is the sequence of
actions given by regression, and d = (d(0), · · · , d(T − 1)) is the demand vector. This
gives

||â+ d||2 ≤ ||a∗ − â||2 + ||a∗ + d||2
so that ||a∗ − â||2 bounds the difference in terms of i2-score between the optimal se-
quence of actions a∗ and â.

1 The training dataset will be made available online.



206 S. Ermon et al.

6 Evaluation: The Chargecar Competition

As previously mentioned, we evaluate our method on the publicly available dataset
provided by Chargecar [8], a crowdsourcing project open to the public with the goal
of making electric vehicles more practical and affordable. Along with the dataset, the
Chargecar project provides a simulator to evaluate the performance of power manage-
ment policies on the trips contained in the dataset. Furthermore, they set up an open
algorithmic challenge where the goal of the contest is to design policies that optimize
the energy performance of electric vehicles, as measured in terms of the i2-score. All
the parameters of the model are set as in the competition. In particular, the supercapac-
itor and the battery provide 50 Watt-hour and 50000 Watt-hour, respectively. Among
many other factors, the energy efficiency of multi-battery schemes depends crucially on
these parameters. Understanding their interplay with smart energy management poli-
cies is one of the goals of the competition, because it would allow us to design better,
more efficient electric vehicles.

Dataset. The dataset [8] contains a total of 1984 trips (with an average length of 15
minutes), subdivided into 6 separate datasets according to the driver ID. Each one of these
dataset is further separated into two subsets: a training and judging set. There are 168
trips in the judging set, accounting for about 8% of the total. Using the trips contained in
the training set, we generate a dataset of labeled (state, optimal action) example pairs with
the method explained in the previous section. The maximum capacity level is discretized
into N = 45 discrete steps, and the time step is δt = 1s, such that the resulting training
dataset contains 75827205 examples. Since the complete training dataset generated with
the previously described approach is too big to fit into memory, we divide it according
to the driver ID, generating separate training sets for each driver. When these datasets
are still too big, we divide them again according to the capacity level feature (selecting
entries corresponding to one or more rows of the DP tables). We then learn separate
models for each one of these smaller datasets, as shown in figure 5 2.

Supervised Learning. We used non-parametric exploratory models as there is little
or no prior knowledge and possibly highly non-linear interactions. In particular, we
use bagged decision trees, with the REPTree algorithm as implemented in the Weka
package [24] as the base learner. REPTree is a fast regression tree learner that uses in-
formation gain as the splitting criterion and reduced-error pruning (with backfitting).
Following standard practice, the parameters were set by 5-fold crossvalidation, select-
ing the model with the best MSE score. We call the resulting policyDPDecTree. Using
decision trees, we can represent and evaluate the policy efficiently in order to compute
the optimal action. In contrast, it can be impractical to compute an action solving an op-
timization problem based on a estimated future demand, because in a real-world setting
it might not be feasible to solve such problems with a high frequency on a car.

Evaluation. We evaluate the performance of DPDecTree on the separate judging set
of trips using the simulator. If the action suggested by DPDecTree would overcharge

2 A separate default model is trained for previously unseen driver IDs.
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Fig. 5. An overview of our intelligent energy management system

the capacitor, we charge it to full capacity; if it overdraws, we discharge it completely.
However, this situation is rare and DPDecTree gives feasible actions 99.8% of the
time when evaluated on the judging set. We compare our solution against MPL, the
current winning algorithm in the competition at the moment of this paper submission,
and to a simple buffer policy. The MPL policy is based on a large table of thresholds
for the battery output ibc + ibm, chosen according to driver ID, speed, demand and
GPS coordinates. The naive buffer policy charges the capacitor only from regenerative
braking (i.e, when the demand is negative) and when there is an energy demand, it
utilizes the capacitor first. We also provide the i2-score when the supercapacitor is not
used (or is not available) as a baseline.

As can be seen from table 1, DPDecTree leads to significant energy savings with
respect to the simple buffer policy. Although is it often far from the upper bound repre-
sented by the optimal Omniscient policy (except on the mike dataset where they differ
only by 5%), the good performance of DPDecTree suggests that it is very effective at
predicting future energy demands, and that the policy learned from the training exam-
ples generalizes to new, previously unseen scenarios. Further, DPDecTree improves
over MPL in 5 out of 6 datasets (each one corresponding to a different driver). We
believe the problem with the arnold dataset is the presence of different driving behav-
iors in the same dataset that the learning algorithm was not able to separate using the
available covariates.

In the bottom row of Table 1 we provide the resulting scores for the entire judg-
ing dataset. On average, DPDecTree leads to a 2.5% improvement on the i2-score
with respect to MPL. According to a one-sided paired t-test, the difference is statis-
tically significant (with P-value 0.0058). The result is significative also according to
a Wilcoxon signed-rank test (with P-value 0.00028) [25]. While there is still a sig-
nificant 20% gap with respect to the optimal omniscent policy, it is not clear how
much can still be achieved in the real online setting where the future demand is not
known ahead of time. These results suggest that there is a great potential for including
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Table 1. Results on driver specific judging datasets. i2-scores are in 108 · A2s.

Dataset DPDecTree MPL Naive Buffer Baseline Omniscient

alik 4.233 4.435 7.533 8.424 3.196

arnold 4.090 3.946 8.402 8.894 3.332

mike 3.245 3.290 4.874 5.128 3.083

thor 1.648 1.787 3.931 4.596 1.413

illah 0.333 0.353 0.751 0.856 0.211

gary 2.000 2.146 5.187 5.857 1.261

Total: 15.549 15.957 30.678 33.755 12.496

routing information (e.g., from a car navigation system) into the problem, since they
would bring the policies closer to the omniscient case. However, in this paper we as-
sume that routing information is not available, as in the competition. It would also be
very interesting to explore the possibility of improving the policy by learning from new
data as it becomes available during the policy evaluation phase, possibly with an incre-
mental learning approach.

7 Conclusions

In this paper we have presented an effective solution to the problem of managing multi-
battery systems in electric vehicles. Our novel intelligent energy management system
is evaluated on a large dataset of commuter trips crowdsourced in the United States.
Our approach is completely data-driven and can be expected to improve as more data is
being collected and becomes available.

Our method combines several existing approaches to solve a problem that we model
as an MDP with unknown transition probabilities. We use a sample-based approach,
where samples are not generated from an analytic model or from a simulator but given
as part of a dataset. By observing the empirical transition probabilities of a discretized
problem, we solve sample-based dynamic programming equations using value iteration.
Thanks to the special structure of the problem and its indipendent dynamics assumption,
we can generate more artificial data points from the samples by exploiting the informa-
tion contained in the dynamic programming tables. The optimal posterior actions given
the observed samples are then combined to form a policy for the original problem. In
order to do this, we use supervised machine learning techniques to build a regression
model that gives the action as a function of the state of the system. The obtained pol-
icy is evaluated on a separate set of real world trips, where it is shown to generalize to
situations that were previously unseen in the training set. Our novel system is shown
to outperform the leading algorithms that were previously proposed as part of an open
algorithmic challenge.
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Abstract. This paper investigates a reinforcement learning method that com-
bines learning a model of the environment with least-squares policy iteration
(LSPI). The LSPI algorithm learns a linear approximation of the optimal state-
action value function; the idea studied here is to let this value function depend
on a learned estimate of the expected next state instead of directly on the current
state and action. This approach makes it easier to define useful basis functions,
and hence to learn a useful linear approximation of the value function. Experi-
ments show that the new algorithm, called NSPI for next-state policy iteration,
performs well on two standard benchmarks, the well-known mountain car and in-
verted pendulum swing-up tasks. More importantly, the NSPI algorithm performs
well, and better than a specialized recent method, on a resource management task
known as the day-ahead wind commitment problem. This latter task has action
and state spaces that are high-dimensional and continuous.

1 Introduction

“...the state of a system is often summarized by certain features or basis func-
tions that capture the state’s salient properties. The selection of suitable features
is often the condicio sine qua non for practical success. The choice of fea-
tures is almost always influenced by sound engineering understanding of the
problem domain, but automating this process would be a major step ahead.”
(Tsitsiklis, 2010) [17].

This paper takes a step forward towards the goal of automating the process of choosing
useful basis functions in reinforcement learning.

The objective of a reinforcement learning algorithm is to acquire a policy for choos-
ing actions that can control an agent to desired goal states. A value function is a function
that estimates the long-term reward, as opposed to the immediate reward, of a given
state, or of a given state combined with a given action. A Q function is a value function
that maps each state-action pair to a real number that measures the long-term utility of
taking that action in that state. Approaches that learn value functions approximately,
and in particular methods that learn Q functions approximately, have been used to solve
reinforcement learning problems successfully. While other functional forms have also
been used, linear approximations of Q functions are popular because of convergence

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 211–226, 2012.
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guarantees, ease of implementation, and low computational complexity [8]. A linear
approximator represents the value of a state-action pair as a weighted sum

Q(s, a) =
m∑
j=1

φj(s, a)vj = φ(s, a) · v

of m predetermined basis functions where v is a real-valued vector of length m. Several
approaches to learn v, notably approximate policy iteration [8], have been investigated
intensively but the choice of the basis functions themselves has been studied less. In this
paper we suggest a process to define useful basis functions, and we present empirical
results that demonstrate the effectiveness of the approach.

The rest of this paper first reviews Markov decision processes (Section 2), and then
describes the proposed process for defining useful basis functions (Section 3). The
specific algorithm that we suggest, called NSPI, is presented in Section 4, which also
discusses related research briefly. Then Section 5 presents experimental results on stan-
dard benchmarks, and Section 6 shows the effectiveness of the approach on a high-
dimensional application.

2 Markov Decision Processes

The context of our work is reinforcement learning (RL) from historical data, which is
often called batch RL. Although the majority of research in recent decades has con-
cerned RL with interactive exploration of the environment, non-interactive RL tasks
were in fact the applications that motivated the original invention of Markov decision
processes (MDPs) [6].

An MDP is the formalization of the scenario underlying an RL task. Precisely, an
MDP is a tuple (S,A,P ,R,γ) where S is the state space, A is the action space, P is
the transition model with P(s, a, s′) being the probability of making a transition from
s to s′ on taking action a, R is the reward model with R(s, a, s′) being the immediate
reward associated with transitioning from s to s′ on taking action a, and γ ≤ 1 is
the discount factor. We assume that the MDP has an infinite horizon and that future
rewards are discounted exponentially with the discount factor γ. For problems with a
goal or sink state, the discount factor may be equal to 1, while in problems without
any goal or sink state, the discount factor must be strictly less than one. The expected
reward for taking an action a in a state s is

R(s, a) =

∫
s′
R(s, a, s′)P(s, a, s′)ds′.

A stationary policy is a mapping π : S → Ω(A) where Ω(A) is the space of probability
distributions over the action space; π(a; s) is the probability of choosing action a in
state s. A deterministic stationary policy is a mapping π : S → A, with π(s) being the
action the agent takes in state s. For a stationary deterministic policy π, the Q function
Qπ(s, a) that represents the utility of taking action a in state s can be expressed as

Qπ(s, a) = R(s, a) + γ

∫
s′

Qπ(s′, π(s′))P(s, a, s′)ds′.



Policy Iteration Based on a Learned Transition Model 213

Given any Q function Q(s, a), the corresponding policy is π(s) = argmaxa Q(s, a).
All problems considered in this paper are Markov decision processes where the state,

action, reward and next state can be observed in every transition. The state and action
spaces S and A are real-valued and may be high-dimensional. The transition model P
and the reward modelR are assumed to be unknown.

3 Defining Useful Basis Functions

An optimal policy, and hence an optimal Q function, specifies an action that moves the
agent from the current state to the best possible next state (which may be the same as
the current state). The long-term value of a state in an MDP does not depend on the state
from which it was reached, or on the action taken to reach it. Thus, the next state (which
is the net effect of the action taken in the current state) may be more informative than
the current state and the action taken, as the argument of a Q function. Given that an
approximate Q function is a weighted combination of basis functions, this observation
leads to our primary intuition for defining useful basis functions: these should take as
sole input an estimate of the next state that results from the action taken in the current
state.

Concretely, the proposal is to write

Q(s, a) = Q(ŝ) =
m∑
j=1

φj(ŝ)vj

where ŝ = f(s, a) for some function f is an estimate of the next state reached from the
current state s by taking action a. In general, the next state is not determined determin-
istically by s and a, so it is more precise to say that ŝ is an estimate of the expected next
state. In this paper we assume that states are real-valued vectors, so expectations are
well-defined, subject to some minor technical conditions. The transition model that de-
scribes the next state is the component P of the Markov decision process. The essence
of reinforcement learning is that P is not known, but an approximation of it can be
estimated from sampled data.

Having the next state as input leads to the secondary intuition for defining useful
basis functions: these should measure aspects of the next state that are correlated with
its long-term value. This intuition is consistent with most previous work, so arguably
it is not novel. However, it seems easier to put into practice when it is applied to the
estimated expected next state, rather than to the current state and action. The idea can be
made more precise by considering two different varieties of task (again this distinction
is not novel). The first variety consists of tasks where there are specific terminal states.
For these tasks, each basis function should describe a small neighborhood of states.
Then, the trained coefficient of each basis function can indicate the proximity of the
neighborhood to good and/or bad ending states. The second variety consists of tasks
where there are no defined terminal states, but each state generates a varying reward.
For these tasks, each basis function should describe a relatively separable aspect of the
following state. Then, the trained coefficients of the basis functions can collectively
indicate the goodness of the expected next state. As a special case, basis functions
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can be components of the vector ŝ that represents the expected next state, plus other
functions that can be computed from this vector.

The first variety of tasks includes the well-known mountain car and inverted pen-
dulum benchmarks, where a small region of the state space is the goal region. These
two tasks are investigated experimentally in Section 5 below, using the primary and
secondary intuitions just described. The second variety of tasks includes resource man-
agement scenarios, where stocks and flows must be controlled in order to maximize
profits and minimize costs [13]. In these scenarios, aspects of the estimated state can be
the levels of various resources, their prices, environmental conditions such as weather,
and so on. A task of this nature is solved in detail in Section 6.

4 The NSPI Algorithm

This section describes a concrete algorithm that puts into practice the ideas of the previ-
ous section. As mentioned, the primary idea is that a Q function should be represented
as Q(s, a) = Q(ŝ) where ŝ is an estimate of the expectation of the next state. In our
approach, ŝ is a linear function of s and a. This function is used only to predict the
immediate next state and not an extended path, so typically it only needs to predict
transitions to states in a small neighborhood of the current state. Even domains ex-
hibiting a high degree of nonlinearity, such as the inverted pendulum domain described
below, have local transitions that are approximately linear functions of a representation
of the current state and action. Of course, local linearity does not imply global linearity,
and in some domains the true transition function is discontinuous.

For a batch reinforcement learning task, the training data consist of n quadruples
of the form (si, ai, ri, s

′
i) where si is a state, ai is the action taken in that state, and

ri and s′i are the reward and next state that were observed to ensue. The linear esti-
mated transition model is simply the matrix T that is the least squares solution of the
overdetermined system of n linear equations each one of the form

[si ai]T = s′i.

Then, for any state s and action a, the approximate Q function is

Q(s, a) = Q(ŝ) =

m∑
j=1

φj([s a]T )vj

where the weights vj are learned in a second stage, separately from learning T .
When appropriate, the linear transition model can depend on a nonlinear represen-

tation of the state. For example, if one component of the state is a measured angle,
then having the sine and cosine of the angle in the state representation can give addi-
tional information. If the re-representations of the state and action spaces are denoted
by the functions fs and fa respectively, then the transition matrix T is the least squares
solution of the n linear equations

[fs(si) fa(ai)]T = s′i
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Algorithm 1. NSPI (next-state policy iteration)

// Input: training samples D = {(si, ai, ri, s
′
i)}ni=1

// φ: basis functions φ1 to φm

// γ: discount factor
// ε: stopping criterion
// Output: weight vector v′ representing the learned policy

Stage 1: Solve [fs(si) fa(ai)]T = s′i|ni=1 for T
Stage 2: // LSPI
v′ ← 0
repeat

v ← v′

A← 0 // m×m matrix
b← 0 // m× 1 column vector
for each (s, a, r, s′) ∈ D do

snext = [fs(s) fa(a)]T // estimate the next state for s
a∗ = argmaxa′ φ([fs(s

′) fa(a′)]T ) · v
s′next = [fs(s

′) fa(a∗)]T // estimate the next state for s′

A← A+ φ(snext)
(
φ(snext)− γφ(s′next)

)T
b← b+ φ(snext)r

end for
Solve Av′ = b for v′

until ||v − v′|| < ε

and the Q function for a given state s and action a is Q(s, a) = φ(ŝ) · v where ŝ =
[fs(s) fa(a)]T .

After a linear transition model T is trained, the second stage of our approach is to
learn a Q function using the next-state basis function representation φ(ŝ). This paper
uses the least squares policy iteration (LSPI) method for the second stage [8]. LSPI has
the advantage of not having to select parameters such as the learning rate or the number
of steps to iterate over. The full proposed algorithm using next-state basis functions is
shown in Algorithm 1.

Regularization can be used for learning both the transition matrix T and the weights
v. For the experiments described below, regularization is not needed for learning the
transition matrix, because the number n of training samples is much larger than the
number of features, which is the length of the concatenated vectors [fs(s) fa(a)]. For
learning the weights v, regularization is used by adding a scaled identity matrix λI to
the matrix A, where λ is a small positive value. Empirically, regularization in learning
v helps stabilize the estimates of the weights, and reduces the number of steps required
to reach a stable estimate.

A practical concern with Q functions is the argmax operation used to find the opti-
mal action. For small discrete action spaces, as in Section 5, finding an optimal action
is easy, but searching in a continuous action space requires an optimization algorithm of
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some sort. This can be computationally expensive, especially if the space of feasible
actions is constrained. Choosing the optimal action given s can be formulated as

a∗ = argmax
a

m∑
j=1

φj([fs(s) fa(a)]T )vj such that x ≤ Ca ≤ y

where the matrix C and the lower and upper bound vectors x and y specify constraints
on allowed action vectors. If the basis functions φj and the action representation func-
tion fa are linear, then linear programming can find the optimal a quickly even with
constraints. Otherwise, an alternative optimization approach such as an interior point
method can be used, as is the case in Section 6 below.

Algorithm 1 is novel as far as we know, but of course it is not unprecedented. The
fundamental aspect that makes reinforcement learning be a process of learning from
data, and different from solving the MDP directly, is that the transition model P is
unknown. RL methods are called model-based if they learn P explicitly in some way,
and model-free if they do not [12]. (Some model-based algorithms learn to predict the
immediate reward as well as the next state.) Standard least-squares policy iteration is
a model-free method, while NSPI is model-based. Given a limited quantity of training
samples {(si, ai, ri, s′i)}ni=1, learning both a model and a value function can maximize
the amount of useful information extracted from the training data. One reason is that
in many domains the transition model is close to linear, even though the optimal value
function is not. Another reason is that in many domains the long-term value is a simpler
function of the following state than it is directly of the current state s and an action a.

There are several RL methods that are similar in some ways to Algorithm 1. The
earliest method to learn a Q function and a transition model at the same time may have
been the Dyna-Q method [15]. A more recent paper that combines model-based and
model-free learning is [7]. Its algorithm called AMBI is interactive, which is likely a
major reason why it needs about 100 episodes to learn consistently a good policy for
the mountain car task, compared to about 40 episodes for the NSPI algorithm. Other
related work is [9], whose algorithm has a first stage that uses information collected
about the state space to define so-called proto-value functions as basis functions, and
a second stage that uses LSPI to determine a good policy based on these. Another
line of research whose aim is similar to the aim here investigates methods to adapt the
parameters of basis functions of a known form [11].

5 Benchmark Results

This section describes experiments applying the proposed NSPI algorithm to the
mountain car problem and to the inverted pendulum swing-up problem, which are two
standard benchmarks for reinforcement learning. The following section then describes
applying the method to a large-scale inventory management problem that concerns man-
aging a wind energy farm to maximize profits from sale of electricity. The first two
problems require the policy to control the agent to a goal state, while the last requires
the agent to maximize long-term reward. For each task, we briefly describe the problem
domain, define the basis functions, explain procedures for training and testing policies,
and compare the performance of learned policies with existing results.
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5.1 Mountain Car

The mountain car task requires controlling a car up a hill when its own power is insuffi-
cient to climb the hill. The car must back up on an opposite hill to gain momentum, and
use that momentum to accelerate to the goal position [16]. The state is a tuple (x, v)
where x ∈ [−1.2, 0.6] is the position of the car and v ∈ [−0.07, 0.07] is the velocity
of the car. The goal states are those with x ≥ 0.5. There is an inelastic wall at the left
end of the domain, i.e., if the car reaches x = −1.2, it is stopped and given a velocity
of 0. In each state, the action is either to accelerate forward, cruise, or accelerate back-
wards, i.e., a ∈ {−0.001, 0, 0.001}. The effect of gravity at a position x is given by
−0.0025 cos(3x). After each transition, the position and velocity are bounded to stay
within the specified domain. Thus, the transition from a state (xt, vt) to the next state
for a given action a is

xt+1 = max{min{xt + vt, 0.6},−1.2}
vt+1 = max{min{vt + a− 0.0025 cos(3xt), 0.07},−0.07}.

The reward at each step is rt = 0 if xt ≥ 0.5 and rt = −1 otherwise. Given n training
samples {si, ai, ri, s′i}ni=1, the transition matrix T is the least squares solution of the
overdetermined linear system of n equations

[si ai]T = s′i.

Directly following the intuition suggested in Section 3 above, the basis functions are 25
Gaussian radial functions whose centers are distributed evenly over the state space. Ap-
proximately, the learned weight for each basis function indicates how good that neigh-
borhood of the state space is. Each Gaussian has a fixed width proportionate to the
distance between two neighboring centers. The basis functions are thus

φm(ŝ) = exp

(
−1

2
(ŝ− cm)Σ−1(ŝ− cm)T

)
with cm ∈ {−1.2,−1,−0.8, . . . , 0.6} × {−0.07,−0.054, . . . , 0.054, 0.07} and

Σ =

[
0.036 0
0 0.0006

]
.

Samples for training were collected using random trials, i.e., starting the car with a
randomly chosen position and velocity and following a policy that selects actions at
random. The training trials were restricted to at most 60 steps. For testing, each policy
was given 100 randomly chosen starting positions and each test trial was followed for at
most 500 steps. A policy that controlled the car to the goal state for all 100 test trials was
considered to be successful. This experiment was repeated 10 times for each training set
size. The performance for each training set size is reported as the average over the 10
experiments. All policies were learned using γ = 0.95 with strength of regularization
λ = 0.4. The strength of regularization was chosen empirically to ensure that the LSPI
stage of the NSPI algorithm arrives at a stable estimate of the weights.
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Fig. 1. Results for the mountain car benchmark: dependence of steps-to-goal on the training set
size

The variation of the performance with the training set size is shown in Fig. 1. The
first successful policy was learned with a training set having only 300 samples (roughly
5 random trials), though the policy was not optimal. With training set sizes of 2400 sam-
ples or more, the NSPI algorithm consistently learns a policy that controls the car to the
goal state in at most 76 steps averaged across all test starting states, with a standard de-
viation of 3 to 6 steps. The best learned policy controls the car to the goal in an average
of 68 steps, learned on a training set of 2200 samples. Some of the average steps-to-goal
reported previously are 104 [10], 70 to 80 [14], and 63 [18]. In light of these compar-
isons, we can conclude that a close-to-optimal policy is learned consistently with about
40 training trials.

5.2 Inverted Pendulum

The inverted pendulum task involves a pendulum attached to a cart, where the agent
can only apply horizontal forces to the cart. The goal is to swing the pendulum from its
stable equilibrium position (the pendulum pointing downwards) to the unstable equilib-
rium position where the pendulum points upwards. A state is a tuple (θ, θ̇) where θ is
the angle measured from the unstable equilibrium position and θ̇ is the angular velocity.
Both dimensions are unbounded. The available actions are a positive force +10N , a
negative force−10N , or no force to be applied to the cart.

The dynamics for the inverted pendulum problem are given by [19] as

θ̈ =
g sin(θ)− αml(θ̇)2 − α cos(θ)u

4l/3− αml cos2(θ)

where the action u ∈ {−10, 0, 10}, the constant α = 1/(M + m), and the one-step
transition function is θ ← θ + τ θ̇ and θ̇ ← θ̇ + τ θ̈. Here, M = 1.0,m = 0.1, l = 0.5
are the masses of the cart and the pole and the length of the pole, while τ = 0.02 is
the time step duration, and g is the gravitational constant. The agent receives a penalty
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Fig. 2. Results for the inverted pendulum. In the left panel, the red line shows the number of
steps needed to reach the region (−π/12, π/12), and the blue line shows the number of steps for
which the pendulum stayed in the region (−π/12, π/12). In the right panel, the blue line shows
the angle of the pendulum measured from upright, starting at π and stabilizing around 0, while
the red line indicates the angular velocity.

of −1 for each step that the pendulum is below the horizontal line, and a reward of 0
for each step the pendulum is above the horizontal line, i.e. r(θ, θ̇) = 0 if cos(θ) > 0;
r(θ, θ̇) = −1 otherwise. An implementation of the above system dynamics is available
online [5].

Given n training samples {si, ai, ri, s′i}ni=1, the transition matrix T is the least
squares solution of the linear system of n equations

[fs(si) fa(ai)]T = s′i

where

fs(s) = [θ, θ̇, sin(θ), cos(θ), sin(θ)2, cos(θ)2, sin(θ) cos(θ),

θ̇ sin(θ), θ̇ cos(θ), θ̇ sin(θ)2, θ̇ cos(θ)2, θ̇ sin(θ) cos(θ),

θ̇2 sin(θ), θ̇2 cos(θ), θ̇2 sin(θ)2, θ̇2 cos(θ)2, θ̇2 sin(θ) cos(θ)]

fa(a) = [a cos(θ), a sin(θ)].

The function fs is a nonlinear representation that maps the state to a higher-dimensional
space. Though it appears complex, the mapping fs is easy to define: it consists of the
terms of the polynomial (1 + sin(θ) + cos(θ))2(1 + θ̇ + θ̇2) without the constant term.
Representing the state using such a mapping captures the dependence of the transition
model on higher order terms of θ̇, sin(θ) and cos(θ). Adopting this mapping does not
require prior knowledge of the real transition model. Similarly, the function fa maps the
action to a higher-dimensional space, simply separating the action into the component
directions along and perpendicular to the pendulum.

Again following the intuition suggested in Section 3 above, the basis functions con-
sist of 25 Gaussians evenly distributed in {−π, 0, π} × {−3, 0, 3}. Each Gaussian has
width proportional to the distance between two neighboring centers. Note that although
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the Gaussians are centered inside the grid bounded by {−π, π} × {−3, 3}, the values
of angle and angular velocity may go outside this grid. The basis functions are thus

φm(ŝ) = exp

(
−1

2
(ŝ− cm)Σ−1(ŝ− cm)T

)
where

ŝ = [fs(s) fa(a)]T

Σ =

[
π/5 0
0 3/5

]
cm ∈ {−π, π/2, 0, π/2, π} × {−3,−1.5, 0, 1.5, 3}

and the approximate Q function is

Q(ŝ) =

25∑
m=1

φm(ŝ)vm.

Samples for training were collected by randomly sampling the state-action space. Each
sample (s, a, r, s′) was generated by randomly selecting a state from [−π, π]× [−3, 3]
and an action from {-10, 0, 10}. The next state and the reward were calculated following
the system dynamics. For testing, each test trial began with the pendulum at the lowest
position and the policy was followed for at most 3000 steps. The performance metrics
tracked were the time taken to reach the goal region (−π/12, π/12), and the time the
pendulum stayed in this region. The experiment was repeated 10 times for each training
set size. The performance for each training set size is reported as the average over the 10
experiments. All policies were learned using γ = 0.95 with strength of regularization
λ = 1. The strength of regularization was chosen empirically to ensure the algorithm
arrives at a stable estimate of the weights.

The variation of performance with training set size is shown in Fig. 2. A policy
that controls the pendulum to the goal is learned with as few as 1500 samples. With a
training set size of 3500 or more samples, the learned policies consistently control the
pendulum to the goal and keep it in the upright position for an indefinite duration.

As a further test, a training dataset of 4000 samples was generated as described
earlier. The policy learned from this dataset was allowed to choose actions from the
set {-10, -8, -2, ..., 0, 2, ..., 10} during testing. Though the policy was trained on only
the actions {-10, 0, 10}, it was still able to balance the pendulum using the new set
of actions (Fig. 3). Further, it chose the new actions for 1,279 steps out of a 3000 step
trial, preferring the lower magnitude actions when the pendulum was closer to the goal
state. This indicates that the learned Q function correctly estimates the greater utility
of lower magnitude actions closer to the goal, even though those actions were absent
during training. This is because the basis functions depend only on the predicted next
state, and prediction of next states is sufficiently accurate even for the new actions. For
comparison, in the framework used by Lagoudakis and Parr [8] and by other researchers
for the inverted pendulum task, each of the three actions {-10, 0, 10} has its own set of
basis functions. Because of the explicit dependence on discrete actions as arguments,
each new action requires additional basis functions in that framework.
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Fig. 3. Pendulum trajectory using the extended set of actions: the pendulum is still balanced,
despite the policy being learned for a different set of actions

6 Management of a Wind Farm

The day-ahead wind commitment problem is a multistage stochastic optimization prob-
lem described recently [4]. The agent is a wind energy producer with a certain storage
capacity for electricity. Energy markets are based around bids for future production, so
producers must commit a certain amount of electricity 24 hours ahead in the day-ahead
market. At the end of each day, the agent knows the hourly wind speed for the day and
the hourly prices per unit of electricity for the next day.

The agent must commit to providing a certain amount of electricity for each hour
of the next day. For each unit of electricity committed, it receives revenue equal to the
price per unit of electricity at that hour. If the agent is unable to provide the amount
committed, it must make up the difference by buying from the spot market at twice the
per unit price at that hour. If it generates more electricity than promised, it may store
the excess generated electricity. Storage is free but limited. If the storage capacity has
been reached, then the excess electricity that cannot be stored must be dumped at the
cost of $5 per unit dumped. Units are megawatt hours (MWh) and a typical price per
unit is $50, so dumping is not free but not highly expensive either. The goal of the agent
is to commit energy each hour of the next day in a way that maximizes profit. Note that
the scenario assumes that operating costs are fixed, as are capital costs, so they are not
part of the problem definition.

We applied NSPI to the same weather and pricing data used by [4]. Hourly wind
speeds were obtained from the North American Land Data Assimilation Survey for
the eight years from January 1, 1998 to December 31, 2005 for three locations: the
outer banks of North Carolina (33.9375N, 77.9375W), the lake shore near Cleveland,
Ohio (41.8125N, 81.5625W), and the ocean shore near Point Judith, Rhode Island
(41.3125N, 71.4375W). Day-ahead hourly prices were obtained from the PJM mar-
ket for the New Jersey area for the period from January 1, 2002 to December 31, 2009.
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Fig. 4. (a) Price per MWh of electricity from 2002 to 2009, (b) wind speed for North Carolina,
(c) wind speed for Rhode Island, (d) wind speed for Ohio

The sequences of prices and wind speeds for the three locations over time are shown in
Fig. 4. Each point indicates the wind speed or the price at hour 12 of each day.

For any given day, the action vector is a 24-dimensional vector (a1, ..., a24), where
ah is the amount of electricity promised to be supplied at hour h of the following day.
The state at the end of a given day is the vector (w1, ..., w24, s24, p1, ..., p24) where wh

is the wind speed at hour h of the day, s24 is the electricity in storage at the end of the
day, and ph is the per-unit bid price of electricity at hour h of the next day.

Since the storage level varies within a day, we define sh to be the storage level at the
end of hour h for h = 1 to h = 24. We further define Lh = L(wh) to be the power
generated from the wind speed wh. To compute Lh we use a numerical approximation
of the power generation curve for an industry standard General Electric 1.5MW SL
wind turbine. The approximation was graciously provided by Lauren Hannah via email.

For each hour, the excess available electricity compared to the promised supply
is eh = sh−1 + L(wh) − ah. The storage level at the end of each hour is sh =
max{0,min{eh,M}} where M is the maximum storage capacity. The units purchased
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on the spot market during each hour are bh = max{0,−eh} and the units dumped
during each hour are dh = max{0, eh −M}. The daily revenue is thus

R =

24∑
h=1

phah − 2phbh − 5dh.

6.1 Applying NSPI

The first stage of applying NSPI is to learn a transition model that can estimate the
expected next state ŝ based on any current state s and any selected action a. Here,
the learned transition model consists of two matrices Tw and Tp that predict the wind
velocities and prices seen in the next state as a function of the current state. Note that
these speeds and prices are independent of the current action, and of each other. The
matrices Tw and Tp are the least squares solutions of the linear systems

(w1, w2, ..., w24, y1, y2, y3, y4)Tw = (w′
1, w

′
2, ..., w

′
24)

(p1, p2, ..., p24, y1, y2, y3, y4)Tp = (p′1, p
′
2, ..., p

′
24)

where the prime notation ′ refers to the following day in the training data. The four yi
are binary indicator variables that describe which season the current day is in. These
indicators are informative because wind velocity and electricity prices have seasonal
patterns. The two matrices Tw and Tp can be combined into a single transition matrix

T =

[
Tw 0
0 Tp

]
.

The transition model must also predict the storage component of ŝ, i.e., the estimated
storage level ŝ24 at the end of the next day. This is calculated using the equations above
from the action vector and the wind speeds predicted using Tw.

The second stage of applying NSPI is to learn an approximate Q function

Q(s, a) = Q(ŝ) =

m∑
j=1

φj(ŝ)vj .

We define m = 26 basis functions as follows. Let d be the day described by ŝ. The
first basis function is the anticipated revenue R̂ achieved during day d, the second basis
function is the anticipated storage level ŝ24 at the end of day d, and the remaining
basis functions are the 24 estimated prices for day d + 1. The trained weights vj of
these basis functions capture the estimated long-term value of the estimated state ŝ.
Formally, φ(ŝ) = (R̂, ŝ24, p̂1, ..., p̂24) where R̂ and ŝ24 are estimates that are computed
deterministically from (ŵ1, ..., ŵ24) and (p̂1, ..., p̂24) using the equations above.

During testing, given a state s the recommended action is computed by maximizing
Q(ŝ) using an interior point algorithm [1]. Specifically,

a∗ = argmax
a

Q(s, a) = argmax
a

m∑
j=1

φj([s a]T )vj .
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Table 1. Average annual reward in $1,000 for fixed storage sizes for ADPS and NSPI

Site Storage capacity ADPS NSPI

NC
7.5MWh 114.86 149.80
15MWh 163.51 184.70
30MWh 205.38 208.95

OH
7.5MWh 90.53 123.32
15MWh 131.83 155.67
30MWh 171.82 181.09

RI
7.5MWh 107.60 138.56
15MWh 155.00 173.23
30MWh 200.83 197.75

This maximization is computationally efficient because the 24-dimensional action vec-
tor is continuous. With discrete actions, searching the action space would be much more
expensive.

6.2 Experiments

Training and test data are identical to those used previously [4]. Each location is an
independent agent. The first three years of data (01/01/1998 to 12/31/2000 for wind,
01/01/2002 to 12/31/2004 for prices) are used to create the training samples. The policy
for generating training samples is persistent [4]: at the end of each day, commit for the
next day as much electricity as was generated (sold, stored, or dumped) on the current
day. Based on this commitment, the actual next state and reward are calculated. using
the transition equations above. The training policy is followed for each day of the first 3
years, resulting in 1095 samples from the 1096 days. All learning uses a discount factor
γ = 0.9. This numerical value is chosen somewhat arbitrarily, based on the assumption
that weather and prices are predictable at most a few days in advance, so decisions need
not take into account the far distant future. The strength of regularization was chosen
empirically to be λ = 20.

For testing, each wind farm begins with no stored electricity and is followed over the
last 5 years of data. For each wind farm, different policies are separately learned and
tested for storage capacities of 7.5MWh, 15MWh and 30MWh. Thus nine policies are
learned and evaluated: three for each wind farm, for three different storage capacities.

Table 1 compares the policies learned using NSPI with the policies learned using the
Approximate Dynamic Programming for Storage (ADPS) algorithm [4]. The metric
used for comparisons is the annual revenue averaged over the five year test period.
The paper [4] presents several results obtained using different parameters for the ADPS
method. For comparison purposes we use the best performances obtained via ADPS for
each case, i.e., each row in the table may use different parameters for ADPS to achieve
the best performance. NSPI outperforms ADPS in all but the last case. The biggest
improvement is for the smaller storage sizes, for which the task is intrinsically more
difficult because a large storage capacity can rarely be used fully. The performance
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improvement is encouraging considering that ADPS is a method designed specifically
for solving storage problems while NSPI is a general method for learning Q functions.

To estimate the transition model, [4] employ a Dirichlet process mixture model,
which is considerably more complex than the linear model used here. Another advan-
tage of the approach here is that it treats storage level as a continuous variable, while
the ADPS method discretizes the possible storage levels.

The weather and pricing data used here, and in previous research, are from different
time periods. This fact implies that wind speeds and prices are statistically independent.
In general, these can be correlated. In this case, additional information in the form of
tomorrow’s prices would be available for predicting tomorrow’s wind speeds. We can
take advantage of this additional information simply by not restricting the transition
matrix T to be block-diagonal. Similarly, if tomorrow’s prices are correlated with to-
day’s actions by the agent (because other market participants observe these actions and
react to them), this can be taken into account by including the action vector when learn-
ing T . This will be necessary if the agent produces a significant share of the electricity
supply of the region, so that it has market power and cannot be assumed to be merely a
price-taker.

7 Discussion

This paper proposes a simple but useful approach to the definition of basis functions
for use in a reinforcement learning method. The approach is driven by the observation
that the goal of an optimal policy is to choose the best next state. The primary idea is to
write Q(s, a) = Q(ŝ) where ŝ is an estimate of the expected next state reached by taking
action a in the current state s. The second idea is that basis functions should capture
how good the estimated expected next state ŝ is. For goal-oriented tasks, the goodness
of ŝ can be captured by basis functions that represent local neighborhoods, because the
coefficient of each basis function can then indicate the proximity of the neighborhood
to good and bad terminal states. For tasks such as inventory management, each basis
function can describe a certain component or aspect of the following state, such as the
level or availability of a particular resource.

The intuitions just described are made concrete in the NSPI algorithm, which is
the well-known least squares policy iteration method with the Q function changed to
depend on the expected next state ŝ instead of on s and a directly. Experimental re-
sults demonstrate the effectiveness of NSPI in three domains, including one with high-
dimensional continuous state and action spaces.

One issue worth exploring with NSPI is using a more complex but possibly more
accurate transition model. The experiments above use a linear transition model, but
Gaussian processes, Dirichlet process mixture models, and others have been used ef-
fectively in prior work. It is possible that NSPI may perform better with a more ac-
curate transition models, especially in domains where next-state dynamics are highly
nonlinear, such as robot navigation with obstacles, including the well-known so-called
puddle world. Another avenue for future work is to use methods other than LSPI after
the transition model has been learned. In particular, the process suggested here for mak-
ing the Q function depend on estimated next states could be combined with the fitted Q
iteration algorithm, and related methods [3,2].
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Abstract. We propose a graph-based algorithm for apprenticeship learn-
ing when the reward features are noisy. Previous apprenticeship learning
techniques learn a reward function by using only local state features. This
can be a limitation in practice, as often some features are misspecified or
subject to measurement noise. Our graphical framework, inspired from
the work on Markov Random Fields, allows to alleviate this problem
by propagating information between states, and rewarding policies that
choose similar actions in adjacent states. We demonstrate the advantage
of the proposed approach on grid-world navigation problems, and on the
problem of teaching a robot to grasp novel objects in simulation.

1 Introduction

Programming robots to perform complicated tasks, such as grasping and manip-
ulating objects, is a laborious and time-intensive engineering process. Markov
Decision Processes (MDPs) provide an efficient mathematical tool to handle such
tasks with minimum human effort. In this framework, the task is simply defined
by a reward function. However, in many problems, even the specification of a
reward function is not always straightforward. An alternative approach consists
of demonstrating examples of a desired behavior and learning a policy that leads
to a similar behavior. This type of learning is known as imitation learning and
has been widely explored in robotics [1].

Abbeel and Ng [2] introduced a new paradigm of imitation learning known
as apprenticeship learning. Rather than directly mimicking the actions of the
human, the aim of apprenticeship learning is to recover a reward function under
which the human policy is optimal. The learned reward function is then used to
find an optimal policy. The process of recovering a reward function is known as
Inverse Reinforcement Learning (IRL).

Prior work on apprenticeship learning is based on representing the rewards
as a function of state-action features [3–8]. However, this can be a problem
in practice when the reward features are noisy or misspecified. Therefore, the
features specified by a user are not always sufficient for describing a reward
function and for choosing actions accordingly.

An example problem would be planning to grasp an unknown object using
visual information. The calculated features are often subject to noise due to mea-
surement errors and self-occlusions. It is also difficult to encode the preference
for grasping an object from a specific part, such as a handle, given that these
parts come in different shapes.

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 227–242, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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A similar problem in computer vision, known as segmentation, has been ef-
ficiently solved using a family of graphical models known as Markov Random
Fields (MRFs) [9–12]. The key insight behind the performance of Markov fields
is that neighbor points on an image tend to have similar labels. Therefore, even
a small set of noisy features can be sufficient for classifying a point when consid-
ered together with its neighbors. However, Markov fields classify the points by
using only immediate costs (or rewards) and cannot be used for learning complex
goal-directed behaviors, such as manipulating objects.

In this paper, we build on this insight and introduce a new apprenticeship
learning technique that extends Markov Random Fields to sequential decision-
making problems. We start by specifying a graph that loosely indicates which
pairs of states are supposed to have similar optimal actions. Subsequently, we de-
rive a distribution on policies, wherein the probability of a policy is proportional
to its value, and inversely proportional to the number of pairs of adjacent states
that have different actions. Consequently, policies are penalized for selecting ac-
tions that are inconsistent with the graph. We show that this distribution is an
MRF, and describe a dynamic programming procedure that reduces planning in
MDPs with MRFs to a sequence of inference problems in MRFs.

The experimental analysis, presented at the end of this paper, shows that this
approach can improve the performance of an apprenticeship learning algorithm
when the reward features are noisy or misspecified. Specifically, we compare the
proposed algorithm to the MaxEnt IRL algorithm [7] on grid-worlds with long
planning horizons. We also compare to our previous work on learning to grasp
new objects [13]. In [13], the grasping points on an object are classified using
an MRF, while the preshaping and the approach direction of the robot hand
are given by a heuristic. In this paper, we show how to learn complete grasping
policies by using structured apprenticeship learning.

2 Background

In this section, we provide the theoretical background that is necessary for un-
derstanding the remainder of this paper.

2.1 Markov Decision Processes

Formally, a Markov Decision Process (MDP) is a tuple (S,A, T, R, μ0, γ), where
S is a set of states and A is a set of actions. T is a transition function with
T (s, a, s′) = P (st+1 = s′|st = s, at = a) for s, s′ ∈ S, a ∈ A, and R is a reward
function where R(s, a) is the reward given for executing action a in state s. The
initial state distribution is denoted by μ0, and γ ∈ [0, 1] is a discount factor. A
Markov Decision Process without a reward function is denoted by MDP\R. We
assume that the reward function is a linear combination of K feature vectors φk

with weights θk,

∀(s, a) ∈ S ×A : R(s, a) =

K∑
k=1

θkφk(s, a).
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A deterministic policy π is a function that returns an action a = π(s) for each
state s. The expected return J(π) of a policy π is the expected sum of rewards
that will be received when following policy π, i.e.

J(π) = E[
∞∑
t=0

γtR(st, at)|μ0, π, T ].

An optimal policy π∗ is one satisfying π∗ ∈ argmaxπ J(π). The expectation of
a feature φk for a policy π is defined as

φπ
k = E[

∞∑
t=0

γtφk(st, at)|μ0, π, T ].

Using this definition, the expected return of a policy π can be written as a linear
function of the feature expectations

J(π) =
K∑

k=1

θkφ
π
k .

2.2 Apprenticeship Learning

The aim of apprenticeship learning is to find a policy π that is nearly as good as
a policy πE demonstrated by a human expert, i.e., J(π) ≥ J(πE)− ε. However,
the expected returns of π and πE cannot be directly compared, unless a reward
function is provided. As a solution to this problem, Ng and Russell [14] proposed
to first learn a reward function, assuming that the expert is optimal, and then
use it to recover the expert’s generalized policy.

However, the problem of learning a reward function given an optimal pol-
icy is ill-posed [2]. In fact, a large class of reward functions may lead to the
same optimal policy. Most of the apprenticeship learning literature has focused
on solving this particular problem. Examples of the proposed solutions include
incorporating prior information on the reward function, minimizing the margin
‖J(π)− J(πE)‖, or maximizing the entropy of the distribution on state-actions
under a learned stochastic policy [7]. In this work, we will use the maximum
entropy regularization.

The principle of maximum entropy states that the simplest policy that best
represents the provided examples is the one with the highest entropy, subject
to the constraint of matching the expected return of the demonstrated actions.
This latter constraint can be satisfied by ensuring that the feature counts of the
learned policy match with those of the demonstration,

∀k ∈ {1, . . . ,K} : E[
∞∑
t=0

γtφk(st, at)|μ0, π, T ] = φ̂k (1)
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where φ̂k denotes the empirical expectation of feature k calculated from the
demonstration. The MaxEnt IRL approach [7] consists of finding the parameters
θ of a policy π that maximizes the entropy of the distribution on the state-action
trajectories subject to constraint (1). Solving this problem leads to maximizing
the likelihood of the demonstrated trajectories under an exponential distribution
of the policies.

2.3 Markov Random Fields

A Markov Random Field (MRF) is a graphical model used for representing joint
probability distributions. The MRF defines a probability distribution over N
discrete variables Y = {y1, . . . , yn}. Each variable corresponds to the label of a
node in a graph (V , E), where V is a set of nodes and E is a set of edges. Each
node xi is assigned to a label yi from a set L of possible labels. Therefore, the
MRF defines a probability distribution over LN .

We focus on a particular tractable class of MRFs known as Associative Markov
Network (AMN) [15], where potentials ρ(xi, yi) and ρ(xi, xj) are associated with
each node xi ∈ V labeled by yi, and each edge (xi, xj) ∈ E such that xi and xj

have the same label. The AMNmodel uses the log-linear function for representing
a potential as a function of the features, i.e. log ρ(xi, yi) =

∑
k θkφ(xi, yi) and

log ρ(xi, xj) =
∑

k λkψk(xi, xj), where θk ∈ R are node weights, φk(xi, yi) ∈ R

are features of node xi labeled by yi, λk ∈ R are edge weights, and ψk(xi, xj) ∈ R

are features of edge (xi, xj). The joint probability distribution on the labels
(y1, . . . , yn) is given by

P (y1, . . . , yn|x1, . . . , xn) ∝ exp
( ∑

xi∈V

∑
k

θkφ(xi, yi) +
∑

(xi,xj)∈E
s.t. yi=yj

∑
k

λkψk(xi, xj)
)
.

3 Structured Apprenticeship Learning

In this section, we present the structured apprenticeship learning problem and
show how it can be solved efficiently.

3.1 Key Insight

The classical framework of apprenticeship learning is based on hand-coding the
features φ of the reward and learning the weights θ. In practice, it is often diffi-
cult to find an appropriate set of features that contains necessary and sufficient
information about the reward. Moreover, these features are usually obtained
from empirical data and are subject to measurement errors. On the other hand,
most real-world problems exhibit a certain structure wherein states that are
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close together tend to have the same optimal action. This implicit information
about the optimal policy, given by the structure, can be used to partially over-
come the problem of finding an appropriate set of reward features. Intuitively,
a distance can be interpreted as a kernel that measures the similarity between
the approximate values of two states under an optimal policy. In many robotic
applications, such as navigation, this distance is simply the Euclidean or the
geodesic distance.

3.2 Problem Statement

Given an appropriate definition of a measure between states, we construct a
k-nearest neighbors graph where the nodes correspond to states and the set of
edges is denoted by E . Structured apprenticeship learning can be formulated as
the problem of finding a distribution P on deterministic policies, denoted by
π, that has the highest possible entropy while matching the expected value of
each state-action feature φk with the one calculated from the demonstration,
φ̂k. Moreover, a set of edge features ψk is defined over edges in E . Edge features
ψk(si, sj) take a zero value when π(si) �= π(sj). The distribution P should also
match the expected value of each edge feature ψk with the one calculated from
the demonstration, ψ̂k. Thus, this problem can be defined as

max
P,μπ

(
−

∑
π∈A|S|

P (π) logP (π)
)
, (2)

subject to ∑
π∈A|S|

P (π) = 1,

∀φk :
∑

π∈A|S|

P (π)
∑
s∈S

μπ(s)φk(s, π(s)) = φ̂k,

∀ψk :
∑

(si,sj)∈E
ψk(si, sj)

∑
π,π(si)=π(sj)

P (π) = ψ̂k,

where μπ(s) is the expected discounted number of visits of state s,

∀π, s : μπ(s) = μ0(s) + γ
∑
s′

μπ(s′)T (s′, π(s′), s).

The state-action features φk correspond to the basis functions of the reward
function. The edge features ψk can be interpreted as the basis functions of a
reward given for choosing the same actions for adjacent states. For instance,
ψk(si, sj) can be the inverted distance between states si and sj .

Another interesting example is when ψk(si, sj) = 1, ∀(si, sj) ∈ E , in which
case the last constraint in Problem 2 corresponds to forcing the probability
of the policies that choose the same action in adjacent states to be equal to
the empirical probability ψ̂k. In this manner, the robot learns a policy that also



232 A. Boularias, O. Krömer, and J. Peters

imitates the structure of the human policy. If the provided structure is not
relevant to the task, then ψ̂k will be low. Consequently, the learned policy will
not be forced to have a similar structure.

3.3 Proposed Solution

The Lagrangian of this problem is given by

L(P, η, θ, λ) = −
∑

π∈A|S|

P (π) logP (π) + η
(∑
π∈A|S|

P (π)− 1
)

+
∑
k

θk

( ∑
π∈A|S|

P (π)
∑
s∈S

μπ(s)φk(s, π(s)) − φ̂k

)
+
∑
k

λk

( ∑
π,π(si)=π(sj)

P (π)
∑

(si,sj)∈E
ψk(si, sj)− ψ̂k

)
.

Therefore

∂P (π)L(P, η, θ, λ) =
∑
s

μπ(s)
∑
k

θkφk(s, π(s)) +
∑

(si,sj)∈E
s.t. π(si)=π(sj)

∑
k

λkψk(si, sj)

− logP (π) + η − 1.

The optimal solution satisfies ∂P (π)L(P, η, θ, λ) = 0, then

logP (π) =
∑
s

μπ(s)
∑
k

θkφk(s, π(s)) +
∑

(si,sj)∈E
s.t. π(si)=π(sj)

∑
k

λkψk(si, sj)− logZ(θ, λ), (3)

where Z(θ, λ) is a partition function. Therefore

P (π) ∝ exp
(∑

s

μπ(s)
∑
k

θkφk(s, π(s)) +
∑

(si,sj)∈E
s.t. π(si)=π(sj)

∑
k

λkψk(si, sj)
)
. (4)

3.4 Relation to Other Methods

The probability distribution given by Equation 4 is a Markov Random Field, as
illustrated in Figure 1. The probability of choosing action a in a given state s
depends on the expected return of (s, a) and the actions chosen in neighboring
states. There is a clear similarity between the distribution of policies in struc-
tured apprenticeship learning and the distribution of joint labels in Associative
Markov Networks (AMN) [16] in particular. In fact, the proposed framework
generalizes AMN to sequential decision making problems. States are the input
points and actions are the labels, the labeling cost is given by the reward. The
label distribution in AMN can be derived from Equation 4 by setting γ = 0,
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Table 1. Relation between Structured Apprenticeship Learning and other methods

|E| = 0 |E| 	= 0
γ = 0 Logistic regression AMN [16]
γ 	= 0 MaxEnt IRL [7] Structured Apprenticeship Learning

then μπ becomes equal to μ0, the initial state distribution, which is a constant
factor that can be included in the features φk. Also, the MaxEnt method [7] can
be derived from Equation 4 by setting λ = 0. Note that Ziebart et al. [7] use a
distribution on paths instead of policies. The following table shows the relation
between structured apprenticeship learning and other methods.
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Fig. 1. Structured Markov Decision Process

Finally, we should mention that the concept of using structured output pre-
diction for learning by demonstration was also considered in [17]. Although,
the approach of [17] consists in classifying robot trajectories using conditional
random fields in a supervised learning fashion, without considering a reward
function and planning the trajectories.

3.5 Learning Procedure

We provide a solution for finding the reward parameters θ and the structure
parameters λ that maximize the likelihood of an expert policy πE demonstrated
in a domain that can be different from the testing domain. The demonstrations
are given by state-action trajectories, and the empirical feature averages φ̂k and
ψ̂k are calculated from these trajectories. We denote the set of states that appear
in the demonstrations by SE , and the corresponding set of edges by EE .

From the Representer Theorem [18], we know that the parameters θ and λ
that maximize logP (π) (Equation 3) are given by

θk =
∑
s∈SE

αsφk(s, π
E(s)),

λk =
∑

(si,sj)∈EE

s.t. πE(si)=πE(sj)

βsi,sjψk(si, sj),
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where αs, βsi,sj ∈ R. Therefore, the log-probability of a deterministic policy π
defined on an arbitrary structured MDP (S, E ,A, T, μ0, γ) is given by

logP (π) = Rβ(E , π)︸ ︷︷ ︸
structure reward

+
∑
s

μπ(s)Rα(s, π(s))︸ ︷︷ ︸
expected return

− logZ(α, β), (5)

Rα(s, a)
def
=

∑
s′∈SE

αs′k(〈s, a〉, 〈s′, πE(s′)〉),

Rβ(E , π)
def
=

∑
(si,sj)∈E

π(si)=π(sj)

∑
(s′i,s

′
j)∈EE

πE(s′i)=πE(s′j)

βs′i,s
′
j
ke(〈si, sj〉, 〈s′i, s′j〉),

where k and ke are kernel functions used for measuring similarities between
state-action couples and between edges respectively, they are defined as

k(〈s, a〉, 〈s′, a′〉) =
∑
k

φk(s, a)φk(s
′, a′),

ke(〈si, sj〉, 〈s′i, s′j〉) =
∑
k

ψk(si, sj)ψk(s
′
i, s

′
j).

The partition function Z(α, β) is given by

Z(α, β) =
∑

π∈A|S|

exp
(
Rβ(E , π) +

∑
s

μπ(s)Rα(s, π(s))
)
. (6)

In the learning phase, Equation 5 is used for finding parameters α and β that
maximize the likelihood of the expert’s policy πE . Since this likelihood function
is concave, the optimal parameters α and β can be found by using standard
optimization methods, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method. A key drawback of this approach is the computational cost of calculating
the partition function Z(α, β) at each step of the optimization algorithm, which
is O(|A||S||S|3), this corresponds to the cost of calculating the values of all the
deterministic policies using value iteration for instance.

In practice, this problem can be addressed by using several possible tricks.
First, we reuse the values calculated for a given policy π as the initial values of
all the policies that differ from π in one state only, the values of these policies
are found after a few iterations. Second, we may be interested in finding a prob-
ability distribution on a restricted set of eligible policies, instead of all possible
policies. The learned reward function will then discriminate the expert’s policy
πE against other alternative candidates. For example, we can consider all the
policies that differ from πE by only one action, or the optimal policies given
a sequence of hypothesized reward functions, as in Maximum Margin Markov
Networks [16]. Finally, we can decompose the state space into a set of weakly
connected components C = {Si ⊂ S}, and separately calculate the partition
function of each component, which reduces the computational complexity to
O(
∑

Si∈C |A||Si||Si|3). This procedure is given in Algorithm 1.
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Input: A structured MDP\R (S ,E ,A, T, μ0, γ) ;
Let C0 be the set of weakly connected components in the graph defined by the
states and the edges in E ;
t← 0;
repeat

t← t+ 1 ; Ct ← Ct−1;
foreach Si ∈ Ct, s ∈ Si, a ∈ A,Sj ∈ Ct, s′ ∈ Sj do

if T (s, a, s′) 	= 0 then
Sk = Si ∪ Sj ; Ct ← Ct ∪ {Sk} ;

end

end

until Ct = Ct−1;
Output: A set of weakly connected components C;

Algorithm 1. Decomposing the state space into weakly connected com-
ponents

3.6 Finding Policies for Finite Horizons

For a finite horizon H , an optimal policy π can be non-stationary, i.e. π0:H =
(π0, π1, . . . , πH). Moreover, if the initial state distribution μ0 is unknown, then
Problem 2 should be stated for every initial state and time-step. Assuming that
the reward and structure (edges) parameters α and β are stationary (they do not
depend on the starting state or time), the solution is given by the conditional
probability distribution

P (πt|πt+1:H) ∝ exp
(
Rβ(E , πt) +

∑
s

V πt:H
α (s)

)
,

V πt:H
α (s) = Rα(s, πt(s)) + γ

∑
s′

T (s, πt(s), s
′)V πt+1:H

α (s′).

Algorithm 2 describes a dynamic programming procedure for finding a policy
π∗
0:H = (π∗

0 , π
∗
1 , . . . , π

∗
H) that satisfies

∀t ∈ [0, H ] : π∗
t = argmax

πt∈A|S|
P (πt|π∗

t+1:H).

The planning problem is reduced to a sequence of inference problems in Markov
fields, i.e. finding joint labels that have the highest probability. The inference
problem itself also can be efficiently solved using techniques such as graph min-
cut [19], α-expansions and linear programming relaxation [15]. We adopt the α-
expansions technique. For more details, we refer the reader to Taskar (2004) [16].

4 Experiments

In this section, we present experiments on learning to navigate in gridworlds
with noisy reward features, and learning to grasp unknown objects. We compare
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Input: A structured MDP (S , E ,A, T, γ) with reward parameters α and
structure parameters β, a planning horizon H ;

∀s ∈ S ,∀a ∈ A : QH+1
α (s, a) = 0;

for t = H : 0 do
∀s ∈ S ,∀a ∈ A : Qt

α(s, a) = Rα(s, a) + γ
∑

s′ T (s, a, s
′)Qt+1

α (s′, π∗
t+1(s

′));
Use an inference algorithm in the MRF defined on the graph (S ,E) to label
states with actions. The potential of the nodes is given by Qα and the
potential of the edges is given by Rβ ;
Denote by π∗

t the policy returned by the inference algorithm;

end
Output: A non-stationary policy π∗ = (π∗

0 , π
∗
1 , . . . , π

∗
H);

Algorithm 2. Reducing planning in structured MDP to inference in MRFs

Structured Apprenticeship Learning (SAL) with MaxEnt IRL [7]. Note that
Ziebart et al. [7] used a distribution on trajectories while we use distributions
on policies.

4.1 Gridworlds

We consider 10× 25 gridworlds. A state corresponds to the location of a robot,
which has four actions for moving in one of the four directions of the compass.
The actions are stochastic, the robot is randomly moved to one of the four
adjacent states with probability 5%. There are two reward features, φ1 and φ2.
Feature φ1 takes value 1 in the goal states and 0 elsewhere. Feature φ2 indicates
bad regions that should be avoided (big obstacles, large holes, slippery floors,
etc. . . ). The true reward function is given by R(s, a) = φ1(s)− 20φ2(s).

Based on the assumption that bad states tend to be regrouped in large regions,
an optimal policy is expected to select the same action for most of the time,
and occasionally turn left or right to avoid an obstacle. Therefore, we use the
Manhattan distance on the grid as a similarity measure between states, and
consider the immediate neighbors as adjacent states in the graph used by SAL.
We use a constant edge feature, set to 1. The parameters of MaxEnt IRL and SAL
are learned by maximizing the likelihood of the policy shown in Figure 2 (a) using
the BFGS method. In the learning process, we restrict the policy distribution to
the set of policies that differ from the demonstration in at most one state. This
was sufficient for learning fairly accurate reward weights, (1.2,−18.0) for SAL
and (1.2,−20.7) for MaxEnt, while reducing the learning time to 173 seconds
for SAL and only 4 seconds for MaxEnt. The learned edge weight for SAL is
λ = 0.28.

Tests were performed in two gridworlds, shown in Figures 2 (b,c,d). In each
gridworld, there are two large regions characterized by φ2 set to 1. The remaining
states have φ2 set to 0. Randomly selected states have been noised, i.e. their
values of φ2 were altered to values uniformly sampled from the interval [0, 0.2].
We used the α-expansions algorithm for inference in SAL. The average planning
times were 0.58 and 1.7 seconds for SAL, and 0.4 and 1.05 seconds for MaxEnt.
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(a) Training with optimal policy (b) Testing with SAL

(c) Testing with MaxEnt IRL (d) Testing with SAL
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Fig. 2. Experiments in gridworlds. Blue indicates a low value of a feature associated
with negative reward, and red indicates a higher value of that feature. In the testing
domains, a white noise is added to the negative-weighted feature of randomly chosen
states. Subfigures (e) and (f) show the average rewards of MaxEnt and SAL as a
function of the percentage of noisy states.

Figures 2 (e,f) show the average actual rewards of SAL and MaxEnt policies
as a function of the percentage of states that have been noised. The results are
averaged over 105 trials of length 50 with the discount factor γ = 1. Notice that
with low levels of noise, MaxEnt slightly outperforms SAL. This is due to the
fact that the SAL policy prefers to choose a similar action for adjacent states,
even when sometimes a different action is optimal. For the same reason, SAL
significantly outperforms MaxEnt in high levels of noise, where the robot with
MaxEnt policy spends most of its time trying to avoid most of the noisy states,
as shown in Figure 2 (c).

This experiment shows that SAL can improve over MaxEnt IRL when the
reward features are noisy. However, when the noise is too small or absent, the
performance of SAL can be lower than that of MaxEnt IRL. This is due to
the bias introduced by SAL, which favors smooth policies. Nevertheless, SAL is
intended to be used only when the noise level is significant.
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4.2 Grasping Unknown Objects

From a high-level point of view, grasping an object can be seen as an MDP with
three steps: reaching, preshaping, and grasping (Figure 3). At any step, the robot
can either proceed to the next step or restart from the beginning and get a reward
of 0. The robot always starts at t = 0 from the same initial state s0, the set of
actions corresponds to the set of points on the surface of the object, assuming
that the approach direction is always given by the surface normal vector. At
t = 1, the state is given by a surface point and an approach direction, the set
of actions correspond to the set of all possible hand orientations. At t = 2, the
state is given by a surface point, an approach direction and a hand orientation.
There are two possible last actions, closing the fingers or restarting.

↘
. . . ←

←↑ . . . ←↙ . . . ←↖

. . .
↓

Fig. 3. Grasping as a three-step Markov Decision Process

In this experiment, we are interested in learning to grasp objects from their
handles. The reward of each step depends on the current state. There is no
reward at t = 0. The reward R1 defined at t = 1 is a function of the first three
eigenvalues of the scatter matrix defined by the 3D coordinates of the points
inside a small ball centered on the selected point. These features indicate if a
point is on a handle. The reward R2, defined at t = 2, is a function of collision
features. We simulate the trajectories of 10 equidistant points on each finger of a
Barrett robot hand (a three-fingered gripper). The collision features are binary
variables indicating whether or not there will be a collision with the object,
during the grasping, for each one of the specified finger points.

Based on the assumption that points that are close to each other should have
the same action (i.e. same approach direction and hand orientation), the struc-
ture of this MDP is given by the k-nearest neighbors graph, using the Euclidean
distance and k = 6 in the state space of positions (or surface points), and the
angular distance, with k = 2 in the discretized state space of hand orientations.
We use a quadratic kernel for learning R1, and the Hamming distance between
the feature vectors as a kernel for learning R2. We also use a single constant
feature for all the edges.

We used one object for training and provided six trajectories leading to a
successful grasp from its handle. For testing, we compared SAL with Max-
Ent IRL, AMN and Logistic Regression, which is equivalent to AMN without
the graph structure. For AMN and Logistic Regression, only the reward R1 at
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Table 2. Learned Q-values at t = 0. Each point on an object corresponds to an action.
Blue indicates low values and red indicates high values. The black arrow indicates the
approach direction in the optimal policy according to the learned reward function.
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time-step 1 is learned, since these are classification methods and do not consider
subsequent rewards.

Table 2 shows the Q-values at t = 0 and the approach directions at optimal
grasping points given the reward functions learned by different algorithms. No-
tice how SAL improves over the other methods by generally giving high values to
handle points only. The values of the other points are zeros because the optimal
action at these points is to restart rather than to grasp. The confusion in the
other methods comes from noise features and self-occlusions. Notice also that
SAL improves over AMN by considering the reward at t = 2 while making a
decision at t = 1. Figure 4 shows the percentage of successful grasps using the
objects in Table 2. A grasp is labeled successful if it is located on a handle and
the hand orientation is orthogonal to the handle and the approach direction.

Note that Ratliff [20] solved a similar grasp prediction problem by using a
structured output prediction technique. The experimental setup used in [20] is
different from ours since it contained complete 3D models of the objects instead
of point clouds. We compared SAL only with MaxEnt IRL, which is a special
case of SAL, in order to illustrate the advantage of using MRF. The approach
of Ratliff [20] for grasping can be extended in a similar way to handle sequential
decision-making. In fact, structured apprenticeship learning with MRFs is one
way of using structured prediction in MDPs, one can also use other techniques
such as Max-Margin Markov Networks [16].
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Fig. 4. Percentage of grasps labeled as successful

We also compared with the classification methods used in [13] (AMN and
logistic regression) in order to show the advantage of taking future rewards into
account in grasping. In fact, AMN and logistic regression use only the reward
function at the first time-step for selecting the grasping point, the approach
direction is found by using a heuristic. Table 2 clearly shows that structured
apprenticeship learning improves over AMN and logistic regression. In fact, the
dynamic programming procedure used in SAL (Algorithm 2) backpropagates the
cost related to the collisions of the fingers with the object to the first time-step.
Therefore, most of the points with a high value are located on handles.

5 Conclusion

Robotic tasks, such as grasping objects, are often difficult to solve by using man-
ual programming. A solution to this problem, known as apprenticeship learning,
consists of providing the robot with a demonstration of an optimal policy for
solving the task. The robot learns a reward function that explains the demon-
stration and uses it for generalization.

In this paper, we showed that the reward function alone is not always suf-
ficient for properly explaining a behavior when some features are noisy, or are
poorly specified. To solve this problem, we presented a new technique that we
called Structured Apprenticeship Learning, and which is inspired by Markov
fields. Experiments on navigation and grasping tasks confirmed that structured
apprenticeship learning improves over unstructured methods when the features
are noisy.

However, our approach suffers from a higher computational complexity com-
pared to standard MDP algorithms. This problem will be investigated in a fu-
ture work by using well-known approximate inference techniques in graphical
models.
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Abstract. We suggest a new framework for classification rule mining
in quantitative data sets founded on Bayes theory – without univariate
preprocessing of attributes. We introduce a space of rule models and a
prior distribution defined on this model space. As a result, we obtain the
definition of a parameter-free criterion for classification rules. We show
that the new criterion identifies interesting classification rules while being
highly resilient to spurious patterns. We develop a new parameter-free al-
gorithm to mine locally optimal classification rules efficiently. The mined
rules are directly used as new features in a classification process based
on a selective naive Bayes classifier. The resulting classifier demonstrates
higher inductive performance than state-of-the-art rule-based classifiers.

1 Introduction

The popularity of association rules [1] is probably due to their simple and inter-
pretable form. That is why they received a lot of attention in the recent decades.
E.g., when considering Boolean datasets, an association rule is an expression of
the form π : X → Y where the body X and the consequent Y are subsets of
Boolean attributes. It can be interpreted as: “when attributes of X are observed,
then attributes of Y are often observed”. The strength of a rule pattern lies in
its inductive inference power: from now on, if we observe the attributes of X
then we may rely on observing attributes of Y . When Y is a class attribute,
we talk about classification rules (like X → c) which seems to be helpful for
classification tasks – indeed, “if an object is described by attributes of X then
it probably belongs to class c”. A lot of efforts have been devoted to this area in
the past years and have given rise to several rule-based classifiers (see pioneer-
ing work: “Classification Based on Associations” (cba [22]). Nowadays, there
exist numerous cba-like classifiers which process may be roughly summarized in
two steps: (i) mining a rule set w.r.t. an interestingness measure, (ii) building
a classifier with a selected subset of the mined rules (see [7] for a recent well-
structured survey). Another research stream exploits a rule induction scheme:
each rule is greedily extended using various heuristics (like e.g. information gain)
and the rule set is built using a sequential database covering strategy. Following
this framework, several rule-induction-based classification algorithms have been
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proposed; e.g. [9,24,32]. Rule mining and rule-based classification are still ongo-
ing research topics. To motivate our approach, we highlight some weaknesses of
existing methods.

Motivation. Real-world data sets are made of quantitative attributes (i.e.
numerical and/or categorical). Usually, each numerical attribute is discretized
using a supervised univariate method and each result-

Fig. 1. 2-class xor data

ing interval is then mapped to a Boolean attribute (see
section 5 for further related work about mining quan-
titative data sets). The simple xor example (see fig-
ure 1) shows the limit of such preprocessing. Indeed, it
seems there is no valuable univariate discretization for
attribute X (resp. Y ), thus both attributes might be
pruned during preprocessing. If X and Y are individu-
ally non-informative, their combination could be class-
discriminant: e.g., the rule (X < xb)∧(Y < yb)→ c2 is
clearly an interesting pattern. Notice that univariate preprocessing of a categor-
ical attribute, like supervised value grouping, is subject to the same drawback.

Another weakness of cba-like classifiers is parameter tuning. Most of the
methods works with parameters: e.g., an interestingness measure threshold for
the rules to be mined (sometimes coupled with a frequency threshold), the num-
ber of mined rules to use for building the final rule set for classification, etc. The
performance of cba-like classifiers strongly depends on parameter tuning. The
choice of parameters is thus crucial but not trivial – each data set may require
its own parameter settings. If tuning one parameter could be difficult, a common
end-user could be quickly drowned into the tuning of several parameters.

These drawbacks suggest (i), processing quantitative and categorical attributes
directly (on the fly) in the mining process in order to catch multivariate cor-
relations that are unreachable with univariate preprocessing and (ii) designing
an interestingness measure with no need for any wise threshold tuning and a
parameter-free method.

Contributions & Organization. In this paper, we suggest a new quantitative
classification rulemining framework founded on aBayesian approach.Ourmethod
draws its inspiration from the modl approach (Minimum Optimized Description
Length [5]) whose main concepts are recalled in the next section. In section 2, we
instantiate the generic modl approach for the case of classification rules; then,
step by step, we build a Bayesian criterion which plays the role of an interesting-
ness measure (with no need for thresholding) for classification rules and we discuss
some of its fair properties. In section 3, we also suggest a new efficient parameter-
free mining algorithm for the extraction of locally optimal classification rules. A
classifier is then built following a simple and intuitive feature construction process
based on the mined rules. The resulting classifier shows competitive results when
compared with state-of-the-art rule-based classifiers on both real-world and large-
scale challenge data sets – showing the added-value of the method (see section 4).
Further related work is discussed in section 5 before concluding.
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2 Towards MODL Rules

MODL Principle. The modl approach is based on a Bayesian approach. Let
us consider the univariate supervised discretization task as an example. From
the modl point of view, the problem of discretizing a numerical attribute is
formulated as a model selection problem.

Firstly, a space M of discretization models M is defined. In order to choose
the “best” discretization model M , a Bayesian “Maximum A Posteriori” ap-
proach (map) is used: the probability p(M |D) is to be maximized overM (i.e.,
the posterior probability of a given discretization model M given the data D).
Using Bayes rule and considering that p(D) is constant in the current optimiza-
tion problem, it consists in maximizing the expression p(M) × p(D|M). The
prior p(M) and the conditional probability p(D|M) called the likelihood are
both computed with the parameters of a specific discretization which is uniquely
identified by the number of intervals, the bound of the intervals and the class
frequencies in each interval. Notice that the prior exploits the hierarchy of pa-
rameters and is uniform at each stage of the hierarchy. The evaluation criterion
is based on the negative logarithm of p(M | D) and is called the cost of the
model M : c(M) = − log(p(M) × p(D | M)). The optimal model M is then the
one with the least cost c (see original work [5] for explicit expression of p(M)
and p(D|M) and for the optimization algorithm). The generic modl approach
has also already been successfully applied to supervised value grouping [4] and
decision tree construction [28]. In each instantiation, the modlmethod promotes
a trade-off between (1) the fineness of the predictive information provided by
the model and (2) the robustness in order to obtain a good generalization of the
model. Next, modl approach is instantiated for the case of classification rules.

Basic Notations and Definitions. Let r = {T , I, C} be a labeled transac-
tional data set, where T = {t1, . . . , tN} is the set of objects, I = {x1, . . . , xm}
is a set of attributes (numerical or categorical) and dom(xj) the domain of an
attribute xj (1 ≤ j ≤ m) and C = {c1, . . . , cJ} is the set of J mutually exclusive
classes of a class attribute y. An object t is a vector t = 〈v1, . . . , vm, c〉 where
vj ∈ dom(xj) (1 ≤ j ≤ m) and c ∈ C. An item for a numerical attribute x is
an interval of the form x[lx, ux] where lx, ux ∈ dom(x) and lx ≤ ux. We say
that an object t ∈ T satisfies an interval item x[lx, ux] when lx ≤ t(x) ≤ ux.
For a categorical attribute, an item is a value group of the form x{v1x, . . . , vsx}
where vjx ∈ dom(x) (1 ≤ j ≤ s). We say that an object t ∈ T satisfies a value
group item x{v1x, . . . , vsx} when t(x) ∈ {v1x, . . . , vsx}. An itemset X is just a set
of items and an object t supports X if t satisfies all items of X . A classification
rule π on r is an expression of the form π : X → c where c is a class value and
X is an itemset. Notice that a categorical attribute involved in the rule body
is partitioned into two value groups: the body item (or group) and the outside
item; whereas a numerical attribute, due to the intrinsic order of its values, is
discretized into either two or three intervals: the body item (or interval) and the
outside item(s) (see example below).
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Let us recall that, from a modl point of view, the problem of mining a clas-
sification rule π is formulated as a model selection problem. To choose the best
rule from the rule space we use a Bayesian approach: we look for maximizing
p(π|r). As explained in previous section, it consists in minimizing the cost of the
rule defined as:

c(π) = − log(p(π) × p(r | π))
In order to compute the prior p(π), we suggest another definition of classification
rule based on hierarchy of parameters that uniquely identifies a given rule:

Definition 1 (Standard Classification Rule Model). A modl rule π, also
called standard classification rule model ( scrm), is defined by:

– the constituent attributes of the rule body
– the group involved in the rule body, for each categorical attribute of the rule body
– the interval involved in the rule body, for each numerical attribute of the rule body
– the class distribution inside and outside of the body

Notice that scrm definition slightly differs from classical classification rule. The
last key point meets the concept of distribution rule [17]. The consequent of a
scrm is an empirical distribution over the classes as illustrated in the following
example:

Example of a SCRM. Let us consider the scrm π : (x1 ∈ {v1x1
, v3x1

, v4x1
}) ∧

(1.2 < x2 ≤ 3.1) ∧ (x4 ≥ 100)→ (pc1 = 0.9, pc2 = 0.1) where x1 is a categorical
attribute and x2, x4 are numerical attributes. The value group {v1x1

, v3x1
, v4x1

}
and the intervals ]1.2; 3.1] and [100;+∞[ are those items involved in the rule
body. The complementary part (i.e. the negation of their conjunction) constitutes
the outside part of the rule body. (pc1 = 0.9, pc2 = 0.1) is the empirical class
distribution for the objects covered by the rule body (inside part) and the class
distribution for the outside part of the body may be deduced easily.

Our working model space is thus the space of all scrm rules. To apply the
Bayesian approach, we first need to define a prior distribution on the scrm space;
and we will need the following notations.

Notations. Let r be a data set with N objects, m attributes (categorical or
numerical) and J classes. For a SCRM, π : X → (Pc1 , Pc2 , . . . , PcJ ) such that
|X | = k ≤ m, we will use the following notations:
– X = {x1, . . . , xk}: the set of k constituent attributes of the rule body (k ≤ m)

– Xcat ∪Xnum = X: the sets of categorical and numerical attributes of the rule body

– Vx = |dom(x)|: the number of values of a categorical attribute x

– Ix: the number of intervals (resp. groups) of a numerical (resp. categorical) attribute

x

– {i(vx)}vx∈dom(x): the indexes of groups to which vx are affected (one index per value,

either 1 or 2 for inside or outside of the rule body)

– {Ni(x).}1≤i≤Ix : the number of objects in interval i of numerical attribute x

– ix1 , . . . , ixk : the indexes of groups of categorical attributes (or intervals of numerical

attributes) involved in the rule body

– NX = Nix1 ...ixk
: the number of objects in the body ix1 . . . ixk

– N¬X = N¬ix1 ...ixk
: the number of objects outside of the body ix1 . . . ixk
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– NXj = Nix1 ...ixk
j : the number of objects of class j in the body ix1 . . . ixk

– N¬Xj = N¬ix1 ...ixk
j : the number of objects of class j outside of the body ix1 . . . ixk

MODL Hierarchical Prior. We use the following distribution prior on scrm

models, called the modl hierarchical prior. Notice that a uniform distribution
is used at each stage1 of the parameters hierarchy of the scrm models:

– (i) the number of attributes in the rule body is uniformly distributed between 0
and m

– (ii) for a given number k of attributes, every set of k constituent attributes of the
rule body is equiprobable (given a drawing with replacement)

– (iii) for a given categorical attribute in the body, the number of groups is neces-
sarily 2

– (iv) for a given numerical attribute in the body, the number of intervals is either
2 or 3 (with equiprobability)

– (v) for a given categorical (or numerical) attribute, for a given number of groups (or
intervals), every partition of the attribute into groups (or intervals) is equiprobable

– (vi) for a given categorical attribute, for a value group of this attribute, belonging
to the body or not are equiprobable

– (vii) for a given numerical attribute with 2 intervals, for an interval of this attribute,
belonging to the body or not are equiprobable. When there are 3 intervals, the body
interval is necessarily the middle one.

– (viii) every distribution of the class values is equiprobable, in and outside of the
body

– (ix) the distributions of class values in and outside of the body are independent

Thanks to the definition of the model space and its prior distribution, we can
now express the prior probabilities of the model and the probability of the data
given the model (i.e., p(π) and p(r | π)).

Prior Probability. The prior probability p(π) of the rule model is:

p(π) = p(X)

×
∏

x∈Xcat

p(Ix)× p({i(vx)}|Ix)× p(ix|{i(vx)}, Ix)

×
∏

x∈Xnum

p(Ix)× p({Ni(x).}|Ix)× p(ix|{Ni(x).}, Ix)

× p({NXj}{N¬Xj} | NX , N¬X)

Firstly, we consider p(X) (the probability of having the attributes ofX in the rule
body). The first hypothesis of the hierarchical prior is the uniform distribution
of the number of constituent attributes between 0 and m. Furthermore, the
second hypothesis says that every set of k constituent attributes of the rule
body is equiprobable. The number of combinations

(
m
k

)
could be a natural way to

compute this prior; however, it is symmetric. Beyond m/2, adding new attributes
makes the selection more probable. Thus, adding irrelevant variables is favored,

1 It does not mean that the hierarchical prior is a uniform prior over the rule space,
which would be equivalent to a maximum likelihood approach.
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provided that this has an insignificant impact on the likelihood of the model. As
we prefer simpler models, we suggest to use the number of combinations with
replacement

(
m+k−1

k

)
. Using the two first hypothesis, we have:

p(X) =
1

m + 1
· 1(

m+k−1
k

)
For each categorical attribute x, the number of partitions of Vx values into 2
groups is S(Vx, 2) (where S stands for Stirling number of the second kind).
Considering hypotheses (iii), (v), (vi), we have:

p(Ix) = 1 ; p({i(vx)}|Ix) =
1

S(Vx, 2)
; p(ix|{i(vx)}, Ix) =

1

2

For each numerical attribute x, the number of intervals is either 2 or 3. Com-
puting the number of partitions of the (ranked) values into intervals turns into
a combinatorial problem. Notice that, when Ix = 3 the interval involved in the
rule body is necessarily the second one; when Ix = 2, it is either the first or the
second with equiprobability. Considering hypotheses (iv), (v), (vii), we get:

p(Ix) =
1

2
; p({Ni.}|Ix) =

1(
N−1
Ix−1

) ; p(ix|{Ni.}, Ix) =
1

1 + �{2}(Ix)

where �{2} is the indicator function of set {2} such that �{2}(a) = 1 if a = 2, 0
otherwise.

Using the hypotheses (viii) and (ix), computing the probabilities of distribu-
tions of the J classes inside and outside of the rule body turns into a multinomial
problem. Therefore, we have:

p({NXj} | NX , N¬X) =
1(

NX+J−1
J−1

) ; p({N¬Xj} | NX , N¬X) =
1(

N¬X+J−1
J−1

)
The Likelihood. Now, focusing on the likelihood term p(r | π), the probability
of the data given the rule model is the probability of observing the data inside and
outside of the rule body (w.r.t. to NX and N¬X objects) given the multinomial
distribution defined for NX and N¬X . Thus, we have:

p(r | π) = 1
NX !∏

J
j=1 NXj !

· 1
N¬X !∏

J
j=1 N¬Xj !

Cost of a SCRM. We now have a complete and exact definition of the cost of
a scrm π:
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c(π) = log(m+ 1) + log

(
m+ k − 1

k

)
(1)

+
∑

x∈Xcat

logS(Vx, 2) + log 2 (2)

+
∑

x∈Xnum

log 2 + log

(
N − 1

Ix − 1

)
+ log(1 + �{2}(Ix)) (3)

+ log

(
NX + J − 1

J − 1

)
+ log

(
N¬X + J − 1

J − 1

)
(4)

+

⎛⎝logNX !−
J∑

j=1

logNXj !

⎞⎠+

⎛⎝logN¬X !−
J∑

j=1

logN¬Xj!

⎞⎠ (5)

The cost of a scrm is the negative logarithm of probabilities which is no other
than a coding length according to Shannon [25]. Here, c(π) may be interpreted
as the ability of a scrm π to encode the classes given the attributes. Line (1)
stands for the choice of the number of attributes and the attributes involved
in the rule body. Line (2) is related to the choice of the groups and the values
involved in the rule body for categorical attributes; line (3) is for the choice
of the number of intervals, their bounds and the one involved in the rule body
for numerical attributes. Line (4) corresponds to the class distribution in and
outside of the rule body. Finally, line (5) stands for the likelihood.

Since the magnitude of the cost depends on the size of the data set (N and
m), we defined a normalized criterion, called level and which plays the role of
interestingness measure to compare two scrm.

Definition 2 (Level: interestingness of SCRM). The level of a scrm is:

level(π) = 1− c(π)

c(π∅)

where c(π∅) is the cost of the null model (i.e. default rule with empty body). In-
tuitively, c(π∅) is the coding length of the classes when no predictive information
is used from the attributes. The cost of the default rule π∅ is formally:

c(π∅) = log(m + 1) + log

(
N + J − 1

J − 1

)
+

⎛⎝logN !−
J∑

j=1

logNj !

⎞⎠
The level naturally draws the frontier between the interesting patterns and the
irrelevant ones. Indeed, rules π such that level(π) ≤ 0, are not more probable
than the default rule π∅; then using them to explain the data is more costly than
using π∅ – such rules are considered irrelevant. Rules such that 0 < level(π) ≤ 1
highlight the interesting patterns π. Indeed, rules with lowest cost (highest level)
are the most probable and show correlations between the rule body and the
class attribute. In terms of coding length, the level may also be interpreted as a
compression rate. Notice also that c(π) is smaller for lower k values (cf. line (1)),
i.e. rules with shorter bodies are more probable thus preferable – which meets
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the consensus: “Simpler models are more probable and preferable”. This idea is
translated in the following proposition (the proof is almost direct):

Proposition 1. Given two scrm π and π′ resp. with bodies X and X ′, such that
X ⊆ X ′ and sharing the same contingency table (i.e., NX = N ′

X , N¬X = N¬X′ ,
NXj = NX′j, N¬Xj = N¬X′j), then we have: c(π) < c(π′) and π is preferable.

Asymptotic Behavior. The predominant term of the cost function is the
likelihood term (eq.(5)) that indicates how accurate the model is. The others
terms behave as regularization terms, penalizing complex models (e.g., with too
many attributes involved in the rule body) and preventing from over-fitting.
The following two theorems show that the regularization terms are negligi-
ble when the number of objects N of the problem is very high and that the
cost function is linked with Shannon class-entropy [10] (due to space limita-
tions, full proofs are not given, but the key relies on the Stirling approximation:
logn! = n(logn− 1) +O(log n)).

Theorem 1. The cost of the default rule π∅ for a data set made of N objects
is asymptotically N times the Shannon class-entropy of the whole data set when
N →∞, i.e. H(y) = −

∑J
j=1 p(cj) log p(cj).

lim
N→∞

c(π∅)

N
= −

J∑
j=1

Nj

N
log

Nj

N

Theorem 2. The cost of a rule π for a data set made of N objects is asymp-
totically N times the Shannon conditional class-entropy when N → ∞, i.e.
H(y|x) = −

∑
x∈{X,¬X} p(x)

∑J
j=1 p(cj |x) log p(cj |x).

lim
N→∞

c(π)

N
=

NX

N

⎛⎝ J∑
j=1

−NXj

NX
log

NXj

NX

⎞⎠+
N¬X

N

⎛⎝ J∑
j=1

−N¬Xj

N¬X
log

N¬Xj

N¬X

⎞⎠
The asymptotic equivalence between the coding length of the default rule π∅ and
the class-entropy of the data confirms that “rules such that level ≤ 0 identify
patterns that are not statistically significant” and links the modl approach with
the notion of incompressibility of Kolmogorov [21] – which defines randomness
as the impossibility of compressing the data shorter than its raw form.

The asymptotic behavior of the cost function (for a given rule π) confirms that
high level values highlight the most probable rules that characterize classes, since
high level value means high class-entropy ratio between π and the default rule.
In terms of compression, rules with level > 0 correspond to a coding with better
compression rate than the default rule; thus, they identify patterns that do not
arise from randomness. Here, we meet the adversarial notions of spurious and
significant patterns as mentioned and studied in [31]. Conjecture 1 illustrates
this idea and we bring some empirical proof to support it in Section 4:

Conjecture 1. Given a classification problem, for a random distribution of the
class values, there exist no scrm with level > 0 (asymptotically according to N ,
almost surely).
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Problem Formulation. Given the modl method framework instantiated for
classification rules, an ambitious problem formulation would have been: “Min-
ing the whole set of scrm with level > 0” (or the set of K-top level scrm).
However, the model space is huge, considering all possibilities of combinations
of attributes, attribute discretization and value grouping: the complexity of the
problem is O((2Vc)mc(N2)mn) where mc is the number of categorical attributes
with Vc values and mn the number of numerical attributes. Contrary to some
standard approaches for classification rule mining, exhaustive extraction is not
an option. Our objective is to sample the posterior distribution of rules using a
randomization strategy, starting from rules (randomly) initialized according to
their prior. Therefore, we opt for a simpler formulation of the problem: “Mining
a set of locally optimal scrm with level > 0”. In the following, we describe our
mining algorithm and its sub-routines for answering the problem.

3 MODL Rule Mining

This section describes our strategy and algorithm for mining a set of locally opti-
mal scrm (algorithm 1 macatia

2) and how we use it in a classification system.

Algorithm 1. macatia: The modl-rule miner
Input : r = {T , I, C} a labeled data set
Output: Γ a set of locally optimal scrm

1 Γ ← ∅;
2 while ¬ StoppingCondition do
3 t ←chooseRandomObject(T );
4 X ←chooseRandomAttributes(I);
5 π ←initRandomBodyRule(X,t);
6 currentLevel ← computeRuleLevel(π,r);
7 repeat
8 minLevel ← currentLevel;
9 randomizeOrder(X);

10 for x ∈ X do
11 OptimizeAttribute(t, x,X);

12 deleteNonInformativeAttributes(X);
13 currentLevel ← computeRuleLevel(π,r);

14 until noMoreLevelImprovement;
15 if currentLevel > 0 then
16 Γ ← Γ ∪ {π};

17 return Γ

The MODL Rule Miner. We adopt an instance-based randomized strategy
for mining rules in given allowed time. The stopping condition (l.2) is the time
that the end-user grants to the mining process. At each iteration of the main
loop (l.2-16), a locally optimal scrm is built – when time is up, the process
ends and the current rule set is output. Firstly (l.3-5), a random object t and
a random set of k attributes are chosen from the data set; then, a scrm π
is randomly initialized such that the body of π is made of a random itemset
based on attributes X and t supports the rule body (to simplify notations, X

2
macatia refers to a typical sweet bun from Reunion island.



252 D. Gay and M. Boullé

and the body itemset based on X own the same notation). The inner loop (l.7-
14) optimizes the current rule while preserving the constraint “t supports body
itemsetX”. We are looking for level improvement: a loop of optimization consists
in randomizing the order of the body attributes, optimizing each item (attribute)
sequentially – the intervals or groups of an attribute are optimized while the other
body attributes are fixed (see specific instantiations of OptimizeAttribute

in sub-routines algorithms 2 and 3), then removing non-informative attributes
from the rule body (i.e., attributes with only one interval or only one value
group). Optimization phase ends when there is no more improvement. Finally,
the optimized rule is added to the rule set if its level is positive.

Attribute Optimization. Let us remind that, while optimizing a rule, each
rule attribute (item) is optimized sequentially while the others are fixed.

For a numerical attribute x (see algorithm 2), we are looking for the best
bounds for its body interval containing t(x) (i.e. the bounds that provide the
best level value for the current scrm while other attributes are fixed). If there
are two intervals (l.3-4), only one bound is to be set and the best one is chosen
among all the possible ones. When there are three intervals (l.1-2), the lower
bound and the upper bound of the body interval are to be set. Each bound is
set sequentially and in random order (again, the best one is chosen while the
other is fixed). Since an interval might be empty at the end of this procedure,
we remove empty intervals (l.5) – the current attribute might be deleted from
the rule body by the main algorithm if only one interval is remaining.

Algorithm 2. OptimizeAttribute: Numerical attribute optimization
Input : r = {T , I, C} a transactional labeled data set, π : X → (pcJ

, . . . , pcJ
) a scrm

covering an object t ∈ T , x ∈ X a numerical attribute of the rule body
Output: x an optimized numerical attribute

1 if x.IntervalsNumber == 3 then
2 (x.LB,x.UB) ← chooseBestBounds(t, x, π, r);

3 if x.IntervalsNumber == 2 then
4 x.B ← chooseBestBound(t, x, π, r);

5 cleanEmptyIntervals();
6 return x

Algorithm 3. OptimizeAttribute: Categorical attribute optimization
Input : r = {T , I, C} a transactional labeled data set, π : X → (pcJ

, . . . , pcJ
) a scrm

covering an object t ∈ T , x ∈ X a categorical attribute of the rule body
Output: x an optimized categorical attribute

1 minLevel ← computeRuleLevel(π,r);
2 currentLevel ← computeRuleLevel(π,r);
3 Shuffle(x.allValues);
4 for value ∈ {x.allValues \{t(x)}} do
5 changeGroup(value);
6 currentLevel ← computeRuleLevel(π,r);
7 if currentLevel > minLevel then
8 minLevel ← currentLevel;

9 else
10 ChangeGroup(value);

11 cleanEmptyGroups();
12 return x
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For a categorical attribute x (see algorithm 3), we are looking for a partition
of the value set into two value groups (i.e. the value groups that provide the best
level value for the current scrm while other attributes are fixed). First (l.3), the
values of the current categorical attribute are shuffled. Then (l.5-10), we try to
transfer each value (except for t(x) staying in the body group) from its origin
group to the other: the transfer is performed if the level is improved. Once again
we clean possible empty value group at the end of the procedure (necessarily the
out-body group) – the current attribute might be deleted from the rule body by
the main algorithm if only one group is remaining.

About Local Optimality. Our modl rule miner (and its sub-routines) bet
on a trade-off between optimality and efficiency. In the main algorithm, the
strategy of optimizing an attribute while the other are fixed leads us to a lo-
cal optimum, given the considered search neighborhood (so do the strategies
of optimizing interval and value group items). This trade-off allows us to mine
one rule in time complexity O(kN logN) using efficient implementation struc-
tures and algorithms. Due to space limitation, we cannot give details about the
implementation.

About Mining with Diversity. Randomization is present at each stage of our
algorithm. Notice that the randomization is processed according the defined and
motivated hierarchical prior (except for object choice). As said above, we are
not looking for an exhaustive extraction but we want to sample the posterior
distribution of scrm rules. This randomization facet of our method (plus the
optimization phase) allows us mine interesting rules (level > 0) with diversity.

Classification System. We adopt a simple and intuitive feature construction
process to build a classification system based on a set of locally optimal scrm.
For each mined rule π, a new Boolean attribute (feature) is created: the value of
this new feature for a training object t of the data set r is (1) true if t supports
the body of π, (0) false otherwise. This feature construction process is certainly
the most straightforward but has also shown good predictive performance in
several studies [8,14]. To provide predictions for new incoming (test) objects, we
use a Selective Naive Bayes classifier (snb) on the recoded data set. This choice
is motivated by the good performances of snb on benchmark data sets as well
as on large-scale challenge data sets (see [6]). Moreover, snb is Bayesian-based
and parameter-free, agreeing with the characteristics of our method.

4 Experimental Validation

In this section, we present our empirical evaluation of the classification system
(noted krsnb). Our classification system has been developed in C++ and is
using a JAVA-based user interface and existing libraries from khiops

3. The
experiments are performed to discuss the following questions:

Q1 The main algorithm is controlled by a running time constraint. In a given al-
lowed time, a certain number of rules might be mined: how do the

3 http://www.khiops.com

http://www.khiops.com
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performance of the classifier system evolve w.r.t. the number of rules? And,
what about the time-efficiency of the process?

Q2 Does our method suffer over-fitting? What about spurious patterns? We will
also bring an empirical validation of conjecture 1.

Q3 Does the new feature space (made of locally optimal rules) improve the
predictive performance of snb?

Q4 Are the performance of the classification system comparable with state-of-
the-art CBA-like classifiers?

For our experiments, we use 29 uci data sets commonly used in the literature
(australian, breast, crx, german, glass, heart, hepatitis, horsecolic, hypothyroid
ionosphere, iris, LED, LED17, letter, mushroom, pendigits, pima, satimage, seg-
mentation, sickeuthyroid, sonar, spam, thyroid, tictactoe, vehicle, waveform and
its noisy version, wine and yeast) and which show a wide variety in number of
objects, attributes and classes, in the type of attributes and the class distribution
(see [2] for a full description). All performance results reported in the following
are obtained with stratified 10-fold cross validation. Notice that, the feature con-
struction step is performed only on the training set and the new learned features
are reported on the test set for each fold of the validation.

Evolution of Performance w.r.t. the Number of Rules. In figure 2, we
plot the performance in terms of accuracy and AUC of krsnb based on ρ rules
(ρ = 2n, n ∈ [0, 10]). The details per data set is not as important as the general
behavior: we see that, generally, the predictive performance (accuracy and AUC)
increases with the number of rules. Then, the performance reaches a plateau for
most of the data sets: with about a few hundreds of rules for accuracy and a few
rules for AUC.
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Fig. 2. Accuracy and AUC results (per data set) w.r.t. number of rules mined

Running Time Report. Due to our mining strategy, running time grows
linearly with the number of rules to be mined. For most of the data sets, mining
a thousand rules is managed in less than 500s. In fig. 3, for each of the 29 data
sets, we report the processing time of krsnb based on 1024 rules w.r.t. the size
of the data set – plotted with logarithmic scales. It appears that the MODL-rule
miner roughly runs in linear time according to N ×m.

The analysis of performance evolution and running time w.r.t. the number
of rules shows that krsnb reaches its top performance in reasonable time using
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a few hundreds of rules. In the following, to facilitate the presentation, we will
experiment our classifier with 512 rules.

About Spurious Patterns and Robustness

Fig. 3. Running time for mining
1024 rules w.r.t. the size of the
data set (N ×m)

of Our Method. As mentioned in [31],
“Empirical studies demonstrate that standard
pattern discovery techniques can discover numer-
ous spurious patterns when applied to random
data and when applied to real-world data result
in large numbers of patterns that are rejected
when subjected to sound statistical validation”.
Proposition 1 states that in a data set with ran-
dom class distribution, there should not exist
any scrm with level > 0 (i.e. no interesting rule). To support this proposition,
we lead the following empirical study: (i) for each of the 29 benchmark data sets,
we randomly assign a class label c ∈ C to the objects; (ii) we run krsnb on the
data sets with random labels. The result is strong: all rule optimizations during
the process end with a default rule with level ≤ 0. This study shows that our
method is robust, discovers no spurious patterns and thus avoids over-fitting.

Added-Value of the New Feature Space. We process a comparative study
of the performance of snb and krsnb to demonstrate the added-value of the
new feature space. Due to space limitations, we skip results on individual data
sets and only Area Under ROC Curve (AUC) and accuracy average results of
each method are reported in table 1. We are aware of the problems arising from
averaging results over various data sets, therefore Win-Tie-Loss (wtl) and aver-
age rank results are also reported. A raw analysis of the results gives advantage
to krsnb (in all dimensions: average accuracy and AUC, rank and wtl results).
Concerning the Win-Tie-Loss results (wtl) at significance level α = 0.05, the
critical value for the two-tailed sign test is 20 (for 29 data sets). Thus, even if
we cannot assert a significant difference of AUC performance between the two
approaches, wtl AUC results of krsnb vs snb is close to the critical value
(17 < 20) – which is a promising result. Moreover, the new feature space made
of locally optimal scrm is clearly a plus when considering wtl accuracy results.

Table 1. Comparison of snb and krsnb

performance results

Accuracy AUC
Algorithms avg rank avg rank
snb 83.58 1.72 92.43 1.60
krsnb 84.80 1.28 93.48 1.39

wtl kr vs. snb 21/0/8 17/2/10

Table 2. Comparison of krsnb with
state-of-the-art methods

Algorithms avg.acc avg.rank kr-wtl

krsnb 84.80 2.17 -
harmony 83.31 3.53 19/1/9
krimp 83.31 3.64 23/1/5
ripper 84.38 2.83 19/1/9
part 84.19 2.83 18/1/10

Comparisons with State-of-the-Art. Let us first notice that, for the tiny xor

case shown in introduction, krsnb easily finds the four obvious 2-dimensional
patterns characterizing the classes – this finding is unreachable for cba-like
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methods using univariate pre-processing. We now compare the performance
of krsnb with four state-of-the-art competitive rule-based classifiers: two re-
cent pattern-based classifiers: harmony [29] an instance-based classifier and
krimp [20] a compression-based method; and two induction-rule-based
approaches ripper [9] and part [12] available from the weka platform [16]
with default parameters. The choice of accuracy for performance comparisons
is mainly motivated by the fact that competitors (harmony and krimp) pro-
vide only accuracy results. Since harmony and krimp are restricted to Boolean
(or categorical) data sets, we preprocess the data using a mdl-based univariate
supervised discretization [16] for these methods.

We also run experiments with parameters as in-

Fig. 4. Critical difference
of performance between
krsnb and state-of-the-art
rule-based classifiers

dicated in the original papers. Once again, only av-
erage results are reported in table 2. A first analysis
of the raw results shows that krsnb is highly com-
petitive. Again, average accuracy, Win-Tie-Loss and
average rank results give advantage to krsnb. We
also applied the Friedman test coupled with a post-
hoc Nemenyi test as suggested by [11] for multiple
comparisons (at significance level α = 0.05 for both
tests). The null-hypothesis was rejected, which indi-
cates that the compared classifiers are not equivalent in terms of accuracy. The
result of the Nemenyi test is represented by the critical difference chart shown
in figure 4 with CD ( 1.133. First of all, we observe that there is no criti-
cal difference of performance between the four competitors of krsnb. Secondly,
even if krsnb is not statistically singled out, it gets a significant advantage on
harmony and krimp – whereas part and ripper do not get this advantage.

Results on Challenge Data Sets. We also experiment krsnb on recent large-
scale challenge data sets (Neurotech challenges at pakdd’09-10 and Orange
small challenge at kdd’09)4. Each data set involves 50K instances, from tens to

Table 3. Comparison of auc results for
challenge data sets

neurotech-pakdd orange-kdd’09

2009 2010 appet. churn upsell.

krsnb 66.31 62.27 82.02 70.59 86.46
ripper 51.90 50.70 50.00 50.00 71.80
part 59.40 59.20 76.40 64.70 83.50

hundreds quantitative attributes, and
two highly imbalanced classes – rec-
ognized as a difficult task. We exper-
iment krsnb and its competitors in
a 70%train-30%test setting and report
auc results in table 3. As univariate pre-
processing of quantitative attributes gen-
erate thousands of variables, we were not
able to obtain any results with krimp and harmony. Thus, a first victory for
krsnb is its ability to mine rules from large-scale data. Secondly, it appears that
the class-imbalance facet of the tasks severely harms the predictive performance
of ripper and part; there, krsnb outperforms its competitors.

4 http://sede.neurotech.com.br/PAKDD2009/;
http://sede.neurotech.com.br/PAKDD2010/ ; http://www.kddcup-orange.com/

http://sede.neurotech.com.br/PAKDD2009/
http://sede.neurotech.com.br/PAKDD2010/
http://www.kddcup-orange.com/
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5 Discussion and Related Work

As mentioned in sec. 2, the modl method and its extension to classification rules
are at the crossroads of Bayes theory and Kolmogorov complexity [21]. Our
approach is also related to Minimum Description Length principle (mdl [15])
since the cost of a rule is similar to a coding length.

About MDL, Information Theory and Related. Some traditional rule
learning methods integrate mdl principle in their mining algorithms (i) as a
stopping criterion when growing a rule and/or (ii) as a selection criterion for
choosing the final rule set (see e.g. [9,23]).

The modl method is similar to practical mdl (also called crude mdl) which
aims at coding the parameters of models M and data D given the models by
minimizing the total coding length l(M) + l(D|M). In [20], authors develop a
mdl-based pattern mining approach (krimp) and its extension for classification
purpose. The main divergences with our work are: (i) the modl hierarchical
prior induces a different way of coding information; (ii) krimp is designed for
Boolean data sets and works with parameters when modl is parameter-free
and handles quantitative data sets. Also related to information theory, based on
recently introduced maximum entropy models, [19] suggest the ratio of Shannon
information content over the description length of a tile (i.e. an itemset coupled
with its support) as an interestingness measure for binary tiles in an exploratory
framework.

About Mining Quantitative Data Sets. The need for handling quantitative
attributes in pattern mining tasks is not new. Srikant & Agrawal [26] develop a
method for mining association rule in quantitative data sets: they start from a
fine partitioning of the values of quantitative attributes, then combine adjacent
partitions when interesting. After pioneering work, the literature became abun-
dant; see e.g., [30,18]. The main differences with our work come from (i) the
way of dealing with numerical attributes (ii) the mining strategy. Many meth-
ods start from a fine-granularity partition of the values and then try to merge
or combine them – we design on-the-fly optimized intervals and groups when
mining rules. Moreover, they inherit from classical association rule framework in
which parameters are to be set.

About Mining Strategy and Sampling Methods. Exhaustive search might
be inefficient on large-scale binary data (with many attributes). When fac-
ing quantitative attributes, the task is much more complicated. Separate-and-
conquer (or covering) strategies [13] greedily extend one rule at once and fol-
lows a sequential data coverage scheme to produce the rule set; these strategies
can tackle with large data with quantitative attributes. Our randomized strat-
egy promotes diversity by sampling the posterior distribution of scrms. How-
ever, we are aware of very recent pattern mining algorithms for binary data
using advanced sampling methods like Markov chains Monte Carlo methods
(see e.g. [3,27]). Notice that our method, coupling randomized sampling with
instance-based strategy, may generate similar rules. As snb is quasi-insensitive to
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redundant features [6], it does not echo in the predictive performance of the clas-
sification system. We did not focus on the redundancy and sampling issues in
this first study, but they are planned for future work.

6 Conclusion

We have suggested a novel framework for classification rule mining in quantita-
tive data sets. Our method stems from the generic modl approach. The present
instantiation has lead us to several significant contributions to the field: (i) we
have designed a new interestingness measure (level) that allows us to naturally
mark out interesting and robust classification rules; (ii) we have developed a
randomized algorithm that efficiently mines interesting and robust rules with
diversity; (iii) the resulting classification system is parameter-free, deals with
quantitative attributes without pre-processing and demonstrates highly compet-
itive inductive performance compared with state-of-the-art rule-based classifiers
while being highly resilient to spurious patterns. The genericity of the modl

approach and its present successful instantiation to classification rules call for
other intuitive extensions, e.g., for regression rules or for other pattern type in
an exploratory framework (such as descriptive rule or sequence mining).
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Abstract. Rule mining is an important class of data mining methods
for discovering interesting patterns in data. The success of a rule mining
method heavily depends on the evaluation function that is used to assess
the quality of the rules. In this work, we propose a new rule evaluation
score - the Predictive and Non-Spurious Rules (PNSR) score. This score
relies on Bayesian inference to evaluate the quality of the rules and con-
siders the structure of the rules to filter out spurious rules. We present
an efficient algorithm for finding rules with high PNSR scores. The ex-
periments demonstrate that our method is able to cover and explain the
data with a much smaller rule set than existing methods.

1 Introduction

The large amounts of data collected today provide us with an opportunity to
better understand the behavior and structure of many natural and man-made
systems. Rule mining is an important direction of machine learning and data
mining research, which aims to elicit knowledge from data in terms of if-then
rules that are intuitive and easy to understand by humans.

In this work, we study and apply rule mining to discover patterns in supervised
learning tasks, where we have a specific target variable (outcome) and we want
to find patterns (subpopulations of data instances) where the distribution of the
target variable is statistically “most interesting”. Examples of such patterns are:
“subpopulation of patients who smoke and have a positive family history are at
a significantly higher risk for lung cancer than the rest of the patients”. This
task has a high practical relevance in many domains of science or business. For
example, finding a pattern that clearly and concisely defines a subpopulation of
patients that respond better (or worse) to a certain treatment than the rest of
the patients can speed up the validation process of this finding and its future
utilization in patient-management.

In order to perform supervised rule discovery, we need to define a search al-
gorithm to explore the space of potential rules and a scoring function to assess
the interestingness of the rules. In this work, we use Frequent Pattern Mining
(FPM) [1] to search for rules. The advantage of FPM is that it performs a more
systematic search than heuristic rule induction approaches, such as greedy se-
quential covering [7–9]. However, its main disadvantage is that it often produces

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 260–276, 2012.
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a large number of rules. Moreover, many of these rules are spurious because they
can be naturally explained by other simpler (more general) rules. Therefore, it is
crucial to devise an effective scoring function that allows us to select important
and non-redundant rules from a large pool of frequent patterns.

To achieve this goal, we introduce the Predictive and Non-Spurious Rules
(PNSR) score. This score applies Bayesian inference to evaluate the quality of
individual rules. In addition, it considers the structure of patterns to assure that
every rule is not only predictive with respect to the general population, but also
with respect to all of its simplifications (generalizations). We show that using our
score to mine the top rules, we are able to cover and explain the data with much
fewer rules compared with classical supervised rule discovery methods. Finally,
we present an efficient algorithm that integrates rule evaluation with frequent
pattern mining and applies pruning strategies to speed up the mining.

2 Supervised Descriptive Rule Discovery

In this work, we are interested in applying rule mining in the supervised setting,
where we have a special variable of interest Y (the target variable) and we want
to mine rules that can help us to uncover “interesting” dependencies between Y
and the input variables (attributes).

The dominant paradigm for supervised rule induction is to apply a sequential
covering method [7–9], which learns a set of rules by first learning a single rule,
removing the positive instances it covers and then repeating the process over the
remaining instances. However, this approach is not appropriate for knowledge
discovery because the rules are induced from biased data (including only positive
instances not covered by previous rules). Therefore, the rules are difficult to
interpret and understand by the user.

In contrast to the sequential covering approach, our task is to find a set of
comprehensible rules/patterns that are statistically interesting with respect to
the entire data, e.g., the rules should have wide coverage and unusual distribu-
tional characteristics with respect to the target variable [18]. This task appeared
in the literature under a variety of different names, such as contrast set mining
[2], emerging pattern mining [11] and subgroup discovery [17, 18]. Later on, [23]
provided a unifying framework of this work which is named Supervised Descrip-
tive Rule Discovery (SDRD).

To apply SDRD, we need to define a search algorithm to explore the space of
potential rules and a scoring function S (quality measure) to assess the inter-
estingness of each rule (S maps each rule Ri to a real number S(Ri) ∈ R that
reflects its importance). Our objective in this work is to design a function S such
that the top rules do not only predict well the target class variable compared to
the entire population, but are also non-spurious in that their prediction is better
than all of their generalizations (simplifications).

2.1 Definitions

Let D = {xi, yi}ni=1 be our data, where each instance xi is described by a fixed
number of attributes and is associated with a class label yi ∈ dom(Y ). We assume
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that all attributes have discrete values (numeric attributes must be discretized
[13, 28]).

We call every attribute-value pair an item and a conjunction of items a pattern.
A pattern that contains k items is called a k-pattern. For example, Education =
PhD ∧ Marital-status = Single is a 2-pattern.

Pattern P is a subpattern of pattern P ′, denoted as P ⊂ P ′, if every item
in P is contained in P ′ and P �= P ′. In this case, P ′ is a superpattern of P .
For example, P1 :Education=PhD is a subpattern of P2 :Education=PhD ∧
Marital-status=Single. This subpattern (more-general-than) relation defines a
partial ordering of patterns, i.e. a lattice structure, as shown in Figure 1.

Fig. 1. The box on the left shows the set of all patterns and the box on the right
shows the set of all instances. Each pattern is associated with a group of instances that
satisfy the pattern. The patterns are organized in a lattice structure according to the
subpattern-superpattern relation.

Instance xi satisfies pattern P , denoted as P ∈xi, if every item in P is present
in xi. Every pattern P defines a group (subpopulation) of the instances that
satisfy P : GP = {(xi, yi) : xi ∈ D ∧ P ∈ xi}. If we denote the empty pattern by
φ, Gφ represents the entire data D. Note that P ⊂P ′ (P is a subpattern of P ′)
implies that GP ⊇ GP ′ (see Figure 1).

The support of pattern P in dataset D, denoted as sup(P,D), is the number
of instances in D that satisfy P (the size of GP ). Given a user defined minimum
support threshold σ, P is called a frequent pattern if sup(P,D) ≥ σ.

A rule is defined as P ⇒ y, where P (the condition) is a pattern and y ∈
dom(Y ) (the consequent) is a class label. We say that P ⇒ y is a subrule of
P ′ ⇒ y′ if P ⊂ P ′ and y = y′. The coverage of rule P ⇒ y is the proportion of
instances in the data that satisfy P . The confidence of rule P ⇒ y, denoted as
conf (P⇒y), is the proportion of instances from class y among all the instances
that satisfy P , i.e., it is the maximum likelihood estimation of Pr(Y =y|P ).

2.2 Rule Evaluation

A straightforward approach to SDRD is to use a rule quality measure (cf [14]) to
score each rule by contrasting it to the general population (the entire data) and
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report the top rules to the user. We will argue that this approach is ineffective
and can lead to many spurious (redundant) rules. We start by illustrating the
spurious rules problem using an example and then describe it more formally in
Section 2.3.

Example 1. Assume our objective is to identify populations of patients who are
at high risk of developing coronary heart disease (CHD). Assume our dataset
contains 150 instances, 50 of them are CHD cases and the others are controls.
That is, the CHD prior, i.e. conf (Φ⇒CHD), is 50/150 ≈ 33.3%.

Now, our task is to evaluate the following 3 rules:

– R1:Race=White ⇒ CHD
[#cases=29, #controls=61, conf=32.2%]

– R2:Family history=Yes ⇒ CHD
[#cases=30, #controls=20, conf=60%]

– R3:Family history=Yes ∧ Race=White ⇒ CHD
[#cases=21, #controls=11, conf=65.6%]

For each rule, we show the number of CHD cases and the number of controls
that the rule covers. We also show the confidence of the rule.

One of the commonly used approaches to filter out uninteresting rules is to apply
the χ2 test to assure that there is a significant positive correlation between the
condition and the consequent of each rule [2, 5, 20, 22]. If we apply the χ2 test
on our three rules, the p-values we get for R1, R2, and R3 are 0.724, 9.6×10−7,
and 1.2×10−5, respectively. That is, both R2 and R3 are statistically (very)
significant with respect to a significance level α = 0.05. Moreover, these two
rules will be considered interesting using most rule quality measures [14].

[3] proposed the confidence improvement constraint, which says that each rule
in the result should have a higher confidence than all of its subrules:

conf (P⇒y)−max
S⊂P

{conf (S⇒y)} > 0

This filter have been used quite a lot in the rule mining literature [15, 19, 20, 26].
If we applied the confidence improvement constraint to our working example,
both R2 and R3 will be retained.

As we can see, both χ2 test and confidence improvement agree that R3 is an
interesting rule. However, this rule may seem predictive only because it contains
a simpler predictive rule (R2). So should we consider R3 to be interesting (show
it to the user) or spurious? We will revisit this question after introducing the
PNSR score.

2.3 Spurious Rules

Spurious rules are formed by adding irrelevant items to the antecedent of a
simpler predictive rule. Let us illustrate this using the simple Bayesian belief
network in Figure 2. In this network, the value of the class variable Y only
depends on the value of feature F1 and is independent of the values of the other
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Fig. 2. Illustrating the problem of spurious rules

features: Y ⊥⊥ Fi : i ∈ {2, ..., n}. Assume that pattern P : F1 = 1 is predictive
of class Y = y1, so that Pr(y1|P ) > Pr(y1). Clearly, P is the only important
pattern for predicting y1.

Now consider pattern P ′ that is a superpattern of P , P ′ : F1 = 1 ∧ Fq1 =
vq1 ∧ ... ∧ Fqk = vqk , where Fqi ∈ {F2, ..., Fn} and vqi is any possible value of
variable Fqi . The network structure implies that Pr(y1 |P ′)=Pr(y1 |P ), hence
Pr(y1 |P ′) is also larger than the prior Pr(y1).

The problem is that if we evaluate the rules individually (without considering
the nested structure of the patterns), we may falsely think that P ′⇒ y1 is an
important rule. However, this rule is totally redundant given its subrule P ⇒ y1.
Even by requiring complex rules to have a higher confidence than their simplifi-
cations (the confidence improvement) [3, 15, 19, 20, 26], the problem still exists
and many spurious rules can easily satisfy this constraint due to noise in sam-
pling. Clearly, having spurious rules in the results is undesirable because they
overwhelm the user and prevent him/her from understanding the real causalities
in the data.

3 Mining Predictive and Non-Spurious Rules

In this section, we present our approach for scoring/ranking rules. We start by
defining a Bayesian score to evaluate the predictiveness of a rule with respect to
a more general population. After that, we introduce the PNSR-score to address
the problem of spurious rules. Lastly, we present an efficient mining algorithm
that integrates rule evaluation with frequent pattern mining.

3.1 Classical Rule Quality Measures

A large number of rule quality measures have been proposed in the literature to
evaluate the interestingness of individual rules. Examples of such measures in-
clude confidence, lift, weighted relative accuracy, J-measure, and others (cf [14]).
Most of these measures trade-off two factors: 1) the distributional unusualness
of the class variable in the rule compared to the general population and 2) the
coverage of the rule, which reflects its generality [18, 23]. This trade-off is often
achieved in an ad-hoc way, for instance by simply multiplying these two factors
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as in the weighted relative accuracy score [17] or in the J-measure [25]. Further-
more, most interestingness measures rely on point estimates of these quantities,
often using the maximum likelihood estimation, and they do not capture the un-
certainty of the estimation. In the following, we present a novel Bayesian score
to evaluate the quality of a rule.

3.2 The Bayesian Score

Suppose we want to evaluate rule P⇒y with respect to a group of instances G
where GP ⊆G. Intuitively, we would like the rule to get a high score when there
is a strong evidence in the data to support the hypothesis that Pr(Y =y|GP )>
Pr(Y =y|G). Our Bayesian score treats these probabilities as random variables
as opposed to using their point estimation as in the classical measures [14].

Let us begin by defining Me to be the model that conjectures that all instances
in group G have the same probability for having class Y =y, even though we
are uncertain what that probability is. Let us denote Pr(Y = y|G) by θ. To
represent our uncertainty about θ, we use a beta distribution with parameters
α and β. Let N∗1 be the number of instances in G with class Y =y and let N∗2
be the number of instances in G with class Y �= y. The marginal likelihood for
model Me is as follows:

Pr(G|Me) =

∫ 1

θ=0

θN∗1 · (1− θ)N∗2 · beta(θ;α, β)dθ

The above integral yields the following well known closed-form solution [16]:

Pr(G|Me) =
Γ (α+β)

Γ (α+N∗1+β+N∗2)
· Γ (α+N∗1)

Γ (α)
· Γ (β+N∗2)

Γ (β)
(1)

where Γ is the gamma function.
Let us define Mh to be the model that conjectures that the probability of Y =y

in GP , denoted by θ1, is different from the probability of Y =y in the instances
of G not covered by P (G \GP ), denoted by θ2. Furthermore, Mh believes that
θ1 is higher than θ2. To represent our uncertainty about θ1, we use a beta
distribution with parameters α1 and β1, and to represent our uncertainty about
θ2, we use a beta distribution with parameters α2 and β2. Let N11 and N12 be
the number of instances in GP with Y =y and with Y �=y, respectively. Let N21

and N22 be the number of instances outside GP with Y = y and with Y �= y,
respectively (see Figure 3). Note that N∗1 = N11 +N21 and N∗2 = N12 +N22.

Fig. 3. A diagram illustrating model Mh
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The marginal likelihood for model Mh is defined as follows:

Pr(G|Mh) =

∫ 1

θ1=0

∫ θ1

θ2=0

θ1
N11 ·(1−θ1)

N12 ·θ2N21 ·(1−θ2)
N22

· beta(θ1;α1, β1) · beta(θ2;α2, β2)

k
dθ2dθ1

(2)

where k is a normalization constant for the parameter prior1. Note that this
formula does not assume that the parameters are independent, but rather con-
strains θ1 to be higher than θ2.

Below we show the closed form solution we obtained by solving Equation
2. The derivation of the solution is omitted in this manuscript due to space
limitation2.

Pr(G|Mh) =
1

k
· Γ (α1+β1)

Γ (α1)Γ (β1)
· Γ (α2+β2)

Γ (α2)Γ (β2)
·

a+b−1∑
j=a

(
Γ (a)Γ (b)

Γ (j+1)Γ (a+b−j)
·Γ (c+j)Γ (a+b+d−j−1)

Γ (a+b+c+d−1)

) (3)

where a=N21 + α2, b=N22+β2, c=N11+α1, d=N12+β1. We solve for k by
applying Equation 3 (without the k term) with a=α2, b=β2, c=α1 and d=β1.

Equation 3 can be expressed in logarithmic form (to avoid computing very
large numbers). Its computational complexity is O(b)=O(N22+β2) (the number
of terms in the summation). It turns out that we can redefine the solution of
Equation 2 so that its computational complexity isO(min(N11+α1, N12+β1, N21+
α2, N22+β2)). The modifications that achieve this complexity result are omitted
due to space limitation3.

Lastly, let Ml be the model that conjectures that θ1 is lower than θ2. The
marginal likelihood for Ml is similar to Equation 2, but integrates θ2 from 0 to
1 and constrains θ1 to be integrated from 0 to θ2 (forcing θ1 to be smaller than
θ2). The solution for P (G|Ml) can reuse the terms computed in Equation 3 and
can be computed with complexity O(1).

Now that we computed the marginal likelihood for models Me, Mh and Ml,
we compute the posterior probability of Mh (the model of interest) using Bayes
theorem:

Pr(Mh|G) =
Pr(G|Mh)Pr(Mh)

Pr(G|Me)Pr(Me)+Pr(G|Mh)Pr(Mh)+Pr(G|Ml)Pr(Ml)
(4)

To be “non-informative”, we might simply assume that all three models are
equally likely a-priori: Pr(Me) = Pr(Mh) = Pr(Ml) =

1
3 .

Equation 4 quantifies in a Bayesian way how likely (a posteriori) is the model
which presumes Pr(Y = y|GP ) is higher than Pr(Y = y|G). Since this is the

1 k = 1
2
if we use uniform priors on both parameters by setting α1 = β1 = α2 = β2 = 1.

2 The derivation can be found on the author’s website: www.cs.pitt.edu/~iyad.
3 These modifications can found on the author’s website: www.cs.pitt.edu/~iyad.

www.cs.pitt.edu/~iyad
www.cs.pitt.edu/~iyad
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quantity we are interested in, we use Pr(Mh|G) to score rule P⇒y with respect
to group G. We denote this Bayesian score by BS(P ⇒ y,G).

Example 2. Let us use the Bayesian score to evaluate rule R2: Family his-
tory=Yes ⇒ CHD in Example 1. We evaluate R2 with respect to the entire
dataset Gφ by computing BS(R2, Gφ). Using the notations introduced earlier,
N∗1=50 and N∗2=100 (the number of cases and controls in the dataset). Also,
N11=30, N12=20, N21=N∗1−N11=20 and N22=N∗2−N12=80. Let us use uni-
form beta priors for all parameters: α=β=α1=β1=α2=β2=1. The likelihood
of Me is 3.2×10−43, the likelihood of Mh is 1.5×10−38 and the likelihood of Ml

is 1×10−44. Hence, BS(R2, Gφ)=Pr(Mh|Gφ)=0.99998. This implies that there
is a strong evidence in the data to conclude that pattern Family history=yes
makes CHD more likely.

3.3 The Predictive and Non-Spurious Rules Score

The Bayesian score proposed in the previous section provides a way to evaluate
the predictiveness of a rule by contrasting it to a more general population than
the population covered by the rule. One approach to supervised descriptive rule
discovery is to score each rule Ri with respect to the entire data BS(Ri, Gφ) and
report the top rules to the user. However, this approach does not overcome the
spurious rules problem: if a rule P⇒y achieves a very high score, many spurious
rules P ′⇒y: P ′⊃P are expected to have a high score as well (provided that P ′

have enough support in the data). As a result, the rules presented to the user
would contain a lot of redundancies and fail to provide a good coverage of the
data.

To overcome this problem, we propose the Predictive and Non-Spurious Rules
score, denoted as PNSR-score, which we define as follows:

PNSR-score(P ⇒ y) = min
S:S⊂P

{BS(P ⇒ y,GS)}

If a rule R achieves a high PNSR-score, then there is a strong evidence in the
data not only to conclude that R improves the prediction of its consequent with
respect to the entire data, but also with respect to the data matching any of its
subrules. That is, the rule’s effect on the class distribution cannot be explained
by any more general rule that covers a larger population. This implies that every
item in the condition of the rule is an important contributor to its predictiveness
(the rule is concise).

Example 3. Let us go back to Example 1 and compute the PNSR-score for rule
R3. If we evaluate R3 with respect the entire dataset, BS(R3, Gφ) = 0.9997. If
we evaluate R3 with respect to subrule R1, BS(R3, GR1) = 0.999992. Finally,
if we evaluate R3 with respect to subrule R2, BS(R3, GR2) = 0.47. We can see
that R3 is considered very predictive when compared to the entire dataset or to
subrule R1, but is not predictive when compared to subrule R2. Therefore, we
do not consider R3 an important rule because it is equivocal whether it predicts
CHD as being more likely than does R2.
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Example 4. Let us consider again the simple Bayesian network in Figure 2.
Assume we have 10 binary features (F1 to F10) and the CPTs are defined
as follows: Pr(Fi = 1) = 0.4 : i ∈ {1, ..., 10}, Pr(Y = y1|F1 = 1) = 0.9 and
Pr(Y = y1|F1 = 0) = 0.5. Let the data D be 500 instances that are randomly
generated from this network and let us use D to mine rules that are predictive
of class y1

4. As we discussed earlier, the only important rule for predicting y1 is
F1=1⇒ y1 and all other rules are just spurious.

We use frequent pattern mining to explore all patterns that occur in more
than 10% of the data. Doing so, we obtain 1,257 frequent patterns (potential
rules). If we apply the χ2 test with significance level α=0.05, we get 284 rules
that positively predicts y1 and are statistically significant. Even if we apply the
False Discovery Rate (FDR) technique [4] to correct for multiple hypothesis test-
ing, we get 245 positive significant rules! If we use our Bayesian score to evaluate
each rule (individually) with respect to the entire dataset and report rules with
BS(Ri, Gφ)≥0.95, we get 222 rules5. Note that this approach still suffers from
the spurious rules problem. Let us now apply the confidence improvement con-
straint to filter out “non-productive” rules [3, 15, 19, 20, 26]. By doing so, we
get 451 rules! This clearly demonstrates that the confidence improvement con-
straint is ineffective for removing spurious rules. Lastly, let us use our proposed
PNSR-score and report rules with PNSR-score(Ri)≥0.95. Doing so, we obtain
only a single rule F1=1⇒ y1 (the only important rule) and effectively filter out
all other spurious rules.

3.4 The Mining Algorithm

In this section, we present the algorithm for mining predictive and non-spurious
rules. The algorithm utilizes frequent pattern mining to explore the space of
potential rules and applies the PNSR-score to evaluate the rules.

To search for rules, we partition the data according to the class labels y ∈
dom(Y ) and mine frequent patterns for each class separately (using a local min-
imum support σy that is related to the number of instances from class y). The
reason for doing this as opposed to mining frequent patterns from the entire data
is that when the data is unbalanced, exploring only patterns that are globally
frequent may result in missing many important rules for the rare classes.

The mining algorithm takes as input 1) the data instances from class y: Dy =
{(xi, yi) : yi = y}, 2) the data instances that do not belong to class y: D¬y =
{(xi, yi) : yi �= y}, 3) the local minimum support threshold σy and 4) a user
specified significance parameter g. The algorithm explores the space of frequent
patterns and outputs the rules with PNSR-score higher than g.

A straightforward way to obtain the result is to apply the commonly used
two-phase approach as in [6, 10, 12, 17, 20, 26, 27], which generates all frequent
patterns in the first phase and evaluates them in the second phase (a post-
processing phase). That is, we need to perform the following two steps:

4 The prior of y1 in this network is Pr(Y =y1)=0.66.
5 The 0.95 threshold is chosen so that it is comparable to the commonly used frequen-
tist 0.05 significance level.
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1. Phase I: Mine all frequent patterns: FP = {P1, ..., Pm : sup(Pi)≥σy}
2. Phase II: For each pattern Pi ∈ FP , output rule Pi ⇒ y if PNSR-score(Pi ⇒

y) ≥ g.

In contrast to this two-phase approach, our algorithm integrates rule evalua-
tion with frequent pattern mining, which allows us to apply additional pruning
techniques that are not applicable in the two-phase approach.

The mining algorithm explores the lattice of frequent patterns level by level
from the bottom-up starting from the empty pattern. That is, the algorithm
first explores frequent 1-patterns, then frequent 2-patterns, and so on. When the
algorithm visits a frequent pattern P (a node in the lattice), it computes the
PNSR-score of rule P ⇒ y and adds it to result if PNSR-score(P⇒y)≥g.

Lossless Pruning. We now illustrate how to utilize the PNSR-score to prune
portions of the search space that are guaranteed not to contain any result.

We say that pattern P is pruned if we do not explore any of its superpatterns
(P ′⊃P ). This means that we exclude the entire sublattice with bottom P from
the lattice of patterns we have to explore.

Frequent pattern mining relies only on the support of the patterns to prune in-
frequent patterns according to the following anti-monotone property: if a pattern
is not frequent, all of its superpatterns are guaranteed not to be frequent.

By integrating rule evaluation with frequent pattern mining, we can apply an
additional pruning technique. The idea is to prune pattern P if we guarantee
that none of its superpatterns will be in the result:

Prune P if ∀P ′ ⊃ P : PNSR-score(P ′⇒y) < g

However, since patterns are explored in a level-wise fashion, we do not know the
class distribution in the superpatterns of P . But we know that for any P ′⊃P :
GP ′⊆GP , and hence sup(P ′, Dy)≤sup(P,Dy) ∧ sup(P ′, D¬y)≤sup(P,D¬y).

We now define the optimal superpattern of P with respect to class y, denoted
as P ∗, to be a hypothetical pattern that covers all instances from y and none of
the instances from the other classes:

sup(P ∗, Dy) = sup(P,Dy) ∧ sup(P ∗, D¬y) = 0

P ∗ is the best possible superpattern for predicting y that P can generate. There-
fore, PNSR-score(P ∗⇒y) is an upper bound on the PNSR-score for the super-
pattern of P . Now, we safely prune P when PNSR-score(P ∗⇒y)<g.

4 Experimental Evaluation

The experiments compare the performance of different rule quality measures for
the problem of supervised descriptive rule discovery. In particular, we compare
the following measures:
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1. GR: Rules are ranked using the Growth Rate measure, which was used in
[11] in the context of emerging pattern mining.

GR(P⇒y) =
sup(P,Dy)/|Dy |

sup(P,D¬y)/|D¬y |

where Dy and D¬y represent the instances from class y and not from class
y, respectively.

2. J-measure: Rules are ranked using the J-measure [25], a popular information
theoretic measure that scores the rules by their information content.

J-measure(P⇒y) =
sup(P,D)

|D| ×
∑

z∈{y,¬y}
conf(P⇒z) · log2

(
conf(P⇒z)

conf(Φ⇒z)

)

3. WRAcc: Rules are ranked using the Weighted Relative Accuracy, which was
used in [17] in the context of subgroup discovery6.

WRAcc(P⇒y) =
sup(P,D)

|D| × (conf(P⇒y)− conf(Φ⇒y))

Note that this measure is compatible (provides the same rule ranking) with
the support difference heuristic used in [2] for contrast set mining (see [23]).

4. BS : Rules are ranked using our proposed Bayesian score. However, this
method scores each rule individually with respect to the entire data and
do not filter out spurious rules.

5. Conf-imp: Only rules that satisfy the confidence improvement constraint are
retained [3, 15, 19, 20, 26] and they are ranked according to their confidence.

6. PNSR: Only rules Ri that have a PNSR-score(Ri)≥0.95 are retained7 and
they are ranked according to the Bayesian score.

Note that the GR measure does not consider the coverage of the rule when
assessing its interestingness. For example, GR favors a rule that covers 8% of
the instances of in one class and 1% of the instances in the other classes over a
rule that covers 70% of the instances of in one class and 10% of the instances
in the other classes (as 8

1 > 70
10 ). As a result, GR often chooses rules that are

very specific (with low coverage) and do not generalize well. To overcome this,

the J-measure and WRAcc explicitly incorporate the rule coverage Sup(P,D)
|D| in

their evaluation functions to favor high coverage rules over low coverage rules.
This is done by multiplying the rule coverage with a factor that quantifies the
distributional surprise (unusualness) of the class variable in the rule (the cross
entropy for J-measure and the relative accuracy for WRAcc). However, it is not
clear whether simply multiplying these two factors leads to the optimal trade-
off. On the other hand, BS achieves this trade-off automatically by modeling the

6 The algorithm by [17] uses weighted sequential covering and modifies the WRAcc
measure to handel example weights.

7 The 0.95 threshold is chosen so that it is comparable to the commonly used frequen-
tist 0.05 significance level.
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uncertainty of the estimation (the more data we have, the more certain we are
about the estimated probabilities).

Note that the first four methods (GR, J-measure, WRAcc and BS ) evaluate
each rule individually with respect to the entire data and do not consider the
nested structure of rules. On the other hand, conf-imp and PNSR evaluate each
rule with respect to all of its subrules. Conf-imp simply requires each rule have
a higher confidence than its subrules, while PNSR requires each rule to show a
substantial evidence that it improves the prediction over its subrules, which is
evaluated using our proposed PNSR-score.

For all methods, we use frequent pattern mining to explore the space of po-
tential rules and we set the local minimum support (σy) to 10% the number of
instance in the class. For BS and PNSR, we use uniform beta priors (uninfor-
mative priors) for all parameters.

4.1 Datasets

We evaluate the performance of the different rule quality measures on 15 public
datasets from the UCI Machine Learning repository. We discretize the numeric
attributes into intervals using Fayyad and Irani discretization [13]. Table 1 shows
the main characteristics of the datasets.

Table 1. UCI Datasets characteristics

dataset # features # instances # classes

Lymphography 18 142 2

Parkinson 22 195 2

Heart 13 270 2

Hepatitis 19 155 2

Diabetes 8 768 2

Breast cancer 9 286 2

Nursery 8 12,630 3

Red wine 11 1,599 3

Mammographic 5 961 2

Tic tac toe 9 958 2

Ionosphere 34 351 2

Kr vs kp 36 3,196 2

Pen digits 16 10,992 10

Zoo 16 74 3

WDBC 30 569 2

4.2 Quality of Top-K Rules

For a set of rules to be practically useful, the rules should be accurate to predict
the class label of unseen data instances (high precision) and the rule set should
provide a good coverage of the data (high recall).
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Fig. 4. Comparison of the performance of several rule evaluation measures. The X-axis
is the number of the top rules and the Y-axis is the F1 score of the rule set.
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In this section, we compare the different rule evaluation measures according
to the quality of the top rules. In particular, for each of the compared evaluation
measures, we mine the top k rules from the training data and use them to classify
the testing data. The classification is done according to the highest confidence
rule [21]:

Prediction(x ) = argmax
yi

{conf (P ⇒ yi): P ∈ x}

The classification performance is evaluated using the F1 score [24], which is
the harmonic mean of the precision and recall. All results are reported using a
10-fold cross-validation scheme, where we use the same train/test splits for all
compared methods.

Figure 4 shows the classification performance for the different number of top
rules. We can see that GR is the worst performing method for most datasets.
The reason is that rules with the highest GR scores are usually very specific
(low coverage) and may easily overfit the training data. The other measures
(J-measure, WRAcc and BS ) perform better than GR because they favor high-
coverage rules over low-coverage rules, which results in rules that generalize
better on the testing data. However, because these measures do not consider
the relations among the rules, the top rules contain many spurious rules (rules
describing the same underlying pattern and are small variations of each other).
As a result, they fail to provide a good coverage of the data (see for example the
lymphography and the zoo datasets). Finally, we can see that for most datasets,
PNSR achieves the best performances with the smallest number of rules.

4.3 Mining Efficiency

In this section, we study the efficiency of our mining algorithm. In particular,
we compare the running time of the following methods:

1. FPM : Frequent patterns mining, where we partition the data according to
the class label and mine frequent patterns for each class (see Section 3.4).
We apply the algorithm by [29], which mines frequent patterns using the
vertical data format.

2. PNSR-Naive: The naive two-phase implementation for mining predictive
and non-spurious rules, which applies FPM to mine all frequent patterns
and then computes the PNSR-score of the patterns.

3. PNSR: Our mining algorithm, which integrates rule evaluation with frequent
pattern mining and applies the lossless pruning technique described in Sec-
tion 3.4 to prune the search space.

The running time is measured on a Dell Precision T1600 machine with an Intel
Xeon 3GHz CPU and 16GB of RAM. As before, we set the local minimum
support (σy) to 10% the number of instance in the class. Table 2 shows the
execution time (in seconds) of the compared methods on the UCI datasets.

The results show that on seven of the fifteen datasets (lymphography, Parkin-
son, Heart, Hepatitis, Ionosphere, Zoo and WDBC ), PNSR is more efficient than
FPM, which is the cost of the first phase of any two-phase method
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Table 2. The execution time (in seconds) of frequent pattern mining (FPM ), two-
phase PNSR mining (PNSR-Naive) and our mining algorithm (PNSR)

dataset FPM PNSR-Naive PNSR

Lymphography 328 410 153

Parkinson 9,865 11,229 800

Heart 45 69 37

Hepatitis 1,113 1,284 391

Diabetes 3 5 5

Breast cancer 3 5 4

Nursery 2 9 9

Red wine 28 52 50

Mammographic 1 1 1

Tic tac toe 3 4 4

Ionosphere 16,899 19,765 1,077

Kr vs kp 1,784 2,566 2,383

Pen digits 71 144 138

Zoo 185 244 23

WDBC 2,348 4,320 282

[6, 10, 12, 17, 20, 26, 27]. For some of these datasets, PNSR drastically im-
proves the efficiency. For example, on the Parkinson, Ionosphere datasets, PNSR
is more than an order of magnitude faster than FPM. This shows that utiliz-
ing the predictiveness of patterns to prune the search space can greatly help
improving the mining efficiency.

5 Conclusion

In this paper, we study the problem of supervised descriptive rule discovery
and propose a new rule evaluation score, the Predictive and Non-Spurious Rules
(PNSR) score. This score relies on Bayesian inference to measure the quality
of the rules. It also considers the structure of the patterns to ensure that each
rule in the result offers a significant predictive advantage over all of its gener-
alizations. We present an algorithm for mining rules with high PNSR scores,
which efficiently integrates rule evaluation with frequent pattern mining. The
experimental evaluation shows that our method is able to explain and cover the
data with fewer rules than existing methods, which is beneficial for knowledge
discovery.
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Abstract. Exceptional model mining has been proposed as a variant
of subgroup discovery especially focusing on complex target concepts.
Currently, efficient mining algorithms are limited to heuristic (non ex-
haustive) methods. In this paper, we propose a novel approach for fast
exhaustive exceptional model mining: We introduce the concept of valua-
tion bases as an intermediate condensed data representation, and present
the general GP-growth algorithm based on FP-growth. Furthermore, we
discuss the scope of the proposed approach by drawing an analogy to
data stream mining and provide examples for several different model
classes. Runtime experiments show improvements of more than an order
of magnitude in comparison to a naive exhaustive depth-first search.

Keywords: exceptional model mining, subgroup discovery.

1 Introduction

Subgroup discovery [9,17] has been established as a general and broadly appli-
cable technique for descriptive data mining: It aims at identifying descriptions
of subsets of a dataset that show an interesting behavior with respect to a cer-
tain target property of interest. In this context, the concept of exceptional model
mining has been introduced [6,13], which especially focuses on complex target
properties: It tries to identify interesting patterns with respect to a local model
derived from a set of attributes. The interestingness can be defined, e.g., by a sig-
nificant deviation from a model that is derived from the total population or the
respective complement set of instances within the population. While there exist
heuristic algorithms [11] for exceptional model mining, the efficient exhaustive
computation of exceptional models is still an open issue.

In this paper, we present the novel GP-growth algorithm that can be used
for mining patterns with exceptional target models exhaustively. We extend the
well-known FP-tree [7] data structure by replacing the frequency information
stored in each node of the tree by the more general concept of valuation bases.
Valuation bases are dependent on a specific model class and allow for an efficient
computation of the target model parameters.
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The contribution of this paper is threefold: First, we present the concept of
valuation bases allowing us to derive a new algorithm capable of performing effi-
cient exhaustive search for many different classes of exceptional models. Second,
we characterize the scope of the presented approach and discuss its instantia-
tions for model classes presented in literature. Third, we perform an evaluation
of the presented approach using publicly available UCI data [14]. Furthermore,
we present a scalability study on a real world dataset.

The remainder of the paper is structured as follows: Section 2 discusses related
work. Section 3 introduces the formal background of exceptional model mining
and briefly reviews the FP-growth algorithm. Next, Section 4 presents the novel
GP-growth algorithm. Instantiations for different model classes are discussed
in Section 5. After that, we demonstrate the effectiveness and validity of our
approach using publicly available data in Section 6. Finally, the paper concludes
with a summary and outlook on future work in Section 7.

2 Related Work

For a recent overview on algorithms for subgroup discovery [9,17], including
heuristic and exhaustive approaches, we refer to [8]. Kralj et al. also discuss sub-
group discovery in relation to other common approaches for supervised descrip-
tive rule discovery [15]. Exceptional model mining has been proposed in [6,13].
[11] presents an heuristic algorithm for identifying descriptions of exceptional
subgroups. Umek et al. describe subgroup discovery in a similar setting [16].
Again, their proposed algorithm does not perform an exhaustive search.

To the best of the authors’ knowledge, no non-trivial exhaustive algorithm
for the task of exceptional model mining has been published so far. To this
end, we propose the GP-growth algorithm based on FP-growth and FP-trees.
Originally developed for association rule mining [7], FP-trees are a widely-used
data representation. It has been adapted to subgroup discovery with nominal
[3] and numeric target concepts [1]. The transfer to exceptional model mining is
not trivial but – as shown in this paper – possible for many model classes.

3 Background

In the following, we first provide a brief summary of exceptional model min-
ing [6,13]. After that, we review the FP-growth algorithm.

3.1 Exceptional Model Mining

Exceptional model mining aims at identifying models (patterns) that are ex-
ceptional concerning a set of target attributes. For some basic definitions, a
database D = (I, A) is given by a set of data instances (cases) i ∈ I and a
set of attributes A. The attributes consist of two (usually non-overlapping) sets
of describing attributes AD and model attributes AM . We denote the value of
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attribute X in instance i as iX . Selectors or basic patterns are boolean func-
tions I → {false, true} defined by selection expressions on the set of describing
attributes AD. Typical selection expression are given by attribute-value pairs in
the case of nominal attributes, or by intervals in the case of numeric attributes.
The selector age = [12; 18] is true, for example, iff the attribute age has a value
between 12 and 18 for the respective instance. A subgroup description or (com-
plex) pattern combines selectors into a boolean formula. For a typical conjunctive
description language, a pattern p = {sel1, . . . ,selk} is defined by a set of selectors
selj , which are interpreted as a conjunction, i.e. p = sel1∧ . . .∧ selk. A subgroup
corresponding to a pattern p contains all instances for which p evaluates to true.

A model consists of a specific model class, which is fixed for a specific mining
task, and model parameters which depend on the values of the model attributes
in the instances of the respective subgroup. The goal of exceptional model mining
is then to identify descriptions of subgroups, for which the model parameters dif-
fer significantly from the parameters of the model built from the entire dataset.
Formally this is accomplished by using an exceptionality measure q that maps
a subgroup (pattern) to a real number corresponding to its quality (interesting-
ness) based on its model parameters. As a simple example, consider the task of
identifying subgroups in which the correlation between two numeric attributes
is especially strong. This correlation model class has exactly one parameter, i.e.,
the correlation coefficient. A short overview on different model classes presented
in literature is included in Section 5.

To accomplish the exceptional model mining task for a set of l selectors there
are O(2l) subgroup descriptions, for which the model parameters need to be
determined. For practical purposes it is often possible to limit the search space
to patterns with a maximum number d of contained selectors (|p| ≤ d) (since
longer patterns are difficult to interpret by humans). However, identifying the
best pattern is still challenging since the size of the search space is still O(ld).
In this paper, we provide an efficient exhaustive algorithm for this task.

3.2 FP-Growth

The FP-growth [7] algorithm has been introduced as an efficient approach for
frequent pattern mining. It avoids scanning the whole dataset in order to eval-
uate each pattern by recursively building a special data structure, the so-called
FP-tree. This extended prefix tree structure contains the relevant data in a com-
pressed way. Each tree node contains a reference to a selector and a frequency
count. Additionally, links between nodes referring to the same selector are main-
tained. The FP-tree is built by sorting the selectors of each data instance ac-
cording to their descending frequency in the dataset. Then, each data instance
is inserted into the FP-tree. The order of the selectors increases the chance of
shared prefixes between data instances decreasing the size of the FP-tree. Most
importantly, the resulting FP-tree contains the complete condensed frequency
information for each data instance.

FP-growth starts with creating an FP-tree for the initial dataset. Patterns
containing exactly one selector are evaluated by the frequencies collected during
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the first pass over the dataset. Then, the algorithm recursively extends those
patterns by adding further selectors in a depth-first manner, building conditional
trees conditioned on the current pattern prefix. Each node corresponds to a
conditional data instance built from the selectors referred to by its parent nodes.
In this way, FP-growth enables a compact and efficient mining of the condensed
tree structure. Due to the limited space, we refer to [7] for more details.

4 The GP-Growth Algorithm

In this section, we present our novel approach called generic pattern growth
(GP-growth). GP-growth is based on the FP-growth algorithm substituting fre-
quencies by an intermediate, condensed data representation called a valuation
basis. We first introduce the concept of valuation bases and define properties
needed for their application to the GP-growth algorithm. After that, we provide
a theorem concerning the existence and construction of efficient valuation bases
for specific model classes.

4.1 The Concept of Valuation Bases

In the traditional FP-growth approach frequencies are stored in the nodes of
the tree. These nodes can then be aggregated to obtain frequencies for patterns
in the search space. The frequency is then used to rate the patterns (itemsets)
determining those with high instance counts. In the proposed approach, we re-
place the frequency count stored in each node of the tree structure with a more
generic concept that we call a valuation basis.

We define a valuation basis as a (condensed) representation of a set of data
instances that is sufficient to extract the model parameters for a given model
class. Consequently, the kind of information stored in a valuation basis is depen-
dent on the model class. Since the interestingness of a subgroup in our definition
is based on the model parameters, it can be derived from such a valuation basis.

A visualization of the overall approach is given in Figure 1: For each sub-
group (set of data instances) a valuation basis can be derived using a function
φ (valuation projector). The model parameters for the chosen model class can
be extracted from these valuation bases using another function χ (model extrac-
tor). Model parameters are then used to determine the interestingness of the
respective pattern using an exceptionality measure q.

As an example, consider a very basic model for a single model attribute X , for
which the only model parameter is the mean value of all instances covered by the
subgroup. Then, an appropriate valuation base can consist of the instance count
and the sum of all values ofX of all instances of the subgroup. The instance count
and the sum of values can be accumulated in an FP-tree like structure. Given
the accumulated valuation basis for each pattern, the stored instance count and
the value sum are used to compute the mean. The actual interestingness of the
pattern can then be determined using this mean value, e.g. as the deviation from
the mean value in the total population.
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Subgroup Valuation Basis Model Parameters Interestingness
φ χ q

Fig. 1. The pipeline visualizing our approach: For each subgroup (set of data instances)
s a valuation basis can be derived using a function φ (valuation projector). The model
parameters for the chosen model class can be extracted from these valuation bases using
another function χ (model extractor). Model parameters are then used to determine
the interestingness of the respective pattern using an exceptionality measure q.

Please note, that we can construct a trivial type of valuation bases that defines
a valuation basis as the exact same set of data instances it represents (restricted
to the model attribute values). Obviously, this most general type of valuation
bases trivially contains all relevant information associated with the original set of
data instances. Therefore, model parameters for any model class on the original
set of data instances can be derived from this type of valuation bases. However,
while this trivial kind of valuation basis allows for a general applicable approach,
the main advantages in terms of memory and runtime performance are usually
lost. Therefore, we aim to construct valuation bases for a given model class which
are as small as possible. We call a valuation basis a condensed valuation basis,
if its memory requirement is sublinear with respect to the number of instances
it represents. The examples of valuation bases that we present in this paper will
all use constant memory with respect to the instance count.

We model the possibility of aggregating valuation bases corresponding to sets
of data instances by introducing the notion of valuation domains :

Definition 1 (Valuation Domain, Valuation Basis). A valuation domain
is an abelian semi-group V = (V,⊕), where V is an arbitrary set and ⊕ is a
binary operator on V , i.e. ⊕ : V × V → V and

– V is closed under ⊕, i.e. a, b ∈ V ⇒ a⊕ b ∈ V
– ⊕ is associative, i.e. a, b, c ∈ V ⇒ a⊕ (b⊕ c) = (a⊕ b)⊕ c
– ⊕ is commutative, i.e. a, b ∈ V ⇒ a⊕ b = b⊕ a

An element v ∈ V is called a valuation basis.

In order to derive valuation bases from data instances we define the notion of a
valuation projector φ as in Definition 2.

Definition 2 (Valuation Projector). Let I be a set of all data instances and
let V = (V,⊕) be a valuation domain. Then a valuation projector is defined as

φ : I → V

Given the definition of valuation domains above, the valuation projector φ can
be naturally extended onto sets of data instances S ∈ 2I :

φ̄ : 2I → V

S !→
⊕
s∈S

φ(s)
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As a result, for any disjunct pair of sets of data instances S′ ∩ S′′ = ∅ it holds:

φ̄(S′ ∪ S′′) = φ̄(S′)⊕ φ̄(S′′)

Sometimes patterns are evaluated by comparing their corresponding model at-
tributes derived from the set of data instances they cover with the model at-
tributes of their complementary set of data instances. In order to handle this
case efficiently we need to assume a valuation domain with a subtraction opera-
tor *: Let I be the set of all instances and let I ′ ∪ I ′′ be an arbitrary partition
of I. If the valuation basis of I ′ is subtracted from the valuation basis of I, then
the result must be the valuation basis of I ′′: φ̄(I) * φ̄(I ′) = φ̄(I ′′). This can be
utilized by computing the valuation basis corresponding to all instances in the
dataset I in an initial pass over the dataset.

4.2 Algorithmic Adaptations

Essentially, the FP-growth algorithm (cf. Section 3.2 for a brief description) is
generalized by substituting frequencies with the more general concept of val-
uation bases. We call the resulting algorithm GP-growth. The generalized tree
structure storing valuation bases instead of frequencies is called a GP-tree.

Whereas the FP-growth algorithm adds up frequencies in its FP-trees, the GP-
growth algorithm aggregates valuation bases in its GP-trees. Hence, GP-growth
produces aggregated valuation bases instead of frequencies for each pattern. Note
that a valuation basis can also contain a frequency as described in the mean value
example in Section 4.1.

In order to aggregate valuation bases for each pattern, the algorithm requires

– a valuation domain V = (V,⊕) to draw valuation bases from,
– a valuation projector φ to project single data instances onto valuation bases,

and
– a subtraction operator * to support complement comparisons as mentioned

in Section 4.1, if required by the utilized exceptionality measure.

Patterns are then evaluated based on their valuation bases by applying

– a model extractor χ to map valuation bases v ∈ V onto model parameters,
and

– an exceptionality measure q based on these model parameters.

These adaptations of FP-growth allow for a generic implementation. That is,
the code for the main algorithm is identical for all model classes. To apply it
to a new model class, only the valuation domain with its aggregation operator
⊕, the corresponding valuation projector φ, and the model extractor χ must be
implemented. We call the tuple (V,⊕, φ, χ) a model configuration.

Please note, that for the very simple valuation basis, that only counts the
instances, the resulting algorithm is identical to FP-growth. Furthermore, tra-
ditional subgroup discovery can be implemented in this generic algorithm by
using valuation bases that count instances with a positive and a negative target
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concept separately, as done in the SD-Map algorithm [3]. Thus, the approach
presented in this paper can be regarded as a true generalization of both, FP-
growth [7] and SD-Map.

Like subgroup discovery, exceptional model mining is often applied in a top-k
approach. That is, the goal is to find the best k patterns with respect to an
interestingness measure. This can be accomplished by storing the current top
k patterns in a separate result set and replacing its entries with higher quality
patterns as required.

When using a top-k approach, substantial speed-ups can be achieved by us-
ing optimistic estimate pruning, see for example [17]. As an example, a quality
function using a correlation coefficient model could exploit the fact, that the
correlation coefficient never exceeds a value of 1. However, efficient boundaries
need to be determined for each quality function, which may even vary for a sin-
gle model class. In this paper, we focus on a generic data structure that allows
for the efficient computation of model parameters. Therefore, we will not discuss
possible optimistic estimate boundaries for model exceptionality measures in the
context of this work.

4.3 Theorem on Condensed Valuation Bases

The approach of generalized FP-trees is especially efficient, if it is possible to
derive a small condensed valuation basis for a model class. If the constructed
model itself is very complex, then it seems difficult to derive suitable condensed
valuation bases that are sufficient to extract the model parameters. This includes,
for example, computationally expensive models that involve the learning of a
bayesian network as done in [6].

Therefore, in the following we provide a characterization of model classes, for
which GP-trees can be applied with strongly reduced memory requirements. We
do this by drawing a parallel to data stream mining:

Theorem 1. There is a condensed valuation domain for a given model class
if and only if the following conditions are met: (1) There is a parallel single-
pass algorithm with sublinear memory requirements to compute the model from
a given set of instances which are distributed randomly on one of the (parallel)
computation nodes; (2) the only communication between the computation nodes
in this algorithm takes place when combining results.

Proof. ⇒: First, assume there is a model configuration (V,⊕, φ, χ) that can be
used to determine the model parameters of a subgroup. We can then construct
a parallel single-pass algorithm as follows: In each computation node N we loop
through all assigned instances IN , updating the respective valuation basis vN .
For each instance i ∈ IN we extract the valuation basis φ(i) and use it to update
the current accumulated valuation basis: vnewN = voldN ⊕φ(i). Thus, after each step
the valuation basis vN corresponds to all instance handled so far. After the loop
through all instances of this computation node, the valuation basis vN can be
used to extract the model parameters for the set of instances IN . Furthermore,
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the resulting valuation bases from different computation nodes can be combined
by using the aggregation operator ⊕ again. This leads to a valuation basis that
corresponds to all instances of the dataset. The model parameters can then be
extracted using the model extractor χ; this completes the parallel single-pass
algorithm for computing these parameters.
⇐: Assume there is a parallel single-pass algorithm with the properties pre-

sented above. Then, there is a set of variables VC that are used in the computa-
tion within each of the nodes, which is sublinear with respect to the number of
contained instances. We show, that this set of variables defines a model configu-
ration (V,⊕, φ, χ). Since the algorithm is single-pass, the assignments for these
variables are updated only once for each instance using the values of the model
attributes for this instance. Now let vi be the vector of values (variable assign-
ments) of the variables VC after the instance i is processed as the first instance
in this computation node. Then, we can use this vector as our valuation basis
projector function φ(i) = vi. This is sufficient for a valuation basis; if there was
only one instance in the dataset, then a correct algorithm would be able to ex-
tract the model parameters for the model built from the single instance using
only the data vi.

Next, assume that each computational node Nj has finished the computation
of its partition of the data Dj , each resulting in variable assignments vj , which
corresponds to a valuation basis. vj must be sufficient to extract the model pa-
rameters for the data Dj , since it could be that Nj is the only computational
node. The method used for this subtask can be regarded as a model extrac-
tor function χ. Now consider two valuation bases v1 and v2 that result from
two computation nodes and are corresponding to data partitions D1 and D2. A
correct parallel algorithm must come with an appropriate method to combine
the results v1 and v2 into new variable assignments that is suited to extract
model parameters for the data D1 ∪D2. This method can be used as a general
aggregation function ⊕ for valuation bases. Thus, given a parallel single-pass
algorithm with the properties presented above we can derive a model configura-
tion (V,⊕, φ, χ). �	

The proof is constructive. It describes a method to transfer parallel single-pass
algorithms for specific model classes to valuation domains that can be used for
efficient exceptional model mining. Some important examples of this approach
are shown in the next section.

5 Valuation Bases for Important Model Classes

In this section, we discuss the application of GP-trees to different model classes.
Most of the presented model classes have been proposed in [13], to which we
refer for a more detailed description of the models and exceptionality measures.

Variance Model. The variance model identifies patterns, in which the variance
of a single target variable X is especially high/low. Although this model features
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only a single model attribute, this task can not be accomplished by traditional
subgroup discovery algorithms utilizing FP-trees, such as SD-Map.

For an efficient computation of the variance, we utilize the following well
known formula:

V ar(X) = E[X2]− E[X ]2 =

∑
x2

n
− (

∑
x

n
)2,

where E[X ] is the expected value for the variable X . For computing the vari-
ance of an attribute, only the total count, the sum of all values and the sum of
all squared values are required. Formally, a model configuration (Vσ ,⊕σ, φσ, χσ)
that is sufficient to compute the variance (or equivalently, the standard devia-
tion) of a variable X can be defined as:

Vσ = R
3

v ⊕σ u = v + u

φσ(i) = (1, iX , iX
2)T

χσ(v) =
v3
v1
− (

v2
v1

)2

Each valuation basis stores a vector of three real numbers. Aggregating valuation
bases using the operator ⊕ is equivalent to adding vectors in euclidean space.
The valuation basis extracted from a single data instance i contains the constant
1 as the instance count, the value of X in i and the squared value of X in i.
To extract the model parameter V ar(X) from a valuation basis v ∈ Vσ the
computation χσ has to be performed using the three components of the vector
stored in the valuation basis v.

Correlation Model. The (Pearson product-moment) correlation coefficient
ρ(X,Y ) measure is a very well known statistical measure that reflects the linear
dependency between two numerical attributes X and Y . The correlation coeffi-
cient is defined as the fraction of the covariance and the product of the standard

deviations of these two attributes: ρ(X,Y ) = Cov(X,Y )
σXσY

.

The covariance is defined as Cov(X,Y ) =
∑

(x,y)(x−μX)(y−μY )

N , where μ de-
scribes the mean value of the attribute and N the number of instances. We
determine the measures Cov(X,Y ), σX and σY independently from each other.

To efficiently compute the covariance of two variables X,Y we utilize the
following pairwise update formula that was introduced in [4] for an parallel
single-pass algorithm. It allows us to compute CS(X,Y ) = Cov(X,Y ) · |S| =∑

(x,y)∈S(x − μX)(y − μY ) for a set of data instances S = S1 ∪ S2, S1 ∩ S2 = ∅
given statistical information of the partitioning sets S1 and S2:

CS(X,Y ) = CS1(X,Y ) + CS2(X,Y ) +
n1n2

n1 + n2
(μX,2 − μX,1)(μY,2 − μY,1),

where, n1 = |S1| and n2 = |S2| denote the instance count in S1 and S2, and
μX,2, μX,1, μY,2, μY,1 are the mean values of X and Y in the sets S2 and S1.
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For computing the covariance for each pattern using this formula, we need to
keep track of the value of C in the respective set of instances, the cardinality
of the subgroup, and the mean values of the variables X and Y . The latter can
be computed by the sum of the respective values and the cardinality. Therefore,
using the formula above we can define a model configuration for the covariance
as follows:

Vcov = R
4

v ⊕cov u =

⎛⎜⎜⎝
v1
v2
v3
v4

⎞⎟⎟⎠⊕
⎛⎜⎜⎝

u1

u2

u3

u4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
v1 + u1

v2 + u2

v3 + u3

v4 + u4 +
v1u1

v1+u1
(v2v1 −

u2

u1
)(v3v1 −

u3

u1
)

⎞⎟⎟⎠
φcov(i) = (1, iX , iY , 0)T

χcov(v) =
v4
v1

In this formalization of a model configuration the first component of a valuation
basis reflects the size of the corresponding set, the second and third component
store the sum of the values of X and Y and the fourth component keeps track
of the measure C as defined above.

To compute the actual correlation coefficient we combine this valuation ba-
sis with the valuation basis used for the variance model in order to compute
Cov(X,Y ), σX and σY in a single model configuration:

Vcor = R
6

v ⊕cor u =

⎛⎜⎜⎜⎜⎜⎜⎝
v1
v2
v3
v4
v5
v6

⎞⎟⎟⎟⎟⎟⎟⎠⊕
⎛⎜⎜⎜⎜⎜⎜⎝

u1

u2

u3

u4

u5

u6

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
v1 + u1

v2 + u2

v3 + u3

v4 + u4 +
v1u1

v1+u1
(v2v1 −

u2

u1
)(v3v1 −

u3

u1
)

v5 + u5

v6 + u6

⎞⎟⎟⎟⎟⎟⎟⎠
φcor(i) = (1, iX , iY , 0, iX

2, iY
2)T

χcor(v) =
Cov(X,Y )

σXσY
=

v4
v1√

v5
v1
− (v2v1 )

2
√

v6
v1
− (v3v1 )

2
=

v1v4√
v1v5 − v22

√
v1v6 − v23

Simple Linear Regression Model. The simple linear regression model is
perhaps the most intuitive statistical model to show the dependency between
two numeric variables X and Y . It is built by fitting a straight line in the two
dimensional space by minimizing the squared residuals ej of the model:

yj = a+ bxj + ej

As proposed in [13], the difference of the slope b of this line in a subgroup and
the total population (or the complement of the subgroup within the population)
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can be used to identify interesting patterns. As known from statistics, the slope
b can be computed by the covariance of both variables and the variance of X :

slope(X,Y ) =
Cov(X,Y )

V ar(X)

Thus, we define a model configuration by combining the valuation domains for
the variance and the covariance, similar to the correlation model:

Vslope = R
5

v ⊕slope u =

⎛⎜⎜⎜⎜⎝
v1
v2
v3
v4
v5

⎞⎟⎟⎟⎟⎠⊕
⎛⎜⎜⎜⎜⎝

u1

u2

u3

u4

u5

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
v1 + u1

v2 + u2

v3 + u3

v4 + u4 +
v1u1

v1+u1
(v2v1 −

u2

u1
)(v3v1 −

u3

u1
)

v5 + u5

⎞⎟⎟⎟⎟⎠
φslope(i) = (1, iX , iY , 0, iX

2)T

χslope(v) =
Cov(X,Y )

V ar(X)
=

v4
v1

v5
v1
− (v2v1 )

2
=

v1v4
v1v5 − v22

Here, again the first four components represent the cardinality of the correspond-
ing set of instances, the sum of values for X and Y and the measure C as defined
above. Additionally, the last component is additionally required to compute the
variance as described previously for the variance model.

Logistic Regression Model. Next, we consider the logistic regression model.
This model is used for the classification of a binary target attribute Y ∈ AM

from a set of independent binary attributes Xj ∈ AM \ Y, j = 1, . . . , |AM | − 1.
The model is given by: y = 1

1+e−z , z = b0 +
∑

j bjxj . An exceptional model
mining goal could then be identify patterns in which the model parameters bj
differ significantly from the ones derived from the total population.

Unfortunately, to the best of the authors’ knowledge until now no exact single-
pass algorithm has been proposed for determining the parameters for logistic
regression, due to the non-linear nature of parameter fitting. Since according to
Theorem 1 the existence of such an algorithm is necessary for the existence of
a sufficient condensed valuation basis, the exact computation of parameters for
the logistic regression model relies on the trivial valuation basis so far.

DTM-Classifier. Next, we discuss two models based on the DTM-classifier [10]:
It predicts a target attribute Y ∈ AM from a set of independent attributes
Xj ∈ AM \ Y, j = 1, . . . , |AM | − 1, by determining the probability of each target
attribute value for each combination of values of the independent attributes.
For value combinations, which did not occur in the training set, the probability
distribution of the complete training set is used. Then, for a given new instance
i the target value is predicted, that has the highest probability conditioned on
the respective combination of values of the Xj in i. If the specific combination of
the values of Xj did not occur in the training data, then the instance is classified



288 F. Lemmerich, M. Becker, and M. Atzmueller

as the most frequent target value in the complete training set. In the context
of exceptional model mining, amongst others, the Hellinger distance has been
proposed as an exceptionality measure for this model class. It measures the dif-
ference between the distribution within a subgroup S and the distribution in its
complement S̄. It is computed as∑

y,x1,...xk

(
√

PS(y|x1, . . . , xk)−
√

PS̄(y|x1, . . . , xk))
2.

For an efficient computation in FP-trees, we store the probabilities for all value
combinations of Y,X1, . . . , X|AM−1|.

In the following, we assume that all attributes are binary for the sake of
simpler notation. The generalization for non-binary attributes is straightforward.
Furthermore, we assume that value combinations are arranged in a predefined
order, where the positive values of Y are on odd positions and the corresponding
negative value of Y for the same combination of independent attribute values is
immediately following. Then, a slightly simplified model configuration is given
by:

Vdtm = R
2|AM |

v ⊕dtm u = v + u

φdtm(i) = (vj) =

{
1, if the j-th combination of values is true in i
0, else

χ
(k)
dtm(v) =

v2k−1

v2k−1 + v2k

In this model configuration each component of the valuation basis corresponds to
a combination of values. Please note, that in this case the valuation basis stored
in each node of the GP-tree needs to store 2k values, where k is the number of
(binary) model attributes. Therefore this model configuration is not tractable for
large numbers of model attributes. However, this should not be the case in most
practical applications, since larger models are typically difficult to comprehend
by human users.

Bayesian Networks. Bayesian networks have been proposed as complex target
models for exceptional model mining [6]. Since to the best of the authors’ knowl-
edge there is currently no parallel single-pass algorithm for learning bayesian
networks — which is a complex task on its own — we cannot provide an effi-
cient valuation basis for this model class here, but refer to the trivial valuation
basis. However, there is ongoing research in that area [5] which can possibly be
exploited in future work.

6 Evaluation

In this section, we present runtime evaluations of the proposed approach using
UCI-datasets [14] as well as a scalability study in a large real world dataset.
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6.1 Runtime Evaluations on UCI Data

We evaluated the presented approach by performing runtime experiments using
a set of well known UCI datasets. The algorithms were implemented in the
open source data mining environment VIKAMINE1[2]. The experiments were
performed on a standard office PC with a 2.2 GHz CPU and 2 GB RAM. As
search space we used all non-model attributes in the respective dataset. Numeric
attributes were discretized in five intervals using equal-frequency discretization.

In a first set of experiments we compared the runtime of the GP-tree ap-
proach for different model classes. Due to the limited space we just show the
results for the exemplary credit-g dataset, see Table 1. In this dataset, we used
the attributes duration and credit amount as model attributes, which were dis-
cretized if necessary. We excluded these attributes from the search space for
all model classes to increase the comparability of the results. Experiments on
other datasets showed similar characteristics. As can be seen in the table, the
runtimes differ only marginally. For the DTM-classifier, the results only differ
by a small constant factor, which can explained by the more complex model
configuration. The similarity of the runtimes is due to the fact that no pruning
scheme is utilized; therefore, the search space is the same for all model classes.

Table 1. Runtime in seconds for the GP-growth algorithm using the credit-g dataset
for different model classes and various search depth (maximum number of selectors in
a single subgroup description)

Model Class Model Attr. 2 3 4 5

Frequent Pattern - 0.8 3.5 17.1 70.0
Subgroup Discovery duration 0.8 3.6 17.0 69.3
Variance duration 0.8 3.6 17.0 72.6
Linear Regression both 0.9 3.8 18.6 77.3
Correlation Coefficient both 0.9 3.8 18.7 77.8
DTM classifier both 1.8 7.4 32.0 118.2

Next, we performed an extensive runtime analysis of our approach using 19
datasets from the UCI repository. For that purpose, we compared the proposed
GP-growth algorithm to a simple depth first search without any specialized data
structure. Due to the runtime similarity for different model classes and due to
the limited space, we only show the results for one model class, that is, the slope
of the linear regression. The results are shown in Table 2. It can be observed,
that even at a search depth of 2 (searching only for subgroup descriptions that
have a maximum of 2 selectors) the GP-growth algorithm outperforms the sim-
ple depth first search approach significantly. This difference increases for larger
search depth. At a search depth of 5 GP-growth completes the task two orders
of magnitude faster for all datasets. These results clearly demonstrate the power
of efficient data structures such as the GP-tree.

1 www.vikamine.org

www.vikamine.org
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Table 2. Runtime in seconds for different UCI-Datasets for the Linear Regression
Model class for various search depth (maximum number of selectors in a single subgroup
description), comparing a simple Depth-First-Search with the GP-tree

max depth 2 3 4 5

dataset DFS GPG DFS GPG DFS GPG DFS GPG

adults 230.9 6.2 8905.7 10.4 > 6h 25.1 > 6h 65.6
autos 1.6 0.5 72.4 3.8 2279.5 21.9 > 6h 104.0
breast-w 0.2 0.1 0.9 0.1 4.5 0.1 15.8 0.1
colic 1.3 0.7 32.9 2.6 639.8 12.9 9940.8 46.4
credit-a 1.2 0.2 24.1 0.9 339.6 3.2 3849.3 9.8
credit-g 2.9 0.9 68.7 3.8 1202.0 18.6 16593.8 77.3
diabetes 0.3 0.1 2.6 0.1 16.9 0.3 87.8 0.4
forestfires 0.8 0.2 16.1 0.6 235.8 2.0 2670.2 4.3
glass 0.1 0.0 1.3 0.1 10.6 0.2 66.2 0.3
heart-h 0.2 0.1 2.7 0.1 23.9 0.3 168.9 0.6
hepatitis 0.2 0.1 3.3 0.7 40.0 3.3 373.2 12.4
housing 0.2 0.0 1.4 0.1 7.7 0.2 32.8 0.4
hypothyroid 10.4 1.4 247.7 5.1 4405.4 24.3 > 6h 131.3
ionosphere 3.1 1.9 154.7 22.5 5581.3 184.3 > 6h 1136.7
labor 0.1 0.0 1.0 0.1 12.0 0.3 108.4 0.6
segment 6.5 1.0 175.3 3.9 3437.8 16.1 > 6h 59.1
spambase 18.7 6.0 558.6 28.4 12498.8 196.1 > 6h 1869.1
vehicle 2.5 0.6 66.0 3.2 1367.3 15.0 > 6h 53.1
vowel 2.1 0.3 45.3 1.3 754.4 4.3 10064.1 10.4

6.2 Scalability Study: Social Image Data

In the following, we present a short case study on real world data that shows the
advantages of the presented approach in large scale applications. As a dataset,
we used publicly available metadata of pictures uploaded to the Flickr2-platform.
More specifically, we crawled the view counts as well as all tagging information
for all pictures geo-referenced to a location in Germany uploaded in 2010. We
limited the dataset to tags with more than 1000 occurrences leading to a dataset
of about 1.1 million instances and about 1200 tags that we used as describing
attributes. Since pictures viewed by more people are naturally also tagged by
more people, there is a correlation to the number of tags assigned to a picture.
To evaluate the scalability of the GP-growth approach we performed the task
of identifying combinations of tags (as subgroup descriptions), for which this
correlation is especially strong. As a result, even for a search depth of 2, the
simple DFS algorithm did not finish the task within two full days. In contrast,
the same task performed by GP-growth finished in about 8 minutes.

The massive difference for this dataset can be explained by the sparseness of
the tagging data, which especially favors the utilized tree structure. Furthermore,
even for an increased search depth of 3, the task could be completed within

2 www.flickr.com

www.flickr.com
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10 minutes. This small difference is reasonable, as due to the sparseness of the
dataset less combinations of three tags might occur in dataset than combinations
of two tags. Overall, the runtime improvements for the Flickr dataset are even
larger than in the previous datasets, showing the scalability of our approach.

7 Conclusions

In this paper, we have proposed a novel approach for fast exhaustive exceptional
model mining: We have introduced the concept of valuation bases as an inter-
mediate condensed data representation and presented the general GP-growth
algorithm for efficient exhaustive exceptional model mining. We discussed the
applicability of the proposed approach by drawing an analogy to data stream
mining, and provided implementation examples for several model classes. Our
runtime experiments show improvements of more than an order of magnitude in
comparison to a naive exhaustive depth-first search.

For future work, we aim to analyze methods for considering the diversity of
pattern discovery results, e.g., [12] in order to improve the result sets. Another
interesting direction for future research is the adaptation of other more advanced
data structures, such as bit vectors, for exceptional model mining.
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research cluster at the interdisciplinary Research Center for Information System
Design (ITeG) at Kassel University, and by the EU project EveryAware.
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Abstract. We present a machine learning task, which we call bidirec-
tional semi-supervised learning, where label-only samples are given as
well as labeled and unlabeled samples. A label-only sample contains the
label information of the sample but not the feature information. Then, we
propose a simple and effective graph-based method for bidirectional semi-
supervised learning in multi-label classification. The proposed method
assumes that correlated classes are likely to have the same labels among
the similar samples. First, we construct a graph that represents sim-
ilarities between samples using labeled and unlabeled samples in the
same way with graph-based semi-supervised methods. Second, we con-
struct another graph using labeled and label-only samples by connecting
classes that are likely to co-occur, which represents correlations between
classes. Then, we estimate labels of unlabeled samples by propagating la-
bels over these two graphs. We can find a closed-form global solution for
the label propagation by using matrix algebra. We demonstrate the ef-
fectiveness of the proposed method over supervised and semi-supervised
learning methods with experiments using synthetic and multi-label text
data sets.

Keywords: semi-supervised learning, label propagation, multi-label
classification.

1 Introduction

The performance of a classifier can be improved as the number of labeled samples
is increased. However, we might not have enough labeled samples to achieve a
reasonable performance because their generation incurs cost and requires time.
To overcome the shortage of labeled samples, there has been great interest in
methods that effectively increase training samples. For example, semi-supervised
learning [1] augments training samples by using unlabeled samples. The other
examples include domain adaptation [2] and class adaptation [3], where the
former utilizes samples from different domains and the latter utilizes samples
from different taxonomies.

In this paper, we consider a new way to improve multi-label classification
performance, where we have label-only samples as well as labeled and unlabeled

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 293–306, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Table 1. Notation

Symbol Description

{(x,y)} labeled samples
{x} unlabeled samples
{y} label-only samples
N number of labeled samples
U number of unlabeled samples
O number of label-only samples
K number of classes
M number of features

Table 2. Given data in supervised, semi-supervised and bidirectional semi-supervised
learning

Problem Given data

supervised {(x,y)}
(one-directional) semi-supervised {(x,y)}, {x}
bidirectional semi-supervised {(x,y)}, {x}, {y}

samples. The labeled samples are a set of pairs of feature and label vectors
{(xi,yi)}Ni=1, and the unlabeled samples are a set of feature vectors {xi}N+U

i=N+1

without label information. The label-only samples are a set of label vectors
{yi}N+U+O

i=N+U+1, where corresponding feature information is unavailable. We call
this setting bidirectional semi-supervised learning. Semi-supervised learning is
defined as a task with abundant inputs (unlabeled samples) but few input-output
pairs (labeled samples); so we define bidirectional semi-supervised learning as a
task with abundant inputs and abundant outputs (label-only samples), but few
input-output pairs. Table 1 summaries our notation, and Table 2 summaries
the given data in supervised, semi-supervised and bidirectional semi-supervised
learning.

This setting can be found in many real applications. For example, let us
consider recommendation problems in two different domains, where the feature
vector is a user’s preference for items in a given domain, and the label vector is
the user’s binary preference for items in another domain [4, 5]. Here, we suppose
that we want to estimate the preferences in the second domain. Users who have
preferences in the both domains can be used for labeled samples, those who have
preferences only in the first domain can be used for the unlabeled samples, and
those who have preferences only in the second domain can be used for the label-
only samples. Cross-lingual information retrieval [6–8] is another application,
where the feature vector is a query and the label vector consists of relevant
documents in a different language. Here, we might have a lot of documents in a
different language for label-only samples. Other applications include automatic
image annotation problems [9–11], where the feature vector is image features
and the label vector is the annotations. The label-only samples can be obtained
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using text corpus under the assumption that correlation between annotations is
related to correlation between word in the text corpus. Similarly, in multi-label
text classification problems, label correlation might be available from outside
label-only sources. In general, bidirectional semi-supervised problems may arise
when we have disjoint datasets of features and labels.

Unlabeled samples contain information about the distribution of samples in
the feature space. Semi-supervised learning methods uses this information for
improving performance. Similarly, label-only samples contain information about
the distribution in the label space, or information about correlations between
classes. Therefore, we can expect that the multi-label classifier performance can
be improved by using label-only samples.

We propose a simple and effective graph-based method for bidirectional semi-
supervised learning. A number of graph-based semi-supervised learning methods,
or label propagation, have been proposed [12–15] because of its simplicity and
easy implementation. They have used for a wide variety of applications, such
as text classification [16], image recognition [17] and protein function predic-
tion [18]. With the graph-based semi-supervised method, a graph is constructed
using labeled and unlabeled samples by connecting samples that have similar
feature vectors, where each node corresponds to a sample. Then, labels are es-
timated by propagating labels over the constructed graph with the assumption
that connected samples tend to have the same label. An advantage of graph-base
methods is that we can obtain a global closed-form solution.

The proposed method is an extension of the graph-based semi-supervised
methods. First, we construct a graph using labeled and unlabeled samples in the
similar way with graph-based semi-supervised learning. Second, we construct
another graph using labeled and label-only samples by connecting classes that
are likely to co-occur, where each node corresponds to a class. Then, we estimate
labels by using these two graphs with the assumption that labels of correlated
classes in similar samples tend to be the same. We can obtain a global closed-form
solution for the proposed method. We can use similar techniques that have been
extensively studied for graph-based semi-supervised methods for the proposed
method, such as techniques for constructing effective graphs and algorithms for
efficient estimation.

The remainder of this paper is organized as follows. In Section 2, we formu-
late the proposed method, and describe a closed-form solution and an iterative
estimation method. In Section 3, we briefly review related work. In Section 4, we
demonstrate the effectiveness of the proposed method with experiments using
synthetic and multi-label text data sets. Finally, we present concluding remarks
and a discussion of future work in Section 5.

2 Proposed Method

We suppose that there are N labeled samples {(xi,yi)}Ni=1, U unlabeled samples
{xi}N+U

i=N+1, and O label-only samples {yi}N+U+O
i=N+U+1. A feature vector is repre-

sented by xi = (xim)Mm=1, where xim is the mth element of the ith sample’s
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(a) sample graph (b) class graph (c) sample-class graph

+

Fig. 1. Sample, class and sample-class graphs. Square and circle nodes represent sample
and class, respectively.

feature vector, and M is the number of features. A label vector is represented
by yi = (yik)

K
k=1, where yik = 1 if the ith sample is categorized into class k,

yik = −1 otherwise, yik ∈ {−1, 1}, and K is the number of classes. Each sample
can be assigned to multiple classes. Classes that do not appear in labeled sam-
ples can appear in label-only samples. Our task is to assign labels to unlabeled
samples.

First, we construct a sample graph, where nodes are the labeled and unlabeled
samples. An edge between two nodes represents the similarity of feature vectors
of the two samples. The edge weight can be calculated by using Gaussian kernel
as follows,

wij = exp
(
−α

2
‖ xi − xj ‖2

)
, (1)

where α is the precision parameter. We can also build the sample graph with k
nearest neighbors, where nodes are connected if they are k nearest neighbors in
Euclidean distance, and wij = 0 otherwise. Figure 1 (a) shows an example of a
sample graph, where a square node represents a sample.

Second, we construct a class graph, where nodes are the classes that appear
in the labeled and label-only samples. An edge between two nodes represents
the similarity of the two classes, or how likely the two classes co-occur. The edge
weight can be calculated by using Gaussian kernel in the similar way to the
sample graph,

vkl = exp

(
−β

2
‖ y(k) − y(l) ‖2

)
, (2)

where β is the precision parameter, and y(k) = (y1k, · · · , yNk, yN+U+1,k, · · · ,
yN+U+O,k) is an N +O dimensional vector that consists of the kth elements of
label vectors in the labeled and label-only samples. y(k) can be used with L2
normalization so that the weights correlate to their cosine similarities. Figure 1
(b) shows an example of a class graph, where a circle node represents a class.
Note that there are N +U nodes in the sample graph, and K nodes in the class
graph.

Then, we estimate labels for unlabeled samples using the sample and class
graphs. We suppose that fik is a real valued relaxation of yik, which is to be
estimated. We assume that labels of correlated classes (which are connected in
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the class graph) in similar samples (which are connected in the sample graph) are
likely to be similar. This can be achieved by minimizing the following function,

E =
1

2

N+U∑
i,j=1

K∑
k,l=1

wijvkl(fik − fjl)
2, (3)

with the constraint of fik = yik on the labeled data i = 1, · · · , N . When wij is
high (feature vectors of i and j are similar) and vkl is high (classes k and l are
correlated), the estimated value for class k of the ith sample needs to be similar
to that for class l of the jth sample so as to minimize the objective function E.
Therefore, by minimizing the objective function, we can find estimated labels,
where correlated classes in similar samples have similar labels.

The proposed method can be seen as label propagation on a sample-class
graph that is build by combining sample and class graphs as shown in Figure 1
(c), where the correlated classes in the similar samples are connected. In the
sample-class graph, each node corresponds to a class of each sample, and the
number of nodes is (N + U)K.

With graph-based semi-supervised learning methods, the following objective
function is minimized,

E =
1

2

N+U∑
i,j=1

wij

K∑
k=1

(fik − fjk)
2, (4)

where they assume that similar samples have similar labels. However, they do
not consider the correlation between classes. The graph-based semi-supervised
learning methods can be seen as label propagation on a sample graph without
class graphs. The proposed method with vkl = 1 if k = l and vkl = 0 otherwise
coincides with the graph-based semi-supervised method.

2.1 Closed-Form Solution

We can find a closed-form global solution for the minimization of the objective
function E by using matrix algebra. The proposed method propagates labels on
the sample-class graph as shown in Figure 1. Therefore, we can use the same
algorithm for finding the solution with label propagation for semi-supervised
learning [15]. Let A be an (N+U)K×(N+U)K matrix, whose (iK+k, jK+l)th
element is AiK+k,jK+l = wijvkl as follows,

A=

⎛⎜⎜⎜⎜⎝
w11v11 w11v12 · · · w11v1K

w11v21 w11v22 · · ·
...

...
...

. . .
...

wN+U,1vK1 · · · · · · wN+U,N+UvKK

⎞⎟⎟⎟⎟⎠ , (5)
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which represents the sample-class graph. Let D be a diagonal matrix, whose ith
diagonal element is

Dii =

(N+U)K∑
j=1

Aij . (6)

The graph Laplacian matrix L is defined as,

L = D −A. (7)

Let f = (f11, f12, · · · , f1K , f21, · · · , fN+U,K)
 be the vector of f values on all of
the labeled and unlabeled samples. The objective function E can be written as,

E = f
Lf . (8)

Then, we can obtain the following closed-form solution by solving the constrained
optimization problem using Lagrange multipliers,

fl = yl, (9)

fu = −L−1
uuLulyl. (10)

Here, f = (fl,fu) and

L =

(
Lll Llu

Lul Luu

)
, (11)

which are partitioned with respect to values of labeled and unlabeled samples.

2.2 Iterative Algorithm

We can also obtain a solution by using an iterative algorithm [19, 20]. When
the graphs are sparse, the iterative algorithm is efficient and reduces required
memory. Sparse graphs can be obtained by using k nearest neighbor graph con-
struction for sample and class graphs. With the closed-form solution, we need
the inverse of a UK×UK matrix Luu, whose inverse is not sparse even if Luu is
sparse. The numbers of unlabeled samples U and classes K might be large, and
it might require a huge memory space for storing the UK × UK dense matrix.
On the other hand, the iterative algorithm does not need to calculate any dense
matrices. First, we initialize estimates as follows,

f
(0)
l ← yl, (12)

f (0)
u ← (0, 0, · · · , 0). (13)

Then, we iterate the following updates until convergence,

f (t+1) ←D−1Af (t), (14)

f
(t+1)
l ← yl, (15)

where f (t) is the estimates of the tth iteration. We can find the unique fixed
point by the iterative algorithm.
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2.3 Induction

The method described before is transductive, which means that the method
estimates labels of the given unlabeled samples. When we newly obtain unlabeled
samples to be estimated, we can estimate their labels by combining previously
given samples and the newly obtained samples. However, it is inefficient. We can
efficiently estimate labels for out of samples using the estimation result for the
previously given samples as follows,

fik =

∑N+U
j=1

∑K
l=1 wijvklfjl∑N+U

j=1

∑K
l=1 wijvkl

, (16)

where fjl is the estimated labels of the previously given samples.

3 Related Work

Bidirectional semi-supervised learning is a new type of machine learning task,
and the proposed method is a simple method based on graphs. A lot of graph-
based semi-supervised learning methods have been proposed. However, most of
them are for single-label classification. Those methods can be applied to multi-
label classification by estimating each label independently. However, by consid-
ering the class interdependence for multi-label classification, the performance
can be improved and some those types of graph-based semi-supervised learning
methods have been proposed [21–23, 4]. For example, [22] proposed a method
that estimates labels so that multiple labels for each sample satisfy the given
correlations between classes. Other multi-label classifiers also uses class correla-
tion [24]. However, they utilize only classes that appeared in the labeled samples.
On the other hand, the proposed method can utilize classes that do not appear
in the labeled samples by representing class correlation by a graph, and propa-
gate labels over the graph. With the proposed method, even if two classes do not
directly co-occur, label information can propagate through edges. In [21], cor-
relation between labels for each sample is considered. In contrast, the proposed
method considers correlation between labels not only in one sample but also in
multiple similar samples.

4 Experiments

4.1 Data

We demonstrate the effectiveness of the proposed method using the following
two data sets: Swissroll and Patent.

The Swissroll data [25, 26] are synthetic, where samples of three dimensional
feature vectors are lying on a two dimensional nonlinear manifold as shown in
Figure 2. We augmented the swissroll data set with multiple labels. We generated
label vectors so that they became similar if their feature vectors were located
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Fig. 2. Swissroll data. Each point represents a feature vector and its color represents
the labels. The numbers show that nearby samples are assigned to those classes.

closely in the two dimensional nonlinear manifold, where we set the number of
classes atK = 10.We generated samples, where the number of labeled, unlabeled
and label-only samples were N = 10, U = 1, 000 and O = 1, 000 respectively.

The Patent data consist of patents published in Japan from January to March
in 2004, to which International Patent Classification (IPC) codes were attached
by experts according to their content. We used bag-of-words of a patent for the
feature vector, where the number of words was M = 104, 621, and we normalized
each feature vector by L2 norm. We used the most frequently occurred 500 IPC
codes in the corpus for the classes, K = 500. We sampled 10 labeled samples,
1, 000 unlabeled samples, and 5, 000 label-only samples from the corpus.

Figure 3 shows a class graph of the Patent data set. Here, each node represents
a class, and it is visualized by [27] so that connected nodes are located closely.
Some classes form clusters, and we can see the structure of classes from the
visualization result. In the Patent data set, there are correlated classes, such
as ‘transmitter’ and ‘receiver’, ‘distinct material semiconductor’ and ’distinct
alignment semiconductor’, and ‘system to generate signals for adjusting focus’
and ‘automatic focus adjusting system’.

4.2 Measurements

For the evaluation measurements, we used mean reciprocal rank (MRR) and
normalized discounted cumulative gain (NDCG) [28], which were widely used in
evaluating ranking problems. We used ranking measurements because they give
higher scores when true classes are ranked higher than false classes even if the
estimated classes did not exactly match with the true classes. They were also
used for multi-label classification [29–31].

The MRR is the average of the reciprocal ranks, and the MRR of the ith
sample is given as follows,

MRRi =
1

|yi|
∑

k:yik=1

1

rankik
, (17)
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Fig. 3. A class graph of the Patent data set, where each node represents a class or IPC
code

where rankik is the rank of class k of the ith sample in the estimated result, and
|yi| represents the number of classes that satisfy yik = 1.

The DCG is calculated as follows,

DCGi = gi1 +

K∑
k=2

gik
log2 k

, (18)

where gik = 1 if the kth ranked estimated class is the true class for the ith
sample, and gik = 0 otherwise. NDCG can be obtained by normalizing DCG by
the maximum possible DCG, and NDCG lies on the interval 0.0 to 1.0. With the
proposed method, classes were ranked according to values fik for each unlabeled
sample. Higher MRR and NDCG represent better classification performance.

4.3 Compared Methods

We compared the proposed method, which uses all of the labeled, unlabeled and
label-only samples, with a supervised method, which uses only labeled samples,
and a semi-supervised method, which uses labeled and unlabeled samples.

For the supervised method (SL), we used a maximum entropy model, which is
a discriminative classifier, and it has achieved high performance for text classifi-
cation [32]. The maximum entropy model estimates the probability distribution
that maximizes entropy under the constraints imposed by the given data. The
probability that the ith sample is classified into class k is calculated as follows,

P (k|i) = exp(θ

k xi)∑K

l=1 exp(θ


l xi)

, (19)
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Table 3. Average MRR and NDCG in the Swissroll data set and their standard devi-
ation

MRR NDCG

SL 0.520 ± 0.049 0.738 ± 0.047
SSL 0.602 ± 0.048 0.814 ± 0.053

Proposed 0.675 ± 0.047 0.900± 0.039

Table 4. Average MRR and NDCG in the Patent data set and their standard deviation

MRR NDCG

SL 0.029 ± 0.021 0.157 ± 0.021
SSL 0.025 ± 0.018 0.153 ± 0.019

Proposed 0.034± 0.023 0.166± 0.026

where θk is a parameter vector for class k. The labels were ranked according this
estimated probability. The parameters can be obtained using maximum a pos-
teriori (MAP) estimation with Gaussian priors. We chose the hyper-parameters
for the Gaussian priors from {10−2, 10−1, 1} that achieved the best performance.

For the semi-supervised method (SSL), we used a graph-based semi-supervised
method, or label propagation [12]. The graph-based semi-supervised method
coincides with the proposed method when the class graph is constructed with
vkl = 1 if k = l, and vkl = 0 otherwise as described before. We set the precision
parameter for Gaussian kernel at α = 1, and the number of neighbors at 10
when we construct the graph.

With the proposed method, we set the precision parameters for Gaussian
kernel at α = 1 and β = 1, and the number of neighbors at 10 when we construct
both of the sample and class graphs. With the semi-supervised and proposed
method, we estimated labels using iterative algorithms.

4.4 Results

Tables 3 and 4 show the averages of MRR and NDCG and their standard devia-
tions over 100 experiments with Swissroll and Patent data sets, respectively. The
proposed method achieved the best performance in both data sets. This result
indicates that the proposed method can appropriately assign labels through its
use of label-only samples as well as unlabeled samples.

Figure 4 shows NDCGs achieved by the proposed method with different num-
bers of label-only samples in Swissroll and Patent data sets. As the number of
label-only samples increases, the NDCG increases. The MRR showed the same
tendency of the NDCG. This result implies that the proposed method can obtain
relationships between classes more precisely by using more label-only samples.
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Fig. 4. NDCG with different numbers of label-only samples

5 Conclusion

We presented bidirectional semi-supervised learning, which is a novel machine
learning task to improve performance by using label-only samples as well as
labeled and unlabeled samples. We then proposed a simple and effective graph-
based method for bidirectional semi-supervised learning. The proposed method
assumes that correlated classes are likely to have the same labels among the sim-
ilar samples. The correlated classes can be found by using labeled and label-only
samples, and the similar samples can be found by using labeled and unlabeled
samples. In experiments with synthetic and text data sets, we confirmed that
the proposed method can improve the performance of multi-label classification.

Although our results have been encouraging as a first step towards bidirec-
tional semi-supervised learning, we must extend our approach in a number of
directions. First, we can extend the proposed method by using more advanced
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techniques for graph-based semi-supervised learning because the proposed method
uses the same framework with the graph-based semi-supervised learning meth-
ods. Examples include methods for learning weight matrices [12], and efficient
algorithms for label estimation [33, 34].

Second, we need to investigate methods for bidirectional semi-supervised learn-
ing other than the proposed graph-basedmethod. In the semi-supervised learning,
a wide variety of methods have been proposed such as transductive SVMs [35, 36],
methods using generative models [1, 37] as well as graph-based methods. These
methods might be helpful for considering new bidirectional semi-supervised learn-
ing methods.

Finally, we would like to evaluate the proposed method in other real appli-
cations. Application examples include collaborative filtering [4, 5], cross-lingual
information retrieval [6–8], and image annotation [10, 11].
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Abstract. Our inspiration comes from Nell (Never Ending Language
Learning), a computer program running at Carnegie Mellon University
to extract structured information from unstructured web pages. We con-
sider the problem of semi-supervised learning approach to extract cat-
egory instances (e.g. country(USA), city(New York)) from web pages,
starting with a handful of labeled training examples of each category or
relation, plus hundreds of millions of unlabeled web documents. Semi-
supervised approaches using a small number of labeled examples together
with many unlabeled examples are often unreliable as they frequently
produce an internally consistent, but nevertheless, incorrect set of ex-
tractions. We believe that this problem can be overcome by simultane-
ously learning independent classifiers in a new approach named Coupled
Bayesian Sets algorithm, based on Bayesian Sets, for many different cat-
egories and relations (in the presence of an ontology defining constraints
that couple the training of these classifiers). Experimental results show
that simultaneously learning a coupled collection of classifiers for random
11 categories resulted in much more accurate extractions than training
classifiers through original Bayesian Sets algorithm, Naive Bayes, BaS-all
and Coupled Pattern Learner (the category extractor used in NELL).

Keywords: Semi supervised learning, information extraction.

1 Introduction

The Web can be seen as a powerful source of knowledge. Translating the Web
content into a structured knowledge base containing facts about entities (e.g.,
Company(Disney)) and also about semantic relations between those entities
(e.g. CompanyIndustry(Disney, entertainment)) would be of great use to
many applications. Machine learning approaches have been successfully em-
ployed in tasks such as information extraction from text, where the main goal is
to learn to extract instances of various categories of entities (e.g., Athlete(Carl
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Lewis), City(Pittsburgh), Company(Google Inc.), etc.) as well as instances
of semantic relations (e.g., CompanyLocatedInCity(Google Inc.,Pittsburgh))
from structured and unstructured text [1–3].

One of the drawbacks of entity and semantic relation instance extractors
based on supervised learning approaches is that they tend to be costly. Tra-
ditionally, such an approach requires a substantial number of labeled training
examples for each target category and semantic relation. Therefore, many re-
searchers have explored semi-supervised learning methods that use only a small
number of labeled examples, along with a large volume of unlabeled text [4].
While such semi-supervised learning methods are promising, they might exhibit
low accuracy, mainly, because the limited number of initial labeled examples
tends to be insufficient to reliably constrain the learning process, thus, raising
concept drift problems [5, 6].

The Bayesian Sets algorithm, proposed in [7], was designed to extract entity
instances using a few labeled examples and a number of unlabeled examples (in
a task traditionally known as set expansion). It can be considered a Bayesian in-
ference method that, when applied to exponential family models with conjugate
priors, can be implemented using exact algorithms that tend to be computation-
ally efficient. Recent studies [8, 9] have shown, however, that the direct appli-
cation of Bayesian Sets may produce poor results in tasks such as information
extraction from text. In addition, when Bayesian Sets are applied to problems
in which the number of labeled examples is too small, the induced results tend
to be deteriorated.

NELL1 (Never-Ending Language Learner) [10] is a computer system that
runs 24 hours per day, 7 days per week. It was started up on January, 12th,
2010 and should be running forever, gathering more and more facts from the
web to populate its own knowledge base. In a nutshell, NELL’s knowledge base
(KB) is an ontology defining hundreds of categories and semantic relations that
should be populated by the system. One of the main components of NELL is
called CPL, which is described in more details in [4] and works as a free-text
knowledge extractor which learns and uses the learned category and semantic
relation contextual patterns (e.g. “mayor of X ” and “X plays for Y ”), to extract
instances of each category and each semantic relation defined in the KB.

The hypothesis explored in this paper is that we can follow the ideas proposed
in [10, 9], and achieve much higher accuracy in semi-supervised learning by cou-
pling the simultaneous training of many extractors using a Coupled Bayesian
Sets (CBS) algorithm to help NELL populating its own KB with more preci-
sion than the current CPL component. The intuition here is that the under-
constrained semi-supervised learning task can be made easier by adding new
constraints that arise from coupling the training of many extractors based on
Bayesian Sets. Following NELL’s principles, we present an approach in which
the input to the semi-supervised learner is an ontology defining a set of target

1 http://rtw.ml.cmu.edu

http://rtw.ml.cmu.edu
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categories and semantic relations, a handful of seed examples for each category
and for each semantic relation, and also, a set of constraints that couple the
various categories and relations (e.g., Person and Sport are mutually exclusive).
We show that, given this input and a huge set of unlabeled data (text from Web
pages written in English), and using a semi-supervised learning approach, CBS
can achieve very significant accuracy improvements by coupling the training of
extractors for dozens of categories and relations. In addition, CBS allows the
system to automatically identify new constraints suggesting new instances that
can be considered as mutually exclusive for a specific category.

2 Related Work

The literature shows that bootstrapping approaches used to information ex-
traction can yield impressive results with little initial human effort (in label-
ing examples). Bootstrapping approaches [11–13] start with a small number of
labeled seed examples and iteratively grow the set of labeled examples using
high-confidence labels from the current model. Such approaches have shown
promising results in applications such as web page classification, named entity
classification, parsing, and machine translation, among others. After many it-
erations, however, accuracy typically declines mainly because errors in labeling
tend to accumulate, a problem that has been referred to as semantic drift. To
reduce errors introduced in under-constrained semi-supervised learning, several
methods have been considered. Coupling the learning of category extractors by
using positive examples of one category as negative examples for others has been
shown to help limiting such a decline in accuracy[4]. Also, entity set expansion
using topic information can alleviate semantic drift in bootstrapping entity set
expansion [8].

Bayesian Sets (BS) algorithm is the basis for Coupled Bayesian Sets (CBS)
presented in Section 3 of this paper. BS was proposed in [7], and its main idea is
to take a query consisting of a small set of items (labeled examples), and, based
on that query, the algorithm returns additional items (from a set of unlabeled
examples) which belong in this set. It computes a score for each item by compar-
ing the posterior probability of that item given the set, to the prior probability
of the item itself. These probabilities are computed with respect to a statistical
model for the data, and since the parameters of this model are unknown they
are marginalized out. As proposed in [7], let D be a dataset of items, and x be
an item from this set. Consider also that the user provides a query set Dc which
is a small subset of D. Then, Bayesian Sets computes the ratio:

score(x) =
p(x|Dc)

p(x)
=

p(x,Dc)

p(x)
(1)

which can be interpreted as the ratio of the joint probability of observing x
and Dc, to the probability of independently observing x and Dc. Intuitively, this
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ratio compares the probability that x and Dc were generated by the same model
with the same (though unknown) parameters θ, to the probability that x and
Dc came from models with different parameters θ and θ′.

The Bayesian Sets approach is based on an unsupervised idea of clustering to-
gether items that belong to the same set. Thus, it defines a cluster assuming that
the data points in the cluster all come independently and identically distributed
from some simple parameterized statistical model. To have a better understand-
ing on that, consider for example, that the parameterized model is p(x|θ), where
θ are the parameters. In this example, if the all data points in Dc belong to one
cluster, then under this definition they were generated from the same setting of
the parameters. The problem in this assumption is that the parameters setting is
unknown, thus, BS averages over all possible parameter values weighted by some
prior density on parameter values, p(θ). Following along these lines it is possible
to estimate probabilities on x, Dc and θ as in equations (2) ,(3), (4) and (5):

p(x) =

∫
p(x|θ)p(θ)dθ (2)

p(Dc) =

∫ ∏
xi∈Dc

p(xi|θ)p(θ)dθ (3)

p(x|Dc) =

∫
p(x|θ)p(θ|Dc)dθ (4)

p(θ| Dc) =
p(Dc|θ)p(θ)

p(Dc)
(5)

Considering that there are many more items (in the set of unlabeled examples)
that are not members of a target set T than items that are members of T , the
data can be considered binary and sparse. Thus, it is possible to have log of the
score linear in x. Therefore, still following [7], let’s assume each item xi ∈ Dc is
a binary vector xi = (xi1, ..., xiJ ) where xij ∈ {0, 1}, and that each element of
xi has an independent Bernoulli distribution as in equation (6):

p(xi|θ) =
J∏

i=1

θ
xij

j (1− θj)
1−xij (6)

It is well-known that the conjugate prior for the parameters of a Bernoulli dis-
tribution is the Beta distribution:

p(θ|α, β) =
J∏

j=1

Γ (αj + βj)

Γ (αj)Γ (βj)
θ
αj−1
j (1 − θj)

βj−1 (7)
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where α and β are hyperparameters, and the Gamma function (Γ ) is a general-
ization of the factorial function. For a query Dc = xi consisting of N vectors it
is easy to show that:

p(Dc|α, β) =
∏
j

Γ (αj + βj)

Γ (αj)Γ (βj)

Γ (α̃j)Γ (β̃j)

Γ (α̃j + β̃j)
(8)

where α̃ = α+
∑N

i=1 xij and β̃ = β+N−
∑N

i=1 xij . For an item x = (x.1 . . . x.J)
the score, written with the hyperparameters explicit, can be computed as follows:

score(x) =
p(x|Dc, α, β)

p(x|α, β)

=
∏
j

Γ (αj+βj+N)
Γ (αj+βj+N+1)

Γ (α̃j+x.j)Γ (β̃j+1−x.j)

Γ (α̃j)Γ (β̃j)

Γ (αj+βj)
Γ (αj+βj+1)

Γ (αj+x.j)Γ (βj+1−x.j)
Γ (αj)Γ (βj)

(9)

The log of the score is linear in x:

log score(x) = c+
∑
j

qjx.j (10)

where
c =

∑
j

log(αj + βj)− log(αj + βj +N) + log β̃j − log βj (11)

and
qj = log α̃j − logαj − log β̃j + log βj (12)

One of the most important assumptions to make Bayesian Sets a very fast
method, in practice, is that if the entire data set D is stored into one large
matrix X with J columns, it is possible to compute the vector s of log scores for
all points using a single matrix vector multiplication

s = c +Xq (13)

Thus, for sparse data sets this linear operation can be implemented very effi-
ciently. Each query Dc corresponds to computing the vector q and scalar c. As
aforementioned, the set of unlabeled examples tend to be sparse in a set expan-
sion task. In addition, as pointed out in [7], this can also be done efficiently if
the query is also sparse, since most elements of q will equal log βj − log(β +N)
which is independent of the query.

In [9], the Bayesian Sets weakness (that can be observed when it is applied to
a problem having too few initially labeled examples) is investigated based on an
Iterative Bayesian Sets proposal. It explores the fact the seed data mean must be
greater than the instance data mean on feature j. Only such kind of features can
be regarded as high-quality features in Bayesian Sets. Unfortunately, it is not
always the case due to the idiosyncrasy of the data. There are many high-quality
features, whose seed data mean may be even less than the candidate data mean.
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In that proposed approach, however, the Iterative Bayesian Sets still leaves
room to the insertion of new constraints (which are not explored) to adjust the
problem in a way that wrong extractions can be filtered out from the self-labeling
results. These new constraints are explored in our proposed approach described
in Section 3.2.

When considering related works focusing on Machine Reading, there are in-
teresting approaches that do not implement the never-ending learning idea (as
done in NELL). The KnowItAll system, by Etizioni and co-workers [14] and its
extensions [15, 16], also, the Yago system [17] are good examples, although they
implement different strategies on how to build a system that can read the Web.

3 Coupled Bayesian Sets - CBS

This section describes the idea of coupling semi-supervised learning of multiple
functions to constrain Bayesian Sets. Our Coupled Bayesian Sets method starts
by training classifiers based on a small amount of labeled data, then uses these
classifiers to label unlabeled data. The most confident new labels are added to
the pool of labeled data and, then are used to retrain the models. The process
keeps iterating for an indefinite time (Section 3.2 describes this process in more
details). The iterative training is coupled by constraints that restrict labellings.

3.1 Coupling Constraints Used by CBS

As already mentioned, the inspiration to CBS is taken from [10, 4], where three
coupling constraints are defined:

– Output constraints: For two functions fa : X → Ya and fb : X → Yb, if
we know some constraint on values ya and yb for an input x, we can require
fa and fb to satisfy this constraint. For example, if fa and fb are Boolean-
valued functions and fa(x)⇒ fb(x), we could constrain fb(x) to have value
1 whenever fa(x) = 1.

– Compositional constraints: For two functions f1 : X1 → Y1 and f2 : X1×
X2 → Y2, we may have a constraint on valid y1 and y2 pairs for a given x1 and
any x2. We can require f1 and f2 to satisfy this constraint. For example, f1
could “type check” valid first arguments of f2, so that ∀x1, ∀x2, f2(x1, x2)⇒
f1(x1).

– Multi-view-agreement constraints: For a function f : X → Y , if X
can be partitioned into two “views” where we write X = 〈X1, X2〉 and we
assume that both X1 and X2 can predict Y , then we can learn f1 : X1 → Y
and f2 : X2 → Y and constrain them to agree. For example, Y could be a
set of possible categories for a web page, X1 could represent the words in
a page, and X2 could represent words in hyperlinks pointing to that page
(this example was used for the Co-Training setting [18]).

Considering the CBS approach, the learned functions can be considered classi-
fiers informing the system whether a given noun phrase is an instance of some
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category (or whether a pair of noun phrases is an instance of some semantic
relation).

In the experiments described in Section 4, the (output constraint) coupling
is used to implement the mutual exclusiveness constraint described in Subsec-
tion 3.2. In this sense, consider that both city and company are categories.
In addition, consider that city has been defined as mutually exclusive with
company. In such a scenario, CBS will then have binary functions (classifiers)
fa : XNE → Ycity and fb : XNE → Ycompany. If, for a specific noun phrase (e.g.
Bristol), fa(Bristol) = 1 and fb(Bristol) = 1, then the belief that Bristol is a
city (and also a company) decreases. However, if fa(Bristol) = 1 and fb(Bristol)
= 0, then the belief that Bristol is a city (and not a company) increases.

3.2 Coupled Bayesian Set Algorithm

In this section, we describe our algorithm CBS to improve semi-supervised learn-
ing for information extraction based on coupling principles. CBS was designed to
address the problem of learning extractors to automatically populate categories
(predefined in an initial ontology) with high-confidence instances. It has as input
an initial ontology (describing categories and semantic relations), a small set of
labeled instances for each category and for each semantic relation and also, a
large corpus of web pages.

CBS is a bootstrapping algorithm, based on Bayesian Sets (BS) [7], that lever-
ages mutual exclusion principle using positive examples of one category as neg-
ative examples for other ones to learn high-precision instances for all categories
defined in an initial ontology.

Based on BS scoring metric (see Equations (10) and (12)), consider, that in
CBS, we are simultaneously learning one classifier for each category given in the
initial ontology. Assume that category C has weight vector qc (obtained using
positive labeled examples for that category) and it is mutually exclusive with
K categories with q1, q2 . . . qk as their weight vector respectively. Then, in this
case, CBS score for an instance x is evaluated as:

log score(x) = c +
∑
j

qcjx.j −
∑
i

∑
j

qijx.j (14)

where qij = 0 for all j which are positive features (obtained using positive labeled
examples) of category qcj for all i and also for all j which are not features of the

ith class, and c is calculated as follows:

c =
∑
j

log(αj + βj)− log(αj + βj +N) + log β̃j − log βj

where αj and βj are hyper-parameters, and

qij = log α̃i − logαj − log β̃j
i
+ log βj
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Following BS ideas, if we put the entire data set D into one large matrix X , we
can compute the vector s of log scores for all points using a single matrix vector
multiplication

s = c +Xqc −
∑
i

Xqi (15)

The hyper-parameters α and β are empirically set from data,

α = η ∗m

β = η ∗ (1−m)

where m is a mean vector of features over all instances, and η is a scaling factor
(η = 2 in our experiments).

The intuition behind Equation(14) is that it predicts high score for an instance
x which has more features related only to that particular category. On the other
hand, it penalizes the score of instances having a higher number of features
present in mutually exclusive categories. Penalization depends upon weight vec-
tor of mutually exclusive categories. Therefore, for an instance related only with
features that are exclusive to the target category (and having no relation with
features that are present in other mutually exclusive categories) equation(14) re-
duces to the same as equation(10). In the case where the instance x is related to
features that are shared by mutually exclusive categories, equation(14) can also
be rewritten as given below showing reduced effective category weight vector.

log score(x) = c+
∑
j

(qcj −
∑
i

qij)x.j (16)

The main motivation is to have a classifier that gives more strength to features
that are exclusive to a single category and penalizes features which are common
among various categories. This helps to integrate the constraint information in
our system and extract high confidence instances from data.

If for a given instance x, categories a and b are mutually exclusive, then both
feature and weigth vectors of category a and b will be used to estimate two scores
for x (scorea and scoreb, respectively). For example, if category a has non zero
feature ids say (1,2,4,6,8,10) for classification and (1,2,3,5,8,9,10,15) for category
b, out of 15 total ids. Then, log scorea(x) will be calculated adding the values
for features (1,2,4,6,8,10) and subtracting (penalizing) the values for features
(3,5,9 and 15) according to the value of weight vector qa and qb respectively.
All the other features (7,11,12,13,14) do not contribute to log scorea(x). This is
the reason why we have qij=0 for all j which are features of the target category

(i.e in case of category a, qbj = 0 for all j = (1, 2, 4, 6, 8, 10) and also for all j

which are not the features of ith category weight vector). And in this example,
qbj = 0 for all j = (7, 11, 12, 13, 14). A summarized version of CBS pseudo-code
is presented in Algorithm 1.
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Algorithm 1. Coupled Bayesian Sets algorithm

1: Input: An initial ontology O (defining categories, mutually exclusiveness relations
and a small set of labeled examples to each category) and a corpus C

2: Output: Trusted instances for each given category
3: for i = 0 to ∞ do
4: for each category do
5: extract new instances using available labeled examples
6: filter instances which are violating coupling;
7: rank instances using score mentioned in Equation (14);
8: label top ranked instances;
9: end for
10: end for

In CBS, instances are filtered to enforce mutual exclusion. An instance x is
rejected whenever scoreci(x) for the target category ci is lower than all scorecj
for all the other categories cj (where j �= i). This soft constraint is much more
tolerant of the inevitable noise in web text as well as ambiguous noun phrases
than a hard constraint.

CBS was specially designed to allow efficient learning of many categories si-
multaneously from a very large corpus of sentences extracted from web text.
Considering we have a binary sparse corpus (texts from the web), scoring all
items in a large data set can be accomplished using a simple sparse matrix-vector
multiplication (as done in BS). Thus, we get a very fast and simple algorithm.

4 Experiments and Results

We ran our experiments using a subset obtained from ClueWeb [19]. Our dataset
consists of 2,070,896 noun phrases (nps) as instances and 72,996 contexts (conts)
as features. The dataset is stored as a cont×np matrix (context by noun phrase
matrix) M, where each cell Mi,j represents the number of co-occurrences of
conti and npj . To transform M in a binary matrix, the data was preprocessed
normalizing each cell value based on the sum of each column, and then thresh-
olding so thatMi,j = 1 if (npj−frequency) > (2×context−frequency−mean).

The input ontology used in all experiments is a subset taken from NELL’s
ontology and has 11 categories namely Company, Disease, KitchenItem, Per-
son, PhysicsTerm, Plant, Profession, SocioPolitics, Website, Vegetable, Sport.
Categories were initialized with 6-8 seed instances specified by a human.

The performed experiments were designed in order to help us having empirical
evidence to answer the following question:

1. Can CBS outperform other algorithms, such as BS [7], Iterative Bayesian
Sets BaS-all [9] and Coupled Pattern Learner CPL [4], in the task of category
instances extraction?



316 S. Verma and E.R. Hruschka Jr.

2. Can CBS be applied to a task of populating NELL’s ontology in an iterative
bootstrap approach?

3. Can CBS be applied to a task of populating an ontology in which mutually
exclusiveness relations are not known (and in such a situation, these relation
can be automatically discovered and used as new constraints for coupling)?

4.1 Coupled Bayesian Sets versus Other Approaches

In order to have empirical evidence to answer questions (1), Coupled Bayesian set
algorithm (CBS) was used to extract (from a specific corpus) category instances
following the methodology described in [4]. In CBS, for each extracted instance
a score is calculated (based on equation(15)) and then a filter is applied coupling
the results of all the classifiers. Here, the mutually exclusive principle is used for
coupling (i.e. an instance x can not belong to more than one mutually exclusive
category). After filtering out the instances (using coupling), we promote the top 5
new instances as new labeled examples for that category. To allow comparative
analysis, the same methodology was applied using the original Bayesian Sets
algorithm (BS), the CPL algorithm (the category extractor used in NELL),
and also the Bas-all algorithm [9]. Following along these lines, we performed 10
iterations. Top 20 output instances for sports category are shown in Table 4.2
(where incorrect output instances are highlighted).

To have a better idea of the precision of each one of the methods used in the
performed experiments, a metric commonly used in set expansion evaluation [9]
was adopted. This metric is referred to as Precision@N and is calculated in the
following way: after ranking all the promoted instances in an specific iteration,
the percentage of correct instances in the subset formed by the top N entities
(in the ranked list) is calculated. Table 2 shows the results after one, three, five
and ten iterations. The net effect is substantial, as is apparent

Analyzing Table 2, it is possible to notice that CBS is the only method (in
these experiments) that could keep precision rates above 85% even after 10
iterations. This can be considered empirical evidence that CBS can avoid concept
drift in situations where other approaches would fail. BS and Bas-all achieved
very low precision rates after ten iterations (below 40%). And CPL could keep
good precision up to seven iteration, but its results started deteriorating after
ten iterations. It is important to mention, however, that CPL is not the only
algorithm employed by NELL. Thus, the results shown for CPL (in Table 2)
do not represent NELL’s precision. On the other hand, these result can give
some evidence that CBS could help NELL’s self-supervised approach to prevent
concept drift. Table 3 presents the precision of different categories for CBS, BS,
Bas-all and CPL.

Considering that Bayesian Sets are defined on some adaptation from the Naive
Bayes classifier [20], to finish this subsection we present (see Table 4) some results
from experiments performed to compare CBS and Naive Bayes algorithm using a
small version of our dataset consisting of 5548 contexts and 12,500 noun phrases.
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Table 1. Top 20 instances for Category Sport in the first and second iterations of CBS,
BS and Bas-all

Iteration 1 Iteration 2

CBS BS BaS-all CBS BS BaS-all

Football Football football football golf sports
Baseball Baseball baseball Baseball football boxing
Basketball basketball Basketball Basketball baseball dance
Soccer Soccer Soccer Soccer soccer politics
Skiing Skiing Skiing Skiing surfing fishing
Tennis Tennis Tennis Tennis skiing golf
Hockey Hockey Hockey Hockey cricket football
Swimming swimming Swimming Swimming Tennis baseball
Wrestling Wrestling Wrestling Wrestling hockey basketball
Boxing Boxing Boxing Boxing swimming soccer
Volleyball Golf sport Volleyball chess skiing
Polo Volleyball golf Softball wrestling tennis
Badminton Chess fishing Polo boxing hockey
Curling Cricket chess Badminton dancing chess
table tennis Yoga cricket table tennis Meditation swimming
water polo surfing guitar Curling cooking wrestling
Bocce guitar dancing cycling piano photography
Softball Dancing hunting scuba diving guitar yoga
cycling sailing sailing water polo sailing writing

Table 2. Precision@30 of CBS, BS, CPL and Bas-all after one, three, five and ten
iterations

Precision@30 after Iteration

Algorithms 1st 3rd 5th 7th 10th

CBS 79% 84% 92% 90% 87%
BS 68 70% 72% 54% 36%
CPL 74% 78% 79% 82% 70%
Bas-all 70% 72% 74% 64% 39%

Top 10 output instances for the very first iteration of categories countries, sports,
food are shown in Table 4.

We believe that most of our results are self-explanatory, there are a few details
that we would like to elaborate on. We found out that though Naive Bayes
classifier can predict correctly the classes for large number of instances but the
probability with which it classifies is not good enough for methods like iterative
bootstrapping learning. It is evident from the Table 4 that CBS completely
outperforms the Naive Bayes algorithm in our case.



318 S. Verma and E.R. Hruschka Jr.

Table 3. Precision@30 for CBS, BS, CPL and Bas-all in all 11 categories (after 5 and
10 iterations)

Iteration 5 Iteration 10

Categories CBS BS CPL Bas-
all

CBS BS CPL Bas-
all

Companies 100% 78% 64% 78% 100% 44% 54% 44%
Diseases 100% 84% 100% 84% 100% 48% 74% 54%
KitchenItems 94% 92% 97% 92% 94% 40% 94% 40%
Persons 100% 64% 82% 64% 100% 32% 68% 32%
PhysicsTerms 100% 78% 82% 84% 100% 36% 78% 48%
Plants 100% 68% 94% 74% 100% 38% 84% 32%
Professions 100% 84% 84% 84% 87% 54% 87% 54%
SocioPolitics 48% 30% 38% 30% 34% 18% 28% 14%
Sports 97% 84% 90% 84% 100% 43% 87% 54%
Websites 94% 64% 67% 74% 90% 36% 58% 36%
Vegetables 83% 72% 78% 64% 48% 14% 54% 14%

Average Preci-
sion@30

92% 72% 79% 74% 87% 36% 70% 39%

Table 4. Top 10 output instances for CBS and Naive Bayes after 1st iteration. Wrong
extractions are highlighted.

Query:Countries Query:Sports Query:Food

NB CBS NB CBS NB CBS

Order United States Fishing football information tomatoes
Argentina China Guitar basketball Glass spinach
India Canada Development Baseball advice fontina
Future England Politics Soccer interview Shrimps
US Japan Baseball Tennis manager Pancetta
U.S. India character Wrestling bread Strawberry
cash France competition Hockey butter parmesan-

cheese
France Russia creation Boxing fruits Coffees
South Africa Mexico poker Softball list bread
government Singapore football NFL football chance GreenOnions

4.2 CBS versus CPL: Beyond Concept Drift

The results presented in the previous subsection (Subsection 4.1) give empirical
evidence that CBS can prevent concept drift in scenarios where other algorithms
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Table 5. CPL probability and CBS score for extracted instances (after 5 iterations)
for category Website

CPL probability CBS score

Wikepedia 0.9375 google 1104.486
Google 0.9375 wikipedia 1104.486
radio 0.9375 facebook 877.4
page 0.9375 mysapce 806.103
yahoo 0.9375 youtube 718.338
blog 0.9375 twitter 482.433
facebook 0.9375 yahoo 457.542
monday 0.9375 Wordpress 443.554
ebay 0.875 amazon 416.628
MSN 0.875 skype 394.378

might fail. Therefore, CBS tends to be a good algorithm to perform category
instances extractions in a system like NELL.

Another interesting issue related to CBS (that can make it suitable to be used
in a never-ending learning system like NELL) is its capability of discriminating
the probabilistic score of each extracted instance. In other words, when running
a classifier based on many features (hundreds of features or more) it is common
that the probabilistic score of most predictions are close to each other (tending
to 0 or 1). Such a behavior is very common in the Naive Bayes classifier and
also in logistic regression approaches having too many features. Considering that
CBS (as well as BS) is based on the idea of marginalizing out the (unknown)
parameters of the model (for each query), the algorithm tends to give a more
discriminative probabilistic score for each performed prediction.

To have some empirical evidence on how CBS would perform regarding the
probabilistic score precision and discriminations (when compared to CPL) some
experiments were designed. Thus, a smaller dataset consisting of 5200 contexts
and 68,919 instances was used as input to both CBS and CPL and results (after
5th iteration) for categories Websites (see Table 4.2) and Sports (Table 4.2)
extractions as well as their respective scores were analyzed.

Results are self explanatory but one important thing which we would like to
point is that, for CPL results, most of instances have same probability, while in
CBS results, the scores tend to discriminate each extracted instance. In order to
illustrate an interesting scenario related to it, consider that, after every iteration
only the top five extractions (the ones with higher confidence associated) should
be promoted. In such a situation, CPL results (presented in Table 4.2) would
introduce some uncertainty on which would be the best instances to be promoted
(because there are 8 instances with the same probability). Results obtained using
CBS, on the contrary, would not bring this uncertainty to the promotion task.

These results reflect the potential of CBS to learn through bootstrapping
approach and stand robustly against BS, Naive Bayes, Bas-all and Nell.
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Table 6. CPL probability and CBS score for extracted instances (after 5 iterations)
for category Sport

CPL probability CBS score

Game 0.998047 Baseball 1782.201
Show 0.998047 Basketball 1630.333
Football 0.998047 Soccer 1223.195
Day 0.998047 Skiing 1162.535
Drama 0.996094 Tennis 1022.093
Music 0.996094 Hockey 1012.905
Basketball 0.996094 Sailing 984.733
chess 0.992188 Wrestling 802.307
Baseball 0.992188 Boxing 724.129
Golf 0.992188 Swimming 677.489

4.3 Automatically Finding Negative Examples for Coupling

To find some insight and empirical evidence to help us answering the third ques-
tion, some extra experiments were designed as follows. In this experiments, at
first, we run CBS without any negative seed example (Classifier1). After get-
ting the top instances for each category (to be promoted), we also extract the
bottom instances (from Classifier1) as negative seed examples. Then, for each
category, we create a new CBS version (Classifier2), whose seed instances are
these negative seed examples. Therefore, we can apply the two CBS versions
(Classifier1 and Classifier2) as if they were classifiers for two mutually exclu-
sive categories. Thus with this approach, we have built a new constraint relation
for a category which is independent of previously known mutually exclusive
relationships. For support of our above discussion we have compared this ap-
proach with BaS-all[9] which consider only positive seed examples for entity set

Fig. 1. Precision@50 of CBS and BaS-all algorithms over categories Vegetables and
Diseases
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expansion. We run CBS for two categories namely Vegetables and Diseases
against BaS-all and the results are shown in Figure 1.

Analyzing Figure 1 it is possible to notice that using CBS results to generate
new negative examples, which can be coupled to the extractions process, can
help the system to reduce the impact of concept drift even when no mutually
exclusive relation is given in advance.

5 Conclusion and Future Work

In this paper, we consider the problem of semi-supervised learning approach to
extract category instances (e.g. country(USA), city(New York) from web pages,
starting with a handful of labeled training examples of each category, plus hun-
dreds of millions of unlabeled web documents (as described in NELL [10]. Fol-
lowing along these lines, we propose a new algorithm, based on Bayesian Sets [7],
to perform a set expansion task which can help a never-ending learning system
(such as NELL) to avoid concept drifting during the iterative (and never-ending)
process of extracting facts from the Web. The proposed algorithm is named Cou-
pled Bayesian Sets (CBS). CBS implementation makes it fast as its only need
to perform a sparse Matrix×Vector multiplication, and thus, it can easily be
applied to huge data collections. The performed experiments revealed that CBS
can outperform algorithms such as the original Bayesian Set, the Naive Bayes
classifier, the Bas-all and the coupled semi-supervised logistic regression algo-
rithm (CPL) on which Nell is currently running. In addition, CBS can be used
to automatically generate new constraints to the set expansion task even when
no mutually exclusiveness relationship is previously defined, thus, allowing the
method to help NELL’s self-reflection capabilities. As future work we intend to
adjust and evaluate CBS for exploring also other types of coupling constraints
such as Compositional and Multi-view-agreement constraints. We would also like
to use CBS in the Portuguese version of Nell which is currently under develop-
ment.
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Abstract. We present a new multi-class graph-based transduction algo-
rithm. Examples are associated with vertices in an undirected weighted
graph and edge weights correspond to a similarity measure between ex-
amples. Typical algorithms in such a setting perform label propagation
between neighbours, ignoring the quality, or estimated quality, in the
labeling of various nodes. We introduce an additional quantity of con-
fidence in label assignments, and learn them jointly with the weights,
while using them to dynamically tune the influence of each vertex on its
neighbours. We cast learning as a convex optimization problem, and de-
rive an efficient iterative algorithm for solving it. Empirical evaluations
on seven NLP data sets demonstrate our algorithm improves over other
state-of-the-art graph-based transduction algorithms.

1 Introduction

Supervised machine learning algorithms are powerful. Given a training set com-
posed of example-label pairs, many methods have been proposed and successfully
used for a variety of real-world tasks in different domains. Typically, performance
improves as the size of the training set increases. However, this improvement
comes with a price, labeling a large amount of data is slow, costly and prone to
human errors, especially in complex tasks. This is in contrast to the fact that
a large amount of unlabeled data can be cheaply collected in many different
domains. As a result, it has become beneficial to research and develop semi-
supervised learning (SSL) algorithms. These algorithms are designed to learn
from a small set of labeled data and a much larger set of unlabeled data.

Graph-based methods are an important class of SSL algorithms [3,11,12,14].
These methods construct an undirected weighted graph reflecting a similarity
relation between examples, both labeled and unlabeled. Each example is asso-
ciated with a vertex. Edge weights correspond to a similarity measure between
examples. Learning is then based on a smoothness assumption [3]: two neighbour
vertices are likely to have the same label. In this paper we consider the transduc-
tive graph-based setting. The goal of the learning algorithm is to assign labels
to the unlabeled vertices of the graph. Starting with the small set of labeled ver-
tices, the learning algorithm propagates label information from the small set of
known labels to the rest of the graph. In other settings, algorithms learn (also) a
model and are thus also capable of classifying new, previously unseen, examples.
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Fig. 1. Illustration of label-propogation properties for two algorithms : MAD [12] and
ours (named TACO). MAD is sensitive to vertex-degree differences while our algorithm
is robust to it.

Two new transductive graph-based algorithms have been introduced recently:
Adsorption [1] and Modified Adsorption (MAD) [12]. The label propagation in
Adsorption can be viewed as a controlled random walk over the graph. The
transition probabilities in the random walk are determined by edge weights and
the degree of each vertex. Specifically, transition probabilities to and from high
degree vertices are reduced, assuming a larger neighbours set is more likely to
contain disagreements among the neighbours. We further discuss this assumption
shortly. MAD builds upon Adsorption, formulating a convex optimization prob-
lem including the controlled random walk transition probabilities, and solving
this problem with an efficient iterative algorithm.

We present a new multi-class graph-based transductive algorithm. The main
motivation for our new algorithm is the following question: should we always
discourage high degree vertices? While both Adsorption and MAD are based on
a definite positive answer (and label propagation (LP) [14] is somewhat based
on an implicit negative answer), our goal is aimed at letting the data decide for
us. Assume we have a high degree vertex, and our label propagation algorithm
is in a state where almost all of its neighbours have the same estimated label.
Here, we can be highly confident in our estimated label because we have many
agreeing neighbours. Thus, in this case, the influence of the high degree vertex on
its neighbours should not be reduced. Only when we have a high degree vertex,
combined together with a large measure of disagreement among neighbours, we
should lower the effect of this vertex on its neighbours.

Our motivation is illustrated in Fig. 1, showing a simple graph for a binary
label propagation problem. Labeled vertices with positive class are marked with
(+) (white) and negative class with (−) (black). Vertex A has low degree and
a large measure of disagreement among its neighbours, and vertex C has high
degree and is connecting many other vertices (in the middle of a cluster). Vertex
B is member of the cluster, and is also connected to vertexA. Gray level indicates
the assigned label value by the algorithms. Our intuition implies that the correct
action will be to lower the effect of the confusing A, while propagating the
negative label from right to left through C to B and the entire cluster. MAD
lowers the effect of C, thus damaging the ability to identify all vertices in the
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cluster. In contrast, our algorithm (named TACO below) correctly identifies the
cluster while ignoring the unreliable vertex A.

To measure the level of agreement between neighbours, as well as account
for vertex degree, our algorithm maintains per vertex confidence information in
addition to label information. The confidence parameters capture the quality
of the estimated label information. One consequence of that model is that the
algorithm does not reduce the effect of all high degree vertices, but only the
effect of vertices with low confidence in their estimated labels. Both confidence
and label information are propagated throughout the graph.

After introducing our model we cast learning as a convex optimization prob-
lem and propose an efficient algorithm for solving it. We experiment with seven
text categorization problems of various sizes and show that our algorithm, eval-
uated with several metrics, outperforms other algorithms (MAD and alternating
minimization (AM) [10]) on most tasks.

2 Problem Formulation

We focus on transductive learning using graphs. The input is constituted of two
sets: a set of nl labeled examples Dl = {(xi, yi)}nl

i=1 and a set of nu unlabeled

examples Du = {xi}nl+nu

i=nl+1. Examples belong to some input space xi ∈ X , where

we assume in this paper that it is a vector space X = R
d. Labels belong to a

finite label set yi ∈ L denoted by L = {1, . . . ,m}. The goal of the learning
algorithm is to assign a label ŷi ∈ L to each of the (unlabeled) examples in Du.
We denote the total number of examples by n = nl + nu.

In order to be able to propagate the labels from the labeled examples to
the unlabeled ones, we assume the existence of an undirected weighted graph
G = (V,E,W ) over all input examples. Each input example xi is associated
with a vertex vi ∈ V . For ease of presentation we assume that the labeled input
examples are associated with the first nl vertices in V and we refer to them as
labeled vertices. Similarly, the remaining nu vertices in V are associated with the
unlabeled input examples, and are called unlabeled vertices.

A weighted edge e ∈ E = V × V represents label-similarity. The larger the
weight wi,j ∈ W of an edge between vertices vi and vj is, the more we believe
the labels of xi and xj should be the same. We assume that the weight matrix
W ∈ Rn×n is symmetric with non-negative elements, and that there is an edge
between any two vertices, although in practice most edges will have the lowest
weight of zero.

We denote by δl(i) = 1[i≤nl] the indicator of a vertex to be labeled, that
is δl(i) = 1 iff the vertex vi is a labeled vertex. We associate a labels vector
yi ∈ {0, 1}m with each vertex. For vertices associated with labeled examples vi
we set yi,r = 1 iff the correct label of example xi is yi = r. All other entries are
set to 0. For vertices associated with unlabeled examples vj we set yj = 0, the
vector with all elements equal to zero. We denote the complete prior information
matrix by Y ∈ Rn×m, where the ith row yi corresponds to vertex vi.
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3 Algorithm

We cast learning as an optimization over two sets of parameters, each contains
one element per vertex vi in the graph. The first set of parameters the algorithm
maintains is a per vertex score vector μi = [μi,1, . . . , μi,m]


 ∈ Rm. The larger
the rth element μi,r is, the stronger is our belief that the input xi associated
with vertex vi belongs to class r. The final predicted label is given according to
the highest score, namely ŷi = argmaxr μi,r.

In addition, the algorithm maintains a diagonal non-negative matrix per ver-
tex, Σi ∈ Rm×m, where we denote by σi,r the rth diagonal element of Σi. Each
parameter σi,r is associated with our uncertainty in the corresponding score pa-
rameter μi,r. The lower the value of σi,r is, the higher our confidence in the score
value μi,r.

Conceptually, the score vectors are our first order information over labels,
while the uncertainty matrices are our second order information. Most, if not
all, previous graph-based transduction algorithms maintain only first order in-
formation (scores) over vertices, ignoring agreement or disagreement between
neighbour vertices. The second order information is designed to capture this
exact information, allowing the algorithm to better label various vertices by
considering agreement levels among their neighbours.

Next, we formulate an unconstrained convex optimization problem in the
variables {(μi,Σi )}ni=1 as our learning objective, and derive an efficient iterative
algorithm for minimizing it.

3.1 Objective

We have three desired properties of the optimization problem used to define
learning, the first two properties build on previous research [12,14], while the
last is required for the usage of confidence.

First, a pair of close vertices vi and vj (i.e. with large wi,j) should have close
score vectors μi and μj if we are certain in both vectors, that is if both matrices
Σi and Σj have low eigen-values. If at least one of these matrices has large
eigen-values, then we are not confident in the score values of at least one of
the corresponding vertices, and therefore relax the demand that the two score
vectors μi and μj should be close.

Second, the score vectors of labeled vertices should be close to the true label
vectors associated with them, again, if the corresponding uncertainty is low (or
large certainty). In other words, if the eigenvalues of Σi are low, then μi ≈ yi.

Third, the uncertainty should be far from infinity and not close to zero. As in
both cases, the first two properties would be invalid. Specifically, we add a term
that drives the uncertainty close to some predefined values, one can think of
this term as a combination of both regularization (far from infinity) and barrier
(strictly greater than zero) for uncertainty.
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We formalize the above intuition using a symmetric Mahalanobis distance
that is based on the uncertainty matrices. Specifically, given two pairs (x,S)
and (y,T) of score vectors x,y ∈ Rm and uncertainty matrices S,T ∈ Rm×m

we define the squared-distance between them to be,

DM (x,y,S,T) = (x− y)

 (

S−1 +T−1
)
(x− y) . (1)

If either S or T have large eigenvalues, then the distance is low even if x and
y are not close to each other. On the other hand, if both S and T have low
eigenvalues, then in order for the distance to be low, we require that x and y
would be close to each other.

Common [11,12,14] choice for formulating the first property is to require that
neighbour vertices would have close scores, that is,

n∑
i,j=1

wi,jD (vi, vj) (2)

where D (vi, vj) is some distance function measuring the difference between
scores for vi and vj .

The second desired property is that the scores for labeled vertices should be
close to the input labels of these vertices. We formulate this requirement using
the same conceptual ideas of the first property. We view each labeled vertex as
two vertices, denoted by vi and zi. As before, the vertex vi is associated with
scores μi and uncertainty Σi. The new vertex zi has fixed scores yi and fixed
uncertainty 1

γ I ∈ Rm×m for some γ > 0. The new vertex zi with fixed parameters

is connected only to its counterpart vi with an edge of weight 1. Similarly to (2)
we add a second term to our objective capturing the second property,

nl∑
i=1

D (vi, zi) . (3)

The third and last property is formally a regularization term forcing the uncer-
tainty matrix to be close to some predefined matrix. We use the following convex
function which is a sum of two terms, the first monotonic in the eigenvalues, and
the second prevents matrices from having zero eigenvalues,

n∑
i=1

TrΣi − η

n∑
i=1

log detΣi , (4)

for some η > 0. Clearly, the minimizers of the last terms are the matricesΣi = ηI.
Combining (2) (3) and (4) together with weights ν, κ, α ≥ 0 and using our

distance (1) we get the final objective,
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C (G, {μi}, {Σi}) =
1

4
ν

n∑
i,j=1

wi,j

[(
μi − μj

)
 (
Σ−1

i +Σ−1
j

) (
μi − μj

)]
+

1

2
κ

nl∑
i=1

[
(μi − yi)



(
Σ−1

i +
1

γ
I

)
(μi − yi)

]

+ α

n∑
i=1

TrΣi − αη

n∑
i=1

log detΣi .

We can divide the last equation by one of the constants (e.g. ν), set in practice
the other constant to be κ = 1 and denote by β = αη, ending up with the
following,

C (G, {μi}, {Σi}) =
1

4

n∑
i,j=1

wi,j

[(
μi − μj

)
 (
Σ−1

i +Σ−1
j

) (
μi − μj

)]
+

1

2

nl∑
i=1

[
(μi − yi)



(
Σ−1

i +
1

γ
I

)
(μi − yi)

]

+ α
n∑

i=1

TrΣi − β
n∑

i=1

log detΣi . (5)

We conclude this section by noting that the above objective is convex in all argu-
ments. Thus, any algorithm for solving convex problems, like gradient-descent,
can be used. In the next section we propose an efficient iterative algorithm for
specifically solving (5). We then note the connections between the derived algo-
rithm and our initial intuition.

3.2 An Iterative Algorithm

We now present an efficient algorithm for minimizing (5). The algorithm is iter-

ative in nature. Let μ
(t)
i and Σ

(t)
i denote the score vector and confidence matrix

maintained by our algorithm at iteration t for vertex vi. Roughly speaking, on
each iteration t, the algorithm optimizes the objective over scores μi given the

score values of all other vertices μ
(t−1)
j for j �= i and all uncertainty matrices

Σ
(t−1)
j (for all j), and optimizes all the uncertainty matrices {Σi} given all the

scores {μ(t−1)
i }.

We first develop the update step for μ
(t)
i and then follow with the update step

for Σ
(t)
i . Setting to zero the derivative of (5) with respect to μi we get,

n∑
j �=i
j=1

wi,j

[(
Σ

(t−1)
i

)−1

+
(
Σ

(t−1)
j

)−1
](

μ
(t)
i − μ

(t−1)
j

)

+ δl(i)

[(
Σ

(t−1)
i

)−1

+
1

γ
I

] (
μ

(t)
i − yi

)
= 0 . (6)
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For simplicity we introduce the following notation,

K
(t−1)
i,j = wi,j

[(
Σ

(t−1)
i

)−1

+
(
Σ

(t−1)
j

)−1
]
, P

(t−1)
i = δl(i)

[(
Σ

(t−1)
i

)−1

+
1

γ
I

]
.

(7)

Substituting (7) in (6) we get the following equation relating the optimal solution

μ
(t)
i to all other quantities,

(∑n
j �=i
j=1

K
(t−1)
i,j

)
μ

(t)
i +P

(t−1)
i μ

(t)
i =

∑n
j �=i
j=1

K
(t−1)
i,j μ

(t−1)
j

+P
(t−1)
i yi . Solving for μ

(t)
i we obtain,

μ
(t)
i =

⎛⎜⎜⎝ n∑
j �=i
j=1

K
(t−1)
i,j +P

(t−1)
i

⎞⎟⎟⎠
−1⎛⎜⎜⎝ n∑

j �=i
j=1

K
(t−1)
i,j μ

(t−1)
j +P

(t−1)
i yi

⎞⎟⎟⎠ . (8)

Note that μ
(t)
i is a matrix weighted average of all the other score vectors{

μ
(t−1)
j

}
j �=i

, and the true labels yi (for a labeled vertex). The matrix-weights

are exactly the inverse of the uncertainty matrices.
Next, we develop the update for the confidence matrices. Setting to zero the

derivative of (5) with respect to Σi we get,

− 1

2

n∑
j=1

wi,j

[(
Σ

(t)
i

)−1 (
μ

(t−1)
i − μ

(t−1)
j

)(
μ

(t−1)
i − μ

(t−1)
j

)
 (
Σ

(t)
i

)−1
]

− 1

2
δl(i)

[(
Σ

(t)
i

)−1 (
μ

(t−1)
i − yi

)(
μ

(t−1)
i − yi

)
 (
Σ

(t)
i

)−1
]

+ αI− β
(
Σ

(t)
i

)−1

= 0 . (9)

We define the following positive semi-definite matrix,

R
(t−1)
i =

1

2

n∑
j=1

wi,j

(
μ

(t−1)
i − μ

(t−1)
j

)(
μ

(t−1)
i − μ

(t−1)
j

)

+

1

2
δl(i)

(
μ

(t−1)
i − yi

)(
μ

(t−1)
i − yi

)

(10)

and rewrite (9) as −
(
Σ

(t)
i

)−1

R
(t−1)
i

(
Σ

(t)
i

)−1

+ αI − β
(
Σ

(t)
i

)−1

= 0 . Multi-

plying both sides by Σ
(t)
i leads to a quadratic matrix equation in Σ

(t)
i :

α
(
Σ

(t)
i

)2
− βΣ

(t)
i −R

(t−1)
i = 0 .

This is matrix quadratic equation with solution (as in scalars),

Σ
(t)
i =

β

2α
I+

1

2α

(
β2I+ 4αR

(t−1)
i

) 1
2

. (11)
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Both updates (8) and (11) are valid for full matrices Σi. Diagonal matrices
are obtained by diagonalizing the update (11) or specifically, taking the diago-

nal elements of the matrix R
(t−1)
i defined in (10). Thus, denoting the diagonal

elements by Σ
(t)
i = diag

(
σ
(t)
i,1 , . . . , σ

(t)
i,m

)
and substituting into (8) we obtain the

following update step for each score μ
(t)
i,r :

μ
(t)
i,r =

∑n
j �=i
j=1

wi,j

(
1

σ
(t−1)
i,r

+ 1

σ
(t−1)
j,r

)
μ
(t−1)
j,r + δl(i)

(
1

σ
(t−1)
i,r

+ 1
γ

)
yi,r∑n

j �=i
j=1

wi,j

(
1

σ
(t−1)
i,r

+ 1

σ
(t−1)
j,r

)
+ δl(i)

(
1

σ
(t−1)
i,r

+ 1
γ

) (12)

Similarly, using (11) we obtain an update step for each σ
(t)
i,r :

σ
(t)
i,r =

β

2α
+

1

2α

√√√√√β2 + 2α

⎡⎣ n∑
j=1

wi,j

(
μ
(t−1)
i,r − μ

(t−1)
j,r

)2
+ δl(i)

(
μ
(t−1)
i,r − yi,r

)2⎤⎦
(13)

Note both updates (12) and (13) are separable in the labels and involve only
variables with one specific label index r. In fact, if the confidence matrices are
forced to be diagonal, the objective (5) can be decomposed into m separate
optimization problems in independent parameters. In the experiments below we
evaluated both the diagonal and full versions of the algorithm (updates (8) and
(11)) and found no advantage for full confidence matrices over diagonal ones.
We thus restrict ourself to diagonal matrices.

We call our algorithm TACO for Transduction Algorithm with COnfidence,
and its pseudocode is summarized in Figure 2. The algorithm iterates over ver-
tices, updating both parameters for each vertex, until some convergence criteria
is met. In practice, we ran the algorithm for not more than 10 iterations.

As mentioned above for full matrices, the update of (12) sets μ
(t)
i,r to be a

weighted average of neighbouring scores for each label r (and the true label if
given), where each weight is a product of the edge-weight and a correction factor
that depends on estimated confidence parameters. The more certain we are in a
neighbour, the higher relative weight it will have.

Looking at the update step for the uncertainty matrices (either full in (11) or

diagonal (13)) we note that σ
(t)
i,r is monotonic on a quadratic measure of disagree-

ment between neighbours,
∑n

j=1 wi,j

(
μ
(t−1)
i,r − μ

(t−1)
j,r

)2
+ δl(i)

(
μ
(t−1)
i,r − yi,r

)2
.

In addition, this measure is not normalized using the degree of vi, implying that
for high degree vertices this measure is more likely to have a high-value, lowering
the influence of the high degree vertex on its neighbours. However, this happens
only when combined together with neighbours disagreement. If the score of all
neighbour nodes is about the same, even if the number of them is very large, the
certainty would be large (or uncertainty low).
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Parameters: α > 0, β > 0,γ > 0
Input: A graph G = (V, E,W ) and prior labeling yi for all vi ∈ V

Initialize: t = 1, μ
(0)
i = 0 and Σ

(0)
i = I for all vi ∈ V

Repeat

– For vi ∈ V :
• Compute μ

(t)
i from μ

(t−1)
j and Σ

(t−1)
j :

μ
(t)
i,r =

∑n
j �=i
j=1

wi,j

(
1

σ
(t−1)
i,r

+ 1

σ
(t−1)
j,r

)
μ
(t−1)
j,r + δl(i)

(
1

σ
(t−1)
i,r

+ 1
γ

)
yi,r

∑n
j �=i
j=1

wi,j

(
1

σ
(t−1)
i,r

+ 1

σ
(t−1)
j,r
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Until convergence
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(t)
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Fig. 2. The TACO algorithm for graph-based transduction

4 Empirical Evaluation

We evaluate our algorithm along with two other state-of-the-art graph-based
transduction algorithms: Alternating Minimization (AM) [11] and Modified Ad-
sorption (MAD) [12]. Both were empirically shown to outperform LP [12,11].

4.1 Data Sets

We evaluate our algorithm using seven NLP data sets summarized in Table 1.

WebKB: World Wide Knowledge Base is a text categorization data set pre-
viously used for the evaluation of several transductive algorithms [7,8,11,12].
Documents in the data set are web pages from four academic web domains, cat-
egorized according to domain and topic. We used documents from four topic
categories course, faculty, project and student, for a total of 4, 199 documents.
We construct the graph by first removing all non-textual information (HTML
tags), followed by lower casing all tokens, computing TFIDF features, and lastly
using cosine similarity to form edge weights. This graph yields better results
for all evaluated algorithms in comparison to the graph used previously [11,12]
where both textual and non-textual information was used.
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20 Newsgroups: The dataset contains a collection of 18, 828 newsgroup doc-
uments partitioned across 20 different newsgroups1. We select one-quarter of
the documents from each category, yielding a total of 4, 715 documents. Graph
construction is as described for WebKB except for HTML removal.

Sentiment: Sentiment classification of book reviews from Amazon. Each review
is labeled with stars corresponding to the opinion of the author. The range of
the stars (labels) is from one (low rating) to five (high rating). We used 5, 000
reviews. Graph construction follows TFIDF features along with cosine similarity.

Table 1. A summary of data sets used in empir-
ical evaluation

Data set Instances Labels Test set size

WebKB 4,199 4 3,148
20 News 4,175 20 3,534
Sentiment 5,000 5 3,750
Reuters 4,000 4 3,000
Enron A 3,019 10 2,262
Enron B 3,171 10 2,376
Amazon3 7,000 3 5,250

In addition to the aforemen-
tioned data sets we use the
following data of Crammer et
al [4]. This data contains pre-
processed feature vectors gener-
ated for several NLP data sets.
Further details concerning fea-
ture extraction per data set can
be found in [4]. For each data
set, we computed TFIDF fea-
tures from the given counts, and
constructed the graph using co-
sine similarity.
Reuters: Topic classification

of newswire stories (RCV1-v2) [9]. We used 4,000 instances, categorized by
the following general topics: corporate, economic, government and markets.
Enron: A collection of e-mails from over 100 different users organized in fold-
ers2. The task is automatic classification of e-mails into folders. E-mails from two
users are used: farmer-d (Enron A) and kaminski-v (Enron B). Enron A con-
tains 3,019 instances and Enron B has 3,171 instances. For each user there are
10 labels - email folders. Amazon3: Product reviews from Amazon. The task
is to classify reviews to one of the 3 product domains: books, dvds and music.
7,000 reviews are used.

4.2 Experimental Setup

We follow previous experimental setup [11,12]. From the initial input graph we
construct a K Nearest Neighbour (K-NN) graph, by keeping for every vertex
only its K closest neighbours. The result of this preprocessing step is a directed
graph. We then removed the direction of edges, ending up with an undirected
graph, where degrees of edges may be larger than K. Next, we assign labels to
randomly sampled nl documents, under the constraint that each class is repre-
sented by at least one sample in the labeled set. Finally, we sample three-quarters
of the remaining documents to constitute the test set. This process gives a single
transduction set, and we repeat it 21 times.

1 http://people.csail.mit.edu/jrennie/20Newsgroups/
2 http://www.cs.cmu.edu/~enron/

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.cs.cmu.edu/~enron/
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We use the first transduction set for hyper-parameter tuning, and the others
for evaluation. The hyper-parameters search grid for each of the evaluated algo-
rithms is as follows: for AM α, μ, and ν as described in [11], for MAD μ1, μ2 and
μ3 as described in [12] (Sec. 6.1) and for TACO α, β ∈ {1e-8, 1e-4, 1e-2, 1, 10, 100}
and γ ∈ {1, 2, 5}. We search over same range of K for all algorithms: K ∈
{100, 500, 1000, 2000}. We found that setting the maximum number of iterations
per single run to 10, for all evaluated algorithms, was sufficient for convergence.

We perform class prior normalization (CPN) by column normalizing the prior
information matrix Y for MAD and TACO. This ensures the total initial input
score is the same for all classes and reduces the advantage common classes have
on rare classes during label propagation. Since the rows of Y for AM are proba-
bility distribution, it is not possible to perform CPN prior to running AM, and
it was not used when experimenting with AM before [11].

4.3 Evaluation Metrics

We evaluate the results of our experiments using five evaluation metrics: macro-
averaged Precision-Recall Break Even Point (PRBEP), accuracy (ACC), macro-
averaged accuracy (M-ACC), Mean Reciprocal Rank (MRR) and macro-averaged
Mean Reciprocal Rank (M-MRR).

PRBEP is defined as the point in which precision and recall are equal. For
each label r ∈ L we compute PRBEP as follows. Let sr = [μ1,r, . . . , μn,r] denote
a vector containing the score assigned for all vertices and the label r. We define
a threshold τ and use it for prediction: each vertex vi with score μi,r > τ is
considered as being in class r. We move τ in steps through the complete range
of values in sr in descending order. For each step we update our prediction and
calculate precision and recall. PRBEP is reported when the values are equal.
Finally, we macro-average over all possible labels.

While PRBEP has been used as the evaluation metric in previous work [11,12],
it does not capture the performance of the common multi-class inference rule
ŷi = argmaxr μi,r used also by TACO. We thus also report accuracy. However,
graph-based transduction algorithms tend to create degenerate solutions, such as
solutions for which all unlabeled vertices are classified as being in the most com-
mon single class. Therefore, we also report macro-averaged accuracy: we divide
the complete test set into disjoint sets according to true labels, compute accu-
racy on each individual set and average. This increases the effect of prediction
accuracy in rare classes and demotes degenerate solutions.

In addition to PRBEP and accuracy, we report Mean Reciprocal Rank (MRR),
MRR = (1/|Q|)

∑
vi∈Q (1/ri) where Q is the test set and ri is the rank of the

true label yi within the score vector μi. This metric has been recently used for
comparing several graph-based transductive algorithms on the task of acquir-
ing class-instance pairs from text [13]. While accuracy is based on prediction
alone, this metric favours both accurate prediction as well as a good rank for
the true label in case of a mistake. As before, in addition to MRR we report also
macro-averaged MRR, discouraging degenerate solutions.
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Table 2. A comparison of empirical results for three algorithms on all data sets. Each
reported result is an average over 20 randomly generated transduction sets. Left block
results were obtained by tuning hyper-parameters using macro-averaged PRBEP, while
results on the right block were tuned using macro-averaged accuracy (M-ACC).

Optimized by Optimized by
PRBEP M-ACC

MAD AM TACO MAD AM TACO

PRBEP 65.5 64.5 67.7 54.9 61.2 67.7
WebKB ACC 22.0 43.8 72.5 59.5 63.5 72.5
48 labeled M-ACC 26.0 31.6 70.9 62.2 56.7 71.5

MRR 49.8 66.1 84.5 76.5 78.7 84.6
M-MRR 52.7 57.1 83.4 78.0 73.9 83.9

PRBEP 50.7 49.8 57.0 49.3 47.7 55.6
20 News ACC 16.6 40.3 58.8 50.0 45.8 61.0

105 labeled M-ACC 16.6 39.9 57.9 49.6 45.3 60.2
MRR 34.9 54.5 72.9 65.3 59.8 74.8

M-MRR 35.1 54.2 72.4 65.1 59.5 74.4

PRBEP 34.4 34.9 34.5 27.8 31.0 33.7
Sentiment ACC 24.3 38.6 25.4 32.6 41.7 38.3
500 labeled M-ACC 26.6 20.0 27.4 32.5 29.3 32.2

MRR 50.7 59.9 51.6 56.9 61.9 60.7
M-MRR 52.4 45.8 53.1 56.6 52.9 55.7

PRBEP 73.2 73.2 73.0 72.0 67.6 74.9
Reuters ACC 60.0 69.4 82.7 76.3 75.8 81.6

48 labeled M-ACC 59.1 55.6 73.0 75.6 67.2 76.2
MRR 76.7 82.7 90.0 86.6 86.3 89.7

M-MRR 76.2 72.8 83.3 85.9 80.1 85.9

PRBEP 54.3 54.8 54.2 46.7 50.5 50.9
Enron A ACC 45.4 60.0 46.0 49.5 56.6 55.6
48 labeled M-ACC 51.3 41.1 52.0 52.4 49.0 50.0

MRR 62.8 74.2 63.3 66.2 70.2 71.6
M-MRR 66.1 59.4 66.7 67.0 64.1 66.3

PRBEP 39.7 36.3 41.7 36.7 35.7 41.5
Enron B ACC 20.4 26.4 41.4 36.5 35.8 41.1
48 labeled M-ACC 21.0 16.6 38.5 38.7 29.9 38.4

MRR 40.8 46.0 59.1 54.9 54.2 58.7
M-MRR 39.3 36.4 56.6 55.5 48.4 56.6

PRBEP 89.4 77.7 88.4 75.4 74.1 87.8
Amazon3 ACC 34.7 43.9 88.5 73.0 68.9 88.9
35 labeled M-ACC 34.8 43.9 88.5 73.0 68.9 88.9

MRR 62.7 67.4 93.9 85.2 83.0 94.2
M-MRR 62.8 67.4 93.9 85.2 83.0 94.2
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(d) M-ACC tuned according to PRBEP

Fig. 3. A comparison of macro-averaged PRBEP and macro-averaged accuracy (M-
ACC) for different amounts of labeled data on the WebKB data set. All results are
averages over 20 randomly generated transduction sets. In figures (a) and (d) hyper-
parameters were tuned according to PRBEP. In figures (b) and (c) tuning is according
to M-ACC. Error bars indicate 95% confidence intervals.

4.4 Results

Results for seven NLP tasks are summarized in Table 2. All results are averages
over 20 randomly generated transduction sets as described in Sec. 4.2. We per-
formed hyper-parameters tuning according to PRBEP since it is the reported
metric in previous work [7,8,11,12]. In addition, we tune by M-ACC since it
better relates to our inference rule and also penalizes degenerate solutions.

Results reported in the left part of Table 2 are from experiments where tun-
ing was performed according to PRBEP. Focusing on the tuned metric, TACO
outperforms the other two algorithms on three of the seven data sets by at least
2 points and is worse by at most 1 point. However, TACO outperforms the other
algorithms on all datasets when evaluated using either M-ACC or M-MRR. This
implies solutions generated by TACO are preferable.

Results reported in the right part of Table 2 were obtained by tuning with
macro-averaged accuracy (M-ACC). Here, considering the tuned metric, TACO
is best on four of the seven data sets, three of which by at least 9 points. When
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TACO is not the best performing algorithm, the second best algorithm has M-
ACC not larger than 1 point, except in one case where the difference is about
2.5 points. As before, considering other metrics, TACO is best on at least four
data sets for all other metrics.

Comparing both parts of Table 2 suggests TACO is robust to the choice
of the metric used for tuning. For example, on WebKB, tuning according to
PRBEP or M-ACC does not change much the reported results. AM and MAD
are more sensitive to the specific choice of a metric for tuning. Considering again
WebKB, there are significant differences between results from the left and right
parts of Table 2. In general, for most data sets, the difference between results in
experiments tuned according to PRBEP or M-ACC is substantially smaller for
TACO compared to both MAD and AM.

Overall performance is high in absolute values on WebKB, 20 Newsgroups,
Reuters and Amazon3. On these data sets, TACO is best by almost any used
evaluation metric. This suggests our algorithm gains from the merits of a good
input graph better than others. Finally, comparing ACC vs M-ACC, and MRR
vs M-MRR, we note that using averaged metrics the results are in general higher
than using their macro-average counterparts. Yet, for TACO this difference is
smaller, which indicates that TACO predicts better the less frequent classes,
while not harming performance on the more frequent classes (see also Table 3).

Table 3. Precision-Recall Break Even Point
(PRBEP) results per class on WebKB data
set, with 48 labeled examples. All results are
averages over 20 randomly generated trans-
duction sets.

class size MAD AM TACO
course 930 85.4 81.1 85.4
faculty 1,124 58.9 59.9 60.8
project 504 41.4 42.6 46.2
student 1,641 76.1 74.4 78.4

average - 65.5 64.5 67.7

A comparison of PRBEP and M-
ACC vs amount of labeled exam-
ples is given in Fig. 3. In Fig. 3(a)
and Fig. 3(c) the evaluation met-
ric used for tuning is also the re-
ported metric. In these two plots,
we observe that performance in-
creases as more labeled examples
are given as input, as expected.
TACO outperforms other algorithms,
especially when the amount of la-
beled examples is small. Fig. 3(d)
and Fig. 3(b) show how tuning
by one metric affects the perfor-
mance of the other metric. After
tuning using PRBEP, TACO achieves

far better M-ACC score than other algorithms, and vice-versa, although with
smaller gap, tuning with M-ACC, TACO achieves better PRBEP score than oth-
ers algorithms. Additionally, as more labeled examples are used, performance in
the not-tuned metric may not grow. This implies tuning by PRBEP overfits the
algorithm output towards solutions specifically maximizing the PRBEP mea-
sure, and results evaluated with other evaluation metrics such as M-ACC, are
decreased. This phenomenon is most visible considering AM. As illustrated by
Fig. 3(b), as the number of input labeled examples grows, performance in the
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not-tuned metric, namely PRBEP, increases. This suggests tuning by M-ACC is
better for the WebKB data set.

Finally, per-class PRBEP for the WebKB dataset is summarized in Table 3.
The average PRBEP (bottom line) corresponds to the top-left line in Table 2.
TACO achieves the best performance in all four labels, and there is no clear
winner between the two other algorithms. The highest improvement is for the
project category, the one with the smallest number of test samples, (from 42.6
to 46.2), for which all algorithms obtain lowest performance among the four
categories. It seems that the tuning via confidence information allows TACO to
automatically adapt to unbalanced data.

5 Related Work

Our work builds on previous graph-based transduction learning, where the graph
is built using nearest-neighbours based on some distance. Label propagation
(LP) [14] and Modified Adsorption (MAD) [12] use squared Euclidean distance,
while alternating minimization (AM) [10,11] uses the Kullback-Leibler diver-
gence. To the best of our knowledge, our work is the first to apply second order
information into transductive learning, implemented using the Mahalanobis dis-
tance with parameters (matrix) being optimized as well.

One of the first and best performing graph-based transduction algorithm
based on  2 norm is label propagation (LP) [14], with update rule,

μ
(t)
i,r = δl(i)yi,r + (1− δl(i))

∑n
j=1 wi,jμ

(t−1)
j,r∑n

j=1 wi,j
.

Setting our confidence parameters σi,r to 2, our update (12) becomes

μ
(t)
i,r =

∑n
j=1 wi,jμ

(t−1)
j,r + C · δl(i)yi,r∑n

j=1 wi,j + C · δl(i)
(14)

where we set C = 1/2 + 1/γ and assume wi,i = 0. The update step in (14) is a
close variant of LP, allowing label information for labeled vertices to differ from
the given known input labels. A very close version appears in a recent book [3]
(Section 11.2, Algorithm 11.2). Thus, we can view this variant of LP as a special
case of our algorithm with constant confidence parameters.

The idea of discouraging high degree vertices in label propagation first appears
in Adsorption [1] and is later used in MAD [12]. Both algorithms use a static
measure that considers only vertex degree to limit the effect of vertices with a
large degree. TACO performs similar tuning, but automatically or dynamically
based on the confidence parameters, which measure both degree and agreement
level among neighbours.

Measures of confidence in estimated parameters have been successfully used
in a number of non-SSL settings such as online learning [2,6] and multi-armed
bandits with partial feedback [5].



338 M. Orbach and K. Crammer

6 Conclusion

We introduced the notion of confidence in label assignments to graph-based
transduction. We formulated learning as an unconstrained convex optimization
problem in both confidence and label parameters, and derived an efficient iter-
ative algorithm for solving it. Our algorithm uses its confidence parameters to
dynamically control the influence each vertex has on its neighbours during label
propagation. Empirical evaluations on seven NLP tasks demonstrate that TACO
improves over current state-of-the-art graph-based transductive algorithms, and
is more robust to parameter tuning.

Currently, we plan to analyze TACO formally, experiment with more large-
scale data and extend our work to multi-label, complex and structured problems.
We also plan to generalize TACO to be able to generate models that will allow
labeling unseen inputs beyond the transduction setting.
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Abstract. Random walk plays a significant role in computer science. The pop-
ular PageRank algorithm uses random walk. Personalized random walks force
random walk to “personalized views” of the graph according to users’ prefer-
ences. In this paper, we show the close relations between different preferential
random walks and label propagation methods used in semi-supervised learning.
We further present a maximum consistency algorithm on these preferential ran-
dom walk/label propagation methods to ensure maximum consistency from la-
beled data to unlabeled data. Extensive experimental results on 9 datasets provide
performance comparisons of different preferential random walks/label propaga-
tion methods. They also indicate that the proposed maximum consistency algo-
rithm clearly improves the classification accuracy over existing methods.

1 Introduction

Random walk model [1] is a mathematical formalization of the paths that consist of
taking successive random steps, i.e., at each step the walk jumps to another site accord-
ing to some probability distribution. The random walk model plays an important role in
computer science, and it has many applications in information retrieval [2], social net-
work [3], etc. PageRank [4] is a link analysis algorithm, which uses the idea of random
walk to measure the webpages’ relative importances. Personalized Page Rank [5] is pre-
sented to create “personalized views” of the web searching results based on redefining
importances according to users’ preferences.

Semi-supervised learning(SSL) has connections with random walks on graphs. In
SSL, only a small number of data points are labeled while a large number of data
points are unlabeled. The goal of SSL is to classify the unlabeled data based on la-
beled data. SSL has attracted more attention because the acquisition of labeled data is
quite expensive and time-consuming, while large amount of unlabeled data are easier to
obtain. Many different methods have been proposed to solve SSL problems [6,7], e.g.,
classification-based method [8], clustering-based method [9], graph-based
method [10,11,12], etc. Among all these methods, the graph-based method is the most
popular way to model the whole dataset as undirected weighted graph with pairwise
similarities(W), and the semi-supervised learning can be viewed as label propagation
from labeled data to unlabeled data, like a random walk on a similarity-graph W. Our
work is inspired by previous graph-based semi-supervised methods, especially by the
works of consistency labeling [11] and Green’s function [12].

In this paper, we first show the close relations between preferential random walks
and label propagation methods. We show that the labeled data points act as the prefer-
ential/personalized bias vectors in the personalized random walks. This provides much

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 339–354, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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insight to the existing label propagation methods, and suggest ways to improve these
methods. In addition, we perform extensive experiments to compare the performances
of different methods used in preferential random walks.

Furthermore, we observe that current label-propagation approach may not achieve
best available results, especially when the propagation operator, inferred from both la-
beled and unlabeled data points, does not exactly reveal the intrinsic structure of data.
Many label propagation methods are done in one shot from source (labeled data) to all
unlabeled data. This can not guarantee many newly-labeled data, which lie far-away in
the data manifold of both labeled and unlabeled data, are labeled reliably. Motivated by
this observation, in this paper, we present a novel maximum consistency approach to
improve the performance of existing label propagation methods. Our approach focuses
on propagating labels from source to nearby unlabeled data points only, and thus reli-
ably labeling these data points. This propagation expands progressively to all unlabeled
data, to ensure maximum consistency from labeled data to unlabeled data. Maximum
consistency algorithm leverages existing propagation methods and repeatedly utilizes it,
which incurs almost the same computational complexity as other existing propagation
methods.

Here we summarize the contribution of our paper.

– We show the direct relations between preferential random walks and existing la-
bel propagation methods. Extensive experiments on 9 datasets are performed to
demonstrate the performance of different methods.

– We present a maximum consistency algorithm to improve existing label-propagation
methods. Extensive experiments performed on 9 datasets indicate clear perfor-
mance improvement.

The rest of this paper is organized as follows. §2 gives a brief overview of personalized
random walk. Next in §3, we establish the connections between the preferential random
walks and label propagation methods. In §4, we emphasize the concept of score distri-
bution in semi-supervised learning methods. In §5, we propose maximum consistency
label propagation method. §6 reviews the related work to our paper. In §7, extensive ex-
periments on 9 datasets are performed to provide the performance comparisons of both
different preferential random walks/label propagation methods and proposed maximum
consistency algorithm. Finally, we conclude the paper.

2 A Brief View of Personalized Random Walk

On an undirected graph with edge weights W, let D be the diagonal matrix with D =
diag(We), e = (1, . . . , 1)T , then P = (Pij) is the transition probability from node i
to node j,

P = D−1W (1)

Let fi be the stationary probability of one random walker on site i. The following prop-
agation

f = (1− α)y + αPT f , (2)

governs the random walker. The converged stationary distribution gives the score.
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Here y is the personalized (bias) probability distribution; this fixed vector represents
the personal interest or other preferential treat of different nodes. In PageRank [4], y =
(1, . . . , 1)T /n, α = 0.9. In personalized random walk [5], y encodes the personalized
preferences. For example, for a random walker who prefers to visit sites i1, i2. Then
yi = 1/2 if i = i1, i2; yi = 0 otherwise.

2.1 Personalized Random Walk for 2-Class Semi-supervise Learning

To do classification for partially labeled data for 2-class, we divide the data into X+,
X−, and Xu for positively labeled, negatively labeled, and unlabeled datasets. We do
two random walks: (1) one for the positive class with preferential vector y(+) where
y
(+)
i = 1/|X+| if i ∈ X+; y(+)

i = 0 otherwise. The converged score of Eq.(2) gives

f (+). (2) one for the negative class with preferential vector y(−) where y(−)
i = 1/|X−|

if i ∈ X−; y(−)
i = 0 otherwise. The converged score of Eq.(2) gives f (−). We then

assign for each unlabeled data xi ∈ Xu the class with higher stationary distribution:
k = max(f

(+)
i , f

(−)
i ).

Note that because the propagation of Eq.(2) is linear, we can do the semi-supervised
learning using only one random walk with the preferential vector y = 1

2 (f
(+) − f (−)).

We then assign for each unlabeled data xi the class with k = sign(fi). This is a simple

algorithm. Note that here
∑

i yi = 0, since
∑

i y
(+)
i = 1 and

∑
i y

(−)
i = 1. This will

be useful in deriving the Green’s function method below.

2.2 Generalized Preferential Random Walk for Multi-class

In multi-person random walks, there are K random walkers. Each random walker k(1 ≤
k ≤ K)has a distribution vector fk and a personalized preference vector yk,

fk = (1− α)yK + αPT fK . (3)

Let F = (f1, · · · , fK) and Y = (y1, · · · ,yK), from Eq.(2), we obtain the transition

F = (1− α)Y + αPTF. (4)

The solution for the final stationary distributions of the K random walkers are

F =
1− α

I− αPT
Y. (5)

Method 1:
Here we use standard random walk transition probability of Eq.(1) and obtain the sta-
tionary distributions of the K random walkers:

F =
1− α

I− αWD−1
Y =

1− α

(D− αW)D−1
Y = D

1− α

(D− αW)
Y. (6)
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Method 2:
If we use the “pseudo transition probability” P = D− 1

2WD− 1
2 , we obtain the station-

ary distributions of the K random walkers as:

F =
1− α

I− αD− 1
2WD− 1

2

Y. (7)

Method3:
If we use another “pseudo transition probability”P = WD−1, we obtain the stationary
distributions of the K random walkers as:

F =
1− α

I− αD−1W
Y =

1− α

D−1(D− αW)
Y =

1− α

(D− αW)
DY. (8)

So far, we have discussed random walks on a graph. Next, we make connections to semi-
supervised learning. The significance of relation analysis between preferential random
walks and label propagations is to help to capture the essence of these algorithms and
better interpret the experiment results. To our knowledge, so far there is a lack of sys-
tematic study to explore the commonalities and differences of these algorithms, and
their relations to label propagation algorithms.

3 Relations between Preferential Random Walks and Label
Propagations

In semi-supervised learning, we have n = n� + nu data points {xi}ni=1 , where first
n� data points are already labeled with {yi}n�

i=1 for c target classes. Here, xi ∈ +p

and yi ∈ {1, 2, ...,K}, such that yi = k if xi belongs to the k-th class. The last nu

data are unlabeled. The goal of semi-supervised learning is to learn their class labels:
{yi}ni=n�+1. Let Y ∈ +n×K be a class indicator matrix, Yij = 1 if xi is labeled as
class yi = j; and Yij = 0 otherwise.

3.1 Local - Global Consistency Method(LGC)

Local and global consistency(LGC) [13] utilizes sufficiently smooth assumptions with
respect to the intrinsic structure collectively revealed by known labeled and unlabeled
data points. Given the graph edge matrix W, LGC constructs the normalized matrix
S = D− 1

2WD− 1
2 , where D is a diagonal matrix with D = diag(We). Then the

predicted label matrix F is,

F = QY, Q = β(I− αS)−1, (9)

where Q is the label propagation operator, α = 1
1+μ , β = μ

1+μ , and μ is a parameter.

Relations with Preferential Random Walk. Compared with method 2 in generalized
preferential random walk of Eq.(7), we can see LGC is identical to it. This is because
constant β will not change the classification results.
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3.2 Green’s Function Method(GF)

Green’s function for semi-supervised learning and label propagation is first presented
in [12]. GF is defined as the inverse of graph laplacian L = D −W with zero-mode
discarded. Using the eigenvectors of L: Lvk = λkvk , where 0 = λ1 ≤ λ2 ≤ ... ≤ λn

are the eigenvalues. Green’s function computes the predicted label matrix F,

F = QY, Q = L−1
+ =

1

(D−W)+
=

n∑
i=2

viv
T
i

λi
, (10)

where Q is label propagation operator, (D −W)+ indicates zero eigen-mode is dis-
carded.

Relations with Preferential Random Walk. From Method 1 of generalized preferen-
tial random walk, the stationary distribution F of Eq.(6) is related to Q in Eq.(10). As
α −→ 1, we have

(D− αW)−1 −→ (D− αW)+ =
n∑

i=2

viv
T
i

λi
. (11)

Indeed, for classification purpose, the GF approach is the limit of Method 1 of gener-
alized preferential random walk of Eq.(6). This is further explained below:

(1) In semi-supervised learning, the classification result for object i is determined by
the location of the largest element in i-th row(See Eq.12).

(2) Given a distribution A and a diagonal matrix D = diag(d1 · · · dn), DA will
multiply the i-th row of A by di. The relative distribution of this row does not change.
Thus D applied to distribution A does not change the classification results.

(3) The multiplicative constant (1− α) does not change the classification too.
(4) The physical reason of discarding zero mode is the use of the Von Neumann

boundary condition. Algorithmically, this is also consistent: First, the discarded zero
mode in Eq.(11) is v1v

T
1 /λ1 = eeT /(nλ1) where λ1 = 0. As discussed in §2.1,

the multi-class random walk can be equivalently viewed as a single random walk with
preference vector y = 1

2 (y
(k) − y(k̄)), where y(k) is the preference vector for class k,

and y(k̄) is the preference vector for other classes k̄. Note
∑

i yi = 0, since
∑

i y
(k)
i =

1 and
∑

i y
(k̄)
i = 1. Thus we have (v1v

T
1 /λ1)y = 0, indicating including the zero

mode in Eq.(11) does not alter the final results of label propagation.

3.3 Comparison of Preferential Random Walk Results

In label propagation of Eq.(9) or Eq.(10), once the distribution score (a.k.a propagation
score) F are obtained, each unlabeled data point xi is assign a class label according to

k = argmax
1≤j≤c

Fij (12)

Note the key difference of LGC with GF is the computation of propagation operator
Q: LGC uses Eq.(9) while GF uses Eq.(10), which leads to different label propagation
results. Another popular label propagation method is Harmonic function [10], which
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emphasizes harmonic nature of the label diffusive process. It is very different from
LGC and Green’s function, thus we did not discuss it here.

We have done extensive experiments to compare the above discussed methods for
semi-supervised learning. We defer the presentation of these results in the experiment
§7. We next discuss another contribution of this paper, i.e., the maximum consistency
algorithm on these preferential random walk/label propagation methods.

4 Score Distribution: Confidence of Label Assignment

We begin the presentation of our maximum consistency with analysis of the distribu-
tion scores of the propagation. Our approach is motivated by careful examinations of
experiment results. One conclusion is that although label propagation methods are ef-
fective, their current achieved results can be improved significantly. Below we illustrate
the reasons.

In both LGC (Eq.9) and GF (Eq.10) methods, the propagation is done in one shot.
All unlabeled data obtain their class labels immediately. However, some unlabeled data
points may lie near labeled data in the data manifold (embedding subspace), while many
other unlabeled data lie far-away from the labeled data. Therefore, the reliability or
confidence of the class labels obtained in propagation vary from high (for those lie near
labeled data) to low (for those lie far-away from labeled data).

However, in the currently standard class assignment procedure of Eq.(12), the class
decision is simply the largest one among the c classes in the propagation score distribu-
tion across c classes. For example, for xi, the score distribution maybe

(Fi1 · · ·Fic) = (0.1, 0.2, 0.8, 0.3, 0.05),

in a data with c = 5 classes. For xj , the score distribution maybe

(Fj1 · · ·Fjc) = (0.2, 0.35, 0.38, 0.05, 0.3).

Even though both xi,xj are assigned class label=3, the confidence of the assignments
are different. Clearly, xi is assigned with higher confidence because Fi3 = 0.8 is much
higher than other classes. xj is assigned with lower confidence because Fj3 = 0.38 is
marginally higher than some other classes. In other words, for xi the propagation score
distribution has a sharp peak while for xj the propagation score distribution has a rather
flat peak.

There could be many reasons that xi’s score distribution is much sharper than the
score distribution for xj . xi could lie much closer to class= 3 labeled data point than xj .
It could also be that there are more class= 3 labeled data near xi than near xj . It is also
possible that there are many unlabeled points near xi such that they mutually enhance
the class= 3 probability than those near xj . More possibilities exist. Fortunately, it is
not necessary to dig out these details — they are collectively reflected in the propagation
score distribution.

In existing label propagation approaches, both xi,xj are assigned labels in one shot.
Now consider a different approach where we break the actual label assignment into
several rounds. We first assign class label for xi and move it to the pool of already-
labeled data, while defer the decision for xj in later rounds. As the pool of already-
labeled data expands to the neighborhood of xj , the propagation score distribution for
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xj is likely to become sharper. At this time/round, we assign class label to xj . Thus
the class label assignment is always occurring at the situation where the assignment
is done with high confidences, i.e., the assignment is done such that the data point is
the most consistent with other members of the same class, both globally and locally, as
reflected by the sharp score distribution. From these observations and discussions, we
design a maximum consistent(MC) label propagation algorithm, which uses the label
propagation operator Q defined in both LGC and GF methods. We call our approach as
MC-LGC and MC-GF. Detailed algorithm is presented in next section.

5 Maximum Consistency Label Propagation

5.1 Design of the Algorithm

Our algorithm design is guided by maximum consistency assumption, which consists
of multiple label propagations,

F1 = QY0,

F2 = QY1,

· · ·
Ft = QYt−1, (13)

where Q is the propagation operator which can be computed from Eq.(9) or Eq.(10),
and Ft is the label prediction matrix during each propagation. In each label propagation
process, we use the current labeled data matrix Yt to update the label prediction matrix
Ft.

At the end of each propagation, only those unlabeled data points whose class labels
are reliably predicted are actually assigned class labels and moved into the pool of
labeled data (Lpool). The rest of unlabeled data points remain in the pool of unlabeled
data (Upool). Thus the pool of unlabeled data decreases with each propagation, and the
pool of labeled data expands with each propagation. At last propagation, all remaining
unlabeled data are assigned class labels.

Because of class balance consideration, the pool of labeled data should get approx-
imately the same number of new members for each class. In our algorithm, each class
gets one new member after each propagation. We call this procedure as “balanced class
expansion (BCE)”. The number of unlabeled data are shrinking while the number of
labeled data are increasing during this repeated BCE procedure. The critical issue in
this BCE procedure is how to select this new member for each class. i.e., how to decide
“reliably predicted” data points in each BCE. As analyzed in above section, the relia-
bility of label propagation is reflected in score distribution. Thus, in our algorithm, we
use the score distribution to decide the most “reliable predicted” data points from the
data points in Upool in each BCE. We will illustrate more details in the next section.

Discussion. If we add different number of new members to different classes, it will
produce unbalance. Even if the discriminant scores of one class are much higher than
those of another class, we still consider add one number for each class. Although it is
inefficient, we believe this conservative way will result in selection of more “reliable”
data points.
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class 1

class 2

class 3

a

b

c d

Fig. 1. Selection of discriminative data in balanced class expansion. Data points: a, b, c, d.

5.2 Normalization on the Distribution Score

Although data in Lpool expands in a class-balanced way, there are always the situa-
tion where classes become unbalanced. In the label propagation, we need to properly
normalize the contributions from each class.

Suppose, a subset of data are labeled and there exists a class prior probability πk. Let
π = diag(π1 · · ·πk), and Z be the multi-class label assignment matrix from labeled
data, i.e.,

Zik =

{
1, if xi belongs to class k
0, otherwise

(14)

then the balanced source of propagation is defined as

Y = Zπ =

⎛⎝π1Z1,1 · · · πcZ1,c

· · · · · · · · ·
π1Zn,1 · · · πcZn,c

⎞⎠ . (15)

In our algorithm, we set the prior to πk = 1∑
i Zik

. therefore, each class contributes the

same total weight to the propagation:
∑

iYik =
∑

iYi� for any two class k,  . In our
algorithm the initial label matrix Y0 is constructed as

Y0 = Z0π0, (16)

where Z0 is the initial label assignment matrix constructed as Eq.(14) from the ini-
tially labeled data in Lpool. In the t-th iteration, let Zt be the label assignment matrix
constructed from current data in Lpool,

Yt = Ztπt. (17)

5.3 Reliable Assigning Class Labels with Score Distribution

After obtaining the assignment score Fik for all data in Upool, our goal is to pick up the
“reliable” assigned data points, one for each class, and add them to the Lpool whereas
remove them from the Upool. Afterwards in the actual label assignment for each class,
we (1) find out all the currently unlabeled data assigned to this class, (2) pick the one
with the highest discriminative score and assign it to this class.

A Motivating Example to Illustrate Discriminant Score. Fig.(1) illustrates the idea
of selecting discriminative unlabeled data points. Class 1 selects data a instead of data



Maximum Consistency Preferential Random Walks 347

b, because a is far away from classes 2 and 3; although b is slightly closer to class 1,
but b is also closer to class 2. In other words, a is more class discriminative than b.
Similarly, class 2 selects data c instead of d, because c is more discriminative than d.

Now we discuss the discriminative score computation. For each unlabeled data point
xi, it has been assigned to k scores(Fik, 1 ≤ k ≤ c). The c scores are then sorted as,

Fik1 ≥ Fik2 ≥ Fik3 ≥ ... (18)

3 classes with the highest scores are recorded as the three closest classes for xi: Fk1 ;
Fk2 , Fk3 . As discussed above, even two data points xi and xj have been assigned to
the same class ck, they may have different discriminant scores depending on the scores
which how xi,xj may be assigned to other classes. Here we consider the target class
the data points will be assigned to and other two competing classes which we wish
to be discriminant against. The discriminative scores for the 1st choice target class are
defined as (if there is only 2 classes, we do not need ck3),

E(i, ck1) = F2
ick1

|Fick1 − Fick2 |+ |Fick1 − Fick3 |√
Fick1 + Fick2 + Fick3

. (19)

The score difference achieves the discriminative affects. The denominator provides
a mild scale normalization. Without this term, the class with largest Fik scale may
dominate the score computation process. Note that these scores are computed once for
each balanced class expansion. For each unlabeled data point xi in Upool, it is assigned
to class k, which has the largest Fikscores among all class k. For each class k, we select
the data points xi, which has the largest discriminative score E(xi, ck) among all data
points in Upool assigned to class k. This procedure is designed to maximize the label
assignment consistency, which is consistent with LGC/GF approach.

Discussion on the Discriminant Score. Actually, we can define other formulations of
discriminant score. (1) Without the denominator of Eq.(19), discriminant score can be
written as,

E2(i, ck1) = F2
ick1

(|Fick1 − Fick2 |+ |Fick1 − Fick3 |). (20)

(2) Without the square for the 1st term of Eq.(19), discriminant score can be written as,

E3(i, ck1) = Fick1

|Fick1 − Fick2 |+ |Fick1 − Fick3 |√
Fick1 + Fick2 + Fick3

. (21)

(3) Select more top (e.g., 4, 5, 6, 7, ··) classes to compute the discriminant score, then
discriminant score for T classes is given by,

E4(i, ck1) = F2
ick1

∑T
t=1 |Fick1 − Fickt |√∑T

t=1 Fickt

. (22)

Our experiments results(see §7.4) show Eq.(19) achieves slightly better results than
other discriminant scores defined in Eqs.(20,21,22). For Eq.(20), the denominator is
removed. When some Fick has very large values, it may dominator the score. For
Eq.(21), square of score Fick is removed, which makes the score less sharper than that
of Eq.(19). For Eq.(22), more top classes are fetched to achieve discriminant effect. In
our experiments, we find when we select 3 classes, we can get very good results. When
we select more classes, the results change slightly, but sometimes even worse.
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(a) Data distribution.
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(b) LGC result
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(c) MC-LGC result

Fig. 2. Illustration of maximum consistency approach on a synthetic dataset. Labeled data shown
in thick symbols: red squares, green diamonds, blue circles for 3 classes. Initially unlabeled data
are shown in black stars and, after obtaining labels, shown in open symbols.

Algorithm 1. Maximum consistency label propagation algorithm (MC algorithm)
Input: labeled data L = {(xi, yi)}�

i=1, unlabeled data U = {xj}�+u
j=�+1 , MaxIter

Output: predicted class labels for unlabeled data
Procedure:
1: compute propagation operator Q with Eq.(9) or Eq.(10), compute initial label matrix Y0 using Eq.(16), t = 1
2: while t < MaxIter & U is not empty do
3: Ft = QYt−1

4: for each unlabeled data do
5: compute its corresponding discriminative score using Eq.(19)
6: end for
7: for k = 1 to c do
8: search all unlabeled data whose 1st choice target class is k. {Balanced class expansion}
9: if not empty then
10: pick the one with the largest discriminative score, add it to class k, remove it from U
11: end if
12: end for
13: Update Yt with Eq.(17) using current label assignment Zt {new labeled data added to Lpool}
14: t = t + 1
15: end while

Demonstration of Algorithm Performance on Toy Data. We illustrate the advantage
of the MC approach (on LGC methods) in Fig.2. A 3-class synthetic dataset is displayed
in Fig.(2a). For each class, three data points are labeled while the rest of data points
are unlabeled. Results of standard LGC methods and MC-LGC methods are shown in
Figs.(2b, 2c). It is clear that MC approaches achieves better results. One can get similar
results if making the comparisons of GF against MC-GF methods.

Complete algorithm is listed in Algorithm 1. This algorithm wraps around the label
propagation operator Q, and it can also use other label propagation operators.

Time Complexity Analysis. Note we only need to compute propagation operator Q
(through Eq.10 or Eq.9) once as in standard LGC or GF, and the extra time cost is
the iteration cost in balanced class expansion(BCE) process, which includes (1) the
iteration time of BCE process which is proportional to number of iteration t; (2) the
discriminant score table computation in lines 7 − 13 of Algorithm 1, which is propor-
tional to the number of current unlabeled data points nl and the number of class label
c. In our experiment, we find that the extra time cost is very limited as compared to the
propagation operator computation in step 1.
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6 Related Works

Here we discuss the previous works related to our algorithm. The related methods can
be roughly divided into three categories, (1) personalized random walk (RW); (2) semi-
supervised learning(SSL); (3) belief propagation (BP).

Random Walk is a popular technique widely used for PageRank algorithm [4].
Many variations of random walk methods are proposed, including personalized page
rank [5], lazy random walks [14], fast random walk with restart [15], center-piece sub-
graph discovery [16], using ghost edge for classification [17], analysis [18] and so on.

Semi-Supervised Learning methods are widely used in real applications.
Graph-based semi-supervised methods are the most popular and effective methods in
semi-supervised learning. The key-idea of graph-based semi-supervised methods is to
estimate a (label propagation) function on a graph, which maximizes (1) consistency
with the label information; (2) the smoothness over the whole graph. Several represen-
tative methods include harmonic function [10], local and global consistency [11] and
Green’s function [12].

Belief Propagation [19] is widely used for inference in probability graphical model.
Belief propagation methods can be used for collective classification for network data [20],
grouping nodes into regions for graphs [21] and so on. However, the computational cost
for BP method is usually very high.

Maximum consistency label propagation is an improvement of state-of-the-art semi-
supervised learning methods, which can be extended for collective classification [20]
and community detection [22]. Due to space limit, we omit the discussions here.

7 Experiments

In this section, we perform two groups of experiments. One group is to compare three
different methods in preferential random walks of Eqs.(6-8), and the other group is to
evaluate the effectiveness of maximum consistency (MC) algorithm.

7.1 Datasets

We adopt 9 data sets in our experiments, including two face datasets AT&T and umist,
three digit datasets mnist [23], binalpha and digit1, two image scene datasets Cal-
tec101 [24,25] and MSRC [25], and two text datasets Newsgroup2 and Reuters3. Table 1
summarizes the characteristics of the datasets.

7.2 Experiments Results on 3 Methods of Generalized Preferential Random
Walks of Eqs.(6-8)

In §2, we give three methods for generalized preferential random walks. We show
method 2 is equivalent to LGC method. When α = 0.1, GF method is the limit of

1 http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html
2 http://people.csail.mit.edu/jrennie/20Newsgroups/
3 http://www.daviddlewis.com/resources/testcollections/
reuters21578/

http://www.kyb.tuebingen.mpg.de/ssl-book/ benchmarks.html
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/


350 D. Kong and C. Ding

Table 1. Descriptions of datasets

Dataset #Size #Dimension #Class
AT&T 400 644 40
Caltech 600 432 20
MSRC 210 432 7
Binalpha 1014 320 36
Mnist 150 784 10
Umist 360 644 20
Newsgroup 499 500 5
Reuters 900 1000 10
digit 1500 241 2
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Fig. 3. Experiments results on 4 methods of Generalized Preferential Random Walks:
GF, method1, method2(=LGC), method3. x-axis represents the different α settings(α =
0.1, 0.3, 0.5, 0.7, 0.9), y-axis is the average classification accuracy over 10 independent runs.

method 1. In all the methods except in GF, parameter α will influence the
semi-supervised classification results. For image datasets, we use Gaussian kernel to
construct the graph edge weights Wij = e−γ||xi−xj||2 , where γ is fine tuned according
to [10]. For text datasets, we use linear kernel to compute graph similarity. We randomly
select 20% of all data as the training data. In Fig.3, we show the average classification
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(b) caltec
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(c) msrc

0.1 0.2 0.3 0.4 0.5
50

55

60

65

70

75

Percentage of randomly labeled points

av
er

ag
e 

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy
 

 

 

GF
MC−GF
LGC
MC−LGC

(d) binalpha
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(e) mnist
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(f) umist

0.1 0.2 0.3 0.4 0.5
65

70

75

80

85

Percentage of randomly labeled points

av
er

ag
e 

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy
 

 

 

GF
MC−GF
LGC
MC−LGC

(g) newsgroup

0.1 0.2 0.3 0.4 0.5
72

74

76

78

80

82

84

Percentage of randomly labeled points

av
er

ag
e 

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy
 

 

 

GF
MC−GF
LGC
MC−LGC

(h) Reuter
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(i) digit

Fig. 4. Experiments results on 4 methods of label propagation: GF, MC-GF, LGC, MC-LGC.
x-axis represents the different percentage of labeled data, y-axis is the average classification ac-
curacy over 10 independent runs

results on 4 methods (GF, method1, method2(=LGC), method3) by using 5-fold cross-
validation. In Fig.3, x-axis represents different α settings(α = 0.1, 0.3, 0.5, 0.7, 0.9),
y-axis is the average classification accuracy over 10 independent runs.

Experiment Result Analysis. From Fig. 3, we can observe: (1) method 1 and GF per-
form well on all the datasets; (2) parameter α does not influence very much for the
classification results obtained from method 1; (3) method 2 and 3 perform reasonably
well when α ≤ 0.5, but their performances degrade much when α is approaching 1.

7.3 Experiment Results on Maximum Consistency Algorithm

We compare maximum consistency algorithm with standard LGC and GF methods.
The α in LGC and MC-LGC methods are set to α = 0.5 as suggested in [13]. We use
Eq.(19) as the discriminant score in the balanced class expansion process. The max-
imum iteration time T is set according to the number of data points in the unlabeled
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(a) MSRC with Eq.(19)
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(b) MSRC with Eq.(20)
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(c) MSRC with Eq.(21)
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(d) binalpha with Eq.(19)
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(e) binalpha with Eq.(20)
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(f) binalpha with Eq.(21)

Fig. 5. Experiments results on 4 methods of label propagation: GF, MC-GF, LGC, MC-LGC using
different discriminant score computations of Eqs.(19,20 and 21) on datasets MSRC and binalpha.
x-axis represents the different percentage of labeled data, y-axis is the average classification ac-
curacy over 10 independent runs

pool. If there are more than θ = 90% of the whole data labeled, we stop the proposed
maximum consistency algorithm, and do one-shot label propagation.

We show the classification results of 4 methods (LGC, MC-LGC, GF, MC-GF) by
randomly selecting different percentages of labeled data in Fig.4, where x-axis rep-
resents different percentages of labeled data (i.e., 10%, 20%, · · · ·), and y-axis is the
average classification accuracy over 10 independent runs.

Experiment Results Analysis. From Fig. 4, we observe, (1) MC-LGC consistently
performs better than LGC especially when the percentage of labeled data is very small
(e.g., 10%); (2) MC-GF performs much better than GF; (3) on text dataset, MC-GF’s
superiority is much more significant (more than 5% improvement). Next, we discuss
maximum consistency algorithm experiment results with different parameter settings.

7.4 Discussion on the Parameter Settings of Maximum Consistency Algorithm

Discussion on Discriminant Score Computation. Discriminant score computation
is very important for the decision of data to be propagated. The first issue is how to
compute the discriminant score. Here we show the experiment results of classification
when alternative discriminant score computation formulations of Eq.(20, 21) are used.
The other settings of the experiments are the same as those described in §7.3. Fig. 5
shows the classification results of 4 methods of label propagation (GF, MC-GF, LGC,
MC-LGC) by using different discriminant score computations of Eqs.(19, 20, 21) on
datasets MSRC and binalpha. We observe that, most of the time, the classification results
obtained from Eq.(19) are slightly better on both datasets for both MC-GF and MC-LGC
methods. These experiment results suggest us to use Eq.(19) in our algorithm.
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(a) Caltec (θ = 60%)
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(b) Caltec (θ = 70%)
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(c) Caltec (θ = 80%)
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(d) Caltec (θ = 90%)
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(e) Caltec (θ = 100%)

Fig. 6. Experiments results on 4 methods of label propagation: GF, MC-GF, LGC, MC-LGC by
using different parameter θ on dataset Caltec. x-axis represents the different percentage of labeled
data, y-axis is the average classification accuracy over 10 independent runs

Discussion on the Iteration Number. Another key parameter is related to the extent to
which the procedure is designed for maximizing the label assignment consistency. As
described in §7.3, we use the number of labeled data points in labeled pool as a criteria
to stop our algorithm. We use parameter θ to represent the percentage of currently
labeled data of the whole dataset. In §7.3, we set θ = 0.9. We try different settings of
θ = {60%, 70%, 80%, 90%, 100%} and report the experiment results on dataset Caltec
in Fig. 6. The other settings of the experiments are the same as those described in §7.3.
We find, on most of the datasets, if we set θ = 90%, we can achieve the best results.
Thus we set θ = 90% as the default setting for our maximum consistency algorithm.

8 Conclusion
We analyze the relations between 3 methods of generalized preferential random walks
and label propagation methods. A maximum consistency algorithm is presented to im-
prove current label propagation methods. Extensive experiments on 9 datasets show the
effectiveness of MC algorithm and different generalized preferential random walks.
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Semi-supervised Multi-label Classification

A Simultaneous Large-Margin, Subspace Learning
Approach

Yuhong Guo and Dale Schuurmans

1 Department of Computer and Information Sciences
Temple University

Philadelphia, PA 19122, USA
2 Department of Computing Science

University of Alberta
Edmonton, AB, T6G 2E8, Canada

Abstract. Labeled data is often sparse in common learning scenarios,
either because it is too time consuming or too expensive to obtain, while
unlabeled data is almost always plentiful. This asymmetry is exacer-
bated in multi-label learning, where the labeling process is more com-
plex than in the single label case. Although it is important to consider
semi-supervised methods for multi-label learning, as it is in other learn-
ing scenarios, surprisingly, few proposals have been investigated for this
particular problem. In this paper, we present a new semi-supervised
multi-label learning method that combines large-margin multi-label clas-
sification with unsupervised subspace learning. We propose an algorithm
that learns a subspace representation of the labeled and unlabeled in-
puts, while simultaneously training a supervised large-margin multi-label
classifier on the labeled portion. Although joint training of these two
interacting components might appear intractable, we exploit recent de-
velopments in induced matrix norm optimization to show that these two
problems can be solved jointly, globally and efficiently. In particular,
we develop an efficient training procedure based on subgradient search
and a simple coordinate descent strategy. An experimental evaluation
demonstrates that semi-supervised subspace learning can improve the
performance of corresponding supervised multi-label learning methods.

Keywords: semi-supervised multi-label learning, subspace learning.

1 Introduction

In many real world data analysis problems, complex data objects such as docu-
ments, webpages, images and videos can be simultaneously assigned into multiple
categories, and hence have multiple class labels. Multi-label classification is an
important supervised learning problem that has received significant attention
in the machine learning research literature. Although the earliest work on this
problem simply reduced multi-label classification to a set of independent bi-
nary classification problems [1], it was quickly realized that such an approach
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was unsatisfactory [2] since such labels are usually not independent: most often
they exhibit strong correlations. Capturing label correlations in an effective, yet
tractable manner has led to a diverse set of formulations for multi-label learning,
including pairwise label dependency methods [3, 4], large-margin methods [5–8],
ranking based large margin methods [9–12], structure exploitation methods [13–
18] and others. Of these, it has recently been observed that large-margin based
approaches offer effective and efficient multi-label learning methods. In partic-
ular, it has been shown that a large-margin formulation based on minimizing a
“calibrated separation ranking loss” demonstrates state-of-the-art performance
in multi-label text categorization [8].

However, just as in any supervised learning scenario, a key bottleneck is ob-
taining sufficient labeled data to achieve reasonable generalization performance.
In practice, one often encounters a significant amount of unlabeled data, even
while labeled examples remain scarce, since labeling is an expensive and time-
consuming process. This issue is even more salient in multi-label learning, since
manually assigning multiple labels, correctly, is more challenging than assign-
ing atomic labels. Thus, we address the challenge of exploiting significant unla-
beled data to reduce the amount of labeled training data required for effective
multi-label classification. Although supervised multi-label learning has received
significant attention, semi-supervised multi-label learning is far from being well
explored. A handful of preliminary studies have explored semi-supervised multi-
label learning, using approaches such as non-negative matrix factorization [19],
graph-based methods [20], and dimensionality reduction [21]. Unfortunately,
these proposals rely on local optimization schemes for training, and do not offer
reliable off-the-shelf procedures that protect end-users from local minima.

In this work, we propose a new approach for exploiting unlabeled data to
help multi-label learning in a transductive setting, by simultaneously learning
the underlying subspace feature representations of the data with a large margin
multi-label classification model. Automatically discovering useful feature repre-
sentations of data has been a long standing research of machine learning—from
early unsupervised approaches, such as principal component analysis (PCA)—
to recent supervised convex feature learning, such as multi-task feature learning
[22]. Here we exploit recent results for semi-supervised convex subspace learn-
ing, which we adapt to large-margin multi-label classification. Our approach is
based on two key recent ideas: (1) using calibrated separation ranking loss for
large margin multi-label classification [8], and (2) using induced matrix norms to
efficiently combine subspace learning with semi-supervised training [23]. By in-
troducing a structured regularizer on the learned representation, and exploiting
a particular induced matrix norm, we formulate the semi-supervised multi-label
learning problem as a convex max-min optimization problem with no local max-
ima or minima. We then develop a specialized subgradient coordinate descent
algorithm to solve the training problem efficiently, recovering a global solution.

The goal is to discover a subspace feature representation that captures dis-
criminative structure that is not only shared across labeled and unlabeled data,
but also shared across the multiple labels. Our experimental results demonstrate
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that the proposed method can surpass the performance of some state-of-the-art
supervised results for multi-label text categorization.

The remainder of the paper is organized as follows. After first introducing
basic background concepts and notation, we review previous work on large mar-
gin multi-label classification in Section 2, with a particular emphasis on the
calibrated separation ranking loss used for state-of-the-art multi-label text cat-
egorization [8]. Based on this particular multi-label classification approach, we
then present a semi-supervised formulation in Section 3 that exploits implicit
subspace learning through structured matrix norm regularization. An efficient
global optimization algorithm is then presented in Section 4. Finally, we present
an experimental evaluation in Section 5 and conclude the paper with a discussion
of future research directions in Section 6.

1.1 Preliminaries: Definitions and Notation

Throughout this paper we will use capital letters to denote matrices, bold non-
capital letters to denote column vectors, and regular non-capital letters to denote
scalars, unless special declaration is given.

We use Id to denote a d × d identity matrix; and use 1 to denote a column
vector with all 1 entries, generally assuming its length can be inferred from
context. Given a vector x, ‖x‖2 denotes its Euclidean norm.

Given a matrix X , ‖X‖2F denotes its Frobenius norm; the block norm ‖X‖p,1
is defined as ‖X‖p,1 = (

∑
i(
∑

j |Xij |p)
1
p ); and the trace norm is defined as

‖X‖tr =
∑

i σi(X), where σi(X) denotes the ith singular value of X . We use
Xi: to denote the ith row of a matrix X , use X:j to denote the jth column of
X , and use Xij to denote the entry at the ith row and jth column of X . We
also need to make use of a general form of induced matrix norm given by the
definition ‖X‖(Z,p) := maxz∈Z ‖Xz‖p. It can be shown [23] that this defines a
valid matrix norm for any bounded closed set Z ⊂Rn such that span(Z) =Rn

and any 1 ≤ p ≤ ∞. Finally, for matrices, we use ‖X‖ to refer to a generic
norm on X , and ‖Y ‖∗ to denote its conjugate norm. The conjugate satisfies
‖Y ‖∗=max‖X‖≤1 tr(X


Y ) and ‖X‖∗∗=‖X‖, where tr denotes trace.

2 Background

Our main formulation is based on combining two key components: an effective
large-margin formulation for multi-label learning, and an efficient approach for
automated representation learning that avoids local optima.

2.1 Large Margin Multi-label Classification

Multi-label classification is a widely studied problem in supervised machine
learning, for which large margin methods provide one of the state-of-the-art
approaches. By maximizing discriminative classification margins, expressed by
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different loss functions, supervised large margin learning methods are both effi-
cient, and demonstrate good generalization performance.

In particular, [8] has recently proposed an effective method for supervised
multi-label learning that exploits the dependence structure between labels in a
simple yet effective manner. The basic idea is to simultaneously train a set of L
predictors, one for each class label, but under a coordinated loss: the calibrated
separation ranking loss captures the sum of two hinge losses, one of which is
between the prediction value of the least positive labeled class and the predic-
tion value of a threshold dummy class, and the other of which is between the
prediction value of the least negative labeled class and the prediction value of
the threshold dummy class.

More formally, in the supervised multi-label learning setting, one is given an
input data matrix X ∈ Rt×d and label indicator matrix Y ∈ {0, 1}t×L, where
L denotes the number of classes. We also assume a feature mapping function
φ(·) is fixed. Then, given an input instance x, the L dimensional response vector
s(x) = φ(x)
W is recovered using W , giving a “score” for each label. These
scores will be compared to a threshold to determine which labels are to be
predicted. Then the calibrated separation ranking loss is given by

max
l∈Yi:

(1 + s0(Xi:)− sl(Xi:))+ +max
l̄∈Ȳi:

(1 + sl̄(Xi:)− s0(Xi:))+. (1)

So, for example, given a test example x, its classification is determined by y∗l =
argmaxyl∈{0,1} yl(sl(x) − s0(x)).

It is shown in [8] that minimizing this loss under standard squared regular-
ization can be formulated as a standard convex quadratic minimization problem

min
W,u,ξ,η

α

2
(‖W‖2F + ‖u‖22) + 1
ξ + 1
η (2)

subject to ξi ≥ 1 +Xi:(u−W:l) for l ∈ Yi:, ∀i = 1 · · · t
ηi ≥ 1−Xi:(u−W:l̄) for l̄ ∈ Ȳi:, ∀i = 1 · · · t
ξ ≥ 0,η ≥ 0

where l ∈ Yi: lists through the indices of all entries of Yi: that contain 1 val-
ues, and Ȳ denotes the complementary of Y , i.e., Ȳ = 1 − Y . Obviously the
loss function only captures the classification relevant separation ranking that
separate positive labels from negative labels for each instance, instead of the
pairwise rankings among all label pairs in [9]. By conducting calibrated separa-
tion ranking, the label separation on new testing instances can be automatically
determined using the trained predictors.

In [8] this approach is shown to demonstrate superior generalization and effi-
ciency in supervised multi-label text categorization, so we make use of this loss
in our semi-supervised formulation.

2.2 Unsupervised Representation Learning

To allow unlabeled data to influence the training of a multi-label classifier we
consider the approach of learning a new input data representation that makes
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the label correlations more apparent. We begin by adopting a recent approach to
representation learning that offers a tractable way to learn a latent representation
and a data reconstruction model.

Initially, consider the case where one is just given unlabeled data X . A simple
goal for representation learning is to learn an m × d dictionary B of m basis
vectors, and a t×m representation matrix Ψ containing new feature vectors of
length m, so that X can be accurately reconstructed from X̂ = ΨB. To measure
approximation error we consider the loss function 1

2‖X̂ − X‖2F . Note that the

factorization X̂ = ΨB is invariant to reciprocal rescalings of B and Φ, so to avoid
degeneracy their individual magnitudes have to be controlled. We will assume
that each row Bi: of B is constrained to belong to a bounded closed convex set
B = {b : ‖b‖2 ≤ 1}. The generic training problem can be expressed

min
B∈Bm

min
Ψ

1

2
‖ΨB −X‖2F + γ‖Ψ
‖p,1 (3)

where γ ≥ 0 is a trade-off parameter. Some standard approaches to represen-
tation learning can be recovered by particular choices of p in (3). For example,
a standard form of sparse coding can be recovered by choosing p = 1 [24]. In-
stead, choosing p = 2 results in a regularizer that encourages entire columns Ψ:j

(features) to become sparse [25] while otherwise only smoothing the rows, hence
implicitly reducing the dimensionality of the learned representation Ψ .

Unfortunately, the straightforward formulation (3) is not jointly convex in
B and Ψ , and even recent formulations resort to local minimization strategies.
However, a key observation is that the training problem can be solved globally if
the number of learned features m is indirectly controlled through the use of the
‖Ψ
‖p,1 regularizer. As noted, for p > 1, such a regularizer will already naturally
encourage entire columns Ψ:j (features) to become sparse [25]. A key result that
leads to a tractable reformulation is the following identity from [23, 26].

Proposition 1. [23, Theorem 1]:

min
B∈B∞

min
Ψ

1

2
‖ΨB −X‖2F + γ‖Ψ
‖p,1 = min

X̂

1

2
‖X̂ −X‖2F + γ‖X̂‖∗(B,p∗) (4)

where minB∈B∞ denotes minm∈N minB∈Bm , and ‖ · ‖∗(B,p∗) is the conjugate of an
induced matrix norm.

The latter problem is convex, and for p = 1 or p = 2 can be readily solved for
X̂, after which the optimal factors B and Ψ can be readily recovered [23, 26].

3 Simultaneous Multi-label Classification and
Representation Learning

Our main contribution in this paper is to combine these two components to for-
mulate a multi-label classification and representation learning framework that
uses unlabeled data to guide the learning of a multi-label classifier. Such an
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approach enables semi-supervised learning, where unlabeled data assists in the
otherwise supervised training of a classification model. We will investigate semi-
supervised learning in a transductive setting, where a set of labeled and unla-
beled data is provided, and one seeks an accurate labeling over the unlabeled
portion.1 The main advantage of the proposed formulation is that it admits
an efficient global training scheme that combines multi-label classification with
representation learning.

Note that global training schemes offer a significant advantage to the end-
user, since they do not need to concern themselves with the inner workings
of any particular solver. Rather, it is sufficient to focus on understanding the
nature of the problem formulation, and the solver can be used as a black box.
This separation of implementation from specification frees the end-user to focus
on engineering useful features, or imposing trade-offs between training errors and
regularization penalties, without having to understand the inner workings of a
solver. In this paper, however, we need to show that a suitably efficient solver
can exist, which we do in the next section.

To develop a combined formulation of multi-label classification and represen-
tation learning, consider the following set-up. Let X ∈ Rt×d be the input feature
matrix and let X� ∈ Rt�×d be the labeled submatrix formed by the first t� rows of
X , where t�+ tu = t. Let Y ∈ {0, 1}t�×L be the label matrix over the supervised
portion.

We would like to learn a (tl + tu) × m representation matrix Ψ = [Ψl;Ψu],
an m × d basis dictionary B, and an m × L prediction model W , such that
X = [Xl;Xu] can be reconstructed from X̂ = ΨB, and Y can be reconstructed
from Ŷ = ΨlW . To accommodate the offset in the calibrated separation ranking
loss (1) we consider a linear prediction function over the subspace representation
Ψ(W:l−u). Then by combining (2) and (3) we reach the joint training formulation

min
Ψ,B∈Bm

min
W,u,ξ,η

α

2
(‖W‖2F + ‖u‖22) + 1
ξ + 1
η +

β

2
‖X − ΨB‖2F + γ‖Ψ
‖p,1 (5)

subject to ξi ≥ 1 + Ψi:(u−W:l) for l ∈ Yi:, ∀i = 1 · · · t�
ηi ≥ 1− Ψi:(u−W:l̄) for l̄ ∈ Ȳi:, ∀i = 1 · · · t�
ξ ≥ 0,η ≥ 0

where now the multi-label predictions are made from the learned representation
Ψ , which is the only component that connects the multi-label training problem to
the representation learning problem. Note that for p > 1 the regularizer ‖Ψ
‖p,1
will tend to reduce the dimensionality of the learned representation Ψ , which
gives an automated form of subspace learning directly coupled to the multi-
label training problem. Unfortunately, (5) does not immediately offer a plausible
global training algorithm that avoids local minima: although it is straightforward

1 The approach we propose here is in principle extendible to a semi-supervised learning
scenario where the test data is not available during training. However, such out-of-
sample classification entails significant additional technicality that is currently left
to future work.
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to observe that (5) is convex in each of the components B, W , Ψ , u, ξ and η given
the others, it is not jointly convex. Fortunately Proposition 1 can be generalized
to accommodate the more general formulation given here, as we now show.

3.1 Equivalent Reformulation as a Convex Problem

Unlike staged training procedures that separate the unsupervised from the super-
vised phase [27], and previous work on semi-supervised dimensionality reduction
that relies on alternating minimization [28], here we demonstrate a jointly convex
formulation that allows all components to be trained simultaneously.

Let M = ΨB and Z = Ψ(W − [u, · · · ,u]) denote the reconstruction and
response matrices respectively. To simplify the development below, we set u = 0
and therefore let Z = ΨW and M = ΨB; hence Z ∈ Rt×L and M ∈ Rt×d.
Substituting this into (5) yields

min
Ψ,B∈Bm,W,ξ,η

min
Z=ΨW,M=ΨB

α

2
‖W ‖2F + 1�ξ + 1�η +

β

2
‖X −M‖2F + γ‖Ψ�‖p,1 (6)

subject to ξi ≥ 1− Zil for l ∈ Yi:, ∀i = 1 · · · t�
ηi ≥ 1 + Zil̄ for l̄ ∈ Ȳi:,∀i = 1 · · · t�
ξ ≥ 0,η ≥ 0.

To achieve compatibility with the reformulation exploited by Proposition 1 we
replace the regularization penalty ‖W‖2F with a constraint on the norms of rows
Wi: in W . In particular, we constrain each Wi: to the bounded closed set W =
{w : ‖w‖2 ≤ α}. This leads to a slightly modified formulation

min
Ψ,B∈Bm,W∈Wm,ξ,η

min
Z=ΨW,M=ΨB

1
ξ + 1
η +
β

2
‖X −M‖2F + γ‖Ψ
‖p,1 (7)

subject to ξi ≥ 1− Zil for l ∈ Yi:, ∀i = 1 · · · t�
ηi ≥ 1 + Zil̄ for l̄ ∈ Ȳi:, ∀i = 1 · · · t�
ξ ≥ 0,η ≥ 0.

Finally, by relaxing the feature number m and instead allowing the rank reducing
regularizer ‖Ψ
‖p,1 to automatically choose the dimension, [23, Proposition 3]
shows that the problem (7) is equivalent to

min
Z,M,ξ,η

1
ξ + 1
η +
β

2
‖X −M‖2F + γ‖[M,Z]‖∗(U ,p∗) (8)

subject to ξi ≥ 1− Zil for l ∈ Yi:, ∀i = 1 · · · t�
ηi ≥ 1 + Zil̄ for l̄ ∈ Ȳi:, ∀i = 1 · · · t�
ξ ≥ 0,η ≥ 0

where as in Proposition 1, ‖ · ‖(U ,p∗) is a conjugate of an induced matrix norm, but
nowwith respect to the closedbounded setU := {[b;w] : ‖b‖2 ≤ 1 and ‖w‖2 ≤ α}.
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Importantly, the problem (8) is jointly convex in Z, M , ξ and η, since norms are
always convex. For p = 1 or p = 2, given an optimal pair [M,Z], the underlying
factors Ψ ,B andW can be efficiently recovered using a procedure outlined in [23].
However, for the purposes of transduction, Z itself is sufficient for determining the
label predictions on the unlabeled data, so this extra recovery procedure can be
bypassed.

3.2 Tractable Special Case

Even though the problem (8) is convex, it is not guaranteed to be tractable,
since not every induced matrix norm is tractable to compute [29]. However, the
important special cases of p = 1 and p = 2 both allow the induced norm ‖·‖(U ,p∗)

to be efficiently evaluated. In particular, for p = 2, [23] establishes the following
useful characterization.

Proposition 2. [23, Lemma 5]: ‖[M,Z]‖∗(U ,2) = maxρ≥0 ‖D−1
ρ [M,Z]
‖tr where

Dρ =

[√
1 + α2ρ Id 0

0
√

α2 + 1
ρ IL

]
. (9)

This proposition shows that for the case p = 2 the conjugate induced norm can
be efficiently computed: all that is required is a line search over a scalar variable
ρ ≥ 0, where for each value of ρ the inner calculation can be efficiently evaluated
by computing the singular value decomposition of [M,Z]D−1

ρ .
Below we find it more convenient to work with a re-parameterized version of

the calculation.

Proposition 3. max
ρ≥0

‖D−1
ρ [M,Z]
‖tr = max

0≤θ≤1
‖Eθ[M,Z]
‖tr where

Eθ =

[√
θ Id 0

0
√
1−θ
α IL

]
. (10)

This proposition is easy to establish by noting the relationships D−1
ρ = E 1

α2ρ+1
,

E−1
θ = D 1−θ

α2θ

, θ = 1
α2ρ+1 , and ρ = 1−θ

α2θ , hence optimizing with D−1
ρ over the

range ρ ≥ 0 is equivalent to optimizing with Eθ over the range 0 ≤ θ ≤ 1.
Thus, we obtain the following convex optimization problem that is equivalent

to (8) for the special case when p = 2:

max
0≤θ≤1

min
Z,M,ξ,η

1
ξ + 1
η +
β

2
‖X −M‖2F + γ‖Eθ[M,Z]
‖tr (11)

subject to ξi ≥ 1− Zil for l ∈ Yi:, ∀i = 1 · · · t�
ηi ≥ 1− Zil for l̄ ∈ Ȳi:, ∀i = 1 · · · t�
ξ ≥ 0,η ≥ 0.

To verify that this problem has no local optima, first note that the inner problem
is convex in Z, M , ξ and η for each fixed θ. Furthermore, it can be shown that
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‖Eθ[M,Z]
‖tr is concave in θ. Since a pointwise minimum of concave functions
is concave, the outer optimization in θ also has no local maxima. To solve (11), all
one has to do is run a simple outer concave maximization over a scalar variable,
while each inner minimization is a standard convex minimization. Essentially,
the inner problem has the same complexity as the standard multi-label learning
problem, which only has to be repeated a few times (say, around 10) to achieve
an accurate solution.

4 Optimization Algorithm

The semi-supervised optimization problem we formulated above in (11) is a
convex optimization problem but with a non-smooth trace norm. To develop an
efficient optimization algorithm for it, we first derive an equivalent reformulation
following a well-known variational formulation of the trace norm [22, 30]:

Proposition 4. Let Q ∈ Rt×d. The trace norm of Q is equal to

‖Q‖tr =
1

2
inf
S�0

tr(Q
S−1Q) + tr(S), (12)

and the infimum is achieved for S = (QQ
)1/2.

Following this proposition, we can reformulate (11) as the following

max
0≤θ≤1

min
Z,M,ξ,η

inf
S�0

1
ξ + 1
η +
β

2
‖X −M‖2F (13)

+
γ

2
tr([M,Z]EθS

−1Eθ[M,Z]
) +
γ

2
tr(S)

subject to ξi ≥ 1− Zil for l ∈ Yi:, ∀i = 1 · · · t�
ηi ≥ 1 + Zil̄ for l̄ ∈ Ȳi:, ∀i = 1 · · · t�
ξ ≥ 0,η ≥ 0

which maintains the convexity of the original formulation of (11). Although the
reformulated problem remains a non-smooth max-min optimization problem, an
efficient optimization procedure can still be developed. In particular, we develop
a simple subgradient-based binary line search procedure, combined with a block-
descent inner minimization, to solve this problem.

First, consider the max-min optimization problem in (13) as a non-smooth
concave optimization problem over θ

max
0≤θ≤1

f(θ) (14)

where the objective function is a non-smooth function defined by a convex min-
imization problem

f(θ) = min
M, {Z,ξ,η}∈C

inf
S�0

1
ξ + 1
η +
β

2
‖X −M‖2F (15)

+
γ

2
tr([M,Z]EθS

−1Eθ[M,Z]
) +
γ

2
tr(S).
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Here we use C to denote the feasible region defined by the linear constraints
in (13) over variables {Z, ξ,η}. For such a non-smooth optimization problem,
subgradient-based methods such as proximal bundle methods can be generally
applied. Nevertheless, we develop a much simpler binary line search procedure
to tackle this specific one dimensional optimization problem over θ.

4.1 Binary Line Search

The idea of binary line search is to iteratively reduce the searching region (inter-
val) for the optimal θ value, eliminating at least half of the feasible region each
time. At the beginning of the binary line search, θ is upper-bounded by Vu = 1
and lower-bounded by V� = 0, which is its full feasible region, i.e., the feasible
line segment. In each iteration of the binary line search, we set θ as the midpoint
of its upper bound and lower bound values, θ = (Vu + V�)/2. We then compute
the subgradient of f(θ) at this current point θ. Following Danskin’s theorem,
the subgradient of f(θ) can be computed as

∂f

∂θ
=

γ

2

∂tr([M∗, Z∗]EθS
∗−1Eθ[M

∗, Z∗]
)

∂θ
(16)

where M∗, Z∗, S∗−1 are the optimal solution for the convex minimization prob-
lem in (15) with the given θ value. Since f(θ) is concave in θ, a positive subgra-
dient value at θ indicates that the optimal θ∗ value is larger than the current θ
value, while a negative subgradient value indicates that the optimal θ∗ value is
smaller than the current θ value. Therefore, we increase the lower bound of θ to
its current value when ∂f

∂θ > 0, and reduce the upper bound of θ to its current

value when ∂f
∂θ < 0; thus ensuring the search interval is halved at each iteration.

By repeating the binary line search step, the feasible subinterval containing
the optimal θ∗ value can be quickly reduced at an exponential rate. When the
subgradient is close to 0 or the interval between upper and lower bound values is
sufficiently small, an optimal θ value can be returned. The overall binary search
procedure is described in Algorithm 1.

4.2 Block-Coordinate Descent for Inner Convex Minimization

Both the computation of each subgradient value of f(θ) in the binary line search
procedure and the final optimal solution recovery require solving the convex
minimization problem in (15); i.e., the inner minimization problem in (13), for
optimal M∗, Z∗ and S∗−1 given a fixed θ value. Although this optimization
problem is convex, it is nevertheless challenging to design an efficient and scalable
optimization algorithm to tackle the typically large parameter matrices M,Z,
and S. For example, even for a given S, the Hessian matrix for the quadratic
programming problem in M and Z can be too large to fit in memory for even a
medium-sized data set with large number of input features.

Therefore, we develop a scalable block-descent optimization algorithm to solve
the convex minimization problem iteratively. Specifically, in each iteration, we
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conduct an optimization over each of the three sets of variables, {S}, {M} and
{Z, ξ,η}, in turn, given all other variables fixed. The optimization over each of
the three sub-problems is conducted as follows.

Optimization over Z. Given fixed S and M values, the minimization problem
over the remaining variables Z, ξ,η forms a standard quadratic program with
linear constraints; i.e.,

min
Z,ξ,η

1
ξ + 1
η +
γ

2
tr([M,Z]Q[M,Z]
) (17)

subject to ξi ≥ 1− Zil for l ∈ Yi:, ∀i = 1 · · · t�
ηi ≥ 1 + Zil̄ for l̄ ∈ Ȳi:, ∀i = 1 · · · t�
ξ ≥ 0,η ≥ 0

where Q = EθS
−1Eθ. Note that the linear constraints are only expressed in

terms of the labeled part of Z and ξ, η. It is easy to see that

tr([M,Z]Q[M,Z]
) = tr([M,Z]

[
Qdd QdL

QLd QLL

]
[M,Z]
) (18)

= tr(MQddM

 + 2ZQLdM


 + ZQLLZ

)

where Qdd denotes the d × d top-left submatrix of Q, QLL denotes the L × L
bottom-right submatrix of Q, and QdL = Q


Ld denotes the other two submatrices
of Q. Moreover, it is known that the matrix Z and matrix M can both be
decomposed into two submatrices corresponding to the labeled and unlabeled
data, Z = [Z l;Zu] and M = [M l;Mu]. Thus (18) can be further rewritten as

(18) = tr(Z�QLLZ
�
) + 2tr(Z�QLdM

�
) + tr(MQddM

) (19)

+tr(ZuQLLZ
u
) + 2tr(ZuQLdM

u
)

which clearly shows that the optimization over submatrices Z� and Zu can be
conducted independently.

By setting the derivative of the objective (17) (which is also the derivative of
(19)) with respect to Zu to 0, we can obtain a closed-form solution for Zu:

Zu = −MuQdLQ
−1
LL. (20)

Although no closed-form solution exists for Z� due to the linear constraints
in (17), note that the objective in (19) actually can be further decomposed into
independent terms for each row of Z�. Furthermore, the linear constraints in (17)
are row-wise separable regarding Z�, ξ,η as well. Therefore, we can optimize each
row of Z� independently by solving a small standard quadratic programming.
For example, the ith row of Z, Zi: and ξi,ηi, can be optimized as

min
Zi:,ξi,ηi

ξi + ηi +
γ

2
Zi:QLLZ



i: + γZi:QLdM



i,: (21)

subject to ξi ≥ 1− Zil for l ∈ Yi:,

ηi ≥ 1 + Zil̄ for l̄ ∈ Ȳi:,

ξi ≥ 0,ηi ≥ 0
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Algorithm 1. Binary Line Search

Input: X,Y, α, β, γ, a small constant τ > 0.
Initialize: set V� = 0, Vu = 1.
Repeat:

1. set θ = V�+Vu

2
.

2. given the current θ, solve the inner minimization problem (15)
for M∗, Z∗, S∗−1 using block-coordinate descent method.

3. compute the subgradient ∂f
∂θ

according to Eq.(16).

4. if ‖ ∂f
∂θ‖ < τ then return end if

5. if ∂f
∂θ

> 0 then V� = θ else Vu = θ end if
Until (Vu − V�) < τ

Algorithm 2. Block-Coordinate Descent Optimization

Input: X,Y, α, β, γ, a small constant τ > 0.
Initialize: set M = X and randomly initialize Z.
Repeat:

1. recompute S using Eq.(24).
2. with given S,M , recompute Zu using Eq.(20), and recompute

each row Z�
i: by solving the quadratic programming in (21).

3. with given S,Z, recompute M using Eq.(23).
Until changes in M,Z is smaller than τ .

which can be solved using any standard quadratic program solver.

Optimization over M . Given fixed Z, ξ, η and S, we optimize M as an
unconstrained quadratic optimization problem

M = argmin
M

β

2
‖X −M‖2F +

γ

2
tr([M,Z]Q[M,Z]
). (22)

Setting the derivative of the objective function with respect to M to 0 yields

M = (βX − γZQLd)(βI + γQdd)
−1. (23)

Optimization over S. Given Z, ξ, η and M , the minimization over S has a
closed-form solution as suggested in the Proposition we presented above; i.e.,

S = (Eθ[M,Z]
[M,Z]Eθ + εiI)
1/2 (24)

where εi > 0 is a small value added to achieve an invertible S.
The overall block-coordinate descent procedure is given in Algorithm 2. By

employing the block-coordinate descent inner convex minimization, the binary
line search algorithm we developed obviously provides a scalable optimization
tool for the target non-smooth convex optimization problem.
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Table 1. Data set properties: k = # classes, T = # instances, C = label cardinality

Arts Comp. Edu. Entain. Health Recr. Ref. Sci. Soc. Socie.

k 11 12 8 9 9 11 10 7 7 14
T 2525 2046 2816 2649 2932 2454 795 951 1181 4559
C 2.54 2.74 2.54 2.53 2.18 2.51 2.16 2.52 2.29 2.89

5 Experiments

To evaluate the proposed method, we conducted experiments on a set of multi-
topic web page classification data sets [31]. Each data set consists of web pages
collected from the yahoo.com domain. We preprocessed the data sets by first
removing the largest class label (which covered more than 50% of the instances)
and removing class labels that had fewer than 250 instances (for some data sets,
we even used larger thresholds 300 and 400 to obtain larger label cardinalities).
When the label cardinality of a data set is close to 1, the classification task
is close to a standard single label multi-class task. The effectiveness of multi-
label learning can be best demonstrated on data sets whose label cardinalities
are reasonably large. We also removed any instances that had no labels or every
label. For the input feature representation, we removed the less frequent features
and converted the remaining integer features into a standard tf-idf encoding. The
properties of the preprocessed data sets are summarized in Table 1.

We compared our proposed method (referred to as TRANS in the results)
with four other large margin multi-label learning baselines:

• CSRL, the large margin multi-label learning method developed in (2) [8],
based on a calibrated separation ranking loss.

• CONS, a variant of CSRL that replaces the regularizer ‖W‖2F with the con-
straint ‖Wi:‖2 ≤ α, as in Section 3.1.

• dCSRL, which first uses PCA to reduce the input dimension of the combined
labeled and unlabeled data, then applies the CSRL method.

• dCONS, which first uses PCA to reduce the input dimension of the combined
labeled and unlabeled data, then applies the CONS method.

Although numerous multi-label learning methods appear in the literature we
restrict our attention to convex training methods to ensure that the results
are repeatable independent of any particular implementation. In particular, for
supervised multi-label losses we focus our comparison on CSRL, since previous
work has demonstrated that this obtains state-of-the-art performance among
convex supervised approaches [8]. (Note that the semi-supervised formulation
presented in this paper can be easily applied to any convex multi-label loss [23].
However, finding tractable convex reformulations for losses specifically tailored
for multi-labeled classification, such as F-measure [4], remains an open problem
in the literature—e.g., the advanced formulation given in [4] still relies on an
NP-hard constraint generation oracle.)
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Table 2. Average transductive micro-F1 results over 10 repeats (± standard deviation)

Data set CSRL CONS TRANS dCSRL dCONS

Arts 0.42±0.01 0.37±0.01 0.50±0.01 0.44±0.01 0.42±0.01

Computers 0.45±0.02 0.34±0.01 0.53±0.01 0.42±0.01 0.41±0.02

Education 0.56±0.02 0.45±0.01 0.61±0.01 0.56±0.01 0.49±0.02

Entertainment 0.61±0.03 0.44±0.02 0.63±0.01 0.50±0.02 0.46±0.03

Health 0.60±0.02 0.35±0.01 0.64±0.01 0.49±0.01 0.44±0.01

Recreation 0.48±0.02 0.32±0.05 0.53±0.01 0.41±0.01 0.39±0.01

Reference 0.55±0.02 0.41±0.01 0.55±0.01 0.36±0.01 0.34±0.01

Science 0.68±0.01 0.54±0.04 0.72±0.01 0.64±0.01 0.56±0.01

Social 0.63±0.01 0.53±0.06 0.67±0.01 0.55±0.01 0.48±0.01

Society 0.31±0.02 0.29±0.01 0.43±0.01 0.34±0.01 0.31±0.01

Table 3. Average transductive macro-F1 results on 10 repeats (± standard deviation)

Data set CSRL CONS TRANS dCSRL dCONS

Arts 0.37±0.01 0.34±0.02 0.47±0.01 0.43±0.01 0.41±0.02

Computers 0.39±0.02 0.28±0.01 0.48±0.02 0.40±0.01 0.40±0.02

Education 0.48±0.02 0.39±0.01 0.54±0.01 0.54±0.01 0.47±0.02

Entertainment 0.50±0.05 0.34±0.01 0.53±0.03 0.46±0.01 0.42±0.03

Health 0.52±0.02 0.31±0.01 0.57±0.01 0.47±0.01 0.42±0.01

Recreation 0.37±0.02 0.28±0.02 0.45±0.01 0.38±0.01 0.36±0.01

Reference 0.34±0.01 0.32±0.01 0.42±0.01 0.32±0.01 0.30±0.01

Science 0.62±0.02 0.47±0.04 0.67±0.01 0.61±0.01 0.54±0.01

Social 0.53±0.02 0.44±0.05 0.58±0.02 0.51±0.01 0.45±0.01

Society 0.19±0.02 0.24±0.01 0.34±0.01 0.32±0.01 0.29±0.01

To also provide a comparison to semi-supervised methods, along the lines
of [19–21], we furthermore include the latter two competitors, which use the
unlabeled and labeled data to first learn a low dimensional representation for the
input data. Note that the dimensionality reduction in this case is independent
of the target labels. The goal of these experiments therefore is to isolate the
consequences of using unlabeled data for subspace identification, and using label
information in choosing such subspaces.

In these experiments we simply set the regularization parameters for TRANS
to α = 0.01, β = 100 and γ = 50, and set the regularization parameter for
CSRL and CONS to α = 0.01. The target dimensionality was set to 50 for
the dimensionality reduction methods dCSRL and dCONS. The performance of
each method is evaluated using the macro-F1 and micro-F1 measures [32]. We
randomly selected 200 instances from each data set to be the labeled part, and
another 1000 instances to be the unlabeled part. The process is repeated 10
times to generate 10 random partitions. The average performance and standard
deviations of the five methods are reported in Table 2 and Table 3 respectively.

One can see from these results that the unlabeled data generally provides an
improvement in generalization accuracy over the baseline supervised methods.
First, using dimensionality reduction as a preprocessing step only gave mixed



Semi-supervised Multi-label Classification 369

benefits for the CSRL and CONS methods, although CONS generally benefited
more. Interestingly, the proposed TRANS method, which learns a low dimen-
sional subspace that also depends on the training labels, obtains a systematic
and noticeable improvement over the other methods. TRANS significantly im-
proves the macro-F1 measure over all comparison methods in every case, while
achieving the same result for micro-F1 measure in every case except the “Refer-
ence” data set. The run times of TRANS and CSRL on 1200 data points (200
labeled and 1000 unlabeled) were approximately 10m for TRANS and 1m for
CSRL, respectively, using simple Matlab implementations.

6 Conclusions

We have proposed a new method for semi-supervised multi-label classification
that combines a state-of-the-art large margin multi-label learning approach with
a current representation learning method. A key aspect of this approach is that
it allows an efficient global training procedure. Experimental results show that
the semi-supervised combination can outperform corresponding supervised and
simple semi-supervised learning methods in a transductive setting.

There remains several important directions for future work. The current for-
mulation is transductive; an out-of-sample extension of our approach is possible
using a proposed technique from [23]. It also remains to investigate other rep-
resentation learning formulations, such as p = 1, to determine their impact on
performance. Another interesting direction is to extend the work of [4] to incor-
porate a tractable convex relaxation of F-measure for training.
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Abstract. The behavior of many complex physical systems is affected
by a variety of phenomena occurring at different temporal scales. Time
series data produced by measuring properties of such systems often mir-
rors this fact by appearing as a composition of signals across different
time scales. When the final goal of the analysis is to model the individual
phenomena affecting a system, it is crucial to be able to recognize the
right temporal scales and to separate the individual components of the
data. In this paper, we approach this challenge through a combination
of the Minimum Description Length (MDL) principle, feature selection
strategies, and convolution techniques from the signal processing field.
As a result, our algorithm produces a good decomposition of a given time
series and, as a side effect, builds a compact representation of its identi-
fied components. Experiments demonstrate that our method manages to
identify correctly both the number and the temporal scale of the com-
ponents for real-world as well as artificial data and show the usefulness
of our method as an exploratory tool for analyzing time series data.

Keywords: Time Series, Scale Selection, Minimum Description Length.

1 Introduction

This paper is concerned with the analysis of sensor data. When monitoring
complex physical systems over time, one often finds multiple phenomena in the
data that work on different time scales. If one is interested in analyzing and
modeling these individual phenomena, it is crucial to recognize these different
scales and separate the data into its underlying components. Here, we present
a method for extracting the time scales of various phenomena present in large
time series. The method combines concepts from the signal processing domain
with feature selection and the Minimum Description Length principle [2].

The need for analyzing time series data at multiple time scales is nicely demon-
strated by a large monitoring project in the Netherlands, called InfraWatch
[6,11]. In this project, we employ a range of sensors to measure the dynamic
response of a large Dutch highway bridge to varying traffic and weather condi-
tions. When viewing this data (see Fig. 1a), one can easily distinguish various
transient events in the signal that occur on different time scales. Most notable
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Fig. 1. (a) One day of strain measurements from a large highway bridge in the Nether-
lands. The multiple external factors affecting the bridge are visible at different time
scales. (b) A detail of plot (a) showing one of the peaks caused by passing vehicles.

are the gradual change in strain over the course of the day (as a function of
the outside temperature, which influences stiffness parameters of the concrete),
a prolonged increase in strain caused by rush hour traffic congestion, and indi-
vidual bumps in the signal due to cars and trucks traveling over the bridge. In
order to understand the various changes in the sensor signal, one would benefit
substantially from separating out the events at various scales. The main goal
of the work described here is to do just that: we consider the temporal data
as a series of superimposed effects at different time scales, establish at which
scales events most often occur, and from this we extract the underlying signal
components.

In this work, we approach the scale selection problem from a Minimum De-
scription Length (MDL) perspective (see Section 3). The motivation for this is
that we need a framework in which we can deal with a wide variety of represen-
tations for scale components. The MDL framework was shown to be sufficiently
general to provide this flexibility by Hu et al. [3] for the problem of choosing the
best model for a given signal. Our main assumption here is that separating the
original signal into components at different time scales will simplify the shape
of the individual components, making it easier to model them separately. Our
results show that, indeed, these multiple models outperform (in terms of MDL
score) a single model derived from the original signal. While introducing multiple
models incurs the penalty of having to describe these multiple models, there are
much fewer ‘exceptions’ to be described compared to the single model, yielding
a lower overall description length. For instance, in the sensor data of Fig. 1a,
cars are often passing in one direction while there is rush hour congestion in the
opposite direction. Using multiple models, this is modeled accurately, while a
single model will easily ignore these events.

The analysis of time scales in time series data is often approached from a scale-
space perspective, which involves convolution of the original signal with Gaussian
kernels of increasing size [12] to remove information at smaller scales. By subtract-
ing carefully selected components of the scale-space, we can effectively cut up the
scale space into k ranges. In other words, signal processing offers methods for pro-
ducing a large collection of derived features, and the challenge we face in this paper
is how to select a subset of k features, such that the original signal is decomposed
into a set of meaningful components at different scales.
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Our approach applies the MDL philosophy to various aspects of modeling:
choosing the appropriate scales at which to model the components, determining
the optimal number of components (while avoiding overfitting on overly spe-
cific details of the data), and deciding which class of models to apply to each
individual component. For this last decision, we propose two classes of models
representing the components respectively on the basis of a discretization and a
segmentation scheme. For this last scheme, we allow three levels of complexity
to approximate the segments: piecewise constant approximations, piecewise lin-
ear approximations, as well as quadratic ones. These options result in different
trade-offs between model cost and accuracy, depending on the type of signal we
are dealing with.

A useful side product of our approach is that it identifies a concise represen-
tation of the original signal. This representation is useful in itself: queries run
on the decomposed signal may be answered more quickly than when run on the
original data. Furthermore, the parameters of the encoding may indicate useful
properties of the data as well.

The paper is organized as follows. Section 2 reviews the signal processing con-
cepts used in this work and introduces the concept of scale-space decomposition.
Section 3 shows how we encode the signal decompositions and use MDL to se-
lect the best subset of scales. Section 4 presents an empirical evaluation of our
method on both real-world and artificial data. Section 5 links our method to
related work. Finally, Section 6 states our main conclusions and ideas for future
work.

2 Preliminaries

In this section we introduce the notation and the basic definitions used through-
out the paper. In particular, we review the concept of the scale-space image
of a signal and we show how to exploit it to define a set of candidate scale-
space decompositions. We deal with finite sequences of numerical measurements
(samples), collected by observing some property of a system with a sensor, and
represented in the form of time series as defined below.

Definition 1. A time series of length n is a finite sequence of values x =
x[1], . . . , x[n] of finite precision.1 A subsequence x[a : b] of x is defined as follows:

x[a : b] = (x[a], x[a+ 1], . . . , x[b]), a < b

We also assume that all the considered time series have no missing values and
that their sampling rate is constant.

2.1 The Scale-Space Image

The scale-space image [12] is a scale parametrization technique for one-dimensional
signals2 based on the operation of convolution.

1 32-bit floating point values in our experiments.
2 From now on, we will use the term signal and time series interchangeably.
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Definition 2. Given a signal x of length n and a response function (kernel)
h of length m, the result of the convolution x ∗ h is the signal y of length n,
defined as:

y[t] =

m/2∑
j=−m/2+1

x[t− j]h[j]

In this paper, h is a Gaussian kernel with mean μ = 0, standard deviation σ,
area under the curve equal to 1, discretized into m values.3 Also, since x is finite,
x[t − j] may be undefined. To account for these boundary effects, x is padded
with m/2 zeros before and after its defined range. A complete overview on how
to compute the Gaussian convolutions for discrete signals can be found in [7].

The convolution acts as a smoothing filter which smooths each value x[t] based
on its surrounding values. The amount of removed detail is directly proportional
to the standard deviation σ (and thus m), from now on referred to as the scale
parameter. In the limit, when σ → ∞, the result of the Gaussian convolution
converges to the mean of the signal x.

Given a signal x, the family of σ-smoothed signals Φx over scale parameter σ
is defined as follows:

Φx(σ) = x ∗ gσ , σ > 0

where gσ is a Gaussian kernel having standard deviation σ, and Φx(0) = x.
The signals in Φx define a surface in the time-scale plane (t, σ) known in the

literature as the scale-space image [7,12]. This visualization gives a complete
description of the scale properties of a signal in terms of Gaussian smoothing.
Moreover, it has other properties useful for segmentation, as we will see later in
the paper.

For practical purposes, the scale-space image is quantized across the scale
dimension by computing the convolutions only for a finite number of scale pa-
rameters. More formally, for a given signal x, we fix a set of scale parameters

S = {2i | 0 ≤ i ≤ σmax ∧ i ∈ N}

and we compute Φx(σ) only for σ ∈ S where σmax is such that Φx(σ) is approx-
imately equal to the mean signal of x.

As an example, Figure 2 shows the scale-space image of an artificially gen-
erated signal. The topmost plot represents the original signal, constructed by
three components at different temporal scales: a slowly changing and slightly
curved baseline, medium term events (bumps) and short term events (peaks). It
is easy to visually verify that, by increasing the scale parameter, a larger amount
of detail is removed. In particular, the peaks are smoothed out at scales greater
than σ = 24, and the bumps are smoothed out at scales greater than σ = 28,
after which only the baseline remains.

In the next section, we show how to manipulate the scale-space image to filter
out the effects of transient events in a specific range of scales. This will lead to
the definition of a signal decomposition scheme.

3 To capture almost all non-zero values, we define m = �6σ�.
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Fig. 2. Scale-space image of an artificially generated signal totalling 259200 points

2.2 Scale-Space Decomposition

Along the scale dimension of the scale-space image, short-time transient events
in the signal will be smoothed away sooner than longer ones. In other words, we
can associate to each event a maximum scale σcut such that, for σ > σcut, the
transient event is no longer present in Φx(σcut). This fact leads to the following
two observations:

– Given a signal scale-space image Φx, the signal Φx(σ) is only affected by the
transient events at scales greater than σ. This is conceptually equivalent to
a low-pass filter in signal processing.

– Given a signal scale-space image Φx and two scales σ1 < σ2, the signal
Φx(σ1) − Φx(σ2) is mostly affected by those transient events present in
the range of scales (σ1, σ2). This is similar to a band-pass filter in signal
processing.

As an example, reconsider the signal x and its scale-space image Φx of Figure 2.
Figure 3 shows (from top to bottom):

– the signal Φx(0) − Φx(2
4), which is the result of a high-pass filtering; this

feature represents the short-term events (peaks),
– the signal Φx(2

4)−Φx(2
10), which is the result of a band-pass filtering; this

feature represents the medium-term events (bumps),
– the signal Φx(2

10), which is the result of a low-pass filtering; this feature
represents the long-term trend.

Generalizing the example in Figure 3, we can define a decomposition scheme of a
signal x by considering adjacent ranges of scales of the signal scale-space image.
We formalize this idea below.
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Fig. 3. Examples of signal decomposition obtained from the scale-space image in
Figure 2

Definition 3. Given a signal x and a set of k−1 scale parameters C = {σ1, . . . ,
σk−1} (called the cut-points set) such that σ1 < ... < σk−1, the scale decom-
position of x is given by the set of component signals Dx(C) = {x1, ..., xk},
defined as follows:

xi =

⎧⎨⎩Φx(0)− Φx(σ1) if i = 1
Φx(σi−1)− Φx(σi) if 1 < i < k
Φx(σk−1) if i = k

Note that for k components we require k− 1 cut-points. This decomposition has
several elegant properties:

– xk can be seen as the baseline of the signal, as obtained by a low-pass filter;
– xi for 1 ≤ i < k are signals as obtained by a band-pass filter, and can be

used to identify transient events;
–
∑k

i=1 xi = x, i.e., the original signal can be recovered from the
decomposition.

3 MDL Scale Decomposition Selection

Given an input signal x, the main computational challenge we face is twofold:

– find a good subset of cut-points C such that the resulting k components of
the decomposition Dx(C) optimally capture the effect of transient events at
different scales,

– select a representation for each component, according to its inherent com-
plexity.

As stated before, the rationale behind the scale decomposition is that it is easier
to model the effect of a single class of transient events at a given scale than
to model the superimposition of many, interacting transient events at multiple
scales. We thus need to trade off the added complexity of having to represent
multiple components for the complexity of the representations themselves. In this
paper, we propose to use the Minimum Description Length (MDL) principle to
approach this problem.
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The Minimum Description Length [2] is an information-theoretic model se-
lection framework that selects the best model according to its ability to com-
press the given data. In our context, the two-part MDL principle states that
the best model M to describe the signal x is the one that minimizes the sum
L(M) + L(x |M), where

– L(M) is the length, in bits, of the description of the model,
– L(x |M) is the length, in bits, of the description of the signal when encoded

with the help of the model M .

The possible models depend on the scale decomposition Dx(C) considered4 and
on the representations used for its individual components. An ideal set of repre-
sentations would adapt to the specific features of every single component, result-
ing in a concise summarization of the decomposition and, thus, of the signal. In
order to apply the MDL principle, we need to define a model MDx(C) for a given
scale decomposition Dx(C) and, consequently, how to compute both L(MDx(C))
and L(x |MDx(C)). The latter term is the length in bits of the information lost
by the model, i.e., the residual signal x−MDx(C).

As the MDL framework is only applicable to discrete data, we first clarify
below how we discretize the input signal x and all the subsequent operations.
Subsequently, we will introduce the proposed representation schemes for the
components and define the bit complexity of the residual and the model selection
procedure.

3.1 Time Series Values Discretization

In order to use the MDL principle we need to work with a quantized input signal
and scale-space image. Because of this, we assume that the values v of both the
input signal x and Φx(σ), for each considered σ, have been quantized to a finite
number of symbols by employing the function defined below:

Q(v) =
⌊ v −min(x)

max(x)−min(x)
l
⌋
− l

2

where l, assumed to be even, is the number of bins to use in the discretization
while min(x) and max(x) are respectively the minimum an maximum value in
x. Throughout the rest of the paper, we assume l = 256. A similar approach
is described in [3]. All the subsequent operations, from the computations of
the scale decompositions to the encoding of the components, are kept in this
quantized space.

3.2 Component Representation Schemes

Within our general framework, many different approaches could be used for
representing the components of a decomposition. In the next paragraphs we
introduce two such methods.

4 Including the decomposition formed by zero cut-points (C = ∅), i.e., the signal itself.
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Discretization-Based Representation. In some components of our data
transient events always occur with similar amplitudes, mixed with long stretches
of baseline values (see Figure 3). Hence, a desirable encoding could be one that
captures this repetitiveness in the data by giving short codes to long stretches of
the baseline and the commonly occurring amplitudes. Unfortunately, our orig-
inal discretization is too fine-grained to capture regular occurrences of similar
amplitudes. As a first representation, we hence propose to also consider more
coarse-grained discretizations of the original range of values. We do this by dis-
cretizing each value v in a component to a value -Q(v)/2i., where several values
for i are considered for each component, typically i ∈ {2, 4, 6}. By doing so,
similar values will be grouped together in the same bin. The resulting sequence
of integers is compacted further by performing run-length encoding, resulting in
a string of (v, l) pairs, where l represents the number of times value v is repeated
consecutively. This string is finally encoded using a Shannon-Fano or Huffman
code (see Section 3.3).

As a simplified illustration of how the MDL principle helps here to identify
components, consider data generated by the expression (67)n(01)n (4n integers
from the range {0, . . . , 23 − 1}), where we assume n and the range are fixed.
In this data, each symbol occurs with the same frequency; we can encode the
time series hence with − log2(1/4) · 4 · n = 8n bits for the data, plus 8 logn bits
for the dictionary of frequencies. Consider now the decomposition of the signal
into two time series, 62n02n and (01)2n. The first component, of which the run-
length encoding is (6, 2n)(0, 2n), can be encoded using only 2 bits for the time
series (as there is only one possible run-length value, we use 0 bits to encode
the run-lengths), 8 logn bits for the dictionary of amplitudes, and 3 logn bits to
identify the length of the one run-length (logn bit for identifying the number of
run-lengths, in this case one, logn to identify the one run-length present, and
logn to identify its frequency, from which the encoding with 0 bits follows). The
second component can be encoded using 4n bits for the time series, as well as
8 logn bits for the dictionary. Assuming we also use 1 bit per component to
identify the type of encoding used, this gives us an encoding in 4+19 logn+4n
bits. Comparing this to 8n + 8 logn bits, for n ≥ 11 we will hence correctly
identify the two components in this simplified data.

Segmentation-Based Representation. The main assumption on which we
base this method is that a clear transient event can be accurately represented by
a simple function, such as a polynomial of a bounded degree. Hence, if a signal
contains a number of clear transient events, it should be possible to accurately
represent this signal with a number of segments, each of which represented by a
simple function.

Given a component xi of length n, let

z(xi) = {t1, t2, ..., tm}, 1 < ti ≤ n

be a set of indexes of the segment boundaries.
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Let fit(xi[a : b], di) be the approximation of xi[a : b] obtained by fitting a
polynomial of degree di. Then, we represent each component xi with the ap-
proximation x̂i, such that:

x̂i[0 : z1] = fit(xi[0 : z1], di)
x̂i[zi : zi+1] = fit(xi[zi : zi+1], di), 1 ≤ i < m
x̂i[zm : n] = fit(xi[zm : n], di)

Note that approximation x̂i is quantized again by reapplying the function Q to
each of its values.

For a given k-components scale decomposition Dx(C) and a fixed polynomial
degree for each of its components, we calculate the complexity in bits of the
model MDx(C), based on this representation scheme, as follows. Each approxi-
mated component x̂i consists of |z(xi)|+1 segments. For each segment, we need
to represent its length and the di + 1 coefficients of the fitted polynomial. The
length lsi of the longest segment in x̂i is given by

lsi = max(z1 ∪ {zi+1 − zi | 0 < i ≤ m})

We therefore use log2(lsi) bits to represent the segment lengths, while for the
coefficients of the polynomials we employ floating point numbers of fixed5 bit
complexity c. The MDL model cost is thus defined as:

L(MDx(C)) =

k∑
i=1

(|z(xi)|+ 1) (�log2(lsi)+ c (di + 1))

So far we assumed to have a set of boundaries z(xi), but we did not specify
how to compute them. A desirable property for our segmentation would be
that a segmentation at a coarser scale does not contain more segments than a
segmentation at a finer scale.

The scale space theory assures that there are fewer zero-crossing of the deriva-
tives of a signal at coarser scales [12]. In our segmentation we use the zero-
crossings of the first and second derivatives.

More formally, we define the segmentation boundaries of a component xi to
be

z(xi) =

{
t ∈ R

∣∣∣∣ dxi

dt
(t) = 0

}⋃{
t ∈ R

∣∣∣∣ d2xi

dt
(t) = 0

}
.

Figure 4b shows an example of segmentation obtained as above using fitted
polynomials of degree 1.

However, many other segmentation algorithms are known in the literature
[4,5] and all of them can be interchangeably employed in this context.

3.3 Residual Encoding

Given a model MDx(C), its residual r = x −
∑k

i=1 x̂i, computed over the com-
ponents approximations, represents the information of x not captured by the

5 In our experiments c = 32.
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(a) (b)

Fig. 4. Example of discretization-based encoding (a) and segmentation-based encoding
with first degree polynomial approximations (the markers show the zero-crossings) (b)

model. Having already defined the model cost for the two proposed encoding
schemes, we only still need to define L(x | MDx(C)), i.e., a bit complexity L(r)
for the residual r.

Here, we exploit the fact that we operate in a quantized space; we encode each
bin in the quantized space with a code that uses approximately − log(P (x)) bits,
where P (x) is the frequency of the xth bin in our data. The main justification for
this encoding is that we expect that the errors are normally distributed around 0.
Hence, the bins in the discretization that reflect a low error will have the highest
frequency of occurrences; we will give these the shortest codes. In practice, such
codes can be obtained by means of Shannon-Fano coding or Huffman coding; as
Hu et al. [3] we use Huffman coding in our experiments.

3.4 Model Selection

We can now define the MDL score that we are optimizing as follows:

Definition 4. Given a model MDx(C), its MDL score is defined as:

L(MDx(C)) + L(r)

In the case of discretization-based encoding, the MDL score is affected by the
cardinality used to encode each component. In the case of segmentation-based
encoding the MDL score depends on the boundaries of the segments and the
degrees of the polynomials in the representation. In both cases, also the cut-
points of the considered decomposition affect the final score.

The simplest way to find the model that minimizes this score is to enumerate,
encode and compute the MDL score for every possible scale-space decomposition
and all possible encoding parameters. As we shall now show, this brute-force
approach is practically feasible.

The number of possible scale decompositions depends on the total number
of cut-points sets we can build from the computed scale parameters in Φx. We
fix the maximum number of cut-points in a candidate set to some value cmax.
This also means that we limit our search to those scale decompositions having
cmax + 1 components or less. Moreover, given our wish to consider only simple
approximations of the signals, we can also assume a reasonably low limit dmax
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(in practice, dmax = 2) on the degree of the polynomials that approximate the
segments of each given component.

Computing the MDL score for each encoded scale decomposition, obtained
by ranging over all the possible configurations of cut-points C1, ..., Ck−1, and
all the possible configurations of polynomial degrees d1, ..., dk, hence requires
calculating MDL scores for

cmax+1∑
k=2

(
|S|

k − 1

)
dkmax

scale decompositions. This turns out to be a reasonable number in most practical
cases we consider, and hence we use an exhaustive approach in our experiments.

4 Experiments

In this section, we experimentally evaluate our method, both on artificial data
and on actual sensor data from the highway bridge mentioned in the introduc-
tion. To evaluate the strengths and weaknesses of our method, we have tested it
on a range of artificial datasets6 that mimic some of the multi-scale phenomena
present in the bridge data. Our constructed data deliberately varies from easy,
with clearly separated scales, to challenging with a variety of event shapes and
sizes. All artificial datasets represent sensor data measured at 1 Hz for a du-
ration of three days (totaling 259,200 data points). The data was produced by
combining three components at three distinct scales, resembling 1) individual
events from vehicles, 2) traffic jams that last several tens of minutes, and 3)
gradual change of the baseline, due to temperature changes of the bridge over
the course of several days.

Artificial Data. We start by considering one particular dataset in detail (see
Figure 5a). This dataset was constructed by using Gaussian shapes for both the
small and medium-scale events, and a sine wave of period 2.25 days at the largest
scale. Medium events have a constant height, whereas small-scale events have a
random height. We limited the search space to decompositions having a maxi-
mum of 4 components (3 cut-points). As can be seen in Figure 5a, our method
was able to identify the fact that this data contains three important scales.
Furthermore, the method correctly identified the two necessary cut-points, such
that the three original components were reconstructed. The selected cut-points7

appear at scales 29 = 512 and 212 = 4096. When considering the separated
components in detail, some influence across the scale-boundaries is visible, for
example where small effects of the ‘traffic jams’ appear among the small-scale

6 The artificial datasets and the source code can be obtained by contacting the first
author.

7 Note that our method returns the boundaries between scales, rather than the actual
scales of the original components.
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Fig. 5. Signals (top) and top-ranked decompositions for the two artificial datasets

events. These effects seem unavoidable, with the inherent limitations of the scale-
space-based band-pass filtering and the discrete collection of scales we consider
(powers of 2).

This optimal result has an MDL-score of 509,000 bits, being the sum of the
model cost (L(M) = 75, 072) and the error length (L(D | M) = 433, 928).
The second-ranked result on this data, with cut-points C = {211, 213}, shows a
similar result, however with slightly more pronounced cross-boundary artifacts
in the smallest scale, as is expected with a doubling of the lower cut-point. The
MDL-score of this result is 64, 896 + 450, 487 = 515, 383. The k = 1 case, which
corresponds to compression of the original signal without any decomposition,
appears at rank three, with an MDL-score of 44, 640+ 471, 271 = 515, 911. This
model obviously has a much lower model cost, due to having to represent only
a single component, but this is compensated by the substantially higher error
length, putting it below the scale-separated results. Ranks four and five represent
two k = 2 results, where the former groups the small and medium scales together,
and the latter the medium and large. All results in the top 10 relate to models
that use polynomial representations (d ≤ 2).

Not all artificial datasets considered produced perfect results. In Figure 5b,
we show an example of a dataset that includes ‘traffic jams’ that resemble more
closely some of the phenomena in the actual sensor data. In many cases, traffic
jams appear fairly rapidly, and then show an increased load on the bridge over a
prolonged period. This is modeled in the data by medium-scale events that start
and stop fairly rapidly, and remain constant in the meantime. The best result
found, with cut-points C = {212, 213}, is shown in Figure 5b. This demonstrates
that the proposed method is not able to properly separate the medium and
low-scale events. In fact, even though the medium component does identify the
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Fig. 6. Signal (top) and top-ranked scale decomposition for the InfraWatch data

location of the ‘traffic jams’, most of the rectangular nature is accounted for by
the small scale. To some extent, this is understandable, as the start and end of
the event could be considered high-frequency events with rapid changes in value.
Therefore, parts of these events appear at a small scale, and the algorithm is
mirroring this effect. In any case, the algorithm is able to identify the correct
number of components, and is able to produce indications as to the location of
the traffic jams. The top four results all show similar mixtures of scales, whereas
the rank-five result groups the lowest two scales together. The k = 1 result
appears at rank 14.

In order to better understand to what extent the proposed method is able
to separate components at different scales, we carried out a more controlled
experiment. We generated 11 different datasets constructed from 3 components.
We fixed the scales of the short-term and long-term components respectively
around σ = 23 and σ = 215, while the scale of the medium-term component varies
from dataset to dataset in the range (24, . . . , 214). The table below shows the
number of components (k) of the top-ranked decomposition for the 11 datasets
according to the scale parameter σ of the medium-term component.

σ 24 25 26 27 28 29 210 211 212 213 214

k 1 2 2 2 3 3 3 3 1 1 1

As the table suggests, the proposed method fails to identify the right number
of components when the scales are too close to each other. However, when the
scales are separated sufficiently (28 ≤ σ ≤ 211), the right number of components
is identified. Also in this case, all the top-ranked decompositions relate to models
that use polynomial representations.

InfraWatch Data. As anticipated by the motivating example in the introduc-
tion, we consider the strain measurements produced by a sensors attached to a
large highway bridge in the Netherlands. For this purpose, we consider a time
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Fig. 7. A detail of the original strain signal (one hour) and the selected first component
as represented with 4 symbols

series consisting of 24 hours of strain measurements sampled at 1 Hz (totaling
86, 400 data points). A plot of the data is shown in Figure 6 (topmost plot).
We evaluated all the possible decompositions up to three components (two cut-
points) allowing both the representation schemes we introduced. In the case of
the discretization-based representations, we limit the possible cardinalities to 4,
16 and 64.

The top-ranked decomposition results in 3 components as shown in the last
three plots in Figure 6. The selected cut-points appear at scales 26 = 64 and
211 = 2048. All three components are represented with the discretization-based
scheme, with a cardinality of respectively 4, 16, and 16 symbols. The decompo-
sition has an MDL-score of 344, 276, where L(M) = 19, 457 and L(D | M) =
324, 818. The found components accurately correspond to physical events on the
bridge. The first component, covering scales lower than 26, reflects the short-
term influence caused by passing vehicles and represented as peaks in the signal.
Note that the cardinality selected for this component is the lowest admissible in
our setting (4). This is reasonable considering that the relatively simple dynamic
behavior occurring at these scales, mostly the presence or not of a peak over a
flat baseline, can be cheaply described with 4 or fewer states without incurring
a too large error. The middle component, covering scales between 26 and 211,
reflects the medium-term effects caused by traffic jams. As in the artificial data,
the first component is slightly influenced by the second one, especially at the
start and ending points of a traffic jam. Finally, the third component captures
all the scales greater than 211, here representing the effect of temperature during
a whole day. To sum up, the top-ranked decomposition successfully reflects the
real physical phenomena affecting the data. The decompositions with rank 8 or
less all present similar configurations of cut-points and cardinalities, resulting
in comparable components where the conclusions above still hold. The first 2-
component decomposition appears at rank 10 with the cut-point placed at scale
26, which separates the short-term peaks from all the rest of the signal (traffic
jams and baseline mixed together). These facts make the result pretty stable as
most of the good decompositions are ranked first.

An Application: Detecting Passing Vehicles. The component selection and
representation generated by the MDL procedure may be useful in itself for tasks
such as classification. For example, consider the short-term component of the
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previous example, Figure 6 (second plot). It represents the traffic activity over
the bridge and has been represented with a discretization-based scheme using 4
symbols. Figure 7 shows a detail (1 hour) of the discretized component (bottom)
and the relative original signal (top). The first 2 symbols (0 and 1) respectively
classify the absence or presence of a passing vehicle, while the other two, con-
siderably less frequent, are outliers in the data. The represented component, as
selected by MDL, can thus be used to monitor traffic activity over the bridge, a
task that is considerably more challenging using the original signal, due to the
variations introduced by temperature fluctuations and traffic jams.

5 Related Work

Papadimitriou et al. [9] propose a method to discover the key trends in a time
series at multiple time scales (window lengths) by defining an incremental version
of Singular Value Decomposition. In signal processing, Independent Component
Analysis [1] aims at separating a set of signals from a set of mixed signals but,
in its standard formulation, requires at least as many sensors as sources. Our
method is able to operate on a single input sensor and a variable number of
sources to be discovered. Megalooikonomou et al. [8] introduce a multi-scale
vector quantized representation of time series which enables fast and robust
retrieval. The considered scales are however predefined and our approach could
be used as a preprocessing step to determine those to include in the dictionary.
The Minimum Description Length principle has been applied to the problem of
choosing the best representation for a given time series by Hu et al. [3]. The
authors propose a method to choose the best representation (and its parameters)
among APCA, PLA and DFT. While there are similarities with our method (we
also use the MDL principle to select the best model parameters for a given
component), the authors put the stress on discovering the intrinsic cardinality
of the data, other than its constituent multi-scale components. MDL has also
been adopted to detect changes in the distribution of a data stream by van
Leeuwen et al. [10].

6 Conclusions and Future Work

We introduced a novel methodology to discover the fundamental scale compo-
nents in a time series in an unsupervised manner. The methodology is based on
building candidate scale decompositions, defined over the scale-space image [12]
of the original time series, with an MDL-based selection procedure aimed at
choosing the optimal one.

A useful side product of the presented technique, due to the adoption of MDL,
is that each discovered component is represented independently according to its
inherent complexity and often results in a cheaper model (in terms of MDL
score) in relation to the original raw time series. These cheaper per-component
representations may better serve tasks like classification, regression or association
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analysis for time series produced by inherently multi-scale physical and artificial
systems.

We have shown that our approach successfully identifies the relevant scale
components in both artificial and real-world time series, giving meaningful in-
sights about the data in the latter case. Future work will experiment with diverse
representation schemes and hybrid approaches (such as using combinations of
segmentation, discretization and Fourier-based encodings). Moreover, another
interesting research question is how to substitute the presently employed ex-
haustive search of the optimal decomposition with a computationally cheaper
heuristic approach, which is necessary in the case of large time series data.
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by a Postdoc grant from the Research Foundation-Flanders.
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Abstract. Sensor measurements from diverse locations connected with
possibly low bandwidth communication channels pose a challenge of
resource-restricted distributed data analyses. In such settings it would be
desirable to perform learning in each location as much as possible, with-
out transferring all data to a central node. Applying the support vector
machines (SVMs) with nonlinear kernels becomes nontrivial, however.

In this paper, we present an efficient optimization scheme for training
SVMs over such sensor networks. Our framework performs optimization
independently in each node, using only the local features stored in the
respective node. We make use of multiple local kernels and explicit ap-
proximations to the feature mappings induced by them. Together they
allow us constructing a separable surrogate objective that provides an
upper bound of the primal SVM objective. A central coordination is also
designed to adjust the weights among local kernels for improved predic-
tion, while minimizing communication cost.

Keywords: distributed features, support vector machines, separable op-
timization, primal formulation, approximate feature mappings.

1 Introduction

Sensor networks have been a very active research topic in recent machine learning
and data mining [12,13]. Sensors are adopted to monitor certain aspects of ob-
jects or phenomena that we are interested in, often located in such places hardly
accessible by human beings. Various applications include monitoring manufac-
turing processes, traffic levels, water flows and climate changes over time at
different locations, where sensors (or computing nodes embracing local sensors)
have to communicate with each other or with a central arbitrator in order to
provide useful information for decision making.

Challenges arise in sensor networks when we try to build a predictor collecting
information from all sensors, where sensors can afford only minimal communica-
tion due to their distance to a central station or low-power requirements. If this
is the case, we might prefer to perform learning in a distributed fashion, where
each separated part of learning relies on locally stored measurements only. Learn-
ing a global model in such cases requires an approach whose computation can
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be distributed in a well-defined way, equipped with a global arbitration that
can maximize prediction performance without incurring too much information
transfer from sensors.

In this paper we suggest a variant of the support vector machines (SVMs)
using nonlinear kernels on sensor data. We define kernels that use only locally
stored features in sensors, computing explicit forms of approximations to the
feature mappings that correspond to each local kernel. For typical error functions
of SVMs, we then create a separable surrogate objective function that forms an
upper bound on the original primal SVM objective. Each separated part in the
objective is designed to use a single local kernel, and therefore can be optimized
locally at the sensors.

We also provide an additional central optimization that uses inner product
results from the sensors, without requiring an access to local kernel functions
or their approximations. The central optimization provides local kernels new
weights, that can be fed to the sensors and generate possibly improved local
solutions.

2 Separable Optimization

In this section we begin with a general description of the support vector machines
(SVMs), shaping it progressively to a form which can be optimized separately
for local features in each network node.

2.1 Support Vector Machines

We consider a given data set {(xu, yu)}mu=1 which consists of pairs of input feature
vectors xu ∈ Rp and their labels yu, where yu ∈ {−1,+1} for classification and
yu ∈ R for regression. The SVMs for 1- and 2-class classification and regression
can be formulated as an unconstrained convex minimization,

min
w∈H,ρ∈R

λ

2

(
‖w‖2H + ρ

)
+

1

m

m∑
u=1

 (〈w, φ(xu)〉, yu, ρ) (1)

where λ > 0 and  is a convex loss function chosen by the task of interest as in
Table 1. For readability we ignore the intercept term of a decision plane without
loss of generality, which can be easily included by augmenting vectors w and x
and excluding it from penalization in the first objective term. We call φ : Rp →
H, for a Hilbert space H, a feature mapping induced by a positive semidefinite
kernel k, with the relation that k(x,x′) = 〈φ(x), φ(x′)〉 for all x,x′ ∈ Rp.

2.2 Multiple Localized Kernels

Now, we consider that the input features are stored in a distributed fashion
among n nodes, possibly with overlaps among them. We suppose that there are
p unique features in total, denoting by Si ⊂ {1, 2, . . . , p} the subset of feature
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Table 1. The loss function � and the range of ρ in the canonical objective of SVMs in
the equation (1), and �i and ρi corresponding to the ith summand in the upper bounds
of � formed in (6). For the training example indexed by u, we set z = 〈w, φ(xu)〉 and
zi = w[i]Tϕi(xu[i]). The zero range for ρ and ρi implies we ignore them in optimization.

Task �(z, y, ρ) �i(zi, y, ρi) Range ρ, ρi
Classification (1-class) max{0, ρ− z} max {0, ρi − zi} R

Classification (2-class) max{0, 1− yz} max{0, 1− yzi} 0
Regression max{0, |y − z| − ε} max{0, |y − zi| − ε} 0

indices stored in the ith node, and by pi := |Si| > 0 its cardinality, so that
∪n
i=1Si = {1, 2, . . . , p} and

∑n
i=1 pi ≥ p. For convenience, we refer to the feature

subvector of xu stored in the ith node as xu[i] ∈ Rpi .
For each node we make use of an individual kernel which depends on only

the features stored locally in nodes. We denote the kernel for the ith node by
ki : R

pi×pi → R and its corresponding feature mapping by φi : R
pi → Hi. Then

we can construct a composite kernel k as a conic combination of local kernels,
that is,

k(x,x′) :=
n∑

i=1

μ2
i ki(x[i],x

′[i]). (2)

(It will become clear why we use μ2
i rather than μi ≥ 0, as we progress.) The

weights for local kernels μi will be optimized, which defines our central optimiza-
tion problem to be discussed later. This setting is very similar to the multiple
kernel learning (MKL) and boosting, but our resulting framework will not be
exactly the same, as we discuss later in Section 3.

We note that using multiple kernels alone does not lead to a separable ob-
jective for SVMs. From the representer theorem [20], the optimal weight w of
SVM (1) is expressed as a linear span of the representers k(·,xv). That is,

w(·) =
m∑

v=1

αvk(·,xv)
(2)
=

n∑
i=1

μ2
i

m∑
v=1

αvki(·[i],xv[i]), (3)

Replacing w into (1) results in the following objective:

min
α∈Rm

λ

2

n∑
i=1

μ2
i

m∑
u=1

m∑
v=1

αuαvki(xu[i],xv[i])

+
1

m

m∑
u=1

 

(
n∑

i=1

μ2
i

m∑
v=1

αvki(xu[i],xv[i]), yu, ρ

)
.

We can see that all optimization variables α1, α2, . . . , αm are coupled with each
node i = 1, 2, . . . , n, therefore cannot be split over nodes. This also indicates
that we would need alternative ways to incorporate kernels rather than relying
on the representer theorem, to achieve separability.
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2.3 Approximating Feature Mappings

One observation of the original SVM formulation (1) is that the terms ‖w‖2 and
〈w, φ(xu)〉 will be separable over the components of w, if w and φ(xu) are in
a finite dimensional space. (The loss functions  in Table 1 are not separable as
well. We will discuss them as the next step in the following section.) Motivated
by this, we introduce explicit finite-dimensional approximations to the feature
mappings φ ∈ H that correspond to kernel functions k(x,x′) = 〈φ(x), φ(x′)〉.
This step is necessary, since the explicit form of φ is unavailable in general.

For each node i, suppose that we have obtained an approximate feature map-
ping ϕi : R

pi → Rdi to the original mapping φi, where di ∈ (0,∞) is a predefined
(possibly small) integer, so that

〈ϕi(x[i]), ϕi(x
′[i])〉 ≈ ki(x[i],x

′[i]) = 〈φ(x[i]), φ(x′[i])〉.

When d :=
∑n

i=1 di is sufficiently large, we can consider the following d-dimen-
sional problem as a good approximation to the original problem (1):

min
w∈Rd,ρ∈R

λ

2

(
‖w‖22 + ρ

)
+

1

m

m∑
u=1

 
(
wTϕ(xu), yu, ρ

)
. (4)

Regarding the representation (3), we impose a weight μi ≥ 0 for the feature
mappings in nodes i = 1, 2, . . . , n, so that

ϕ(x) :=

⎡⎢⎢⎢⎣
μ1ϕ1(x[1])
μ2ϕ2(x[2])

...
μnϕn(x[n])

⎤⎥⎥⎥⎦ , w :=

⎡⎢⎢⎢⎣
w[1]
w[2]
...

w[n]

⎤⎥⎥⎥⎦ ⇒ wTϕ(x) =

n∑
i=1

μiw[i]Tϕi(x[i]).

Here we denote by w[i] ∈ Rdi the subvector of w ∈ Rd for the node i. Again, by
x[i] ∈ Rpi we denote the attributes of x ∈ Rp stored in the node i.

In the expansion of wTϕ(x) above, we have μi but no μ2
i as in (2) or (3). The

reason is that we do not have any inner product between images of ϕi(·): this
becomes a crucial property for deriving a separable optimization problem.

There have been largely two types of approaches to find approximate feature
mappings ϕ. The first type of approaches is based on computing low-rank factor
matrices that approximate the original kernel matrices [4,3,6]. Although this
type allows to use any positive semidefinite kernel matrices, it requires matrix
factorization with comparably large memory footprint.

In the second type, we make use of random projections and construct approx-
imate mappings directly [16]. These methods tend to require larger approxima-
tion dimensions than the first type [11], but they are much simpler and easier
to parallelize. In this paper we focus on the second type approximation of the
Gaussian kernels ki(x[i],x

′[i]) = exp(−γi‖x[i]−x′[i]‖22) for some γi > 0 without
loss of generality, for which the approximation is given by

ϕi(x[i]) =

√
2

di

[
cos(zT1 x[i] + e1), cos(z

T
2 x[i] + e2), . . . , cos(z

T
di
x[i] + edi)

]T
,

(5)
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for each node i, where zj ∈ Rpi and ej ∈ R are i.i.d. random samples from the
Gaussian distribution N (0, 2γiI), I is an identity matrix, and from the uniform
distribution on [0, 2π], respectively. These are derived from the Fourier transform
of the kernel function ki (for more details see [16]). Note that ϕi uses only local
features stored in the ith node, represented as a subvector x[i].

2.4 A Separable Surrogate Objective

Our final step is to make the loss functions  in Table 1 separable over nodes,
using their convexity in the first and the last arguments. For this purpose we
impose

∑n
i=1 μi = 1 in addition to μi ≥ 0. Then we can derive an upper bound

for the hinge loss  of 2-class classification as follows,

 (wTϕ(x), y, ρ) = max{0, 1− ywTϕ(x)}

= max{0,
n∑

i=1

μi(1− yw[i]Tϕi(x[i]))}

≤
n∑

i=1

μi i
(
w[i]Tϕi(x[i]), y, ρi

)
(6)

where  i is listed in the second row of Table 1, and we define ρi so that ρ =∑n
i=1 μiρi. The upper bounds for 1-class classification and regression tasks can

be derived similarly and are presented in the table as well. Summing up the
inequalities (6) over training indices u = 1, 2, . . . ,m leads to an upper bound of
the objective function in (4):

λ

2

(
‖w‖22 + ρ

)
+

1

m

m∑
u=1

 
(
wTϕ(xu), yu, ρ

)
≤

n∑
i=1

[
λ

2

(
‖w[i]‖22 + μiρi

)
+

1

m

m∑
u=1

μi i
(
w[i]Tϕi(xu[i]), yu, ρi

)]
. (7)

The expression in the right hand side is separable in terms of nodes. Therefore,
in each node i = 1, 2, . . . , n we can solve the following separated problem,

(Local) min
w[i]∈Rdi ,ρi∈R

λ

2

(
‖w[i]‖22 + μiρi

)
+

1

m

m∑
u=1

μi i
(
w[i]Tϕi(xu[i]), yu, ρi

)
.

(8)

Although it is possible to construct a global classifier by transferring all local
solutions w∗[i] and ρ∗i of (8) to a central node for i = 1, 2, . . . , n, it may not be
desirable since then the central node should know about ϕi and local features
as well. This requires O(

∑n
i=1 dipi) numbers to be transferred, plus O(

∑n
i=1 pi)

per test point x whose features are stored in a distributed fashion. Instead,
we let each node compute and transfer two scalars w∗[i]Tϕi(x[i]) and ρ∗i to a
central node, where weighted summations w∗Tϕ(x) =

∑n
i=1 μiw

∗[i]Tϕi(x[i])
and ρ∗ =

∑n
i=1 μiρ

∗
i can be used for global prediction. This approach reduces

the communication cost to O(n) for a test point.
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2.5 Minimization of Approximation Gaps

We discuss the quality of two approximations we have made, in using approxi-
mate feature mappings and an inequality due to the convexity of loss functions,
to arrive the separated local optimization (8) from the nonseparable SVM for-
mulation (1), assuming that both are using multiple localized kernels.

Approximation in Feature Mappings. The first approximation has been
applied when we use approximate feature mappings in Section 2.3. In the case
of the mapping ϕi : Rpi → Rdi in (5) approximating a local Gaussian kernel
ki(x[i],x

′[i]) = exp(−γi‖x[i]− x′[i]‖22), x[i] ∈ Rpi , the following result from [16]
quantifies its quality:

P

[
sup

x[i],x′[i]∈M

∣∣ϕi(x[i])
Tϕi(x

′[i])− ki(x[i],x
′[i])
∣∣ ≥ ε

]
≤ O

(
ε−2e

− ε2di
4(pi+2)

)
,

whereM⊂ Rpi is a compact set containing all subvectors xu[i], u = 1, 2, . . . ,m.
Therefore, ϕi grants us good approximation as long as we use sufficiently large
di for its approximation dimension.

Approximation in the Convex Inequality. Another approximation takes
place in (6) and (7), where we construct separable upper bounds of the nonsep-
arable loss functions  in Table 1. Since the inequality is constructed using the
convex combination parametrized by μ1, μ2, . . . , μn, we can reduce the gap in
the inequality by minimizing the right hand side expression of (7) in terms of
μi’s. This defines an optimization problem in a central node,

min
μ:=(μ1,μ2,...,μn)T

1

m

m∑
u=1

n∑
i=1

Luiμi + Ψ(μ)

(Central) s.t.

n∑
i=1

Luiμi ≥  

(
n∑

i=1

Zuiμi, yu,

n∑
i=1

μiρi

)
, u = 1, 2, . . . ,m, (9)

n∑
i=1

μi = 1, μi ≥ 0, i = 1, 2, . . . , n.

Here we have defined{
Zui := w[i]Tϕi(xu[i])

Lui :=  i(Zui, yu, ρi)
, u = 1, 2, . . . ,m, i = 1, 2, . . . , n. (10)

The constants in Zui can be computed independently in local nodes and trans-
ferred to the central node.

The last term Ψ in the objective of (9) is an optional convex regularization
term. This can be chosen as Ψ(μ) = σ

2 ‖μ‖22 for some σ > 0 to produce a unique
or an evenly distributed solution, Ψ(μ) = σ′‖μ‖1 to induce elementwise sparsity
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in μ (thereby selecting few local kernels important for prediction, similarly to

MKL), or Ψ(μ) = σ′′∑G
g=1 ‖μ[g]‖2 for subvectors μ[g] to promote groupwise

sparsity (e.g. selecting few clusters of nodes, rather than individual nodes).

3 Related Works

We present two most closely related learning approaches to our framework.

3.1 Multiple Kernel Learning

Themultiple kernel learning (MKL) is an extension of the support vectormachines
for employing multiple kernel functions, instead of a single one as in the standard
settings. The current forms and efficient learning methods for MKL have been es-
tablished in [10,9,1,2]. In MKL we consider a combination of n kernels

k(x,x′) =
n∑

i=1

βiki(x,x
′), βi ≥ 0,

n∑
i=1

βi = 1, (11)

and ki’s are defined on a certain subset of features. Plugging the composite ker-
nel k(x,x′) into the standard SVM formulation leads to a semi-definite program
(SDP) [10], which is much harder to solve than the standard SVMs. When ker-
nels ki are normalized, i.e. ki(x,x) = 1, it can be reduced to a quadratically
constrained quadratic program [9], which can be solved slightly more efficiently
than SDPs. Modifications to the SVM formulations lead to further improvement,
resulting in a semi-infinite linear program [19], a quadratic program [17], or a
much faster interleaved optimization using  p-norms [8].

The main difference of MKL to our framework is that the objective function
of MKL is not separable over nodes. For instance, the MKL formulation in [17]
solves the dual problem for fixed weights β1, β2, . . . , βn,

max
α∈Rm

− 1

2

n∑
i=1

βi

m∑
u=1

m∑
v=1

αuαvki(xu,xv) +

m∑
u=1

αu

s.t.

m∑
u=1

αuyu = 0, 0 ≤ αu ≤ 1/(mλ), u = 1, 2, . . . ,m.

Similar to our discussion in Section 2.2, all variables αu’s in this objective are
coupled with each node i, therefore the optimization cannot be separated over
nodes. Another difference is the ways to form the convex combinations of kernels.
Comparing the convex combinations in (11) and (2), we can interpret our μi as√
βi, and we impose

∑n
i=1 μi = 1, rather than

∑n
i=1 βi = 1.

3.2 Boosting

Boosting with an additive model [5] is also quite similar to our model and MKL.
In boosting, we find a linear combination of n basis functions or weak learners
of the form
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h(x) =

n∑
i=1

ζihi(w;x),

where ζi ∈ R, and hi can be set hi(w;x) = w[i]Tϕi(x[i]) to make it similar to
our setting. The optimal w∗[i] and ρ∗i can be found independently for each node
i = 1, 2, . . . , n, and the best combination of hi’s can be found by solving

min
ζ1,...,ζn

m∑
u=1

 

(
n∑

i=1

ζihi(w
∗;xu), yu,

n∑
i=1

ζiρ
∗
i

)
.

This resembles our central problem (9). Despite its similarity, however, the ob-
jective here does not provide an upper bound of the MKL objective as in our
formulation (7), thereby losing its connection to MKL. Also, unlike our setting
and MKL, the local problems in boosting do not depend on the weights ζi. That
is, the solutions from separated problems cannot be improved any further using
updated weight values of ζi obtained from the central optimization. Our frame-
work and MKL share the property that subproblems (separated problems in our
case, and the nonseparable problem obtained after fixing kernel weights in MKL)
are dependent on such weights, therefore we can obtain improved solutions using
adjusted weight values.

4 Algorithm

We describe our algorithm that solves the separated problem (8) at each lo-
cal node, and an additional central optimization (9) that determines the opti-
mal convex combination. The outline of the entire framework is presented in
Algorithm 1.

4.1 Local Optimization

To find the solutions of each separated local optimization problem, we use the
stochastic gradient descent (SGD) approach. In particular, we adapt the “ro-
bust” version of SGD suggested by Nemirovski and Yudin [15], for which a sim-
plified analysis [14] or a regret-based online learning analysis [21] can be found.
We sketch the robust SGD algorithm here and refer to the ASSET approach [11]
for details, which implements essentially the same idea for the standard SVMs.

To simplify our discussion, we denote the objective function of the ith sepa-
rated local problem in (8) by fi:

fi(w[i], ρi) :=
λ

2

(
‖w[i]‖22 + μiρi

)
+

1

m

m∑
u=1

μi i
(
w[i]Tϕi(xu[i]), yu, ρi

)
.

Then in each iteration of the local optimization, we update the variables w[i]
and ρi as follows,[

w[i]t+1

ρt+1
i

]
← PW

([
w[i]t

ρti

]
− ηtGt

)
, t = 1, 2, . . . , T, (12)
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Algorithm 1. Separable SVM with Approximations to Local Kernels

input : A data set {(xu, yu)}mu=1, the number of iterations K (K > 1 only if
we use central optimization), positive integers T and T0, and μ0 = 1/n.

Initialize: μi ← μ0, for i = 1, 2, . . . , n;
for k = 1, 2, . . . ,K do

Transmit μi to all nodes i = 1, 2, . . . , n;
(local: in parallel)

// Solve a separated local problem in each node i, using ASSET

input : a weight μi and local measurements/labels {(xu[i], yu)}mu=1.
Initialize iterates and averages: w[i]1 ← 0, ρ1i ← 0 w̄[i]← 0, ρ̄i ← 0;
Estimate an optimization constant θi > 0;
for t = 1, 2, . . . , T do

Select a random training index ξt ∈ {1, 2, . . . ,m};
Compute a steplength ηt = θi/

√
t;

Update w[i] and ρi via (12);

end
output: averages of iterates, w̄[i] and ρ̄i, for the last (T −T0) iterations.
output: (optional) transfer Zui := w̄[i]Tϕi(xu) for u = 1, 2, . . . ,m and

ρ̄i to a central node.
(end)
(central: optional)

// Solve a central problem, using CPLEX

input : Zui and ρ̄i for u = 1, 2, . . . ,m, i = 1, 2, . . . , n.
Compute Lui := �i (Zui, yu, ρ̄i) for all u = 1, 2, . . . ,m, i = 1, 2, . . . , n;
Compute ρ =

∑n
i=1 μiρ̄i;

Solve an equivalent formulation (13);
output: new weights μ1, μ2, . . . , μn.

(end)

end

where PW(z) := argminv∈W{ 12‖z− v‖22} is an Euclidean projection of a vector
z onto a convex set W , Gt is an estimate subgradient of fi at (w[i]t, ρti), con-
structed using a training example chosen by a random index ξt ∈ {1, 2, . . . ,m},
and ηt is a steplength of the form ηt = θi/

√
t for some θi > 0. The set W guides

the optimization to avoid taking too large steps, whose formulation can derived
analytically from strong duality [18,11].

The convergence of the robust SGD algorithm is O(c(T0/T )θi/
√
T ) in terms

of objective function values in expectation, where c(·) is a simple function only
depending on the ratio T0/T [14].

4.2 Central Optimization

The central problem (9), for the loss functions  in Table 1, can be formulated
as a linear program (LP) or a quadratic program (QP) depending on the choices
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of the regularizer Ψ . When we consider 2-class problems with Ψ(μ) = σ
2 ‖μ‖22 for

σ ≥ 0, we can write an equivalent formulation to (9) as follows,

min
μ∈Rn

1

m
1T
mLμ+

σ

2
μTμ,

s.t. (L+DyZ)μ ≥ 1m, 1T
nμ = 1, μ ≥ 0,

(13)

where the elements of the matrices L ∈ Rm×n and Z ∈ Rm×n are defined in (10),
Dy is a diagonal matrix with elements y1, y2, . . . , ym, and 1m := (1, 1, . . . , 1)T ∈
Rm. Similar formulations can be derived for 1-class and regression tasks.

The solutions of (13) can be obtained using LP solvers when σ = 0, or using
QP solvers for σ > 0. In our experiments we use σ = 0.5, since it has produced
slightly better solutions than using σ = 0. For the solution method we adopt
the IBM ILOG CPLEX Optimization Studio Academic Research Edition v.12.4,
which provides one of the fastest LP/QP solvers for free for academic institutes.

The total number of elements to be transferred to a central node is O(m)
for each node i = 1, 2, . . . , n. (These elements compose the matrix Z.) This cost
can be reduced, trading some potential prediction improvement, by transferring
information for a small subsample of size m′ < m, rather than for the entire
training set of size m. This also reduces the number of constraints in the central
problem (13) from O(m) to O(m′). We have used m′ = 5000 for our experiments.

We set the maximum number of central optimization to K = 10, stopping the
algorithm earlier if the prediction performance on m′ training samples does not
improve any further. (Three passes were enough in most cases.)

5 Experiments

We implemented Algorithm 1 based on the open-source C++ programASSET [11]1,
comparing several different implementations built upon it:

– Separated: implements Algorithm 1.
– Composite: the standard SVM with a composite kernel (2) consisting of local

kernels. We set μi =
1
n for all i = 1, 2, . . . , n.

– Single: the standard SVM with a single global kernel that uses all features.

All of these make use of approximations to the kernel feature mappings. We
also use SVMLight with its default parameters to make comparisons to the cases
using exact kernel information.

In all runs, we randomly partition the set of features into equal-sized n groups
and assign each group to one of n nodes. We use an overlap parameter to specify
the percentage of features in each node that are sampled from other nodes,
simulating peer-to-peer information exchange among nodes. The purpose of such
communication will be amending the loss of information due to partitioning.

We use Gaussian kernels of the form k(x,x′) = exp(−γ‖x−x′‖22) in all exper-
iments, where the parameter γ is tuned by a cross validation using SVMLight [7]

1 Available at http://pages.cs.wisc.edu/~sklee/asset/

http://pages.cs.wisc.edu/~sklee/asset/
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Table 2. Data sets and their training parameters

Name m (train) test p (density) λ γ

ADULT 40701 8141 124 (11.2%) 3.07e-08 0.001
MNIST 58100 11900 784 (19.1%) 1.72e-07 0.01
CCAT 89702 11574 47237 (1.6%) 1.28e-06 1.0
IJCNN 113352 28339 22 (56.5%) 8.82e-08 1.0
COVTYPE 464809 116203 54 (21.7%) 7.17e-07 1.0

for real-world data sets. The parameter λ is tuned in the same way, and both are
shown in Table 2. For artificial data we use λ = 0.133 and γ = 0.001 found by the
Single code. Whenever we have localized kernels ki = exp(−γi‖x[i]−x′[i]‖22), we
set their parameters by γi = nγ. The purpose here is to compensate the difference
between the orders of magnitude ‖x[i]− x′[i]‖22 ∈ O(pi) and ‖x − x′‖22 ∈ O(p),
in a way that makes the arguments for exponential functions similar, i.e.

γi =
p

pi
γ ≈ nγ ⇒ γi‖x[i]− x′[i]‖22 ∈ O(γp).

For creating approximate feature mappings for kernels, we set their dimensions
to d = 1000 and di ≈ d/n for all experiments.

All experiments have been performed on 64-bit multicore Linux systems,
where a thread is created to simulate a node optimizing a separated objective.

5.1 Data

We use an artificial data set and five real-world benchmark data sets.

Artificial Data. A data set is created by sampling 7500 (training) and 2500
(testing) p = 64 dimensional random vectors from two multivariate Gaussian dis-
tributions,N−(η−, Σ) andN+(η+, Σ) for two classes. We fix η− = (−1, . . . ,−1)T
and η+ = (1, . . . , 1)T . The two distributions share a covariance matrix Σ, which
is constructed with controlling the maximum number of nonzero entries (the
ratio is specified by the correlation ratio r ∈ [0, 1]). To construct a positive
semidefinite matrix Σ, we first sample a random matrix S ∈ Rp×p, computing
its QR decomposition, S = QR. Then we replace a fraction r of the rows of Q
by normalized random vectors of length p. Finally we set Σ = QQT , so that Σ
will contain up to p(rp + (1− r)(rp + 1)) nonzero entries.

Real-World Data Sets. Five real-world benchmark data sets2 in Table 2
are prepared as follows. ADULT is from the UCI machine learning repository,
randomly split into training and test sets. MNIST is prepared for classifying the
digits 0-4 from 5-9. CCAT is from the RCV1 collection, classifying the category

2 Available at the UCI Repository http://archive.ics.uci.edu/ml/, or at the LIB-
SVM website http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

http://archive.ics.uci.edu/ml/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Fig. 1. Test error rates for different overlaps of features (100%: all features are available
at each local node), numbers of nodes, and correlation ratios (1.0: nonzero correlation
between all pairs of features). All measurements are averages over 20 runs with random
splits of features and random approximations of ϕ.

CCAT from the others, where we use the original test set as our training set and
the original training set as our test set. IJCNN is from the IJCNN 2001 Challenge
data set. COVTYPE classifies type 1 against the other forest cover types.

5.2 Artificial Data

Locality of Information vs. Prediction Performance. We first evaluated
how the locality of features affects the prediction performance of our algorithm
using localized kernels.

In Figure 1, we show the test error rates for different overlaps of attributes,
numbers of nodes, and correlation ratio r (averaged values over 20 repetitions
using randomized splits of features and approximations of ϕ). In each plot, for a
fixed number of nodes, say n = 8, we can check that the error rate increases as
the correlation ratio increases. This is something expected, since as more features
are correlated, we are likely to lose more information by partitioning features
into groups and treating them separately.

For a fixed correlation ratio, say r = 0.5 (the midpoints of the four plots in
Figure 1), the error rate tends to increase with the number of nodes. This will be
also due to the loss of information by partitioning. But it seems that such loss could
be compensated by providingnodes some “overlapping” features fromother nodes,
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Fig. 2. Runtime (in seconds) at the central node and average runtime (in seconds)
for the local optimizations, for different overlaps of features (100%: all features are
available at each local node) and numbers of nodes. The correlation ratio is fixed at
r = 0.25. All values are averages over 20 runs with random splits of features and
random approximations of ϕ.

which can be observed as we scan through the top left, top right, bottom left, and
bottom right plots, for 32 nodes with correlation ratio r = 0.5 for instance.

Scalability Using Multiple Nodes. Figure 2 shows the average runtime (in
seconds) taken in the local and the central optimization of our algorithm. Since
the runtime values are not affected much by the correlation ratio r, we show
only the plots for r = 0.25 here.

The runtime for the local optimization keeps improving as we use more nodes
up to n = 16, since all optimizations can be done in parallel (the machine had 32
physical cores). Considering the test error rates reported in the corresponding
plots (top left and bottom right) in Figure 1, at correlation ratio r = 0.25, using
more nodes would not harm too much the prediction performance. An exception
will be n = 32, which seems to make each group too small, deteriorating both
scalability and accuracy by a noticeable amount. The runtime for central opti-
mization was almost negligible in this case. The optimization took slightly longer
for 60% overlap than the case of no overlap, since the former had to handle larger
number of attributes.

5.3 Benchmark on Real-World Data Sets

For benchmark we fix the number of nodes to n = 8, since it has showed a good
accuracy and speed tradeoff in the experiments with our artificial data. In local
optimization, we set the number of SGD iterations to 10m, ten times of the
number of training examples.

Table 3 shows the runtime and test error rate values over 20 repeated runs, ex-
cept for CCAT where we use 12 runs due to its long runtime, of all methods for the
five benchmark data sets, without andwith 25% overlap of features. In each runwe
randomize the partitioning of features and the projections for constructing approx-
imate feature mappings, if applicable. For SingleASSET, the overlap parameter
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Table 3. Training CPU time (in seconds, h:hours) and test error rate (mean and
standard deviation %) in parentheses. The features of input vectors are distributed in
two different ways: (i) each node contains disjoint set of features (no overlap), or (ii)
each node has 25% of its features as copies from other nodes (25% overlap).

No
Overlap

ASSET-SVM
SVMLightSeparated

Composite Single
+ Central − Central

ADULT 28(20.0±0.02) 9(20.6±1.17) 44(15.5±0.64) 235(15.7±0.74) 966(15.1)
MNIST 101(11.1±0.39) 87(11.1±0.39) 539 ( 7.0±0.72) 1539 ( 7.0±0.45) 1031 (1.1)
CCAT 1h(26.3±1.00) 1h(26.3±1.00) 8h(20.9±0.63) - 2h (4.2)
IJCNN 67 ( 9.1±0.88) 20 ( 9.5±0.07) 86 ( 4.1±0.53) 177 ( 1.6±0.13) 687 (0.7)
COVTYPE 234(29.3±2.76) 82(35.2±1.05) 373(21.1±0.61) 938(18.0±0.78) 23h (7.4)

25%
Overlap

ASSET-SVM
SVMLightSeparated

Composite Single
+ Central − Central

ADULT 28(19.0±1.69) 9(19.7±1.34) 48(15.5±0.49) 235(15.7±0.74) 966(15.1)
MNIST 112(11.1±0.39) 94(12.1±0.72) 486 ( 7.3±0.50) 1539 ( 7.1±0.45) 1031 (1.1)
CCAT 2h(29.5±1.01) 2h(29.5±1.01) 10h(23.8±0.80) - 2h (4.2)
IJCNN 75 ( 8.6±1.05) 20 ( 9.4±0.63) 107 ( 3.8±0.56) 177 ( 1.6±0.13) 687 (0.7)
COVTYPE 219(29.6±2.76) 94(33.7±1.34) 466(20.8±0.63) 938(18.0±0.78) 23h (7.4)

has no effect, so the results are copied in both tables for readability. The results for
Single on CCAT are unavailable for its impractically long runtime.

Gap from the Separation of Optimization. We first compare the results
of Separated and Composite in Table 3. The difference here occurs because
of our construction of separable surrogate objective functions using the convex
inequality in (7).

Comparing to the third column (Composite) of Table 3, the test error rates in
the second column (Separated without central optimization) has been increased
by 1.63 (no overlap) and 1.65 (25% overlap) times on average. Considering that
Composite has the access to all feature information, through a single composite
kernel consisting of all localized kernels, such increments seem to be moderate.
In Separated, features and optimizations are distributed among the nodes, and
thereby the SVM can be solved in much shorter time (about 5 times faster on
average) but sacrificing accuracy.

Improvement by Central Optimization. The first two columns of Table 3
show the potential improvement and cost of an additional central optimization.
The improvements in test error rates seem to be marginal (6 ∼ 7%), but recall
that these are obtained using a small subsample (5000) from each training set
for the central problem, rather than using the entire set, simulating a limited
communication bound.

Gap from Using Localized Kernels. In the third and fourth columns of
Table 3, the information of all features is accessed through either a composite
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kernel consisting of local kernels (Composite), or a single kernel using all features
directly (Single). The Composite approach is very similar to the standard MKL,
except that here we are using fixed weights among the local kernels. As we can
see, the performance in terms of error rates is not very different in these two
approaches.

The overall runtime of Composite is shorter than Single, although they have
essentially the same time complexity. The savings in Compositemight have come
from the fact that the input vectors are sparse in our benchmark sets, where
subvectors of them tend to be more sparse, reducing the time for projections on
random directions in constructing approximate feature mappings.

Gap from Approximating Kernels. The difference in the last two columns of
Table 3 is resulted from that the feature mappings of kernels are approximated
in Single, whereas SVMLight uses exact kernels. The error rates of Single

are comparable in most cases, except for CCAT and COVTYPE. We believe the
results will improve with larger approximation dimensions in general. Also, we
can consider using different types of approximations for CCAT, and using more
iterations in the local optimization for COVTYPE. We refer to [16,11] for more
extensive comparison in this respect.

6 Conclusion

We suggest a separable optimization framework for solving the support vector
machines on distributed sensor measurements, minimizing communication cost
to construct a global predictor. While sacrificing some accuracy, our framework
provides a transparent way to derive a separable function that becomes an upper
bound of the original SVM objective, based on the convexity of loss functions
and approximations to kernel feature mappings.
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Abstract. We study ways of automatically inferring the level of atten-
tion a user is paying to auditory content, with applications for example
in automatic podcast highlighting and auto-pause, as well as in a se-
lection mechanism in auditory interfaces. In particular, we demonstrate
how the level of attention can be inferred in an unsupervised fashion,
without requiring any labeled training data. The approach is based on
measuring the (generalized) correlation or synchrony between the audi-
tory content and physiological signals reflecting the state of the user.
We hypothesize that the synchrony is higher when the user is paying
attention to the content, and show empirically that the level of atten-
tion can indeed be inferred based on the correlation. In particular, we
demonstrate that the novel method of time-varying Bayesian canonical
correlation analysis gives unsupervised prediction accuracy comparable
to having trained a supervised Gaussian process regression with labeled
training data recorded from other users.

Keywords: Affective computing, Auditory attention, Canonical corre-
lation analysis.

1 Introduction

Attention to external stimulation is a central element in human cognition. By
selectively focusing on specific aspects of the stimulation we can control the infor-
mation gain, to maximally utilize the limited information channels. In Human-
Computer Interaction (HCI), attention plays several roles: Information in the
user interface should be structured to capture users attention by making it
salient when it needs attention [22], but it is also possible to use the atten-
tion of the user as a form of implicit input. For visual attention, eye-tracking
devices provide a direct interface for measuring attention; they have been used
in a range of attentive interfaces, starting from eye tracking based zooming of
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windows (for a review of attentive interfaces see [25]) to using eye tracking for
estimating aspects such as topical relevance in information retrieval [15,20].

Here we venture beyond visual attention to auditory attention. For vision the
eye-tracking devices provide relatively direct access to the target of the attention,
which has enabled the extensive works on utilizing the attention target as part
of the interface design. For auditory attention, however, detecting even where
the user is paying attention is largely an open issue, and no simple hardware
solutions exist for recording it. In particular, the best current methods are based
on direct recording of neuronal activity using functional MRI [16,19] and MEG
[12], which are by no means feasible for human-computer interaction, or full-
scalp EEG (see [11] for an early example) which is also impractical. For a good
overview of auditory attention and extensive list of references, see [7].

In this work we will discuss machine learning approaches useful for creating
more portable auditory attention detection devices. Due to the general difficulty
of the task, we will consider the simplified task of estimating how much a person
is attending to particular auditory content. The approach could be directly gen-
eralized to the task of estimating to which of multiple parallel auditory streams
the user is focusing on, by comparing the level of attention paid to each of the
streams, but to simplify the experimental setup we consider explicitly only the
task of measuring the amount of attention for a single source.

While specific hardware focusing on auditory attention is lacking, we revert to
the choice of using a combination of available physiological sensors for recording
the state of the user. We record neuronal activity with an easy-to-wear single-
channel EEG, the amount of body movement with an accelerometer, and eye
movements with an eye-tracker. While these sensors are clearly not optimal for
detecting auditory attention, they still provide multivariate signals that represent
the activity of the individual user while she is listening to some auditory content.
The field of affective computing studies the use of such signals for inferring
various cognitive and affective properties of the user, and relatively good success
has been demonstrated for instance in inferring emotional valence and arousal
[5,18], specific emotions [13], and mental workload [28]. Hence, it is a reasonable
assumption that we could get a handle on the attention with similar sensors as
well. In fact, [17] has already demonstrated success in discovering loss of auditory
attention due to external interruptions by monitoring the galvanic skin response.

Given the sensory signals, the task of detecting auditory attention is, in prin-
ciple, a straightforward learning task. We merely need to obtain ground truth
training labels and train a classifier or a regression model for inferring the labels
from the signals. For a classifier, the labels would be high vs. low attention, and
for a regression model the actual level of attention. However, it is extremely
challenging to collect training labels for the task of inferring the level of atten-
tion. For example, if the subject is listening to a music piece, we cannot ask him
to continuously rate his level of attention since providing that feedback would
change his behavior; needing to provide the evaluation would prevent him from
naturally attending to the music. It is also unreasonable to expect that people
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would be able to quantify their level of attention to arbitrary auditory contents
after the experiment with high accuracy.

The only remaining way of collecting the training labels is to conduct a lab-
oratory experiment where the labels stem from a controlled experiment. In this
work, we present a simple experiment of that sort, using an additional visual task
of varying complexity to control the level of attention remaining for an auditory
listening task. While such a procedure gives training labels, it is important to
realize that it will only provide them for the users who took part in the particu-
lar laboratory experiment; it still remains infeasible to obtain any training data
whatsoever for the eventual users of an auditory attention detector. This obser-
vation implies that any model inferring the level of attention from the sensory
signals must be user-independent. Such models, in turn, are known to be of rel-
atively poor accuracy due to considerable user-specific variation in the sensory
signals. Nevertheless, in this work we demonstrate that we can infer the level
of auditory attention with reasonable accuracy using user-independent super-
vised models, by applying two state-of-art probabilistic kernel-based regressors:
Gaussian process regression [21] and Relevance Vector Machines [23].

Our main contribution, however, is an alternative way of inferring the level of
attention that does not require any training labels whatsoever. Instead, we make
a hypothesis that the amount of synchrony or correlation between the physiolog-
ical signals and the auditory content is modulated by the level of attention. That
is, we assume that any signals recorded from a user not paying attention to the
audio will be independent of the audio signal, whereas high degree of attention
is reflected as increased correlation between some of the physiological signals
and the audio content. Assuming the hypothesis holds, we can directly detect
auditory attention as correlation between the two signals, without needing any
training data. To further illustrate the approach and its relationship with the
supervised one, the analysis pipelines for both are depicted in Figure 1.

We measure the correlation with canonical correlation analysis (CCA) and its
Bayesian re-formulation as a latent variable model [2,27]. Using the Bayesian for-
mulation not only helps with limited amount of data, but enables encoding prior
knowledge on the underlying signals into the model. In this work we utilize the
fact that the measurements are time series, and introduce a novel time-dependent
Bayesian CCA model by encoding time-dependent interactions in the generative
description.We learn themodel from the coupled physiological signals and features
computed for the audio content, and then measure the amount of correlation to
represent the level of attention. We demonstrate that the correlation reveals the
level of attention with accuracy comparable to the user-independent supervised
models. The empirical experiments hence demonstrate that we can infer the level
of attention from physiological signals, and more importantly that we can do it
without requiring any labeled training data at all.

We start the rest of the paper by first introducing some prototypical applica-
tion scenarios for auditory attention detection, providing a context and motiva-
tion for the more technical sections.We then proceed to explain the computational
models needed both for supervised user-independent inference of attention and for
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Fig. 1. Illustration of the two modeling pipelines for estimating the level of attention
from the biosensors. The unsupervised approach evaluates the correlation between the
sensor data and the audio content, and uses the inverse correlation as a predictor for
the level of attention. The supervised approach uses only the sensor data, and applies
a model learned from other users for predicting the level of attention.

measuring the amount of correlation between the physiological signals and the au-
ditory content. After describing the models we explain the empirical experiment
conducted for recording data to train and evaluate the models, and then show the
empirical results demonstrating the accuracy of the proposed methods.

2 Application Overview

Albeit we here consider the task of inferring the level of auditory attention pri-
marily as a basic research question, it has several direct application possibilities
that are worth highlighting. A simple example would be an auto-pause tool for
audio players; the attention recognizer would be running continuously on the
background and whenever it recognizes that the level of attention is particularly
low it pauses the audio automatically so that the user can continue listening for
the audio after the interfering concurrent task is over. Alternatively, the tool can
simply keep track of the moments with low attention, allowing the user to easily
return to them later (for a practical example, see [17]), for example to re-cap
details of a technical description in a podcast they might have missed during the
first listening.

There are also applications where storing the moments with the highest at-
tention could be useful. Such an automatic highlighting tool could capture, for
example, the moments when the user most enjoyed a piece of music. Those pieces
could even serve as a query to a music retrieval engine; the user could carry out
a search for other songs similar to the most enjoyable parts of the song he just
listened. Besides static content, such as music or podcasts, the tool could also
be used for highlighting more dynamic content. For example, it could be used to
summarize a meeting as a combination of the moments where reasonable amount
of attention was paid to the discussion.

In another application scenario the goal is to detect the attention target. In
an environment with multiple overlapping auditory streams, we can measure the
amount of correlation with respect to each of the sources and detect the target of
primary attention as the one with the highest correlation. This enables building
for instance auditory interfaces where attention is used to implicitly select one
out of multiple alternatives.
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3 Modeling Dependencies

We first describe the classical method for estimating the amount of multivariate
correlation between two data sources, the canonical correlation analysis (CCA).
We then proceed to describe the Bayesian variant of CCA, following the formu-
lation in [27], which makes CCA applicable for high-dimensional data and al-
lows various extensions. Finally, we introduce the novel time-dependent Bayesian
CCA model that explicitly models continuity in time-series data.

3.1 CCA

Given two data matrices, X ∈ R
N×Dx and Y ∈ R

N×Dy , with N samples (rows)
and Dx and Dy features (columns), the CCA finds linear projection weights
u ∈ R1×Dx and v ∈ R1×Dy such that the Pearson correlation

ρ = cor(XuT ,YvT )

is maximized. Since correlation is invariant to the scale, the norms of u and
v can be fixed to unity. The above formulation defines the most correlating
one-dimensional subspace; further components indexed by a subscript can be
obtained by adding an orthogonality constraint cor(XuT

k ,XuT
l ) = 0 for all k

and l (and similarly for Y). In practice, we can readily compute min(Dx, Dy)
canonical correlations ρk and the associated projections (uk,vk) by solving a
single generalized eigenvalue problem (see for, instance, [10] for details).

While CCA is typically used for gaining an understanding of the correlations
between the two data sets (by interpreting u and v), it readily provides a measure
for the amount of dependency between them. We summarize the dependency
with the quantity

I(X,Y) = −1

2

min(Dx,Dy)∑
k=1

log
(
1− ρ2k

)
,

which corresponds to the mutual information between the two sources if they
are jointly multivariate normal. For non-normal data the quantity does not cor-
respond to the mutual information, but is still a good estimate of the total
dependency, summarizing all correlations into a single number.

In our application, the task is to measure the amount of correlation for a
subset of the samples. We do this by first learning the model to maximize the
correlation over the whole available data. Given the model (the projections), we
then evaluate the correlation for any subset L of the samples by simply esti-
mating the correlations (and the above mutual information summary) between
XLu

T
k and YLv

T
k .

3.2 Bayesian CCA (BCCA)

While CCA is a straightforward method with guaranteed convergence to a global
optimum, it has a number of shortcomings that can be addressed by switching
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to the probabilistic framework. First of all, CCA is prone to overfitting to high-
dimensional data, and especially for N < min(Dx, Dy) necessarily returns cor-
relations of exactly one due to linear dependency of the features. For preventing
this we need proper regularization, which we implement through priors and vari-
ational inference in the Bayesian framework. This particular choice gives us also
another advantage: It allows extending the model by making slight changes to
the generative model of CCA (see for instance [1,8,26] for examples). After recap-
ping the model, we will in the next section show how the Bayesian treatment of
CCA enables incorporating time-dependencies between the samples, a property
that would not be easy to add in the original linear algebraic formulation.

The Bayesian CCA builds upon the probabilistic interpretation of CCA by [2].
The basic idea is that the two data sources are generated from a common latent
representation with a linear transformation, with arbitrary additive Gaussian
noise independent of the other source. More formally,

z ∼ N (0, I)

x ∼ N (Wxz,Ψx) (1)

y ∼ N (Wyz,Ψy),

where z ∈ R1×K is a K-dimensional latent signal and Wx ∈ RDx×K and Wy ∈
RDy×K are projections mapping the latent signals to the observations. The noise
covariances Ψx and Ψy model the variation independent of the other sources. In
practice, especially for high-dimensional data, we need to assume low-rank noise
covariances Ψx and Ψy to prevent needing to make inference over the Dx ×Dx

and Dy×Dy covariance matrices, which leads to the Bayesian CCA formulation
of [27]:

z ∼ N (0, I)

[x;y] ∼ N (Wz,Σ),

where Σ is a block-diagonal matrix Σ = [σ2
xI,0;0, σ

2
yI]. By making W group-

wise sparse with the sparsity-inducing prior

βxk ∼ G(α0, β0)

βyk ∼ G(α0, β0)

p(W) =

K∏
k=1

(
N (Wx(k)|0, β−1

xk I)N (Wy(k)|0, β−1
yk I)

)
,

where G(α0, β0) is a flat Gamma distribution (α0 = β0 = 10−14), we will get
projections W that factorize as

W =

[
Wx Vx 0
Wy 0 Vy

]
.

After marginalizing out the latent components corresponding to the columns of
W having a zero block for either data source, induced by the group-wise sparsity
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prior, the above model becomes equivalent to (1) with ΨX = VxV
T
X + σ2

xI and
Ψy = VyV

T
y + σ2

yI. In summary, the resulting model implements the Bayesian
CCA model with a low-rank assumption for the noise covariances within each
data source, but does not require specifying the rank of either the correlating
subspace or the noise covariances in advance. Instead, they will all be learned
automatically from the data.

We do the inference using a variational approximation, assuming the posterior
p(Θ|X,Y) = p(σ2

x, σ
2
y , βx, βy,Z,W|X,Y) can be approximated by a factorized

distribution

Q(Θ) = q(σ2
x)q(σ

2
y)

K∏
k=1

q(βxk)q(βyk)

N∏
i=1

q(zi)

D∏
d=1

q(Wd.),

and minimizing the Kullback-Leibler divergence between Q(Θ) and p(Θ|X,Y).
This results in a set of mean-field equations updating each term q(·) at a time
until convergence to a local optimum; the details can be found in [27].

For evaluating the correlation we estimate the conditional densities p(z|x)
and p(z|y) and then compute the correlation between their expectations. This
can be done for any subset of the samples using a procedure similar to updating
q(Z) while learning the posterior approximation.

3.3 Time-Dependent Bayesian CCA (T-BCCA)

One advantage of the Bayesian formulation for CCA is that it allows easily
extending the model to take into account particular properties of the underlying
data. As practical examples, in [1,26] more robust variants were introduced by
replacing the normal distributions with t-distributions, in [14,26] mixtures of
CCAs, and in [8] sparse variants. In this paper, we will extend Bayesian CCA
to a state-space model that is more accurate for modeling correlations between
two multivariate time series.

The key idea of the novel time-dependent CCA is that the latent variables
z will have a Markovian assumption. Instead of drawing each zt independently
from the same prior, we introduce the prior

z0 ∼ N(0, I)

zt ∼ Tzt−1 +N(0, σ2
0I)

where T governs the evolution of the latent space and σ2
0 controls the amount

of stochastic noise.
We retain the variational Bayesian framework for inference, and are able to re-

use the update formulas for the various terms in the approximation except for q(Z).
For that, we learned aKalman filter along with the Rauch-Tung-Striebel smoother
[9], using a forward-backward procedure as described in [3]. Since the Bayesian
CCAassumes independent latent components,we restrictT to be diagonal to avoid
modeling dependencies between them and use variational inference with prior cen-
tered around the identity matrix. Furthemore, we set σ2

0 = 1 to fix the scale, but
could do variational inference over this parameter as well.
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True comp. BCCA T-BCCA

Fig. 2. Illustration of the importance of modeling time-dependencies in CCA mod-
eling. The left column shows three latent components underlying a generated data
set, the middle column shows the latent components estimated by regular Bayesian
CCA, and the right column shows the estimated components when modeling also the
time-dependency. We see that already the regular Bayesian CCA (BCCA) captures
the signals roughly correctly, but that the time-dependent model (T-BCCA) gives
much more accurate estimates for the sinusoidal signals. The component with no time-
dependencies (bottom row) is modeled equally well; T-BCCA learns to automatically
set the corresponding element in T to zero.

To briefly illustrate the advantage of modeling time-dependencies in the la-
tent space, we applied both the regular Bayesian CCA model described in the
previous section (which corresponds to T = 0 and σ2

0 = 1 in the more general
formulation) and the time-dependent model to a simple simulated data. The
data has three latent components of which some show clear time-continuity, and
as shown in Figure 2 modeling the time-series nature results in more accurate
estimates for them.

4 Supervised Learning

Given the available sensor data, the usual approach for inferring the level of at-
tention would be to use supervised learning. That is, we would collect labels for
training instances and train a classifier or regressor for predicting the attention.
As discussed in the Introduction, gathering such labeling data for the task of
auditory attention is extremely challenging and the only reasonable way is to
use laboratory experiments with controlled stimulation. This allows gathering
training data from laboratory users, but not from the eventual users of an au-
ditory attention predictor system. Hence we require user-independent models in
this task.

In this paper, we will compare the unsupervised approach with supervised
learning where the model is learned from a training corpus measured and labeled



Unsupervised Inference of Auditory Attention from Biosensors 411

for other users. We chose two state-of-art supervised methods: Relevance Vector
Machine (RVM) [23] and Gaussian process (GP) regression [21], as representative
alternatives. Both are probabilistic kernel-based learning methods that enable
non-linear mappings from the input to the level of attention. To capture non-
linearity, we used the Radial Basis Function (RBF) kernel:

k(x,x’) = exp(
‖x− x’‖2

2ν2
)

with both of these methods. For each method, we learned the kernel parameter
ν using type II maximum likelihood.

5 Experimental Setup and Data

To train and evaluate the proposed methodology for inferring the level of audi-
tory attention, we created a simple laboratory experiment. The subjects listen to
three types of audio content (scientific podcast, popular music, and audio drama)
while being measured with three different sensors (NeuroSky single-channel EEG
device, accelerometer measuring body movement, and eye-tracker measuring the
pupil dilation). Their level of attention to the auditory content is controlled by
a simultaneous alternative task with tunable difficulty competing for their at-
tentional resources. Based on the limited-capacity theorem asserting that there
is a direct performance tradeoff between simultaneous auditory and visual tasks
[4], we assume that the auditory attention is low whenever the user is paying a
high level of attention to the alternative task, and vice versa.

For the alternative task we chose a visual search task called conjunction search
where the user searches for objects identified by multiple features [24]. The user
is presented a grid of items, and asked to tell whether any of the items on the
screen is unique in terms of color and shape. We assigned the user the binary
detection task, instead of asking him to point where the unique item is, to avoid
introducing unnecessary movements.

The visual task was presented in four difficulty levels. We tuned the difficulty
of the search task by the number of different colors and shapes of the objects.
The easiest level (level 1) was simply the blank screen, hence there was no search
task at all. The remaining three levels of difficulty had 2, 4, and 9 different kinds
of objects, respectively (see the bottom half of Figure 3 for illustration of the
stimuli). This provides data with four ground-truth levels of visual attention, and
we assume that the auditory attention has an inverse monotonous relationship
to visual attention.

We constructed a partially balanced experimental setup for our 12 voluntary
test users (7 male and 5 female university students aged from 22 to 29 years).
All of them listened to the three audio contents, a scientific podcast, music, and
radio drama, of 4 minutes each. There was 1 minute of each visual task level
within each audio type. The order of the visual task levels within each audio
type was balanced across users using the 4 × 4 Latin squares design. The order
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User 1

User 2

User 3

User 4

Fig. 3. Top: Illustration of the experimental setup. The subjects listened to three
types of audio content while performing visual search tasks of varying difficulty (four
levels). The blocks of the visual tasks occurred at the same time for all subjects, but the
design was balanced so that the difficulty levels were in a different order for different
subjects, as well as in a different order between the different audio types for each
subject. Furthermore, the subjects listened the three audio types in different orders
(not shown in the image for clarity). Bottom: Examples of the three visual search
task difficulties corresponding to levels 2, 3, and 4 from left to right. Level 1 is blank
screen where there is no visual search task at all.

of the audio contents was also balanced according to another 3×3 Latin squares.
Figure 3 illustrates the course of the experiment.

For the data analysis we processed both the auditory content and the biosig-
nals into vectorial samples, forming each sample from a 250ms contiguous block
of the signals. The music is represented by 17 numerical features capturing pri-
marily timbral and rhytmic properties of the music, computed using the MIR
toolbox [6]. The idea is that the representation would capture essential charac-
teristics of the audio content. The physiological signals, in turn, were summa-
rized through several features stemming from the affective computing literature,
considered to be reasonable approximations of the information content in the
physiological signals. The actual features used are listed in Table 1.

6 Results

For evaluating the accuracy and feasibility of the proposed attention inference
method, we ran two separate computational experiments on the experimental
data described in the previous section. Here we both describe the experiments
and report their results.
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Table 1. Top: Physiological features extracted from the data collected by three sen-
sors: accelerometer, eye-tracker, and single-channel EEG. Bottom: Audio features
computed by the MIR toolbox [6].

Physiological features

3D body motion and pupil diameter: mean and standard deviation
mean of the derivative, mean, median, and maximum peak-to-peak interval

Single-channel EEG: spectral power in (0.5–2.75) Hz, (3.5–6.75) Hz,
(7.5–9.20) Hz,(10.0–11.75) Hz, (13.0–16.75) Hz,(18.0–29.75) Hz, (31.0–39.75) Hz,
(41.0–49.75) Hz

Audio features

zero-crossing rate, spectral centroid, brightness, spectral spread, kurtosis,
MFCC (Mel-frequency cepstral coefficients), skewness, roll-off, entropy,
spectral-flatness, roughness, RMS (root-mean-square), spectral flux,
novelty of spectral flux, fluctuation, fluctuation centroid, fluctuation entropy

6.1 Experiment 1: Inferring the Level of Attention for Long Time
Blocks

In the first experiment we study the problem of inferring the level of attention
for each of the experimental blocks. This answers the question of whether we
can differentiate between different levels of attention during periods of time
lasting roughly one minute each. The results would be directly applicable to
scenarios such as meeting highlighting but would not be sufficient for choosing
the attention target in an interactive interface, for instance.

We analyze each of the audio types and users separately, resulting in a total
of 12×3 = 36 models. For the correlation-based models we learn the CCA using
all the data for that user-audio pair and then evaluate the correlation for each
of the blocks corresponding to one level of ground truth attention. Since we
have four levels of ground truth attention, this gives us four correlation scores
which we sort in the decreasing order to predict the attention. For each user-
audio pair we then compute the accuracy as the number of correct ranks with
respect to the ground truth. For example, if the block with the hardest visual
task is ranked last, the score increases by one. This measure is equivalent to
classification accuracy for a scenario where we know that each class occurs only
once in the test set.

For the supervised models we train a regression model with the labeled train-
ing data for all other users and then apply it to the four blocks of the user in
question. This is done separately for each audio type, and we again rank the
resulting regression scores to label the four blocks with the levels of attention.
That is, we use the exactly same measure as for the correlation-based models.

Table 2 collects the average scores (over users, normalized so that 1 equals
to a perfect result) for all of the methods and all three audio types. The super-
vised user-independent approaches provide the best results, but the unsupervised
variants closely follow with only marginally lower accuracies. Of these three, the
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T-BCCA model has an accuracy over 40% for all three audio types, which is a
promising signal for real applications. To evaluate the reliability of the results
we performed Wilcoxon signed rank test over the results of all three audio types
(to obtain more statistical evidence over the 12×3 = 36 independent scores), re-
vealing that all five methods are significantly (p < 0.05) better than the random
baseline, but that the differences between the alternatives are not significant.

Note that in this experiment we normalized the correlations by dividing them
by the mean of the correlations for all users during the same audio content.
This was done to reduce the potential bias caused by the properties of the
auditory content itself. It is easy to imagine that certain types of audio content,
for example catchy music pieces, could result in naturally higher correlation levels
with the sensory signals for all attention levels. The kind of normalization done
in this experiment could be done for real applications given access to sensory
data of other users having listened to the same content, still without needing
any labeled data. As this is not necessarily the case in many situations, we also
re-ran the experiment without such normalization. This results in a drop of (on
average) two percentage points for each of the unsupervised methods. Together
these two experiments indicate that it pays off to remove the content-specific
effect on the correlation, but that it is not absolutely crucial and the methods
work even without any earlier data from other users.

Table 2. The classification accuracy for detecting the four levels of attention in the
experiment. All five methods outperform the chance level with statistical significance
(p < 0.05; Wilcoxon). The noteworthy observation is that the unsupervised CCA-
based methods are only slightly worse than the supervised ones (GP and relevance
vector regression).

Method Scientific Podcast Music Radio Drama Average

Gaussian Process regression 0.52 0.38 0.50 0.47
Relevance Vector regression 0.52 0.44 0.42 0.46

Time-dependent Bayesian CCA 0.42 0.46 0.44 0.44
Bayesian CCA 0.25 0.52 0.44 0.40
Classical CCA 0.35 0.44 0.48 0.42

Random baseline 0.25 0.25 0.25 0.25

6.2 Experiment 2: Inferring Short-Term Attention

The above experiment considered the problem of inferring the level of attention
for time-periods lasting roughly one minute, and also matched exactly the ex-
perimental setup of our data. For practical application scenarios we might want
to infer the level of attention also for shorter time periods, for example to enable
auto-pause or audio highlighting, or to more quickly recognize which of several
overlapping audio streams the user is attending to.

In this experiment we study how short we can make the time window while still
getting an estimate that is better than random chance. We do this by training
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Fig. 4. The classification accuracy of detecting the four levels attention is given for
all models in comparison as a function of time window size. For each window size,
the scores are averaged over all users and audio types. The unsupervised CCA-based
methods are all better than chance, but for most window sizes are slightly beaten by
the supervised methods. This figure is best viewed in colors.

the models as above, but making the predictions for all consecutive time windows
of certain length1 instead of the full blocks as we did above. We measure the
performance as before, by comparing the true ranking of the M windows with
the ranks obtained by ordering the windows based on the correlation score or
the regressor output. Again we assume we know how many windows of each
attention level we have; this is done for the purpose of measuring only – in
practical applications we will always have the full ranking and need not make
such assumptions. Figure 4 shows the resulting average accuracy (averaged over
both the users and audio types) of the alternative methods as a function of the
window size, showing the intuitive trend that inferring the level of attention gets
harder when we have less data. Again the supervised predictors are the best, but
the unsupervised models also outperform the chance level. For shorter window
lengths the Bayesian CCA variants outperform the classical one.

7 Discussion

Visual attention plays a central role in human-computer interaction, and being
able to measure the target of the attention with eye-tracking devices has enabled
novel types of user interfaces that infer information from the attention [15,20].
Auditory attention, while equally important for the daily life of humans, has
been studied much less extensively, not only because auditory interfaces are less

1 We exclude windows where the ground truth labeling changes during the window.
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common but also because no hardware solutions for estimating the level or target
of auditory attention exist.

In this work we studied the problem of inferring the level of auditory attention
from physiological signals. We compared two alternative approaches for inferring
the level: supervised learning with user-independent models, and unsupervised
inference based on the assumption that the physiological measurements corre-
late with the auditory content more strongly when the user is attending to the
content. We used state-of-art computational models, Gaussian process [21] and
Relevance Vector Machine [23] regression for supervised learning and Bayesian
canonical correlation analysis [27] for unsupervised learning, and extended the
latter approach to the novel time-dependent BCCA model to better match the
underlying time-series nature of the signals. Our experiments demonstrated that
both approaches can extract information on the amount of attention paid to
three different types of auditory content. The accuracy is not yet sufficient for
practical applications, but both approaches outperform chance level with statis-
tical significance, implying that the direction is feasible. The main observation is
that the unsupervised methods provide recognition accuracy only slightly worse
than that of the supervised models. Even though the time-dependent model was
demonstrated to better capture the time-dependencies on artificial generated
data, its performance on the real data was only comparable to not modeling the
dynamics; the time-dependent model was the best unsupervised variant for long
windows, but for short windows the regular Bayesian CCA was better.

One aspect worth noting is that our experiments do not reveal whether the
supervised predictors are predicting the level of attention to the auditory content,
or merely predicting the attention paid for the visual search tasks. This is because
they take as input only the sensory signals and the output labels are equivalent
for both tasks. Similar problems are likely to remain for all isolated experiments
trying to control the level of auditory attention, and hence for training supervised
models guaranteed to address the right aspect one would need to use several
alternative techniques for controlling the auditory attention: A supervised model
could only be relied to predict the auditory attention itself if it generalizes over
all such ways of control. The unsupervised approach, however, does not suffer
from the same problem, since we are not learning the parameters to predict the
attention but instead are merely estimating the amount of correlation between
the sensory signals and the auditory content. This means the approach directly
answers to the question of auditory attention, and would not have the flexibility
to model alternative explanations for the predicted attention.

For improving the accuracy towards the level required for real-world applica-
tions, the most promising direction is to improve the instrumentation and the
signal representations. Our main focus was on the machine learning question and
the associated computational methods, instead of building a practical attention-
detection tool. Replacing the three sensors used in our experiments with sensors
more suitable for detecting correlations with the auditory content (for example,
a multi-channel EEG additionally recording areas closer to the auditory cor-
tex) should dramatically improve the accuracy, yet the computational methods
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presented here would remain applicable. Regarding the methods development,
a promising direction would be to study methods that allow automatic normal-
ization of the correlation levels with respect to the auditory content. Learning a
regressor from the auditory content to the average correlation (independent of
the task), would allow normalizing the correlation measures with respect to the
content without needing to rely on having measurements from other users.
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A Family of Feed-Forward Models for Protein
Sequence Classification

Sam Blasiak, Huzefa Rangwala, and Kathryn B. Laskey
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Abstract. Advances in sequencing have greatly outpaced experimen-
tal methods for determining a protein’s structure and function. As a
result, biologists increasingly rely on computational techniques to in-
fer these properties of proteins from sequence information alone. We
present a sequence classification framework that differs from the common
SVM/kernel-based approach. We introduce a type of artificial neural net-
work which we term the Subsequence Network (SN) that incorporates
structural models over sequences in its lowest layer. These structural
models, which we call Sequence Scoring Models (SSM), are similar to
Hidden Markov Models and act as a mechanism to extract relevant fea-
tures from sequences. In contrast to SVM/kernel methods, which only
allow learning of linear discrimination weights, our feed-forward struc-
ture allows linear weights to be learned in conjunction with sequence-level
features using standard optimization techniques.

1 Introduction

Advances in sequencing have greatly outpaced experimental methods for de-
termining a protein’s structure as well as its role within the complex network
of interactions taking place inside living organisms. As a result, biologists in-
creasingly rely on computational techniques to infer structural and functional
properties of proteins from sequence information alone.

Popular and successful approaches for protein classification employ Support
Vector Machines (SVM) [9,10,11,17,15,2]. Performance of SVM-based classifiers
is highly dependent on the kernel function, which can be difficult to specify
and to interpret. Kernel functions often have free parameters that must be set
either through cross validation or heuristics. Further, ad hoc techniques are
often employed to normalize pre-computed kernels so that the algorithm can
learn larger margins between classes.

We present a sequence classification framework that differs from the SVM/
kernel-based approach.We construct a type of neural network called a Subsequence
Network (SN) that incorporates structural models over subsequences.These struc-
tural models, called Sequence Scoring Models (SSMs), are similar to Hidden
MarkovModels and act as amechanism to extract relevant features from sequences.
Our feed-forward structure allows standard optimization techniques to be used for
learning linear discrimination weights in conjunction with sequence-level features.
We compare our algorithm against state of the art kernel methods on a set of canon-
ical datasets for structural and functional protein sequence classification.

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 419–434, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Background

2.1 Support Vector Machines and Kernels

Support Vector Machines (SVMs) are linear classifiers; they assume that an
input space, X , can be partitioned by a hyperplane so that positive examples lie
on one side of the plane and negative examples on the other. SVMs can capture
nonlinear boundaries by mapping data into a transformed space, ϕ : X → X ′,
where X is the original input space and X ′ is the transformed input space. Instead
of computing this mapping directly, we can substitute the inner product between
training examples in the transformed space, 〈ϕ (xi) , ϕ (xj)〉, with a kernel function,
K (xi, xj), where K : X ×X → R and xi, xj ∈ X [19].

String kernels extend the SVM to problem domains of variable-length sequences
andalso allowprior knowledge over aparticularproblemdomain tobe incorporated
into the classifier. Examples of string kernels include the following: The spectrum
kernel [9] computes, for a pair of sequences, xi and xj, the count of subsequences of
length k that are present in both sequences. The mismatch kernel [10] can be best
described as a fuzzy version of the spectrum kernel. For two sequences, xi and xj ,
the mismatch kernel computes the number of subsequences of length kacross xi and
xj that contain at most m mismatches. The local alignment kernel (LA-kernel)[17]
computes the sum over all possible alignment scores between two sequences. Align-
ment scores generalize edit distance and score pairs of individual amino acids using
a predefined distance matrix, commonly the BLOSUM62 matrix [4]. Profile kernels
[15,7] are semi-supervised methods that augment training and test sequences with
unlabeled sequences in the Protein Data Bank (PDB).

2.2 Hidden Markov Models

The Hidden Markov Model (HMM) [14] defines a probability distribution over
sequences. The HMM assumes: (i) Each symbol in the sequence was generated
from a mixture distribution; the mixture components are referred to as hidden
states. (ii) The Markov property holds over hidden states i.e., the hidden state
generating the current observation depends on the past only through the hidden
state of the previous observation.

The joint probability of a sequence, x1:T of length T , and a set of hidden states,
z1:T , under an HMM is given as follows:

p(x1:T , z1:T ) =
T∏

t=1

p(zt|zt−1)p(xt|zt) =
T∏

t=1

θtrans
zt−1,zt

θemit
xt,zt

, (1)

where θtrans is a set of transition probabilities and θemit is a set of emission prob-
abilities. Detailed descriptions of parameters are given in Table 1. Converting
transitions from adjacent hidden states over the length of the sequence to counts
of emissions and transitions gives

p(x1:T , z1:T ) =
∏
k,k′

(
θtrans

k,k′
)ntrans

k,k′
∏
k,m

(
θemit

k,m

)nemit
k,m

(2)
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Table 1. Description of HMM parameters

K ��� ������ 	
 ��� ����� ������

M ��� ������ 	
 �	����� ���	 ����

N ��� ������ 	
 ��	��� ���������

Tn ��� ������ 	
 ��� nth ��������

xn � ��� nth ���	 ��� ��������� xn,t � ��� tth ����	� � ��� nth ��������

yn ������� ��� �����	�� ���	����� ��� ��� nth ��������� yn ∈ Y� ����� Y � ��� ��� 	
 ��� �����	���

zn � ��� nth �������� 	
 ����� ������� zn,t � ��� ����� 	
 ��� ����� ����� 
	� ��� nth �������� ��

�	��	� t� zn ∈ Z� ����� Z ��� ��� 	
 ��� �	����� ����� ����� ����������

θtransk,k′ ��� ��	������ 	
 ����� ����� k 	������ �� �	��	� t ���� ����� ����� k′ ������� �� �	��	�

t+ 1
wtran

k,k′ ������ �� log θtransk,k′

θemit
k,m ��� ��	������ 	
 ������ ����	� m �� �	��	� t ���� ����� ����� �� �	��	� t � k

wemit
k,m ������ �� log θemit

k,m

w ������ ��
[
wtrans

1,: . . . wtrans
K,: wemit

1,: . . . wemit
K,:

]

� � ����	� �	������ �	�� ��� ������	� ��� ����	�

������ � ��� ���������� � :� � ������ �	���	� 
	� ��� ����	� 	��� ��� �������� �����

nemit
k,m ��� ������ 	
 ���� ����� ����� k 	����� � �	� ����	� ��� 	������� ����	� m

ntrans
k,k′ ��� ������ 	
 ���� ����� ����� k 	����� ��
	�� ����� ����� k′

In the logarithm, the joint probability of a sequence and associated hidden states
under the HMM is a linear function:

log p(x1:T , z1:T ) =
∑
k,k′

ntrans
k,k′ log θtrans

k,k′ +
∑
k,m

nemit
k,m log θtrans

k,m (3)

def
=
∑
k,k′

ntrans
k,k′ wtrans

k,k′ +
∑
k,m

nemit
k,m wemit

k,m

where we define w
def
= log θ for both emissions and transitions. HMMs are proba-

bility distributions and thus require that ∑
X ,Z p(x, z) = 1, where X indicates the

set of all possible sequences with alphabet size M , and Z indicates the set of all
hidden states assignments for a sequence x1:T . This constraint is satisfied as long
as ∑

k′ θtrans
k,k′ = 1 and ∑

m θemit
k,m = 1.

It is often useful to find the maximum probability assignment of values to hid-
den states, i.e., argmax

z1:T

p (x1:T , z1:T ). The maximum can be computed efficiently

by distributing the addition operator over max function to create the following
recurrence:

max
z1:t

log p (x1:t, z1:t) = max
zt

[(
max

z1:t−1
log p (x1:t−1, z1:t−1)

)
+ log p (zt|zt−1) + log p (xt|zt)

]
(4)

The algorithm that uses this recurrence to compute the maximum over z1:T is
known as the Viterbi algorithm [14].

2.3 Neural Networks

A feed-forward artificial neural network (ANN) is a nonlinear classifier or regres-
sion function where the input to output transformation is a composition of differ-
entiable functions: f(H)

(
. . .
(
f(1) (x)

)
. . .
)
. We assume a dataset {(xn, yn)}N

n=1, x ∈ X ,
y ∈ Y where xn is an input vector associated with an output yn. We denote the vec-
tor valued output of each layer as f (h), which we call “layer h” of the neural network.
The top layer of the network (layer H) is compared against the true output, y, using
a loss function �

(
f (H), y

)
. In a standard ANN, f

(h)
i , the ith element of the vector f (h),
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is computed by passing a linear combination of the values from the previous layer
through a squashing function (usually the hyperbolic tangent function). Each f

(h)
i

is computed independently of f
(h)
j , i �= j given values from layer h − 1 :

f (h) =
[
f

(h)
1

(
f (h−1)

)
, . . . , f (h)

nh

(
f (h−1)

)]�
, (5)

where nh is the number of elements in layer h and f
(h)
i denotes the composition

of squashing and linear functions used to compute the ith element of f (h).
Convolutional Neural Networks (CNNs) [8] are inspired by neural connections

in the human visual cortex. In CNNs, lower levels of the network respond to local
portions of the input. For instance, the Time Delay Neural Network (TDNN)
[20] is a type of CNN used in speech recognition. In the TDNN, the first hidden
layer of the network is computed from a set of overlapping windows of an input
sequence i.e., f (1) is computed from an input sequence x1:T :

f (1) =

[
f

(1)
1 (x1:ncnv ) , f

(1)
1 (x2:ncnv+1) , . . . , f

(1)
1 (xT−ncnv :T ) , . . . ,

f (1)
nh

(x1:ncnv ) , f (1)
nh

(x2:ncnv+1) , . . . , f (1)
nh

(xT−ncnv:T )

]�
(6)

where nh−1 indicates the number of elements in the vector f (h−1) and ncnv is the
size of the “convolutional window” (the number of elements from the input, x,
which contribute to produce the value of layer 1). We use Matlab slice notation,
xi1:i2 , to indicate a sub-vector of the input sequence starting at index i1 and
ending at index i2.

3 Sequence Classification with Subsequence Networks

Our family of feed-forward classification models are convolutional neural net-
works that assume a protein’s structural or functional category can be predicted
by the presence of a set of subsequences. We call these models Subsequence Net-
works (SN). In a Subsequence Network, the convolutional layer learns the degree
to which a subsequence is present in a protein sequence. The degree of presence
of a subsequence acts as a feature, which can be input to a linear classification
layer, allowing combinations of these subsequence features to be detected.

Convolutional units in the Subsequence Network are structured like HMMs, ex-
cept that we relax the constraint that the output of each unit defines a probability
distribution over sequences. That is, we perform unconstrained optimization with
respect to wtrans

k,k′
def
= log θtrans

k,k′ and wemit
k,m

def
= log θemit

k,m rather than enforcing the con-
straint that each θ vector sums to one. We refer to these unnormalized models as
“Sequence Scoring Models” (SSM). Figure 1 shows a diagram of our Subsequence
Network using an SSM convolutional layer.

3.1 Pair-SSMs

The Pair-SSM is an unnormalized version of the Pair HMM [5]. Pair HMMs
probabilistically extend the concept of edit distance by assigning probabilities
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Fig. 1. A diagram illustrating a Subsequence Network being applied to an input se-
quence. In the bottom row of the network, the maximum of the scores from each SSM
are taken over the input sequence. The Conv layer is defined by a score from an SSM.
In the second row, a squashing function is applied to the maximum SSM scores. The
third row computes the distance of these squashed scores from hyperplanes used to
define boundaries between sequence categories. Finally, the loss function compares the
category given by the hyperplane to the true sequence category.

to a symmetric set of insertions, deletions, and substitutions that allows one
sequence from a pair to be created from the other.

The log probability of a pair of sequences, xi and xj , in the Pair HMM can
be given by a linear model in the log of the distribution parameters:

log p(xi,xj , z) =
∑
k,k′

ntrans
k,k′ wtrans

k,k′ +
∑

m,m′
nemit

m,m′wemit
m,m′ (7)

where nemit
m,m′ indicates the number of times we substituted an amino acid, m, from

sequence xi with m′ from sequence xj , and wemit
m,m′ is the associated cost of this sub-

stitution. The expression in Equation 7 differs from the probability of the standard
HMM (Equation 3) in that we replace counts of emissions from a hidden state by
counts of substitutions of amino acid m from sequence i with amino acid m′ from se-
quence j i.e., nemit

k,m becomes nemit
m,m′ and wemit

k,m becomes wemit
m,m′ . The Pair-SSM includes

three types of hidden states: In an Insert hidden state, the model emits a symbol
from sequence xi. In a Delete hidden state the model emits a symbol from sequence
xj. In aMatch hidden state, themodel emits a symbol fromboth sequences.Toallow
the model to capture relevant subsequences, we add additional hidden states Istart

and Iend. These hidden states emit symbols of either xi or xj from a background
distribution, allowing the main portion of the Pair-SSM to emit symbols from the
relevant subsequence. We show a diagram of hidden state transitions in Figure 2a.
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If used in the convolutional layer of a Subsequence Network, the Pair-SSM ex-
tracts features using a similar technique as the LA-kernel. In this type of network,
subsequences that best match an input sequence are selected from within each
training set sequence by the Pair-SSMs.This view is closely related to the empirical
kernel map [18,17]. In the empirical kernel map, a feature vector associated with
an unknown sequence is given by a vector of kernel evaluations over the training
set i.e., we map the sequence x to the vector [K (x1, x) , . . . , K (xN , x)]�, where K (·, ·)
is the kernel function and {xn} , n ∈ [1 . . . N ] is the set of training sequences. In the
first layer of empirical kernel map, a feature vector is computed from an input se-
quence by evaluating a fixed kernel function on the input sequence paired with each
training set sequence. This set of values are then combined linearly using weights,
wn, to produce an overall score for the query sequence: s(x) =

∑
n wnK(xn, x). As in

all linear classifiers, we classify the query sequence, x, as a member of the positive
class if s(x) > 0 and as a member of the negative class otherwise. In SVM/kernel
classification, kernel evaluations for all pairs of sequences are computed indepen-
dently. Then, given K(xi, xj), ∀i, j, the SVM learning algorithm solves a (convex)
quadratic program to compute the linear weights, wn.

Although optimization over the Subsequence Network with a Pair-SSM con-
volutional layer is tractable, it is not yet practical without distributing computa-
tion over multiple processors. For each SGD epoch we must compute the Viterbi
paths over N2 pairs of sequences, xi and xj , at a cost of O(|xi| × |xj |) (where N is
the number of training sequences and |x| is the length of a sequence).

M

I D

(I, start) (I, end) End

(M,K)(M, 1)(M, 0)

(I, 1)(I, 0)

. . .

. . .

(D,K)(D, 1) . . .

(M, 2)

(I, 2)

(D, 2)

(I, start) (I, end) End

(a) (b)

(M,K)(M, 1)(M, 0) . . .(M, 2)(I, start) (I, end) End

(c)

Fig. 2. A diagram of the deterministic finite-state automaton associated with (a) the
Pair-SSM (b) the Local SSM (L-SSM) and (c) the Simplified Local SSM (SL-SSM).
Match states are indicated with a white background, Insert states with a light-gray
background, and Delete states with a dark-gray background.

3.2 Local SSM (L-SSM)

The Local SSM (Figure 2b) is an unnormalized version of the Profile HMM
(pHMM) adapted to model a single subsequence within an observed sequence.
Profile HMMs [6] are a variation of the standard HMM commonly used for
modeling biological sequences. They are left-to-right, non-ergodic HMMs [14]
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that represent sequences in relation to an archetypal sequence encoded in the
emission distributions of the pHMM’s hidden states. Profile HMMs use three
types of hidden states: (1) Match (M) states encode individual symbols of the
archetypal sequence, (2) Insert (I) states allow additional symbols to be inserted
between matched symbols, and (3) Delete (D) states allow matched symbols to
be skipped. Hidden states of the archetypal sequence are expressed as pairs of
symbols (s, k), where s ∈ {M, I, D} indicates a Match (M), Insert (I), or Delete
(D), paired with a base state, k ∈ [1 . . . K], which can be thought of as index-
ing a symbol in the archetypal sequence. The form of the archetypal sequence
is encoded by the emission distributions from each of the K match states. In
the local version of the pHMM, which models a single subsequence within the
observed sequence, Istart and Iend are special insert states that allow portions
of the sequence before the archetypal sequence to be skipped. We fix transition
and emission probabilities from Istart and Iend, allowing these to be ignored dur-
ing optimization. In addition, we explicitly include an End state to mark the
end of the observed sequence. We must include the End state because without
transition from Iend to End, the model favors archetypal subsequences positioned
near the beginning of the observed sequence. As in the standard pHMM, in our
L-SSM, emissions occur only from Match and Insert states.

3.3 Simplified Local SSM (SL-SSM)

Like the L-SSM, the SL-SSM models relevant subsequences within a set of se-
quences. The SL-SSM (Figure 2c) simplifies the L-SSM by removing Insert and
Delete states from the model. This change in the model results in contiguous
subsequences of match states. This structural change speeds inference i.e., the
highest scoring set of hidden states can be efficiently computed by sliding the
window of K match states over a sequence and returning the position with the
highest probability. We use the same parametrization of hidden states as in the
L-SSM: {Istart,(M, 1),. . . ,(M, K),Iend,END}, where the pair (M, k), indicates a hid-
den state that emits the kth symbol of the archetypal sequence. Transitions from
the Match state (M, k) , k < K to (M, k + 1) and transitions from the state (M, K)

to the state Iend occur with probability one.
The L-SSM or SL-SSM convolutional layer in the Subsequence Network can

be interpreted as a simplification of the SN with a Pair-SSM convolutional layer.
This simplification is motivated by two assumptions about the domain of protein
sequences: (i) the set of protein sequences lies on a lower-dimensional manifold
within the sequence space and (ii) the basis given by the training set spans the
manifold of our domain and is redundant. With these assumptions it becomes
reasonable to simplify the Pair-SSM convolutional layer by creating a model
with a lower-dimensionality basis independent of the training examples. For our
model, we choose this basis to be a fixed set of L-SSMs or SL-SSMs.

When we replace Pair-SSMs with (S)L-SSMs, additional computational effi-
ciencies become possible because the (S)L-SSM allows us to store only the locally
relevant pattern rather than an entire sequence. Computing the score of a se-
quence under an (S)L-SSMs where hidden states are restricted to small, fixed
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lengths therefore requires less computation time than evaluating the Pair-SSM
between pairs of sequences. A disadvantage of these simplifications is that new
parameters are added to the model. In particular, the number of (S)L-SSMs and
the number of hidden states for each (S)L-SSM must be specified in advance. In
the results section, we show that these simplifications not only maintain much
of the accuracy of the Pair-SSM layer, but they are also robust to variations in
parameter choices.

3.4 Subsequence Network Objective Function

The objective function for our model includes a loss for each sequence in the
dataset and a regularization term that penalizes large parameter values:

F (x) =
∑

n

�
(
xn, yn;wall

)
+

λ

2
||wall||2 (8)

where wall is an agglomeration of all of the SSM weight vectors in the model
(the composition of wall varies depending on which type of SSM is used for the
convolutional layer) and linear combination weights associated with each SSM;
�(x, y;wall) is a loss function. The λ term determines the trade off between the
loss and magnitude of the weights.

A loss function compares the output of a CNN with the label of a single
protein sequence. In our model, we use the a softmax loss, shown in the first row
of Table 3. The output of the network is given by

f (4)
def
= f(4)

(
f(3)

(
f(2)

(
f(1) (xn)

)))
def
= Lin (Tanh (Max (Conv (xn)))) (9)

where Conv is a convolutional layer containing multiple convolutional units, Max
computes the maximum over the responses of each convolutional unit, Tanh is
the hyperbolic tangent function and maps values in the range (−∞,∞) to (−1, 1),
Lin is a linear layer. As in Section 2.3, we denote the output from hidden layer
h as f (h). Table 3 gives the full form of each layer of the network, and Table 2
gives a description of network parameters.

If the number of hidden states for each SSM, |Z(i)|, across an individual net-
work is the same (|Z(i)| = |Z(j)| ∀i, j) layer f (1) becomes a matrix of size Ns ×|Z|,
where Ns is the number of SSMs in the convolutional layer. In the L-SSM and

Table 2. Subsequence Network parameters
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Table 3. The table above describes the composition of each layer in the Subsequence
Network and gives an expression for the Jacobian with respect to the layer’s input.
The values of each layer are given by the vector f (h) for hidden layer h. The Jacobian
of the first layer (Conv) with respect to the input is not used during inference.
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Pair-SSMs, |Z| is exponential in the size of the input sequence. We make the
feed-forward and backpropagation steps for the network tractable by computing
the composition Max(Conv(x)) directly using the Viterbi algorithm [14]. The
locations of the non-zero indicator functions in the Jacobian of the Max layer
are then given by the Viterbi path [14] through the SSM.

Our Subsequence Network incorporates the hyperbolic tangent squashing func-
tion, tanh (x) = e−2x+1

e−2x−1
. We denote the derivative of this function with respect to

the hyperbolic tangent input as d tanh (x) = 1 − tanh2
(x). In the Max layer, the

function max (v) returns the largest scalar element of the vector v.

3.5 Training Subsequence Networks

Training is performed using the stochastic gradient descent (SGD) algorithm.
In SGD, the gradient of the objective is evaluated for each training example.
The gradient is then scaled by a learning rate and subtracted from the current
set of parameters to obtain a new set of parameters. This procedure contrasts
with batch gradient learning where the gradient is computed for the entire set of
training examples. We compute gradients using the backpropagation procedure
[16]. Our model includes a locally non-smooth Max function, causing the the
gradient of the objective to be undefined at the non-smooth points. To deal with
this potential issue, we skip the gradient update in these non-smooth areas [3].

SGD updates take the form

wall
t ← wall

t−1 − ηt
∂F (xn)

∂wall
(10)

where F (xn) = �
(
xn, yn;wall

)
+ λ

2

∣∣∣∣wall
∣∣∣∣2 is the objective for a single sequence, t

indicates the iteration number in the SGD algorithm, wall
t indicates the value of
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the weights at the tth iteration, and ηt is the learning rate at iteration t and has
the form ηt = η0 (1 + λη0t)−1, where λ is the regularization parameter.

The gradient with respect to the linear weights is given by

∂F (xn)

∂w
(lin)
yi

= −
∂�
(
xn, yn;wall

)
∂f

(4)
y

f
(3)
i (11)

This leads to an update where wyi (the linear weight associated with the ith

SSM and category y) is increased if the current training example matches the
weight’s category and decreased otherwise. The change in the weight’s value is
proportional to, f

(3)
i , the squashed response of the ith SSM. The expression for

∂�
(
xn,yn;wall

)
∂f

(4)
y

is given in Table 3.
The gradient with respect to the SSM weights is given by
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The gradient of f
(3)
i with respect to the SSM weights, w(i), is given by ∂f

(3)
i

∂w(i) =

dtanh
(
SSMi (xn)

)
n

(i)
zmax where n

(i)
zmax is a vector of counts of emissions and tran-

sitions associated with the set of hidden states that maximizes the value of
SSMi (xn, z) and dtanh is the derivative of the tanh function with respect to its
input. As in the HMM, zmax for the SSM can be computed efficiently with the
Viterbi algorithm [14]. Gradient steps therefore change w(i) in proportion to the
counts of emissions and transitions in the highest scoring set of hidden states.
The factor of proportionality is ∂�

∂f
(3)
i

. This factor can be viewed as a measure of

how much the ith linear weight of the ground truth class, w
(lin)
yni , differs from its

expected value.

4 Experiments

We perform classification experiments on four protein datasets. Of these datasets,
two are derived from the Structural Classification of Proteins (SCOP) [12] ver-
sion 1.53. SCOP is a database that categorizes proteins with known structure
into a hierarchy with levels denoted by class, fold, superfamily, and family, from
broadest level to the most narrow respectively. The first structural dataset [11],
denoted by SF, defines 54 fixed superfamily partitions. The second dataset [15],
FD, consists of 23 predefined partitions at the fold level. Both of the SCOP
datasets were constructed so that no overlap between lower levels in the hierar-
chy occurs between training and test sets.

The other protein datasets divide sequences into functional, rather than struc-
tural, categories. The enzyme classification dataset [13], which we refer to as EC,
contains sequences from six enzyme categories and a set of non-enzymes for a
total of 7 one-versus-rest datasets. The fourth dataset [13] categorizes proteins
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Table 4. Datasets Sizes - # Train indicates the average number of sequences in the
training set over all categories, # Test indicates the average number of test set se-
quences, and # Categories indicates the number of one-versus-rest classification prob-
lems defined by the dataset

Dataset # Train # Test # Categories

SF 2948 1366 54

FD 2196 2155 23

EC 379 110 7

GO 115 57 23

by Gene Ontology. We refer to this dataset as GO. Information about the protein
datasets is given in Table 4.

4.1 Comparative Classifiers

We compared the three SVM string kernels to our Subsequence Network. The
BLAST kernel was computed by performing a BLAST [1] database search on
each sequence. If another sequence from the training set was returned by the
BLAST search, then we set the corresponding Kernel value to the returned E-
value. The mismatch kernel was described in Section 2.1 and has two parameters.
We denote a mismatch evaluation by Mismatch(k,m), where k is the subsequence
length and m is the number of allowable mismatches. The LA-Kernel was also
described in Section 2.1. For all experiments, the LA-Kernel’s temperature pa-
rameter, β, was set to 0.2.

4.2 Models and Parameters

We compared three variations of our Subsequence Network. In the first variation,
“Pair-SSM,” the convolutional layer consisted of Pair-SSMs associated with each
training sequence in the model. Similarly, the “L-SSM” and “SL-SSM” variations
use L-SSMs and SL-SSMs in the convolutional layer respectively.

For the Pair-SSM network, we initialized pairwise weights using a scaled ver-
sion of the BLOSUM62 matrix [4] and ran inference for 5 epochs on the FD
dataset and 10 epochs on the EC and GO datasets. We set the precision param-
eter associated with the Gaussian regularizer to λ = .005. We set multiplicative
factor in the learning rate (Section 3.5) η0 = .1 for the linear weights. For the
Pair-SSM parameters, we set η0 = .1

10×(#Train)
, where # Train is the number of

training set sequences. To allow training of the Pair-SSM model to take place in
a reasonable amount of time, we distributed gradient computations of SSMs in
the convolutional layer within each backpropagation step over 50 machines1.

Choices of parameters were the same for the L-SSM and SL-SSM networks:
We used 96 SSMs in the convolutional layer and set K (the number of states
1 Training the (S)L-SSM networks was significantly faster than the Pair-SSM network.

To give a rough comparison, SL-SSM network training with the parameters described
was faster than computing the Mismatch(5,2) kernel.
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for each SSM) to 11. We set the precision parameter to λ = .005 for both SSM
weights and linear weights, and we set η0 = .1. For each experiment, we ran
inference for 30 epochs.

The weight vector for these models were set by generating subsequences, x,
of length K uniformly and at random. For position k in the subsequence, weight
wkxk

was set to 1
K

and weights wkm, m �= xk was set to − 1
K

.
To compensate for unbalanced numbers of positive and negative examples, we

oversampled the positive training set so that the same number of positive and
negative examples were presented to the SGD trainer during each epoch. In the
(S)L-SSM networks, we found that initializing the linear weights so that half of
the SSMs were associated with the positive class and the other half associated
with the negative class improved performance of our algorithm.

4.3 Evaluation Metrics

We measured the performance of our algorithm by computing the average ROC
scores for eachof the one-versus-rest classificationproblemsdefinedbyourdatasets.
ROC, also known as Area Under the Curve (AUC), is defined as the area under the
receiver operating characteristic (ROC) curve. The ROC curve plots the percent-
age of true positives against the percentage of false positives.We also reportROC50

and ROC10% which are the area under the ROC curve excluding all but the top 50
negative examples or 10 percent of the negative examples respectively. To compare
the performance of different models, we performed the Wilcoxson signed rank tests
at a 5% significance level using each one-versus-rest category. We report ROC re-
sults based on the algorithm’s scoring of sequences on the test sets.

4.4 Synthetic Experiments

We constructed a synthetic dataset to verify that our network can detect the
relevant subsequence features that we propose will lead to good protein sequence
classification performance. Specifically, we generated 1000 sequences with lengths
generated from a Poisson distribution with a mean of 50 symbols. Each sequence
contained between one and three fixed relevant subsequences, with the positive
class containing all three subsequences and the negative class containing either
one or two sequences of any type. The relevant subsequences were arranged in
random order within the sequence. After placement of the relevant sequences,
noise was added - we replaced each every relevant subsequence amino acid with
a random amino acid with 10% probability. Amino acids outside relevant subse-
quences were generated from a uniform multinomial distribution.

Figure 3 shows responses of the lowest layer in the SL-SSM network on two
example sequences from the synthetic dataset. Strong responses in portions of
the sequences that contain relevant subsequences indicate that our model is able
to effectively learn features that discriminate well for a dataset where categories
are determined based on the presence of subsequences. The SL-SSM achieves an
ROC of .9998 and ROC50 of .997 on the test portion of the synthetic dataset,
showing that after detecting relevant subsequences, our model has the ability
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(a) (b)

Fig. 3. The figures above show responses from each of the 48 unnormalized SL-SSMs
over each length 7 subsequence for a sequence generated from the positive class (a) and
the negative class (b). The positive example contains all three relevant subsequences
while the negative example contains only one relevant sequence. The first 24 SL-SSMs
(top half both figures) were constrained to be associated with the positive category,
while the last 24 were constrained to be associated with the negative category. The
heat maps show that sets of positive SL-SSMs have adapted to each of the three
relevant subsequences in the synthetic dataset - both the three relevant subsequences
in the positive example and the one relevant subsequence in the negative example were
detected by subsets of the first 24 SL-SSMs. In contrast, SL-SSMs associated with the
negative category learn a background distributions of symbols.

to effectively classify sequences generated according to a relevant subsequences
assumption on the dataset.

4.5 Parameter Adjustment

We adjusted the parameters of (S)L-SSM models by comparing both the number
of SSMs in each network and the number of hidden states for the SSMs (we used
the same number of hidden states for all SSMs) in experiments on the FD dataset.
Table 5 shows results from these comparisons. Within a relatively wide range

Table 5. Average ROC results for different settings of the SL-SSM network on the
FD dataset. ROCs were averaged over ten independent trials initialized with random
pattern weights. When varying the number of SL-SSM hidden states in (a), 96 SL-
SSMs were used in the network. In (b), 11 hidden states were used for each SL-SSM
when varying the number of SL-SSMs.

Hidden States ROC ROC50

7 .801 .146

9 .813 .145

11 .815 .153

13 .815 .153

15 .807 .163

# SL-SSMs ROC ROC50

64 .812 .144

80 .812 .156

96 .814 .153

112 .816 .145

128 .816 .147

(a) (b)
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of parameter settings, the performance of the model stays roughly the same,
showing that, although our method may require some adjustment using cross
validation, micromanagement of parameter settings is not critical to maintaining
acceptable performance. For the results shown in Table 6, we selected parameter
settings for the other experiments (K = 11 with 96 convolutional units) that
performed best on FD.

4.6 Protein Classification Experiments

We compared four subsequence models used in the convolutional layer of our Sub-
sequence Network. The lower rows of Table 6a and b show results for the L-SSM
and the SL-SSM. These indicate that the simpler model, the SL-SSM outperforms
the L-SSM. Superior performance of the SL-SSM results from unstable inference
in the L-SSM when attempting to learn insert transition weights. If these weights
grow above zero for the positive class, then the model tends to explain every pro-
tein sequence using long sequences of insert states. For this reason, we fix the insert
transition weights in the L-SSM to small negative values (− 1

2K
where K is the num-

ber of Match states in the L-SSM), but this fix affects the flexibility of the model.
On the FD dataset, the Pair-SSM outperforms our other models in both ROC and
ROC50. However, on the functional datasets, both L-SSM and SL-SSM outperform
the Pair-SSM. These results indicate that the simpler (S)L-SSM assumptions may
be better models of protein structure in certain cases.

Table 6 also compares our subsequence networks to SVM/kernel methods from
the literature. Compared to the LA-kernel on the FD dataset, the Pair-SSM model
is statistically equivalent in bothROCandROC50 measurements.Compared to the
Mismatch kernel on the FD dataset, the Pair-SSM model performs better in ROC
but is equivalent for ROC50. We note, however, that the β parameter used for the
LA-kernel is the best ofmany settings onboth the SFandFDtraining/test set split.
Due to this extensive adjustment on the FD dataset, it is likely that the LA-kernel
overfits. In contrast, Pair-SSM network performance is only weakly dependent on
parameter settings (the regularization parameter) and we did not perform exten-
sive adjustment of these values, so overfitting likely to be less problematic for our
Pair-SSM on the FD test set. The Pair-SSM is equivalent to both the LA-kernel and
Mismatch kernel on the EC dataset in both ROC and ROC10%. On the GO dataset,
the the Pair-SSM is outperformed by the LA-kernel in both ROC and ROC10% but
is equivalent to the Mismatch kernel.

In ROC, the LA-kernel outperforms the L-SSM and SL-SSM models on the SF
and GO datasets but is statistically equivalent for the FD and EC datasets. In
ROC50, the LA-kernel outperforms the L-SSM and SL-SSM on both the SF and FD
datasets at a 5% significance level. In ROC10%, both of our methods outperform
the LA-kernel on the EC dataset. On the GO dataset, the LA-kernel’s performance
is statistically equivalent to the SL-SSM but outperforms the L-SSM. Compared
to the Mismatch(5,2) kernel, both the L-SSM and SL-SSM models have equivalent
performance in SF and FD in both ROC and ROC50. Our algorithms outperform
the Mismatch kernel in ROC10% on both of the functional datasets.
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Table 6. ROC results for the FD and SF datasets (a) and the EC and GO datasets (b).
Because our model is non-convex,we report means and standard deviations of ROCs from
multiple starting points in the SSM weight space. Ten trials were averaged for both the
L-SSMand SL-SSMmodels for both structural and functional datasets. Due to the length
of P-SSM network’s runtime, we report results from only a single trial.
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 0.583± 0.017 0.092± 0.024 0.731± 0.011 0.306± 0.018
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For the EC dataset, none of the algorithms perform particularly well. It is
possible that both the size of the dataset and weak correlations between sequence
and function cause subsequence-based approaches to fail. A class of methods
based on a different set of assumptions may be necessary to achieve strong
functional classification performance.

5 Conclusions

The empirical kernel map applied in conjunction with SVM classifiers is strongly
related to feed-forward models like convolutional neural networks. Based on this
relationship, we show how to construct a family of models, which we call Subse-
quence Networks, where kernel parameters can be learned in conjunction with
linear classification boundaries. Our Subsequence Networks operate differently
from state-of-the-art protein sequence classification models yet can achieve com-
parable performance. We hope that Subsequence Networks can shift the focus
in biological sequence classification from increasingly fine-tuned kernel methods
toward developing structures with self-tuning abilities.

Our networks also contribute to existing neural network literature by extend-
ing the convolutional layer to a maximization over latent parameter spaces in
standard sequence models. The effectiveness of this framework for protein se-
quence classification shows that it has potential in other classification domains.

A straightforward and potentially useful modification to our networks involves
adapting them to take Psi-BLAST profiles, rather than sequences, as input. This
shift to a semi-supervised structure has the potential to improve classification
performance to the same degree as it has for kernel methods [15].
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Abstract. We address the closed pattern discovery problem in sequen-
tial databases for the class of flexible patterns. We propose two tech-
niques of coarsening existing equivalence relations on the set of patterns
to obtain new equivalence relations. Our new algorithm GenCloFlex is
a generalization of MaxFlex proposed by Arimura and Uno (2007) that
was designed for a particular equivalence relation. GenCloFlex can cope
with existing, as well as new equivalence relations, and we investigate
the computational complexities of the algorithm for respective equiva-
lence relations. Then, we present an improved algorithm GenCloFlex+
based on new pruning techniques, which improve the delay time per out-
put for some of the equivalence relations. By computational experiments
on synthetic data, we show that most of the redundancies in the mined
patterns are removed using the proposed equivalence relations.

1 Introduction

Discovering frequent patterns in sequence databases has great importance in a
wide-range of areas, including analysis of customer purchasing histories, Web
click streams, DNA/RNA sequences, natural language texts, and so on. Recent
decades have seen the series of studies; Agrawal and Srikant [1] was one of the
pioneering works on sequential pattern mining, and many studies followed [3,11,
14].

In practical applications of pattern mining, a typical tradeoff to be considered
is: On one hand, we would like to consider for the mining task, a rich set of
patterns and a relatively low minimum support threshold so that we may discover
interesting, possibly subtle information buried in the data. On the other hand,
by choosing such a search space, a mining algorithm may give us a tremendous
number of patterns as output, which will definitely be a bottle neck when the
results are examined by domain experts. To deal with this problem, an important
technique in reducing the number of patterns output without sacrificing their
diversity, is to introduce an appropriate equivalence relation ≡ on the pattern
set Π , and to output only closed patterns, where a pattern P is closed if it is
maximal in the equivalence class [P ]≡ to which P belongs under ≡. This problem
is referred to as closed pattern discovery and has been studied extensively [2,5–
8, 10, 12, 13, 15, 16, 19–21].

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 435–450, 2012.
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In this paper, we consider the closed pattern discovery problem for the class
of flexible patterns. The main features of our work are: (1) We focus on the class
of flexible patterns. (2) We employ occurrence-based equivalence relations. (3)
We propose two techniques of coarsening existing equivalence relations. (4) We
develop a general algorithm GenCloFlex to handle several equivalence relations,
and an improved algorithm GenCloFlex+. The algorithms have polynomial delay
time and space guarantees.

(1) Mining flexible patterns: A flexible pattern is of the form �w1 � · · · �
wk� where w1, . . . , wk (k ≥ 1) are constant strings and � is a gap symbol that
can match any string of any length. Most studies to date target the class of
subsequence patterns [1,3,5–16,20,21]. A subsequence pattern is a special case of
flexible patterns, having the form �a1�· · ·�ak� (k ≥ 1) where each ai (1 ≤ i ≤ k)
must be a single character. Thus, flexible patterns are more descriptive and
enable us to capture some features that may not be discovered by subsequence
patterns. For example, suppose we obtained �l � o � v � e� as an output of
frequent subsequence pattern mining. Since the lengths of gaps between each
character is not considered, the pattern does not distinguish its occurrences
in texts “love” and “low velocity”, and we cannot know from the pattern
alone, whether the phrase “love” is actually frequent or not. An output of
frequent flexible pattern mining may give us the phrase “�love�” or “�lo�ve�”
in which case this information would be apparent. Thus mining flexible patterns
would be appreciated especially for languages which do not have an explicit
delimiter between words such as Japanese and Chinese. Also, the information
of consecutive characters in a pattern connected without gaps is very important
for bio-sequences [18]. To the best of our knowledge, mining of closed flexible
patterns with this definition has only been considered in [2]. A different version
of closed flexible patterns is proposed in [19], but the definitions are significantly
different and incompatible with ours.

(2) Occurrence-based equivalence relations: The definition of closed
patterns depends on which equivalence relation to use, that is, which patterns we
regard as the same. An equivalence relation is finer if less patterns are considered
to be the same: i.e. more attention is paid to differences. An equivalence relation
is coarser if more patterns are considered to be the same: i.e. less attention is
paid to differences.

Most of the existing research on closed pattern mining traditionally use the
equivalence relation on Π which is based on the document occurrence. Namely,
two patterns are equivalent if the sets of strings in sequential database S contain-
ing occurrences of the patterns are identical. If a string T in database S contains
an occurrence of P , we regard it as just one occurrence even if it contains two
or more occurrences of P . For example, consider the occurrences of patterns
P1 = �a � b � cd� and P2 = �a � cd� in string T = ......a...b..cd...a...cd...., where
“.” denotes any symbol other than a, b, c. We note that P1 is a super-pattern of
P2 and therefore every occurrence of P1 implies an occurrence of P2, indepen-
dently of strings in sequential database S. Suppose that every other string in
S containing P2 has an occurrence of P1. Then the document-occurrence-based
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equivalence relation regards P1 and P2 equivalent. In this case, however, note
that the rightmost occurrence of P2 is not accompanied by an occurrence of
P1. In other words, if we consider the minimal occurrence intervals of the re-
spective patterns, P1 occurs twice while P2 occurs only once within T . In some
applications, we would like to distinguish between patterns which have different
occurrences in such a way. In this paper we pay attention to respective occur-
rences of patterns, and use occurrence-based equivalence relations.

Arimura and Uno [2] defined their equivalence relation
B≡S on pattern set Π

based on the equality on the sets of beginning positions of pattern occurrences.
For example, consider the occurrences of P = �a � b� in T1 = ...a.b...a...b..a....
The occurrence positions of P are the two occurrence positions of “a”, excluding
the rightmost one. However, we have four occurrence positions of P in T2 =
...a...a...a...a...b... while we have only one occurrence position of P in T3 =
...a...b...b...b...b.... Such a non-symmetric feature is usually not desirable.

Mannila et al. [9] defined their equivalence relation
M≡S on the subsequence

pattern set based on the minimal intervals within which patterns occur. In the
previous example, the pattern P has only one occurrence in respective strings.

In this paper we consider the closed pattern discovery problem mainly under
M≡S

extended to the flexible pattern set and its coarsened variants
MX≡S and

MXG≡ S .
It should be emphasized that occurrence-based equivalence relations such as

B≡S and
M≡S are finer than the document-occurrence-based equivalence relation.

This means that using such equivalence relations may increase the number of
mined closed patterns. Thus it is important to coarsen the equivalence relations.

On the other hand, the goodness of an equivalence relation may vary depend-
ing on the nature of the data, the application domain and the goal of pattern
mining. For this reason, it is desirable to develop a general, efficient closed pat-
tern mining algorithm for various equivalence relations.

(3) Definition of support: Note that the choice of equivalence relation does
not imply a particular definition for the frequency, or support, of a pattern. There
are several definitions of support of a pattern P in a sequential database S. One
definition is the so-called document frequency, which is the number of strings in
S that contain at least one occurrence of P . A lot of work on closed pattern
mining employ this definition. Another definition is the sum of the numbers of
minimal intervals in respective strings in S that contain at least one occurrence
of P . This definition has been used, for example, in [9] and [22]. Yet another
definition can be found in [9], which is the number of windows of a given width
in respective strings in S that contain at least one occurrence of P .

Throughout this paper we assume the document frequency. However, our al-
gorithms can be easily modified to cope with the other definitions above when

the underlying equivalence relation is in the M family (
M≡S ,

MX≡S and
MXG≡ S).

(4) Polynomial delay time and space: Even in closed frequent pattern
mining, the size of the output can be exponentially large, and we cannot hope
for an algorithm running in polynomial time with respect to the input size. On
the other hand, an enumeration algorithm with polynomial delay time, is an
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algorithm in which the time between each consecutive output is bounded by a
polynomial with respect to the size of the input. Such characteristics can be
very useful and important for mining algorithms, since it guarantees that the
algorithm runs in polynomial time with respect to the size of the output. This
means that the time complexity of the algorithm is small when the output size,
i.e., the number of closed frequent patterns is small. Even when the output size
is large, we can still expect that the next output can be received in a reasonable
amount of time. Without this guarantee, we may find out – after waiting for a
very long time – that there are no more frequent patterns to be discovered.

Space complexity of the mining algorithm is also clearly an important issue.
Arimura and Uno [2] addressed the closed pattern discovery problem for the class
of flexible patterns and presented the first algorithm MaxFlex with polynomial
time delay and polynomial space. Our algorithms also achieve polynomial time
delay and polynomial space.

For closed pattern mining under document-based equivalence relations, algo-
rithms such as BIDE [16,17], proposed for subsequence patterns, seem to achieve
polynomial space complexity. However, as far as we know, no time delay guar-
antees have been shown, which may be a consequence of the document-based
equivalence relation.

Contributions of This Paper: We reiterate the main contributions of this
paper: For the frequent closed flexible pattern enumeration problem, we focus

on the equivalence relation
M≡S of [9], and extended it to the class of flexible

patterns. We also propose two new equivalence relations by coarsening it. We
show GenCloFlex, an algorithm which generalizes the algorithm MaxFlex [2], so
that it can cope with existing, as well as new equivalence relations, and investi-
gate its computational complexities for respective equivalence relations. Then we
present an improved algorithm GenCloFlex+, based on new pruning techniques
which improve the delay time per output for some of the equivalence relations.
By computational experiments on synthetic data, we prove that the proposed
equivalence relations drastically remove redundancies in the mined patterns.

2 Preliminaries

Let Σ be a non-empty, finite set of symbols. A string over Σ is a finite sequence
of symbols from Σ. Let Σ∗ denote the set of strings over Σ. Strings x, y and
z are said to be a prefix, substring and suffix of string w = xyz. The length of
a string w is the number of symbols in w and denoted by |w|. The string of
length 0 is called the empty string and denoted by ε. Let Σ+ = Σ∗ − {ε}. The
i-th symbol of a string w is denoted by w[i] for 1 ≤ i ≤ |w|. The substring of a
string w that begins at position i and ends at position j is denoted by w[i..j] for
1 ≤ i ≤ j ≤ |w|. That is, w[i..j] = w[i] · · ·w[j]. For convenience, let w[i..j] = ε
for j < i. The reversal wrev of a string w = w[1..n] is defined to be w[n] · · ·w[1].
For a finite set S of strings, let ‖S‖ denote the total length of strings in S and
let Srev = {wrev | w ∈ S}.

An interval is an ordered pair [i, j] of integers with i ≤ j which represents the
set of integers k with i ≤ k ≤ j. Let I be a set of intervals. Let Beg(I) = {i |
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[i, j] ∈ I} and End(I) = {j | [i, j] ∈ I}, and let Min(I) denote the set of intervals
in I which are minimal w.r.t. ⊆. For any set I of intervals and for any integers
h, k, let I ⊕ 〈h, k〉 =

{
[i + h, j + k]

∣∣ [i, j] ∈ I
}
. Also, for any set J of integers

and for any integer k, let J ⊕ k =
{
j + k

∣∣ j ∈ J
}
.

2.1 Equivalence Relation

Let A be a set. A binary relation on A is a subset of A×A. For binary relations
R1, R2 on A, let R1R2 = {〈a, c〉 | 〈a, b〉 ∈ R1 ∧ 〈b, c〉 ∈ R2}. Let IA = {〈a, a〉 |
a ∈ A}. For a binary relation R on A, let R0 = IA and Rn = RRn−1 (n > 0),
and let R−1 = {〈b, a〉 | 〈a, b〉 ∈ R}, R+ =

⋃∞
n=1 Rn and R∗ =

⋃∞
n=0 Rn.

A binary relation R on A is said to be reflexive if IA ⊆ R; symmetric if
R−1 ⊆ R; and transitive if R+ ⊆ R. An equivalence relation on A is a binary
relation on A which is reflexive, symmetric and transitive. For a binary relation
R, we often write aRb when 〈a, b〉 ∈ R.

Let ≡ be an equivalence relation on A. The equivalence class of an element x
of A under ≡ is {y ∈ A | x ≡ y} and denoted by [x]≡. An equivalence relation
≡ on A is said to be finer than another equivalence relation ≡′ on A if ≡⊆≡′.
For any set R = {≡i| i ∈ Λ} of equivalence relations on A, let ∧R =

⋂
i∈Λ ≡i

and ∨R =
(⋃

i∈Λ ≡i

)+
. The equivalence closure of a binary relation R on A,

denoted by EC(R), is the smallest superset of R that is an equivalence relation
on A. For any binary relation R on A, it is known that EC(R) = (R ∪R−1)∗.

2.2 Pattern and Embedding

Let � be a special symbol not in Σ, called the gap. A pattern is of the form
�w1�. . .�wk� where k ≥ 1 and w1, . . . , wk ∈ Σ+. LetΠ be the set of patterns, and
let Π0 be the set of strings over Σ∪{�} where the �’s do not occur consecutively.
We note that Π ⊂ Π0. The size of a pattern P , denoted by size(P ), is the number
of symbols in P other than �. The reversal of a pattern P , denoted by P rev, is
defined in the same way as in the string case. The degree of a pattern P is the
number of occurrences of � in P and denoted by deg(P ).

For example, let Σ = {a, b, c}. P = �ab�a�cb� is a flexible pattern. size(P ) =
5, deg(P ) = 4 and P rev = �bc � a � ba�.

A substitution of degree d is a d-tuple 〈π1, . . . , πd〉 such that π1, . . . , πd ∈
Π0. A substitution 〈π1, . . . , πd〉 is said to be ground if π1, . . . , πd ∈ Σ∗. For
any pattern P ∈ Π and a substitution θ = 〈π1, . . . , πd〉 with d = deg(P ), the
application of θ to P , denoted by Pθ, is the pattern obtained by replacing the
i-th occurrence of � in P with πi for every i = 1, . . . , d. For any i = 1, . . . , d,
let Θi

d be the set of substitutions θ = 〈π1, . . . , πd〉 such that (1) πi �= � and (2)

πj = � for every j with 1 ≤ j ≤ d and j �= i. Let Θd =
⋃d

i=1 Θi
d. A substitution

〈�, . . . , �, π, �, . . . , �〉 ∈ Θi
d is said to be primitive if π ∈ {ε} ∪ {�a� | a ∈ Σ}.

A primitive substitution 〈�, . . . , �, π, �, . . . , �〉 is said to be erasing if π = ε, and
non-erasing if π = �a� for some a ∈ Σ. For any P,Q ∈ Π , Q is said to be a
right-extension of P if there exists a substitution θ ∈ Θd

d such that Q = Pθ,
where d = deg(P ).

An embedding of P ∈ Π0 into Q ∈ Π0 is a substitution θ such that Pθ = Q.
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Definition 1. P �Q
def⇐⇒ there is an embedding of P into Q that is primitive.

Let �∗ be a partial-order on Π0 s.t. P �∗ Q ⇐⇒ there is an embedding of P
into Q. For any P ∈ Π and T ∈ Σ+, P is said to occur in T if P �+ T .

For example, �ab � a � c � � � ab � d � a � c� due to a non-erasing primitive
〈�, �d�, �, �〉 ∈ Θ4, �ab�a�c���ab�ac� due to an erasing primitive 〈�, �, ε, �〉 ∈
Θ4, and �ab � a � c ��∗ � ab � d � ac� due to a substitution 〈�, �d�, ε, �〉.

For an equivalence relation ≡ on Π , a pattern P ∈ Π is said to be closed
under ≡ if it is maximal in [P ]≡ w.r.t. �∗.

2.3 Existing Equivalence Relations on Π

Let S be a finite subset of Σ+. Intuitively, equivalence relations on Π are de-
signed so that P and Q are equivalent if: Every time P occurs in S, Q also occurs
at the same location. Difference between equivalence relations comes from the
difference in definitions of same location here. Below, we describe several existing
equivalence relations on Π .

An occurrence interval of a pattern P ∈ Π in T ∈ Σ+ is an interval [|w1| +
1, |T | − |wd|] such that there is a ground embedding θ = 〈w1, . . . , wd〉 of P into
T . Let IntT (P ) be the set of all occurrence intervals of P in T . We give the
definitions of four existing equivalence relations. Let S be a finite subset of Σ+.

Definition 2 (
I≡S ,

M≡S ,
B≡S ,

E≡S). For any patterns P,Q ∈ Π, let

P
I≡S Q

def⇐⇒ ∀T ∈ S, IntT (P ) = IntT (Q),

P
M≡S Q

def⇐⇒ ∀T ∈ S, Min(IntT (P )) = Min(IntT (Q)),

P
B≡S Q

def⇐⇒ ∀T ∈ S, Beg(IntT (P )) = Beg(IntT (Q)),

P
E≡S Q

def⇐⇒ ∀T ∈ S, End(IntT (P )) = End(IntT (Q)).

The algorithm MaxFlex [2] enumerates all closed flexible patterns in polynomial

space and linear-time delay under
B≡S .

B≡S ,
E≡S and

B≡S ∨
E≡S are natural ex-

tensions of the well-known equivalence relations introduced by Blumer et al. [4]
for the class of substring patterns, which are recognized as the basis of index

structures for text data, e.g., the suffix trees (
B≡S), the DAWGs (

E≡S), and the

compact DAWGs (
B≡S ∨

E≡S).
M≡S is an extension of the equivalence relation

introduced by Mannila et al. [9] for the class of subsequence patterns.

Equivalence Relation Function:We note that the equivalence relations above
vary depending on S. An equivalence relation (ER) function is a function that
maps finite subsets S of Σ+ to equivalence relations ≡S on Π . The reversal of an
ER function Φ is defined by: 〈P,Q〉 ∈ Φrev(S) ⇐⇒ 〈P rev, Qrev〉 ∈ Φ(Srev). We
say that an ER function Φ is symmetric if Φrev(S) = Φ(S) for every S. The ER

functions for
I≡S ,

M≡S ,
B≡S ∨

E≡S and
B≡S ∧

E≡S are symmetric, while the reversal

of the ER function for
B≡S is the ER function for

E≡S , and vice versa.

Monotonicity of Equivalence Relations on Π: An equivalence relation ≡
on Π is said to be monotone if �+∩ ≡ = (�∩ ≡)+. If ≡ is monotone, then
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P1�+ P2 and P1 ≡ P2 implies that ∀Q ∈ Π, (P1�∗ Q�∗ P2 =⇒ P1 ≡ Q ≡ P2).
Monotonicity of equivalence relations is a very helpful property for closedness
check of a pattern, i.e., for any monotone equivalence relation ≡, a pattern P is
closed iff there is no primitive substitution θ such that Pθ ≡ P . We will discuss
general and efficient algorithms based on monotonicity in Section 4. We remark

that
I≡S ,

M≡S ,
B≡S and

E≡S are monotone.

3 Coarsening Existing Equivalence Relations

Since we prefer symmetric equivalence relations, we focus on
M≡S that is sym-

metric. It is, however, still too fine and we want a coarser one. In this section,

we define two new equivalence relations
MX≡S and

MXG≡ S by coarsening
M≡S . With

one of the techniques, we also coarsen the other equivalence relations
I≡S ,

B≡S

and
E≡S . and introduce

IX≡S ,
BX≡S and

EX≡S .
For any pattern P = �w1 � · · · � wk� ∈ Π , let P = w1 � · · · � wk, and thus

P = �P�. One technique of coarsening
M≡S is to extend as long as possible the

constant strings at pattern ends to the outward without decreasing occurrences.
Here we remark that the next proposition does hold.

Proposition 1. For any P ∈ Π and any substitution θ ∈ (Θ1
d ∪ Θd

d) with d =
deg(P ), |Min(IntT (P ))| ≥ |Min(IntT (Pθ))| for every T ∈ S.

Definition 3. P �MX

S Q
def⇐⇒ there exists a ∈ Σ such that

– Q = �Pa� and Min(IntT (Q)) = Min(IntT (P )) ⊕ 〈0, 1〉 for every T ∈ S; or
– Q = �aP� and Min(IntT (Q)) = Min(IntT (P )) ⊕ 〈−1, 0〉 for every T ∈ S.

Definition 4 (
MX≡S). Let

MX≡S = EC(
M≡S ∪�MX

S ).

Proposition 2. For any P ∈ Π, there uniquely exists a pair of strings u, v ∈ Σ∗

such that Q = �uPv� is closed under
MX≡S and P

MX≡S Q.

Take an example S which consists of a single string T1 = acbmdcacbndcaca, and
a pattern P = �b � d�. There are two minimal occurrences of P in T1, and we
see they are preceded by “ac” and followed by “cac” without gap. Thus for any
combinations of a suffix u of “ac” and a prefix v of “cac”, uPv (�cb � dcac� for

example) is equivalent to P under
MX≡S .

Another technique of coarsening
M≡S is to add pattern fragments including

gaps to the pattern ends without decreasing occurrences.

Definition 5. P �MXG

S Q
def⇐⇒ Q ∈ {�a � P�, �P � a�} with some a ∈ Σ and

|Min(IntT (P ))| = |Min(IntT (Q))| for every T ∈ S.



442 T. I et al.

Definition 6 (
MXG≡ S). Let

MXG≡ S = EC(
M≡S ∪�MXG

S ).

Take an example S which consists of a single string T1 = acbmdcagcbnddcaca,
and a pattern P = �b � d�. The number of minimal occurrences of P in T1 is 2.

There are several patterns that are equivalent to P under
MXG≡ S , but not under

M≡S and
MX≡S , such as �P � c�, �a � cP � ca � c � a� and �a � cP � d�. Note that

Q = �P �d�c� is not equivalent to P under
MXG≡ S because the number of minimal

occurrences of Q is 1.

We can prove that
MX≡S and

MXG≡ S are monotone from Proposition 1. Also, the

ER functions for
MX≡S and

MXG≡ S are symmetric. It follows from Definitions 4 and
6 that the next inclusion relation holds.

Theorem 1.
M≡S ⊆

MX≡S ⊆
MXG≡ S.

The technique used in defining
MX≡S extends

I≡S ,
B≡S and

E≡S as below.

Definition 7. P �IX

S Q
def⇐⇒ there exists a ∈ Σ such that

– Q = �Pa� and IntT (Q) = IntT (P )⊕ 〈0, 1〉 for every T ∈ S; or
– Q = �aP� and IntT (Q) = IntT (P )⊕ 〈−1, 0〉 for every T ∈ S.

Definition 8. P �BX
S Q

def⇐⇒ there exists a ∈ Σ such that Q = �aP� and
Beg(IntT (Q)) = Beg(IntT (P ))⊕ (−1) for every T ∈ S.

Definition 9. P �EX

S Q
def⇐⇒ there exists a ∈ Σ such that Q = �Pa� and

End(IntT (Q)) = End(IntT (P ))⊕ 1 for every T ∈ S.

Definition 10 (
IX≡S,

BX≡S,
EX≡S). Let

IX≡S= EC(
I≡S ∪�IX

S),
BX≡S= EC(

B≡S ∪�BX

S ) and
EX≡S= EC(

E≡S ∪�EX

S ).

We note that
IX≡S ,

BX≡S ,
EX≡S are not monotone.

4 Algorithms for Enumerating Frequent Closed Patterns

Let FreqS(P ) denote the number of strings in S in which P occurs.

Problem 1 (FreqCloPatEnum w.r.t. ≡). Given a finite subset S of Σ+ and
a non-negative integer σ, enumerate all the patterns P closed under ≡ without
duplicates such that FreqS(P ) ≥ σ.

Theorem 2 (MaxFlex [2]). For a finite alphabet Σ, there exists an algorithm

that solves FreqCloPatEnum w.r.t.
B≡S in O(|Σ|‖S‖) time delay and O(‖S‖d)

space, where d is the maximum number of gaps in the output patterns.

In this section, we consider methods for efficiently solving the problem for the

M family (
M≡S ,

MX≡S ,
MXG≡ S), the I family (

I≡S ,
IX≡S), and the E family (

E≡S ,
EX≡S). In

the sequel, we exclude the descriptions for the B family (
B≡S ,

BX≡S), since they are
simply the reversal of the E family.
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4.1 Outline of GenCloFlex

A pattern P ∈ Π is said to be i-th-gap-closed under ≡ if P �≡ Pθ for every
θ ∈ Θi

d, where 1 ≤ i ≤ d and d = deg(P ). For convenience, we say that P is
leftmost-gap-closed for i = 1 and rightmost-gap-closed for i = deg(P ). A pattern
P ∈ Π is said to be inner-gap-closed if it is i-th-gap-closed under ≡ for every i
with 1 < i < deg(P ).

An equivalence relation ≡ on Π is said to be rightmost-gap-independent if
any P ∈ Π satisfies the following condition: For every i with 1 ≤ i < deg(P ),
if P is not i-th-gap-closed under ≡, then every right-extension P ′ of P is not
i-th-gap-closed under ≡. We remark that the M, I and E families are rightmost-
gap-independent.

As a generalization of MaxFlex [2], we describe GenCloFlex, an algorithm for
solving FreqCloPatEnum w.r.t. any equivalence relation that is rightmost-
gap-independent. We define a rooted search-tree ST over Π ∪ {⊥} by:

– For any a ∈ Σ, the parent of �a� is ⊥.
– For any a ∈ Σ and for any w1, . . . , wk ∈ Σ+, the parent of �w1 � · · · � wka�

and �w1 � · · · � wk � a� is �w1 � · · · � wk�.

Lemma 1. For any P,Q ∈ Π, P �∗ Q implies FreqS(P ) ≥ FreqS(Q).

Lemma 2 (general pruning rule). Let ≡ be any rightmost-gap-independent
equivalence relation on Π. Under ≡, if P ∈ Π is not i-th-gap-closed for some i
with 1 ≤ i < deg(P ), then no descendant of P in ST is closed.

Algorithm 1 outlines a general algorithm for FreqCloPatEnum under any
rightmost-gap-independent equivalence relation. The algorithm performs a depth-
first-traversal of ST, with pruning based on Lemmas 1 and 2. We note that the
algorithm does not build ST actually.

4.2 Closedness Tests

We now consider how to realize the inner-, the leftmost- and the rightmost-
closedness tests. An equivalence relation≡ onΠ is said to be inner-gap-monotone
if for any P ∈ Π and any θ ∈ Θd − (Θ1

d ∪Θd
d) with d = deg(P ), P ≡ Pθ implies

that ∀Q ∈ Π, (P �∗ Q�∗ Pθ =⇒ P ≡ Q ≡ Pθ). We remark that the M, I and
E families are all inner-gap-monotone.

Lemma 3 (inner-gap-closedness test). Let ≡ be any inner-gap-monotone
equivalence relation on Π. Let P ∈ Π. Then, for any i with 1 < i < deg(P ), P
is i-th-gap-closed under ≡ if P �≡ Pθ for every primitive substitution θ in Θi

d.

For a monotone equivalence relation ≡, the leftmost- (resp. rightmost-) gap-
closedness of P ∈ Π can also be tested by checking whether P �≡ Pθ for every

non-erasing primitive substitution θ in Θ1
d (resp. Θd

d). For
IX≡S and

EX≡S that are
not monotone, we have the following lemma:
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Algorithm 1. General Algorithm GenCloFlex for FreqCloPatEnum

Input: a finite subset S of Σ+ and a non-negative integer σ.
Output: non-duplicate list of patterns P with FreqS(P ) ≥ σ that are closed

under a rightmost-gap-independent equivalence relation ≡.
1 foreach a ∈ Σ do Expand(�a�);

procedure Expand(P);
1 let d := deg(P );
2 if FreqS(P ) < σ then return;
3 if (P is not leftmost-gap-closed) or (P is not inner-gap-closed) then
4 return; // Pruning

// Now P is leftmost-gap-closed and inner-gap-closed

5 if P is rightmost-gap-closed then // P is closed

6 report P ;

7 foreach a ∈ Σ do

8 Expand(�P � a�);

9 Expand(�P a�);

Lemma 4 (leftmost-, rightmost-gap-closedness tests for
IX≡S,

EX≡S,
MX≡S).

Let ≡∈ { IX≡S ,
EX≡S ,

MX≡S} and P ∈ Π. P is leftmost-gap-closed under ≡ if P �≡ �aP�
for every a ∈ Σ. P is rightmost-gap-closed under ≡ if P �≡ �Pa� for every a ∈ Σ.

Lemma 5. The time complexities of the leftmost-, the rightmost- and the inner-
gap-closedness tests for P ∈ Π with d = deg(P ) are summarized in Table 1.

Proof. The leftmost- and the rightmost-gap-closedness tests for
I≡S and

M≡S and

the rightmost-gap-closedness test for
E≡S are unnecessary by their definitions.

The leftmost-gap-closedness test for
E≡S takes O(‖S‖) time as shown in [2]. By

Lemma 4 the leftmost-gap-closedness test (resp. the rightmost-gap-closedness

test) for
MX≡S can be performed simply by checking whether all minimal occur-

rences of P are directly preceded by (resp. followed by) a same symbol. This

takes O(‖S‖) time. Similarly, the rightmost-gap-closedness test for
EX≡S and the

leftmost- and the rightmost-gap-closedness test for
IX≡S take O(‖S‖) time. Now

we consider the rightmost-gap-closedness test for
MXG≡ S . What we have to do

is to check whether there exists a non-erasing primitive substitution θ in Θd
d

which preserves |Min(IntT (P ))| in every T ∈ S. Let e1, . . . , em be the increas-
ing sequence of ending positions of Min(IntT (P )). Let Ii = [e1 + 1, ei+1] for
i = 1, . . . ,m−1 and let Im = [em+1, |T |]. We can build the list of symbols com-
mon to the substrings of T implied by I1, . . . , Im in O(|T |) time. The test thus
takes O(‖S‖) time. The leftmost-gap-closedness test also takes O(‖S‖) time.

We now suppose d > 2 for the inner-gap-closedness test. For the E family, it
suffices to determine whether Pθ occurs within the leftmost occurrence interval
of P . This can be done in O(‖S‖) time independently of d by using an auxiliary
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Table 1. Time complexities of the leftmost-, the
rightmost- and the inner-gap-closedness tests for re-
spective equivalence relations

leftmost-gap-
closedness

rightmost-gap-
closedness

inner-gap-
closedness

I≡S (always true) (always true) O(‖S‖d)
IX≡S O(‖S‖) O(‖S‖) O(‖S‖d)
M≡S (always true) (always true) O(‖S‖d)
MX≡S O(‖S‖) O(‖S‖) O(‖S‖d)
MXG≡ S O(‖S‖) O(‖S‖) O(‖S‖d)
E≡S O(‖S‖) (always true) O(‖S‖)
EX≡S O(‖S‖) O(‖S‖) O(‖S‖)

Table 2. Delay time per out-
put for respective equivalence
relations

GenCloFlex GenCloFlex+

I≡S O(|Σ|‖S‖d) O(|Σ|‖S‖d)
IX≡S O(|Σ|‖S‖2d) O(|Σ|‖S‖d)
M≡S O(|Σ|‖S‖d) O(|Σ|‖S‖d)
MX≡S O(|Σ|‖S‖2d) O(|Σ|‖S‖d)
MXG≡ S O(|Σ|‖S‖2d) O(|Σ|‖S‖2d)
E≡S O(|Σ|‖S‖) [2] O(|Σ|‖S‖)
EX≡S O(|Σ|‖S‖2) O(|Σ|‖S‖)

data structure of size O(‖S‖d) as shown in [2]. For the M family, we have to check
it over all minimal occurrence intervals of P , and the same technique cannot be
applied. This takes O(‖S‖d) time and space. For the I family, we basically check
it over all occurrence intervals of P . For the erasing primitive substitution θ in
Θ2

d (resp. Θd−1
d ), it suffices to check whether Pθ begins (resp. ends) at every

beginning (resp. ending) positions of occurrence intervals of P . For the other
erasing primitive substitutions or for the non-erasing primitive substitutions, it
suffices to consider only the minimal occurrence intervals. �	

4.3 Improved Algorithms for Respective Equivalence Relations

We introduce new efficient pruning techniques based on common extensions.

Especially, the techniques improve the time complexity for
MX≡S ,

IX≡S and
EX≡S , as

shown in Table 2.
Let ≡∈ { M≡S ,

MX≡S ,
MXG≡ S ,

I≡S ,
IX≡S ,

E≡S ,
EX≡S}. The longest common extension of

P ∈ Π under ≡ is the longest string v ∈ Σ∗ such that for every T ∈ S,

– Min(IntT (�Pv�)) = Min(IntT (P ))⊕ 〈0, |v|〉 when ≡ ∈ { M≡S ,
MX≡S ,

MXG≡ S};
– IntT (�Pv�) = IntT (P )⊕ 〈0, |v|〉 when ≡ ∈ { I≡S ,

IX≡S ,
E≡S ,

EX≡S}.

When v �= ε, c = v[1] is said to be the common extension of P under ≡.
The following lemmas help us to skip unnecessary closedness tests.

Lemma 6 (skipping leftmost- and inner-gap-closedness tests). Let ≡∈
{ M≡S ,

MX≡S ,
MXG≡ S ,

I≡S ,
IX≡S ,

E≡S ,
EX≡S} and let c ∈ Σ be the common extension of P ∈ Π

under ≡. If P is leftmost- and inner-gap-closed under ≡, �Pc� is also leftmost-
and inner-gap-closed under ≡.

Lemma 7 (skipping rightmost-gap-closedness tests). Let ≡ ∈ {MX≡S ,
MXG≡ S

,
IX≡S ,

EX≡S} and let c ∈ Σ be the common extension of P ∈ Π under ≡. Then P
is not rightmost-gap-closed under ≡.
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For the M family, we can utilize the following lemma for pruning.

Lemma 8 (pruning for the M family). Let ≡∈ { M≡S ,
MX≡S ,

MXG≡ S} and let c ∈ Σ
be the common extension of P ∈ Π under ≡. Then among the descendants of P
in ST, only descendants of �Pc� can be closed under ≡.
Proof. Since Min(IntT (�Pc�)) = Min(IntT (P ))⊕〈0, 1〉 for every T ∈ S, �P�c� is
not closed due to �P �c� ≡ �Pc�. Since 〈�P � a�, �Pc � a�〉 ∈ �+∩ ≡, �P � a� is
not closed for any a ∈ Σ−{c}. Let P = �w1 � · · · �wk�, where w1, . . . , wk ∈ Σ+.
Let P ′ = �w1 � · · · � wk−1 � b � wka�, where b is the first symbol of wk. Since
〈�Pa�, P ′〉 ∈ �+∩ ≡, �Pa� is not closed for any a ∈ Σ − {c}. Since ≡ is
monotone, the lemma holds. �	
For the I and E families, we can utilize the following lemmas for pruning.

Lemma 9 (pruning for the I and E families). Let ≡∈ { I≡S ,
IX≡S ,

E≡S ,
EX≡S}

and let c ∈ Σ be the common extension of P ∈ Π under ≡. Then among the
descendants of P in ST, only descendants of �Pc� and of �P �c� can be closed
under ≡.
Proof. �Pa� does not occur in S for any a ∈ Σ−{c}. Since 〈�P �a�, �Pc�a�〉 ∈
�+∩ ≡, �P �a� is not inner-gap-closed for any a ∈ Σ − {c}. Since ≡ is inner-
gap-monotone, the lemma holds. �	

Lemma 10. Let ≡∈ { I≡S ,
IX≡S ,

E≡S ,
EX≡S} and let c ∈ Σ be the common extension

of P ∈ Π under ≡. |End(IntT (P ))| = |{i | min{End(IntT (P ))} < i ≤ |T |, T [i] =
c}| for every T ∈ S ⇐⇒ �P �c� ≡ �Pc�.

Proof. Since c is the common extension of P under ≡, IntT (�Pc�) = IntT (P )⊕
〈0, 1〉 for every T ∈ S. Adding to this, the left-hand condition implies that
IntT (�P�c�) = IntT (�Pc�) for every T ∈ S. Hence the =⇒ statement holds. The
⇐= statement follows from the fact that |End(IntT (�P�c�))| > |End(IntT (�Pc�))|
for some T ∈ S if the left-hand condition does not hold. �	
For any ≡∈ { M≡S ,

MX≡S ,
MXG≡ S ,

I≡S ,
IX≡S ,

E≡S ,
EX≡S} and P ∈ Π , the common extension

c of P under ≡ is said to make a branch if �P�c� �≡ �Pc�. Clearly from Lemma 8,
any common extension does not make a branch for the M family. For the I and E
families, it follows from Lemma 10 that a common extension c makes a branch iff
|End(IntT (P ))| < |{i | min{End(IntT (P ))} < i ≤ |T |, T [i] = c}| for some T ∈ S.

The algorithm based on Lemmas 6, 7, 8, 9 and 10 can be summarized as
Algorithm 2. We remark that the longest common extension v can be represented
in constant space, by the pair of a pointer to some position in T ∈ S where v
occurs and length |v|.

4.4 Time Complexities

Theorem 3 (GenCloFlex,GenCloFlex+). For a finite alphabet Σ, Algorithms 1
and 2 solve FreqCloPatEnum for respective equivalence relations with time
delay shown in Table 2 and O(‖S‖d) space, where d is the maximum number of
gaps in the output patterns.
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Algorithm 2. Improved Algorithm GenCloFlex+ for FreqCloPatEnum

Input: a finite subset S of Σ+ and a non-negative integer σ.
Output: non-duplicate list of patterns P with FreqS(P ) ≥ σ that are closed

under ≡∈ {M≡S ,
MX≡S,

MXG≡ S ,
I≡S,

IX≡S,
E≡S ,

EX≡S}.
1 foreach a ∈ Σ do CheckExtension(�a�);

procedure ExpandWithCommonExtension(P , v);
1 if P is rightmost-gap-closed then // When |v| > 0, use Lemma 7

2 report P ;

3 if |v| > 0 then
4 let c := v[1];

5 ExpandWithCommonExtension(�P c�, v[2..|v|]);
6 if c makes a branch then

7 CheckExtension(�P � c�);

8 else
9 foreach a ∈ Σ do

10 CheckExtension(�P � a�);

11 CheckExtension(�P a�);

procedure CheckExtension(P);
1 if FreqS(P ) < σ then return;
2 if (P is not leftmost-gap-closed) or (P is not inner-gap-closed) then
3 return; // Pruning

// Now P is leftmost-gap-closed and inner-gap-closed

4 compute the longest common extension v of P under ≡;
5 ExpandWithCommonExtension(P , v);

Proof. Let CT≡ denote the cost of the closedness test under ≡, i.e., CT≡ ∈
O(‖S‖) if ≡ is the E family, CT≡ ∈ O(‖S‖d) if ≡ is the M or I family.

For GenCloFlex: For
M≡S ,

I≡S and
E≡S , the rightmost-gap-closedness test is

unnecessary and therefore the condition of the if -statement at Line 6 is always
satisfied and pattern P is always reported. As a result, the delay time per output

is obtained by O(|Σ| × CT≡). On the other hand, for
MX≡S ,

MXG≡ S ,
IX≡S and

EX≡S ,
pattern P is reported only when the condition is satisfied. Nevertheless, we can
find a frequent closed pattern after going down ST at most ‖S‖ unreported
patterns, and hence, the delay for output is O(|Σ|‖S‖ × CT≡).

For GenCloFlex+: At Line 4 of Procedure CheckExtension(P ), we compute
the longest common extension of P under ≡. It is equivalent to compute the
longest common prefix of

⋃
T∈S{T [j + 1..|T |] | j ∈ End(Min(IntT (P )))} (resp.⋃

T∈S{T [j + 1..|T |] | j ∈ End(IntT (P ))}) for the M family (resp. for the I and E
families), and hence, is done in O(‖S‖) time.

In the case of the I or E family, we also compute the positions where the
common extension makes a branch as follows.

For every T ∈ S in which P occurs, do the following:
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1. Compute F (a) = |{i | min{End(IntT (P ))} < i ≤ |T |, T [i] = a}| for any
symbol a used in v.

2. For each j = 1, . . . , |v| in increasing order, do the following:

(a) If |End(IntT (P ))| < F (v[j]) then v[j] makes a branch.
(b) Decrement F (v[j]) by 1.

Thus we can compute the branching positions in v in O(‖S‖) time.

Here we estimate the delay time per output for ≡∈ {MX≡S ,
IX≡S ,

EX≡S}. Let us
consider the call CheckExtension(P ) such that P is not rightmost-gap-closed,

i.e., there exists c ∈ Σ with P ≡ �Pc�. From the definition of
MX≡S ,

IX≡S and
EX≡S ,

�Pv� is closed, where v is the longest common extension of P under ≡. Since v
can be computed in O(‖S‖) time and the closedness test for P takes O(CT≡)
time, we can output �Pv� in O(CT≡) time just after CheckExtension(P ) is
executed. Hence the delay from a previous output to �Pv� is O(|Σ|×CT≡). �	

The closedness checks for
MXG≡ S take a constant factor more time than those for

M≡S and
MX≡S . However, it should be noted that the total theoretical asymptotic

worst case time complexities for
MXG≡ S is equal to or smaller than those for

M≡S

and
MX≡S , due to the smaller search space for

MXG≡ S in ST. Hence,
MXG≡ S never falls

far behind
M≡S and

MX≡S , and can be much faster.

5 Computational Experiments

We implemented our algorithms for I, M and E families in the C language. Recall

that
B≡S is just the reversal of

E≡S , and thus, GenCloFlex
E≡S can essentially

be regarded as MaxFlex [2]. Considering the trade-off in implementation, we
used naive matching to compute the longest common extensions, and did not
implement the pruning technique based on Lemma 10. All the computational
experiments were carried out on Apple Xserve with two Quad-Core Intel Xeon
at 2.93GHz (8 CPU x 2 HT), with 24GB Memory 1066MHz DDR3.

We carried out experiments on synthetic data. To create data sets for ex-
amining flexible pattern mining algorithms, we modified IBM sequence gen-
erator [1], which is widely used in the subsequence pattern mining research
area [3, 5–8, 13, 20]. The original program generates random sequences of item
sets and embeds copies of some item set sequence as a pattern which is ran-
domly corrupted. Although, originally, each item set is sorted and represented
as a sorted integer sequence, we use the unsorted sequence representation. Each
such sequence in the pattern is considered as a segment of the flexible pattern.
In this way, we are able to generate a data set of integer strings in which some
flexible patterns are embedded, where each segment is damaged in the same
manner as the original program (See [1] for more details).

There are several parameters: [D] number of generated strings in 1000s, [C]
average length of strings, [N] alphabet size in 1000s, [P] number of patterns, [L]
average number of segments of patterns and [S] average length of segments of
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Table 3. Experiments on Synthetic Data Sets (threshold value is fixed to σ = 10)

D5C40N1P500L4S2 D5C40N1P500L4S4 D5C40N1P500L4S6

algorithm/equiv patterns seconds patterns seconds patterns seconds

GenCloFlex
I≡S 271,412 1155 216,513 1119 201,746 972

GenCloFlex+
I≡S 271,412 1105 (96%) 216,513 967 (86%) 201,746 800 (82%)

GenCloFlex+
IX≡S 255,910 (94%) 1104 (96%) 182,868 (84%) 970 (87%) 159,898 (79%) 777 (80%)

GenCloFlex
M≡S 294,183 1225 285,954 1434 305,893 1360

GenCloFlex+
M≡S 294,183 1161 (95%) 285,954 1116 (78%) 305,893 948 (70%)

GenCloFlex+
MX≡S 253,928 (86%) 1075 (88%) 180,576 (63%) 928 (65%) 162,658 (53%) 781 (57%)

GenCloFlex+
MXG≡ S 247,036 (84%) 1060 (87%) 165,175 (58%) 874 (61%) 143,930 (47%) 731 (54%)

GenCloFlex
E≡S 311,526 1380 328,368 1717 341,138 1545

GenCloFlex+
E≡S 311,526 1266 (92%) 328,368 1368 (80%) 341,138 1100 (71%)

GenCloFlex+
EX≡S 270,511 (87%) 1180 (86%) 209,971 (64%) 1146 (67%) 184,289 (54%) 904 (59%)

patterns. We omitted scalability tests since we clearly showed time complexities
of our algorithms. Instead we are interested in how the parameter [S] affects
efficiency of our algorithms, and therefore experimented on three data sets with
parameters D5C40N1P500L4S2, D5C40N1P500L4S4 and D5C40N1P500L4S6.

In Table 3, we compare the number of output closed patterns and computa-
tional time, where xx% is the relative ratio compared to GenCloFlex of respective
families. The result shows that redundant output patterns which can be removed
by our coarsened equivalence relations increase as the average length of frequent
segments embedded in a data set becomes longer. Thus our algorithms with
coarsened equivalence relations would be effective especially for data which is
expected to contain long frequent segments such as bio-sequences.

6 Conclusion

We addressed the closed pattern discovery problem for the class of flexible pat-
terns. We focused on the minimal-occurrence-interval based equivalence relation
M≡S on the set of patterns introduced by Mannila et al. [9], and proposed two
new equivalence relations by coarsening it. We investigated the properties of
equivalence relations on the patterns from viewpoints of closed pattern enu-
meration, and as a generalization of the algorithm proposed by Arimura and
Uno [2], we showed a general algorithm for enumerating closed patterns for
existing and newly proposed equivalence relations of various kinds. Then we
accelerated the algorithm by a set of new pruning techniques. Computational
experiments on synthetic data implied that the proposed equivalence relations
successfully remove some redundancy in the output patterns compared to the
existing equivalence relations. Finally, although the results are not shown due
to space limitation, we applied our algorithm on real data: Waka poems – tra-
ditional Japanese poetry with over 1300-year history – and confirmed that our
algorithms with coarsened equivalence relations output reasonable amounts of
mined patterns and increase their readability.
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Abstract. Event sequences often contain continuous variability at dif-
ferent levels. In other words, their properties and characteristics change
at different rates, concurrently. For example, the sales of a product may
slowly become more frequent over a period of several weeks, but there
may be interesting variation within a week at the same time. To provide
an accurate and robust “view” of such multi-level structural behavior,
one needs to determine the appropriate levels of granularity for analyz-
ing the underlying sequence. We introduce the novel problem of finding
the best set of window lengths for analyzing discrete event sequences.
We define suitable criteria for choosing window lengths and propose an
efficient method to solve the problem. We give examples of tasks that
demonstrate the applicability of the problem and present extensive ex-
periments on both synthetic data and real data from two domains: text
and DNA. We find that the optimal sets of window lengths themselves
can provide new insight into the data, e.g., the burstiness of events affects
the optimal window lengths for measuring the event frequencies.

Keywords: event sequence, window length, clustering, exploratory data
mining.

1 Introduction

Many sequences involve slowly changing properties, mixed with faster changing
properties. For example, the sales of a product may slowly become more frequent
over a period of several weeks, but there may be interesting variation throughout
a week at the same time. To provide an accurate and robust “view” of such
multi-level structural behavior, one needs to determine the appropriate levels of
granularity for analyzing the underlying sequence.

Sliding windows are frequently employed in several sequence analysis tasks,
such as mining frequent episodes [25], discovering poly-regions in biological se-
quences [29], finding biological or time-series motifs [6,7], analysis of electroen-
cephalogram (EEG) sequences [30], or in linguistic analysis of documents [3]. A
major problem is that such methods are often parametrized by a user-defined
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Fig. 1. Frequency change of an event in a sequence X of length 100,000. We use two
sliding windows of lengths 1562 and 6250. The generative process for this sequence is
described in Section 5.2. We observe that the two window lengths describe two different
views of the data.

window length and it can be unclear how to choose the appropriate window
length that guarantees optimal execution of the task at hand.

This problem can be avoided by either (i) defining an appropriate objective
function and using an optimization algorithm to select the best window length,
or (ii) using all possible window lengths at the same time. The first approach
has, on one hand, the limitation that a single window length may leave out im-
portant information that would be discovered when using other window lengths.
On the other hand, studying all window lengths does not have this deficiency,
however, it may be challenging to analyze the large amount of information. The
method proposed in this paper is to use a small set of window lengths that
together provide as much information as possible about the underlying data.
We demonstrate that for many sequences an optimal balance between the two
previous problems can be obtained.

Example. The frequency of an event in a sequence may show variation at differ-
ent levels. Figure 1 shows an example of the relative frequency of an event over
time, which is computed using two incremental sliding windows of lengths 1562
and 6250. The generative process for this sequence is described in Section 5.2. We
observe that each window length tells us a different “story” about the frequency
of the event. In other words, each window describes a different view of the data:
the longer window suggests a “smoothly” increasing frequency throughout the
sequence, while the shorter window captures a periodic behavior in the event
frequency.

Contribution. In this paper we introduce the novel problem of finding a good
set of window lengths for analyzing discrete sequences. We define suitable crite-
ria and an efficient method for choosing window lengths, and give examples of
tasks that demonstrate the applicability of the problem to different domains. We
perform extensive experiments on real data from two application domains: text
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books and DNA sequences. We find that the scales of the occurrence patterns of
various events (e.g., word types or DNA segments) vary significantly, and that
the optimal scales can provide useful new insight into the data. Finally, we con-
duct an evaluation of optimal window lengths for random data to compare the
empirical results with.

2 Related Work

String and Text Mining. Sliding windows have been used extensively in string
mining. Indexing methods for string matching based on n-grams [21], i.e., sub-
sequences of length n, employ sliding windows of fixed or variable length to
create dictionaries and speed-up approximate string search in large collections
of texts. Determining the appropriate window length is always a challenge, as
small window lengths result in higher recall but large index structures. In text
mining, looking at different linguistic dimensions of text results in extracting
different “views” of the underlying text structure [3]. One way to quantify these
views is by using sliding windows. Recently, an interactive text analysis tool1

has been developed for exploring the effect of window length on three commonly
used linguistic measures: type-token ratio2, proportion of hapax legomena, and
average word length. However, the window length is user-defined.

Bioinformatics. Several sliding window approaches have been proposed for
analyzing large genomes and genetic associations. Two groups of methods ex-
ist in the literature that are characterized by fixed-length and variable-length
sliding windows [4,22,26,29,32]. For the case of fixed-length windows it is hard
to determine the optimal window length per task while variable-length windows
provide higher flexibility. A variable window length framework for genetic associ-
ation analysis employs principal component analysis to find the optimum window
length [31]. Sliding windows have also been used for searching large biological
sequences for poly-regions [29], motifs [7], and tandem repeats [2]. Nonetheless,
in all cases mentioned above it is assumed that there exists only one optimum
length and the solution is limited to the task of genetic association analysis.

Stream Mining. A common task in stream mining is to detect and monitor
frequent items or itemsets in an evolving stream, counted over sliding windows.
We present a brief survey of the use of sliding windows in stream mining, even the
overall setting is very different from the problem studied in this paper and a setup
requiring online learning is not covered by this paper. In the case of the fixed-
length window model the length of the window is set at the beginning, and the
data mining task is to discover recent trends in the data contained in the window
[8,13,15,17]. In the time-fading model [20] the full stream is taken into account
in order to compute itemset frequencies while time sensitivity is emphasized so
that recent transactions get a higher weight as compared to earlier transactions.
In addition, a tilted-time window [12] can be seen as a combination of different

1 http://www.uta.fi/sis/tauchi/virg/projects/dammoc/tve.html
2 The ratio of distinct tokens (words) to the total number of tokens in the text.

http://www.uta.fi/sis/tauchi/virg/projects/dammoc/tve.html
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scales reflecting the alteration of the time scales of the windows over time. In the
landmark model, particular time periods are fixed while the landmark designates
the start of the system until the current time [16,17]. A frequency measure based
on a flexible window length was introduced [5], where the frequency of an item
is defined as the maximal frequency over all windows until the most recent event
in the stream. Several variants of the above methods have been proposed, as well
as adaptations of basic methods for different objectives.

Time Series. A common data mining problem in time series is the enumer-
ation of previously unknown but frequently occurring patterns. Such patterns
are called “motifs” due to their close analogy to their discrete counterparts in
computational biology. Efficient motif discovery algorithms have been proposed,
based on sliding windows, for summarizing and visualizing massive time series
databases [6,27]. A method for discovering locally optimal patterns in time se-
ries at multiple scales has been proposed [28] along with a criterion for choosing
the best window lengths. This is, however, a local heuristic and applies only to
continuous data.

Based on the above discussion, sliding windows have been widely used in many
application domains that involve sequences (discrete or continuous). However,
window lengths are chosen either empirically or they are optimized for the task
at hand. To the best of our knowledge, no earlier work has proposed a princi-
pled method for choosing the set of appropriate window lengths that optimally
summarize the data for a given statistic and data mining task.

3 Problem Setting

3.1 Preliminaries

Given a set of event labels σ, a sequence of events is defined as X = x1 . . . xn,
with each xt ∈ σ. We denote as Xj(i) = xi . . . xi+j−1 the subsequence of length
j starting at position i in X . We quantify the “information” of a subsequence
Xj(i) with a statistic f(Xj(i)). For example, f may be defined as the relative
frequency of an event q ∈ σ in Xj(i), i.e.,

f(Xj(i)) =
# of occurrences of q in Xj(i)

|Xj(i)|
, (1)

where, by definition, |Xj(i)| = j. Alternatively, f may be defined as the type/token
ratio of a sequence, i.e.,

f(Xj(i)) =
# of distinct events in Xj(i)

|Xj(i)|
. (2)

In principle f can be any function, but in the experiments (Sections 5 and 6) we
use only the two functions given in Equations (1) and (2).

Since X may be structured at different levels with respect to statistic f , we
are interested in finding the set of k window lengths that capture most of the
structure in X . A window is defined as a slice of a sequence [25], or in other
words it corresponds to a subsequence of X .
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3.2 Problem Definition

Our goal is to capture several different levels of structure with respect to f
by optimizing an objective function. Depending on the task at hand one may
consider different objective functions. The objective function we propose in this
paper (described in Problem 1 below) is to explain most of the “variation” in
the data.

Let Ω be the set of all window lengths that we would like to consider in
analyzing the structure of X . We also assume that we are given a distance
function d(ωi, ωj) that, given two window lengths ωi, ωj ∈ Ω, quantifies the
distance between the two structures in X captured by each of them. We present
suitable choices for d in Section 4, an example is the sum of squared errors.

We propose to find the kwindow lengths that capturemost of the variance inX :

Problem 1 (Maximal variance). Given a discrete sequence X , find a set R =
{ω1, . . . , ωk} of k window lengths that explain most of the variation in X , i.e.,
find a set R that minimizes ∑

ωi∈Ω

min
ωj∈R

d(ωi, ωj).

The above formulation corresponds to clustering. The resulting window lengths
will be the centroids of the k clusters that explain the variation in X at differ-
ent levels, and together the k centroids explain most information present in all
possible window lengths.

The centroids can be viewed as code-book vectors that could be used to
present the time series with any window length, with a minimal quadratic loss.
Similar techniques are used, e.g., in lossy image compression to quantize the color
space, where the code-book vectors can then be used to represent the pixels in
fewer number of bits [10].

The above formulation is useful and applicable to real data scenarios, as shown
by our experimental findings in Section 6. A method for solving Problem 1 is
discussed in the following section.

4 WinMiner

In this section, we describe our proposed method, called WinMiner. We first
introduce an auxiliary data structure, called Window-Trace matrix. Then, we
describe an algorithm for solving Problem 1 using this matrix. We also study
the computational complexity of WinMiner and present a sampling approach for
reducing the time and space complexity of the method.

4.1 The Window-Trace Matrix

To solve Problem 1 we use an auxiliary matrix, called the Window-Trace (W-T)
matrix, which is used to store the values of statistic f for each sliding window
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Fig. 2. Illustration of a W-T matrix T for function f , given a sequence X = x1 . . . xn

and a set of window lengths Ω = {ω1, . . . , ωm}. Each cell in the matrix corresponds to
the value of f at position i in X, for window length ωj .

in X . More specifically, let X be the input sequence and f the statistic at hand.
Then the W-T matrix T contains all values of f(Xj(i)) for all window lengths
and a restricted set of sequence positions. We define l = argmaxωi ωi ∈ Ω and
m = |Ω|. Then, T is given by

Tji = f(Xωj (i)) ∀i ∈ 1, . . . ,m, j ∈ 1, . . . , n− l + 1. (3)

Effectively, row i of matrix T , denoted as Ti∗, contains a time series describing the
behavior of statistic f over time for window length ωi. In this setting, d(ωi, ωj)
can be defined to express the distance between the corresponding time series of
ωi and ωj , i.e., rows Ti∗ and Tj∗. In our experiments, d is set to be the sum of
squared errors. An illustration of T is shown in Figure 2.

4.2 WinMiner

The minimization problem described in Problem 1 is equivalent to clustering.
According to our problem setting, a set of k representative window lengths needs
to be identified.

We use d(ωi, ωj) =
∑n−l+1

k=1 (Tik − Tjk)2, i.e., the sum of squared errors, as
the distance function between two rows of T , which results in Problem 1 being
equivalent to the k-means problem. In general, the k-means problem is NP-
Hard, but in practice we can use the iterative k-means algorithm to obtain a
good approximation efficiently.

The execution of the k-means algorithm on T results in k clusters of window
lengths. However, the centroids of these clusters do not necessarily correspond
to a single window length, and in practice the centroids will often be a weighted
sum of many window lengths. We obtain the final approximately optimal set of
window lengths R by choosing the k window lengths that correspond to rows
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of T that have the smallest distance to each of the k cluster centroids. Note
that K-means is run rep times and the best solution is reported. We call this
algorithm WinMiner and its pseudocode is given in Algorithm 1.

Algorithm 1. Finding the k most variant points WinMiner(d, Ω, k, rep)

for i = 1 to rep do
{C1, . . . , Ck} = K-means(d, k) {k-means returns k cluster centroids.}
Ri = {}
for j = 1 to k do
Ri = Ri ∪ {argminr∈Ω d(Cj , r)}

end for
lossi =

∑
ω∈Ω minr∈Ri d(ω, r)

end for
best = argmini∈{1,...,rep} lossi
return Rbest

4.3 Computational Complexity

Let n be the size of the data and m = |Ω|, as in Section 4.1. We then have that
the size of the Window-Trace matrix T is O(m · n). Also, the computational
complexity and memory required to create and store it are equal to the size.
The computational complexity for WinMiner is then the number of repetitions
times the complexity of K-means over the matrix T . Each iteration of K-means
starts with an expectation step, in which each of the m points of dimension n
is compared to each of the k cluster centroids, and then assigns them to the
closest. In the ordinary k-means algorithm, the maximization step takes only m
times n steps, because each point belongs to only one cluster. Thus, assuming
the algorithm requires i iterations to converge, the total complexity of WinMiner
is O(rep · i · k · n ·m).

In the experiments in Sections 5 and 6, K-means is limited to 200 iterations,
but often much less iterations are required to reach convergence. In the next
section we discuss that there is usually no need to compute T over the entire
data set and sampling can be used to greatly reduce the complexity of WinMiner.

4.4 Reducing the Complexity by Sampling

As shown in Section 4.3, one factor that affects the time complexity of WinMiner
is the number of columns of T . We can speed up our algorithm by sampling
uniformly a small set of columns from T , instead of using the full matrix.

In Section 5.2, we investigated empirically what would be the appropriate
sampling rate to obtain a solution close to the solution that was obtained on
the full matrix, assuming that the underlying sequence was generated using a
variable rate Bernoulli process.
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5 Evaluation on Synthetic Data

In any data mining task, it is important to be able to evaluate the significance
of a result. Because of the complex set-up of our method, it is difficult to derive
analytical results for what to expect regarding optimal sets of window lengths,
expected cost of clustering, or expected minimal distances for the furthest pairs
algorithm, even for simple random processes such as the Bernoulli process. To
provide a baseline for the results in Section 6, we designed five experiments based
on randomly generated data, where we know precisely what the properties of the
data are.

5.1 Bernoulli Process with Fixed Rate

We are interested in the performance of two statistics: the cost of the optimal
clustering and the set of window lengths given by WinMiner. We can use Algo-
rithm 2 to generate random data from a Bernoulli process with fixed rate, given
parameters n and p, which are the length of the sequence and the probability of
the event occurring at any position, respectively.

Algorithm 2. Simulate a fixed-rate Bernoulli process SIM1(n, p)

for i = 1 to n do
X(i) = Bernoulli(p)

end for

Experiment 1. Since WinMiner is a non-deterministic approximation algorithm,
the output may vary, even with the same input sequence. In the first experiment,
we tested the stability of the solution in terms of the optimal window lengths
given by WinMiner. Because WinMiner returns a set, comparing two solutions is
not trivial. For brevity and ease of interpretation, we use k = 3 and only one
sequence generated by Algorithm 2. We use n = 10,000 and p = 0.1 to generate
the sequence and the number of repetitions (parameter rep) for WinMiner is
set to 5, which should ensure reasonable approximations. The statistic is set to
the relative frequency of the event, as defined in Equation 1. The results are
presented in Figure 3. We observe that the result of WinMiner is the same in
97 out of 100 repetitions. The stability of the solution indicates that the chosen
number of repetitions (parameter rep = 5) is sufficiently high.

Experiment 2. A data set, even with the same parameter settings, may give
quite different results. Thus, secondly, we tested the stability of the solutions
given by WinMiner for various values of k. We generated 100 data sets and
tested the optimal window lengths for k = 3, . . . , 5 on each data set. The other
parameters were kept the same as in the previous experiment. The results are
presented in Figure 3. We observe there is much more variation than in the
previous experiment, which can be explained by the fact that a different input
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Fig. 3. Solutions for Experiments 1 and 2. The left figure shows the solutions found by
WinMiner over repeated runs on a single sequence, using k = 3. We observe that the
solutions are very stable over the different runs, which indicates that the chosen number
of repetitions is sufficient. The right figure shows the solutions found by WinMiner over
100 synthetic data sets generated using fixed parameters, for increasing values of k. The
solid dots represent the median values and the dashed lines give the 90% confidence
intervals. We observe that there is more variance in this case, and the amount can be
used as a baseline for other experiments.

sequence is used for each repetition. The observed variance in the figure can be
used in future experiments to draw conclusions with respect to the significance
of differences in sets of window lengths obtained for various events or data sets.

Experiment 3. Thirdly, we tested how the solutions depend on the average fre-
quency of an event in the sequence. We leave most of the parameters as in the pre-
vious experiment, but now produce only one solution for each problem and repeat
the process for varying value of p.We vary p from0.01 to 0.50 in steps of 0.01.We do
not have to study the behavior for p > 0.50 because the results will be symmetric
to those between p = 0.01 and p = 0.50. The results are presented in Figure 4 and
they suggest that there is no clear pattern. Hence, we can conclude that the event
frequency has no direct influence on the optimal window lengths.

5.2 Bernoulli Process with Variable Rate

In the previous experiments, the frequency of the event remained fixed over
time, which leads to the sequence having structure only on a single scale. To test
the power of WinMiner in finding the true underlying scale at which the data
is structured, we designed an algorithm to simulate a Bernoulli process with
variable rate.

The full process is described in Algorithm 3. The first component of the vari-
able rate is based on a slow increase of the event frequency over time, which
ranges from 0.5 · p at the start to 1.5 · p at the end of the sequence X . The
second component consists of the event frequency going up and down rhythmi-
cally, based on a sine wave with peak amplitude 0.5 and mean 0. Finally, both
components are added together to give the variable event frequency, multiplied
by the parameter p. The extra parameter, c, decides the periodicity of the sine
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Fig. 4. Solutions for Experiments 3 and 4. The left figure shows the solutions found by
WinMiner over sequences obtained from simulating a Bernoulli process with fixed rate p,
for varying values of p. We find that there is no direct correlation between the optimal
set of window lengths and the event frequency. The right figure shows the solutions
found by WinMiner on a sequence obtained from simulating a Bernoulli process with
rate that varies over time, using various numbers of samples. The solid dots represent
the median values and the dashed lines give the 90% confidence intervals. We observe
that the solutions for 1,024 and more samples are practically equivalent.

wave, and thus the second scale. We have generated a sequence with parameters
n = 100,000, p = 0.1 and c = 16. The sequence has 10,009 events and has also
been used to generate Figure 1.

Algorithm 3. Simulate a variable-rate Bernoulli process SIM2(n, p, c)

for i = 1 to n do
t1 = 0.5 + (i− 1)/(n− 1); // Multiplier for scale 1: [0.5–1.5]
t2 = 0.5 · sin(c · 2 · π · (i− 1)/(n− 1)); // Multiplier for scale 2: [−0.5–0.5]
X(i) = Bernoulli(p · (t1 + t2))

end for

Experiment 4. As discussed in Section 4.4, we can obtain the optimal set of
window lengths for this sequence without analyzing the full W-T matrix. We
investigated empirically how many samples of T we would need (by performing
uniform sampling on the columns of T ) to obtain a solution close to the solution
that was obtained on the full matrix, i.e., the solution in Figure 5. We have
varied the number of samples from 64 to 16,384 using powers of 2 and computed
the solution 10 times for each sample size to assess the variance. We have used
window lengths from 1 up to -n/c. = 6,250 (which is the scale of the second
component in the data) and k = 3. Figure 4 illustrates the results for WinMiner.
We observe that the solution for Problem 1 is remarkably robust; the solutions
using only 64 samples are already quite accurate approximations and from 1024
samples and up, the solutions are practically equivalent. Thus, we can conclude
that 1,024 samples is sufficient for this data.
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Fig. 5. The representation of the data based on the solution for k = 3 of Problem 1
on a sequence obtained from simulating a Bernoulli process with rate that varies over
time. The variable trend in the data is clearly shown by the shorter window lengths,
while the longest window length reveals the slow trend.

Experiment 5. Finally, we tested if we can retrieve the two scales that are
present in the synthetic sequence. To prevent making it too easy for the algo-
rithm, we use window lengths up to 20,000 and generate only 1,000 columns of
the Window-Trace matrix T . In a typical setting, we do not know how many
scales a data set has. It is useful to note that a higher k always provides more
information, thus choosing k too high is better than too low. For exploratory
purposes, we use k = 3. In previous experiments we found that the solution for
Problem 2 always includes the smallest window length, thus, to obtain a more
interpretable result, the minimum window length is set to 50. Figure 5 illus-
trates the results for WinMiner. We find that the variable trend in the data can
be identified well by solving Problem 1.

6 Evaluation on Real Data

To evaluate the usefulness of our problem setting in practice, we have designed
three experiments on real data. In Section 6.1 we consider tracking the frequency
of several words of varying type and frequency throughout the novel Pride and
Prejudice. In Section 6.2 we study what window lengths would be appropriate for
tracking the evolution of type/token ratio throughout several novels of Charles
Dickens and try to relate the findings to previous linguistic research. Finally,
in Section 6.3, we examine tracking the frequency of nucleotides and pairs of
nucleotides in two reference genomes from the NCBI repository.

6.1 Optimal Window Lengths for Several Words

The influence of burstiness [18] and dispersion [14] of words in natural language
corpora has become an important concept in research in linguistics [14], natural
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Table 1. Using the MLE estimate for the Weibull β parameter as a measure of bursti-
ness, we have selected these 24 words for comparison in our experiments. The words
are the four most and least bursty words in three manually chosen frequency brackets.
Bursty words exhibit greater variation in local frequency and non-bursty words are
almost equally frequent throughout the book.

Frequency Non-bursty Index Bursty Index

Low [39–41] met, rest, right, help 1–4 write, de, william, read 5–8
Medium [175–228] time, soon, other, only 9–12 lady, has, can, may 13–16
High [600–1666] with, not, that, but 17–20 you, is, my, his 21–24

language processing [24] and text mining [23]. Burstiness and dispersion are both
indicators for the stability of the frequency of aword, i.e., a poorly dispersed or very
bursty word tends to be highly frequent in some (parts of) texts and infrequent in
all other (parts of) texts. The difference between the two measures is the level of
granularity used in the analysis; burstiness is computed over running text, while
dispersion is measured at the level of texts. In Section 5.1, we concluded that the
optimal set of window lengths does not have a relation to the frequency of the event
studied, thus it would be interesting to know if the optimal set of window lengths
does depend on the burstiness of an event in a sequence.

To test this, we used the following experiment. We downloaded the popular
novel Pride and Prejudice by Jane Austen, which is freely available through
Project Gutenberg3. The novel has approximately 120,000 words. We then se-
lected 24 words from three frequency bins, of which 12 are bursty and 12 are
non-bursty. In this case, we measured the burstiness of a word by fitting aWeibull
distribution to the inter-arrival time distribution of the word, then the shape pa-
rameter of the distribution is a measure for burstiness [1,23]. The Weibull (or
stretched exponential) distribution is a two-parameter exponential family distri-
bution which can be used to model the distribution of the interarrival-times of
the words. The words are listed in Table 1. To study the effect of burstiness on
the optimal sets of window lengths, we varied the parameter k from three to five
and used window lengths from 1 to 4000.

The result is shown in Figure 6. The measurements for the bursty words are
highlighted using a gray background. The results for Problem 1 (blue lines) are
very interesting. We observe that for the non-bursty words, the results indeed
appear to be all the same. Interestingly, the sets of optimal window lengths
clearly contain longer windows for the bursty words, for any choice of k. This may
be due to the fact that the bursty word exhibits a larger scale structure (bursts
and intervals between bursts) than non-bursty more uniformly distributed words.

6.2 Type/Token Ratio throughout Several Novels

A recent study in linguistics considered the homogeneity of 14 novels by Charles
Dickens [9]. We investigated if the optimal set of window lengths shows significant

3 http://www.gutenberg.org/

http://www.gutenberg.org/
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Fig. 7. Optimal sets of window lengths for analyzing the evolving type/token ratio of
15 novels, for various choices of k. Each dot corresponds to a window length selected
for that word, given the value of k, and lines are added to aid the comparison over
words. Surprisingly, the solution set for each of the novels is almost the same.

variation over this set of novels. We downloaded the fourteen novels discussed
by Evert [9], and used Pride and Prejudice as the fifteenth novel. We again used
window lengths from one to 4,000 and varied k from three to five. However, the
statistic used is now type/token ratio, as given in Equation (2).

The result is shown in Figure 7. The sets of window lengths found by our
method is remarkably robust, suggesting that the novels are indeed quite similar
in structure.
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6.3 Frequency of Nucleotides in Biological Sequences

Studies in biology and bioinformatics have shown that DNA chains consist
of a number of important, known functional regions, at both large and small
scales, which contain a high occurrence of one or more nucleotides [29]. Ex-
amples of such regions include: isochores, which correspond to multi-megabase
regions of genomic sequences that are specifically GC-rich or GC-poor and ex-
hibit greater gene density; CpG islands, that correspond to regions of several
hundred nucleotides that are rich in the dinucleotide CpG which is generally
under-represented (relative to overall GC content) in eukaryotic genomes and
there presence in the genome has been associated with gene expression in nearby
genes.

We have studied Chromosome 1 of two organisms: Homo sapiens (human)
and Canis familiaris (dog), of lengths 225 and 122 million nucleotides, re-
spectively. The data has been downloaded from the NCBI data repository4. We
focused on six event types: the four nucleotides A, C, G, and T, as well as din-
ucleotides TA and CG. We tested WinMiner for k = 5 and window lengths up
to 4,000. The statistic used in our experiments was the relative event frequency.
To speed up our method we sampled 10,000 columns from the W-T matrix.

In Figure 8 we see a comparison of the 5 best window lengths found by
WinMiner for the two organisms. We observe that the four single nucleotides
as well as dinucleotide CG (which is indicative of the gene structure) exhibit
highly similar behavior for both organisms. This is explained by the high genomic
structural similarity between humans and dogs [19]. Nonetheless, we see that
dinucleotide TA has a substantially different behavior. This is due to the fact
that TA is known to be the least stable of all dinucleotides [11] and in many cases
indicative of Transcription Factor Binding Sites (TFBS), which are different in
the two organisms.

4 http://www.ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov
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7 Conclusions

We have studied the novel problem of identifying a set of window lengths that
contain the maximal amount of information in the data. We have presented
a generally applicable objective function that users could employ, which can
also be efficiently optimized. We have extensively studied the performance of
the proposed optimization algorithm, as well as the identified solutions for two
examples of sliding window statistics on both synthetic data and real data. We
have illustrated that the results on synthetic data are useful as a baseline for
practical use, and that sampling can be used to obtain the optimal set of window
lengths based on a small sample of the data, making the method practical for
(collections of) sequences of any size. Moreover, we have shown that the window
lengths themselves can show interesting properties of the data; among other
findings, we have identified the relation between the burstiness of events and the
optimal window lengths.

An open problem is how many window lengths users should employ in practi-
cal settings. In principle, more windows is always more informative, and in many
situations users may be able to easily identify when the set of results is too large.
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Abstract. Distinct social networks are interconnected via bridge users,
who play thus a key role when crossing information is investigated in
the context of Social Internetworking analysis. Unfortunately, not always
users make their role of bridge explicit by specifying the so-called me edge
(i.e., the edge connecting the accounts of the same user in two distinct
social networks), missing thus a potentially very useful information. As
a consequence, discovering missing me edges is an important problem to
face in this context yet not so far investigated. In this paper, we propose a
common-neighbors approach to detecting missing me edges, which returns
good results in real life settings. Indeed, an experimental campaign shows
both that the state-of-the-art common-neighbors approaches cannot be
effectively applied to our problem and, conversely, that our approach
returns precise and complete results.

Keywords: Link Prediction, Link Mining, Social networks, Social
Internetworking.

1 Introduction

In the last years (on-line) social networks have been showing an enormous de-
velopment becoming probably the main actor of the Web 2.0. The rapid and
revolutionary diffusion of social networks among all segments of the population
has attracted the interest of many researchers from disparate fields [19], such
as sociology, psychology, economy, computer science, etc., also for the applica-
tions which the analysis of involved data can enable. In this landscape, Social
Network Analysis and Social Network Mining [9] have assumed an important
role, since both the hugeness of data and their graph-based organization have
enforced the development of specific models and methods allowing the study of
social-network data to discover knowledge from them. Clearly, the graph-based
data schema gives a great information power to links among data, since it allows
people profiles, resources, activities, and so on, to be directly (and indirectly)
related. The crucial role of relationships in the expression of an individual’s
personality as well as in her social identity, traditionally recognized by social
sciences, is even strengthened in the field of virtual societies, where relationship
links are the main form of expression of participation of individuals to the com-
munity. To make more challenging the analysis of this reality it concurs the fact

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 467–482, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



468 F. Buccafurri et al.

that the scenario where we operate is not the one of single, isolated, indepen-
dent social networks, but a universe composed of a constellation of several social
networks, each forming a community with specific connotations, but strongly
interconnected with each other. It is a matter of fact that, despite the inherent
underlying heterogeneity, the interaction among distinct social networks is the
basis of a new emergent internetworking scenario enabling a lot of strategic ap-
plications, whose main strength will be just the integration of possibly different
communities yet preserving their diversity and autonomy. Clearly, social mining
and analysis approaches may strongly rely on this huge multi-network source
of information, which also reflects multiple aspects of people personal life, thus
enabling a lot of powerful discovering activities.

From this perspective, links among different social networks assume a funda-
mental role. They typically connect the same user among the social networks
she belongs to, and derive from the explicit user’s declaration (sometimes sup-
ported and encouraged by specific tools) consisting in the insertion of me edges
[1]. Unfortunately, for disparate reasons, not always users make their role of
bridge explicit by specifying the me edge, missing thus a potentially very useful
information. As a consequence, we may view the overall underlying (social in-
ternetworking) graph as a graph where a big number of missed me edges exists,
whose discovery thus represents a very important issue. In other words, an in-
teresting problem of missing link detection arises, which partially overlaps with
a link prediction issue, since we may expect that a portion of missing me edges
will be inserted in a next stage in the graph.

In this paper, we deal with the above problem by proposing an effective so-
lution experimentally tested in a real-life Social Internetworking Scenario (SIS,
for short). To the best of our knowledge, the problem of detecting me edges has
not been investigated in the literature, but the approach we adopt in this work,
which exploits a recursive notion of common-neighbor similarity, suggested us
to prior verify whether common-neighbor approaches for link prediction [21] can
be directly applied to our problem. The answer to this question was definitely
negative, as intuitively explained in Section 2 and experimentally confirmed in
Section 5, thus motivating our work. Our solution is thus based on a notion
of node similarity, whose exploitation allows us to detect whether a suitable
threshold is exceeded and then a missing me edge between two nodes is detected.
The similarity between two nodes is obtained by combining two contributions: a
string similarity between the associated user names, and a contribution based on
a suitable recursive notion of common-neighbor similarity. The latter is extremely
important because, in the literature, it is well known that string similarity alone
can lead to synonymy and homonymy errors [24,15]; the neighborhood similarity
allows these errors to be detected and avoided. In order to motivate the above
choice it is important to clarify that the problem we are addressing does not deal
with the case in which a user voluntarily keeps two accounts separated in their
respective social networks. In this case, she chooses account names very different
from each other, she does not have common friends and, very probably, one of
the two profiles is fake (i.e., it does not contain real information about her). In
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this case any approach to detecting node similarity would presumably fail. This
situation, which is closer to identity-management and security problems, is little
relevant in our context, where we are interested in completing the real profile
of users. For these users we may expect (and this is just what we found for me-
connected accounts) that a user joining two (or more) social networks tends to
have at least partially overlapping sets of friends in them. Therefore, neighbors
are useful information to exploit in order to detect missing me edges.

The plan of this paper is as follows: in the next section, we examine related
literature. In Section 3, we present our recursive notion of similarity. On the
basis of this notion, we design the method we use to detect missing me edges.
This is described in Section 4. In Section 5, we illustrate the experiments we
have carried out to verify the performances of our technique. Finally, in Section
6, we draw our conclusions and sketch possible future evolutions of our research.

2 Related Work

The detection of me edges in a SIS can be seen as a special case of the problem
of identifying users on the Web. As a matter of fact, it allows the features of
bridge users to be detected. Identifying users on the Web has received a great
attention in several application scenarios, such as personalization. A lot of work
is devoted to verify whether user profile information can be sufficient to ad-
dress this problem. In [13] the authors define and implement a framework that
provides a common base for user identification for cross-system personalisation
among Web-based user-adaptive systems. The corresponding user identification
algorithm combines a set of identification properties, such as username, name,
location or email address, and classifies a user as identified if such a combi-
nation exceeds a suitable threshold. In [18], a technique based on user profiles
for identifying users across social systems is proposed. This technique has been
successfully validated on three social tagging networks (Flickr, Delicious and
StumbleUpon). The limit of this technique is that only few users make their
profile available in social tagging platforms. A method to identify users on the
basis of profile matching is proposed in [26]. In this paper data from two popular
social networks are used to evaluate the importance of fields in the Web profile
and to develop a profile comparison tool. The authors of [29] provide evidence on
the existence of mappings among usernames across different communities. Start-
ing from the observation of the data in BlogCatalog, they infer 7 hypotheses on
the relationships among the usernames selected by a single person in different
communities. On the basis of such hypotheses, they propose an approach that,
given a username u in a source community and a target community c, gener-
ates a set of candidate usernames in c corresponding to u. The approach first
generates a set of usernames from u by adding and removing suitable prefixes
and suffixes. Then, it exploits a Web search on Google aimed at checking for the
existence of each candidate username in such a way as to reduce the returned
set of usernames.

From another point of view, the detection of me edges in a SIS is someway
related to link prediction. Link prediction is a task of link mining aiming at
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predicting the (even future) existence of a link between two objects [21,6]. In
the contest of social networks, it focuses on predicting friendships among users.
Often, social networks are represented as graphs [11]. As a consequence, some
link prediction approaches are totally based on the structural properties of these
graphs [20]. A first possibility to perform this task consists in analyzing com-
mon neighbors. In order to decide whether two nodes are related, [5] exploits
a similarity measure derived from the Jaccard coefficient. Based on preferential
attachment [23], [8] experimentally verifies that the probability of a relation-
ship between two nodes is proportional to the product of the number of their
neighbors. Some approaches to link prediction rely on the notion of shortest-
path distance which is computed by means of several similarity measures, like
the Katz coefficient, PageRank and SimRank. Due to the high computational
cost of these measures, some approximations have to be adopted in order to
make them effective. In any case, whenever the number of nodes is consider-
able, the application of these methods may result in a too long running time. In
conjunction with all the above techniques, some strategies may be used to en-
hance the accuracy of predictions. Also the use of unseen bigrams [14] can help
in the link detection task. Here, the similarity between a node A and a node
B is computed by taking into account the similarity between the nodes B and
C, where this last one is the node most similar to A. Furthermore, the quality
of link detection can be improved by means of clustering techniques aiming at
identifying the graph components which introduce noise in the similarity com-
putation [20]. [25] proposes the application of statistical relational learning to
link prediction in the domain of scientific literature citations. In this approach
statistical modeling and feature selection are integrated into a search mechanism
over the space of database queries in such a way as to define feature candidates
involving complex interactions among objects in a given relational database. [27]
analyzes the localization in space and time of a large number of users by means
of their call detail records. This analysis shows that users with similar movement
routines are strongly connected in a social network and have intense direct in-
teractions. This result allows implicit ties in the social network to be predicted
with a significant accuracy starting from the analysis of the correlation between
user movements (i.e., their mobile homophily). Other approaches to link detec-
tion come from the fields of deduplication and disambiguation. In particular, [7]
proposes an algorithm for discovering duplicates in the dimensional tables of a
Data Warehouse.

From the above analysis it emerges that our approach, in the above litera-
ture, can be related only with common-neighbors ones. However, despite their
apparent closeness to ours, we can easily realize that they are not directly appli-
cable to our context. Indeed, the notion of common-neighbors relies, in general,
on the notion of common identity of the friends of a user. But discovering the
common identity of users in different social networks is for us the output of the
problem, leading to a sort of recursive definition of the problem itself. We have
experimentally confirmed the above claim by showing that the application of
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the state-of-the-art common-neighbors approaches to our problem returns very
unsatisfying results. The results of these experiments are reported in Section 5.

3 The Notion of Similarity

Our approach operates in a Social Internetworking System (SIS) resulting from
the interconnection of a number of distinct social networks. We start with the
basic notion of underlying graph, which is the layer we deal with.

Definition 1. A t-Social-Internetworking Graph (SIG) is a directed graph G =
〈N,E〉, where N is the set of nodes, E is the set of edges (i.e., ordered pairs of
nodes) and N is partitioned into t subsets S1, . . . , St. Given a node a ∈ N we
denote by S(a) the social graph which a belongs to. E is partitioned into two
subsets Ef and Em. Ef is said the set of friendship edges and Em is the set of me
edges. Ef is such that for each (a, b) ∈ Ef , S(a) = S(b), while Em is such that
for each (a, b) ∈ Em, S(a) �= S(b)1. Given a node a we denote by Γ (a) the set
of nodes in S(a) such that for each b ∈ Γ (a) (a, b) ∈ Ef . Γ (a) is said the set of
neighbors of a. The graphs corresponding to S1, · · · , St are called social graphs
and in SIG they are linked to each other by means of me edges. �

A t-Social-Internetworking Graph G = 〈N,Ef ∪ Em〉 is the graph underlying a
SIS composed of t social networks. Each node a of G is associated with a user,
joining the social network whose underlying graph is S(a). An edge (a, b) ∈ Ef

means that the user b is a friend of the user a in the social network of S(a). An
edge (c, c′) ∈ Em means that the user c in the social network of S(c) has declared
a me edge between herself and the user c′ in the social network of S(c′). In other
words, c is a bridge and this means that c and c′ are associated to the same user.
From now on, throughout this section, consider given a t-Social-Internetwork-ing
Graph G = 〈N,Ef ∪ Em〉.

Our approach is based on a recursive notion of “inter-social-network” similar-
ity aimed at detecting missing bridges of G. The similarity between two nodes
a, b (belonging to two different social networks) is obtained by combining two
contributions: a string similarity between the user names associated to a and b,
and a contribution based on a suitable notion of common-neighbors similarity.
The latter component leads to a recursive definition of the overall inter-social-
network similarity since the common-neighbors notion has to necessarily rely on
the same notion, because also neighbors belong to different social networks, and,
thus, common nodes have to be detected too. Observe that this two-component
philosophy has been successfully adopted in several application fields in the past;
among these fields we cite schema matching [24,15], information retrieval [10],
and logic programming [17].

Concerning the string similarity, several functions have been proposed in the
literature, such as Jaro-Winkler, Levenshtein, QGrams, Monge-Elkan, Soundex

1 Observe that the presence of Em makes a t-Social-Internetworking Graph not to be
a forest since, in this last case, the corresponding social networks should be disjoint.
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[16]. One of them could be adopted to measure user name similarity in our
approach, so that it can be considered parametric w.r.t. the string-similarity
function. We have evaluated the application of the different functions in Section
5.2.

Before defining our notion of similarity, we have to introduce a preliminary
notion, which the common-neighbors contribution relies on. Indeed, we detect a
missing me edge between a and b if a suitable combination of the string similarity
between the user names associated to them, according to the metric Q, and the
(recursive) similarity of the top-k similar pairs each composed of a friend of a
and a friend of b, is greater than a suitable threshold, for a given k.

Thus, we have preliminarily to define how to select such top-k pairs. This is
related to the next definition.

Definition 2. Given a positive integer k0, a pair of nodes a, b ∈ N such that
S(a) �= S(b), a string-similarity metric Q, and a non-negative integer n we
inductively define TopnQ(a, b, k0) as follows:

1. Top0Q(a, b, k0) is any subset of C = {(xa, yb) | xa ∈ Γ (a), yb ∈ Γ (b)} con-
taining the top-k0 elements of C w.r.t. the metric Q.

2. For any 0 < i ≤ n, TopiQ(a, b, k0) is any subset of C = {(xz , yw) | (z, w) ∈
Topi−1

Q (a, b, k0), x ∈ Γ (z), y ∈ Γ (w), (x∗, ∗) �∈ TopjQ(a, b, k0), (∗, y∗) �∈ TopjQ
(a, b, k0), 0 ≤ j ≤ i−1} containing the top-ki elements of C w.r.t. the metric
Q, where ki = � k0

(1+i)1+i  and ∗ denotes any node in N . �

Concerning the contribution of neighbors, we have to consider a particular sit-
uation which could significantly affect the precision of our technique. Suppose
we have two nodes z and w belonging to different social networks and consider
x ∈ Γ (z) and y ∈ Γ (w). If x and y are power users (i.e., users having a very
high degree in social networks) and z and w are not, it could happen that x
(resp., y) belongs to Γ (z) (resp., Γ (w)) only because it corresponds to a public
figure (e.g., a V.I.P.). In this case, the presence of this node in Γ (z) and Γ (w)
is not significant in defining the real life relationships of z and w. In order to
prevent this effect, we introduce the following reduction coefficient γ(xz , yw),
which assumes a very powerful role in the above situation.

Definition 3. Let x, y, z, w ∈ N be nodes of G such that x ∈ Γ (z), y ∈ Γ (w),
and S(z) �= S(w). We define: γ(xz, yw) = min(δ(xz), δ(yw)) where δ(ab) =

max(|Γ (a)|,|Γ (b)|)
max(|Γ (a)|,|Γ (b)|)+||Γ (a)|−|Γ (b)|| for any pair of nodes a, b ∈ N . �

Now we are ready to define our similarity function. As said above, it is obtained
as a combination of two contributions, namely, the string-similarity component
and the common-neighbors one. The underlying intuition is that if two accounts,
belonging to different social networks, are associated to the same user, even
though there is no me edge between them, they will have user names someway
related each other and, moreover, they share a (even low) number of friends.
It is worth remarking that this condition, easily verifiable by exploring real-
life social networks, does not mean that the two users have a strong overlap of
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their neighbors, coherently to the diversity among the communities included in
different social networks. However, we argue that it is highly probable that an
even little neighbor overlap will occur2.

Definition 4. Given a pair of nodes a, b ∈ N such that S(a) �= S(b), a string-
similarity metric Q, two integers n ≥ 0 and k0 > 0, we inductively define the
similarity operator T n

Q(a, b, k0) as follows:

1. T 0
Q(a, b, k0) = Q(a, b).

2. For any 0 < i ≤ n,

T i
Q(a, b, k0) = (1− βi) · T i−1

Q (a, b, k0)+ βi ·
∑

(xz,yw)∈Topi
Q̃

(a,b,k0)
Q̃(xz,yw)

|Topi

Q̃
(a,b,k0)|

where βi =
1

(i+1)i+1 and Q̃(xz , yw) = γ(xz , yw) · Q(x, y), for any x, y, z, w ∈ N

nodes of G such that x ∈ Γ (z), y ∈ Γ (w), and S(z) �= S(w). �

The definition of similarity is recursive. At the basic step, only the direct string-
similarity value concurs to define the similarity between two nodes a and b. At step
i, the similarity is obtained as a linear combination of the similarity of the step i−1,
and the new common-neighbors contribution. This is obtained as the average of
the reduced (by γ – see Definition 3) string similarity between the top-ki pairs
w.r.t. the same metric. ki is derived, at each step, as an exponential reduction of
k0, which is an input parameter allowing us to modulate the size of the neighbors
overlapping considered relevant for the similarity computation. Observe that the
above linear combination depends on the βi parameter, which is exponentially
decreasing as i increases, making quickly less important the common-neighbors
contribution when leaving from the root nodes a and b.

Now we are ready to define the effective tool we provide to detect me edges,
obviously based on the above notion of similarity. Indeed, Definition 4 would
lead to an ineffective computation covering, in the worst case, the whole graph
G. Anyway, we can observe that when, during the computation, we reach a step
h whose contribution to the overall similarity is under a given small ε, we expect
that from now on involved neighbors do not give us any meaningful information.
Thus, we can stop here the iteration. This is encoded into the next definition.

Definition 5. Given a pair of nodes a, b ∈ N such that S(a) �= S(b), a string-
similarity metric Q, an integer number k0 > 0, and a real number ε > 0, we define
the ε-similarity Sε

Q(a, b, k0) between a and b w.r.t. Q as T h
Q(a, b, k0), where h > 0

is the least number (if any) such that |T h
Q(a, b, k0)− T h−1

Q (a, b, k0)| < ε. �

Clearly, our approach is really effective if the ε-similarity Sε
Q(a, b, k0) between

two nodes a and b always exists. This is ensured by the following theorem.

2 Recall that we are not interested in cases of users who voluntarily keep two accounts
separated in their respective social networks, where the above conditions are not
verified, as explained in the Introduction.
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Theorem 1. Given a pair of nodes a, b ∈ N such that S(a) �= S(b), a string-
similarity metric Q, an integer number k0 > 0, and a real number ε > 0, then
the ε-similarity Sε

Q(a, b, k0) between a and b w.r.t. Q exists. �

Finally, in the next theorem we give a result related the complexity of our tech-
nique, showing that it is feasible.

Theorem 2. Given a pair of nodes a, b ∈ N such that S(a) �= S(b), a string-
similarity metric Q, and an integer number k0 > 0, then the number of visited
nodes in G for the computation of T h

Q(a, b, k0) is O(d2 · k0), where d is the
maximum node degree. �

The consequence of Theorem 2 is that, despite the potentially exponential explo-
sion of visited nodes for the computation of the ε-similarity Sε

Q(a, b, k0) between
two nodes a and b, due to the h-step iterative navigation of neighbors in G,
the number of visited nodes is independent of the number of iterations h and
is bounded by the number of visited nodes at the first two steps. As it can be
easily verified by reading the proof of the theorem, this fact clearly depends on
how ki is defined in Definition 2. The above result ensures the feasibility of our
method.

4 Me-Edge Detection

In this section, we present our method able to discover missing me edges, and,
thus, new links among different social networks. Clearly, these links complement
the me edges explicitly declared by users. Our technique is based on the notion
of similarity presented in Section 3. In particular, the similarity function allows
us to detect a missing me edge between two nodes, whether a suitable threshold
is exceeded. We consider given a Social Internetworking System (SIS) composed
of t social networks, as well as the underlying Social Internetworking Graph
G = 〈N,Ef ∪ Em〉.

Since, in a SIS, the number of node pairs to consider for the possible presence
of a me edge is enormous, we have identified a mechanism leading our approach
to consider only a reasonable number of very promising pairs. In particular, from
the examination of the explicitly declared me edges, we have found that, with
a high probability, some of the nodes belonging to the neighbors of two nodes
linked by a me edge are, in their turn, linked by a me edge. As a consequence,
our approach starts from a set of already known me edges and examines only the
neighbors of the nodes involved in these edges. Clearly, if this set of me edges is
not available, our approach can work all the same by starting from any pair of
nodes in G. Thus, our algorithm receives a set M ⊆ Em of existing me edges and
returns a set M ′ of discovered me edges, such that, clearly M ′ ∩ (Ef ∪Em) = ∅.
The function detectMe implementing our approach is reported in Algorithm 1.
It receives as arguments: the set M of starting me edges, two [0,1] real vari-
ables thc and thd, an integer k0 > 0, and (a small) real ε > 0. Recall that the
similarity between two nodes a, b defined in Section 3 is obtained by combin-
ing two contributions: a string similarity between the user names associated to
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a and b, and a contribution based on a suitable notion of common-neighbors
similarity. Concerning the first contribution, as pointed out in Section 3, there
exist several already defined functions for computing the similarity between two
strings, each characterized by specific features (e.g., Jaro-Winkler, Levenshtein,
QGrams, Monge-Elkan, Soundex, etc. [16]). The function Q(a, b) (receiving two
nodes a and b) in Algorithm 1 can be considered parametric w.r.t. the string-
similarity function. We can choose one of the above functions on the basis of
the desired target. For instance, QGrams is very severe and assigns quite low
similarity degrees, Jaro-Winkler is more permissive whereas Soundex is very per-
missive. In Section 5.2 the application of the different functions in our technique
is experimentally evaluated.

Synthetically, Algorithm 1 proceeds as follows. For each edge (a, b) in M ,
we take all pairs (a′, b′) such that a′ ∈ Γ (a) and b′ ∈ Γ (b). These pairs are
candidate me edges. A pair (a′, b′) is discarded if the value of Q(a′, b′) is lower
than a suitable threshold thc or if (a

′, b′) ∈ Em. Otherwise, a function S is called,
which implements the computation of Sε

Q(a
′, b′, k0) (see Definitions 4 and 5). If

the value returned by this function is greater than a suitable threshold thd, then
(a′, b′) is detected as me edge and is inserted inM ′. Otherwise, it is discarded. The
function S is reported in Algorithm 2. It is recursive since it implements also the
operator T n

Q(a, b, k0) of Definition 5. It receives as arguments: an integer k0 > 0,
a (small) real ε > 0, a list L of triplets 〈a, b, s〉, where a and b are nodes and s is
a [0, 1] real value, the value of S at the previous step (at the initial step of the
recursion this value coincides with Q(a, b)), and an integer i > 0 representing the
step of the recursion. To explain what is s, observe that, in order to implement
T n
Q(a, b, k0), we need as argument the list L which stores, at the step i > 1 of

the recursion, the top-ki node pairs w.r.t. the metric Q̃i(a, b, k0). Thus, in this

case, s represents just Q̃i(a, b, k0). At the initial step of the recursion (i = 1), s
is just the string similarity value Q(a, b).

The correspondence between Algorithm 2 and Definitions 4 and 5 is quite
clear. We just have to highlight that the result of the computation of the operator
Topi

Q̃
(a, b, k0) (see Definitions 2 and 5) is embedded in the list L, as described

above.
The computation of Topi

Q̃
(a, b, k0) is implemented by Algorithm 3. The func-

tion Top receives two nodes a and b and a positive integer ki. It returns a list
L of ki triplets 〈a′, b′, Q̃i(a′, b′, k0)〉, where a′ ∈ Γ (a), b′ ∈ Γ (b) and (a′, b′) is

one of the top-ki pairs w.r.t. the metric Q̃. We remark that the metric here used
includes the reduction factor γ of Definition 3.

5 Experiments

In this section we present our experimental campaign aimed at determining the
performances of our approach. Since it operates on a SIS, we had to extract
not only the connections among the accounts of different users in the same so-
cial network but also the connections among the accounts of the same user in
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Algorithm 1. detectMe
Input M : the starting set of me edges
Input thc: A candidate threshold
Input thd: A detection threshold
Input k0: an integer
Input ε: a real
Output M ′: the set of detected me edges
Variable L: a list of triplets of the form 〈a, b, s〉
1: L := ∅; M ′ := ∅
2: for each edge (a,b) ∈ M do
3: for each node pair (a’,b’) ∈ Γ (a) × Γ (b) do
4: if (Q(a′, b′)> thc and the edge (a’,b’) /∈ Em) then
5: insert the triplet 〈a′, b′, Q(a′, b′)〉 into L
6: if (S(k0, ε, L,Q(a′, b′), 1) > thd) then
7: insert the me edge (a′, b′) in M ′

8: end if
9: L := ∅
10: end if
11: end for
12: end for
13: return M ′

Algorithm 2. S
Input k0: an integer
Input ε: a real
Input Li: a list of triplets 〈a, b, s〉
Input Si−1: the similarity value of a′ and b′ at step i − 1
Input i: an integer
Output Si: the similarity value of a′ and b′ at step i
Variable β: a [0,1] real
Variable ki: an integer
Variable avgS: a real
Variable Li+1: a list of triplets 〈a, b, s〉
1: Li+1 := ∅; β := 1

ii
; ki := �k0 · β�

2: if (k=1) then
3: Si := Si−1

4: else
5: assign to avgS the average value of the similarities of the node pairs of Li

6: Si := (1 − β) · Si−1 + β · avgS
7: end if
8: if (|Si − Si−1| ≥ ε) then
9: for each 〈a, b, s〉 in Li do
10: add the list returned by Top(a, b, ki) to Li+1

11: end for
12: return S(i+ 1, Li+1, Si)
13: else
14: return Si

15: end if

different social networks. In order to handle these connections, two standards en-
coding human relationships are generally exploited. The former is XFN (XHTML
Friends Network) [3]. It simply uses an attribute, called rel, to specify the kind
of relationship between two users. Some possible values of rel are me, friend,
contact, co-worker, parent, and so on. A (presumably) more complex alter-
native to XFN is FOAF (Friend-Of-A-Friend) [2]. In both of them information
about me edges is the one explicitly declared by users. In our experiments, we
considered a SIS consisting of four social networks, namely Twitter, LiveJour-
nal, YouTube and Flickr. Therefore, from now on we refer to a (real-life) t-Social
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Algorithm 3. Top
Input a, b: a node
Input ki: an integer
Output L: a list of triplets 〈a, b, s〉
Variable t: a triplet 〈a, b, s〉
Variable c: an integer

Variable δa, δb, Q̃(a,b): a real

1: L := ∅; c := 0
2: for each a′ in Γ (a) do
3: for each b′ in Γ (b) do

4: δa := max(|Γ (a′)|,|Γ (a)|)
max(|Γ (a′)|,|Γ (a)|)+||Γ (a′)|−|Γ (a)||

5: δb :=
max(|Γ (b′)|,|Γ (b)|)

max(|Γ (b′)|,|Γ (b)|)+||Γ (b′)|−|Γ (b)||

6: Q̃(a,b) := min(δa, δb) ∗ Q(a′, b′)

7: if (c < ki) then

8: insert the triplet 〈a′, b′, Q̃(a,b)〉 into L

9: sort L in a descending order
10: c := c+ 1
11: else
12: t := L.get(ki − 1)

13: if (Q̃(a,b) > t.s)) then

14: replace the triplet in the position (ki − 1) of L with the triplet 〈a′, b′, Q̃(a,b)〉
15: sort L in a descending order
16: end if
17: end if
18: end for
19: end for
20: return L

Internetworking Graph such that t = 4. We argue that the relatively small num-
ber of involved social networks, as a first investigation, is adequate for our pur-
pose, expecting that the results we obtain in this setting are still valid in a more
complex environment. Anyway, the above social networks are highly representa-
tive (they are among the top-10 social networks in terms of population). As a
matter of fact, they are largely analyzed in the past in Social Network Analysis
[22,28].

For our experiments, we used a server equipped with a 2 Quad-Core E5440
processor and 16 GB of RAM with the CentOS 6.0 Server operating system. We
performed our experiments from January 30, 2012 to April 5, 2012.

5.1 Application of the State-of-the-Art Common-Neighbors
Approaches

As described in Section 2, we have to prior verify whether common-neighbor
approaches for link prediction [21] can be directly applied to our problem. How-
ever, a first aspect has to be considered. In our scenario the notion of common
neighbors cannot be the classical one, because the neighbors of examined pairs
belong to different social networks. As a consequence, we cannot expect that
two examined neighbors have some common nodes in strict sense. To overcome
this drawback we have just to re-define the notion of node identity. Coherently
with our setting, it simply suffices to consider as identical two nodes linked by
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Table 1. The tested common-neighbors approaches

Index Name Definition Sensitivity

Salton Index (SAI) sSAI
ab = |Γ (a)

⋂
Γ (b)|√

|Γ (a)|×|Γ (b)|
0.01

Jaccard Index (JAI) sJAI
ab = |Γ (a)

⋂
Γ (b)|

|Γ (a)
⋂

Γ (b)| 0.01

Sorensen Index (SOI) sSOI
ab = 2|Γ (a)

⋂
Γ (b)|

|Γ (a)|+|Γ (b)| 0.01

Hub Promoted Index (HPI) sHPI
ab = |Γ (a)

⋂
Γ (b)|

min(|Γ (a)|,|Γ (b)|) 0.00

Hub Depressed Index (HDI) sHDI
ab = |Γ (a)

⋂
Γ (b)|

max(|Γ (a)|,|Γ (b)|) 0.01

Leicht-Holme-Newman Index (LHNI) sLHNI
ab =

|Γ (a)
⋂

Γ (b)|
|Γ (a)|×|Γ (b)| 0.01

Resource Allocation Index (RA) sRA
ab =

∑
z∈Γ(a)

⋂
Γ (b)

1
|Γ (z)| 0.01

Local Path Index (LPI) sLPI
ab = A2 + εA3 0.03

( A is G’s adjacency matrix)

a me edge. At this point, classical common-neighbor techniques can be directly
applied.

Given two nodes a and b in G (such that S(a) �= S(b)), the considered (state-
of-the-art) techniques are those reported in Table 1, where we include, in the
first and second columns, the definition of the similarity index which they rely
on [21].

We tested all the above techniques in our SIS by preliminarily constructing
a set M of 100 node pairs linked by a me edge and then by running them on
M . For each technique, we obtained a set M ′ of detected me edges. Clearly, M ′

represents a set of true positives. Finally, we measured the sensitivity of the

techniques as the ratio |M ′|
|M| , obtaining the results reported in the third column

of Table 1.
The analysis of such values clearly shows that no effective result can be ob-

tained whether common-neighbors techniques are adopted. This has in fact mo-
tivated our further study, whose experimental validation is reported in the next
sections.

5.2 Sample-Driven Method Validation

A first experiment aims at determining the performance of our approach as
well as at choosing the best function for computing the string similarity in our
context. We started from the set M introduced in the previous section (i.e., a
set of 100 real me-edge-connected pairs). Then, we find another set, denoted by
¬M , of 100 node pairs not connected by a me edge. To find two elements, say
(c1, d1) and (c2, d2), of ¬M , we started from a me-edge-connected pair (a, b) and
then we required that c1 = a, d1 ∈ Γ (b), c2 = b, d2 ∈ Γ (a). This way, both
(c1, d1) and (c2, d2) are not linked by a me-edge, since d1 is a friend of a user
(i.e., b) who is identical to c1. The dual situation occurs for (c2, d2).

Then, we applied our approach on the pairs of M and ¬M and we obtained
the sets TP , FP , and FN , which are true positives, false positives, and false
negatives, resp. For clarity, an element in TP is a pair of M detected as me-edge-
connected pair by our technique, an element in FP is a pair of ¬M detected as
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Table 2. Precision, recall and F-Measure of our approach for each user name similarity
function

Function Precision Recall F-measure

Jaro-Winkler 0.558 0.920 0.694
QGrams 0.908 0.690 0.784

Levenshtein 0.877 0.710 0.785
Smith-Waterman 0.840 0.790 0.814

Smith-Waterman-Gotoh 0.779 0.810 0.794
Monge-Elkan 0.779 0.810 0.794

Needleman-Wunch 0.500 1.000 0.667
Jaro 0.555 0.910 0.689

Soundex 0.500 0.990 0.664

me-edge-connected pair by our technique, and an element of FN is a pair of M
not detected as me-edge-connected pair by our technique.

To compute the performance of our approach we adopted three classical
measures [4], namely precision (as measure of correctness), recall (as measure
of completeness) and F-measure (as the harmonic mean of precision and re-

call). They are defined as: precision = |TP |
|TP |+|FP | , recall = |TP |

|TP |+|FN | , and F -

measure = 2 · precision·recall
precision+recall .

Since the behavior of our approach (and, consequently, the values of precision
and recall) depends on the function adopted for computing string similarity,
we considered the most common of these functions and, for each of them, we
computed the precision and the recall of our technique. This way, we were able
to determine the function(s) maximizing these measures. Obtained results are
shown in Table 2.

The main conclusion we can draw from the analysis of this table is that our
approach presents in general a very satisfying performance both in correctness
and in completeness. Moreover, we observe that we are free to choose the string-
similarity function in a rich set. Indeed, 5 functions led our approach to obtain
a precision higher than 0.77 and 6 functions led it to obtain a recall higher
than 0.81. However, among the considered functions, QGrams (resp., Needleman-
Wunch) proved to be the one capable of assuring the best precision (resp., recall).
The high performance level of our approach is even more evident if we compare
Tables 1 and 2 and if we consider that, in this testbed, the definitions of recall
and sensitivity coincide and, consequently, the corresponding columns can be
compared3.

5.3 Expert-Based Method Validation

This experiment aims at computing the accuracy of our approach in a way dif-
ferent from the previous experiment. In this case, we want to benefit from the
support of a human expert. We first applied a crawling technique to derive a
sample of the SIS. This sample was necessary to have a starting set of me edges at

3 Observe that, owing to the extremely low values of sensitivity, the computation of
precision in Table 1 makes no sense.
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disposal. In order to maximize the number of me edges occurring in the sample we
applied BDS, a crawling technique specifically conceived to operate on a SIS, in-
stead of on a single social network, which is highly capable of finding and return-
ing explicitly declared me edges [12] (note that, to the best of our knowledge, no
other technique with this feature is available in literature). Our sample consisted
of 93,169 nodes and 146,325 edges. 745 out of 146,325 were me edges. This sam-
ple can be found at the URL http://www.ursino.unirc.it/pkdd-12.html.
We randomly selected 160 me edges and put them in a set M . We gave this set
as input to our technique. The adopted string-similarity function was QGrams,
because it proved to assure the best precision. Our approach returned a set M ′

of 22 me edges and a set of 133 non-me edges, from which we randomly selected
a set ¬M ′ of 22 non-me edges in such a way that me edges and non-me edges
had the same weight. After this, we asked the human expert to verify whether
the elements of M ′ are actually me edges and the elements of ¬M ′ are actually
non-me edges. For each edge her possible answers were true, false and unknown.
Observe that the value unknown reflects both uncertain cases and unreachable-
page ones. At the end of the experiment we obtained that, as for M ′, she returned
tp = 16 true, fp = 4 false and 2 unknown. As for ¬M ′, she returned tn = 18
true, fn = 2 false and 2 unknown. Finally, we computed the accuracy as the ratio

tp+tn
tp+tf+tn+fn

, obtaining the value 0.85, which denotes a very good performance

of our method.

6 Conclusion and Future Work

In this paper, we have studied the problem of discovering missing me edges in
a Social Internetworking Scenario. The most evident information we can use to
detect missing me edges, besides user names, concerns neighbors. This might lead
us to conclude that we are in front of a classical problem of link prediction where
one of the state-of-the-art common-neighbors techniques can be applied in order
to solve it. The first conclusion we have drawn in this work, on the basis of a
number of experiments, is that this is definitely not true, showing the need of
studying the problem as new and finding a specific solution. To do this, we have
defined a suitable notion of “inter-social-network” similarity, which is recursive
since the common-neighbors notion has to necessarily rely on the same notion,
because also neighbors belong to different social networks. On the basis of this
notion, we have defined an algorithm able to detect whether there is a missing
me edge between two given nodes. The experimental analysis of this method on
a real-life data set has shown its correctness and completeness, thus validating
it. In the future, this analysis could be further empowered in several directions.
Some of them could be: (i) the analysis of our approach running time; (ii) the
analysis of the mutual role of the two components of our similarity definition;
(iii) the analysis of the stability and sensitivity of our approach.

The results obtained in this paper can be useful for further investigations in
the direction of social internetworking. Indeed, the role of me edges is relevant
for any phenomenon of information crossing through different social networks,

http://www.ursino.unirc.it/pkdd-12.html
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so that discovering new me edges may strongly enrich the analysis capabilities of
social data, also strengthening multi-context analyses of people profile. We thus
believe that a number of future directions of our research can be undertaken,
especially in the context of behavioral analysis, but also at the “lower” level of
graph analysis, where the discovery of new me edges may improve the capability
of crawlers to explore a Social Internetworking Scenario.
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Abstract. We tackle the problem of finding a team of experts from a so-
cial network to complete a project that requires a set of skills. The social
network is modeled as a graph. A node in the graph represents an expert
and has a weight representing the monetary cost for using the expert
service. Two nodes in the graph can be connected and the weight on the
edge represents the communication cost between the two corresponding
experts. Given a project, our objective is to find a team of experts that
covers all the required skills and also minimizes the communication cost
as well as the personnel cost of the project. To minimize both of the
objectives, we define a new combined cost function which is based on
the linear combination of the objectives (i.e. communication and person-
nel costs). We show that the problem of minimizing the combined cost
function is an NP-hard problem. Thus, one approximation algorithm is
proposed to solve the problem. The proposed approximation algorithm
is bounded and the approximation ratio of the algorithm is proved in the
paper. Three heuristic algorithms based on different intuitions are also
proposed for solving the problem. Extensive experiments on real datasets
demonstrate the effectiveness and scalability of the proposed algorithms.

1 Introduction

Team formation has been traditionally studied in operational research. Most of
the traditional approaches do not consider the network structure behind the
individuals. Nowadays, various forms of online social networks have been devel-
oped, making it possible to consider the relationships among individuals when
forming a team to complete a task or project. Recently, some works have been
devoted to find a team of experts from a social network that minimizes the cost
of communication among the experts [11,10]. Such a team should possess a set of
skills in order to complete the task or project. While effective communication is
indeed important for the success of a project, there are some other factors that
are also important but have not been considered in team formation from social
networks. One of these factors is the personnel cost. In reality, people normally
need to be paid for working on a project, and it is desirable to find a team of
experts with a reasonable personnel cost.

In this paper, we tackle the problem of finding the best team of experts that pos-
sess a set of skills whileminimizing both the communication cost and the personnel
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cost. We use a graph to model a social network in which nodes represents experts,
each having a set of skills and a cost for using his/her service. Two nodes in the
graph can be connected and the weight on an edge represents the communication
cost between the two connected experts. Generally, more previous collaborations
between two experts, the lower the communication cost between them.

Clearly, our problem is a constrained bi-criteria optimization problem. A com-
mon approach to solving such a problem is to combine the two objectives into a
single objective. In this paper, we take this approach and show that the problem
of optimizing the combined objective function is NP-hard. Thus, we propose an
approximation algorithm and three heuristic algorithms to efficiently solve the
problem in polynomial time. The approximation algorithm is based on convert-
ing the input graph with both node and edge weights into a graph with weights
on only edges. It has a performance guarantee with an approximation ratio of 2.
The heuristic methods are based on either iteratively replacing cheapest experts
with more expensive ones to improve the combined cost or incrementally adding
experts with minimum cost contribution. We conduct extensive experiments on
real data sets to show the effectiveness and efficiency of the proposed methods.

The paper is organized as follows. Related work is presented in Section 2.
Problem statements and definitions are given in section 3. The algorithms for
finding the best team of experts are presented in section 4. The experimental
results are illustrated in section 5 and section 6 concludes the paper.

2 Related Work

Discovering a team of experts in a social network is introduced in [11]. The
authors propose two functions for evaluating the communication cost among the
members of a team. The communication cost functions are improved in [10]. The
new function in [10] considers all the edges of the induced sub-graph, and is thus
more stable to small or radical changes than the ones in [11]. The problem of
finding a team of experts with a leader is also introduced in [10]. The problem is
generalized by associating each required skill with a specific number of experts
in [12]. The maximum load of the experts in the presence of several tasks is
minimized in [1], but it does not consider finding teams with low communication
cost. Recently, the problem of online team formation is studied in [2], which
creates teams of experts with minimized work load and communication cost. The
personnel cost of the experts is not considered in [2]. In this work, in addition
to finding a team of experts with low communication cost, we also minimize the
personnel cost of the team.

The problem of team formation has also been studied in the operation research
community. Simulated annealing, branch and bound and genetic algorithms are
used for solving the problem [4,13,14,7]. The main difference between this work
and the works in operation research is that the experts are not connected through
a social network in their work. The authors of [8], consider the effect of different
graph structures among the members on the performance of the team. They
performed their studies in an experimental setting and they do not study the
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problem from a computational point of view. Dynamics of group formation and
its effect on the formation of groups in the network is considered in [3]. A game
theoretic approach to this problem is discussed in [9]. Although these studies are
not directly related to our setting, they might be considered as a complementary
work for our problem.

The authors of [6] consider a bicriteria team formation problem. One objective
is the communication cost and the other is the level of skills of the experts. It
does not consider the personnel cost of the team. It produces a solution using a
simulated annealing method and no approximation bound is given.

3 Problem Statement

Let C = {c1, c2, . . . , cm} denote a set of m experts, and S = {s1, s2, . . . , sr}
denote a set of r skills. Each expert ci has a set of skills, denoted as Q(ci),
and Q(ci) ⊆ S. If sj ∈ Q(ci), expert ci has skill sj . In addition, a subset of
experts C′ ⊆ C have skill sj if at least one of them has sj . For each skill sj ,
the set of all experts having skill sj is denoted as C(sj) = {ci|sj ∈ Q(ci)}. A
project P ⊆ S is defined as a set of skills which are required for the completion
of the project. A subset of experts C′ ⊆ C is said to cover a project P if
∀sj ∈ P ∃ ci ∈ C′, sj ∈ Q(ci).

The experts are connected together in a social network and it is modeled as
an undirected and weighted graph (G). Each node in G represents an expert in
C. Terms node and expert are used interchangeably through this paper. Two
nodes are connected by an edge if the experts have collaborated before. The
weight of an edge represents the communication cost between two experts. The
lower the weight of the edge between two nodes, the more easily the two experts
can collaborate or communicate, and the lower the communication cost between
them. Each expert in the graph is also associated with a cost representing the
monetary cost for using the expert service. The cost of an expert ci is denoted
as t(ci).

The distance between two nodes ci and cj , denoted as d(ci, cj), is the sum
of weights on the shortest path between them in G. It should be noted that the
shortest distance function is a metric and satisfies the triangle inequality. If
ci and cj are not connected in G (directly or indirectly), the distance between
them is ∞.

Definition 1. (Team of Experts) Given a set of experts C and a project P
that requires a set of skills {s1, s2, . . . , sp}, a team of experts for P is a set of p
skill-expert pairs: {〈s1, cs1〉, 〈s2, cs2〉, . . . , 〈sp, csp〉}, where csj is an expert in C
having skill sj for j = 1, . . . , p. A skill-expert pair 〈si, csi〉 means that expert csi
is responsible for skill si in the project.

Note that an expert may be responsible for more than one skill in a project. The
same as our previous work [10], to evaluate the communication cost among the
experts in a team T , we use the sum of distances among the experts of a team
defined as follows.
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Definition 2. (Sum of Distances) Consider a graph G whose nodes represent
experts and whose edges are weighted by the communication cost between two
experts. Given a team T of experts from G for a project: {〈s1, cs1〉, 〈s2, cs2〉,
. . . , 〈sp, csp〉}, the sum of distances of T with respect to G is defined as

SDG(T ) =

p∑
i=1

p∑
j=i+1

d(csi , csj )

where d(csi , csj ) is the distance between nodes csi and csj in G (as defined
earlier).

To measure the personnel cost of a team, the following function is defined:

Definition 3. (Personnel Cost) Consider a graph G whose nodes represent
experts and each expert is associated with a cost. Given a team T of experts from
G for a project: {〈s1, cs1〉, 〈s2, cs2〉, . . . , 〈sp, csp〉}, the personnel cost of T with
respect to G is defined as

PCG(T ) =

p∑
i=1

t(csi)

where t(csi) is the cost of expert csi .

In this cost model an expert x is paid k×t(x), where k is the number of skills the
expert is responsible for in the project. This is reasonable because more skills
the expert uses, more responsibility or tasks he/she has in the project.

We are interested in finding a team of experts that minimizes both the person-
nel and communication costs. Thus, our problem is a bi-objective optimization
problem. One way to solve a bi-criteria optimization problem is to convert the
problem into a single objective problem by combining the two objective func-
tions into a single one. In this paper, we take this approach and define a single
objective function that combines the communication and personnel costs with a
tradeoff parameter (i.e., λ) as follows.

Definition 4. (Combined Cost Function) Given a team T of experts from
graph G for a project and a tradeoff λ between the communication and personnel
costs, the combined cost of T with respect to G is defined as

ComCostG(T ) = (p− 1)(1− λ)× PCG(T ) + 2λ× SDG(T )

where p is the number of required skills.

The parameter λ varies from 0 to 1 and indicates the tradeoff between the
communication and personnel costs. Since the values of PCG(T ) and SDG(T )
may have different scales, PCG(T ) and SDG(T ) should be normalized before
using the formula so that they both fall into the same range. The reason for
having (p − 1) in the first term and 2 in the second is to scale up the terms

because PCG(T ) is the sum of p expert costs while SDG(T ) is the sum of p(p−1)
2

pairwise communication costs. Given the combined cost function, we define the
problem tackled in this paper as follows:
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Problem 1. (Team Formation by Minimizing the Combined Cost) Given
a project P , a graph G representing the social network of a set of experts and a
tradeoff λ between the communication and personnel costs, the problem of team
formation tackled in this paper is to find a team of experts T for P from G so
that it covers all of the required skills and minimizes the combined cost function
ComCostG(T ) defined in 4.

Theorem 1. Problem 1 is an NP-hard problem.

Proof. Finding a team of experts from graph G while minimizing the sum of
distances (SDG(T )) is proved to be an NP-hard problem in [10]. Since SDG(T )
is linearly related to ComCostG(T ) (the objective function of Problem 1), then
minimizing ComCostG(T ) is also an NP-hard problem.

Since Problem 1 is an NP-hard problem, we have to rely on approximation or
heuristic algorithms. Therefore, in the next section, we propose a 2-approximation
algorithm and three heuristic algorithms for solving the problem.

4 Algorithms

4.1 Approximation Algorithm

In this section, we propose an approximation algorithm for solving Problem 1
with an approximation ratio of 2. The algorithm is based on converting the input
graph (where the costs are associated with both nodes and edges) into a graph
with costs/weights on only edges. The new graph G′ has the same sets of nodes
(experts) as the original graph G, but the node costs in G are moved onto edges
in G′. In G′, the edge weight between nodes u and v is defined as follows:

d′(u, v) = (1 − λ)(t(u) + t(v)) + 2λd(u, v) (1)

where t(x) is the cost of node/expert x in the original graph G, d(u, v) is the
shortest distance between experts u and v in G, and λ is the tradeoff between
the communication and personnel costs.

Below we show that the combined cost of a team T of experts with respect to
graph G is the same as the Sum of Distances of T with respect to the converted
graph G′.

Lemma 1. For any team T of experts from graph G for a project, the following
holds:

ComCostG(T ) = SDG′(T )

where G′ is converted from G by moving the node weights in G onto edges using
Equation (1).
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Proof. Let T = {〈s1, cs1〉, 〈s2, cs2〉, . . . , 〈sp, csp〉}. According to Definition 2,

SDG′(T ) =

p∑
i=1

p∑
j=i+1

d′(csi , csj )

where p is the number of required skills in the project. According to the definition
of d′, we have:

SDG′(T ) =

p∑
i=1

p∑
j=i+1

((1− λ)(t(csi ) + t(csj )) + 2λd(csi , csj ))

= (1 − λ)

p∑
i=1

p∑
j=i+1

(t(csi ) + t(csj )) + 2λ

p∑
i=1

p∑
j=i+1

d(csi , csj )

= (p− 1)(1− λ)

p∑
i=1

t(csi) + 2λSDG(T )

= (p− 1)(1− λ)PC(T ) + 2λSDG(T )

= ComCostG(T )

Based on the above lemma, finding a team of experts from graph G that mini-
mizes the combined cost function (defined in Definition 4) is equivalent to finding
a team of experts from graph G′ that minimizes the Sum of Distances function
(defined in Definition 2) based on d′. In [10], we proved that finding a team of ex-
perts while minimizing sum of distances is an NP-hard problem and proposed an
approximation algorithm that finds a team of experts that minimizes the Sum of
Distances. The approximation ratio of the algorithm is 2 as long as the pairwise
distance function used in the Sum of Distances definition satisfies the triangle
inequality. Below we show that function d′ satisfies the triangle inequality.

Lemma 2. The distance function d′(u, v) defined in Equation (1) satisfies the
triangle inequality.

Proof. Function d(u, v) in Equation (1) is the shortest distance between two
nodes u and v in graph G. Since the shortest distance satisfies the triangle
inequality, function d satisfies the triangle inequality. Thus, we have d(a, b) ≤
d(a, c)+d(c, b), where {a, b, c} is an arbitrary triplet of nodes. Then, the following
inequality holds since 0 ≤ λ ≤ 1:

2λd(a, b) ≤ 2λd(a, c) + 2λd(c, b)

Thus,

(1− λ)(t(a) + t(b)) + 2λd(a, b) ≤ (1 − λ)(t(a) + t(b)) + 2λd(a, c) + 2λd(c, b)

≤ 2(1− λ)t(c) + (1− λ)(t(a) + t(b)) +

2λd(a, c) + 2λd(c, b)

Based on the definition of d′, the last inequality is equivalent to d′(a, b) ≤
d′(a, c) + d′(c, b). Since {a, b, c} are chosen arbitrarily, d′ satisfies the triangle
inequality.
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Since d′ satisfies the triangle inequality, we can use the 2-approximation algo-
rithm that we proposed in [10] to find a team T of experts in graph G′ that
minimizes the Sum of Distances function, SDG′(T ). Based on Lemma 1, such a
team also minimizes the combined cost, ComCostG(T ), with respect to graph
G. The pseudo-code of this algorithm is presented in Algorithm 1. The major
difference between Algorithm 1 and the one in [10] is that Algorithm 1 takes
two more inputs, namely, the expert costs t and the tradeoff λ between the
communication and personnel costs, and uses distance function d′ to compute
the sum of distances of a team. The algorithm finds an approximate solution by
using an expert (e1 in the pseudo-code) with a required skill as a seed in a team
and adding its nearest expert with each of other required skills into the team.
After checking all such teams, the team with the smallest sum of distances to
the seed (calculated based on d′) is returned as the best team. More explanation
about the algorithm can be found in [10]. Note that two pre-built indexes are
used as inputs to the algorithm. One is an inverted index for accessing C(si),
the set of experts in G having skill si. The other is a hash index that stores
the shortest distances d of all pairs of experts in G. Both indexes can be pre-
built because they are independent of the input project. The time complexity of
this algorithm is O(p2 × (Cmax)

2), where p is the number of required skills, and
Cmax = max1≤i≤p |C(si)| in which |C(si)| is the cardinality of C(si).

Theorem 2. Algorithm 1 finds the team T of experts that minimizes
ComCostG(T ) with 2-approximation.

Proof. In [10], we proved that Algorithm 1 is a 2-approximation algorithm for
finding a team that minimizes the Sum of Distances. Since SDG′(T ) based
on d′ is equivalent to ComCostG(T ) according to Lemma 1, Algorithm 1 is
a 2-approximation algorithm for finding a team of experts that minimizes the
ComCostG(T ).

4.2 Iterative Replace Algorithm

In this section, a heuristic algorithm is proposed for finding the best team of
experts. The basic idea is as follows. Again, we use C(si) to denote the set
of experts that hold skill si. The algorithm consists of two phases. In the first
phase, for each required skill si, the experts in C(si) are sorted based on their
cost in ascending order, and a team T is initialized by selecting the first expert
in each C(si) (i.e. the cheapest expert with the required skill si). This is the
cheapest feasible team without consideration of the communication cost. In the
second phase, each remaining expert in each C(si) is tested to replace an expert
in T which is currently assigned to skill si. If the replacement decreases the
value of ComCostG(T ), then the replace operation is applied permanently on
T . The pseudo-code of the above procedure is presented in Algorithm 2. Note
that C(si)j means the j-th expert in the sorted list of C(si).

Since the algorithm needs to sort each C(si), its run time is O(Cmax log(Cmax)
+ Cmax × p), where p is the number of required skills, and Cmax = max1≤i≤p

|C(si)|. Note that if the experts in the initial team formed in the first phase are
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Algorithm 1. The Approximation Algorithm for Finding Best Team

Input: project P = {s1, s2, . . . , sp}, set C(si) of experts in graph G with skill si for
i = 1, . . . , p, distance d between each pair of nodes in G, cost t of each expert in G,
and tradeoff λ between communication and personnel costs.
Output: the best team

1: leastSumDistance←∞
2: bestT eam← ∅
3: for i← 1 to p do
4: for each expert e1 ∈ C(si) do
5: sumDistance ← 0
6: T ← {〈si, e1〉}
7: for j ← 1 to p and j 	= i do
8: closestDistance =∞
9: for each expert e2 ∈ C(sj) do
10: d′(e1, e2)← (1− λ)(t(e1) + t(e2)) + 2λd(e1, e2)
11: if d′(e1, e2) < closestDistance then
12: closestDistance = d′(e1, e2)
13: closestNeighbor = e2
14: add 〈sj , closestNeighbor〉 to T
15: sumDistance ← sumDistance+ closestDistance
16: if sumDistance < leastSumDistance then
17: leastSumDistance← sumDistance
18: bestT eam← T
19: return bestT eam

Algorithm 2. The Iterative Replace Algorithm for Finding Best Team

Input: project P = {s1, s2, . . . , sp}, set C(si) of experts in graph G with skill si for
i = 1, . . . , p, distance d between each pair of nodes in G, cost t of each expert in G,
and tradeoff λ between communication and personnel costs.
Output: the best team

1: for i← 1 to p do
2: sort the experts in C(si) based on their cost (i.e. t function) in ascending order.
3: T ← ∅
4: for i← 1 to p do
5: add 〈si, C(si)1〉 to the T
6: indexi ← 1
7: while at least one indexi has not reached |C(si)| do
8: for i← 1 to p do
9: if indexi < |C(si)| then
10: indexi ← indexi + 1
11: Tnew ← T
12: replace the holder of si in Tnew with C(si)indexi .
13: if ComCostG(Tnew) < ComCostG(T ) then
14: T ← Tnew

15: return T
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disconnected from all the other experts with a required skill, no expert in the
initial team will be replaced in the second phase, and thus the cheapest team
is returned as the best team. However, the communication cost of the cheapest
team can be very high (e.g., when any two members are disconnected from each
other). Thus, when the graph is disconnected, this algorithm may return a poor
team in terms of the combined cost. This problem can be alleviated by using the
largest connected subgraph (i.e., the core of the graph) as the input data to the
algorithm. Therefore, in our experiments, if the team produced by the algorithm
is disconnected, we run the algorithm one more time on the core of the graph.

4.3 Minimal Cost Contribution Algorithm

In this section, another heuristic algorithm is proposed. The general structure of
the algorithm is similar to Algorithm 1 in that they both seed a team with an
expert with a required skill and add new members to the team to cover all the
other required skills. The teams with different seeds are compared to select the
best team. The difference is in how to expand the team with other experts. In
Algorithm 1, the team was expanded by adding the nearest neighbor (according
to the d′ function) from each C(sj) where sj is a required skill not covered by
the seed expert. In that team expansion process, only the seed expert affects
the addition of other members and the relationships among other experts in the
team are not considered.

Algorithm 3. The Minimal Cost Contribution Algorithm for Finding Best
Team Using Each of the Experts with a Required Skill as Initial Team Member

Input: project P = {s1, s2, . . . , sp}, set C(si) of experts in graph G with skill si for
i = 1, . . . , p, distance d between each pair of nodes in G, cost t of each expert in G,
and tradeoff λ between communication and personnel costs.
Output: the best team

1: bestT eam← NULL
2: leastComCost←∞
3: for i← 1 to p do
4: for each expert einitial ∈ C(si) do
5: T ← ∅
6: add 〈si, einitial〉 to T
7: for j ← 1 to p and i 	= j do
8: leastMCC ←∞
9: for each expert e ∈ C(sj) do
10: Compute MCC(e, T ) using Formula (2)
11: if MCC(e, T ) < leastMCC then
12: leastMCC ← MCC(e, T )
13: expertWithLeastMCC ← e
14: add 〈sj , expertWithLeastMCC〉 to T
15: if ComCostG(T ) < leastComCost then
16: leastComCost← ComCostG(T )
17: bestT eam← T
18: return bestT eam



492 M. Kargar, A. An, and M. Zihayat

In the new algorithmproposed in this section, newmembers of a team are added
incrementally and each new member is chosen by considering its communication
costs with all the current members (not only the seed member) of the team in
addition to the personnel cost of the new member. Assume that T is the current
team of experts with some (but not all) of the required skills. To add into T an
expert with an uncovered skill sk, our new algorithm selects an expert e from the
set C(sk) of experts with skill sk that minimizes the following function:

MCC(e, T ) = (1 − λ)t(e) + λ

∑|T |
i=1 d(e, ei)

|T | (2)

where ei is the expert responsible for the i-th skill in T and λ is the trade-
off between communication and personnel costs. The first term of this function
considers the personnel cost of expert e and the second considers the average
communication cost between e and each of the current members of T . We refer to
this function as Minimal Cost Contribution (MCC) function because the selected
expert makes the minimal contribution to the total ComCost of the expanded
new team compared to other experts being considered in C(sk).

The pseudo-code of the new algorithm, called the Minimal Cost Contribution
(MCC) algorithm, is presented in Algorithm 3. The algorithm iterates through
each expert with a required skill and uses the expert as the initial member of
a candidate team T . For each candidate team T and each skill sj uncovered by
T , the algorithm incrementally selects and adds to T an expert e from C(Sj)
that minimizes the MCC(e, T ) function. The candidate team T is expanded in
this way until all the required skills are covered by it. If the combined cost of
T , ComCost(T ), is less than the least combined cost among all the previously
generated candidates, T becomes the current best team (held in bestT eam).
After all the candidate teams are generated (each with a different expert as the
initial member), the team in bestT eam is returned1. The time complexity of the
MCC algorithm is O(p3 × (Cmax)

2), where p is the number of required skills,
and Cmax = max1≤i≤p |C(si)| in which |C(si)| is the cardinality of C(si).

1 Note that the MCC algorithm is inspired by the Maximal Marginal Relevance
(MMR) method [5] for increasing diversity in document retrieval results while main-
taining high query relevance in the retrieved documents. The MMR method re-ranks
the search results by using the most relevant document as the the first returned doc-
ument and incrementally adding a new document to the result list by selecting a
document that maximizes the MMR function which combines the relevance of the
document and the dissimilarity of the document to the documents in the current
result list. However, our MCC method is different from the MMR retrieval method
in the following aspects. First, MMR generates the result with only one seed (i.e.,
the most relevant document) while MCC uses each expert with a required skill to
initialize a candidate team and the final team is the one with the least ComCost
among all the candidate teams. Second, the second term in the MMR function mea-
sures the maximal dissimilarity between the new document and the documents on
the current result list, while MCC uses the average distance between the new team
member and the current team members. We believe that the average distance better
reflects the cost contribution of a new member to the team.
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To improve the speed of the algorithm, we propose a variation of the MCC
algorithm by using only an expert with the rarest required skill (i.e., the skill s
whose |C(s)| is the smallest among all the required skills) as the initial member
of a candidate team. Thus, the number of candidate teams is reduced to the
number of the skill holders of the the rarest required skill. We call this variation
of the MCC algorithm MCC-Rare. Its time complexity is O(p2×Cmin×Cmax),
where Cmin = min1≤i≤p |C(si)|.

5 Experimental Results

In this section, the proposed algorithms for finding a team of experts from a
graph G which minimizes ComCostG(T ) are evaluated. All the algorithms are
implemented in Java. The experiments are conducted on an Intel(R) Core(TM)
i7 2.80 GHz computer with 4 GB of RAM.
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Fig. 1. The combined cost values of different methods on the DBLP dataset

5.1 The Datasets and Experimental Setup

To the best of our knowledge, real datasets that completely match our problem
are not publicly available. Therefore, our proposed algorithms are evaluated on
the datasets that were previously used in this domain [11,10]. The DBLP and
IMDb data sets are used in the experiments. The DBLP XML data2 is used for
producing the DBLP graph. The dataset contains information about a set of
papers and their authors. For each paper, the paper title, the author names, and
the conference where it was published are specified. The same as in [11,10], only
the papers of some major conferences in computer science are used for building
the data graph, which include: sigmod, vldb, icde, icdt, edbt, pods, kdd,
www , sdm, pkdd, icdm, icml, ecml, colt, uai, soda, focs, stoc, and stacs.
The set of experts and their skills are generated in the same way as in [11,10].

2 http://dblp.uni-trier.de/xml/

http://dblp.uni-trier.de/xml/
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The experts are the authors that have at least three papers in the DBLP. The
skills of each expert is the set of keywords (terms) that appear in the titles of at
least two papers of the expert. Two experts are connected together if they have
at least two publications together. The weight of the edge between two experts

ni and nj is equal to 1− |pni
∩ pnj

pni
∪ pnj

| where pni is the set of papers of author ni.

The cost of an expert is set to be the number of publications of the expert. This
is based on the assumption that the more publications an expert has, the more
expertise the expert possesses, and thus the more expensive he/she is. The final
graph has 5,658 nodes (experts) and 8,588 edges.

The same as [10], we use the part of the IMDb dataset which contains in-
formation about the actors and the list of movies that each actor played in3.
It is preprocessed exactly the same as [10]. The communication cost between
each pair of experts are also calculated the same as the DBLP dataset. Due
to the space limit, more details are omitted. The cost of an expert is defined
as the number of movies the actor plays in. The graph has 6,784 nodes and
35,875 edges. Due to the space limit, most of the results are only presented
for the DBLP dataset. However, the results of the IMDb dataset show similar
trend.
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Fig. 2. The combined cost values of different methods on the IMDb dataset

The projects used in the experiments are generated as follows. We set the
number of skills in a project to 4, 6, 8 or 10. For each number of skills, 50
sets of skills are generated randomly, corresponding to 50 random projects. The
average result over the 50 projects for each number of skills is computed for each
algorithm. As a baseline for the comparisons, we also include the results of a
random method, which simply selects, among 10,000 random teams, the team
with the lowest combined cost for the required set of skills. We also include the
results of the Exact algorithm. It simply uses an exhaustive search to find the
best answer among all possible teams.

3 http://www.imdb.com/interfaces

http://www.imdb.com/interfaces
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Exact Random MCC-Rare MCC Replace
3.4% 9.7% 0.3% 3.2% 2.8%
0.000 0.000 0.580 0.000 0.031
Exact Approx MCC-Rare MCC Approx
6.4% 6.6% 3.5% 6.1%
0.000 0.000 0.018 0.000
Exact Replace MCC-Rare MCC
0.3% 12.1% 2.6%
0.034 0.000 0.000
Exact MCC MCC
3.1% 9.8%
0.000 0.000
Exact MCC-Rare
13.7%
0.000
Exact

Random

Approx

Replace

MCC

MCC-Rare

Fig. 3. Results of t-test to show the level of difference between the algorithms on the
DBLP dataset. The number of required skills is set to 4 and λ is set to 0.5.

5.2 Evaluation on Combined Cost

Figures 1 and 2 show the average combined cost values of teams for different
algorithms for DBLP and IMDb datasets receptively. Please note that the results
of the Exact algorithm is only provided for four and six skills. It is because by
increasing the number of required skills, the number of possible teams grows
exponentially. Thus, the Exact algorithm does not terminate in reasonable time
for eight or more skills. The results show that all of the algorithms outperform
the Random method. The results also suggest that the MCC method has the
lowest cost values among non-exact methods. The results of MCC-Rare and
Approx are very similar. In most of the cases, the Replace method has higher
combined cost value than other proposed methods. MCC-Rare uses only an
expert with the rarest required skill as the initial member of a candidate team.
Therefore, MCC-Rare considers less number of candidate teams than MCC
and thus its performance in terms of the combined cost is worse than the MCC
algorithm.

To see whether the results of different algorithms are significantly different
from each other, we run a t-test on each pair of methods. The results are shown
in Figure 3. In each cell, the first number shows the percentage difference between
the two methods (i.e., the absolute difference between the two values divided by
the average of the two values). The second number is the p value from the t-test
and the third row indicates which method has lower combined cost value (e.g.
the Exact method always has the lowest combined cost.). In terms of percentage
difference, the closest method to the Exact method is MCC. Their percentage
difference is only 0.3%. Also, the p-values indicate that all pairs of methods are
significantly different from each other except for MCC-Rare and Approx, which
are not significantly different although MCC-Rare is slightly better.
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Fig. 4. The communication cost values of different methods on the DBLP dataset

5.3 Evaluation on Communication Cost

Figure 4 shows the average communication cost values of teams for different algo-
rithms. The same as previous section, the results of the Exact algorithm is only
provided for four and six skills. Please note that none of the algorithms explicitly
minimize the communication cost. However, all of them implicitly minimize it
by minimizing the combined cost function. The results suggest that the Approx
algorithm has the lowest communication cost than among non-exact methods.
In addition, for four skills, its results are very close to the one for the Exact
method. Please note that by increasing the value of λ, the communication cost
decreases. This is an expected result based on Definition 4.

5.4 Evaluation on Personnel Cost

Figure 5 shows the average personnel cost values of teams for different algo-
rithms. As can be seen, MCC-Rare has the lowest personnel cost on all skill
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Fig. 5. The personnel cost values of different methods on the DBLP dataset
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Table 1. Run time in milliseconds of different algorithms on DBLP. λ is set to 0.5.

# Req. Skills Approx Replace MCC MCC-Rare Random Exact

3 2 1 3 1 23 1,331

4 3 1 9 2 37 4,537

5 7 1 15 3 46 86,115

6 28 2 63 5 98 1,415,856

numbers and for all λ values, even lower than the exact algorithm. Note that
the exact algorithm always finds the team with the lowest combined cost, which
may not have the lowest personnel cost. The results also show that the Random
method has the highest personnel cost,and the Approx algorithm has the sec-
ond highest personnel cost. Please note that by increasing the value of λ, the
personnel cost increases. This is also an expected result based on Definition 4.

5.5 The Run Time

Table 1 provides the run time of each method. It shows that the Replace algo-
rithm is the fastest among others. MCC-Rare and Approx are the second and
third respectively. MCC is the slowest among the 4 proposed methods, but still
much faster than the Random method. The results also show the unreasonable
run time of the Exact method and its inapplicability in practice.

6 Conclusions

We have proposed four algorithms for finding a team of experts in a social net-
work that minimizes both the communication cost and the personnel cost of the
team. The first algorithm is an approximation algorithm with a provable per-
formance bound. The other three algorithms use heuristics to find sub-optimal
solutions. Our experiments show that the MCC method has the lowest combined
cost among the non-exact methods, but its run time is higher than other pro-
posed heuristic or approximation algorithms. MCC-Rare reduces the run time
of MCC and has the second lowest combined cost. The Approx algorithm has
similar combined cost to MCC-Rare with a bit higher run time. The Replace
method is the fastest but with the highest combined cost among the proposed
methods. All the proposed methods are much faster than the Random and Exact
methods. The Random method has the highest cost. The results indicate that
the proposed methods are both effective and efficient.
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Abstract. Cascading processes, such as disease contagion, viral marketing, and
information diffusion, are a pervasive phenomenon in many types of networks.
The problem of devising intervention strategies to facilitate or inhibit such pro-
cesses has recently received considerable attention. However, a major challenge
is that the underlying network is often unknown. In this paper, we revisit the
problem of inferring latent network structure given observations from a diffusion
process, such as the spread of trending topics in social media. We define a family
of novel probabilistic models that can explain recurrent cascading behavior, and
take into account not only the time differences between events but also a richer set
of additional features. We show that MAP inference is tractable and can therefore
scale to very large real-world networks. Further, we demonstrate the effectiveness
of our approach by inferring the underlying network structure of a subset of the
popular Twitter following network by analyzing the topics of a large number of
messages posted by users over a 10-month period. Experimental results show that
our models accurately recover the links of the Twitter network, and significantly
improve the performance over previous models based entirely on time.

1 Introduction

Cascading processes, such as the spread of a computer virus or an infectious disease, are
a pervasive phenomenon in many networks. Diffusion and propagation processes have
been studied in a broad range of disciplines, such as information diffusion [1–4], social
networks [5, 6], viral marketing [7, 8], epidemiology [9], and ecology [10]. In previous
work, researchers have mostly focused on a number of optimization problems derived
from cascading processes, where the goal is to devise intervention strategies to either
maximize (e.g., viral marketing) or minimize (e.g., network interdiction, vaccination
programs) the propagation. However, these studies often assume that the underlying
network is known to the observer, which in practice is not true in many situations.

In this paper, we revisit the problem of inferring latent network structure given obser-
vations of a diffusion process. For example, by observing a disease epidemic, we want
to infer the underlying social contact network, or by observing the spread of trending
topics, we want to estimate the connectivity of the social media. Fig. 1 illustrates a case
of information diffusion in the popular Twitter network. The nodes represent a subset
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P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 499–514, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Information diffusion in the Twitter network (see PDF for colored version)

of the Twitter users that have posted about a common trending topic, and the directed
edges represent the “following” relation between the users. There is a clear pattern in
the figure. The bigger and darker nodes, followed by the smaller and lighter nodes,
form the hubs of the diffusion process. By looking at the time-stamps of the messages
and at the underlying network structure, we observe that most information flows initiate
at a hub node and spread across the network to reach other hub nodes and their follow-
ers. However, it is non-trivial to come up with such a picture simply by looking at the
time-stamps of the messages, since without knowing the underlying network structure,
we cannot decide from whom a node copied the information from. Intuitively, mes-
sages carry implicit information about the social relations among users. For instance,
users who repeatedly post messages about the same topic within a short period of time,
are more likely to be connected. Thus, a motivating application of this paper is to what
extent we can estimate the relations in social networks by analyzing the messages pub-
lished by users over time.

This type of latent network inference problem based on the time-stamps of infection
(or, information-reproduction) events has received increasing interest over the past few
years [1–3]. Previous work was largely based on two major assumptions: 1) the diffu-
sion process is causal (i.e., not affected by events in the future), and 2) infection events
closer in time are more likely to be causally related (e.g., according to an exponential,
Rayleigh, or power-law distribution). While the causality assumption is indeed crucial
and always satisfied in practice, we realize that there are many other factors that can
be highly informative as far as the causality relations are concerned. For example, the
time-stamps at which two users publish their tweets are important to decide whether
they are related, but other factors such as the language or the content of the messages
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can be as important. Even if the two messages are close in time, they are unlikely to be
related if the messages are written in different languages. Further, previous models in
the literature are mostly focused on monotonic processes, while real-world processes
are often recurrent. For instance, it is very common for one user to post about the same
topic multiple times on Twitter, or purchase the same item regularly on Amazon.

Contributions. Motivated by these challenges, we define a family of novel probabilistic
models that generalize previous models based solely on time. We propose a primary
approach MONET that can handle recurrent diffusion processes. Further, we consider
a richer set of additional features for infection events, defining novel feature-enhanced
models that can better explain the observed data. With distributed optimization and
convex objective functions, we can efficiently solve the problem of inferring the most
probable latent network structure. Using additional features such as the languages of
the messages and Jaccard indexes between the messages, we can accurately recover
the links of the Twitter network by analyzing the topics of a large number of messages
posted by a subset of the Twitter users over a 10-month period. Experimental results
show that our models significantly improve the accuracy of the estimates over previous
models by as much as 78.7%.

2 Problem Definition

We consider a diffusion process across a network represented by a directed, weighted
graph G = (V, E). Let A = {αjk|j, k ∈ V, j �= k} be the adjacency matrix of weights.
A directed edge (j, k) has weight αjk � 0 that denotes the pairwise transmission rate
from node j to node k. For example, in the case of an infectious disease spreading
through a population, V represents a group of individuals and E represents the strength
of the social contacts among them. In the case of an invasive species colonizing a new
territory, V represents patches of land and E represents the connectivity between them.
We assume that the diffusion process is stochastic but causal, that is, it depends on the
past history but not on the future. Specifically, we consider a diffusion process that starts
with one or more nodes, and spreads across the network subject to an independent local
probabilistic model of “infection”, where a node infects its neighbors independently of
the status of other nodes in the network [5].

When studying such diffusion processes, the underlying network is often unknown
(latent). However, we assume that one can observe a set of cascades of “infection” (or,
information-reproduction) events. A cascade is a sequence of infection events

π = {(v0, t0), · · · , (vN , tN)}

during a given time interval T , where vi ∈ V is a node that becomes infected at time ti.
T is the horizon of cascade π. Note that different cascades may have different horizons.
For example, in the Twitter network, each cascade corresponds to a trending topic, and
we have an entry (vi, ti) for each tweet posted by user vi at time ti. Given a proba-
bilistic model P (π|G) that gives the probability of observing a certain cascade π when
the underlying network is G, the problem of inferring the latent network structure from
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Fig. 2. Feature-enhanced probabilistic model

observed cascades has received considerable attention [1–3]. It is usually assumed that
V is known but E is unknown, and the goal is to find a (weighted) graph

G∗ = arg max
G

M∏
c=1

P (πc|G)

that maximizes the probability of observing cascades π1, · · · , πM , which are assumed
to be i.i.d. (independent, identically distributed) realizations of the underlying diffusion
process.

The building block to define P (·) is the likelihood function f(tk|tj ; αjk) that gives
the probability density that node vj infected at time tj infects node vk at time tk (see
below for more details). Such models are centered on the time differences between the
infection events of a cascade, and exploit the causal nature of the diffusion process by
setting the likelihood to zero whenever tk − tj < 0. Further, they assume that events
closer in time are more likely to be causally related. For instance, if node vk became
infected shortly after node vj was infected, this is considered as an indication that the
two events are causally related (i.e., vk was infected by vj). These time-based models
are the foundation of our work.

While time is indeed a crucial element of the network inference problem, in practical
applications, observations of a diffusion process often carry additional key information.
For example, the diagnosis of an infection often comes with additional information
about the specific strain. When a topic or a rumor spreads through a social network,
one can also observe the context in which it appears. This motivates our definition of a
generalized cascade

πg = {(v0, t0, f0), · · · , (vN , tN , fN)} (1)

where vi ∈ V is a node infected at time ti, and fi ∈ F is a feature vector describing
the additional information available for the i-th infection event. Using the additional
information contained in a generalized cascade, we can define a generalized feature-
enhanced probabilistic model where the probability of a transmission event depends
not only on the time differences, but also on the additional features. Specifically, we use
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a probability density function f(tk, fk|tj , fj ; αjk) as a building block, which depends
causally on the relative time difference tk−tj as well as on the additional features fk and
fj . Fig. 2 gives an example of the difference between previous models that are based
solely on time and a case of our feature-enhanced models where f(tk, fk|tj , fj ; αjk)
depends on ||tk − tj || + ||fk − fj ||. Node 3 is considered to be more related to node 1
than node 2 by our feature-enhanced models, while it is determined to be more related
to node 2 by models based only on time.

Furthermore, previous models are focused on monotonic diffusion processes, while
most real-world processes are recurrent. For example, it is common for one user to post
about the same topic multiple times on Twitter, or purchase the same item multiple
times on Amazon. Repeated posts of the same topic show a higher level of interest in
that topic, and exchanged posts of the same topic between a group of nodes also show
a higher level of connectivity in that group. We take these factors into account in our
feature-enhanced models and assign respective reward/penalty to each scenario.

There are two different ways of modeling a diffusion process where nodes can be
infected multiple times in one cascade. The first model considers an infection event as
the result of all previous events, and thus we call it non-splitting. By contrast, the second
model considers an infection event of a node as the result of all previous events up to its
last infection. This model is memoryless and thus we call it splitting. We mainly focus
on the non-splitting model in this section, but the results can be extended to the splitting
case. We will later present experimental results in Section 4 for both non-splitting and
splitting models.

2.1 Generalized Cascade Model

We first recall some standard notation from previous literature, and then define our
feature-enhanced models based on generalized cascades.

Recap. Recall the standard notation from [1] and [11]. Given that node j was infected
at time tj , the survival function of edge (j, k) is the probability that, by time tk, node k
was not infected by node j. That is,

S (tk|tj ; αjk) = 1 − F (tk|tj ; αjk) , (2)

where αjk denotes the transmission rate from node j to node k, and F (tk|tj ; αjk)
is the cumulative distribution function. Further, the hazard function (or, instantaneous
infection rate) of edge (j, k) is given by

H (tk|tj ; αjk) =
f (tk|tj ; αjk)

S (tk|tj ; αjk)
, (3)

where

f (tk|tj ; αjk) =
d

dt
F (t|tj ; αjk)

∣∣∣∣
tk

is the likelihood function. Table 1 shows the survival and hazard functions based on the
exponential, Rayleigh, and power-law distribution.
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Table 1. Parametric Models [1]

Model Likelihood Function Survival Function Hazard Function
f (tk|tj ; αjk) S (tk|tj ; αjk) H (tk|tj ; αjk)

Exponential
{

αjke−αjk(tk−tj) if tj < tk

0 otherwise
e−αjk(tk−tj) αjk

Rayleigh

⎧⎨⎩ αjk (tk − tj) e−αjk
(tk−tj)2

2 if tj < tk

0 otherwise
e−αjk

(tk−tj)2

2 αjk (tk − tj)

Power Law

⎧⎨⎩
αjk

δ

(
tk − tj

δ

)−1−αjk
if tj < tk − δ

0 otherwise

(
tk − tj

δ

)−αjk αjk

tk − tj

Multiple Occurrences. Real-world diffusion processes are often recurrent, that is, we
often observe multiple occurrences of the same node in one cascade. With multiple
occurrences of node k and node j, the survival function for the non-splitting case is

S (tk|tj ; αjk) =
∏

k:t
(1)
k

�Tc

∏
1�i�Nc

k

∏
j �=k:t

(1)
j <t

(i)
k

S
(
t
(i)
k |tj ; αjk

)

=
∏

k:t
(1)
k

�Tc

∏
1�i�Nc

k

∏
j �=k:t

(1)
j <t

(i)
k

∏
1���Nc

j (t
(i)
k

)

S
(
t
(i)
k |t(�)j ; αjk

)
,

where T c is the horizon of cascade πc, and t
(i)
k , i ∈ {0, · · · , N c

k , N c
k + 1} denote the

time-stamps of node k infections in cascade πc. We assign two special time-stamps for
every node: t

(0)
k = 0 and t

(Nc
k+1)

k = T c. N c
k denotes the number of node k infections in

cascade πc. N c
j (t(i)k ) denotes the number of node j infections before the i-th infection

of node k. Similarly, the hazard function is given by

H
(
t
(i)
k |t(�)j ; αj,k

)
=

f
(
t
(i)
k |t(�)j ; αj,k

)
S
(
t
(i)
k |t(�)j ; αj,k

) .

Additional Features. Consider two feature vectors fk, fj ∈ F associated with node
k, j ∈ V in a cascade. Let d (fk, fj) denote the distance between the two feature vectors.
We include an extra term e−d(fk,fj) in the likelihood function to reflect this distance
factor. For example, given an exponential distribution, we have

f (tk, fk|tj , fj ; αjk) =

{
γαjke−d(fk,fj)e−αjk(tk−tj), if tj < tk

0, otherwise

where γ is a normalization constant. Thus, the survival function is given by

S (tk|tj , fj ; αjk) = 1 − F (tk|tj , fj ; αjk) = 1 −
∫
F

∫ tk

tj

f (t, f |tj , fj ; αjk) dtdf

= e−αjk(tk−tj)
∫
F

γe−d(f,fj)df = e−αjk(tk−tj). (4)
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Then, the hazard function is

H (tk, fk|tj , fj ; αjk) =
f (tk, fk|tj , fj ; αjk)

S (tk|tj , fj ; αjk)
=

{
γαjke−d(fk,fj), if tj < tk

0, otherwise
(5)

2.2 MAP Inference

Given independent cascades, the likelihood of a set of cascades {π1
g , · · · , πM

g } is the
product of the likelihood of each cascade:∏

1�c�M

f
(
πc

g;A
)
, (6)

where A = {αjk|j, k ∈ V, j �= k} is a weighted adjacency matrix of transmission
rates. Given a cascade πc

g , the probability that node k was not infected by time T c is the
product of the survival functions of the infected nodes. The formulation can be extended
according to the generalized cascade model discussed in Section 2.1. For example, if a
node was infected multiple times during the observation window, this repeated lack of
ability to infect node k should also be considered. Specifically, the probability that node
k was not infected by time T c is∏

j:t
(1)
j

�Tc

∏
1�i�Nc

j

S
(
T c|t(i)j , f

(i)
j ; αjk

)
.

Given the parents of the infected nodes, infections are assumed to be conditionally
independent. Thus, the likelihood of the observed cascade πc

g is

f
(
πc

g;A
)

=
∏

j:t
(1)
j �Tc

∏
1�i�Nc

j

f
(
t
(i)
j , f

(i)
j |πc

g\
(
j, t

(i)
j , f

(i)
j

)
;A
)

.

Given the i-th infection of node k, the likelihood of node j being its first parent is

f
(
t
(i)
k , f

(i)
k |tj , fj ;A

)
=

∏
s�=j:t

(1)
s <t

(i)
k

∏
1�p�Nc

s (t
(i)
k

)

S
(
t
(i)
k |t(p)

s , f (p)
s ; αs,k

)
×

∑
1���Nc

j (t
(i)
k

)

f
(
t
(i)
k , f

(i)
k |t(�)j , f

(�)
j ; αj,k

)∏
q �=�

S
(
t
(i)
k |t(q)

j , f
(q)
j ; αj,k

)
.

Thus, the likelihood of the observed cascade πc
g is

f
(
πc

g;A
)

=
∏

k:t
(1)
k

�Tc

∏
1�i�Nc

k

⎛⎜⎝ ∑
j:t

(1)
j <t

(i)
k

f
(
t
(i)
k , f

(i)
k |tj , fj ;A

)⎞⎟⎠ .

Combine the two equations above and include the condition s = j, we have

f
(
πc

g;A
)

=
∏

k:t
(1)
k

�Tc

∏
1�i�Nc

k

⎛⎜⎝ ∏
s:t

(1)
s <t

(i)
k

S
(
t
(i)
k |ts, fs; αs,k

)
×

∑
j:t

(1)
j <t

(i)
k

∑
1���Nc

j (t
(i)
k

)

f
(
t
(i)
k , f

(i)
k |t(�)j , f

(�)
j ; αj,k

)
S
(
t
(i)
k |t(�)j , f

(�)
j ; αj,k

)
⎞⎟⎠ .
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Add the information that some nodes were never infected during the horizon T c, and
then,

f
(
πc

g;A
)

=
∏

k:t
(1)
k

�Tc

∏
1�i�Nc

k

∏
tm>Tc

S
(
T c|t(i)k , f

(i)
k ; αi,m

)
×

∏
s:t

(1)
s <t

(i)
k

S
(
t
(i)
k |ts, fs; αs,k

)
×

∑
j:t

(1)
j <t

(i)
k

∑
1���Nc

j (t
(i)
k

)

H
(
t
(i)
k , f

(i)
k |t(�)j , f

(�)
j ; αj,k

)
. (7)

Eq. (7) gives the likelihood of cascade πc
g for the non-splitting model. However, for the

splitting case, this likelihood is given by

f
(
πc

g;A
)

=
∏

k:t
(1)
k

�Tc

∏
1�i�Nc

k

∏
tm>Tc

S
(
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)
×

∏
s:t

(1)
s <t
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k
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s (t
(i−1)
k

)<p�Nc
s (t

(i)
k

)

S
(
t
(i)
k |t(p)

s , f (p)
s ; αs,k

)
×

∑
j:t

(1)
j <t

(i)
k

∑
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j (t
(i−1)
k

)���Nc
j (t

(i)
k

)

H
(
t
(i)
k , f

(i)
k |t(�)j , f

(�)
j ; αj,k

)
. (8)

Eq. (8) is similar to Eq. (7) except that we only consider the segment between the
(i − 1)-th and i-th occurrence of node k for the survival and hazard function.

Problem Definition. Our goal is to infer the connectivity and estimate the infection
rate αjk for each pair of nodes (j, k) such that the likelihood of observed cascades
{π1

g , · · · , πM
g } is maximized. Specifically,

minimizeA −
∑

1�c�M

log f
(
πc

g;A
)

subject to αjk � 0, j, k ∈ V, j �= k.

(9)

where A = {αjk|j, k ∈ V, j �= k} are the variables. The inferred edges of the network
are those pairs of nodes with infection rate αjk > 0.

3 Proposed Approach: MONET

In this section, we discuss the properties of the optimization problem arising from the
MAP inference task in our feature-enhanced probabilistic models defined in Section 2.
By Eq. (6) and Eq. (7), the log-likelihood of cascades {π1

g , · · · , πM
g } is

L
(
{π1

g , · · · , πM
g };A

)
=

∑
1�c�M

Φ1(π
c
g;A) + Φ2(π

c
g;A) + Φ3(π

c
g;A), (10)

where for each cascade πc
g ∈ {π1

g , · · · , πM
g },
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Φ1(π
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g; A) =

∑
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m >Tc

log S
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)
.

The above equations are a strict generalization of the ones presented in [1], that is, we
recover the same formulation where there are no multiple occurrences and we do not
consider any additional features other than time. Further, we also generalize several
results of the model in [1] to our feature-enriched setting, for both splitting and non-
splitting cases. Formally,

Theorem 1. The following results hold:

– Given any distance functions, log-concave survival functions, and concave hazard
functions, the problem defined by Eq. (9) is convex in A.

– The optimization problem defined by Eq. (9) is convex for the feature-enhanced
models with exponential, Rayleigh, or power law distribution.

– The solution to Eq. (9) gives a consistent maximum likelihood estimator.

The proof of Theorem 1 is similar to that of [1], and is omitted for space reasons.
We call our primary approach MONET, which provides non-splitting and splitting

solutions for the network inference problem defined by Eq. (9) where nodes can be
repeatedly infected.

Analyzing MONET. We discuss some properties of the solution to the optimization
problem defined in Eq. (9) for the generalized feature-enhanced models with the ex-
ponential, Rayleigh, and power-law distribution. This is equivalent to maximizing the
log-likelihood defined in Eq. (10). Clearly, the expression in Eq. (10) depends on the
transmission rate αjk and the relative time difference tk − tj between each occurrence
of node j and node k. Note that it does not depend on the absolute values of the time-
stamps. In general, however, Eq. (10) depends on the absolute values of the feature
vectors (i.e., it depends not only on the distance between observed feature vectors), due
to the normalization constant γ.

As discussed in [1], Φ1 and Φ3 encourage sparse solutions by imposing negative
weights on A. Specifically, Φ1 penalizes αjk based on the relative time difference tk−tj
and Φ3 penalizes αki for uninfected node i based on T c − tk (i.e., until the horizon cut-
off). Note that MONET only infers impossible edges based on 0 transmission rates. Due
to finite observation window, the lack of ability to infect some node i within time T c

does not mean it is impossible to infect node i (i.e., there is no edge).
The term Φ2 emphasizes the intuition that infected nodes must have at least one par-

ent (appearing before them in a cascade) by which they were infected. If this is not
ensured, Φ2 = −∞ will be negatively unbounded. The additional features used in our
models only affect the term Φ2. Specifically, infected nodes tend to select those that
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are more similar to them as their parents. Further, in the non-splitting case, only the
first occurrence of each node in the cascade is affected by this hard constraint (further
occurrences can still be explained by the parent of the first occurrence). However, sim-
ply using the first explanation can be too penalizing, and adding more parents might
improve the likelihood.

Computational Aspects. As in previous work, we can parallelize the solution to the
optimization problem defined in Eq. (9). Given a network with n nodes, this optimiza-
tion problem has O(n2) variables, but the objective function can be separated into n
independent sub-problems with O(n) variables each. For each node k = 1, · · · , n, we
optimize the k-th column of the matrix A of transmission rates, solving for (n − 1)
unknown transmission rates {αjk} where j �= k. To compute the k-th column, we
only require the infection times of the nodes in those cascades where node k appears.
Optimal columns are joined to form a globally optimal transmission rate matrix.

If node j never appears before node k in any cascade, we have no evidence to suggest
the existence of a directed edge (j, k). That is, αjk only contributes to the non-positive
term Φ2 in Eq. (10). Thus, in every iteration, we set αjk to the optimal value 0 to
simplify the objective function L

({π1
g , · · · , πM

g };A).
Any convex optimization package can be used to solve the optimization problem.

However, regular packages such as CVXOPT [12] could not handle the scale of our
Twitter dataset and ran out of memory. Thus, we use the limited-memory BFGS algo-
rithm with box constraints (L-BFGS-B) [13] to solve Eq. (9) and Eq. (10) by implicitly
approximating the inverse Hessian matrix. We use the box constraints to enforce the
non-negativity of the transmission rates.

4 Experimental Results

We evaluate the performance of our models by analyzing the diffusion of information in
the popular Twitter network. Using a dataset crawled from January to October 2010 that
contains 9,409,063 tweets published by 66,679 Twitter users, we analyze the cascading
behavior of some trending topics and try to infer the underlying network structure.

4.1 Experimental Setup

Dataset Description. We conduct experiments on a subset of the Twitter network,
which contains 66,679 nodes and 240,637 directed links. Each node represents a Twit-
ter user and each edge represents a following relation. Contrary to previous work [1, 2],
the adjacency matrix (ground truth) of this subgraph has also been crawled and thus is
entirely known. In order to identify trending topics, we group the messages posted by
these users according to their Hashtags1. We assume that messages containing the same
Hashtag form a (generalized) cascade of a particular topic. Note that certain cascades
corresponding to popular Hashtags might not be explained by our generative models.
For example, #iphone is a widespread Hashtag that users often proactively include in
their tweets rather than passively copy from another user. Therefore, we select a subset

1 Hashtags are words or phrases prefixed with the symbol # to label groups and topics.
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of not-so-popular Hashtags (e.g., #Mokpo and #GagaSouthAmerica2011), which are
more specific and “local”. That is, we consider those “local” cascades such that if node
k writes about a Hashtag at time tk, then it must have followed (or, have copied from)
some node that wrote about the same Hashtag before time tk.

This assumption is particularly important to our experiments. Since we only have a
subset of the whole Twitter network, infected nodes observed in a cascade might have
copied the information from some node that does not belong to this subset of users.
Since we observe that MONET performs better on the cascades where the “locality” in-
tuition holds, we trace the propagation of 500 Hashtags (that consist of 103,148 tweets)
across the Twitter network from January to October 20102. The average length of the
cascades is 166, and there are a total of 2,521 unique users. On average, over 75% of
the users post multiple times of the same Hashtag in each cascade. The inference is
focused on the top 200 users that belong to the largest number of cascades. The size of
the dataset is such that this inference problem can be solved by NETRATE and NETINF.

Feature Model. When collecting the Hashtags, we also record the entire message (or,
tweet) containing the Hashtag. This represents the additional feature fj for each node
j ∈ V in the generalized cascade model. In this paper, we use two primary distance
metrics associated with texts: language and Jaccard index.
� Language. We observe that messages belonging to the same cascade (i.e., with the

same Hashtag) are often written in several languages. For example, a cascade start-
ing with an English tweet can spread to multilingual users who post tweets in Italian
or Chinese but keep the original Hashtag. Intuitively, tweets in different languages,
even if published closely in time, should not be considered as an implication of
connectivity. Let �(·) be a function mapping a tweet to its language. We define a
distance function with respect to language

dL(fi, fj) =
{

0, �(fi) = �(fj);
1, �(fi) �= �(fj).

The language information is computed using the n-gram model proposed in [14].
Note that this language identification algorithm provides noisy estimates.

� Pairwise similarity. We include pairwise similarity (a.k.a. Jaccard index) as an-
other distance metric in our models. Given two tweets fj and fk posted by node j
and node k, the distance function with respect to Jaccard index is defined as

dJ (fi, fj) = 1 − Jjk = 1 − |fj ∩ fk|
|fj ∪ fk| ,

where we consider the tweets as sets of words. Intuitively, besides the time factor,
node k is more likely to have copied the information from node j if their tweets
have higher similarity.

� Combination. We also consider both language and Jaccard similarity as a com-
bined feature, defining another distance function

dL+J(fi, fj) = wJdJ (fi, fj) + wLdL(fi, fj).

2 We will release an anonymized dataset due to Twitter’s data privacy policy.
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where wJ and wL are the weights associated with the language and the Jaccard
similarity feature. Since Jaccard similarity is typically small, we use a weight wJ

to ensure that its contribution is comparable to that of the language distance.

Note that the normalization constant γ in Eq. (5) is hard to compute, since it involves
a summation over all possible messages of up to 140 characters (the maximum length
allowed by Twitter). In our experiments, we consider γ as fixed and independent of fj .
In the case of language, this is equivalent to assuming that there are roughly the same
number of possible messages for any given language.

Our optimization framework contains a hierarchical set of models for the MAP in-
ference problem: splitting/non-splitting with multiple occurrences (MONET), language
(MONET+L), Jaccard index (MONET+J), and their combination (MONET+LJ).

Evaluation Measures. To evaluate the performance of our feature-enhanced models,
we consider the following aspects:
� Baseline. We use NETRATE [1] and NETINF [2] as two baselines to compare with

our models. Since repeated occurrences are not allowed in NETRATE, we keep
exactly one copy of each node and remove all other duplicates from each cascade.
We use the true number of edges as an input parameter for NETINF. Due to license
issues with the optimization software, we do not compare with CONNIE [3] in
this paper, but its performance is comparable with that of NETRATE and NETINF

according to previous literature.
� Quantitative performance. We use precision, recall, and F1-score to evaluate the

performance of our models against the baselines. These measures focus on the num-
ber of correct pairs of nodes inferred. For example, given a pair of nodes (k, j) such
that k is following j, if our method suggests that αjk > 0 (i.e., information flows
from j to k), then consider it as a true positive (TP). False positives (FP) and false
negatives (FN) are defined in a similar way.

� Efficiency. We evaluate the efficiency (i.e., elapsed time required for obtaining the
optimum) of our feature-enhanced models.

All algorithms are implemented using Python with the Fortran implementation of L-
BFGS-B available in Scipy [15], and all experiments are performed on a machine run-
ning CentOS Linux with a 6-core Intel x5690 3.46GHZ CPU and 48GB memory.

4.2 Quantitative Performance

We trace the propagation of a set of 500 Hashtags that consist of 103,148 tweets across
a subset of the Twitter network that contains 66,679 nodes and 240,637 directed links.
We want to infer the connectivity of the top 200 users that appear in the largest number
of these 500 cascades. We evaluate our models against NETRATE and NETINF by com-
paring the inferred network and the ground truth via three metrics: precision, recall, and
F1-score. F1-score, the harmonic mean of precision and recall, measures the accuracy
of the estimates. The primary model MONET handles the basic scenario where nodes
can have multiple occurrences in one cascade. As discussed in Section 2.1, MONET

can be extended to consider a set of additional features, such as language (MONET+L),
Jaccard similarity (MONET+J), and both (MONET+LJ).
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Table 2. Performance comparison on Twitter (non-splitting/exponential)

METRIC METHOD
NETINF NETRATE MONET MONET+L MONET+J MONET+LJ

PRECISION 0.362 0.592 0.434 0.464 0.524 0.533

RECALL 0.362 0.069 0.307 0.374 0.450 0.483

F1-SCORE 0.362 0.124 0.359 0.414 0.484 0.507

TP 518 99 439 535 644 692

FP 914 62 573 618 586 606

FN 914 1333 993 897 788 740

Table 3. Performance comparison on Twitter (splitting/exponential)

METRIC METHOD
NETINF NETRATE MONET MONET+L MONET+J MONET+LJ

PRECISION 0.362 0.592 0.514 0.516 0.531 0.534

RECALL 0.362 0.069 0.599 0.605 0.618 0.635

F1-SCORE 0.362 0.124 0.554 0.557 0.571 0.581

TP 518 99 858 867 885 910

FP 914 62 810 812 781 793

FN 914 1333 574 565 547 522

Upper Bound of Recall. Similar to previous models, MONET requires node j to appear
at least once before node k for αjk > 0 to be possibly inferred (i.e., information flows
from j to k). For our dataset, no more than 86.4% of the edges in the ground truth
can be recovered given the cascades. This represents an upper bound on recall for any
probabilistic model based on the causality of the diffusion process.

Exponential Model. Table 2 and Table 3 compare the precision, recall, and F1-score
of our non-splitting and splitting models introduced in Section 2.2 with NETRATE and
NETINF according to the exponential distribution (see Table 1). NETRATE tends to be
highly conservative when estimating the connectivity of the Twitter network, and thus
has good precision but very low recall. NETINF knows how many edges there are in
the true network, and slightly improves over NETRATE. Without knowing the ground
truth, MONET balances the precision-recall trade-off and improves the accuracy over
NETRATE by 65.5% for the non-splitting case and 77.6% for the splitting case. As
expected, MONET+L, MONET+J, and MONET+LJ further improve the F1-score on
top of MONET with the help of additional features. In particular, MONET+LJ improves
the accuracy by as much as 78.7% over NETRATE and 37.7% over NETINF for the
splitting case.

Rayleigh Model. Table 4 and Table 5 compare the precision, recall, and F1-score of our
non-splitting and splitting models with NETRATE and NETINF according to the Rayleigh
distribution (see Table 1). Similarly, without knowing the ground truth, MONET bal-
ances the precision-recall trade-off and improves the accuracy over NETRATE by 55.7%



512 L. Wang, S. Ermon, and J.E. Hopcroft

Table 4. Performance comparison on Twitter (non-splitting/Rayleigh)

METRIC METHOD
NETINF NETRATE MONET MONET+L MONET+J MONET+LJ

PRECISION 0.354 0.560 0.420 0.454 0.479 0.484

RECALL 0.354 0.072 0.218 0.262 0.286 0.294

F1-SCORE 0.354 0.127 0.287 0.332 0.358 0.366

TP 507 103 312 375 409 421

FP 925 81 430 451 445 449

FN 925 1329 1120 1057 1023 1011

Table 5. Performance comparison on Twitter (splitting/Rayleigh)

METRIC METHOD
NETINF NETRATE MONET MONET+L MONET+J MONET+LJ

PRECISION 0.354 0.560 0.480 0.493 0.495 0.499

RECALL 0.354 0.072 0.562 0.566 0.570 0.572

F1-SCORE 0.354 0.127 0.518 0.527 0.530 0.533

TP 507 103 805 811 816 819

FP 925 81 872 835 834 821

FN 925 1329 627 621 616 613

for the non-splitting case and 75.5% for the splitting case. MONET+L, MONET+J, and
MONET+LJ further improve the F1-score on top of MONET with the help of additional
features. In particular, MONET+LJ improves the accuracy by as much as 76.2% over
NETRATE and 33.4% over NETINF for the splitting case.

Remarks. We have similar observations for the performance comparison according
to the power-law distribution, but the tables are omitted here due to the space limita-
tion. Our results suggest that the splitting model performs better than the non-splitting
one, with much more true positives and far fewer false negatives. This suggests that
the information diffusion in the Twitter network is better approximated by a memory-
less process. Specifically, how a message posted by a Twitter user will be retweeted
is not relevant to that user’s previous history. Further, the exponential model provides
slightly more accurate estimates over the Rayleigh one. The performance improvement
achieved using the language information is smaller compared to that achieved using Jac-
card similarity, but MONET+L improves over MONET and MONET+LJ improves over
MONET+J. This suggests that the language feature does provide some useful informa-
tion, although its effectiveness is likely to be limited by the noisy estimates provided by
the language detection algorithm we use in our experiments.

4.3 Efficiency

Solving each of the sub-problems defined in the basic model MONET (i.e., optimizing
one column of the transmission rate matrix A) takes about 2 minutes on average using
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L-BFGS-B with the history parameter m = 10. The running time, however, depends on
the specific column being optimized, and ranges from a few seconds to several minutes.
Introducing additional features requires an additional preprocessing time (in the order of
minutes) to precompute the languages of the messages and the Jaccard indexes between
the messages, but it does not significantly affect the running time of the optimization
procedure.

5 Related Work

A substantial amount of work has been devoted to the task of studying cascading pro-
cesses in large-scale networks. Largely motivated by marketing applications, the pre-
dominant focus over the past decade has been on optimization problems, where the
goal is to maximize the spread of a certain cascade through a given network, either by
selecting a good subset of nodes to initiate the cascade [5] or by applying a broader
set of intervention strategies such as node and edge additions [7, 10]. As networks and
networked systems are playing an increasingly important role in a number of disci-
plines, ranging from the interconnections between financial systems to epidemiology
and ecology, researchers have recently begun to consider the problem of inferring the
unknown (latent) underlying network given some observed cascading behavior [1–3].
Specifically, several generative probabilistic models have been developed to explain
cascading behaviors, where the task of inferring the underlying network is tractable, in-
volving the optimization of submodular [2] or convex objective functions [1, 3]. These
models have been shown to perform well on a number of synthetic datasets, but there
has been very limited experimentation on real-world scenarios. Moreover, the Meme-
Tracker dataset [2] commonly used in previous work has no ground truth.

There are several obstacles when trying to apply these models to real-world prob-
lems, such as inferring the latent structure of a social network based on the diffusion of
trending topics. Specifically, cascades are often formed by a mixed set of sub-cascades
and it is difficult to obtain i.i.d. samples. However, real-world cascades also present a
range of new opportunities to define richer probabilistic models. Previous work com-
bined latent features with explicit ones to solve structural link prediction problems [16].
In this paper, we propose a feature-enhanced framework to address the scenario where
nodes can be repeatedly infected. We develop a family of novel probabilistic models
based not only on the time intervals between infection events, but also on a set of ad-
ditional features, such as the content and the language of the messages exchanged in
social media.

6 Conclusions

In this paper, we propose a family of feature-enhanced probabilistic models to infer
the latent network structure from observations of a diffusion process. We develop a
primary model called MONET with non-splitting and splitting solutions that can explain
recurrent processes where nodes can be repeatedly infected (i.e., multiple occurrences
in one cascade). Further, our models take into account not only the time differences
between infection events, but also a richer set of features. The MAP inference problem,
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which still involves the optimization of a convex objective function, can be decomposed
into smaller sub-problems that we can efficiently solve in parallel. Our experiments on
the Twitter network show that our models successfully recover the underlying network
structure, and significantly improve the performance over previous models based solely
on time.

Acknowledgement. This research was partially supported by the U.S. AFOSR Grant
FA9550-09-1-0675 and NSF Grant 0832782.
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Abstract. Influence maximization is the problem of finding a small set
of seed nodes in a social network that maximizes the spread of influence
under a certain diffusion model. The Greedy algorithm for influence max-
imization first proposed by Kempe, later improved by Leskovec suffers
from two sources of computational deficiency: 1) the need to evaluate
many candidate nodes before selecting a new seed in each round, and 2)
the calculation of the influence spread of any seed set relies on Monte-
Carlo simulations. In this work, we tackle both problems by devising
efficient algorithms to compute influence spread and determine the best
candidate for seed selection. The fundamental insight behind the pro-
posed algorithms is the linkage between influence spread determination
and belief propagation on a directed acyclic graph (DAG). Experiments
using real-world social network graphs with scales ranging from thou-
sands to millions of edges demonstrate the superior performance of the
proposed algorithms with moderate computation costs.

1 Introduction

The social network of interactions among a group of individuals plays a funda-
mental role in the spread of information, ideas, and influence. Such effects have
been observed in real life, when an idea or an action gains sudden widespread
popularity through “word-of-mouth” or “viral marketing” effects. For example,
free e-mail services such as Microsoft’s Hotmail, later Google’s Gmail, and most
recently Google’s Google+ achieved wide usage largely through referrals, rather
than direct advertising. Another more recent example is the Hewlett-Packard
(HP) TouchPad fire sale event [1]. The company slashed the price of TouchPad
by 75% to clear out inventory. Without any mass media advertisement or pub-
lic announcement, the move inadvertently generated an Internet phenomenon
– with Twitter and Facebook users sharing tips on websites where the product
was still in stock – and long lines at retailers as consumers jostled to pick up
TouchPads.

In viral marketing, one important question is given limited advertisement
resources, which set of customers should be targeted such that the resulting in-
fluenced population is maximized. Consider a social network modeled as a graph
with vertices representing individuals and edges representing connections or re-
lationship between two individuals. Under a specific diffusion model, the goal

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 515–530, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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of influence maximization (IM) is to find k vertices (seed nodes) in the graph
such that the expected number of vertices influenced by the k seeds is maxi-
mized [2,3,4]. Kempe et al. proved the submodularity of the influence spread
function and suggested a greedy scheme (henceforth referred to as Greedy al-
gorithm) with an incremental oracle that identifies, in each iteration, a new
seed that maximizes the incremental spread. The approach was proven to be
a (1 − 1/e)-approximation of the IM problem. However, there are major limi-
tations with this method as previously mentioned. Follow-up works either only
addresses one of the deficiencies [5,6] or sacrifices accuracy for less computation
time [7].

In this work, we first establish the linkage between influence spread compu-
tation and belief propagation on a Bayesian network (modeled as a directed
acyclic graph – DAG), where the marginal conditional dependency corresponds
to the influence probabilities. Belief propagation has been extensively studied in
literatures, and thus many exact or approximation algorithms can be leveraged
to estimate the influence spread. For a general graph that contains loops, we
propose two approximation algorithms that prune some edges in the graph to
obtain a DAG that captures the bulk of influence spread. To reduce the number
of candidate seed nodes, we localize the influence spread region such that at each
round, only nodes that are affected by the previous selected seed need to be eval-
uated. Experimental study shows that the proposed algorithms can scale up to
massive graphs with millions of edges with high accuracy. On real-world social
network graphs, the proposed algorithms can achieve influence spread compa-
rable to that by Greedy algorithm and incur significant less computation costs.
They also outperform the scheme in [8] in achievable influence spread at the
expense of marginal increase in computation time.

The main contributions of this paper are summarized as follows:

– We cast the problem of inference spread computation on a DAG as an in-
stance of belief propagation on a Bayesian Network.

– We prove the #P-hardness of inference spread computation on a DAG.
– Two heuristics are proposed to construct DAGs from a general graph that

capture the bulk of influence spread.
– A fast algorithm is devised to incrementally update the DAG as more seeds

are added, and select candidate seeds.

The rest of this paper is organized as follows. In Section 2, we give a com-
prehensive review of the existing literature on influence spread maximization.
Section 3 presents theoretical results concerning influence spread on DAGs. In
Section 4, we devise two heuristics to reduce a general directed graph into a DAG
which captures the majority of influence spread. Improvements on seed selection
are discussed in Section 5. In Section 6, extensive experiment results are pre-
sented. Finally we conclude the paper and discuss future research directions in
Section 7.
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2 Related Work

In an effort to improve Greedy, Leskovec et al. [5] recognized that not all remain-
ing nodes need to be evaluated in each round and proposed the “Cost-Effective
Lazy Forward” (CELF) scheme. Experimental results demonstrate that CELF
optimization could achieve as much as 700-time speed-up in selecting seeds. How-
ever, even with the CELF, the number of candidate seeds is still large. Recently,
Goyal et al. proposed CELF++ [6] that has been shown to run from 35% to 55%
faster than CELF. However, the improvement comes at the cost of higher space
complexity to maintain a larger data structure to store the look-ahead marginal
gains of each node.

Chen et al. devises several heuristic algorithms for influence spread computa-
tion [7,8,9]. In Degree Discount [7], the expected number of additional vertices
influenced by adding a node v in the seed set is estimated based on v’s one
hop neighborhoods. It also assumes that the influence probability is identical
on all edges. In [8] and [9], two approximation algorithms, PMIA and LDAG
are proposed to compute the maximum influence set under IC and LT models,
respectively. In LDAG, it has been proven that under the LT model, computing
influence spread in a DAG has linear time complexity, and a heuristic on lo-
cal DAG construction is provided to further reduce the compute time. We have
proven in Section 3 that computing influence spread in a DAG under the IC
model remains #P-hard. The marked difference between the two results arises
from the fact that in the LT model, the activation of incoming edges is coupled
so that in each instance, only one neighbor can influence the node of interest in
an equivalent random graph model.

Another line of work explores diffusion models beyond LT and IC. Even-Dar et
al. [10] argue that the most natural model to represent diffusion of opinions in a
social network is the probabilistic voter model where in each round, each person
changes his opinion by choosing one of his neighbors at random and adopting
the neighbor’s opinion. Interestingly, they show that the straightforward greedy
solution, which picks the nodes in the network with the highest degree, is optimal.
Sylvester [11] studies the spread maximization problem on dynamic networks and
examines the use of dynamic measures with Greedy algorithm on both LT and
IC models. Chen et al. [12] consider a new model that incorporates negativity
bias and design an algorithm to compute influence on tree structures.

3 Influence Spread on Directed Acyclic Graphs

In this section, we consider the problem of computing influence spread given a
fixed seed set when the underlying social network is a DAG. We first show the
problem remains #P-hard, and then establish its equivalence to the computation
of marginal probabilities in a Bayesian network.

3.1 Problem Formulation

We consider a directed graph G = (V,E) with |V | = n vertices and |E| = m
edges. For every edge (u, v) ∈ E, p(u, v) denotes the probability of influence
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being propagated on the edge. In this paper, we adopt the Independent Cascade
(IC) model. Given a seed set S ⊆ V , the IC model works as follows. Let St ⊆ V
be the set of node (newly) activated at time t, with S0 = S and St∩St−1 = ∅. At
round t+1, every node u ∈ St tries to activate its neighbors in v ∈ V \

⋃
0≤i≤t Si

independently with probability p(u, v). The influence spread of S, denoted by
σ(S), is the expected number of activated nodes given seed set S.

Kempe et. al [4] proved two important properties of the σ(·) function: 1) σ(·)
is submodular, namely, σ(S ∪{v})− σ(S) ≥ σ(T ∪{v})−σ(T ) for all v ∈ V and
all subsets S and T with S ⊆ T ⊆ V ; 2) σ(S) is monotone, i.e. σ(S) ≤ σ(T ) for
all set S ≤ T . For any given spread function σ(·) that is both submodular and
monotone, the problem of finding a set S of size k that maximizes σ(S) can be
approximated by a simple greedy approach.

3.2 Hardness of Computing Influence Spread on DAGs

In [4], Kempe et. al proposed an equivalent process of influence spread under
the IC model, where at the initial stage, an edge (u, v) in G is declared to be live
with probability p(u, v) resulting in a subgraph of G. A node u is active if and
only if there is at least one path from some node in S to u consisting entirely of
live edges. In general graphs, the influencer-influencee relationship may differ in
one realization to another for bi-directed edges. In a DAG, on the other hand,
such relationship is fixed and is independent of the outcome of the coin flips at
the initial stage (other than the fact that some of the edges may not be present).
Let xu, u ∈ V denotes the binary random variable of the active state of node u,
namely, P (xu = 1) = p(u). For each node v in S, P (xv = 1) = 1. If a node u �∈ S
does not have any parent in G then P (xu = 1) = 0. From G, the conditional
probability p(xu|xPar(u)) is uniquely determined by the edge probability, where
xPar(u) denotes the states of the parents of node u. In other words, influence
spread can be modeled as a Bayesian network. If node u does not have any
parent, p(xu|xPar(xu)) = p(xu). The joint distribution is thus given by,

p(x1, x2, . . . , xn) =

n∏
i=1

p(xi|xPar(xi)). (1)

Given the outcome of coin flips C, σC(S) =
∑

u∈V xu. Therefore,

σ(S) = E(σC(S)) =
∑
u∈V

E(xu) =
∑
u∈V

p(u). (2)

The second equality is due to the linearity of expectations. To compute p(u), we
can sum (1) over all possible configurations for xv, v ∈ V \u. Clearly, such a naive
approach has complexity that is exponential in the network’s treewidth. In fact,
the marginalization problem is known to be #P-complete on a DAG. However,
since computing influence spread on a DAG can be reduced to a special instance
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of the marginalization problem, it remains to be shown if the former problem is
#P-complete. The main result is summarized in the following theorem1.

Theorem 1. Computing the influence spread σ(S) on a DAG given a seed set
S is #P-complete.

3.3 Estimating σ(·) via Belief Propagation

Belief propagation is a message passing algorithm for performing inference on
graphical models, such as Bayesian networks and Markov random fields. It cal-
culates the marginal distribution for each unobserved node, conditional on any
observed nodes [13]. For singly-connected DAGs, where between any two ver-
tices there is only one simple path, the belief propagation (BP) algorithm [14]
computes the exact solution with O(n) complexity. For multi-connected DAGs,
where multiple simple paths may exist between two vertices, belief propagation
and many of its variants [13,15,16] have been shown to work well in general.
Exact solutions such as junction tree [15] may incur the worst case complexity
exponential to the number of vertices due to the need to enumerate all cliques
in the DAG.

BP algorithms take as input a factor graph or a Bayesian Network. For each
factor in the graph or a Bayesian node, a conditional probability table (CPT) is
constructed. For a node v with the parent set Par(v) = {par1, par2, . . . , park},
its CPT consists of one column for each state and one row for each set of states
its parents may assume. In influence spread, each state has two states: active
(1) and inactive (0). Thus the number of rows in a CPT is 2k. An illustrative
example of a factor graph and one of its CPT’s is given in Figure 1 and 2.

S1

A B

C

S2 S1

A B

C

S2

0.
5 0.40.3 0.4

0.5
0.4

0.5

Fig. 1. Converting a DAG into a factor graph

Once the factor graph and CPT’s associated with each factor are available,
we can apply a suitable BP algorithm to calculate the active probability of each
node in the DAG. σ(·) can then be determined by (2).

1 All proofs are omitted due to lack of space but can be found on the full technical
report at http://arxiv.org/abs/1204.4491

http://arxiv.org/abs/1204.4491
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States of C
A B 0 1

0 0 1 0
0 1 0.5 0.5
1 0 0.6 0.4
1 1 0.3 0.7

Fig. 2. CPT of C with two parents A, B

Computation Complexity. The complexity of σ(·) calculation is dominated
by the execution of the BP algorithm. A variety of BP algorithms exist. In our
evaluation, we adopt the Loopy Belief Propagation (LBP) algorithm which was
shown to perform well for various problems [17,18]. LBP’s complexity to estimate
the active probability of a node v is O(Md), where M is the number of possible
labels (states) for each variable (M = 2), and d is the number of neighbors of v.

3.4 A Single Pass Belief Propagation Heuristic for σ(·) Estimation

Calculating σ(·) with LBP produces highly accurate results, but the computation
time remains to be high when the graph is multi-connected. The main complexity
arises from the fact that the activation of parents of a node may be correlated in
a multi-connected graph. Thus, in computing the activation probability of the
node, one needs to account for the joint distribution of its parent nodes. Next,
we propose a single pass belief propagation (SPBP) algorithm that ignores such
correlation in determining σ(·). Note that the heuristic is exact when the graph
is singly-connected. Let D(·) be the input DAG. Consider a node v ∈ D(·). Given
the activation probabilities of its parents Par(v), we approximate p(v) as,

p(v) = 1−
∏

u∈Par(v)

(1− p(u)p(u, v)).

The algorithm is summarized in Algorithm 1. It starts with the seed nodes
and proceeds with the topological sorting order. Clearly, the algorithm has a
complexity of O(d · n), where d is the maximum in-degree.

Algorithm 1. Single-Pass Belief Propagation (SPBP)

input : D(S)

1 σ(S) = 0;
2 foreach v ∈ D(S) do
3 if v ∈ S then
4 p(v) = 1

else
5 p(v) = 1 −

∏
u∈Par(v)(1 − p(u)p(u, v))

6 σ(S) = σ(S) + p(v)

output: σ(S)
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4 DAG Construction

In general, real social networks are not DAGs (with the exception of advisor-
advisee and parent-child relationship, for instance, which exhibit a natural hier-
archy). To apply the BP algorithm in computing influence spread, one needs to
selectively prune edges and reduce the graph to a DAG. Clearly, there are many
ways to do so. The challenge is to find a DAG that approximates well the original
graph in influence spread. In this section, we introduce two DAG construction
algorithms, both retaining important edges where influences are likely to travel.

4.1 Localizing Influence Spread Region

One important observation in [8] is that the influence of a seed node diminishes
quickly along a path away from the seed node. In other words, the “perimeter”
of influence or the influence region of a seed node is in fact very small. One way
to characterize the influence region of a node v is through the union of maximum
influence paths defined next.

Definition 1. (Path Propagation Probability)

For a given path P (u, v) = {u1, u2, . . . , ul} of length l from a vertex u to v, with
u1 = u, ul = v and u2, . . . , ul−1 are intermediate vertices, define the propagation
probability of the path, p(P ), as:

p(P (u, v)) =
l−1∏
i=1

p(u1, ui+1). (3)

Definition 2. (Maximum Influence Path)

Denote by P(G, u, v) the set of all paths from u to v in G. The maximum influence
path MIP (G, u, v) from u to v is defined as:

MIP (G, u, v) = argmax
P
{p(P )|P ∈ P(G, u, v)}. (4)

Ties are broken in a predetermined and consistent way such that MIP (G, u, v)
is always unique, and any sub-path in MIP (G, u, v) from x to y is also the
MIP (G, x, y).

Definition 3. (Maximum Influence Out-Arborescence)

For a graph G, an influence threshold θ, the maximum influence out-arborescence
of a node u ∈ V,MIOA(G, u, θ), is defined as:

MIOA(G, u, θ) =
⋃

v∈V,p(MIP (G,u,v))≥θ

MIP (G, u, v). (5)

One can think of MIOA(G, u, θ) as a local region where u can spread its influence
to. MIOA(G, u, θ) can be computed by first finding the Dijkstra tree rooted at
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u with edge weight − log(p(u, v)) for edge (u, v), and then removing the paths
whose cumulative weights are too high. By tuning the parameter θ, influence
regions of different sizes can be obtained. For a single node, its MIOA is clearly
a tree. For multiple seed nodes, we build upon the idea of local influence region
and propose two algorithms.

4.2 Building DAGs

DAG 1. We observe that any DAG has at least one topological ordering. Con-
versely, given a topological ordering, if only edges going from a node of low rank
to one with high rank are allowed, the resulting graph is a DAG.

To obtain the topological ordering given seed set S, we first introduce a (vir-
tual) super root node R that is connected to all seed nodes with edge probability
1. Let GR = (VGR , EGR) where VGR = V ∪{R} and EGR = E∪{(R,Sk)|∀Sk ∈ S}.
We build MIOA(GR, R, θ) by calculating a Dijkstra tree from R. After remov-
ing R and its edges from MIOA(GR, R, θ), we obtain a singly connected DAG
D1 = (VD1 , ED1) on which BP algorithms can be directly applied and used to
estimate the influence spread from S. However, D1(·) is very sparse (with n− k
edges) since many edges are removed.

We then augment D1(·) with additional edges. Note that MIOA(GR, R, θ)
provides a topology ordering. More specifically, let the rank of node v be the
sum weight of the shortest path from R, namely,

r(v) = min(− log(p(P (s, v)))), ∀s ∈ S. (6)

Rank grows as the node is further away from R. We include in D1(·) all edges
in G whose end points are in D1(·) and go from a node with lower rank to one
with higher rank. Clearly, the resulting graph is a DAG. The DAG constructing
procedure is illustrated in Figure 3 and summarized in Algorithm 2.

Algorithm 2. Calculate D1(S) from a seed set S
input : G, S, θ

1 Build GR = (VGR
, EGR

)

2 D1(S) = MIOA(GR, R, θ)\R
3 Calculate r(v),∀v ∈ VD1 (Eq. (6))

4 foreach (u, v) ∈ VGR
do

5 if r(u) < r(v) and (u, v) ∈ E then
6 D1(S) = D1(S) ∪ (u, v)

output: D1(S)

DAG 2. In the second algorithm, we first compute the MIOA from each seed
node and take the union of MIOA(G, s, θ), ∀s ∈ S. Denote the resulting graph
D2(S) = (VD2 , ED2). Note that D2(S) is not necessary a DAG as there could be
circles. To break the cycles, certain edges need to be removed. We adopt a similar
approach as in Algorithm 2. A node v is associated with a rank r(v) as in (6). Only
edges that connect a lower rankednode to higher rankednode are retained. Clearly,
the resulting graph is a DAG. The approach is summarized in Algorithm 3.

The next proposition provides the relationship between DAGs constructed by
Algorithm 2 and 3.
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Fig. 3. DAG due to Algorithm 2. S1 and S2 are seed nodes. Edges in MIOA(GR, R, θ)
are in bold. (S1, B), (S2, A), (A,B), and (B,C) are added into D1(S) to improve
inference accuracy. θ = 0.0001.

Algorithm 3. Calculate D2(S) from a seed set S

input : G, S,MIOA(G, v, θ), ∀v ∈ V

1 D2(S) =
⋃

∀s∈S MIOA(G, s, θ)
2 Calculate r(v),∀v ∈ VD2 (Eq. (6))

3 foreach (u, v) ∈ D2(S) do
4 if r(u) ≥ r(v) then
5 D2(S) = D2(S)\(u, v)

output: D2(S)

Proposition 1. Given a fixed influence threshold θ, let D1(·) = (VD1 , ED1) and
D2(·) = (VD2 , ED2) be the DAGs constructed by Algorithm 2 and Algorithm 3.
Then, VD1 = VD2 and ED2 ⊆ ED1 .

Computation Complexity. The computation complexity of a Dijkstra tree
is O(n2). When a new seed node is added, the worst cast computation time is
O(n2) (if the corresponding MIOA needs to be computed anew). The union
operation in DAG 2 takes O(n − 1) time, and the edge pruning in DAG 1 and
DAG 2 take O(m) and O(min(m, k(n− 1)), respectively.

5 Accelerated Greedy Algorithm

In the original Greedy algorithm [4], in each round, a seed node with the max-
imum increment on influence spread is selected, namely, v = maxv∈V \S(σ(S ∪
{v})−σ(S)). We call δS(v) = σ(S∪{v})−σ(S) the spread increment of v under
S. Initially, when S = ∅, δS(v) = σ(v).

To accelerate the execution of Greedy algorithm, one can try to improve
on two aspects, namely, 1) limiting the set of nodes to pick from for the next



524 H. Nguyen and R. Zheng

S1

A B

C

S2 S1

A B

C

S2

0.
5 0.40.3 0.4

0.5
0.4

0.5

Node S1 S2 A B C
r(Node) 0 0 0.301 0.398 0.699

Fig. 4. DAG due to Algorithm 3. S1 and S2 are seed nodes. D2(S) is the union of
MIOA(G, S1, θ) (solid edges) and MIOA(G, S2, θ) (dashed edges). θ = 0.0001.

seed, and 2) reducing the complexity of computing the spread increments. CELF
algorithm [5] eliminates many nodes from being evaluated. We focus on the
second aspect. The proposed mechanism can be used in conjunction with CELF.

Recall in Section 4.1, we use MIOA to localize the influence region of a node.
Consider for now that influence from a node can only reach nodes in its MIOA.
Then, we make the following claim.

Proposition 2. Given the current seed set S, adding u to S will not change
the spread increment of v, namely, δS(v) = δS∪{u}(v) if MIOA(G, u, θ) and
MIOA(G, v, θ) have no common vertex.

As a result of Proposition 2, each time we select a new seed, only the influence
increments of nodes that have overlapping influence regions with the newly se-
lected seed need to be re-evaluated. Formally, we define the set of Peer Seeds
(PS) of a vertex v ∈ V as follow:

PS(G, v, θ) = {s ∈ V |MIOA(G, s, θ) ∩MIOA(G, v, θ) �= ∅} . (7)

PS(G, v, θ) can be computed efficiently just once at the beginning when all
MIOA(G, v, θ)’s are available. To this end, we summarize the complete proce-
dure to determine the optimal seed set in Algorithm 4.

6 Evaluation

In this section, we evaluate the performance of the proposed algorithms. Large
scale social networks are used to evaluate the maximum influence spread of
different algorithms. In addition to the two DAG models and two methods
to compute influence spread (a total of 4 combinations DAG1–LBP, DAG1–
SPBP, DAG2–LBP, and DAG2–SPBP), we make comparison with the following
algorithms:

– PMIA(θ) [8]: a very fast heuristic that builds a tree-like structure model
on which influence is spread. We set the influence threshold θ = 1/160.
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Algorithm 4. Accelerated Greedy Algorithm
input : network graph G(V,E) and seed set size k

// initialization
1 S = ∅, σ0 = 0, θ = influence threshold
2 foreach v ∈ V do
3 build MIOA(G, v, θ)
4 D(v) = MIOA(G, v, θ)
5 calculate σ(v) (LBP or Algorithm 1)
6 δ(v) = σ(v)
7 δold(v) = 0

8 build PS(G, v, θ), ∀v ∈ V

// main loop
9 for i = 1, . . . , k do

// select the i’th seed
10 u = argmaxv∈V \S(δ(v))

11 S = S ∪ {u}
12 σ0 = σ(S)
13 δold(v) = δ(v), ∀v ∈ V \S

// update incremental influence spread
14 δmax = 0
15 foreach v ∈ PS(G, u, θ)\S do
16 if δold(v) > δmax then
17 build D(S ∪ {v}) (Algorithm 2 or 3)
18 calculate σ(S ∪ {v}) (LBP or Algorithm 1)
19 δ(v) = σ(S ∪ {v}) − σ0

20 if δ(v) > δmax then
21 δmax = δ(v)

output: selected seed set S

– Greedy: The Greedy approach from [4] with CELF optimization in [5]. The
number of simulation rounds for each σ(·) estimation is 10,000.

– Weighted Degree: The simple heuristic that selects k seeds that have
maximum total out-connection weight.

We do not compare with other heuristics such as SP1M, SPM [19], PageR-
ank [20], Random, DegreeDiscountIC [12] or Betweenness centrality [21] since
they have been reported in previous studies [8,4,6] to be either unscalable or
have poorer performance.

We have implemented the proposed algorithms in C++. All experiments are
conducted on a workstation running Ubuntu 11.04 with an Intel Core i5 CPU
and 2GB memory. In order to implement LBP algorithm, we use libDAI [22] and
Boost [23] libraries. We find out through the implementation that constructing
the CPT can be very costly when the in-degree of a node is high, and thus only
include the parents with highest 10 influence probabilities in the factor graph.
The implementation of PMIA is obtained from its authors. Note that with code
optimization, the running time of our algorithms can be further reduced.

Datasets. We use four real-world network datasets from [24] and [25] to com-
pare the experimented algorithms. Details are summarized in Table 1.

Probability Generation Model. Two models that have been used in previous
work [4,8,12,6] are: 1) the WC model where p(u, v) = 1/d(v) where d(v) is
the in-degree of v and 2) the TRIVALENCY model where p(u, v) is assigned
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Table 1. Network datasets

Name Email p2p-Gnutella soc-Slashdot Amazon

Nodes 447 6,301 82,168 262,111

Edges 5,731 20,777 948,464 1,234,877

Density 0.04 1e–03 1.6e–03 2.6e–05

Max Degree 195 97 5064 425

Mean Degree 25.64 6.59 23.09 9.42

Email exchanged Gnutella peer to Slashdot social Amazon product
Description in a research lab peer network from network from purchasing network

during a year August 2002 February 2009 from March 2003
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Fig. 5. Influence spread of the best seed sets on 4 datasets

a small value for any (u, v) ∈ E. We argue that both models are not truthful
reflections of the probability model in practice. The WC model assign a very high
probability for a connections to nodes with small number of incoming connections
while the TRIVALENCY model assigns a similar probability to all edges. In our
evaluation, we consider the RANDOM model where p(u, v) is randomly selected
in the range [0.001, 0.1].

Influence Spread and Running Time. Figure 5 shows the influence spread
generated by the best seed sets in different algorithms as the seed size changes.
Since Greedy does not scale with large datasets, we only run Greedy on Email
and p2p-Gnutella. In this set of experiments, the influence spread from the seed
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Fig. 6. Computation time on 4 datasets
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Fig. 7. Size of DAGs and RMSE of activation probabilities. Results are averages of
50 runs with different seed selections and symmetric error bars indicate standard
deviations.

set selected by each algorithm is determined by 10,000 rounds of Monte Carlo
simulations on the original graphs.

In Figure 5(a), the performance of DAG1–LBP and Greedy (known to be
within a constant ratio of the optimal) are not distinguishable (and thus are
represented in one curve). The influence spread of DAG1–SPBP and DAG2–
LBP/SPBP are shortly behind, all outperforming PMIA and Weighted Degree.
We observe on Email dataset (a small but dense network) that both the structure
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of the DAG (DAG 1 vs. DAG 2) as well as the BP algorithm used (LBP vs.
SPBP) will affect performance of the proposed methods. In contrast, as shown
in Figure 5(b) – (d), the influence spreads of the four approaches DAG1/2–
LBP/SPBP are identical for sparser networks, and is the same as Greedy in
p2p-Gnutella dataset.

In terms of running time, Weighted Degree is the fastest. Among the four
proposed approaches, DAG2–SPBP is the fastest, next are DAG2–LBP, DAG1–
SPBP, and finally DAG1–LBP. DAG2–SPBP and PMIA have comparable order
in running time with DAG2–SPBP being 30-40% slower than PMIA in most
cases. Again, this may be primarily attributed to the lack of code optimization
in our proposed methods.

Interestingly, influence spread on Amazon grows linearly with the seed size.
Our result matches with that in [8]. This can be explained by the sheer scale
of the network, and thus the small number of selected seeds are likely to have
non-overlapping influence regions.

Comparison of the Two DAG Models. To understand the behavior of the
proposed algorithms, we conduct further experiments on Email dataset as it
gives the most performance difference between the experimented algorithms.

Figure 7 (a) gives the number of vertices and edges as the result of the two
DAG models with varying size of seed sets. Since both have the same number of
vertices, only one curve is shown. It it clear that DAG 1 is much bigger from DAG
2 due to the inclusion of more edges. As the seed set grows, the gap becomes
smaller.

We use Root Mean Square Error (RMSE) to compare the activation proba-
bilities on nodes. RMSE is defined as,

RMSE(p, p′) =

√∑
∀v∈V (p

′(v)− p(v))2

n
/

∑n
∀v∈V p(v)

n
,

where p′(·) is the inferred result from the propose algorithms. The ground truth
p(·) is determined by Monte Carlo simulations. When p′(v) = p(v), ∀v ∈ V then
RMSE(p, p′) = 0.

Figure 7(b) shows that DAG 1 methods have smaller RMSE since they are
based on a denser graph. More edges clearly help increase quality of the seed
selection process. In the context of LBP vs. SPBP, LBP is slightly better since
SPBP get rid of the state correlation between nodes. DAG 1 and LBP can help
produce better inference result, but entails more computation complexity. The
results are consistent with those in Figure 5(a).

Summary. From the conducted experiments, Weighted Degree gives the best ef-
ficiency in terms of spread/complexity. However, there are cases (Email dataset)
in which Weight Degree performs poorly. Our proposed schemes works well in
all the experimented datasets. They also offer more application flexibility: one
would apply the best performed algorithm (DAG1–LBP) on static networks
(e.g.: network of connections between co-workers) to identify the most influen-
tial nodes, or apply the fastest algorithm (DAG2–SPBP) on rapidly changing
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communities (e.g.: network of connections between people in a social group) to
obtain immediate result.

7 Conclusion

In this paper, we considered the IM problem on social networks where the objec-
tive is to find a set k of nodes that can maximize the influence spread. We estab-
lished the linkage between influence spread computation and BP on a Bayesian
network. With 2 DAG models and 2 BP algorithms, 4 methods are proposed of-
fering the flexibility between computation time and accuracy. Simulations using
real-world social network graphs show that the proposed schemes achieve higher
influence spread compared to the best known solutions. Interestingly, DAG 2
model, although being much smaller than DAG 1, gives a good approximation
result that is comparable to DAG 1 with only a marginal computation cost.
Result also exhibits the dependency of algorithm performance over the experi-
mented network. Thus suggesting an interesting research direction to study the
impact of graph structure in IM problem.
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Abstract. Location-based social networks (LBSNs) have recently attracted a lot
of attention due to the number of novel services they can offer. Prior work on
analysis of LBSNs has mainly focused on the social part of these systems. Even
though it is important to know how different the structure of the social graph of
an LBSN is as compared to the friendship-based social networks (SNs), it raises
the interesting question of what kinds of linkages exist between locations and
friendships. The main problem we are investigating is to identify such connec-
tions between the social and the spatial planes of an LBSN. In particular, in this
paper we focus on answering the following general question “What are the bonds
between the social and spatial information in an LBSN and what are the met-
rics that can reveal them?” In order to tackle this problem, we employ the idea
of affiliation networks. Analyzing a dataset from a specific LBSN (Gowalla), we
make two main interesting observations; (i) the social network exhibits signs of
homophily with regards to the “places/venues” visited by the users, and (ii) the
“nature” of the visited venues that are common to users is powerful and informa-
tive in revealing the social/spatial linkages. We further show that the “entropy”
(or diversity) of a venue can be used to better connect spatial information with
the existing social relations. The entropy records the diversity of a venue and re-
quires only location history of users (it does not need temporal history). Finally,
we provide a simple application of our findings for predicting existing friendship
relations based on users’ historic spatial information. We show that even with
simple unsupervised learning models we can achieve significant improvement in
prediction when we consider features that capture the “nature” of the venue as
compared to the case where only apparent properties of the location history are
used (e.g., number of common visits).

1 Introduction

During the last few years, boosted by advancements in mobile handheld devices (e.g.,
smartphones), a new class of digital social networks, namely location-based social net-
works (LBSNs), has emerged. It is now possible to bring into the equation of online
social networks (OSNs) another dimension, that of location, due to the significantly
improved ability of mobile devices to accurately estimate their position or location.
The underlying communities not only have social ties (e.g., friendship) and/or interests
in common (e.g., sports), but they are also “connected” with regards to their geographic
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locations (often mapped into “venues” as described later). In other words, LBSNs bond
the online and physical social ties through location information.

This bond can enable a number of novel, convenient, and appealing services making
LBSNs popular. People can now track their children’s locations. By tracking friends,
applications such as better coordination for scheduled meetings can be enabled. Appli-
cations can also include exploring new places through a list of venues that are within the
proximity of the current location. This list can now be accompanied by tips and recom-
mendations from people/friends that have visited these places. Even simply the number
of people that have visited a locale in the past or are present at the moment might be
helpful and informative. Other systems can also offer Groupon-like deals, providing
additional monetary incentives for someone to adopt their usage. A recent study has
also shown that “gaming” aspects of LBSNs form an important motivation for people
to start using them [12].

With LBSNs becoming prevalent, it becomes critical to comprehend and discrimi-
nate the types of knowledge we can obtain from the bond between locations and social
ties. For example, what correlations exist between users’ spatial trails and their social
behaviors as expressed through their friendships and do the spatial trails provide any in-
formation about social ties? Our primary objective in this work is to identify the existing
correlations and the metrics that can best capture them. Using the knowledge we obtain
from our study we further examine whether we can use these correlations and metrics
to infer social information only from users’ locations. Going forward this can stimulate
our ability to deconstruct the interplay between the social and the spatial information
plane and apply it to new applications.

Interactions in an LBSN: An LBSN has two distinct components; a social network
and a location log for each member. The social part of the system resembles any other
existing online social network, where friendships are declared and people can interact
with their friends. What differentiates LBSNs from other OSNs are the type of inter-
actions that are feasible between the members of the network. The main feature of this
interaction is location sharing. While the “visible” interactions in a traditional OSN are
restricted to the virtual world, we can observe interactions within an LBSN in the phys-
ical world as well. This is especially important for our study since it can shed light on
patterns that are otherwise difficult to identify.

Location sharing can be realized either through continuous tracking, in the form of
a temporal latitude/longitude trajectory (e.g., Loopt - see Figure 1) or via “check-ins”,
where users announce their presence in a place or venue at their convenience (e.g.,
Gowalla, Foursquare etc. - see Figure 2). Clearly, the second approach, where location
is tagged with semantic information as compared to a flat geographic trajectory, offers a
richer set of information, but with coarse location granularity. All major LBSNs follow
this latter approach and consequently, in this work we consider systems in which spatial
information is created via check-ins. We note here that using “check-in” history can be
challenging since fine grained temporal information is absent (e.g., users do not “check-
out” etc.).

Hence, we now have two types of information – the social ties between members
and check-ins of members of the LBSN. To analyze socio-spatial interactions within an
LBSN, we model it as an “affiliation network”, where the members are nodes of one
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type and venues/places are nodes of the second type (see Figure 3). Using a dataset
from Gowalla [2], we analyze how the number and type of users’ common affiliations
(as measured through the number of common locales visited by them) are related to
the affinities in the underlying social graph. The main contributions of our study can be
summarized as follows:

– We identify clear signs of location homophily, that is, members of the LBSN that
are friends are more similar compared to those that are non-friends. “Similarity”
here refers to the percentage of visited places that are common between two users
(formally defined later).

– While simply the number of common places visited by two users does not provide
rich social knowledge, the user similarity as well as the “type” of their common
venues is a very descriptive feature.

Using the affiliation network model we are able to define the clustering coefficient (cc)
of a venue, which captures the type and diversity of the latter. As we will see later, this
cc has a strong correlation with the social relations in the graph; exactly what we are
looking for! However, its computation utilizes knowledge from the friendship graph,
resulting in the problem of circular reasoning. Hence, we examine other metrics, and
in particular we show that the entropy of a venue is very informative and helpful for
dealing with our problem.

Finally, we investigate the importance of the different features we consider through
simple unsupervised friendship prediction models. In particular, we seek to infer the ex-
isting affinity relations using only the users’ location history. Our evaluations reveal that
features that account for the type of a venue, can significantly improve the estimations
as compared to features that consider all venues equal.

Scope of Our Study: We would like to emphasize that our work is a study of the inter-
play between the social and spatial information present in an LBSN. Even though this
connection can enable many new applications, such as location prediction, this study is
not focused on any specific one of them. Despite the fact that we examine some simple
friendship inference models utilizing our findings, our objective in this study is not to
provide a social affinity classifier but to provide insights into the value of the location
information present in an LBSN and its strength for predicting social ties. For instance,
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the relation between spatial and social data can have significant implications on users’
privacy. Privacy policies that avoid information leakage from one component of the
network to the other should be designed and be in place. We believe that this work can
stimulate further research and enhance existing – or even enable new – functionalities
within an LBSN.

The rest of the paper is organized as follows. Section 2 discusses work related to
our study, while Section 3 describes our affiliation network model for an LBSN and the
dataset. Section 4 briefly presents the analysis of the social graph of Gowalla. Our study
on the relation between users’ location information and their social ties is presented in
Section 5. Finally, Section 6 presents our friendship inference model, while Section 7
concludes our work.

2 Related Work

There is a set of studies that examine the structural properties of existing LBSNs. In
this context, structure refers not only to the properties of the social network graph (as in
OSNs) but also to the location component (e.g., physical distance to friends, time and
type of check-ins etc.). For instance, Cheng et al. [1] use data from Foursquare to exam-
ine (i) the spatio-temporal properties of users’ check-ins, as well as (ii) their mobility
patterns. Similarly, Noulas et. al. [16] study the spatio-temporal properties of users
activities as captured through the inter-checkin times and the inter-checkin distances.
They further identify universal features for human urban mobility [15]. In alignment,
Cho et al. [2] use cell phone location and LBSN data to understand the laws dictating
human mobility. Li and Chen [10] analyze data from Brightkite and after providing
the structural properties of the underlying social graph they try to identify correlations
between different user’s profile features, activity updates, and mobility patterns.

The majority of these studies deal explicitly either with the social part of the sys-
tem or the location component. Scellato et al. [18] try to use information from both
components to identify the relation between friendship and geographic distance using
data from 3 different LBSNs (Gowalla, Foursquare and Brightkite). They find that the
socio-spatial structure of these systems cannot be explained by only geographic factors
or only social mechanisms. In addition, there exist a few studies in the literature that
examine and analyze the location data present in the system with the goal of revealing
undirect, hidden information. Noulas et al. [17] obtain a static snapshop of Foursquare
in order to analyze the activity in different neighborhoods of London and New York,
while Ye et al. [22] exploit social and spatial characteristics of LBSNs for location
recommendation.

None of the aforementioned works however, study the relation between the location
trace of a user and his social relationships. They are all mainly focused on identifying
patterns either in the social or in the spatial component of an LBSN. Eagle et al. [5] [6],
as well as Li et al. [11], have developed measures to quantify similarity of users based
on their mobility. This similarity can be later used to infer the social structure of the
users. They are focused on “co-location instances,” that is, situations where two users
are at the same place at the same time. However, given the fact that co-locations between
people can happen accidentally, especially in urban areas [13], simply accounting for
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the number of co-existences can be expected to not be very accurate. Recently, Wang et
al. [20] using mobile phone data have identified a positive corelation between mobile
homophily, network proximity and social tie strength.

The work that is closer to ours is the study by Cranshaw et al. [4]. In particular, they
introduce the notion of a location’s “entropy,” which captures its diversity with regards
to the people visiting it. Using a small scale dataset of location trajectories obtained
from 397 users of Locaccino the authors infer co-locations between users. They ex-
amine the relation between features such as the intensity and duration of co-locations
between people, the diversity of these co-locations, and the users’ mobility regularities,
with the social structure of these users. The latter is obtained through their Facebook
accounts. They apply supervised learning classifiers on a set of 16 features to obtain the
structure. Scellato et al. [19] took one step further and use location information in order
to improve friend recommendations. They are focused on the temporal evolution of the
social graph and they utilize a combination of information drawn from both the social
and location component to improve friend recommendations. On the contrary, we are
focused on a static snapshot of the network and we are looking into relations between
the two information planes of the system.

To further differentiate our work, the location information that Cranshaw et al. [4]
consider includes the complete trajectory of users, from which features such as the
duration of a co-location can be inferred. Nevertheless, despite the fact that such data
include fine-grained spatio-temporal information, note here that such data capture the
location of the device and not necessarily that of the user to begin with (a problem
identified in [4] as well). On the contrary, in an LBSN such as Gowalla or Foursquare,
people check-in to spots declaring their actual presence in a physical location. However,
users do not “check-out”, making it challenging, if not impossible, to obtain detailed
spatio-temporal information (e.g., co-location duration, even actual co-location at all).
Yet, as we show later, this information is promising in its ability to tie the spatial and
social plane of LBSNs. To summarize, in contrast to the work presented in [4] we are
only using the check-in history of users without considering information related to the
actual co-locations of users (i.e., temporal information).

3 Location Affiliation Network

In this section we will briefly describe the data set and affiliation network model for the
LBSNs used in this paper.

Gowalla Dataset: The dataset consists of 6,442,892 public check-in data performed by
196,591 Gowalla users in 647,923 distinct places, during the period between February
2009 and October 2010. Gowalla users also participate in a friendship network with
reciprocal relations, which consists of 950,327 links. The public dataset [2] includes
only an ID for the spot of the check-in. We have further crawled the web in order to
obtain a mapping between this id and the actual locale (or “spot” in the terminology of
Gowalla1). Note here that since the acquisition of Gowalla from Facebook, its public

1 We will use the terms locale, place, venue, spot and affiliation interchangeably.
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website is offline. However, we were able to obtain a subset of the required information
through the Internet Archive Wayback Machine and Google Cache.

Affiliation Network: Social relations can be formed due to a variety of reasons. For
instance, it has been observed that people tend to relate to others with similar character-
istics/interests (homophily) [9]. When we refer to immutable characteristics it is clear
that the main reason behind homophily is the mechanism of selection [8]. For instance,
people prefer in general to socialize with people of the same nationality. However, when
we consider mutable characteristics (e.g., political views) it is not clear whether selec-
tion or social influence [7] leads to homophily. In the latter case, friendships were first
created and then people influenced each other and became similar.

Based on the above, link creation is affected by contextual factors related to the
similarity between the users. This similarity can refer to characteristics, activities, or
behaviors. However, the representation of a social network as a flat affinity graph is not
capable of capturing these surrounding contexts. Affiliation networks integrate “focal
points” (foci) of social interactions with the pure social graph [14]. An affiliation net-
work is essentially a bipartite graph with two sets of nodes, S and F . S is the set of
nodes that represents the members/users of the network, while F represents the activ-
ities (affiliations or foci) into which users engage. An edge {(s, f) : s ∈ S ∧ f ∈ F}
exists, iff s is participating in focus f . Two users u and v are said to be affiliated if they
participate in the same activity f . Hence, the affiliation network becomes the layer on
which the actual social network is created. As Watts states, “without any affiliations,
the chance that two people will be connected is negligible” [21].

If we further connect members of S based on their social relations, we obtain a
social-affiliation network (see Figure 3). Using the latter we can analyze the co-evolution
of both the social and the affiliation networks. A new friendship might be created due
to a common friend (triadic closure), or due to a common affiliation (focal closure).
Furthermore, a new affiliation can be created due to a friend already affiliated with
it (membership closure). Focal closure is an artifact of the selection process, while
membership closure is a type of social influence. In the LBSNs that we consider, the set
F consists of the locations/places that people in S can check-in. An affiliation edge is
created as long as a user has checked-in a specific spot. For instance, in Figure 3, Bob
has checked-into the “School of Information Sciences” and hence there is an affiliation
edge that connects him with the corresponding focus.

Before presenting our analysis, we would like to reiterate that data obtained from
a system like Gowalla cannot provide fine-grained spatio-temporal information as in
[4]. Hence, many of the detailed features used in that study are not available through
our dataset. However, even if we do not know whether two friends’ affiliations were
created simultaneously (i.e., co-location) or with a time lag, their common affiliation is
an indicator of a possible relation, and hence a socio-spatial tie. This can be attributed
to the fact that both selection and social influence dictate that “friends” will tend to
have a number of common affiliations. The difference is that in the former case these
affiliations were present when the friendship was formed (and they might have actually
caused this social relation to be formed), while in the latter the opposite occurred.

Using the terminology introduced to restate our main objective, we seek to identify
patterns/correlations in the social-affiliation network that can reveal ties between the
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pure social and pure affiliation network. Note again that when we have a static snapshot
of a network, we do not know whether an affiliation or a friendship was created first.
However, once again, the actual underlying mechanism that caused the closure between
two users and a group is irrelevant and what matters is the existence of a triangle that
connects users and locales.

4 Social Network Analysis

In this section, we will briefly present our analysis of the social (friendship) graph of
Gowalla. There exist similar efforts in the literature for other online social networks and
hence this is not the main focus of our study. However, we are presenting these results
for completeness.

Degree Distribution: First, we examine the degree distribution of the network. We
compute the empirical probability density function of a user’s degree (Figure 4). The
degree distribution of Gowalla users follows a power law. This has been found to be
true for other social networks as well [21], and implies that the majority of the users
have very few friends (even none), while very few users have many friends. Formally
put, the probability of a node u having a degree of x obeys the following rule:

Pr{degu = x} ∝ 1

xα
(1)

In Figure 4 we have also fit a power law curve, with an exponent of α = 1.75. The
high R2 value (R2 = 0.85) implies a good fit, which further supports the validity of the
underlying power law. The average node degree is also computed to be 9.66.

Clustering Coefficient: Clustering coefficient (cc for short) is tightly related to the
notion of triadic closure. In particular, the clustering coefficient of Bob is an indicator of
how many triangles he participates in. Given that the clustering coefficient of Bob is the
ratio between the pair of his friends that are friends with each other, over all the possible
pairs between them, it is evident that it needs to be presented as a function of the node
degree. Figure 5 presents the (average) clustering coefficient of a user with respect to
his degree. As we can see, Gowalla users in general exhibit high coefficients, with the
average clustering coefficient being equal to 0.237. This means that on average there is
a 23.7% probability that two randomly selected friends of Bob will also be friends. This
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fairly high clustering coefficient, in conjunction with the small average path length, are
strong indications that the social component of Gowalla is a small world network.

Average Neighbor Degree: The average neighbor degree d(k) is a summary statistic
of the joint degree distribution. It is simply the average neighbor degree of the (average)
k-degree node. Figure 6 depicts d(k). As we can see there is no preference of users to
connect to peers with dissimilar or similar degrees. This can be also captured from the
assortativity coefficient of the graph which is close to 0 (-0.029). The slight negative
value indicates a very small degree of disassortativity; there are slightly more links
connecting nodes of dissimilar degrees.

5 The Richness of Location Information

In this section we will analyze the structure of the spatial component of the LBSN.
Our goal is to identify existing correlations, if any, between location information or
spatial behavior (represented by the affiliations or checkins at various venues) and the
social structure of the network. We are mainly interested in both direct and indirect
information derived from location history. For instance, the number of common venues
visited by users belongs to the first category. However, information related to the nature
of the venue is not directly observable from the trails, but it can be inferred.

Location-Based User Similarity: As previously mentioned, homophily is a phe-
nomenon that is very often observed in social networks. For instance, empirical studies
have shown that teenagers tend to create friendships with other teenagers with sim-
ilar scholastic performance and delinquent behavior (e.g., drug use) [8]. In another
study, Christakis and Fowler [3] found that social relationships exhibit signs of ho-
mophily with regards to the obesity level, in a social network consisting of approxi-
mately 12,000 people. Regardless, of the reasons behind homophily, awareness of its
existence can help towards revealing possible social links by observations of people’s
characteristics and/or behaviors and vice versa. To the best of our knowledge there is
no study to date that examines homophily related to the locations visited by people.
In what follows, we take a first approach to this problem. Our analysis indicates that
there are signs of homophily with regards to the spatial behavior of the users. How-
ever, we would like to particularly emphasize that we do not claim to have completely
answered this question. Identifying homophily in a social network is an extremely chal-
lenging task, which would require the study of longitudinal data, possibly from differ-
ent networks, on a much larger scale. We hope though, that our work will encourage
further research on this topic, which becomes increasingly important nowadays more
than ever, with the prevalence of mobile devices with positioning capabilities and the
availability of huge volumes of spatial data.

Let us define Lc, to be the set of venues that user c has checked-in. Then we define
the similarity s(u, v) between u and v (who have each visited at least one venue) as the
following ratio:

s(u, v) =
|Lu ∩ Lv |
|Lu ∪ Lv |

(2)

The numerator is the number of common places visited by the two users, while the
denominator is the number of places visited by at least one of them. The above ratio is
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the Jaccard similarity coefficient. We have calculated this ratio for pairs of users that
are friends and pairs of users that are not friends. We have also further distinguished the
pairs of users as being in geographic proximity or not, based on their “home” locations.
We have set up a threshold of 120 miles for defining pairs that are “nearby” or “distant”.

Figure 7 presents the similarity for three classes of pairs; nearby pairs of friends,
distant pairs of friends and nearby pairs of non-friends. Clearly, friends that reside in
geographic proximity to each other, have the highest similarity scores. Approximately,
35% of them have coefficients larger than 5%, which means that 5% of the places they
have visited are common. This number might seem small, but it is actually fairly large
if we think of the number of places we visit every day. The importance of this value
becomes even more clear when we see the similarity index for nearby pairs of non-
friends, which is practically 0 even though they are in geographic proximity! Note here
that, even friends that are far away, exhibit similarity much higher than nearby pairs
of users that are not friends. This is an important result since it implies evidence of
homophily in the network with regards to the places visited. Users that are friends will
visit the same spots, even if their home locations are far apart. Users that are not friends,
even if they are in proximity (e.g., in the same city) are unlikely to visit the same places.

Note here that in the definition of users similarity (Equation 2), we have not consid-
ered any temporal information. We consider all common venues that have been visited
by two users, regardless of whether they visited them at the same time or not. The
reason for this, is that people can be similar in ways that do not dictate co-location.
For instance, if the selection process is responsible for the high similarity values, peo-
ple with the same affiliations (captured from the places they visit) will tend to create
friendships. On the other hand, if social influence is responsible for the high similarity
coefficient, people will tend to visit places that they have heard from their friends (how-
ever, not necessarily with them). Hence, the Jaccard similarity index can be quite help-
ful in bonding social and location information, even without the fine grained temporal
information used in previous works. The importance of this finding is that it indicates
that the characteristics of location information can be substantially different between
friends and non-friends.

Next, Figure 8 shows the similarity values for nearby friends as a function of distance
between home locations. As we can see, distance does not appear to have any effect
on the similarity for these users. A slight decrease of the (average) coefficient can be
observed, but it is not significant. However, distance appears to be critical for friends
that live far apart (as one might have expected). As we see in Figure 9, after some
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distance (approximately 2,500 miles) the similarity values are drastically reduced. Bob
will have less opportunities to “follow” the trails of his friend Alice if she lives far
away. Due to space limitations, we do not plot the similarity indexes for the pairs of
non-friends, but as one can see from the cumulative distribution function, the majority
of these points lay slightly above or on the y = 0 line irrespective of the distance.

Figures 10 and 11 present the similarity of two near friends as a function of the num-
ber of their distinct affiliations and their check-in counts respectively. Even though our
data consist of a static snapshot, this figure can be seen as an “emulation” of the tem-
poral evolution of the similarity value of two nearby friends. Higher levels of activity
represent later points in time, when users have been using the system for longer periods
and thus, have more affiliations and check-ins. Further, the similarity scores take their
maximum values for pairs of users with low levels of activity (i.e., small number of
affiliations and check-ins). Based on the above “temporal emulation” this corresponds
to early stages of system adoption. This behavior can be attributed to the fact that the
denominator of Equation 2 increases faster as compared to the enumerator. One possi-
ble reason that can cause this is as follows. Consider Bob and his friend Alice. Bob will
hear from Alice about a few places and he will tend to visit some of them, increasing
the numerator of s(Bob,Alice). However, he will hear about other spots from his friends
Jack and Jill (who might have no relation with Alice). Hence, he might be tempted to
visit some of these spots as well, increasing the denominator faster and overall reducing
the Jaccard index as his (and Alice’s) level of activity increases. Therefore, even friends
might exhibit low(er) similarity scores after some time, and for this reason the absolute
number of common foci might be a more robust metric over longer time spans. Later
in Section 6 we will use |Lu ∩ Lv| as the feature of our baseline social link prediction.
The similarity of a pair of users, balances the above quantity, by considering the activ-
ity of both users. Such a balancing, in essence, captures the diversity of the two users;
the larger the denominator, the more places they visit (more diverse user pair). As we
will see in our evaluations, this balancing can provide better connection between social
and spatial information. We note here that similarity values of non-friends are small
regardless their level of activity (omitted due to space limitations).
Focal Closure: In an affiliation network, the foci are also nodes of the network. Hence,
we can define metrics such as the degree distribution and the clustering coefficient for
venues. The degree of an affiliation-node l (i.e., a venue) is the number of distinct users
that have visited it. In other words, it is the number of user-affiliation links whose one
endpoint is l. Figure 12 depicts the affiliation degree distribution, which as we can see
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Table 1. Top and bottom 5 venues based on their degree

Top-5 spots SFO airport Stockholm Central Station AUS airport DFW airport LAX airport
Bottom-5 spots “Room” Farmer’s Market Gas station Apparel store Convenient store

follows a power law as well, with exponentα = 2.01 (R2 = 0.89). There are a few places
with many visitors, while there are many venues with few visitors. The average focus
degree is 3.11. Table 1 has the top and bottom 5 venues with regards to their degree.
Note here that the bottom 5 venues were randomly selected since there are many venues
(almost half) with degree of 1. The top spots are all major transportation hubs (airports
or train stations), while the less popular places are more localized/personal venues (e.g.,
“room”, which most probably refers to a home, office etc.). The top degree spots are
expected to increase the number of common affiliations for many users; the higher the
degree of a locale more user pairs will exhibit an increased number of common foci.
However, as one can imagine, common affiliations such as a big airport happen rather
randomly than due to actual similarity. On the contrary, if Bob and Jack have a local
food joint as common affiliation it is highly possible that this is due to their similarity
(e.g., they have the same gastronomical preferences).

If our above claim does not hold and all affiliations are equal one should expect that
the more common foci two people have, the more probable it is for them to be friends.
However, our data indicate that this is not the case in an LBSN. Figure 13 presents the
friendship probability between a pair of users with respect to the number of common
venues visited by them. As we can see there is no clear connection between the two
quantities. For small values of common venues there seems to be a linear relationship,
but as the number of common affiliations increases, there is little (if any) correlation. In
particular, for a number of common venues smaller than 100, the correlation coefficient
is fairly high (0.61). However, for larger number of common venues, this coefficients
drops to just 0.2. This further supports our previous claim, that the actual affiliation,
rather than just the number of the common affiliations, plays an important role in pre-
dicting the social relations.

In order to further examine the role of the type of a venue on the social relationships
we examine the clustering coefficient of a focus. Let us consider venue l which has a
degree of k > 1. All the possible social links between the users affiliated with l are
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k(k − 1)/2. If n of them exist then the clustering coefficient, CC(l) is defined as:

CC(l) =
n

k(k − 1)/2
(3)

This clustering coefficient captures the nature of the place in many ways. It expresses
how tightly connected are the people that visit this venue. The higher the cc is, the more
connected are the people affiliated with it.

Figure 14 shows the clustering coefficient as a function of the venue’s degree. As
we can see venues with lower degree have a higher average clustering coefficient. This
is a sign that venues with lower degree might venture socialization. Delving more into
this issue we present in Figure 15 the CDF of the average clustering coefficient of
the common venues for user pairs that are friends and those who are not. For friends,
the average clustering coefficient of their common affiliations is much higher (mean
value is 0.068) as compared to those of non friends (mean value is 0.019). Finally,
Figure 16 plots the probability of friendship between two users as a function of the
average clustering coefficient of their common spots. As we see there is a clear positive
correlation between the two quantities, which is also revealed from the high correlation
coefficient between the two variables (calculcated equal to 0.89). The higher the average
cc of the common foci, the larger the friendship probability.

Especially, the last result clearly indicates that the actual nature of the venue plays
an important role to whether affiliated users are related through a friendship or not.
On the one hand, places with high clustering coefficient, attract sets of people that are
more tightly connected in the social plane. In addition these sets are usually small,
if we recall the connection between affiliation cc and affiliation degree. On the other
hand, spots with low clustering coefficient attract many people that are not socially
related, just because these places have special features (e.g., large hub-airports, train
stations, supermarkets etc.). One could arguably compute the average cc of the common
affiliation of two people and find the probability of friendship through a simple linear
regression model (Figure 16).

However, there is a problem with the above approach. In order to calculate the av-
erage cc of a venue, the social relationships need to be known! Hence, the cc does not
provide an independent socio-spatial information linkage. Therefore, we need to find
a feature of the affiliations, that (i) captures the nature of the venue, (ii) does not require
the knowledge social relationships in order to be computed and (iii) is correlated with
the friendship probability. This feature is the affiliation’s entropy as we will describe in
what follows.

The entropy of a place: Cranshaw et al. [4] were the first to introduce the notion of
entropy of a location as a measure of its diversity. If Pl(u) is the fraction of check-ins
in affiliation l contributed by user u, then the entropy of l is given by:

e(l) = −
∑

u:u∈S∧Pl(u)>0

Pl(u)log(Pl(u)) (4)

From Equation 4 we can see that when a place is visited by many people in equal
(and thus, small) proportions, its entropy will be high. In other words, high entropy
corresponds to places like airports that exhibit large diversity. On the other hand, when
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the mass of Pl(u) is concentrated only to a few people, the diversity in this location is
small and so is the entropy.

Figure 17 depicts a histogram of the entropy values for all the venues in our dataset.
As we see most of the venues have small entropy values, while there are some that
exhibit high entropy values. It is interesting to see that there is an increasing trend of
the entropy of a place with its degree (Figure 18). Furthermore, the top-5 degree places
are also the top-5 entropy places (with different ranking) as it can be seen in the red
solid ellipse. A number of (the many) bottom-5 degree places are still bottom-5 entropy
places. However, if we notice more carefully in the dashed, black ellipse in Figure 18,
some venues with the lowest degree, do not exhibit the lowest entropy (although still
smaller than 1).

Previously, we observed that there is a positive correlation between the average clus-
tering coefficient of the common venues of two users and their friendship probability.
To examine whether entropy is a good candidate for a similar correlation, we first ex-
amine its relation to cc. Figure 19 depicts the entropy of a venue as a function of its
clustering coefficient. As we can see, the entropy tends to be lower as the clustering co-
efficient increases. High entropy translates to more random co-visits to the venue, and
therefore a lower clustering coefficient. Hence, there appears to be a negative relation
between these two measures (we expect a similar negative relation between the average
entropy of common venues and friendship probability).

Since entropy appears to have similar characteristics with the affiliation clustering
coefficient we want to further examine its ability to bond affiliation and social infor-
mation. In Figure 13 we identified that the number of common affiliations is not very
useful in terms of inferring the existing social relations especially when the number of
common affiliations is growing (e.g., > 100). We seek to further examine if we can
obtain any additional knowledge by utilizing the information about the entropy. Using
the same data, we consider pairs of users that have the same number of common foci.
We divide them into two categories, friends and non-friends. For each one of these cat-
egories we compute the average entropy of the common spots visited and we plot the
results in Figure 20. It is clear now that the average entropy of the common affiliations
for the case of pairs of friends is indeed lower compared to the case of non-friends and
appears to be a good candidate for bridging the social and spatial components of an
LBSN.
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Fig. 19. Venues with
higher clustering coeffi-
cient tend to have lower
entropy
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Next, we compute the average friendship probability between two users as a function
of the average entropy of their common affiliations. The results presented in Figure 21
are promising. There appears to be a significant (negative) correlation between these
two variables (correlation coefficient is equal to -0.7). Their relation follows a power
law with exponent α = −1.69, as compared to the linear relation between the average
cc of the common venues and the friendship probability (Figure 16). This last result,
further supports our above argument that the entropy of a place can be used to tie the
two information planes and drive applications such as revealing social affinities from
location histories. We will examine the latter in the following section.

6 Revealing Friendships

In the previous section, we have examined the user similarity and various venue-related
metrics and their correlation with the users’ social relations. To summarize, the feature
that appears to be able to capture the best the interplay between the social and spatial
components of an LBSN is the cc. However, as explained in Section 5, its strong corre-
lation might be illusive, since its calculation explicitly utilizes the social relationships.
We further found that the entropy of the common places visited by two users appears to
be correlated with their probability of friendship as well and that friends tend to have
higher similarity scores. Our analysis therefore implies that similar metrics can be used
to make an educated judgment with regards to the social relationship between two ran-
domly selected users whose spatial behaviors are known in terms of the common venues
and their entropy. Alternatively, by utilizing a mix of social and partial spatial location
it might be possible to estimate future visits of users. The list of possible applications
realized through the bonds between social and spatial information in an LBSN is long
and not the focus of our study.

In this section, we want to examine the importance of the metrics we considered for
estimating the existing users’ affinity relations. In other words, considering the graph
in Figure 3 and assuming we are only aware of the solid edges, can we estimate the
dashed ones? To reiterate, our goal is not to be able to provide a full fledged clustering
algorithm on the affinities/ties of the social graph; we only want to examine the strength
of the explored metrics in estimating social relations.
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Metric AUC

# common venues 0.63
User similarity 0.73

Avg entropy 0.71
Min entropy 0.76
Max entropy 0.66
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Min cc 0.65
Max cc 0.94
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Metric Precision Recall

# common venues 0.11 0.016
User similarity 0.28 0.25

Avg entropy 0.42 0.59
Min entropy 0.44 0.63
Max entropy 0.37 0.46

Avg cc 0.89 0.23
Min cc 0.85 0.3
Max cc 0.85 0.3

Full entropy 0.42 0.63
Full cc 0.83 0.33

All features 0.52 0.6

Fig. 22. The predictive power of each considered feature using simple unsupervised learning
algorithms: (i) threshold-based (Left table and figure in the middle) and (ii) k-means (Right table).
Full entropy (cc) refers to using all the entropy (cc) related features.

We first consider a simple unsupervised, threshold-based, inference model. In partic-
ular, for every pair of users, we compute the following metrics, (i) number of common
venues (our baseline), (ii) user similarity, (iii) average/min/max entropy of common
venues, and (iv) average/min/max cc of common venues. Then, based on a thresh-
old comparison we classify the pair as being friends or not and we obtain the (fitted)
ROC curves for the positive instances presented in Figure 22. We focus on the positive
(friends) instances, since there is a strong unbalanced distribution of the friends/non-
friends instances in the network. Hence even a simple classifier that states every pair
as non-friends, would exhibit a very good overall performance, but it would perform
very poorly in the classification of the instances of friends. The table on the left also
provides the area under the curve (AUC); the larger the AUC, the better is the quality
we have in our assessments (lower false positives and larger true positives). As we ex-
pected, the average and min cc provide the best performance, while the entropy metrics
together with the user similarity come right after, performing better than the baseline
of simply the number of common venues. Establishments that are less diverse in terms
of people that socialize there tend to be better indicators of bonds, and this information
can be used to accurately infer social relations. Furthermore, balancing the number of
common venues between two users with their activity improves the prediction, since it
accounts for the user pair’s diversity as explained earlier.

We further examine an unsupervised clustering algorithm, that operates on the same
set of features. We use a simple k-means algorithm and compute the precision and recall
on the positive instances. Briefly, precision is the fraction of friendship predictions that
are correct, while recall is the fraction of actual friendships that the algorithm was
able to identify. The results are presented in the right table at Figure 22 and as we
can see again, the features that consider the type of the venue can significantly improve
our inference capability. For example, by using the average entropy of the common
venues visited by two people we are able to recover 63% of the actual friendships,
while from all our friendship predictions, 44% of them are correct. The corresponding
percentages when using only the number of common affiliations, are only 1.6% and
11%; a significant improvement. Our results clearly indicate that metrics such as the
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entropy and the cc of a venue can help towards the improvement of functionalities such
as relationships inference, location prediction etc. It is interesting to observe, that the
user similarity performs fairly poor in this test. The reason for this is that there are still
friends with low similarity, who are clustered together with the non-friends (low recall),
while there are a few non-friends who exhibit larger similarity values and are clustered
together with the friends. However, since the friend instances are extremely small in
number (as compared to the non-friends), this leads to an overall low precision.

Based on the above results, we believe that defining a user similarity metric that
accounts for the entropy of the visited venues can further improve the performance. We
seek to examine similar approaches as part of our future work.

7 Conclusions

In this paper we model an LBSN as an affiliation network and by analyzing data from a
commercial network we identify bonds between the social and spatial information plane
of the system. We find that friends exhibit in general much larger similarity with regards
to the number of common venues visited, as compared to non-friends. Considering only
the number of common venues between two users, is not very helpful for strongly tying
the two components of the network. Even though user similarity can provide a better
bonding, the diversity of these common venues with regards to people visiting them
is more informative and connect these two parts better. This is also supported by the
evaluations and results from simple, unsupervised social link classifiers.

In the future, we seek to examine the location homophily issue in greater detail us-
ing longitudinal data and various different similarity metrics (e.g., cosine similarity on
an appropriately defined feature vector). As aforementioned, we also opt to intergrate
information for the venue entropy in the user similarity and examine any performance
improvements in bonding social and spatial information of an LBSN.
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Abstract. To find the most influential nodes for viral marketing, several
models have been proposed to describe the influence propagation pro-
cess. Among them, the Independent Cascade (IC) Model is most widely-
studied. However, under IC model, computing influence spread (i.e., the
expected number of nodes that will be influenced) for each given seed
set has been proved to be #P-hard. To that end, in this paper, we pro-
pose GS algorithm for quick approximation of influence spread by solv-
ing a linear system, based on the fact that propagation probabilities in
real-world social networks are usually quite small. Furthermore, for bet-
ter approximation, we study the structural defect problem existing in
networks, and correspondingly, propose enhanced algorithms, GSbyStep
and SSSbyStep, by incorporating the Maximum Influence Path heuris-
tic. Our algorithms are evaluated by extensive experiments on four social
networks. Experimental results show that our algorithms can get better
approximations to the IC model than the state-of-the-arts.

1 Introduction

Recently, viral marketing has drawn more and more attention from both indus-
trial and research fields [15]. This kind of marketing is based on the word-of-
mouth effect in social networks, i.e., one may be influenced by his neighbors.
According to a survey [11], 83% of people prefer consulting family, friends or
an expert over traditional advertising before trying a new restaurant, 71% of
people do the same before buying a prescription drug, and so on. Thus, compa-
nies believe that viral marketing should be one of the most effective marketing
strategy.

Unlike traditional marketing strategies, viral marketing only targets a few
influential individuals in a social network. For example, if a company employs a
viral marketing strategy to promote sales performance, it only needs to choose a
small number of individuals and persuade them to be the initial users(by offering
them discounted or free products etc.). Due to the word-of-mouth effect, these
initial users, also called seed users, will influence their friends to use this product.
And once the friends are influenced, they will try to influence their friends and
so on. Eventually, a much larger group of people compared to the number of
initial users will adopt this product.

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 548–564, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Since different seed users usually lead to different results of word-of-mouth
propagation, an important step for a successful viral marketing is to precisely
evaluate the expected number of influenced individuals (influence spread) for
each seed user set. Along this line, several influence models have been proposed
[8][9][12]. Among these models, Independent Cascade(IC) Model is a simple and
most widely used one that describes the information propagation in a social
network as a stochastic process according to certain probabilistic rules [9][12].
However, Wei Chen et al. have proved that computing influence spread of a set of
seed users, under IC model, is a #P-hard problem [7]. As an alternative, Monte
Carlo simulation, which is very time-consuming, is employed to approximately
calculate influence spread. For example, for a moderate sized social network, we
usually have to run Monte Carlo simulation for more than ten thousands times
to obtain a good estimation of the true influence spread. Thus, the problem of ef-
ficiently computing influence spread has become a bottleneck for the deployment
of viral marketing.

To that end, in this paper, we provide a novel study on approximating influ-
ence spread under IC model, mainly based on the observation that the influence
propagation probabilities in real-world social networks are usually quite small.
Specifically, our main contributions can be summarized as follows:

– To address the above efficiency problem, we show that by solving a lin-
ear system we can approximately calculate each node (individual, or user)’s
probability of being influenced, and thus we can quickly compute influence
spread of a given seed set.

– We point out that SteadyStateSpread algorithm [1] is also an approximation
for the real influence spread under IC model when the propagation proba-
bilities are small, and this was not illustrated by Aggarwal, et al. in [1].

– For better approximation, we discover the structural defect problem (as
illustrated by Definition 2 in Section 4.1) existing in networks, and fur-
ther propose enhanced algorithms by incorporating the Maximum Influence
Path(MIP) heuristic [7] to both our algorithm and SteadyStateSpread.

– We evaluate our algorithms on four real networks. Experimental results prove
our discoveries and show that the proposed algorithms can get good approx-
imations of the real influence spread. Moreover, the nodes ranking obtained
by our algorithms are very similar to the true ranking results.

2 Related Work

In general, related work can be grouped into two categories. The first category
includes the most relevant work on influence models. In the second category, we
introduce the related work on computing social influence spread.

Influence Models. Domingos et al. first proposed to mine social networks for
marketing [8]. However, their models are essentially descriptive, and prior works
[1][7][12][13] following [8] focus more on the models that explicitly represent the
step-by-step dynamics of influence.
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Among existing influence models, Independent Cascade(IC) Model [9][12] is
one of the most widely-studied models. In IC model, a social network is repre-
sented by a directed graph G(V,E). Each node v ∈ V denotes an individual in
the social network. Each edge (u, v) represents the relationship between u and
v, and is assigned with a real number puv (puv ∈ [0, 1]) which is the probability
that v is influenced by u through the edge in the next step after u is activated.
In the beginning, there is a set of users (seed set) who are already activated,
i.e. influenced, denoted by S. Let St represents the set of nodes that become
activated at time t, and S0 = S. At time t + 1, each node u ∈ St will try to
activate its inactivated neighbor v with probability puv. If there are no newly
activated nodes at time t+1, the propagation process ends. The influence spread
of S, which is denoted by σ(S), is the expected number of nodes being activated
in the whole propagation process.

Two kinds of ICmodel, namelyUniform ICModel andWeighted Cascade(WC)
Model are defined in [12]. In uniform IC model, each link shares the same prop-
agation probabilities, while according to WC model, the propagation probability
through edge(u,v) equals to weight(u, v)/indegree(v).

Influence Spread Computation. In [12], Kempe, et al. exploited running
Monte Carlo simulation for a large number of times to evaluate the influence
spread of a given seed set under IC model.

Further, Wei Chen et al. [7] proved that computing influence spread based
on IC model is #P-hard. Given the fact that the influence of a node is always
local, they proposed the Maximum Influence Path(MIP) heuristic. Specifically,
they defined the propagation probability of a path P =< u = n1, n2, ..., nm =
v > (u ∈ S), pp(P ), as

pp(P ) =
m−1∏
i=1

pnini+1

and the maximum influence path from S to v, which is denoted by MIP (S, v),
is defined as

MIP (S, v) = argmax
P
{pp(P )|P ∈ Path(S, v)}

in which Path(S, v) is the set of all paths from S to v. By using the MIP
heuristic, they regard the probability of v being influenced by seed set S as
pp(MIP (S, v)). Their experiments showed that by using this heuristic one can
accelerate the influence maximization algorithm drastically. However, the influ-
ence spread calculated by the MIP heuristic maybe very different with the true
influence spread because it abandons too many possible paths.

In contrast, Kimura and Saito proposed the shortest-path based influence
models and provided efficient algorithms to compute influence spread under these
models in [13]. However, their algorithms are only suitable for the uniform IC
model where propagation probabilities of links are all the same, which is seldom
the case in reality.

Recently, Aggarwal et al. [1] proposed the SteadyStateSpread method to com-
pute flow authority by solving a system of nonlinear equations,
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pv =

{
1 if v ∈ S

1−
∏

u∈N(v) (1 − puv ∗ pu) if v /∈ S
(1)

in which N(v) is the set of all v’s in-neighbors and pv indicates the probability
of v being influenced. As we will explain later, Eq.(1) can be used to approx-
imately compute the real influence spread under IC model when propagation
probabilities through links are small. However, it does not strictly hold for some
situations(e.g., the situation illustrated in Section 4.1). More importantly, there
are some difficulties in solving systems of nonlinear equations, such as the conver-
gence problem [6] and the multiple solutions problem [10]. Though Aggarwal et
al. [1] gave a simple iterative algorithm for solving Eq.(1), they did not theoret-
ically prove that their algorithms can converge or Eq.(1) has only one solution.

3 Approximating Influence Spread by Linear System

In this section, we first illustrate the observation that influence propagation prob-
abilities in real-world social networks are usually quite small. Based on this fact,
we then show the way to approximate influence spread, and represent the approx-
imation by a linear system. At last, we propose a simple iterative algorithm to
solve the linear system and return the influence spread for each seed set.

3.1 Preliminary Observation

Though there exists the effect of peer-to-peer influence, in real scenarios of infor-
mation diffusion, propagation probabilities between people are very small. For
example, according to [5], in Facebook, the average probability that an individ-
ual will share a Web link is about 2% when there are 6 of his friends who shared
the same link before. In LiveJournal, the average probability that an individual
will join a community is no more than 2% even though 50 of his/her friends have
already joined that community [4]. Moreover, influence is not the only reason
that leads to phenomena of friends sharing same Web links and joining same
communities. Prior works, [2][3][16], showed that correlations between friends
in social networks are also an important factor that contributes to homophily
phenomena. Thus, the actual propagation probability caused by the effect of
influence is even smaller.

To facilitate the following discussion, we first define small propagation proba-
bilities mathematically.

Definition 1 (Small Propagation Probabilities). Given a network G =
(V,E), if for ∀v ∈ V , and for ∀u ∈ N(v), puv < weight(u, v)/indegree(v),
we say the propagation probabilities in G are small. Note that indegree(v)=∑

u∈N(v) weight(u, v).

From Definition 1 we can see that if the small propagation probabilities condition
holds in a social network, then for ∀v ∈ V ,

∑
u∈N(v) puv < 1 because puv <

weight(u, v)/indegree(v). The further explanations of these two formulas can be
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easily observed from the real world social networks: First, besides the influence
coming from the direct neighbors in the specific social network, each node v’s
activity is also impacted by the information from other sources (e.g., influence
coming from other friends that are not included in the current network). Second,
when influence propagates in the network, there is information lost (or decay)
in each node, and this has been widely observed and adopted by models from
other domains, such as the PageRank method [14].

3.2 Approximation of Real-World Influence Probability

In this subsection we consider approximating influence spread under IC model
for social networks, where propagation probabilities are small. We use σ(S) to
denote influence spread of a seed set S. It is obvious that σ(S) =

∑
v pv, in which

pv denotes the probability that v will be influenced, also called the influence
probability of v. Since ∀v ∈ S, pv = 1, the core step of computing σ(S) is
to compute pv for each v /∈ S. In the following, we show that the influence
probability of v(v /∈ S) can be well approximated by a linear equation that
pv =

∑
u∈N(v) pu ∗ puv.

Let v(t) denotes the event that v becomes influenced at time t. Note that
p{v(0)} = 1 if v ∈ S. For each node v /∈ S, p{v(t)} can be computed by

p{v(t)} =
∑

W⊆N(v)

p{v(t)|W (t− 1), ṽ(t− 1)}p{W (t− 1), ṽ(t− 1)} (2)

where N(v) is the set of in-neighbors of v, W is a subset of N(v), W (t − 1)
indicates the event that all nodes in set W become influenced at time t− 1 and
ṽ(t − 1) denotes the event that v is still not influenced after time t − 1. Worth
noting that p{v(t)} = p{v(t), ṽ(t− 1)}1. It is obvious that

p{v(t)|W (t− 1), ṽ(t− 1)} = 1−
∏
u∈W

(1− puv) (3)

Following [8] and [13], given the marginals {p{u(t− 1)};u ∈ W} and p{ṽ(t− 1)},
we approximate p{W (t− 1), ṽ(t− 1)} by the maximal entropy estimation:

p{W (t− 1), ṽ(t− 1)} = p{ṽ(t− 1)}
∏

u∈N(v)

p{u(t− 1)}hu(1 − p{u(t− 1)})1−hu

(4)
where hu is an indicator that if u ∈ W , hu=1, otherwise hu=0. Combining
Eq.(2), Eq.(3) and Eq.(4), and after some algebraic transformations, we have

p{v(t)} = p{ṽ(t− 1)}[1−
∏

u∈N(v)

(1 − puv ∗ p{u(t− 1)})] (5)

Note that under the small propagation probabilities condition, puv is very small,
the probability that v will be influenced is even smaller. So p{ṽ(t− 1)} is very

1 If v is influenced at time t, it should stay inactive from time 0 to t− 1.
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close to 1 2. Thus, p{v(t)} can be approximated by

p{v(t)} = 1−
∏

u∈N(v)

(1− puv ∗ p{u(t− 1)}) (6)

Since puv ∗ p{u(t− 1)} << 1 and (1− a)(1− b) ≈ 1− a− b when a, b << 1, we
can further approximate p{v(t)} with a linear equation:

p{v(t)} =
∑

u∈N(v)

puv ∗ p{u(t− 1)} (7)

Now we add up p{v(t)} over t to get pv. Note that pv = 1 if v ∈ S. For v /∈ S,
we have

pv =
∑
t=0

p{v(t)}

= p{v(0)}+
∑

u∈N(v)

puv
∑
t=1

p{u(t− 1)}

=
∑

u∈N(v)

puvpu

(8)

Because we are discussing approximation under the condition that
∑

u∈N(v) puv
< 1, it is guaranteed that 0 ≤ pv < 1. Thus, the influence probability pv com-
puted by Eq.(8) is well defined.

Approximation From SteadyStateSpread. As have said, under the small
propagation probabilities condition puv ∗ pu << 1, and recall Eq.(1), it is easy
to conclude that

∑
u∈N(v) puvpu ≈ 1 −

∏
u∈N(v) (1− puvpu). In this situation,

we can see that SteadyStateSpread is actually also an approximation for the true
influence spread. In the following experiment section, our experimental results
verify that the smaller puv is, the more accurate approximation will be obtained
by SteadyStateSpread.

3.3 Linear System Formulation

Rewriting Eq.(8) in a matrix form we can get a linear system. To facilitate the
following discussion, first we list some math notations in Table 1.

Table 1. Math Notations

Notations DESCRIPTION
[M]|V |∗|V | probability adjacent matrix, Muv = puv

P = [p1, p2, ..., p|V |]
T pv is the probability of v being influenced by seed set S

B = [b1, b2, ..., b|V |]
T bv = 1 if v ∈ S, otherwise bv = 0

MS matrix which is cut down from matrix M by removing rows
whose index v ∈ S

MSS matrix which is cut down from matrix M by removing rows and
columns whose index v ∈ S

2 The assumption on this value will be verified in the experimental section 5.3.
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For node v /∈ S, we rewrite Eq.(8) by

pv =
∑

u∈N(v)
∧

u/∈S

puv ∗ pu +
∑

u∈N(v)
∧

u∈S

puv (9)

Further, using matrix form to represent the right side of Eq.(9), we have

pv = (MS)
T
v PS + (MTB)v (10)

Put all nodes v that v /∈ S together,

PS = (MSS)
TPS + (MTB)S (11)

thus we have
[I− (MSS)

T ]PS = (MTB)S (12)

Given that we are dealing with approximations of influence spread under the
condition that

∑
u∈N(v) puv < 1, the matrix [I − (MSS)

T ] is strictly diagonally

dominant. Thus, [I− (MSS)
T ] is invertible and the linear system of Eq.(12) has

only one solution that PS=[I − (MSS)
T ]−1(MTB)S . In this way, by summing

up pv over each v, we get influence spread for seed set S(i.e., σ(S)).

3.4 A Simple Iterative Algorithm

As we stated above, to approximately compute the influence spread of a seed
set S, we only have to solve the linear equation Eq.(12) and sum up all pv.

Algorithm 1. GS(G, S)

1: for v = 1 to |V | do
2: if v ∈ S then
3: pv ← 1
4: else
5: pv ← 0
6: end if
7: end for
8: while not converge do
9: for v = 1 to |V | do
10: if v /∈ S then
11: pv ←

∑
u∈N(v) puv ∗ pu

12: end if
13: end for
14: end while
15: sum← 0
16: for v = 1 to |V | do
17: sum← sum+ pv
18: end for
19: return sum
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Since [I−(MSS)
T ] is strictly diagonally dominant, we can use Gauss-Seidel(GS)

algorithm to efficiently solve Eq.(12) in O(E) time. The entire computation
process can be illustrated by Algorithm 1, where the iteration formula used is
Eq.(8). Based on the output of Algorithm 1, we can rank each seed set S, so as
to find the most influential individuals for marketing.

4 Algorithms Incorporating MIP Heuristic

In this section, we first illustrate the structural defect problem existing in many
methods for social networks. Then, to address this problem and to get a better
approximation, we propose enhanced algorithms by incorporating the Maximum
Influence Path(MIP) heuristic into both GS algorithm and SteadyStateSpread.

4.1 Structural Defect

According to Eq.(1) and Eq.(8), for v /∈ S, the value of pv depends on all of its
in-neighbors. However, in fact sometimes a node u’s influence probability pu is
independent from some of its in-neighbors. Consider the following example of an
undirected network, as shown in Fig.1.

Fig. 1. An undirected network

In this undirected network, assume that node 1 is the only seed node. Based
on Eq.(1) and Eq.(8), the probability of node 4 being influenced depends on the
probability of node 5 being influenced. However, actually, to influence node 5,
node 4 should be influenced first. Thus, p4 is irrelevant with p5, and this con-
tradicts with Eq.(1) and Eq.(8). We have reasons to believe that each network,
especially an undirected network, may have many sub-structures like Fig.1, and
in this situation, if we use Eq.(1) or Eq.(8) to calculate pv would get misleading
results. In summary, we call structures like (node 4, node 5) in Fig.1 structural
defect of Eq.(1) and Eq.(8), and we define it in a mathematical way.

Definition 2 (Structural Defect). Given a network G = (V,E), a seed set S
and an influence spread algorithm A, if ∃u, v /∈ S, ∀P = (pn1 , pn2 , ..., pnm = v) ∈
Path(S, v), u ∈ P (that is, every path from S to v has to pass u), and according
to A, the value of pu depends on pv, we say that (u, v) is a structural defect
of algorithm A on G.
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4.2 Incorporating Maximum Influence Path Heuristic

To handle the problem of structural defect, we propose to incorporate the Max-
imum Influence Path(MIP) heuristic [7] into our algorithm. The main idea is to
set an iteration threshold β(v) for node v, i.e., for each v, we only update pv in
the first β(v) iterations.

Let’s consider the algorithms of Gauss-Seidel(GS) and SteadyStateSpread [1],
which are both iterative processes of accumulating each path’s influence prob-
ability for a node (e.g., v) by Eq.(8) and Eq.(1) respectively. Specifically, for a
path P from S to v, if we want to include the propagation probability through P ,
we have to update pv for no less than length(P )(hops of P ) iterations. Since the
maximum influence path is the path with biggest propagation probability, we do
not want to abandon this path’s influence. Thus, let step[v] denotes hops of this
maximum influence path from S to v, and to include the influence probability
of maximum influence path, we should set the iteration threshold for v to be at
least step[v].

However, since step[v] is usually also the shortest distance from S to v, and
if we just update pv in the first step[v] rounds of iterations, we may miss some
important influences from other paths. For example, the value of p2 for node 2
in Fig.1 does depend on the influence from all its neighbors. In contrast, if we
update pv for too many iterations, the structural defect will have serious impact
on the estimation of influence spread. Take node 4 in Fig.1 for example, as the

Algorithm 2. GSbyStep(G, S)

1: for v = 1 to |V | do
2: if v ∈ S then
3: pv ← 1
4: else
5: pv ← 0
6: calculate hops of the maximum influence path from S to v, denoted by step[v]
7: end if
8: end for
9: times← 0, updated← true
10: while updated is true do
11: updated← false, times← times+ 1
12: for v = 1 to |V | do
13: if v /∈ S

∧
times � step[v] + 1 then

14: pv ←
∑

u∈N(v) puv ∗ pu
15: updated← true
16: end if
17: end for
18: end while
19: sum← 0
20: for v = 1 to |V | do
21: sum← sum+ pv
22: end for
23: return sum
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round of iterations increases, p5 will become larger and the structural defect
caused by node 5 for p4 will be more and more serious.

To that end, as a tradeoff, we choose step[v] + 1 as v’s iteration threshold
β(v). Choosing such value is because in the (step[v] + 1)-th iteration there are
few miss counted influence probabilities, and meanwhile, the bad impact from
structural defect is limited. Along this line, by incorporating MIP heuristic into
Algorithm 1 and SteadyStateSpread, we propose GSbyStep algorithm(as illus-
trated by Algorithm 2) and SSSbyStep algorithm3 for better approximations.
Worth noting that our solution also works for some other iterative algorithms,
where the structural defect problem exists.

5 Experimental Evaluation

5.1 Experimental Setup

We evaluate our algorithms by experiments on four real-world datasets (two di-
rected networks and two undirected networks) that we downloaded from SNAP 4.
Detailed information of these four data sets can be seen in Table 2.

Table 2. Description of Data Sets

Name Description Type Nodes Edges
wiki-Vote Wikipedia who-votes-on-whom network Directed 7,115 103,689

p2p-Gnutella04 Gnutella peer to peer network from August 4 2002 Directed 10,876 39,994
email-Enron Email communication network from Enron Undirected 36,692 367,662
ca-AstroPh Collaboration network of Arxiv Astro Physics Undirected 18,772 396,160

Unlike Kimura and Saito using uniform IC model [13] where propagation
probabilities are all the same, for simulating the real-world influence propagation
process more accutately, we evaluate our algorithms following more general cases
of IC model. Specifically, we set propagation probabilities in a WC model [12] like
way. As stated in the related work section, the propagation probability of an edge
(u, v) under WC model is weight(u, v)/indegree(v). Thus, this model assumes
that the total influence probabilities of a node’s in-neighbors are 1. As we have
discussed in Section 3.1, this assumption is too idealistic for real scenarios. In
order to make the influence propagation process more realistic, and following
Definition 1, we slightly change WC model by setting

∑
u∈N(v) puv = α, thus

puv = α ∗ weight(u, v)/indegree(v). In this way, we can not only cover more
general cases of IC model (by slightly changing weights of the edges) but also
capture the characteristics (i.e., small and different values) of the real-world
influence propagation probabilities. Thus, in the following, we call such modified
model as General IC Model, or IC model for short.

3 Modifying the 14-th line of GSbyStep algorithm by replacing
∑

u∈N(v) puv ∗ pu with

1−
∏

u∈N(v) (1− puv ∗ pu), we get the SSSbyStep algorithm.
4 http://snap.stanford.edu

http://snap.stanford.edu
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For each network, we conduct three groups of experiment by setting α as 0.5
for all nodes, setting α as 0.75 for all nodes, and randomly generating α with
a uniform distribution on [0.1,0.9] for each node, respectively. For evaluation,
the average result of 20,000 times Monte Carlo simulation of IC model (GICM )
is regarded as the real influence spread. In the following, we compare our algo-
rithms (SSSbyStep,GSbyStep,GS ) with four baseline algorithms, MIP [7],
SteadyStateSpread(SSS) [1], SP1M [13] and an insufficient times Monte Carlo
simulation of IC model, i.e., 200 times of Monte Carlo simulation(GICM200 ).

5.2 Ranking Problem

First we consider the problem of extracting influential seeds by ranking candidate
nodes. Specifically, we try to find the rank list of 100(|S| = 100) influential seeds,
i.e., the top-100 nodes with higher influence spread than others.

We use the result of 20,000 times Monte Carlo simulation as the ground truth,
and the ranking according to such simulation is regarded as the true nodes rank.
For evaluating rankings obtained by different algorithms, we compare similarities
between those rankings with the true ranking. We employ the same measurement
which is used in [13], the ranking similarity F (k). F (k) quantifies the degree of
similarity between two ranking methods at rank k, and it is defined as follows:
Let L(k) and L′(k) be the respective sets of top-k nodes for the two ranking
methods that we compare. Then, F (k) = |L(k)

⋂
L′(k)| / k.

Fig.2-Fig.5 show the experimental results . We can see that rankings ob-
tained by our proposed algorithms and SteadyStateSpread(SSS) are very similar
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Fig. 4. Rank Similarity Comparison on email-Enron Network Data
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Fig. 5. Rank Similarity Comparison on ca-AstroPh Network Data

to the true ranking while others are not. This is because both our algorithms
and SteadyStateSpread(SSS) are approximations for the real influence spread as
stated in Section 3.

Another observation is that in most cases all algorithms can choose the most
influential seed(top-1 node) accurately, even algorithms like MIP which is not
very effective on ranking similarity metric. This may explain why these algo-
rithms work well for the influence maximization problem [7][12][13]. Since under
the greedy framework [12] for solving this problem, an algorithm only cares
about finding the node with the maximum increasing influence spread in each
round, and this node will be added into seed set.

5.3 Estimation of Influence Spread

We then evaluate each algorithm by their performances on estimating the influ-
ence spread for a given seed set. For each dataset, we first calculate influence
spreads of the top-1000 nodes with highest out-degrees5, i.e., experiment with
setting the size of seed set equals to 1. Then we randomly generate 100 differ-
ent seed sets with the size to be 10, 20, 30, 40, 50, respectively. At last, the
effectiveness of each algorithm is measured by error rate of the influence spread
returned by this algorithm. Here, we define σ(S) as the true influence spread

5 Since people often care about top influential nodes, and nodes with higher out-degree
are usually more influential.



560 Y. Yang et al.

Table 3. Average Influence Spread (σ(S)) under α = 0.5 Setting

����������dataset
size of seed set

1 10 20 30 40 50

wiki-Vote 4.58 45.22 87.83 133.25 178.60 222.61
p2p-Gnutella04 3.76 37.34 74.15 112.60 148.97 185.13
email-Enron 14.21 151.34 269.06 428.79 559.47 733.68
ca-AstroPh 4.41 44.06 86.04 129.91 171.13 215.14

Table 4. Average Influence Spread (σ(S)) under α = 0.75 Setting

����������dataset
size of seed set

1 10 20 30 40 50

wiki-Vote 8.29 80.76 156.41 234.35 310.25 384.17
p2p-Gnutella04 8.91 89.58 169.30 260.26 343.52 419.03
email-Enron 31.04 318.28 579.39 895.69 1,160.61 1,495.89
ca-AstroPh 10.65 104.97 201.66 301.34 392.89 485.68

Table 5. Average Influence Spread (σ(S)) under random α Setting

����������dataset
size of seed set

1 10 20 30 40 50

wiki-Vote 4.71 46.34 90.73 136.85 183.16 227.99
p2p-Gnutella04 3.81 37.74 75.29 113.77 151.07 188.41
email-Enron 14.02 150.40 264.93 424.46 552.89 724.63
ca-AstroPh 4.39 44.09 85.69 129.41 170.09 212.86

computed by 20,000 times Monte Carlo simulation, and σ
′
(S) as the influence

spread calculated by an approximate algorithm. Then the error rate of σ
′
(S) can

be measured by |σ(S)− σ
′
(S)|/σ(S).

Ground Truth. The average values of σ(S) under different α settings are il-
lustrated in Table 3 - Table 5, where a much larger group of nodes are finally
influenced compared to the size of each seed set. Based on these tables, we then
present a verification for the assumption that p{ṽ(t− 1)} is very close to 1 for
each v and t. For simplicity, we take α = 0.75 and the email-Enron network (with
the largest number of influenced nodes) as an example. From Table 4 we can
see that when |S| = 50, the average pv for each node in email-Enron network is
1, 495.89/36, 692 = 0.04, thus 1−pv = 0.96. Since 1−pv < p{ṽ(t− 1)}, it means
p{ṽ(t− 1)} > 0.96. Similarly, when |S| = 1, we can get p{ṽ(t− 1)} > 0.999.
From these lower bounds we can summarize that p{ṽ(t− 1)} is very close to 1.

Effectiveness. Correspondingly, Fig.6-Fig.9 show the average error rates of dif-
ferent algorithms when the size of each seed set varies from 1 to 50. From Fig.6
and Fig.7 we can see that our two linear algorithms GSbyStep and GS are the
most accurate algorithms for the two directed networks. Error rates of these
two algorithms are lower than 1% in most cases. While from Fig.8 and Fig.9,
we find that for the two undirected networks, SSSbyStep has the lowest er-
ror rate in most cases(with error rate lower than 3%). Worth noting that, for
the two undirected networks, when α = 0.75, accuracy has been significantly
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Fig. 6. Average Error Rate Comparison on wiki-Vote Network Data
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Fig. 7. Average Error Rate Comparison on p2p-Gnutella04 Network Data

improved by incorporating MIP heuristic into algorithms, especially when the
size of the seed set is 1. Specifically, average error rate of SSSbyStep algorithm is
about 7% lower than SteadyStateSpread(SSS) algorithm, and average error rate
of GSbyStep algorithm is about 10% lower than GS algorithm.

Another observation is that error rates of our algorithms and SteadyState-
Spread(SSS) are lower when setting α = 0.5 than setting α = 0.75. This substan-
tiates that both our algorithms and SteadyStateSpread can better approximate
the real influence spread when propagation probabilities are smaller.

Efficiency. Our algorithms are also very efficient compared to baseline algo-
rithms. Fig.10 shows the average processing time when α = 0.75 and the size of
each seed set varies from 1 to 50, where GICM denotes the algorithm of 20,000
times Monte Carlo simulation of IC model. Similar results under other α settings
are omitted due to the space limit. We can see that tens thousand times Monte
Carlo simulation (GICM ) is very time-consuming. And insufficient times Monte
Carlo simulation (GICM200 ) is fast when the size of seed set is small, but the
error rate is correspondingly very high. Moreover, another drawback of Monte
Carlo simulation is that the processing time increases as seed set gets larger.
In contrast, all of our algorithms are iteration-based algorithms, so the running
time does not increase when seed sets become larger.
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Fig. 8. Average Error Rate Comparison on email-Enron Network Data
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Fig. 9. Average Error Rate Comparison on ca-AstroPh Network Data
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5.4 Effectiveness of Iteration Threshold

In previous experiments, we set step[v] + 1 as the iteration threshold for each
node v. In this subsection, we provide an experimental proof of this value. We set
α = 0.75 and use GSbyStep algorithm as an example for evaluation, and similar
results can be observed for other parameter settings and algorithm SSSbyStep.
Let step[v] + r be the iteration threshold that we set in GSbyStep algorithm for
node v. We did 11 groups of experiments of computing influence spreads of the
1000 nodes we picked in Section 5.3 by setting r = 0, 1, 2, 3..., 10, respectively.
The corresponding average error rates for each r are shown in Fig.11.
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Fig. 11. Average Error Rate under Different Iteration Threshold Settings

From Fig.11 we can see that error rates under different iteration thresholds do
not vary very much for the two directed networks, wiki-Vote and p2p-Gnutella04.
These results are similar to that in Fig.6 and Fig.7, where the error rates of
algorithms incorporating MIP heuristic(GSbyStep and SSSbyStep) are close to
the algorithms not considering such heuristic(GS and SSS ). In contrast, for the
two undirected networks, email-Enron and ca-AstroPh, when setting iteration
threshold to be step[v] + 1(r = 1) we can get the smallest error rate.

In all, the above results verify that setting iteration threshold to be step[v]+1
is reasonable for both directed and undirected networks. In this way, we can not
only achieve a better approximation for the real influence spread but also has
low computational cost(as shown in Fig.10).

6 Conclusion

In this paper, we exploited the fact that propagation probabilities in real-world
social networks are quite small for developing an iterative algorithm GS to
quickly compute the real influence spread, under IC model. Specifically, we
first explain that the influence spread can be well approximated by solving a
linear system. Then, we point out the structure defect problem existing in so-
cial networks which bothers many iterative computation algorithms. Based on
this discovery, we further improve both our GS algorithm and the SteadyState-
Spread algorithm by incorporating the MIP heuristic. Experimental results on
four real-world data sets demonstrate that GS algorithm can approximate the
real influence spread very well. Meanwhile, the improved algorithms(GSbyStep
and SSSbyStep) can achieve better approximations and save computational cost.
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through a social network. In: KDD, pp. 137–146 (2003)

13. Kimura, M., Saito, K.: Tractable Models for Information Diffusion in Social Net-
works. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS
(LNAI), vol. 4213, pp. 259–271. Springer, Heidelberg (2006)

14. Langville, A.N., Meyer, C.D.: Deeper Inside PageRank. Internet Mathematics 1(3),
335–380 (2004)

15. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing.
ACM Transactions on the Web 1(1), 5 (2007)

16. Lewis, K., Gonzalez, M., Kaufman, J.: Social selection and peer influence in an
online social network. Proceedings of the National Academy of Sciences 109(1),
68–72 (2012)



Opinion Formation by Voter Model with Temporal
Decay Dynamics

Masahiro Kimura1, Kazumi Saito2, Kouzou Ohara3, and Hiroshi Motoda4

1 Department of Electronics and Informatics, Ryukoku University
Otsu 520-2194, Japan

kimura@rins.ryukoku.ac.jp
2 School of Administration and Informatics, University of Shizuoka

Shizuoka 422-8526, Japan
k-saito@u-shizuoka-ken.ac.jp

3 Department of Integrated Information Technology, Aoyama Gakuin University
Kanagawa 252-5258, Japan
ohara@it.aoyama.ac.jp

4 Institute of Scientific and Industrial Research, Osaka University
Osaka 567-0047, Japan

motoda@ar.sanken.osaka-u.ac.jp

Abstract. Social networks play an important role for spreading information and
forming opinions. A variety of voter models have been defined that help analyze
how people make decisions based on their neighbors’ decisions. In these stud-
ies, common practice has been to use the latest decisions in opinion formation
process. However, people may decide their opinions by taking account not only
of their neighbors’ latest opinions, but also of their neighbors’ past opinions. To
incorporate this effect, we enhance the original voter model and define the tempo-
ral decay voter (TDV) model incorporating a temporary decay function with pa-
rameters, and propose an efficient method of learning these parameters from the
observed opinion diffusion data. We further propose an efficient method of select-
ing the most appropriate decay function from among the candidate functions each
with the optimized parameter values. We adopt three functions as the typical can-
didates: the exponential decay, the power-law decay, and no decay, and evaluate
the proposed method (parameter learning and model selection) through extensive
experiments. We, first, experimentally demonstrate, by using synthetic data, the
effectiveness of the proposed method, and then we analyze the real opinion dif-
fusion data from a Japanese word-of-mouth communication site for cosmetics
using three decay functions above, and show that most opinions conform to the
TDV model of the power-law decay function.

1 Introduction

Social networking services (SNSs) on the Internet, such as Facebook, Twitter and Digg,
have become so popular and use of these services is now a part of our daily activities.
Large networks formed by these services play an important role as a medium for spread-
ing diverse information including news, ideas, opinions, and rumors [18,17,8,6]. Users
of these services can share their interests or opinions to each other. The resulting social

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 565–580, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



566 M. Kimura et al.

networks and the information propagated therein have great influence on and drastically
change our decision making processes and behaviors in daily life. Thus, many attempts
have been made to investigate the spread of influence in social networks [15,5,21].

One such typical and well studied problem in social network analysis is the influence
maximization problem, which is finding a limited number of influential nodes that are
effective for spreading information [10,11,16,3,4]. What is common to these studies
is that models used allow a node in the network to take only one of the two states,
i.e., either active or inactive, because the focus is on influence. However, we need a
model in which a node can take multiple states for such applications in which a user
can choose one from multiple choices. For example, a mobile phone user may change
his/her current carrier to the one which the majority of his/her neighbors are using.
To model this kind of opinion formation dynamics, a node in the network has to be
able to take one of many possible choices as its state. A voter model would be the one
which is most suitable for this purpose. It is one of the most basic stochastic process
models, where a node decision is influenced by its neighbors’ decisions [20,9,7,2,22].
We proposed two variants of voter model in our past work: the value-weighted voter
model that considers opinion values [12], and the value-weighted mixture voter model
that, in addition to the opinion values, considers the effect of anti-majoritarians, i.e.,
those people who do not agree with the majority and support the minority opinion [13].

In this paper we also address the problem of opinion formation on the social network,
but we especially focus on the fact that our decision may be influenced not only by
our neighbors’ and our own latest opinions, but also by the neighbors’ and our own
past opinions. For example, assume that you and your friends have long supported a
certain political party, but many of your friends have started changing their supporting
party to a different one very recently. Under this situation, you may still stick to your
opinion and keep supporting the party, or you may change your mind and follow your
neighbors’ opinions. This means that your current opinions are influenced not only
by the neighbors’ latest opinions but also by their past opinions including your own
opinions. It is, thus, important to consider all the past opinions in making the current
decision. Nonetheless, all the voter models including the two variants mentioned above
consider only the latest opinions of its neighbors including itself when updating the
opinion of a node.

With this in mind we enhance the original voter model and define the temporal decay
voter (TDV) model that takes into account all the past opinions discounting the effect of
older opinions by using a temporal decay function. The work most closely related to our
approach would be the work by Koren [14] which is in the context of recommender sys-
tems, where several time drifting user preference models are proposed, some of which
adopt a temporal decay function that discounts the effect of older ratings to items. The
approach in Koren’s work is, unlike our approach, cannot utilize all the past ratings
given by a user for an identical item because the user-item matrix that they use does
not allow multiple ratings to be stored. In addition, due to the framework of collabora-
tive filtering, it requires the rating history involving multiple items, while our approach
can model the temporal dynamics of opinions for a single item. Thus, it does not make
sense to compare Koren’s approach with ours.
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Our major contribution is the following four: 1) the TDV model, 2) an algorithm
of learning the parameters of the temporal decay function from the observed opinion
spreading data, 3) a model selection method that determines the most appropriate de-
cay function for given data, and 4) new finding regarding the decay model from the
analysis of the real data. The model parameters are learned by an efficient iterative al-
gorithm which maximizes the likelihood function. Three representative decay functions
are employed, although the framework is not necessarily limited to them: the exponen-
tial decay, the power-law decay, and no decay. Which function, each with the optimized
parameter values, is most appropriate for given data is determined based on the log
likelihood ratio statistic. We evaluate the parameter learning and the model selection
methods through extensive experiments using synthetic data with two TDV models,
one with the exponential decay and the other with power-low decay. We then applied
the methods to the real opinion spreading data from a Japanese word-of-mouth commu-
nication site for cosmetics using aforementioned three decay functions, and show that
most opinions conform to the TDV model of the power-law decay function.

The paper is organized as follows. We define the TDV model in Section 2 and ex-
plain how the model parameters are learned and the most appropriate model is selected
in Section 3. The performance of parameter learning and model selection using the
synthetic data is reported in Section 4 and the finding from the analysis of real data is
reported in Section 5. We end this paper by summarizing the main result in Section 6.

2 Voter Model with Temporal Decay Dynamics

We define the TDV (Temporal Decay Voter) model. Let G = (V, E) be a directed network
with self-loops, where V and E (⊂ V × V) are the sets of all nodes and links in the
network, respectively. Here, (u, v) ∈ E denotes a (directed) link from node u to node
v. When there is a link (u, v), we assume that v can be influenced by its neighbor u in
opinion formation process. For a node v ∈ V , let B(v) denote the set of neighbors of v
in G, that is,

B(v) = {u ∈ V; (u, v) ∈ E}.
Note that v ∈ B(v). Given an integer K with K ≥ 2, we consider the spread of K
opinions (opinion 1, · · · , opinion K) on G, where each node holds exactly one of the K
opinions at any time t (≥ 0). We assume that each node of G initially holds one of the
K opinions with equal probability at time t = 0. We denote by

gt : V → {1, · · · ,K}
the opinion distribution at time t, where gt(v) stands for the opinion of node v at
time t. Note that g0 stands for the initial opinion distribution. For any v ∈ V and
k ∈ {1, 2, · · · ,K}, let Uk(t, v) be the set of v’s neighbors that hold opinion k as its latest
opinion (before time t), i.e.,

Uk(t, v) = {u ∈ B(v); ϕt(u) = k},
where ϕt(u) is the latest opinion of u (before time t).



568 M. Kimura et al.

2.1 Voter Model

We first recall the definition of the voter model (see, e.g., [13]), which is one of the
standard models of opinion dynamics, where K is usually set to 2. The evolution process
of the voter model is defined as follows:

1. At time 0, each node v independently decides its update time t according to some
probability distribution such as an exponential distribution with parameter γv = 1.1

The successive update time is determined similarly at each update time t.
2. At an update time t, the node v adopts the opinion of a randomly chosen neighbor

u, i.e.,
gt(v) = ϕt(u).

3. The process is repeated from the initial time t = 0 until the next update-time passes
a given final-time T1.

We note that in the voter model each individual tends to adopt the majority opinion
among its neighbors.2 Here note that the definition of one’s neighbors include oneself
because of the existence of self loop. Thus, we can extend the original voter model with
2 opinions to a voter model with K opinions by replacing Step 2 with: At an update time
t, the node v selects one of the K opinions according to the probability distribution,

P(gt(v) = k) =
|Uk(t, v)|
|B(v)| , (k = 1, · · · ,K). (1)

2.2 Temporal Decay Voter Model

As mentioned earlier, people may decide their opinions by taking account not only of
their neighbors’ latest opinions, but also of their neighbors’ past opinions including
their own opinions. In order to model this kind of situation, for any t > 0 and v ∈ V , we
consider the set M(t, v) consisting of the time τ (< t) at which an individual (a node) v
manifested his/her opinion. For k = 1, · · · ,K, we also consider a subset of M(t, v),

Mk(t, v) = {τ ∈ M(t, v); gτ(v) = k},
where Mk(t, v) is the set of node v’s opinion manifestation time instances before time t
in which v takes opinion k. Now, we can define a voter model which takes all the past
opinions into consideration. In this model, Eq. (1) is replaced with

P(gt(v) = k) =
1 +
∑

u∈B(v) |Mk(t, u)|
K +
∑

u∈B(v) |M(t, u)| , (k = 1, · · · ,K), (2)

where we employed a Bayesian prior known as the Laplace smoothing. Here we note
that the Laplace smoothing of Eq. (2) corresponds to the assumption that each node ini-
tially holds one of the K opinions with equal probability at time t = 0. Note also that the

1 This assumes that the average delay time is 1.
2 In reality there may be a case that one changes its opinion to a medium one (say 3) listening

to two opposite opininons (say 1 and 5). The voter model does not consider this possibility
unless at least one of the neighbors has already the medium opinion (3).
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Laplace smoothing corresponds to a special case of Dirichlet distributions that are very
often used as prior distributions in Bayesian statistics, and in fact the Dirichlet distribu-
tion is the conjugate prior of the categorical distribution and multinomial distribution.
We refer to this voter model as the base TDV model.

Thus far, we assumed that all the past opinions are equally weighted. However, it is
naturally conceivable that the quite old opinions have almost no influence. Older opin-
ions are less influential in general. In order to reflect this kind of effects into the model,
we consider introducing some decay functions. The simplest one is an exponential de-
cay function defined by

ρ(Δt; λ) = exp(−λΔt), (3)

where λ ≥ 0 is a parameter and Δt = t − τ stands for the time difference between
the opinion adoption time t and the opinion manifestation time τ. Another natural one
would be a power-law decay function defined by

ρ(Δt; λ) = (Δt)−λ = exp(−λ logΔt), (4)

where λ ≥ 0 is a parameter.
Now, we construct a more general decay function. For a given positive integer J, let

f1(Δt), · · · , fJ(Δt) be functions on (0,+∞) such that 1, f1(Δt), · · · , fJ(Δt) are linearly
independent, that is, if λ0, λ1, · · · , λJ are real numbers and satisfy

λ0 +

J∑

j=1

λ j f j(Δt) = 0, (∀Δt ∈ (0,+∞)),

then λ0 = λ1 = · · · = λJ = 0. We then consider a J-dimensional feature vector,

FJ(Δt) = ( f1(Δt), · · · , fJ(Δt))T ,

where aT denote the transpose of column vector a. For a J-dimensional real column
vector with non-negative elements,

λJ = (λ1, · · · , λJ)T ,

which is a parameter vector, we define a decay function ρ(Δt; λJ) by

ρ(Δt; λJ) = exp
(
−λJ

T FJ(Δt)
)
, (5)

where the matrix operations are used. Representative candidates of feature vector FJ(Δt)
include

F1(Δt) = Δt, F1(Δt) = logΔt, F1(Δt) = (Δt)2

for J = 1,

F2(Δt) = (Δt, logΔt)T , F2(Δt) =
(
Δt, (Δt)2

)T
, F2(Δt) =

(
logΔt, (Δt)2

)T

for J = 2,

F3(Δt) =
(
Δt, logΔt, (Δt)2

)T
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for J = 3, etc. Note that ρ(Δt; λJ) becomes the exponential decay function if J = 1 and
FJ(Δt) = Δt, and the power-law decay function if J = 1 and FJ(Δt) = logΔt.

Using our general decay function ρ(Δt; λJ) (see Eq. (5)), we define the TDV (Tem-
poral Decay Voter) model in the following way. In this model, Eq. (1) is replaced with

P(gt(v) = k) =
1 +
∑

u∈B(v)
∑
τ∈Mk(t,u) ρ(t − τ; λJ)

K +
∑

u∈B(v)
∑
τ∈M(t,u) ρ(t − τ; λJ)

, (k = 1, · · · ,K). (6)

Here note that Eq. (6) is reduced to Eq. (2) when λJ is the J-dimensional zero-vector
0J , that is, the TDV model of λJ = 0J coincides with the base TDV model.

3 Learning Method

We consider the problem of identifying the TDV model on network G from an observed
dataDT0 in time-span [0, T0], whereDT0 consists of a sequence of (k, t, v) such that node
v changed its opinion to opinion k at time t for 0 ≤ t ≤ T0. The identified model can be
used to predict how much of the share each opinion will have at a future time T1 (> T0),
and to identify both high decay tendency data sets and low decay tendency data sets.

3.1 Parameter Estimation

We describe a method for estimating decay parameter values of the TDV model from
a given observed opinion spreading data DT0 . Based on the evolution process of our
model (see Eq. (6)), we can obtain the likelihood function,

L(DT0 ; λJ) = log

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∏

(k,t,v)∈DT0

P(gt(v) = k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

where λJ stands for the J-dimensional vector of decay parameter values, as explained in
the previous subsection. Thus our estimation problem is formulated as a maximization
problem of the objective function L(DT0 ; λJ) with respect to λJ .

We derive an iterative algorithm for obtaining the maximum likelihood estimators.
From the definitions of P(gt(v) = k) (see Eq. (6)) and ρ(Δt; λJ) (see Eq. (5)), we can
express Eq. (7) as follows:

L(DT0 ; λJ) =
∑

(k,t,v)∈DT0

log

⎛
⎜⎜⎜⎜⎜⎜⎝1 +

∑

u∈B(v)

∑

τ∈Mk(t,u)

exp
(
−λJ

T FJ(t − τ)
)
⎞
⎟⎟⎟⎟⎟⎟⎠

−
∑

(k,t,v)∈DT0

log

⎛
⎜⎜⎜⎜⎜⎜⎝K +

∑

u∈B(v)

∑

τ∈M(t,u)

exp
(
−λJ

T FJ(t − τ)
)
⎞
⎟⎟⎟⎟⎟⎟⎠ . (8)

Now, let λJ be the current estimate of λJ . We foucus on the first term of the right-hand
side of Eq. (8), and define qk,t,v(τ; λJ) by

qk,t,v(τ; λJ) =
exp
(
−λJ

T FJ(t − τ)
)

1 +
∑

u∈B(v)
∑
τ′∈Mk(t,u) exp

(
−λJ

T FJ(t − τ′)
)
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for any k ∈ {1, · · · ,K}, t ∈ (0, T ], v ∈ V , and τ ∈ ⋃u∈B(v) Mk(t, u). Note that for any
(k, t, v) ∈ DT0 ,

qk,t,v(τ; λJ) > 0,

⎛
⎜⎜⎜⎜⎜⎜⎝∀τ ∈

⋃

u∈B(v)

Mk(t, u)

⎞
⎟⎟⎟⎟⎟⎟⎠ , (9)

∑

u∈B(v)

∑

τ∈Mk(t,u)

qk,t,u(τ; λJ) +
1

1 +
∑

u∈B(v)
∑
τ′∈Mk(t,u) exp

(
−λJ

T FJ(t − τ′)
) = 1. (10)

We can transform our objective function as follows:

L (DT0 ; λJ
)
= Q

(
λJ; λJ

)
−H
(
λJ ; λJ

)
, (11)

where Q
(
λJ; λJ

)
is defined by

Q
(
λJ ; λJ

)
= −

∑

(k,t,v)∈DT0

∑

u∈B(v)

∑

τ∈Mk(t,u)

qk,t,v

(
τ; λJ

)
λJ

T FJ(t − τ)

−
∑

(k,t,v)∈DT0

log

⎛
⎜⎜⎜⎜⎜⎜⎝K +

∑

u∈B(v)

∑

τ∈M(t,u)

exp
(
−λJ

T FJ(t − τ)
)
⎞
⎟⎟⎟⎟⎟⎟⎠ , (12)

andH
(
λJ; λJ

)
is defined by

H
(
λJ; λJ

)
=

∑

(k,t,v)∈DT0

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑

u∈B(v)

∑

τ∈Mk(t,u)

qk,t,v

(
τ; λJ

)
log qk,t,v (τ; λJ)

+
1

1 +
∑

u∈B(v)
∑
τ′∈Mk(t,u) exp

(

−λJ
T

FJ(t − τ′)
)

× log

⎛
⎜⎜⎜⎜⎜⎜⎝

1

1 +
∑

u∈B(v)
∑
τ′∈Mk(t,u) exp

(
−λJ

T FJ(t − τ′)
)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
.(13)

By Eqs. (9), (10), (13), and the property of the KL-divergence, it turns out thatH
(
λJ ; λJ

)

is maximized at λJ = λJ. Hence, we can increase the value of L (DT0 ; λJ
)

by maximiz-
ing Q

(
λJ; λJ

)
with respect to λJ (see Eq. (11)).

We derive an update formula for maximizing Q(λJ ; λJ). We foucus on the second
term of the right-hand side of Eq. (12) (see also the second term of the right-hand side
of Eq. (8)), and define rt,v(τ; λJ) by

rt,v(τ; λJ) =
exp
(
−λJ

T FJ(t − τ)
)

K +
∑

u∈B(v)
∑
τ′∈M(t,u) exp

(
−λJ

T FJ(t − τ′)
) (14)

for any t ∈ (0, T ], v ∈ V , and τ ∈ ⋃u∈B(v) M(t, u). Note that for any (k, t, v) ∈ DT0 ,

rt,v(τ; λJ) > 0,

⎛
⎜⎜⎜⎜⎜⎜⎝∀τ ∈

⋃

u∈B(v)

M(t, u)

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

∑

u∈B(v)

∑

τ∈M(t,u)

rt,u(τ; λJ) < 1. (15)
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From Eqs. (12) and (14), we can easily see that the gradient vector of Q
(
λJ; λJ

)
with

respect to λJ is given by

∂Q
(
λJ ; λJ

)

∂λJ
= −

∑

(t,v,k)∈DT0

∑

u∈B(v)

⎛
⎜⎜⎜⎜⎜⎜⎝

∑

τ∈Mk(t,u)

qt,v,k

(
τ; λJ

)
FJ(t − τ)

−
∑

τ∈M(t,u)

rt,v(τ; λJ)FJ(t − τ)
⎞
⎟⎟⎟⎟⎟⎟⎠ . (16)

Moreover, from Eqs. (14) and (16), we can obtain the Hessian matrix of Q
(
λJ ; λJ

)
as

follows:

∂2Q
(
λJ ; λJ

)

∂λJ∂λJ
T
= −

∑

(k,t,v)∈DT0

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ) FJ(t − τ) FJ(t − τ)T

−
⎛
⎜⎜⎜⎜⎜⎜⎝

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ) FJ(t − τ)
⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ) FJ(t − τ)
⎞
⎟⎟⎟⎟⎟⎟⎠

T
⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
. (17)

By Eq. (17), for any J-dimensional real column vector xJ , we have

xJ
T
∂2Q
(
λJ; λJ

)

∂λJ∂λJ
T

xJ

= −
∑

(k,t,v)∈DT0

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ)
(
xJ

T FJ(t − τ)
)2

−
⎛
⎜⎜⎜⎜⎜⎜⎝

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ) xJ
T FJ(t − τ)

⎞
⎟⎟⎟⎟⎟⎟⎠

2
⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

= −
∑

(k,t,v)∈DT0

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ)

⎛
⎜⎜⎜⎜⎜⎜⎝ xJ

T FJ(t − τ)

−
∑

u∈B(v)

∑

τ′∈M(t,u)

rt,v(τ′; λJ) xJ
T FJ(t − τ′)

⎞
⎟⎟⎟⎟⎟⎟⎠

2

+

⎛
⎜⎜⎜⎜⎜⎜⎝1 −

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ) xJ
T FJ(t − τ)

⎞
⎟⎟⎟⎟⎟⎟⎠

2
⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
.

Thus, by Eq. (15), we obtain

xJ
T
∂2Q
(
λJ ; λJ

)

∂λJ∂λJ
T

xJ ≤ 0,
(
∀xJ ∈ RJ

)
,
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that is, the Hessian matrix is negative semi-definite. Hence, by solving the equation

∂Q
(
λJ ; λJ

)

∂λJ
= 0J

(see Eq. (16)), we can find the value of λJ that maximizes Q
(
λJ; λJ

)
. We employed a

standard Newton Method in our experiments.

3.2 Model Selection

One of the important purposes of introducing the TDV model is to analyze how people
are affected by their neighbors’ past opinions for a specific opinion formation process.
In what follows, for a given set of candidate decay functions (i.e., feature vectors), we
consider selecting one being the most appropriate to the observed data DT0 of |DT0 | =
N, where N represents the number of opinion manifestations by individuals.

As mentioned in Section 2, the base TDV model is a special TDV model equipped
with the decay function that equally weights all the past opinions. Thus, we first ex-
amine whether or not the TDV model equipped with a candidate decay function can
be more appropriate to the observed data DT0 than the base TDV model.3 To this end,
we employ the likelihood ratio test. For a given feature vector FJ(Δt), let λ̂J(FJ) be the
maximal likelihood estimator of the TDV model equipped with the decay function of
FJ(Δt). Since the base TDV model is the TDV model of λJ = 0J, the log-likelihood
ratio statistic of the TDV model with FJ(Δt) against the base TDV model is given by

YN(FJ) = L
(
DT0 ; λ̂J(FJ)

)
− L (DT0 ; 0J

)
. (18)

It is well known that 2YN(FJ) asymptotically approaches to the χ2 distribution with
J degrees of freedom as N increases. We set a significance level α (0 < α < 1), say
α = 0.005, and evaluate whether or not the TDV model with FJ(Δt) fits significantly
better than the base TDV model by comparing 2YN(FJ) to χJ,α. Here, χJ,α denotes the
upper α point of the χ2 distribution of J degrees of freedom, that is, it is the positive
number z such that

1
Γ(J/2)2J/2

∫ z

0
yJ/2−1 exp

(

− y
2

)

dy = 1 − α,

where Γ(s) is the gamma function. We consider the set FV of the candidate feature
vectors (i.e., decay functions) selected by this likelihood ratio test at significance level
α. Next, we find the feature vector F∗J∗ (Δt) ∈ FV such that it maximizes the log-
likelihood ratio statistic YN(FJ), (FJ(Δt) ∈ FV), (see Eq. (18)), and propose selecting
the TDV model equipped with the decay function of F∗J∗ (Δt). If the set FV is empty,
we select the base TDV model forDT0 .

3 The base TDV model is not the only baseline model with which the proposed method is to be
compared. The simplest one would be the random opininon model in which each user chooses
its opinionn randomly independent of its neighbors.
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Fig. 1. Results of model selection validity for the exponential TDV model

Here we recall that typical decay functions in natural and social sciences include
the exponential decay function (see Eq. (3)) and the power-law decay functions (see
Eq. (4)). We refer to the TDV models of the exponential and the power-law decay func-
tions as the exponential TDV model and the power-law TDV model, respectively. In our
experiments, we in particular focus on investigating which of the base, the exponen-
tial, and the power-law TDV models best fits to the observed dataDT0 . Thus, the TDV
model to be considered has J = 1 and parameter λ.

4 Evaluation by Synthetic Data

Using synthetic data, we examined the effectiveness of the proposed method for pa-
rameter estimation and model selection. We assumed complete networks for simplicity.
According to the TDV model, we artificially generated an opinion diffusion sequence
DT0 consisting of 3-tuple (k, t, v) of opinion k, time t and node v such that |DT0 | = N,
and applied the proposed method to the observed dataDT0 , where the significance level
α = 0.005 was used for model selection. As mentioned in the previous section, we as-
sumed two cases where the true decay follows the exponential distribution (see Eq. (3))
and the power-law distribution (see Eq. (3)), respectively. Let Ye

N and Y p
N denote the

log-likelihood ratio statistics of the exponential and the power-law TDV models against
the base TDV model, respectively (see Eq. (18)). We varied the value of parameter
λ in the following range: λ = 0.01, 0.03, 0.05 for the exponential TDV model, and
λ = 0.4, 0.5, 0.6 for the power-law TDV model, on the basis of the analysis performed
for the real world @cosme dataset (see, Section 5). We conducted 100 trials varying the
observed dataDT0 of |DT0 | = N, and evaluated the proposed method.

First, we investigated the model selection validity FN/100, where FN is the number
of trials in which the true model was successfully selected by the proposed method.
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Fig. 2. Results of Parameter estimation error for the exponential TDV model

Namely, if the exponential TDV model is the true model, then FN is defined by the
number of trials such that

2Ye
N > max

(
χ1,α, 2Y p

N

)
,

and if the power-law TDV model is the true model, then FN is defined by the number
of trials such that

2Y p
N > max

(
χ1,α, 2Ye

N

)
.

Second, we examined the parameter estimation error EN for the trials in which the true
model was selected by the proposed method. Here, EN is defined by

EN =
|λ̂(N) − λ∗|
λ∗

,

where λ∗ is the true value of parameter λ, and λ̂(N) is the value estimated by the pro-
posed method from the observed data DT0 of |DT0 | = N. Figures 1 and 2 show the
results for the exponential TDV model, and Figures 3 and 4 show the results for the
power-law TDV model. Here, Figures 1 and 3 display model selection validity FN/100
as a function of sample size N. Figures 2 and 4 display parameter estimation error EN

as a function of sample size N. As expected, FN increases and EN decreases as N in-
creases. Moreover, as λ becomes larger, FN increases and EN decreases. Note that a
large λ means quickly forgetting past activities, and a small λ means slowly forgetting
them. Thus, we can consider that a TDV model of smaller λ requires more samples
to correctly learn the model. From Figures 1, 2, 3 and 4, we observe that the proposed
method can work almost perfectly when N is greater than 500, and λ is greater than 0.01
for the exponential TDV model and greater than 0.4 for the power-law TDV model.
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Fig. 3. Results of model selection validity for the power-law TDV model

5 Findings in Opinion Formation on Social Media

5.1 Dataset

We collected real data from “@cosme” 4, which is a Japanese word-of-mouth commu-
nication website for cosmetics. In @cosme, a user can post a review and give a score of
each brand (one from 1 to 7). When one user registers another user as his/her favorite
user, a “fan-link” is created between them. We traced up to ten steps in the fan-links
from a randomly chosen user in December 2009, and collected a set of (b, k, t, v)’s,
where (b, k, t, v) means that user v scored brand b k points at time t. The number of
brands was 7,139, the number of users was 45,024, and the number of reviews posted
was 331,084. For each brand b, we regarded the point k scored by a user v as the
opinion k of v, and constructed the opinion diffusion sequence DT0 (b) consisting of
3-tuple (k, t, v). In particular, we focused on these brands in which the number of sam-
ples N = |DT0 (b)| was greater than 500. Then, the number of brands was 120. We refer
to this dataset as the @cosme dataset.

5.2 Results

We applied the proposed method to the @cosme dataset. Again, we adopted the tem-
poral decay voter models with the exponential and the power-law distributions, and
used the significance level α = 0.005 for model selection. There were 9 brands such
that 2Ye

N > χ1,α, and 93 brands such that 2Y p
N > χ1,α. Here, in the same way as

the previous section, Ye
N and Y p

N denote the log-likelihood ratio statistics of the ex-
ponential and the power-law TDV models against the base TDV model, respectively.

4 http://www.cosme.net/
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Fig. 4. Results of Parameter estimation error for the power-law TDV model

Further, there were 92 brands such that 2Y p
N > max

(
χ1,α, 2Ye

N

)
, one brand such that

2Ye
N > max

(
χ1,α, 2Y p

N

)
, and 27 brands such that max

(
2Y p

N , 2Ye
N

)
≤ χ1,α. Namely, ac-

cording to the proposed method, 92 brands were the power-law TDV model, 27 brands
were the base TDV model, and only one brand was the exponential TDV model. These
results show that most brands conform to the power-law TDV model. This also agrees
with the work [1,19] that many human actions are related to power-laws.

Figures 5 and 6 show the results for the @cosme dataset from the point of view of
the power-law TDV model. Figure 5 plots the log-likelihood ratio statistic Y p

N for each
brand as a function of sample size N, where the thick solid line indicates the value
of χi,α. In addition to the brands plotted, there is a brand such that Y p

N = Ye
N = 0.

It was brand “YOJIYA”, which is a traditional Kyoto brand, and is known as a brand
releasing new products less frequently. Thus, we speculate that it conforms to the base
TDV model. Figure 6 plots the pair

(
Y p

N , λ̂(N)
)

for the brands in which the power-law

TDV model was selected by the proposed method, where λ̂(N) is the value of parameter
λ estimated by the proposed method from the observed data DT0 (b) of |DT0(b)| = N.
From Figure 6, we observe that Y p

N and λ̂(N) are positively correlated. This agrees
with the fact that the power-law TDV model with λ = 0 corresponds to the base TDV
model. In Figures 5 and 6, the big solid red circle indicates the brand “LUSH-JAPAN”,
which had the largest values of Y p

N , λ̂(N) and N, respectively. We also find the big
solid green triangle in Figure 5 as a brand that had a large value of Y p

N and a relatively
small value of N. This was the brand “SHISEIDO ELIXIR SUPERIEUR”, which had
the seventh largest value of Y p

N , N = 584, and λ̂(N) = 0.58. Note that these brands
“LUSH-JAPAN” and “SHISEIDO ELIXIR SUPERIEUR” are known as brands that
were recently established and release new products frequently. Thus, we speculate that
they conform to the power-law TDV model with large λ.
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Fig. 6. Log-likelihood ratio statistic Y p
N and estimated parameter value λ̂(N) for the @cosme

dataset

6 Conclusion

We addressed the problem of how people make their own decisions based on their
neighbors’ opinions. The model best suited to discuss this problem is the voter model
and several variants of this model have been proposed and used extensively. However,
all of these models assume that people use their neighbors’ latest opinions. People
change opinions over time and some opinions are more persistent and some others
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are less persistent. These depend on many factors but the existing models do not take
this effect into consideration. In this paper, we, in particular, addressed the problem of
how people’s opinions are affected by their own and other peoples’ opinion histories. It
would be reasonable to assume that older opinions are less influential and recent ones
are more influential. Based on this assumption, we devised a new voter model, called the
temporal decay voter (TDV) model which uses all the past opinions in decision making
in which decay is assumed to be a linear combination of representative decay functions
each with different decay factors. The representative functions include the linear decay,
the exponential decay, the power-law decay and many more. Each of them specifies only
the form and the parameters remain unspecified. We formulated this as a machine learn-
ing problem and solved the following two problems: 1) Given the observed sequence
of people’s opinion manifestation and an assumed decay function, learn the parameter
values of the function such that the corresponding TDV model best explains the obser-
vation, and 2) Given a set of decay functions each with the optimal parameter values,
choose the best model and refute others. We solved the former problem by maximiz-
ing the likelihood and derived an efficient parameter updating algorithm, and the latter
problem by choosing the decay model that maximizes the log likelihood ratio statistic.
We first tested the proposed algorithms by synthetic datasets assuming that there are
two decay models: the exponential decay and the power-law decay. We confirmed that
the learning algorithm correctly identifies the parameter values and the model selection
algorithm correctly identifies which model the data came from. We then applied the
method to the real opinion diffusion data taken from a Japanese word-of-mouth com-
munication site for cosmetics. We used the two decay functions above and added no
decay function as a baseline. The result of the analysis revealed that opinions of most
of the brands conform to the TDV model of the power-law decay function. We found
this interesting because this is consistent with the observation that many human ac-
tions are related to the power-law. Some brands showed behaviors characteristic to the
brands, e.g., the older brand that releases new product less frequently naturally follows
no decay TDV and the newer brand that releases new product more frequently natu-
rally follows the power-law decay TDV with large decay constant, which are all well
interpretable.
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Abstract. The well known influence maximization problem [1] (or viral market-
ing through social networks) deals with selecting a few influential initial seeds to
maximize the awareness of product(s) over the social network. In this paper, we
introduce a novel and generalized version of the influence maximization prob-
lem that considers simultaneously the following three practical aspects: (i) Often
cross-sell among products is possible, (ii) Product specific costs (and benefits)
for promoting the products have to be considered, and (iii) Since a company of-
ten has budget constraints, the initial seeds have to be chosen within a given
budget. We refer to this generalized problem setting as Budgeted Influence Maxi-
mization with Cross-sell of Products (B-IMCP). To the best of our knowledge, we
are not aware of any work in the literature that addresses the B-IMCP problem
which is the subject matter of this paper. Given a fixed budget, one of the key
issues associated with the B-IMCP problem is to choose the initial seeds within
this budget not only for the individual products, but also for promoting cross-sell
phenomenon among these products. In particular, the following are the specific
contributions of this paper: (i) We propose an influence propagation model to
capture both the cross-sell phenomenon and product specific costs and benefits;
(ii) As the B-IMCP problem is NP-hard computationally, we present a simple
greedy approximation algorithm and then derive the approximation guarantee of
this greedy algorithm by drawing upon the results from the theory of matroids;
(iii) We then outline two efficient heuristics based on well known concepts in the
literature. Finally, we experimentally evaluate the proposed approach for the B-
IMCP problem using a few well known social network data sets such as WikiVote
data set, Epinions, and Telecom call detail records data.

Keywords: Social networks, influence maximization, cross-sell, budget constraint,
matroid theory, costs, benefits, and submodularity.

1 Introduction

The phenomenon of viral marketing is to exploit the social connections among the
individuals to promote awareness for new products [2–4]. One of the key issues in viral
marketing through social networks is to select a set of influential seed members (also
called as initial seeds) in the social network and give them free samples of the product
(or provide promotional offers) to trigger cascade of influence over the network [5].
The problem is, given an integer k, how should we choose a set of k initial seeds so
that the cascade of influence over the network is maximized? This problem is known as
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influence maximization problem [1]. This problem is shown to be a NP-hard problem
in the context of certain information diffusion models such as linear threshold model
and independent cascade model [1]. Influence maximization problem is well studied in
the literature [5, 6, 1, 7–15] in the context of a single product and multiple independent
products; and we refer to the section on the relevant work for more details.

However, the existing work in the literature on viral marketing of products through
social networks ignores the following important aspects that we often experience in
several practical settings:

– Cross-sell Phenomenon: Certain products are complementary to each other in the
sense that there is a possibility of cross-sell among these products,

– Product Specific Costs and Benefits: There is a cost associated with each product
in order to provide promotional offers (or discounts) to each of the initial seeds.
Similarly, there is a benefit associated with each product, when someone buys that
product, and

– Budget Constraint: Companies have often have budget constraints and hence the
initial seeds have to be chosen within a given budget.

To the best of our knowledge, we are not aware of any work in the literature that simul-
taneously deals with the cross-sell phenomenon, the product specific costs and benefits,
and the budget constraint while addressing the influence maximization problem. We
address this generalized version of the influence maximization problem in this paper.

In particular, we consider the following framework. Let P1 be a set of t1 independent
products and similarly P2 be another set of t2 independent products. We assume that
cross-sell is possible from the products in P1 to the products in P2 and, in particular,
we consider the following specific form for the cross-sell phenomenon. The need for
buying any product in P2 arises only after buying some product in P1. A real life in-
stance of this type of cross-sell is as follows. Consider the context of computers and
printers; in general, the need for buying any printer arises after buying a computer. In-
formally, cross-sell is the action or practice of selling an additional product (or service)
to an existing customer. Typically, the additional product (i.e. in P2) is of interest to the
customer only because of a prior product (i.e. in P1) purchased by the customer. From
a social network diffusion model standpoint, the purchase of products in P1 causes a
lowering of threshold for buying certain products in P2. It is this phenomenon that we
explore in this paper.

We consider different costs and benefits for each product in P1 and P2. Since com-
panies owning the products often have budget constraints, we can offer free samples (or
promotional offers) of the products to the initial seeds within a given budget B. In this
setting, one of the key issues is to choose the initial seeds not only for each individual
product in P1, but also for promoting the cross-sell phenomenon from the products in
P1 to the products in P2. We refer to the above problem of selecting, within budget
B, a set of initial seeds to maximize influence through the social network and hence
to maximize the revenue to the company as the budgeted influence maximization with
cross-sell of products (B-IMCP) problem. In what follows, we highlight the main chal-
lenges associated with the B-IMCP problem that make it non-trivial to address and also
summarize the main contributions of this paper:
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(A) Modeling Aspects: How to model the propagation of influence in social networks
in the context of cross-sell of products? We note that the variants of the linear threshold
model [16, 17, 1, 14] in their current form are not sufficient to model the cross-sell
phenomenon.

In this paper, we address this issue by proposing a simple model of influence propa-
gation over social networks in the context of cross-sell of products by naturally extend-
ing the well known linear threshold model [1]. We call this linear threshold model for
cross-sell of products (LT-CP). We then prove a few important properties of the LT-CP
model such as monotonicity and submodularity.

(B) Algorithmic Aspects: We note that the B-IMCP problem, in the context of the LT-
CP model, turns out to be a computationally hard problem, i.e. NP-hard (see Section 3
for more details). This calls for designing an approximation algorithm to address the B-
IMCP problem. In this paper, we propose a greedy approximation algorithm to address
the B-IMCP problem. Assume that B is the budget for the company. Let c1M and c2M
be the maximum cost of providing a free sample of any product in P1 and P2 respec-
tively. On similar lines, let c1m and c2m be the minimum cost of providing a free sample
of any product in P1 and P2 respectively. We show that the approximation guarantee
of the proposed greedy algorithm for the B-IMCP problem is Bcm

B(cM+cm)+cMcm
, where

cM = max(c1M , c2M ) and cm = min(c1m, c2m). Interestingly, the approximation factor
of the greedy algorithm is independent of the number of products and it only depends on
(a) the budget B, and (b) the maximum and the minimum costs to provide free samples
of products in P1 and P2 respectively.

We use the techniques from the theory of submodular function maximization over
Matroids [18] to derive the approximation guarantee of the proposed greedy algorithm.
We must note that the body of relevant work in the literature works with the framework
of approximations for maximizing submodular set functions [19] to derive the approxi-
mation guarantee of the algorithms for the variants of the influence maximization prob-
lem with a single product and multiple independent products [1, 7, 14]. However, these
techniques are not sufficient for the B-IMCP problem setting as (i) we have to work
with cross-sell of products, (ii) product specific costs and benefits, and (ii) we have to
deal with the budget constraint.

(C) Experimental Aspects: We experimentally observe that the proposed greedy ap-
proximation algorithm for the B-IMCP problem runs slow even on moderate size net-
work data sets. We must note that similar observations are reported in the literature
in the context of the greedy algorithm [1] for the well known influence maximization
problem [7, 8]. The existing scalable and efficient heuristics [7, 8] for the influence
maximization problem do not directly apply to the context of the B-IMCP problem.
How to alleviate this scalability issue of determining a solution for the B-IMCP prob-
lem on large social network data sets? In this paper, we present an efficient heuristic
for the B-IMCP problem. We experimentally evaluate the performance of the greedy
approximation and heuristic algorithms using experimentation on several social net-
work data sets such as WikiVote trust network, Epinions trust network, and Telecom
call detail records data. We also compare and contrast the performance of the greedy
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approximation and the heuristic algorithms with that of two well known benchmark
heuristics.

1.1 Novelty of This Paper

The primary contribution and the novelty of this paper is three fold: (i) Introducing the
phenomenon of cross-sell of products and product specific costs and benefits while ad-
dressing the influence maximization problem, (ii) Naturally extending the well known
linear threshold model to capture the cross-sell phenomenon, and (iii) Performing non-
trivial analysis of the simple greedy algorithm for the B-IMCP problem to derive the
approximation guarantee of the same.

2 Relevant Work

There are two well known operational models in the literature that capture the underly-
ing dynamics of the information propagation in the viral marketing process. They are
the linear threshold model [17, 16, 1] and the independent cascade model [20, 1]. In
the interest of space constraints, we only present the most relevant work on the influ-
ence maximization problem in the literature and we categorize this into three groups as
follows.

Influence Maximization with Single Product: Domingos and Richardson [5] and
Richardson and Domingos [6] were the first to study influence maximization prob-
lem as an algorithmic problem. Computational aspects of the influence maximization
problem are investigated by Kempe, Kleinberg, and Tardos [1] and they showed that the
optimization problem of selecting the most influential nodes is NP-hard. The authors
proposed a greedy approximation algorithm for the influence maximization problem.

Leskovec, et. al. [7] proposed an efficient algorithm for the influence maximization
problem based on the submodularity of the underlying objective function that scales
to large problems and is reportedly 700 times faster than the greedy algorithm of [1]
and later Chen, Wang, and Yang [8] further improved this result. Even-Dar and Shapira
[11], Kimura and Saito [9], Mathioudakis et.al. [10], Ramasuri and Narahari [21] con-
sidered various interesting extensions to the basic version of the influence maximization
problem in social networks.

Influence Maximization with Multiple Products: Recently, Datta, Majumder, and
Shrivastava [12] considered the influence maximization problem for multiple indepen-
dent products.

Viral Marketing with Competing Companies: Another important branch of the re-
search work in viral marketing is to study the algorithmic problem of how to introduce a
new product into the market in the presence of a single or multiple competing products
already in the market [13–15].

3 The Proposed Model for the B-IMCP Problem

Here we first present the LT-CP model for the B-IMCP problem. We must note that this
model is a natural extension of the well known linear threshold model [17, 16, 1].
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3.1 The LT-CP Model

Let G = (V,E) be a directed graph representing an underlying social network where V
represents a set of individuals and E is a set of directed edges representing friendship
relations among these individuals. Let |V | = n and |E| = m. For each edge (i, j) ∈
E, we define a weight wij and this indicates the probability with which the available
information at individual i passes to individual j. Another interpretation of this weight
wij is the probability with which individual j is influenced by the recommendation of
the individual i. If there is no confusion, here onwards, we refer to individuals and nodes
interchangeably. Similarly, we also refer to graphs and networks interchangeably.

In this context, we consider the following setting as introduced in Section 1. Note that
P1 = {1, 2, . . . , t1} is a set of t1 independent products and similarly P2 = {1, 2, . . . , t2}
is another set of t2 independent products. Cross-sell is possible from the products in P1

to the products in P2. For the simplicity of the technical analysis, we assume that (i)
t1 = t2 and call this common value t; and (ii) there exists an onto function from P1 to
P2, call it H : P1 → P2, such that for each product k ∈ P1 there exists exactly one
product in P2 (namely H(k)). That is, for each product k ∈ P1, there exists a product
H(k) ∈ P2 such that cross-sell is possible from product k ∈ P1 to product H(k) ∈ P2.
A company, call it M , owns the products in P1 and P2 and it has a fixed budget B for
conducting viral marketing campaign for these products.

In particular, a free sample (or promotional offer) of product k in P1 incurs a cost of
c1k and similarly a free sample (or promotional offer) of product z in P2 incurs a cost of
c2z . Also, when an item of product k in P1 is sold, it leads to a benefit b1k to the company.
On the similar lines, when an item of product z in P2 is sold, it leads to a benefit b2z to
the company. Now, we define a few important notations and terminology as follows:

– We call an individual (and is represented by a node in the graph) in the network
active if he/she buys any product in P1 or P2, and inactive otherwise. For each
node i ∈ V , let Ni be the set of its neighbors. Node i is influenced by any neighbor
j according to a weight wji. Assume these weights are normalized in such a way
that

∑
j∈Ni

wji ≤ 1.
– We define the following for each node i ∈ V . For each product k ∈ P1 and for

each i ∈ V , we define Ak
i to be the set of node i’s active neighbors who bought

product k ∈ P1. On similar lines, for each product z ∈ P2 and for each i ∈ V ,
we define Az

i to be the set of node i’s active neighbors who have initially bought
product H(z) ∈ P1 and then bought product z ∈ P2.

We now define when the individual nodes buy the products in P1 and P2. Recall that the
products in P1 are independent. The decision of a node i ∈ V to buy product k ∈ P1

is based on a threshold function (fk
i ), which is dependent on Ni and a threshold (θki )

chosen uniformly at random by node i from the interval [0, 1]. This threshold represents
the minimum amount of influence required from the active neighbors of node i (who
bought product k ∈ P1) in order for node i to become active. Note that fk

i : 2Ni →
[0, 1] is defined as fk

i (S) =
∑

j∈S wji, ∀S ⊆ Ni. Now, we say that node i buys product
k ∈ P1 if fk

i (A
k
i ) ≥ θki .

Recall that cross-sell is possible from the products in P1 to the products in P2 and this
cross-sell relationship is defined using the function H which is onto. For each z ∈ P2
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and for each i ∈ V , we initially set the threshold θzi of node i for buying the product z
to be a very high quantity to model the fact that no node i ∈ V buys product z in P2

before buying product H(z) in P1. Now assume that node i ∈ V has bought the product
H(z) ∈ P1 and since cross-sell is possible from product H(z) to product z ∈ P2, we
decrease the threshold θzi by defining that θzi is chosen uniformly at random from the
interval [0, a] where 0 ≤ a < 1. Now the decision of node i to buy product z ∈ P2

is based on a threshold function (fz
i ), which is dependent on Ni and the threshold θzi .

This threshold represents the minimum amount of influence required from the active
neighbors of node i (who have initially bought product H(z) ∈ P1 and then bought
product z ∈ P2) in order for node i to become active. Note that fz

i : 2Ni → [0, 1] is
defined as fz

i (S) =
∑

j∈S wji, ∀S ⊆ Ni. Now, we say that node i buys product z ∈ P2

if fz
i (A

z
i ) ≥ θzi .

3.2 The B-IMCP Problem

In the presence of the above model, we now define the following. For each product
k ∈ P1, let Sk

1 be the initial seed set. We define the influence spread of the seed set
Sk
1 , call it Γ (Sk

1 ), to be the expected number nodes that buy the product k ∈ P1 at the
end of the diffusion process, given that Sk

1 is the initial seed set. On similar lines, for
each product z ∈ P2, let Sz

2 be the initial seed set. We define the influence spread of
the seed set Sz

2 , call it Δ(Sz
2 ), to be the expected number of nodes that initially buy the

product H(z) ∈ P1 and then buy the product z ∈ P2 at the end of the diffusion process,
given that Sz

2 is the initial seed set. For any specific choice of the initial seed sets Sk
1

for each k ∈ P1 and Sz
2 for each z ∈ P2, we now define the objective function, call it

σ(S1
1 , . . . , S

t
1, S

1
2 , . . . , S

t
2), to be the expected revenue to the company at the end of the

diffusion process. That is,

σ(S1
1 , . . . , S

t
1, S

1
2 , . . . , S

t
2) =

∑
k∈P1

Γ (Sk
1 )b

1
k +

∑
z∈P2

Δ(Sz
2 )b

2
z. (1)

Given the budget B, the B-IMCP problem seeks to find the initial seed sets S1
1 , . . . , S

t
1,

S1
2 , . . . , S

t
2 such that the objective function is maximized.

We now show that the B-IMCP problem is a computationally hard problem.

Lemma 1. The B-IMCP problem in the presence of the LT-CP model is NP-hard.

Proof. By setting |P1| = t = 1, P2 = φ, c1k = 1 for each k ∈ P1, and b1k = 1 for
each k ∈ P1, we get that any arbitrary instance of the B-IMCP problem with the LT-CP
model reduces exactly to an instance of the influence maximization problem with the
linear threshold model [1]. It is already known that the influence maximization problem
with the linear threshold model is NP-hard [1].

3.3 Properties of the Proposed Model

We show that the objective function σ(.) is monotone and submodular. The proof of
monotonicity of σ(.) is immediate, as the expected number of individuals that buy the
product(s) does not decrease when we increase the number of initial seeds. Thus we
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now focus on the proof of submodularity of σ(.) and we note that this can be proved
easily using the results from Kempe et al. [1]. However, for the sake of completeness,
we give a sketch of the proof of this result.

Lemma 2. For any arbitrary instance of the LT-CP model, the objective function σ(.)
is submodular.

Proof Sketch: There are two main steps in this proof. First, for each k ∈ P1, we have
to show that Γ (Sk

1 ) is submodular. Second, for each z ∈ P2, we have to show that
Δ(Sz

2 ) is submodular. Recall that (i) multiplying a submodular function with a positive
constant results in a submodular function; and (ii) the sum of submodular functions is
also a submodular function. This implies that the objective function σ(.) is submodular.

Since the products in P1 are independent, for each k ∈ P1, it is straight forward to
see that Γ (Sk

1 ) is submodular due to Theorem 2.5 in Kempe et al. [1].

Claim 2: Δ(Sz
2 ) is submodular.

Since cross-sell is possible from the product H(z) ∈ P1 to the product z ∈ P2, we
can compute Δ(Sz

2 ) after the diffusion of H(z) finishes. We model the spread of H(z)
using the technique of live-edge paths as in Theorem 2.5 in [1]. Suppose that every node
i picks at most one of its incoming edges at random, selecting the edge from neighbor
j with probability wji and selecting no edge with probability 1 −

∑
j wji. Each such

selected edge in G is declared to be live and all other edges are declared to be blocked.
Let G

′
be the graph obtained from the original graph G by retaining only the live-edges

and let Π(G) be the set of all such G
′
. Let P (G

′
be the probability of obtaining G

′

from G using the process of live edges. Note that each G
′

models a possible trace of
the spread of the product H(z) ∈ P1.

Now consider G
′ ∈ Π(G) and a node i in G

′
. Recall that each node i in the original

graph G picks at most one of its incoming edges at random, selecting the edge from
neighbor j with probability wji and selecting no edge with probability 1 −

∑
j wji.

For this reason, each node i in G
′

has at most one incoming edge. Now if node i in
G

′
has an incoming edge, call it from node j, then i picks this only incoming edge

with probability wji and picks no edge with probability 1 − wji. Each such selected
edge in G

′
is declared to be live and all the other edges are declared to be blocked.

Using the arguments exactly similar to that in Kempe et al. [1], it turns out that proving
this claim is equivalent to reachability via live-edge paths in G

′
. Let G

′′
be the graph

obtained from G
′

by retaining only the live-edges and assume that Π(G
′
) is the set of

all such G
′′

. Let P (G
′′
) be the probability of obtaining G

′′
from G

′
using the process

of live edges. For each G
′′ ∈ Π(G

′
), we define aG′′ (Sz

2 ,m) to be the number of nodes
that are exactly m steps away on any path starting from some node in Sz

2 in G
′′

; i.e.
aG′′ (Sz

2 ,m) = |{v ∈ V | dG′′ (Sz
2 , v) = m}| where dG′′ (Sz

2 , v) is the length of the
shortest distance from any node in Sz

2 to v. We can now write Δ(Sz
2 ) as follows:

Δ(Sz
2 ) = EG′∈Π(G)

[
EG′′∈Π(G′ )

[ ∞∑
m=0

aG′′ (Sz
2 ,m)

]]
(2)

=
∑

G′∈Π(G)

∑
G′′∈Π(G′ )

P (G
′
)P (G′′)

∞∑
m=0

aG′′ (Sz
2 ,m) (3)
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Now let us define h(Sz
2 , G

′′
) =

∑∞
m=0 aG′′ (Sz

2 ,m) for all Sz
2 ⊆ V . If we can show

that h(.) is submodular, then Δ(Sz
2 ) is also submodular as it is a non-negative linear

combination of h(., .). It is not difficult to show that h(.) is submodular and, in the
interest of space, we do not present the proof of the same.
Note: It is important to note that the submodularity of σ(.) may break down if we change
the way to model the cross-sell relationships among the products.

4 Greedy Approximation Algorithm for the B-IMCP Problem

Motivated by the greedy algorithm [1] for the well known influence maximization
problem, we now present a simple greedy algorithm for the B-IMCP problem. Let

Algorithm 1. Greedy Algorithm to Select the Initial Seeds for the B-IMCP Problem

1: Initially set Sk
1 = φ ∀k ∈ P1 and Sz

2 = φ ∀z ∈ P2.
2: while B > 0 do
3: Pick a node v1 ∈ V \ ∪k∈P1S

k
1 such that v1 maximizes valx =

σ

(
∪k∈P1

Sk
1

⋃{v1}
⋃∪z∈P2

Sz
2

)
−σ

(
∪k∈P1

Sk
1

⋃∪z∈P2
Sz
2

)
c1i

, when we active it with

some product i ∈ P1

4: Pick a node v2 ∈ V \ ∪z∈P2S
z
2 such that v2 maximizes valy =

σ

(
∪k∈P1

Sk
1

⋃∪z∈P2
Sz
2

⋃{v2}
)
−σ

(
∪k∈P1

Sk
1

⋃∪z∈P2
Sz
2

)
c2j

, when we active it with

some product j ∈ P2.
5: if valx ≥ valy and B − c1i ≥ 0 then
6: Set Si

1 ← Si
1 ∪ {v1}, and B ← B − c1i

7: As cross-sell is possible from from product i ∈ P1 to product H(i) ∈ P2, update the
value of θH(i)

v1 for node v1
8: end if
9: if valy > valx and B − c2j ≥ 0 then

10: Set Sj
2 ← Sj

2 ∪ {v2}, and B ← B − c2j
11: end if
12: end while
13: Return

(
S1
1 , S

2
1 , . . . , S

t
1, S

1
2 , S

2
2 , . . . , S

t
2

)
as the initial seed set

S1
1 , S

2
1 , . . . , S

t
1 be the sets of initial seeds for the t products in P1 respectively. Let

S1
2 , S

2
2 , . . . , S

t
2 be the sets of initial seeds for the t products in P2 respectively. Initially

set Sk
1 = φ for each k ∈ P1 and Sz

2 = φ for each z ∈ P2. Algorithm 1 presents the
proposed greedy algorithm and the following is the main idea of the same. The algo-
rithm runs in iterations until the budget B is exhausted to select the initial seeds. The
following is performed in each iteration of the algorithm:

(i) Let v1 ∈ V \∪k∈P1S
k
1 be the next best seed for P1 in the sense that when we activate

it with product i ∈ P1, v1 maximizes the ratio of increase in the expected revenue gain to

the cost c1i ; that is, v1 maximizes
σ

(
∪k∈P1

Sk
1

⋃
{v1}

⋃
∪z∈P2S

z
2

)
−σ

(
∪k∈P1

Sk
1

⋃
∪z∈P2S

z
2

)
c1i
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and call this valx;
(ii) Let v2 ∈ V \∪z∈P2S

z
2 be the next best seed in the sense that when we activate it with

some product j ∈ P2, v2 maximizes the ratio of increase in the expected revenue gain to

the cost c1j ; that is, v2 maximizes
σ

(
∪k∈P1

Sk
1

⋃
∪z∈P2S

z
2

⋃
{v2}

)
−σ

(
∪k∈P1

Sk
1

⋃
∪z∈P2S

z
2

)
c2j

and call this valy;
(iii) If valx ≥ valy and B − c1i ≥ 0, then we add v1 to the set of seeds for Si

1 and
also decrease B by an amount c1i . To take care of the cross-sell phenomenon, we also

update the threshold θ
H(i)
v1 for node v1;

(iv) If valy > valx and B − c2j ≥ 0, then we add v2 to the set Sj
2 and decrease B by

an amount c2j .

Finally, the greedy algorithm returns
(
S1
1 , S

2
1 , . . . , S

t
1, S

1
2 , S

2
2 , . . . , S

t
2

)
as the initial

seed set for the B-IMCP problem.

Running Time of Algorithm 1. Let c = min{c11, c12, . . . , c1t , c21, c22, . . . , c2t} and t =
B
c . Note that Algorithm 1 runs at most t rounds. In each iteration of this algorithm,

we have to check at most O(n) nodes to determine the best seed for P1 and P2. To
determine valx (or valy) in each iteration, we have to essentially count the number of
nodes that are reachable from the initial seed elements using the live edges in the graph
and it takes at most O(m) time where m is the number of edges. Also, as underlying
information diffusion process is a stochastic process, we have to repeat the experiment
a number of times (call it R times) and take the average to determine values for valx
and valy in each iteration. With all this in place, the running time of Algorithm 1 is
O(tnRm) where t = B

c .

4.1 Analysis of Algorithm 1

We now analyze Algorithm 1 and derive the approximation guarantee of the same. Our
analysis uses results from matroid theory and Calinescu, et al. [18]. Towards this end,
we first recall the definition of a matroid.

Matroid: A Matroid is a pair M = (U, I), where I ⊆ 2U is a subset of the power
set (all possible subsets) of U that satisfies the following constraints:

– I is an independent set system: φ ∈ I and A ∈ I , any set B ⊂ A then B ∈ I (All
subsets of any independent set is also independent).

– ∀A,B ∈ I and |A| > |B|: ∃x ∈ A−B s.t. B ∪ {x} ∈ I .

The first constraint defines an independent set system, and each set S ∈ I is called an
independent set. The problem of maximizing a sub-modular function on a Matroid is
to find the independent set S ∈ I , s.t. f(S) is maximum over all such sets S. If the
input set is a Matroid, it is known that the sub-modular function maximization can be
approximated within a constant factor ( 12 or (1−1/e) in certain cases) using the greedy
hill climbing approach (Nemhauser, Wolsey, and Fisher [19]).

The independent set system essentially defines the feasible sets over which the ob-
jective function is defined. In the context of B-IMCP problem, we call an initial seed
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set
(
S1
1 , S

2
1 , . . . , S

t
1, S

1
2 , S

2
2 , . . . , S

t
2

)
feasible, when the sum of costs of providing free

samples of the products in this initial seed set is within the budget B. It is easy to see that
the feasible seed sets form an Independent set system, I . However, the feasible seed sets
in I do not form a matroid since they can violate the second condition in the definition
of matroid due to the budget constraint. The following example validates this fact.

Example 1. Consider a graph with 10 individuals, i.e. V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
There are 4 products in P1; i.e., P1 = {t11, t12, t13, t14}. There are 4 products in P2; i.e.,
P2 = {t21, t22, t23, t24}. Also let B = 20, c11 = 4, c12 = 3, c13 = 5, c14 = 6, c21 = 2, c22 = 4,
c23 = 2, and c24 = 4. Now consider two feasible initial seed sets as follows:

Consider a feasible seed set
(
S1
1 , S

2
1 , . . . , S

4
1 , S

1
2 , S

2
2 , . . . , S

4
2

)
as follows. S1

1 = φ,

S2
1 = {2, 3, 4}, S3

1 = {6}, S4
1 = φ, S1

2 = φ, S2
2 = {2}, S3

2 = {6}, S4
2 = φ.

Note that the cost of providing the free samples of products in the initial seed set(
S1
1 , S

2
1 , . . . , S

4
1 , S

1
2 , S

2
2 , . . . , S

4
2

)
is 3 + 3 + 3 + 5 + 4 + 2 = 20. Given that B = 20,

it is clear that
(
S1
1 , S

2
1 , . . . , S

4
1 , S

1
2 , S

2
2 , . . . , S

4
2

)
is a feasible seed set.

Consider another feasible seed set
(
S̄1
1 , S̄

2
1 , . . . , S̄

4
1 , S̄

1
2 , S̄

2
2 , . . . , S̄

4
2

)
as follows. S̄1

1 =

φ, S̄2
1 = φ, S̄3

1 = {3, 9}, S̄4
1 = {6}, S̄1

2 = φ, S̄2
2 = φ, S̄3

2 = φ, S̄4
2 = {6}.

Note that the cost of providing the free samples of products in the initial seed set(
S̄1
1 , S̄

2
1 , . . . , S̄

4
1 , S̄

1
2 , S̄

2
2 , . . . , S̄

4
2

)
is 5 + 5 + 6 + 4 = 20. Given that B = 20, it is

clear that
(
S̄1
1 , S̄

2
1 , . . . , S̄

4
1 , S̄

1
2 , S̄

2
2 , . . . , S̄

4
2

)
is a feasible seed set.

Note that the cardinality of the first feasible set is |{2, 3, 4, 6}| = 4 and that of the
second feasible set is |{3, 6, 9}| = 3. Moreover, observe that node 2 is an initial seed
for product 2 in P1 in the first feasible seed set and it is not an initial seed for any
product in the second feasible seed set. However, we cannot add node 2 to the seed set
of any product in P1 and P2 in the second feasible seed set without violating the budget
constraint.

This example immediately leads to the following simple result.

Proposition 1. For an arbitrary instance of the B-IMCP problem, the independent set
system consisting of the feasible seed sets is not necessarily a Matroid.

Hence we opt for a slightly weaker definition on an independent set system, called a p-
system, defined as follows [12]. Informally, p-system says that for any set A ⊆ V , the
sizes of any two maximal independent subsets of A do not differ by a factor more than
p. Then according to Calinescu, et al. [18] the hill climbing gives a 1

(p+1) approximation
of submodular function maximization for any p-system.

Towards this end, we first prove an useful result. Before proceeding further, we in-
troduce the following notation. Assume that (i) c1M is the maximum cost among all
c1k, k ∈ P1; i.e., c1M = maxk∈P1 c1k, (ii) c2M is the maximum cost among all c2z ,
z ∈ P2; i.e., c2M = maxz∈P2 c2z , (iii) c1m is the minimum cost among all c1k, k ∈ P1;
i.e., c1m = mink∈P1 c1k, and (iv) c2m is the minimum cost among all c2z , z ∈ P2; i.e.,
c2m = minz∈P2 c2z .
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Lemma 3. The feasible seed sets for the B-IMCP problem form cM

(
1
cm

+ 1
B

)
-system

where cM = max(c1M , c2M ) and cm = min(c1m, c2m).

Proof. Consider an arbitrary instance of the B-IMCP problem. Note that V is the set of

nodes in the graph G and let A be any subset of V . Let
(
S1
1 , S

2
1 , . . . , S

4
1 , S

1
2 , S

2
2 , . . . , S

4
2

)
and

(
S̄1
1 , S̄

2
1 , . . . , S̄

4
1 , S̄

1
2 , S̄

2
2 , . . . , S̄

4
2

)
be any two maximal feasible sets in A with max-

imum and minimum sizes respectively. Also let S = S1
1

⋃
. . .
⋃

St
1

⋃
S1
2

⋃
. . .
⋃

St
2

and S̄ = S̄1
1

⋃
. . .
⋃

S̄t
1

⋃
S̄1
2

⋃
. . .
⋃

S̄t
2. If |S| ≤ |S̄|, then S and S̄ are of same size

and hence the independent set system with all feasible seed sets forms a matroid. It is
contradiction to Proposition 1 (see the Example 1). Hence we consider the case where
|S̄| < |S|. We will now bound how much the cardinality of S is greater than that of S̄
in the worst case. We consider the following four cases.

Case 1 (c1M > c2M and c1m > c2m ): The cardinality of S is much larger, in the worst
case, than that of S̄ when:

– All the seed elements in S̄ are part of S̄j
1 for some product j ∈ P1 such that c1j =

c1M .
– All initial seed elements of S are the initial seeds for some product k ∈ P2 having

cost c2k = c2m.

Let |S| = α and |S̄| = β. Then the above construction of S and S̄ leads to the following
inequality

αc2m ≤ βc1M + c2m. (4)

Note that the term c2m appears at right hand of the above inequality because there might
be some budget left out after constructing the minimum cardinality feasible set S̄ and it
is at most c2m. Now equation (4) implies that

⇒ α

β
≤ c1M

c2m
+

1

β
. (5)

Note that β ≥ B
c1M

. This fact and expression (5) imply that

⇒ α

β
≤ c1M

c2m
+

c1M
B

⇒ |S|
|S̄| ≤ c1M

( 1

c2m
+

1

B

)
. (6)

On similar lines as above, we can also deal with the remaining three cases: (a) c1M > c2M
and c1m ≤ c2m; (b) c1M ≤ c2M and c1m > c2m; and (c) c1M ≤ c2M and c1m ≤ c2m. This
completes the proof of the lemma.

Theorem 1. The proposed greedy algorithm determines the initial seeds for the B-
IMCP problem that is at least Bcm

B(cM+cm)+cMcm
times the optimum solution, where

cM = max(c1M , c2M ) and cm = min(c1m, c2m).

Proof. It is known that the greedy hill climbing algorithm gives a 1
(p+1) approximation

of submodular function maximization for any p-system (Calinescu, Chekuri, Pal, and
Vondrak (2007)). The proof of this theorem follows immediately as a consequence of
this fact and Lemma 3.
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In the view of the above results, we now present a few important observations as fol-
lows: (i) The approximation guarantee of the proposed greedy algorithm is independent
of the number of products in P1 and P2. Also the approximation guarantee only de-
pends on the budget and the minimum and maximum costs for providing free samples
of the products in P1 and P2. (ii) If the cost of each product in P1 and P2 is 1, then
cM = cm = 1. This implies that the greedy approximation algorithm returns a solution
to the B-IMCP problem that is at least B

2B+1 times that of the optimum solution.

5 Heuristics for the B-IMCP Problem

We observe that the proposed greedy approximation algorithm runs slow even with data
sets consisting of a few thousands of nodes (refer to Section 6 for more details). Though
the design of a scalable heuristic for the B-IMCP problem is not the main focus of this
paper, we here outline three heuristics for the proposed problem and we refer to the full
version of this paper [22] for complete details about these heuristics.

(a) Maximum Influence Heuristic (MIH): The main idea behind this heuristic is moti-
vated by Aggarwal et al. [23] and Chen et al. [8]. We now briefly present the main steps
involved in the maximum influence heuristic as follows: (i) For each node i ∈ V , de-
termine its influence spread; (ii) Sort the nodes in the network in non-increasing order
of their influence spread values; and (iii) Pick nodes one by one as per the above sorted
sequence and choose them as the initial seeds for appropriate products based on the
ideas similar to that in Algorithm 1.

(b) Maximum Degree Heuristic: Following this heuristic, we first determine the nodes
with high degree and then use steps similar to those presented in Algorithm 1 to con-
struct the initial seed set.

(c) Random Heuristic: Following this heuristic, we select nodes uniformly at random
to construct the initial seed set for the B-IMCP problem.

6 Experimental Evaluation

The goal of this section is to present experimental evaluation of the algorithms for the
B-IMCP problem. We compare and contrast the performance of the proposed approxi-
mation algorithm, maximum influence heuristic, maximum degree heuristic and random
heuristic. Throughout this section, we use the following acronyms to represent various
algorithms: (i) GA to represent the proposed greedy approximation algorithm (i.e., Al-
gorithm 1), (ii) MIH to represent the maximum influence heuristic, (iii) MDH to repre-
sent the maximum degree heuristic, and (iv) Random to represent the random heuristic.
All the experiments are executed on a desktop computer with (i) Intel(R) Core (TM) i7
CPU (1.60 GHz speed) and 3.05 GB of RAM, and (ii) 32-bit Windows XP operating
system. Each experimental result is taken as the average over R = 1000 repetitions of
the same experiment. Further, we note that all the algorithms are implemented using
JAVA.
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6.1 Description of the Data Sets

Here we briefly describe the social network data sets that we use in our experiments.

WikiVote: This network data set contains all the users and discussion from the incep-
tion of Wikipedia till January 2008. Nodes in the network represent wikipedia users and
a directed edge from node i to node j represents that user i voted on user j. This data
set contains 7115 nodes and 103689 edges [24].

High Energy Physics (HEP): This is a weighted network of co-authorship between
scientists posting preprints on the High-Energy Theory E-Print Archive between Jan
1, 1995 and December 31, 1999. This is compiled by Newman [25]. This network has
10748 nodes and 52992 edges.

Epinions: This is a who-trust-whom online social network of a general consumer re-
view site Epinions.com. This data set consists of 75879 nodes and 508837 edges [26].

Telecom Call Data: This data set contains all the details pertaining to a call such as
the time, duration, origin, and destination of the phone call. This data is collected from
one of the largest mobile operators in a emerging market. We construct a graph from
this data using the approach proposed in Nanavati et al. [27]. This data set consists of
354700 nodes and 368175 edges.

A summary of all the data sets described above is given in Table 6.1.

Table 1. Summary of the data sets used in the experiments

Data Set Number of Nodes Number of Edges

WikiVote 7115 103689
HEP 10748 52992

Epinions 75879 508837
Telecom Call Data 354700 368175

6.2 Experimental Setup

We follow the proposed LT-CP model of information diffusion. Given a weighted and
directed social graph G = (V,E) with a probability/weight wij for each edge (i, j)
in E, we normalize these probabilities/weights as follows. Assume that node i ∈ V
has directed edges coming from nodes j1, j2, . . . , jx with weights qj1i, qj2i, . . . , qjxi
respectively. These weights represent the extent the neighbors of node i influence node
i. Now let q = qj1i + qj2i + . . . + qjxi; then the probability that node j1 influence
node i is given by wj1i =

qj1i

q , the probability that node j2 influence node i is given by

wj2i =
qj2i

q , and so on. Thus note that wj1i + wj2i + . . . + wjxi ≤ 1 and this setting
coincides with the proposed model in Section 3.1.

We have carried out the experiments with several configurations of the parameters
and we obtained similar results for each of these configurations. In the interest of space,
we in particular present the results for the following configuration of the parameters.
We consider two products each in P1 and P2 respectively; i.e. |P1| = |P2| = t = 2.
Also we consider that B = 100, c11 = 5, c12 = 4.5, b11 = 7, b12 = 6.5, c21 = 3, c22 = 2.5,
b21 = 5, b22 = 4.5.



594 R. Narayanam and A.A. Nanavati

(i)

 0

 300

 600

 900

 1200

 1500

 1800

 2100

 2400

 2700

 0  10  20  30  40  50  60  70  80

E
xp

ec
te

d 
va

lu
e 

of
 O

bj
ec

tiv
e 

F
un

ct
io

n

Budget

GA
MIH

MDH
Random

(ii)

 0

 300

 600

 900

 1200

 1500

 1800

 2100

 2400

 2700

 0  10  20  30  40  50  60  70  80

E
xp

ec
te

d 
va

lu
e 

of
 O

bj
ec

tiv
e 

F
un

ct
io

n

Budget

GA
MIH

MDH
Random

(iii)

 0

 300

 600

 900

 1200

 1500

 1800

 2100

 2400

 2700

 3000

 0  10  20  30  40  50  60  70  80  90  100

E
xp

ec
te

d 
va

lu
e 

of
 O

bj
ec

tiv
e 

F
un

ct
io

n

Budget

GA
MIH

MDH
Random

(iv)

 0

 300

 600

 900

 1200

 1500

 1800

 2100

 2400

 2700

 3000

 0  10  20  30  40  50  60  70  80  90  100
E

xp
ec

te
d 

va
lu

e 
of

 O
bj

ec
tiv

e 
F

un
ct

io
n

Budget

GA
MIH

MDH
Random

Fig. 1. Performance comparison of GA, MIH, MDH, and Random when the first variant of cross-
sell is considered and (i) Dataset is HEP and cross-sell threshold is [0, 0.5], (ii) Dataset is HEP
and cross-sell threshold is [0, 0.2], (iii) Dataset is WikiVote and cross-sell threshold is [0, 0.5],
and (vi) Dataset is WikiVote and cross-sell threshold is [0, 0.2]

We also work with two intervals for the cross-sell thresholds by setting a = 0.2 and
a = 0.5 (refer to Section 3.1). This implies that the cross-sell thresholds come from
two types of intervals, namely [0, 0.2] and [0, 0.5].

6.3 Experimental Results

We would like to compute the value of the objective function for the B-IMCP problem
by varying the budget level using the four algorithms, namely GA, MIH, MDH, and
Random. The experimental results in this setting are shown in Figure 1. These graph
plots are obtained using HEP and WikiVote data sets and when the cross-sell thresholds
come from the intervals [0,0.5] and [0,0.2] respectively. From all these graph plots, it is
clear that the performance of MIH and MDH is almost same as that of GA. However,
note that the performance of Random is very poor compared to that of GA.

Experiments with Large Network Data Sets. In this section, we focus on the running
time of GA. Table 2 shows the running times of GA and MIH on HEP and WikiVote
data sets. Clearly, the running time of GA is slower than MIH about 20 times.

Table 2. Running Times of GA and MIH on HEP and WikiVote Datasets

Data Set Running Time Running Time
of GA (in Sec.) of MIH (in Sec.)

HEP 66563 2590
WikiVote 148736 7200
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Fig. 2. Performance Comparison of MIH and MDH on Two Large Network Data Sets, namely (i)
Epinions and (ii) Telecom Call Detail Records Data Sets

We now present experimental results with large network data sets using MIH and
MDH. Figure 2 shows the budget versus the expected value of the objective function
curves for MIH and MDH using Epinions and Telecom data sets, when the first variant
of cross-sell is used and cross-sell thresholds for nodes come from the interval (0, 0.5).
It is immediate to see that the performance is MIH is superior than that of MDH on
these two data sets.

7 Conclusions and Future Work

In this paper, we introduced a generalized version of the influence maximization prob-
lem by simultaneously considering three aspects such as cross-sell phenomenon, prod-
uct specific costs and benefits and budget constraints. We proposed a simple greedy
algorithm to address this generalized version of the influence maximization problem.
There are several ways to extend this work in this paper. First, it is interesting to exam-
ine other types of possibility of the cross-sell among the products. Second, we consid-
ered an onto function to represent the cross-sell relationships in this paper. However, it
is important to work with other types of functions to represent the cross-sell relation-
ships while retaining the properties of the diffusion model such as monotonicity and
submodularity.
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Abstract. Who are the most appropriate candidates to receive a call-for-paper or
call-for-participation? What session topics should we propose for a conference
of next year? To answer these questions, we need to precisely predict research
topics of authors. In this paper, we build a MLR (Multiple Logistic Regression)
model to predict the topic-following behavior of an author. By empirical studies,
we find that social influence and homophily are two fundamental driving forces
of topic diffusion in SCN (Scientific Collaboration Network). Hence, we build
the model upon the explanatory variables representing above two driving forces.
Extensive experimental results show that our model can consistently achieves
good predicting performance. Such results are independent of the tested topics
and significantly better than that of state-of-the-art competitor.

Keywords: topic-following, social influence, homophily, SCN.

1 Introduction

User behavior understanding and prediction are important tasks in social computing.
One of the typical tasks is to underhand the author behavior from the public publication
records and one of the most interesting author behaviors is topic-following. In general,
among all possible topics, an author may select one or several as his future research
topics due to his limited time and efforts. Then, a problem will naturally arise: Can we
predict the topic of the next paper for an author? More specifically, given the historical
publications of an author, can we predict the most possible topic of his next papers? In
this paper, we answer this question with a positive answer by successfully modeling the
topic-following behavior of authors.
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One may directly use the historical topics of an author to predict the topic of his/her
next papers. However, such information in general is insufficient for acceptable accu-
racy of prediction. Because an author’s topic-following behavior is subject to many
other factors, such as the influence from his/her collaborators, the current popular top-
ics, historical topics etc. These factors are usually mixed together to affect an author’s
topic-following behavior.

In this paper, by empirical studies, we found that the topic-diffusion on the co-author
networks has significant influence on authors’ topic-following behavior. Hence, our ba-
sic idea is first constructing a scientific collaboration network, and then model the users’
topic-following behaviors by explanatory variables observed from the topic-diffusion
among authors in the network.

1.1 Applications

Our research is driven by the following real applications:

1. Call for participation or paper submission. When a workshop for a certain topic
is announced, delivering the call-for-paper or call-for-participation to the most ap-
propriate candidates who are interested in the topic is critical for the success of the
workshop.

2. Proposal of session topic. Suppose we need to organize a conference of the next
year. What topics should be proposed as sessions of the conference to attract as
many attendees as possible? If an accurate topic-following model is available, we
can easily summarize the amount of potential audience for sessions of different
topics.

The model can also find more applications, such as advertisement, friend recommen-
dation etc. For example, in online social networks, by identifying the topics of posts or
comments produced by users, we can deliver advertisements of the topic to potential
users who are recognized by the topic-following model [1]. In addition, we can recom-
mend the users who will follow the same topic as the friends of the objective users [2].

1.2 Topic Diffusion

Topic diffusion in Scientific Collaboration Network (SCN) is one of important pro-
cesses that may influence the topic-following behavior of an author. SCN is a co-author
network, in which each vertex is an author and each edge represents a co-author rela-
tionship. Intuitively, if a topic is diffused to an author from many of his coauthors in the
SCN, it is of high probability that he will adopt the topic in his future publications. In
this paper, we build our topic-following model based on the topic-diffusion principles
in SCN.

Generally speaking, there are two typical ingredients which impact information dif-
fusion among individuals in a social network: social influence and homophily [3, 4]:

1. Social influence means that an individual tends to adopt behaviors of his neighbors
or friends.
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2. Homophily is the tendency of individuals to choose friends with similar character-
istics [3, 5].

Social influence depends on the structure of the social network. In contrast, homophily
focuses on the attribute similarity among individuals, in other words, it does not matter
whether they are connected to each other. These two factors have been widely inves-
tigated as the underlying mechanisms accounting for linkage formation in large social
networks [5].

1.3 Challenges and Contributions

Thus, we first need to understand the effect of social influence and homophily on topic
diffusion in SCN before we can precisely model authors’ topic-following behavior. Un-
fortunately, most previous research work on SCN mainly focus on macroscopic struc-
ture of the whole network [6, 7], collaboration pattern [8] or community evolving [9],
leaving topic diffusion in SCN rarely investigated. Many findings about information
propagation1 on other social networks have been discovered, but the diffusion laws ob-
served on these networks in general do not necessarily hold in SCN any more.

Hence, the purpose of this paper is two-fold. First, understanding the effects of social
influence and homophily on topic diffusion in SCN. Second, developing an effective
topic-following model based on the above findings. However, there still exist many
challenges that remain unsolved.

– First, it is difficult to distinguish impacts of social influence and homophily from
each other. Because they are often mixed together [10] to affect topic diffusion.
Furthermore, quantifying their impacts on research topic-following is subjective.

– Second, it is hard to accurately define topics for papers due to the uncertainty and
multiplicity of topic identification. Since topic-following behaviors of authors are
topic-sensitive, precisely defining the topic of a paper is critical for the model’s
performance.

– Third, sample sparseness poses a great challenge. Many scientists have quite small
number of papers and many topics have only a few papers, which generally bring
great challenges to accurately predict the authors’ topic-following behavior.

In this paper, we address above challenges and make the following contributions:

– First, we uncover the effects of social influence and homophily on topic diffusion
in SCN by extensive empirical studies.

– Second, we propose a Multiple Logistic Regression (MLR) model based on the
empirical results to predict topic-following of authors.

– Third, we conduct extensive experiments with comparison to the state-of-the-art
baseline to show the advantage of our proposed model in prediction performance.

Although our model is proposed for SCN, it can also be used in other social settings, for
example, predicting buyer behavior in e-commerce, topic prediction in microblogging
etc.

1 In the following texts, information propagation or information spreading may also be used
interchangeably with information diffusion.
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1.4 Organization

The rest of this paper is organized as follows. Sect. 2 is a brief review of related work.
We introduce the basic concepts and try to identify the effects of social influence and
homophily on topic diffusion in SCN in Sect. 3. In Sect. 4, we present empirical results
about driving forces of topic propagation in SCN. Based on the findings in empirical
analysis, in Sect. 5, we propose a MLR model to predict topic-following of authors with
the comparisons to the baseline approach. At last, we conclude our work in Sect. 6.

2 Related Work

We review the related works from the following three aspects: information diffusion,
scientific collaboration network, and user behavior modeling.

Information diffusion. Topic diffusion can be regarded as a special case of informa-
tion/idea propagation on social networks, which has already been studied in sociology,
economics, psychology and epidemiology [11–13]. Many research work of informa-
tion diffusion focused on concrete object propagation on online Web media, such as
article diffusion on Wikipedia [4], picture diffusion on Flickr [3], post diffusion on
Blogsphere [14, 15] and event diffusion on Twitter [16], but for topic addressed in
this paper, it is rarely explored in terms of information diffusion on social networks.
Although D.Gruhl et al. studied topic diffusion [15]. But their focus is the social net-
work in Blogsphere other than SCN. Research topics of SCN have also been inves-
tigated in [17, 18]. But they focused on detecting topic evolution and transition over
time. Social influence and homophily have been regarded as two major causal ingre-
dients [3, 10, 4] of information diffusion on social networks. It is widely established
that it is social influence and homophily as well as their interactions that determine the
linkage formation of individuals [19, 13] or interplays between two individuals in social
networks [20]. It is a traditional belief that social influence accounts for the information
diffusion on typical social networks [11, 14]. However, recent study in sociology ar-
gues that homophily also plays an important role for individuals to follow others’ idea
or adopt others’ behavior [21]. As a result, some literatures [22, 4] studied the cumula-
tive effects of social influence and homophily on diffusion cascading. However, to the
best of our knowledge, the effects of social influence and homophily on research topic
diffusion in SCN have rarely been reported.

Scientific collaboration network As a typical social network, SCN was systematically
investigated by Newman et al. [6, 8]. But they only focused on the structural proper-
ties of the network without exploring topic diffusion. The SCN constructed in [23] is
identical to the one used in this paper, but it studied the evolution of collaboration be-
tween individuals instead of research topic diffusion. Tang et al. [24] also investigated
topic-level social influence on SCN, but they did not take homophily’s influence into
account.

User behavior modeling Information spreading can be considered as one kind of user
behavior. Many user behavior models have been proposed in previous studies. For ex-
ample, some works [25, 26] modeled retweet patterns of users in Twitter. Others [27, 3]
modeled the user interaction pattern in Flickr and MySpace. All these works did not
model topic-following behavior in SCN.
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3 Preliminaries

In this section, we first review the preliminary concepts about topic diffusion in SCN.
Then we propose our solution to quantify the influence of social influence and ho-
mophily on topic diffusion in SCN.

3.1 Basic Concepts

We first formalize SCN and explain the rationality to use SCN, then formalize the con-
cept of author’s topic-following behavior in SCN.

Scientific Collaboration Network (SCN) is a co-author network. We give the formal
definition of SCN in Definition 1. Notice that SCN is evolving over time, the snapshot
of SCN at time t is denoted by Gt. Its vertex set and edge set are denoted by Vt and Et,
respectively. Gt encodes all coauthor relationships till time t. In other words, if t1 ≤ t2,
Gt1 is a subgraph of Gt2 , i.e., Vt1 ⊆ Vt2 , Et1 ⊆ Et2 . And for an edge eu,v ∈ Et1 , we
have wt1 (eu,v) ≤ wt2(eu,v).

Definition 1 (SCN). A Scientific Collaboration Network is an undirected, edge-
weighted graph G = (V,E,w), where node set V represents authors, edge set E rep-
resents coauthor relationships, and w : E → N is the weight function of edges. For
each edge eu,v ∈ E, w(eu,v) is defined as the number of papers that u and v have ever
coauthored.

Rationality to Use SCN. In this paper, we mainly focus on SCN constructed from
DBLP data set. The reason is two-fold.

– First, it is a good approximation of social networks in real life since most coauthors
are acquainted to each other. SCN shares many generic properties of a social net-
work. Most principles guiding the users’ behavior on social networks still hold true.

– Second, SCN extracted from DBLP contains enough clean information. DBLP con-
tains plenty of computer science publication records, each of which includes title,
author list, venue information and publishing year. These information allows us to
explore the topic-following behavior of authors. DBLP dataset is cleaned before its
publication. Some noise in the data, such as name ambiguity, has been preprocessed.
Thus, the extracted SCN is free of such noise.

Topic Diffusion. Given a topic s, we say an author u followed s if u has published at
least one paper of s. Moreover, the set of authors who published at least one paper of
topic s in year t is denoted as Us

t whose size is |Us
t |. Similarly, authors who published

papers of s up to year t are denoted by Us
≤t. Then, the popularity of topic s in year t

can be measured by |Us
t |. The diffusion of topic s is a dynamic process which can be

observed from the evolution of |Us
t | along time t. DBLP only records the year when a

paper was published, thereby the unit of one time step is defined as one year when we
study temporal properties of topic diffusion.

Dataset Description and Topic Extraction. We select the papers published up to year
2011 from the seven major categories2, e.g., database, data mining, World Wide Web, to

2 http://academic.reserach.microsoft.com

http://academic.reserach.microsoft.com
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construct SCN. The resulting SCN contains 193,194 authors and 557,916 co-authoring
relationships. Identifying the topic of each paper is a preliminary step for the study of
topic diffusion. We select 25 representative topics, such as Query Processing, Privacy
and Security, and Social Networks, etc. Then, we build a SVM [28] classifier trained on
a manually-labeled dataset to classify each paper into the 25 topics.

3.2 Social Influence and Homophily

In this subsection, we present our solution to evaluate the effects of social influence and
homophily on topic propagation in SCN. We first show that it is intractable to precisely
distinguish them from each other. Hence, we turn to a qualitative way to evaluate the
two factors’ effects. In general, it was well established that the more neighbors adopting
an idea, the more possible himself will follow the idea. Thus, we evaluate the effect of
social influence by the number of neighbors who have adopted a topic before. In DBLP,
the topic similarity is a good indicator of the homophily between two authors. Thus, we
use topic similarity to evaluate the effect of homophily.

Intractability. In general, it is intractable to precisely distinguish the effects of so-
cial influence and homophily from each other [10, 3]. We illustrate this by Figure 1. In
the graph, a dark node represents an author who has followed a certain topic (say s).
In Gt−1, only one author a has ever published a paper of topic s. Then in Gt, author
d, h, f, g also adopt the topic. Since d and h are the direct neighbors of a, we can as-
sume that they are infected by a’s influence through social ties between them. However,
we can not exclude the possibility that the topic-following behavior of d and h is due
to their own interests on the topic. f and g have no direct links to a. They are linked to
a only by two-step paths. Hence, we may assume that their topic-following behaviors
are mainly due to homophily since in general social influence through indirect links is
weak. However, it is also possible that e learned about topic s from a and then recom-
mended it to his neighbors f and g. Hence, it is hard to precisely quantify the effect of
social influence and homophily.

Social Influence in SCN. Social influence refers to the process in which interactions
with others cause individuals to conform, e.g., people change their attitudes to be more
similar to their friends [22, 4]. In the context of topic diffusion in SCN, social influence
can be characterized as the tendency of an author adopting the same topic as his neigh-
bors. In general, the more neighbors infected by the topic, the more tendency he will adopt
the same topic of his neighbors. Thus, the effect of social influence can be directly evalu-
ated by the the number of neighbors who have published papers of a certain topic [10]. In
other words, if an author followed a topic at t and a significant number of his neighbors
(i.e., coauthors) had ever published papers of this topic before year t, it would be of high
confidence that the author’s topic-following behavior is affected by social influence.

Homophily in SCN. In our study, we use topic similarity among authors to approximate
homophily in SCN. Homophily can be regarded as demographic, technological, behav-
ioral, and biological similarities of individuals [10, 5]. It is intractable to precisely define
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homophily in SCN due to the limited information available from DBLP dataset. One
good approximation in SCN is topic similarity. We use the history topic vector to repre-
sent an author’s research interests, which can be formally defined asu= [n1, n2, ..., n25]
∈ N25, here each ni is the number of the author u’s papers belonging to i-th topic. Then,
the topic similarity between author u and v can be given as follows:

Definition 2 (Topic Similarity). Given two authors u and v, the topic similarity of
author u and v is defined as,

sim(u, v) = cosine(u,v) =
u · v

‖ u ‖‖ v ‖ (1)

Note that u and sim(u, v) are time-dependent variables, which are calculated within a
time window. Recall that |Us

t | varies as time elapses. By summarization, we find that
most topics’ |Us

t |s keep above 80% of peak value only for three years, indicating most
scholars retain their interests of one topic for about three years. Hence, we will count
ni according to the papers published in a three-year time window [t − 3, t − 1] when
computing u at time t.

Further we define the topic similarity between one author u and a group of authors
U . Similarly, we first define a history topic vector for U as U = [N1, N2, ..., N25],
where Ni is the total number of papers of i-th topic composed by any one in U , then
we have sim(u, U) = cosine(u,U). U is also calculated within three-year window.

G t-1

author following a topic

a

b d

c

e

f
g

h

G t
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b d

c

e
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h

Fig. 1. Illustration of topic diffusion. Social in-
fluence and homophily are mixed together to af-
fect topic diffusion.

∅N (u)∩U0≠ 

N (u)∩U0=∅  

 
 U1

U3

U2

U4

dist(u,U0)0 λ σ×dist(u,U0) -

Fig. 2. The division of Ū0

4 Empirical Study

In this section, we present the empirical study results. Our purpose of empirical study is
two-fold. First, in Sec 4.1 we show that social influence and homophile are two funda-
mental driving forces of topic diffusion in SCN. Second, we reveal the way that social
influence affects topic diffusion in Sec 4.2.

4.1 Driving Forces of Topic Diffusion

We first give the detail of our experiment design, then give the results.
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Experiment Design. Let U0 = Us
≤t0

, i.e., the set of authors who have published papers
of topic s till t0. We will focus on Ū0 = Vt0 − U0, i.e., those who have not published
any papers of topic s till t0. Ū0 can be divided into four disjoint subsets U1, U2, U3 and
U4

3, according to two conditions. This division of Ū0 is illustrated in Figure 2, where
N(u) is the neighbor set of u.

Fig. 3. Evolution of driving forces of individuals’ topic-following. Both social influence and ho-
mophily are effective on topic diffusion in SCN. And both of them decay in an exponential way.

The first condition is whether there exist neighbors that belong to U0. If exist, this
author may publish a paper of topic s due to social influence [19, 3]. The second is the
discrepancy of an author’s topic vector to U0’s. Specifically, for each author u ∈ Ū0,
we can calculate dist(u, U0) = 1− sim(u, U0), i.e., the distance between topic vectors
of u and U0. Then, we compute the standard deviation σ for {dist(u, U0)|u ∈ Ū0}. We
further set a threshold τ = dist(u, U0) − λ × σ , where dist(u, U0) is the mean value
and 0 < λ < 1 is a tuning parameter. Any author u ∈ Ū0 with dist(u, U0) ≤ τ will be
identified as the one whose topic vector is sufficiently similar to U0. These authors may
publish a paper of topic s after t0 driven mainly by homophily [3].

Accordingly, if there are authors in Ui (1 ≤ i ≤ 4) publishing a paper of topic s
after t0, those in U1 may be affected by social influence as well as homophily; those
in U2 are affected merely by social influence; those in U3 may be affected merely by
homophily. While U4 represents the remaining authors who are not influenced by the
two forces with high probability.

For each Ui (1 ≤ i ≤ 4), we count the number of authors who publish the paper
of topic s after t0 for each s. Then, we calculate the proportion of authors within each
Ui that follow the topic. This proportion can be regarded as the probability that an
author within each group will follow the topic. Each proportion is normalized over all

3 We may also use Ui(s) to denote each Ui when topic s needs to be specified explicitly.
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topics. For example, the proportion of authors within U1 over all topics is normalized

as:
∑

s |U ′
1(s)|∑

s |U1(s)| , where U1(s) ⊂ Vt0 − Us
≤t0

and U ′
1(s) is the set of authors in U1(s) that

followed topic s after t0.

Results. The experimental results are shown in Fig. 3, where t0 ∈ [2005, 2007] and
λ = 0.8. Fig. 3(a) shows that authors exhibiting more topic similarity to U0 or having
more neighbors in U0 are more probable to follow the topic than those without these
characteristics. We also can see that the cumulative effect of social influence and ho-
mophily on topic diffusion is more significant than either one of these forces. Moreover,
it can be observed that the effects of social influence, homophily and their mixture are
decaying in an exponential way as time elapses. Generally, three or four years later af-
ter t0, minor effects can be observed (Similar results can be observed when we vary the
year window to compute dist(u, U0)). These facts indicate that social influence and ho-
mophily are generally time-sensitive. When we compare social influence to homophily,
we find that social influence is more sensitive to time. These findings provide additional
evidence for the time-sensitivity of social influence, which was first discovered in the
study of product-adopting behavior [10].

All above findings are generally consistent with those found in specific topics, e.g.,
Privacy and Security, P2P and Grid and Query Processing, as shown in Fig. 3(b)∼(d).
Different topics only show minor difference on the decaying speed.

4.2 Social Influence

In this subsection, we show that the number of infected neighbors and relationship
strength have positive influence on topic diffusion.

Dependency on the Number of Infected Neighbors. It has been shown that the prob-
ability that an individual joins a group depends on the number of his friends in this
group [19]. Then, does an individual’s topic-following behavior also depend on the
number of his neighbors who have followed the topic before? We get a positive result
from the following studies.

We first summarize the probability p with which an author follows his neighbor’s
research topic, as the function of the number or the proportion of his neighbors that
have followed the topic. Let Ux be the set of authors that have x neighbors who have
ever published papers of a given topic before. In Ux, some of them will follow the
behavior of their neighbors to publish papers of the same topic. The set of such authors
is denoted by U ′

x. Thus, for each value of x, we can define p(x) as:

p(x) =
|U ′

x|
|Ux|

(2)

p(x) can be similarly defined when x is the proportion of neighbors who have ever
published papers of a certain topic before.

The correlation between p(x) and x is shown in Fig. 4. It is clear that for either case
when x is the number (Fig. 4(a)) or proportion (Fig. 4(b)), p(x) generally increases with
x, strongly suggesting the probability that an author will follow a topic heavily depends
on the number/proportion of his neighbors who have followed the topic.
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All above results about neighbor’s influence are consistent with classical diffusion
theory. It was shown in [11] that innovation decision is made through a cost-benefit
analysis where the major obstacle is uncertainty. Similarly, in topic diffusion, when
more neighbors have followed a topic, other authors will be more certain about the ben-
efit of following a certain topic, and consequently it is quite probable that an individual
is persuaded to accept it.

Fig. 4. p(x) vs x, shows that an author’s
topic-following behavior depends on the num-
ber/proportion of his neighbors who have fol-
lowed the topic.

Fig. 5. Prob. of being infected vs edge
weight. This figure shows that the
strength of coauthoring is influential on
the direct propagation from an author to
his neighbors.

Dependency on Strength of Coauthoring. Recall that in SCN (Definition 1), each
edge is assigned a weight indicating the number of coauthored papers. Thus, whether
the strength of the edge is influential on the direct propagation from an author to his
neighbors? The answer is Yes based on the following studies.

To answer the question, we summarize the correlation between the strength of coau-
thoring and the probability that a topic is propagated from an author to his neighbors.
In general, more coauthored papers imply more common research interests, or other
similarities between authors. Hence, it is expected that the probability of direct prop-
agation is positively correlated to edge weight. The plot shown in Fig. 5 verifies our
conjecture. In the figure, the probability of direct propagation is measured by the pro-
portion of edges on which direct propagation happens, and is plotted as a function of
edge weight. It is evident from the figure that direct propagation probability increases
with the growth of edge strength. In other words, an individual is more likely to follow
the research topics of his neighbors who have tighter relationships with him. This ob-
servation is consistent with our intuition that one person is likely to share his friend’s
interests or follow his friend’s ideas.

5 Modeling Topic Diffusion in SCN

Based on the previous empirical results, in this section, we will propose a MLR model
to predict the topic-following behavior of authors in SCN. Next, we will present the
detail to build the model and evaluate predicting performance of the model.
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5.1 Model Selection

Recall that for the authors who have not yet published any papers of a given topic before
t, we intend to accurately estimate the number of them that will/or not follow the topic in
t and future. This problem can be casted as a typical binary classification problem. Lo-
gistic Regression Model is one of the most widely used binary classifiers, which has been
widely used in applications of medicine, genetics, business and etc. In this paper, since
the behavior of individuals’ topic-following is driven by more than one force, we adopt
Multiple Logistic Regression (MLR for short)[29] to predict topic diffusion in SCN.

In MLR, dependent variable Y is a binary response variable with only two possible
values, 1 or 0, which respectively represents whether an author will or not follow a
certain topic if he has not adopted it before. And the value of Y relies on the multiple
explanatory variables xi, each of which represents an influential factor that affects an
author’s topic-following behavior. Let π(x) = P (Y = 1) be the probability that an
author will follow a certain topic. In MLR model, a linear relationship is established
between logit function of π(x) (or log odds of π(x)) and p explanatory variables. The
detailed model can be described as the following equation:

logit[π(x)] = ln
π(x)

1− π(x)
= α+Σp

i=1βixi (3)

By simple transformation, we can calculate π(x) by the following equation:

π(x) = 1/(1 + e−(α+Σp
i=1βixi)) (4)

where we have 0 ≤ π(x) ≤ 1. Both α and βi are the parameters that can be estimated
by training the model. Since MLR is used as a binary classifier, we still need a cutoff
value (cv for short) to help us classify each author into two categories. The simplest
rule to use cv for classification is: if π(x) ≥ cv, Y = 1; otherwise Y = 0. Typically,
cv = 0.5 is used.

5.2 Explanatory Variables

Previous empirical studies suggest two explanatory variables representing social in-
fluence and homophily, respectively, to model the probability of topic-following. As
we can see in Fig. 3, topic-following behavior of an individual in SCN varies as time
elapses. So the two explanatory variables are time-dependent and are always discussed
w.r.t. year t.

For Social Influence. We have shown that the probability that an author follows a topic
is positively correlated to the number of his neighbors who have already followed the
topic, as well as the strength of social ties between them. Similar to belief propagation
model on factor graph [30], we quantify social influence as follows. For an author u,
the probability that u follows the topic s at year t can be given as:

FSI(u, s, t) =
∑

v∈N ′(u)

w(eu,v)∑
v∈N ′(u) w(eu,v)

× f(v, s, t− 1) (5)

where N ′(u) is the neighbors of u who have followed topic s before u, w(eu,v) is the
weight of edge eu,v and f(v, s, t − 1) quantifies the influence from u’s neighbor v in
t− 1. The function f(·) can be precisely defined as,
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f(v, s, t) = δFSI(v, s, t) +
ns
t

nt
(6)

where 0 < δ < 1 is a punishing parameter, nt is the number of u’s publications at t
among which ns

t papers belong to topic s.
In the definition of f(v, s, t), δFSI(v, s, t) summarizes the influence inherited from

v’s direct neighbors and indirect neighbors. As we have discussed in the example of
Fig. 1, indirect neighbors may also have potential influence on topic-following by some
intermediate authors. However, generally such indirect social influence degrades in an
exponential way as the propagation length increases [31]. Hence, we need δ (δ=0.5 in
our experiments) to punish the influence from faraway neighbors. The ratio ns

t

nt
accounts

for v’s interest on topic s in year t.
The computation starts from FSI(u, s, t0) for each author u with t0 = 2002. The

initial value is set as
ns
<t0

n<t0
. Then, the computation proceeds iteratively for each year

raning from t0+1 to t. As above, Equation 5 will produce large FSI when an individual
has many infected neighbors and retains strong relationships to these neighbors, which
confirms the findings about driving effects of social influence.

For Homophily. Homophily indicates that an author u tends to follow the topic of
those whose research topics are similar to himself. This factor can be captured by
FTS(u, s, t), which can be directly defined as the topic similarity between an author
u and the group of authors who have ever published paper of the same topic before year
t:

FTS(u, s, t) = sim(u, Us
<t) (7)

Finally, Equation 3 can be rewritten as,

logit[π(x)] = α+ β1FSI + β2FTS (8)
We use maximum likelihood method to estimate all parameters, i.e., α and each βi.

5.3 Sample Preparation
In this subsection, we introduce our sample selection for model training and testing.

Preparing the Samples. To build the MLR model, we collect publications in year
[2004, 2008] as the training data and the publications in year 2009 as the testing data.
Note that we build MLR model for each topic since the parameters are topic sensitive.

Suppose now we need to generate samples for a certain topic s. In general, the
topic-following behavior of authors who seldom publish papers in one year is subject
to randomness, and hence their behaviors tend to be outliers. Therefore, we will only
consider those authors who published significant number of papers in one year as the
valid training samples. In our experiments, the threshold is set to 3 papers. Then, all
valid authors will be collected for each year t in [2004, 2008]. Thus, each pair < u, t >
(2004 ≤ t ≤ 2008 and u is a valid sample) will be regarded as one training pair sample
for topic s.

Now, for each pair sample < u, t >, we need to assign a value of 0 or 1 to the binary
response variable Y . We process Y as follows: Y = 1 if author u publishes at least one
paper of topic s or other topics closely related to s during the three-year time window
[t, t+2]; otherwise Y = 0. The setup of three-year time window is due to the following
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two reasons. It generally takes one or two years (or even more) for an author to follow
a certain topic. It also takes time for a topic to be diffused to more authors especially
for a new topic.

Relaxing the Topics. In the computation of the response variable, topic s is relaxed
to be itself or some other related topics, which is due to the fact that many topics are
closely related to each other. For example, the topic XML is closely related to Query
Processing since one of the core tasks in XML data management is XML query pro-
cessing. As a result, many authors may publish papers containing more than one topic
and usually change their research interests from one topic to another related one. Given
an author u, we say a topic transition s1 → s2 happens in year t2 if u first published a
paper of topic s1 in year t1 and then published a paper of topic s2 in year t2 such that
t2 > t1. Based on it, we can define topic transition probability from s1 to s2 before
year t as follows,

P (s1 → s2, t) =

∑
t1<t2<t |U

s1
t1 ∩ Us2

t2 |
|Us1

<t|
(9)

Next we use the following equation to identify topic s′ that is closely related to s:

P (s→ s′, t)

P (s→ s, t)
≥ γ (10)

where γ is a threshold parameter defining the topic closeness. The rationale is that
if a topic s transits to another topic s′ with a high probability which is close to that
of s transiting to itself, s and s′ are supposed to be closely related to each other. In
our experiment, we set γ as 0.65. We found that the γ = 0.65 can find intuitively
appropriate related topics. For example, P2P and Grid is related to Web Service and
Semantics, Frequency Mining is related to Classification and Learning.

Balanced Sampling. We found that the training samples are imbalanced distributed
over two classes. For example, for topic XML, there are 9,127 negative samples (Y = 0)
and 2,517 positive samples (Y = 1). Traditional classification model aims to minimize
the number of errors made during training under the assumption of balanced data dis-
tribution over classes. They are therefore not suitable for class-imbalanced data. Hence,
we undersample negative samples [32] to ensure the balanced distribution of positive
and negative samples.

5.4 Model Evaluation

In this section, we will evaluate the predicting performance of our model. For compar-
isons, the regression model proposed in [3] is also tested as the baseline. The baseline
model also tried to predict the probability of an individual’s topic-following action.
But the model uses only one variable a, i.e., the number of already-active friends. The
baseline model is formulated as

logit[π(x)] = α+ βln(a+ 1) (11)

Clearly, the baseline approach only considers the effect of social influence.
We first justify the rationality of the selected explanatory variables. For topic XML,

we give the parameters of MLR and the baseline model estimated by maximum likeli-
hood method in Table 1. From the table, we can see that in MLR, all the predictors can
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explain the response variable (all estimated βis are significant enough (Sig. < 0.05)),
hence should be imported into MLR model as explanatory variables. Furthermore, we
can see that FTS is more influential to response variable than FSI since β2 as well as
its Wald is larger than β1. Similar results can be obtained on other topics.

Table 1. Parameter estimation. S.E. is standard error of co-
efficients, Wald and Sig. are Wald Chi-square and P-value
that test the null hypothesis of coefficient, respectively.

Model Para.Name Value S.E. Wald Sig.

α -1.620 0.064 631.5 0.00
MLR β1 4.440 0.509 76.08 0.00

β2 9.566 0.346 763.6 0.00

baseline α -0.472 0.040 142.3 0.00
β 0.808 0.044 338.4 0.00

Table 2. Predicting perfor-
mance of MLR and the base-
line model on XML, β = 1.1
in Fβ computation

Metrics MLR baseline

recall/sens. 72.9% 70.3%
precision 57.9% 47.3%
Fβ 65.3% 57.6%
specificity 65.4% 48.7%
accuracy 68.4% 57.2%

Predicting Performance of the Model. In general, the performance of a binary classi-
fier can be measured by sensitivity, specificity, precision and accuracy [32], where
sensitivity (or recall) is the proportion of positive samples that are correctly predicted
by the model, specificity is the proportion of negative samples that are correctly pre-
dicted, precision is the proportion of instances classified as positive that are really
positive, and accuracy is the proportion of samples that are correctly predicted either
positive or negative. We give these metric results in Table 2 which shows that for all the
tested accuracy indicators, MLR is prior to the baseline model. In some applications,
for example, finding potential participants of a conference, we hope that more person
who are really interested in a certain topic can be found. In other words, in these cases,
improving recall and precision are more preferred. Hence, we also use Fβ measure to
evaluate the combined score of recall and precision [32].

Fβ =
(1 + β2)× precision× recall

β2 × precision+ recall
(12)

We set β = 1.1 to favor recall a little.
Table 2 summarizes the prediction performance of MLR and the baseline model

against test samples. We find that MLR outperforms its competitor for each metric.
Specially, MLR outperforms the baseline model by about 20% with regard to accuracy,
and by 13% with regard to Fβ . MLR achieves almost 70% accuracy and Fβ , which
suggests that MLR is practically valuable in real applications.

We further give accuracy and Fβ on each topic. As shown in Fig. 6 and Fig. 7,
the advantage of MLR model over the baseline model can be consistently observed
independent on all the tested topics. Fig. 8 further shows the ROC (receiver operating
characteristic) curves [33] of MLR and the baseline model, where the area under MLR’s
ROC curve is 0.743 (area > 0.7 generally implies good predicting performance) sug-
gesting our model is more effective to predict topic-following than the baseline (whose
area is 0.638).
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Fig. 6. Comparison of predict-
ing accuracy

Fig. 7. Comparison of predict-
ing Fβ
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Fig. 8. ROC curves show that
MLR is more effective than
the baseline

6 Conclusion

Motivated by many real applications, such as call for participation or paper submission,
we build a Multiple Logistic Regression model (MLR) to predict the topic that an au-
thor will adopt. We build the model upon our understanding about the topic diffusion in
Scientific Collaboration Network (SCN). We find that social influence and homophily
are mixted together to affect topic-following behavior of authors in SCN through em-
pirical studies. We also uncover the characteristics that social influence affects topic
diffusion. By extensive experimental studies, we show that our model can consistently
achieves close to 70% accuracy and good Fβ . Such results significantly outperform the
state-of-the-art competitor model and can be applied in real applications.
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Abstract. We study users’ behavioral patterns in ephemeral social net-
works, which are temporarily built based on events such as conferences.
From the data distribution and social theory perspectives, we found sev-
eral interesting patterns. For example, the duration of two random per-
sons staying at the same place and at the same time obeys a two-stage
power-law distribution. We develop a framework to infer the likelihood
of two users to meet together, and we apply the framework to two mo-
bile social networks: UbiComp and Reality. The former is formed by
researchers attending UbiComp 2011 and the latter is a network of stu-
dents published by MIT. On both networks, we validate the proposed
predictive framework, which significantly improve the accuracy for pre-
dicting geographic coincidence by comparing with two baseline methods.

1 Introduction

An ephemeral social network indicates a social network temporarily created dur-
ing an event such as a conference, game, or banquet. Such social networks are
usually formed quickly and dissolve in minutes as well. Ephemeral social net-
works exist in both online and offline domains. In fact, these networks play an
important role to expand users’ social circle and strengthen social ties [16]. Dif-
ferent persons have very different behaviors in the ephemeral social networks. It
is interesting and also important to understand what are the driving forces for
persons to select targets to meet.

There has been a few related works. For example, Eagle et al. [9] studied how
friend relationships are formed by tracing users’ geographic information through
Wi-Fi, GPS and Bluetooth. They found that friends demonstrate distinctive
temporal and spatial patterns in their physical proximity and calling patterns.
Crandall et al. [7] investigated how social ties between people can be inferred
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Fig. 1. An ephemeral social network via the Find & Connect system at Ubicomp’11 [5].

The left figure shows the recommended users for “Chin”; the right figure shows the

detailed information of a recommended user.

from co-occurrence in time and space. Tang et al. [25] developed a general learn-
ing framework for inferring the types of social ties in social networks; and [22]
further extended the problem of inferring social ties across heterogeneous net-
works by incorporating social theories such as social balance theory and social
statu theory. However, all the aforementioned work only consider the problem
in normal social networks. The situation is very different in ephemeral social
networks. In a normal social network, friends tend to meet together to share re-
cent experiences. However, in an ephemeral network, people are often inclined to
make new friends. For example, in an academic conference, people may want to
build new research collaborations with people who they may do not know before.
An interesting question is: how likely are two random persons in an ephemeral
social network to gather together, and how does the likelihood depend on users’
personal information and their onsite spatial information?

We use an example to clearly motivate this work. Figure 1 shows the interface
of our developed Find & Connect system on a mobile phone. The system is de-
signed for facilitating social interactions in ephemeral social networks, and has
been deployed in several real scenarios including Ubicomp’11, Nokia Research
Center office, and Tsinghua Centenary Celebration. Employing the Ubicomp’11
conference as the example, the system allows the user to locate friends, check
attendees in surrounding areas. One important feature of the system is to recom-
mend people to meet. The left of Figure 1 shows the recommendation results for
user “Chin”. The user can then see each recommended user (right figure). Ob-
viously, an accurate recommendation algorithm should consider not only social
networking information, but also the onsite location information.

We formalize the problem of inferring geographic coincidences in ephemeral
social networks. The goal is to investigate the underlying patterns that drive
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people to meet together, and to predict how likely a geographic coincidence
would happen in the near future. The problem presents a set of challenges.

– Making new friends. As stated before, an important objective of users join-
ing an ephemeral social network (event) is to build new connections. It is
important to predict new friendships in social networks.

– Combining normal networks. An ephemeral social network is not standalone.
For example, attendees of an academic conference can be connected to aca-
demic social networks such as ResearchGate or Arnetminer. However, it is
unclear how to combine the various normal networks for better prediction of
the geographic coincidences.

– Partially observed. The ephemeral social network is always partially ob-
served. Even the best organized event, there might be a portion of missing
data due to various reasons, e.g., device failure and privacy protection. How
to build a predictive model by considering the unlabeled data is a challenge.

To address the above challenges, we first study the behavioral patterns on how
users meet together. We have found several interesting phenomena from both
data distribution and social theory aspects. The duration of two persons staying
at the same place and at the same time obeys a two-stage power-law distribution.
Ten minutes seems to be a boundary for users to staying together. From another
perspective, ephemeral social networks represent more elite-related activities:
elite users tend to meet together and ordinary users are also inclined to meet elite
users. We also study two important social theories, homophily and structural
hole, in the ephemeral social network.

Based on the discovered behavioral patterns, we present a semi-supervised
predictive framework, which incorporates the various patterns in a unified model.
An efficient algorithm is developed to learn the framework. Our experiments on
two different networks validate the effectiveness of the proposed methodologies.
Comparing with several baseline methods using SVM and CRF, the proposed
model can improve the prediction performance by 8-19% (in terms of F1-score).

2 Preliminaries

In this section, we first define the ephemeral social network and present our
problem formulation. Then we describe the data sets used in our empirical study.

2.1 Problem Formulation

An ephemeral social network is a temporary and dynamic network. Generally, we
can consider users from (different) normal social networks form the temporary
structure and behaviors in the ephemeral social network. For example, in a game,
users may form different groups based on their relationships and intimacy, while
in a conference people gather in a technical session according to their interest.

Let G = (V,E,W) represent a normal social network, where V is a set of
users, E ⊂ V × V is a set of relationships between users, and W is an attribute
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matrix associated with users V . An ephemeral social network can be defined as
G′(t) = (U t,Xt, Y t), where U ⊂ V is a subset of V indicating users forming
the ephemeral social network come from a normal social network, Xt denotes
an ephemeral attribute matrix for users in U t, and Y t denotes a set of user
behaviors we want to predict, e.g., whether a user will join a seminar.

Without loss of generality, we employ the ephemeral network built in the
UbiComp 2011 conference as the example to define our problem. Users of the
ephemeral network are researchers from universities and companies. Their corre-
sponding normal network can be defined as the coauthor network. The ephemeral
attributes include where the user is, when the user will give a talk, what the user
is doing, etc.

A usual predictive task in an ephemeral network is to predict users’ future be-
havior by leveraging the normal social network and users’ ephemeral attributes.
In this work, we consider the problem of geographic coincidence prediction. The
objective is to predict whether two users will meet together in the near future.
Formally, the problem can be defined as:

Problem 1. Geographic coincidence prediction. Given a normal network
G = (V,E,W) and an ephemeral network G′(t) = (U t,Xt, Y t), the goal is to
learn a predictive function:

f : {G′(t),G} → Y (t+1)

where y
(t+1)
ij ∈ {0, 1} indicates whether user ui and uj will meet at time (t+1).

Roughly speaking, we try to infer whether two users will gather at approximately
the same place and at approximately the same time. More accurately, we say
that two users ui and uj have a geographic coincidence (i.e., yij = 1) if their
distance is shorter than a constant (D meters) for more than M minutes. The
definition of geographic coincidence might be different in some other scenario.
For example, in the MIT’s Reality data set, users’ coincidence are measured by
Bluetooth devices.

2.2 Data Sets

We study the problem of geographic coincidence prediction on two different types
of social networks: UbiComp and Reality.

UbiComp. The UbiComp data set is collected by Find & Connect1, a social net-
work platform built for participants of conferences or meetings for finding confer-
ence resources and people and connecting with them. With a positioning system
based on RFID orWi-Fi, Find &Connect records the indoor location data for each
user and provides indoor location-based services such as finding where the paper or
session is being held, who are the people attending the sessions, where people are
in the conference and when, and where was the last time that two users have met.
Therebywe are able to acquire logs of physical proximity, which implies a probable

1 An ephemeral social networking system developed in Nokia Research Center.
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encounter and interaction between users, as well as social networking connections.
The system has been deployed at the UIC 2010 conference [28], Nokia GCJK in-
ternal marketing event and UbiComp 2011[5].

We use the UbiComp data set, which consists of 234 users and 69,844 location
logs during the 3-day conference. The data set is divided into time intervals
by day. The proximity encounters are recorded from mining locations of users
equipped with RFID tags using RFID readers and a modified version of the
LANDMARC algorithm [19]. Given this, we say that two users ui and uj have
a geographic coincidence if their distance becomes shorter than D meters at a
specific time, and remains within the range of [0, D) for more than M minutes.2

Since most attendees of UbiComp are academic researchers, we can acquire
their publication lists and coauthor relationships by their names in ArnetMiner3

[24], which consists of 1,756,147 authors and 1,813,514 publications as well as
the coauthor relationships between users. Finally, out of 234 UbiComp users,
206 of them are found in ArnetMiner. We thereby obtain their research profiles
including their publications, co-authorship and attended conferences.

Reality. The Reality data set is collected from 106 users from September 2004
to June 2005 in MIT. A pre-installed software on each user’s mobile phone will
record their communication logs as well as physical proximity logs. The communi-
cation logs include voice calls and short messages. The physical proximity logs are
recorded by the Bluetooth sensor, which scans for other contacts on average ev-
ery 5 minutes. If the Bluetooth sensor of a user detects another sensor at a certain
time, a physical proximity event between these two users will be recorded. Reality
data set contains 162,700 communication logs and more than 4 millions physical
proximity logs in total. Similarly, the Reality data set is divided into time intervals
by day.

In addition to the geographic coincidences, the Reality data also contains
the friendships between two users collected by querying the users, which form
a friendship network between all the users. In the Reality data set, we directly
regard each proximity log as a geographic coincidence since the detection range
of a Bluetooth sensor is approximately 5-10 meters, which is close enough for a
geographic coincidence.

3 Observations

In this section, we conduct the following observations based on the UbiComp
data in order to get a better understanding on the users’ behavioral patterns
and structural properties of ephemeral social network:

– Two-stage power-law distribution. We analyze the duration distribution of
geographic coincidences and find that it satisfies a certain two-stage power-
law distribution.

2 We empirically set D = 3 and M = 10, which is based on the observation in [11]
and the “ten-minutes” phenomenon we discovered in observations (Cf. §3).

3 http://arnetminer.org

http://arnetminer.org
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– Link homophily. How does the user similarity influence the geographic coin-
cidences pattern?

– Opinion leaders. What is the role played by opinion leaders in ephemeral
social network?

– Structural hole. Do users who span a structural hole have geographic coin-
cidences with different people?

Two-Stage Power-Law Distribution. We first study the duration patterns
of two users staying at approximately the same place and at approximately
the same time. Figure 2 plots the distribution in a log-log space. It can be
interestingly seen that the distribution can be described using a two-stage power-
law and 10 minutes seems to be an inflexion point. When the duration time is
less than 10 minutes, the exponent of the corresponding power-law is -1.2315,
while, when the duration time increases to more than 10 minutes, the exponent
becomes -5.5221. The phenomenon implies that a large portion of coincidences
might be random based on users’ location. For example, acquaintances generally
say hello when they meet and make small talk (less than 10 minutes). On the
other hand, targeted meetings may last a longer time.

Based on this observation, we set the duration threshold as M = 10 for the
definition of geographic coincidence on the UbiComp data set. That is to say,
on the UbiComp data set we only consider geographic coincidences longer than
10 minutes since they are more likely to indicate actual social interactions.

Link Homophily. The principle of homophily [16] points out that users with
higher similarity are more likely to establish relationships. In this work we mainly
study the similarity in research area since most of the users are researchers and
they attend the conference in order to get feedback or establish new collabora-
tions in academia. The following criteria are employed to measure users’ research
similarity: (1) Coauthored paper count (CP): It counts the coauthored publication
number for each pair of users; (2) Common coauthor count (CC): It counts the
number of common coauthors between two users; (3) Common conference ratio
(CR): We construct conference vectors for all users with their attendance times
of different conferences. The common conference ratio is the cosine similarity of
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Fig. 4. Observation of geographic coincidences between opinion leaders (OL) and or-
dinary users (OU)

two users’ conference vectors; (4) Research similarity (RS): Jaccard similarity of
the research interests of two users.

We rank all the user pairs by the above criteria and calculate the geographic
coincidence probability of the top 6004 pairs of users. The average geographic
coincidence probability is also calculated for comparison, as shown in Fig. 3.
We can observe that user pairs with highest CP, CC, or CR are more likely
to have geographic coincidences than average. These results are expected. Users
with more coauthored papers have direct connections between them and thus are
more likely to meet each other; more common coauthors implies a strong effect
of triadic closure [10], which influences the geographic coincidence probability
and attending more common conferences increases their chance to know each
other. However, a surprising observation is that geographic coincidence proba-
bility of user pairs with highest research similarity are approximately 2% lower
than the average probability. This result indicates that attendees of an academic
conference may tend to talk with people that have different research interests in
order to get new ideas.

Opinion Leader. The two-step flow theory [2,14,16] suggests that ideas usually
flow first to “opinion leaders” and then to more people from them. There are
several algorithms to detect opinion leaders in social networks. In this work we
use two different indicators to define opinion leaders: publication count and H-
index. We rank all the users by their publication count or H-index and take
the top 25% as opinion leaders. Fig. 4 presents the comparison of geographic
coincidence probability between different types of user pairs. It is clearly shown
that ordinary users (OU) and opinion leaders (OL) are more likely to have a
geographic coincidence than two ordinary users, which implies that people tend
to communicate with opinion leaders. We also find that two opinion leaders have
the highest probability of geographic coincidence. This is expected because in
an academic conference, opinion leaders are more willing to exchange ideas and
hence have more direct interactions.

4 Probability of top 200, 400 pairs of users yields similar results.
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Structural Hole. In a social network, a person is called to span a structural
hole if she is connected to two people in different parts of networks that are
otherwise not well connected to each other [3]. It is claimed that such nodes have
an informational advantage with connection to people who are not linked to each
other, and hence are exposed to a more diverse source of ideas. An interesting
question is, whether a person who spans a structural hole in coauthor network
will also present a higher diversity in its geographic coincidence pattern? In this
paper, we simply define node A’s “structural hole score” in a coauthor network
by the number of author pairs (B, C) which satisfies that A is the only common
coauthor. We rank all the users by their structural hole score, and calculate the
average clustering coefficient of top-r users over ephemeral social networks of all
the time intervals in UbiComp data set. We also rank the users by publication
count and H-index to provide a comparison to opinion leaders. The result is
presented in Fig. 5. It is shown that users with structural hole score ranking in
the top 20 tend to have lower clustering coefficient (confirmed by paired t-test
with 95% significance), but it turns out to be close to the average when taking the
top 50 users into account. The clustering coefficient of opinion leaders, however,
always remain consistent with average level. It indicates that users who have
a higher structural hole score also tend to have geographic coincidences with a
wide variety of people, but the difference is slight since in an ephemeral social
network, a larger proportion of users seeks for new relationships and hence have
geographic coincidences with various people.

4 Factor Graph Model

We employ a factor graph model to predict the geographic coincidences between
users. The basic idea is to construct a graphical model by modeling each pair of
users as a node. We then define different types of factor functions to incorporate
different factors into the prediction task, and define an objective function based
on the joint probability of the factor functions. The model can be trained by
optimizing the objective function.
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Fig. 6. A graphical representation of factor graph model

As Fig. 6 demonstrates, at time t, we map the event of geographic coincidence
of every pair of users (ui, uj) as a node ytij in our graphical model, corresponding
to an event to predict in the ephemeral social network G′(t). We use Y to rep-
resent the global set of all ytij . For labeled samples, when users have geographic
coincidence we have ytij = 1, otherwise ytij = 0; for unlabeled samples, we leave
ytij =? to predict. The factor graph model was previously used for inferring social
ties in social networks [25].

We define three different kinds of factor functions as follows:

– Attribute factor function f(xij , y
t
ij). It incorporates the attribute value

xij of each pair of users corresponding to ytij , where xij = [wi·,wj·] combines
the attribute vector of both users.

– Temporal correlation factor function g(ytij , y
t+1
ij ). It represents the tem-

poral dependencies between the geographic coincidences indicated by ytij and

yt+1
ij .

– Social correlation factor function h(Y t
c ). Y t

c represents a clique which
consists of a set of ytij . It leverages the social correlation between user pairs.

The three factor functions can be instantiated in different ways. In this work,
we define them as exponential-linear functions. Formally, we define the attribute
factor function as

f(xij , y
t
ij) =

1

Z1
exp{αTΦ(xij , y

t
ij)} (1)

where α is the weighting vector; Φ(xij , y
t
ij) is the feature vector function.

The temporal correlation factor function can be defined as

g(yt
ij, y

t+1
ij ) =

1

Z2
exp{βTg(yt

ij , y
t+1
ij )} (2)

where β is the weighting vector; g(ytij , y
t+1
ij ) is an indicator function.

We define the social correlation factor function in a similar way

h(Y t
c ) =

1

Z3
exp{λTh(Y t

c )} (3)
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where λ is the weighting vector; h(Y t
c ) is an indicator function, taking the geo-

graphic coincidences of a clique of user pairs as input. Z1, Z2 and Z3 are nor-
malizing factors. This definition of factor function has been used in a graphical
models such as Markov Random Fields [12] or Conditional Random Fields [15].

The joint distribution over all the Y can be written as

P (Y |G,G′) =
1

Z
exp{

∑
t

∑
yt
ij

αTΦ(xij , y
t
ij) +

∑
i,j

∑
t

βTg(yt
ij , y

t+1
ij )

+
∑
t

∑
Y t
c

λTh(Y t
c )} =

1

Z
exp{θTS} (4)

where θ = [αT , βT , λT ]T is the parameter vector;
S = [

∑
t

∑
yt
ij
Φ(xij , y

t
ij),
∑

i,j

∑
t g(y

t
ij , y

t+1
ij ),

∑
t

∑
Y t
c
h(Y t

c )]
T denotes all the

features and Z is the normalizing factor.

Model Learning. We learn the FGM by estimating the parameter configura-
tion θ to optimize the log-likelihood of observed data. The observed data could
be incomplete and thus pose challenges to model learning. We regard the entire
factor graph as a partially labeled graph. Let YL denote the set of known ge-
ographic coincidences, and YU as the set of unknown geographic coincidences.
The learning task can be formally described as to find a parameter configuration
θ∗ such that θ∗ = argmaxθP (YL|G,G′).

We define the log-likelihood as the objective function

O(θ) = logP (YL|G,G′) = log
∑
Y |YL

exp θTS− logZ

= log
∑
Y |YL

exp θTS− log
∑
Y

exp θTS (5)

A gradient decent method (Newton-Raphson method) is used to optimize Eq. 5.
The gradient for each parameter is

∂O(θ)

∂θ
=

∑
Y |YL

exp θTS · S∑
Y |YL

exp θTS
−
∑

Y exp θTS · S∑
Y exp θTS

= EP (Y |YL,G,G′)S− EP (Y |G,G′)S (6)

We use Loopy Belief Propagation (LBP) to approximate the gradient and update
θ iteratively.

Predicting Geographic Coincidences. With the learned parameter con-
figuration θ, the prediction task is to find a Y ∗

U which optimizes the objective
function, i.e., Y ∗

U = argmaxYU
P (Y |G,G′).

We employ similar methodology in this optimization task. Instead of calcu-

lating the joint probability, we calculate the marginal probability for each y
(t+1)
ij

and predict them as positive when the marginal probability is greater than 0.5,
otherwise the event will be predicted as negative.
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Table 1. Statistics of UbiComp and Reality data sets

Data set Users Labeled samples Unlabeled samples

UbiComp 243 17,391 23,871

Reality 106 7,384 2,140

5 Experimental Results

5.1 Experimental Setup

Data Sets. We validate the effect of our proposed model on two different data
sets: UbiComp and Reality, and compare the result with two baseline methods.
A brief statistics of the data sets is shown in Table 1.

UbiComp data set includes user location logs on September 19th and Septem-
ber 21st. In this work, we divide the data set into two time intervals, namely
the two days of the conference. We regard all the geographic coincidences on
September 19th as labeled and predict the geographic coincidences on Septem-
ber 21st.

For Reality data, we select 12 consecutive days, each with more than 100
communication logs for our experiments. Then we define the first 10 days as
labeled. The task is to predict the geographic coincidences in the last 2 days.

Baseline Methods. We define two baseline methods for the geographic coin-
cidences task.

– SVM. This method only uses the users’ attribute to train SVM and to predict
the geographic coincidences.

– CRF. We consider the time correlation and establish sequential conditional
random fields for each user pair.

We evaluate the performance of geographic coincidence inference in terms of
precision, recall and F1-score.

Factor Definitions. For both data sets, we define the temporal correlation
factors between two consecutive time intervals for each user pair.

In UbiComp data set, we also define four different types of social correlation
factors according to the principle of homophily (Cf. Section 3): if two users are
similar in some aspects, they will be more likely to have geographic coincidence
with the same person. To define the social correlation factors based on homophily
of coauthored paper count (CP), we first rank all the user pairs by CP and
select those within the top 150, denoted by (ui, uj). Then for every other user
un, we add social correlation factors CPInf between ekin and ekjn. The other
three homophily-based social correlation factors CCInf, CRInf and RSInf can
be defined similarly.

In Reality data set, we define social correlation factors based on the structural
balance theory [10]. It suggests that people in a social network tend to form into
a balanced network structure. To be specific, for a triad, the balance theory
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Table 2. Prediction performance comparison(%)

Date set Method Precision Recall F1-score

UbiComp
SVM 34.5 20.4 25.6
CRF 33.2 39.4 36.0
FGM 34.0 65.4 44.7

Reality
SVM 84.1 64.4 72.9
CRF 73.6 85.8 79.2
FGM 85.1 81.0 83.0

claims that all of the three users or only one pair of them should be friends.
We employ two kinds of connection, physical proximity connection and calling
connection (voice call or SMS), to identify triads. Then for each triad ui, uj ,
and uk, we establish social correlation factors between every two user pairs.
Since there are two types of connections, we can define three different social
correlation factors regarding the connection types of the involved two user pairs:
CCTri (both calls), PCTri (one call, one physical proximity) and PPTri (both
physical proximity).

5.2 Results and Discussion

Performance Comparison. We compare the prediction performance between
our methods and the baselines, as shown in Table 2. It is shown that our model
outperforms other methods in both two data sets. In UbiComp data set, FGM
achieves an improvement of approximately 8-19% in terms of F1-score compared
to the baselines, and also improves recall by approximately 26-45%. Although
SVM shows a higher precision of 34.5%, the precision of the proposed model is
very close to the baseline (34.0%). In Reality data set, FGM also gives a rise of
4-10% compared to the baselines in terms of F1-score. In addition, FGM achieves
the highest precision among all the methods. We can also observe the effect of
time correlation, employed by CRF. The time correlation factor improves the
F1-score of CRF by about 10% in UbiComp data set and approximately 7% in
Reality data set.

Contribution of Social Correlation Factors. To further investigate the con-
tribution of different social correlation factors in the prediction task, we remove
all the social correlation factors and evaluate the performance by adding each
of them individually into the model. Thereby we can measure their contribution
by the improvement they achieve to F1-score, as shown in Fig. 7.

It is shown that in both data sets, all social correlation factors improve the per-
formance. In UbiComp data set, CRInf factor contributes the most to F1-score
amongst the four social correlation factors by an average improvement of 3%. It
implies that users who often attend common conferences may have a stronger
implicit correlation since they probably have been in the same ephemeral social
network before. Its effect is even stronger than those with explicit coauthorship
(CPInf). The effect of CCInf, RSInf and CPInf factors are also observable.
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Fig. 7. Analysis of social correlation factors on F1-score

In Reality data set, it can be observed that PPTri achieves the highest
improvement of approximately 3%. It implies that ephemeral social network
probably obeys the structural balance theory and indeed helps improve the per-
formance. PCTri and CCTri also contribute significantly to the improvement
of performance. It indicates that joint with relationships in normal social net-
work such as mobile social network, triadic social correlation factors based on
structural balance theory still contributes to the prediction performance.

Case Study. We further conduct a case study to investigate why our proposed
model outperforms other baseline methods. Fig. 8 presents the prediction result
on a subset of UbiComp data generated by three different approaches: SVM,
CRF and FGM. Green solid lines represent true positive samples; red solid lines
for false negative samples and blue solid lines for false positive samples. In addi-
tion, we use black dash lines to point out the social correlations between users.

It can be observed that CRF tends to predict more geographic coincidences
than SVM with the help of time correlation. It successfully detects more geo-
graphic coincidences (e.g. JS-TY and MS-KK), albeit few of them are incorrect
(Cf. Fig. 8(b)). Our proposed approach further leverages the social correlation
factors to improve the prediction result. For example, when MS and JS have
a higher common coauthor count, geographic coincidences of MS and KK may
increase the chance of a geographic coincidence between JS and KK. Our pro-
posed model is able to capture such social correlations and infer the geographic
coincidences between KK and JS from the prediction between MS and KK. The
social correlation factors benefit the prediction result of FGM by significantly
improving the recall, as shown in Fig. 8(c).

6 Related Work

Dynamic Behavior Analysis. There are several works on social dynamic
behavior analysis. Zhang et al. [26] proposed a dynamic continuous factor graph
model to predict users’ emotion states. Tan et al. [21] proposed a noise tolerant
model for predicting user’s actions in online social networks. Tang et al. [23]
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Fig. 8. Case study

proposed a topical affinity propagation to quantify the social influence between
users. However, these works did not leverage location information, while we focus
on predicting geographic coincidences.

UserMobilityAnalysis. Quite a few works on user mobility analysis have been
conducted. Li et al. [17] designed a hierarchical-graph-based similarity measure-
ment for estimating user similarity based on their location history. Liu et al. [18]
proposed an approach to utilize information of mobile objects for the clustering
task. Qian et al. [20] explore co-location mining pattern with dynamic neighbor-
hood constraint. However, rather than analysis of user mobility, we focus on a
prediction problem. Cho et al. [6] develop a Gaussianmodel by incorporating peri-
odicity and influence of social network structure to predict human location tracks.
Crandall et al. [7] studies geographic coincidences between users to infer social ties,
while our work focus on prediction of geographic coincidences from social network.
Zheng et al. [27] used a graph-based algorithm to infer user mobility based on GPS
data. Tang et al. [25] developed a general learning framework for inferring the types
of social ties in social networks; and [22] further extended the problem across het-
erogeneous networks. But none of these works provide an approach for prediction
of interpersonal geographic coincidences.

Physical Proximity Analysis. Physical proximity has been employed in many
works to quantify users’ behaviors. Eagle et al. [8] use GPS on mobile phones to
analyze proximity of the users in order to present the properties of users’ location
tracks. However, different from tracking users’ mobility, we aim to predict geo-
graphic coincidences between users in this work. There is also a host of conference
proximity analysis in current literature. Isella et al. [13] use RFID badges to col-
lect face-to-face proximity data of individuals at a scientific conference, and ana-
lyze its static and dynamic properties. Atzmueller et al. [1] explore different roles of
participants in a conference by examining their face-to-face interaction patterns.
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Similarly, Cattuto et al. [4] collect data from the office environment and academic
congress.

7 Conclusion

In this paper, we formally define the ephemeral social network and study to which
extent we can predict geographic coincidences in an ephemeral social network.
We conduct a series of observations on an ephemeral social network extracted
from a data collected during an academic conference (UbiComp 2011). Based
on link homophily, opinion leader and structural hole, we show the interplay be-
tween the normal social network (coauthor network) and users’ behavioral pat-
tern in the ephemeral social network. We then propose a Factor Graph Model
(FGM) for the prediction task. Experimental results show that our model out-
performs the baseline on two data sets: UbiComp and Reality. Further analysis
also suggests that social correlation factors help improve the performance.

A limitation of this work is that a geographic coincidence does not necessarily
indicate an actual social interaction, e.g. conversation or discussion. We carefully
select the parameters so that extracted geographic coincidence are very likely to be
accompanied with actual social interaction, but the real situation is hard to detect
without collecting additional context. Another flaw is the requirement of labeled
data since we use supervised learning for our model. An unsupervised learning ap-
proach would further reduce the cost of geographic coincidences prediction.
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Abstract. In street-based mobility mining, traffic volume estimation re-
ceives increasing attention as it provides important applications such as
emergency support systems, quality-of-service evaluation and billboard
placement. In many real world scenarios, empirical measurements are
usually sparse due to some constraints. On the other hand, pedestrians
generally show some movement preferences, especially in closed environ-
ments, e.g., train stations. We propose a Gaussian process regression
based method for traffic volume estimation, which incorporates topo-
logical information and prior knowledge on preferred trajectories with
a trajectory pattern kernel. Our approach also enables effectively find-
ing most informative sensor placements. We evaluate our method with
synthetic German train station pedestrian data and real-world episodic
movement data from the zoo of Duisburg. The empirical analysis demon-
strates that incorporating trajectory patterns can largely improve the
traffic prediction accuracy, especially when traffic networks are sparsely
monitored.

Keywords: Pedestrian Quantity Estimation, Trajectory, Gaussian Pro-
cess Regression, Graph Kernels.

1 Introduction

Estimation of traffic volumes is a common task for street based traffic and
the achieved values are highly interesting for risk analysis, quality of service
evaluation, location ranking and mobility analysis applications. Particularly, for
pedestrians traffic, knowledge on people’s presence offers a vast chance for im-
provement of the signage and the infrastructure. Facilities provided to people
depend on pedestrian movements and volumes. To give a few general examples:
locations of information desks, shops or toilettes depend on the quantity of per-
sons; path-widths of the corridors in a stadium depend on people’s quantity as
well, mobile phone networks are planned according to the expected movements
and even locations of advertisement billboards are placed such that they are po-
tentially noticed by as many pedestrians as possible. Modelling the pedestrian
quantities gives indispensable insights on visitor preferences and motivations
at a particular public event or site and thus supports creation of intelligent
environments.
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In this work we focus on the estimation of traffic volumes for pedestrians
within closed environments. These are sites or buildings which have in common,
that no people reside inside but all present people leave after some time period.
Thus, these closed environments have dedicated entrances and exits. Prominent
examples are train stations, terminals, shops, shopping malls, parks as well as
zoos. As shown in the previous examples, knowledge of pedestrian movement
provides indispensable benefits to safety, marketing as well as infrastructural ap-
plications. Thus, over the past years many sensor technologies to fetch empirical
measurements and record pedestrian volumes have been developed (most pop-
ular ones are video surveillance, laser beams and Bluetooth sensors). However,
empirical measurements are usually rare due to some constraints, e.g., budget
limitations. This arises the following questions.

– How can values on pedestrian quantities be estimated from few empirical
measurements?

– At which places should a constrained number of quantity sensors be located?

Often, available data is limited to few measurements and some prior knowledge,
e.g., floor plan sketches, knowledge on preferred routes by local domain experts.
Incorporating prior knowledge is thus essential to address the above challenges.
However there are few approaches taking into account the trajectory patterns,
although pedestrians generally show some move preferences [1, 2], especially in
closed environments, e.g., train stations. Consider for example an average daily
traffic (ADT) prediction problem with traffic networks consisting of only one
junction. As shown in Figure 1, a T-junction occurs in a wide corridor that goes
straight. At the junction a small corridor intersects and an expert knows that it is
most likely for persons to continue their walk straight ahead in the main corridor.
Assume further to have a frequency sensor placed in the main corridor which
measures a known amount of people within considered time interval. Under
these circumstances, existing traffic volume estimation methods, e.g., k-nearest
neighbour and standard Gaussian process regression, do not take into account
the expert knowledge and thus may not effectively provide accurate estimations
for the side corridor.

We propose a traffic volume estimation method based on Gaussian process
regression, which incorporates topological information and the expert knowledge
on preferred trajectories with a trajectory pattern kernel. By exploring trajectory
patterns, our method can also effectively elicit most informative sensor place-
ments. We demonstrate the advantages of our approach with two applications.
The first one is pedestrian mobility analysis in German train stations. As the
data available is some statistical analysis on the network characteristics. We draw
synthetic (but realistic, see Section 4) traffic networks and pedestrian movement
based on these analysis. Secondly, our approach is applied to the real world sce-
nario at the zoo of Duisburg (Germany). The pedestrian mobility data of the
visitors was collected with Bluetooth tracking technology [3]. The empirical anal-
ysis demonstrates that incorporating trajectory patterns can largely improve the
traffic prediction accuracy, especially when traffic networks are sparsely moni-
tored. Our work contributes an extensive approach to the pedestrian volume
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Fig. 1. T-junction example. Main corridor is horizontal. Expert knowledge which pre-
sumes that people walk straight ahead in the main corridor is given. Left corridor
frequency measurement is given. Numbers denote relative frequencies in percent.

estimation problem and it provides an efficient, applicable solution to industrial
real world scenarios.

The rest of the paper is organized as follows. Section 2 gives an overview of
related work. Then we describe the proposed approach in Section 3. Empirical
analysis and real world applications are presented in Section 4. Finally, we give
our conclusions and discussions on future work in Section 5.

2 Related Work

Existing literature distinguishes between average daily traffic (ADT) estimation
and average annual daily traffic (AADT) estimation. Whereas AADT focuses on
estimation of a traffic volume depending on the day of the year, ADT estimation
provides an average for a particular day. Näıve approach for AADT estimation is
utilization of ordinary linear regression (OLR) [4]. Street segment attributes (e.g.
number of lanes or function classes) are multiplied by weights which are subject
for least squares regression. Improvements of this technique were achieved by
respecting the geographical space by usage of geographical weighted regression
(GWR) [4] and by application of k-nearest neighbor approaches (kNN) [5]. In [6]
the AADT prediction of kNN for a particular location is improved by weighting
measurements by their temporal distance to the prediction time. This approach
showed better results than application of Gaussian maximum likelihood (GML)
approaches for weighting of the historical data points. Recent improvements
to kNN non parametric regression were made in [7]. Although performing the
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k-nearest neighbor search in the attribute space of the street segments, this
approach selects the spatially closest neighbours, as they have highest impact.
In [7–9] the ADT estimation problem is addressed as business critical indus-
trial data mining use case as the pricing in the outdoor advertisement sector
in Germany and Switzerland relies on the estimated values [7]. Their proposed
algorithm is a spatial k-nearest neighbour (S-kNN) approach that incorporates
geometric distances for estimation of an unknown segment. The closer a mea-
sured segment is to an unmeasured one, the higher its impact. This is similar to
the Kriging approach described in [10] but goes beyond it, as just the k-nearest
neighbours were used for prediction.

The regression approaches in [11–13] are motivated by outdoor advertisement
use cases. In contrast to the previously described methods their approaches oper-
ate in the space of the possible routes instead of the segment-attribute space. Af-
ter an extensive path enumeration step, this work checks every possible path on
plausibility and considers the resulting set of plausible paths for path frequency
estimation using a least squares regression at the measurement locations. That
approach contains a basic assumption on pedestrian route choice, namely pedes-
trians prefer the shortest path to travel from one location to another. But in
some scenarios this assumption does not hold [14]. [15] applies Gaussian process
regression(GPR) to the estimation of traffic frequencies within a public trans-
port network. Their approach is not applicable to the problem of this work as
pedestrian mobility patterns arise in the traffic flow due to the non-random but
motivated individual behaviour, which was also result of the analysis of about
2’500 traces of train station visitors in [16]. More on challenges for pedestrian
modelling can be found in [17]. [18] shows in a study of 210 infrastructure plan-
ning projects that the inaccuracy of traffic forecasts can be immense. In this
paper we propose a new GPR based method to tackle the pedestrian quantity
estimation problem which explores the prior knowledge of trajectory patterns.

3 GPR with Trajectory Patterns

In the paper we focus on the pedestrian quantity estimation in closed envi-
ronments, e.g., train stations, shopping malls and zoos. Unlike the outdoor
pedestrain quantity estimation, the continuous tracking technologies, e.g. global
positioning system (GPS), are not feasible due to the lack of GPS signal in
buildings and expensive deployment of the hardware. Recently developed tech-
nologies (lightbeams, video surveillance, Bluetooth meshes) record episodic move-
ment data [19] or its location based aggregate, presence counts at low expenses.
Episodic movement data is represented by tuples < o, p, t > of moving object
identifier o, discrete location identifier p and corresponding timestamp t. The
location based aggregate, presence counts, for time interval Δt, as known as
number of visits, quantity or traffic frequency, is defined as

NV (p,Δt) = | < o, p, t >, t ∈ Δt| . (1)

To estimate the traffic volume at unmeasured locations, we propose a nonpara-
metric Bayesian method, Gaussian process with a random-walk based trajectory
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kernel. The method explores not only the commonly used information in the lit-
erature, e.g. traffic network structures (retrieved by tessellation from the floor
plan sketch) and recorded (or aggregated) presence counts NV at some measure-
ment locations, but also the move preferences of pedestrians (trajectory patterns)
collected from the local experts.

Consider a traffic network G̃(Ṽ, Ẽ) with N vertices and M edges. For some
of the edges, we observe the pedestrian quantities, denoted as y = {ys :=
NV (ẽs, Δt) : s = 1, . . . , S}. Additionally, we have the information of the major
pedestrian movement patterns T = {T1, T2, . . .} over the traffic network, col-
lected from the local experts or the tracking technology (e.g. Bluetooth tracking
technology). Obviously, taking into account the trajectory patterns is beneficial
to predict the unknown pedestrian quantities: The edges included in a trajec-
tory pattern appear to have similar pedestrian quantities. To meet the challenge,
we propose a nonparametric Bayesian regression model with trajectory based
kernels.

The pedestrian quantity estimation over traffic networks can be viewed as
a link prediction problem, where the predicted quantities associated with links
(edges) are continuous variables. In the literature of statistical relational learning
[20,21], commonly used GP relational methods are to introduce a latent variable
to each vertex, and the values of edges is therefore modeled as a function of latent
variables of the involved vertices, e.g. [22,23]. Although these methods have the
advantage that the problem size remains linear with the size of the vertices, it
is difficult to find appropriate functions to encode the relationship between the
variables of vertices and edges for different applications.

In the scenario of pedestrian quantity estimation, we directly model the edge-
oriented quantities [5, 6, 15] within a Gaussian process regression framework.
First, we convert the original network G̃(Ṽ, Ẽ) to an edge graph G(V,E) that
represents the adjacencies between edges of G̃. In the edge graph G, each vertex
vi ∈ V is an edge of G̃; and two vertices of G are connected if and only if their
corresponding edges share a common endpoint in G̃. To each vertex vi ∈ V
in the edge graph, we introduce a latent variable fi which represents the true
pedestrian quantity at vi. It is value of a function over the edge graph and the
known trajectory pattens, as well as the possible information about the features
of the vertex. The observed pedestrian quantities (within a time interval Δt) are
conditioned on the latent function values with Gaussian noise εi

yi = fi + εi, εi ∼ N (0, σ2) . (2)

As mathmatical form and parameters of the function are random and unknown,
fi is also unknown and random. For an infinite number of vertices, the function
values {f1, f2, . . .} can be represented as an infinite dimensional vector. Within
a nonparametric Bayesian framework, we assume that the infinite dimensional
random vector follows a Gaussian process (GP) prior with mean function m(xi)
and covariance function k(xi, xj) [24]. In turn, any finite set of function values
f = {fi : i = 1, ...,M} has a multivariate Gaussian distribution with mean and
covariances computed with the mean and covariance functions of the GP [24].
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Without loss of generality, we assume zero mean so that the GP is completely
specified by the covariance function. Formally, the multivariate Gaussian prior
distribution of the function values f is written as

P (f |X) = N (0,K),

where K denotes the M ×M covariance matrix, whose ij-th entry is computed
in terms of the covariance function. If there are vertex features x = {x1, ..., xM}
available, e.g., the spatial representation of traffic edges, a typical choice for
the covariance function is the squared exponential kernel with isotropic distance
measure:

k(xi, xj) = κ2 exp

(
−ρ2

2

D∑
d

(xi,d − xj,d)
2

)
, (3)

where κ and ρ are hyperparameters.
Since the latent variables f are linked together into an edge graph G, it is

obvious that the covariances are closely related to the network structure: the
variables are highly correlated if they are adjacent in G, and vice versa. Therefore
we can also employ graph kernels, e.g. the regularized Laplacian kernel, as the
covariance functions:

K =
[
β(L+ I/α2)

]−1
, (4)

where α and β are hyperparameters. L denotes the combinatorial Laplacian,
which is computed as L = D−A, where A denotes the adjacency matrix of the
graph G. D is a diagonal matrix with entries di,i =

∑
j Ai,j .

Although graph kernels have some successful applications to public transporta-
tion networks [15], there are probably limitations when applying the network-
based kernels to the scenario of closed environments: the pedestrians in a train
station or a shopping mall have favorite or commonly used routes, they are not
randomly distributed on the networks. In a train station, the pedestrian flow on
the main corridor is most likely unrelated to that on the corridors leading to the
offices, even if the corridors are adjacent. To incorporate the information of the
move preferences (trajectory patterns, collected from the local experts or tracking
technology) into the model, we explore a graph kernel inspired with the diffusion
process [25].

Assume that a pedestrian randomly moves on the edge graph G. From a vertex
i he jumps to a vertex j with nk

i,j possible random walks of length k, where nk
i,j

is equal to [Ak]i,j . Intuitively, the similarity of two vertices is related to the
number and the length of the random walks between them. Based on diffusion
process, the similarity between vertices vi and vj is defined as

s(vi, vj) =

[ ∞∑
k=1

λk

k!
Ak

]
ij

, (5)

where 0 ≤ λ ≤ 1 is a hyperparameter. All possible random walks between vi and
vj are taken into account in similarity computation, however the contributions of
longer walks are discounted with a coefficient λk/k!. The similarity matrix is not
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always positive semi-definite. To get a valid kernel, the combinatorial Laplacian
is used and the covariance matrix is defined as [25]:

K =

[ ∞∑
k=1

λk

k!
Lk

]
= exp(λL) . (6)

On a traffic network within closed environment, the pedestrian will move not
randomly, but with respect to a set of trajectory patterns and subpatterns de-
noted as sequences of vertices [26], e.g.,⎧⎪⎪⎨⎪⎪⎩

T1 = v1 → v3 → v5 → v6,
T2 = v2 → v3 → v4,
T3 = v4 → v5 → v1,

. . .

⎫⎪⎪⎬⎪⎪⎭ . (7)

Each trajectory pattern T� can also be represented as an adjacency matrix in
which Âi,j = 1 iff vi → vj ∈ T� or vi ← vj ∈ T�. The subpatterns are sub-
sequences of the trajectories. For example, the subpatterns of T1 are {v1 →
v3, v3 → v5, v5 → v6, v1 → v3 → v5, v3 → v5 → v6}. Given a set of trajectory
patterns T = {T1, T2, . . .}, a random walk is valid and can be counted in similar-
ity computation, if and only if all steps in the walk belong to T and subpatterns
of T . Thus we have

ŝ(vi, vj) =

[ ∞∑
k=1

λk

k!
Âk

]
ij

, K̂ =

[ ∞∑
k=1

λk

k!
L̂k

]
= exp(λL̂)

Â =
∑
�

Â�, L̂ = D̂ − Â, (8)

where D̂ is a diagonal matrix with entries d̂i,i =
∑

j Âi,j .
For pedestrian quantities fu at unmeasured locations u, the predictive distri-

bution can be computed as follows. Based on the property of GP, the observed
and unobserved quantities (y, fu)

T follows a Gaussian distribution[
y
fu

]
∼ N

(
0,

[
K̂u,u + σ2I K̂u,u

K̂u,u K̂u,u

])
, (9)

where K̂u,u is the corresponding entries of K̂ between the unmeasured vertices

u and measured ones u. K̂u,u, K̂u,u, and K̂u,u are defined equivalently. I is an
identity matrix of size |u|. Finally the conditional distribution of the unobserved
pedestrian quantities is still Gaussian with the meanm and the covariance matrix
Σ:

m = K̂u,u(K̂u,u + σ2I )−1 y

Σ = K̂u,u − K̂u,u(K̂u,u + σ2I )−1 K̂u,u .

Besides pedestrian quantity estimation, incorporating trajectory patterns also
enables effectively finding sensor placements that are most informative for traffic
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estimation on the whole network. To identify the most informative locations I,
we employ the exploration strategy, maximizing mutual information [27].

argmax
I⊂V

H(V\I)−H(V\I | I) . (10)

It is equal to find a set of vertices I, which maximally reduces the entropy of the
traffic at the unmeasured locations V\I. Since the entropy and the conditional
entropy of Gaussian variables can be completely specified with covariances, the
selection procedure is only based on covariances of vertices, not involves any
pedestrian quantity observations. To solve the optimization problem, we employ
a poly-time approximate method [27]. In particular, starting from an empty set
I = ∅, each vertex is selected with the criterion:

v∗ ← argmax
v∈V\I

Hε(v | I)−Hε(v | I) , (11)

where I denotes the vertex set V\(I ∪ v). Hε(x|Z) := H(x|Z ′) denotes an
approximation of the entropy H(x|Z), where any element z in Z ′ ⊂ Z satisfies
the constraint that the covariance between z and x is larger than a small value
ε. Within the GP framework, the approximate entropy Hε(x|Z) is computed as

Hε(x | Z) =
1

2
ln 2πeσ2

x|Z′

σ2
x|Z′ = K̂x,x − K̂T

x,Z′K̂−1
Z′,Z′K̂x,Z′ . (12)

The term K̂x,Z′ is the corresponding entries of K̂ between the vertex x and a set

of vertices Z ′. K̂x,x and K̂Z′,Z′ are defined equivalently. Given the informative
trajectory pattern kernel, the pedestrian quantity observations at the vertices
selected with the criterion (11) can well estimate the situation of the whole
network. Sec. 4.3 shows a successful application to the zoo of Duisburg data.

4 Experimental Analysis

Our intention here is to investigate the following questions: (Q1) Can the pro-
posed method integrate with expert knowledge on preferred movement patterns
in closed environments and thus improve the prediction accuracy on pedestrian
quantity estimation? (Q2) Can the proposed method choose sensor locations to
better monitor pedestrian quantities in an industrial scenario? To this aim, we
evaluate the method on two datasets: synthetic German train station pedestrian
data and real-world episodic movement data collected with Bluetooth tracking
technology at the zoo of Duisburg (Germany). We compare our method with
state-of-the-art traffic volume estimation approaches. As discussed in Section 2,
kNN methods are extensively used for traffic volume estimation [5]. The latest
version of this approach, the Spatial kNN [7], has many successful applications
and is considered as a baseline. In the experiments we use distance-weighted 5-
Nearest Neighbors. Particularly this method detects for each unmeasured edge
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the 5 nearest neighbors among the measured ones. Their traffic frequencies are
weighted by distance to achieve prediction for the unmeasured ones. As this is
a geometric algorithm which requires spatial representation of the traffic net-
work, we apply Fruchterman Reingold [28] algorithm to lay out the test net-
works in two-dimensional space and achieve spatial representations. Distances
between edges are computed with Euclidian metric. Additionally, we compare
our method to GPR with commonly used kernels, including regularized Lapla-
cian (RL), squared exponential (SE) and diffusion kernel (Diff). The predic-
tion performance of the methods is measured with mean absolute error (MAE)
MAE = n−1

∑n
i=1 |yi − fi|.

4.1 German Train Station Data

To approximate the true situation, we study traffic networks of 170 largest public
train stations in Germany, an example shown as Fig. 2. The distributions of
vertex-degree and vertex-number are visualized in Fig. 3. Given the collected
information of the real-world train stations, the synthetic data is generated as
follows. We apply the real vertex-degree distribution to the random network
generator described in [29] and draw the train station like random graphs of order
10. In these graphs we generate pedestrian flows between dead ends (vertices of
degree one), as no pedestrians permanently stay in a train station. The dead
ends are selected pairwise and edge frequencies are sampled along the shortest
connecting path with a random frequency of maximal 10,000 persons, which is a
reasonable approximation for train station traffic networks. Afterwards we select
a random set of edges (ranging from 10 to 50 percent of all edges) as monitored
locations. Traffic frequencies at these edges are viewed as evidence to estimate
frequencies at unmeasured ones. At each setting, we repeat the experiment 100
times and report the distributions of prediction performance for each method.

Fig. 2. Sketch of train station Hofheim (Germany) with traffic network overlay

Experimental results are depicted in Fig. 4. Grouped in blocks are the differ-
ent experiment configurations (different number of monitored edges). Statistics
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Fig. 3. Distributions of vertex-degree (right) and number of vertices (left) among 170
large German train stations
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Fig. 4. Pedestrian quantity estimation on networks of train stations. Performance is
measured by MAE at settings with different ratios of monitored edges (10 to 50 percent
from left to right). The five methods: GPR with diffusion kernel (Diff), spatial k-nearest
neighbor (kNN), GPR with trajectory pattern kernel (Patt), GPR with regularized
Laplacian (RL) and GPR with squared exponential kernel (SE).

on the MAE distribution per method are depicted in the five boxplots. Through-
out the tests, our method achieved minimal MAE and minimal average MAE,
and therefore best results for the pedestrian quantity estimation problem. The
proposed method outperformed commonly used kNN approach, especially when
traffic networks are sparsely monitored. With increasing the number of moni-
tored edges, all methods, except the GPR with diffusion kernel, provide better
performance on pedestrian quantity estimation given that MAE decreased and
did not scatter that much. Within the GP framework, the proposed trajectory
pattern kernel achieved best performance compared to other kernels.
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4.2 Zoo of Duisburg Data

We apply the proposed method to a real world dataset of visitor movement
in the zoo of Duisburg (Germany). The dataset consists of episodic movement
data [19] and was collected with a mesh of 15 Bluetooth scanners [3,30] (see map
in Fig. 5). Within a period of 7 days (07/26/11–08/02/11) all Bluetooth enabled
devices (smartphones or intercoms) were scanned and log-entries attached to the
log-file. Thus, the dataset consists of tuples (device identifier, timestamp, loca-
tion). In order to perform the tests, the traffic network is build from the sensor
positions. Each sensor becomes a vertex. To achieve ground truth for the traffic

Fig. 5. The network of the zoo in Duisburg (Germany) and the positions of the 15
Bluetooth scanners
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Fig. 6. Pedestrian quantity estimation on network of the zoo in Duisburg (Germany).
Performance is measured by MAE at settings with different ratios of monitored edges
(10 to 50 percent from left to right). The five methods: GPR with diffusion kernel
(Diff), spatial k-nearest neighbor (kNN), GPR with trajectory pattern kernel (Patt),
GPR with regularized Laplacian (RL) and GPR with squared exponential kernel (SE)
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volume prediction, temporal aggregates of recorded transitions between sensors,
as proposed in [19], become scaled by the Bluetooth representativity (in this
case at the zoo approximately 6 percent). Due to the uncertainties in episodic
movement data transitions in the dataset are not limited to neighbouring sensor
positions, but occur between arbitrary pairs of sensors. In our case this results
in a traffic network consisting of 102 edges and 15 vertices. The recorded trajec-
tories of the zoo visitors become the trajectory pattern input to the trajectory
pattern kernel. Similar to the previously synthetically generated data, the real
world experiments are conducted with different percentages of measured edges.
Measurement edges are chosen uniformly at random 100 times for each dataset.

As shown in Figure 6 on the experimental results, the proposed method again
achieved the best prediction performance for the pedestrian quantity estimation
problem in comparison to other state-of-the-art methods. Incorporating expert
knowledge on movement preferences allows for the model to well capture the
dependencies of traffic at different edges and, in turn, to improve prediction
accuracy.

4.3 Sensor Placement with Trajectory Patterns

Besides the traffic volume estimation, another interesting task is to give a so-
lution to the question where to place the sensors such that the traffic over the
whole network can be well estimated. Based on the proposed trajectory pattern
kernel, we perform the sensor placement procedure on the zoo of Duisburg data.
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Fig. 7. Traffic Flow Estimation performance measured by MAE for 5 real world
datasets with different ratios of known edges (10 to 50 percent) and five methods:
GPR with Diffusion kernel (Diff), Spatial k-Nearest Neighbor (kNN), GPR with the
proposed Trajectory Pattern kernel (Patt), GPR with Regularized Laplacian (RL) and
GPR with Squared Exponential (SE) in comparison to (Patt) with mutual information
based sensor placement (horizontal line).
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Afterwards, pedestrian quantity estimation based on resulting sensor placement
is carried out and performance is measured with MAE. The red horizontal line
in Fig. 7 depicts the sensor placement performances in comparison to previous
random placement. For sparse sensor distribution (low percentages of measure-
ment edges), the sensor placement has a high positive impact on the prediction
performance. However, for higher sensor numbers the random placement may
outperform the mutual information based sensor placement. One reason is that
this placement is not optimal but near optimal. Another possible explanation is
given by the data. Due to noise or other unexpected anomalies in the data which
are not consistent to the prior knowledge on trajectory patterns.

5 Conclusions and Future Work

Pedestrian volume estimation is an important problem for mobility analysis
in many application scenarios such as emergency support systems, quality-of-
service evaluation and billboard placement, risk analysis and location ranking.
This work proposed a nonparametric Bayesian method to tackle the pedestrian
quantity estimation problem which explores the expert knowledge of trajec-
tory patterns. We validated our proposed method on two datasets: synthetic
German train station pedestrian data and real-world dataset collected with of
Bluetooth tracking technology at the zoo of Duisburg. Furthermore, we ad-
dressed the question for sensor placement in an industrial scenario with the
trajectory based graph kernel. The empirical analysis demonstrated that incor-
porating trajectory patterns can largely improve the traffic prediction accuracy
in comparison to other state-of-the-art methods. Our work also provides an effi-
cient and applicable solution to pedestrian volume estimation in industrial real
world scenarios.

This work focussed on pedestrian volume estimation in closed environments
(zoo, train station, terminal, etc.) because in closed environments different meth-
ods can be studied and compared under controlled circumstances. For instance,
movements in these closed environments are not influenced by residing persons
or unexpected pedestrian sinks or sources like tram stops, living houses, etc.
Nevertheless, our proposed approach was not based on this assumption and fu-
ture work should validate performance on arbitrary traffic networks. Another
future research direction is to focus on temporal aspects of pedestrian move-
ment and the creation of time dynamic models using at once dynamic expert
knowledge and dynamic measurements. Also combination of measurements and
expert knowledge at heterogeneous spatial granularities is promising for indus-
trial applications (e.g. combination of (1) movement patterns among dedicated
points of interest retrieved from social media and (2) pedestrian counts from
video surveillance on (3) a city center traffic network). This question is of high
interest in near future, as valuable (episodic) data on people’s movement is ex-
pected to become widely available e.g. by billing data, logfiles on social media
usage or wireless communication networks (GSM, WLAN, Bluetooth) [19].
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Abstract. Many real-world phenomena can be represented by a spatio-
temporal signal: where, when, and how much. Social media is a tantaliz-
ing data source for those who wish to monitor such signals. Unlike most
prior work, we assume that the target phenomenon is known and we are
given a method to count its occurrences in social media. However, count-
ing is plagued by sample bias, incomplete data, and, paradoxically, data
scarcity – issues inadequately addressed by prior work. We formulate sig-
nal recovery as a Poisson point process estimation problem. We explicitly
incorporate human population bias, time delays and spatial distortions,
and spatio-temporal regularization into the model to address the noisy
count issues. We present an efficient optimization algorithm and discuss
its theoretical properties. We show that our model is more accurate than
commonly-used baselines. Finally, we present a case study on wildlife
roadkill monitoring, where our model produces qualitatively convincing
results.

1 Introduction

Many real-world phenomena of interest to science are spatio-temporal in nature.
They can be characterized by a real-valued intensity function f ∈ R≥0, where
the value fs,t quantifies the prevalence of the phenomenon at location s and time
t. Examples include wildlife mortality, algal blooms, hail damage, and seismic
intensity. Direct instrumental sensing of f is often difficult and expensive. So-
cial media offers a unique sensing opportunity for such spatio-temporal signals,
where users serve the role of “sensors” by posting their experiences of a target
phenomenon. For instance, social media users readily post their encounters with
dead animals: “I saw a dead crow on its back in the middle of the road.”

There are at least three challenges faced when using human social media users
as sensors:

1. Social media sources are not always reliable and consistent, due to factors
including the vagaries of language and the psychology of users. This makes
identifying topics of interest and labeling social media posts extremely chal-
lenging.

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 644–659, 2012.
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2. Social media users are not under our control. In most cases, users cannot be
directed or focused or maneuvered as we wish. The distribution of human
users (our sensors) depends on many factors unrelated to the sensing task
at hand.

3. Location and time stamps associated with social media posts may be er-
roneous or missing. Most posts do not include GPS coordinates, and self-
reported locations can be inaccurate or false. Furthermore, there can be
random delays between an event of interest and the time of the social media
post related to the event.

Most prior work in social media event analysis has focused on the first challenge.
Sophisticated natural language processing techniques have been used to identify
social media posts relevant to a topic of interest [21,2,16] and advanced machine
learning tools have been proposed to discover popular or emerging topics in
social media [1,12,22]. We discuss the related work in detail in Section 3.

Our work in this paper focuses on the latter two challenges. We are interested
in a specific topic or target phenomenon of interest that is given and fixed be-
forehand, and we assume that we are also given a (perhaps imperfect) method,
such as a trained text classifier, to identify target posts. The first challenge is
relevant here, but is not the focus of our work. The main concerns of this paper
are to deal with the highly non-uniform distribution of human users (sensors),
which profoundly affects our capabilities for sensing natural phenomena such as
wildlife mortality, and to cope with the uncertainties in the location and time
stamps associated with related social media posts. The main contribution of the
paper is robust methodology for deriving accurate spatiotemporal maps of the
target phenomenon in light of these two challenges.

2 The Socioscope

We propose Socioscope, a probabilistic model that robustly recovers spatiotem-
poral signals from social media data. Formally, consider f defined on discrete
spatiotemporal bins. For example, a bin (s, t) could be a U.S. state s on day t,
or a county s in hour t. From the first stage we obtain xs,t, the count of tar-
get social media posts within that bin. The task is to estimate fs,t from xs,t.

A commonly-used estimate is f̂s,t = xs,t itself. This estimate can be justified
as the maximum likelihood estimate of a Poisson model x ∼ Poisson(f). This
idea underlines several emerging systems such as earthquake damage monitoring
from Twitter [8]. However, this estimate is unsatisfactory since the counts xs,t

can be noisy: as mentioned before, the estimate ignores population bias – more
target posts are generated when and where there are more social media users; the
location of a target post is frequently inaccurate or missing, making it difficult
to assign to the correct bin; and target posts can be quite sparse even though
the total volume of social media is huge. Socioscope addresses these issues.
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For notational simplicity, we often denote our signal of interest by a vector
f = (f1, . . . , fn)


 ∈ Rn
≥0, where fj is a non-negative target phenomenon intensity

in source bin j = 1 . . . n. We will use a wildlife example throughout the section.
In this example, a source bin is a spatiotemporal unit such as “California, day
1,” and fj is the squirrel activity level in that unit. The mapping between index
j and the aforementioned (s, t) is one-one and will be clear from context.

2.1 Correcting Human Population Bias

For now, assume each target post comes with precise location and time meta
data. This allows us to count xj , the number of target posts in bin j. Given xj ,

it is tempting to use the maximum likelihood estimate f̂j = xj which assumes a
simple Poisson model xj ∼ Poisson(fj). However, this model is too naive: Even
if fj = fk, e.g., the level of squirrel activities is the same in two bins, we would
expect xj > xk if there are more people in bin j than in bin k, simply because
more people see the same group of squirrels.

To account for this population bias, we define an “active social media user pop-
ulation intensity” (loosely called “human population” below) g = (g1, . . . , gn)


 ∈
Rn

≥0. Let zj be the count of all social media posts in bin j, the vast majority of
which are not about the target phenomenon. We assume zj ∼ Poisson(gj). Since
typically zj 1 0, the maximum likelihood estimate ĝj = zj is reasonable.

Importantly, we then posit the Poisson model

xj ∼ Poisson(η(fj , gj)). (1)

The intensity is defined by a link function η(fj , gj). In this paper, we simply
define η(fj , gj) = fj · gj but note that other more sophisticated link functions
can be learned from data. Given xj and zj, one can then easily estimate fj with

the plug-in estimator f̂j = xj/zj.

2.2 Handling Noisy and Incomplete Data

This would have been the end of the story if we could reliably assign each post
to a source bin. Unfortunately, this is often not the case for social media. In this
paper, we focus on the problem of spatial uncertainty due to noisy or incomplete
social media data. A prime example of spatial uncertainty is the lack of location
meta data in posts from Twitter (called tweets).1 In recent data we collected,
only 3% of tweets contain the latitude and longitude at which they were created.
Another 47% contain a valid user self-declared location in his or her profile (e.g.,
“New York, NY”). However, such location does not automatically change while
the user travels and thus may not be the true location at which a tweet is posted.

1 It may be possible to recover occasional location information from the tweet text
itself instead of the meta data, but the problem still exists.
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The remaining 50% do not contain location at all. Clearly, we cannot reliably
assign the latter two kinds of tweets to a spatiotemporal source bin. 2

To address this issue, we borrow an idea from Positron Emission Tomogra-
phy [19]. In particular, we define m detector bins which are conceptually distinct
from the n source bins. The idea is that an event originating in some source bin
goes through a transition process and ends up in one of the detector bins, where
it is detected. This transition is modeled by an m× n matrix P = {Pij} where

Pij = Pr(detector i | source j). (2)

P is column stochastic:
∑m

i=1 Pij = 1, ∀j. We defer the discussion of our specific
P to a case study, but we mention that it is possible to reliably estimate P
directly from social media data (more on this later). Recall the target post
intensity at source bin j is η(fj , gj). We use the transition matrix to define the
target post intensity hi (note that hi can itself be viewed as a link function
η̃(f ,g)) at detector bin i:

hi =

n∑
j=1

Pijη(fj , gj). (3)

For the spatial uncertainty that we consider, we create three kinds of detector
bins. For a source bin j such as “California, day 1,” the first kind collects target
posts on day 1 whose latitude and longitude meta data is in California. The
second kind collects target posts on day 1 without latitude and longitude meta
data, but whose user self-declared profile location is in California. The third kind
collects target posts on day 1 without any location information. Note the third
kind of detector bin is shared by all other source bins for day 1, such as “Nevada,
day 1,” too. Consequently, if we had n = 50T source bins corresponding to the
50 US states over T days, there would be m = (2× 50 + 1)T detector bins.

Critically, our observed target counts x are now with respect to the m detector
bins instead of the n source bins: x = (x1, . . . , xm)
. We will also denote the
count sub-vector for the first kind of detector bins by x(1), the second kind x(2),
and the third kind x(3). The same is true for the overall counts z. A trivial
approach is to only utilize x(1) and z(1) to arrive at the plug-in estimator

f̂j = x
(1)
j /z

(1)
j . (4)

As we will show, we can obtain a better estimator by incorporating noisy data
x(2) and incomplete data x(3). z(1) is sufficiently large and we will simply ignore
z(2) and z(3).
2 Another kind of spatiotemporal uncertainty exists in social media even when the local
and time meta data of every post is known: social media users may not immediately
post right at the spot where a target phenomenon happens. Instead, there usually
is an unknown time delay and spatial shift between the phenomenon and the post
generation. For example, one may not post a squirrel encounter on the road until she
arrives at home later; the local and time meta data only reflects tweet-generation
at home. This type of spatiotemporal uncertainty can be addressed by the same
source-detector transition model.
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2.3 Socioscope: Penalized Poisson Likelihood Model

We observe target post counts x = (x1, . . . , xm) in the detector bins. These are
modeled as independently Poisson distributed random variables:

xi ∼ Poisson(hi), for i = 1 . . .m. (5)

The log likelihood factors as

 (f) = log
m∏
i=1

hxi

i e−hi

xi!
=

m∑
i=1

(xi log hi − hi) + c, (6)

where c is a constant. In (6) we treat g as given.
Target posts may be scarce in some detector bins. Indeed, we often have zero

target posts for the wildlife case study to be discussed later. This problem can
be mitigated by the fact that many real-world phenomena are spatiotemporally
smooth, i.e., “neighboring” source bins in space or time tend to have similar
intensity. We therefore adopt a penalized likelihood approach by constructing a
graph-based regularizer. The undirected graph is constructed so that the nodes
are the source bins. Let W be the n×n symmetric non-negative weight matrix.
The edge weights are such that Wjk is large if j and k correspond to neighboring
bins in space and time. Since W is domain specific, we defer its construction to
the case study.

Before discussing the regularizer, we need to perform a change of variables.
Poisson intensity f is non-negative, necessitating a constrained optimization
problem. It is more convenient to work with an unconstrained problem. To this
end, we work with the exponential family natural parameters of Poisson. Specif-
ically, let

θj = log fj , ψj = log gj. (7)

Our specific link function becomes η(θj , ψj) = eθj+ψj . The detector bin intensi-
ties become hi =

∑n
j=1 Pijη(θj , ψj).

Our graph-based regularizer applies to θ directly:

Ω(θ) =
1

2
θ
Lθ, (8)

where L is the combinatorial graph Laplacian [5]: L = D −W, and D is the
diagonal degree matrix with Djj =

∑n
k=1 Wjk.

Finally, Socioscope is the following penalized likelihood optimization problem:

min
θ∈Rn

−
m∑
i=1

(xi log hi − hi) + λΩ(θ), (9)

where λ is a positive regularization weight.
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2.4 Optimization

We solve the Socioscope optimization problem (9) with BFGS, a quasi-Newton
method [14]. The gradient can be easily computed as

∇ = λLθ −HP
(r− 1), (10)

where r = (r1 . . . rm) is a ratio vector with ri = xi/hi, and H is a diagonal
matrix with Hjj = η(θj , ψj).

We initialize θ with the following heuristic. Given counts x and the transition
matrix P , we compute the least-squared projection η0 to ‖x−Pη0‖2. This pro-
jection is easy to compute. However, η0 may contain negative components not
suitable for Poisson intensity. We force positivity by setting η0 ← max(10−4, η0)
element-wise, where the floor 10−4 ensures that log η0 > −∞. From the defini-
tion η(θ, ψ) = exp(θ + ψ), we then obtain the initial parameter

θ0 = log η0 − ψ. (11)

Our optimization is efficient: problems with more than one thousand variables
(n) are solved in about 15 seconds with fminunc() in Matlab.

2.5 Parameter Tuning

The choice of the regularization parameter λ has a profound effect on the smooth-
ness of the estimates. It may be possible to select these parameters based on prior
knowledge in certain problems, but for our experiments we select these param-
eters using a cross-validation (CV) procedure, which gives us a fully data-based
and objective approach to regularization.

CV is quite simple to implement in the Poisson setting. A hold-out set of data
can be constructed by simply sub-sampling events from the total observation
uniformly at random. This produces a partial data set of a subset of the counts
that follows precisely the same distribution as the whole set, modulo a decrease
in the total intensity per the level of subsampling. The complement of the hold-
out set is what remains of the full dataset, and we will call this the training set.
The hold-out set is taken to be a specific fraction of the total. For theoretical
reasons beyond the scope of this paper, we do not recommend leave-one-out
CV [18,6].

CV is implemented by generating a number of random splits of this type (we
can generate as many as we wish), and for each split we run the optimization
algorithm above on the training set for a range of values of λ. Then compute the
(unregularized) value of the log-likelihood on the hold-out set. This provides us
with an estimate of the log-likelihood for each setting of λ. We simply select the
setting that maximizes the estimated log-likelihood.

2.6 Theoretical Considerations

The natural measure of signal-to-noise in this problem is the number of counts in
each bin. The higher the counts, the more stable and “less noisy” our estimators



650 J.-M. Xu et al.

will be. Indeed, if we directly observe xi ∼ Poisson(hi), then the normalized error
E[(xi−hi

hi
)2] = h−1

i ≈ x−1
i . So larger counts, due to larger underlying intensities,

lead to small errors on a relative scale. However, the accuracy of our recovery
also depends on the regularity of the underlying function f . If it is very smooth,
for example a constant function, then the error would be inversely proportional
to the total number of counts, not the number in each individual bin. This is
because in the extreme smooth case, f is determined by a single constant.

To give some insight into dependence of the estimate on the total number of
counts, suppose that f is the underlying continuous intensity function of interest.
Furthermore, let f be a Hölder α-smooth function. The parameter α is related
to the number of continuous derivatives f has. Larger values of α correspond
to smoother functions. Such a model is reasonable for the application at hand,
as discussed in our motivation for regularization above. We recall the following
minimax lower bound, which follows from the results in [7,20].

Theorem 1. Let f be a Hölder α-smooth d-dimensional intensity function and
suppose we observe N events from the distribution Poisson(f). Then there exists
a constant Cα > 0 such that

inf
f̂

sup
f

E[‖f̂ − f‖21]
‖f‖21

≥ CαN
−2α
2α+d ,

where the infimum is over all possible estimators. The error is measured with the
1-norm, rather than two norm, which is a more appropriate and natural norm
in density and intensity estimation. The theorem tells us that no estimator can
achieve a faster rate of error decay than the bound above. There exist many
types of estimators that nearly achieve this bound (e.g., to within a log factor),
and with more work it is possible to show that our regularized estimators, with
adaptively chosen bin sizes and appropriate regularization parameter settings,
could also nearly achieve this rate. For the purposes of this discussion, the lower
bound, which certainly applies to our situation, will suffice.

For example, consider just two spatial dimensions (d = 2) and α = 1 which
corresponds to Lipschitz smooth functions, a very mild regularity assumption.
Then the bound says that the error is proportional to N−1/2. This gives useful
insight into the minimal data requirements of our methods. It tells us, for exam-
ple, that if we want to reduce the error of the estimator by a factor of say 2, then
the total number of counts must be increased by a factor of 4. If the smoothness
α is very large, then doubling the counts can halve the error. The message is
simple. More events and higher counts will provide more accurate estimates.

3 Related Work

To our knowledge, there is no comparable prior work that focuses on robust
single recovery from social media (i.e., the “second stage” as we mentioned in
the introduction). However, there has been considerable related work on the first
stage, which we summarize below.
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Topic detection and tracking (TDT) aims at identifying emerging topics from
text stream and grouping documents based on their topics. The early work in
this direction began with news text streamed from newswire and transcribed
from other media [1]. Recent research focused on user-generated content on
the web and on the spatio-temporal variation of topics. Latent Dirichlet Al-
location (LDA) [3] is a popular unsupervised method to detect topics. Mei
et al. [12] extended LDA by taking spatio-temporal context into account to iden-
tify subtopics from weblogs. They analyzed the spatio-temporal pattern of topic
θ by Pr(time|θ, location) and Pr(location|θ, time), and showed that documents
created from the same spatio-temporal context tend to share topics. In the same
spirit, Yin et al. [22] studied GPS-associated documents, whose coordinates are
generated by Gaussian Mixture Model in their generative framework. Cataldi
et al. [4] proposed a feature-pivot method. They first identified keywords whose
occurrences dramatically increase in a specified time interval and then connected
the keywords to detect emerging topics. Besides text, social network structure
also provides important information for detecting community-based topics and
user interests.

Event detection is highly related to TDT. Yang et al. [21] uses clustering
algorithm to identify events from news streams. Others tried to distinguish posts
related to real world events from posts about non-events, such as describing
daily life or emotions [2]. Real world events were also detected in Flickr photos
with meta information and Twitter. Other researchers were interested in events
with special characteristics, such as controversial events and local events. Sakaki
et al. [16] monitored Twitter to detect real-time events such as earthquakes and
hurricanes.

Another line of related work uses social media as a data source to answer
scientific questions [11]. Most previous work studied questions in linguistic, so-
ciology and human interactions. For example, Eisenstein et al. [9] studied the
geographic linguistic variation with geotagged social media. Gupte et al. [10]
studied social hierarchy and stratification in online social network.

As stated earlier, Socioscope differs from past work in its focus on robust signal
recovery on predefined target phenomena. The target posts may be generated
at a very low, though sustained, rate, and are corrupted by noise. The above
approaches are unlikely to estimate the underlying intensity accurately.

4 A Synthetic Experiment

We start with a synthetic experiment whose known ground-truth intensity f al-
lows us to quantitatively evaluate the effectiveness of Socioscope. The synthetic
experiment matches the case study in the next section. There are 48 US con-
tinental states plus Washington DC, and T = 24 hours. This leads to a total
of n = 1176 source bins, and m = (2 × 49 + 1)T = 2376 detector bins. The
transition matrix P is the same as in the case study, to be discussed later. The
overall counts z are obtained from actual Twitter data and ĝ = z(1).
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We design the ground-truth target signal f to be temporally constant but
spatially varying. Figure 1(a) shows the ground-truth f spatially. It is a mixture
of two Gaussian distributions discretized at the state level. The modes are in
Washington and New York, respectively. From P, f and g, we generate the
observed target post counts for each detector bin by a Poisson random number
generator: xi ∼ Poisson(

∑n
j=1 Pi,jfjgj), i = 1 . . .m. The sum of counts in x(1)

is 56, in x(2) 1106, and in x(3) 1030.

Table 1. Relative error of different estimators

(i) scaled x(1) 14.11

(ii) scaled x(1)/z(1) 46.73

(iii) Socioscope with x(1) 0.17

(iv) Socioscope with x(1) + x(2) 1.83

(v) Socioscope with x(1), x(2) 0.16

(vi) Socioscope with x(1), x(2), x(3) 0.12

Given x,P,g, We compare the relative error ‖f−f̂‖2/‖f‖2 of several estimators
in Table 1:

(i) f̂ = x(1)/(ε1
∑

z(1)), where ε1 is the fraction of tweets with precise location
stamp (discussed later in case study). Scaling matches it to the other estima-
tors. Figure 1(b) shows this simple estimator, aggregated spatially. It is a poor
estimator: besides being non-smooth, it contains 32 “holes” (states with zero
intensity, colored in blue) due to data scarcity.

(ii) f̂ = x
(1)
j /(ε1z

(1)
j ) which naively corrects the population bias as discussed

in (4). It is even worse than the simple estimator, because naive bin-wise cor-
rection magnifies the variance in sparse x(1).

(iii) Socioscope with x(1) only. This simulates the practice of discarding noisy
or incomplete data, but regularizing for smoothness. The relative error was re-
duced dramatically.

(iv) Same as (iii) but replace the values of x(1) with x(1)+x(2). This simulates
the practice of ignoring the noise in x(2) and pretending it is precise. The result
is worse than (iii), indicating that simply including noisy data may hurt the
estimation.

(v) Socioscope with x(1) and x(2) separately, where x(2) is treated as noisy by
P. It reduces the relative error further, and demonstrates the benefits of treating
noisy data specially.

(vi) Socioscope with the full x. It achieves the lowest relative error among
all methods, and is the closest to the ground truth (Figure 1(c)). Compared to
(v), this demonstrates that even counts x(3) without location can also help us
to recover f better.
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(a) ground-truth f (b) scaled x(1) (c) Socioscope

Fig. 1. The synthetic experiment

5 Case Study: Roadkill

We were unaware of public benchmark data sets to test robust signal recovery
from social media (the “second stage”). Several social media datasets were re-
leased recently, such as the ICWSM data challenges and the TREC microblog
track. These datasets were intended to study trending “hot topics” such as the
Arabic Spring, Olympic Games, or presidential elections. They are not suitable
for low intensity sustained target phenomena which is the focus of our approach.
In particular, these datasets do not contain ground-truth spatio-temporal in-
tensities and are thus not appropriate testbeds for the problems we are trying
to address. Instead, we report a real-world case study on the spatio-temporal
intensity of roadkill for several common wildlife species from Twitter posts.

The study of roadkill has values in ecology, conservation, and transportation
safety. The target phenomenon consists of roadkill events for a specific species
within the continental United States during September 22–November 30, 2011.
Our spatio-temporal source bins are state×hour-of-day. Let s index the 48 con-
tinental US states plus District of Columbia. We aggregate the 10-week study
period into 24 hours of a day. The target counts x are still sparse even with
aggregation: for example, most state-hour combination have zero counts for ar-
madillo and the largest count in x(1) and x(2) is 3. Therefore, recovering the
underlying signal f remains a challenge. Let t index the hours from 1 to 24. This
results in |s| = 49, |t| = 24, n = |s||t| = 1176,m = (2|s| + 1)|t| = 2376. We will
often index source or detector bins by the subscript (s, t), in addition to i or j,
below. The translation should be obvious.

5.1 Data Preparation

We chose Twitter as our data source because public tweets can be easily collected
through its APIs. All tweets include time meta data. However, most tweets do
not contain location meta data, as discussed earlier.

Overall Counts z(1) and Human Population Intensity g. To obtain the
overall counts z, we collected tweets through the Twitter stream API using
bounding boxes covering continental US. The API supplied a subsample of all
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(a) ĝ (b) spatial (c) temporal

Fig. 2. Human population intensity ĝ

tweets (not just target posts) with geo-tag. Therefore, all these tweets include
precise latitude and longitude on where they were created. Through a reverse
geocoding database (http://www.datasciencetoolkit.org), we mapped the
coordinates to a US state. There are a large number of such tweets. Counting the
number of tweets in each state-hour bin gave us z(1), from which g is estimated.

Figure 2 shows the estimated ĝ. The x-axis is hour of day and y-axis is the
states, ordered by longitude from east (top) to west (bottom). Although ĝ in
this matrix form contains full information, it can be hard to interpret. Therefore,
we visualize aggregated results as well: First, we aggregate out time in ĝ: for
each state s, we compute

∑24
t=1 ĝs,t and show the resulting intensity maps in

Figure 2(b). Second, we aggregate out state in ĝ: for each hour of day t, we

compute
∑49

s=1 ĝs,t and show the daily curve in Figure 2(c). From these two plots,
we clearly see that human population intensity varies greatly both spatially and
temporally.

Identifying Target Posts to Obtain Counts x. To produce the target counts
x, we need to first identify target posts describing roadkill events. Although not
part of Socioscope, we detail this preprocessing step here for reproducibility.

In step 1, we collected tweets using a keyword API. Each tweet must contain
the wildlife name (e.g., “squirrel(s)”) and the phrase “ran over”. We obtained
5857 squirrel tweets, 325 chipmunk tweets, 180 opossum tweets and 159 armadillo
tweets during the study period. However, many such tweets did not actually
describe roadkill events. For example, “I almost ran over an armadillo on my
longboard, luckily my cat-like reflexes saved me.” Clearly, the author did not kill
the armadillo.

In step 2, we built a binary text classifier to identify target posts among them.
Following [17], the tweets were case-folded without any stemming or stopword
removal. Any user mentions preceded by a “@” were replaced by the anonymized
user name “@USERNAME”. Any URLs staring with “http” were replaced by
the token “HTTPLINK”. Hashtags (compound words following “#”) were not
split and were treated as a single token. Emoticons, such as “:)” or “:D”, were
also included as tokens. Each tweet is then represented by a feature vector con-
sisting of unigram and bigram counts. If any unigram or bigram included animal
names, we added an additional feature by replacing the animal name with the

http://www.datasciencetoolkit.org
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generic token “ANIMAL”. For example, we would created an extra feature “over
ANIMAL” for the bigram “over raccoon”. The training data consists of 1,450
manually labeled tweets in August 2011 (i.e., outside our study period). These
training tweets contain hundreds of animal species, not just the target species.
The binary label is whether the tweet is a true first-hand roadkill experience.
We trained a linear Support Vector Machine (SVM). The CV accuracy is nearly
90%. We then applied this SVM to classify tweets surviving step 1. Those tweets
receiving a positive label were treated as target posts.

In step 3, we produce x(1),x(2),x(3) counts. Because these target tweets were
collected by the keyword API, the nature of the Twitter API means that most
do not contain precise location information. As mentioned earlier, only 3% of
them contain coordinates. We processed this 3% by the same reverse geocoding

database to map them to a US state s, and place them in the x
(1)
s,t detection

bins. 47% of the target posts do not contain coordinates but can be mapped to

a US state from user self-declared profile location. These are placed in the x
(2)
s,t

detection bins. The remaining 50% contained no location meta data, and were

placed in the x
(3)
t detection bins. 3

Constructing the Transition Matrix P. In this study, P characterizes the
fraction of tweets which were actually generated in source bin (s, t) end up in
the three detector bins: precise location st(1), potentially noisy location st(2),
and missing location t(3). We define P as follows:

P(s,t)(1),(s,t) = 0.03, and P(r,t)(1),(s,t) = 0 for ∀r �= s to reflect the fact that we

know precisely 3% of the target posts’ location.
P(r,t)(2),(s,t) = 0.47Mr,s for all r, s. M is a 49 × 49 “mis-self-declare” matrix.

Mr,s is the probability that a user self-declares in her profile that she is in state r,
but her post is in fact generated in state s. We estimated M from a separate large
set of tweets with both coordinates and self-declared profile locations. The M
matrix is asymmetric and interesting in its own right: many posts self-declared
in California or New York were actually produced all over the country; many
self-declared in Washington DC were actually produced in Maryland or Virgina;
more posts self-declare Wisconsin but were actually in Illinois than the other
way around.

Pt(3),(s,t) = 0.50. This aggregates tweets with missing information into the
third kind of detector bins.

Specifying the Graph Regularizer. Our graph has two kinds of edges. Tem-
poral edges connect source bins with the same state and adjacent hours by weight
wt. Spatial edges connect source bins with the same hour and adjacent states by
weight ws. The regularization weight λ was absorbed into wt and ws. We tuned
the weights wt and ws with CV on the 2D grid {10−3, 10−2.5, . . . , 103}2.

3 There were actually only a fraction of all tweets without location which came from
all over the world. We estimated this US/World fraction using z.
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5.2 Results

We present results on four animals: armadillos, chipmunks, squirrels, opossums.
Perhaps surprisingly, precise roadkill intensities for these animals are apparently
unknown to science (This serves as a good example of the value Socioscope may
provide to wildlife scientists). Instead, domain experts were only able to provide
a range map of each animal, see the left column in Figure 3. These maps indicate
presence/absence only, and were extracted from NatureServe [15]. In addition,
the experts defined armadillo and opossum as nocturnal, chipmunk as diurnal,
and squirrels as both crepuscular (active primarily during twilight) and diurnal.
Due to the lack of quantitative ground-truth, our comparison will necessarily be
qualitative in nature.

Socioscope provides sensible estimates on these animals. For example, Fig-
ure 4(a) shows counts x(1)+x(2) for chipmunks which is very sparse (the largest

count in any bin is 3), and Figure 4(b) the Socioscope estimate f̂ . The axes are
the same as in Figure 2(a). In addition, we present the state-by-state intensity

maps in the middle column of Figure 3 by aggregating f̂ spatially. The Socio-
scope results match the range maps well for all animals. The right column in
Figure 3 shows the daily animal activities by aggregating f̂ temporally. These
curves match the animals’ diurnal patterns well, too.

The Socioscope estimates are superior to the baseline methods in Table 1.
Due to space limit we only present two examples on chipmunks, but note that
similar observations exist for all animals. The baseline estimator of simply scal-
ing x(1) + x(2) produced the temporal and spatial aggregates in Figure 5(a,b).
Compared to Figure 3(b, right), the temporal curve has a spurious peak around
4-5pm. The spatial map contains spurious intensity in California and Texas,
states outside the chipmunk range as shown in Figure 3(b, left). Both are pro-
duced by population bias when and where there were strong background social
media activities (see Figure 2(b,c)). In addition, the spatial map contains 27
“holes” (states with zero intensity, colored in blue) due to data scarcity. In con-
trast, Socioscope’s estimates in Figure 3 avoid this problem by regularization.
Another baseline estimator (x(1) + x(2))/z(1) is shown in Figure 5(c). Although
corrected for population bias, this estimator lacks the transition model and reg-
ularization. It does not address data scarcity either.

6 Future Work

Using social media as a data source for spatio-temporal signal recovery is an
emerging area. Socioscope represents a first step toward this goal. There are
many open questions:

1. We treated target posts as certain. In reality, a natural language processing
system can often supply a confidence. For example, a tweet might be deemed to
be a target post only with probability 0.8. It will be interesting to study ways
to incorporate such confidence into our framework.

2. The temporal delay and spatial displacement between the target event and
the generation of a post is commonplace, as discussed in footnote 2. Estimating
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(a) armadillo (Dasypus novemcinctus)

(b) chipmunk (Tamias striatus)

(c) squirrel (Sciurus carolinensis and several others)

(d) opossum (Didelphis virginiana)

Fig. 3. Socioscope estimates match animal habits well. (Left) range map from Nature-

Serve, (Middle) Socioscope f̂ aggregated spatially, (Right) f̂ aggregated temporally.

(a) x(1) + x(2) (b) Socioscope f̂

Fig. 4. Raw counts and Socioscope f̂ for chipmunks
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(a) x(1) + x(2) (b) x(1) + x(2) (c) (x(1) + x(2))/z(1)

Fig. 5. Examples of inferior baseline estimators. In all plots, states with zero counts
are colored in blue.

an appropriate transition matrix P from social media data so that Socioscope
can handle such “point spread functions” remains future work.

3. It might be necessary to include psychology factors to better model the hu-
man “sensors.” For instance, a person may not bother to tweet about a chipmunk
roadkill, but may be eager to do so upon seeing a moose roadkill.

4. Instead of discretizing space and time into bins, one may adopt a spatial
point process model to learn a continuous intensity function instead [13].

Addressing these considerations will further improve Socioscope.

Acknowledgments. We thank Megan K. Hines from Wildlife Data Integra-
tion Network for providing range maps and guidance on wildlife. This work is
supported in part by the Global Health Institute at the University of Wisconsin-
Madison.
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Abstract. The data-mining literature is rich in problems that are for-
malized as combinatorial-optimization problems. An indicative exam-
ple is the entity-selection formulation that has been used to model the
problem of selecting a subset of representative reviews from a review
corpus [11,22] or important nodes in a social network [10]. Existing com-
binatorial algorithms for solving such entity-selection problems identify
a set of entities (e.g., reviews or nodes) as important. Here, we consider
the following question: how do small or large changes in the input dataset
change the value or the structure of the such reported solutions?

We answer this question by developing a general framework for evaluat-
ing the smoothness (i.e, consistency) of the data-mining results obtained
for the input dataset X. We do so by comparing these results with the re-
sults obtained for datasets that are within a small or a large distance from
X. The algorithms we design allow us to perform such comparisons effec-
tively and thus, approximate the results’ smoothness efficiently. Our ex-
perimental evaluation on real datasets demonstrates the efficacy and the
practical utility of our framework in a wide range of applications.

1 Introduction

Given a collection of reviews about a product, which are the most valuable
reviews in a collection? In a social network of users, which are the most influential
nodes in the network?

Many of such entity-selection problems (where the term entities is used as
an abstraction for reviews and node networks) have been formalized in the
data-mining literature as combinatorial-optimization problems; e.g., using cov-
erage [11,22] or influence-maximization objectives [10]. Such formulations are
characterized by a solution space and an objective function. The former defines
the types of solutions the data analyst is interested in, e.g., a set of reviews
or nodes. The latter provides a means for evaluating the goodness or value of
every solution for a given dataset. In this context, the combinatorial methods
output a single solution from the solution space – the one that optimizes (or
approximates) the objective function.

While existing work focuses on designing efficient algorithms for finding (or
approximating) this optimal solution, we claim that these algorithms fail to
quantify how the nature of the input dataset affects the reported solutions. For

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 660–675, 2012.
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example, if small changes in the input graph alter significantly the reported set
of influential nodes, then any social study relying on existing algorithms would
be highly untrustworthy. Similarly, if the set of influential nodes reported in the
input dataset are identified as influential in any random dataset, then again the
reported solution is insignificant.

In this paper, we propose a framework that allows us to quantify the relation-
ship between the combinatorial solutions obtained by existing algorithms to the
nature of the input dataset. More specifically, we propose the smoothness mea-
sure, which quantifies how the value and the structure of the reported solutions
is altered by small (or large) changes in the input dataset. Related to ours is the
work on statistical-significance testing of data-mining results using empirical p-
values [5,17,16,23]. However, the empirical p-values encode the probability that
there exists a random dataset with solution with (almost) identical value to the
solution obtained for the original dataset. On the other hand, the smoothness
is the expected similarity between the solutions of the sampled and the origi-
nal datasets. The focus on the expected similarity of the solutions, allows us to
sample datasets either randomly (as in the case of p-values) or within specified
neighborhoods around the original data. This flexibility allows us to quantify not
only the statistical significance of the obtained solutions, but also the variation
of the solution within these small neighborhoods.

Another key characteristic of our work is that it departs from the narrow
characterization of solutions using only the objective function. In particular, we
view the solutions as combinatorial objects that have both value and structure.
After all, the objective function is only a proxy for the analyst’s intuition of
what constitutes a good solution. In the case of the entity-selection problem the
structure of the solution is determined by the actual elements that are selected to
the reported set. Therefore, when comparing solutions not only do we compare
their values, but also the actual entities they contain.

Apart from the proposition of the smoothness framework, which to the best
of our knowledge is new, we also present a new efficient algorithm for sampling
datasets that are within a certain distance from the original dataset. This al-
gorithm is a key component to our algorithmic solution for approximating the
smoothness of the data-mining results for entity-selection problems. Our exper-
imental results (presented in Section 4) validate the utility and the practical
utility of our framework as well as our algorithms in a wide range of entity-
selection problems. Some indicative ones are the selection of representative set
of reviews, authors within communities as well as nodes in social networks.

Although we present the application of our framework to entity-selection prob-
lems, we point out that our framework is general and can be used to evaluate
the smoothness of all data-mining results – as long as the data-mining problem
has been formalized as a combinatorial optimization problem.

The rest of the paper is organized as follows: first, we describe our framework
in Section 2. In Section 3 we describe our algorithms for sampling datasets and
in Section 4 we present experiments that demonstrate the utility of our methods.
After reviewing the related work in Section 5, we conclude the paper in Section 6.
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2 Framework Overview

In this section, we provide a generic description of our framework that takes as
input a dataset, an objective function, and an algorithm for optimizing it, and
reports how the solution reported by the algorithm is affected by small or large
changes in the input dataset.

2.1 Optimization Problems

Every combinatorial-optimization problem consists of the following components:
the input dataset X , the designated solution space L and the objective function
F , which maps every solution S ∈ L to a real number F (X,S). Henceforth, we
use tuple 〈X,L , F 〉 to represent a combinatorial optimization problem, and S∗

X

to represent the optimal solution for input dataset X . Here, we focus on max-
imization problems, where S∗

X is the solution for which F (X,S) is maximized:

S∗
X = argmaxS∈L F (X,S).

We will use S∗ instead of S∗
X whenever the dataset X is clear from the context.

Note that finding S∗ might be NP-hard for some problems. In these cases,
different heuristics and approximation algorithms are used to obtain a subopti-
mal solution. We will use S∗ to denote the solution (optimal or not) produced
by the algorithm chosen to solve the problem.

Among all data-mining problems that have been formalized using this frame-
work are the following two, which we consider in this paper: the review-selection
and the node-selection problems. Consider a collection of reviews for a partic-
ular product. This product has a set of features that can be commented in a
review. For instance, the features of an mp3-player are: battery, sound quality,
ability to record, and etc. Each reviewer may post a review that only covers a
subset of these features (say only battery and sound quality). The goal of the
review-selection problem is to pick k reviews that cover the maximum number
of distinct features of the product.

Similarly, in the node-selection problem, the goal is to pick a set of k important
nodes from a given network. That is, to select k nodes that have the highest in-
fluence over the entire network. Of course, in order to define such nodes we need
to rely on an information propagation model. Given such a model, information
propagates from active to inactive nodes; this propagation is usually probabilis-
tic. Using an information propagation model, the important nodes are the ones
that upon activation, will lead to maximum number of (expected) active nodes
in the network. There are many applications for this problem. For instance, in
a given graph of social relations, the selected nodes can be used to obtain an
optimal advertising strategy.

We collectively refer to the review and the node-selection problems as entity-
selection problems. The former one has been formalized using the MaxCov

formulation [11,22], and the latter, using the MaxInfluence formulation [10].
We describe these formulations next.



A Framework for Evaluating the Smoothness of Data-Mining Results 663

MaxCov(k): Given a universe of items U and m subsets of it (C = {C1, C2,
. . . , Cm}), the goal of MaxCov problem is to pick k elements from C so that
the number of distinct items that they cover from U is maximized. Formally, we
would like to pick S ⊆ C with |S| = k such that

F -Cov(S) =
∣∣∣∣∣ ⋃
C∈S

C

∣∣∣∣∣ (1)

is maximized. In the case of review selection, the elements of C are the reviews
and the universe consists of the product’s features.

In an instance of MaxCov problem 〈X,L , F 〉, the input dataset X is the
set of universe subsets C. L is the solution space and contains all valid solutions
like S where S is the set of k selected subsets (S ⊆ C). Finally, F is the coverage
objective function given by Equation (1).

The MaxCov problem is known to be NP-hard. However, a greedy method
of picking the subset with the largest number of uncovered elements at each step,
is an (1 − 1

e )-approximation algorithm for the MaxCov problem. Henceforth,
the output of the mentioned greedy algorithm is what we refer to as S∗ for the
MaxCov problem.

Observe that input dataset X , can be represented by a binary matrix in the
following way: each column corresponds to an element in the universe U , and each
row corresponds to one of the given subsets. The binary matrix has a value of 1
in position (i, j) iff the subset Ci contains the j-th element of U . Throughout,
we consider X to be the mentioned binary matrix to keep the notation simple.

MaxInfluence(K): Given a graph G = (V,E) in which all the nodes are
inactive, the goal is to find the best k nodes to activate, so that the expected
number of active node after propagation would be maximized. Formally, we
would like to pick S ⊆ V with S = k such that the following objective function
would be maximized:

F -Influence(S) = expected number of active nodes.

The computations of the expected number of active nodes depends on the propa-
gation model. In our study, we focus on the independent cascade (IC) model [10].1

In an instance of MaxInfluence problem 〈X,L , F 〉, X is the input graph
G = (V,E). L is the set of all possible solutions where each solution S ⊆ V and
|S| = k. Finally, The objective function F is the F -Influence function.

Solving the MaxInfluence problem is also NP-hard. However, a greedy
algorithm that at every step picks the node with the largest marginal increase in
the objective function again achieves an (1− 1

e )-approximation for the objective.
Henceforth, the output of this greedy algorithm is what we refer to as S∗ for the
MaxInfluence problem.

Similar to MaxCov problem, the input dataset X can be represented using
a binary matrix. Since the input dataset is a graph, X can be the adjacency
matrix that describes the input graph.

1 Our results carry over to other propagation models.
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2.2 Evaluating Data-Mining Results

Here we introduce smoothness and show how it can be adjusted to reveal different
aspects of a given combinatorial optimization-problem.

We formally, define the smoothness of a combinatorial optimization-problem
〈X,L , F 〉 using the following formula:

Smoothness(X) =
∑

X′∈X
Pr(X ′)Sim(S∗

X ,S∗
X′)

The formula consists of three main parts: the dataspace X , the sampling prob-
ability distribution Pr(X ′), and the similarity function Sim(S∗

X ,S∗
X′). The rest

of this section describes these three components.

Dataspace. The dataspace X is the set of all datasets which share a structural
characteristic with X . Intuitively, X is the collection of datasets which compare
with X . So far, we have shown that the input dataset for both MaxCov and
MaxInfluence problems is a binary matrix. As a result, we introduce two
different possible choices of X for binary matrices: the exchange dataspace XE

and the swap dataspace XW . The former is the set of all datasets with the same
number of ones as X . The latter contains the datasets that have the same row
and column marginals as X . Finally, we point out that for each dataspace X ,
there is a natural distance function D(Y, Z) which returns the distance between
datasets Y and Z in X . Here, we use the following distance function to measure
the distance between two binary matrices:

D(Y, Z) = |{(i, j)|Yi,j = 1 ∧ Zi,j = 0}| (2)

Sampling Probability Distribution. Given a particular dataspace X , Pr(X ′)
defines the probability of sampling dataset X ′. We introduce two natural sam-
pling schemes: uniform and neighborhood sampling. The probability distribution
of sampling dataset X ′ in uniform and neighborhood sampling schemes are de-
noted using U-Pr(X ′) and N-Pr(X ′) respectively, and can be defined using the
following formulas.

U-Pr(X ′) ∝ 1

|X |

N-Pr(X ′) ∝ e−λD(X,X′) (3)

Note that in the above formula, λ can be used to adjust the probability distri-
bution. Using a high value for λ, assigns high probability to the datasets in the
neighborhood of the original dataset. We use λ equal to 2 for our experiments.
Finally, note that if we set λ to zero, then the probability distribution will be
uniform. Also note that any distance function between datasets can be used in
Equation (3). Here, we use the one defined in Equation (2).

Similarity Function. The similarity function measures how close the solu-
tions for datasets X and X ′ are. There are two types of similarity functions:
value-based similarity and structure-based similarity. The value-based similarity,
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denoted as V-Sim(S∗
X ,S∗

X′), only compares the value of the objective functions
for both solutions, and can be computed using the following formula:

V-Sim(S∗
X ,S∗

X′) =
FMax − |F (X,S∗

X)− F (X ′,S∗
X′)|

FMax
.

In the above formula, FMax is the maximum possible value of the objective
function which is used to normalize the similarity measure.

The structure-based similarity, compares the combinatorial structure of the
obtained solutions. The definition of this similarity measure highly depends on
the combinatorial structure of the solution. Fortunately, for both MaxCov and
MaxInfluence problems, the optimal solution is a set of k elements, so any
similarity measure among sets can be used. In this work, we compute the struc-
tural similarity between solutions S∗

X and S∗
X′ with cardinality k as:

S-Sim(S∗
X ,S∗

X′) =
|S∗

X ∩ S∗
X′ |

k
.

Finally, note that the above similarity measures are normalized in order to return
values between zero and one.

2.3 Discussion

Notation. Given the different choices that we have for the dataspace, the sam-
pling probability distribution, and the similarity function, we can define eight
different smoothness measures. Table 1 contains the names of all these measures
along with the configuration of each part of the measure.

Table 1. The eight configurations of Smoothness

Dataspace Sampling Similarity

EUV-Smoothness Exchange Uniform Value
EUS-Smoothness Exchange Uniform Structure
ENV-Smoothness Exchange Neighborhood Value
ENS-Smoothness Exchange Neighborhood Structure
WUV-Smoothness Swap Uniform Value
WUS-Smoothness Swap Uniform Structure
WNV-Smoothness Swap Neighborhood Value
WNS-Smoothness Swap Neighborhood Structure

Interpretation of Smoothness. Recall that the value of Smoothness(X)
represents the expected similarity of a solution sampled from X and the original
solution S∗

X . When smoothness is computed using uniform samples from datas-
pace X , small smoothness values are an indication of the interestingness and sta-
tistical significance of the reported solution S∗

X . In this case, small smoothness
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values mean that S∗
X cannot be obtained at random. However, when smooth-

ness is computed from neighborhood samples, then large values of smoothness
are desirable since they are indicative of the stability of S∗

X to small changes of
the input data. Thus, in terms of smoothness, the ideal 〈X,L , F 〉 is one which
has a small value of smoothness when sampling uniformly and a large value of
smoothness when sampling in the neighborhood.

When choosing the right dataspace for smoothness evaluation of 〈X,L , F 〉
one must keep in mind that the exchange dataspace (XE) is a much larger
superset of the swap dataspace (XW ). Interestingly, depending on the nature of
〈X,L , F 〉 one dataspace may give more insight than the other. As an example,
consider the MaxCov problem, solved by the greedy approximation algorithm.
In this case, the solutions reported by the algorithm are highly dependent on the
marginals of the input dataset – after all, the greedy algorithm always reports
the row of the binary matrix X that has the largest number of 1s and most
of the real-life datasets have heavy tailed marginal distribution. In such a case,
smoothness measures computed in XW would provide very limited information
since samples in XW maintain a constant marginal distribution and thus would
tend to produce a similar solution for every sample. Therefore, the smoothness
values obtained for swap dataspace would be very large. However, this large value
is mainly an artifact of the algorithm used and offers limited information about
the dataset itself. On the other hand, if smoothness were to be computed in XE

the results would be much more informative since the samples would be drawn
from a much larger space allowing for more variation in the sampled datasets.

For seeing the usefulness of both the value and structural smoothness, consider
the problem of identifying the right value of k for the MaxCov(k) problem.
Smoothness can be used to find such k as follows: first pick a dataspace (e.g., XE)
and compute the four smoothness measures associated with it (e.g.,
EUV-Smoothness(X), ENV-Smoothness(X), EUS-Smoothness(X) and
ENS-Smoothness(X) for each value of k). Given that large (resp. small) values
for neighborhood (resp. uniform) smoothness are desirable one can pick the k that
achieves such values both in terms of the structure and the value of the solutions.

Smoothness and p-Values. There is an analogy between the smoothness score
Smoothness(X) and (empirical) p-values [5,6,9,14,17,16,18,23], used to evalu-
ate the statistical significance of the value of the solution obtained for 〈X,L , F 〉.
However, p-values encode the probability that there exists a random dataset
from X with solution of (almost) identical value to S∗

X . On the other hand,
Smoothness(X) is the expected similarity between solutions sampled from X .
Moreover, contrary to p-values, smoothness can be computed both with respect
to the structure as well as the value of the solutions, and both for neighorhood
and uniform samples.

However, the key advantage of smoothness – when compared to p-values –
is the following: p-values simply count how many datasets have solutions with
similar value as the original dataset. Smoothness takes into account the val-
ues of these solutions. In that way, smoothness provides a more comprehensive
quantification of the structure of the solution space.
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3 Sampling Datasets from the Dataspace

Computing Smoothness(X) precisely requires generating all possible datasets
in X and running the optimization algorithm on all of them. This computation is
infeasible since the number of datasets in both XW and XE is exponentially large
in most cases. In this section, we explain how different smoothness measures can
be accurately estimated by sampling from the exchange and the swap dataspaces.

3.1 Sampling from the Exchange Dataspace

Recall that the exchange dataspace XE consists of all datasets with the same
size and the same number of 1’s as the input dataset X . For the rest of the
discussion, we will use N1 (resp. N0) to denote the number 1’s (reps. 0’s) in X .
Finally, we will use N to be the total number of entries in X : N = N1 +N0.

Uniform Sampling from the Exchange Dataspace. The following algo-
rithm draws a sample matrix Y uniformly at random from the exchange datas-
pace XE: Randomly select N1 entries of Y . Set them to 1, and set all the other
entries to 0. The random selection of N1 entries can be done by permuting all
entries of Y and picking the first N1 entries. As a result, the overall running
time of this algorithm is O(N).

Neighborhood Sampling from the Exchange Dataspace. A näıve Markov
Chain Monte Carlo (MCMC) algorithm for neighborhood sampling from XE

performs a random walk on the state space that consists of the distinct elements
of XE. A transition from Y ∈ XE to Y ′ ∈ XE happens via a single exchange
operation. An exchange operation selects uniformly at random an 1-valued entry
and a 0-valued entry from Y , and makes their values 0 and 1 respectively. Clearly,
an exchange operation does not change the number of 1’s in the matrix.

The number of possible exchanges for all matrices in XE is the same and equal
to N1 × N0. This implies that the out-degree of each state in the mentioned
Markov chain is N1×N0. Since exchange is a reversible operation, the in-degree
of each state is also N1×N0. Based on these observations, we can conclude that
the stationary distribution for this Markov chain is uniform.

By applying a Metropolis-Hastings technique [7,13] on the mentioned Markov
chain, we can change the uniform distribution to the desired neighborhood dis-
tribution. With Metropolis-Hastings, we do a transition from state Y to state
Y ′ with probability min{eλ(Dist(X,Y )−Dist(X,Y ′)), 1}.

Metropolis-Hastings guarantees that the stationary distribution matches our
definition of neighborhood sampling. Although the above MCMC-based method
obtains samples from the right distribution, it is computationally expensive; The
state space of the Markov chain is

(
N
N1

)
≈ NN1 . Also, it is not easy to prove that

the Markov chain will converge in polynomially many steps.
However, we can use the following observation to design a more efficient sam-

pling algorithm.

Observation 1. Consider a single transition of the näıve MCMC algorithm
from state Y to state Y ′. Also, assume that (i, j) and (i′, j′) are the positions
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of the selected 0-valued and 1-valued entries for the exchange operation. This
means that: Yi,j = Y ′

i′,j′ = 0 and Yi′,j′ = Y ′
i,j = 1. One can observe that based on

the values in the original matrix X, D(Y ′, X) can only take one of the following
three values:

(a) If Xi,j = 1, Xi′,j′ = 0, then D(Y ′, X) = D(Y,X)− 1.
(b) If Xi,j = 0, Xi′,j′ = 1, then D(Y ′, X) = D(Y,X) + 1.
(c) If Xi,j = Xi′,j′ , then D(Y ′, X) = D(Y,X).

The above observation hints that in this Markov chain, not every state can
transition to another state. In fact, from states Wd that are within distance d
from the original matrix, we can only transition to states in Wd, Wd−1, and
Wd+1. The following proposition shows that the probability of such transitions
can be computed analytically.

Proposition 1. If Wd is the set of all datasets in XE such that for every Y ∈ Wd

D(Y,X) = d, then a single exchange operation leads to dataset Y ′ which belongs
to Wd, or Wd−1 or Wd+1. The probabilities of these events are:

Pr(Wd →Wd−1) =
d2

N1 ×N0
, (4)

Pr(Wd →Wd+1) =
(N1 − d)(N0 − d)

N1 ×N0
× e−λ, (5)

Pr(Wd →Wd) = 1− Pr(Wd →Wd+1)− Pr(Wd →Wd−1).

Using Proposition 1, we propose a new sampling algorithm, the Xchange-Sampler ,
which is both efficient and samples from the right (neighborhood) distribution.
The pseudocode of Xchange-Sampler is shown in Algorithm 1.

First, the algorithm forms a Markov Chain M with state space W and a
transition matrix P :M = 〈W , P 〉. Each state Wd inW , corresponds to datasets
that are within distance d form the original dataset. The probabilities of transi-
tions from any state Wd to states Wd−1, Wd+1, and Wd are given by the equa-
tions in Proposition 1. All these transition probabilities are summarized into
the transition matrix P . Using the StationaryProb routine, Xchange-Sampler
first computes the stationary probability distribution π of this Markov chain.
Given π, the algorithm then samples z samples from the exchange dataspace
as follows: First, using the SampleDistance function, it samples state Wd from
W according to the stationary distribution π. Given Wd, the UniformSample

function samples one of the datasets within d uniformly at random. This latter
step can be implemented by randomly picking d 1-valued entries and d 0-valued
entries from X , and setting them to 0 and 1 respectively.

Observe, that Xchange-Sampler simulates the näıve MCMC approach. The
difference is that in Xchange-Sampler , all states that are within distance d from
X are merged into a single state Wd, while in MCMC they are all distinct
states. Then, the Markov chain M is constructed in such a way, so that in
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Algorithm 1. The Xchange-Sampler algorithm problem.

Input: binary matrix X, integer z
Output: binary matrices Y1, Y2, . . . , Yz

1: π ←StationaryProb(W, P )
2: for i = 1→ z do
3: Wd ←SampleDistance(π)
4: Yi ←UniformSample(Wd)
5: report Yi

the stationary probability distribution, π(Wd) is the same as the sum of the
stationary probabilities that the MCMC random walk would end in any state
that is within distance d from X . Thus, Xchange-Sampler samples datasets by
first picking their distance d (using π) and then sampling uniformly from Wd.

Observe that the number of states in the Markov chain M is equal to the
largest distance between any two datasets in the exchange dataspace, which is
at most min{N1, N0}. This state space is significantly smaller than the state
space of the näıve MCMC method since the former is bounded by the number
of entries in X , while the latter was exponential. Moreover, the näıve method
performs a random walk for each sample, while Xchange-Sampler computes the
stationary distribution π only once. Given π, Xchange-Sampler generates each
sample in O(N) time.

3.2 Sampling from the Swap Dataspace

Recall that all the datasets in the swap dataspace (XW ) have the same row and
column marginals as the original dataset X . Gionis et al. [5] have proposed an
MCMC approach to obtain uniform samples from XW . In that MCMC method,
the state space is the set of all possible matrices, and the transition from one
state to another is done using an operation called swap. Similar to the way that
exchange operations maintain the number of 1’s in a binary matrix, the swap
operations guarantees to maintain the row and column marginals of the matrix.
To sample datasets from the neighborhood of the original dataset, we combine
the method by Gionis et al. with an additional Metropolis-Hastings technique
so that we sample from the correct neighborhood distribution.

4 Experiments

In this section, we present an evaluation of the different smoothness measures
that we have defined. First, we demonstrate the usefulness of value smooth-
ness in determining the statistical significance of data mining results. Next, we
compare the value smoothness measures to the traditional method of statistical-
significance testing using p-values. Lastly, we evaluate structural smoothness and
gauge its ability to provide additional insights on the data-mining results.
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4.1 Datasets

We use the following datasets in our experiments:

Cora. This dataset [19] is a binary matrix which represents a bipartite graph
between terms and scientific papers2. The entry (i, j) in the matrix has a value
of 1 if term i appears in paper j. The Cora matrix has size 1433× 2708, density
1.26% and is characterized by a heavy tailed marginal distribution. We use Cora
as input to the MaxCov(k) problem, where our goal is to pick a set of k terms
that cover the maximum number of papers (dominant words).

Bibsonomy. This dataset [3] is a binary matrix which represents a bipartite
graph between authors and scientific papers tagged with the tag “program-
ming”3. The entry (i, j) in the matrix has a value of 1 if author i is a co-author
of the paper j. The Bibsonomy matrix has 4410 × 3862 and density of ones:
0.049%. We use Bibsonomy as input to the MaxCov(k) problem, where our
goal is to pick a set of k authors that cover the maximum number of publications.

Co-Authors. This dataset [12] is a collaboration network derived from the
General Relativity and Quantum Cosmology category of the e-print arXiv4. The
network contains 5242 vertices, which correspond two authors. There is an edge
between two authors, if they have written a paper together. The graph contains
28968 edges and has an edge density of 0.1%. We use Co-Authors as input to
the MaxInfluence(k) problem where our goal is to select k authors that have
the maximum influence in the network.

4.2 Value Smoothness

The experiments presented in this section, aim to demonstrate the utility of value
smoothness (i.e., smoothness measures where solutions are compared using value
similarity). Recall that there are four different types of value smoothness (see
Table 1). In order to demonstrate the utility of each type, we conducted the
following experiment: first, we computed all four measures for the Bibsonomy,
Cora and Co-Authors datasets. Figure 1 shows the corresponding values of
smoothness as a function of k.

Stability of the Results. First, we observe that the neighborhood smoothness
is always at least as large as uniform, in both dataspaces. This demonstrates
that our optimization problems are more stable within the neighborhoods of
the input datasets. For Cora we observe high neighborhood and low uniform
smoothness making the obtained solutions stable and statistically significant.
On the other hand, for Bibsonomy both the neighborhood and the uniform
smoothness are high; this indicates that the solution obtained for this dataset is
not statistically significant (i.e., could also be obtained at random). Finally, the

2 Available at: www.cs.umd.edu/projects/linqs/projects/lbc/index.html
3 Available at: www.kde.cs.uni-kassel.de/bibsonomy/dumps/
4 Available at: http://snap.stanford.edu/data/ca-GrQc.html

www.cs.umd.edu/projects/linqs/projects/lbc/index.html
www.kde.cs.uni-kassel.de/bibsonomy/dumps/
http://snap.stanford.edu/data/ca-GrQc.html
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Fig. 1. Comparing the different measures of value smoothness with varying k

smoothness values for the Co-Authors dataset is small in all cases, indicating
that the solution space is unstable even in the neighborhood of the input graph.

Advantage of the Exchange Dataspace. The second important observa-
tion one can make from Figure 1 is that smoothness of MaxCov computed
using the swap dataspace is always very close to 1, independent of whether the
samples were obtained using neighborhood or uniform samplimg. This is more
pronounced in Cora , since this datasaet also has heavy-tailed marginal distribu-
tion. As we have already discussed in Section 2.3, for this dataset the smoothness
computed using XW does not provide as much insight as the smoothness com-
puted using the exchange dataspace.

Advantages of the Swap Dataspace. While the exchange dataspace XE can
prove useful for the analysis of some datasets it might prove inadequate for the
analysis of others. This is particularly true when the size of XE is extremely
large and any reasonable number of samples is inadequate. In such cases the
swap dataspace (XW ), which is significantly smaller, gives more insightful re-
sults. For example, in 1(c) the plots for neighborhood and uniform smoothness
in XE completely overlap. This overlap is an artifact of the extreme sparsity
of Co-Authors. However, the smoothness computed using XW is much more
informative. It demonstrates that the dataset has high smoothness in the neigh-
borhood making it stable and at the same time has low smoothness in the uni-
form distribution making it statistically significant. The same effect can also be
seen in Bibsonomy since it is even more sparse than Co-Authors.

4.3 Comparing Value Smoothness with Empirical p-Values

In this section, we compare smoothness to the traditional method of statistical
significance testing using empirical p-values. The results of this comparison for
the exchange dataspace and uniform sampling are shown in Table 2. The table
shows the EUV-Smoothness values and the empirical p-values of the solutions
obtained by using Bibsonomy as input to the MaxCov(k) problem.

The reported p-values suggest that the solutions obtained for for the Bibson-
omy are statistically significant. This is because the p-values for all k are equal
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Table 2. Value Smoothness and p-value for the Bibsonomy dataset. Sampling from
exchange dataspace and 10000 samples.

Exchange Model

MaxCov(k) Value Smoothness Empirical p-value

1 0.9686 0.0000
10 0.8665 0.0000
20 0.8296 0.0000
40 0.7946 0.0000
60 0.7776 0.0000
80 0.7672 0.0000
100 0.7615 0.0000

to zero, which means that the probability of sampling a dataset with best F -Cov
value as large as Bibsonomy is negligible. On the other hand, the smoothness
values are relatively high (larger than 0.7 in all cases). This suggests that on
expectation the solutions on random datasets have very similar values to the
solution obtained for Bibsonomy. Interestingly, these two findings seem to be
contradictory.

The reason for this somewhat surprising result is the following: the p-values
encode the probability that a random dataset has solution with value greater or
(almost) equal to the original solution. In this case, there are no random datasets
that satisfy this condition and therefore the p-values are equal to 0. On the other
hand, the smoothness computes the average value of the solutions to the random
datasets. Therefore, even if these solutions have indeed smaller values than the
original one, they may still be relatively close to the original solution, yielding
high smoothness values.

The above experiment is just one example where the value of smoothness
is much more informative than the p-values. The reason for that is that the
computation of smoothness takes into account the actual values of the solutions
of all sampled datasets. The p-values on the other hand, simply count how
many times the randomly sampled datasets have solutions with values equal to
the original dataset. Therefore, the p-values ignore the values of these solutions
and, inevitably, are less informative.

Note we obtained results similar to the above for other datasets as well. How-
ever, we ommit them, due to lack of space.

4.4 Structural Smoothness

Here, we conduct the same experiment as seen in Section 4.2, but we evaluate the
structural smoothness instead of the value smoothness. The results we obtained
are presented in Figure 2. Once again, we observe that the neighborhood is at
least as smooth as the uniform distribution in all cases. In our problems, we
can use structural smoothness to decide the optimal value of k. For example, by
looking at the structural smoothness for Cora (Figure 2(a)), we can conclude
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that selecting value for k = 5 is not a good choice; this is because the smoothness
computed over uniform samples for k = 5 is almost 1. This means that random
datasets have identical solution to the input dataset. On the other hand, k = 3 or
k = 11 are better choices since the the original solution has more differences with
the random solutions. If we view the values of structural smoothness together
with the value smoothness for the same dataset (Figure 1(a)), it becomes evident
that k = 11 is the better choice for the value of k for Cora. This is because
for k = 11, both the value and the strutural smoothness computed over random
samples have relatively low values. Notice that the value smoothness alone would
not have provided all the information necessary to choose the right value of k.
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Fig. 2. Structural smoothness as a function of k

5 Related Work

To the best of our knowledge, we are the first to introduce smoothness as a
measure for evaluating how small (or large) changes in the input affect the data-
mining results. However, our work has connections with existing lines of research.
We discuss these connections next.

EvaluationofData-MiningResults.Existingworkondatamining [5,17,16,23]
and analysis of ecological and biological datasets [6,9,14,18] focuses on the evalu-
ation of the statistical significance of the solution to 〈X,S, F 〉, via empirical p-
values.Empiricalp-values encode theprobability that there exists a randomdataset
from X with solution with (almost) identical value to S∗

X . On the other hand, the
smoothness of a dataset is the expected similarity – in terms of value or structure
– between solutions sampled from X . However, the main difference between the
smoothness framework we propose here and the empirical p-values proposed in the
past is that our framework also considers non-uniform samples fromX and explores
the solutions in the “neighborhood” of X .

Moreover, our algorithms for sampling 0–1 datasets from XE extend existing
algorithms for uniform sampling from XW [5]. However, again our algorithmic
contribution goes beyond devising techniques for sampling from XE . For exam-
ple, one of our main contributions is an efficient algorithm for sampling from the
exchange dataspace XE .
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Smoothed Analysis of Algorithms. Our work is also related to existing
work on characterizing the stability of numerical methods [4,8] as well as the
smoothed complexity of algorithms [1,20,21]. The key difference between our
work and existing work in these areas is that we explore the smoothness of the
value as well as the structure of our results. The issue of the solutions’ structure
has only recently appeared in the work of Balcan et al. [2]. More specifically,
Balcan et al. address the problem of finding a solution that has similar structure
to the optimal solution. Although related to our study, their requirement focuses
on approximating the structure of the optimal solution ignoring the rest of the
solution space.

Privacy-Preserving Query Answering. Our focus on the smoothness of the
solutions to the input data instance connects our work with the work of Nissim
et al. [15]. In that work, the authors focused on determining the amount of noise
required for differentially-private query answering. Our focus is on studying how
small changes in the data affect the data-mining results both in terms of value
and in terms of structure.

6 Conclusions

In this paper, we presented a framework for evaluating the significance as well as
the stability of of data-mining results. We achieved that by defining the notion
of smoothness, which quantifies how these results get affected by small or large
changes in the input data. In principle, our framework can be applied to all data-
mining problems, which have been formalized using combinatorial-optimization
formulations. For concreteness, we focused on a particular type of combinatorial-
optimization problem, namely entity selection, and we demonstrated the appli-
cation of our framework in this setting. From the computational point of view,
our the evaluation of smoothness requires efficient sampling of datasets that are
within a certain distance from the input dataset. As another contribution, we
presented an efficient algorithm for obtaining such samples. Our preliminary ex-
perimental results demonstrates that the values of smoothness provide valuable
insights about the structure of the solution space and the significance of the
obtained data-mining results.
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Abstract. Evaluating the quality of ranking functions is a core task
in web search and other information retrieval domains. Because query
distributions and item relevance change over time, ranking models of-
ten cannot be evaluated accurately on held-out training data. Instead,
considerable effort is spent on manually labeling the relevance of query
results for test queries in order to track ranking performance. We address
the problem of estimating ranking performance as accurately as possible
on a fixed labeling budget. Estimates are based on a set of most informa-
tive test queries selected by an active sampling distribution. Query label-
ing costs depend on the number of result items as well as item-specific
attributes such as document length. We derive cost-optimal sampling
distributions for the commonly used performance measures Discounted
Cumulative Gain (DCG) and Expected Reciprocal Rank (ERR). Ex-
periments on web search engine data illustrate significant reductions in
labeling costs.

Keywords: Information Retrieval, Ranking, Active Evaluation.

1 Introduction

This paper addresses the problem of estimating the performance of a given rank-
ing function in terms of graded relevance measures such as Discounted Cumu-
lative Gain [1] and Expected Reciprocal Rank [2]. In informational retrieval
domains, ranking models often cannot be evaluated on held-out training data.
For example, older training data might not represent the distribution of queries
the model is currently exposed to, or the ranking model might be procured from
a third party that does not provide any training data.

In practice, ranking performance is estimated by applying a given ranking
model to a representative set of test queries and manually assessing the rele-
vance of all retrieved items for each query. We study the problem of estimating
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ranking performance as accurately as possible on a fixed budget for labeling item
relevance, or, equivalently, minimizing labeling costs for a given level of estima-
tion accuracy. We also study the related problem of cost-efficiently comparing
the ranking performance of two models; this is required, for instance, to evaluate
the result of an index update.

We assume that drawing unlabeled data x ∼ p(x) from the distribution of
queries that the model is exposed to is inexpensive, whereas obtaining relevance
labels is costly. The standard approach to estimating ranking performance is to
draw a sample of test queries from p(x), obtain relevance labels, and compute
the empirical performance. However, recent results on active risk estimation [3]
and active comparison [4] indicate that estimation accuracy can be improved by
drawing test examples from an appropriately engineered instrumental distribu-
tion q(x) rather than p(x), and correcting for the discrepancy between p and q
by importance weighting.

In this paper, we study active estimates of ranking performance. Section 2 de-
tails the problem setting. A novel aspect of active estimation in a ranking setting
is that labeling costs vary according to the number of items that are relevant for
a query. Section 3 derives cost-optimal sampling distributions for the estimation
of DCG and ERR. Section 4 discusses empirical sampling distributions in a pool-
based setting. Näıve computation of the empirical distributions is exponential, we
derive polynomial-time solutions bydynamic programming. Section 5presents em-
pirical results. Section 6 discusses related work, Section 7 concludes.

2 Problem Setting

Let X denote a space of queries, and Z denote a finite space of items. We study
ranking functions

r : x !→
(
r1(x), . . . , r|r(x)|(x)

)T
that, given a query x ∈ X , return a list of |r(x)| items ri(x) ∈ Z ordered
by relevance. The number of items in a ranking r(x) can vary depending on
the query and application domain from thousands (web search) to ten or fewer
(mobile applications that have to present results on a small screen). Ranking
performance of r is defined in terms of graded relevance labels yz ∈ Y that
represent the relevance of an item z ∈ Z for the query x, where Y ⊂ R is a finite
space of relevance labels with minimum zero (irrelevant) and maximum ymax

(perfectly relevant). We summarize the graded relevance of all z ∈ Z in a label
vector y ∈ YZ with components yz for z ∈ Z.

In order to evaluate the quality of a ranking r(x) for a single query x, we em-
ploy two commonly used ranking performance measures: Discounted Cumulative
Gain (DCG), given by

Ldcg (r(x),y) =

|r(x)|∑
i=1

 dcg
(
yri(x), i

)
(1)

 dcg (y, i) =
2y − 1

log2(i+ 1)
,
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and Expected Reciprocal Rank (ERR), given by

Lerr (r(x),y) =

|r(x)|∑
i=1

1

i
 err

(
yri(x)

) i−1∏
l=1

(1−  err
(
yrl(x)

)
) (2)

 err (y) =
2y − 1

2ymax

as introduced by Järvelin and Kekäläinen [1] and Chapelle et. al [2], respectively.
DCG scores a ranking by summing over the relevance of all documents dis-

counted by their position in the ranking. ERR is based on a probabilistic user
model: the user scans a list of documents in the order defined by r(x) and chooses
the first document that appears sufficiently relevant; the likelihood of choosing
a document z is a function of its graded relevance score yz. If s denotes the
position of the chosen document in r(x), then Lerr (r(x),y) is the expectation of
the reciprocal rank 1/s under the probabilistic user model. Both DCG and ERR
discount relevance with ranking position, ranking quality is thus most strongly
influenced by documents that are ranked highly. If r(x) includes many items,
Ldcg and Lerr are in practice often approximated by only labeling items up to a
certain position in the ranking or a certain relevance threshold and ignoring the
contribution of lower-ranked items.

Let p(x,y) = p(x)p(y|x) denote the joint distribution over queries x ∈ X and
label vectors y ∈ YZ the model is exposed to. We assume that the individual
relevance labels yz for items z are drawn independently given a query x:

p(y|x) =
∏
z∈Z

p(yz|x, z). (3)

This assumption is common in pointwise ranking approaches, e.g., regression
based ranking models [5,6]. The ranking performance of r with respect to p(x,y)
is given by

R[r] =

∫∫
L (r(x),y) p(x,y)dxdy, (4)

where L ∈ {Ldcg, Lerr} denotes the performance measure under study. We use
integrals for notational convenience, for discrete spaces the corresponding inte-
gral is replaced by a sum. If the context is clear, we refer to R[r] simply by R.

Since p(x,y) is unknown, ranking performance is typically approximated by
an empirical average

R̂n[r] =
1

n

n∑
j=1

L (r(xj),yj) , (5)

where a set of test queries x1, ..., xn and graded relevance labels y1, ...,yn are
drawn iid from p(x,y). The empirical performance R̂n consistently estimates
the true ranking performance; that is, R̂n converges to R with n→∞.
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Test queries xi need not necessarily be drawn according to the input distribu-
tion p. When instances are drawn according to an instrumental distribution q,
a consistent estimator can be defined as

R̂n,q[r] =

⎛⎝ n∑
j=1

p(xj)

q(xj)

⎞⎠−1
n∑

j=1

p(xj)

q(xj)
L(r(xj),yj), (6)

where (xj ,yj) are drawn from q(x)p(y|x) and again L ∈ {Ldcg, Lerr}. For cer-

tain choices of the sampling distribution q, R̂n,q may be a more label-efficient

estimator of the true performance R than R̂n [3].
A crucial feature of ranking domains is that labeling costs for queries x ∈ X

vary with the number of items |r(x)| returned and item-specific features such
as the length of a document whose relevance has to be determined. We denote
labeling costs for a query x by λ(x), and assume that λ(x) is bounded away from
zero by λ(x) ≥ ε > 0. Our goal is to minimize the deviation of R̂n,q from R under
the constraint that expected overall labeling costs stay below a budget Λ ∈ R:

(q∗, n∗) = argmin
q,n

E

[(
R̂n,q −R

)2]
, s.t. E

⎡⎣ n∑
j=1

λ(xj)

⎤⎦ ≤ Λ. (7)

Note that Equation 7 represents a trade-off between labeling costs and informa-
tiveness of a test query: optimization over n implies that many inexpensive or
few expensive queries could be chosen.

To estimate relative performance of two ranking functions r1 and r2, Equa-
tion 7 can be replaced by

(q∗, n∗) = argmin
q,n

E

[(
Δ̂n,q −Δ

)2]
, s.t. E

⎡⎣ n∑
j=1

λ(xj)

⎤⎦ ≤ Λ, (8)

where Δ̂n,q = R̂n,q[r1]− R̂n,q[r2] and Δ = R[r1]−R[r2]. In the next section, we
derive sampling distributions q∗ asymptotically solving Equations 7 and 8.

3 Asymptotically Optimal Sampling

A bias-variance decomposition [7] applied to Equation 7 results in

E

[(
R̂n,q −R

)2]
=
(
E

[
R̂n,q

]
−R

)2
+Var

[
R̂n,q

]
.

According to [8], Chapter 2.5.3, the squared bias term is of order 1
n2 , while the

variance is of order 1
n . For large n, the expected deviation is thus dominated

by the variance, and σ2
q = limn→∞ nVar[R̂n,q] exists. For large n, we can thus

approximate

E

[(
R̂n,q −R

)2]
≈ 1

n
σ2
q ; E

[(
Δ̂n,q −Δ

)2]
≈ 1

n
τ2
q ,
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where τ2
q = limn→∞ nVar[Δ̂n,q]. Let δ(x,y) = L(r1(x),y) − L(r2(x),y) denote

the performance difference of the two ranking models for a test query (x, y) and
L ∈ {Ldcg, Lerr}. The following theorem derives sampling distributions mini-
mizing the quantities 1

nσ2
q and 1

nτ2
q , thereby approximately solving Problems 7

and 8.

Theorem 1 (Optimal Sampling for Evaluation of a Ranking Function).
Let L ∈ {Ldcg, Lerr} and σ2

q = limn→∞ nVar[R̂n,q]. The optimization problem

(q∗, n∗) = argmin
q,n

1

n
σq s.t. E

⎡⎣ n∑
j=1

λ(xj)

⎤⎦ ≤ Λ

is solved by

q∗(x) ∝ p(x)√
λ(x)

√∫
(L(r(x),y) −R)

2
p(y|x)dy, n∗ =

Λ∫
λ(x)q(x)dx

. (9)

Theorem 2 (Optimal Sampling for Comparison of Ranking Functions).
Let L ∈ {Ldcg, Lerr} and τ2

q = limn→∞ nVar[Δ̂n,q]. The optimization problem

(q∗, n∗) = argmin
q,n

1

n
τq s.t. E

⎡⎣ n∑
j=1

λ(xj)

⎤⎦ ≤ Λ

is solved by

q∗(x) ∝ p(x)√
λ(x)

√∫
(δ(x,y) −Δ)

2
p(y|x)dy, n∗ =

Λ∫
λ(x)q(x)dx

. (10)

Before we prove Theorem 1 and Theorem 2, we state the following Lemma:

Lemma 1. Let a : X → R and λ : X → R denote functions on the query space
such that

∫ √
a(x)dx exists and λ(x) ≥ ε > 0. The functional

G[q] =

(∫
a(x)

q(x)
dx

)(∫
λ(x)q(x)dx

)
,

where q(x) is a distribution over the query space X , is minimized over q by
setting

q(x) ∝

√
a(x)

λ(x)
.

A proof is included in the appendix. We now prove Theorem 1 and Theorem 2,
building on results of Sawade et al. [3,4].

Proof (Theorem 1 and Theorem 2). We first study the minimization of 1
nσ2

q in
Theorem 1. Since

E

⎡⎣ n∑
j=1

λ(xj)

⎤⎦ = n

∫
λ(x)q(x)dx,
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the minimization problem can be reformulated as

min
q

min
n

1

n
σ2
q s.t. n ≤ Λ∫

λ(x)q(x)dx
.

Clearly n∗ = Λ/
∫
λ(x)q(x)dx solves the inner optimization. The remaining min-

imization over q is

q∗ = argmin
q

σ2
q

∫
λ(x)q(x)dx.

Lemma 1 in [3] implies

σ2
q =

∫∫
p2(x)

q2(x)
(L(r(x),y) −R)

2
p(y|x)q(x)dxdy.

Setting a(x) = p2(x)
∫
(L(r(x),y) −R)

2
p(y|x)dy and applying Lemma 1 im-

plies Equation 9. For the minimization of 1
nτ2

q in Theorem 2 we analogously
derive

q∗ = argmin
q

τ2
q

∫
λ(x)q(x)dx.

Lemma 3 in [4] implies

τ2
q =

∫∫
p(x)2

q(x)2
(δ(x,y) −Δ)2 p(y|x)q(x)dy dx.

Setting a(x) = p2(x)
∫
(δ(x,y),y) −Δ)

2
p(y|x)dy and applying Lemma 1 im-

plies Equation 10. �	

4 Empirical Sampling Distribution

The sampling distributions prescribed by Theorem 1 and Theorem 2 depend on
the unknown test distribution p(x). We now turn towards a setting in which a
pool D of m unlabeled queries is available. Queries from this pool can be sampled
and then labeled at a cost. Drawing queries from the pool replaces generating
them under the test distribution; that is, p(x) = 1

m for all x ∈ D.
The optimal sampling distribution also depends on the true conditional

p(y|x) =
∏

z∈Z p(yz|x, z) (Equation 3). To implement the method, we approxi-
mate p(yz|x, z) by a model p(yz|x, z; θ) of graded relevance. For the large class
of pointwise ranking methods – that is, methods that produce a ranking by
predicting graded relevance scores for query-document pairs and then sorting
documents according to their score – such a model can typically be derived from
the graded relevance predictor. Finally, the sampling distributions depend on
the true performance R[r] as given by Equation 4, or Δ = R[r1] − R[r2]. R[r]
is replaced by an introspective performance Rθ[r] calculated from Equation 4,
where the integral over X is replaced by a sum over the pool, p(x) = 1

m , and
p(y|x) =

∏
z∈Z p(yz|x, z; θ). The performance difference Δ is approximated by
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Δθ = Rθ[r1]−Rθ[r2]. Note that as long as p(x) > 0 implies q(x) > 0, the weight-
ing factors ensure that such approximations do not introduce an asymptotic bias
in our estimator (Equation 6).

With these approximations, we arrive at the following empirical sampling
distributions.

Derivation 1. When relevance labels for individual items are independent given
the query (Equation 3), and p(yz|x, z) is approximated by a model p(y|x, z; θ) of
graded relevance, the sampling distributions minimizing 1

nσ2
q and 1

nτ2
q in a pool-

based setting resolve to

q∗(x) ∝ 1√
λ(x)

√
E

[
(L(r(x),y) −Rθ)

2
∣∣∣x; θ] (11)

and

q∗(x) ∝ 1√
λ(x)

√
E

[
(δ(x,y) −Δθ)

2
∣∣∣ x; θ], (12)

respectively. Here, for any function g(x,y) of a query x and label vector y,

E [g(x,y)| x; θ] =
∑

y∈YZ

g(x,y)
∏
z∈Z

p(yz|x, z; θ) (13)

denotes expectation of g(x,y) with respect to label vectors y generated according
to p(yz|x, z, θ).

We observe that for the evaluation of a single given ranking function r (Equa-
tion 11), the empirical sampling distribution gives preference to queries x with
low costs λ(x) and for which the expected ranking performance deviates strongly
from the average expected ranking performance Rθ; the expectation is taken
with respect to the available graded relevance model θ. For the comparison
of two given ranking functions r1 and r2 (Equation 12), preference is given to
queries x with low costs and for which the difference in performance L(r1(x),y)−
L(r2(x),y) is expected to be high (note that Δθ will typically be small).

Computation of the empirical sampling distributions given by Equations 11
and 12 requires the computation of E [g(x,y)| x; θ], which is defined in terms of
a sum over exponentially many relevance label vectors y ∈ YZ . The following
theorem states that the empirical sampling distributions can nevertheless be
computed in polynomial time:

Theorem 3 (Polynomial-time computation of sampling distributions).

The sampling distribution given by Equation 11 can be computed in time

O
(
|Y||D|max

x
|r(x)|

)
for L ∈ {Ldcg, Lerr}.
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Algorithm 1. Active Estimation of Ranking Performance

input Ranking function r or pair of ranking functions r1, r2; graded relevance model
p(yz|x, z; θ); pool D, labeling budget Λ.

1: Compute sampling distribution q∗ (Derivation 1, Equation 11 or 12).
2: Initialize n← 0.
3: Draw x1 ∼ q∗(x) from D with replacement.
4: while

∑n+1
j=1 λ(xj) ≤ Λ do

5: Obtain yn+1 ∼ p(y|xn+1) from human labeler (restrict to items in rankings).
6: Update number of labeled instances n← n+ 1.
7: Draw xn+1 ∼ q∗(x) from D with replacement.
8: end while
9: Compute R̂n,q [r] or Δ̂n,q = R̂n,q[r1]− R̂n,q [r2] (Equation 6).
output R̂n,q[r] or Δ̂n,q .

The sampling distribution given by Equation 12 can be computed in time

O
(
|Y||D|max

x
(|r1(x) ∪ r2(x)|)

)
for L = Ldcg,

O
(
|Y||D|max

x
(|r1(x)| · |r2(x)|)

)
for L = Lerr.

Polynomial-time solutions are derived by dynamic programming. Specifically,
after substituting Equations 1 and 2 into Equations 11 and 12 and exploiting the
independence assumption given by Equation 3, Equations 11 and 12 decompose
into cumulative sums and products of expectations over individual item labels
y ∈ Y. These sums and products can be computed in polynomial time. A proof
of Theorem 3 is included in the appendix.

Algorithm 1 summarizes the active estimation algorithm. It samples queries
x1, ..., xn with replacement from the pool according to the distribution prescribed
by Derivation 1 and obtains relevance labels from a human labeler for all items
included in r(xi) or r1(xi) ∪ r2(xi) until the labeling budget Λ is exhausted.
Note that queries can be drawn more than once; in the special case that the
labeling process is deterministic, recurring labels can be looked up rather than
be queried from the deterministic labeling oracle repeatedly. Hence, the actual
labeling costs may stay below

∑n
j=1 λ(xj). In this case, the loop is continued

until the labeling budget Λ is exhausted.

5 Empirical Studies

We compare active estimation of ranking performance (Algorithm 1, labeled ac-
tive) to estimation based on a test sample drawn uniformly from the pool
(Equation 5, labeled passive). Algorithm 1 requires a model p(yz|x, z; θ) of
graded relevance in order to compute the sampling distribution q∗ from Deriva-
tion 1. If no such model is available, a uniform distribution p(yz|x, z; θ) = 1

|Y|
can be used instead (labeled activeuniD). To quantify the effect of modeling costs,
we also study a variant of Algorithm 1 that assumes uniform costs λ(x) = 1
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in Equations 11 and 12 (labeled activeuniC). This variant implements active risk
estimation [3] and active comparison [4] for ranking; we have shown how the re-
sulting sampling distributions can be computed in polynomial time (Derivation 1
and Theorem 3).

Experiments are performed on the Microsoft Learning to Rank data set MSLR-
WEB30k [9]. It contains 31,531 queries, and a set of documents for each query
whose relevance for the query has been determined by human labelers in the
process of developing the Bing search engine. The resulting 3,771,125 query-
document pairs are represented by 136 features widely used in the information
retrieval community (such as query term statistics, page rank, and click counts).
Relevance labels take values from 0 (irrelevant) to 4 (perfectly relevant).

The data are split into five folds. On one fold, we train ranking functions
using different graded relevance models (details below). The remaining four folds
serve as a pool of unlabeled test queries; we estimate (Section 5.1) or compare
(Section 5.2) the performance of the ranking functions by drawing and labeling
queries from this pool according to Algorithm 1 and the baselines discussed
above. Test queries are drawn until a labeling budget Λ is exhausted. To quantify
the human effort realistically, we model the labeling costs λ(x) for a query x
as proportional to a sum of costs incurred for labeling individual documents
z ∈ r(x); labeling costs for a single document z are assumed to be logarithmic
in the document length.

All evaluation techniques, both active and passive, can approximate Ldcg and
Lerr for a query x by requesting labels only for the first k documents in the
ranking. The number of documents for which the MSLR-WEB30k data set pro-
vides labels varies over the queries at an average of 119 documents per query.
In our experiments, we use all documents for which labels are provided for each
query and for all evaluation methods under investigation.

The cost unit is chosen such that average labeling costs for a query are one.
Figure 1 (left) shows the distribution of labeling costs λ(x). All results are av-
eraged over the five folds and 5,000 repetitions of the evaluation process. Error
bars indicate the standard error.

5.1 Estimating Ranking Performance

Based on the outcome of the 2010 Yahoo ranking challenge [6,10], we choose a
pointwise ranking approach and employ Random Forest regression [11] to train
graded relevance models on query-document pairs. The ranking function is ob-
tained by returning all documents associated with a query sorted according to
their predicted graded relevance. We apply the approach from [12,6] to obtain
the probability estimates p(yz|x, z; θ) required by Algorithm 1 from the Random
Forest model. As an alternative graded relevance model, we also study a MAP
version of Ordered Logit [13]; this model directly provides probability estimates
p(yz|x, z; θ). Half of the available training fold is used for model training, the
other half is used as a validation set to tune hyperparameters of the respective
ranking model. Throughout the experimental evaluation, we present results for
the ERR measure; results for DCG are qualitatively similar and included in [14].
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Fig. 1. Distribution of query labeling costs λ(x) in the MSLR-WEB30k data set (left).
Estimation error over Λ when evaluating Random Forest regression (center) and Or-
dered Logit (right). Error bars indicate the standard error.

Figure 1 (center, right) shows absolute deviation between true ranking perfor-
mance and estimated ranking performance as a function of the labeling budget
Λ. True performance is taken to be the performance over all test queries. We
observe that active estimation is more accurate than passive estimation; the la-
beling budget can be reduced from Λ = 300 by about 20% (Random Forest) and
10% (Ordered Logit).

5.2 Comparing Ranking Performance

We additionally train linear Ranking SVM [15] and the ordinal classification ex-
tension to Random Forests [12,6], and compare the resulting ranking functions
to those of the Ordered Logit and Random Forest regression models. For the
comparison of Random Forest vs. Ordered Logit both models provide us with
estimates p(yz|x, z; θ); in this case a mixture model is employed as proposed
in [4]. We measure model selection error, defined as the fraction of experiments
in which an evaluation method does not correctly identify the model with higher
true performance. Figure 2 shows model selection error as a function of the avail-
able labeling budget for different pairwise comparisons. Active estimation more
reliably identifies the model with higher ranking performance, saving between
30% and 55% of labeling effort compared to passive estimation. We observe that
the gains of active versus passive estimation are not only due to differences in
query costs: the baseline activeuniC, which does not take into account query costs
for computing the sampling distribution, performs almost as well as active.

As a further comparative evaluation we simulate an index update. An out-
dated index with lower coverage is simulated by randomly removing 10% of all
query-document pairs from each result list r(x) for all queries. Random For-
est regression is employed as the ranking model. Active and passive estimation
methods are applied to estimate the difference in performance between models
based on the outdated and current index. Figure 3 (left) shows absolute devia-
tion of estimated from true performance difference over labeling budget Λ. We
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Fig. 2. Model selection error over Λ when comparing Random Forest regression vs.
classification (left), and Ordered Logit vs. Ranking SVM (center) or Random Forest
regression (right). Error bars indicate the standard error.

observe that active estimation quantifies the impact of the index update more
accurately than passive estimation, saving approximately 75% of labeling effort.

We finally simulate the incorporation of novel sources of training data by
comparing a Random Forest model trained on 100,000 query-document pairs
(r1) to a Random Forest model trained on between 120,000 and 200,000 query-
document pairs (r2). The difference in performance between r1 and r2 is es-
timated using active and passive methods. Figure 3 (center) shows absolute
deviation of estimated from true performance difference for models trained on
100,000 and 200,000 instances as a function of Λ. Active estimation quantifies
the performance gain from additional training data more accurately, reducing
labeling costs by approximately 45%. Figure 3 (right) shows estimation error as
a function of the number of query-document pairs the model r2 is trained on for
Λ = 100. Active estimation significantly reduces estimation error compared to
passive estimation for all training set sizes.

6 Related Work

There has been significant interest in learning ranking functions from data in
order to improve the relevance of search results [12,16,17,6]. This has partly been
driven by the recent release of large-scale datasets derived from commercial
search engines, such as the Microsoft Learning to Rank datasets [9] and the
Yahoo Learning to Rank Challenge datasets [10].

In this paper, we have applied ideas from active risk estimation [3] and active
comparison [4] to the problem of estimating ranking performance. Our prob-
lem setting (Equations 7 and 8) generalizes the setting studied in active risk
estimation and active comparison by allowing instance-specific labeling costs
and constraining overall costs rather than the number of test instances that
can be drawn. Applying the optimal sampling distributions derived by Sawade
et al. [3,4] in a ranking setting leads to sums over exponentially many joint
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Fig. 3. Absolute estimation error over Λ for a simulated index update (left). Absolute
estimation error comparing ranking functions trained on 100,000 vs. 200,000 query-
document pairs over Λ (center), and over training set size of second model at Λ = 100
(right). Error bars indicate the standard error.

relevance label assignments (see Derivation 1). We have shown that they can be
computed in polynomial time using dynamic programming (Theorem 3).

Besides sampling queries, it is also possible to sample subsets of documents to
be labeled for a given query. Carterette et al. [18] use document sampling to de-
cide which of two ranking functions achieves higher precision at k.
Aslam et al. [19] use document sampling to obtain unbiased estimates of mean
average precision and mean R-precision. Carterette and Smucker [20] study sta-
tistical significance testing from reduced document sets. Note that for the es-
timation of ERR studied in this paper, document sampling is not directly ap-
plicable because the discounting factor associated with a ranking position can
only be determined if the relevance of all higher-ranked documents is known
(Equation 2).

Active performance estimation can be considered a dual problem of active
learning: in active learning, the goal of the selection process is to reduce the
variance of predictions or model parameters; our approach reduces the variance
of the performance estimate. Several active learning algorithms use importance
weighting to compensate for the bias incurred by the instrumental distribution,
for example in exponential family models [21] or SVMs [22].

7 Conclusions

We have studied the problem of estimating or comparing the performance of
ranking functions as accurately as possible on a fixed budget for labeling item
relevance. Theorems 1 and 2 derive sampling distributions that, when used to
select test queries to be labeled from a given pool, asymptotically maximize
the accuracy of the performance estimate. Theorem 3 shows that these optimal
distributions can be computed efficiently.

Empirically, we observed that active estimates of ranking performance are
more accurate than passive estimates. In different experimental settings – es-
timation of the performance of a single ranking model, comparison of different



688 C. Sawade et al.

types of ranking models, simulated index updates – performing active estimation
resulted in saved labeling efforts of between 10% and 75%.

Appendix

Proof of Lemma 1

We have to minimize the functional(∫
a(x)

q(x)
dx

)(∫
λ(x)q(x)dx

)
(14)

in terms of q under the constraints
∫
q(x)dx = 1 and q(x) > 0. We first note

that Objective 14 is invariant under multiplicative rescaling of q(x), thus the
constraint

∫
q(x)dx = 1 can be dropped during optimization and enforced in the

end by normalizing the unconstrained solution. We reformulate the problem as

min
q

C

∫
a(x)

q(x)
dx s.t. C =

∫
λ(x)q(x)dx (15)

which we solve using a Lagrange multiplier α by

min
q

C

∫
a(x)

q(x)
dx+ α

(∫
λ(x)q(x)dx − C

)
.

The optimal point for the constrained problem satisfies the Euler-Lagrange equa-
tion

αλ(x) = C
a(x)

q(x)2
,

and therefore

q(x) =

√
C

a(x)

αλ(x)
. (16)

Resubstitution of Equation 16 into the constraint (Equation 15) leads to

C =

∫ √
C

a(x)

αλ(x)
λ(x)dx, (17)

solving for α we obtain

α =

(∫ √
Ca(x)λ(x)dx

)2
C2

. (18)

Finally, resubstitution of Equation 18 into Equation 16 proves the claim. �	
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Proof of Theorem 3

In order to show that the empirical sampling distributions given by Equations 11
and 12 can be computed efficiently, we have to show that Equation 13 can
be computed efficiently. This can be done by suitable algebraic manipulation,
exploiting the independence assumption given by Equation 3.

We now present the proof for the empirical distribution for absolute estimation
(Equation 11) with L = Lerr. The remaining cases can be found in [14]. It suffices
to show that the intrinsic risk Rθ can be computed in time O(|Y||D|maxx |r(x)|),
and that for any x ∈ X the quantity E[(L(r(x),y)−Rθ)

2|x, θ] can be computed
in time O(|Y||r(x)|) given Rθ. We first note that for any z ∈ Z, it holds that

E [ err (yz)|x; θ] =
∑

y∈YZ

 err (yz)
∏
z′∈Z

p(yz′ |x, z′; θ)

=
∑
yz

∑
y∈YZ\{z}

 err (yz)
∏
z′∈Z

p(yz′ |x, z′; θ)

=
∑
yz

 err (yz) p(yz|x, z; θ)
∑

y∈YZ\{z}

∏
z′∈Z\{z}

p(yz′ |x, z′; θ)

=
∑
yz

 err (yz) p(yz|x, z; θ), (19)

where y ∈ YZ\{z} is a vector of relevance labels yz′ for all z′ ∈ Z \ {z}. The
quantity E [ err (yz, i)|x; θ] can thus be computed in time O(|Y|). Furthermore,
for L = Lerr it holds that

Rθ =
∑
x∈D

1

|D|
∑

y∈YZ

|r(x)|∑
i=1

1

i
 err

(
yri(x)

) i−1∏
l=1

(1−  err
(
yrl(x)

)
)
∏
z∈Z

p(yz|x, z; θ)

=
∑
x∈D

1

|D|

|r(x)|∑
i=1

1

i
E

[
 err

(
yri(x)

) i−1∏
l=1

(1 −  err
(
yrl(x)

)
)

∣∣∣∣∣ x; θ
]

=
∑
x∈D

1

|D|

|r(x)|∑
i=1

1

i
E
[
 err

(
yri(x)

)∣∣ x; θ] i−1∏
l=1

(
1− E

[
 err

(
yrl(x)

)∣∣x; θ]) . (20)

Equation 20 can now be computed in time O(|Y||D|maxx |r(x)|): for a given

x ∈ D, we can compute the cumulative products
∏i−1

l=1

(
1− E

[
 err

(
yrl(x)

)∣∣x; θ])
for i = 1, ..., |r(x)| in timeO(|Y||r(x)|). We start by precomputing the cumulative
products for all x ∈ D and i = 1, ..., |r(x)| in time O(|Y||D|maxx |r(x)|). Given
precomputed cumulative products, the final summation over x ∈ D and i can
be carried out in time O(|D|maxx |r(x)|). We now turn towards the quantity

E[(L(r(x),y) −Rθ)
2|x, θ].

Let  ̄i =
1
i  err (yi)

∏i−1
k=1(1−  err (yl)). We derive
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E

[
(L (r(x),y) −Rθ)

2
∣∣∣ x; θ]

= E

⎡⎣|r(x)|∑
i=1

 ̄2i + 2

|r(x)|∑
i=1

|r(x)|∑
l=i+1

 ̄i ̄l − 2Rθ

|r(x)|∑
i=1

 ̄i +R2
θ

⎤⎦ (21)

=

|r(x)|∑
i=1

(
E
[
 ̄2i
∣∣x; θ] + 2

|r(x)|∑
l=i+1

E
[
 ̄i ̄l
∣∣ x; θ]− 2RθE

[
 ̄i
∣∣ x; θ])+R2

θ. (22)

We expand the square of sums twice in Equation 21. Equation 22 follows from
the independence assumption (Equation 3). We note that for l > i the following
decomposition holds:

 ̄l =
1

l
 err (yl)

(
i−1∏
k=1

(1−  err (yk))

)
(1 −  err (yi))

(
l−1∏

k=i+1

(1−  err (yk))

)
.

Thus, Equation 22 can be expressed as

|r(x)|∑
i=1

(
1

i2
E

[
 err (yi)

2
∣∣∣x; θ] i−1∏

l=1

E
[
(1− err (yl))

2
∣∣ x; θ]

+ 2
1

i
E [ err (yi) (1−  err (yi))|x; θ]

(
i−1∏
l=1

E
[
(1−  err (yl))

2
∣∣ x; θ])

·

⎛⎝ |r(x)|∏
l=i+1

E [ (1−  err (yl))| x; θ]

⎞⎠ |r(x)|∑
k=i+1

E [ err (yk)|x; θ]
k
∏|r(x)|

l=k E [ (1−  err (yl))| x; θ]

− 2Rθ
1

i
E [  err (yi)|x; θ]

i−1∏
l=1

E [ (1−  err (yl))|x; θ]
)
+R2

θ (23)

Equation 23 can be evaluated in time O(|Y||r(x)|) as follows. We start by pre-
computing all cumulative products in time O(|Y||r(x)|) as shown above. The

cumulative sums of the form
∑|r(x)|

k=i+1 ... for i = |r(x)| − 1, ..., 1 can then be
computed in overall time O(|Y||r(x)|). Given these precomputed quantities, the
outer summation can then be carried out in time O(|Y||r(x)|) as well.
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Abstract. Numerous applications, such as bank transactions, road traf-
fic, and news feeds, generate temporal datasets, in which data evolves
continuously. To understand the temporal behavior and characteristics
of the dataset and its elements, we need effective tools that can capture
evolution of the objects. In this paper, we propose a novel and impor-
tant problem in evolution behavior discovery. Given a series of snapshots
of a temporal dataset, each of which consists of evolving communities,
our goal is to find objects which evolve in a dramatically different way
compared with the other community members. We define such objects
as community trend outliers. It is a challenging problem as evolutionary
patterns are hidden deeply in noisy evolving datasets and thus it is dif-
ficult to distinguish anomalous objects from normal ones. We propose
an effective two-step procedure to detect community trend outliers. We
first model the normal evolutionary behavior of communities across time
using soft patterns discovered from the dataset. In the second step, we
propose effective measures to evaluate chances of an object deviating
from the normal evolutionary patterns. Experimental results on both
synthetic and real datasets show that the proposed approach is highly
effective in discovering interesting community trend outliers.

1 Introduction

A large number of applications generate temporal datasets. For example, in our
everyday life, various kinds of records like credit, personnel, financial, judicial,
medical, etc. are all temporal. Given a series of snapshots of a temporal dataset,
analysts often perform community detection for every snapshot with the goal
of determining the intrinsic grouping of objects in an unsupervised manner. By
analyzing a series of snapshots, we can observe that these communities evolve in
a variety of ways – communities contract, expand, merge, split, appear, vanish,
or re-appear after a time period. Most of the objects within a community follow
similar evolution trends which define the evolution trends of the community.
However, evolution behavior of certain objects is quite different from that of
their respective communities. Our goal is to detect such anomalous objects as
Community Trend Outliers (or CTOutliers) given community distributions of

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 692–708, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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each object for a series of snapshots. In the following, we present CTOutlier
examples and discuss importance of identifying such outliers in real applications.

CTOutlier Examples

Consider the co-authorship network for the four areas in CS: data mining (DM),
information retrieval (IR), databases (DB) and machine learning (ML). Every
author can be associated with a soft distribution of their belongingness to each
of these areas. One such sequence of distributions could be ⟨1:(DB:1 , DM:0) ,

2:(DB:0.8 , DM:0.2) , 3:(DB:0.5 , DM:0.5) , 4:(DB:0.1 , DM:0.9)⟩. Such a pat-
tern represents the trend of a part of DB researchers gradually moving into the
DM community. While most of the authors follow one of such popular patterns of
evolution with respect to their belongingness distributions across different snap-
shots, evolution of the distributions associated with some of the other authors
is very different. Such authors can be considered as CTOutliers.

As another example, consider all the employees working for a company. For
each employee, one can record the amount of time spent in Office work, House-
hold work, Watching TV, Recreation and Eating, for a month. Across different
days, one can observe a trend where a person spends most of his time in office
work on weekdays and in household work on weekends. Similarly, there could
be different patterns for night workers. However, there could be a very few em-
ployees who follow different schedule for a few days (e.g., if an employee is sick,
he might spend a lot of his time at home even on weekdays). In that case, that
employee can be considered as a CTOutlier.

Besides these examples, interesting examples of CTOutliers can be commonly
observed in real-life scenarios. A city with a very different sequence of land
use proportion (agriculture, residential, commercial, open space) changes across
time, compared to change patterns for other cities can be a CTOutlier. E.g., most
of the cities show an increase in residential and commercial areas and reduction in
agriculture areas over time. However, some cities may get devastated by natural
calamities disturbing the land use drastically. Applications where CTOutliers
could be useful depends on the specific domain. Outlier detection may be useful
to explain future behavior of outlier sequences. E.g., one may analyze the diet
proportion of carbohydrates, proteins and fats for a city across time. A city
showing trends of increasing fats proportion in diet, may have a population with
larger risk of heart attacks. CTOutlier detection may be used to trigger action
in monitoring systems. E.g., in a chemical process, one may expect to observe
a certain series of distribution of elements across time. Unexpected deviations
from such a series, may be used to trigger a corrective action.

Brief Overview of CTOutlier Detection

We study the problem of detecting CTOutliers given community distributions
of each object for a series of snapshots of a temporal dataset. Input for our
problem thus consists of a soft sequence (i.e., a sequence of community distribu-
tions across different timestamps) associated with each object. For example, in
DBLP, an author has a sequence of research-area distributions across years. The
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number of communities could change over time, so a soft sequence can consist
of distributions of different sizes at different timestamps.

This problem is quite different from trajectory outlier detection [8,14,19] be-
cause: (1) In this problem, soft sequences consist of distributions obtained by
community detection rather than locations in trajectory outlier detection. (2)
Soft patterns could be gapped and multi-level while trajectories are usually con-
tinuous. (3) Unlike trajectory based systems, we cannot rely on additional fea-
tures such as speed or direction of motion of objects. Moreover, existing efforts on
detecting outliers in evolving datasets [4,15] cannot detect temporal community
trend based outliers because they do not involve any notion of communities.
In the first step of discovering normal trends, probabilistic sequential pattern
mining methods [9,21] can be used to extract temporal patterns, however the
patterns detected by these methods are “hard patterns” which are incapable of
capturing subtle trends, as discussed in Sec. 2.

We propose to tackle this problem using a two-step approach: pattern ex-
traction and outlier detection. In the pattern extraction phase, we first perform
clustering of soft sequences for individual snapshots. The cluster centroids ob-
tained for each timestamp represent the length-1 frequent soft patterns for that
timestamp. Support of a length-1 pattern (cluster centroid) is defined as the sum
of a function of the distance between a point (sequence) and cluster centroid,
over all points. The Apriori property [5] is then exploited to obtain frequent
soft patterns of length ≥ 2. After obtaining the frequent soft patterns, outlier
detection is performed. A sequence is considered a CTOutlier if it deviates a lot
from its best matching pattern for many combinations of timestamps.

In summary, we make the following contributions in this paper.

– We introduce the notion of Community Trend Outliers CTOutliers. Such a
definition tightly integrates the notion of deviations with respect to both the
temporal and community dimensions.

– The proposed integrated framework consists of two novel stages: efficient
discovery of a novel kind of patterns called soft patterns, and analysis of
such patterns using a new outlier detection algorithm.

– We show interesting and meaningful outliers detected from multiple real and
synthetic datasets.

Our paper is organized as follows. CTOutliers are defined as objects that de-
viate significantly from a novel kind of patterns. Thus, pattern discovery is the
basis of the outlier detection step. Hence, first we introduce the notion of soft
patterns and develop our method to extract temporal community trends in the
form of frequent soft patterns in Sec. 2. Then, in Sec. 3, we discuss the algorithm
for CTOutlier detection which exploits the extracted patterns to compute out-
lier scores. We discuss the datasets and results with detailed insights in Sec. 4.
Finally, related work and conclusions are presented in Sec. 5 and 6 respectively.
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2 Temporal Trends Extraction

In this section, we discuss how to extract soft patterns as temporal trends,
which serve as the basis of community trend outlier detection in Sec. 3. We first
introduce important definitions in Sec. 2.1. Next, we will carefully define support
for such soft patterns and discuss how to extract them from the soft sequence
data in Sec. 2.2 and Sec. 2.3.

2.1 Problem Formulation

Let us begin with a few definitions. We will use the toy dataset shown in Fig. 1
as a running example. The toy dataset has 15 objects which consist of 4 patterns
(▲,◀,▼,▶) and two outliers (∎,☀) across 3 timestamps. There are 3 (A,B,C),
3 (D,E,F ) and 4 (G,H, I, J) clusters for the 3 timestamps respectively.

Soft Sequence: A soft sequence for object o is denoted by So = ⟨S1o , S2o ,

. . . , STo
⟩ where Sto denotes the community belongingness probability distribu-

tion for object o at time t. In Fig. 1, for the point marked with a → across
all 3 timestamps, the soft sequence is ⟨1: (A:0.1 , B:0.8 , C:0.1) , 2: (D:0.07 ,

E:0.08 , F:0.85) , 3: (G:0.08 , H:0.8 , I:0.08 , J:0.04)⟩. Soft sequences for all ob-
jects are defined on the same set of T timestamps; all sequences are synchro-
nized in time. For a particular timestamp, the data can be represented as
St = [St1 , St2 , . . . , StN ]

T
.

Soft Pattern: A soft pattern p = ⟨P1p , P2p , . . . , PTp
⟩ is a sequence of probabil-

ity distributions across Lp (possibly gapped) out of T timestamps, with support
≥min sup. Here, Ptp denotes the community (probability) distribution at times-
tamp t. A soft pattern p defined over a set τp of timestamps is a representative
of a set of sequences (similar to each other for timestamps ∈ τp) grouped to-
gether by clustering over individual snapshots. Support of p is naturally defined
proportional to the number of sequences it represents (Sec. 2.2 and 2.3). E.g.,
the pattern p = ⟨1:(DB:1 , DM:0) , 2:(DB:0.5 , XML:0.3 , DM:0.2) , 4:(DB:0.1 ,

DM:0.9)⟩ is defined over 3 timestamps 1, 2 and 4 and so Lp=3. In Fig. 1,

⟨1:(A:0.2 , B:0.2 , C:0.6) , 2:(D:0.9 , E:0.05 , F:0.05) , 3:(G:0.9 , H:0.03 , I:0.03 ,

J:0.04)⟩ is a soft pattern covering the ▶ points.

CTOutlier: An object o is a CTOutlier if its outlier score ranks within the
top-k. The outlier score of an object o captures the degree to which it deviates
from the best matching soft pattern across different combinations of timestamps
(details in Sec. 3). E.g., outliers ☀ and ∎ deviate from the ▶ and ◀ patterns
for the first and the third timestamps respectively.

The CTOutlier detection problem can then be specified as follows.

Input: Soft sequences (each of length T ) for N objects, denoted by matrix S.
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Fig. 1. Three Snapshots of a Toy Dataset

Output: Set of CTOutlier objects.

Before presenting the soft pattern discovery problem and the methodology for
their efficient discovery, we discuss the reasons why we use soft rather than hard
patterns to represent temporal trends.

Why use Soft Patterns?

Given soft sequence data, one can use probabilistic sequential pattern min-
ing [9,21] to discover hard sequential patterns. In the DBLP example, a hard
pattern can be ⟨1:DB , 2:DB , 3:DM , 4:DM⟩, which expresses major transitions
for an author changing his research area from DB to DM. However, most trends
in temporal datasets are subtle and thus cannot be expressed using hard pat-
terns. E.g., in Fig. 1, evolution of▶ objects can be characterized by hard pattern
⟨1:C , 2:D , 3:G⟩. However, at the first timestamp, ▶ objects lie on the bound-
ary of cluster C and are much different from the core cluster-C ▼ objects. Such
subtle difference cannot be encoded in hard patterns.

Different from hard patterns, soft patterns contain a richer set of infor-
mation. Consider two soft patterns which are not related to such drastic
changes: p1 = ⟨1:(DM:0.8 , IR:0.2) , 2:(DM:0.6 , IR:0.4)⟩ and p2 = ⟨1:(DM:0.48 ,

DB:0.42 , IR:0.1) , 2:(DM:1)⟩ both of which map to the same hard pattern

⟨1:DM , 2:DM⟩. This is not reasonable because clearly the two patterns represent

two different semantic trends. On the other hand, let ⟨1:DB , 2:DM⟩ denote a
hard pattern, from which we cannot identify how the communities indeed evolve.
The temporal trend could be that ⟨1:(DB:0.5 , Sys:0.3 , Arch:0.2) , 2:(DM:0.5 ,

DB:0.3 , Sys:0.2)⟩ is frequent but ⟨1:(DB:0.9 , Sys:0.1) , 2:(DM:0.9 , DB:0.1)⟩
is not frequently observed. Therefore, soft patterns are more desirable because
they can express that core-DB authors did not move to DM, although some
non-core-DB researchers started showing interest in DM. In Fig. 1, hard pattern
based detection will miss☀ outlier, while soft pattern based detection will cor-
rectly identify it. To prevent such loss of information when using hard patterns,
we propose to model temporal trends as soft patterns.
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Soft Pattern Discovery Problem
The soft pattern discovery problem can be summarized as follows.

Input: Soft sequences (each of length T ) for N objects, denoted by matrix S.

Output: Set P of frequent soft patterns with support ≥min sup.
Next, we will carefully define support for such soft patterns and discuss how

to extract them from the soft sequence data. We will first discuss how to find
length-1 patterns, and then discuss how to find patterns with length ≥ 2.

2.2 Extraction of Length-1 Soft Patterns

The task of discovering length-1 soft patterns for a particular timestamp is
to find representative distributions from a space of N probability distributions
where N = #objects. We solve this problem by performing clustering (we use
XMeans [22]) on distributions. The cluster centroids for such clusters are a rep-
resentative of all the points within the cluster. Thus, a cluster centroid can
be used to uniquely represent a length-1 soft pattern. In the example shown
in Fig. 1, for the first timestamp, XMeans discovers 4 clusters with centroids
(A ∶ 0.85,B ∶ 0.05,C ∶ 0.1), (A ∶ 0.03,B ∶ 0.9,C ∶ 0.07), (A ∶ 0.03,B ∶ 0.02,C ∶ 0.95)
and (A ∶ 0.2,B ∶ 0.2,C ∶ 0.6). Each of these cluster centroids represents a length-1
soft pattern (▲, ◀, ▼, ▶ resp).

Defining Support for Length-1 Soft Patterns

Traditionally, support for a sequential pattern is defined as the number of se-
quences which contain that pattern. Similarly, we can define support for a soft
pattern (cluster centroid) Ptp in terms of the degree to which the sequences
(points) belong to the corresponding cluster (Eq. 1). Let Dist(Ptp , Sto) be some
distance measure (we use Euclidean distance) between the sequence distribu-
tion for object o at time t and the cluster centroid for pattern p at time t. Let
maxDist(Ptp) be the maximum distance of any point in the dataset from the
centroid Ptp . Then the support for the length-1 pattern p can be expressed as
follows.

sup(Ptp) =
N

∑
o=1

[1 −
Dist(Ptp , Sto)
maxDist(Ptp)

] (1)

From Eq. 1, one can see that an object which is closer to the cluster centroid
contributes more to the support of a pattern (corresponding to that cluster
centroid) compared to objects far away from the cluster centroid. E.g., at the
first timestamp, cluster centroid (A ∶ 0.85,B ∶ 0.05,C ∶ 0.1) gets good support
from all the ▲ points because they are very close to it, but gets small amount
of support from other points, based on their distance from it. Patterns with
support ≥min sup are included in the set of frequent patterns P .

A clustering algorithmmay break a semantic cluster into multiple sub-clusters.
Hence, some of the resulting clusters may be very small and so if we define sup-
port for a cluster centroid based on just the points within the cluster, we might
lose some important patterns for lack of support. Hence, we define support for a
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cluster centroid using contributions from all the points in the dataset. To prevent
the impact of distance based outliers (when computing maxDist), it might be
beneficial to remove such outliers from each snapshot, as a preprocessing step.

2.3 Extraction of Longer Soft Patterns

Here we will discuss how to define support for longer patterns and compute them
efficiently.

Defining Support for Longer Soft Patterns

The support by an object o for a pattern p is defined in terms of its support
with respect to each of the timestamps in τp as shown below.

sup(p) =
N

∑
o=1

∏
t∈τp

[1 −
Dist(Ptp , Sto)
maxDist(Ptp)

] (2)

Intuitively, an object for which the community distribution lies close to the clus-
ter centroids of the pattern across a lot of timestamps will have higher support
contribution for the pattern compared to objects which lie far away from the pat-
tern’s cluster centroids. As an example, consider the pattern ⟨1:(A:0.85 , B:0.05 ,

C:0.1) , 2:(D:0.1 , E:0.2 , F:0.7) , 3:(G:0.01 , H:0.02 , I:0.03 , J:0.94)⟩. The ▲
points contribute maximum support to this pattern because they lie very close
to this pattern across all timestamps. Patterns with support ≥ min sup are in-
cluded in the set P of frequent patterns.

Apriori Property

From Eqs. 1 and 2, it is easy to see that a soft pattern cannot be frequent unless
all its sub-patterns are also frequent. Thus, the Apriori property [5] holds. This
means that longer frequent soft patterns can be discovered by considering only
those candidate patterns which are obtained from shorter frequent patterns. This
makes the exploration of the sequence pattern space much more efficient.

Candidate Generation

According to Apriori property, candidate patterns of length ≥ 2 can be obtained
by concatenating shorter frequent patterns. For each ordered pair (p1, p2) where
p1 and p2 are two length-l frequent patterns, we create a length-(l+1) candidate
pattern if (1) p1 excluding the first timestamp, matches exactly with p2 excluding
the last timestamp; and (2) the first timestamp in p1 is earlier than the last
timestamp in p2. A candidate length-(l+1) pattern is generated by concatenating
p1 with the last element of p2.

3 Community Trend Outlier Detection

In this section, we will discuss how to exploit set P of frequent soft patterns
obtained after pattern extraction (Sec. 2) to assign an outlier score to each
sequence in the dataset. When capturing evolutionary trends, length-1 patterns
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are not meaningful, as they are defined on single snapshots. So, we remove them
from set P . Although the input sequences are all of length T , each pattern could
be of any length ≤ T and could be gapped. While a sequence represents a point
distribution at each timestamp, a pattern represents a cluster centroid for each
timestamp. Each cluster is associated with a support, and there might be other
statistics to describe the cluster, such as maximum distance of any point from
the centroid and average distance of all points within cluster from the centroid.
Intuitively, patterns consisting of compact clusters (clusters with low average
distances) with high support are the most important for outlier detection.

Outlier Detection Problem

Input: Set P of frequent soft patterns with support ≥min sup.

Output: Set of CTOutlier objects.

3.1 Pattern Configurations and Best Matching Pattern

A non-outlier object may follow only one frequent pattern while deviating from
all other patterns. Hence, it is incorrect to compute outlier score for an object by
adding up its outlierness with respect to each pattern, weighted by the pattern
support. Also, it is not meaningful to compute outlier score just based on the
best matching pattern. The reason is that often times, even outlier sequences
will follow some length-2 pattern; but such a short pattern does not cover the
entire length of the sequence. Therefore, we propose to analyze the outlierness
of a sequence with respect to its different projections by dividing the pattern
space into different configurations.

Configuration: A configuration c is simply a set of timestamps with size ≥ 2.
Let Pc denote the set of patterns corresponding to the configuration c.

Finding Best Matching Pattern

A normal sequence generally follows a particular trend (frequent pattern) within
every configuration. A sequence may have a very low match with most patterns
but if it matches completely with even one frequent pattern, intuitively it is
not an outlier. (Here we do not consider the situation of group outliers, where
all sequences following a very different pattern could be called outlier.) Hence,
we aim at finding the pattern which matches the sequence the most for that
configuration. Note that patterns corresponding to big loose clusters match a
large number of sequences, and thus we should somehow penalize such patterns
over those containing compact clusters.

Based on the principles discussed above, we design the following matching
rules. Let a pattern p be divided into two parts φpo and θpo. φpo (θpo) consists of
the set of timestamps where sequence for object o and pattern p match (do not
match) each other. E.g., considering pattern p =▶ and sequence o =☀, θpo = {1}
and φpo = {2,3}.
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Match Score: We define the match score between an object o and a pattern p
as follows.

match(p, o) = ∑
t∈φpo

sup(Ptp) × sup(Ptp , Sto)
avgDist(Ptp)

(3)

where avgDist(Ptp) is the average distance between the objects within the clus-

ter and the cluster centroid Ptp , and sup(Ptp , Sto) = 1 −
Dist(Ptp ,Sto)

maxDist(Ptp )
. This defi-

nition is reasonable because the score is higher if (1) the object and the pattern
match for more timestamps; (2) pattern has higher support; (3) pattern contains
compact clusters; and (4) object lies closer to the cluster centroid across various
timestamps.

Best Matching Pattern: The best matching pattern bmpco is the pattern p ∈
Pc with the maximum match score match(p, o). In the toy example, the best
matching pattern for sequence☀ with respect to configuration {1,2,3} is ▶.

3.2 Outlier Score Definition

Given a sequence, we first find the best matching pattern for every configuration
and then define the outlier score as the sum of the scores of the sequence with
respect to each configuration. The outlier score of object o is thus expressed as:

outlierScore(o) =
∣C ∣

∑
c=1

outlierScore(c, o) =
∣C ∣

∑
c=1

outlierScore(bmpco, o) (4)

where bmpco is the best matching pattern for configuration c and object o, and
C is the set of all configurations.

Let p̃ denote the best matching pattern bmpco in short. Then we can express

the mismatch between p̃ and o by ∑t∈θp̃o sup(Ptp̃)×
Dist(Ptp̃

,Sto)

maxDist(Ptp̃
)

. Thus, mismatch

between the pattern and the soft sequence for o is simply the timestamp-wise
mismatch weighted by the support of pattern at that timestamp. Finally, the
importance of the pattern is captured by multiplying this mismatch score by the
overall support of the pattern. As can be seen, outlierScore(p̃, o) as expressed
in Eq. 5 takes into account the support of the pattern, number of mismatching
timestamps, and the degree of mismatch.

outlierScore(bmpco, o) = outlierScore(p̃, o) = sup(p̃) × ∑
t∈θp̃o

sup(Ptp̃
) ×

Dist(Ptp̃
, Sto)

maxDist(Ptp̃
)

(5)

Time Complexity Analysis

Finding best matching patterns for all sequences takes O(N ∣P ∣TK) time where
∣P ∣ is the number of patterns. Number of configurations ∣C ∣ = 2T−T−1. So, outlier
score computation using the best matching patterns takes O(N(2T −T −1)KT )
time where K is the maximum number of clusters at any timestamp. Thus, our
outlier detection method is O(NTK(2T − T − 1 + ∣P ∣)) in time complexity, i.e.,
linear in the number of objects. Generally, for real datasets, T is not very large
and so the complexity is acceptable. For larger T , one may use sampling from
the set of all possible configurations, rather than using all configurations. Our
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results (Sec. 4) show that considering only length-2 ungapped configurations can
also provide reasonable accuracy.

Note that we did not include the pattern generation time in the time com-
plexity analysis. This is because it is difficult to analyze time complexity of al-
gorithms using Apriori pruning. However it has been shown earlier that Apriori
techniques are quite efficient for pattern generation [5].

3.3 Summing Up: CTOutlier Detection Algorithm (CTODA)

The proposed CTOutlier Detection Algorithm (Algo. 1) can be summarized as
follows. Given a dataset with N soft sequences each defined over T timestamps,
soft patterns are first discovered from Steps 1 to 12 and then outlier scores are
computed using Steps 13 to 20.

Algorithm 1. CTOutlier Detection Algorithm (CTODA)
Input: (1) Soft sequences for N objects and T timestamps (represented using matrix S). (2) Mini-

mum Support: min sup.
Output: Outlier Score for each object.

1: Set of frequent patterns P ← φ ▷ Pattern Extraction
2: Let Ll be the set of length-l frequent patterns. {Ll}

T
l=1 ← φ.

3: Let Cl be the set of length-l candidate patterns. {Cl}
T
l=1 ← φ.

4: for each timestamp t do
5: C1 ← Cluster St (i.e., part of S for timestamp t).
6: L1 ← L1 ∪ {f ∣f ∈ C1 and sup(f) ≥min sup}
7: end for
8: for l=2 to T do
9: Cl ← getCandidates(Ll−1).
10: Ll ← {f ∣f ∈ Cl and sup(f) ≥min sup}.
11: P ← P ∪Ll.
12: end for

13: C ← Set of configurations for T timestamps. ▷ Outlier Detection
14: for each object o do
15: for each configuration c ∈ C do
16: Compute the best matching pattern p̃ ∈ P for object o and configuration c using Eq. 3.
17: Compute outlierScore(p̃, o) using Eq. 5.
18: end for
19: Compute outlierScore(o) using Eq. 4.
20: end for

Next, we discuss two important practical issues in implementing the proposed
community trend outlier detection algorithm.

Effect of Varying min sup

min sup decides the number of patterns discovered, given a temporal dataset.
Higher min sup implies that some patterns may not get detected and hence
even non-outlier sequences may get marked as outliers. However, their outlier
scores will still be lower than the scores of extreme outliers because they are
closer to the cluster centroids for each individual timestamp. Also, the number of
configurations for which normal sequences deviate from patterns, will be smaller
than the number of configurations for outlier sequences. However, a very high
min sup might mean that no patterns get discovered for a lot of configurations.
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In that case, many sequences might be assigned same high outlier scores, which
is undesirable.

If min sup is too low, then the discovered patterns may represent an overfitted
model of the data. Thus, even outliers may get modeled as normal patterns, and
then we may not be able to discover many outliers. Also a lower value of min sup
will generate a bigger set of patterns so that the overall pattern generation may
become very inefficient with respect to time and memory.

Therefore, there is a tradeoff between lower and higher min sup. The best way
to select min sup is to determine what percentage of sequences can be considered
to represent a significant pattern. This could be quite domain dependent. In some
domains, it might be completely fine even if a very few objects demonstrate a
pattern while in other domains, one might need to use a larger min sup value.

Hierarchical Clustering

In this paper, we performed single-level clustering of the distributions corre-
sponding to the community detection results. However, one can also perform
hierarchical clustering. Multi-level soft patterns discovered using such a hierar-
chical clustering per snapshot, could be more expressive. Using DBLP example
again, one may be able to express that a sub-area in timestamp 1 (lower level
cluster) evolved into a mature research area in timestamp 2 (higher level cluster).
We plan to explore the benefits of using such hierarchical clustering methods as
part of future work.

4 Experiments

Evaluation of outlier detection algorithms is quite difficult due to lack of ground
truth. We generate multiple synthetic datasets by injecting outliers into normal
datasets, and evaluate outlier detection accuracy of the proposed algorithms on
the generated data. We also conduct case studies by applying the method to
real data sets. We perform comprehensive analysis to justify that the top few
outliers returned by the proposed algorithm are meaningful. The code and the
data sets are available at: http://blitzprecision.cs.uiuc.edu/CTOutlier

4.1 Synthetic Datasets

Dataset Generation

We generate a large number of synthetic datasets to simulate real evolution
scenarios, each of which consists of 6 timestamps. We first create a dataset with
normal points and then inject outliers. The accuracy of the algorithms is then
measured in terms of their effectiveness in discovering these outliers. For each
dataset, we first select the number of objects (N), the number of full-length (i.e.,
length=6) patterns (∣F ∣), the percentage of outliers (Ψ) and the outlier degree
(γ). Next, we randomly select the number of clusters per timestamp. Each cluster
is represented by a Gaussian distribution with a fixed mean and variance. Figure
2 shows the clusters with their 2σ boundaries. For each full pattern, we first

http://blitzprecision.cs.uiuc.edu/CTOutlier
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choose a cluster at each timestamp and then select a Gaussian distribution with
small variance within the cluster. Once we have fixed the Gaussian distribution
to be used, we generate N/∣F ∣ points per timestamp for the pattern. Each full-
length pattern results into 26 − 6 − 1 = 57 patterns. We ensure that each cluster
is part of at least one pattern. Once patterns are generated, we generate outliers
as follows. For every outlier, first we select the base pattern for the outlier. An
outlier follows the base pattern for ⌈T × γ⌉ timestamps and deviates from the
pattern for the remaining timestamps. We fix a set of ⌈T × γ⌉ timestamps and
randomly select a cluster different from the one in the pattern for the remaining
timestamps. Figure 2 shows the first 4 timestamps (out of 6 – for lack of space)
of a dataset created with N=1000, ∣P ∣=570 (∣F ∣=10), Ψ=0.5 and γ=0.6. Colored
points are normal points following patterns while larger black shapes (∎, ▼, ◀,
▲, ⧫) are the injected outliers. For example, the outlier (▼) usually belongs to
the ☀ pattern, except for the third timestamp where it switches to the yellow
▶ pattern.
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Fig. 2. First Four Snapshots of our Synthetic Dataset

Table 1. Synthetic Dataset Results (CTO=The Proposed Algorithm CTODA,
BL1=Consecutive Baseline, BL2=No-gaps Baseline) for Outlier Degree=0.5 and 0.8,
i.e., Outliers follow Base Pattern for 3/6 and 5/6 Timestamps respectively.

N Ψ ∣γ∣ = 0.5 ∣γ∣ = 0.8
∣F ∣ = 5 ∣F ∣ = 10 ∣F ∣ = 15 ∣F ∣ = 5 ∣F ∣ = 10 ∣F ∣ = 15

(%) CTO BL1 BL2 CTO BL1 BL2 CTO BL1 BL2 CTO BL1 BL2 CTO BL1 BL2 CTO BL1 BL2

1000
1 95.0 92 89 92.5 86 90 93.5 83 92 95.5 85.5 92 83 76.5 84.0 92.0 77 86.0
2 98.0 94.2 95.5 94.0 88.2 92 95.5 87.2 93.2 98.2 94.5 96.5 91.2 86.5 90 95.5 76 94.0
5 99.5 96.8 97.4 96.5 95.3 96.2 97.9 93.1 97.1 99.0 95.7 97.3 96.3 91 95.9 97.4 79.3 96.7

5000
1 97.0 90.6 91.5 91.9 86 89.4 91.8 84.3 89.9 95.8 83.5 89.8 84.4 76.6 84.4 88.4 73.1 86.1
2 97.2 92 92.8 94.0 91.2 93 96.4 89 94 97.9 89.6 94 89.4 85.6 88.4 95.4 79.8 93.1
5 99.4 96.9 97.3 96.3 94.7 96.3 97.6 91 96.3 98.8 95.4 97.6 95.0 90.5 94.7 97.7 79.7 96.9

10000
1 97.4 90 90.4 90.8 85.4 88.1 92.8 84.5 88.2 95.6 84.2 89.5 81.8 76.4 82.8 91.8 76.5 87.6
2 98.2 91.6 92.6 93.2 90.5 92.7 95.0 89.3 92.4 98.0 91.1 95 89.9 86.9 90.7 95.8 80.6 93.3
5 99.0 96.8 97.1 96.2 94.4 96.2 97.9 89.6 96.8 99.1 95.8 98 95.3 90.1 95.3 97.3 76.4 96.6
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Results on Synthetic Datasets

We experiment using a variety of settings. We fix the minimum support to
(100/∣F ∣ − 2)%. For each setting, we perform 20 experiments and report the
mean values. We compare with two baselines: Consecutive (BL1) and No-gaps
(BL2). Often times evolution is studied by considering pairs of consecutive snap-
shots of a dataset, and then integrating the results across all pairs. One can use
such a method to compute outliers across each pair of consecutive snapshots
and then finally combine results to get an outlier score across the entire time
duration. We capture this in our BL1 baseline. Note that we consider only those
configurations which are of length-2 and which contain consecutive timestamps
in this baseline. Thus, BL1 will mark an object as outlier if its evolution across
consecutive snapshots is much different from observed length-2 patterns (with
no gaps). For the BL2 baseline, we consider all configurations corresponding to
patterns of arbitrary length without any gaps. Note that this baseline simulates
the trajectory outlier detection scenario with respect to our framework. Recall
that our method is named as CTODA.

We change the number of objects from 1000 to 5000 to 10000. We vary the
percentage of outliers injected into the dataset as 1%, 2% and 5%. The outlier de-
gree is varied as 0.5, 0.6 and 0.8 (i.e., 3, 4 and 5 timestamps). Finally, we also use
different number of full-length patterns (∣F ∣ = 5,10,15), i.e., ∣P ∣ = 285,570,855,
to generate different datasets. Table 1 shows the results in terms of precision
when the number of retrieved outliers equals to the actual number of injected
outliers for γ=0.5 and 0.8. Average standard deviations are 3.11%, 4.85% and
3.39% for CTODA and the two baselines respectively. Results with γ=0.6 are
also similar; we do not show them here for lack of space. On an average CTODA
is 7.4% and 2.3% better than the two baselines respectively.

The reasons why the proposed CTODA method is superior are as follows.
Consider a soft sequence ⟨S1o , S2o , S3o⟩. Both the soft patterns ⟨S1o , S2o⟩ and
⟨S2o , S3o⟩ might be frequent while ⟨S1o , S2o , S3o⟩ might not be frequent. This
can happen if the sequences which have the pattern ⟨S1o , S2o⟩ and the sequences
with the pattern ⟨S2o , S3o⟩ are disjoint. This case clearly shows why our method
which computes support for patterns of arbitrary lengths is better than baseline
BL1 which considers only patterns of length two with consecutive timestamps.
Now let us show that gapped patterns can be beneficial even when we consider
contiguous patterns of arbitrary lengths. Consider two soft gapped patterns p =
⟨P1p , P2p , P4p⟩ and q = ⟨P1q , P3q , P4q ⟩ such that P1p = P1q and P4p = P4q . Now
p might be frequent while q is not. However, this effect cannot be captured if
we consider only contiguous patterns. This case thus shows why our approach is
better than BL2.

We ran our experiments using a 2.33 GHz Quad-Core Intel Xeon processor. On
an average, the proposed algorithm takes 83, 116 and 184 seconds for N=1000,
5000 and 10000 respectively. Of this 74, 99 and 154 seconds are spent in pattern
generation while the remaining time is spent in computing outliers given these
patterns.
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4.2 Real Datasets

Dataset Generation

We perform experiments using three real datasets: GDP, Budget and Four Area
(subset of DBLP).

GDP: TheGDP dataset consists of (Consumption, Investment, Public Expendi-
ture and Net Exports) components for 89 countries for 1982-91 (10 snapshots)1.

Budget : The Budget dataset consists of (Pensions, Health Care, Education, De-
fense, Welfare, Protection, Transportation, General Government, Other Spend-
ing) components for 50 US states for 2001-10 (10 snapshots)2.

Four Area: This is a subset of DBLP for the 4 areas of data mining (DM),
databases (DB), information retrieval (IR) and machine learning (ML) and con-
sists of papers from 20 conferences (5 per area). For details, read [12]. We obtain
5 co-authorship snapshots corresponding to the years 2000-01 to 2008-09 for 643
authors.

Results on Real Datasets

CTOutliers are objects that break many temporal community patterns. We will
provide a few interesting case studies for each dataset and explain the intu-
itions behind the identified outliers on how they deviate from the best matching
patterns.

GDP: We find 3682 patterns when minimum support is set to 20% for the 89
countries. The top five outliers discovered are Uganda, Congo, Guinea, Bulgaria
and Chad, and we provide reasonings about Uganda and Congo as examples
to support our claims as follows. National Resistance Army (NRA) operating
under the leadership of the current president, Yoweri Museveni came to power
in 1985-86 in Uganda and brought reforms to the economic policies. Uganda
showed a sudden change of (45% consumption and 45% net exports) to (80%
consumption and 1-2% net exports) in 1985. Unlike Uganda, other countries
like Iceland, Canada, France with such ratios of consumption and net export
maintained to do so. Like many other countries, Congo had 45-48% of its GDP
allocated to consumption and 36-42% of GDP for government expenditure. But
unlike other countries with similar pattern, in 1991, consumption decreased (to
29% of GDP) but government expenditure increased (56% of GDP) for Congo.
This drastic change happened probably because opponents of the then President
of Congo (Mobutu Sese Seko) had stepped up demands for democratic reforms.

Budget : We find 41545 patterns when minimum support is set to 20% for the
50 states. The top five outliers discovered are AK, DC, NE, TN and FL, and the
case on AK is elaborated as follows. For states with 6% pension, 16% healthcare,
32% education, 16% other spending in 2006, it has been observed that healthcare
increased by 4-5% in 2009-10 while other spending decreased by 4%. However,

1 http://www.economicswebinstitute.org/ecdata.htm
2 http://www.usgovernmentspending.com/

http://www.economicswebinstitute.org/ecdata.htm
http://www.usgovernmentspending.com/
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in the case of Arkansas (AK) which followed a similar distribution in 2006,
healthcare decreased by 3% and other spending increased by 5% in 2009-10.
More details can be found in Fig. 3. The right figure shows the distribution of
expenses for AK for the 10 years, while the left part shows similar distribution
averaged over 5 states which have a distribution very similar to AK for the
years 2004-09. One can see that Arkansas follows quite a different distribution
compared to the five states for other years especially for 2002.
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Four Area: We perform community detection on each snapshot of the original
co-authorship dataset using EvoNetClus [23] to obtain soft sequences. This leads
to 8, 7, 9, 7, 7 clusters for the five snapshots respectively. We find 1008 patterns
when minimum support is set to 10%. The top few outliers discovered are Hakan
Ferhatosmanoglu, Mehul A. Shah, and Arbee L. P. Chen. The general trends
observed are authors switching between DM and ML areas, or switching between
IR and DB. However, research areas associated with Hakan Ferhatosmanoglu
demonstrate a special combination of different research areas. The soft sequence
associated with him looks as follows. ⟨2000−01 ∶ (IR ∶ 0.75,DB ∶ 0.25),2002−03 ∶
(IR ∶ 1),2004 − 05 ∶ (DB ∶ 1),2006 − 07 ∶ (DB ∶ 0.67,DM ∶ 0.33),2008 − 09 ∶
(DB ∶ 0.5,ML ∶ 0.5)⟩. He started out as a researcher in IR and has changed
focus to DM and then ML. So, clearly he does not fit into any of the trends and
hence is an interesting outlier. Similar observations can be found for the other
detected outliers.

In summary, the proposed algorithm is highly accurate in identifying injected
outliers in synthetic datasets and it is able to detect some interesting outliers
from each of the real datasets.

5 Related Work

Outlier (or anomaly) detection [10,18] is a very broad field and has been studied
in the context of a large number of application domains. Outliers have been dis-
covered in high-dimensional data [1], uncertain data [3], stream data [4], network
data [13] and time series data [11].
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Temporal Outlier Detection

Recently, there has been significant interest in detecting outliers from evolv-
ing datasets [4,14,15], but none of them explores the outliers with respect to
communities in a general evolving dataset. Outlier detection methods for data
streams [2,7] have no notion of communities. CTOutlier detection could be con-
sidered as finding outlier trajectories across time, given the soft sequence data.
However as discussed in Sec. 1, there are major differences, making trajectory
outlier detection techniques unsuitable for the task.

Community Outlier Detection
Community outlier detection has been studied for a static network setting [13]
or for a setting of two network snapshots [17], but we develop an algorithm for
a general evolving dataset with multiple snapshots. Group (community) iden-
tification in evolving scenarios has been studied traditionally in the context of
hard patterns [16,20], while we discover soft patterns capturing subtle community
evolution trends.

Thus, though significant literature exists both for temporal as well as commu-
nity outlier detection, we discover novel outliers by considering both the temporal
and the community dimensions together.

6 Conclusions

In datasets with continuously evolving values, it is very important to detect ob-
jects that do not follow normal community evolutionary trend. In this paper,
we propose a novel concept of an outlier, denoting objects that deviate from
temporal community norm. Such objects are referred to as Community Trend
Outliers (CTOutliers), and are of great practical importance to numerous ap-
plications. To identify such outliers, we proposed an effective two-step outlier
detection algorithm CTODA. The proposed method first conducts soft pattern
mining efficiently and then detects outliers by measuring the objects’ deviations
from the normal patterns. Extensive experiments on multiple synthetic and real
datasets show that the proposed method is highly effective and efficient in de-
tecting meaningful community trend outliers. In the future, we plan to further
our studies on evolutionary outlier detection by considering various evolution
styles in different domains.
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Data Structures for Detecting Rare Variations

in Time Series

Caio Valentim, Eduardo S. Laber, and David Sotelo

Departamento de Informática, PUC-Rio, Brazil

Abstract. In this paper we study, from both a theoretical and an ex-
perimental perspective, algorithms and data structures to process queries
that help in the detection of rare variations over time intervals that oc-
cur in time series. Our research is strongly motivated by applications in
financial domain.

1 Introduction

The study of time series is motivated by applications that arise in different
fields of human knowledge such as medicine, physics, meteorology and finance,
just to cite a few. For some applications, involving time series, general purpose
spreadsheets and databases provide a good enough solution to analyse them.

However, there are applications in which the time series are massive as in the
analysis of data captured by a sensor in a milliseconds basis or in the analysis
of a series of quotes and trades of stocks in an electronic financial market. For
these series, traditional techniques for storing data may be inadequate due to its
time/space consumption. This scenario motivates the research on data structures
and algorithms to handle massive time series [13].

The focus of our research is to develop data structures that allow the identifi-
cation of variations on time series that are rare, i.e., that occur just a few times
over a long time period.

Let A = (a1, ..., an) be a time series with n values and let a time index be an
integer belonging to the set {1, . . . , n}. We use two positive numbers, t and d,
to capture variations in the time series A during a time interval. More precisely,
we say that a pair of time indexes (i, j) of A is a (t, d)-event if 0 < j − i ≤ t and
aj − ai ≥ d.

We want to design efficient algorithms/data structures to handle the following
queries.

• AllPairs(t, d). This query returns all (t, d)-events in time series A.
• Beginning(t, d). This query returns all time indexes i such that there is a
time index j for which (i, j) is a (t, d)-event in time series A.

The reason why we focus on the above queries is because we believe that they are
basic queries for the study of rare variations in time series so that the techniques
developed to address them could be extended to many other queries with the
same flavor.

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 709–724, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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To be more concrete, we describe an application where an efficient processing
of our queries turns out to be useful. The prices of two stocks with similar
characteristics (e.g. belonging to the same segment of the industry) usually have
a strong correlation. A very popular trading strategy in financial stock markets
is to estimate an expected ratio between the prices of two similar stocks and then
bet that the observed ratio will return to the estimated one when it significantly
deviates from it [8].

A strategy designer may be interested to study if rare variations between the
ratio of two stocks tend to revert to its mean (normal value). For that he(she)
may specify a possibly long list of pairs (t, d) and then study the behavior of
the time series right after the occurrence of a (t, d)-event, for each pair (t, d) in
the list. A naive scan over a time series with the aim of looking for (t, d)-events,
for a fixed pair (t, d), requires O(nt) time. In some stock markets (e.g. NYSE),
where over 3000 stocks are daily negotiated, and a much larger number of pairs
of stocks can be formed, a naive approach turns out to be very expensive. Thus,
cheaper alternatives to detect (t, d)-events may be desirable.

Still in this context, given a the length t of a time interval and a threshold
p, one may ask for the minimum d for which the number of (t, d)-events is at
most p, that is, (t, d)-events are rare. If we want to process this kind of query
for many time intervals t and many thresholds p, an efficient processing of our
primitive queries is also required.

To make the presentation easier we focus on positive variations (d > 0) in
our queries. However, all the techniques developed here also apply for processing
negative variations. The following notation will be useful for our discussion. The
Δ-value of a pair (i, j) is given by j− i and its deviation is given by aj − ai. We
say that i is the startpoint of a pair (i, j) while j is its endpoint.

Our Contributions. We develop and analyze algorithms and data structures
to process queries AllPairs(t, d) and Beginning(t, d). The relevant parameters
for our analysis are the time required to preprocess the data structure, its space
consumption and the query elapsed time.

To appreciate our contributions it is useful to discuss some naive approaches
to process our queries.

A naive algorithm to process AllPairs(t, d) scans the list A and for each
startpoint i, it reports the time indexes j in the interval [i + 1, i + t] for which
aj−ai ≥ d. This procedure handles query AllPairs(t, d) in O(nt) time. A similar
procedure also process Beginning(t, d) in O(nt) time.

Another simple approach to process Beginning(t, d) is to use a table T , in-
dexed from 1 to n − 1; the entry T [t], for each t, has a pointer to a list con-
taining the pairs in the set {(1,m1), (2,m2), . . . , (n− 1,mn−1)}, where mi is the
time index of the largest value among ai+1, ai+2, . . . , ai+t. Each of these n − 1
lists is sorted by decreasing order of the deviations of their pairs. To process
Beginning(t, d), we scan the list associated with T [t] and report the startpoint
of every pair that is a (t, d)-event. The scan is aborted when a pair that has
deviation smaller than d is found. The procedure process Beginning(t, d) in
O(k + 1) time, where k is the size of the solution set. Along these lines, it is
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not difficult to design a data structure that also handles query AllPairs(t, d) in
O(1+k) time. Though this kind of approach achieves optimal querying time, its
space consumption could be prohibitive for most of practical applications since
we have to store Θ(n2) pairs.

The solutions we propose/analyze in this paper make an intensive use of data
structures that support range minimum(maximum) queries(RMQ’s). Let V be a
vector of real entries, indexed from 1 to n. A range minimum(maximum) query
(RMQ) over V , with input range [i, j], returns the index of the entry of V with
minimum(maximum) value, among those with indexes in the range [i, j]. This
type of query is very well understood by the computational geometry community
[1,6]. In fact, there are known data structures of size O(n) that support RMQs
in constant time.

A simple but crucial observation is that the queries AllPairs(t, d) and
Beginning(t, d) can be translated into multiple RMQ’s (details are given in
the next section). Thus, by using data structures that support RMQ’s, we can
handle both queries in O(n + k) time, where k is the size of the solution set.
In fact, Beginning(t, d) can be handled with the same time complexity without
any preprocessing as we explain in Section 4.1. These solutions have the advan-
tage of being very space efficient, they require O(n) space. Their main drawback,
however, is that they are not output sensitive in the sense that they require Ω(n)
time regardless to the size of the solution set.

When the list of (t, d) pairs for which we are interested to find/study the
(t, d)-events is long, it may be cheaper, from a computational point of view, to
preprocess the time series into a data structure and then handling the queries.
However, the design of a compact data structure that allows efficient query
processing seems to be challenging task. The key idea of our approach is to index
a set of specials pairs of time indexes rather than all possible pairs. We say that a
pair of time indexes (i, j) is special with respect to time series A if the following
conditions hold: i < j, ai < min{ai+1, . . . , aj} and aj > max{ai, . . . , aj−1}. If a
(t, d)-event is also a special pair we say that it is a special (t, d)-event.

Let S be the set of special pairs of the time series A. We propose a data
structure that requires O(|S| + n) space/preprocessing time and handles query
AllPairs(t, d) in O(k+1) time, where k is the size of the solution set. In addition,
we propose a structure that requires O(|S| log |S|) space/preprocessing time and
process Beginning(t, d) in O(log n + f(log f + log t) + k) time, where f is the
number of distinct time indexes that are endpoints of special (t, d)-events and k
is the number of startpoints to be reported. Because of the symmetry between
startpoints and endpoints and the fact that f is the number of endpoints for a
restricted class of (t, d)-events(the special ones), we expect f to be smaller than
k, that is, we expect to pay logarithmic time per solution reported. In fact, our
experimental results are in accordance with this hypothesis.

The preprocessing time/space consumption of some of our solutions heavily
depend on the number of special pairs of the time series under consideration.
Thus, we investigate the expected value of this quantity. First, we prove that
the expected number of special pairs of a random permutation of {1, . . . , n},



712 C. Valentim, E.S. Laber, and D. Sotelo

is n − lnn with high probability. This result is interesting in the sense that
the number of special pairs of a time series with distinct values is equal to the
number of special pairs of the permutation of {1, . . . , n} in which the time series
can be naturally mapped on. In addition, we evaluated the number of special
pairs for 96 time series consisting of stock prices, sampled in a minute basis,
over a period of three years, from the Brazilian stock market. We observed that
the number of special pairs is, in average, 2.5 times larger than the size of the
corresponding time series.

Finally, we performed a set of experiments to evaluate the performance of our
algorithms. These experiments confirm our theoretical results and also reveal
some interesting aspects of our solutions that are not explicited by the underlying
theory.

Related Work. In the last decade, a considerable amount of research has been
carried on to develop data mining techniques for time series as thoroughly dis-
cussed in a recent survey by Fu [7]. An important research sub-field pointed out
by this survey asks for how to identify a given pattern (subsequence matching) in
the time series [5,12,14,10]. Though the problem studied here is related with this
line of research, our queries do not fit in the framework proposed in [5] so that
the available techniques do not seem to be adequate to handle them. In fact, one
single query (e.g. Beginning(t, d)) that we deal with could be translated into a
family of queries involving subsequences.

Our work is also closely related to the line of research that focus on identifying
technical patterns in financial time series [11,14]. Technical patterns as head
&shoulders, triangles, flags, among others, are shapes that are supposed to help
in forecasting the behaviour of stocks prices. Here we focus on a specific type
of pattern that is useful for the study of mean reversion processes that occur in
financial markets [3].

The problem of developing data structures to support Range Minimum
(Maximum) Queries (RMQ problem), as previously explained, is closely related
to our problems. The first data structure of linear size that can be constructed
in linear time and answer RMQ queries in constant time was discovered by Harel
and Tarjan [9]. Their structure, while a huge improvement from the theoretical
side, was difficult to implement. After this paper, some others were published
proposing some simpler, though still complex, data structures. A work from Ben-
der et al.[1] proposed the first uncomplicated solution for the RMQ problem. The
work by Fischer and Heun[6] improves the solution by Bender et. al. and also
present an experimental study that compares some available strategies.

Finally, our problem has some similarities to a classical computational geom-
etry problem, named the fixed-radius near neighbors problem. Given a set of
points n in a m-dimensional Euclidean space and a distance d, the problem con-
sists of reporting all pairs of points within distance not greater than d. Bentley
et al [2] introduced an algorithm that reports all k pairs that honor this property
in O(3mn + k). The same approach can be applied if a set {d1, d2, . . . , dm} of
maximum distances is given, one for each dimension. However, it is not clear
for us if similar ideas can be applied to generate all pairs within distance not
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less than d or, as in the case of our problem, not greater than d1 in the first
dimension and not less than d2 in the second.

Paper Organization. Section 2 introduces some basic concepts/notations that
will be used to explain our approach. In Section 3 and 4, we present, respectively,
our data structures to handle both queries AllPairs(t, d) and Beginnings(t, d).
In Section 5, we discuss some theoretical and experimental results related to the
number of special pairs in a time series and we also describe the experiments
executed to evaluate the peformance of our solutions. Finally, in Section 6, we
draw our conclusion and discuss some possible extensions.

2 Basic Concepts

In this section we present observations/results that are useful to handle both
queries AllPairs(t, d) and Beginning(t, d).

Our first observation is that it is easy to find all (t, d)-events that have a
given time index i as a starting point. For that, we need a data structure that
supports range maximum queries over the input A in constant time and with
linear preprocessing time/space, as discussed in the related work section. Having
this data structure in hands, we call the procedure GenEventStart, presented
in Figure 1, with parameters (i, i+1, i+ t). This procedure, when executed with
parameters (i, low, high), generates all (t, d)-events with startpoint i and with
endpoint in the range [low, high]. First the procedure uses the data structure to
find the time index j with maximum value in the range [low, high] of vector A. If
the deviation of (i, j) is smaller than d then the search is aborted because there
are no (t, d)-events that satisfy the required conditions. Otherwise, it reports
(i, j) and recurses on intervals [low, j − 1] and [j + 1, high].

The running time of the procedure is proportional to the number of recursive
calls it executes. The execution flow can be seen as a binary tree where each
node corresponds to a recursive call. At each internal node a new (t, d)-event
is generated. Since the number of nodes in a binary tree is at most twice the
number of internal nodes, it follows that the number of recursive calls is at most
2ki, where ki is the number of (t, d)-events that have startpoint i and endpoint in
the range [low, high]. Our discussion is summarized in the following proposition.

Proposition 1. Let ki be the number of (t, d)-events that have startpoint i
and endpoint in the range [low, high]. Then, the procedure GenEventsStart

(i,low,high) generates all these (t, d)-events in O(ki + 1) time.

We shall consider the existence of an analogous procedure, which we call
GenEventsEnd, that receives as input a triple (j, low, high) and generates all
(t, d) events that have j as an endpoint and startpoints in the range (low, high).

The following lemma motivates the focus on the special pairs in order to
handle queries AllPairs(t, d) and Beginning(t, d).

Lemma 1. Let (i, j) be a (t, d)-event. Then, the following conditions hold
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GenEventsStart(i,low,high)
If high ≥ low

j ← RMQ(low, high)
If aj − ai ≥ d (*)

Add (i, j) to the list of (t, d)-events (**)
GenEventsStart(i,low,j-1)
GenEventsStart(i, j+1,high)

End If

End If

Fig. 1. Procedure to generate (t, d)-events that have a given startpoint

i there is an index i∗ such that (i∗, j) is a (t, d)-event and i∗ is the startpoint
of a special (t, d)-event.

ii there is an index j∗ such that (i, j∗) is a (t, d)-event and j∗ is the endpoint
of a special (t, d)-event.

Proof. We just need to prove (i) because the proof for (ii) is analogous. Let i∗

be the time index of the element of A with minimum ai∗ among those with time
indexes in the set {i, . . . , j − 1}. In case of ties, we consider the largest index.
Because ai∗ ≤ ai, i ≤ i∗ < j and (i, j) is a (t, d)-event, we have that (i∗, j) is
also a (t, d)-event. Let k∗ be the time index of the element of A with maximum
value among those with time indexes in the set {i∗ +1, . . . , j}. The pair (i∗, k∗)
is both a special pair and a (t, d)-event, which establishes (i). �	

Our last result in this section shows that the set S of special pairs of a given
time series of size n can be generated in O(|S| + n) time. This is accomplished
by calling the pseudo-code presented in Figure 2 with parameters (1, n). First,
the procedure uses a RMQ data structure to compute in constant time the time
index i with the smallest value in the range [low, high]. At this point, it concludes
that there are no special pairs (x, y) with x < i < y because ax > ai. Then,
it generates all special pairs with startpoint i by invoking a modified version
of GenEventsStart. Next, it looks for, recursively, for special pairs with time
indexes in the range (low, i−1) and also for those with time indexes in the range
(i+ 1, high).

The procedure ModifiedGenEventsStart is similar to GenEventsStart but
for the following differences: it verifies whether aj > ai in line (*) and it adds
the pair to the list of special pairs in line (**) of the pseudo-code of Figure 1

This last result is summarized in the following proposition.

Proposition 2. Let S be the set of special pairs of a time series A of size n.
Then, S can be constructed in O(|S|+ n) time

3 The Query AllPairs(t, d)

We propose two algorithms to process query AllPairs(t, d), namely, AllPairs-
RMQ and AllPairs-SP. The first one relies on a data structure of size O(n) and
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GenSpecialPairs(low,high)
If high ≥ low

i← RMinQ(low, high)
ModifiedGenEventsStart(i, i+ 1, high)
GenSpecialPairs(low, i− 1)
GenSpecialPairs(i + 1, high)

End If

Fig. 2. Procedure to generate all special pairs

process AllPairs(t, d) in O(n + k) time, where k is the size of the solution set.
The second one requiresO(n+|S|) space and processAllPairs(t, d) in O(k) time,
where |S| is the number of special pairs of the time series under consideration.

3.1 Algorithm AllPairs-RMQ

AllPairs-RMQ builds, during its preprocessing phase, a data structure to support
range maximum queries over A. The algorithms spends O(n) time in this phase
to build a structure of O(n) size.

To process AllPairs(t, d), it scans the list A and for each time index i, it
calls GenEventsStart(i, i+ 1,min{i+ t, n}). It follows from Proposition 1 that
it process AllPairs(t, d) in O(n+k) time, where k is the number of (t, d)-events
in the solution set.

3.2 Algorithm AllPairs-SP

PreprocessingPhase. Let S denote the set of special pairs of the time seriesA =
(a1, ..., an). In it preprocessingphase, AllPairs-SPgenerates the setS and stores its
pairs, sorted by increasing order of its Δ-values, in a vector V ; ties are arbitrarily
broken. Furthermore, it builds an auxiliary RMQ data structure D of size O(|S|)
to be able to answer the following query: given two values t� and d�, report the
subset of special pairs withΔ-value at most t� and deviation at least d�. Finally, it
builds two auxiliary RMQ data structuresDmin andDmax of sizeO(n) to support,
respectively, GenEventsEnd and GenEventsStart procedure calls overA.

To handle the query AllPairs(t, d), we execute two phases. In the first one,
we retrieve all special (t, d)-events from V by using the data structure D. Then,
in the second phase, we use these special (t, d)-events and the structures Dmin

and Dmax to retrieve the other (t, d)-events. The two phases are detailed below.

Phase 1. Let k∗ be the time index of the last pair in V among those with Δ-
value at most t. 1 We use D to perform a set of maximum range queries to find
the (t, d)-events in V [1, .., k∗]. More precisely, let i be the index of V returned
by a range maximum query over V with input range [1, k∗]. If the deviation of

1 It must be observed that k∗ can be found in O(1) time, for a given t, by preprocessing
V with O(n) time/space consumption.
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the pair stored in V [i] is smaller than d we abort the search because no other
pair in V [1, .., k∗] has deviation larger than d. Otherwise, we add this pair to a
list L and we recurse on subvectors V [1, .., i− 1] and V [i+ 1, .., k∗]. At the end
of this phase the list L contains all special (t, d)-events.

Phase 2. This phase can be split into two subphases:

Phase 2.1. In this subphase, we generate the set of distinct startpoints of all
(t, d)-events. First, we scan the list L to obtain a list EL containing the distinct
endpoints of the special (t, d)-events in L. This can be accomplished in O(|L|)
time by keeping an 0− 1 vector to avoid repetitions among endpoints. Then, we
invoke the procedure GenEventsEnd(j, j − t, j − 1), which is supported by the
data structure Dmin, for every j ∈ EL. We keep track of the startpoints of the
(t, d)-events generated in this process by storing them in a list B. Again, we use
a 0 − 1 vector to avoid repetitions among startpoints. It follows from item (ii)
of Lemma 1 that list B contains the startpoints of all (t, d)-events.

Phase 2.2. In this subphase, we generate all (t, d)-events that have startpoints
in B. For that, we invoke GenEventsStart(i, i+ 1, i + t) for every every i ∈ B.
One must recall that GenEventsStart is supported by the data structure Dmax.
The list of pairs of indexes (i, j) returned by GenEventsStart will be the (t, d)-
events we were looking for.

The results of this section can be summarized in the following theorem.

Theorem 1. The algorithm AllPairs-SP generates all the k solutions of the query
AllPairs(t, d) in O(1 + k) time and with O(|S|+ n) preprocessing time/space.

4 The Query Beginning(t,d)

We propose three algorithms that differ in the time/space required to process
Beginning(t, d).

4.1 Beg-Quick

This algorithm scans the time series A checking, for each time index i, whether
i is the startpoint of a (t, d)-event. To accomplish that it makes use of a list Q
of size O(t) that stores some specific time indexes. We say that a time index j
is dominated by a time index k if and only if k > j and ak ≥ aj . The algorithm
mantains the following invariants: right before testing whether i−1 is a startpoint
of a (t, d)-event, the list Q stores all time indexes in the set {i, . . . , (i − 1) + t}
that are not dominated by other time indexes from this same set. Moreover, Q
is simultaneously sorted by increasing order of time indexes and non-increasing
order of values.

Due to these invariants, the time index of the largest aj , with j ∈ {i, . . . , (i−
1) + t} is stored at the head of Q so that we can decide whether i − 1 belongs
to the solution set by testing if aHead(Q) − ai−1 is at least d. In the positive
case, i − 1 is added to the solution set. To guarantee the maintainance of these
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invariants, for the next loop, the algorithm removes i from the head of Q (if it
is still there); it removes all time indexes dominated by i+ t and, finally, it adds
i+ t to the tail of Q.

The algorithm runs in O(n) time. To see that note that each time index is
added/removed to/from Q exactly once. The pseudo-code for the algorithm is
presented in Figure 3. The first block is used to intitialize the list Q so that it
respects the above mentioned invariants, right before testing whether 1 belongs
to the solution set.

Add time index t+ 1 to Q
For k = t, ..., 2

If ak is larger than aHead(Q) then Add k to the head of Q
End For
If (1, head(Q)) is a (t, d)-event then Add time index 1 to the solution set
For i = 2, .., n− 1

If head(Q) = i, remove i from the head of Q
If i+ t ≤ n

Traverse Q from its tail to its head removing every time index j that is
dominated by i+ t
Add (i+ t) to the tail of Q

End If
If (i, head(Q)) is a (t, d)-event then Add i to the solution set

End For

Fig. 3. The Procedure Beg-Quick

4.2 Algorithm Beg-SP

Preprocessing Phase. First, the set S of special pairs is generated. Then, S
is sorted by decreasing order of deviations. Next, we build an ordered binary
tree T where each of its nodes is associated with a subinterval of [1, n − 1].
More precisely, the root of T is associated with the interval [1, n− 1]. If a node
v is associated with an interval [i, .., j] then the left child of v is associated
with [i, -(i + j)/2.] and its right child is associated with [-(i + j)/2. + 1, j].
Furthermore, each node of T points to a list associated with its interval, that is,
if v is associated with an interval [i, j] then v points to a list Li,j . Initially, all
these lists are empty.

Then, the set S is scanned in non-increasing order of deviations of its special
pairs. If a special pair s has Δ-value t then s is appended to all lists Li,j such
that i ≤ t ≤ j. By the end of this process each list Li,j is sorted by non-
increasing order of the deviations of its special pairs. Finally, we scan each list
Li,j and remove a special pair whenever its endpoint has already appeared as
an endpoint of another special pair.

The size of this structure is O(min{n2, |S| logn}) because each special pair
may occur in at most logn lists Li,j and the size of each of these n lists is upper
bounded by n because for each endpoint at most one special pair is stored.
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To handle a query Beginning(t, d) we execute two phases. In the first one, we
retrieve the endpoints of the special (t, d)-events. In the second phase, we use
these endpoints to retrieve the startpoints of the (t, d)-events.

The correctness of this approach relies on item (ii) of Lemma 1 because if i is
a startpoint of a (t, d)-event then there is an endpoint j∗ of a special (t, d)-event
such that (i, j∗) is a (t, d)-event. As a consequence, the endpoint j∗ is found at
Phase 1 and it is used to reach i at Phase 2. In the sequel, we detail these phases

Phase 1. First, we find a set K of nodes in T whose associated intervals form
a partition of the interval [1, t]. If n = 8 and t = 6, as an example, K consists of
two nodes: one associated with the interval [1, 4] and the other with the interval
[5, 6]. It can be shown that it is always possible to find in O(log n) time a set K
with at most log t nodes. One way to see that is to realize that tree T is exactly
the first layer of a 2D range search tree (see e.g. Chapter 5 of [4]).

Then, for each node v ∈ K we proceed as follows: we scan the list of special
pairs associated with v; if the current special pair in our scan has deviation larger
than d, we verify whether it has already been added to the list of endpoints Ef . In
the negative case we add it to Ef ; otherwise, we discard it. The scan is aborted
when a special pair with deviation smaller than d is found. This step spends
O(|Ef | log t) because each endpoint may appear in at most log t lists.

Phase 2. The second phase can be split into three subphases:

Phase 2.1. In the first subphase, we sort the endpoints of Ef in
O(min{n, |Ef | log |Ef |}) time by using either a bucket sort or a heapsort al-
gorithm depending whether |Ef | is larger than n/ logn or not. Let e1 < e2 <
. . . < ef be the endpoints in Ef after applying the sorting procedure.

Phase 2.2. To generate the beginnings efficiently, it will be useful to calculate
the closest larger predecessor (clp) of each endpoint ej ∈ Ef . For j = 1, . . . , |Ef |,
we define clp(ej) = ei∗ , where i∗ = max{i|ei ∈ Ef and ei < ej and aei ≥
aej}. To guarantee that the clp’s are well defined we assume that Ef contains
an artificial endpoint e0 such that e0 = 0 and ae0 = ∞. As an example, let
E5 = {e1, e2, e3, e4, e5} be a list of sorted endpoints, where (e1, e2, e3, e4, e5) =
(2, 3, 5, 8, 11) and (ae1 , ae2 , ae3 , ae4 , ae5) = (8, 5, 7, 6, 4). We have that clp(e4) =
e3 and clp(e3) = e1. The clp’s can be calculated in O(|Ef |) time.

Phase 2.3. To generate the beginnings of the (t, d)-events from the endpoints in
Ef , the procedure presented in Figure 4 is executed. The procedure iterates over
all endpoints in Ef and it stores in the variable CurrentHigh the smallest time
index j for which all beginnings larger than j have already been generated. This
variable is initialized with value ef − 1 because there are no beginnings larger
that ef − 1. For each endpoint e, the procedure looks for new startpoints in the
range [max{ei− t, clp(ei)}, CurrentHigh]. It does not look for startpoints in the
range [ei−t, clp(ei)] because every startpoint in this range that can be generated
from ei can be also generated from clp(ei) while the opposite is not necessarily
true. Indeed, this is the reason why we calculate the clp’s – they avoid to generate
a startpoint more than once. Next, the variable CurrrentHigh is updated and
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a new iteration starts. This subphase can be implemented in O(|Ef |+ k) time,
where k is the number of beginnings generated.

Our discussion is summarized in the following theorem.

Theorem 2. The algorithm Beg-SP generates all the k solutions of the query
Beginning(t, d) in O(log n+f ·(log f+log t)+k) time, where f is the number of
distinct endpoints of special (t, d)-events. Furthermore, the algorithm employs a
data structure of size O(min{n2, |S| log |S|+n}) that is built in O(|S| log |S|+n)
time in the preprocessing phase.

As we have already mentioned, we expect f to be smaller than k due to the
symmetry between startpoints and endpoints, and the fact that f is the number
of endpoints for a restricted class of (t, d)-events(the special ones) while k is the
number of startpoints of unrestricted (t, d)-events. In fact, we have observed this
behavior, f < k, for more than thousand queries executed over real time series
as described in Section 5.2.

CurrentHigh ← ef − 1
For i = f downto 1.

GenEventsEnd (ei,max{ei − t, clp(ei)}, CurrentHigh)
CurrentHigh ← max{ei − t, clp(ei)}

End For

Fig. 4. Procedure to generate the beginnings

4.3 Beg-Hybrid

Another way to process query Beginning(t, d) is to combine the algorithms
AllPairs-SP and Beg-SP as follows:

1. Execute the preprocessing phase of AllPairs-SP, skipping the construction
of data structure Dmax since it is not useful for processing Beginning(t, d).

2. Apply Phase 1 of AllPairs-SP. At the end of this phase we have a list L
containing all the special (t, d) events.

3. Scan the list L to obtain the list Ef containing the distinct endpoints of the
specials (t, d)-events. Apply Phase 2 of Beg-SP.

The main motivation of this approach, when contrasted with Beg-SP, is the econ-
omy of a logn factor in the space consumption of the underlying data structure.
Another motivation is the fact that it uses the same date structure employed
by AllPairs-SP so that both AllPairs(t, d) and Beginning(t, d) can be pro-
cessed with a single data structure. Its disadvantage, however, is that it requires
O(kmin{t, f}) time, rather than (log n+ f · (log f + log t) + k) time, to process
Beginning(t, d), where k is the size of the solution set and f is the number of
distinct endpoints of special (t, d)-events.

The correctness of Beg-Hybrid follows directly from the correctness of both
AllPairs-SP and Beg-SP.
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5 Experimental Work

5.1 On the Number of Special Pairs

Since the preprocessing time and space of some of our data structures depend on
the number of special pairs, we dedicate this section to discuss some theoretical
and practical results related to this quantity.

Clearly, the number of special pairs of a time series is at least 0 and at most
n(n−1)/2, where the lower(upper) bound is reached for a decreasing(increasing)
series. The following proposition shows that the expected number of special
pairs for a random permutation of the n first integers is n−Hn. This result is
interesting in the sense that the number of special pairs of a time series, with
distinct values, is equal to the number of special pairs of the permutation of
{1, . . . , n} in which the time series can be naturally mapped on.

Proposition 3. Let S be a list of special pairs constructed from a time series
taken uniformly at random from a set of n elements. Then, the expected size of
S is n−Hn, where Hn is the n-th harmonic number.

Proof. Let E[X ] represent the expected size of list S of special pairs. Further-
more, let Xi,j denote a random indicator variable that stores 1 if the pair of time
indexes (i, j) belongs to S and 0 otherwise.

From the previous definitions, E[X ] = E[
n−1∑
i=1

n∑
j=i+1

Xi,j ].

By the linearity of expectation, it follows that:

E[

n−1∑
i=1

n∑
j=i+1

Xi,j ] =

n−1∑
i=1

n∑
j=i+1

E[Xi,j ].

Since E[Xi,j ] =
1

(j−i+1)(j−i) = 1
j−i −

1
j−i+1 , we have:

E[X] =
n−1∑
i=1

n∑
j=i+1

(
1

j − i
− 1

j − i+ 1

)
=

n−1∑
i=1

(
1− 1

n− i+ 1

)
= n−

n∑
i=1

1

i
= n−Hn.

We shall mention that it is possible to show that the cardinality of S is highly
concentrated around its mean value.

Since our research is strongly motivated by applications that arise in finance
domain, we have also evaluated the number of special pairs for time series con-
taining the prices of 48 different Brazilian stocks, sampled in a minute basis,
over a period of three years. We have also considered the number of special pairs
for the inverted time series. These inverted series shall be used if one is looking
for negative variations rather than positive ones. We measured the ratio between
the number of special pairs and the size of the underlying time series for each of
these 96 series. We observe that this ratio lies in the range [0.5, 7], with median
value 2.50, and average value 2.75.

The results of this section suggest that the data structures that depend on
the number of special pairs shall have a very reasonable space consumption for



Data Structures for Detecting Rare Variations in Time Series 721

practical applications. We shall note that we can always set an upper bound on
the number of special pairs to be stored and recourse to a structure that do not
use special pairs if this upper bound is reached.

5.2 On the Preprocessing/Querying Elapsed Time

In this section we present the experiments that we carried on to evaluate the
performance of the proposed data structures.

For these experiments, we selected, among the 96 time series available, those
with the largest size, which accounts to 38 times series, all of them with 229875
samples. Our codes were developed in C++, using compiler o g++ 4.4.3, with
the optimization flag -O2 activated. They were executed in a 64 bits Intel(R)
Core(TM)2 Duo CPU, T6600 @ 2.20GHz, with 3GB of RAM.

To support RMQ’s we implemented one of the data structure that obtained
the best results in the experimental study described in [6]. This data structure
requires linear time/space preprocessing and handles RMQ’s over the range [i, j]
in O(min{logn, j − i}) time.

The following table presents some statistics about the time(ms) spent in the
preprocessing phase of our algorithms.

Algorithm Min Time Average Time Max Time

AllPairs-RMQ 7.8 8.7 10.1
Beg-Hybrid 44 128 302
Beg-SP 165 681 1601

Beg-Quick N/A N/A N/A

Experiments with Query Beginning(t, d). In our experiments, we also in-
cluded a naive method, denoted by Beg-Naive, that for each time index i, it
looks for the first time index j in the interval [i+ 1, i+ t] such that aj − ai ≥ d.
Clearly, this method spends O(nt) to process Beginning(t, d).

Since we are interested in rare events, we focused on pairs (t, d) that induce
a small number of solutions for Beginning(t, d), that is, the size of the output
is a small percentage of the input’s size. For each of the 38 series, we executed
30 queries, with 1 ≤ t ≤ 61.

The elapsed times are plotted in Figure 5. The horizontal axis shows the ratio
(in percentage) between the size of the output and the size of the input series
while the vertical axis shows the query elapsed time.

First, we observe that Beg-Naive is hugely outperformed by the other meth-
ods. The dispersion in the results of Beg-Quick is due to the dependence of its
query elapsed time with the value of t. We observe also that algorithm Beg-SP
outperforms Beg-Quick when the size of the output is much smaller than the
input’s size. As this ratio gets larger, the difference becomes less significant. In
general, when the size of the output is p% of the input’s size, Beg-SP is 10/p
times faster, in average, than Beg-Quick. As an example, when p = 0.1%, Beg-SP
is 100 times faster.
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It is also interesting to observe that Beg-Hybrid, though slower than Beg-SP,
also yields a reasonable gain when compared with Beg-Quick to detect very rare
variations.
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Recall that Theorem 2 states that Beg-SP spends O(log n+f ·(log f+log t)+k)
time to process Beginning(t, d), where k is the size of the solution set and f is
the number of distinct endpoints of special (t, d)-events. Hence, it is interesting to
understand the relation between f and k. We observed that this ratio is smaller
than 1 for all queries that produced at least 10 outputs. Thus, one should expect
to pay O(log k + log t) time per output generated by algorithm Beg-SP.

Experiments with Query AllPairs(t, d).We executed 30 queriesAllPairs(t, d)
for each of the 38 series with 229875 samples. The elapsed times are plotted in Fig-
ure 6. As expected, AllPairs-SP outperforms AllPairs-RMQ when the size of the
output is much smaller than the size of the time series. We have not performed
other experiments due to the lack of space and because we understand that the
theoretical analysis of AllPairs-SP and AllPairs-RMQ succeed in explaining their
behavior.

6 Conclusions

In this paper, we proposed and analyzed algorithms/data structures to detect
rare variations in time series. Our solutions combine data structures that are
well known in the computational geometry community, as those that support
RMQ’s, with the notion of a special pair. We present some theoretical results
and carried on a set of experiments that suggest that our solutions are very
efficient in terms of query elapsed time and are compact enough to be used in
practical situations.

Although we focused on two particular queries, Beginning(t, d) and AllPairs
(t, d), the approach presented here can be extended to other queries with the
same flavor. As a future work, we aim to investigate how to extend our techniques
to deal efficiently with multiple time series and with queries that should count
the number of solutions rather than reporting them.
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Abstract. Time-series classification is a field of machine learning that
has attracted considerable focus during the recent decades. The large
number of time-series application areas ranges from medical diagnosis up
to financial econometrics. Support Vector Machines (SVMs) are reported
to perform non-optimally in the domain of time series, because they suf-
fer detecting similarities in the lack of abundant training instances. In
this study we present a novel time-series transformation method which
significantly improves the performance of SVMs. Our novel transforma-
tion method is used to enlarge the training set through creating new
transformed instances from the support vector instances. The new trans-
formed instances encapsulate the necessary intra-class variations required
to redefine the maximum margin decision boundary. The proposed trans-
formation method utilizes the variance distributions from the intra-class
warping maps to build transformation fields, which are applied to series
instances using the Moving Least Squares algorithm. Extensive experi-
mentations on 35 time series datasets demonstrate the superiority of the
proposed method compared to both the Dynamic Time Warping version
of the Nearest Neighbor and the SVMs classifiers, outperforming them
in the majority of the experiments.

Keywords: Machine Learning, Time Series Classification, Data-Driven
Transformations, Invariant Classification.

1 Introduction

Time series classification is one of the most appealing research domains in ma-
chine learning. The generality of interest is influenced by the large number of
problems involving time series, ranging from financial econometrics up to medical
diagnosis [1]. The most widely applied time series classifier is the nearest neigh-
bor (NN) empowered with a similarity/distance metric called Dynamic Time
Warping (DTW), hereafter jointly denoted as DTW-NN [2]. Due to the accu-
racy of DTW in detecting pattern variations, DTW-NN has been characterized
as a hard-to-beat baseline [3].

Support Vector Machines (SVMs) are successful classifiers involved in solving
a variety of learning and function estimation problems. Yet, experimental studies
show that it performs non-optimally in the domain of time series [4]. We explore
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an approach to boost the classification of time series using SVMs, which is di-
rectly inspired by the nature of the problem and the reasons why SVMs fail to
build optimal decision boundaries. In most time series datasets, the variations of
instances belonging to the same class, denoted intra-class variation, are consider-
ably numerous. Variations appear in different flavors. A pattern of a signal/time
series can start at various time points (translational variance) and the duration
of a pattern can vary in length (scaling variance). Even more challenging, such
variances can partially occur in a signal, in multiple locations, by unexpected di-
rection and magnitude of change. There exist more, theoretically infinitely many,
possible variations of a particular class pattern, compared to the present num-
ber of instances in the dataset. Ergo, such lack of sufficient instances to cover
all the possible variations can affect the maximum margin decision boundary in
under-representing the ideal decision boundary of the problem.

In order to overcome the lack of instances, the insertion of virtual transformed
instances to the training set has been proposed. In the case of SVMs, support
vectors are transformed/deformed, the new virtual support vectors added back
to the training set and the model is finally retrained [5,6]. An illustration of
the effect of inserting virtual instances and its impact on redefining the decision
boundary is shown in Figure 1. The most challenging aspect of this strategy is to
define efficient transformation functions, which create new instances from exist-
ing ones, enabling the generated instances to represent the necessary variations
in the feature space.

The main contribution of our study is in defining a novel instance transfor-
mation method which improves the performance of SVMs in time series classi-
fication. In our analysis the transformations should possess four characteristics.
First the transformations should be data-driven, concretely an analysis of the
intra-class variance distributions should be taken into account. Secondly, local-
ized variations are required since the variations of series instances appears in
forms of local deformations. Thirdly, in order to overcome the time complex-
ity issues, only a representative subset of the instances should be selected for
producing variations. Finally the transformations should accurately redefine the
decision boundary without creating outliers or over-fit the training set.

The novel transformation method we introduce satisfies all the above raised
requirements. The proposed method analyses the translational variance distribu-
tions by constructing warping alignment maps of intra-class instances. The time
series is divided into a number of local regions and transformation fields/vectors
are created to represent the direction and magnitude of the translational variance
at every region center, based on the constructed variance distributions. Finally,
the application of the transformation fields to time series is conducted using the
Moving Least Squares algorithm [7].

The efficiency of the proposed method is verified through extensive experi-
mentation on 35 datasets from the UCR collection1. Our method clearly outper-
forms DTW-NN on the vast majority of challenging datasets, while being on a
par competitive with DTW-NN in the easy (low error) ones. Furthermore, the

1 www.cs.ucr.edu/~eamonn/time_series_data

www.cs.ucr.edu/~eamonn/time_series_data
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Fig. 1. a) An ideal max-margin decision boundary for the depicted binary (0/1) clas-
sification problem. Circled points denote support vectors. b) An actual version of the
problem where most class 1 instances are missing. The actual max-margin decision
boundary differs from the ideal boundary in a). c) The under-fitting of the actual
boundary (solid) to represent the ideal boundary (dots) produces the shaded misclas-
sification region. d) Transforming the class 1 instance in coordinate (3,3) and inserting
the transformed instances (pointed by arrows) back to the dataset, helps redefine the
new max-margin boundary (solid). Consecutively, the area of the misclassification re-
gion is reduced.

results indicate that our proposed method always improves the default SVM.
The principal contributions of the study can be summarized as:

– A novel time series transformation method is presented
– For the first time, the approach of Invariant SVMs is proposed in time-series

domain
– Extensive experimentations are conducted to demonstrate the superiority of

the proposed method

2 Related Work

2.1 Time Series Classification

Time series classification has been elaborated for more than two decades and
a plethora of methods has been proposed for the task. Various classifiers have
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been applied, ranging from neural networks [8,9] to bayesian networks [10], from
decision trees [11] to first-order logic rules [12], and from Hidden Markov Models
[13] to tailored dimensionality reduction [14].

Dynamic Time Warping. Despite the major effort spent in building accu-
rate time series classifiers, still the nearest neighbor classifier combined with a
similarity technique called Dynamic Time Warping (DTW) was reported to pro-
duce more accurate results [15]. DTW overcomes the drawback of other methods
because it can detect pattern variations, such as translations/shifts, size and de-
formations. The metric builds an optimal alignment of points among two time
series by dynamically constructing a progressive cost matrix. It computes the
the path of the minimal overall point pairs’ distance [2]. Adding warping window
size constraints have been reported to occasionally boost the classification [16].
In contrast to DTW-NN, our study aims at building a competitive max-margin
classifier.

2.2 Invariant SVMs Classification

Even though the challenge of handling invariance in time series classification
is rather new, it has, however, been applied long ago to the domain of image
classification. Significant effort to the problem of invariant classification was
followed by the SVM community, where one of the initial and most successful
approaches relies on creating virtual instances by replicating instances. Typi-
cally the support vectors are transformed creating new instances called Virtual
Support Vectors (VSV), with the aim of redefining the decision boundary [5,17].
VSV has been reported to achieve optimal performance in image classification
[6]. An alternative technique in handling variations relies in modifying the kernel
of the SVM, by adding a loss term in the dual objective function. Such a loss
enforces the decision boundary to be tangent to the transformation vector [6,18].
Other approaches have been focused on selecting an adequate set of instances
for transformation [19]. Studies aiming the adoption of SVM to the context of
time series have been primarily addressing the inclusion of DTW as a kernel
[20,21]. Unfortunately, to date, all proposed DTW-based kernels we are aware
of, are not efficiently obeying the positively semi-definite requirement [4]. The
DTW based kernels have been reported to not perform optimally compared to
state-of-art [22]. Generating new instances based on the pairwise similarities has
also been applied [4], with limited success compared to DTW-NN. In compari-
son, our method applies a novel transformation technique along with the VSV
approach.

2.3 Instance Transformations

Intentional transformations and deformations of time series has shown little in-
terest because of the limited studies of VSV classifiers in the domain. Among
the initiatives, morphing transformation from a time series to another has been
inspected [23]. However, deformations have been more principally investigated
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in the domain of images. Moving Least Squares is a state-of-art technique to pro-
duce realistic deformations [7]. In this work we use the Moving Least Squares
method for applying the transformations over series.

3 Proposed Method

3.1 Principle

In order to boost the classification accuracy our method needs to generate new
instances via transformations. In order to capture the necessary patterns’ intra-
class variations, the transformation technique should aim for certain character-
istics and requirements. In our analysis, the transformations should obey to the
following list of properties:

– Data-Driven: Variance should be generated by analyzing the similarity
distribution of instances inside a class.

– Localized: Intra-class variations are often expressed in local deformations,
instead of global variations.

– Selective: Transforming all the instances becomes computationally expen-
sive and many instances can be redundant w.r.t to the decision boundary.
Therefore it is crucial to select only a few class-representative instances for
generating variations.

– Accurate: The transformed instances should help redefine the decision
boundary, however care should be payed to avoid excessive magnitudes of
transformation, in order to avoid generating outliers.

3.2 Method Outline

The transformation method and the instance generation technique we are intro-
ducing, does answer all the requirements we raised in section 3.1. Initially we
define the local transformation fields in subsection 3.3, which are used to trans-
form time series using the Moving Least Squares algorithm. The transformation
fields are constructed by measuring the translational variance distributions sub-
section 3.5. The variance distributions are obtained by building the intra-class
warping maps, defined in subsection 3.4. Finally, the transformation fields are
applied only to the support vectors following the Virtual Support Vector classi-
fication approach, defined in subsection 3.6.

3.3 Transformation Fields and Moving Least Squares

In this subsection we present only the technicalities of how a time-series can be
transformed by a particular localized transformation, while the actual method
that creates intelligent transformation magnitudes will be introduced in forth-
coming subsections. Variations of time series are often occurring in localized
forms, meaning that two series differ only in the deformation of a particular
subsequence rather than a global difference. In order to include the mechanism
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of localized variances we first introduce the concept of a transformation field,
denoted F . We split the time series into K many regions, and then we define the
left/right translation that is required for each region. Each region will be trans-
formed dedicatedly, while the transformation will be applied to the centroid of
the region. Such centroids are denoted as control points. The amount of trans-
lational transformation applied to every control point (hence every region) is
denoted as the transformation field vector F ∈ RK . For instance Figure 2 shows
the effect of applying a transformation field on two regions of a time series, where
each region is denoted by its representative control point.

Fig. 2. Demonstrating the effect of applying a transformation field vector of values
[+20 -10] to the control points positioned at [95 190] highlighted with vertical lines,
on an instance series from the Coffee dataset. The transformation algorithm (MLS) is
described in Algorithm 1.

The mechanism of applying a transformation field to a series is conducted
via the deformation algorithm called Moving Least Squares (MLS), which is
described in Algorithm 1. This algorithm is used to transform one signal that
passes through a set of points P , called control points. The transformation is de-
fined by a new set of control points Q, which are the transformed positions of the
control points P [7]. The control points Q are obtained, in our implementation,
by applying transformation fields F translations to the original control points
P . MLS applies the transformation by initially creating one local approximation
function lv for each point v of the time series. Thus, for every point we solve the
best affine transformations that approximates the new control points Q [line 3 of
Alg 1]. There is a weight decay in the importance of the control points compared
to the point for which we are defining a local transformation, approximation of
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Algorithm 1. MLS [7]

Require: A series: S, A transformation field: F, Control Points: P
Ensure: New transformed instance: T
1: Q← [P1 + F1, P2 + F2, ...]
2: for v = 1 to |S| do
3: Search lv that minimizes

argminlv

∑|P |
i=1 wi|lv(Pi)−Qi|2 , where wi =

1
|Pi−v|2α

4: T [v]← lv(S[v])
5: end for
6: return T

near control points get more impact. The speed of decay is controlled by a hyper
parameter α.

Once the local transformation function lv is computed, then the value at point
v in the transformed series is computed by applying the searched transformation
function over the value in the original series. In order for the transformed series
to look as realistic compared to the original series, the transformation should be
as rigid as possible, that is, the space of deformations should not even include
uniform scaling, therefore we follow the rigid transformations optimization [7] in
solving line 3 of Alg. 1. This subsection only introduced the transformation fields
and the underlying algorithm used to transform a series, while the successive
subsections will show how to search for the best magnitudes of the transformation
fields vector elements, in order for the transformed instances to encapsulate intra-
class variations.

3.4 Warping Maps

Before introducing the main hub of our method concerning how the variance-
generating transformation fields are created, we initially need to present some
necessary concepts and means, which are used in the successive subsection to
analyze the intra-class variance.

DTW is an algorithm used to compute the similarity/distance between two
time series. A cost matrix, denoted W, is build progressively by computing the
subtotal warping cost of aligning two series A and B. The cost is computed
incrementally backwards until reaching a stopping condition in aligning the first
points of the series. The overall cost is accumulatively computed at the topmost
index value of the matrix, whose indices correspond to the length of series.

DTW(A,B) = Wlength(A),length(B)

W1,1 = (A1 −B1)
2

Wi,j = (Ai −Bj)
2 +min(Wi−1,j ,Wi,j−1,Wi−1,j−1) (1)

An optimal warping path between series A and B, defined as τA,B or here
shortly τ , is a list of aligned indexes of points along the cost matrix. The sum
of distances of the aligned points along the warping path should sum up to the
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exact distance cost of DTW. The list of the warping path indexes pairs (i, j)
corresponds to the chain of the recursive calls in the cost computation Wi,j . The
sum of the distances among the values of the aligned indexes of two series, yields
the minimum distance, which is equal to the DTW formulation.

τ(A,B) = {(i, j) | Wi,j called in the chain of recursion of DTW (A,B)} (2)

A warping map, denoted M , is a square matrix whose elements are built by
overlapping the warping paths of all-vs-all instances in an equi-length time series
dataset. In this overlapping context, a cell of the warping map matrix denotes
how often a warping alignment occur at that indexe. Equation 3 formalizes the
procedure of building a warping map as a superposition (frequency) of warping
paths of all time series pairs A,B from dataset S.

M(i, j)← | {(A,B) ∈ S2 | (i, j) ∈ τ(A,B)} | (3)

A filtered warping map is created similarly as shown in Algorithm 2, where we
filter only those warping paths that are either right or left aligned at a specific
point. For instance, if we need to filter for right alignment at a point P, we need
to build the DTW warping of any two series pairs, denoted τ , and then check
if the aligned index at the second series is higher than (right of) the index on
the first series. For instance, the notation τ(A,B)P denotes the aligned index at
series B corresponding to time P of first series A.

Algorithm 2. FilteredWarpingMap

Require: Dataset of time series S, Control Point P , Direction D
Ensure: Filtered warping map M
1: if D = right then
2: M(i, j)← | {(A,B) ∈ S2 | (i, j) ∈ τ (A,B) ∧ P < τ (A,B)P } |
3: else
4: M(i, j)← | {(A,B) ∈ S2 | (i, j) ∈ τ (A,B) ∧ P ≥ τ (A,B)P } |
5: end if
6: return M

In our forthcoming analysis we build warping paths by providing a filtered
dataset of instances belonging to only one class. Therefore we will construct one
warping map per class.

3.5 Variance Distribution Analysis and Creation of Transformation
Fields

In this section we present the main method of creating the transformation, which
is be based on the analysis of the variance distributions of warping paths. The
transformation fields represent local perturbation vectors of the predefined re-
gions, R many, by translating the representative control points. Each control
point/region is translated both left and right, therefore creating 2 × R total
transformation fields. The amount of translational transformation to be applied
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to every region is computed by making use of the warping maps. For each re-
gion, Ri, we filter in turn the right and left warping paths of instance warping
alignments at that region, in order to analyze the general left/right translational
variances of the warping alignments on other regions as an impact of a trans-
formation at Ri. An illustration is found on Figure 3. The time series is divided
into three regions defined by their centroid control points. In the image, part
b), c), d) we show the filtered warping maps for the right warping alignments
at every control points. Please note that three more filtered warping maps could
be created for left alignments, but are avoided due to lack of space.

Once we built the warping map, we can successively construct the distribution
of the warped alignments at every control points. For every region where we
apply left/right translational perturbations, the transformation field is created
to be equal to the means of the warped points, as an impact of the perturbation.
The means are selected as transformation field, because they represents the
tendency of variations at every control point. An illustration of the distributions
is depicted in Figure 4. Only two distribution plots are shown belonging to the
warping maps in Figure 3, part b) and c).

Algorithm 3. ComputeTransformationFields

Require: Dataset of time series: S, A class: label, A list of control points CP
Ensure: List of transformation fields: L
1: L← ∅
2: Slabel ← {A ∈ S | A has class label}
3: for P ∈ CP do
4: for direction ∈ {left, right} do
5: M ←FilteredWarpingMap(Slabel, P, direction) from Algorithm 2
6: for P ′ ∈ CP do
7: Fj ← 1

‖Mj,∗‖
∑|Slabel|

k=1 (Mj,k · (k − P ′)) , j ∈ [1...|CP |]
8: end for
9: L← L ∪ {F}
10: end for
11: end for
12: return L

For instance, the means of the distributions, which also form transformation
fields at image a), represents the warping distributions as an impact of pertur-
bation of R1 are [34 24 0]. We can conclude that a right perturbation at R1

causes a right translational impact on R2, but fades away at R3. Therefore the
transformations of instances at R1, will be in proportional to this distribution.
Similarly in image b) there is a perturbation on R2, which has a stronger impact
on R1 than on R3.

The Algorithm 3 describes the creation of transformation fields. For every
control point [line 3], we analyze the right and left variations [line 4] and get
respective filtered warping maps [line 5]. The impact of such variation on other
control points [line 6] is taken into consideration by the weighted mean variance
at each other control point [line 7].
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Fig. 3. An illustration concerning the warping map belonging to label 0 of the OSULeaf
dataset. The time series are divided into three region R1, R2, R3 for analysis. The center
of each region is defined as a control point on time indices [71,213,355]. a) All-vs-all
warping map. b) Warping map created by filtering only right warping paths at control
point of R1 at index 71. c) Warping map at control point of R2 at index 213. d) A
similar right warping filter of R3 at 355.

3.6 Learning and Virtual Support Vectors

The defined transformation fields are used during the classification of time series.
Even though in principle various classifiers can benefit from larger training set,
still transforming all instances deteriorates the learning time of methods. SVMs
have a crucial advantage because they point out the important instances (sup-
port vectors) which are needed to be transformed. In our study only the support
vectors of a SVM model are transformed, called Virtual Support Vectors (VSV)
[5]. Such selective approach ensures that the decision boundary is redefined only
by instances close to it, hence the support vectors. The training set is extended
to include MLS transformations of the support vectors as shown in Equation 4.
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Fig. 4. Approximation with Gaussian Probability Density Functions (PDF) regarding
the warping distribution of filtered warping maps in Figure 3, images b and c. a) The
warping distribution as a result of right-warping occuring at R1/CP1. b) The warping
distribution as a result of right-warping occuring at R2/CP2.

Given a list of control points, denoted CP, and a list of transformation fields,
denoted TF , a transformation scale factor μ, then Equation 4 represents the
addition of transformed support vectors obtained by building a model, denoted
svmModel, from the training set Strain.

S∗
train = Strain ∪ {MLS (sv, μ · v,CP) | sv ∈ supportV ectors(svmModel)

∧ v ∈ TFlabel(sv)} (4)

Algorithm 4 describes the classification procedure in pseudo code style. The
values of the transformation scales are computed by hyper-parameter search on
a validation split search during the experiments.

4 Experimental Setup

In order to evaluate the performance of our proposed method, denoted as In-
variant SVM, or shortly ISVM, we implemented and evaluated the following set
of baselines:

– SVM: The default SVM is a natural choice for a baseline. The performance
of our method compared to the standard SVM will give us indications on
the success of redefining the decision boundaries, by injecting transformed
support vectors.

– DTW-NN: Characterized as a hard-to-beat baseline in time series classifi-
cation, which has been reported to achieve hard-to-beat classification accu-
racy [15]. The relative performance of our method compared to DTW-NN
will give hints whether a refined maximum-margin is competitive, or not.
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Algorithm 4. LearnModel

Require: Training set of time series: Strain, SVM hyper parameters: θ, Transformation
Fields: TF , Control Points: CP , Transformation Scale: μ

Ensure: SVM model: svmModel
1: svmModel ← svm.train(Strain, θ)
2: for sv ∈ supportV ectors(svmModel) do
3: label ← sv.label
4: TFlabel ← Field vectors of TF for class label
5: for v ∈ TFlabel do
6: V SV ←MLS(sv, μ× v, CP ) from Algorithm 1
7: Strain ← Strain ∪ {V SV }
8: end for
9: end for
10: svmModel ← svm.train(Strain, θ)
11: return svmModel

The UCR collection of time series dataset was selected for experimentation.
Very few large datasets whose transformation fields creation was excessively
time consuming were omitted. All the datasets were randomly divided into five
subsets/folds of same size (5-folds cross-validation). Each random subset was
stratified, meaning that, the number of instances per label was kept equal on all
subsets. In turn each fold was used once for testing the method, while three out
of the remaining four for training and one for validation. The inhomogeneous
polynomial kernel, k(x, y) = (γ x · y + 1)d, was applied for both the standard
SVM as well as our method. The degree d was found to perform overall optimal
at value of 3. A hyper parameter search was conducted in order to select the
optimal values of the kernel’s parameter γ and the methods transformation scale
μ of Algorithm 4, by searching for maximum performance on the validation set
after building the model on the train set. SVM’s parameter C was searched
among {0.25, 0.5, 1, 2, 4}. The number of regions/control points was found to be
optimal around 10. The performance is finally tested with a cross-validation run
over all the splits2.

5 Results

A cumulative results table involving the experimentation results is found in
Table 1. For every dataset, the mean and standard deviations of the cross vali-
dation error rates is reported in columns. The non-overlapping 1-σ confidence in-
terval results, representing significance of ISVM/SVM results versus DTW-NN,
are annotated with a circle (◦). We grouped the datasets into two categories,
easy ones and challenging ones. The criteria of the split is based on an error rate
threshold, where values greater than 5% of the default SVM are grouped as easy
dataset. The values in bold indicate the best mean error rate for the respective

2 The authors provide the source code upon request.
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dataset/row. The last row indicates a sum of the wins for each method, where
draw points are split to ties. In brackets we denote the wins with significant and
non-significant intervals.

The first message of the experiments is that the performance of our method
is improving the accuracy of a standard SVM. In various cases like 50words,
Cricket X, Cricket Y, Cricket Z, Lighting7, OSULeaf, WordsSynonyms, the im-
provement is very significant ranging from +5% up to +11% accuracy. Thus it is
appropriate to use our method for boosting the SVM accuracy, without adding
noise.

The second and more important message is that our method produces better
mean error rates than DTW-NN, winning on the majority of the datasets. The
performance on the easy datasets is even (7 to 7). However, our method out-
performs DTW-NN on the majority (11 to 5) of the challenging datasets. The
invariant SVM looses significantly only on Cricket * and Lighting2. In contrast,
it significantly outperforms DTW-NN on 50words, Fish, OliveOil, SwedishLeaf,
uWaveGestureLibrary * and WordsSynonyms. Thus, our experiments demon-
strate the superiority of our approach to DTW-NN.

The transformation scale parameter introduced in Algorithm 3, controls the
scale of the transformation fields perturbations to be applied to the instances. In-
tuitively, optimal transformation fields redefine the decision boundary, while ex-
cessive magnitudes of transformations deteriorate into noisy instances. A demon-
stration of the transformation fields’ scale parameter behavior is presented in
Figure 5.

Fig. 5. The effect of increasing the transformation field scale on three typical datasets.
The accuracy improves proportionally with the scale, until a minimum point is reached.
After the optimal error rate, the large transformations produce noise and deteriorate
accuracy, as for instance in OSULeaf, after minimum at scale value 1.3.
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Table 1. 5-fold Cross-Validation Experiments Results - Error Rate Fractions

(i) ISVM : Our proposed method Invariant Support Vector Machines
(ii) DTW-NN : Nearest Neighbor with Dynamic Time Warping
(iii) SVM: The default Support Vector Machines

Dataset
ISVM DTW-NN SVM

mean st.dev. mean st.dev. mean st.dev.

Easy Datasets

CBF 0.002 0.003 0.000 0.000 0.002 0.003

Coffee ◦0.000 0.000 0.073 0.010 ◦0.000 0.000

DiatomSizeReduction ◦0.000 0.000 0.006 0.000 ◦0.000 0.000

ECGFiveDays ◦0.001 0.003 0.007 0.000 ◦0.001 0.003

FaceAll 0.020 0.007 0.024 0.000 0.027 0.005

FaceFour 0.036 0.038 0.054 0.006 0.045 0.056

FacesUCR ◦0.021 0.007 0.031 0.000 0.026 0.010

Gun Point ◦0.030 0.027 0.075 0.001 0.050 0.040

ItalyPowerDemand ◦0.026 0.019 0.051 0.000 ◦0.026 0.019

MoteStrain 0.050 0.016 0.045 0.000 0.060 0.020

SonyAIBORobotSurface ◦0.008 0.011 0.027 0.000 ◦0.008 0.011

SonyAIBORobotSurfaceII 0.004 0.004 0.029 0.000 ◦0.003 0.005

Symbols 0.027 0.016 0.019 0.000 0.029 0.012

synthetic control 0.020 0.013 ◦0.007 0.000 0.022 0.015

Trace 0.030 0.027 ◦0.000 0.000 0.045 0.048

TwoLeadECG 0.002 0.002 0.001 0.000 0.002 0.002

Two Patterns 0.001 0.001 ◦0.000 0.000 0.006 0.001

wafer ◦0.002 0.002 0.006 0.000 ◦0.002 0.001

Wins (Sig./Non-Sig.) 7 (5/2) 7 (3/4) 4 (4/0)

Challenging Datasets

50words ◦0.199 0.008 0.287 0.001 0.272 0.035

Adiac ◦0.202 0.038 0.341 0.001 0.206 0.037

Beef ◦0.267 0.109 0.467 0.009 ◦0.267 0.109

Cricket X 0.300 0.025 ◦0.197 0.001 0.391 0.033

Cricket Y 0.271 0.021 ◦0.213 0.001 0.388 0.045

Cricket Z 0.306 0.043 ◦0.188 0.000 0.399 0.031

ECG200 0.110 0.052 0.160 0.003 0.125 0.040

Fish ◦0.094 0.031 0.211 0.000 0.103 0.031

Lighting2 0.289 0.025 ◦0.099 0.002 0.297 0.013

Lighting7 0.252 0.054 0.285 0.010 0.357 0.068

OliveOil 0.083 0.083 0.133 0.006 0.083 0.083

OSULeaf 0.296 0.039 0.285 0.003 0.346 0.059

SwedishLeaf ◦0.079 0.017 0.185 0.001 0.082 0.014

uWaveGestureLibrary X ◦0.193 0.012 0.251 0.000 0.197 0.013

uWaveGestureLibrary Y ◦0.253 0.009 0.342 0.000 0.259 0.009

uWaveGestureLibrary Z ◦0.249 0.008 0.301 0.000 0.256 0.011

WordsSynonyms ◦0.200 0.038 0.270 0.000 0.261 0.027

Wins (Sig./Non-Sig.) 11 (9/2) 5 (4/1) 1 (0.5/0.5)
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Finally, it is worth mentioning that the time complexity of our method is
obviously worse than that of a normal SVM, because of the enlarged training
set. Yet, the computational time is not prohibitive in terms of run-time feasibility.
In Table 2 you can find some test run times in minutes, of typical prototypes
of easy and challenging datasets, with the aim of demonstrating the run time
feasibility of our method compared to DTW-NN. The run-time minutes shown
on the last column are measured over the same random dataset fold.

Table 2. Classification Run Times of Typical Dataset

Dataset # labels # instances length
ISVM

Time(min)

Coffee 2 56 286 0.01

ECG200 2 200 96 0.04

wafer 2 7174 152 5.48

FacesUCR 14 2250 131 8.73

50words 50 905 270 14.17

Cricket X 12 780 300 24.00

6 Conclusion

This study we introduced a novel instance transformation method, which is
used to boost the performance of SVM via transforming the support vectors.
The proposed method utilizes the distribution of warping variances, yield from
warping alignment maps, in order to define transformation fields, which represent
variances at a predefined set of local regions of a particular class. Therefore
the virtual support vectors which are generated by applying the transformation
fields, represent the necessary intraclass variation and redefines the maximum
margin decision boundary. The superiority of our method is demonstrated by
extensive experimentations on 35 datasets of the UCR collection. In a group of
easy datasets, the presented method is on a par competitive to the baselines,
while being clearly superior on a set of challenging datasets.

As a planned future work, we will focus on analyzing the joint operation of
our method with possible inclusion of efficient similarity based metric into the
SVM kernel. In parallel, other state-of-art invariant classifiers will be explored,
in particular Convolutional Neural Networks.
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Abstract. Vector Auto-regressive (VAR) models are useful for analyz-
ing temporal dependencies among multivariate time series, known as
Granger causality. There exist methods for learning sparse VAR mod-
els, leading directly to causal networks among the variables of interest.
Another useful type of analysis comes from clustering methods, which
summarize multiple time series by putting them into groups. We de-
velop a methodology that integrates both types of analyses, motivated
by the intuition that Granger causal relations in real-world time series
may exhibit some clustering structure, in which case the estimation of
both should be carried out together. Our methodology combines sparse
learning and a nonparametric bi-clustered prior over the VAR model,
conducting full Bayesian inference via blocked Gibbs sampling. Exper-
iments on simulated and real data demonstrate improvements in both
model estimation and clustering quality over standard alternatives, and
in particular biologically more meaningful clusters in a T-cell activation
gene expression time series dataset than those by other methods.

Keywords: time-series analysis, vector auto-regressive models,
bi-clustering, Bayesian non-parametrics, gene expression analysis.

1 Introduction

Vector Auto-regressive (VAR) models are standard tools for analyzing multivari-
ate time series data, especially their temporal dependencies, known as Granger
causality1 [7]. VAR models have been successfully applied in a number of do-
mains, such as finance and economics [23,14], to capture and forecast dynamic
properties of time series data. Recently, researchers in computational biology, us-
ing ideas from sparse linear regression, developed sparse estimation techniques
for VAR models [5,11,22] to learn from high-dimensional genomic time series a
small set of pairwise, directed interactions, referred to as gene regulatory net-
works, some of which lead to novel biological hypotheses.

While individual edges convey important information about interactions, it is
often desirable to obtain an aggregate and more interpretable description of the
network of interest. One useful set of tools for this purpose are graph clustering
methods [20], which identify groups of nodes or vertices that have similar types

1 More precisely, graphical Granger causality for more than two time series.
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of connections, such as a common set of neighboring nodes in undirected graphs,
and shared parent or child nodes in directed graphs. These methods have been
applied in the analysis of various types of networks, such as [6], and play a key
role in graph visualization tools [9].

Motivated by the wide applicability of the above two threads of work and
the observation that their goals are tightly coupled, we develop a methodology
that integrates both types of analyses, estimating the underlying Granger causal
network and its clustering structure simultaneously. We consider the following
first-order p-dimensional VAR model:

x(t) = x(t−1)A+ ε(t), ε(t) ∼ N (0, σ2I), (1)

where x(t) ∈ R1×p denotes the vector of variables observed at time t, A ∈ Rp×p

is known as the transition matrix, whose non-zero entries encode Granger causal
relations among the variables, and ε(t)’s denote independent noise vectors drawn
from a zero-mean Gaussian with a spherical covariance σ2I. Our goal is to ob-
tain a transition matrix estimate Â that is both sparse, leading directly to a
causal network, and clustered so that variables sharing a similar set of con-
nections are grouped together. Since the rows and the columns of A indicate
different roles of the variables, the former revealing how variables affect them-
selves and the latter showing how variables get affected, we consider the more
general bi-clustering setting, which allows two different sets of clusters for rows
and columns, respectively. We take a nonparametric Bayesian approach, placing
over A a nonparametric bi-clustered prior and carrying out full posterior infer-
ences via a blocked Gibbs sampling scheme. Our simulation study demonstrates
that when the underlying VAR model exhibits a clear bi-clustering structure,
our proposed method improves over some natural alternatives, such as adaptive
sparse learning methods [24] followed by bi-clustering, in terms of model estima-
tion accuracy, clustering quality, and forecasting capability. More encouragingly,
on a real-world T-cell activation gene expression time series data set [18] our
proposed method finds an interesting bi-clustering structure, which leads to a
biologically more meaningful interpretation than those by some state-of-the art
time series clustering methods.

Before introducing our method, we briefly discuss related work in Section 2.
Then we define our bi-clustered prior in Section 3, followed by our sampling
scheme for posterior inferences in Section 4. Lastly, we report our experimental
results in Section 5 and conclude with Section 6.

2 Related Work

There has been a lot of work on sparse estimation of causal networks under VAR
models, and perhaps even more on graph clustering. However, to the best of our
knowledge, none of them has considered the simultaneous learning scheme we
propose here. Some of the more recent sparse VAR estimation work [11,22] takes
into account dependency further back in time and can even select the right length
of history, known as the order of the VAR model. While developing our method
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around first-order VAR models, we observe that it can also learn higher-order
bi-clustered models by, for example, assigning transition matrix entries across
multiple time lags to the same bi-cluster.

Another large body of related work ([13,16,2], just to name a few) concerns
bi-clustering (or co-clustering) a data matrix, which usually consists of relations
between two sets of objects, such as user ratings on items, or word occurrences in
documents. Most of this work models data matrix entries by mixtures of distri-
butions with different means, representing, for example, different mean ratings
by different user groups on item groups. In contrast, common regularization
schemes or prior beliefs for VAR estimation usually assume zero-mean entries
for the transition matrix, biasing the final estimate towards being stable. Fol-
lowing such a practice, our method models transition matrix entries as scale
mixtures of zero-mean distributions.

Finally, clustering time series data has been an active research topic in a num-
ber of areas, in particular computational biology. However, unlike our Granger
causality based bi-clustering method, most of the existing work, such as [17,3]
and the references therein, focus on grouping together similar time series, with a
wide range of similarity measures from simple linear correlation to complicated
Gaussian process based likelihood scores. Differences between our method and
existing similarity-based approaches are demonstrated in Section 5 through both
simulations and experiments on real data.

3 Bi-clustered Prior

We treat the transition matrix A ∈ Rp×p as a random variable and place over
it a “bi-clustered” prior, as defined by the following generative process:

πu ∼ Stick-Break(αu), πv ∼ Stick-Break(αv),

{ui}1≤i≤p
i.i.d∼ Multinomial(πu), {vj}1≤j≤p

i.i.d∼ Multinomial(πv),

{λkl}1≤k,l≤∞
i.i.d.∼ Gamma(h, c), (2)

Aij ∼ Laplace(0, 1/λuivj ), 1 ≤ i, j ≤ p. (3)

The process starts by drawing row and column mixture proportions πu and
πv from the “stick-breaking” distribution [21], denoted by Stick-Break(α) and
defined on an infinite-dimensional simplex as follows:

βk ∼ Beta(1, α),

πk := βk

∏
m<k

(1− βm), 1 ≤ k ≤ ∞, (4)

where α > 0 controls the average length of pieces broken from the stick, and may
take different values αu and αv for rows and columns, respectively. Such a prior
allows for an infinite number of mixture components or clusters, and lets the data
decide the number of effective components having positive probability masses,
thereby increasing modeling flexibility. The process then samples row-cluster and
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Algorithm 1. Blocked Gibbs Sampler

Input: Data X and Y , hyper-parameters h, c, αu, αv , and initial values A(0), L(0),
u(0), v(0), (σ(0))2

Output: Samples from the full joint posterior p(A,L,u,v, σ2 | X,Y )
Set iteration t = 1
repeat

for i = 1 to p do
A

(t)
i ∼ p(Ai | A(t)

1:(i−1)
, A

(t−1)

(i+1):p
,u(t−1),v(t−1), (σ(t−1))2), L(t−1), X, Y )

end for
for i = 1 to p do

u
(t)
i ∼ p(ui | A(t),u

(t)

1:(i−1)
,u

(t−1)

(i+1):p
,v(t−1), (σ(t−1))2, L(t−1), X, Y )

end for
for j = 1 to p do

v
(t)
j ∼ p(vj | A(t),u(t),v

(t)

1:(j−1)
,v

(t−1)

(j+1):p
, (σ(t−1))2, L(t−1), X, Y )

end for
(σ(t))2 ∼ p(σ2 | A(t),u(t),v(t), L(t−1), X, Y )
L(t) ∼ p(L | A(t),u(t),v(t), (σ(t))2, X, Y )
Increase iteration t

until convergence
Notations: superscript (t) denotes iteration, Ai denotes the i-th row of A,Ai:j denotes
the sub-matrix in A from the i-th until the j-th row, and ui:j denotes {un}i≤n≤j .

column-cluster indicator variables ui’s and vj ’s from mixture proportions πu and
πv, and for the k-th row-cluster and the l-th column-cluster draws an inverse-
scale, or rate parameter λkl from a Gamma distribution with shape parameter h
and scale parameter c. Finally, the generative process draws each matrix entry
Aij from a zero-mean Laplace distribution with inverse scale λuivj , such that
entries belonging to the same bi-cluster share the same inverse scale, and hence
represent interactions of similar magnitudes, whether positive or negative.

The above bi-clustered prior subsumes a few interesting special cases. In some
applications researchers may believe the clusters should be symmetric about rows
and columns, which corresponds to enforcing u = v. If they further believe that
within-cluster interactions should be stronger than between-cluster ones, they
may adjust accordingly the hyper-parameters in the Gamma prior (2), or as
in the group sparse prior proposed by [12] for Gaussian precision estimation,
simply require all within-cluster matrix entries to have the same inverse scale
constrained to be smaller than the one shared by all between-cluster entries. Our
inference scheme detailed in the next section can be easily adapted to all these
special cases.

There can be interesting generalizations as well. For example, depending on
the application of interest, it may be desirable to distinguish positive interactions
from negative ones, so that a bi-cluster of transition matrix entries possess not
only similar strengths, but also consistent signs. However, such a generalization
requires a more delicate per-entry prior and therefore a more complex sampling
scheme, which we leave as an interesting direction for future work.
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4 Posterior Inference

Let L denote the collection of λkl’s, u and v denote {ui}1≤i≤p and {vj}1≤j≤p,
respectively. Given one or more time series, collectively denoted as matrices X
and Y whose rows represent successive pairs of observations, i.e.,

Yi = XiA+ ε, ε ∼ N (0, σ2I),

we aim to carry out posterior inferences about the transition matrix A, and row
and column cluster indicators u and v. To do so, we consider sampling from
the full joint posterior p(A,L,u,v, σ2 | X,Y ), and develop an efficient blocked
Gibbs sampler outlined in Algorithm 1. Starting with some reasonable initial
configuration, the algorithm iteratively samples rows of A, row and column-
cluster indicator variables u and v, the noise variance2 σ2, and the inverse scale
parameters L from their respective conditional distributions. Next we describe
in more details sampling from those conditional distributions.

4.1 Sampling the Transition Matrix A

Let A−i denote the sub-matrix of A excluding the i-th row, X ′
i and X ′

−i de-
note the i-th column of X and the sub-matrix of X excluding the i-th column.
Algorithm 1 requires sampling from the following conditional distribution:

p(Ai | A−i,u,v, σ
2, L,X, Y ) ∝

∏
1≤j≤p

N (Aij | μij , σ
2
i )Laplace(Aij | 0, 1/λuivj ),

where
μij := (X ′

i/‖X ′
i‖22)
(Y −X ′

−iA−i)
′
j , σ2

i := σ2/‖X ′
i‖2.

Therefore, all we need is sampling from univariate densities of the form:

f(x) ∝ N (x | μ, σ2)Laplace(x | 0, 1/λ), (5)

whose c.d.f. F (x) can be expressed in terms of the standard normal c.d.f. Φ(·):

F (x) =
C1

C
Φ
(x− − (μ + σ2λ)

σ

)
+

C2

C

(
Φ
(x+ − (μ− σ2λ)

σ

)
−Φ

(
− μ− σ2λ

σ

))
,

where x− := min(x, 0), x+ := max(x, 0), and

C := C1Φ
(
− μ + σ2λ

σ

)
+ C2

(
1− Φ

(
− μ− σ2λ

σ

))
,

C1 :=
λ

2
exp

(λ(2μ + σ2λ)

2

)
, C2 :=

λ

2
exp

(λ(σ2λ− 2μ)

2

)
.

We then sample from f(x) with the inverse c.d.f. method. To reduce the potential
sampling bias introduced by a fixed sampling schedule, we follow a random
ordering of the rows of A in each iteration.

2 Our sampling scheme can be easily modified to handle diagonal covariances.
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Algorithm 1 generates samples from the full joint posterior, but sometimes it is
desirable to obtain a point estimate of A. One simple estimate is the (empirical)
posterior mean; however, it is rarely sparse. To get a sparse estimate, we carry
out the following “sample EM” step after Algorithm 1 converges:

ÂBiclus-EM := argmax
A

∑
t

log p(A | u(t),v(t), (σ(t))2, L(t), X, Y ), (6)

where t starts at a large number and skips some fixed number of iterations to
give better-mixed and more independent samples. The optimization problem (6)
is in the form of sparse least square regression, which we solve with a simple
coordinate descent algorithm.

4.2 Sampling Row and Cluster Indicators

Since our sampling procedures for u and v are symmetric, we only describe the
one for u. It can be viewed as an instantiation of the general Gibbs sampling
scheme in [13]. According to our model assumption, u is independent of the
data X,Y and the noise variance σ2 conditioned on all other random variables.
Moreover, under the stick-breaking prior (4) over the row mixture proportions
πu and some fixed v, we can view u and the rows of A as cluster indicators
and samples drawn from a Dirichlet process mixture model with Gamma(h, c) as
the base distribution over cluster parameters. Finally, the Laplace distribution
and the Gamma distribution are conjugate pairs, allowing us to integrate out
the inverse scale parameters L and derive the following “collapsed” sampling
scheme:

p(ui = k′ ∈ existing row-clusters | A,u−i,v)

∝

⎛⎜⎝∏
k,l

Γ ((N−i[k] + δkk′ )ml + h)/(Γ (h)ch)(
‖A−i[k, l]‖1 + δkk′‖Ai[l]‖1 + 1/c

)(N−i[k]+δkk′ )M [l]+h

⎞⎟⎠ N−i[k
′]

p− 1 + αu
,

p(ui = a new row-cluster | A,u−i,v)

∝

⎛⎜⎝∏
k,l

Γ (N−i[k]M [l] + h)/(Γ (h)ch)(
‖A−i[k, l]‖1 + 1/c

)N−i[k]M [l]+h
· Γ (M [l] + h)/(Γ (h)ch)(
‖Ai[l]‖1 + 1/c

)M [l]+h

⎞⎟⎠ αu

p− 1 + αu
,

where Γ (·) is the Gamma function, δab denotes the Kronecker delta function,
N−i[k] is the size of the k-th row-cluster excluding Ai, M [l] is the size of the
l-th column-cluster, and

‖A−i[k, l]‖1 :=
∑

s�=i,us=k,vj=l

|Asj |, ‖Ai[l]‖1 :=
∑
vj=l

|Aij |.

As in the previous section, we randomly permute ui’s and vj ’s in each iteration
to reduce sampling bias, and also randomly choose to sample u or v first.
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Just as with the transition matrix A, we may want to obtain point estimates
of the cluster indicators. The usual empirical mean estimator does not work
here because the cluster labels may change over iterations. We thus employ the
following procedure:

1. Construct a similarity matrix S such that

Sij :=
1

T

∑
t

δ
u
(t)
i v

(t)
j

, 1 ≤ i, j,≤ p,

where t selects iterations to approach mixing and independence as in (6),
and T is the total number of iterations selected.

2. Run normalized spectral clustering [15] on S, with the number of clusters
set according to the spectral gap of S.

4.3 Sampling Noise Variance and Inverse Scale Parameters

On the noise variance σ2 we place an inverse-Gamma prior with shape a > 0
and scale β > 0, leading to the following posterior:

σ2 | A,X, Y ∼ I-Gamma(a + pT/2, 2‖Y −XA‖−2
F + β), (7)

where T is the number of rows in X and ‖ · ‖F denotes the matrix Frobenius
norm. Due to the conjugacy mentioned in the last section, the inverse scale
parameters λkl’s have the following posterior:

λkl | A,u,v ∼ Gamma(N [k]M [l] + h, (‖A[k, l]‖1 + 1/c)−1).

5 Experiments

We conduct both simulations and experiments on a real gene expression time
series dataset, and compare the proposed method with two types of approaches:

Learning VAR by Sparse Linear Regression, Followed by Bi-clustering

Unlike the proposed method, which makes inferences about the transition matrix
A and cluster indicators jointly, this natural baseline method first estimates the
transition matrix by adaptive sparse or L1 linear regression [24]:

ÂL1 := argmin
A

1

2
‖Y −XA‖2F + λ

∑
i,j

|Aij |
|Âols

ij |γ
, (8)

where Âols denotes the ordinary least-square estimator, and then bi-clusters ÂL1

by either the cluster indicator sampling procedure in Section 4.2 or standard
clustering methods applied to rows and columns separately. We compare the
proposed method and this baseline in terms of predictive capability, clustering
performance, and in the case of simulation study, model estimation error.
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(a) Transition matrix (b) Correlation matrix

Fig. 1. Heat maps of the synthetic bi-clustered VAR

Clustering Based on Time Series Similarity

As described in Section 2, existing time series clustering methods are designed
to group together time series that exhibit a similar behavior or dependency over
time, whereas our proposed method clusters time series based on their (Granger)
causal relations. We compare the proposed method with the time series cluster-
ing method proposed by [3], which models time series data by Gaussian pro-
cesses and performs Bayesian Hierarchical Clustering [8], achieving state-of-the
art clustering performances on the real genes time series data used in Section 5.

5.1 Simulation

We generate a transition matrix A of size 100 by first sampling entries in bi-
clusters:

Aij ∼

⎧⎪⎨⎪⎩
Laplace(0,

√
60

−1
i), 41 ≤ i ≤ 70, 51 ≤ j ≤ 80,

Laplace(0,
√
70

−1
), 71 ≤ i ≤ 90, 1 ≤ j ≤ 50,

Laplace(0,
√
110

−1
), 91 ≤ i ≤ 100, 1 ≤ j ≤ 100,

(9)

and then all the remaining entries from a sparse back-ground matrix:

Aij =

{
Bij if |Bij | ≥ q98

(
{|Bi′j′ |}1≤i′,j′≤100

)
,

0 otherwise,
i, j not covered in (9),

where
{Bij}1≤i,j,≤100

i.i.d.∼ Laplace(0, (5
√
200)−1)

and q98(·) denotes the 98-th percentile. Figure 1(a) shows the heat map of the
actual A we obtain by the above sampling scheme, showing clearly four row-
clusters and three column-clusters. This transition matrix has the largest eigen-
value modulus of 0.9280, constituting a stable VAR model.
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Fig. 2. Prediction errors up to 10 time steps. Errors for longer horizons are close to
those by the mean (zero) prediction, shown in black dashed line, and are not reported.

We then sample 10 independent time series of 50 time steps from the VAR
model (1), with noise variance σ2 = 5. We initialize each time series with an inde-
pendent sample drawn from the stationary distribution of (1), whose correlation
matrix is shown in Figure 1(b), suggesting that clustering based on correlations
among time series may not recover the bi-cluster structure in Figure 1(a).

To compare the proposed method with the two baselines described in the
beginning of Section 5, we repeat the following experiment 20 times: a random
subset of two time series are treated as testing data, while the other eight time
series are used as training data. For L1 linear regression (8) we randomly hold
out two time series from the training data as a validation set for choosing the
best regularization parameter λ from {2−2, 2−1, . . . , 210} and weight-adaption

parameter γ from {0, 2−2, 2−1, . . . , 22}, with which the final ÂL1 is estimated

from all the training data. To bi-cluster ÂL1 , we consider the following:

– L1+Biclus: run the sampling procedure in Section 4.2 on ÂL1 .
– Refit+Biclus: refit the non-zero entries of ÂL1 using least-square, and run

the sampling procedure in Section 4.2.
– L1 row-clus (col-clus): construct similarity matrices

Su
ij :=

∑
1≤s≤p

|ÂL1

is ||Â
L1

js |, Sv
ij :=

∑
1≤s≤p

|ÂL1

si ||Â
L1

sj |, 1 ≤ i, j ≤ p.

Then run normalized spectral clustering [15] on Su and Sv, with the number
of clusters set to 4 for rows and 3 for columns, respectively.

For the second baseline, Bayesian Hierarchical Clustering and Gaussian processes
(GPs), we use the R package BHC (version 1.8.0) with the squared-exponential
covariance for Gaussian processes, as suggested by the author of the package.
Following [3] we normalize each time series to have mean 0 and standard devi-
ation 1. The package can be configured to use replicate information (multiple
series) or not, and we experiment with both settings, abbreviated as BHC-SE
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Table 1. Model estimation error on simulated data

Normalized matrix error Signed-support error

L1 0.3133±0.0003 0.3012±0.0008

Biclus EM 0.2419±0.0003 0.0662±0.0012

reps and BHC-SE, respectively. In both settings we give the BHC package the
mean of the eight training series as input, but additionally supply BHC-SE reps
a noise variance estimated from multiple training series to aid GP modeling.

In our proposed method, several hyper-parameters need to be specified. For
the stick-breaking parameters αu and αv, we find that values in a reasonable
range often lead to similar posterior inferences, and simply set both to be 1.5.
We set the noise variance prior parameters in (7) to be a = 9 and β = 10. For
the two parameters in the Gamma prior (2), we set h = 2 and c =

√
2p =

√
200

to bias the transition matrices sampled from the Laplace prior (3) towards being
stable. Another set of inputs to Algorithm 1 are the initial values, which we set as
follows: A(0) = 0, u(0) = v(0) = 1, (σ(0))2 = 1, and L(0) = (h− 1)c =

√
200. We

run Algorithm 1 and the sampling procedures for L1+Biclus and Refit+Biclus
for 2,500 iterations, and take samples in every 10 iterations starting from the
1,501-st iteration, at which the sampling algorithms have mixed quite well, to
compute point estimates for A, u and v as described in Sections 4.1 and 4.2.

Figure 2 shows the squared prediction errors of L1 linear regression (L1)
and the proposed method with a final sample EM step (Biclus EM) for various
prediction horizons up to 10. Predictions errors for longer horizons are close
to those by predicting the mean of the series, which is zero under our stable
VAR model, and are not reported here. Biclus EM slightly outperforms L1, and
paired t tests show that the improvements for all 10 horizons are significant
at a p-value ≤ 0.01. This suggests that when the underlying VAR model does
have a bi-clustering structure, our proposed method can improve the prediction
performance over adaptive L1 regression, though by a small margin.

Another way to compare L1 and Biclus EM is through model estimation error,
and we report in Table 1 these two types of error:
Normalized matrix error : ‖Â−A‖F /‖A‖F ,
Signed-support error : 1

p2

∑
1≤i,j≤p I(sign(Âij) �= sign(Aij)).

Clearly, Biclus EM performs much better than L1 in recovering the underlying
model, and in particular achieves a huge gain in signed support error, thanks to
its use of bi-clustered inverse scale parameters L.

Perhaps the most interesting is the clustering quality, which we evaluate by
the Adjusted Rand Index [10], a common measure of similarity between two clus-
terings based on co-occurrences of object pairs across clusterings, with correction
for chance effects. An adjusted Rand index takes the maximum value of 1 only
when the two clusterings are identical (modulo label permutation), and is close
to 0 when the agreement between the two clusterings could have resulted from
two random clusterings. Figure 3 shows the clustering performances of differ-
ent methods. The proposed method, labeled as Biclus, outperforms all alterna-
tives greatly and always recovers the correct row and column clusterings. The
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(a) Row clusters (b) Column clusters

Fig. 3. Adjusted Rand index on simulated data

two-stage baseline methods L1+Biclus, Refit+Biclus, and L1 row-clus (col-clus)
make a significant amount of errors, but still recover moderately accurate clus-
terings. In contrast, the clusterings by the time-series similarity based methods,
BHC-SE and BHC-SE reps, are barely better than random clusterings. To explain
this, we first point out that BHC-SE and BHC-SE reps are designed to model
time series as noisy observations of deterministic, time-dependent “trends” or
“curves” and to group similar curves together, but the time series generated
from our stable VAR model all have zero expectation at all time points (not just
across time). As a result, clustering based on similar trends may just be fitting
noise in our simulated series. These results on clustering quality suggest that
when the underlying cluster structure stems from (Granger) causal relations,
clustering methods based on series similarity may give irrelevant results, and
we really need methods that explicitly take into account dynamic interaction
patterns, such as the one we propose here.

5.2 Modeling T-Cell Activation Gene Expression Time Series

We analyze a gene expression time series dataset3 collected by [18] from a T-
cell activation experiment. To facilitate the analysis, they pre-processed the raw
data to obtain 44 replicates of 58 gene time series across 10 unevenly-spaced time
points. Recently [3] carried out clustering analysis of these time series data, with
their proposed Gaussian process (GP) based Bayesian Hierarchical Clustering
(BHC) and quite a few other state-of-the art time series clustering methods.
BHC, aided by GP with a cubic spline covariance function, gave the best clus-
tering result as measured by the Biological Homogeneity Index (BHI) [4], which
scores a gene cluster based on its number of gene pairs that share certain bio-
logical annotations (Gene Ontology terms).

To apply our proposed method, we first normalize each time series to have
mean 0 and standard deviation 1 across both time points and replicates, and

3 Available in the R package longitudinal.
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(a) Transition matrix (b) Average inverse scale L

Fig. 4. Heat maps of the Biclus-EM estimate of A and the inverse scale parameters L
averaged over posterior samples; rows and columns permuted according to clusters

then “de-trend” the series by taking the first order difference, resulting in 44
replicates of 58 time series of gene expression differences across 9 time points. We
run Algorithm 1 on this de-trended dataset, with all the hyper-parameters and
initial values set in the same way as in our simulation study. In 3,000 iterations
the algorithm mixes reasonably well; we let it run for another 2,000 iterations
and take samples from every 10 iterations, resulting in 200 posterior samples, to
compute point estimates forA, cluster indicators u and v as described in Sections
4.1 and 4.2. Figures 4(a) and 4(b) show the heat maps of the transition matrix
point estimate and the inverse scale parameters λij ’s averaged over the posterior
samples, with rows and columns permuted according to clusters, revealing a quite
clear bi-clustering structure.

For competing methods, we use the GP based Bayesian Hierarchical Cluster-
ing (BHC) by [3], with two GP covariance functions: cubic spline (BHC-C) and
squared-exponential (BHC-SE)4. We also apply the two-stage method L1+Biclus
described in our simulation study, but its posterior samples give an average of
15 clusters, which is much more than the number of clusters, around 4, from the
spectral analysis described in Section 4.2, suggesting a high level of uncertainty
in their posterior inferences about cluster indicators. We thus do not report their
results here. The other two simple baselines are: Corr, standing for normalized
spectral clustering on the correlation matrix of the 58 time series averaged over
all 44 replicates, the number of clusters 2 determined by the spectral gap, and
All-in-one, which simply puts all genes in one cluster.

Figure 5 shows the BHI scores5 given by different methods, and higher-values
indicate bettering clusterings. Biclus row and Biclus col respectively denote the

4 Here we only report results obtained without using replicate information because
using replicate information does not give better results. We obtain cluster labels
from http://www.biomedcentral.com/1471-2105/12/399/additional

5 We compute BHIs by the BHI function in the R package clValid (version 0.6-4) [1]
and the database hgu133plus2.db (version 2.6.3), following [3].

http://www.biomedcentral.com/1471-2105/12/399/additional
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Fig. 5. BHI. Green dots show BHIs of different methods; blue boxes are BHIs ob-
tained by 200 random permutations of cluster labels by those methods; green boxes
are BHIs computed on posterior cluster indicator samples from the proposed method.
In parentheses are numbers of clusters given by different methods.

row and column clusterings given by our method. To measure the significance
of the clusterings, we report BHI scores computed on 200 random permutations
of the cluster labels given by each method. For Biclus row and Biclus col, we
also report the scores computed on the 200 posterior samples. All-in-one has a
BHI score around 0.63, suggesting that nearly two-thirds of all gene pairs share
some biological annotations. Corr puts genes into two nearly equal-sized clusters
(28 and 30), but does not increase the BHI score much. In contrast, BHC-C and
Biclus row achieve substantially higher scores, and both are significantly better
than those by random permutations, showing that the improvements are much
more likely due to the methods rather than varying numbers or sizes of clusters.
We also note that even though Corr and BHC-C both give two clusters, the
two BHC-C clusters have very different sizes (48 and 10), which cause a larger
variance in their BHI distribution under random label permutations. Lastly,
BHC-SE and Biclus col give lower scores that are not significantly better than
random permutations. One possible explanation for the difference in scores by
Biclus row and Biclus col is that the former bases itself on how genes affect one
another while the latter on how genes are affected by others, and Gene Ontology
terms, the biological annotations underlying the BHI function, describe more
about genes’ active roles or molecular functions in various biological processes
than what influence genes.

Finally, to gain more understanding on the clusters by BHC-C and Biclus
row, we conduct gene function profiling with the web-based tool g:Profiler [19],
which performs “statistical enrichment analysis to provide interpretation to user-
defined gene lists.” We select the following three options: Significant only, Hier-
archical sorting, and No electronic GO annotations. For BHC-C, 4 out of 10 genes
in the small cluster are found to be associated with the KEGG cell-cycle path-
way (04110), but the other 6 genes are not mapped to collectively meaningful
annotations. The profiling results of the large BHC-C cluster with 48 genes are in
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Fig. 6. Gene functional profiling of the large BHC-C cluster

Figure 6; for better visibility we show only the Gene Ontology (GO) terms and
high-light similar terms with red rectangles and tags. About a half of the terms
are related to cell death and immune response, and the other half are lower-level
descriptions involving, for example, signaling pathways. For Biclus row, we re-
port the profiling results of only the two larger clusters (the second and the third)
in Figure 7, because the two smaller clusters, each containing 5 genes, are not
mapped to collectively meaningful GO terms. Interestingly, the two large Biclus
row clusters are associated with T-cell activation and immune response respec-
tively, and together they cover 41 of the 48 genes in the large BHC-C cluster.
This suggests that our method roughly splits the large BHC-C cluster into two
smaller ones, each being mapped to a more focused set of biological annotations.

�����row
col

1 2 3 4

1 0 0 3 2
2 17 2 0 0
3 10 17 0 2
4 1 2 0 2

Moreover, these Biclus profiling results, the
heat map in Figure 4(a), and the contingency
table (shown in the right) between the row
and column clusters altogether constitute a
nice resonance with the fact that T-cell ac-
tivation results from, rather than leading to,
the emergence of immune responses.
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(a) Second row cluster

(b) Third row cluster

Fig. 7. Gene functional profiling of two large row clusters by the proposed method

6 Conclusion

We develop a nonparametric Bayesian method to simultaneously infer sparse
VAR models and bi-clusterings from multivariate time series data, and demon-
strate its effectiveness via simulations and experiments on real T-cell activation
gene expression time series, on which the proposed method finds a more bio-
logically interpretable clustering than those by some state-of-the art methods.
Future directions include modeling signs of transition matrix entries, generaliza-
tions to higher-order VAR models, and applications to other real time series.
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Abstract. Transfer learning as a new machine learning paradigm has gained in-
creasing attention lately. In situations where the training data in a target domain
are not sufficient to learn predictive models effectively, transfer learning leverages
auxiliary source data from related domains for learning. While most of the exist-
ing works in this area are only focused on using the source data with the same
representational structure as the target data, in this paper, we push this boundary
further by extending transfer between text and images.

We integrate documents , tags and images to build a heterogeneous transfer
learning factor alignment model and apply it to improve the performance of tag
recommendation. Many algorithms for tag recommendation have been proposed,
but many of them have problem; the algorithm may not perform well under cold
start conditions or for items from the long tail of the tag frequency distribution.
However, with the help of documents, our algorithm handles these problems and
generally outperforms other tag recommendation methods, especially the non-
transfer factor alignment model.

1 Introduction

Tag recommendation has found many applications ranging from personal photo albums
to multimedia information delivery. In the past, tag recommendation has met two ma-
jor difficulties. First, the annotated images for training are often in short supply, and
annotating new images involves much human labor. Hence, annotated training data is
often sparse, and further tags included in training data may be from the long tail of the
frequency distribution. Second, words usually have synonym; e.g. two words may have
same or similar meaning. We would like to find the latent links between these words.
How to effectively overcome these difficulties and build a good tag recommendation
system therefore becomes a challenging research problem. While annotated images are
expensive, abundant text data are easier to obtain. This motivates us to find way to use
the readily available text data to help improve the tag recommendation performance.

In the past, several approaches have been proposed to solve the ‘lack of data’ prob-
lem. Recently, transfer learning methods [1] have been proposed to use knowledge from
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auxiliary data in a different but related domain to help learn the target tasks. However, a
commonality among most transfer learning methods so far is that the data from different
domains have the same feature space.

In some scenarios, given a target task, one may easily collect much auxiliary data that
are represented in a different feature space. For example, our task is to recommend tags
for an image with a tiger in it. We have only a few annotated images for training. And
we can easily collect a large number of text documents from the Web, e.g. Wikipedia.
In this case, we can model the tag recommendation task as the target task, where we
have some annotated data and some auxiliary data. In the target domain, the data are
represented in pixels. Also in our case, the auxiliary domain, or the source domain, is
the text domain, which contains text documents. Now, what we care about is whether it
is possible to use the cheap auxiliary data to help improve the performance of the tag
recommendation task. This is an interesting and difficult question, since the relationship
between text and images is not explicitly given. This problem has been referred to as
a Heterogeneous Transfer Learning problem [2]. In this paper, we focus on heteroge-
neous transfer learning for tag recommendation by exploring knowledge transfer from
auxiliary text data.

In tag recommendation, a key issue for us to address is to discover a new and im-
proved common representation for both images and tags to boost the recommendation
performance. In this paper, we investigate how to obtain a reasonable common feature
space from both annotated images and auxiliary text data. Although images and text
are represented in different feature spaces, we can transfer knowledge from text to im-
ages via tags which are related both to images and text. We propose a factor alignment
model to discover the common feature space and modify it into a heterogeneous trans-
fer learning factor alignment model, which can handle the auxiliary data effectively. A
common space is then learned to better calculate the metric between an image and a tag.
We illustrate the overall framework in Figure 1. Compared to self-taught learning [3],
our approach can use a different feature representation (i.e., text) for transfer learning.
Compared to translated learning [4] and Zhu et al. [5], their tasks are different from
ours and our approach does not need to compute the total correlation between image
feature and word features.

2 Related Work

2.1 Image Annotation

A closely related area is image annotation. Duygulu et al. [6] regarded image annotation
as a machine translating process. Some other researchers model the joint probability of
images regions and annotations. Barnard et al. [7] investigated image annotation under
probabilistic framework and put forward a number of models for the joint distribution
of image blobs and words. Blei et al. [8] developed correspondence latent Dirichlet
allocation to model the joint distribution. In Lavrenko et al. [9], the continuous-space
relevance model was proposed to better handle continuous feature and be free from the
influence of image blob clustering. In Carneiro et al. [10], image annotation is posed



Discriminative Factor Alignment across Heterogeneous Feature Space 759

Fig. 1. Source data used for our transfer learning algorithms. Our proposed heterogeneous trans-
fer learning for tag recommendation takes all three information, i.e. images, tags and documents
as inputs.

as classification problems where each class is defined by images sharing a common se-
mantic label. In this paper, we use an image annotation algorithm proposed in Makadia
et al. [11] to solve the problem of tag recommendation as a baseline.

2.2 Image Retagging

There are some efforts on improving unreliable descriptive keywords of images. They
focus on imprecise annotation refinement, i.e., identifying and eliminating the impre-
cise annotation keywords produced by the automatic image annotation algorithms. As
a pioneering work, Jin et al. [12] used WordNet to estimate the semantic correlation
among the annotated keywords and remove the weakly-correlated ones. However, this
method can only achieve limited success since it totally ignores the visual content of the
images. To address this problem, Wang et al. [13] proposed a content-based approach
to re-rank the automatically annotated keywords of an image and only reserve the top
ones as the refined results and Liu et al. [14] proposed to refine the tags based on the vi-
sual and semantic consistency residing in the social images, which assigns similar tags
to visually similar images. Later, Liu et al. [15] formulated this retagging process as a
multiple graph-based multi-label learning problem, which simultaneously explores the
visual content of the images, semantic correlation of the tags and the prior information
provided by users.

2.3 Visual Contextual Advertising

Another closely related area is visual contextual advertising, which aims to recommend
advertisements for Web images without the help of any textual context, such as sur-
rounding text for the images. In Chen et al. [16], they exploit the annotated image data
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Fig. 2. A case in which document may help the tag recommendation

from social Web sites such as Flickr to link the visual feature space and the word space.
To be specific, they present a unified generative model, ViCAD, to deal with visual con-
textual advertising. ViCAD runs in several steps. First, they model the visual contextual
advertising problem with a Markov chain which utilizes annotated images to transform
images from the image feature space to the word space. With the representations of
images in word space, a language model for information retrieval is then applied to find
the most relevant advertisements. If we regard tag as one-word advertisement, ViCAD
can handle the problem of tag recommendation. Hence we use ViCAD as one of our
baselines.

3 Motivation

Before describing our proposed method in detail we first illustrate a motivating example
showing how text data help improve the tag recommendation performance for images.
As shown in Figure 2, we may have image A and image B as training data and image
C as testing data. As mentioned before, we can’t recommend other tags except ‘river’
and ‘tiger’ for image C. However, by using some additional auxiliary text documents
where tags co-occur frequently, we may establish a strong similarity between tags. If
we have a document including ‘. . . a tiger is a kind of carnivore . . . ’, we will build a
similarity between ‘tiger’ and ‘carnivore’, which may cause the recommendation sys-
tem to recommend ‘carnivore’ for image C. And if we have a document including ‘. . . a
river is full of water . . . ’, ‘river’ and ‘water’ will also be regarded as being related.
Consequently, ‘water’ may be also recommended; this can reduce the data sparsity in
the image domain and word domain.
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4 Algorithm

4.1 Problem Formulation

First we define the problem of our tag recommendation task formally. Suppose we
are given annotated data instances X = {zi, ti}ni=1 and some test images X∗ =
{z∗i , t∗i }n+m

i=n+1, where zi ∈ R
d is an input vector of image features and ti ∈ R

h is the
corresponding tags of image i, where h is the number of tags. For example, if an image
zi is annotated by tags α and β with α, β ∈ {1, . . . , h}, then ti = [0, . . . , 1, . . . , 1, . . . , 0]
is a vector of dimensionality h with all zeros but one’s in the α and β positions. Us-
ing “bag-of-words” [17] to represent image features, we can assume that the feature
values are nonnegative. n and m are the numbers of training and testing instances, re-
spectively. In addition, we also have a set of auxiliary text documents F = {fi}ki=1,
fi ∈ Rs is a document represented by a vector of bag-of-words, and k is the number
of auxiliary documents. Here, we notice that s doesn’t have to be equal to h. Actually
set of tags for words is a subset of the set for documents, which means h ≤ s. Our
goal is to learn a function g(·, ·) from X and F , that can estimate the correlation be-
tween a given image and a tag as accurately as possible. Applying g(·, ·) on X∗, we can
rank the correlation to obtain the recommended tag list for test images. We summarize
the problem definition in Table 1. For convenience, we denote Z = {zi}li=1 ∈ Rl×d

and T = {ti}li=1 ∈ Rl×h the image features and text tags of images separately. Fur-
thermore, we abuse the notation X,X∗, Z , and T to represent the data matrices with
instances xi, x

∗
i , zi, and ti being row vectors in them.

Table 1. Problem formulation

Learning objective Make predictions on target test images
Target tag Training images: X = {zi, ti}ni=1

recommendation Testing images: X∗ = {z∗i , t∗i }n+m
i=n+1

Auxiliary source data Text documents: F = {fi}ki=1

4.2 Algorithm Description

Given a set of images Z ∈ Rl×d with their corresponding tags T ∈ Rl×h, and a
set of documents F ∈ Rk×s, we wish build a connection between images and text
documents. Each image can be annotated by tags, and some images may share one or
multiple tags. If two images are annotated by shared tags, they tend to be related to each
other semantically. Similarly, if two tags co-occur in annotations of shared images, they
tend to be related to each other. This image-tag bipartite graph is represented via the
tag matrix T . If a tag, more precisely, the text word of the tag, occurs in a document,
then there is an edge connecting the tag and the document. We use a matrix F ∈ Rk×s

to represent the document-tag bipartite graph, where Fij = n if the jth tag appears n
times in the ith document.

Image-Tag Ranking Model. In this section, we would like to first give the ranking
model only leveraging the information of annotated images. Our intuitive idea is to
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project the image feature space and tag feature space to a common latent space, and
then we can use dot product to calculate the correlation between an image and a tag.
Hence we define W ∈ Rd×g as a projection matrix to project the image feature space
to the latent space and we also define P ∈ Rh×gas the latent space matrix of tags (i.e.
pi ∈ Rg is the latent feature vector of tag i). Now for any image i and any tag j, we
first project zi ∈ R

d to the common space as

ci = ziW ∈ R
g (1)

We can calculate the correlation between image i and tag j as

T̂ij = cip


j = ziWp


j (2)

Using matrix format to represent the formula, we obtain the equation

T̂ = ZWP
 (3)

Now we would like to define a loss function to measure the rank distance of the predict-
ing matrix and real training matrix. Inspired by the metric of area under the ROC curve
(AUC) [18], we define the loss function as

L(T, T̂ ) = −
∑
u,i,j

r
(u)
ij ln r̂

(u)
ij + (1− r

(u)
ij ) ln(1− r̂

(u)
ij ) (4)

where

r
(u)
ij =

{
1 , Tui − Tuj > 0
0 , otherwise

(5)

r̂
(u)
ij =

1

1 + e−(T̂ui−T̂uj)
(6)

We notice that
r
(u)
ij ln r̂

(u)
ij + (1− r

(u)
ij ) ln(1− r̂

(u)
ij ) (7)

is comfortingly symmetric (swapping i and j should leave the result invariant). In order
to simplify the formula, we define

D(T ) = {(u, i, j)|Tui − Tuj > 0} (8)

Now we can rewrite the loss function as

L(T, T̂ ) = −
∑

u,i,j∈D(T )

r
(u)
ij ln r̂

(u)
ij + (1− r

(u)
ij ) ln(1− r̂

(u)
ij ) (9)

= −
∑

u,i,j∈D(T )

1 · ln r̂
(u)
ij + (1− 1) ln(1− r̂

(u)
ij ) (10)

= −
∑

u,i,j∈D(T )

ln r̂
(u)
ij (11)

So far, our corresponding optimization problem becomes

min
W,P

L(T, T̂ ) + λ1‖W‖2F + λ2‖P‖2F (12)

where λ1, λ2 are nonnegative parameters to control the responding regularization terms,
and ‖ · ‖F is the Frobenius norm. In next section, we will apply this model on text
documents.
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Doc-Tag Ranking Model. Now let us consider the information included by text doc-
uments, and we would like to apply the ranking model mentioned in the last section to
text documents. Hence the problem in this section is to recommend tags for each text
document. Similarly, we define Q ∈ Rh×g as the latent space matrix of tags. However,
unlike images, we directly define B ∈ Rs×g as the latent space matrix of documents.
Now for any document i and any tag j, we can obtain the correlation between document
i and tag j as

F̂ij = biq


j (13)

The matrix format of the calculation is

F̂ = BQ
 (14)

Therefore, the corresponding optimization of this problem is

min
B,Q

Loss(F, F̂ ) + λ3‖B‖2F + λ4‖Q‖2F (15)

where λ3, λ4 are small nonnegative numbers, λ3‖B‖2F and λ4‖Q‖2F serve as a regular-
ization term to improve the robustness.

Joint Ranking Model. There are many ways to transfer knowledge of text data to
image data. Our idea in this paper is not to calculate the correlation between image
features and text features, but rather to transfer via the latent space of tags. By forcing
P and Q to be approximate, the ranking model only for images can incorporate the
information of text data. Compared to forcing two latent matrices (i.e. P and Q) to
be absolutely the same, our model uses soft constraints leveraging λ0 to control the
similarity of these two matrices, which is more flexible. λ0 = 0 implies that P and Q
are uncorrelated and documents do nothing to help learning. Then λ0 = ∞ denotes
that P should be equal to Q, which becomes a hard constraint. To achieve this goal, we
solve the following problem,

min
W,B,P,Q

L(T, T̂ ) + L(F, F̂ ) + λ0‖P −Q‖2F +R(W,B, P,Q) (16)

where R(W,B, P,Q) is the regularization function to control the complexity of the
latent matrices W , B, P and Q, and λ0 controls the strength to constrain the similarity
of P and Q. As mentioned in previous sections, we define the regularization function
as

R(W,B, P,Q) = λ1‖W‖2F + λ2‖P‖2F + λ3‖B‖2F + λ4‖Q‖2F (17)

where λ1, λ2, λ3 and λ4 are nonnegative parameters to control the responding regular-
ization terms. In this paper, we set λ1 = λ3 = 0.004 and λ2 = λ4 = 0.006 using cross
validation. Equation 16 is the joined ranking model of T and F with regularization. The
bridge of transfer P and Q are ensured to capture both the structures of image matrix T
and the document matrix F . Once we find the optimal W and P and project test images
to latent space, we can apply the dot product to estimate the rating for tags given by
images.
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Update Rule. Equation 16 can be solved using gradient methods, such as the stochastic
gradient descent and quasi-Newton methods. In this paper, we use stochastic gradient
descent. Then the main computation of the gradient method gives the update rule for all
variables. For (u, i, j) ∈ D(T ),

pk = pk + η(êT (u, i, j)Zuk(pi − pj)− λ1pk) (18)

pk = pk + η(êT (u, i, j)γij(k)(zuW )− λ2pk − λ0(pk − qk)) (19)

where

êT (u, i, j) = 1− 1

1 + e−(T̂ui−T̂uj)
(20)

and

γij(k) =

⎧⎨⎩1 , k = i
−1 , k = j
0 , otherwise

(21)

Then for (u, i, j) ∈ D(F ),

bk = bk + η(êF (u, i, j)σu(k)(qi − qj)− λ3bk) (22)

qk = qk + η(êF (u, i, j)γij(k)bu − λ4qk − λ0(pk − qk)) (23)

Here

êF (u, i, j) = 1− 1

1 + e−(F̂ui−F̂uj)
(24)

and

σu(k) =

{
1 , k = u
0 , otherwise

(25)

Prediction. Now we will present the process of prediction of test image set. For any
image x∗

i in test set X∗, we first project z∗i to the common space as

di = z∗iW ∈ R
g (26)

Therefore, the definition of f(x∗
i , tagj) is as

g(x∗
i , tagj) = dip



j = z∗iWp


j (27)

Using matrix format to represent the prediction matrix, we obtain the equation

R̂ = Z∗WP
 (28)

Notice that R̂ ∈ Rm×h can help us rank the tags for testing images. For any testing
image u, if R̂ui > R̂uj , we can consider tag i is more related to the image than tag
j. Thus we will get the recommended tag list in order by ranking the rating. Putting it
together, our overall heterogeneous transfer learning algorithm is referred to as HTLFA,
which stands for Heterogeneous Transfer Learning for Factor Alignment.
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5 Experiments

Our experiments are designed to demonstrate the effectiveness of exploiting text in our
heterogeneous learning algorithm.

5.1 Dataset and Processing

We use annotated images from Flickr crawled during December 2009. We collected
528,587 images and 20,000 distinct related tags. Each of these tags is a single word. We
crawled text from Wikipedia as our auxiliary data, from which we picked out 539,460
documents. Each of the documents includes more than 100 tag words mentioned above.

Data preprocessing is applied to the raw data. We use the “bag-of-words” model [17]
to represent each image. First interesting points were detected and described by SIFT
descriptors [19]. Then we cluster a random subset of all interesting points to obtain a
codebook. Similar to Sivic et al. [20], we set the number of clusters to be 1,000. Using
this codebook, each image is converted into a vector for further tag-recommendation
uses. One image at most has 208 tags and at least has 1 tag. On average each image
has about 9 tags. And for documents, we also converted them into 30,000-dim vectors
using 30,000 tag words. The extra 10000 tags are selected from popular tags included
in documents which do not appear in origin 20000 tags.

Actually, we don’t regard all tags not related to images (or documents) as negative
samples. For an image (or document), we just sample n′ tags from unrelated tags as
negative sample and the other tags are regarded as neutral items. Here n′ is proportional
to the size of the positive set. For example, if image A has 10 annotated tags, then we
randomly select n′ = 10k′ tags from unrelated ones as negative sample. Here k′ is a
proportion parameter. At last, we set latent space dimension g = 100.

5.2 Evaluation and Baseline Methods

As for evaluation metrics, we choose the precision at n (or P@n), which is the portion
of related tags in the topmost n recommendations to evaluate the experimental results.
In order to make the results more solid, we also use MAP to measure the precision.
To obtain ground truth results, we reserve about a quarter of all images from the Flickr
image set as test set and regard the annotated tags as ground truth. Before we formulate
these two evaluation metrics, we first define M(i) as the number of annotated tags
belonging to test image i and loci(j) as the position of tag j in the recommendation list
for test image i. Then for any test image i, we rank the loci by ascending order. Now
we can present the expression of P@n,

P@n =

∑m
i=1

∑M(i)
j=1

ψ(loci(j)<n)
n

m
(29)

where m is the number of test images and ψ(Con) is a condition function,

ψ(Con) =

{
1 , Con holds
0 , otherwise

(30)
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Then the expression of MAP is formulated as:

MAP =

∑m
i=1

∑M(i)
j=1

j
loci(j)

m
(31)

We compare our proposed method with three baselines for tag recommendation. The
three baselines and our proposed method are summarized as follows,

– NN This baseline is reported in Makadia et al. [11]. This baseline annotation meth-
ods are comprised of an image distance measure for nearest neighbor ranking, com-
bined with a label transfer measure. In this paper, we measure the distance using
SIFT feature vector of images.

– ViCAD We implemented the method proposed in Chen et al. [16] as another base-
line, which directly transforms images from a image feature space to a word space
utilizing the knowledge from images with annotations from Flickr. Then each di-
mension of the word space means the correlation between the image and a word.
Since tags can be regarded as single word advertisements, we can directly get the
recommendation list of tags by ranking the correlation.

– FA The name of this baseline is short for factor alignment, which is a non-transfer
algorithm corresponding to the loss function 12. In this baseline, we do not use
the documents to help learning the projection matrix. Without the transformation
of knowledge from documents to images, we simply train a ranking model only on
the image-tag matrix. As mentioned above, we apply an image-tag ranking model
on training data to discover the common representation.

– HTLFA This denoted our proposed method, which uses all the auxiliary data i.e.
documents. The parameter settings are discussed in the following section.

Table 2. Comparison with baselines

ViCAD NN FA HTLFA
P@1 0.003500 0.010900 0.057100 0.077990
P@2 0.003050 0.009200 0.054250 0.069550
P@3 0.002900 0.007800 0.051200 0.063033
P@4 0.002750 0.006975 0.048975 0.059275
P@5 0.002760 0.006820 0.046340 0.057000
P@6 0.002900 0.006550 0.044850 0.053933
P@7 0.002886 0.006400 0.043200 0.051800
P@8 0.002925 0.006513 0.041712 0.049675
P@9 0.002922 0.006511 0.040778 0.048000
P@10 0.002970 0.006740 0.039670 0.046270
MAP 0.003744 0.009711 0.028368 0.032200
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5.3 Comparison with Baselines

In the first experiment, we compare our method with three baselines on the same tag
recommendation task. We randomly select 10,000 images from the test set as test data.
The P@n results with respect to NN, FA, ViCAD and our model are given in Figure 3(a)
and Table 2. In this experiment, for HTLFA, we set the parameter λ0 in Equation 16
to 0.05. As we can see from Figure 3(a), our proposed HTLFA, which use documents
to help learn projection matrices for rating, outperforms other baselines, especially it is
better than FA. NN and ViCAD which are generative models without learning process
perform pretty poorly in this task. This implies that with the help of documents our
proposed method is powerful for tag recommendation.

However, the value of precision is a bit low since the groundtruth of testdata does not
include all relevant tags. In fact, we crawl the image data from Flickr which is a social
image hosting website. Hence the data is not unified and the groundtruth of test data
may not be correct. For example, an image with a cat has a tag “people” but has does
not have a tag “pet”. Consequently, it’s necessary for us to do a user study to check the
result, in which we randomly select 200 test images and check the top 20 tags. Since
this requires much human labor, we are not able to check all 10,000 test images. Six
people check the results, and the final precision is the average of these six people. Figure
3(b) displays the results of the user study, which indicates our model can obtain high
precision.
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Fig. 3. Evaluation of HTLFA

5.4 Impact of Constraint Parameter

In the second experiment, we study the parameter sensitivity of λ0 on the overall per-
formance of HTLFA in tag recommendation. As mentioned before, λ0 controls the
strength of the constraint between P and Q. In this experiment we tune the value of
λ0 to obtain a set of results. Figure 4 shows the recommendation accuracy P@10 of
HTLFA under varying values of λ0. We find that HTLFA performs best and steadily
when λ0 falls at about 0.05 , which implies the document-tag matrix can indeed help
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learning a more precise latent factor matrix and a soft constraint is better than a hard
constraint. Because if λ0 approaches zero, it means we don’t leverage the help of doc-
uments, and if λ0 approaches infinity, it means we are using a hard constraint to force
P ≈ Q instead of using a soft constraint.

Furthermore, a comparison is made between HTLFA and CMF(i.e. Collective Ma-
trix Factorization) [21]. In CMF, they simultaneously factor several matrices, sharing
parameters among factors when an entity participates in multiple relations. That is CMF
transfers knowledge from a matrix to another by forcing two latent matrices, which are
P and Q in our model, to be equal. Actually, equality is a special case of our model.
If we let λ0 = ∞, P and Q will be forced to be equal, which makes our model more
flexible. Since it’s not feasible to set λ0 = ∞, we directly use two equal latent matri-
ces(i.e. P = Q) abandoning the term λ0‖P−Q‖, which is called hard constrain. Figure
5 shows that a soft constraint outperforms a hard constraint.
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Fig. 5. Comparison between CMF and HTLFA

5.5 Performance under Longtail Condition

In the third experiment, we also analyze the impact of the amount of training data on the
performance of FA and HTLFA in tag recommendation. We randomly select 30,000,
50,000, 80,000, 120,000 images from all training data to train four models, and evaluate
the results. The experimental results are shown in Figure 6. As we can see, compared
with the first experiment, the advantage of HTLFA becomes larger when training data
is sparse. The reason is that when the amount of training data is smaller, the documents
can make a larger contribution to supplement the training data. In other words, docu-
ments increase the number of heterogeneous training data instances. It properly proves
the advantage of transfer learning, that is to remedy the sparsity of the source data.
However, HTLFA cannot perform well either when training data is extremely sparse.
There is no doubt that the distribution of image-tag features is different from the dis-
tribution of document-tag features. Hence when the amount of training data approach
zero and documents becomes dominant, the model naturally does not work on the task
of recommending tags for images.
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We also compare HTLFA and FA under the long tail condition. Since words which
are in the tail of the frequency distribution for images are almost always in the tail of
the distribution for documents, we randomly select 2000 tags and use them to form a
long tail tag set. We down sample these tags in images to simulate a long tail condition.
We construct several test settings, corresponding to different down sample rates. When
evaluating the results, we ignore the groundtruth not included in long tail tag set and
focus on recommending long tail groundtruth from the other tags. In Figure 7(a), we
vary the iteration number ratio between images and documents fixing the down sample
rate at 0. The result shows that 8 : 1 (i.e., iterate through 8 images before iterating
a document) obtains the best performance. Fixing the iteration number ratio at 8 : 1,
Figure 7(b) shows that our model outperforms FA under long tail condition. However,
as mentioned above, when the down sample rate is extremely low (e.g. zero percent), the
shortcoming that the two heterogeneous data sets have different distributions becomes
obvious, which finally leads to a decrease in the precision.

5.6 Case Study

Table 3 shows the tag recommendation result of our algorithm HTLFA for Flickr data
sets. In this figure, six images are from the Flickr data set. Three recommended tags
are given at the bottom of each image. From the table we can see that our algorithm
can indeed find related tags based on visual contextual information of an image. Here
we demonstrate a case that makes a difference among the compared algorithms. Table
4 provides some tags recommended by the four algorithms for a target image about a
baby. The top three recommended tags are shown on the right of each algorithm name.
As the table shows, ViCAD and NN have really poor performance on this case. Non-
transfer FA recommends only one related tag while the top three tags recommended by
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Table 3. The HTLFA results

cat, grey, pets clouds, seascape, beach wheels, voiture, ford

concert, music, guitar nature, wildlife, plant flight, aviation, plane

Table 4. Tags recommended by the compared algorithms on one case

ViCAD
farriery

laminitis
arthrosis

NN
cool

surgery
rachel

FA
lips

freckles
jackson

HTLFA
lips

eyelashes
toddler
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HTLFA are all related. And we also discover that the tag “toddler” does not appear in
the top ten of the recommendation list of FA. Hence it is reasonable to believe that it is
documents that help discover the related tag “toddler”.

6 Conclusion

In this paper, we explore heterogeneous transfer learning for factor alignment integrat-
ing documents, tags and images and apply it on the task of tag recommendation by
leveraging the help of long text from Wikipedia. We expect to make use of auxiliary
text documents to supplement the target domain training data since auxiliary data may
reduce the data sparsity in the image domain and word domain. Then we propose a fac-
tor alignment ranking model and modify it to make it able to handle the auxiliary text
data. Using soft constraints to control the similarity between two latent matrices, we
manage to incorporate the information of auxiliary text data in the model. We compare
the method with three baselines, and prove that our method outperforms all three. We
vary the value of parameter λ0 to illustrate that a soft constraint is necessary. Comparing
our model to one without transfer, we also show that auxiliary text data also improves
handling of items from the long tail of the tag frequency distribution. So overall, we
have shown that the performance of tag recommendation can be improved by utilizing
textual information.

In the future, we will consider other types of auxiliary data as well as more than one
data source.
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Abstract. People learn to read and understand various displays (e.g.,
tables on webpages and software user interfaces) every day. How do hu-
mans learn to process such displays? Can computers be efficiently taught
to understand and use such displays? In this paper, we use statistical
learning to model how humans learn to perceive visual displays. We ex-
tend an existing probabilistic context-free grammar learner to support
learning within a two-dimensional space by incorporating spatial and
temporal information. Experimental results in both synthetic domains
and real world domains show that the proposed learning algorithm is
effective in acquiring user interface layout. Furthermore, we evaluate
the effectiveness of the proposed algorithm within an intelligent tutor-
ing agent, SimStudent, by integrating the learned display representation
into the agent. Experimental results in learning complex problem solving
skills in three domains show that the learned display representation is
as good as one created by a human expert, in that skill learning using
the learned representation is as effective as using a manually created
representation.

Keywords: two-dimensional grammar learning, learning to perceive
displays, intelligent agent, cognitive modeling.

1 Introduction

Every day, people view and understand many novel two-dimensional (2-D) dis-
plays such as tables on webpages and software user interfaces. How do humans
learn to process such displays? As an example, Figure 1 shows a screenshot of
one interface to an intelligent tutoring system that is used to teach students how
to solve algebraic equations. The interface should be viewed as a table of three
columns, where the first two columns of each row contain the left-hand side and
right-hand side of the equation, and the third column names the skill applied.
In tutoring, students enter data row by row, a strategy which requires a correct
intuitive understanding of how the interface is organized. SimStudent [1] is a sys-
tem that uses programming-by-demonstration [2] to develop a rule-based tutor
on an arbitrary interface, and to learn effectively, it needs a similar understand-
ing of the way the interface is organized. Incorrect representation of the interface
may lead to inappropriate generalization of the acquired skill knowledge, such
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Fig. 1. The interface where SimStudent is being tutored in an equation solving domain

as generalizing the skill for adding two numerators to adding two denominators
in fraction addition. Past instances of SimStudent have used a hand-coded hier-
archical representation of the interface, which is both time-consuming, and less
psychologically plausible. Here we consider replacing that hand-coded element
with a learned representation.

More generally, we consider using a two-dimensional variant of a probabilistic
context-free grammar (pCFG) to model how a user perceives the structure of
a user interface, and propose a novel 2-D pCFG learning algorithm to model
acquisition of this representation. Our learning method exploits both the spatial
layout of the interface, and temporal information about when users interact with
the interface. The alphabet of the grammar is a vocabulary of symbols repre-
senting primitive interface-element types. For example, in Figure 1, the type of
the cells in the first two columns is Expression, and the type of the last cell in
the each column is Skill. (In SimStudent, these primitive types can be learned
from prior experience.) We extend an ordinary one-dimensional (1-D) pCFG
learner [3] to acquire two-dimensional grammar rules, using a two-dimensional
probabilistic version of the Viterbi training algorithm to learn parameter weights
and a structure hypothesizer that uses spatial and temporal information to pro-
pose grammar rules.

We then integrate this two-dimensional representation learner into SimStu-
dent. SimStudent is used to model the learning of human students in tutoring
domains such as algebra. Many students learn quickly, from few examples; how-
ever, some learn more slowly. Previous work in cognitive science [4] showed
that one of the key factors that differentiates experts and novices in a field
is their different prior knowledge of world state representation. Previously, we
had to manually encode such representation, which is both time consuming and
error prone. We now extend SimStudent by replacing the hand-coded display
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representation with the statistically learned display representation. We demon-
strate the proposed algorithm in tutoring systems, and for simplicity will refer
to terminal symbols in the grammar as interface element, but we emphasize that
the proposed algorithm should work for two-dimensional displays of other types
as well. We evaluate the proposed algorithms in both synthetic domains and
real world domains, with and without integration into SimStudent. Experimen-
tal results show that the proposed learning algorithm is effective in acquiring
user interface layouts. The SimStudent with the proposed representation learner
acquired domain knowledge at similar rates to a system with hand-coded knowl-
edge. The main contribution of this paper is to use probabilistic grammar in-
duction to model learning to perceive two-dimensional visual displays.

2 Related Work

In previous work, we have developed a one-dimensional (1-D) pCFG learner
to acquire representations of 1-D strings (e.g., the parse structure of -3x), and
showed that the acquired representations yield effective learning, while reducing
the amount of knowledge engineering required in building an intelligent agent [5].
Moreover, it has been shown that with this extension, the intelligent agent be-
comes a better model of human students [6], and can be used to better under-
stand human student learning behavior [7]. In this work, we further extend the
representation learner to acquire representations in a 2-D space using a two-
dimensional variant of pCFG.

One closely related research area that also uses two-dimensional pCFGs is
learning to recognize equations (e.g., [8, 9]). Algorithms in this direction often
assume the structure of the grammar is given, and use a two-dimensional parsing
algorithm to find the most likely parse of the observed image. Our system differs
from their approaches in that we model the acquisition of the grammar structure,
and apply the technique to another domain, learning to perceive user interface.

Research on extracting structured data on the web (e.g., [10–12]) shares a
clear resemblance with our work, as it also concerns on understanding structures
embedded in a two-dimensional space. It differs from our work in that webpages
have an observable hierarchical structure in the form of their HTML parse trees,
whereas we only observe the 2-D visual displays, which have no such structural
information.

3 Problem Definition

To learn the representation of a 2-D display, we first need to formally define the
input and output of the problem.

3.1 Input

The input to the algorithm is a set of records, R = {R1, R2, ..., Rn}, associated
with examples shown on the display observed by people. Figure 1 shows one
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problem example in this algebra tutor interface. Each record, Ri (i = 1, 2, ...n),
records how and when the elements in the display are filled out by users. Thus, Ri

is a sequence of tuples, 〈Ti1, Ti2, ..., Tim〉, where each tuple, Tik (k = 1, 2, ...,m),
is associated with one display element that is used in solving the problem. The
tuples in a record are ordered by time. For example, to solve the problem, -3x+2
= 8, shown in Figure 1, the cells in the first three rows (except for the last cell of
the third row) are used. We do not assume that meta-elements such as columns
and rows are given, but we will assume that each display element occupies a
rectangular region, and that we can detect when regions are adjacent. In this
case, Ri will contain 12 tuples, 〈Ti1, Ti2, ..., Ti12〉, that correspond to the eight
cells, Cell 11, Cell 12, Cell 13, Cell 21, Cell 22, Cell 23, Cell 31, and Cell 32,
and the four buttons, done, help, <<, and >>.

Each tuple consists of seven items,

Tik = 〈type, xleft, xright, yup, ybottom, timestampstart, timestampend〉

where type is the type of the input to the display element, xleft, xright, yup,
and ybottom define the x and y coordinates of the space the element ranges over,
and timestampstart and timestampend are the start and ending time when the
display element is filled out by the user. For example, given the problem -3x+2
= 8, the tuple associated with Cell 11 is Ti1 = 〈Expression, 0, 1, 0, 1, 0, 0〉. The
timestamp of Cell 11 is 0, since both Cell 11 and Cell 21 were entered first by
the tutor as the given problem. As mentioned above, we have developed a 1-D
pCFG learner that acquires parse structures of 1-D strings. The type of the input
is the non-terminal symbol associated with the parse tree of the content. Hence,
the type of -3x+2 is Expression.

3.2 Output

Given the input, the objective of the grammar learner is to acquire a 2-D pCFG,
G, that best captures the structural layout given the training records, that is,

argmax
G

p (R | G)

under the constraint that all records share the same parse structure (i.e., layout).
We will explain this in more detail in the algorithm description section.

The output of the layout learner is a two-dimensional variant of pCFG [8],
which we define below. When used to parse a display, this grammar will generate
a tree-like hierarchical grouping of the display elements.

Two-Dimensional pCFG. 2-D pCFG is an extended version of 1-D pCFG.
Each 2-D pCFG, G, is defined by a four-tuple, 〈V , E ,Rules, S〉. V is a finite set of
non-terminal symbols that can be further decomposed to other non-terminal or
terminal symbols. E is a finite set of terminal symbols, that makes up the actual
content of the “2-D sentence”. In our algebra example, the terminal symbols
of the visual display are the input types associated with the display elements
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Table 1. Part of the two-dimensional probabilistic context free grammar for the equa-
tion solving interface

Terminal symbols: Expression, Skill;
Non-terminal symbols: Table, Row, Equation, Exp, Ski
Table→ 0.7, [v] Table Row
Table→ 0.3, [d] Row
Row→ 1.0, [h] Equation Ski
Equation→ 1.0, [h] Exp Exp
Exp→ 1.0, [d] Expression
Ski→ 0.5, [d] Skill

(e.g., Expression, Skill). Rules is a finite set of 2-D grammar rules. S is the start
symbol.

Each 2-D grammar rule is of the form

V → p, [direction] γ1 γ2 ...γn

where V ∈ V , p is the probability of the grammar rule used in derivations1, and
γ1, γ2, ...γn is either a sequence of terminal symbols or a sequence of non-terminal
symbols. Without loss of generality, in this case, we only consider grammar rules
that have one or two symbols at the right side of the arrow.

direction is a new field added for the 2-D grammar. It specifies the spatial
relation among its children. The value of the direction field can be d, h, or v. d is
the default value set for grammar rules that have only one child, in which case
there is no direction among the children. h (v) means the children generated by
the grammar rule should be placed horizontally (vertically) with respect to each
other. An example of a two-dimensional pCFG of the equation solving interface
is shown in Table 12. The corresponding layout is presented in Figure 2. The rows
in the table are placed vertically with respect to other rows. Thus, the direction
field in the grammar rule “Table → 0.7, [v] Table Row” is set to be v. On
the other hand, the equation should be placed horizontally with the skill cell in
the third column, so the direction field of “Row→ 1.0, [h] Equation Ski” is
h. These three direction values form the original direction value set.

Since the interface elements may not form a rectangle sometimes (e.g., the
table and the buttons in the equation solving interface), we further extend the
direction field to have two additional values pv and “ph”. pv (ph) means that
the children of the grammar rule should be placed vertically (horizontally) with
respect to each other, but the parts in the interface associated with these children
do not have to form a rectangle. As shown in Figure 2, the table in the left side
and the buttons in the right side can be placed horizontally, but do not form

1 The sum of the probabilities associated with rules that share the same head, V ,
equals to 1.

2 The non-terminal symbols are replaced with meaningful names here. The symbols
in the learned grammars are synthetic-generated symbols.
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Fig. 2. An example layout of the interface where SimStudent is being tutored in an
equation solving domain

a rectangle. In this case, the grammar rule should use ph instead of h as the
directional field value. These direction values are less-preferred than the original
values. Grammar rules that have such direction values will only be added if no
more rules with directions d, h, or v can be found.

Layout. Given the 2-D pCFG, the final output of the display representation is
a hierarchical grouping of the display elements, which we will call a layout, L.
Figure 2 shows an example layout of the equation solving interface. The left side
of the interface contains a row-ordered table, where each row is further divided
into an equation and a skill. The right side of the interface contains a list of
buttons that can be pressed by students to ask for help or to indicate when
he/she considers the problem is solved.

4 Learning Two-Dimensional Display Layout Using
Probabilistic Grammars

Now that we have formally defined the learning task, we are ready to describe the
2-D display layout learner. Recently, we have proposed a 1-D grammar learner [3],
and have shown that the 1-D grammar learner acquires knowledge more effec-
tively and runs faster than the inside-outside algorithm [13]3. Hence, we further
extend the one-dimensional grammar learner to acquire a 2-D pCFG from two-
dimensional training records.

Algorithm 1 shows the pseudo code of the 2-D display layout learner. The
learning algorithm iterates between a greedy structure hypothesizer (GSH) and a
Viterbi training phase. The GSH tries to construct non-terminal symbols as well

3 rakaposhi.eas.asu.edu/nan-tist.pdf.
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Algorithm 1. 2D-Layout-Learner constructs a set of grammar rules,
Rules, from the training records, R, and a set of terminal symbols E .
Input: Record Set R, Terminal Symbol Set E

1 Rules := φ;
2 while not-all-records-have-one-layout(R, Rules) do
3 Rules := GSH(R, E , Rules);
4 Rules := Viterbi-training(R, Rules);

5 end
6 return Rules

as grammar rules that could parse all input records, R. The set of constructed
rules are then set as the start point for the Viterbi training algorithm. Next, the
Viterbi training algorithm iteratively re-estimates the probabilities associated
with all grammar rules until convergence. If the grammar rules are not sufficient
in generating a layout in the Viterbi training algorithm, GSH is called again to
add more grammar rules. This process continues until at least one layout can be
found.

Since an appropriate way of transferring previously acquired knowledge to
later learning process could potentially improve the learning speed, we further
designed a learning mechanism that transfers the acquired grammar with the
application frequency of each rule from previous tasks to future tasks. Due to
the limited space, we will not present the detail of this extension in this paper.

4.1 Viterbi Training

Given a set of grammar rules from the GSH step, the Viterbi training algorithm
tunes the probabilities on the grammar set, and removes unused rules.4 We
consider an iterative process. Each iteration involves two steps.

One key difference between learning the parse trees of 1-D strings and learn-
ing the GUI element layout is that the parse trees for different input contents
are different (e.g., -3x vs. 5x+6), whereas the GUI elements should always be
organized in the same way even if the input contents in the GUI elements have
changed from problem to problem. For instance, students will always perceive
the equation solving interface as multiple rows, where each row consists of an
equation along with a skill operation, no matter which problem they are given.
Therefore, instead of finding a grammar that parses the interface given specific
input, the learning algorithm should acquire one layout for the interface across
different problems. This effectively adds a constraint on the learning algorithm.

In the first step, the algorithm computes the most probable parse trees, T , for
all training records using the current rules, under the constraint that the parse
structure among these trees should be the same, that is,

4 More detailed discussion on why a Viterbi training algorithm instead of the standard
CKY is used can be found in [14], which is mainly because of overfitting.
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T = argmax
T

p (T | R,G, S)

=
⋃

i=1,2,...n

argmax
Ti

p (Ti |Ri,G, S)

s.t. parse(T1) = parse(T2) = ... = parse(Tn) ∀ Ti ∈ T

where Ti is the parse tree with root S for recordRi given the current grammar G,
and parse(Ti) denotes the parse structure of Ti ignoring the symbols associated
with the parse nodes5

Since any subtree of a most probable parse tree is also a most probable parse
subtree, we have

p (Ti |Ri,G, Si)

= max
rule,idx

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p (rule | G)× p (Ti,1 |Ri,1,G, Si,1)× p (Ti,2 |Ri,2,G, Si,2)
if rule is Si → p(rule|G), [direction] Si,1 Si,2,

p (rule | G)× p (Ti,1 |Ri,G, Si,1)
if rule is Si → p(rule|G), [direction] Si,1,

p (rule | G)
if rule is Si → p(rule|G), [direction] Ei,1, and Ei,1 ∈ E .

where rule is the rule that is used to parse the current record Ri, p (rule | G)
is the probability of rule used among all grammar rules (in all directions) that
have head Si, Ri,1 and Ri,2 are the split traces based on the direction of the
rule, direction, and the place of the split, idx, and Ti, Ti,1 and Ti,2 are the
most probable parse trees for Ri, Ri,1 and Ri,2 respectively. Using this recursive
equation, the algorithm builds the most probable parse trees in a bottom-up
fashion.

After getting the parse trees for all records, the algorithm moves on to the
second step. In this step, the algorithm updates the selection probabilities as-
sociated with the rules. For a rule with head V , the new probability of getting
chosen is simply the total number of times that rule appearing in the Viterbi
parse trees divided by the total number of times that V appears in the parse
trees, that is,

p(rulei|G) =
|rulei appearing in parse trees|
|Vi appearing in parse trees|

where rulei is of the form Vi → p, [direction], γ1, γ2, ...γn, n = 1 or 2.
After finishing the second step, the algorithm starts a new iteration until

convergence. This learning procedure is a fast approximation of expectation-
maximization, which approximates the posterior distribution of trees given pa-
rameters by the single MAP hypothesis. The output of the algorithm is an

5 In the case that some record uses less elements than the other records (e.g., simpler
problems that require less steps), parse(Ti) is considered equal to parse(Tj) as long
as the parse structures of the shared elements are the same.
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Algorithm 2. GSH constructs a set of grammar rules, Rules, a set of
terminal symbols E , and from the training records, R.

Input: Record Set R, Terminal Symbol Set E , Grammar Rule Set Rules
1 if is-empty-set(Rules) then
2 Rules := generate-terminal-grammar-rules(E);
3 end
4 while not-all-records-are-parsable(R, Rules) do
5 if has-recursive-structure(R) then
6 rule := generate-recursive-rule(R);
7 else
8 rule := generate-most-frequent-non-added-rule(R);
9 end

10 Rules := Rules + rule;
11 R := update-record-set-with-rule(R, rule, Rules); // First, update the

record set using rule; second, update the record set using all

acquired Rules

12 end
13 Rules = initialize-probabilities(Rules);
14 return Rules

updated 2-D pCFG, G, and the most probable layout of the interface. For ele-
ments that have never been used in the training examples, the acquired layout
will not include them in it as there is no information for them in the record. But
the acquired grammar may be able to generalize to those elements. For example,
if the acquired grammar learns a recursive rule across rows, it will be able to
generalize to more rows than the training records have reached.

The complexity of the Viterbi training phase is O(|iter| × |R| × |Rulesnt| ×
|maxRi.length|!), where |iter| is the number of iterations, |R| is the number of
records, |Rulesnt| is the number of rules that reduce to non-terminal symbols,
|maxRi.length| is the length of the longest record. In practice, since the number
of rules generated by GSH is small, and we cache previously calculated parse
trees in memory, as we will see in the experiment section, all learning tasks are
completed within a reasonable amount of time.

4.2 Greedy Structure Hypothesizer (GSH)

As with the standard Viterbi training algorithm, the output of the algorithm
converges toward only a local optimum. It often requires more iterations to
converge if the starting point is not good. Moreover, since the complexity of
the Viterbi training phase increases as the number of grammar rules increases,
we designed a greedy structure hypothesizer (GSH) that greedily adds gram-
mar rules for frequently observed “adjacent” symbol pairs. Note that instead of
building a structure learner from scratch, we extend an existing one [3] to accom-
modate the 2-D space. Extending other learning mechanisms is also possible. To
formally define adjacency, let’s first define two terms, temporally adjacent, and
horizontally (vertically) adjacent.
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Definition 1. Two tuples, Ti1 and Ti2, are temporally adjacent, iff the two tu-
ples’ time intervals overlap, i.e.

[Ti1.timestampstart, Ti1.timestampstart) ∩
[Ti2.timestampstart, Ti2.timestampstart) �= ∅

Definition 2. Two tuples, Ti1 and Ti2, are horizontally adjacent, iff the spaces
taken up by the two tuples are horizontally next to each other, and form a rect-
angle, i.e.

Ti1.xright = Ti2.xleft or Ti2.xright = Ti1.xleft

Ti1.yup = Ti2.yup

Ti1.ybottom = Ti2.ybottom

Definition 3. Two tuples, Ti1 and Ti2, are vertically adjacent, iff the spaces
took up by the two tuples are vertically next to each other, and form a rectangle,
i.e.

Ti1.ybottom = Ti2.yup or Ti2.ybottom = Ti1.yup

Ti1.xleft = Ti2.xright

Ti1.xright = Ti2.xleft

Now, we can define what is a 2D-mergeable pair.

Definition 4. Two tuples, Ti1 and Ti2, are 2D-mergeable, iff the two tuples are
both temporally adjacent and horizontally (vertically) adjacent.

The structure hypothesizer learns grammar rules in a bottom-up fashion. The
pseudo code of the structure hypothesizer is shown in Algorithm 2. The grammar
rule set, Rules, is initialized to contain rules associated with terminal symbols,
when GSH is called for the first time. Then the algorithm detects whether there
are recursive structures embedded in the records (e.g., Row,Row, ...Row) , and
learns a recursive rule for it if finds one (e.g., Table → 0.7, [v] Table Row).
If the algorithm fails to find recursive structures, it starts to search for the
2D-mergeable pair (e.g., 〈Equation,Ski〉) that appears in the record set most
frequently, and constructs a grammar rule (e.g.,Row→ 1.0, [h] Equation Ski)
for that 2D-mergeable pair. The direction field value is set based on whether the
2D-mergeable pairs are horizontally or vertically adjacent. If the Viterbi training
phase cannot find a layout based on these rules, less frequent pairs are added
later. When there is no more pair that is 2D-mergeable, it is possible that some
training record has not been fully parsed, since some symbol pairs that are
horizontally (vertically) ordered may not form rectangles. The grammar rules
constructed for these symbol pairs in this case will use the extended direction
values (e.g., ph, pv). After getting the new rule, the system updates the current
record set with this rule by replacing the pairs in the records with the head of
the rule.
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After learning the grammar rules, the GSH assigns probabilities associated
with these grammar rules. For each rule with head V , p is assigned to 1 divided
by the number of rule that have V as the head. In order to break the symmetry
among all rules, the algorithm adds a small random number to each probability
and normalizes the values again. This structure learning algorithm provides a
redundant set of grammar rules to the Viterbi algorithm.

5 Experimental Results of the Two-Dimensional Display
Learner

In order to evaluate whether the proposed layout learner is able to acquire the
correct layout, we carried out three experiments in progressively more realistic
settings. All experiments were performed on a machine with a 3.06 GHz CPU
and 4 GB Memory. The time the layout learner takes to learn ranges from less
than 1 millisecond to 442 milliseconds per training record.

5.1 Experiment Design

In this section, we use the 1-D layout learner (i.e., 1-D pCFG learner) as a
baseline, and compare it with the proposed 2-D layout learner. In order to make
the training records learnable by the 1-D layout learner, we first transform each
training record into a row-ordered 1-D record, and then call the 1-D layout
learner on the transformed records.

We evaluate the quality of the learned parses with the most widely-used evalu-
ation measurements [15]: (1) the Crossing Parentheses score, which is the number
of times that the learned parse has a structure such as ((A B) C) and the ora-
cle parse has one or more structures such as (A (B C)) which “cross” with the
learned parse structure; (2) the Recall score, which is the number of parenthe-
sis pairs in the intersection of the learned and oracle parses (L intersection O)
divided by the number of parenthesis pairs in the oracle parse O, i.e., (L inter-
section O) / O. To better understand the crossing parentheses score, we further
normalize it so that it ranges from zero to one.

5.2 Experiments in Randomly Generated Synthetic Domains

In the first experiment, we randomly generate 50 oracle two-dimensional gram-
mars. For each oracle grammar, we randomly generate a sequence of 15 training
layouts6 based on the oracle grammar. Each randomly-generated oracle gram-
mar forms an and-or tree, where each non-terminal symbol can be decomposed
by either a non-recursive or a recursive rule. Each grammar has 50 non-terminal
symbols in it. For each layout, we give the layout learners a fixed number of train-
ing records. The two layout learners (i.e., the 1-D layout learner with row-based
transformation and the 2-D layout learner) are trained on the 15 layouts sequen-
tially using a transfer learning mechanism developed for the layout learner. The

6 Some layouts may be the same.
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Fig. 3. Recall scores in a) randomly-generated domains, and three synthetic domains,
b) fraction addition, c) equation solving, d) stoichiometry

transfer learning mechanism is not described here due to the limited space. Then,
we generate another layout with a fixed number of testing records by the oracle
grammar, and test whether the grammars acquired by the two layout learners
are able to correctly parse the testing records.

Figure 3(a) presents the recall scores of the layout learners averaged over 50
grammars. Both learners perform surprisingly well. They are able to achieve
close to one recall scores, and close to zero crossing parentheses scores with only
five training examples per layout. To better understand the result, we take a
close look at the data. Since the oracle grammar is randomly generated, the
probability of getting a hard-to-learn grammar is very low. In fact, many of the
training records are traces of single rows or columns, which makes learning easy.
Hence, to challenge the layout learner more, we carried out a second experiment.

5.3 Experiments in Three Synthetic Domains

We examine three tutoring systems used by human students: fraction addition,
equation solving, and stoichiometry, and manually construct an oracle grammar
that is able to parse these three domains. Moreover, the oracle grammar can
further generate variants of the existing user interfaces. For example, instead
of adding two fractions together, the oracle grammar can generate interfaces
that can be used to add three factions. We carry out the same training process
based on this manually-constructed oracle grammar, and test the quality of the
acquired grammar in three domain variants.
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•  Skill divide (e.g. -3x = 6) 
•  Perceptual information: 

•  Left side (-3x) 
•  Right side (6) 

•  Precondition: 
•  Left side (-3x) does not 

have constant term 
•  Operator sequence: 

•  Get coefficient (-3) of left 
side (-3x) 

•  Divide both sides with the 
coefficient (-3) 

Fig. 4. Original and extended production rules for divide in a readable format

The interface of the fraction addition tutor has four rows, where the upper two
rows are filled with the problem (e.g., 3

5 +
2
3 ), and the lower two rows are empty

cells for the human students to fill in. The equation solving tutor’s interface is
shown in Figure 1. The interface of the stoichiometry domain contains four tables
of different sizes. The four tables are used to provide given values, to perform
conversion, to self-explain for the current step, and to compute intermediate
results. All tables are of column-based orders.

Figure 3(b), 3(c), 3(d) show the recall scores of the three domains averaged
over 50 runs. Both learners achieve better performance with more training exam-
ples. We also see that the 2-D layout learner has significantly (p < 0.0001) higher
recall scores than the 1-D layout learner in all three domains. Both fraction ad-
dition and stoichiometry contain tables/subtables of column-based orders. The
row-based transformation of the 1-D layout learner removes the column informa-
tion, and thus hurts the learning performance. The crossing parentheses scores
for both learners are always close to zero across three domains, which indicates
the acquired grammar does not generate bad “crosses” often.

6 Experimental Results within an Intelligent Agent

In order to understand how display representation learning affects agent learning
effectiveness, the last experiment that we carry out is within an intelligent agent,
SimStudent. SimStudent is an intelligent agent that inductively learns skills to
solve problems from demonstrated solutions and from problem solving experi-
ence. It is an extension of programming by demonstration [2] using inductive
logic programming [16] as an underlying learning technique.

Given a sequence of problem examples, the knowledge acquired by SimStudent
defines “where” to look for useful information in the GUI, and “when” the useful
information satisfies certain conditions, “how” to proceed. This skill knowledge
is represented as production rules. Figure 4 shows an example of a production
rule learned by SimStudent in its readable format7. The perceptual information

7 Actual production rules follows the LISP format.
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Fig. 5. Learning curves of three SimStudents in three domains, a) fraction addition,
b) equation solving, c) stoichiometry

part is acquired by the “where” learner. The precondition part is learned by the
“when” learner. The operator function sequence part is created by the “how”
learner. The rule to “divide both sides of -3x = 6 by -3” shown in Figure 4
would be read as “given a left-hand side (i.e., -3x) and a right-hand side (6)
of the equation, when the left-hand side does not have a constant term, then
get the coefficient of the term of the left-hand side and divide both sides by
the coefficient.” The “where” learner requires the layout of the interface to be
given as input, which is essential for constraining the search space of the other
two learning components. Previously, the agent developers need to manually
encode such layout as prior knowledge, which hurts the usability of SimStudent
as an authoring tool for building cognitive tutors, and fails to model display
representation learning. With the layout learner, we are now able to acquire the
layout based on the training problems SimStudent observes.

6.1 Experiment Design

We use the actual tutor interfaces in three tutoring domains. The 2-D layout
learner is first trained on no more than five problems used to tutor human
students, and sends its output to SimStudent. An automatic tutor (also used
by human students) then teaches the SimStudent with the constructed/acquired
layouts with one set of problems, and tests SimStudents’ performance on another
set of problems. Both the training and testing problems are problems used by
human students. In each domain, SimStudent is trained on 12 problem sequences.
Three SimStudents are compared in the experiment. One SimStudent (manual)
is given the manually-constructed layout, one SimStudent (learned) is given the
acquired layout, and one SimStudent (baseline) is given a row-based layout8.

To measure learning gain, we calculated a step score for each step in the
testing problem. Among all possible correct next steps, we counted the number
of correct steps that were actually proposed by some applicable production rule,
and reported the step score as the number of the correct next steps proposed by
learned rules divided by the total number of correct next steps plus the number

8 A fully flat layout performs so badly that SimStudent cannot finish learning.
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of incorrect next steps proposed. For example, if there were four possible correct
next steps, and SimStudent proposed three, of which two were correct, and
one was incorrect, then only two correct next steps were covered, and thus the
step score is 2/(4+1)=0.4. Step score measures both recall and precision of the
proposed next steps. We report the average step score over all testing problem
steps for each curriculum.

6.2 Results

Figure 5 shows the learning curves of the three SimStudents across three do-
mains. In all three cases, the SimStudent with a row-based layout (baseline)
performs significantly (p < 0.0001) worse than the other two SimStudents. This
shows the importance of the layout in achieving effective learning. Both the
SimStudent with the manually-constructed layout (manual) and the SimStu-
dent with the learned layout (learn) perform well across three domains. There is
no significant difference between the two SimStudents, which suggests that the
acquired layouts are as good as the manually constructed layouts.

7 Future Work

Although in this paper, we mainly focus on using the two-dimensional grammar
learner to model interface layouts, the algorithm is not limited to this specific
task. We would like to explore the generality of the proposed approach in other
tasks. Reading tables on webpages or notes on paper are potentially interesting
tasks. Sometimes, notes on a paper may not be well-aligned. In this case, the
layout learning algorithm will need to be able to align these contents.

Moreover, we would like to test whether the layout learner can be used to
recognize two-dimensional complex math equations. Correct 2-D layouts of tables
are also important in completing calculation tasks in Excel. We would like to
see whether the 2-D grammar learner can be used to help learning to perform
tasks in Excel.

Finally, the complexity of the current Viterbi training algorithm increases
rapidlywith the lengths of the training records.Although theGSH and the caching
mechanism speed up the learning process a lot, we would like to further optimize
the Viterbi training phase to ensure scalability of the learning algorithm.

8 Concluding Remarks

In summary, we proposed a novel approach that models learning to perceive
visual displays by grammar induction. More specifically, we extend an exist-
ing one-dimensional pCFG learning algorithm to support acquisition of a two-
dimensional variant of pCFG by incorporating spatial and temporal information.
We showed that the two-dimensional layout learner is more effective than the
one-dimensional layout learner in general. When integrated into an intelligent
agent, the SimStudent using the acquired layouts performs equally well compar-
ing with the SimStudent given manually constructed layouts.
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Abstract. Transferring knowledge from auxiliary datasets has been
proved useful in machine learning tasks. Its adoption in clustering how-
ever is still limited. Despite of its superior performance, spectral cluster-
ing has not yet been incorporated with knowledge transfer or transfer
learning. In this paper, we make such an attempt and propose a new
algorithm called transfer spectral clustering (TSC). It involves not only
the data manifold information of the clustering task but also the feature
manifold information shared between related clustering tasks. Further-
more, it makes use of co-clustering to achieve and control the knowledge
transfer among tasks. As demonstrated by the experimental results, TSC
can greatly improve the clustering performance by effectively using auxil-
iary unlabeled data when compared with other state-of-the-art clustering
algorithms.

Keywords: Transfer Learning, Spectral Clustering, Co-clustering.

1 Introduction

Clustering aims at finding groups of objects so that the objects in the same
group are relatively similar while the objects in different group are relatively
dissimilar. In the past decades, many clustering algorithms have been proposed,
such as k-means clustering [1], spectral clustering [2, 3], Bregman divergence
based clustering [4], etc. Focused on improving the clustering performance, prior
knowledge in the form of must-link or cannot-link constraints [5] and auxiliary
labeled data [6] have been introduced in clustering. Recently, auxiliary unlabeled
data were also used to improve the performance of clustering by the so-called
self-taught clustering (STC) [7]. To the best of our knowledge, STC is the first
method that transfers knowledge from unlabeled data to facilitate more effective
clustering. Its merit has been demonstrated in image clustering tasks.

Spectral clustering algorithms [2, 3] are well-known methods that use mani-
fold information contained in the sample distribution to carry out the clustering
task and very often outperform the traditional clustering algorithms such as the
k-means algorithm. However, it seems that how to transfer knowledge from aux-
iliary unlabeled dataset to facilitate more effective spectral clustering has not
yet been explored. In this paper, a transfer spectral clustering (TSC) algorithm
is proposed and it works on the assumption that the related tasks share the same

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 789–803, 2012.
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low dimensional feature embedding. This assumption could be measured by the
objective of bipartite graph co-clustering. The proposed algorithm involves not
only the data manifold information of the individual task but also the feature
manifold information shared between tasks. The experimental results show that
TSC can greatly improve the clustering performance by effectively using auxil-
iary unlabeled data.

This work is presented as follows. In section 2, the related works are firstly
highlighted. The formulation of our method is given in section 3 which also
describes the corresponding optimization method. In section 4, the experimental
results are reported. In section 5, we give the conclusions and discuss the future
works.

2 Related Works

Our method is related to co-clustering, transfer learning and multitask clustering
with the corresponding related works highlighted below.

2.1 Co-clustering

Co-clustering aims at performing clustering on both the samples and the at-
tributes so that clustering of attributes can help improve the clustering quality
of samples. Many co-clustering algorithms have been proposed, e.g. information
theoretic co-clustering (ITCC) [8] and bipartite graph co-clustering [9]. ITCC is
a co-clustering algorithm based on information theory, which attempts to find
the co-clusters such that the mutual information between the clustered random
variables is maximized subject to constraints on the number of row and column
clusters. As a totally different method, co-clustering on bipartite graph [9] ex-
presses samples and attributes by a bipartite graph and seeks minimum cuts on
this graph such that samples and attributes are both well grouped. A bipartite
graph based co-clustering will be exploited by our new method to be presented
in the next section.

2.2 Transfer Learning

Transfer learning [10–12] attempts to improve the learning performance on a
target dataset by utilizing auxiliary datasets. It has been proved to be beneficial
in practice [13, 14]. Many works have been done on inductive transfer learning
[15] and transductive transfer learning [16–18].

For clustering problems, Dai et al. [7] proposed self-taught clustering (STC)
to cluster a small collection of target data with the help of a large amount of
unlabeled auxiliary data. STC extends the information theoretic co-clustering
algorithm (ITCC) [8] with the assumption that target dataset and auxiliary
dataset share the same feature clustering. STC minimizes the same loss with
ITCC for the two datasets simultaneously. In this paper, we propose a method
based on a similar assumption. However, unlike STC which built on information
theory, our method is built on graphs.
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2.3 Multitask Clustering

Multitask learning [19–21] performs multiple learning tasks concurrently to im-
prove the individual performance. But almost all existing works have been fo-
cused on supervised settings. Recently, multitask Bregman clustering (MBC)
[22] was proposed to extend Bregman divergence based clustering [4] to multi-
task settings. MBC aims at minimizing a local loss function for each single task
and carries out a task regularization involving all tasks. The task regularization
of MBC is indeed the sum of divergence between two learned density models for
any pair of different tasks.

3 Transfer Spectral Clustering

3.1 Problem Formulation

Let us first describe the clustering tasks for our transfer spectral clustering

(TSC) algorithm. Given two data matrix X(1) = [x
(1)
1 , · · · , x(1)

n1 ] and X(2) =

[x
(2)
1 , · · · , x(2)

n2 ] containing n1 and n2 samples with nf features, where x
(1)
i ∈

Rnf×n1 and x
(2)
j ∈ Rnf×n2 , TSC aims at performing clustering on both datasets

simultaneously and achieving better performance than clustering them sepa-
rately. Assume that the number of clusters on both datasets is the same, and
is denoted as k. To achieve better performance, we try to find low dimensional
embeddings for these two datasets so that they not only are smooth on the
data manifold, like that in spectral clustering [2], but also maximize the task
relationship measured by co-clustering objective. With the low dimensional em-
beddings obtained, the traditional clustering algorithms could be applied to get
the partitions for both datasets.

Let G(1) and G(2) denote the k-nn graphs constructed for each task separately.
The corresponding affinity matrices W (1) and W (2) are defined as

W
(1)
ij =

{
1 if x

(1)
i ∈ N (1)(x

(1)
j ) or x

(1)
j ∈ N (1)(x

(1)
i )

0 otherwise,
(1)

W
(2)
ij =

{
1 if x

(2)
i ∈ N (2)(x

(2)
j ) or x

(2)
j ∈ N (2)(x

(2)
i )

0 otherwise,
(2)

where N (1)(x
(1)
j ) and N (2)(x

(2)
j ) denote the set of neighbors of x

(1)
j and x

(2)
j

respectively. The first part of our goal is to obtain embeddings that are smooth
over the corresponding graph. Let F (1) ∈ Rn1×k and F (2) ∈ Rn2×k denote the
embeddings, where each row is an embedding for the corresponding sample. The
smoothness of F (1) on G(1) can be measured by

1

2

n1∑
i,j=1

W
(1)
ij ‖

1√
D

(1)
ii

F
(1)
i − 1√

D
(1)
jj

F
(1)
j ‖2, (3)
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where F
(1)
i is the ith row of F (1) and D(1) = diag(W (1)1). It can be easily shown

that equation (3) can be simplified as

tr(F (1)T (I −W
(1)
N )F (1)),

where

W
(1)
N = D(1)−

1
2 W (1)D(1)−

1
2 .

If the constraint F (1)TF (1) = I is added, the smoothness can then be measured
by

tr(F (1)TW
(1)
N F (1)). (4)

Larger value means the embeddings being smoother on the graph. Similarly, for
F (2), the smoothness on G(2) can be measured by

tr(F (2)TW
(2)
N F (2)), (5)

where

W
(2)
N = D(2)−

1
2W (2)D(2)−

1
2

and

D(2) = diag(W (2)1).

In addition to pursuing smoothness on the corresponding graphs, TSC also aims
at linking the two embeddings together such that one embedding obtained in
one data set facilitates the finding of the embedding in another dataset. This
goal can be achieved by graph co-clustering as follows.

Recall that the purpose of graph based co-clustering [9] is to find minimum
cuts on a bipartite graph whose nodes include samples and features. Given the
data matrix A ∈ Rd×n, where d is the number of features and n is the number
of samples. The affinity matrix for bipartite graph is defined as

W =

[
0 A

AT 0

]
and the corresponding graph Laplacian is defined as

L =

[
D1 −A
−AT D2

]
where D1 = diag(A1) and D2 = diag(AT1). The objective function of co-
clustering [9] could be expressed as

min
z

zTLz

s.t. xTD1x = 1,

yTD2y = 1, (6)



Transfer Spectral Clustering 793

where

z =

[
x
y

]
with vector x containing the embeddings for features, and vector y containing the
embeddings for samples. It can be easily shown that such problem is equivalent
to

max
x,y

xTAy

s.t. xTD1x = 1,

yTD2y = 1. (7)

Motivated by graph co-clustering, the second part of our objective function can
be defined as

Ω(F (1), F (2), F (3))

= tr(F (3)TX(1)F (1)) + tr(F (3)TX(2)F (2)), (8)

where the rows of matrix F (3) are the embeddings for features. Larger value of
the above equation means better co-clustering on both datasets which share the
same feature clustering. In our TSC algorithm with this measurement, we only
consider normalized data matrices which are defined as

X
(1)
N = D

(1)
1

− 1
2
X(1)D

(1)
2

− 1
2
, (9)

X
(2)
N = D

(2)
1

− 1
2
X(2)D

(2)
2

− 1
2
, (10)

where

D
(1)
1 = diag(X(1)1),

D
(1)
2 = diag(X(1)T1),

D
(2)
1 = diag(X(2)1),

D
(2)
2 = diag(X(2)T1).

Therefore, by combining these two goals, i.e., to obtain smooth embeddings
on the data manifold and to maximize the co-cluster objective, our objective
function can be expressed as

max
F (1),F (2),F (3)

tr(F (1)TW
(1)
N F (1)) + tr(F (2)TW

(2)
N F (2))+

λ(tr(F (3)TX
(1)
N F (1)) + tr(F (3)TX

(2)
N F (2)))

s.t. F (1)TF (1) = I,

F (2)TF (2) = I,

F (3)TF (3) = I, (11)
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where λ > 0 is the trade off between the smoothness on graphs and the co-
clustering objective. If λ is set as 0, our method becomes the classical spectral
clustering.

3.2 Another View of the Formulation

In this section, we provide another view of our formulation. Let us define a graph
G̃ whose schematic diagram is shown in Figure 1. And the corresponding affinity
matrix is defined as

W̃ =

⎡⎢⎢⎣ W
(1)
N 0 λ

2X
(1)
N

T

0 W
(2)
N

λ
2X

(2)
N

T

λ
2X

(1)
N

λ
2X

(2)
N 0

⎤⎥⎥⎦ .

We can see that the left part and right part of G̃ are actually G(1) and G(2)

respectively, and they are linked by features. If we define

F̃ =

⎡⎣F (1)

F (2)

F (3)

⎤⎦ ,

it can be shown that tr(F̃T W̃ F̃ ) is actually the objective function of problem
(11). Hence, our formulation is to find the representation for features and sam-
ples based on this graph. Our definition is different from the graphs defined in
EigenTransfer [11]. G̃ does not include label information and considers direct re-
lations between samples within tasks. Moreover, one might control the quantity
of knowledge transferred by the parameter λ introduced. As a result, it is more
suitable for clustering tasks.

x
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...
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Fig. 1. Another View of TSC
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3.3 Algorithm

Now, we present the algorithm to find solutions for our formulation. Problem
(11) is not a convex optimization problem and hence, only a local solution can
be obtained. Let us first initialize F (1) and F (2) with the top k eigenvectors of

W
(1)
N and W

(2)
N respectively, and F (3) with the top k left singular vectors of the

matrix normalized from

X =
[
X

(1)
N X

(2)
N

]
in accordance with (9) and (10). Then, they are updated such that the value of
the objective function increases until convergence is achieved.

Because of the orthonormality constraints, F1, F2 and F3 actually are on the
Stiefel manifold [23]. The problem (11) could be solved by repeatedly updating
F1, F2 and F3 on the manifold alternatively. During iterations, if F1, F2 and F3

are not on the manifold, they are updated with their projections on the manifold.
For a rank p matrix Z ∈ Rn×p, the projection of Z on Stiefel manifold is

defined as

π(Z) = arg min
QT Q=I

‖Z −Q‖2F . (12)

If the singular value decomposition (SVD) of Z is Z = UΣV T , the projection
could be computed as π(Z) = UIn,pV

T [23]. Hence, we can update F1, F2 and F3

by moving them in the direction of increasing the value of the objective function.
For convenience of descriptions, we denote the objective function as

g(F (1), F (2), F (3))

=tr(F (1)TW
(1)
N F (1)) + tr(F (2)TW

(2)
N F (2))+

λ(tr(F (3)TX
(1)
N F (1)) + tr(F (3)TX

(2)
N F (2))). (13)

Hence, the partial derivatives of g with respect to F (1), F (2) and F (3) can be
computed as

∂g

∂F (1)
= 2W

(1)
N F (1) + λX

(1)
N

T
F (3), (14)

∂g

∂F (2)
= 2W

(2)
N F (2) + λX

(2)
N

T
F (3), (15)

∂g

∂F (3)
= λX

(1)
N F (1) + λX

(2)
N F (2). (16)

The steps of our TSC algorithm are summarized in Table 1.

3.4 Time Complexity

The computational cost of the proposed clustering algorithm can be analyzed as
follows. As exact SVD of am×nmatrix has time complexityO(min{mn2,m2n}),
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Algorithm 1. Transfer Spectral Clustering

Input: W
(1)
N , W

(2)
N , X

(1)
N , X

(2)
N , k, λ and step length t

Initialize F (1), F (2) and F (3).
repeat

Set F (1) = π(F (1) + t ∂g

∂F (1) /‖ ∂g

∂F (1) ‖).
Set F (2) = π(F (2) + t ∂g

∂F (2) /‖ ∂g

∂F (2) ‖).
Set F (3) = π(F (3) + t ∂g

∂F (3) /‖ ∂g

∂F (3) ‖).
until Converge

Form matrix Z(1) and Z(2) by normalizing each rows of F (1) and F (2) to have unit
length.
Treat each row of Z(1) and Z(2) as samples and run k-means to get partitions P (1)

and P (2).
Output: P (1) and P (2).

the initialization step, which actually involves eigenvalue decomposition and
SVD, has time complexity O(n2

1k+n2
2k+min{D2(n1+n2), D(n1+n2)

2}). During
iterations, TSC computes the new embeddings and projections. The computa-
tions of all three new embeddings involve matrix products and additions and
the time complexity is O(n2

1k + n2
2k + D2k). To find projections, computing

SVD of matrices F1, F2 and F3 are needed. As such, the time complexity for
computing new embeddings and projections is O(n2

1k + n2
2k + D2k). Thus, the

time complexity of the iteration part is O(iter(n2
1k+n2

2k+D2k)), where iter is
the number of iterations. Since k is usually small compared with the number of
features and samples, our method is computationally efficient.

4 Experimental Results

In this section, an evaluation of the TSC algorithm on text clustering tasks and
a comparison with spectral clustering (SC) [2], self-taught clustering (STC) [7]
and multitask Bregman clustering (MBC) [22] are reported.

4.1 Datasets

We test our algorithms on clustering tasks generated from the 20 Newsgroups
(20NG) dataset1 and Reuters-21578 data set2. The 20NG dataset used in our ex-
periments is the bydate version. This version is sorted by date into training(60%)
and test(40%) sets. After preprocessing, the 20NG dataset contains 18774 docu-
ments and 61188 terms and our datasets have been extracted from it as follows.
Each dataset contains two separate parts, with each part corresponding to a
clustering task. The categories selected for these datasets are listed in Table 1.
The second column of Table 1 is for task 1 while the third column is for task

1 http://people.csail.mit.edu/jrennie/20Newsgroups/
2 http://www.daviddlewis.com/resources/testcollections/reuters21578/

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
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2. We can see that the subcategories of tasks 1 and 2 of the first 2 data sets
are different, but belong to a more general category. We select 500 samples for
each class. For datasets 20NG3-10, the subcategories of the two tasks are the
same and we use the whole test set in task 2 and select the same number of
samples from the training set in task 1. Hence, samples of these two tasks follow
different distribution. For the 20NG11-16 datasets, the samples in the two tasks
share the same top categories, but they are selected from different subcategories.
Therefore, the distributions of samples in these two tasks are different. For each
class, we also select 500 samples. Reuters1-3 were generated in a similar way
as 20NG11-16, but with all the samples used in our experiments. All datasets
are represented in tf-idf format and normalized such that each sample has unit
length.

Table 1. Datasets Generated from 20 Newsgroups and Reuters-21578 Datasets

Datasets Task 1 Task 2

20NG1
sci.crypt sci.med
sci.electronics sci.space

20NG2
talk.politics.guns talk.politics.misc
talk.politics.mideast talk.religion.misc

20NG3
comp.graphics comp.graphics
comp.os.ms-windows.misc comp.os.ms-windows.misc

20NG4
rec.autos rec.autos
rec.motorcycles rec.motorcycles

20NG5
sci.crypt sci.crypt
sci.electronics sci.electronics

20NG6
talk.politics.guns talk.politics.guns
talk.religion.misc talk.religion.misc

20NG7
alt.atheism alt.atheism
comp.graphics comp.graphics

20NG8
misc.forsale misc.forsale
rec.sport.hockey rec.sport.hockey

20NG9
rec.sport.hockey rec.sport.hockey
sci.electronics sci.electronics

20NG10
sci.space sci.space
soc.religion.christian soc.religion.christian

20NG11 comp.*, rec.* comp.*, rec.*

20NG12 comp.*, sci.* comp.*, sci.*

20NG13 comp.*, talk.* comp.*, talk.*

20NG14 rec.*, sci.* rec.*, sci.*

20NG15 rec.*, talk.* rec.*, talk.*

20NG16 sci.*, talk.* sci.*, talk.*

Reuters1 orgs.*, places.* orgs.*, places.*

Reuters2 people.*, places.* people.*, places.*

Reuters3 orgs.*, people.* orgs.*, people.*
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4.2 Clustering Performance Measures

In order to measure the clustering performance, the normalized mutual informa-
tion (NMI), cluster purity (purity) and rand index (RI) [24] were adopted. For
Ω = {ω1, · · · , ωK} denoting a set of clusters and C = {c1, · · · , cK} referring to
a set of classes, where ωi is interpreted as the samples in cluster i, and cj as the
set of samples in class j, these three measures are defined as

NMI =

∑
jl njl log (

Nnjl

njnl
)√

(
∑

j nj log
nj

N )((
∑

l nl log
nl

N )
, (17)

purity =
1

N

∑
k

max
j
|ωk ∩ cj |, (18)

RI =
TP + TN

TP + FP + FN + TN
, (19)

where nj, nl are the numbers of samples in class j and in cluster l, respectively,
njl is the number of samples occurring in both class j and cluster l, and TN+TP
is the number of correct decisions for a pair of objects, FP+FN is the number of
wrong decisions. RI computes the percentage of correct pair-wise relationships.
For all these three measures, larger value means better cluster performance. For
all the methods in our evaluation, we compute the average performance of the
two tasks.

4.3 Empirical Analysis

In all the experiments, we construct k-nn graphs with k = 27. We apply spectral
clustering on data from individual task (SCind) and on data combined from all
tasks (SCcom). For SCcom, we find the embeddings for all tasks and perform k-
means within tasks. For self-taught clustering (STC), we set λ as 1, because the
two tasks are equally important in all our experiments. The number of feature
clusters is set as 32 as in [7]. The maximum number of iterations for STC is set as
20. MBC and STC are initialized with spectral clustering which usually achieves
better performance than k-means. The Bregman divergence used in MBC is the
Euclidean distance and the only parameter for MBC is set as 0.5 as in [22]. For
our method, we set λ = 3, and the step length as 1. In each experiment, we
run the k-means algorithm 100 times with random starting points and the most
frequent cluster assignment is used. Spectral clustering is not designed for more
than one clustering tasks. Hence, we perform spectral clustering on each task
separately and report the average performance.

In Table 2 and Table 3, the clustering performance of the five methods on
these datasets is reported. We can see that our method achieves the best per-
formance in most datasets. It can be explained by the fact that the feature
embeddings computed by our method have taken into considerations of the



Transfer Spectral Clustering 799

Table 2. Clustering performances (row 1: purity, row 2: NMI, row 3: RI) of different
algorithms on the first ten datasets in Table 1

Datasets SCind SCcom STC MBC TSC

20NG1
0.9605 0.951 0.9295 0.941 0.955
0.7643 0.718 0.6339 0.7201 0.7405
0.9243 0.9068 0.8692 0.8894 0.9141

20NG2
0.9425 0.8495 0.9035 0.9445 0.94
0.6894 0.5175 0.5743 0.7048 0.6883
0.8923 0.7701 0.8311 0.8962 0.8894

20NG3
0.7314 0.8237 0.7308 0.7603 0.8295
0.1822 0.3324 0.1685 0.2261 0.3497
0.6092 0.7108 0.6067 0.6355 0.7184

20NG4
0.8643 0.8883 0.7841 0.8883 0.904
0.4615 0.5294 0.2788 0.5464 0.5679
0.7671 0.8017 0.6623 0.8025 0.8265

20NG5
0.9353 0.948 0.8934 0.9194 0.9416
0.6725 0.7166 0.5196 0.6307 0.6961
0.8805 0.9024 0.8107 0.8529 0.8919

20NG6
0.9114 0.935 0.9 0.939 0.935
0.5776 0.668 0.5255 0.679 0.6687
0.8422 0.879 0.8208 0.8873 0.8797

20NG7
0.9745 0.9788 0.9668 0.9724 0.9781
0.835 0.8613 0.791 0.818 0.8567
0.9506 0.9589 0.9359 0.9464 0.9573

20NG8
0.9571 0.9654 0.9597 0.9558 0.9731
0.7746 0.7951 0.766 0.7451 0.8359
0.9185 0.9334 0.9227 0.9159 0.9478

20NG9
0.9842 0.9855 0.9754 0.971 0.9855
0.8849 0.8927 0.8441 0.835 0.8964
0.969 0.9714 0.952 0.9436 0.9714

20NG10
0.9728 0.9791 0.9715 0.9665 0.9835
0.825 0.8549 0.8155 0.8108 0.8815
0.9471 0.9591 0.9447 0.9352 0.9677

embeddings of samples in the two clustering tasks and such a sharing could
improve the clustering performance in quite a significant manner.

In the proposed TSC algorithm, the parameter λ controls the quantity of
information to be transferred and a sensitivity analysis of this parameter has
been carried out. Figure 2 presents the clustering performance with respect to
different λ on datasets 20NG3, 20NG7, 20NG16, and Reuters1. We can see that
the high performance of our algorithm is stable in a range of λ. The performance
first goes up when λ is small, and drops when λ is too big. Thus, a proper amount
of knowledge should be transfered and we set λ = 3 in all our experiments.
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Table 3. Clustering performances (row 1: purity, row 2: NMI, row 3: RI) of different
algorithms on the last nine datasets in Table 1

Datasets SCind SCcom STC MBC TSC

20NG11
0.9785 0.979 0.947 0.9725 0.9745
0.8531 0.8553 0.7131 0.8217 0.8323
0.9581 0.9589 0.9007 0.9466 0.9505

20NG12
0.867 0.851 0.8385 0.853 0.8875
0.522 0.4916 0.4176 0.485 0.5304
0.7825 0.7619 0.74 0.7605 0.806

20NG13
0.9785 0.975 0.9735 0.977 0.9845
0.8507 0.8332 0.8243 0.8475 0.8856
0.9579 0.9513 0.9484 0.9551 0.9695

20NG14
0.89 0.8755 0.868 0.8815 0.922

0.5918 0.5641 0.4835 0.5953 0.6452
0.8183 0.7973 0.7767 0.8082 0.8608

20NG15
0.8695 0.849 0.861 0.874 0.9605
0.6049 0.5758 0.553 0.5625 0.7838
0.7975 0.7764 0.784 0.7852 0.9247

20NG16
0.8285 0.8035 0.815 0.831 0.94
0.4257 0.3876 0.4019 0.4202 0.6742
0.7249 0.722 0.7085 0.7203 0.8872

Reuters1
0.6621 0.6779 0.6675 0.8313 0.8506
0.1697 0.1861 0.1612 0.349 0.3929
0.5949 0.6098 0.594 0.7201 0.746

Reuters2
0.72 0.7408 0.7387 0.7388 0.7647

0.1775 0.182 0.1806 0.2102 0.2196
0.6037 0.616 0.6162 0.6177 0.6408

Reuters3
0.6356 0.6903 0.6476 0.6253 0.6527
0.0706 0.0921 0.0734 0.0394 0.0784
0.5429 0.5727 0.55 0.5303 0.5531

The convergence property of TSC was also studied. As the objective function
of TSC is a continuous function of F (1), F (2) and F (3), its value will increase
monotonically as long as the step size t is small enough. Hence, TSC will converge
in a fixed number of iterations. Moreover, the required number of iterations to
converge depends on the threshold required for checking convenience. Usually,
the smaller the threshold, the more iterations are needed. In our experiments,
we use 0.00001, and the number of iterations to converge is less than a hundred.
Figure 3 shows the learning curve of TSC in dataset Reuters1. We can see that
TSC converges very well in this dataset.
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0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ

cl
us

te
rin

g 
pe

rf
or

m
an

ce

 

 

purity

NMI

RI

(d) Reuters1

Fig. 2. Clustering performance with different λ
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Fig. 3. The learning curve of the TSC algorithm in dataset Reuters1
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5 Conclusions and Future Work

In this paper, an approach to transfer knowledge from other datasets to facilitate
more effective spectral clustering is presented. Our assumption is that embed-
dings of features could link different clustering tasks (from different datasets)
and hence improve the clustering performance with respect to each other. Based
on this assumption, a co-clustering objective is proposed to design a new spectral
clustering algorithm called transfer spectral clustering (TSC). The experimental
results show that with the help of co-clustering, TSC has outperformed several
state-of-the-art clustering algorithms.

The proposed TSC algorithm assumes that the two datasets have the same
number of clusters, which limits its applications in practice. In the future, we plan
to extend our method to allow clustering datasets into different groups. We will
also explore other more efficient optimization method for TSC. In addition, we
will try to find a way to tune the parameter λ so that the quantity of knowledge
transferred can be made automatic.
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Abstract. In this demo paper, we present SARE, a modular and ex-
tendable semi-automatic system that 1) assists researchers in building
gold-standard lexicons and evaluating their lexicon extraction algorithms;
and 2) provides a general and extendable sentiment analysis environment
to help researchers analyze the behavior and errors of a core sentiment
analysis engine using a particular lexicon.

1 Introduction

In sentiment analysis, domain aspect (also called feature) extraction is crucial
for gaining a deeper and more refined understanding of the opinions expressed in
a given document [3,2]. Without domain-specific aspects, the sentiment analysis
process remains prone to generalizations and dilution of opinions. A domain
aspect lexicon consists of a set of aspects that are broad features of the domain;
and for each aspect, a set of aspect-related keywords. For example, in the hotel
domain, “room quality” might be one such aspect and the terms “furniture” and
“size” could be keywords associated with this aspect.

Several automatic and semi-automatic methods have been proposed in the
literature to extract a domain aspect lexicon from a given domain corpus, such
as those cited in [5]. In evaluating their methods, researchers either compare
the coverage of the extracted lexicon to that of a hand-built one considered to
be the gold standard; or they compare the performance of a baseline sentiment
analysis system using the generated lexicon versus some other available lexica.
The gold-standard lexicon mentioned in the former case is obtained through one
of the following ways: a) by manually tagging words from a domain corpus; b) by
one or more domain experts choosing aspects and keywords without the use of a
corpus; or c) using review sets that have already been annotated with aspects and
keywords by the original reviewers. The first approach is naturally rather tedious
as domain corpora are usually too large to be manually processed. The second
one is vulnerable to generalization error since the experts’ vocabulary tends to
be narrower compared to the broader vocabulary of a mass of reviewers. Finally,
the third approach is not always possible, since such review sets are not available

� SARE was developed in the context of UBIPOL (Ubiquitous Participation Platform
for Policy Making) project funded by European Commission, FP7.

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 804–807, 2012.
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in all cases. It is also difficult to verify and evaluate a hand-built lexicon to make
sure that it contains all the relevant words and only the relevant words. There
are no tools freely available, to the best of our knowledge, that deal with all of
these challenges and assist the researcher with these tasks. We developed SARE
(Sentiment Analysis Research Environment) to fulfill this need.

2 Overview and Main Contributions

In this demo paper, we present SARE, which is designed to support researchers in
constructing and analyzing their sentiment analysis systems addressing the issues
raised in Sect. 1. Currently, SARE consists of two modules: SARE–Lex (Lexicon
Creation Tool) provides a semi-automatic method for developing gold-standard
domain lexica by reducing the size of the corpus that needs to be processed
manually. SARE–Core (Core System Results), takes a review corpus, a sentiment
analysis engine, and a domain lexicon; and displays aspect-based as well as
overall sentiment summary for each review in the corpus. The second module can
take as input a lexicon generated by the first or a pre-generated lexicon obtained
as output from a separate feature-extraction algorithm. In either case, the goal
is to help the researcher analyze the behavior and errors of a core sentiment
analysis engine using a particular lexicon. Thus, while SARE is intended to be a
general sentiment analysis research environment, its two modules can be used in
creating a hand-built lexicon and assessing the performance of any given lexicon.

Our main contribution is a publicly-available and open-source tool for pro-
ducing gold-standard domain aspect lexica. This tool is primarily intended for
use by sentiment analysis researchers, and to a certain extent, practitioners. For
demonstrating SARE, we will present an interactive scenario for creating a lexi-
con from scratch given a corpus; then we will show the capabilities of the system
for analyzing the output of the sentiment analysis module. Our future work in-
volves extending SARE, which is designed to be highly modular and extendible,
to support research in various sentiment analysis sub-problems by introducing
pluggable components such as custom sentiment analysis engines and polarity
lexica. In this work, we only deal with features that are explicitly expressed using
nouns such as the ones mentioned above; the task of extracting implicit features
such as those expressed using adjectives and adverbs is left for future work.
We also plan on extending the system to add support for languages other than
English which only requires substituting the NLP process and polarity lexicon.

3 Process and Modules

SARE is a self-contained web application that can be deployed to any Java-
based web server. The system allows for a domain corpus to be imported in
a variety of formats including text and XML. This corpus is then analyzed
using the method described in Sect. 3.1 to obtain the most informative docu-
ments from which the user extracts domain aspects and related keywords to
create the aspect lexicon. Alternatively, a pre-generated lexicon can be up-
loaded by the user as well. The lexicon, manually extracted or otherwise, is
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Fig. 1. SARE: (a) SARE-Lex module (b) SARE-Core module

then used by the sentiment analysis engine to process the corpus and results
are displayed to the user for further analysis. Figure 1 illustrates this work-
flow with the help of screenshots. The system currently uses a fixed sentiment
analysis engine and polarity lexicon, but will be extended to accept pluggable
versions in the near future. This application is publicly accessible online by vis-
iting http://ferrari.sabanciuniv.edu/sare, and a demo video explaining its
usage can be downloaded from http://ferrari.sabanciuniv.edu:81/public/

videos/sare-demo.wmv. It should be noted that SARE is developed on the prin-
ciples of REST architecture, which allows other systems to easily access it, use
its output independent of the website, and extend it as desired. The list of nec-
essary API calls for this purpose can be provided on demand. In the following
subsections, we will discuss the major components of the system.

3.1 SARE-Lex: Lexicon Extraction Module

This module deals with the problem of aspect lexicon extraction by corpus sum-
marization and user annotation. We approximate aspect keywords with corpus
nouns and apply a variation of the Greedy Set Cover algorithm that we devel-
oped called Eagerly Greedy Set Cover algorithm to find the minimum set of
documents that cover all of the nouns in the corpus. Conceptually, each noun is

http://ferrari.sabanciuniv.edu/sare
http://ferrari.sabanciuniv.edu:81/public/videos/sare-demo.wmv
http://ferrari.sabanciuniv.edu:81/public/videos/sare-demo.wmv
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assigned a utility score equal to its corpus frequency, and the utility score of each
document is calculated as the cumulative utility score of the nouns it contains.
However, since we have formulated this as a set cover problem, a given noun can
only lend its score to one document, and therefore we find the best placement for
each noun where it maximizes document utility. For large enough corpora, this
generally results in a utility distribution where most of the documents have very
low utility score. By ignoring documents with utilities in the lower percentile
(a percentile threshold), the number of documents requiring annotation can be
significantly reduced. This threshold is a parameter of the module and the tool
assists the user in selecting it by displaying a utility distribution. The reduced
set of documents is then displayed sequentially to the user for collecting new
aspects and associated keywords. As each document is displayed, the interface
emphasizes document nouns for better visibility. The user can then interact with
these emphasized nouns to mark them as aspects or keywords of an aspect.

3.2 SARE-Core: Sentiment Analysis Module

The objective of this module is to use the domain aspect lexicon from the pre-
vious module for calculating aspect-based and overall sentiment scores for each
review, and present a summarized result. If reviews in the provided corpus were
labeled as positive or negative, then the interface also indicates erroneous clas-
sifications for each review. To calculate sentiment scores, word polarities are
first obtained from the SentiWordNet polarity lexicon [1]. A polarity-placement
algorithm is then used to calculate score values for each aspect and the overall
review. Using syntactic dependencies obtained through the Stanford NLP Parser
[4], polarity values can be transferred from the polarity word to the aspect key-
word, and consequently to the aspect. The tool also displays polarities of polar
words, sentences, and other intermediate results. Currently, only the default en-
gine can be used. As future work, we plan to introduce the option to plug in
any sentiment analysis engine provided as a web service. We are also planning
an extension to allow the user to provide their own polarity lexicon instead of
the default one.
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Abstract. I:ZI Miner (sewebar.vse.cz/izi-miner) is an association
rule mining system with a user interface resembling a search engine. It
brings to the web the notion of interactive pattern mining introduced
by the MIME framework at ECML’11 and KDD’11. In comparison with
MIME, I:ZI Miner discovers multi-valued attributes, supports the full
range of logical connectives and 19 interest measures. A relevance feed-
back module is used to filter the rules based on previous user interactions.

1 Introduction

The goal of the association rule mining task is to discover patterns interesting
for the user in a given collection of objects. The user interest is defined through
a set of features that can appear on the left and right side of the discovered
rules and by thresholds on selected interest measures. A typical task produces
many rules that formally match these criteria, but only few are interesting to
the user [1]. The uninteresting rules can be filtered using domain knowledge;
the challenge is to balance the investment of user’s time to provide the required
input with the utility gained from the filtered mining result.

To address this challenge, we draw inspiration from the information retrieval
task, which tackles a similar problem – select documents interesting to the user
from the many that match the user’s query. Web search engines are successful in
retrieving subjectively interesting documents from their index; with I:ZI Miner1

we try to apply the underlying principles to the task of discovering subjectively
interesting rules from the dataset. We consider these principles to be interactiv-
ity, simplicity of user interface, immediate response and relevance feedback.

I:ZI Miner is based on similar ideas as the MIME framework [2], a desktop
application introduced at ECML 2011 and KDD 2011. The main differences are
that I:ZI Miner works with multi-valued attributes (see examples in Fig. 1) and
supports the full range of logical connectives. Additional features that distinguish
I:ZI Miner from MIME include web interface, rule filtering based on relevance
feedback and a preprocessing module.

1 The name I:ZI Miner is pronounced as ‘easy miner’.

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 808–811, 2012.
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Fig. 1. I:ZI Miner screenshot

2 User Interface

The mining task is defined in the Pattern Pane (Fig. 1A) by selecting interest
measures and placing attributes from the Attribute Palette (Fig. 1B). Real-time
results are shown in the Result Pane (Fig. 1C), which also serves for relevance
feedback. Interesting rules are saved to the Rule Clipboard (Fig. 1D).

Pattern Pane. By dragging attributes from the Attribute palette to the an-
tecedent and consequent of the rule, the user creates an intuitively understand-
able ‘rule pattern’ that discovered rules must match. Attributes are by default
connected by conjunction, but it can be changed to disjunction. For a specific
attribute, the user can either select a value or a wildcard (ref. to Sec. 3). There
is also the option to put negation on an attribute. The user adds at least one
interest measure and its threshold. A unique feature is that any combination of
the available 19 interest measures can be used.

Result Pane. It displays the rules as soon as they have been discovered, i.e. the
user does not have to wait for the mining process to finish to get the first results.
If the discovered rule is only a confirmation [4] of a known rule, it is visually
suppressed by gray font. In contrast, exception to a known rule is highlighted in
red. Uninteresting rules that pass the domain knowledge check can be discarded
by clicking on the red cross; this stores negative relevance feedback. Green tick
moves the rule to the Rule clipboard and stores positive relevance feedback.

Attribute Palette. For an attribute to be used during mining, the user needs to
drag it to the Pattern pane. If the ‘best pattern’ feature is on, the attributes are
ordered according to their estimated value for predicting the consequent.
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3 Architecture, Performance and Expressiveness

The software has a web service architecture; an extension of the PMML for-
mat (www.dmg.org) is used for communication between individual modules. The
mining module is reused from the LISp-Miner system (lispminer.vse.cz). It
is written in C++, uses a proprietary bitstring-based mining algorithm derived
from the GUHA method [3], and offers a range of unique features including:

– Arbitrary combination of interest measures, including confidence, support,
lift, Chi-square, Fisher and eight other interest measures developed within
the GUHA method.

– Full range of logical connectives (conjunction, disjunction and negation).
– Simple wildcard on an attribute tells the miner to generate as many ‘items’

as there are values of the attribute. This is similar to other association rule
mining systems that support multiple attributes.

– Adding a Fixed value attribute to the mining setting allows the user to limit
the search space only to rules containing a selected attribute-value pair.

– Binning wildcards can be used to instruct the miner to dynamically merge
multiple values into one ‘item’ during mining. If value order was specified in
the preprocessing stage, only adjacent values can be binned.

– Support for distributed computing on top of the Techila platform [6].

The relevance feedback module [4] is a Java application running on top of the
XML Berkeley database. I:ZI Miner is part of the SEWEBAR-CMS project [5],
which provides data preprocessing and reporting capabilities.

4 Comparison with the MIME Framework

Our system shares many features with the MIME framework introduced in last
year’s ECML and KDD conferences. In this section we will list the features
the two system share, the additional features of I:ZI Miner in comparison with
MIME, and the features of MIME not implemented in I:ZI Miner, in turn.

Both systems have a ‘best pattern’ extension. While MIME orders items ac-
cording to their impact on the existing mined pattern, I:ZI Miner implements a
heuristic algorithm which orders attributes according to their estimated impact.2

Another common feature is the ability to define groups of items which are con-
sidered as one value during mining. While in MIME these groups are defined
manually, I:ZI Miner features multiple types of binning wildcards.

I:ZI Miner unique features include mining over multi-valued attributes, nega-
tion and disjunction in rules, wider choice of interest measures and filtering of
discovered rules with relevance feedback.2 Technologically, I:ZI Miner is a web
application. Through integration with SEWEBAR-CMS it offers a preprocessing
and reporting capability. Concerning scalability, mining runs as a web service
with the underlying grid platform giving an option to upscale to Microsoft Azure.

Rule post-processing and visualization algorithms, on the other hand, are only
implemented in MIME.

2 Its technical description cannot be included for space reasons.

www.dmg.org
lispminer.vse.cz
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5 Screencasts and Demo

Screencasts and a live demonstration of I:ZI Miner on the ECML PKDD’99
Financial dataset are available at sewebar.vse.cz/izi-miner.

Screencast 1: Explorative Task featuring Binning Wildcards. In the exploration
mode the user investigates the relationships in the dataset without being bound
to a specific outcome. Unlike other association rule mining systems that oper-
ate on binary items, in I:ZI Miner the task is defined directly on multi-valued
attributes (Fig. 1A). For attributes having many values with low support. I:ZI
Miner offers a unique feature – binning wildcards, which allow to group fine-
grained values on the fly, thus producing ‘items’ with higher support. Fig. 1C
shows a rule with two values of the Age attribute grouped by a binning wildcard.

Screencast 2: Predictive Task featuring the Best Pattern Extension. In the pre-
diction mode the user has a specific outcome in mind and wants to explore novel
combinations of attribute values that are associated with this outcome. The
user is aided by the best pattern extension, which orders the attributes in the
Attribute Pane (Fig. 1B) according to their estimated impact on the results if
added to the definition of the task in the Rule Pattern Pane.

Screencast 3: Data Preprocessing featuring Automatic Binning. Despite the avail-
ability of binning wildcards, it is more efficient to decrease the dimensionality
of the attribute space in the preprocessing phase. Every manually specified bin-
ning is saved as a transformation scenario. In the automatic mode attributes in
the dataset are compared with the saved scenarios using algorithms from the
schema matching domain. If there is a sufficient match, the new attribute is
binned according to a scenario defined earlier for a similar attribute.

Acknowledgements. The work described here was supported by grants IGA
26/2011, GACR 201/08/0802 of the Czech Science Foundation and the EU FP7
LinkedTV project. We thank Vojtěch Svátek for his feedback.
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Abstract. In this demonstration paper we present an application to
compare and evaluate machine learning methods used for natural lan-
guage processing within a content analysis framework. Our aim is to
provide an example set of possible machine learning results for different
inputs to increase the acceptance of using machine learning in settings
that originally rely on manual treatment. We will demonstrate the possi-
bility to compare machine learning algorithms regarding the outcome of
the implemented approaches. The application allows the user to evaluate
the benefit of using machine learning algorithms for content analysis by
a visual comparison of their results.

1 Introduction

Many emerging disciplines of the e-humanities like social sciences, media sci-
ence, literature science or classical studies rely on content analysis theory. In
those scientific fields a strong focus is laid on manual content analysis. Typically
researchers in these fields are quite sceptical towards algorithmically driven con-
tent analysis approaches. With the presented application we provide a platform
to motivate researchers in the humanities to compare and evaluate automatic
methods for their own tasks using their own well known corpora. The freedom
of importing corpora the contents of which are familiar will increase the ac-
ceptance of the automated methods. An almost confusing amount of different
possible models for content analysis exist, facing researchers with the following
problem: presenting the same data to different models naturally leads to out-
comes that differ in its form or quality or both. This implies, that results from
different models are not necessarily comparable and thus it is hard (if not impos-
sible) to draw conclusions about the utility of using one model over the other.
Another problem is the lack of visualisation of techniques of content analysis.
Model implementations typically provide (if any) a rather rudimentary visuali-
sation component, that is mostly comprised of ways to automatically generate
HTML pages, showing the results in tables. A general way of visualising model
outcome of different models for content analysis is clearly a goal to strive for. In

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 812–815, 2012.
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section 2, we present the architecture of the ASV Monitor1, a modular platform
providing a wide range of machine learning techniques for content analysis that
is easily extendable, preprocesses text data using common preprocessing steps,
presents the preprocessed data to different algorithms and produces formalised
model outcome. Passing the output to a visualisation component allows picto-
rial analysis of different models and thus provides a help for choosing the right
one. The visualisation component is introduced in section 3 and an outlook on
possible future extensions is given in section 4.

2 Architecture

Creating text corpora based content analysis applications requires the close in-
teraction of algorithms and data structures. In our framework, data import is
done by making use of a modular architecture which allows us to implement and
add new importers for different kinds of sources. Within those, text is extracted
and is then passed to sub-sequent modules doing noise reduction, i.e. stopword
pruning, stemming and other standard preprocessing steps.

2.1 Algorithms

As content analysis mostly deals with unknown text sources, we implemented
several unsupervised state-of-the-art machine learning algorithms to evaluate dif-
ferent aspects of text based content analysis. Analysts generally do not have any
information about the nature of the text collection, so the problem to tackle is
not a traditional classification problem, as in most cases we do not have training
data, hence the focus on unsupervised algorithms. We concentrated on capturing
the content analysis tasks defined by [1], which are: summarisation, category and
topic extraction, word context and word usage and meaning shift of topics and
words over time. We identified machine learning algorithms that can be adapted
and aligned them to one of the above tasks. Again, the modularity of the sys-
tem allows for new algorithms and visualisations to be included, thus enabling
us to test and evaluate new ideas for using machine learning algorithms within
content analysis tasks. Our current version comprises the following algorithms
to address the different tasks:

Topic Models: Latent Dirichlet Allocation[2] and Hierarchical Dirichlet Processes
[3], Tasks: summarisation, category and topic extraction, meaning shift of topics
and words over time
Topic Detection and Tracking [4], Tasks: summarisation, category and topic ex-
traction, meaning shift of topics and words over time
Cooccurence analysis [5], Tasks: word context and word usage, meaning shift of
topics and words over time.
Word burstiness [6], Tasks: word context and word usage.

1 ASV stands for Automatische SprachVerarbeitung, a German translation of Natural
Language Processing; the prototype can be accessed at
http://monitor.asv.informatik.uni-leipzig.de, user credentials:
ecml_pkdd12/ecml

http://monitor.asv.informatik.uni-leipzig.de
ecml_pkdd12/ecml
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2.2 Visualisation

The resulting visualisation is the core functionality of our framework since it
provides the main access point to the results of a specific algorithm. Also, it
enables us to critically discuss the decision for a particular algorithm with respect
to a specific task.

The main screen of the application is a dashboard which allows the user to re-
trieve and interact with the results of the different algorithms as described above.
We use Apache Flex2 technology, because it provides a large number of ready to
use components for the implementation of a data driven dashboard. Within the
dashboard, the user is able to select a text corpus and review the results of dif-
ferent algorithms. To investigate time varying effects within a text collection, the
framework provides access to corpora that span over a time period via a calendar-
like interface.We split the main screen into a data grid centering on an informative
overview of the algorithm’s results (Fig. 1 top) and a detailed view showing the ac-
tual visualisations of word level aspects of the results (Fig. 1 bottom). There exist
visualisations within the ASV Monitor for each of the implemented approaches.
These include terms in different size according to their importance (as defined by
the algorithm), different colors according to their NER labels.

Fig. 1. Screenshot of the main screen: Within the visualisation of summarisations and
categories we use word clouds in different ways to visualize results

2 http://incubator.apache.org/flex/

http://incubator.apache.org/flex/
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2.3 Comparison

In combination with text sources allocated by the user our aim is to provide
means of comparing results of the analysis based on the algorithms and visu-
alisations. This enables the user to compare and judge on the results against a
previously known reference corpus. With a well known corpus, it is then easy to
choose the best suited algorithm for a given task thus raising the acceptance of
automated machine leaning methods. We focus on that task by providing the
ability of presenting the different results side by side within the same browser
window. We rely on tabbed browsing as a well known user interface to compare
different visualisations to reach that goal.

3 Summarisation and Outlook

The ASV Monitor enables the user to compare the outcome of machine learn-
ing algorithms used to solve different content analysis tasks. It also provides an
intuitive interface and the ability to use new text sources to evaluate algorithms
on them. With this, it is easier to suggest appropriate algorithms and evaluate
their weaknesses and strengths concerning certain tasks of content analysis. Our
current version only uses algorithms that utilize the text content. Thus, an in-
teresting extension could be the integration of methods that are able to analyze
the behavior of time varying units like word frequencies or categories’ document
counts, as these are another important aspect that can be of use in content anal-
ysis e.g. for trend detection. Moreover, the whole domain of time series analysis
could provide deeper insight for tasks dealing with diachronic data sources. Eval-
uation of those methods on real and recent text data provides better support to
select the best approach for any given task.
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Abstract. This paper presents an open cloud based platform for com-
position, execution, and sharing of interactive data mining workflows. It
is based on the principles of service-oriented knowledge discovery, and
features interactive scientific workflows. In contrast to comparable data
mining platforms, our platform runs in all major Web browsers and plat-
forms, including mobile devices. In terms of crowdsourcing, ClowdFlows
provides researchers with an easy way to expose and share their work and
results, as only an Internet connection and a Web browser are required to
access the workflows from anywhere. Practitioners can use ClowdFlows
to seamlessly integrate and join different implementations of algorithms,
tools and Web services into a coherent workflow that can be executed
in a cloud based application. ClowdFlows is also easily extensible during
run-time by importing Web services and using them as new workflow
components.

Keywords: cloud computing, data mining platform, service-oriented ar-
chitecture, web application, web services, scientific workflows.

1 Introduction and Related Work

The paper presents ClowdFlows, an open cloud based platform for composition,
execution and sharing of data mining workflows. It was designed to overcome
deficiencies of existing comparable data mining platforms while retaining their
useful features along with new features, not provided in comparable software.
The presented platform is distinguished by these important features — a vi-
sual programming user interface that works in a Web browser, a service-oriented
architecture that allows using third party services, a social aspect that allows
sharing of scientific workflows, and a cloud-based execution of workflows. Clowd-
Flows is accessible online at http://clowdflows.org.

Tools for composition of workflows most often use the visual programming
paradigm to implement the user interface. Notable applications that employ
this approach include Weka [1], Orange [2], KNIME [3], and RapidMiner [4].
The most important common feature is the implementation of a workflow can-
vas where workflows can be constructed using simple drag, drop and connect

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 816–819, 2012.
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operations on the available components. This feature makes the platforms suit-
able also for non-experts due to the representation of complex procedures as
sequences of simple processing steps (workflow components).

In order to allow distributed processing, a service oriented architecture has
been employed in platforms such as Orange4WS [5] and Taverna [6]. Utilization
of Web services as processing components enables parallelization and remote
execution. Service oriented architecture supports not only distributed processing
but also distributed software development.

Sharing of workflows is a feature already implemented at the myExperiment
website [6]. It allows users to publicly upload their workflows so that they are
available to a wider audience and a link may be published in a research paper.
However, the users that wish to view or execute these workflows are still required
to install specific software in which the workflows were designed.

Remote workflow execution (on different machines than the one used for work-
flow construction) is also employed by RapidMiner using the RapidAnalytics
server [4]. This allows the execution of workflows on more powerful machines
and data sharing with other users, with the requirement that the client soft-
ware is installed on the user’s machine, which is a deficiency compared to our
ClowdFlows solution.

With the described features in mind, we designed ClowdFlows, a platform
which implements these features, but facilitated by enabling their access from a
Web browser. The advantage of this approach is that no installation is required
and that workflows may be run from any device with a modern Web browser,
while being executed on the cloud. Apart from software and hardware indepen-
dence, the implementation as a cloud based application takes all the processing
load from the client’s machine and moves it to the cloud where remote servers
can run the experiments with or without user supervision.

2 The ClowdFlows Platform

ClowdFlows consists of the workflow editor (the graphical user interface) and the
server side application which handles the execution of the workflows and hosts
a number of publicly available workflows. The editor is implemented in HTML
and JavaScript and runs in the client’s browser. The server side is written in
Python and uses the Django Web framework1.

The workflow editor shown in Figure 1 consists of a workflow canvas and a
widget repository. The widget repository is a list of all available workflow com-
ponents which can be added to the workflow canvas. The repository includes a
wide range of default widgets. Default widgets include Orange’s implementation
of classification algorithms, which were imported seamlessly as Orange is also
implemented in Python. Weka’s implementations of algorithms for classification
and clustering, which we have wrapped as Web services, are also included in
the widget repository by default. The widget repository may also be expanded
by anyone at any time by importing Web services as workflow components by

1 More information on Django can be found at https://www.djangoproject.com/

https://www.djangoproject.com/
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Fig. 1. A screenshot of the workflow editor with a semantic data mining
workflow loaded [7]. This workflow can be accessed at the following address:
http://clowdflows.org/workflow/104/.

entering a URL of a WSDL described Web service. The operations of the Web
service are converted to widgets and their arguments and results are converted
to inputs and outputs of these widgets. The repository also includes a set of
process control widgets which allow the creation of meta-workflows (a workflow
of workflows) and loops (meta-workflows that run multiple times), and a set of
widgets for results visualization.

The server side consists of methods for the client side workflow editor to
compose and execute workflows, and a relational database of workflows, widgets
and data. The methods for manipulating workflows are accessed by the workflow
editor using a series of asynchronous HTTP requests. Each request is handled by
the server and executes widgets if necessary, saves the changes in the database
and returns the results to the client. The server can handle multiple requests at
a time and can simultaneously execute many workflows and widgets.

The data are stored on the server in the database. The platform is database
independent, but MySQL is used in the public installation. The data can be
passed as pointers or as the data itself, depending on the widget or Web service
implementation.

A repository of public workflows which also serve as use cases for this demo is
available in ClowdFlows and can be accessed athttp://clowdflows.org/existing-
workflows/. Whenever the user opens a public workflow, a copy of that workflow
appears in her private workflow repository in the workflow editor. The user can
execute the workflow and view its results or expand it by adding or removing
widgets. The user may again share her changes in the form of a new public
workflow. Each public workflow can also be accessed through a unique address
which is provided for the user to be shared through the workflow editor.

http://clowdflows.org/workflow/104/
http://clowdflows.org/existing-workflows/
http://clowdflows.org/existing-workflows/
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3 Conclusion and Further Work

We have developed an open and general cloud based platform for data mining,
which employs service-oriented technologies, and is ready to be used in any data
analysis scenario.

The social aspect of the platform provides a way for users to share their work
easily as each workflow can be accessed through a simple address. This allows
researchers to distribute their work and results with ease, since ClowdFlows pro-
vides cross-platform functionality. The platform is also suitable for non-experts
and beginner data mining enthusiasts because of its intuitive and simple user
interface.

We are currently working on adding support for mining continuous data
streams from the Web (e.g. RSS feeds). We will also continue to add new widgets
for specialized machine learning and data mining tasks, focusing on text mining.

Acknowledgments. This work was supported by the FP7 European Com-
mission projects “Machine understanding for interactive storytelling” (MUSE,
grant agreement no: 296703) and “Large scale information extraction and inte-
gration infrastructure for supporting financial decision making” (FIRST, grant
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Abstract. Recent improvements in positioning technology has led to a
much wider availability of massive moving object data. A crucial task
is to find the moving objects that travel together. Usually, these object
sets are called spatio-temporal patterns. Analyzing such data has been
applied in many real world applications, e.g., in ecological study, vehicle
control, mobile communication management, etc. However, few tools are
available for flexible and scalable analysis of massive scale moving ob-
jects. Additionally, there is no framework devoted to efficiently manage
multiple kinds of patterns at the same time. Motivated by this issue, we
propose a framework, named GeT Move, which is designed to extract
and manage different kinds of spatio-temporal patterns concurrently. A
user-friendly interface is provided to facilitate interactive exploration of
mining results. Since GeT Move is tested on many kinds of real data
sets, it will benefit users to carry out versatile analysis on these kinds of
data by exhibiting different kinds of patterns efficiently.

1 Introduction

Nowadays, many electronic devices are used for real world applications. Teleme-
try attached on wildlife, GPS installed in cars, sensor networks, and mobile
phones have enabled the tracking of almost any kind of moving object data and
has led to an increasingly large amount of data. Therefore, analysis on such
data to find interesting patterns, called spatio-temporal patterns, is attracting
increasing attention for applications such as movement pattern analysis, animal
behavior study, route planning and vehicle control.

Despite the growing demands for diverse applications, there have been few
scalable tools for mining massive and sophisticated moving object data. Even if
some tools are available for extracting patterns (e.g. [4]), they mainly focus on
specific kinds of patterns at a time. Obviously, when considering a dataset, it is
quite difficult, for the decision maker, to know in advance which kinds of patterns
are embedded in the data. To cope with this issue, we propose the GeT Move

system to reveal, automatically and in a very efficient way, collective movement
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patterns like convoys [1], group patterns [5], closed swarms [3], moving clusters
[2] and also periodic patterns [7]. Starting from the results of GeT Move, the
user can then visualize, browse and compare the different extracted patterns
through a user friendly interface.

2 Spatio-temporal Patterns

For clarity sake, we briefly remind the spatio-temporal pattern definitions. In-
formally, a swarm is a group of moving objects O containing at least mino in-
dividuals which are closed each other for at least mint timestamps T . To avoid
redundant swarms, Zhenhui Li et al. [3] propose the notion of closed swarm for
grouping together both objects and time. A swarm (O, T ) is a closed swarm if it
cannot be enlarged in terms of timestamps T and objects O. Another pattern is
convoy which is also a group of objects such that these objects are closed each
other during at least mint time points. The main difference between convoy and
swarm (or closed swarm) is that convoy lifetimes must be consecutive. Further-
more, moving clusters can be seen as special cases of convoys with the additional
condition that they need to share some objects between two consecutive times-
tamps [6]. We can consider that the main difference between convoys and swarms
is about the consecutiveness and non-consecutiveness of clusters during a time
interval. In [5], Hwang et al. propose a general pattern, called a group pattern,
which essentially is a combination of both convoys and closed swarms. Basically,
group pattern is a set of disjointed convoys which are generated by the same
group of objects in different time intervals. By considering a convoy as a time
point, a group pattern can be seen as a closed swarm of disjointed convoys.

3 The GeT Move System Architecture

The GeT Move general architecture, described in Figure 1, has three main
layers: (i) collection and cleaning, (ii) mining, and (iii) visualization. The bot-
tom layer is responsible for collecting and preprocessing moving objects. During
this step, some cleaning and interpolations techniques are used to integrate and
clean the raw data as well as to interpolate missing points. The interpolation
techniques used are similar to the ones provided by most of spatio-temporal
pattern mining algorithms.

GeT Move uses a new mining algorithm able to exploit the similar charac-
teristics among different kinds of patterns. This new mining method combines
both clustering and pattern mining to extract the final results. So, by applying it
to the preprocessed data, GeT Move can automatically extract different kinds
of patterns such as convoys, closed swarms, group patterns, moving clusters and
periodic patterns.

The top layer is devoted to the visualization. GeT Move provides a platform
for users to flexibly tune parameters and supports visualization of the results in
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different formats. The output can be written in Google Map1 and Google Earth2

formats to help users better explore the results. Furthermore, the system enables
users to explore, plot and navigate over the different patterns in order to compare
the differences among the various moving objects behaviors.

Fig. 1. The GeT Move System Architecture

Fig. 2. The Graphical Visualization Interface

1 http://code.google.com/apis/maps/
2 http://earth.google.com/

http://code.google.com/apis/maps/
http://earth.google.com/
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Figure 2 shows a screenshot of GeT Move
3. It allows to choose a dataset

and set the values of the parameter mino and mint. In this example we have
chosen the Buffalo dataset from the Movebank4 project with mino = 10 and
mint = 10 (combo box in the top of the figure). This dataset concerns the raw
trajectories of 165 Buffaloes gathered from year 2000 to year 2006. In the second
combox box in the figure, we can observe that, with these parameters, there
are 908 closed swarms, 10 convoys and 10 group patterns. In this example, we
observe that the execution time for extracting all these patterns is 0.52 seconds.
From the combo box on right, the user can thus select a specific pattern and
plot it on the main window. For instance, in our example, the user has decided
to plot the 811th Closed Swarm. Finally the user can have more information
such as pattern identifier, animal name and timespan when clicking on plotted
trajectories as illustrated in the main window.

4 Conclusion

In this paper, we propose a system, GeT Move, which is designed to auto-
matically and efficiently extract different kinds of spatio-temporal patterns at
the same time. Starting from these results, the user can browse, navigate and
compare different patterns in an easy way. The comparative analysis allows the
user to understand and discover which results can fit better her researches.
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Abstract. This contribution describes how symbolic regression can be
used for knowledge discovery with the open-source software Heuristi-
cLab. HeuristicLab includes a large set of algorithms and problems for
combinatorial optimization and for regression and classification, includ-
ing symbolic regression with genetic programming. It provides a rich GUI
to analyze and compare algorithms and identified models. This contri-
bution mainly focuses on specific aspects of symbolic regression that are
unique to HeuristicLab, in particular, the identification of relevant vari-
ables and model simplification.

1 Introduction

HeuristicLab1 is an open-source software system for heuristic optimization that
features several metaheuristic optimization algorithms as well as several opti-
mization problems. It is implemented in C# and based on the Microsoft .NET
Framework and provides a rich graphical user interface for solving optimization
problems and for experiment analysis. HeuristicLab is used in a number of fun-
damental and practical research projects [1], as well as in lectures on data mining
and machine learning. In 2009 the project achieved the second place of the Mi-
crosoft Innovation Award in Austria and is released under the GNU General
Public License. Some of the general features of HeuristicLab 3.3 are:

– comfortable and feature rich graphical user interface
– experiment designer to create and execute a large number of test runs
– graphical analysis and comparison of parameters and results
– graphical algorithm designer to create or modify algorithms
– plug-in based architecture which enables an easy integration of new algo-

rithms and problems

Based on these general features HeuristicLab provides several well-known al-
gorithms for classification and regression (e.g. linear regression, random forest,

1 http://dev.heuristiclab.com

http://dev.heuristiclab.com/AdditionalMaterial/ECML-PKDD

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 824–827, 2012.
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SVM, ...), which can be easily configured and applied to a given data set di-
rectly in the GUI. The experiment designer simplifies algorithm configuration
and makes it very easy to find the best settings for a given problem.

Additionally to standard methods for regression HeuristicLab also provides an
extensive implementation of symbolic regression based on genetic programming
[2],[3]. In this contribution we show the core principle of symbolic regression and
discuss how this method can be used for practical data mining applications.

2 User Groups and Related Work

HeuristicLab users can be categorized into three relevant groups: practitioners,
experts, and students. Practitioners are trying to solve real-world problems with
classical and advanced algorithms. Experts include researchers and graduate
students who are developing new advanced algorithms. Students can learn about
standard algorithms and can try different algorithms and parameter settings to
various benchmark algorithms. The design and architecture of HeuristicLab is
specifically tuned to these three user groups and we put a strong emphasis on
the ease of use of the software.

Several software systems for symbolic regression or more generally for meta-
heuristic optimization have been developed in the recent years. Formulize2 (or
Eureqa-II) is notable as it also provides a user friendly GUI, uses powerful state-
of-the-art algorithms and also provides a simple way to execute runs in the
Cloud. However, it is much more specialized than HeuristicLab and is mainly
designed for practitioners. ECJ 3 is an evolutionary computation system written
in Java. It is well established as an implementation and experimentation platform
in the EC community and also includes a framework for symbolic regression. A
drawback ECJ is its limited GUI which makes it difficult to for example analyze
the prediction accuracy of the discovered models.

3 Case Study: Tower Data

In this contribution we demonstrate the unique features of HeuristicLab and how
it can be used for knowledge discovery in a real world application, in particular,
for finding relevant driving factors in a chemical process and for the identification
of white-box regression models for the process. The analysis is based on the tower
data set which is kindly provided by Dr. Arthur Kordon from Dow Chemical [4].
In the demonstration we show the exact process to achieve the results, that can
only be briefly described in the following two sections because of page constraints.

3.1 Identification of Non-linear Models

The following equation shows a non-linear model for the tower data set as identi-
fied by symbolic regression in HeuristicLab. The algorithm discovered the model

2 http://www.nutonian.com/eureqa-ii/
3 http://cs.gmu.edu/~eclab/projects/ecj/

http://www.nutonian.com/eureqa-ii/
http://cs.gmu.edu/~eclab/projects/ecj/
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structure and parameters automatically through an evolutionary process by as-
sembling the basic building blocks: random constants, input variables, arithmetic
operators, and the logarithm and exponential functions.

c0 · x23 ·
(
((c1 · x5− c2 · x6)− c3 · x14) +

(
(c4 · x6− c5 · x14)
(c6 · x1− c7 · x4)

− (c8 − c9 · x4)
))

c16 · x1
· c17

+
(c10 · x5− c11 · x6)− (c12 · x4− (log (c13 · x4)− (c14 · x5− c15 · x24)))

c16 · x1
· c17 + c18

3.2 Identification of Relevant Variables

Frequently it is not necessary to learn a full model of the functional relationship
but instead only find a set of relevant variables for the process. This can be
achieved easily with HeuristicLab through analysis of relative variable frequen-
cies in the population of models. Figure 1 shows a variable frequency chart that
clearly shows the six most relevant variables. Notably, the relevance of variables
is determined based on non-linear models. So, non-linear influence factors and
pair-wise interacting factors can be identified as well.

Fig. 1. Evolution of referenced input variables over a symbolic regression run

3.3 Simplification of Models with Visual Hints

A unique feature of HeuristicLab are visual hints for model simplification. By
means of visual hints it is very easy to manually prune a complex model as
shown above to find a good balance between complexity and accuracy. Figure 2
shows the GUI for model simplification. Green model fragments have a strong
impact on the model output while white fragments can be pruned with minimal
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Fig. 2. Visual hints guide the user in manual simplification of non-linear models. Charts
and accuracy metrics are updated in real-time to support the user.

losses in accuracy, in contrast red fragments increase the error of the model and
should be removed. The GUI for model simplification immediately recalculates
all error metrics and updates charts dynamically whenever a part of the model
is changed by the user.
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Abstract. Analyzing exceptional objects is an important mining task.
It includes the identification of outliers but also the description of out-
lier properties in contrast to regular objects. However, existing detection
approaches miss to provide important descriptions that allow human
understanding of outlier reasons. In this work we present OutRules, a
framework for outlier descriptions that enable an easy understanding of
multiple outlier reasons in different contexts. We introduce outlier rules
as a novel outlier description model. A rule illustrates the deviation of
an outlier in contrast to its context that is considered to be normal. Our
framework highlights the practical use of outlier rules and provides the
basis for future development of outlier description models.

1 Open Challenges in Outlier Description

Outlier mining focuses on unexpected, rare, and suspicious objects in large data
volumes [4]. Examples of outliers could be fraudulent activities in financial trans-
action records or unexpected patient behavior in health databases. Outlier min-
ing has two aspects: (1) identification and (2) description of outliers. A multitude
of approaches has been established for the former task (e.g., LOF [3] and more
recent algorithms). They all focus on the quantification of outlierness, i.e., how
strongly an object deviates from the residual data. Following this development of
outlier detection algorithms there have been extensions of toolkits like WEKA,
RapidMiner, and R, and stand-alone toolkits such as ELKI have been proposed.
In all cases, only outlier detection algorithms have been implemented, and raw
outlier results are visualized in different ways.

In contrast to this focus on the identification of outliers, approaches support-
ing outlier descriptions have been developed recently [6,1,2,7,9,10,5]. They aim
at the description of the object’s deviation, e.g. by selecting the deviating at-
tributes for each individual outlier. These techniques assist humans in verifying
the outlier characteristics. Without such outlier descriptions, humans are over-
whelmed by outlier results that cannot be verified manually due to large and
high dimensional databases. Humans might miss outlier reasons, especially if
outliers are deviating w.r.t. multiple contexts. Therefore, humans depend on ap-
propriate descriptions. This situation enforces the development of novel outlier
description algorithms and their comparison in a unified framework.

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 828–832, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 The OutRules Framework

With OutRules1 we extend our outlier mining framework [8], which is based
on the popular WEKA toolkit. OutRules extracts both regular and deviating
attribute sets for each outlier and presents them as so-called outlier rules. We
utilize the cognitive abilities of humans by allowing a comparison of the outlier
object vs. its regular context. This comparison enables an easy understanding of
the individual outlier characteristics. In a health-care example with attributes
age, height, and weight (cf. Fig. 1), a description for the marked outlier could
be “the outlier deviates w.r.t. (1) height and weight and (2) height and age”.
However, this first description provides the deviating attribute combinations
only. In addition, we present groups of clustered objects (e.g., in attributes weight
and age) as the regular contexts of the outlier. Overall, we present multiple
contexts as regular neighborhoods from which the outlier is deviating. Reasoning
is then enabled by manual comparison and exploration of these context spaces.

Fig. 1. Example of an outlier deviating w.r.t. multiple contexts

Outlier Rules as Basis for Outlier Descriptions
Our description model is based on the intuitive observation that each outlier
deviates from other objects that are considered to be normal. Outlier rules ac-
cordingly represent these antagonistic properties of regularity on the one side and
irregularity on the other side. As depicted in our example, there are multiple at-
tribute combinations in which the object is an outlier, and there are multiple
contexts in which it is regular. Several recent publications have observed this
multiplicity of context spaces [1,7,9,10,5]. OutRules is the first framework that
exploits these multiple context spaces for outlier rules. It illustrates the similarity
among clustered objects and the deviation of the individual outlier. Therefore,
it provides information about multiple contexts and highlights the differences to
its local neighborhoods in these context spaces.

We consider each outlier individually and compute multiple outlier rules for
each object. Each outlier rule is a set of attributes that show highly clustered
objects on the one side, and on the other side, an extended set of attributes
in which one of these objects is highly deviating. For instance in our previ-
ous example the outlier occurs under the attributes age and height. A first rule

1 Project website: http://www.ipd.kit.edu/~muellere/OutRules/

http://www.ipd.kit.edu/~muellere/OutRules/
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could be “The age is normal but the person is significantly too short”. In this
case the description might lead to the casual explanation that the represented
person suffers from impaired growth. This outlier rule can be represented as
{age} ⇒ {height}. Formally, an outlier rule is defined as follows:

Definition 1. Outlier Rule A⇒ B

For an object o, the rule A ⇒ B describes the cluster membership of o in at-
tribute set A ⊆ Attributes and the deviating behavior in A ∪B ⊆ Attributes.

The notion of clustered and deviating behavior can be instantiated by the un-
derlying outlier score, e.g. by the notion of density in case of LOF [3].

We call A the context of o in which it shows regular behavior. As depicted in our
example, there might be multiple reasons for an outlier deviation. Hence, our
algorithm has to detect multiple contexts in which o is clustered. As the actual
reason for an outlier is highly application-dependent, it is hard to make a binary
decision of relevant and irrelevant rules. Therefore we output a ranking of all
extracted rules. We rate each rule based on the data distribution in A and A∪B.
Based on the fact that an outlier rule represents the degree of regularity to other
objects in the left hand side A and the degree of outlierness in the right hand
side A ∪ B, it is clear that the criteria have to quantify these two aspects. In
our framework we have implemented criteria such as the strength of the outlier
rule. It is defined as an instantiation of the well-established density-based outlier

(a) outlier ranking (b) outlier rules for one outlier

(c) parallel coordinates plots; left: no context; right: neighborhood in TSH

Fig. 2. One exemplary outlier from the Thyroid data set [UCI ML repository]



OutRules: A Framework for Outlier Descriptions in Multiple Context Spaces 831

scoring [3]. Please note that the framework is open for any instantiation of quality
criteria, e.g. for outlier rules in a specific application scenario.

Visualization of Outlier Rules
The visualization of outlier rules consists of three components. An overview of
outliers is presented in the outlier ranking component (cf. Fig. 2(a)). Individ-
ual outliers can be chosen from this ranking for further exploration. The sec-
ond component is a list of outlier rules sorted by the strength or other quality
measures (cf. Fig. 2(b)). The last component is the visualization of individ-
ual outlier rules; each outlier rule can be explored in more detail by looking
at the underlying data distribution. For example, we have implemented scatter
plots, distribution statistics, density-distributions in individual attributes, and
more enhanced visual representations such as well-established parallel coordi-
nate plots (cf. Fig. 2(c)). As illustrated by the parallel coordinate plots for a real
world example, Thyroid Disease from the UCI ML repository, the properties of
the outlier rule and the nature of the outlier become clearer by the comparison
with similar objects. If we consider all objects in the database in the left plot,
we observe that the outlier is quite regular for all attributes from a global point
of view. However, if one restricts the visualization to its local neighborhood in
attribute TSH in the right plot there is a clear cluster containing the outlier,
while attributes T 3 and FTI show high deviation for the outlier from the local
neighborhood. The clustering in TSH and the deviation in {T 3, FT I} indicate
the correctness of this rule in a real world example.

Acknowledgments. This work has been supported by YIG “Outlier Mining in
Heterogeneous Data Spaces” and RSA “Descriptive Outlier Mining” funded by
KIT as part of the German Excellence Initiative; and by the German Research
Foundation (DFG) within GRK 1194.
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Abstract. We demonstrate the Advanced Data mining And Machine
learning System (ADAMS), a novel workflow engine designed for rapid
prototyping and maintenance of complex knowledge workflows. ADAMS
does not require the user to manually connect inputs to outputs on a large
canvas. It uses a compact workflow representation, control operators,
and a simple interface between operators, allowing them to be auto-
connected. It contains an extensive library of operators for various types
of analysis, and a convenient plug-in architecture to easily add new ones.

Keywords: scientific workflows, machine learning, data mining.

1 Introduction

Many of today’s data mining platforms offer workflow engines allowing the user
to design and run knowledge workflows, from cleaning raw data to building mod-
els and making predictions. Most of these systems, such as Kepler [1], Rapid-
Miner [2] and KNIME [3], represent these dependencies in a directed graph.1

Many of them take a “canvas”-based approach, in which the user places op-
erators on a large canvas and then connects the various inputs and outputs
manually, thus introducing each dependency as a line on the canvas.

Though this is a very intuitive approach that greatly appeals to many end
users, it is also a very time consuming one. When inserting additional operators,
one has to move and rearrange the entire workflow to keep the design tidy. If
an operator is replaced, all connections have to be redrawn. Moreover, scientific
workflows often grow very complex, including hundreds of independent steps [5].
On a canvas, this leads to very large and complex graphs with many intercon-
nections. This means that oversight is easily lost, even with useful features such
as zooming, hierarchical workflows or meta-operators with internal workflows.

In this paper, we present ADAMS (Advanced Data mining And Machine
learning System), a novel workflow engine specifically designed for rapid pro-
totyping of complex scientific workflows, taking away the need to manually lay
out and connect operators on a canvas. It presents the workflow in a compact
tree structure in which operators can quickly be dragged in or pulled out, and

1 For an in-depth overview and comparison of scientific workflow systems, see [4,5].

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 833–837, 2012.
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auto-connected to the surrounding operators. It includes an extensive library of
operators, including a range of control operators to create and direct sub-flows.
Moreover, new operators can be added very easily, either by dropping them in
a folder, or writing them on-the-fly, without compilation, in scripts.

2 Workflow Representation

Fig. 1. Data visualization flow

Figure 1 illustrates an ADAMS work-
flow. It reads files from a direc-
tory with sensor data and plots the
raw and convoluted data (scale-space
composition). Operators (called ‘ac-
tors’) are dragged from a library
into the flow, and will automatically
‘snap’ into the tree structure depend-
ing on where they are dropped. Ac-
tors are shown as nodes with a name
and a list of parameter settings (op-
tions). They are color-coded based
on whether they are a source (only
output, e.g. DirectoryLister ),
transformer (input and output, e.g.
Convolution ), sink (only input,
e.g. SequencePlotter ) or stan-
dalone (no in/output, e.g. Global-

Actors ). Branches can be col-
lapsed, and clicking actors opens a
settings dialog. Some actors are fine-
grained, allowing data to be manipu-
lated within the flow, instead of requir-
ing new actors.

Tokens. Data are passed as tokens
wrapping a single Java object (e.g. a string or an entire dataset), as well as
provenance information: a trace of actors affecting the data. Tokens can assume
any level of granularity: actors can receive a single token (e.g., a dataset) and
emit many (e.g., data points), or vice versa, buffer tokens and emit an array
(e.g., the SequenceToArray actor). Actors with several outputs can attach a key
to each token, creating key-value pairs. Such pairs can be combined in a con-
tainer, and actors can extract tokens by key. For instance, MakePlotContainer
attaches ‘X’ and ‘Y’ keys so that data can be plotted.

Control actors can branch or merge sub-flows and define how data is passed
between their sub-actors. Sequence executes its sub-actors in sequence, pass-
ing tokens from one to the next. Branch forwards each received token to all
underlying actors and executes them in parallel. Tee splits off each input
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token, feeds it to its sub-flow and waits until it finishes before passing the to-
ken on. Trigger simply starts its sub-flow upon receiving a token (without
feeding the token to its sub-flow). Injector passes each received token on,
but also injects a new token. Some actors are conditioned on the value of the
received token: ConditionalTee runs its sub-flow only if a stated condition
holds, If-Then-Else runs one of two sub-workflows depending on a test, and
WhileLoop loops over its sub-flow as long as its condition holds.

N-to-M semantics. While a tree representation cannot represent N-to-M re-
lationships, ADAMS solves this shortcoming through variables, key-value pairs,
and global actors. String tokens can be assigned to a variable using a SetVariable
actor (e.g., @{sensor} in Fig.1), and used as an actor parameter or reintroduced
elsewhere as a token by the Variable actor2. Similarly, any object token can be
stored as a key-value pair by the SetStorageValue actor and reintroduced by
the StorageValue actor. Finally, actors and their sub-flows can be made global:
for instance, all tokens sent to a GlobalSink actor are passed to the referenced
global actor, as shown in Fig. 1.

Interactivity. Actors can interact with the user when needed through dialog. For
instance, they can ask the user to locate an undefined file, or display a number
of results and allow the user to make a subselection before proceeding.

3 Plug-In Architecture

Fig. 2. ADAMS architecture

ADAMS contains an extensive
library of actors enabling the in-
clusion of techniques from many
existing libraries in a modular
framework (see Fig.2). This in-
cludes actors for machine learn-
ing techniques, importing and

exporting spreadsheets, generating graphics and PDF files and sending email. A
concise overview of currently supported libraries is shown in Table 1. In addition,
ADAMS has a plug-in architecture to easily add new actors. A new actor can
be written as a single Java class implementing a simple API. When this file is
dropped into a specific folder (icon optional), ADAMS will find it and show the
actor in the workflow interface. Using one of the scripting languages, actors can
be developed on-the-fly without compilation.

4 Applications

ADAMS is being used in two practical applications involving large, complex
workflows. First, Gas Chromatography Mass Spectrometry (GC-MS) is a tech-
nique used to detect concentrations of compounds of interest, but the raw, high-
dimensional data produced is generally not amenable to processing with machine

2 The scope of variables can be limited to one specific sub-flow by a LocalScope actor.
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Table 1. Overview of currently supported tools, available through actors

Task Support for

Machine learning WEKA, MOA, parameter optimization, experiment generation
Data Streams MOA, Twitter
Spreadsheets MS Excel, ODF, CSV
Graphics BMP, JPG, PNG, TIF, PDF
Imaging ImageJ, JAI, ImageMagick, Gnuplot
Scripting Groovy, Jython
Other HTTP, FTP, SFTP, SSH, Email, tar/zip/bzip2/gzip

learning systems. Using ADAMS, effective data flows were designed to entirely
automate this process [6]. Second, in the InfraWatch project [7], a heteroge-
neous sensor network of over 150 sensors is monitoring the dynamic behavior
and structural health of a highway bridge. The token-based design of ADAMS
proved ideal for online processing of sensor data, and its quick workflow proto-
typing facilitates experimentation with novel time series analysis techniques.

5 Conclusions

Most scientific workflow engines use a canvas on which operators are manually
arranged and connected. While this is certainly very intuitive and appealing
for many end users, it is not ideal for handling very large, complex workflows.
ADAMS is a rapid prototyping workflow engine designed for researchers and
practitioners dealing with large workflows. It offers a wide range of operators, a
plug-in architecture to include new ones on-the-fly, and a very compact workflow
representation in which operators are auto-arranged, appreciatively speeding up
workflow design and maintenance. Many examples and documentation can be
found on ADAMS’ website: https://adams.cms.waikato.ac.nz/
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Zealand Ministry of Science and Innovation (MSI), contract UOWX0707. We
also thank BiG Grid, the Dutch e-Science Grid and the Netherlands Organisa-
tion for Scientific Research, NWO.
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Abstract. The demo presents a prototype – called TopicExplorer– that
combines topic modeling, key word search and visualization techniques to
explore a large collection of Wikipedia documents. Topics derived by La-
tent Dirichlet Allocation are presented by top words. In addition, topics
are accompanied by image thumbnails extracted from related Wikipedia
documents to aid sense making of derived topics during browsing. Topics
are shown in a linear order such that similar topics are close. Topics are
mapped to color using that order. The auto-completion of search terms
suggests words together with their color coded topics, which allows to ex-
plore the relation between search terms and topics. Retrieved documents
are shown with color coded topics as well. Relevant documents and topics
found during browsing can be put onto a shortlist. The tool can recom-
mend further documents with respect to the average topic mixture of
the shortlist.

Keywords: topic model, document browser.
URL: http://topicexplorer.informatik.uni-halle.de (Firefox 13
or later with JavaScript)

1 Introduction

The exploration of large unstructured text collections pose a difficult problem for
humans in general. Search engines offer fast access to documents via keyword
search, which, however, requires to know what you are searching. Therefore,
search engines are not the perfect tool to explore the unknown in document
collections.

Topic models may assist such an exploration by offering ordered words lists
that are often recognized as general semantic topics present in the document
collection. The inference algorithm estimates a set of probability distributions
(topics) over the vocabulary of unique words.

A major problem is to assess the interpretability of found topics [1]. In order
to develop such methods, researchers need to get an intuition about the results
of topic modeling. This can be done by tracing back topics as well as document
specific topic mixtures to the original documents to check how inferred topics
and possible interpretations of them do appear there. Because of the sizes of
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a typical topic model with hundreds of topics and a document collection with
thousands of documents, this is impossible to do by hand.

We set up a novel topic browser – called TopicExplorer– that helps to inspect
topics and facilitates to develop and check interpretations of the found topic
distributions. For these purposes, TopicExplorer combines topic modeling, key
word search and visualization to give the user an intuition about the strengths
and drawbacks of the computed topics.

2 Demonstration of TopicExplorer

The underlying data for our demonstration is the subset of the EnglishWikipedia
that contains all pages in the general categories person or place. Without page
forwards, the document collection contains 716,874 documents in total. We build
an LDA topic model [2] using MALLET [3] having 200 topics.

TopicExplorer is a web-based application with a MySQL back-end that stores
data of the document collection as well as the topic model. The GUI (see Figure 1
top) shows all topics as a horizontal row of colored boxes at the bottom. Each box
shows the list of most important words of a topic that are ordered by decreasing
probability of a word given a topic p(w|z). The font size is also proportional to this
probability and indicates how fast the probabilities are decreasing. In addition to
the words, each topic in accompanied by a list of associated images that can be
scrolled by clicking on the smaller left or right thumbnails. Images are associated
to a topic z if many words in the neighborhood of the image link in the wiki-text
are probabilistically assigned to z. Top words as well as images of a topic are shown
as full screen overlay when the lens icon of topic is clicked (see Figure 1 middle).
Viewing images and words together helps to find an interpretation of the topic.

The topics are ordered by similarity into a linear list that can be horizontally
scrolled using the slider (gray box) below the color bar at the very bottom of the
GUI. The ordering is derived using Wards hierarchical clustering as implemented
in R that takes cosine similarities the between topic distributions as input and
outputs a layout of the dendrogram. That layout implies an ordering of the leafs,
which are the topics in this case. The ordering is quite helpful to organize the
large topic set, e.g. the screen-shot (Figure 1 top) shows different team sports
(football, hockey, soccer and baseball) close together. The linear order of topics
is used to map topics to colors (the rainbow color-map in this demo). Topic color
is used to indicate the most important topics of a document in the respective
snippets. By hovering with the mouse over such a colored circle shows a tool tip
with the three most important words, e.g. Figure 1 bottom left. Clicking a circle
takes the user directly to the topic. A similar visualization is used to indicate the
most important topics of a word in the auto-completion when typing a search
keyword (see Figure 1 bottom right). There, topics are ordered by decreasing
p(z|w). The visualization in the autocompletion helps to identify ambiguous
words, like football.

Topics as well as documents can be added to a shortlist at the right of the
screen (Figure 1 top). Using the Recommend-Button, the average topic mixture
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Fig. 1. TopicExplorer



Exploring Document Collections with Topic Models 841

distribution of topics and documents in the shortlist is used as a cosine similarity
search query to find documents with similar topic mixture distribution. We use
LSH [4] to make this search of the whole document collection fast enough for
an interactive application. This similarity search helps to trace the topics back
to the original documents that define the topic. Keyword search completes the
GUI, which helps the user to focus the evaluation of the topic model onto a
specific area of interest.

3 Related Work

Related software projects include the Topic Model Visualization Engine by
Chaney and Blei (http://code.google.com/p/tmve/) that transforms a topic
model into a precomputed set of web pages. It shows important words for
each topic as well as related documents and related topics. The Topical Guide
(https://facwiki.cs.byu.edu/nlp/index.php/Topical_Guide) shows simi-
lar informations for each topic. In addition, it allows to filter by topics, differ-
ent metrics, words and documents and can produce parallel coordinates plots
that relate topics with other meta-data. The closest match to our TopicEx-
plorer is the topic-based search interface SearchInaBox to Wikipedia by Buntine
(http://wikipedia.hiit.fi/H100topiclist.html). It allows to search docu-
ments by keywords and filters optionally afterwards by topical text. The result
list shows the important topics of the documents. Additionally to the search
engine functionality, it offers a topic browser that shows important words and
documents for each topic.

Our TopicExplorer is different from all these tools by showing images related
to topics to aid intuitive interpretation of topics. Furthermore, it is the only
one that allows similarity search of the document collection by arbitrary topic
mixture distributions.

Acknowledgements. We thank R. Fildebrandt, T. Gottlieb, T. Nguyen, M.
Pfuhl, M. Kunze and C. Wangemann for their contributions to the code base of
TopicExplorer as well as A. Both of Unister GmbH for helpful discussions.
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Abstract. This paper presents an overview on the VIKAMINE1 system for sub-
group discovery, pattern mining and analytics. As of VIKAMINE version 2, it
is implemented as rich-client platform (RCP) application, based on the Eclipse2

framework. This provides for a highly-configurable environment, and allows mod-
ular extensions using plugins. We present the system, briefly discuss exemplary
plugins, and provide a sketch of successful applications.

Keywords: Pattern Mining, Subgroup Discovery, Analytics, Open-Source.

1 VIKAMINE

Subgroup discovery and pattern mining are important descriptive data mining tasks.
They can be applied, for example, in order to obtain an overview on the relations in the
data, for automatic hypotheses generation, and for a number of knowledge discovery
applications. We present the VIKAMINE system for such applications.

VIKAMINE is targeted at a broad range of users, from industrial practitioners
to ML/KDD researchers, students, and users interested in knowledge discovery and
data analysis in general. It features a variety of state-of-the-art automatic algorithms,
visualizations, broad extensibility, and rich customization capabilities enabled by the
Eclipse RCP environment. In contrast to general purpose data mining systems, it is
specialized for the task of subgroup discovery and pattern mining. It focuses on visual,
interactive and knowledge-intensive methods and aims to integrate a distinctive set of
features with an easy-to-use interface:

– State-of-the-Art Algorithms: VIKAMINE comes with a variety of established
and state-of-the-art algorithms for automatic subgroup discovery, e.g., Beam-Search
[7], BSD [9], and SD-Map* [2]. A wide variety of popular interestingness measures
can be used for binary, nominal, and numeric target concepts.

1 http://www.vikamine.org
2 http://www.eclipse.org
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– Visualizations: For successful interactive mining, specialized visualizations are es-
sential to achieve a quick and intuitive understanding of the data and mined pat-
terns [6]. Visualizations implemented in VIKAMINE include, for example, the
zoomtable [5] for visual and semi-automatic subgroup discovery shown in Figure 1,
pattern specialization graphs, or visualizations of patterns in the ROC-space.

Fig. 1. Screenshot of the VIKAMINE workbench: Projects (left), the zoomtable (middle, bot-
tom), pattern statistics (middle, top) and the attribute view (right)

– Prior Knowledge: VIKAMINE supports various methods to integrate prior knowl-
edge into the mining process, e.g., considering expected/known dependencies, causal
analysis, and pattern filtering options. Background knowledge can be acquired using
form-based approaches or text documents.

– Extensibility: Using the Rich Client Platform of Eclipse, VIKAMINE can easily
be extended by specialized plug-ins for the target application area. Customized
extension points allow, for example, for a quick integration of new interestingness
measures, search algorithms, visualizations, types of background knowledge and
domain specific views on the data. Specialized plugins using such extension points
also allow for the integration of other data mining and statistic libraries, e.g., for a
connection to the statistic environment R3.

– Modularity: VIKAMINE utilizes a strict separation between kernel components,
i.e., data representations and algorithms, and the graphical interface components.
Thus, the algorithmic core functionalities of VIKAMINE can be easily integrated
in other systems and applications, e.g., for the integration in production environ-
ments, or for evaluations of algorithms by researchers.

– Organization: Automatic discovery tasks can declaratively be stored in XML. By
utilizing Eclipse workspace and project concepts, VIKAMINE supports the user
in keeping track of all the data, performed tasks and results of a data mining project.

3 http://www.r-project.org/
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2 Selected Plugins

– VIKAMINE R-Plugin: In order to integrate external data mining and analysis
methods, the VIKAMINE R-Plugin features the ability to connect to the R4 envi-
ronment for statistical computing. Using the plugin, for example, external methods
and visualizations can easily be integrated using R scripts.

– VIKAMINE Geo-Plugin: For mining spatial data, the VIKAMINE Geo-Plugin
provides for specialized mining and visualization options taking geo-locations into
account. For example, patterns characterizing specific locations can be mined, in-
cluding tagging data for the description [8]. The plugin provides suitable visualiza-
tion options for further inspection, browsing, and refinement.

– VIKAMINE Community Mining Plugin: Descriptive community mining solves
one of the major problems of standard approaches, i.e., that the discovered commu-
nities have no inherent meaning. The community mining plugin implements such
an approach; using a graph structure and descriptive information, e.g., friendship
networks and tags applied by the users [4], descriptive patterns with high commnity
qualities according to standard measures are obtained.

3 Exemplary Applications

– Medical Knowledge Discovery and Quality Control: VIKAMINE has been
applied for large-scale knowledge discovery and quality control in the clinical ap-
plication SONOCONSULT , cf., [10]. According to the physicians, subgroup dis-
covery and analysis is quite suitable for examining common medical questions,
e.g. whether a certain pathological state is significantly more frequent if combina-
tions of other pathological states exist or if there are diagnoses, which one physi-
cian documents significantly more or less frequently than the average. Furthermore,
VIKAMINE also provides an intuitive interface for providing an overview on the
data, in addition to the knowledge discovery and quality control functions.

– Industrial Fault Analysis: Another application concerned large-scale technical fault
analysis. The task required the identification of subgroups (as combination of certain
factors) that cause a significant increase/decrease in the fault/repair rates of certain
products. In the application, one important goal was the identification of subgroups
(as combination of certain factors) that cause a significant increase/ in certain param-
eters. This concerns, for example, the number of service requests for a certain techni-
cal component, the fault/repair rate of a certain manufactured product, or the number
of calls of customers to service support. Such applications often require the utiliza-
tion of continuous parameters. Then, the target concepts can often not be analyzed
sufficiently using the standard discretization techniques, since the discretization of
the variables causes a loss of information. In this context, VIKAMINE provides
state-of-the-art algorithmic implementations, cf. [2], for supporting the knowledge
discovery and analysis, and enables an effective involvement of the domain experts.

4 http://www.r-project.org
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– Mining Social Media: In addition to the approaches sketched above VIKAMINE
features a number of successful applications in the social media domain, see [8,4].
It was applied, for example, for obtaining descriptive profiles of spammers, i.e.,
for their characterization [3]. The mined patterns capturing certain spammer sub-
groups provide explanations and justifications for marking or resolving spammer
candidates in a social bookmarking systems. In such contexts, it is also useful to
identify high-quality tags, i.e., tags with a certain maturity, cf. [1]. VIKAMINE
was applied for obtaining maturity profiles of tags based on graph centrality fea-
tures on the tag—tag cooccurrance graph. Then, the obtained information can be
utilized for tag recommendations, faceted browsing, or for improving search.

4 Conclusions

In this paper, we presented an overview on VIKAMINE, focusing on efficient and
effective pattern mining and subgroup discovery. As of version 2, VIKAMINE is
implemented as an Eclipse-based rich-client platform (RCP) application. This provides
for an integrated system that is highly modular and broadly extensible using plugins.
VIKAMINE can be freely downloaded from http://www.vikamine.org under
an LGPL open-source license.
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Abstract. Submodular functions are discrete functions that model laws
of diminishing returns and enjoy numerous algorithmic applications that
have been used in many areas, including combinatorial optimization,
machine learning, and economics. In this work we use a learning theo-
retic angle for studying submodular functions. We provide algorithms for
learning submodular functions, as well as lower bounds on their learn-
ability. In doing so, we uncover several novel structural results revealing
both extremal properties as well as regularities of submodular functions,
of interest to many areas.

Submodular functions are a discrete analog of convex functions that enjoy
numerous applications and have structural properties that can be exploited al-
gorithmically. They arise naturally in the study of graphs, matroids, covering
problems, facility location problems, etc., and they have been extensively studied
in operations research and combinatorial optimization for many years [8]. More
recently submodular functions have become key concepts both in the machine
learning and algorithmic game theory communities. For example, submodular
functions have been used to model bidders’ valuation functions in combinatorial
auctions [12,6,3,14], and for solving feature selection problems in graphical mod-
els [11] or for solving various clustering problems [13]. In fact, submodularity has
been the topic of several tutorials and workshops at recent major conferences in
machine learning [1,9,10,2].

Despite the increased interest on submodularity in machine learning, little
is known about the topic from a learning theory perspective. In this work, we
provide a statistical and computational theory of learning submodular functions
in a distributional learning setting.

Our study has multiple motivations. From a foundational perspective, sub-
modular functions are a powerful, broad class of important functions, so studying
their learnability allows us to understand their structure in a new way. To draw
a parallel to the Boolean-valued case, a class of comparable breadth would be
the class of monotone Boolean functions; the learnability of such functions has
been intensively studied [4,5]. From an applications perspective, algorithms for
learning submodular functions may be useful in some of the applications where
these functions arise. For example, in the context of algorithmic game theory

� This note summarizes several results in the paper “Learning Submodular Functions”,
by Maria Florina Balcan and Nicholas Harvey, which appeared The 43rd ACM Sym-
posium on Theory of Computing (STOC) 2011.

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 846–849, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Learning Submodular Functions 847

and economics, an auctioneer may use such an algorithm to sketch the players’
valuation functions before designing the auction, companies might want to learn
the valuation functions of their customers to in order to predict demand, etc.
More broadly, the problem of learning submodular functions is natural for a wide
range of settings where one would like to predict the value of some function over
objects described by features, where the features have positive but decreasing
marginal impact on the function’s value. Examples include predicting the rate of
growth of jobs in cities as a function of various amenities or enticements that the
city offers, predicting the sales price of a house as a function of features (such as
an updated kitchen, hardwood floors, extra bedrooms, etc.) that it might have,
and predicting the demand for a new laptop as a function of various add-ons
which might be included. In all of these settings (and many others) it is natural
to assume diminishing returns, making them well-suited to a formulation as a
problem of learning a submodular function.

To study the learnability of submodular functions, we introduce a learning
model for approximate distributional learning, which can be described as follows.
There is an underlying, fixed but unknown distribution over the subsets of the
ground set and a fixed but unknown submodular target function f∗, and the goal
is to algorithmically provide a good approximation of the target function with
respect to the underlying distribution, in polynomial time, based on a polyno-
mial number of samples from the underlying distribution. Formally, the goal is
to output a hypothesis function f that, with probability 1 − δ over the choice of
examples, is a good approximation of the target f∗ on most of the points coming
fromD. Here “most” means a 1−ε fraction and “good approximation”means that
f(S) ≤ f∗(S) ≤ α ·f(S) for some approximation factor α. Our results on learning
submodular functions are presented in this new model, which we call the PMAC
model ; this abbreviation stands for “Probably Mostly Approximately Correct”.
Note that this learning model differs from the usual PAC-learning model. In our
model, onemust approximate the value of a function on a set of largemeasure, with
high confidence. In contrast, the traditional PAC-learning model usually studies
learnability of much simpler classes of Boolean functions. There, one must com-
pute the value exactly on a set of large measure, with high confidence.

We prove nearly matching α = O(n1/2) upper and α = Ω̃(n1/3) lower bounds
on the approximation factor achievable when the algorithm receives only
poly(n, 1/ε, 1/δ) examples from an arbitrary (fixed but unknown distribution).
We additionally provide a better constant approximation factor learning algo-
rithm for the case where the underlying distribution is a product distribution,
which is based on a new result showing a strong concentration of submodular
functions.

We start by showing that it is possible to PMAC-learn the general class of
non-negative, monotone submodular functions with an approximation factor of√
n+ 1. To prove this we use a structural result in [7] which shows that any mono-

tone, non-negative submodular function can be approximated within a factor of√
n+ 1 on every point by the square root of an additive function. Using this re-

sult, we show how to convert the problem of learning a submodular function in the
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PMAC model to the problem of learning a linear separator in Rn+1 in the usual
PACmodel. We remark that an improved structural result for any subclass of sub-
modular functions immediately implies an improved analysis of our algorithm for
that subclass.

We introduce a new family of matroids to show a comparable lower bound:
any algorithm that uses a polynomial number of examples cannot PMAC-learn
the class of submodular functions with an approximation factor o(n1/3/logn).
In fact, we show that even weak PMAC-learning is not possible — any algorithm
can do only negligibly better than random guessing for this class of functions.
Moreover, this lower bound holds even if the algorithm is told the underlying
distribution and it is given the ability to query the function on inputs of its
choice and even if the queries are adaptive. In other words this lower bound
holds even in the PMAC model augmented with value queries.

This lower bound holds even for matroid rank functions, but it uses a distri-
bution on inputs which is a non-product distribution. It turns out that the use
of such a distribution is necessary: using Talagrand’s inequality, we prove that a
constant approximation factor can be achieved for matroid rank functions under
product distributions.

To prove the lower bound, we consider the following technical problem. We
would like find an injective map ρ : {0, 1}d → {0, 1}n and real numbers α � β

such that every Boolean function f on {0, 1}d can be mapped to a non-negative,
monotone, submodular function f̃ on {0, 1}n satisfying f(x) = 0⇒ f̃(ρ(x)) ≤ α
and f(x) = 1⇒ f̃(ρ(x)) ≥ β. This implies a lower bound on learning submodular
functions with approximation factor β

α when d = ω(logn). A trivial construction
is obtained using partition matroids, with α = 0, β ≤ n

2 and d ≤ log(-n/β.);
here d is too small to be of interest. Another easy construction is obtained using
paving matroids, with α = n

2 , β = n
2 + 1, and any d = n−Ω(log4(n)); here d is

large, but there is only a small additive gap between α and β. Our new family of
matroids is a common generalization of partition and paving matroids. We use
them to obtain a construction with α = 16d, β = n1/3 and any d = o(n1/3); this
gives a large multiplicative gap between α and β.

Our work has several interesting by-products. One is the PMAC-learning
model, which studies both the probability mass of points on which the hypoth-
esis does well and the multiplicative approximation achieved on those points.
Another by-product of our work is our new family of matroids which reveals
interesting extremal properties of submodular functions. Roughly speaking, we
show that a small Boolean cube can be embedded into a large Boolean cube
so that any {0, 1}-valued function on the small cube maps to a function that
is submodular on the large cube but is now {α, β}-valued with α � β (on the
points to which the small cube was embedded).
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Abstract. Simplex Volume Maximization (SiVM) exploits distance ge-
ometry for efficiently factorizing gigantic matrices. It was proven success-
ful in game, social media, and plant mining. Here, we review the distance
geometry approach and argue that it generally suggests to factorize gi-
gantic matrices using search-based instead of optimization techniques.

1 Interpretable Matrix Factorization

Many modern data sets are available in form of a real-valued m × n matrix V
of rank r ≤ min(m, n). The columns v1, . . . ,vn of such a data matrix encode
information about n objects each of which is characterized by m features. Typi-
cal examples of objects include text documents, digital images, genomes, stocks,
or social groups. Examples of corresponding features are measurements such
as term frequency counts, intensity gradient magnitudes, or incidence relations
among the nodes of a graph. In most modern settings, the dimensions of the data
matrix are large so that it is useful to determine a compressed representation
that may be easier to analyze and interpret in light of domain-specific knowl-
edge. Formally, compressing a data matrix V ∈ R

m×n can be cast as a matrix
factorization (MF) task. The idea is to determine factor matrices W ∈ R

m×k

and H ∈ R
k×n whose product is a low-rank approximation of V. Formally, this

amounts to a minimization problem minW, H

∥∥V −WH
∥∥2 where ‖·‖ denotes a

suitable matrix norm, and one typically assumes k 
 r.
A common way of obtaining a low-rank approximation stems from truncating

the singular value decomposition (SVD) where V = WSUT = WH. The SVD
is popular for it can be solved analytically and has significant statistical prop-
erties. The column vectors wi of W are orthogonal basis vectors that coincide
with the directions of largest variance in the data. Although there are many
successful applications of the SVD, for instance in information retrieval, it has
been criticized because the wi may lack interpretability with respect to the field
from which the data are drawn [6]. For example, the wi may point in the di-
rection of negative orthants even though the data itself is strictly non-negative.
Nevertheless, data analysts are often tempted to reify, i.e., to assign a “physical”
� The authors would like to thank the anonymous reviewers for their comments. This
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meaning or interpretation to large singular components. In most cases, however,
this is not valid. Even if reification is justified, the interpretative claim cannot
arise from mathematics, but must be based on an intimate knowledge of the
application domain.

The most common way of compressing a data matrix such that the resulting
basis vectors are interpretable and faithful to the data at hand is to impose ad-
ditional constraints on the matrices W and H. An example is non-negative MF
(NMF), which imposes the constraint that entries of W and H are non-negative.
Another example of a constrained MF method is archetypal analysis (AA) as in-
troduced by [3]. It considers the NMF problem where W ∈ R

n×k and H ∈ R
k×n

are additionally required to be column stochastic matrices, i.e., they are to be
non-negative and each of their columns is to sum to 1. AA therefore represents
every column vector in V as a convex combination of convex combinations of
a subset of the columns of V. Such constrained MF problems are traditionally
solved analytically since they constitute quadratic optimization problems. Al-
though they are convex in either W or H, they are however not convex in WH
so that we suffers from many local minima. Moreover, their memory and run-
time requirements scale quadratically with the number n of data and therefore
cannot easily cope with modern large-scale problems. A recent attempt to cir-
cumvent these problems is the CUR decomposition [6]. It aims at minimizing
‖V − CUR‖2 where the columns of C are selected from the columns of V, the
rows of R are selected from the rows of V, and U contains scaling coefficients.
Similar to AA, the factorization is expressed in terms of actual data elements
and hence is readily interpretable. However, in contrast to AA, the selection is
not determined analytically but by means of importance sampling from the data
at hand. While this reduces memory and runtime requirements, it still requires
a complete view of the data. Therefore, neither of the methods discussed so far
easily applies to growing dataset that nowadays become increasingly common.

2 Matrix Factorization as Search

MF by means of column subset selection allows one to cast MF as a volume
maximization problem rather than as norm minimization [2]. It can be shown
that a subset W of k columns of V yields a better factorization than any other
subset of size k, if the volume of the parallelepiped spanned by the columns
of W exceeds the volumes spanned by the other selections. Following this line,
we have recently proposed a linear time approximation for maximising the vol-
ume of the simplex ΔW whose vertices correspond to the selected columns [9].
Intuitively, we aim at approximating the data by means of convex combina-
tions of selected vectors W ⊂ V. That is, we aim at compressing the data such
that vi ≈ ∑k

j=1 wj hji where hi  0 ∧ 1Thi = 1 ∀i . Then, data vectors
situated on the inside of the simplex ΔW can be reconstructed perfectly, i.e.,
‖vi−Whi‖2 = 0. Accordingly, the larger the volume of ΔW, the better the cor-
responding low-rank approximation of the entire data set will be. Such volume
maximization approaches are more efficient than methods based on minimizing
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a matrix norm. Whereas the latter requires computing both matrices W and H
in every iteration, volume maximization methods compute the coefficient ma-
trix H only after the matrix of basis vectors W has been determined. Moreover,
whereas evaluating ‖V − WH‖2 is of complexity O(n) for n data points vi,
evaluating Vol(W) or Vol(ΔW) requires O(k3) for the k 
 n currently selected
columns. Moreover, transferring volume maximization from parallelepipeds to
simplices has the added benefit that it allows for the use of distance geometry.
Given the lengths di,j of the edges between the k vertices of a (k − 1)-simplex
ΔW, its volume VolkΔW can be computed based on this distance information
only (*): VolkΔW =

√
−1k

2k−1
(
(k−1)!

)2 det
(
A
)

where det
(
A
)

is the Cayley-Menger

determinant [1]. And, it naturally leads to search-based MF approaches.
A simple greedy best-first search algorithm for MF that immediately follows

from what has been discussed so far works as follows. Given a data matrix V, we
determine an initial selection X2 = {a, b} where va and vb are the two columns
that are maximally far apart. That is, we initialize with the largest possible 1-
simplex. Then, we consider every possible extension of this simplex by another
vertex and apply (*) to compute the corresponding volume Vol′. The extended
simplex that yields the largest volume is considered for further expansion. This
process continues, until k columns have been selected from V. Lower bound-
ing (*) by assuming that all selected vertices are equidistant turns this greedy
best-first into the linear time MF approach called Simplex Volume Maximiza-
tion (SiVM) [9]. SiVM was proven to be successful for the fast and interpretable
analysis of massive game and twitter data [7], of large, sparse graphs [8] as well
as — when combined with statistical learning techniques — of drought stress of
plants [4, 5]. However, we can explore and exploit the link established between
MF and search even further. For instance, a greedy stochastic hill climbing al-
gorithm (sSiVM) starts with a random initial selection of k columns of V and
iteratively improves on it. In each iteration, a new candidate column is chosen
at random and tested against the current selection: for each of the currently
selected columns, we verify if replacing it by the new candidate would increase
the simplex volume according to (*). The column whose replacement results in
the largest gain is replaced. An apparent benefit of sSiVM is that it does not
require batch processing or knowledge of the entire data matrix. It allows for
timely data matrix compression even if the data arrive one at a time. Since it
consumes only O(k) memory, it represents a truly low-cost approach to MF.

In an ongoing project on social media usage, we are running a script that
constantly downloads user annotated images from the Internet. We are thus in
need of a method that allows for compressing this huge collection of data in an
online fashion. sSiVM appears to provide a solution. To illustrate this, we con-
sidered a standard data matrix representing Internet images collected by [10].
This publicly available data has the images re-scaled to a resolution of 32 × 32
pixels in 3 color channels and also provides an abstract representation using
384-dimensional GIST feature vectors. Up to when writing the present paper,
sSiVM processed a stream of about 1,600,000 images (randomly selected). This
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Fig. 1. (Left) Examples of 12 basis images found after 1,6 million Internet images were
seen by sSiVM. (Right) Temporal evolution of the solution produced by sSiVM while
computing the results shown on the left-hand side.

amounts to a matrix of 614,400,000 entries. Except for sSiVM, none of the meth-
ods discussed in this paper could reasonably handle this setting when running
on a single computer. Figure 1(Left) shows a selection of 12 basis images ob-
tained by sSiVM. They bear a geometric similarity to Fourier basis functions
or Gabor filters. This is in fact a convincing sanity check, since GIST features
are a frequency domain representation of digital images; images most similar to
elementary sine or cosine functions form the extreme points in this space. To-
gether with the measured runtime, see Fig. 1(Right), these results underline that
search-based MF approaches are a viable alternative to optimization approaches.
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Abstract. We present an application of machine learning algorithms
for the identification of metalloproteins and metal binding sites on a
genome scale. An extensive evaluation conducted in combination with X-
ray absorption spectroscopy shows the great potentiality of the approach.

1 Metal Binding in Proteins

A significant fraction of known proteins is believed to bind metal ions in their na-
tive conformation. Metal ions play a variety of crucial roles in proteins [1], from
stabilizing their three dimensional structure, to acting as cofactors in enzyme
catalysis. Moreover, metals are implicated in many diseases for which medicine
is still seeking an effective treatment, such as Parkinson’s or Alzheimer’s [2] .
Identifying unknown metalloproteins and detecting their metal binding site(s)
is an important step in understanding their function and characterizing many
crucial processes involved in living systems. A metal binding site is characterized
through its metal ion, the protein amino acid residues directly involved in bind-
ing it (called ligands) and the binding geometry, i.e. the spatial arrangement of
the ion and its ligands. Some metal binding sites actually involve compounds
(e.g. the heme group binding hemoglobin) including one or more ions, and some
proteins contain more than one metal binding site. The problem of identifying
and characterizing metalloproteins can be seen as a series of increasingly complex
tasks. Given a protein, one aims at: 1) determining whether it is a metallopro-
tein or not, i.e. if it binds metal ions in its native conformation; 2) determining
the metal bonding state of each of its residues, i.e. whether they bind a metal
ion or not; 3) determining the composition of metal binding sites, i.e. the num-
ber of ions binding the protein and the set of their respective ligands. Answers
may be obtained experimentally, by means of in-silico prediction tools, or by a
combination of the two classes of methods.

Experimental Methods. High-throughput techniques based on X-ray absorp-
tion spectroscopy [3] (HT-XAS) allow detection, identification and quantification
of metals bound to proteins based on the energy and intensity of the X-ray fluo-
rescence signal emitted by the metals. HT-XAS can thus be used to address the
first task, i.e. metalloprotein identification. Exact determination of binding sites,
however, is only possible using more labor-intensive techniques, such as X-ray
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crystallography or Nuclear Magnetic Resonance, which provide high-resolution
three-dimensional structural information. Even when a 3D structure is avail-
able, exact characterization of binding sites may be non trivial and error prone.
For example false positives may be due to spurious artifacts where metals bind
at adventitious sites, and false negatives may emerge when metalloproteins are
experimentally solved in their apo-form lacking the metal ion.

In Silico Methods. The three above tasks can be tackled from a machine
learning point of view. Here we focus on predictions from sequence alone1, where
(1) is a sequence classification problem, (2) is a sequence labeling problem, and
(3) is a more complex structured output problem from sequences to bipartite
graphs. Some simplifying assumptions may be made to reduce the difficulty of
these problems in their generality. First, prediction may be limited to transition
metals and a small number of candidate residues (CYS and HIS). Transition
metals (especially iron and zinc) are the most commonly found ions in proteins,
covering about 2/3 of all known metalloproteins. Their preferred ligands are CYS
and HIS, followed by ASP and GLU, which have a much lower binding propensity
given their relatively high abundance in proteins. Finally, the solution space may
be limited to sites where an ion is coordinated by four or less residues as more
complex binding sites are extremely rare.

MetalDetector. The MetalDetector software [5,6] uses state-of-the-art machine
learning methods to solve the above three prediction problems. A first version
of the software [5] employed Disulfind predictor to identify cysteine disulfide
bridges [7] and a combination of support vector machines and bidirectional re-
current neural networks for metal bonding state prediction. The current version2

of the server [6] employs a two-stage approach for metal bonding state and metal
binding sites prediction respectively. The first stage relies on an SVM-HMM [8]
which collectively assigns the bonding state of all the CYS/HIS residues in the
sequence. Residues predicted as metal-bound are fed to the second stage. Here
a search-based structure output approach greedily adds links between candidate
ligands and candidate ions, until each ligand is connected to an ion. The search is
guided by a kernel-based scoring function trained to score correct moves higher
than incorrect moves. The problem has the structure of a weighted matroid,
which is basically the discrete counterpart of concave functions. The greedy
search is thus guaranteed to lead to the global optimum of the (learned) scoring
function. The method was initially introduced in [9] and further refined and ana-
lyzed in [10], where an extensive experimental validation across different protein
structural folds and superfamilies was conducted.

Being able to address all three predictions problems, MetalDetector is a nat-
ural candidate to complement information provided by high-throughput exper-
imental techniques like HT-XAS. The potential impact of this integration was
recently shown on a large-scale experiment aimed at identifying potential metal-
loproteins within the New York SGX Research Center for Structural Genomics.

1 For applications of machine learning techniques to 3D structure data see e.g. [4].
2 MetalDetector is available as a web server at http://metaldetector.dsi.unifi.it.

http://metaldetector.dsi.unifi.it
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2 Results

MetalDetector and HT-XAS were jointly employed in a recent study [11] in
order to identify metal-bonded residues in 3,879 purified proteins generated by
the New York SGX Research Center for Structural Genomics and belonging to
hundreds of different protein families.

Of the whole set of proteins, 343 were identified by HT-XAS to contain at
least one metal ion among Mn, Fe, Co, Ni, Cu and Zn. The experimental anal-
ysis described in [11] compares the level of agreement between MetalDetector
and HT-XAS predictions: to this aim, MetalDetector predictions at residue level
have been combined in order to define a protein score, which is used to predict
whether that protein is a metalloprotein or not. This level of agreement obvi-
ously depends on the aggregation criterion used to produce such protein scores
for MetalDetector: in these experiments, the adopted criterion was to predict a
protein to be a metalloprotein if for at least N residues (either CYS or HIS)
the probability of metal bonding state, as predicted by MetalDetector, exceeded
a certain threshold TM . By choosing different values for N and TM , different
predictions can be accordingly obtained: the experiments showed that, at the
same recall level (i.e., when MetalDetector predicts the same number of metal-
loproteins as HT-XAS), MetalDetector and HT-XAS agree from 32% up to 45%
of the cases, depending on the choice of N and TM (note that a random baseline
predictor would achieve a 10% of precision with respect to the metalloproteins
identified by HT-XAS).

In addition, it must be underlined that in many protein samples metal occu-
pancy can be low, and therefore metal atoms cannot be detected by HT-XAS.
MetalDetector can in these cases complement HT-XAS evidence by suggest-
ing potentially missed metalloproteins. This happens, for example, for proteins
11211f and 11213j, which share the Pfam SCO1/SenC domain (PF02630) in-
volved in biogenesis of respiratory and photosynthetic systems. Protein 11211f
shares 26% sequence identity with Human SCO2 protein, a mitochondrial
membrane-bound protein involved in copper supply for the assembly of cy-
tochrome c oxidase. The residues predicted by MetalDetector to bind metal
in 11211f align to the residues that in the NMR structure of Human SCO2 bind
a Cu+ ion. This is likely one of the cases where the HT-XAS method fails in
identifying a metalloprotein, while MetalDetector not only seems to recover the
false negative, but also to correctly predict the position of the binding site.

A comprehensive approach combining the use of MetalDetector predictions
with homology modeling has also been object of analysis and showed that the
proposed computational methodology can represent an extremely powerful tool
for the study of metalloproteins.

3 Perspectives

Recent years have witnessed a dramatic increase in the availability of high-
throughput experimental techniques for the analysis of biological data. This sce-
nario provides an unprecedented opportunity for machine learning approaches
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to deal with large amount of data and continuously novel problems and chal-
lenges. Structural genomics, which aims to map the protein sequence space with
structural information, is indeed pursuing a tight integration of high-throughput
experimental techniques and modeling approaches. Characterization of metallo-
proteins is an interesting example of how experimental techniques and machine
learning approaches can be fruitfully combined to deepen our understanding of
biological systems.
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Abstract. We introduced a generalised Wishart process (GWP) for
modelling input dependent covariance matrices Σ(x), allowing one to
model input varying correlations and uncertainties between multiple re-
sponse variables. The GWP can naturally scale to thousands of response
variables, as opposed to competing multivariate volatility models which
are typically intractable for greater than 5 response variables. The GWP
can also naturally capture a rich class of covariance dynamics – period-
icity, Brownian motion, smoothness, . . . – through a covariance kernel.

1 Introduction

Modelling covariances between random variables is fundamental in statistics.
For convenience, covariances between multiple responses are usually assumed to
be constant. However, accounting for how these covariances depend on inputs
(e.g. time) can greatly improve statistical inferences. For example, to predict the
expression level of a gene at a particular time, it helps to consider the expression
levels of correlated genes, and how these correlations depend on time.

Modelling of dependent covariances between multiple responses is largely un-
charted territory. The small number of existing models for dependent covariances
are mostly found in the econometrics literature, and are referred to as multivari-
ate volatility models. In econometrics, a good estimate of a time varying covari-
ance matrix Σ(t) = cov[r(t)] for a vector of returns r(t) is useful for estimating
the risk of a particular portfolio. Multivariate volatility models are also used
to understand contagion: the transmission of a financial shock from one entity
to another (Bae et al., 2003). However, it is generally useful – in econometrics,
machine learning, or otherwise – to know input dependent uncertainty, and the
dynamic correlations between multiple entities.

Despite their importance, conventional multivariate volatility models suffer
from tractability issues and a lack of generality. MGARCH (Bollerslev et al.,
1988; Silvennoinen and Teräsvirta, 2009), multivariate stochastic volatility
(Harvey et al., 1994; Asai et al., 2006), and the original Wishart process (Bru,
1991; Gouriéroux et al., 2009), are typically highly parametrised, parameters are
often difficult to interpret or estimate (given the constraint Σ(t) must be posi-
tive definite), are typically intractable for more than 5 response variables, and are
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restricted to Brownian motion or Markovian covariance dynamics
(Silvennoinen and Teräsvirta, 2009; Gouriéroux, 1997; Gouriéroux et al., 2009).

Modelling of dependent covariances is beautifully suited to a Bayesian non-
parametric approach. We introduced the Bayesian nonparametric generalised
Wishart process (GWP) prior (Wilson and Ghahramani, 2010, 2011) over input
dependent matrices Σ(x), where x ∈ X is an arbitrary input variable. The gen-
eralised Wishart process volatility model has the following desirable properties:

1. The GWP is tractable for up to at least 1000× 1000 covariance matrices.
2. The small number of free parameters give information about the underlying

source of volatility, like whether there is periodicity (and if so what the period
would be), and how far into the past one should look for good forecasts.

3. The input variable can be any arbitrary x ∈ X just as easily as it can
represent time (useful for spatially varying dependencies, and for including
covariates like interest rates in time series models).

4. The dynamics of Σ(x) can easily be specified as periodic, smooth, Brownian
motion, etc., through a kernel function.

5. Missing data are handled easily, and there is prior support for any (uncount-
ably infinite) sequence of covariance matrices {Σ(x1), . . . , Σ(xn)}.

2 Construction

The Wishart distribution is a distribution over positive definite matrices. Given
a p × ν matrix A with entries Aij ∼ N (0, 1), and a lower triangular matrix of
constants L, the product LAA
L
 has a Wishart distribution:

LAA
L
 ∼ Wp(ν, LL
) . (1)

To turn the Wishart distribution into a generalised Wishart process (in its sim-
plest form), one replaces the Gaussian random variables with Gaussian processes
(Rasmussen and Williams, 2006). We let the matrix A be a function of inputs
x, by filling each entry with a Gaussian process: Aij(x) ∼ GP(0, k). We let

Σ(x) = LA(x)A(x)
L
 . (2)

At any given x, the matrix A(x) is a matrix of Gaussian random variables, since
a Gaussian process function evaluated at any input location is simply a Gaussian
random variable. Therefore at any x, Σ(x) has a Wishart marginal distribution.
Σ(x) is a collection of positive definite matrices, indexed by x, and dynamics con-
trolled by the covariance kernel k. Σ(x) has a generalised Wishart process prior,
and we write Σ(x) ∼ GWP(ν, L, k). The parameters are easily interpretable. L
controls the prior expectation of Σ(x) at any x: E[Σ(x)] = νLL
. The greater
ν the greater our confidence in this prior expectation. The covariance kernel
controls how the entries of Σ(x) vary with x: cov(Σij(x), Σij(x

′)) ∝ k(x, x′)2.
A single draw from a GWP prior over 2× 2 covariance matrices is illustrated in
Figure 1. Given vector valued observations r(x) (e.g. a vector of stock returns
indexed by x), we can efficiently infer a posterior over the generalised Wishart
process using Elliptical Slice Sampling (Murray et al., 2010), which is a recent
MCMC technique designed to sample from posteriors with Gaussian priors.
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Fig. 1. A draw from a generalised Wishart process (GWP). Each ellipse is a 2 × 2
covariance matrix indexed by time, which increases from left to right. The rotation in-
dicates the correlation between the two variables, and the axes scale with the diagonals
of the matrix. Like a draw from a Gaussian process is a collection of function values
indexed by time, a draw from a GWP is a collection of matrices indexed by time.

3 Results

We generated a 2 × 2 time varying covariance matrix Σp(t) with periodic com-
ponents, simulating data at 291 time steps from a Gaussian:

y(t) ∼ N (0, Σp(t)) . (3)

Periodicity is especially common to financial and climate data, where daily trends
repeat themselves. For example, the intraday volatility on equity indices and
currency exchanges has a periodic covariance structure. Andersen and Bollerslev
(1997) discuss the lack of – and critical need for – models that account for this pe-
riodicity. With a GWP, we can simply use a periodic kernel function, whereas in
previous Wishart process volatility models (Bru, 1991; Gouriéroux et al., 2009),
we are stuck with a Markovian covariance structure. Figure 2 shows the results.
We also performed step ahead forecasts of Σ(t) on financial data with promising
results, elucidated in Wilson and Ghahramani (2010, 2011). The recent Gaus-
sian process regression network (GPRN) (Wilson et al., 2011, 2012) uses a GWP
noise model, and extends the multi-task Gaussian process framework to handle
input dependent signal and noise correlations between multiple responses. The
GPRN has strong predictive performance and scalability on many real datasets,
including a gene expression dataset with 1000 response variables.

Fig. 2. Reconstructing the historical Σp(t) for the periodic data set. We show the
truth (green), and GWP (blue), WP (dashed magenta), and MGARCH (thin red)
predictions. a) and b) are the diagonal elements of Σp(t), c) is the covariance.
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Šimůnek, Milan II-808
Singh, Ambuj I-442
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