

Lecture Notes in Computer Science 7533
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Alejandro Hevia Gregory Neven (Eds.)

Progress in Cryptology –
LATINCRYPT 2012
2nd International Conference on Cryptology
and Information Security in Latin America
Santiago, Chile, October 7-10, 2012
Proceedings

13

Volume Editors

Alejandro Hevia
University of Chile
Department of Computer Science
Blanco Encalada 2120
Tercer Piso, Santiago, Chile
E-mail: ahevia@dcc.uchile.cl

Gregory Neven
IBM Research - Zurich
Säumerstrasse 4
8803 Rüschlikon, Switzerland
E-mail: nev@zurich.ibm.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33480-1 e-ISBN 978-3-642-33481-8
DOI 10.1007/978-3-642-33481-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012946763

CR Subject Classification (1998): E.3, K.6.5, D.4.6, C.2, G.2, E.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Latincrypt 2012 was the Second International Conference on Cryptology and
Information Security in Latin America and took place from October 7th to 10th,
2012, in Santiago, Chile. The conference was organized by the Group of Ap-
plied Cryptography and Security (CLCERT) of the University of Chile and the
NIC Chile Research Labs in cooperation with The International Association for
Cryptologic Research (IACR). The General Chairs of the conference were Javier
Bustos and Alejandro Hevia.

By the submission deadline on May 18th, 2012, the conference had received
47 submissions. Each submission was reviewed by at least three committee mem-
bers, submissions co-authored by members of the Program Committee were as-
signed to at least five committee members. The reviewing process was challenging
due to the high quality of the submissions, and we are deeply grateful to the
committee members and external reviewers for their outstanding work. After
meticulous deliberation, the Program Committee, which was chaired by Alejan-
dro Hevia and Gregory Neven, selected 17 submissions for presentation at the
conference. These are the articles included in this volume. In addition to these
presentations, the program also included four invited talks and a student poster
session.

The reviewing process was run using the iChair software written by Thomas
Baignères and Matthieu Finiasz. We are especially grateful to them for letting
us use their software and for their prompt responses to our questions on how to
use the system. Also, we thank Sergio Miranda from the CLCERT for his help
in setting up the reviewing system.

Finally, we would like to thank our sponsors Intel & McAfee Chile, NIC Chile,
Certivox, the Center for Mathematical Modeling (CMM) of the University of
Chile, INRIA Chile, CLEI, Yahoo Research Chile, and Orand Chile, for their
financial support, as well as all the people who contributed to the success of
this conference. In particular, we are indebted to the members of the Latincrypt
Steering Committee, especially to Michel Abdalla, who we regularly consulted
for his experience from Latincrypt 2010; the General Co-chair Javier Bustos;
Jacqueline Araya; and everyone in the Local Organizing Committee for their
diligent work and for making this conference possible. Finally, we would like to
thank Springer for publishing the proceedings in their Lecture Notes in Computer
Science series.

October 2012 Alejandro Hevia
Gregory Neven

LATINCRYPT 2012

Second International Conference on
Cryptology and Information Security in Latin America

Santiago, Chile
October 7–10, 2012

Organized by
Grupo de Criptograf́ıa Aplicada y Seguridad (CLCERT), NIC Chile Research

Labs & Dept. of Computer Science, Universidad de Chile

In Cooperation with
The International Association for Cryptologic Research (IACR)

General Chairs

Javier Bustos NIC Chile Research Labs, Chile
Alejandro Hevia CLCERT & Department of Computer Science,

Universidad de Chile, Chile

Program Chairs

Alejandro Hevia CLCERT & Department of Computer Science,
Universidad de Chile, Chile

Gregory Neven IBM Research – Zurich, Switzerland

Steering Committee

Michel Abdalla École Normale Supérieure, France
Paulo Barreto Universidade de São Paulo, Brazil
Ricardo Dahab Universidade Estadual de Campinas, Brazil
Alejandro Hevia Universidad de Chile, Chile
Julio López Universidade Estadual de Campinas, Brazil
Daniel Panario Carleton University, Canada
Alfredo Viola Universidad de la República, Uruguay

Local Organizing Committee

Jacqueline Araya NIC Chile Research Labs, Chile
Sergio Miranda CLCERT, Chile
Alonso González Universidad de Chile, Chile
Philippe Camacho Universidad de Chile, Chile
Rodrigo Abarzúa Universidade Estadual de Campinas, Brazil

VIII LATINCRYPT 2012

Program Committee

Michel Abdalla École Normale Supérieure, France
Roberto Avanzi Ruhr-University Bochum, Germany
Paulo Barreto University of São Paulo, Brazil
Lejla Batina Radboud University Nijmegen,

The Netherlands
Philippe Camacho Universidad de Chile, Chile
Claude Carlet Université Paris 8, France
Carlos Cid Royal Holloway, University of London, UK
Ricardo Dahab Universidade Estadual de Campinas, Brazil
Joan Daemen ST Microelectronics, Belgium
Orr Dunkelmann University of Haifa, Israel
Stefan Dziembowski University of Warsaw, Poland, and

University of Rome “La Sapienza”, Italy
Sebastian Faust Aarhus University, Denmark
Georg Fuchsbauer University of Bristol, UK
Philippe Gaborit Université de Limoges, France
Joachim von zur Gathen B-IT, Universität Bonn, Germany
Tibor Jager Karlsruhe Institute of Technology, Germany
Seny Kamara Microsoft Research, USA
Stefan Katzenbeisser Technische Universität Darmstadt, Germany
Vladimir Kolesnikov Bell Labs, USA
Sven Laur University of Tartu, Estonia
Vadim Lyubashevsky École Normale Supérieure, France
Daniel Panario Carleton University, Canada
Giuseppe Persiano Università di Salerno, Italy
Carla Ràfols Ruhr-Universität Bochum, Germany
Christian Rechberger DTU, Denmark
Tamara Rezk INRIA Sophia Antipolis-Méditerranée,

France
Matt Robshaw Orange Labs, France
Francisco Rodŕıguez-Henŕıquez Centro de Investigación y de Estudios

Avanzados del I.P.N., México
Nicolas Thériault Universidad del Bı́o-Bı́o, Chile
Maribel Gonzalez Vasco Universidad Rey Juan Carlos, Spain
Alfredo Viola Universidad de la República, Uruguay
Ivan Visconti Università di Salerno, Italy
Scott Yilek University of St. Thomas, USA
Santiago Zanella–Béguelin Microsoft Research, UK

LATINCRYPT 2012 IX

External Reviewers

Mohamed Ahmed Abdelraheem
Diego Aranha
Raoul Blankertz
Anne Canteaut
Julio Cesar Hernández Castro
Angelo De Caro
Chun-I Fan
Junfeng Fan
Philippe Gaborit
Steven Galbraith
Alonso González
Shay Gueron
Iftach Haitner
Darrel Hankerson
Jennie Hansen
Clemens Heuberger
Aggelos Kiayias
Markulf Kohlweiss
Daniel Loebenberger
Zhengqin Luo

Gilles Macario-Rat
Wilfried Meidl
Marine Minier
Michael Naehrig
Michael Nüsken
Roger Oyono
Valerio Pastro
Geovandro Pereira
Christiane Peters
Jeremy Planul
Alex Pott
Jordi Pujolàs
Guénaël Renault
Yannis Rouselakis
Peter Schwabe
Christoph Striecks
Enrico Thomae
Viet-Cuong Trinh
Marcin Wojcik
Konstantin Ziegler

Sponsoring Institutions

Grupo de Criptograf́ıa Aplicada y Seguridad (CLCERT), Universidad de Chile
NIC Chile Research Labs, Universidad de Chile
Facultad de Ciencias F́ısicas y Matemáticas, Universidad de Chile
Intel & McAfee Labs
Center for Mathematical Modeling, Universidad de Chile
Certivox
NIC Chile
Centro Latinoamericano de Estudios en Informáticas (CLEI)
INRIA Chile
Yahoo! Labs
Orand
Welcu

Table of Contents

Elliptic Curves

Indifferentiable Hashing to Barreto–Naehrig Curves 1
Pierre-Alain Fouque and Mehdi Tibouchi

Semi-bent Functions with Multiple Trace Terms and Hyperelliptic
Curves . 18

Sihem Mesnager

Complete Atomic Blocks for Elliptic Curves in Jacobian Coordinates
over Prime Fields . 37

Rodrigo Abarzúa and Nicolas Thériault

Cryptographic Protocols I

Message-Based Traitor Tracing with Optimal Ciphertext Rate 56
Duong Hieu Phan, David Pointcheval, and Mario Strefler

Leakage-Resilient Spatial Encryption . 78
Michel Abdalla and Jill-Jênn Vie

On the Pseudorandom Function Assumption in (Secure) Distance-
Bounding Protocols: PRF-ness alone Does Not Stop the Frauds! 100

Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay

Lattice-Based Hierarchical Inner Product Encryption 121
Michel Abdalla, Angelo De Caro, and Karina Mochetti

Implementations

Towards Efficient Arithmetic for Lattice-Based Cryptography on
Reconfigurable Hardware . 139

Thomas Pöppelmann and Tim Güneysu

The Security Impact of a New Cryptographic Library 159
Daniel J. Bernstein, Tanja Lange, and Peter Schwabe

Faster Implementation of Scalar Multiplication on Koblitz Curves 177
Diego F. Aranha, Armando Faz-Hernández, Julio López, and
Francisco Rodŕıguez-Henŕıquez

XII Table of Contents

Cryptographic protocols II

Zero-Knowledge for Multivariate Polynomials . 194
Valérie Nachef, Jacques Patarin, and Emmanuel Volte

Improved Exponentiation and Key Agreement in the Infrastructure of
a Real Quadratic Field . 214

Vanessa Dixon, Michael J. Jacobson Jr., and Renate Scheidler

Foundations

UOWHFs from OWFs: Trading Regularity for Efficiency 234
Kfir Barhum and Ueli Maurer

Random Mappings with Restricted Preimages . 254
Andrew MacFie and Daniel Panario

Symmetric-key Cryptography

On the Sosemanuk Related Key-IV Sets . 271
Aleksandar Kircanski and Amr M. Youssef

High Speed Implementation of Authenticated Encryption for the
MSP430X Microcontroller . 288

Conrado P.L. Gouvêa and Julio López

Infective Computation and Dummy Rounds: Fault Protection for Block
Ciphers without Check-before-Output . 305

Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall

Author Index . 323

Indifferentiable Hashing

to Barreto–Naehrig Curves

Pierre-Alain Fouque1 and Mehdi Tibouchi2

1 École Normale Supérieure and INRIA Rennes
pierre-alain.fouque@ens.fr

2 NTT Secure Platform Laboratories
tibouchi.mehdi@lab.ntt.co.jp

Abstract. A number of recent works have considered the problem of
constructing constant-time hash functions to various families of elliptic
curves over finite fields. In the relevant literature, it has been occasionally
asserted that constant-time hashing to certain special elliptic curves, in
particular so-called BN elliptic curves, was an open problem. It turns
out, however, that a suitably general encoding function was constructed
by Shallue and van de Woestijne back in 2006.

In this paper, we show that, by specializing the construction of Shallue
and van de Woestijne to BN curves, one obtains an encoding function
that can be implemented rather efficiently and securely, that reaches
about 9/16ths of all points on the curve, and that is well-distributed in
the sense of Farashahi et al., so that one can easily build from it a hash
function that is indifferentiable from a random oracle.

Keywords: Elliptic curve cryptography, BN curves, hashing, random
oracle.

1 Introduction

Many elliptic curve-based cryptographic protocols require hashing to an elliptic
curve group G: they involve one or more hash functions H : {0, 1}∗ → G mapping
arbitrary values to points on the elliptic curve.

For example, in the Boneh-Franklin identity-based encryption scheme [7], the
public key for identity id ∈ {0, 1}∗ is a point Qid = H(id) on the curve. This is
also the case in many other pairing-based cryptosystems including IBE and HIBE
schemes [1,24,25], signature and identity-based signature schemes [6,8,9,14,42]
and identity-based signcryption schemes [11,32].

Hashing into elliptic curves is also required for some passwords-based au-
thentication protocols such as the SPEKE [27] and PAK [12] protocols, as well
as various signature schemes based on the hardness of the discrete logarithm
problem, like [15], when they are instantiated over elliptic curves.

In all of those cases, the hash functions are modeled as random oracles in
security proofs. However, it is not clear how such a hash function can be in-
stantiated in practice. Indeed, random oracles to groups like Z∗

p can be easily

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 1–17, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 P.-A. Fouque and M. Tibouchi

constructed from random oracles to fixed-length bit strings, for which conven-
tional cryptographic hash functions usually provide acceptable substitutes. On
the other hand, constructing random oracles to an elliptic curve even from ran-
dom oracles to bit strings appears difficult in general, and some of the more
obvious instantiations actually break security completely.

For example, to construct a hash function H : {0, 1}∗ → G to an elliptic curve
cyclic group G of order N and generated by a given point G, a simple idea might
be to choose H(m) = [h(m)] ·G, where h is a hash function {0, 1}∗ → ZN . How-
ever, this typically breaks security proofs in the random oracle model. Suppose
the proof involves programming the random oracle H by choosing its value P on
some input m0. If we instantiate H in this naive way, the programming stage re-
quires setting h(m0) to the discrete logarithm of P, which is normally unknown.
In fact, in the case of a primitive like BLS signatures [10], this instantiation leads
to very simple and devastating attacks (see the discussions in [40, Ch. 3] or [41]).

In their original short signatures paper [9], Boneh, Lynn and Shacham intro-
duced the first generic construction of a secure hash function to elliptic curves,
in the sense that it applies to any target elliptic curve: the so-called “try-and-
increment” algorithm. Basically, to hash a message m, one concatenates it with
a fixed-length counter c initialized to 0 and computes h(c‖m), where h is a hash
function to the base field of the elliptic curve. If that digest value is the abscissa
of a point on the curve, H(m) is set to that point; otherwise, one increments the
counter c and tries again. This construction can be shown to be secure provided
that the counter length is large enough; however, it is somewhat inefficient,
since one may need many iterations before finding a suitable point, and the
fact that the length of the computation depends on the input yields to possible
side-channel attacks, especially in protocols such as password authenticated key
exchange (a concrete attack is given is [41] for a variant of SPEKE [27]).

In response, more robust, “constant-time” methods have been proposed, start-
ing with a paper by Icart at CRYPTO 2009 [26], and including a number of exten-
sions, generalizations and refinements afterwards [36,13,21,30,18,16]. In essence,
these methods are all based on the construction of a suitable algebraic or piece-
wise algebraic function from the affine line to the target elliptic curve.

Our Contributions. None of the methods mentioned above is fully generic:
they all rely on certain arithmetic or geometric properties of the target curve.
Some involve taking arbitrary cube roots in the base field Fq, for example, and
hence only apply to the case when q ≡ 2 (mod 3). The remaining ones only
work for curves of nonzero j-invariant. In particular, none of those more efficient
encodings yield a construction of hash functions to the very important class
of Barreto–Naehrig (BN) elliptic curves [4], which are the preferred curves for
implementing asymmetric pairings nowadays, as they provide essentially optimal
parameters for the 128-bit security level. This has led several authors to assert
that constant-time hashing to BN curves was an open problem [21,34].

It turns out, however, that several years prior to Icart’s work, Shallue and
van de Woestijne had presented a construction [38] that applies to all curves of
odd characteristic, as pointed out in [41]. This paper is devoted to making that

Indifferentiable Hashing to Barreto–Naehrig Curves 3

construction explicit in the case of BN curves, and establishing some properties
of it. More precisely, our contributions are as follows:

– we propose an explicit, optimized definition of the Shallue–van de Woestijne
encoding to a BN elliptic curve (in Section 3);

– using an extension of the technique from [20,22], we establish an estimate
for the number of points in the image of that encoding (in Section 4): we
find that the encoding reaches about 9/16ths of all points on the curve;

– like Icart’s encoding and many others, this encoding f will not yield a gener-
ically secure hash function construction if we simply compose it with a ran-
dom oracle to the base field (e.g. it is easy to distinguish such a hash function
from a random oracle to the curve since its image has a simple algebraic de-
scription and only contains a constant fraction of all points). However, we
show (in Section 5) that it is well-distributed in the sense of Farashahi et al.
[19]. This implies that if h1, h2 are random oracles to the base field, then
m �→ f

(
h1(m)

)
+f
(
h2(m)

)
is a good, generically secure hash function to the

BN curve (it is indifferentiable from a random oracle);
– finally, we also suggest (in Section 6) a way to implement this encoding

function that should thwart side-channel analysis and other physical attacks.

Our approach to establishing the results of Sections 4 and 5, while quite technical,
is also of independent interest. Indeed, the Shallue–van de Woestijne encoding
fits in a family of various encoding functions to elliptic curves based on works by
Schinzel and Ska�lba [37,39], and while Fouque and Tibouchi [22] and Farashahi et
al. [19] did tackle a function of that type before, they had to consider only a
special case and tweak the formulas significantly, so as to simplify the computa-
tions. In this paper, we show how image size estimates and well-distributedness
can be obtained for this type of encoding functions without simplifications or
generality loss.

Our results apply almost without change to any elliptic curve of the form
y2 = x3 + b with b �= −1 over a finite field Fq with q ≡ 7 (mod 12). Pairing-
friendly curves obtained by the CM method for discriminant −3 are typically of
that form: this includes in particular the curves constructed by Barreto, Lynn
and Scott in [3, §3.1] and the curves of embedding degree 18 and 36 obtained
by Kachisa, Schaefer and Scott in [29], all of which are recommended for pairing
implementations at higher security levels (192 to 256-bit security). The elliptic
curve group in those cases is not usually of prime order, however (those cases
have ρ > 1), so hashing to the prime order subgroup requires multiplying the
point obtained with the technique described herein by the cofactor. This does
not affect indifferentiability, as was shown in [13, §6.1].

Notation. In the paper, p will always be an odd prime and q an odd prime
power. In Fq, the finite field with q elements, we denote by χq : Fq → {−1, 0, 1}
the nontrivial quadratic character of F∗

q extended by zero to Fq (i.e. χq(0) = 0
and for a �= 0, χq(a) = 1 if a is a square and −1 otherwise). When q ≡ 3
(mod 4), we write

√
a = a(q+1)/4 for any square a ∈ Fq.

4 P.-A. Fouque and M. Tibouchi

2 Preliminaries

2.1 Barreto–Naehrig Elliptic Curves

BN curves are a family of pairing-friendly elliptic curves over large prime fields,
introduced in 2005 by Barreto and Naehrig [4]. They are one of the preferred
families for implementing asymmetric pairings nowadays, as they achieve essen-
tially optimal parameters for obtaining bilinear groups at the 128-bit security
level. Indeed, BN curves are of prime order (in particular they satisfy ρ = 1) and
embedding degree k = 12; thus, the pairing on a BN curve over a 256-bit prime
field Fp takes its values in the field Fp12 of size 256 × 12 = 3072. Then, solving
the discrete logarithm problem both in the group of points of the curve and in
F×
pk takes time about 2128 as required [4].
The details of the construction of BN curves, based on the CM method, is

not really relevant for our purposes. Suffice it to say that Barreto and Naehrig’s
algorithm outputs an elliptic curve of the form:

E : y2 = x3 + b (1)

over a field Fp with p ≡ 1 (mod 3) (for convenience, they suggest to pick a
p satisfying, more precisely, p ≡ 31 (mod 36)), such that #E(Fp) is prime,
together with the generator1 G = (1,

√
b + 1 mod p) ∈ E(Fp). Moreover, b is

typically a very small integer (the smallest > 0 such that b + 1 is a quadratic
residue mod p).

2.2 Chebotarev Density Theorem

In [20,22], Farashahi, Shparlinski and Voloch on the one hand, and Fouque and
Tibouchi on the other, proposed an approach to counting the number of points
in the image of an elliptic curve encoding function, based on the Chebotarev
density theorem for function fields. We will apply a similar technique to the
encoding to BN curves presented hereafter, and will therefore need an effective
version of the Chebotarev density theorem. One such version is given in [23,
Proposition 6.4.8], and if we specialize it to our cases of interest, we obtain:

Lemma 1 (Chebotarev). Let K be an extension of Fq(x) of degree d < ∞
and L a Galois extension of K of degree m < ∞. Assume Fq is algebraically
closed in L, and fix some subset S of Gal(L/K) stable under conjugation. Let
s = #S and N(S) the number of places v of K of degree 1, unramified in L,

such that the Artin symbol
(

L/K
v

)
(defined up to conjugation) is in S . Then∣∣∣N(S)− s

m
q
∣∣∣ ≤ 2s

m

(
(m + gL) · q1/2 + m(2gK + 1) · q1/4 + gL + dm

)
where gK and gL are the genera of the function fields K and L.

1 Later works such as [34] use a different point as the generator, and the corresponding
construction does no longer ensure that 1 + b is a square. This only causes a minor
inconvenience for our purposes, namely two extra elements of Fq that have to be
treated separately in the encoding given in Section 3.

Indifferentiable Hashing to Barreto–Naehrig Curves 5

2.3 Admissible Encodings and Indifferentiability

Brier et al. [13] use Maurer’s indifferentiability framework [33] to analyze the
conditions under which their hash function constructions can be plugged into
essentially any scheme2 that is proved secure in the random oracle model in
such a way that the proof of security goes through. As shown by Maurer, it
suffices that the hash function construction be indifferentiable from a random
oracle.

Then, Brier et al. [13] establish a sufficient condition for a hash function
construction into an elliptic curve E to be indifferentiable from a random oracle.
It applies to hash functions of the form:

H(m) = F (h(m)),

where F : S → E(Fq) is a deterministic encoding, and h is seen as a random ora-
cle to S. Assuming that h is a random oracle, the construction is indifferentiable
whenever F is an admissible encoding into E(Fq), in the sense that it satisfies
the following properties:

1. Computable: F is computable in deterministic polynomial time;

2. Regular: for s uniformly distributed in S, the distribution of F (s) is statis-
tically indistinguishable from the uniform distribution in E(Fq);

3. Samplable: there is an efficient randomized algorithm I such that for any
P ∈ E(Fq), the distribution of I (P) is statistically indistinguishable from
the uniform distribution in F−1(P).

2.4 Well-Distributed Elliptic Curve Encodings

Building upon this work by Brier et al., Farashahi et al. introduced a general
framework [19] to obtain well-behaved hash function construction to elliptic
and hyperelliptic curves. The main notion in that framework is that of a well-
distributed encoding. In the case of an elliptic curve E, it is defined as follows.

Definition 1 (Farashahi et al.). A function f : Fq → E(Fq) is said to be B-
well-distributed for some B > 0 if, for all nontrivial characters χ of E(Fq), the
following bound holds:

|Sf (χ)| ≤ B
√
q, where Sf (χ) =

∑
u∈Fq

χ
(
f(u)

)
. (2)

2 It has recently been pointed out by Ristenpart, Shacham and Shrimpton [35] that this
type of composition result does not apply to literally all cryptographic protocols,
but only those which admit so-called “single-stage security proofs”. This is not a
significant restriction for the purpose at hand, as all protocols constructed so far
using elliptic curve-valued hashing satisfy that requirement.

6 P.-A. Fouque and M. Tibouchi

Let f : Fq → E(Fq) be a well-distributed encoding to the elliptic curve E.
Then Farashahi et al. prove that the tensor square f⊗2 : F2

q → E(Fq) defined
by f⊗2(u, v) = f(u) + f(v) is a regular encoding to E(Fq). More precisely, the
statistical distance between the distribution defined by f⊗2 on E(Fq) and the

uniform distribution is bounded above by B2 ·
√

#E(Fq)/q, which is negligible.
If the function f is also efficiently computable and samplable in the sense of

Section 2.3, then f⊗2 is admissible, which implies that the hash function:

m �→ f
(
h1(m)

)
+ f
(
h2(m)

)
is indifferentiable from a random oracle, and hence can be used in lieu of a
random oracle to E(Fq) in essentially any scheme proved secure in the random
oracle model.

Another important result of [19] is the following consequence of the Riemann
hypothesis for curves, which makes it possible to establish the bound (2) in
practice.

Lemma 2 ([19, Th. 7]). Let h : X → E be a non constant morphism to the
elliptic curve E, and χ be any nontrivial character of E(Fq). Assume that h does
not factor through a nontrivial unramified morphism Z → E. Then:∣∣∣∣∣∣

∑
P∈X(Fq)

χ(h(P))

∣∣∣∣∣∣ ≤ (2gX − 2)
√
q (3)

where gX is the genus of X. Furthermore, if ϕ is a non constant rational function
on X: ∣∣∣∣∣∣

∑
P∈X(Fq)

χ(h(P)) · χq(ϕ(P))

∣∣∣∣∣∣ ≤ (2gX − 2 + 2 degϕ)
√
q. (4)

2.5 The Shallue–van de Woestijne Encoding

Let E be any elliptic curve over a finite field Fq of odd characteristic with
#Fq > 5, written is Weierstrass form:

E : y2 = g(x) = x3 + Ax2 + Bx + C.

Shallue and van de Woestijne [38] construct an encoding function f : Fq → E(Fq)
as follows.

Following the ideas of Schinzel and Ska�lba [37,39], they first introduce the
algebraic threefold V ⊂ P4 with affine equation

V : y2 = g(x1) · g(x2) · g(x3),

and observe that if (x1, x2, x3, y) is an Fq-rational point on V , then at least one
of x1, x2, x3 is the abscissa of a point in E(Fq). Indeed, the product g(x1) ·g(x2) ·
g(x3) ∈ Fq is a square, so at least one of the factors must be square as well. Then,
they establish the following result.

Indifferentiable Hashing to Barreto–Naehrig Curves 7

Lemma 3 ([38, Lemma 6]). Put h(u, v) = u2 + uv + v2 + A(u + v) + B, and
define:

S : y2 · h(u, v) = −g(u),

ψ : (u, v, y) �→
(
v,−A− u− v, u + y2, g(u + y2) · h(u, v) · y−1

)
.

Then ψ is a rational map from the surface S to V that is invertible on its image.

In particular, any point in S(Fq) where ψ is well-defined (i.e. satisfying y �= 0)
maps to a point in V (Fq), and hence yields a point in E(Fq). Finally, to construct
points on S, the authors of [38] note that any plane section of S of the form
u = u0 is birational to a conic, which is non-degenerate as long as:

g(u0) �= 0 and 3u2
0 + 2Au0 + 4B −A2 �= 0. (5)

If we fix one such value u0 (it necessarily exists since #Fq > 5), the corresponding
conic admits a rational parametrization, which gives a rational map φ : A1 → S.

The encoding function f : Fq → E(Fq) is then obtained as mapping a point
t ∈ Fq to one of the points on E(Fq) of abscissa xi, where ψ◦φ(t) = (x1, x2, x3, y)
and i ∈ {1, 2, 3} is the smallest index such that g(xi) is a square.

In the following sections, we make that function f explicit when E is a BN
curve as in Section 2.1 (or rather, belongs to a class of elliptic curves that contains
BN curves), and establish a number of its properties.

3 An Encoding to BN Curves

Let us apply the previous construction to the case of an elliptic curve of the
form:

E : y2 = g(x) = x3 + b

over a field Fq of characteristic ≥ 5. We also assume that q ≡ 7 (mod 12) and
that g(1) = 1 + b is a nonzero square in Fq. As seen in Section 2.1, all those
properties are in particular satisfied for BN curves.3

The equation of the surface S defined in Section 2.5 becomes:

S : y2 · (u2 + uv + v2) = −u3 − b.

We consider its section by the plane of equation u = u0 = 1. This gives a curve
of equation:

y2 ·
(

3

4
+
(
v +

1

2

)2)
= −1− b,

and by setting z = v+ 1/2 and w = 1/y, we see that it is birational to the conic:

z2 + (1 + b)w2 = −3

4
, (6)

3 Technically, one can consider BN curves over fields Fp with p ≡ 1 (mod 12) as well,
but they are usually avoided in practice, as the condition p ≡ 3 (mod 4) makes
square roots more convenient to compute.

8 P.-A. Fouque and M. Tibouchi

which is non-degenerate since g(1) = 1+b �= 0. We can give a convenient rational
parametrization of that conic as follows. Since q ≡ 1 (mod 3), (−3) is a quadratic
residue in Fq. Thus, (z0, w0) = (

√
−3/2, 0) is an Fq-rational point on the conic

(6). We parametrize all the other points by setting z = z0 + tw, which gives:
√
−3 · t + t2 · w + (1 + b) · w = 0,

and hence:

y =
1

w
= −1 + b + t2√

−3 · t

v = z0 + tw − 1 =
−1 +

√
−3

2
+

√
−3 · t2

1 + b + t2
.

This is well-defined (and y is nonzero) if and only if t �= 0 and t2 �= −1− b, and
the second condition is always verified since χq(−1− b) = −χq(1 + b) = −1.
Thus, for any t �= 0, it follows from Lemma 3 that at least one of the three
values:

x1 = v =
−1 +

√
−3

2
−

√
−3 · t2

1 + b + t2
, (7)

x2 = −1− v =
−1−

√
−3

2
+

√
−3 · t2

1 + b + t2
, (8)

x3 = 1 + y2 = 1− (1 + b + t2)2

3t2
(9)

is the abscissa of a point in E(Fq). Furthermore, we see that these values only
depend on t2, and hence are invariant under a change of sign for t. As a result, it
is natural to map t and −t to opposite points on E(Fq) with one of the previous
coordinates.

Therefore, we can define the Shallue–van de Woestijne encoding to the BN
curve E as follows.

Definition 2. For all t ∈ F∗
q, let x1, x2, x3 ∈ Fq be as in Eqs. (7) to (9). The

SW encoding to the BN curve E is the map:

f : F∗
q −→ E(Fq)

t �−→
(
xi, χq(t) ·

√
g(xi)

)
,

where for each t, i ∈ {1, 2, 3} is the smallest index such that g(xi) is a square in
Fq.

The encoding can be extended to all of Fq by sending 0 to some arbitrary point
in E(Fq). Since x1 is well-defined and equal to (−1 +

√
−3)/2 for t = 0, and

g(x1) = 1 + b is a square, a relatively natural choice may be to set:

f(0) =

(
−1 +

√
−3

2
,
√

1 + b

)
.

Indifferentiable Hashing to Barreto–Naehrig Curves 9

4 Computing the Image Size

In this section, we estimate the number of points in the image of the Shallue–
van de Woestijne encoding f to E(Fq), using a refinement of the techniques from
[20,22]. We will show that f reaches roughly 9/16ths of all points on the curve,
or more precisely, that #f(F∗

q) = (9/16) · q + O(
√
q) (where the constant in the

big-O is universal and will be made explicit).
To obtain that estimate, we first write F∗

q as the disjoint union of the subsets
T1, T2, T3 of field elements t such that the corresponding index i in Definition 2
is 1, 2, 3 respectively. In other words:

T1 = {t ∈ F∗
q | g(x1) is a square};

T2 = {t ∈ F∗
q | g(x1) is not a square but g(x2) is};

T3 = {t ∈ F∗
q | neither g(x1) nor g(x2) are squares}.

Then, we examine the points in f(Ti) for i = 1, 2, 3.
Clearly, a point (x, y) ∈ f(T1) satisfies:

x = x1(t) =
−1 +

√
−3

2
−

√
−3 · t2

1 + b + t2

for some t �= 0, or equivalently:

t2 = − (1 + b) · (x− ζ)

x− ζ2
where ζ =

−1 +
√
−3

2
. (10)

We denote by ω1 ∈ Fq(x) the rational function on the right-hand side of Eq. (10).
The set f(T1) is thus contained in the set of points (x, y) ∈ E(Fq) such that ω1

is a nonzero square. And conversely, if (x, y) ∈ E(Fq) satisfies that ω1 = t2 for
some t �= 0, we get x = x1(t) and hence (x, y) = f(t) or f(−t) depending on the
sign of χq(y).

Thus, we obtain that f(T1) is the set of points (x, y) ∈ E(Fq) such that ω1

is a nonzero square. If we denote by K the function field of E, this set is thus
in bijection with the set of places of degree 1 in K that split in the quadratic
extension L1/K with L1 = K[t]/(t2 − ω1). We can thus apply Lemma 1 with
s = 1 and m = d = 2 to get:∣∣∣∣#f(T1)− 1

2
q

∣∣∣∣ ≤ (2 + gL1) · q1/2 + 6q1/4 + gL1 + 4,

where gL1 is the genus of the function field L1. After extending the field of scalars
to Fq, we can see that L1 is ramified above exactly 4 places of K (corresponding
to the two opposite points in E(Fq) where the rational function ω1 vanishes
and the two others where it has a pole), so the Riemann–Hurwitz formula gives
gL1 = 3. Hence: ∣∣∣∣#f(T1)− 1

2
q

∣∣∣∣ ≤ 5q1/2 + 6q1/4 + 7. (11)

10 P.-A. Fouque and M. Tibouchi

Similarly, a point (x, y) ∈ f(T2) satisfies:

x = x2(t) =
−1−

√
−3

2
+

√
−3 · t2

1 + b + t2
,

for some t �= 0, or equivalently:

t2 = − (1 + b)(x− ζ2)

x− ζ
where, again, ζ =

−1 +
√
−3

2
. (12)

Thus, for any point (x, y) ∈ f(T2), the rational function ω2 on the right-hand
side of Eq. (12) is a nonzero square. But we clearly have:

ω1 =
(1 + b)2

ω2
,

and it follows that if ω2 is a nonzero square, then so is ω1. As a result, we must
have f(T2) ⊂ f(T1).4 Therefore:

f(F∗
q) = f(T1) ∪ f(T2) ∪ f(T3) = f(T1) ∪

(
f(T3) \ f(T1)

)
and we can thus complete our estimate if we can evaluate the cardinality of
f(T3) \ f(T1).

Again, a point (x, y) ∈ E(Fq) is in f(T3) if and only if there exists some
t ∈ F∗

q such that neither g(x1(t)) nor g(x2(t)) is a square, and x = x3(t) =
1− (1 + b + t2)2/(3t2). The last relation is equivalent to:

t4 +
[
3(x− 1) + 2(1 + b)

]
t2 + (1 + b)2 = 0. (13)

As a biquadratic polynomial over the function field K of E, that polynomial in
t, which we denote P (t), is clearly irreducible and has Galois group V4 (since
its constant coefficient is a square; see [31, Th. 2 and 3]). In particular, L′

3 =
K[t]/(P) is a Galois extension of K, and its 4 automorphisms send t to ±t and
±(1 + b)/t.

Now, the set f(T3) is in bijection with the set of places of K where the
polynomial P has at least one root t (necessarily nonzero; and in that case,
P splits completely) that further satisfies that neither g(x1(t)) nor g(x2(t))
is a square, or equivalently, that both −g(x1(t)) and −g(x2(t)) are nonzero
squares. By construction of the Shallue–van de Woestijne encoding, we know
that g(x1(t)) ·g(x2(t)) ·g(x3(t)) is a nonzero square for all t ∈ F∗

q , so that for any
t as above, −g(x1(t)) is a nonzero square if and only if −g(x2(t)) is a nonzero
square. Furthermore, the automorphisms of L′

3 = K[t]/(P) that send t to ±t fix
x1 and x2, whereas those that send t to ±(1+ b)/t exchange them, as we can see
from the fact that ω2 = (1 + b)2/ω1. This ensures that the quadratic extension

4 It does not matter for our purposes, but that inclusion is usually strict: indeed, f(T2)
is smaller that the set of points in E(Fq) with an abscissa of the form x2(t), because
the corresponding parameter t must satisfy the additional condition that g(x1(t)) is
not a square.

Indifferentiable Hashing to Barreto–Naehrig Curves 11

L′′
3 = L′

3[z]/
(
z2 + g(x1(t))

)
of L′

3 is in fact Galois of degree 8 over K, and f(T3)
is in bijection with the set of places of K that split completely in L′′

3 .
Finally, an element (x, y) ∈ f(T3) is not in f(T1) exactly when ω1 isn’t a

nonzero square, i.e. when −ω1 is a square. As a result, up to possibly two points
where −ω1 vanishes, f(T3)\f(T1) has the same number of elements as the set of
places in K which split completely in the compositum L3 = L′′

3 ·K[w]/(w2 +ω1)
(a Galois extension of degree 16, since the two fields are linearly disjoint by
inspection of their ramification, as seen below). Thus, we can apply Lemma 1
with s = 1, d = 2 and m = 16 to get:∣∣∣∣#(f(T3) \ f(T1)

)
− 1

16
q

∣∣∣∣ ≤ (2 +
gL3

8

)
· q1/2 + 6q1/4 +

gL3

8
+ 4 + 2,

where gL3 is the genus of the function field L3. To compute that genus, we
examine the ramification of the various fields involved, after an extension of
scalars to Fq. Clearly, (FqK)[w]/(w2 +ω1) is simply ramified over the four places
corresponding to the points in E(Fq) with x = ζ or ζ2. Thus, that field has genus
4 again. On the other hand, since the discriminant of P is:

Δ = 48 · (1 + b)2 · (x− 1)2 ·
(
3(x− 1) + 4(1 + b)

)2
,

the field FqL
′
3 is ramified with ramification type (2, 2) over the places corre-

sponding to the points in E(Fq) with x = 1 or x = −(1 + 4b)/3. In turn,
FqL

′′
3 is ramified over the places in FqL

′
3 where x1(t)3 = −b or x1(t) = ∞.

This gives 8 values of t, or 16 places of FqL
′
3 (since each value of t corresponds

to one value of x and two of y). Putting everything together and using Ab-
hyankar’s lemma, we obtain that the ramification divisor of FqL3 over FqK has
degree 4 · 8 + (4 · 2 · 2 + 16) · 2 = 96. Thus, the Riemann–Hurwitz formula gives
2gL3 − 2 = 16 · 0 + 96, hence gL3 = 49 < 7 · 8, and thus:∣∣∣∣#(f(T3) \ f(T1)

)
− 1

16
q

∣∣∣∣ ≤ 9q1/2 + 6q1/4 + 13. (14)

Combining Eqs. (11) and (14), we get the following result, as expected.

Theorem 1. The number of points in the image f(F∗
q) of the Shallue–van de

Woestijne encoding to a BN curve is bounded as:∣∣∣∣#f(F∗
q)− 9

16
q

∣∣∣∣ ≤ 14q1/2 + 12q1/4 + 20.

Remark 1. While somewhat arbitrary, the numbering of the points x1, x2, x3 in
the definition of the Shallue–van de Woestijne encoding actually matters for the
computation of the number of points: for example, it is not difficult to adapt the
argument above to see that if the order was reversed, the image size would only
be about 7/16 · q instead of 9/16 · q.

12 P.-A. Fouque and M. Tibouchi

5 Obtaining Indifferentiability

In this section, we prove that, while f itself is clearly not an admissible encoding
in the sense of Section 2.3, the tensor square f⊗2, as defined in Section 2.4, is
indeed admissible, and hence the hash function:

m �→ f
(
h1(m)

)
+ f
(
h2(m)

)
(15)

is indifferentiable from a random oracle when h1, h2 are seen as independent
random oracles to F∗

q .
To see this, first note that f⊗2 is obviously efficiently computable, and it is

also samplable: a sketch of a sampling function is as follows. To find a uniformly
random preimage (u, v) of some point P ∈ E(Fq), pick v ∈ F∗

q at random, and
find all the preimages of P− f(v) (which can be done by solving three algebraic
equations, corresponding to the three “branches” of f). There are at most 4 such
preimages. Then pick i ∈ {1, 2, 3, 4} at random and return the i-th preimage if
it exists. Otherwise, start over with another v. The image size computation
of the previous section guarantees that the expected number of iterations is
finite, which ensures samplability. See [5] for a complete formal treatment of the
samplability of Icart’s function, which is easily adapted to our case along the
lines of the previous sketch.

Thus, all that remains to see to prove admissibility is that f⊗2 is regular.
We will show that using the results of Section 2.4, by proving that f is a well-
distributed encoding. We have to bound the following sum:

Sf (χ) =
∑
t∈F∗

q

χ(f(t))

for every nontrivial character χ of E(Fq). As in the previous section, we break
the sum into sums over T1, T2 and T3 which we treat separately.

To estimate the sum over T1, we introduce the covering curve h1 : X1 → E
corresponding to the extension of function fields L1/K (with the notation of
Section 4). In other words, a rational point in X1(Fq) is a tuple (x, y, t) such
that (x, y) ∈ E(Fq) and x = x1(t) (or equivalently t2 = ω1(x)). In particular,
for any t ∈ T1, there are two rational points of X1 whose third coordinate is t:
if we let (x, y) = f(t), these two points are (x, y, t) and (x,−y, t), which map to
χ(f(t)) and χ(f(t))−1 under χ ◦ h1. Thus, we get:∑

P∈X1(Fq)

χ(h1(P)) =
∑
t∈T1

χ(f(t)) +
∑
t∈T1

χ(f(t))−1 + O(1),

where the constant O(1) accounts for a bounded number of exceptional points
(ramification, points at infinity). We would like to get rid of the second sum
on the right-hand side. For that purpose, note that the “correct” y value corre-
sponding to a given t is the one such that χq(ty) = 1. It follows that:∑

P∈X1(Fq)

1 + χq(ty)

2
χ(h1(P)) =

∑
t∈T1

χ(f(t)) + O(1),

Indifferentiable Hashing to Barreto–Naehrig Curves 13

and hence, by Lemma 2:∣∣∣∣∣∑
t∈T1

χ(f(t))

∣∣∣∣∣ ≤ (2gX1 − 2 + degX1
(ty)
)
· √q + O(1) = 12

√
q + O(1), (16)

since gX1 = gL1 = 3 as seen before, and the rational functions t and y over X1

are of degree 2 and 6 respectively.
Similarly, to estimate the character sum:∑

t∈T2

χ(f(t)), (17)

we introduce the extension L2 = K[t, z]/
(
t2−ω2, z

2 + g(x1(t))
)

of K associated
to f over T2, and the corresponding covering curve h2 : X2 → E. A point in
X2(Fq) is thus a tuple (x, y, t, z) such that (x, y) ∈ E(Fq), x = x2(t), and z is
a square root of −g(x1(t)) ensuring that g(x1(t)) is not a square. For a given
t ∈ T2, there are four rational points of X1 whose third coordinate is t, namely
(x,±y, t,±z) with (x, y) = f(t) and z =

√
−g(x1(t)). As with T1, we can thus

write the character sum (17) as:∑
t∈T2

χ(f(t)) =
1

2

∑
P∈X2(Fq)

1 + χq(ty)

2
χ(h2(P)) + O(1),

where the factor 1/2 accounts for the two values of z. By Lemma 2, it follows
that:∣∣∣∣∣∑

t∈T2

χ(f(t))

∣∣∣∣∣ ≤ 1

2

(
2gX2 − 2 + degX2

(ty)
)
· √q + O(1) = 20

√
q + O(1), (18)

since gX2 = gL2 = 13 by inspection of the ramification, and the rational functions
t and y over X2 are of degree 4 and 12 respectively.

Finally, to estimate the character sum:∑
t∈T3

χ(f(t)),

we introduce the covering curve h3 : X3 → E corresponding to the extension
L′′
3 = K[t, z]/

(
P (t), z2 + g(x1(t))

)
of K defined in Section 4. The expression of

the character sum is the same as with T2:∑
t∈T3

χ(f(t)) =
1

2

∑
P∈X3(Fq)

1 + χq(ty)

2
χ(h3(P)) + O(1).

By Lemma 2, it follows that:∣∣∣∣∣∑
t∈T3

χ(f(t))

∣∣∣∣∣ ≤ 1

2

(
2gX3 − 2 + degX3

(ty)
)
· √q + O(1) = 30

√
q + O(1), (19)

14 P.-A. Fouque and M. Tibouchi

since gX3 = gL′′
3

= 17 by inspection of the ramification, and the rational functions
t and y over X2 are of degree 4 and 24 respectively.

Putting Eqs. (16), (18) and (19) together, we obtain that |Sf (χ)| ≤ 62
√
q +

O(1) for any nontrivial character χ, and hence f is well-distributed as required.
Using the statistical distance bound given in Section 2.4 together with [13,

Th. 1], it follows that for a 2k-bit BN curve, the hash function given by Eq. (15)
is ε-indifferentiable from a random oracle, where:

ε = 4 ·
(
62 + O(q−1/2)

)2 · √#E(Fq)

q
· qD ≤

(
214 + o(1)

)
2−k · qD

if we denote by qD the number of queries made by the distinguisher.

6 Efficient Computation

Finally, we would like to describe a possible implementation of the Shallue–van
de Woestijne encoding from Definition 2 that is both efficient and secure against
side-channel analysis and other physical attacks. It is not difficult to meet what
is more or less the standard of efficiency for elliptic curve encodings, as set by
functions like Icart’s [26]—namely, that an evaluation of the function should
cost one exponentiation in the base field, plus a small, bounded number of faster
operations. In the case of our encoding f , we simply need to compute the values
x1, x2, x3, and decide, based on χq(g(x1)) , χq(g(x2)), which of those three values
will be the abscissa of the output point.

This simple implementation has two problems with respect to side-channel
attacks, however.

One the one hand, computing the quadratic character is difficult to do in
constant time, so the length of that part of the computation may leak information
about the input. We propose to alleviate that problem using blinding: instead
of computing χq(g(x1)), we evaluate χq

(
r21 · g(x1)

)
for some random r1 ∈ F∗

q .
If we then make sure that the quadratic character is implemented in such a
way that evaluating χq(a) and χq(−a) takes the same time (which isn’t hard
to achieve), the duration of the computation of the two quadratic characters we
need is completely independent of the input.

On the other hand, the naive way to choose the index i of the output abscissa
involves several conditional branches. This opens up a (small) risk of timing at-
tacks, as well as (more serious) possibilities for fault injection (i.e. glitch attacks).
We avoid that problem by selecting the index using an algebraic formula depend-
ing on the two quadratic character values. It suffices to construct a function ψ
of two variables such that:

ψ(1, 1) = ψ(1,−1) = 1, ψ(−1, 1) = 2, ψ(−1,−1) = 3.

One such function is given by:

ψ(α, β) =
[
(α− 1) · β mod 3

]
+ 1.

Using that function, we propose the implementation of the encoding given in
Algorithm 1.

Indifferentiable Hashing to Barreto–Naehrig Curves 15

Algorithm 1. Shallue–van de Woestijne encoding to BN curves.

1: procedure SWEncBN(t) � t ∈ F∗
q

2: w←
√
−3 · t/(1 + b + t2)

3: x1 ← (−1 +
√
−3)/2− tw

4: x2 ← −1− x1

5: x3 ← 1 + 1/w2

6: r1, r2, r3
$← F∗

q

7: α← χq

(
r21 · (x3

1 + b)
)

8: β ← χq

(
r22 · (x3

2 + b)
)

9: i←
[
(α− 1) · β mod 3

]
+ 1

10: return
(
xi, χq

(
r23 · t

)
·
√

x3
i + b

)
11: end procedure

Acknowledgments. We would like to thank Paulo Barreto for suggesting this
problem, Sorina Ionica and himself for fruitful discussions, and the reviewers of
LATINCRYPT 2012 for numerous useful comments.

References

1. Baek, J., Zheng, Y.: Identity-based threshold decryption. In: Bao et al. [2], pp.
262–276

2. Bao, F., Deng, R., Zhou, J. (eds.): PKC 2004. LNCS, vol. 2947. Springer, Heidel-
berg (2004)

3. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing Elliptic Curves with Pre-
scribed Embedding Degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN
2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003)

4. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Or-
der. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331.
Springer, Heidelberg (2006)

5. Barthe, G., Grégoire, B., Heraud, S., Olmedo, F., Zanella Béguelin, S.: Verified
Indifferentiable Hashing into Elliptic Curves. In: Degano, P., Guttman, J.D. (eds.)
Principles of Security and Trust. LNCS, vol. 7215, pp. 209–228. Springer, Heidel-
berg (2012)

6. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the Gap-Diffie-Hellman-group signature scheme. In: Desmedt [17], pp. 31–46

7. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

8. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

9. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptology 17(4), 297–319 (2004)

16 P.-A. Fouque and M. Tibouchi

11. Boyen, X.: Multipurpose Identity-Based Signcryption. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 383–399. Springer, Heidelberg (2003)

12. Boyko, V., MacKenzie, P.D., Patel, S.: Provably Secure Password-Authenticated
Key Exchange Using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

13. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Effi-
cient Indifferentiable Hashing into Ordinary Elliptic Curves. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010)

14. Cha, J.C., Cheon, J.H.: An identity-based signature from Gap Diffie-Hellman
groups. In: Desmedt [17], pp. 18–30

15. Chevallier-Mames, B.: An Efficient CDH-Based Signature Scheme with a Tight
Security Reduction. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 511–
526. Springer, Heidelberg (2005)

16. Couveignes, J.-M., Kammerer, J.-G.: The geometry of flex tangents to a cubic
curve and its parameterizations. Journal of Symbolic Computation 47(3), 266–281
(2012)

17. Desmedt, Y.G. (ed.): PKC 2003. LNCS, vol. 2567. Springer, Heidelberg (2002)
18. Farashahi, R.R.: Hashing into Hessian Curves. In: Nitaj, A., Pointcheval, D. (eds.)

AFRICACRYPT 2011. LNCS, vol. 6737, pp. 278–289. Springer, Heidelberg (2011)
19. Farashahi, R.R., Fouque, P.-A., Shparlinski, I.E., Tibouchi, M., Voloch, J.F.: Indif-

ferentiable deterministic hashing to elliptic and hyperelliptic curves. Math. Com-
put. (to appear, 2012)

20. Farashahi, R.R., Shparlinski, I.E., Voloch, J.F.: On hashing into elliptic curves. J.
Math. Cryptology 3, 353–360 (2010)

21. Fouque, P.-A., Tibouchi, M.: Deterministic encoding and hashing to odd hyperel-
liptic curves. In: Joye et al. [28], pp. 265–277

22. Fouque, P.-A., Tibouchi, M.: Estimating the Size of the Image of Deterministic
Hash Functions to Elliptic Curves. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LAT-
INCRYPT 2010. LNCS, vol. 6212, pp. 81–91. Springer, Heidelberg (2010)

23. Fried, M.D., Jarden, M.: Field arithmetic, 2nd edn. Ergebnisse der Mathematik
und ihrer Grenzgebiete, vol. 11. Springer, Berlin (2005)

24. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng [43], pp.
548–566

25. Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Hei-
delberg (2002)

26. Icart, T.: How to Hash into Elliptic Curves. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009)

27. Jablon, D.P.: Strong password-only authenticated key exchange. SIGCOMM Com-
put. Commun. Rev. 26, 5–26 (1996)

28. Groth, J.: Pairing-Based Non-interactive Zero-Knowledge Proofs. In: Joye, M.,
Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 206–206. Springer,
Heidelberg (2010)

29. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng Pairing-
Friendly Elliptic Curves Using Elements in the Cyclotomic Field. In: Galbraith,
S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer,
Heidelberg (2008)

30. Kammerer, J.-G., Lercier, R., Renault, G.: Encoding points on hyperelliptic curves
over finite fields in deterministic polynomial time. In: Joye et al. [28], pp. 278–297

31. Kappe, L.-C., Warren, B.: An elementary test for the Galois group of a quartic
polynomial. Amer. Math. Monthly 96(2), 133–137 (1989)

Indifferentiable Hashing to Barreto–Naehrig Curves 17

32. Libert, B., Quisquater, J.-J.: Efficient signcryption with key privacy from Gap
Diffie-Hellman groups. In: Bao et al. [2], pp. 187–200

33. Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, Impossibility Re-
sults on Reductions, and Applications to the Random Oracle Methodology. In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

34. Pereira, G.C.C.F., Simpĺıcio Jr., M.A., Naehrig, M., Barreto, P.S.L.M.: A family
of implementation-friendly BN elliptic curves. The Journal of Systems and Soft-
ware 84(8), 1319–1326 (2011)

35. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with Composition: Limita-
tions of the Indifferentiability Framework. In: Paterson, K.G. (ed.) EUROCRYPT
2011. LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

36. Sato, H., Hakuta, K.: An efficient method of generating rational points on elliptic
curves. J. Math-for-Industry 1(A), 33–44 (2009)

37. Schinzel, A., Ska�lba, M.: On equations y2 = xn +k in a finite field. Bull. Pol. Acad.
Sci. Math. 52(3), 223–226 (2004)

38. Shallue, A., van de Woestijne, C.E.: Construction of Rational Points on Elliptic
Curves over Finite Fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006.
LNCS, vol. 4076, pp. 510–524. Springer, Heidelberg (2006)

39. Ska�lba, M.: Points on elliptic curves over finite fields. Acta Arith. 117, 293–301
(2005)

40. Tibouchi, M.: Hachage vers les courbes elliptiques et cryptanalyse de schémas RSA.
PhD thesis, Univ. Paris 7 and Univ. Luxembourg, Introduction in French, main
matter in English (2011)

41. Tibouchi, M.: A note on hasing to BN curves. In: Miyaji, A. (ed.) SCIS. IEICE
(2012)

42. Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings. In:
Zheng [43], pp. 533–547

43. Zheng, Y. (ed.): ASIACRYPT 2002. LNCS, vol. 2501. Springer, Heidelberg (2002)

Semi-bent Functions with Multiple Trace Terms
and Hyperelliptic Curves

Sihem Mesnager

LAGA (Laboratoire Analyse, Géometrie et Applications), UMR 7539, CNRS,
Department of Mathematics,University of Paris XIII and University of Paris VIII,

2 rue de la liberté, 93526 Saint-Denis Cedex, France
smesnager@univ-paris8.fr

Abstract. Semi-bent functions with even number of variables are a class
of important Boolean functions whose Hadamard transform takes three
values. Semi-bent functions have been extensively studied due to their
applications in cryptography and coding theory. In this paper we are in-
terested in the property of semi-bentness of Boolean functions defined on
the Galois field F2n (n even) with multiple trace terms obtained via Niho
functions and two Dillon-like functions (the first one has been studied by
the author and the second one has been studied very recently by Wang et
al. using an approach introduced by the author). We subsequently give
a connection between the property of semi-bentness and the number of
rational points on some associated hyperelliptic curves. We use the hy-
perelliptic curve formalism to reduce the computational complexity in
order to provide an efficient test of semi-bentness leading to substantial
practical gain thanks to the current implementation of point counting
over hyperelliptic curves.

Keywords: Boolean function, Symmetric cryptography,
Walsh-Hadamard transformation, Semi-bent functions, Dickson polyno-
mial, Hyperelliptic curves.

1 Introduction

A number of research works in symmetric cryptography are devoted to problems
of resistance of various ciphering algorithms to the fast correlation attacks (on
stream ciphers) and to the linear cryptanalysis (on block ciphers). These works
analyse various classes of approximating functions and constructions of functions
with the best resistance to such approximations. Some general classes of Boolean
functions play a central role with this respect: the class of bent functions [16], that
is, of Boolean functions of an even number of variables that have the maximum
possible Hamming distance to the set of all affine functions, its subclasses of
homogeneous bent functions and hyper-bent functions and the generalizations
of the notion: semi-bent functions [4], Z-bent functions, negabent functions, etc.

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 18–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Semi-bent Functions with Multiple Trace Terms and Hyperelliptic Curves 19

The paper is devoted to semi-bent Boolean functions. The notion of semi-
bent function has been introduced by Chee, Lee and Kim [4] at Asiacrypt’ 94.
These functions had been previously investigated under the name of three-valued
almost optimal Boolean functions in [1]. Moreover, they are particular cases of
the so-called plateaued functions [20]. Semi-bent functions are widely studied in
cryptography because, besides having low Hadamard transform which provides
protection against fast correlation attacks [12] and linear cryptanalysis [11], they
can possess desirable properties such as low autocorrelation, propagation criteria,
resiliency and high algebraic degree. Semi-bent functions have been paid a lot of
attention in code division multiple access (CDMA) communication systems for
sequence design. Semi-bent functions exist for even or odd number of variables.
When n is even, the semi-bent functions are those Boolean functions whose
Hadamard transform takes values 0 and ±2

n+2
2 . They are balanced (up to the

addition of a linear function) and have maximal non-linearity among balanced
plateaued functions. Results concerning quadratic semi-bent functions with even
number of inputs can be found in [3]. Links of semi-bent functions from Dillon
and Niho exponents with exponential sums (namely, Kloosterman sums) can be
found in [15]. Some constructions of monomial (that is, absolute trace of a power
function) semi-bent functions (namely, quadratic functions) have been proposed
in [17]. Recently, a large number of infinite classes of semi-bent functions in
explicit bivariate (resp. univariate) polynomial form have been obtained in [2].

In this paper, functions in univariate representation expressed by means of
trace functions via Dillon-like exponents (proposed by the author [14] and very
recently by Wang et al. [19]) and Niho exponents with even number of variables
are considered. Our main intention is to provide an efficient characterization
of the semi-bentness property of the corresponding functions (whose expressions
are in polynomial forms with multiple trace terms). To this end, we precise firstly
the connection between the semi-bentness property of such functions and some
exponential sums involving Dickson polynomials. Next, in the line of the recent
works of Lisonek [10] and further of Flori and Mesnager [8], we give a link be-
tween the property of semi-bentness and the number of rational points on certain
hyperelliptic curves. The paper exploits the connections between semi-bentness
property and binary hyperelliptic curves to produce a polynomial complexity test
which is of use in constructing semi-bent functions with multiple trace terms.

The paper is organized as follows. In section 2, we fix our main notation and
recall the necessary background. In section 3, we investigate the link between the
semi-bentness property of some infinite classes of Boolean functions in univariate
representation and some exponential sums involving Dickson polynomials. Such
a link leads to an exponential time test of semi-bentness. Finally, in section
4, we connect the property of semi-bentness of such functions to hyperelliptic
curves and we reformulate the characterization obtained in section 3 in terms of
cardinalities of hyperelliptic curves leading to an efficient test of semi-bentness
and practical speed-ups.

20 S. Mesnager

2 Notation and Preliminaries

2.1 Boolean Functions in Polynomial Forms

Let n be a positive integer. A Boolean function f on F2n is an F2-valued function
on the Galois field F2n of order 2n. The weight of f , denoted by wt(f), is the
Hamming weight of the image vector of f , that is, the cardinality of its support
{x ∈ F2n | f(x) = 1}.

For any positive integer k, and for any r dividing k, the trace function from
F2k to F2r , denoted by T rk

r , is the mapping defined as:

∀x ∈ F2k , T rk
r (x) :=

k
r −1∑

i=0
x2ir

= x + x2r

+ x22r

+ · · · + x2k−r

.

In particular, the absolute trace over F2 is the function T rn
1 (x) =

∑n−1
i=0 x2i .

Recall that, for every integer r dividing k, the trace function T rk
r satisfies the

transitivity property, that is, T rk
1 = T rr

1 ◦ T rk
r .

There exist several kinds of possible trace (univariate) representations of
Boolean functions which are not necessary unique and use the identification
between the vector-space Fn

2 and the field F2n .
Every non-zero Boolean function f defined on F2n has a (unique) trace ex-

pansion of the form:

∀x ∈ F2n , f(x) =
∑

j∈Γn

T r
o(j)
1 (ajxj) + ε(1 + x2n−1)

where Γn is the set of integers obtained by choosing one element in each cy-
clotomic coset of 2 modulo 2n − 1 (the most usual choice for j is the smallest
element in its cyclotomic class, called the coset leader of the class), o(j) is the
size of the cyclotomic coset of 2 modulo 2n − 1 containing j, aj ∈ F2o(j) and
ε = wt(f) modulo 2.

This trace representation of f is unique and is called its polynomial form.

2.2 Walsh Transform and Semi-bent Functions

Let f be a Boolean function on F2n . Its “sign" function is the integer-valued
function χf := (−1)f . The W alsh Hadamard transform of f is the discrete
Fourier transform of χf , whose value at ω ∈ F2n is defined as:

∀ω ∈ F2n , χ̂f (ω) =
∑

x∈F2n

(−1)f(x)+T rn
1 (ωx).

Bent functions [16] can be defined as:

Definition 1. A Boolean function f : F2n → F2 (n even) is said to be bent if
χ̂f (ω) = ±2 n

2 , for all ω ∈ F2n .

Semi-bent Functions with Multiple Trace Terms and Hyperelliptic Curves 21

Semi-bent functions [4], [5] are defined as:

Definition 2. For even n, a Boolean function f : F2n → F2 is said to be semi-
bent if χ̂f (ω) ∈ {0, ±2 n+2

2 }, for all ω ∈ F2n . For odd n, a Boolean function
f : F2n → F2 is said to be semi-bent if χ̂f (ω) ∈ {0, ±2

n+1
2 }, for all ω ∈ F2n .

2.3 Dickson Polynomial

Recall that the family of binary Dickson polynomials Dr(X) ∈ F2 [X] of degree
r is defined by Dr(X) =

∑� r
2 �

i=0
r

r−i

(
r−i

i

)
Xr−2i, r = 2, 3, . . . Moreover, the

family of Dickson polynomials Dr(X) (of degree r) can also be defined by the
following recurrence relation: Di+2(X) = XDi+1(X)+Di(X) with initial values
D0(X) = 0, D1(X) = X. We give the list of the first six Dickson polynomials:
D0(X) = 0; D1(X) = X ; D2(X) = X2; D3(X) = X + X3; D4(X) = X4;
D5(X) = X + X3 + X5.

From now, n = 2m is an (even) integer. We denote by U the cyclic group of
(2m + 1)-st roots of unity that is {u ∈ F2n | u2m+1 = 1}.

Let R be a subset of representatives of the cyclotomic classes modulo 2n−1 for
which each class has the full size n. The author has studied the class of functions
whose polynomial form is given by

∑
r∈R T rn

1 (arxr(2m−1))+T r2
1(bx

2n−1
3) (where

ar ∈ F�
2m for r ∈ R and b ∈ F�

4) and proved a necessary and sufficient condition
on the bentness [15] by means of exponential sums involving Dickson polynomials
of degrees r and 3 in the case when m is odd. Very recently, Wang et al. have
studied (with some restriction) the bentness property of the family of functions
whose polynomial form is given by

∑
r∈R T rn

1 (arxr(2m−1))+T r4
1(b′x

2n−1
5) (where

ar ∈ F�
2m for r ∈ R and b′ ∈ F�

16). Adopting the approach introduced by the
author in [13], Wang et al. proved a necessary and sufficient condition on the
bentness [19] by means of exponential sums involving Dickson polynomials of
degrees r and 5 in the case when m ≡ 2 (mod 4).

3 Characterizations of Semi-bent Functions with
Multiple Trace Terms by Means of Exponential Sums
Involving Dickson Polynomials

Nonlinear Boolean functions whose restriction to any vector space uF2m (where
u ∈ U) are linear are sums of Niho power functions, that is of functions of the
form (see [6]):

T r
o((2m−1)s+1)
1

(
asx(2m−1)s+1

)
with 1 ≤ s ≤ 2m

We can determine the value of o((2m −1)s+1)) precisely (recall that o(j) denotes
the size of the cyclotomic coset of 2 modulo 2n − 1 containing j):

Lemma 1. ([2]) We have o((2m − 1)s + 1)) = m if s = 2m−1 + 1 (i.e. if
(2m − 1)s + 1 and 2m + 1 are conjugate) and o((2m − 1)s + 1)) = n otherwise.

22 S. Mesnager

Now, consider four infinite classes of functions with multiple trace terms defined
on F2n . We denote by E the set of representatives of the cyclotomic classes
modulo 2n − 1 for which each class has full size n. Let far,b,c f ′

ar ,b, f̃ar,b′,c and
f̃ ′

ar,b′ be the functions defined on F2n whose polynomial form is given by (1), (2),
(3) and (4), respectively.

far,b,c(x) :=
∑

r∈R

T rn
1 (arxr(2m−1)) + T r2

1(bx
2n−1

3) + T rm
1 (cx2m+1) (1)

f ′
ar,b(x) :=

∑

r∈R

T rn
1 (arxr(2m−1))+T r2

1(bx
2n−1

3)+T rm
1 (x2m+1)+T rn

1

(
x(2m−1)s+1

)

(2)

f̃ar,b′,c(x) :=
∑

r∈R

T rn
1 (arxr(2m−1)) + T r4

1(b′x
2n−1

5) + T rm
1 (cx2m+1) (3)

f̃ ′
ar,b′ (x) :=

∑

r∈R

T rn
1 (arxr(2m−1)) + T r4

1(b′x
2n−1

5) + T rm
1 (x2m+1) + T rn

1

(
x(2m−1)s′+1

)

(4)

where R ⊆ E, ar ∈ F�
2m , b ∈ F�

4 , b′ ∈ F�
16 , c ∈ F�

2m , s ∈ {1/4, 3} and s′ ∈
{1/6, 3}(the fractions 1/4 and 1/6 are understood modulo 2m + 1).

Note that o(r(2m − 1)) = n, o(2n−1
3) = 2, o(2n−1

5) = 4, o(2m + 1) = m and
o((2m − 1)s + 1) = n for s ∈ {1/4, 1/6, 3}. Moreover, note that for a fixed r co-
prime with 2m + 1, the function x 	→ T rn

1 (arxr(2m−1)) is a Dillon function, the
function x 	→ T r2

1(bx
2n−1

3) (resp. x 	→ T r4
1(b′x

2n−1
5)) is a Dillon-like function1

for m odd (resp. for m ≡ 2 (mod 4)). Finally, note that for m odd (resp. m even)
the function x 	→ T rm

1 (cx2m+1) + T rn
1

(
x(2m−1)s+1)

(resp. x 	→ T rm
1 (cx2m+1) +

T rn
1

(
x(2m−1)s′+1

)
) is a Niho bent function [6].

Theorem 1 in [2] ensures that the set of functions defined above by (1), (2),
(3) and (4) contains semi-bent functions. In fact, we are interested in these
classes because these are the only classes that can be built via known like-Dillon
exponents and having the property that they contain semi-bent functions. The
goal of this paper is to provide an efficient characterization of the semi-bentness
property of the functions far,b,c f ′

ar,b, f̃ar,b′,c and f̃ ′
ar,b′ . The first step is to

precise a necessary and sufficient condition on the coefficients for a function of
the previous form to be semi-bent. In the following, we exhibit a criterion of
semi-bentness in terms of exponential sums involving Dickson polynomials for
functions in the form (1) and (2). Recall the very recent result on semi-bentness
(which is a direct consequence of Theorem 1 in [2]).

1 We shall call Dillon-like exponents the ones of the form (2m − 1)s where s divides
(2m + 1).

Semi-bent Functions with Multiple Trace Terms and Hyperelliptic Curves 23

Corollary 1. ([2]) Let f be a Boolean function of the form:

f(x) = T rm
1 (a0x2m+1) +

L∑

i=1
T rn

1 (aix
(2m−1)si+1) +

∑

r∈R

T r
o((2m−1)r)
1 (brx(2m−1)r)

where L is some non-negative integer, 2 ≤ si ≤ 2m, si
= 2m−1 + 1, 1 ≤ r ≤ 2m,
a0 ∈ F2m , ai ∈ F2m and br ∈ F2o((2m−1)r) (with at least one coefficient ai
= 0
and one coefficient br
= 0). Assume that:
1) the number of roots u in U := {x ∈ F2n ; x2m+1 = 1} of the equation T rn

m(cu)+
∑L

i=1 T rn
m(aiu

2si−1) + a
1
2
0 = 0 is either 0 or 2 for every c ∈ F2n,

2) the sum
∑

u∈U χ(
∑

r∈R T r
o((2m−1)r)
1 (brur)) is equal to 1.

Then, f is semi-bent.

A proof of the semi-bentness of the function far,b,c is given in [15] by comput-
ing the Walsh transform of far ,b,c . We propose an alternative shorter proof
of the following result using Corollary 1 (with T rm

1 (x−1) = 0 for x = 0 since
T rm

1 (x−1) = T rn
1 (x2m−1−1)).

Proposition 1. Let n = 2m with m odd. Let b ∈ F�
4 , β be a primitive element

of F4 and c ∈ F�
2m . Let far,b,c (resp. f ′

ar,b) be the function defined on F2n whose
expression is of the form (1) (resp. form (2)). Let har be the related function
defined on F2m by har (x) =

∑
r∈R T rm

1 (arDr(x)), where Dr(x) is the Dickson
polynomial of degree r. Then

1. far,β,c (resp. f ′
ar,β) is semi-bent if and only if, far,β2,c (resp. f ′

ar,β2) is semi-
bent, if and only if,

∑

x∈F2m

χ
(

T rm
1 (x−1) + har (D3(x))

)
= 2m − 2wt(har ◦ D3) + 4.

2. far,1,c (resp. f ′
ar,1) is semi-bent if and only if,

3
∑

x∈F2m

χ
(

T rm
1 (x−1) + har (x)

)
− 2

∑

x∈F2m

χ
(

T rm
1 (x−1) + har (D3(x))

)

= 4 + 2m + 4wt(har ◦ D3) − 6wt(har).

Proof. Let us study the semi-bentness of far,b,c for b ∈ {1, β, β2}. Thanks
to Corollary 3 in [15], the condition 2) of Corollary 1 (that is, in this case :
∑

u∈U χ
(

gar ,b(u)
)

= 1 where gar,b :=
∑

r∈R T rn
1 (arxr(2m−1)) + T r2

1(bx
2n−1

3)) is
satisfied if and only if Condition 1) (resp. Condition 2)) of the proposition is
satisfied for far,β,c and far,β2,c (resp. far,1,c) is satisfied.

On the other hand, we have

T rn
m(ωu) + c

1
2 = 0 ⇐⇒ ωu + (ωu)2m

= c
1
2 (5)

24 S. Mesnager

If ω = 0 the equation (5) has no solution. Using the (unique) polar decomposition
of ω ∈ F�

2n : ω = vz, where v ∈ U and z ∈ F�
2m .

T rn
m(ωu) + c

1
2 = 0 ⇐⇒ vzu + v2m

z2m

u2m

= c
1
2

⇐⇒ vu + (uv)−1 = z−1c
1
2 .

Set c′ = cz−2. Since u ∈ U 	→ vu is a permutation on U

#{u ∈ U |ωu + (ωu)2m

= c
1
2 } = #{u′ ∈ U |u′ + (u′)2m

= c′ 1
2 }

Now, if u1 and u2 are two distinct solutions in U of the equation u′ + (u′)2m =
c′ 1

2 , then u2 = u1
2m . Indeed, we have u1 + u1

2m = c′ 1
2 = u2 + u2

2m . Thus,
(u1 + u2)2m−1 = 1, that is, u1 + u2 ∈ F2m . Set u1 + u2 = t ∈ F2m . We have
(since t ∈ F2m and u1 ∈ U): u2m+1

2 = (t + u1)2m+1 = (t + u1)(t + u1)2m =
(t + u1)(t2m + u1

2m) = t2 + u2m

1 t + u1t + 1.
Now, since u2 ∈ U , we obtain, t2 +u2m

1 t+u1t = 0 that is, t = 0 or t = u2m

1 +u1,
equivalently, u2 = u1 or u2 = u2m

1 . Therefore, the number of solutions u in
U := {u ∈ F2n | u2m+1 = 1} of the equation T rn

m(ωu)+ c
1
2 = 0 is eiher 0 or 2 for

every ω ∈ F2n . Consequently, the Condtion 1) given by Corollary 1 is satisfied.
Now, let us study the semi-bentness of f ′

ar ,b for b ∈ {1, β, β2}. Likewise for
far,b,c, Condition 2) of Corollary 1 holds if and only if Condition 1) (resp. Con-
dition 2)) of the proposition holds for f ′

ar,β and f ′
ar,β2 (resp. f ′

ar,1). Now, for
every w ∈ F2n , the equation T rn

m(wu) + T rn
m(u2s−1) + 1 = 0 admits 0 or 2

solutions in U for s = 1/4 (with m odd) and for s = 3. Indeed, note first
that: T rn

m(u2s−1) = T rn
m((u2s−1)2m) = T rn

m((u2m)2s−1) = T rn
m(u−1)2s−1) =

T rn
m(u1−2s). For s = 1/4, the equation T rn

m(wu) + T rn
m(u1/2) = 1 admits 0 or

2 solutions in U for every w ∈ F2n (if m odd) (according to Dobbertin et al.[6]).
For s = 3, the equation T rn

m(wu) + T rn
m(u5) = 1 admits 0 or 2 solutions in

U for every w ∈ F2n (according to Dobbertin et al. [6]). The proof is complete
according to Corollary 1.

Remark 1. Note that one can prove that for every positive integer d such
that d is co-prime with 2m+1

3 , the function defined on F2n by x 	→
∑

r∈R T rn
1 (arxdr(2m−1)) + T r2

1(βx
2n−1

3) + T rm
1 (cx2m+1) is also semi-bent if and

only if Condition 1) of Proposition 1 holds.

In the following, we exhibit thanks to [19] a criterion of semi-bentness in terms
of exponential sums involving Dickson polynomials for functions in the form (3)
and (4).

Proposition 2. Suppose m := n
2 ≡ 2 (mod 4). Let R ⊆ E where E is a set

of representatives of the cyclotomic classes modulo 2n − 1 for which each class
has the full size n. Let b′ ∈ F�

16 and ar ∈ F�
2m . Let f̃ar ,b′,c (resp. f̃ ′

ar,b′) be the
function defined on F2n whose expression is of the form (3) (resp. form (4)).
Let har be the related function defined on F2m by har (x) =

∑
r∈R T rm

1 (arDr(x)),
where Dr(x) is the Dickson polynomial of degree r. Then,

Semi-bent Functions with Multiple Trace Terms and Hyperelliptic Curves 25

1. If b′ a primitive element of F16 such that T r4
1(b′) = 0 then, f̃ar,b′,c (resp.

f̃ ′
ar,b′) is semi-bent if and only if,

∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (D5(x))
)

= 2.

2. If b′ = 1 then, f̃ar,b′,c (resp. f̃ ′
ar,b′) is semi-bent if and only if

2
∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (D5(x))
)

− 5
∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (x)
)

= 4.

3. Assume ar ∈ F2
m
2 . If b′ ∈ {β, β2, β3, β4} where β is a primitive 5-th root of

unity in F16 then, f̃ar,b′,c (resp. f̃ ′
ar,b′) is semi-bent if and only if,

∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (D5(x))
)

+ 5
∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (x)
)

= −8.

4. Assume ar ∈ F2
m
2 . If b′ is a primitive element of F16 such that T r4

1(b′) = 1
then, f̃ar,b′,c (resp. f̃ ′

ar,b′) is semi-bent if and only if,

3
∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (D5(x))
)

− 5
∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (x)
)

= −4.

5. Assume ar ∈ F2
m
2 . If b′ ∈ {β + β2, β + β3, β2 + β4, β3 + β4, β + β4, β2 + β3}

where β is a primitive 5-th root of unity in F16 then, f̃ar,b′,c (resp. f̃ ′
ar,b′) is

semi-bent if and only if,

∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (D5(x))
)

= 2.

Proof. Let us study the semi-bentness of f̃ar ,b′,c for b′ ∈ F16 . Thanks to [19],
Condition 2) of Corollary 1 (that is, in this case :

∑
u∈U χ

(
g̃ar,b′(u)

)
= 1 where

g̃ar,b′ :=
∑

r∈R T rn
1 (arxr(2m−1)) + T r2

1(bx
2n−1

5)) is satisfied if and only if Con-
dition 1) (resp. Condition 2), Condition 3), Condition 4), Condition 5)) of the
proposition holds in the case where b′ a primitive element of F16 such that
T r4

1(b′) = 0 (resp. b′ = 1, b′ ∈ {β, β2, β3, β4}, b′ is a primitive element of F16
such that T r4

1(b′) = 1, b′ ∈ {β + β2, β + β3, β2 + β4, β3 + β4, β + β4, β2 + β3}
where β is a primitive 5-th root of unity in F16). On the other hand, the number
of solutions u in U of the equation T rn

m(ωu) + c
1
2 = 0 is either 0 or 2 for every

w ∈ F2n (see proof Proposition of1), which proves the semi-bentness property
of f̃ar,b′,c, according to Corollary 1. For the semi-bentness of f̃ ′

ar,b′ , we use the
same arguments as previously and the fact that the number of solutions u in U
of the equation T rn

m(wu) + T rn
m(u2s′−1) = 0 with s′ = 3 (resp. s′ = 1/6 where

m even) is either 0 or 2 for every w ∈ F2n (according to Dobbertin et al. [6]).

26 S. Mesnager

Remark 2. Let β be a primitive element of F16 such that T r4
1(β) = 0 and c ∈

F�
2m . Note that for every positive integer d such that d is co-prime with 2m+1

5 ,
the function defined on F2n by x 	→ ∑

r∈R T rn
1 (arxdr(2m−1)) + T r4

1(βx
2n−1

5) +
T rm

1 (cx2m+1) is also semi-bent if and only if the Condition 1) of Theorem 2
holds, according to Proposition 3.17 [19].

4 Efficient Characterizations of Semi-bent Functions
with Multiple Trace Terms by Means of Cardinalities
of Hyperelliptic Curves

Proposition 1 and Proposition 2 provide a test of semi-bentness for the functions
far,b,c (resp. f ′

ar,b) of the form (1) (resp. form (2)) and for functions f̃ar,b′,c (resp.
f̃ ′

ar,b′) of the form (3) (resp. form (4)) with exponential complexity. Indeed,
suppose R is fixed and m is variable then, for any given sequences of coefficients
ar ∈ F�

2m (where r ∈ R), checking whether Condition 1 and Condition 2 of
Proposition 1 and Proposition 2 are satisfied requires time that is exponential in
m (hence it also exponential in n). The aim of this section is to exhibit an efficient
characterization of the semi-bentness of such functions. In the following, we
shall use the hyperelliptic curve formalism to reduce computational complexity.
We will show that semi-bent functions far,b,c, f ′

ar,b, f̃ar ,b′,c and f̃ ′
ar,b′ can be

described in terms of cardinalities of some hyperelliptic curves. To this end, we
need some background on hyperelliptic curves as well as results about point
counting on such curves over finite fields of characteristic 2.

4.1 Point Counting on Algebraic Curves

In this subsection we give briefly basic definitions for hyperelliptic curves as well
as results about point counting on such curves over finite fields of characteristic
2. Given a curve E defined on F2m , #E means the number of points on it with
coordinates in the given finite field F2m . The fact about such curves we will use
in the next section is that there exist algorithms to compute their cardinalities
in polynomial time and space in m. A description of the different types of hyper-
elliptic curves in even characteristic can be found in [7]. For the cryptographic
point of view, the curves are often chosen to be imaginary hyperelliptic curves.
This is also the kind of curves we will encounter. Such a hyperelliptic curve of
genus g can be described by an affine part given by the following equation:

H : y2 + h(x)y = f(x),

where h(x) is of degree ≤ g and f(x) is monic of degree 2g + 1.
The main result about point counting of hyperelliptic curves we use is given

by Vercauteren [18].

Theorem 1. (Theorem 4.4.1 page 135, [18]) Let H be a hyperelliptic curve of
genus g defined over F2m . There exists an algorithm to compute the cardinality
of H in

Semi-bent Functions with Multiple Trace Terms and Hyperelliptic Curves 27

O(g3m3(g2 + log2 m log log m) log gm log log gm)
bit operations and O(g4m3) memory.
A stronger result in terms of spaces is also given for hyperelliptic curves of a
special form.
Definition 3. An Artin-Schreier curve is a hyperelliptic curve whose affine part
is given by an equation of the form:

H : y2 + xny = f(x),

where 0 ≤ n ≤ g and f(x) is monic of degree 2g + 1.

Theorem 2. (Theorem 4.3.1 page 114, [18]) Let H be an Artin-Schreier curve
of genus g defined over F2m . There exists an algorithm to compute the cardinality
of H in

O(g3m3(g2 + log2 m log log m) log gm log log gm)
bit operations and O(g3m3) memory.

Using complex methods involving deformations theory, better complexities were
obtained recently thanks to Hubrechts’s result[9].

4.2 Characterizations of Semi-bentness in Terms of Cardinalities of
Hyperelliptic Curves

The criteria of semi-bentness given by Proposition 1 and Proposition 2 lead
to an exponential time and space algorithm. In the following, we shall use the
hyperelliptic curve formalism to reduce computational complexity. The charac-
terizations of semi-bentness given by Proposition 1 can be reformulated in terms
of cardinality of hyperelliptic curves as follows.

Theorem 3. The notations are as in Proposition 1. Moreover, let H
(1)
ar , H

(2)
ar

and H
(3)
ar be the (affine) curves defined over F2m by

H(1)
ar

: y2 + y =
∑

r∈R

arDr(x),

H(2)
ar

: y2 + y =
∑

r∈R

arDr(x + x3).

H(3)
ar

: y2 + xy = x + x2
∑

r∈R

arDr(x),

a) If β is a primitive element of F4 , then far,β,c (resp. f ′
ar,β) is semi-bent if and

only if
2#H(2)

ar
−

(
#H(1)

ar
+ #H(3)

ar

)
= −3.

b) If b = 1, then far ,1,c (resp. f ′
ar,1) is semi-bent if and only if

4#H(2)
ar

− 5#H(1)
ar

+ #H(3)
ar

= 3.

28 S. Mesnager

Proof. a) According to Proposition 1, far,β,c (resp. f ′
ar,β) is semi-bent if and

only if, far,β2,c (resp. f ′
ar,β2) is semi-bent i.e.

∑

x∈F2m

χ
(

T rm
1 (x−1) + har (D3(x))

)
= 2m − 2wt(har ◦ D3) + 4. (6)

Therefore, using the fact that, for a Boolean function f defined on F2n ,
∑

x∈F2n
χ(f(x)) =

2n − 2wt(f) and that the indicator of the set {x ∈ F�
2m | T rm

1 (x−1) = 1} can
be written as 1

2
(
1 − χ(T rm

1 (x−1))
)
, we get that Condition (6) is equivalent to

∑
x∈F�

2m ,T rm
1 (x−1)=1 χ

(
har (D3(x))

)
= −2. Now, since m is odd, T rm

1 (1) = 1.
Moreover, for c ∈ F∗

2m , the equation x3 + x = c has a unique solution in F2m if
and only if T rm

1 (1
c2)
= T rm

1 (1) = 1 i.e T rm
1 (c−1) = 0. Therefore, the mapping

x 	→ D3(x) := x3 + x is a permutation of the set {x ∈ F∗
2m | T rm

1 (x−1) = 0}.
Thus, {x3 + x | x ∈ F∗

2m , T rm
1 (x−1) = 0} = {x ∈ F∗

2m , T rm
1 (x−1) = 0}

(T rm
1 (1

x3+x) = T rm
1 (x−1) for x ∈ F∗

2m \ {1}). The next equalities hold.

∑

x∈F∗
2m ,T rm

1 (x−1)=1

χ (har ◦ D3(x)) =
∑

x∈F∗
2m

χ (har ◦ D3(x)) −
∑

x∈F∗
2m ,T rm

1 (x−1)=0

χ (har ◦ D3(x))

=
∑

x∈F∗
2m

χ (har ◦ D3(x)) −
∑

x∈F∗
2m ,T rm

1 (x−1)=0

χ (har (x))

=
∑

x∈F∗
2m

χ (har ◦ D3(x))

−1
2

⎛

⎝
∑

x∈F∗
2m

χ (har (x)) +
∑

x∈F∗
2m

χ
(

T rm
1 (x−1) + har (x)

)
⎞

⎠ .

Now, firstly, we have
∑

x∈F∗
2m

χ (har ◦ D3(x)) = −2m − 1 + #H
(2)
ar . Indeed

∑

x∈F∗
2m

χ (har ◦ D3(x)) = 2m − 1 − 2#{x ∈ F∗
2m | har ◦ D3(x) = 1}

= 2m − 1 − 2(2m − #{x ∈ F2m | har ◦ D3(x) = 0}

Using the additive version of Hillbert 90 : T rm
1 (x) = 0 ⇐⇒ ∃t ∈ F2m,x = t2 + t

we get,

∑

x∈F∗
2m

χ (har ◦ D3(x)) = −2m − 1 + 2#{x ∈ F2m | ∃t ∈ F2m , t2 + t =
∑

r∈R

arDr(D3(x))}

= −2m − 1 + #H(2)
ar

.

Semi-bent Functions with Multiple Trace Terms and Hyperelliptic Curves 29

Secondly, we have
∑

x∈F∗
2m

χ (har (x)) = −2m − 1 + #H
(1)
ar . Indeed,

∑

x∈F∗
2m

χ (har (x)) = 2m − 1 − 2#{x ∈ F∗
2m | har (x) = 1}

= 2m − 1 − 2(2m − #{x ∈ F2m | har (x) = 0}
= −2m − 1 + 2#{x ∈ F2m | ∃t ∈ F2m , t2 + t =

∑

r∈R

arDr(x)}

= −2m − 1 + #H(1)
ar

.

Thirdly, we have
∑

x∈F∗
2m

χ
(
T rm

1 (x−1) + har (x)
)

= −2m + #H
(3)
ar . Indeed,

∑

x∈F∗
2m

χ
(

T rm
1 (x−1) + har (x)

)
=

∑

x∈F∗
2m

(1 − 2(T rm
1 (x−1) + har (x)))

= 2m − 1 − 2#{x ∈ F∗
2m | T rm

1 (x−1) + har (x) = 1}

= −2m + 1 + 2#{x ∈ F∗
2m | ∃t ∈ F2m t2 + t = x−1 +

∑

r∈R

arDr(x)}

=−2m + 1 + 2#{x ∈ F
∗
2m | ∃t ∈ F2m t

2 + xt = x + x
2
∑

r∈R

arDr(x)}

= −2m + 1 + #H(3)
ar

− #{P ∈ H(3)
ar

| x = 0} = −2m + #H(3)
ar

.

We finally obtain,
∑

x∈F∗
2m |T rm

1 (x−1)=1

χ

(
har ◦ D3(x)

)
=

(
−2m − 1 + #H

(2)
ar

)
−

1

2

((
−2m − 1 + #H

(1)
ar

)
+

(
−2m + #H

(3)
ar

))

that is,
∑

x∈F∗
2m |T rm

1 (x−1)=1

χ (har ◦ D3(x)) = −1
2

+ #H(2)
ar

− 1
2

(
#H(1)

ar
+ #H(3)

ar

)
. (7)

The assertion 1) follows.
b) According to Theorem 1, far,1,c (resp. f ′

ar,1) is semi-bent if and only if,

3
∑

x∈F2m

χ
(

T rm
1 (x−1) + har (x)

)
− 2

∑

x∈F2m

χ
(

T rm
1 (x−1) + har (D3(x))

)

= 4 + 2m + 4wt(har ◦ D3) − 6wt(har).
We have

∑

x∈F2m

χ(T rm
1 (x−1) + har (x)) =

∑

x∈F2m

χ(har (x)) − 2
∑

x∈F∗
2m |T rm

1 (x−1)=1

χ(har (x))

= 2m − 2wt(har) − 2
∑

x∈F∗
2m |T rm

1 (x−1)=1

χ(har (x)).

30 S. Mesnager

Similarly we have,
∑

x∈F2m

χ(T rm
1 (x−1) + har (D3(x)) =

∑

x∈F2m

χ(har (D3(x)) − 2
∑

x∈F∗
2m |T rm

1 (x−1)=1

χ(har (D3(x))

= 2m − 2wt(har ◦ D3) − 2
∑

x∈F∗
2m |T rm

1 (x−1)=1

χ(har (D3(x)).

The above necessary and sufficient condition of semi-bentness is then equivalent
to

−3
∑

x∈F∗
2m |T rm

1 (x−1)=1

χ(har (x)) + 2
∑

x∈F∗
2m |T rm

1 (x−1)=1

χ(har (D3(x)) = 2. (8)

Now, according to previous calculations, we have
∑

x∈F∗
2m

χ (har (x)) = −2m −
1 + #H

(1)
ar and

∑
x∈F∗

2m
χ

(
T rm

1 (x−1) + har (x)
)

= −2m + #H
(3)
ar . Thus,

∑

x∈F∗
2m |T rm

1 (x−1)=1

χ(har (x)) = 1
2

(−2m − 1 + #H(1)
ar

) − 1
2

(−2m + #H(3)
ar

)

= −1
2

+ 1
2

#H(1)
ar

− 1
2

#H(3)
ar

.

Finally, using relation (9), we obtain that condition (8) is equivalent to

−3
(

−1
2

+ 1
2

#H(1)
ar

− 1
2

#H(3)
ar

)
+ 2

(
−1

2
+ #H(2)

ar
− 1

2
(#H(1)

ar
+ #H(3)

ar
)
)

= 2

that is, 4#H
(2)
ar − 5#H

(1)
ar + #H

(3)
ar = 3 which completes the proof.

Likewise, the characterizations of semi-bentness given by Proposition 2 can also
be reformulated in terms of cardinalities of hyperelliptic curves as follows.

Theorem 4. The notations are as in Proposition 2. Moreover, let H
(1)
ar , H

(3)
ar ,

H̃
(2)
ar and H̃

(3)
ar be the (affine) curves defined over F2m by

H(1)
ar

: y2 + y =
∑

r∈R

arDr(x),

H(3)
ar

: y2 + xy = x + x2
∑

r∈R

arDr(x),

H̃(2)
ar

: y2 + y =
∑

r∈R

arDr(x + x3 + x5),

H̃(3)
ar

: y2 + xy = x + x2
∑

r∈R

arDr(x + x3 + x5).

Semi-bent Functions with Multiple Trace Terms and Hyperelliptic Curves 31

1. If Let b′ a primitive element of F16 such that T r4
1(b′) = 0, then f̃ar,b′,c (resp.

f̃ ′
ar,b′) is semi-bent if and only if,

#H̃(2)
ar

− #H̃(3)
ar

= 5.

2. If b′ = 1, then f̃ar,b′,c (resp. f̃ ′
ar,b′) is semi-bent if and only if

2(#H̃(2)
ar

− #H̃(3)
ar

) − 5(#H(1)
ar

− #H(3)
ar

) = 5.

3. Assume ar ∈ F2
m
2 . If b′ ∈ {β, β2, β3β4} where β is a primitive 5-th root of

unity in F16 , then f̃ar,b′,c (resp. f̃ ′
ar,b′) is semi-bent if and only if,

#H̃(2)
ar

− #H̃(3)
ar

+ 5(#H(1)
ar

− #H(3)
ar

) = −10.

4. Assume ar ∈ F2
m
2 . If b′ is a primitive element of F16 such that T r4

1(b′) = 1,
then f̃ar,b′,c (resp. f̃ ′

ar,b′) if and only if,

3
(

#H̃(2)
ar

− #H̃(3)
ar

)
+ 5

(
#H(3)

ar
− #H(1)

ar

)
= −10.

5. Assume ar ∈ F2
m
2 . If b′ ∈ {β + β2, β + β3, β2 + β4, β3 + β4, β + β4, β2 + β3}

where β is a primitive 5-th root of unity in F16 , then f̃ar,b′,c (resp. f̃ ′
ar,b′) is

semi-bent if and only if,

#H̃(2)
ar

− #H̃(3)
ar

= 5.

Proof. 1. According to Proposition 2, the function f̃ar,b′,c (resp. f̃ ′
ar,b′) is semi-

bent if and only if
∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (D5(x))
)

= 2.

The sum
∑

x∈F�
2m T rm

1 (x−1)=1 χ
(

har (D5(x))
)

can be expressed in terms of

cardinalities of the hyperelliptic curves H̃
(2)
ar and H̃

(3)
ar as follows: we have

∑

x∈F�
2m ,T rm

1 (x−1)=1

χ

(
har (D5(x))

)
=

1

2

(∑

x∈F�
2m

χ

(
har (D5(x))

)
−

∑

x∈F�
2m

χ(T r
m
1 (x

−1) + har (D5(x))
)

.

Now, on one hand, we have (using the additive version of Hillbert 90)
∑

x∈F�
2m

χ
(

har (D5(x))
)

= 2m − 2wt(hr(D5(x))) − 1

= −2m − 1 + 2#{x ∈ F2m , T rm
1

(∑

r∈R

arDr ◦ D5(x)
)

= 0}

= −2m − 1 + 2#{x ∈ F2m , ∃t ∈ F2m ,
∑

r∈R

arDr ◦ D5(x) = t + t2}

= −2m − 1 + #H(2)
ar

.

32 S. Mesnager

On the other hand,
∑

x∈F�
2m

χ(T rm
1 (x−1) + har (x)

)
=

∑

x∈F�
2m

(
1 − 2(T rm

1 (x−1) + har (x))
)

=−2m + 1 + 2#{x ∈ F�
2m , ∃t ∈ F2m , x−1 +

∑

r∈R

arDr(x) = t + t2}

=−2m + 1 + 2#{x ∈ F
�
2m , ∃t ∈ F2m , x + x

2
∑

r∈R

arDr(x) = tx + t
2}

=−2m + 1 + #H̃(3)
ar

− #{P ∈ H̃(3)
ar

, x = 0} = −2m + #H̃(3)
ar

.

Collecting the calculations of the two sums, we obtain:

∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (D5(x))
)

= 1
2

(
(2m − 1 + #H̃(2)

ar
) − (2m + #H̃(3)

ar
)
)

that is,

∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (D5(x))
)

=
1
2

(
− 1 + #H̃(2)

ar
− #H̃(3)

ar

)
. (9)

The result follows.
2. According to Theorem 2, the function f̃ar,1,c (resp. f̃ ′

ar,1) is semi-bent if and
only if,

2
∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (D5(x))
)

− 5
∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (x)
)

= 4.

We have already the expression of the sum
∑

x∈F2m ,T rm
1 (x−1)=1 χ

(
har (D5(x))

)

in terms of cardinalities of the curve H̃
(2)
ar and H̃

(3)
ar . It remains to express

the sum
∑

x∈F2m ,T rm
1 (x−1)=1 χ

(
har (x)

)
in terms of cardinal of hyperelliptic

curves. To this end, we proceed in the same way:

∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (x)
)

= 1
2

(∑

x∈F�
2m

χ
(

har (x)
)

−
∑

x∈F�
2m

χ(T rm
1 (x−1) + har (x)

)
.

Now, on one hand, we have

Semi-bent Functions with Multiple Trace Terms and Hyperelliptic Curves 33

∑

x∈F
�
2m

χ
(

har
(x)

)
= 2m − 2wt(hr (x)) − 1

= −2m − 1 + 2#{x ∈ F2m , T r
m
1

(∑

r∈R

arDr(x)
)

= 0}

= −2m − 1 + 2#{x ∈ F2m , ∃t ∈ F2m ,

∑

r∈R

arDr(x) = t + t
2} = −2m − 1 + #H

(1)
ar

.

On the other hand,
∑

x∈F�
2m

χ(T rm
1 (x−1) + har (x)

)
=

∑

x∈F�
2m

(
1 − 2(T rm

1 (x−1) + har (x))
)

= −2m + 1 + 2#{x ∈ F�
2m , T rm

1 (x−1 +
∑

r∈R

arDr(x) = 0}

= −2m + 1 + 2#{x ∈ F�
2m , ∃t ∈ F2m , x−1 +

∑

r∈R

arDr(x) = t + t2}

= −2m + 1 + 2#{x ∈ F
�
2m , ∃t ∈ F2m , x + x

2
∑

r∈R

arDr(x) = tx + t
2}

= −2m + 1 + #H(3)
ar

− #{P ∈ H̃(3)
ar

, x = 0} = −2m + #H(3)
ar

.

Collecting the calculations of the two sums, we obtain:

∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (x)
)

= 1
2

(
− 2m − 1 + #H(1)

ar
− (−2m + #H(3)

ar
)
)

∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (x)
)

= 1
2

(
− 1 + #H(1)

ar
− #H(3)

ar

)
(10)

Now, the function f̃ar,1,c (resp. f̃ ′
ar,1) is semi-bent if and only if,

2
∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (D5(x))
)

− 5
∑

x∈F�
2m ,T rm

1 (x−1)=1

χ
(

har (x)
)

= 4.

that is,
(

− 1 + #H̃(2)
ar

− #H̃(3)
ar

)
− 5

2

(
− 1 + #H(1)

ar
− #H(3)

ar

)
= 4.

The result follows. Assertions 3), 4) and 5) follow from Proposition 2, and
relations (9) and (10).

34 S. Mesnager

4.3 Advantage of the Reformulation and Experimental Results

Let the set R be fixed. Let rmax be the maximal index in R. One can assume that
rmax is odd for two reasons. The first reason is that rmax should be as small as
possible for efficiency reasons so the natural choice for the indices in a cyclotomic
coset will be the cost leaders which are odd numbers. The second reason is that
if rmax is supposed to be odd then the curves H

(1)
ar , H

(2)
ar , H

(3)
ar , H̃

(2)
ar and H̃

(3)
ar

are necessary Artin-Schreir curves. Theorem 1,Theorem 2 and Theorem 2 in [9]
show that there exist efficient algorithms to compute the cardinality of such
curves as long as rmax is supposed to be relatively small. The complexity of
point counting algorithms depends on the genera of the curves and so on the
degree of the polynomials involved to define them. Table 1 gives the degree of
the polynomials which define the curves H

(1)
ar , H

(2)
ar , H

(3)
ar , H̃

(2)
ar and H̃

(3)
ar as well

as the genus of each curve.

Table 1. Genus and degree of the curves

Curve degree of the polynomial defining the curve genus
H

(1)
ar rmax

rmax−1
2

H
(2)
ar 3rmax

3rmax−1
2

H
(3)
ar rmax + 2 rmax+1

2
H̃

(2)
ar 5rmax

5rmax−1
2

H̃
(3)
ar 5rmax + 2 5rmax+1

2

From [9], we deduce the following result which gives the complexity of the
semi-bentness test obtained thanks to Theorem 3 and Theorem 4.

Theorem 5. The notations are as in Proposition 1 and Proposition 2. Let
rmaxbe the maximal index in R. Then, the semi-bentness of far,b,c, f ′

ar,b, f̃ar,b′,c

and f̃ ′
ar,b′ can be checked in O(r7.376

max m2 + r3.376
max m2.667) bit operations and

O(r5
maxm2 + r3

maxm2.5) memory.

Therefore, if R is supposed to be fixed, then so are rmax and the genera of the
curves thus the complexity of the semi-bentness test (using the reformulation in
terms of cardinalities of hyperelliptic curves) is polynomial in m. Asymptotically,
this is much better than a straightforward application of semi-bentness where
the exponential sums on F2m are naively computed one term at a time. It should
be remarked that if no restriction is cast upon R, then the maximal index rmax

will obviously depend on m and will in fact grow. Nonetheless, fixing a set R,
that is, only looking for Boolean functions with a given polynomial form within
a large family, is customary in cryptographic applications. We have studied the
practical impact of the reformulations given by Theorem 3 and Theorem 4. More
precisely, we have performed several simulations with Magma V2-17-13 (for our
computations, we have chosen the sets R = {1} and R = {1, 3} of indices
and some couples of coefficients (a1, a3) randomly generated in F�

2m) and found

Semi-bent Functions with Multiple Trace Terms and Hyperelliptic Curves 35

that the practical difference between the two reformulations is non-negligible.
Indeed, the timings of computing exponential sums (leading to semi-bentness
test for functions of Class (1) and Class (2) with R = 1 (resp. R = {1, 3}) using
Proposition 1) is much longer than computing cardinalities of hyperelliptic curves
using Theorem 3).

Acknowledgement. The author thanks Jean-Pierre Flori for his interesting
discussion.

References

1. Canteaut, A., Carlet, C., Charpin, P., Fontaine, C.: On cryptographic properties
of the cosets of R(1,m). IEEE Transactions on Information Theory 47, 1494–1513
(2001)

2. Carlet, C., Mesnager, S.: On Semi-bent Boolean functions. IEEE Transactions on
Information Theory 58(5), 3287–3292 (2012)

3. Charpin, P., Pasalic, E., Tavernier, C.: On bent and semi-bent quadratic Boolean
functions. IEEE Transactions on Information Theory 51(12), 4286–4298 (2005)

4. Chee, S., Lee, S., Kim, K.: Semi-bent Functions. In: Safavi-Naini, R., Pieprzyk,
J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 107–118. Springer, Heidelberg
(1995)

5. Cheon, J.H., Chee, S.: Elliptic Curves and Resilient Functions. In: Won, D. (ed.)
ICISC 2000. LNCS, vol. 2015, pp. 64–397. Springer, Heidelberg (2000)

6. Dobbertin, H., Leander, G., Canteaut, A., Carlet, C., Felke, P., Gaborit, P.: Con-
struction of bent functions via Niho Power Functions. Journal of Combinatorial
therory, Serie A 113, 779–798 (2006)

7. Enge, A.: How to distinguish hyperelliptic curves in even characteristic. In: Public-
Key Cryptography and Computational Number Theory. de Gruyter Proceedings
in Mathematics. DE GRUYTER (2011)

8. Flori, J., Mesnager, S.: An efficient characterization of a family of hyperbent func-
tions with multiple trace terms (in preprint)

9. Hubrechts, H.: Point counting in families of hyperelliptic curves in characteristic 2.
LMS J. Comput. Math. 10, 207–234 (2007)

10. Lisoněk, P.: An efficient characterization of a family of hyperbent functions. IEEE
Transactions on Information Theory 57, 6010–6014 (2011)

11. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

12. Meier, W., Staffelbach, O.: Fast Correlation Attacks on Stream Ciphers. In: Gün-
ther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 301–314. Springer, Hei-
delberg (1988)

13. Mesnager, S.: Hyper-bent Boolean Functions with Multiple Trace Terms. In: Hasan,
M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 97–113. Springer,
Heidelberg (2010)

14. Mesnager, S.: A new class of bent and hyper-bent Boolean functions in polynomial
forms. Des. Codes Cryptography 59, 265–279 (2011)

15. Mesnager, S.: Semi-bent functions from Dillon and Niho exponents, Kloosterman
sums and Dickson polynomials. IEEE Transactions on Information Theory 57(11),
7443–7458 (2011)

36 S. Mesnager

16. Rothaus, O.S.: On "bent" functions. J. Combin.Theory Ser. A 20, 300–305 (1976)
17. Sun, G., Wu, C.: Construction of Semi-Bent Boolean Functions in Even Number

of Variables. Chinese Journal of Electronics 18(2) (2009)
18. Vercauteren, F.: Computing zeta functions of curves over finite fields. PhD thesis,

Katholieke Universiteit Leuven (2003)
19. Wang, B., Tang, C., Qi, Y., Yang, Y., Xu, M.: A New Class of Hyper-bent

Boolean Functions with Multiple Trace Terms. In: Cryptology ePrint Archive, Re-
port 2011/600 (2011), http://eprint.iacr.org/

20. Zheng, Y., Zhang, X.-M.: Plateaued Functions. In: Varadharajan, V., Mu, Y. (eds.)
ICICS 1999. LNCS, vol. 1726, pp. 284–300. Springer, Heidelberg (1999)

http://eprint.iacr.org/

Complete Atomic Blocks for Elliptic Curves

in Jacobian Coordinates over Prime Fields

Rodrigo Abarzúa1,� and Nicolas Thériault2,��

1 Institute of Computing, University of Campinas,
Av. Albert Einstein 1251, Campinas, Brazil

rabarzua@ic.unicamp.br
2 Departamento de Matemática, Universidad del B́ıo-B́ıo,

Avda. Collao 1202, Concepción, Chile
ntheriau@ubiobio.cl

Abstract. In this paper we improve the safety aspects of previously
published atomic blocks. We build new sets of atomic blocks designed
to protect against both simple side-channel attacks and C-safe fault
attacks for scalar multiplication for elliptic curves over prime fields.
These atomic blocks are structured with the sequence of field opera-
tions (S,N,A,A,M,A), Squaring, Negation, Addition, Addition, Multi-
plication, Addition. We apply these atomic blocks to various operations
in Jacobian coordinates: doubling, tripling, and quintupling, as well as
mixed Jacobian-affine addition. We also give formulae for the general
Jacobian addition for use in right-to-left scalar multiplication. Finally,
we show how these techniques can be used to unify the Jacobian dou-
bling formula with mixed Jacobian-affine addition, so they use the same
number of atomic blocks.

Like previous atomic blocks formulae, our group operations provide
protection against simple side channel attacks by dividing the group op-
erations into smaller sequences of field operations. One of the main dif-
ferences with our formulae resides in their security against C-safe fault
attacks. Unlike previous works, our formulae are designed to completely
fill the atomic blocks with field operations that affect the final output
(i.e. we avoid “dummy” operations) and are all distinct (none of the op-
erations are repeated). They also have the added bonus of being slightly
more “compact” than most previous atomic blocks, having fewer ad-
ditions/negations for each multiplication/squaring, potentially giving a
performance gain.

Keywords: Elliptic curve, side-channel attack, C-safe fault attack, atomic
blocks.

� This research was funded by the Postdoctoral Fellowship Conicyt # 74110013.
�� Research for this paper was supported in parts by FONDECYT (Chile) grant #

1110578 and by the Anillo project ACT 56 (CONICYT, Chile).

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 37–55, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

38 R. Abarzúa and N. Thériault

1 Introduction

Elliptic Curves Cryptography (ECC) is a public-key cryptosystem proposed by
Neal Koblitz [35] and Victor Miller [42] in 1985 which provides significant ad-
vantages in several situations, including implementations on specialized micro-
processors. For example, some industry standards require 1024-bits for the size
of integers in the RSA system, whereas the equivalent requirement for ECC is to
work with finite fields of 160-bits. Given the restrictions on embedded micropro-
cessors (used in mobile devices), the ECC system is an interesting option obtain
the required security.

Side-channel attacks exploit physical leakages of a cryptographic process on
a device (using timing [36], power consumption [37] and electromagnetic radi-
ation [46,24]). These attacks present a realistic threat to cryptographic appli-
cations, and have been demonstrated to be very effective against smart cards
without proper countermeasures. There are two general strategies to these at-
tacks: Simple Side-channel Analysis (SSCA) [36] which analyses the measure-
ments of a single scalar multiplication, observing the differences in behavior of
the scalar multiplication depending on the value of the secret key; and Dif-
ferential Side-channel Analysis (DSCA) [37], which uses statistical techniques
to retrieve information about the secret key based on the measurements from
several scalar multiplications. In this paper we will focus mostly on SSCA.

Several proposals have been made to protect scalar multiplication against
these attacks. For example, the double-and-add-always algorithm of Coron [20]
ensures the sequence of operations to compute a scalar multiplication is inde-
pendent of the value of the secret scalar by inserting a dummy point additions
between consecutive doublings (when the bit of the scalar is 0). A second coun-
termeasure is to use unified formula which use similar sets of field operations
for both the general group additions and doublings. Such formulae exist for Ed-
wards curves [22], inverted Edwards curves [6], curves in the Huff model [33],
Hessian curves [48], Jacobi curves [38,10], Weierstrass elliptic curves [11] (more
details can be found in the database of special elliptic curves [7]). Another pos-
sible countermeasure is the Montgomery ladder [45] designed for a special type
of curves in large characteristic. As for the double-and-add-always algorithm, it
makes sure that every bit of the scalar corresponds to both a doubling and an
addition, but with the supplementary condition that both operations have an im-
pact on the final output of the scalar multiplication. This was later generalized to
all elliptic curves [41,11,28], and right-to-left scalar multiplication [34]. A fourth
approach consists in using “regular” representations of the scalar [44,49,31], with
the same fixed sequence of group operations for all scalars. Finally, Side-Channel
Atomicity (first proposed by Chevallier-Mames et al. [16]) splits point operations
into small homogeneous blocks of basic field operations. If it is carefully imple-
mented, it becomes impossible to distinguish between atomic blocks that come
from doublings or additions. Atomic blocks are potentially the most efficient
SSCA countermeasure.

This paper is organized as follows. In the next section, we present state of
the art for atomic blocks, a brief background on elliptic curves and the rescaling

Complete Atomic Blocks for Elliptic Curves 39

methodology is presented in Section 3. Our techniques to secure atomic blocks
against both SSCA and C-safe-fault attacks are presented in Section 4.1 and
applied in Sections 4.2, 4.3 and 4.4. Finally, we compare the efficiency of our
atomic blocks formulae to previous ones in Section 5.

2 State of the Art for Atomic Blocks

Atomic blocks formulae are a very promising method to secure scalar multi-
plication against SSCA. The idea was first introduced by Chevallier-Mames et
al. [16] and consists in partitioning point operations into small homogeneous
sequences of operations (atomic blocks) in such a way that the increase in cost
when comparing against optimized formulae (without side-channel protection) is
minimal in terms of operation counts, which cannot be distinguished from each
other through SSCA, thus making it impossible for the attacker to know which
block is part of a group doubling or addition. Any field operation of an atomic
block that was not used by the formula would be filled with dummy operations
(so no missing operation would be identified by a SSCA). Atomic block formula
can the provide the desired security at a much lower price than other SSCA
countermeasures.

Chen et al. in [15], presented an experimental attack on a smart card using an
implementation of the atomic blocks proposed by Chevallier-Mames et al. [16].
This experimental attack utilized the different number of atomic blocks for group
doublings and additions – for total operation times of 3.16ms and 3.61ms re-
spectively – and a delay of 1.12ms for breaks between group operations. This
experimental attacks was applied because the implementation does not avoid
irregular breaks between atomic blocks within the same group operation and
distinct group operations. Chen et al. proposed to balance the point doubling
with respect to a group addition. A preferred option is to require a better man-
agement of the delays between atomic blocks, thus allowing for formulae with
different numbers of blocks.

The original atomic block of Chevallier-Mames et al. had a structure of
(M,A,N,A) (Multiplication-Addition-Negation-Addition) operations over the
prime field. This atomic block made one important assumption: that multiplica-
tion and squaring are indistinguishable from a side-channel perspective. This was
disproved by Amiel et al. [1] and Hanley et al. [30]. Since the Hamming weight for
the results of a field multiplication and a squaring have different distributions,
and the Hamming weight affects the side-channel traces. It is possible to use
this difference to distinguish between blocks containing a general multiplication
from those containing a squaring operation, re-opening the way to SSCA. As a
consequence, atomic blocks had to consider distinct squaring and multiplication
in their structure.

This distinction can also have some efficiency benefits since specialized squar-
ings are less expensive than multiplication (at a ratio close to 0.8 in software
practice [26]). To adapt existing formulae to various atomic block structures,
the flexible methodology introduced by Longa and Miri [40], and Bernstein and

40 R. Abarzúa and N. Thériault

Lange [9] proves very useful. It permits the modification of point operations
formulae to balance the number of squarings and multiplications, and thus fa-
cilitates the introduction of squarings into atomic blocks.

Longa and Miri presented a new atomic block structure based on the sequence
Squaring-Negation-Addition-Multiplication-Negation-Addition-Addition of field
operations – or (S,N,A,M,N,A,A). They applied their atomic block struc-
ture to doubling, tripling and mixed addition for elliptic curves in Jacobian
coordinates. Giraud and Verneuil [26] presented a different atomic block struc-
ture for general Jacobian Addition and Modified Jacobian Doubling geared
for right-to-left scalar multiplication, and in particular a scalar multiplication
algorithm of Joye [32]. Their atomic blocks use the sequence of operations
(S,A,M,A,M,A,M,A,A, S,M,A,A,M,A,A,M,A). It should be noted that
these atomic blocks formulae make use of dummy operations at one point or
another – at the very least to fill up some of the additions and/or negations.

The Jacobian coordinates formulae of Longa and Miri [40] for left-to-right
scalar multiplication and those of Giraud and Verneuil [26] for right-to-left scalar
multiplication can be considered the current best in atomic blocks formulae.

Atomic blocks previously presented by the scientific community make use of
false operations (additions and negations in the field). Since these operations
have a computational cost (time, power consumption, etc.), which may be iden-
tified through a side-channel attacks.

As in the work of Yen [52], an attacker can inject a fault at specific times
in the computation to see if certain operations are dummy or true, changing
the value obtained during a specific field operation. If this was a false (dummy)
operation, the changed output will not have an impact on the end-result of
the scalar multiplication. On the other hand, if the operation is true, the fault
impact on the final result of the scalar multiplication, producing an error. The
valid/invalid output of the scalar multiplication can then be used to determine
if the chosen field operation was dummy or true, and hence identify the group
operation (addition, doubling, etc.) in use at that point of the computation.
Through a relatively small number of such processes, an attacker can work out
the secret key used, implying that the blocks previously presented ([16,40,26])
are not effective countermeasures to SSCA as they leave a weakness to C-safe
fault attacks.

As a result, it is recommended to avoid using dummy operations in the for-
mulae [4]. These attacks can be considered more closely related to DSCA than
SSCA (although they are mathematically more simple than other DSCA), but
they require far fewer observations than most other DSCA. Securing the atomic
blocks formulae against C-safe fault attacks is the issue we address in our paper.

3 Mathematical Background

For a detailed description of elliptic curves, we refer the reader to [2].
An elliptic curve E defined over a large prime field Fp is given by an equation

of the form y2 = x3+ax+b, with 4a3+27b2 �= 0. The group used for cryptography

Complete Atomic Blocks for Elliptic Curves 41

consists of the (affine) points (x, y) on the curve and the point at infinity P∞ (the
neutral element), with the “chord-and-tangent” addition. The group operation
for (x1, y1) + (x2, y2) is given by

(x3, y3) =
(
λ2 − x1 − x2, λ(x1 − x3)− y1

)
, where

λ =

⎧⎪⎪⎨⎪⎪⎩
y1 − y2
x1 − x2

if x1 �= x2, [addition operation]

3x2
1 + a

2y1
if (x1, y1) = (x2, y2). [doubling operation]

and (x1, y1) + (x1,−y1) = P∞.
To an elliptic curve E defined by an equation of the form E : y2 = x3− 3x+ b

over a prime field Fp, we associate the Jacobian projective curve E1 : Y 2 =
X3 − 3Z4X + bZ6.

The (projective) points on E1 are divided into classes by the equivalence
relation:

(X1, Y1, Z1) ≡ (X2, Y2, Z2) ⇐⇒ ∃λ ∈ F
∗
p s.t. (X2, Y2, Z2) = (λ2X1, λ

3Y1, λZ1). (1)

We denote (X : Y : Z) the equivalence class containing the point (X,Y, Z).
Note that every equivalence class with Z �= 0 contains exactly one point of the
form, (x, y, 1) which corresponds to an (affine) point (x, y) on curve E (and vice
versa). The (unique) equivalence class with Z = 0 is of the form (ρ3 : ρ2 : 0)
(with ρ ∈ F∗

p) and corresponds to the point at infinity P∞ of E.

Rescaling Methodology. The “rescaling” methodology presented by Longa
and Miri [40] and Bernstein and Lange [9] takes advantage of the projective
form of the point coordinates. The principal idea consists in taking a field mul-
tiplication αβ, and replacing it with a number of field squarings, additions and
negations, via the equation

2αβ = (α + β)2 − α2 − β2. (2)

If we set λ = 2 in the class description (1), we easily see how factors of 2
can be incorporated into all of the coordinates (in our case, of the output of
the computation). We can then replace the computation by (2) adjusting the
remaining computations accordingly.

The technique presented in [40,9] can be summarized in two steps:

1. Replace one (or more) of the field multiplications by applying the algebraic
substitution given in Equation (2).

2. Modify the point formula by inserting multiples of 2 in the point represen-
tation, using the equivalence (X : Y : Z) ≡ (22X : 23Y : 2Z).

4 Atomic Blocks and C-Safe Attacks

As stated in the introduction, previously published atomic blocks formulae for
elliptic curves defined over prime fields are open to C-safe fault attacks. Although

42 R. Abarzúa and N. Thériault

most equilibrated formulae do fill out all the multiplications and squarings with
non-dummy operations, no such care is taken for field additions and negations.

Experimental data on various smart cards [26] give an addition-to-
multiplication ratio close to 0.2 and a negation-to-multiplication ratio of 0.1.
Even though the timings for these operations is much less than for multipli-
cations and squarings (the squaring-to-multiplication ratio is usually close to
0.8), it would still be reasonable to mount a C-safe fault attack on dummy field
additions and negations.

To address this weakness, we constructed new group operations formulae for
point doublings, triplings and quintuplings in Jacobian coordinates as well as
general Jacobian and mixed Jacobian-affine addition formulae.

4.1 Generating Complete Atomic Blocks

The only way to really avoid C-safe fault attacks is to ensure that every field
operation of every atomic block is used in the computation of the final result.
Note that it would not be sufficient to repeat the same operation more than once
in the formula (using each result at least once), since the repeated operations
would leave an essentially identical side-channel signature, thus re-opening the
way to SSCA. We must therefore fill all the field operations of every atomic
block, but always with different operands.

We used the following method to design our atomic blocks:

1. From the existing formulae, we determined that the most favorable form
for the atomic blocks would be with 1S + 1M (since most formulae were
close to equilibrated), with the squaring before the multiplication (due to
the importance of squarings early in the formulae).

2. We equilibrated the number of squarings and multiplications in the formula
using the technique of Longa and Miri [40] and Bernstein and Lange [9].

3. We drew a directed graph of the dependencies in the squarings and multi-
plications (ignoring the field additions and negations), and tried to create
ordered pairs (Si,Mi) (one squaring followed by one multiplication) that
allow us to go through the graph using each operation only once.

4. Starting with the ordered pairs (Si,Mi), we looked for the minimal numbers
of field additions and negations required to include the whole formula, and
tried to determine their respective position (taking special care of the first
and last blocks since those tend to be the least flexible of the formula). This
process led us to (S,N,A,A,M,A) blocks and a first version of the atomic
block formulae, but not necessarily secured against C-safe fault attacks.

5. With used simple algebraic identities to fill all the “holes” in the formulae,
for example: computing 3a as 2a+ a or 2(2a)− a, computing 4a as 2(2a) or
2a + a + a, careful positioning of the negations (multiplications by −1). A
special case of such identities will be discussed in Section 4.2.

In the following subsections, we will present the resulting atomic blocks which
provide protection against both simple side-channel attacks and C-safe fault
attacks.

Complete Atomic Blocks for Elliptic Curves 43

4.2 Case 1: Left-to-right and Multi-Basis Scalar Multiplications

In this first case, we designed atomic blocks formulae in Jacobian coordinates
both for “standard” left-to-right double-and-add scalar multiplications (which
may use a simple binary representation, a NAF, w-NAF, etc.) as well as some
multi-base scalar multiplications. The two basic operations are therefore the
doubling and mixed addition (where the pre-computed points are kept in affine
coordinates), which can be complemented with tripling (for double-base expan-
sions [21]) and quintupling (for triple-base expansions [43]).

The following table compares the cost of the atomic blocks presented in [40] to
those we obtained. It should be noticed that as well as giving protection against
C-safe fault attacks, our atomic blocks are slightly more compact than those of
Longa and Miri.

Operations Previous work [40] This work

Doubling 4M + 4S + 16A + 8N 4M + 4S + 12A + 4N

Mixed Addition 6M + 6S + 24A + 12N 6M + 6S + 18A + 6N

Tripling 8M + 8S + 32A + 16N 8M + 8S + 24A + 8N

Quintupling —————————— 12M + 12S + 36A + 12N

Point Doubling in Jacobian Coordinates. Let P = (X1 : Y1 : Z1) be a
point in Jacobian coordinates on the elliptic curve E. The most efficient dou-
bling formula (with the output also in Jacobian coordinates) requires 4M + 4S.
In terms of multiplications and squarings, there is little change from previous
formulae, but we re-organize the additions and negations to fill all the operations
in the atomic blocks.

α = 3(X1 + Z2
1)(X1 − Z2

1), −β = (−2X1)(2Y 2
1),

Z3 = 2(Y1Z1), X3 = α2 − 2β,

Y3 = (−α)(X3 − β) + 2
[
−(2Y 2

1)2
]
.

The resulting atomic blocks can be found in Tables 1, taking as input R1 ← X1,
R2 ← Y1, and R3 ← Z1, and returning as output X3 ← R1, Y3 ← R2, and
Z3 ← R3.

Mixed Addition in Jacobian-Affine Coordinates. Given the points P =
(X1 : Y1 : Z1), in Jacobian coordinates, and Q = (X2, Y2), in affine coordinates,
both on the elliptic curve E. The most efficient formulae for the mixed addition
P +Q = (X3 : Y3 : Z3) require 8M + 3S. To obtain a formula practical for block
atomicity, we replace two multiplications with squarings, three of which are new,
to get 6M + 6S:

α = 2(Z2
1Z1Y2)− 2Y1, β = Z2

1X2 −X1,

2β3 = (β2 + β)2 − (β4 + β2), X3 = α2 + 2(−4X1)β2 − 4β3,

Z3 = (Z1 + β)2 − (Z2
1 + β2), Y3 = (−α)

[
(−4X1β

2) + X3

]
+ (2Y1)(−4β3).

44 R. Abarzúa and N. Thériault

Table 1. Atomic block formula for Jacobian doubling

Sec Block 1 Block 2 Block 3 Block 4

S R4 ← R2
3 R6 ← R2

2 R4 ← R2
1 R8 ← R2

7

[Z2
1] [Y 2

1] [α2] [4Y 4
1]

N R5 ← −R4 R7 ← −R1 R5 ← −R1 R2 ← −R8

[−Z2
1] [−X1] [−α] [−4Y 4

1]

A R6 ← R1 + R4 R1 ← R7 + R7 R8 ← R6 + R6 R8 ← R1 + R6

[X1 + Z2
1] [−2X1] [−2β] [X3 − β]

A R4 ← R1 + R5 R7 ← R6 + R6 R1 ← R4 + R8 R4 ← R2 + R2

[X1 − Z2
1] [2Y 2

1] [X3 = α2 − 2β] [−8Y 4
1]

M R5 ← R6R4 R6 ← R1R7 R4 ← R2R3 R6 ← R5R8

[X2
1 − Z4

1] [−β] [Y1Z1] [−α(X3 − β)]

A R4 ← R5 + R5 R1 ← R5 + R4 R3 ← R4 + R4 R2 ← R6 + R4

[2(X2
1 − Z4

1)] [α] [Z3 = 2Y1Z1] [Y3]

Note that the atomic blocks formulae in [40] assumed that −Y 2
2 had been

precomputed – a reasonable assumption, but one that we do not need here, thus
saving some memory and a few precomputations (for the scalar multiplication
as a whole).

The resulting atomic blocks can be found in Table 2 with inputs R1 ← X1,
R2 ← Y1, R3 ← Z1, R4 ← X2, and R5 ← Y2, and returning as output X3 ← R1,
Y3 ← R2, and Z3 ← R3.

Point Tripling in Jacobian Coordinates. Before presenting our new atomic
block tripling formula, we must make an important remark on the tripling for-
mula of Longa and Miri [40]. Although their formula is more efficient than the
one we will present here, it contains a serious weakness in terms of fault attacks.
Their formulae requires 7M + 7S, but unfortunately this formula cannot be fit-
ted into 7 atomic blocks. When applying the formula to atomic blocks, an eighth
block is required, and the first block does not use the multiplication while the
eighth does not use the squaring. If two triplings are performed consecutively,
the last block of the first one can be merged with the first block of the second
one, so in a sequence of triplings only the first one really costs 8 blocks, all the
other ones needing no more than 7 blocks. But even in a sequence of triplings,
both the initial and final blocks will contain dummy operations.

Since our goal is to avoid fault attacks, we went back to the formula of Dim-
itrov, Imbert and Mishra [21], which had a cost of 9M + 7S.

Let P = (X1 : Y1 : Z1) be a point on the elliptic curve E. To obtain our
atomic blocks, we transform one multiplication into a squaring, giving 8M +8S:

Complete Atomic Blocks for Elliptic Curves 45

Table 2. Atomic block formula for mixed Jacobian-affine addition

Sec Block 1 Block 2 Block 3

S R6 ← R2
3 R4 ← R2

1 R8 ← R2
4

[Z2
1] [β2] [β4]

N R1 ← −R1 R9 ← −R2 R10 ← −R10

[−X1] [−2Y1] [−(Z2
1 + β2)]

A R2 ← R2 + R2 R10 ← R6 + R4 R12 ← R4 + R1

[2Y1] [Z2
1 + β2] [β2 + β]

A R8 ← R1 + R1 R11 ← R3 + R1 R1 ← R8 + R4

[−2X1] [Z1 + β] [β4 + β2]

M R4 ← R6R4 R6 ← R6R3 R6 ← R6R5

[Z2
1X2] [Z3

1] [Z3
1Y2]

A R1 ← R4 + R1 R3 ← R8 + R8 R9 ← R6 + R9

[β] [−4X1] [Z3
1Y2 − 2Y1]

Sec Block 4 Block 5 Block 6

S R8 ← R2
12 R4 ← R2

9 R3 ← R2
11

[(β2 + β)2] [α2] [(Z1 + β)2]

N R1 ← −R1 R1 ← −R1 R2 ← −R9

[−(β4 + β2)] [−2β3] [−α]

A R1 ← R8 + R1 R8 ← R1 + R1 R7 ← R6 + R1

[2β3] [−4β3] [−4X1β
2 + X3]

A R9 ← R9 + R6 R3 ← R4 + R3 R3 ← R3 + R10

[α] [α2 − 8X1β
2] [Z3]

M R6 ← R3R4 R4 ← R2R8 R8 ← R2R7

[−4X1β
2] [−8Y1β

3] [−α(−4X1β
2 + X3)]

A R3 ← R6 + R6 R1 ← R3 + R8 R2 ← R8 + R4

[−8X1β
2] [X3] [Y3]

2β =
[
(2Y1)2

]2
, θ = 3(X2

1 − Z4
1) = 3(X1 + Z2

1)(X1 − Z2
1),

ω = 3X1(4Y 2
1)− θ2, 4X1ω

2 = (2X1 + ω2)2 − (2X1)2 − (ω2)2,

2α = 2θω, ρ = (2α− 2β)(4β − 2α),

Z3 = (2Z1)ω, Y3 = 2(−4Y1)
[
ω2ω − ρ

]
,

X3 = 4(4Y 2
1)(2β − 2α) + (4X1ω

2).

The resulting atomic blocks can be found in Table 3, taking as input R1 ← X1,
R2 ← Y1, and R3 ← Z1, and returning as output X3 ← R1, Y3 ← R2, and
Z3 ← R3.

Point Quintupling in Jacobian Coordinates. Let P = (X1 : Y1 : Z1)
be a point on the elliptic curve E. The formula of Mishra and Dimitrov [43]
requires 15M + 18S. This formula was improved by Longa and Miri [39] to a
balanced 11M+11S but these field operations cannot be fitted into a sequences of
(Si,Mi) pairs. To obtain atomic blocks, we re-balance the formula to 12M +12S

46 R. Abarzúa and N. Thériault

Table 3. Atomic block formula for Jacobian tripling

Sec Block 1 Block 2 Block 3 Block 4

S R4 ← R2
3 R5 ← R2

5 R7 ← R2
4 R7 ← R2

5

[Z2
1] [(2Y1)2] [θ2] [2β]

N R5 ← −R4 R2 ← −R2 R7 ← −R7 R4 ← −R4

[−Z2
1] [−Y1] [−θ2] [−2α]

A R4 ← R1 + R4 R6 ← R4 + R4 R6 ← R9 + R6 R4 ← R7 + R4

[X1 + Z2
1] [2(X2

1 − Z4
1] [12X1Y

2
1] [2β − 2α]

A R5 ← R1 + R5 R4 ← R6 + R4 R6 ← R6 + R7 R7 ← R4 + R7

[X1 − Z2
1] [θ] [ω] [4β − 2α]

M R4 ← R4R5 R6 ← R1R5 R7 ← R6R4 R5 ← R5R4

[X2
1 − Z4

1] [4X1Y
2
1] [ωθ] [4Y 2

1 (2β − 2α)]

A R5 ← R2 + R2 R9 ← R6 + R6 R4 ← R7 + R7 R5 ← R5 + R5

[2Y1] [8X1Y
2
1] [2α] [8Y 2

1 (2β − 2α)]

Sec Block 5 Block 6 Block 7 Block 8

S R8 ← R2
6 R10 ← R2

8 R1 ← R2
1 R7 ← R2

3

[ω2] [ω4] [4X2
1] [(2X1 + ω2)2]

N R4 ← −R4 R10 ← −R10 R4 ← −R4 R8 ← −R1

[2α− 2β] [−ω4] [−ρ] [−4X2
1]

A R5 ← R5 + R5 R1 ← R1 + R1 R8 ← R8 + R4 R1 ← R8 + R10

[16Y 2
1 (2β − 2α)] [2X1] [ω3 − ρ] [−4X2

1 − ω4]

A R9 ← R3 + R3 R3 ← R1 + R8 R7 ← R7 + R2 R4 ← R7 + R1

[2Z1] [2X1 + ω2] [−4Y1] [4X1ω
2]

M R4 ← R4R7 R8 ← R8R6 R4 ← R7R8 R3 ← R9R6

[ρ] [ω3] [−4Y1R8] [Z3]

A R7 ← R2 + R2 R7 ← R7 + R2 R2 ← R4 + R4 R1 ← R5 + R4

[−2Y1] [−3Y1] [Y3] [X3]

(slightly less efficient, but possible to fit into 12 atomic blocks). To fill all the
spaces for field additions, we take advantage of the following substitution −E2 =
M2 + 2ME − (M + E)2, where M2 and ME are required in other parts of
the computations, so the new computation will still give −E2 with a different
squaring, but using more additions. We obtain the following formula:

2T =
[
(2Y1)2

]2
, M = 3(X1 + Z2

1)(X1 − Z2
1),

E = 3X1(4Y 2
1) + (−M2), 2L = 2ME − 2T,

−E2 = M2 + 2ME − (M + E)2, 16L4 =
[
(2L)2

]2
,

2U = (2Y1 + 2L)2 − (2Y1)2 − (2L)2, V = (2T)(2L) + E(−E2),

N = V − (2L)2, 2W = 2EN = (E + N)2 − E2 −N2,

S = V 2 + 16L4 − 3V (4L2), Z5 = (Z1 + V)2 − Z2
1 − V 2,

Y5 = 2(2Y1)
[
2(−E3)S + 2

[
− (2T)(2L)(16L4)

]]
, X5 = 4X1V

2 − (2Y1)(2U)(2W).

Complete Atomic Blocks for Elliptic Curves 47

Table 4. Atomic block formula for Jacobian quintupling (operations and registers)

Sec Block 1 Block 2 Block 3 Block 4

S R4 ← R2
3 R6 ← R2

2 R10 ← R2
8 R4 ← R2

6

N R5 ← −R4 R7 ← −R6 R11 ← −R10 R6 ← −R4

A R6 ← R1 + R4 R8 ← R4 + R4 R9 ← R9 + R4 R14 ← R11 + R6

A R4 ← R1 + R5 R8 ← R4 + R8 R9 ← R9 + R11 R8 ← R9 + R8

M R4 ← R6R4 R4 ← R1R6 R4 ← R8R9 R6 ← R4R14

A R2 ← R2 + R2 R9 ← R4 + R4 R11 ← R4 + R4 R4 ← R11 + R10

Sec Block 5 Block 6 Block 7 Block 8

S R10 ← R2
8 R12 ← R2

4 R14 ← R2
14 R11 ← R2

11

N R11 ← −R10 R15 ← −R12 R3 ← −R14 R15 ← −R15

A R8 ← R4 + R11 R5 ← R15 + R5 R7 ← R3 + R7 R11 ← R11 + R7

A R11 ← R2 + R14 R13 ← R3 + R4 R3 ← R4 + R3 R7 ← R9 + R3

M R10 ← R9R8 R3 ← R1R15 R4 ← R4R14 R11 ← R2R11

A R4 ← R6 + R10 R1 ← R3 + R3 R15 ← R4 + R4 R9 ← R15 + R15

Sec Block 9 Block 10 Block 11 Block 12

S R15 ← R2
14 R4 ← R2

7 R10 ← R2
3 R7 ← R2

13

N R1 ← −R1 R14 ← −R12 R1 ← −R10 R6 ← −R11

A R14 ← R12 + R15 R15 ← R14 + R14 R9 ← R8 + R1 R3 ← R7 + R5

A R4 ← R9 + R4 R14 ← R1 + R1 R7 ← R12 + R15 R12 ← R4 + R9

M R12 ← R6R15 R9 ← R10R6 R7 ← R2R7 R12 ← R6R12

A R6 ← R14 + R4 R12 ← R9 + R9 R2 ← R7 + R7 R1 ← R14 + R12

The resulting atomic blocks can be found in Table 4 (for formating reasons,
the equivalences for each register are given in Table 5). The formula takes as
input R1 ← X1, R2 ← Y1, and R3 ← Z1, and returns as output X3 ← R1,
Y3 ← R2, and Z3 ← R3.

4.3 Case 2: Right-to-left Scalar Multiplication

We now consider atomic blocks formulae designed for right-to-left scalar multipli-
cations based on Yao’s algorithm [51,5,32]. These scalar multiplications have the
advantage of avoiding the Doubling attack of Fouque and Valette [23]. The first
atomic formulae designed for this context are due to Giraud and Verneuil [26].
The two basic operations for these scalar multiplications are the doubling and
addition (with inputs in Jacobian coordinates). In optimal (side-channel un-
safe) implementations, Modified Jacobian coordinates offer a performance gain
on Jacobian coordinates, but this gain is lost with atomic blocks formulae, as
the number of blocks for doublings is the same. All the operations can then be
performed in Jacobian coordinates. We give the Modified Jacobian doubling in
Appendix A but recommend using the doubling formula in Table 1.

The following table compares the cost of the atomic blocks presented in [26]
with those we obtained. Note that the structure of the atomic blocks is quite
different, but the main difference here comes from the added security against
C-safe attacks.

48 R. Abarzúa and N. Thériault

Table 5. Atomic block formula for Jacobian quintupling (equivalences)

Sec Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

S [Z2
1] [4Y 2

1] [M2] [2T] [(E + M)2] [V 2]

N [−Z2
1] [−4Y 2

1] [−M2] [−2T] [−(E + M)2] [−V 2]

A [X1 + Z2
1] [2(X2

1 − Z4
1)] [3X1(2Y1)

2] [2L] [−E2] [−V 2 − Z2
1]

A [X1 − Z2
1] [M] [E] [E + M] [2Y1 + 2L] [Z1 + V]

M [X2
1 − Z4

1] [4X1Y
2
1] [ME] [4TL] [−E3] [−X1V

2]

A [2Y1] [8X1Y
2
1] [2ME] [2ME + M2] [V] [−2X1V

2]

Sec Block 7 Block 8 Block 9 Block 10 Block 11 Block 12

S [4L2] [4(Y1 + L)2] [16L4] [(E + N)2] [N2] [(Z1 + V)2]

N [−4L2] [−8V L2] [2X1V
2] [−64TL5] [−N2] [−4Y1U]

A [−4L2 − 4Y 2
1] [2U] [V 2 + 16L4] [−128TL5] [−E2 − N2] [Z5]

A [N] [E + N] [−12V L2] [4X1V
2] [Y5/4Y1] [2W]

M [4V L2] [4Y1U] [64TL5] [−E3S] [Y5/2] [−8Y1UW]

A [8V L2] [−16V L2] [S] [−2E3S] [Y5] [X5]

Operations Previous work [26] This work

(Modified) Jacobian Doubling 6M + 2S + 10A + 4N 4M + 4S + 12A + 4N

General Jacobian Addition 12M + 4S + 20A + 6N 9M + 9S + 27A + 9N

Table 6. Atomic block formula for general Jacobian addition (operations and registers)

Sec Block 1 Block 2 Block 3

S R7 ← R2
3 R3 ← R2

6 R13 ← R2
11

N R8 ← −R7 R12 ← −R3 R2 ← −R2

A R9 ← R7 + R3 R6 ← R3 + R6 R14 ← R13 + R13

A R10 ← R2 + R2 R2 ← R10 + R2 R15 ← R11 + R11

M R11 ← R4R7 R1 ← R1R12 R14 ← R14R15

A R4 ← R3 + R6 R11 ← R11 + R1 R15 ← R8 + R12

Sec Block 4 Block 5 Block 6

S R3 ← R2
3 R6 ← R2

6 R2 ← R2
7

N R3 ← −R3 R11 ← −R11 R2 ← −R2

A R3 ← R3 + R12 R16 ← R6 + R3 R16 ← R2 + R8

A R2 ← R2 + R10 R12 ← R10 + R10 R8 ← R6 + R1

M R1 ← R1R13 R3 ← R2R16 R7 ← R3R14

A R10 ← R1 + R1 R6 ← R12 + R10 R2 ← R8 + R1

Sec Block 7 Block 8 Block 9

S R8 ← R2
9 R16 ← R2

4 R16 ← R2
9

N R1 ← −R14 R5 ← −R9 R3 ← −R13

A R14 ← R8 + R16 R14 ← R2 + R12 R1 ← R16 + R10

A R10 ← R1 + R2 R4 ← R16 + R15 R12 ← R16 + R4

M R6 ← R5R14 R13 ← R11R4 R14 ← R5R12

A R9 ← R6 + R3 R4 ← R1 + R14 R2 ← R14 + R7

Complete Atomic Blocks for Elliptic Curves 49

General Addition in Jacobian Coordinates. Given the points P = (X1 :
Y1 : Z1) and Q = (X2 : Y2 : Z2) in Jacobian coordinates, both on the elliptic
curve E. The most efficient formulae for the addition P + Q = (X3 : Y3 : Z3)
require 11M + 5S.

To obtain a formula practical for block atomicity, we replace 3 multiplications
with 5 squarings, to get 9M + 9S:

−A = X1(−Z2
2), B = X2Z

2
1 ,

E = B − A, −2C = −Y1

[
(Z2

2 + Z2)2 − (Z2
2)2 − Z2

2

]
,

2D = Y2

[
(Z2

1 + Z1)2 − (Z2
1)2 − Z2

1

]
, 2F = 2D − 2C,

X3 = (2F)2 − (2E2)(2E) + 8(−AE2), Z3 = E
[
(Z1 + Z2)2 − Z2

1 − Z2
2

]
,

Y3 = −2F
[
(2F)2 − (2E2)(2E) + 12(−AE2)

]
− 2C(2E2)(2E).

The resulting atomic blocks can be found in Table 6 (for formating reasons, the
equivalences for each register are given in Table 7). The formula takes as input
R1 ← X1, R2 ← Y1, R3 ← Z1, R4 ← X2, R5 ← Y2, R6 ← Z2, and returns as
output X3 ← R1, Y3 ← R2, and Z3 ← R3.

Table 7. Atomic block formula for general Jacobian addition (equivalences)

Sec Block 1 Block 2 Block 3

S [Z2
1] [Z2

2] [E2]

N [−Z2
1] [−Z2

2] [−3Y1]

A [Z2
1 + Z1] [Z2

2 + Z2] [2E2]

A [2Y1] [3Y1] [2E]

M [B] [−A] [4E3]

A [Z1 + Z2] [E] [−Z2
1 − Z2

2]

Sec Block 4 Block 5 Block 6

S [Z4
2] [(Z2

2 + Z2)2] [Z4
1]

N [−Z4
2] [−E] [−Z4

1]

A [−Z4
2 − Z2

2] [(Z2
2 + Z2)2 − Z4

2 − Z2
2] [−Z4

1 − Z2
1]

A [−Y1] [−4AE2] [−7AE2]

M [−AE2] [−2C] [−8CE3]

A [−2AE2] [−6AE2] [−8AE2]

Block 7 Block 8 Block 9

S [(Z2
1 + Z1)2] [(Z1 + Z2)2] [4F 2]

N [−4E3] [−2F] [Z3]

A [(Z2
1 + Z1)2 − Z4

1 − Z2
1] [−12AE2] [X3]

A [−4E3 − 8AE2] [(Z1 + Z2)2 − Z2
1 − Z2

2] [X3 − 4AE2]

M [2D] [−Z3] [−2F (X3 − 4AE2)]

A [2F = 2D − 2C] [−4E3 − 12AE2] [Y3]

50 R. Abarzúa and N. Thériault

4.4 Case 3: Unified Formulae

In [15], Chen et al. recommend using atomic blocks formulae which takes the
same number of blocks for both the group additions and doublings. Although a
careful handling of the time interval between blocks is preferable (for efficiency
reasons), our techniques can be used to obtain a doubling formula that is unified
with the mixed addition. The details of the formula can be found in Appendix A.

5 Conclusion

The aim of our paper was to give an improvement on previous atomic block
formulae [40,26,15], securing them against C-safe fault attacks [52,4]. This was
done by adjusting the formulae so that all the field operations of every atomic
block have an impact on the final result (i.e. there are no dummy operations),
while avoiding the repetition of any single operation. A careful implementation
of our atomic blocks formulae (which should include a careful management of
delays between each atomic blocks) will then secure the scalar multiplication
against both SSCA and C-safe fault attacks.

As well as offering increased security, our atomic blocks are slightly more
compact than those of Longa and Miri [40]. Assuming experimental average
ratios to multiplications of S/M ≈ 0.8, A/M ≈ 0.2 and N/M ≈ 0.1 [26], each of
our atomic block takes≈ 2.5M compared to ≈ 2.8M for those of Longa and Miri.
This representing savings of close to 10% on the whole scalar multiplication, both
in double-and-add algorithms and multi-basis (2, 3, and 5) scalar multiplications.
For right-to-left scalar multiplications, the comparison with the atomic blocks
of Giraud and Verneuil [26] is more difficult because of the difference in the
block structures. For the group doublings, the total costs are very close, but
for the general Jacobian addition our block formula costs ≈ 22.5M compared to
≈ 20M for Giraud and Verneuil. This means an increased cost of close to 10% to
additions (and less than that over the whole scalar multiplication) for the added
resistance to C-safe fault attacks, a very reasonable price in most contexts.

References

1. Amiel, F., Feix, B., Tunstall, M., Whelan, C., Marnane, W.P.: Distinguishing Mul-
tiplications from Squaring Operations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.)
SAC 2008. LNCS, vol. 5381, pp. 346–360. Springer, Heidelberg (2009)

2. Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. Champan &
Hall/CRC Press (2005)

3. Avanzi, R.: Aspects of Hyperelliptic Curves over Large Prime Fields in Software Im-
plementations. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 148–162. Springer, Heidelberg (2004)

4. Avanzi, R.: Side Channel Attacks on Implementations of Curve-Based Crypto-
graphic Primitives. Cryptology ePrint Archive Report 2005/017,
http://eprint.iacr.org/

http://eprint.iacr.org/

Complete Atomic Blocks for Elliptic Curves 51

5. Avanzi, R.: Delaying and Merging Operations in Scalar Multiplication: Applica-
tions to Curve-Based Cryptosystems. In: Biham, E., Youssef, A.M. (eds.) SAC
2006. LNCS, vol. 4356, pp. 203–219. Springer, Heidelberg (2007)

6. Bernstein, D.J., Lange, T.: Inverted Edwards Coordinates. In: Boztaş, S., Lu, H.-F.
(eds.) AAECC 2007. LNCS, vol. 4851, pp. 20–27. Springer, Heidelberg (2007)

7. Bernstein, D.J., Lange, T.: Explicit Formulae Database,
http://www.hyperelliptic.org/EFD/

8. Bernstein, D.J.: Curve25519: New Diffie-Hellman Speed Records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228.
Springer, Heidelberg (2006)

9. Bernstein, D.J., Lange, T.: Faster Addition and Doubling on Elliptic Curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

10. Billet, O., Joye, M.: The Jacobi Model of an Elliptic Curve and Side-Channel
Analysis. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS,
vol. 2643, pp. 34–42. Springer, Heidelberg (2003)

11. Brier, E., Joye, M.: Weierstrass Elliptic Curve and Side-Channel Attacks. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer,
Heidelberg (2002)

12. Brier, E., Dechene, I., Joye, M.: Unified Point Addition Formulae for Elliptic Curve
Cryptosystems. In: Embedded Cryptographic Hardware: Methodologies and Archi-
tectures, pp. 247–256. Nova Science Publishers (2004)

13. Brier, E., Joye, M.: Fast Point Multiplication on Elliptic Curves Through Isogenies.
In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643,
pp. 43–50. Springer, Heidelberg (2003)

14. Brown, M., Hankerson, D., López, J., Menezes, A.: Software Implementation of
the NIST Elliptic Curves over Prime Fields. In: Naccache, D. (ed.) CT-RSA 2001.
LNCS, vol. 2020, pp. 250–265. Springer, Heidelberg (2001)

15. Chen, T., Li, H., Wu, K., Yu, F.: Countermeasure of ECC against Side-channel
Attacks: Balanced Point Addition and Point Doubling Operation Procedure. In:
IEEE, Asia-Pacific Conference on Information Processing, vol. 2, pp. 465–469.
IEEE Conference Publications (2009)

16. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-Cost Solutions for Preventing Sim-
ple Side-Channel Analysis: Side-Channel Atomicity. IEEE Trans. Computers 53(6),
760–768 (2004)

17. Chong Hee, K., Quisquater, J.J.: Faults, Injection Methods, and Fault Attacks.
IEEE Design & Test of Computers 24(6), 544–545 (2007)

18. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of Numbers Generated by Ad-
dtion in Formal Groups and New Primality and Factorization Test. Advances in
Applied Mathematics 7, 385–434 (1986)

19. Cohen, H., Ono, T., Miyaji, A.: Efficient Elliptic Curve Exponentiation Us-
ing Mixed Coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 51–65. Springer, Heidelberg (1998)

20. Coron, J.: Resistance Against Differential Power Analysis for Elliptic Curve Cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

21. Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and Secure Elliptic Curve Point
Multiplication Using Double-Base Chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

22. Edwards, H.M.: A Normal Form for Elliptic Curves. Bull. Am. Math. Soc., New
Ser. 44(3), 393–422 (2007)

http://www.hyperelliptic.org/EFD/

52 R. Abarzúa and N. Thériault

23. Fouque, P.-A., Valette, F.: The Doubling Attack: Why Upwards Is Better than
Downwards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS,
vol. 2779, pp. 269–280. Springer, Heidelberg (2003)

24. Gandolfi, K., Mourtel, C., Olivier, F.: Electronic Analysis: Concrete Results. In:
Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261.
Springer, Heidelberg (2001)

25. Gebotys, C.H., Gebotys, R.J.: Secure Elliptic Curve Implementations: An Analysis
of Resistance to Power-Attacks in a DSP Processor. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 114–128. Springer, Heidelberg
(2003)

26. Giraud, C., Verneuil, V.: Atomicity Improvement for Elliptic Curve Scalar Multi-
plication. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010.
LNCS, vol. 6035, pp. 80–101. Springer, Heidelberg (2010)

27. Großschaldl, J., Avanzi, R., Savas, E., Tillich, S.: Energy-Efficient Software Imple-
mentation of Long Interger Modular Arithmetic. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 75–90. Springer, Heidelberg (2005)

28. Goundar, R.R., Joye, M., Miyaji, A., Rivain, M., Venelli, A.: Scalar Multiplication
on Weierstrass Elliptic Curves from Co-Z Arithmetic. Journal of Cryptographic
Engineering 1(2), 161–176 (2011)

29. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing Elliptic
Curve on RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004.
LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

30. Hanley, N., Tunstall, M., Marmane, W.P.: Using Templates to Distinguishing Mul-
tiplications from Squaring Operations. International Journal Information Secu-
rity 10(4), 255–266 (2011)

31. Joye, M.: Highly Regular Right-to Left Algorithms for Scalar Multiplication. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147.
Springer, Heidelberg (2007)

32. Joye, M.: Fast Point Multiplication on Elliptic Curves Without Precomputation.
In: von zur Gathen, J., Imaña, J.L., Koç, Ç.K. (eds.) WAIFI 2008. LNCS, vol. 5130,
pp. 36–46. Springer, Heidelberg (2008)

33. Joye, M., Tibouchi, M., Vergnaud, D.: Huff’s Model for Elliptic Curves. In: Han-
rot, G., Morain, F., Thomé, E. (eds.) ANTS-IX. LNCS, vol. 6197, pp. 234–250.
Springer, Heidelberg (2010)

34. Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

35. Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation 48, 203–
209 (1987)

36. Kocher, P.: Timing Attacks on Implementation of Diffie-Hellman RSA, DSS and
other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

37. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

38. Liardet, P.Y., Smart, N.P.: Preventing SPA/DPA in ECC Systems Using the Jacobi
Form. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 401–411. Springer, Heidelberg (2001)

39. Longa, P., Miri, A.: New Multibase Non-Adjacent Form Scalar Multiplication and
its Application to Elliptic Curve Cryptosystems (extended version). Crytology
ePrint Archive, Report 2008/052, http://eprint.iacr.org/

http://eprint.iacr.org/

Complete Atomic Blocks for Elliptic Curves 53

40. Longa, P., Miri, A.: Fast and Flexible Elliptic Curves Point Arithmetic over Prime
Fields. IEEE Trans. on Computers 57(3), 289–302 (2008)

41. López, J., Dahab, R.: Fast Multiplication on Elliptic Curves over GF (2m) without
Precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999)

42. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

43. Mishra, P.K., Dimitrov, V.: Efficient Quintuple Formulas for Elliptic Curves and
Efficient Scalar Multiplication Using Multibase Number Representation. In: Garay,
J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp.
390–406. Springer, Heidelberg (2007)

44. Möller, B.: Securing Elliptic Curve Point Multiplication against Side-channel At-
tacks. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 324–334.
Springer, Heidelberg (2001)

45. Montgomery, P.: Speeding the Pollard and Elliptic Curve methods of Factorization.
Mathematics of Computation 48(177), 243–264 (1987)

46. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

47. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public-key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

48. Smart, N.P.: The Hessian Form of an Elliptic Curve. In: Koç, Ç.K., Naccache, D.,
Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 118–125. Springer, Heidelberg
(2001)

49. Thériault, N.: SPA Resistant Left-to-Right Integer Recodings. In: Preneel, B.,
Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 345–358. Springer, Heidelberg
(2006)

50. Tunstall, M., Joye, M.: Coordinate Blinding over Large Prime Fields. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 443–445. Springer,
Heidelberg (2010)

51. Yao, A.C.: On the Evaluation of Powers. SIAM Journal on Computing 5, 100–103
(1976)

52. Yen, S.-M., Joye, M.: Checking Before Output not be Enough Against Fault-based
Cryptanalysis. IEEE Trans. on Computers 49(9), 967–970 (2000)

53. Yen, S.-M., Kim, S., Lim, S., Moon, S.: A Countermeasure against One Physical
Cryptanalysis May Benefit Another Attack. In: Kim, K.-c. (ed.) ICISC 2001. LNCS,
vol. 2288, pp. 414–427. Springer, Heidelberg (2002)

A Supplementary Operations

Point Doubling in Modified Jacobian Coordinates. The Modified Ja-
cobian coordinates were introduced by Cohen et al. [19]. They are based on
Jacobian coordinates (X : Y : Z), but with an extra coordinate W = aZ4. This
allows a doubling operation with 3M + 5S, at a lower cost than for the shorter
Jacobian coordinates. Obtaining an equilibrated formula for this operation will
naturally require at least 4M + 4S.

Let P = (X1 : Y1 : Z1 : W1) be a point in Modified Jacobian coordinates.
One can be compute 2P = (X2 : Y2 : Z2 : W2) by the following formula with

54 R. Abarzúa and N. Thériault

complexity 4M + 4S + 12A + 3N :

A = 3X2
1 + W1, B = 2Y 2

1 ,

−C = 2B(−X1), −D = 2(−B2),

X2 = A2 − 2C, Z2 = (2Y1)Z1,

Y2 = −A(X2 − C)−D, W2 = (−2D)(−W1).

The resulting atomic blocks can be found in Table 8 with inputs R1 ← X1,
R2 ← Y1, R3 ← Z1, and R4 ←W1, and returning as output X2 ← R1, Y2 ← R2,
Z2 ← R3, and W2 ← R5.

Table 8. Atomic block formula for Modified Jacobian Doubling

Sec Block 1 Block 2 Block 3 Block 4

S R5 ← R2
1 R5 ← R2

2 R5 ← R2
5 R4 ← R2

1

[X2
1] [Y 2

1] [B2] [A2]
N R6 ← −R1 R7 ← −R4 R5 ← −R5 R7 ← −R1

[−X1] [−W1] [−B2] [−A]
A R7 ← R2 + R2 R5 ← R5 + R5 R8 ← R5 + R5 R1 ← R4 + R6

[2Y1] [B] [−D] [X2]
A R1 ← R5 + R5 R2 ← R5 + R5 R5 ← R8 + R8 R4 ← R1 + R2

[2X2
1] [2B] [−2D] [X2 − C]

M R3 ← R7R3 R2 ← R2R6 R5 ← R5R7 R7 ← R7R4

[Z2] [−C] [W2] [−A(X2 − C)]
A R1 ← R1 + R5 R6 ← R2 + R2 R1 ← R1 + R4 R2 ← R7 + R8

[3X2
1] [−2C] [A] [Y2]

Point Doubling in Jacobian Coordinates Balanced with Mixed Ad-
dition. In [15], Chen et al. presented a new experimental attack on smart
cards using the atomic blocks proposed by Chevallier-Mames et al. [16] with
(M,A,N,A) structure. This experimental attack is applied because the imple-
mentation of Chen et al. does not avoid breaks between doubling and Jacobian
addition. As a countermeasure to their attack, they presented a new atomic
blocks formula for doubling which is equilibrated with the addition formula.

The ideal solution would be to refine the implementation so that the time
between each block is always the same.The alternative, as Chen et al. proposed, is
to rework the doubling formula to use the same number of blocks as the addition.
Our techniques to obtain full atomic blocks can be used after “balancing” the
doubling formula to 6M + 6S.

Operations Previous work [15] This work

Doubling 16M + 32A + 16N 6M + 6S + 18A + 6N

We now present a version of the Jacobian doubling formula which uses 6
atomic blocks. Let P = (X1 : Y1 : Z1) be a point in Jacobian coordinates. One
can be compute 2P = (X3 : Y3 : Z3) by the following formula with complexity

Complete Atomic Blocks for Elliptic Curves 55

Table 9. Atomic block formula for doubling balanced with mixed addition

Sec Block 1 Block 2 Block 3

S R4 ← R2
3 R1 ← R2

2 R2 ← R2
6

[Z2
1] [Y 2

1] [4X2
1]

N R5 ← −R4 R6 ← −R4 R7 ← −R5

[−Z2
1] [−2X1] [−α]

A R4 ← R1 + R4 R7 ← R5 + R5 R8 ← R1 + R1

[X1 + Z2
1] [2(X2

1 − Z4
1)] [2Y 2

1]
A R5 ← R1 + R5 R5 ← R7 + R5 R4 ← R8 + R4

[X1 − Z2
1] [α] [2Y 2

1 + 2X1]
M R5 ← R5R4 R7 ← R2R3 R9 ← R6R4

[X2
1 − Z4

1] [Y1Z1] [−2X1(2Y
2
1 + 2X1)]

A R4 ← R1 + R1 R3 ← R7 + R7 R6 ← R9 + R2

[2X1] [Z3] [−β]

Sec Block 4 Block 5 Block 6

S R9 ← R2
6 R9 ← R2

5 R9 ← R2
8

[β2] [α2] [4Y 4
1]

N R2 ← −R6 R9 ← −R9 R5 ← −R9

[β] [−α2] [−4Y 4
1]

A R4 ← R5 + R2 R10 ← R6 + R6 R6 ← R5 + R5

[α + β] [−2β] [−8Y 4
1]

A R2 ← R5 + R6 R1 ← R2 + R10 R5 ← R10 + R6

[α − β] [X3] [αβ − 8Y 4
1]

M R10 ← R4R2 R6 ← R5R4 R6 ← R7R1

[α2 − β2] [α(α + β)] [−αX3]
A R2 ← R10 + R9 R10 ← R6 + R9 R2 ← R6 + R5

[(α2 − β2) + β2] [αβ] [Y3]

6M + 6S:

α = 3(X1 + Z2
1)(X1 − Z2

1), −β = −2X1(2Y
2
1 + 2X1) + (2X1)2,

αβ = α(α + β)− α2, Z3 = 2Y1Z1,

X3 = (α− β)(α + β) + β2 − 2β, Y3 = αβ + (−α)X3 − 2(2Y 2
1)2.

The resulting atomic blocks can be found in Table 9 with inputs R1 ← X1,
R2 ← Y1, and R3 ← Z1, and output X3 ← R1, Y3 ← R2, Z3 ← R3.

Message-Based Traitor Tracing

with Optimal Ciphertext Rate

Duong Hieu Phan1,2, David Pointcheval2, and Mario Strefler2

1 LAGA, University of Paris 8
2 ENS / CNRS / INRIA

Abstract. Traitor tracing is an important tool to discourage defrauders
from illegally broadcasting multimedia content. However, the main tech-
niques consist in tracing the traitors from the pirate decoders they built
from the secret keys of dishonest registered users: with either a black-
box or a white-box tracing procedure on the pirate decoder, one hopes
to trace back one of the traitors who registered in the system. But new
techniques for pirates consist either in sending the ephemeral decryption
keys to the decoders for real-time decryption, or in making the full con-
tent available on the web for later viewing. This way, the pirate does not
send any personal information. In order to be able to trace the traitors,
one should embed some information, or watermarks, in the multimedia
content itself to make it specific to the registered users.

This paper addresses this problem of tracing traitors from the decoded
multimedia content or rebroadcasted keys, without increasing too much
the bandwidth requirements. More precisely, we construct a message-
traceable encryption scheme that has an optimal ciphertext rate, i. e.
the ratio of global ciphertext length over message length is arbitrarily
close to one.

1 Introduction

Traitor tracing (TT) [CFN94] is a cryptographic primitive used to broadcast
content only to a set of authorized users, with an additional tracing property.
Unlike broadcast encryption, the set of authorized users is fixed. The two main
goals of such a primitive are

– confidentiality: only registered users have access to the broadcast content;
– traceability: if registered users share their secrets to allow unregistered users

to access the content, one can trace back at least some of these traitors.

The former property is guaranteed by an encryption procedure, so that only reg-
istered users can decrypt and access the content. But an encryption scheme does
not prevent users from giving away their secret keys. Even in case several users
combine their secret keys in order to make a decryption box (a “pirate decoder”),
it should be possible to identify one of the traitors from the code/secrets in the
decoder (white-box tracing) or by simply interacting with the decoder (black-
box tracing). The tracing property should indeed guarantee that even if several

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 56–77, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Message-Based Traitor Tracing 57

users collude to construct a pirate decoder, at least one of the traitors could be
found. It should also guarantee non-frameability: an honest user should not be
wrongly declared as a traitor.

To circumvent tracing, pirates might try not to make the decoder available,
which excludes both white-box and black-box tracing. Instead, they could make
only the decrypted content available, or, in case a hybrid encryption scheme is
used, the symmetric keys used to encrypt the content: by message-based traitor
tracing, we aim at tracing traitors from this information only, the decoded con-
tent.

Message-Based Traitor Tracing. We propose the term “message-based traitor
tracing” as a generic term that subsumes earlier variants and emphasizes the fact
that we do not trace from pirate decoders but from information embedded in the
content. Fiat and Tassa were the first to consider message-based traitor tracing;
in [FT99], they developed dynamic traitor tracing to deal with pirates that
rebroadcast decrypted content. They assume that there is a real-time feedback
from the broadcast content to the center, so that the watermarks can be adapted
to the feedback. Safavi-Naini and Wang [SNW00] noted that in this setting,
dynamic TT can be prevented by delaying the rebroadcasting of the content. To
take this counter-measure into account, they proposed sequential traitor tracing,
where the mark allocation is precomputed, but users are removed according to
the feedback received. They construct a sequential TT scheme by combining
error-correcting codes and watermarking. Jin and Lotspiech [JL07] claimed that
protection should not increase the bandwidth by more than 10 %. To solve this
problem, they proposed to extend the tracing procedure over several movies
(using “inner” and “outer” codes) and assumed that the pirates will not drop
any block. Their sequence key block scheme permits the revocation of users
after they have been traced through the rebroadcasted messages. Kiayias and
Pehlivanoglu [KP09] showed that the sequence key block scheme allows only to
trace and to revoke a limited number of users, and proposed a message-trace-
and-revoke scheme without this limitation.

Optimal Ciphertext Rate. Contrary to the classical tracing where schemes with
optimal ciphertext rate exist, the problem of constructing a scheme with optimal
ciphertext size for message-based traitor tracing is still open. We explain why the
solutions for classical tracing fail when applied to message-based traitor tracing
and we then describe our approach.

Boneh and Franklin [BF99] developed a traitor tracing scheme with a cipher-
text size linear in the maximal number of colluding users. Kiayias and Yung
[KY02] further integrated a 2-user version of this scheme with a fingerprinting
code into the first TT scheme with a constant ciphertext rate. This method can
be summarized as follows. The sender essentially encrypts all the blocks twice, so
that the recipient can only decrypt one of the two ciphertexts for each block. The
tracing procedure consists in using the decrypted ciphertext or the distributed
keys to extract a word associated to the pirate decoder. Thanks to the tracing
capability of a fingerprinting code, one can then trace back one of the traitors.

58 D. H. Phan, D. Pointcheval, and M. Strefler

Kiayias and Yung’s scheme leads to a ciphertext three times bigger than the ini-
tial content. Fazio, Nicolosi, and Phan [FNP07] then achieved a ciphertext rate
asymptotically 1. Their method is to encrypt just one particular block twice each
time and then apply an all-or-nothing transform (AONT), which guarantees that
the pirate cannot drop this particular block because missing just one block makes
the pirate unable to get any information on the plaintext. The use of AONT in
[KY02, FNP07] is interesting but quite impractical because the receiver should
wait until he has received n blocks (where n is the code length of the code in use,
and thus quite large) to start the decryption procedure. We note that, without
aiming to optimize the ciphertext rate, the use of AONT can be avoided by using
robust fingerprinting code which allows pirate to drop a fraction of the positions.
This is used in [Sir07, BP08, BN08] to reduce the ciphertext size. However, in
order to get optimal ciphertext rate in [FNP07], the use of AONT is compulsory,
otherwise the pirate could simply drop the particular block to defeat the tracing
procedure.

Focusing now on message-based traitor tracing, one natural question is why
we do not simply apply the above method of optimizing the ciphertext rate. We
argue that this method cannot work for message-based traitor tracing. We first
notice that in all the above methods for classical tracing, each user finally gets
the same plaintext and if a user redistributes this plaintext, we have no way to
trace back the traitor from the distributed message. Therefore, the necessary
condition for message-based traitor tracing is that each user receives a different
(marked) version of the plaintext. However, when the plaintext is different for
each user, one cannot apply AONT for a whole fixed plaintext, otherwise all
but at most one user can decrypt. The use of AONT for message-based traitor
tracing is thus irrelevant. Fortunately, we can still use the method of doubling
one particular block by finding out a way to hide this block. Our method consists
in using a 2-user anonymous broadcast encryption scheme and then randomly
permuting the blocks. With a 2-user anonymous broadcast encryption scheme,
the pirate cannot detect any difference between an encryption for both users
(which is used for all blocks but the particular block) and an encryption for one
of the two users that is used for the particular protected block. Combining with
the permutation of the blocks, we can show that the pirate is prevented from
detecting the particular protected block. Moreover, beyond the optimization of
ciphertext rate, by not using AONT, our scheme also enjoys the property of the
sequential decryption via the use of fingerprinting code as in [BP08, BN08]: the
user can sequentially decrypt the sub-ciphertexts, and does not need to wait to
have received the whole ciphertext and to apply the AONT transform to start
the decryption procedure.

Our Contribution. Our goal is to improve the technique which consists in dis-
tributing two versions of each message block, but without doubling all the blocks.
The simplest way, presented in Section 3.1, is to have for each message block
mi two equivalent blocks m0

i and m1
i , so that any sequence {mwi

i }, whatever
w ∈ {0, 1}n is, corresponds to a valid content m. The two versions m0

i and
m1

i can be provided by either adding watermarks to the original message block

Message-Based Traitor Tracing 59

mi, or directly, e. g. by recording a movie with different angles or distances of
the shots [BS98]. The blocks, m0

i or m1
i , are both sent over the public channel.

However, the user secret keys, usk0i or usk1i , have been distributed to the users
according to codewords in a fingerprinting code. This means when the authority
sees the decoded message m′ or the symmetric keys, from each block m′

i, it can
tell whether it is m0

i , m1
i , or the block has been dropped, and then learns which

decryption key has been used: usk0i , usk1i , or none. From this, it can derive one
bit of a word: 0, 1, or ‘erasure’ respectively. Thanks to the collusion-resistance
of the code with erasures, if not too many traitors colluded, at least one of them
can be traced back. This method thus consists in encrypting each pair of blocks
with two keys. Each user owns only one of the two according to the codeword he
received from a fingerprinting code. This results in a ciphertext twice the length
of the original message, plus the cost for two key encapsulations per block.

To reduce the length of the encrypted payload, the only way is to protect only
a few blocks, not all of them. We present our basic construction in Section 3.2.
It resists collusions, but only if the adversary has to output complete messages,
i. e. he is not allowed to drop blocks.

If an adversary can detect which blocks are protected because he has access
to several different user keys, he can drop some of them without impacting too
much the quality of the original message (i. e. a few seconds from a movie). If
the adversary can specifically drop protected blocks after decryption, the output
contains less information about the keys that were used, which prevents tracing.
We thus propose in Section 3.3 an extension of fingerprinting codes to solve this
problem so that the adversary cannot specifically erase bits of the codeword:
even if we protect 1% of the blocks and the adversary drops 20% of the blocks,
he will basically drop only 20% of the protected blocks, and not all of them.

A further improvement, presented in Section 3.4 takes advantage of the fact
that some public-key encryption schemes can reuse the randomness in both key
encapsulations. For example in ElGamal, given gr and two public keys X0 = gx0

and X1 = gx1 , one can derive two sessions keys Y0 = Xr
0 = grx0 and Y1 = Xr

1 =
grx1. This further reduces the number of group elements needed to encrypt.

This scheme still suffers from long user keys, as we need two key pairs for
each message block. In Section 4, we use anonymous broadcast encryption as a
primitive instead of PKE to achieve shorter key lengths. We first focus on the
two-user case (one message block), which we later extend to cover N users. A
message block either consists of a unique message mi (not protected) or of two
versions m0

i and m1
i : in the former case, mi should be encrypted for the two users,

whereas in the latter case, m0
i has to be encrypted for user 0, and m1

i for user 1.
To this aim, we use a 2-user anonymous broadcast encryption scheme (2ABE).
Anonymous broadcast encryption allows the selection of any subset of the user
set that should be able to decrypt the ciphertext, while hiding who is able to
decrypt [LPQ11]. Suppose we have a 2ABE scheme, and we consider � blocks
(m1, . . . ,m�), among which the k-th block only is protected and thus is provided
as a pair (m0

k,m
1
k). We encrypt all the unique blocks mi for both users, whereas

we encrypt m0
k for user 0, and m1

k for user 1. The ciphertexts are thereafter

60 D. H. Phan, D. Pointcheval, and M. Strefler

randomly permuted (but we assume that the message blocks contain indices to
reorder them). User 0 and user 1 will both be able to decrypt � ciphertexts among
the � + 1, and after reordering will be able to get the original message. Due to
the anonymity, they do not know which block the other user cannot decrypt,
therefore they have no idea which block is protected.

The encrypted payload is only (1+1/�)-times as long as the original message,
plus the cost of 2ABE key encapsulations, but we need only one key for each
user, which is the minimum, given that when viewing the decrypted message,
the authority can extract one bit. To achieve full tracing, we extend this case
to an arbitrary number of users by allocating the user secret keys for the 2ABE
using our extension of a fingerprinting code [BS98].

2 Definitions

In this section, we define message-based traitor tracing schemes and the building
blocks we will use in their construction. We follow an approach similar to [NSS99]
by defining first a two-user primitive which we then extend to the multi-user case
using fingerprinting codes.

We first state the marking assumption, which provides a way to embed a bit in
a message block. This will be applied to blocks we protect, whereas no bit will be
embedded in non-protected blocks. Then, from the decoded message, the author-
ity will be able to extract the bits involved in the decryption keys in the pirate
decoder, unless the decoder drops the protected blocks. We will thus need the
property that nobody can detect which blocks are protected so that if the pirate
decoder decides to drop some blocks, the choice will be independent from the
protection of the blocks. We will show that we can build such a message-traceable
encryption from a 2-user anonymous broadcast encryption scheme. Eventually,
from all the bits extracted from the protected blocks (and erasures in case of
dropped blocks), using the tracing algorithm of a fingerprinting code, we can
trace back some of the traitors.

2.1 Primitives

As usual, a public-key encryption scheme is defined as a 4-tuple of algorithms
PKE = (Setup,KeyGen,Encrypt,Decrypt), along with the standard security no-
tion IND-CPA. A more formal definition of PKE is given in Section A.1 of the
appendix. We define an anonymous broadcast encryption scheme as a 3-tuple
of algorithms Π = (Setup,Encaps,Decaps), along with the standard security no-
tion IND-ACPA. A more formal definition of ABE is given in Section A.2 of the
appendix.

2.2 Marking Content

In order to trace from the message content itself, we need to be able to distribute
different versions of a message to different users in an undetectable way. One

Message-Based Traitor Tracing 61

way is to use watermarks. Another way could exploit different camera shots
(angle and distance) of the same scene in a movie[BS98]. We abstract away from
the concrete way to create versions and use the marking assumption that has
been introduced by [BS98] to abstract from concrete schemes and has become
standard since.[KP10] In the following we assume that, given two blocks m0 and
m1,

– we can double mb (for a random b ∈ {0, 1}) into two equivalent messages m0
b

and m1
b

– when a user receives m′
0 and m′

1 (such that m′
b ∈ {m0

b ,m
1
b} and m′

b̄
= mb̄,

where b̄ = 1− b), he cannot guess b.

This essentially means that it is possible to mark a message to protect it, but it
is not possible to tell apart protected and unprotected blocks.

In addition, we also assume robustness with respect to a symmetric, reflexive
relation ≈ρ: for two equivalent blocks m0 ≈ρ m1, when the user receives mb,
and tries to alter it (but without changing the meaning or content), he has only
a negligible chance to output m′ ≈ρ mb that is closer to mb̄ than to mb. This
reflects that the user cannot change a watermark while preserving the message.

The robustness and the marking assumption guarantee that

– a protected block is indistinguishable from an unprotected block;
– when a user has access to one version of the protected block only, we can

learn from its output which bit was embedded: the detected bit ;
– when a user has access to both versions of the protected block, we either

detect from its output one explicit bit as above, or we note that both versions
have been used: in either case we can output one bit, associated to at least
one version of the block available to the user.

Of course, the user can drop some blocks, but this impacts the quality of the
message: we will assume that at most a fraction η of the blocks are dropped.

2.3 Fingerprinting Codes

Fingerprinting codes [BS98] allow an authority to trace a subset of the users
(the traitors) that colluded to produce a word (pirate word) from the codewords
they were given. This of course depends on the way traitors can derive words
from their codewords: the feasible set is the set of the useful words that can be
derived from the legitimate codewords. We focus on binary codes, defined over
the alphabet {0, 1}. In our context, each bit-value is associated to a decryption
key, and a receiver has to decrypt at least one block in each pair of variants to
be able to get the global content. If all the codewords in a set agree on a position
(i. e. they all have the same bit at this position), then the collusion owns only one
decryption key, and thus all the words in the feasible set must have the same
bit at this position. However, if some of the words differ at a given position,
then the collusion owns both decryption keys, and thus both values are possible
at this position. More formally, for any list of t words w1, . . . , wt ∈ {0, 1}n,
FS(w1, . . . , wt) = {w ∈ {0, 1}n | ∀i ∈ {1, . . . , n}, ∃j ∈ {1, . . . , t}, w[i] = wj [i]}.

62 D. H. Phan, D. Pointcheval, and M. Strefler

Definition 1. A t-fingerprinting code T for FS is defined by a pair of algo-
rithms (Gen,Trace), where

– Gen(N, ε) takes as input the number N of codewords to output and an error
probability ε, it outputs a tracing key tk and a code Γ ⊂ {0, 1}n of size N .

– Trace(tk, w′) takes as input the tracing key tk and a word w′ ∈ FS(C), where
C is a collusion of at most t codewords, it outputs a codeword w.

The running time of both algorithms must be polynomial in N log(1/ε), and the
tracing algorithm should not be wrong too often: with probability less than ε,
w �∈ C.

More precisely, a t-fingerprinting code for FS guarantees that

– given (Γ, tk) ← Gen(N, ε), with Γ ⊂ {0, 1}n of size N
– for any collusion C ⊂ Γ of size at most t, for any w ∈ FS(C), Trace(tk, w)

outputs a word in C with probability 1− ε.

Efficient constructions of such codes can be found in [Tar08]: the resulting code
length n for a t-collusion-resistant fingerprinting code is O(t2 log(N/ε)), where
ε is the tracing error probability.

2.4 Message-Traceable Encryption

A message-traceable encryption scheme Ψ is a multi-cast encryption scheme
which allows all the registered users (with a legitimate secret key) to decrypt a
ciphertext. In addition, from the decrypted content, it is possible to derive the
key (or even the keys) used for the decryption. In the following description, we
focus on static schemes (the maximum number of users is set from the beginning):

– Setup(1κ, N, t, ε), where κ is the security parameter, N the number of users,
t the maximal size of a collusion, and ε the error probability of the tracing
algorithm, generates the global parameters param of the system (omitted in
the following), N user secret keys {USKid}id=1,...,N , an encryption key EK,
and a tracing key TK.

– Encrypt(EK,m) takes as input the encryption key EK and a message m to
be sent, it generates a ciphertext c.

– Decrypt(USK, c) takes as input a decryption key USK and a ciphertext c, it
outputs a message m, or the error symbol ⊥.

– Trace(TK, c,m) takes as input the tracing key TK, a ciphertext c and the
decrypted message m, returns an index id ∈ [1, N] of a user secret key USKid.

Security Notions. As for any encryption scheme, the first security notion to
define is semantic security, in our case against chosen-ciphertext attacks, whose
security game is presented in Figure 1. Of course, to make tracing possible,
the encryption algorithm will possibly derive several equivalent versions of the
message mb to be encrypted, which will decrypt to slightly different messages
depending on the key used to decrypt. For this reason, we allow the adversary
to choose which decryption key should be used by the decryption oracle, hence
the additional input id.

Message-Based Traitor Tracing 63

Expind−cca−b
Ψ,A (κ,N, t, ε)

({USKid},EK,TK)← Setup(1κ, N, t, ε); QD ← ∅;
(state ,m0, m1)← AODecrypt(·,·)(FIND;EK);
c∗ ← Encrypt(EK,mb);

b′ ← AODecrypt(·,·)(GUESS; state , c∗);
if c∗ ∈ QD then return 0 else return b′;

ODecrypt(id, c)
QD ← QD ∪ {c};
m← Decrypt(USKid, c);
return m;

Fig. 1. IND-CCA for message-traceable encryption

Definition 2 (Semantic Security). A message-traceable encryption scheme Ψ
is said to be (τ,N, t, ε, qD, ν)-IND-CCA-secure (indistinguishability against chosen-
ciphertext attacks) if in the security game presented in Figure 1, the advantage,
denoted Advind−cca

Ψ (κ, τ,N, t, ε, qD), of any τ-time adversary A asking for at most
qD decryption queries (ODecrypt oracle) is bounded by ν.

Advind−cca
Ψ (κ, τ,N, t, ε, qD)

= max
A
{Pr[Expind−cca−1

Ψ,A (κ,N, t, ε) = 1]− Pr[Expind−cca−0
Ψ,A (κ,N, t, ε) = 1]}.

This definition includes IND-CPA (for Chosen-Plaintext Attacks) when qD = 0,

and thus we denote the advantage Advind−cpa
Ψ (κ, τ,N, t).

We now formalize the additional security notion of traceability: after having
received at most t secret keys (the collusion C of traitors), the adversary asks
for a ciphertext c� of a random message m�, and outputs a plaintext m that
should be equivalent to m�. The tracing algorithm should then output one of
the traitors, otherwise the adversary has won the game. We use the relation
m ≈ρ m′ from Section 2.2 to denote that two messages are “similar” in the
current context. If the adversary sends a random message (hence m �≈ρ m�) or
alternatively outputs an empty message, we say the adversary lost the game:

Definition 3 (Traceability). A message-traceable encryption scheme Ψ is said
to be (τ,N, t, ε, ν)-traceable if in the security game presented in Figure 2, the
success probability, denoted SucctraceΨ,A (κ, τ,N, t, ε), of any τ-time adversary asking
for at most t secret keys is bounded by ν.

SucctraceΨ (κ, τ,N, t, ε) = max
A
{Pr[Exptrace

Ψ,A (κ,N, t, ε) = 1]}.

3 A Generic Construction from PKE

In this section, we present a series of three simple constructions that illuminate
the concepts behind the construction in the next section. The first construc-
tion exemplifies a well-known paradigm of constructing a message-based traitor
tracing scheme from a PKE scheme and a fingerprinting code, and serves as a
stepping stone for the second construction, which shows how to achieve optimal

64 D. H. Phan, D. Pointcheval, and M. Strefler

Exptrace
Ψ,A(κ,N, t, ε)

({USKid},EK,TK)← Setup(1κ, N, t, ε); QC ← ∅;
(state , C)← A(FIND;EK);

m� $←M; c� ← Encrypt(EK,m�);
m← A(GUESS; state , c�, {USKid}id∈C);
T ← Trace(TK, c�,m);
if m = ⊥ or m �≈ρ m� then return 0;
if T ∩ C = ∅ then return 1 else return 0;

Fig. 2. Traceability

ciphertext rate. The first two constructions are only secure when the adversary is
required to retransmit only complete messages. Our third construction modifies
the previous one to account for adversaries that drop parts of the message. The
fourth construction is an exercise to drive the efficiency of the second construc-
tion to its limits by reusing randomness.

3.1 A Simple Construction

To have a baseline against which to compare our later constructions, we first
outline a simple way to construct a message-based traitor tracing scheme. The
construction uses a PKE scheme Π and assigns user keys according to the code-
words of the fingerprinting code T . If the codewords have length n, we need 2n
instances of the PKE scheme.

– Setup(1κ, N, t, ε)

1. It generates a t-fingerprinting code, using (Γ, tk) ← T .Gen(N, ε), with
a low error value ε. We thus denote n the length of a codeword in Γ ,
and enumerate codewords with indices associated to each users: Γ =
{wid}id=1,...,N ⊂ {0, 1}n.

2. it then calls 2n times Π.Setup(1κ) to obtain (dkbi , ek
b
i)b=0,1,i=1...n.

3. it sets EK← {ekbi}b=0,1,i=1...n, USKid ← (dk
wid[i]
i)i=1...n for all id ∈ [1, N],

TK← ({dk0i , dk1i }i=1,...,n, tk).

– Encrypt(EK,m) first splits m into n blocks m1, . . .mn. For each block,

1. it creates two versions m0
i ,m

1
i of each block mi

2. it then encrypts the versions as cbi = Π.Encrypt(ekbi ,m
b
i)

3. it sets c = (c01, c
1
1, . . . , c

0
n, c

1
n).

– Decrypt(USKid, c)

1. it parses c = (c01, c
1
1, . . . , c

0
n, c

1
n)

2. it decrypts m
wid[i]
i = Π.Decrypt(dk

wid[i]
i , c

wid[i]
i) to recover m.

– Trace(TK, c,m) extracts the word w′ from m and calls T .Trace(tk, w′) to get
the codeword wid of a colluder.

Message-Based Traitor Tracing 65

π

* 0 * 1 * * * *

* * * * 1* * 0

*1
0

* ****

m m m m m mm
4 5 6 7321

Fig. 3. Hiding a mark at position 5 in a sequence of 7 blocks

3.2 Improved Construction

We can reduce the ciphertext rate for long messages by watermarking only some
blocks. We now describe a generic construction that accomplishes this by en-
crypting a message consisting of n sequences of � blocks each in such a way that
in sequence i, � − 1 blocks can be decrypted by both users; these blocks are
not used for tracing. The other block is duplicated using to different marks and
encrypted at two positions v0[i], v1[i], each time for one key only: the message
at position v0[i] cannot be decrypted by users with key 0, and the message at
position v1[i] cannot be decrypted by users with key 1. By doing this, the ci-
phertext will have a length of (1+1/�)-times the length of the message, plus the
overhead for encryption.

To reduce the overhead for encryption for long messages, we now model the
PKE scheme as a KEM. Given any symmetric cipher E = (Enc,Dec), a PKE
Π , and a fingerprinting code T , we construct a message-traceable encryption
scheme Ψ̂(�, n) as follows:

– Setup(1κ, N, t, ε, �):
1. It generates a t-fingerprinting code, using (Γ, tk) ← T .Gen(N, ε), with

a low error value ε. We thus denote n the length of a codeword in Γ ,
and enumerate codewords with indices associated to each users: Γ =
{wid}id=1,...,N ⊂ {0, 1}n.

2. It then calls Π.Setup(1κ) n(� + 1) times to obtain, for i = 1, . . . , n and
j = 1, . . . , �+1, eki,j , dki,j . It draws two random vectors v0, v1 ∈ [1, �+1]n

with the condition that v0[i] �= v1[i] for all i = 1, . . . n. The position vb[i]
describes the secret key that the users with wid[i] = b do not have. We
set

USKid ← {dki,j} i=1,...,n
j �=vwid[i]

[i]
,

EK← ({eki,j} i=1,...,n
j=1,...,�+1

, v0, v1),

TK← ({dk0i,j , dk1i,j} i=1,...,n
j=1,...,�+1

, tk).

– Encrypt(EK,m) first splits m in n� blocks {mi,j} i=1,...,n
j=1,...,�

. For each sequence,

at position i ∈ {1, . . . , n}:

66 D. H. Phan, D. Pointcheval, and M. Strefler

1. it chooses a random position k ∈ {1, . . . , �}, to protect block mi,k;
2. it generates two equivalent versions m0

i,k,m
1
i,k, of this block (see Fig-

ure 3), resulting in a list of � + 1 blocks;
3. it prepends the position to the block: Mj = j‖mi,j, for j = 1, . . . , �,

j �= k, Mk = k‖m0
i,k, M�+1 = k‖m1

i,k;
4. it chooses a random permutation π ∈ S�+1 with the restriction that the

position of the marked blocks is v1[i] = π(k) and v0[i] = π(� + 1); and
permutes the blocks: M ′

j = Mπ(j).
5. it generates the session keys: (ci,j ,Ki,j) ← Π.Encaps(eki,j),
6. It then encrypts the blocks under the symmetric keys: Ci,j ← (ci,j , c

′
i,j =

EncKi,j (M ′
j)) for j = 1, . . . , � + 1.

The final ciphertext consists of all the pairs Ci,j for i = 1, . . . , n and j =
1, . . . , � + 1.

– Decrypt(USKid, C) takes as input the key USKid = {dki,j} i=1,...,n
j �=vwid[i]

[i]
and a

ciphertext C = {Ci,j}. For each sequence, at position i ∈ {1, . . . , n}:
1. it calls Π.Decaps(usk

wid[i]
i,j , ci,j), for j �= vwid[i][i], to obtain the session key

Ki,j ;
2. it decrypts the message with Dec(Ki,j , c

′
i,j), which outputs M ′

i,j;
3. it should be able to parse the M ′

i,j = pj‖mi,j , with {pj} = {1, . . . , �},
otherwise it stops and outputs ⊥;

4. it eventually reorders the messages according to pj , and concatenates
the other parts.

It concatenates the � blocks in each sequences, and the n sequence-results to
output the full message m.

– Trace(TK, C,m) can detect the protected blocks using the decryption keys
in TK. From the block that was actually decrypted in each sequence i, it can
learn the value of the bit w[i]. Then, thanks to the traceability of the code
T , the T .Trace(tk, w) outputs a traitor.

Remark 4. The traceability of the scheme rests on the fact that a user does not
know which of the keys are common to all users and which are specific to those
with the same bit in the codeword. While a user that shares the information
which positions he cannot decrypt with other users is considered to be misbe-
having and thus corrupted in our security model, the real-life cost of sharing
some of these positions is quite low. The scheme is thus susceptible to a Pirates
2.0-attack as described in [BP09].

3.3 Adapting the Code for Deletions

The above scheme works well if we require that the users output only complete
messages. However, in practice removing small parts of a movie might still result
in an acceptable quality. In this case, we want to ensure that the adversary cannot
drop specifically the blocks that contain watermarks, but that in order to delete
a certain fraction of the codeword, he has to delete the same fraction of blocks.
If users collude in constructing the message, i. e. the adversary has access to

Message-Based Traitor Tracing 67

several user secret keys, they can choose to drop only the blocks that contain
watermarks. In this case, in the places where the codewords that correspond to
the user secret keys differ, the adversary can find the marked message blocks and
drop only those. The tracing authority cannot know if a block was dropped at
random or because the adversary knew it was marked, so tracing is impossible.

To solve this problem, we design a new code from a fingerprinting code by
repeating and permuting the bits of the codeword. If the adversary cannot tell
which bits of the new code are repetitions of the same bit, it is unlikely that
all repetitions of a bit from the fingerprinting code are erased accidentally. The
tracing authority can then assume that for an erased bit, both keys are known
to the attacker. The only problem is that colluding users can detect in which
sequence they all decrypt the same blocks, which implies that they have the same
code bit in this position. They can then drop blocks specifically from sequences
where their code bits agree. To prevent this, we insert dummy bits that are the
same for all users, which doubles the length of the code.

Let η be the fraction of blocks that the adversary is allowed to drop. We choose
an integer ρ such that ηρ ≤ ε/2n. Let w = w[1] . . . w[n] be a codeword from the
fingerprinting code. We generate a codeword of our new code by repeating each
bit of w ρ times, padding it with nρ dummy bits that are identical for all users,
then applying a permutation:
We first describe Gen(N, ε):

1. Generate the fingerprinting code: (Γ, tk) ← T .Gen(N, ε/2)
2. Choose a random permutation π : {0, 1}2nρ → {0, 1}2nρ

3. tk′
def
= (tk, π−1)

4. Choose a random string s
$←− {0, 1}nρ

5. Γ ′ def
= {w′

id}id=1,...,N ⊂ {0, 1}2nρ where w′
id

def
= π(wid[1] . . . wid[1] . . . wid[n]‖s).

6. Output (Γ ′, tk′).

To trace, run the modified algorithm Trace(tk′, w′):

1. Reconstruct a word w from π−1(w′):

(a) If all of the ρ replications of bit w[i] that were not erased are equal to b,
set w[i] = b.

(b) If at least one of the replications of bit w[i] has the value 1 and at least
one of them has the value 0, choose w[i] at random (in this case the
adversary knows both keys).

(c) If all replications of the bit w[i] have been erased, choose w[i] at random.

2. Return the output of T .Trace(tk, w).

Since a codeword is 2ρ times as long as previously, the user secret keys will also
be 2ρ times as long. The tracing key tk contains a secret permutation π−1, so
tracing is no longer public as opposed to tracing for the fingerprinting code.
However, in our construction we need to include the user secret keys in the
tracing key, so in our construction tracing was not public even before the change
in the code used.

68 D. H. Phan, D. Pointcheval, and M. Strefler

3.4 Reusing Randomness

To further reduce the ciphertext rate, we can try to reduce the size of the key
encapsulation, by reusing the random coins in all the ciphertexts of a sequence
or even the complete ciphertext.

We need to make sure that the PKE scheme in the construction remains secure if
randomness us reused. If we instantiate the PKE scheme with ElGamal, we can use
the results of Bellare, Boldyreva, Kurosawa, and Staddon [BBKS07, Lemma 7.2].

The only change is in the encryption:

– Encrypt(EK,m): it first splits m in n� blocks {mi,j} i=1,...,n
j=1,...,�

. For each se-

quence, at position i ∈ {1, . . . , n}:
5. it draws the common randomness R

$←− R, then generates the session
keys: (ci,j ,Ki,j) ← Π.Encaps(eki,j ;R),

The final ciphertext consists, as above, of all the pairs Ci,j = (ci,j , c
′
i,j), but

where all the ci,j in the same sequence use a common part that can be included
once only.

Reusing randomness incurs a loss in the security reduction for the PKE scheme
that is equal to the number of ciphertexts that share the same randomness
[BBKS07, Th. 6.2]. This means that in the generic case, the group has to be
larger to accommodate the loss in security. In the case of ElGamal however, we
can exploit the random self-reducibility to avoid this increase in the group size
[BBKS07, Th. 7.3].

3.5 Security

For reasons of space, and since these constructions are not the main result of this
paper, we do not give a security proof for them. Given the security proof of our
final construction, the security of the above constructions is an easy corollary.

4 A Construction with Shorter Keys

The main disadvantage of the PKE-based construction is the length of the user
keys, which must contain a PKE key for each block. Since a codeword has n
bits, we can hope to reduce the number of different user keys to n as well. To
achieve this, we use a primitive that allows encryption to either of two users or
to both of them: 2-user broadcast encryption.1

Our message-traceable encryption scheme makes use of codes, where the bits
of the codewords are embedded in a message by doubling some parts of it,
the so-called protected blocks. Because we do not want the adversary to learn
which parts of the message contain bits of the codeword, we need a broadcast

1 We view the scheme as an anonymous broadcast encryption scheme because broad-
cast encryption is a well-known concept that is intuitively understood. In [KY02],
the same primitive was called a “2-key, 1-copyrighted public-key encryption scheme”.

Message-Based Traitor Tracing 69

encryption scheme where a user cannot tell whether a block is destined only for
his key or for both keys, a 2-user anonymous broadcast encryption (2ABE).

This requires the symmetric cipher used with this construction to be weakly
robust[ABN10], since one of the decapsulated keys will be either⊥ or an unusable
key. The construction uses one instance of the 2ABE scheme Π per bit of the
codeword, encrypting � + 1 messages at a time in one sequence, with the target
sets determined by the positions v, w where the watermarks are embedded. In
this construction, the length of the EK and USK is n times that of Π , and
to encrypt a sequence of � blocks, doubling one block, we need � + 1 Π key-
encapsulations plus � + 1 symmetrically encrypted message blocks.

4.1 Construction of a Message-Traceable Encryption Scheme

Our first construction combines a fingerprinting code T with a 2ABE scheme
Π . If the codewords have length n, we need n instances of the 2ABE scheme.
Given any weakly robust[ABN10] symmetric cipher E = (Enc,Dec), a 2-user
anonymous broadcast encryption Π , and a traceable code T , we construct a
message-traceable encryption scheme Ψ(�, n) as follows:

– Setup(1κ, N, t, ε, �):
1. It first generates a t-fingerprinting code, using (Γ, tk) ← T .Gen(N, ε). We

thus denote n the length of a codeword in Γ , and enumerate codewords
with indices associated to each users: Γ = {wid}id=1,...,N ⊂ {0, 1}n.

2. It then calls Π.Setup(1κ, 2) n times to obtain, for i = 1, . . . , n,
eki, usk

0
i , usk

1
i .

We set

USKid ← (usk
wid[1]
1 , . . . , uskwid[n]

n),

EK← (ek1, . . . , ekn),

TK← ({usk0i , usk1i }i=1,...,n, tk).

– Encrypt(EK,m): it first splits m in n� blocks {mi,j} i=1,...,n
j=1,...,�

. For each se-

quence, at position i ∈ {1, . . . , n}:
1. it chooses a random position k ∈ {1, . . . , �}, to protect block mi,k;
2. it generates two equivalent versions m0

i,k,m
1
i,k, of this block (see Fig-

ure 3), resulting in a list of � + 1 blocks;
3. it prepends the position to the block: Mj = j‖mi,j, for j = 1, . . . , �,

j �= k, Mk = k‖m0
i,k, M�+1 = k‖m1

i,k;
4. it chooses a random permutation π ∈ S�+1 and permutes the blocks:

M ′
i = Mπ(i). We note v = π(k) and w = π(� + 1), the positions of the

two equivalent blocks;
5. it generates session keys for all the blocks, except M ′

v and M ′
w, with the

2ABE scheme Π , with the full target set {0, 1}, whereas M ′
v is targeted

to {0} only, and M ′
w is targeted to {1} only. More precisely, it first gen-

erates the session keys: (ci,j ,Ki,j) ← Π.Encaps(eki, {0, 1}), for j �= v, w,
(ci,v,Ki,v) ← Π.Encaps(eki, {0}), and (ci,w ,Ki,w) ← Π.Encaps(eki, {1}).

70 D. H. Phan, D. Pointcheval, and M. Strefler

6. It then encrypts the blocks under the symmetric keys: Ci,j ← (ci,j , c
′
i,j =

EncKi,j (M ′
j)) for j = 1, . . . , � + 1.

The final ciphertext consists of all the pairs Ci,j for i = 1, . . . , n and j =
1, . . . , � + 1.

– Decrypt(USKid, C) takes as input the key USKid = (usk
wid[1]
1 , . . . , uskwid[n]

n)
and a ciphertext C = {Ci,j}. For each sequence, at position i ∈ {1, . . . , n}:
1. it calls Π.Decaps(usk

wid[i]
i , ci,j), for j = 1, . . . , �+ 1, to obtain the session

key Ki,j ;
2. it decrypts the message with Dec(Ki,j , c

′
i,j), which outputs either M ′

i,j

or ⊥ (because of the robustness);
3. it should be able to parse the M ′

i,j = pj‖mi,j , with {pj} = {1, . . . , �},
otherwise it stops and output ⊥;

4. it eventually reorders the messages according to pj , and concatenates
the other parts.

It concatenates the � blocks in each sequences, and the n sequence-results to
output the full message m.

– Trace(TK, C,m) can detect the protected blocks using the decryption keys
in TK. From the block that was actually decrypted in each sequence i, it can
learn the value of the bit w[i]. Then, thanks to the traceability of the code
T , the T .Trace(tk, w) outputs a traitor.

4.2 Security of the Construction

We show that our construction fulfills IND-CPA-security and explain under which
conditions it is traceable.

Theorem 5. If the 2ABE scheme Π is IND-CPA and the symmetric encryption
scheme E is IND-CPA, then our construction Ψ(�, n) is IND-CPA, and

Advind−cpa
Ψ(�,n) (κ, τ,N, t, ε) ≤ n·(�+1)×

(
2 ·Advind−cpa

Π (κ, τ1, 2) + Advind−cpa
E (κ, τ2)

)
.

The proof can be found in the full version [PPS12].
Before we turn to tracing, we state an intermediate result. The following

lemma says that no adversary can tell which blocks are not encrypted to all
users, if he only has one of the two keys, w.l.o.g. usk0i .

Lemma 6. If the 2ABE scheme Π is both IND-CPA and ANO-CPA, and the
symmetric encryption scheme E is IND-CPA, then an adversary who only has
the usk0i for a sequence i cannot distinguish between the case where the block
at position v is encrypted to the target set {0} and the block at position w is
encrypted to the target set {1} and the case where the block at position v is
encrypted to the target set {0, 1} and the block at position w contains a ran-
dom message. If we denote by Advfind

Ψ (κ, τ,N, t) the maximal advantage of any
adversary within time τ , on any index i, then

Advfind
Ψ (κ, τ,N, t, ε) ≤ Advano−cpa

Π (κ, τ1, 2)+Advind−cpa
Π (κ, τ2, 2)+Advind−cpa

E (κ, τ3).

We prove the lemma in the full version [PPS12].

Message-Based Traitor Tracing 71

It follows immediately from the lemma that as long as the message is complete,
i. e. no blocks were dropped, any collusion of up to t users can be traced.

We now consider the case where the adversary is allowed to drop blocks. If
there are no collusions, the case is unproblematic if robust codes are used (that
resist erasures), because if the adversary drops a fraction δ of the blocks, he
cannot erase significantly more than a fraction δ of the bits in the codeword.

Theorem 7. Even if an adversary with a single user secret key can drop a frac-
tion η of the message, if the 2ABE scheme Π is both IND-CPA and ANO-CPA, the
symmetric encryption scheme E is IND-CPA, and the code T is t-fingerprinting
for FS� for a fraction δ > η of erasures, then our construction Ψ is traceable.
More precisely, one needs

(δ − η)2 ≥ 1

2
×Advfind

Ψ (κ, τ,N, t, ε).

The proof is in the full version [PPS12]. We now show that our improvement
from Section 3.3 allows tracing collusions of users even if they can drop blocks.

Theorem 8. Even if an adversary with a single user secret key can drop a frac-
tion η of the message, if the 2ABE scheme Π is both IND-CPA and ANO-CPA, the
symmetric encryption scheme E is IND-CPA, and the code T is t-fingerprinting
with error ε/2, then our construction Ψ with ρ repetitions of each bit of the
codeword and nρ dummy bits is t-fingerprinting with error at most ε as long as

(2η)ρ ≤ ε

2n
.

4.3 A 2-user Anonymous Broadcast Encryption Scheme

We now present a concrete instance of a 2ABE scheme to use as a build-
ing block in our message-based traitor tracing scheme. We view the 2-key 1-
copyrighted public-key encryption scheme of Kiayias and Yung [KY02], as a
2-user 1-collusion-secure anonymous broadcast encryption scheme (2ABE). For
ease of exposition, we model the scheme as a KEM.

Let G be a group of prime order q, with a generator g. The public parameters
consist of (G, q, g). Since we consider the 2-user case, we drop the N parameter:

– Setup(1κ) picks α, β
$← Z×

q . For the two user-keys one chooses d′0, d
′
1 ∈ Zq,

and sets usku
def
= (du = α − d′u · β, d′u), for u = 0, 1. The encryption key is

ek
def
= {(f = gα, h = gβ), upk0 = hd′

0 , upk1 = hd′
1}.

– Encaps(ek, S; r) where r ∈ Z×
q

• if S = {0, 1} then c = (gr, hr),K = f r

• else if S = {u} then r′
$← Z×

q , and c = (gr, hr′),K = (f/upku)r × upkr
′

u

– Decaps(usku, c) computes K = cdu
0 c

d′
u

1 . This is equal to grdu × hr′d′
u =

(f/upku)r × upkr
′

u , which ensures correctness in the second case, where S =
{u}. In the first case, since r′ = r, both users get the same key f r.

72 D. H. Phan, D. Pointcheval, and M. Strefler

Table 1. Comparison: G is the bit-length of a group element; B is the bit-length of a
message block. |PTXT| is always �nB, except for the schemes from Section 3.3 and 4,
where it is 2�nρB

Construction in |EK| |USK| |KeyHeader| |CTXT| Ciphertext Rate

Section 3.1 2�nG �nG �nG 2�nB 2 + G/B
Section 3.1 + rr. 2�nG �nG G 2�nB 2 + 1G/(�nB)
Section 3.2 2(� + 1)nG �nG (� + 1)nG (� + 1)nB 1 + 1/� + (1 + 1/�)G/B
Section 3.3 4(� + 1)nρG 2�nρG 2(� + 1)nρG 2(� + 1)nρB 1 + 1/� + (1 + 1/�)G/B
Section 3.4 2(� + 1)nG �nG G (� + 1)nB 1 + 1/� + 1G/(�nB)
Section 4 8nρG 4nρG 4(� + 1)nρG 2(� + 1)nρB 1 + 1/� + (2 + 2/�)G/B

This is a broadcast encryption, because when S = {u}, the user 1−u decapsulates
differently. Anonymity comes from the fact that a ciphertext is either a Diffie-
Hellman pair, when S = {0, 1}, and a random pair in the other case.

4.4 Security of the 2ABE

Theorem 9. If solving the DDH problem in the underlying group is hard, then
the 2ABE scheme presented in Section 4.3 is ANO-ACPA-secure and

Advano−acpa
2ABE (κ, τ) ≤ 4 · Advddh(κ, τ + τ ′).

The proof of this theorem is given in the full version [PPS12].

Theorem 10. If solving the DDH problem in the underlying group is hard,
then the 2ABE scheme presented in Section 4.3 is a 2-user IND-CPA-secure BE
scheme and

Advind−cpa
2ABE (κ, τ) ≤ Advddh(κ, τ + τ ′).

The proof of this theorem is given in the full version [PPS12].

5 Conclusion

Table 1 shows a comparison of several ways to do message-traceable encryption.
We compare the length of the encryption key (|EK|) and the user secret key
(|USK|), and the length of the key header and the symmetric encryption of the
plaintext (CTXT), normalizing for a plaintext (PTXT) length (before marking
blocks) of �n blocks. The ciphertext rate is defined as (|KeyHeader| + |CTXT|)
/ |PTXT|.

The simplest way is to use any public-key encryption scheme to encrypt each
message block twice, described in Section 3.1: two pairs of keys are generated
for each message block. Using ElGamal, we have one group element for the
key header (the key encapsulation) per message-version block. We can reduce
the key header to one group element by reusing randomness. However, even with
randomness reuse (rr), using this method it is impossible to reduce the ciphertext
rate below 2 without leaving some part of the message unprotected and exposed

Message-Based Traitor Tracing 73

to untraceable rebroadcasting, since each message block is encrypted twice with
the symmetric keys.

Using our improved construction from Section 3.2, we immediately cut the
number of blocks that must be sent almost in half with only a small constant
increase in the key header as compared to plain ElGamal. The modifications
from Section 3.3 multiply key and ciphertext length by 2ρ, but does not change
the ciphertext rate. Reusing the randomness in the ciphertext, described in Sec-
tion 3.4, again shrinks the key header that must be transmitted with every
message.

Our main construction from Section 4 achieves the same asymptotic efficiency
as the PKE construction, but with keys that are shorter by a factor of �.

Since these results are all asymptotic, the question arises how our scheme
performs in practice. Assume we want to design a scheme for N = 225 users, with
a maximum false positive rate of ε = 2−40. We set the collusion threshold to t =
16, which means we assume that retrieving the keys from 16 different decoders is
prohibitively expensive (16 is the largest collusion threshold considered in [JL07,
Fig. 5]). Then the length of the code is n = dmt2 log(N/ε) for some constant
dm. Blayer and Tassa claim that in most real-world applications, one can find a
code with dm < 8 [BT08], giving us a code length of 133 120 bits in exchange
for a higher false-negative error rate. We assume that we only want to protect
against pirates that rebroadcast at least 97% of the blocks, and set η = 2−5.
Since we need (2η)ρ ≤ ε/2n, ρ = 17, and we double the code length by padding
with dummy bits, then our modified code has a length of 4 526 080 bits. We
choose the efficiency parameter � = 20, so we need to split the film into 90 521
600 blocks.

Assuming a block size of 1 kB, our film needs to be at least 90.5 GB.2 Because
of the doubled blocks, the symmetrically encrypted part would be about 95 GB,
and the length of the key header would be about 3.8 GB (assuming 160 bit group
elements on a suitable elliptic curve), for a total ciphertext size of 98.8 GB that
would comfortably fit on an existing 100 GB BDXL Blu-ray disc. The overhead
of 9.2% is already within the acceptable range ([JL07] state 10% as their limit),
and as we can expect the size of media formats to grow, the concrete efficiency
of our scheme will only increase.

Acknowledgments. This work was supported by the French ANR-09-VERS-
016 BEST Project and the European Commission through the ICT Programme
under Contract ICT-2007-216676 ECRYPT II. The authors would like to thank
the anonymous reviewers of the Latincrypt 2012 program committee for their
helpful comments.

References

[ABN10] Abdalla, M., Bellare, M., Neven, G.: Robust Encryption. In: Micciancio, D.
(ed.) TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010)

2 To relate our ciphertext length to existing storage media sizes, we use SI prefixes.

74 D. H. Phan, D. Pointcheval, and M. Strefler

[BBKS07] Bellare, M., Boldyreva, A., Kurosawa, K., Staddon, J.: Multirecipient en-
cryption schemes: How to save on bandwidth and computation without
sacrificing security. IEEE Trans. on Info. Theory 53(11), 3927–3943 (2007)

[BF99] Boneh, D., Franklin, M.K.: An Efficient Public Key Traitor Scheme (Ex-
tended Abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 338–353. Springer, Heidelberg (1999)

[BN08] Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: ACM
CCS, pp. 455–470 (2008)

[BP08] Billet, O., Phan, D.H.: Efficient Traitor Tracing from Collusion Secure
Codes. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 171–
182. Springer, Heidelberg (2008)

[BP09] Billet, O., Phan, D.H.: Traitors Collaborating in Public: Pirates 2.0. In:
Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 189–205. Springer,
Heidelberg (2009)

[BS98] Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE
Trans. on Information Theory 44(5), 1897–1905 (1998)

[BT08] Blayer, O., Tassa, T.: Improved versions of tardos’ fingerprinting scheme.
Designs, Codes and Cryptography 48(1), 79–103 (2008)

[CFN94] Chor, B., Fiat, A., Naor, M.: Tracing Traitors. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

[FNP07] Fazio, N., Nicolosi, A., Phan, D.H.: Traitor Tracing with Optimal Trans-
mission Rate. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.)
ISC 2007. LNCS, vol. 4779, pp. 71–88. Springer, Heidelberg (2007)

[FT99] Fiat, A., Tassa, T.: Dynamic Traitor Tracing. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 354–371. Springer, Heidelberg (1999)

[JL07] Jin, H., Lotspiech, J.: Renewable Traitor Tracing: A Trace-Revoke-Trace
System For Anonymous Attack. In: Biskup, J., López, J. (eds.) ESORICS
2007. LNCS, vol. 4734, pp. 563–577. Springer, Heidelberg (2007)

[KP09] Kiayias, A., Pehlivanoglu, S.: Tracing and Revoking Pirate Rebroadcasts.
In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 253–271. Springer, Heidelberg (2009)

[KP10] Kiayias, A., Pehlivanoglu, S.: Encryption for Digital Content. In: Advances
in Information Security, vol. 52. Springer (2010)

[KY02] Kiayias, A., Yung, M.: Traitor Tracing with Constant Transmission Rate.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465.
Springer, Heidelberg (2002)

[LPQ11] Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryp-
tion. Cryptology ePrint Archive, Report 2011/476 (2011)

[NSS99] Naccache, D., Shamir, A., Stern, J.P.: How to Copyright a Function?
In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 188–196.
Springer, Heidelberg (1999)

[PPS11] Phan, D.H., Pointcheval, D., Strefler, M.: Security Notions for Broadcast
Encryption. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715,
pp. 377–394. Springer, Heidelberg (2011)

[PPS12] Phan, D.H., Pointcheval, D., Strefler, M.: Message-based traitor tracing
with optimal ciphertext rate. In: Latincrypt, full version available from the
author’s webpage (2012)

Message-Based Traitor Tracing 75

[Sir07] Sirvent, T.: Traitor tracing scheme with constant ciphertext rate against
powerful pirates. In: Tillich, J.-P., Augot, D., Sendrier, N. (eds.) Proc. of
Workshop on Coding and Cryptography (WCC 2007), pp. 379–388 (April
2007)

[SNW00] Safavi-Naini, R., Wang, Y.: Sequential Traitor Tracing. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 316–332. Springer, Heidelberg (2000)

[Tar08] Tardos, G.: Optimal probabilistic fingerprint codes. Journal of the
ACM 55(2) (May 2008)

A Definitions

A.1 Public-Key Encryption

Definition 11 (Encryption Scheme). A public-key encryption scheme is a
4-tuple of algorithms PKE = (Setup,KeyGen,Encrypt,Decrypt):

– Setup(1k), where k is the security parameter, generates the global parameters
param of the system;

– KeyGen(param) generates a pair of keys, the public (encryption) key ek and
the associated private (decryption) key dk;

– Encrypt(ek,m; r) produces a ciphertext c on the input message m and the
public key ek, using the random coins r (we may omit r when the notation
is obvious);

– Decrypt(dk, c) decrypts the ciphertext c under the private key dk. It outputs
the plaintext, or ⊥ if the ciphertext is invalid.

The correctness requirement is that we get Decrypt(dk,Encrypt(ek,m)) = m if
(ek, dk) ← KeyGen(param) for all parameters.

Such an encryption scheme is said to be (t, qD, ν)-IND-CCA-secure (semantic
security against chosen-ciphertext attacks) if in the security game presented in
Figure 4, the advantage, denoted Advind−cca

PKE (k, t, qD), of any t-time adversary A
asking at most qD decryption queries to the ODecrypt oracle is bounded by ν:

Advind−cca
PKE (k, t, qD)

= max
A
{Pr[Expind−cca−1

PKE,A (k) = 1]− Pr[Expind−cca−0
PKE,A (k) = 1]}.

This definition includes IND-CPA (for Chosen-Plaintext Attacks) when qD = 0.

A.2 Anonymous Broadcast Encryption

Anonymous broadcast encryption (ABE) allows to address a message to a subset
of the users, without revealing this target set even to users who successfully
decrypted the message. We define an ABE as a key encapsulation mechanism
(KEM), following the definitions found in [PPS11, LPQ11]:

76 D. H. Phan, D. Pointcheval, and M. Strefler

Expind−cca−b
PKE,A (k)

param← Setup(1k);
QD ← ∅, (ek, dk)← KeyGen(param);

(state ,m0,m1)← AODecrypt(·)(FIND; param, ek);
c∗ ← Encrypt(ek,mb);

b′ ← AODecrypt(GUESS, state ; c∗);
if c∗ ∈ QD then return 0;
else return b′;

ODecrypt(c)
QD ← QD ∪ {c};
m← Decrypt(dk, c);
return m;

Fig. 4. PKE : Semantic Security against Chosen-Ciphertext Attacks (IND-CCA)

– Setup(1κ, N), where k is the security parameter, and N the number of users,
generates the global parameters param of the system (omitted in the follow-
ing), N user secret keys {uski}i=1,...,N , and an encryption key ek.

– Encaps(ek, S; r) takes as input the encryption key ek, the target set S ⊂
{1, . . . , N}, and some random coins r (which are sometimes omitted). It
outputs a session key K, and an encapsulation c of K;

– Decaps(uski, c) takes as input a decryption key and a ciphertext c. It outputs
the session key K, or the error symbol ⊥.

For correctness, we require that for any c that encapsulates a key K for a target
set S, if i ∈ S, then Decaps(uski, c) outputs K. Then, semantic security and
anonymity should be satisfied.

Definition 12 (Semantic security). We say that an anonymous broadcast en-
cryption (ABE) scheme Π is (τ,N, qC , qD, ν)-IND-ACCA-secure (semantic secu-
rity against adaptive corruption and chosen-ciphertext attacks) if in the security
game presented in Figure 5, the advantage, denoted Advind−acca

Π (κ, τ,N, qC , qD),
of any τ-time adversary A corrupting at most qC users (OCorrupt oracle), and
asking for at most qD decryption queries (ODecrypt oracle), is bounded by ν:

Advind−acca
Π (κ, τ,N, qC , qD)

= max
A
{Pr[Expind−acca−1

Π,A (κ,N) = 1]− Pr[Expind−acca−0
Π,A (κ,N) = 1]}.

This definition includes IND-ACPA (for Chosen-Plaintext Attacks) when qD = 0,

and thus we denote the advantage Advind−acpa
Π (κ, τ,N, qC). When no corruption

is allowed, we denote the advantage Advind−cpa
Π (κ, τ,N).

Definition 13 (Anonymity). We say that an anonymous broadcast encryp-
tion (ABE) scheme Π is (τ,N, qC , qD, ν)-ANO-ACCA-secure (anonymity against
adaptive corruption and chosen-ciphertext attacks) if in the security game pre-
sented in Figure 5, the advantage, denoted Advano−acca

Π (κ, τ,N, qC , qD), of any
τ-time adversary A corrupting at most qC users (OCorrupt oracle), and asking
for at most qD decryption queries (ODecrypt oracle), is bounded by ν:

Message-Based Traitor Tracing 77

ODecrypt(i, c)
QD ← QD ∪ {(i, c)};
K ← Decaps(uski, c); return K;

OCorrupt(i)
QC ← QC ∪ {i};
return uski;

Expind−acca−b
Π,A (κ,N)

({uski}, ek)← Setup(1κ, N); QC ← ∅; QD ← ∅;
(state , S)← AODecrypt(·,·),OCorrupt(·)(FIND; ek);
(K1, c

∗)← Encaps(ek, S); K0
$←− K

b′ ← AODecrypt(·,·),OCorrupt(·)(GUESS; state ,Kb, c
∗);

if ∃i ∈ S : (i, c∗) ∈ QD or S ∩QC �= ∅ then return 0;
else return b′;

Expano−acca−b
Π,A (κ,N)

({uski}, ek)← Setup(1κ, N); QC ← ∅; QD ← ∅;
(state , S0, S1)← AODecrypt(·,·),OCorrupt(·)(FIND; ek);
(K, c∗)← Encaps(ek, Sb);

b′ ← AODecrypt(·,·),OCorrupt(·)(GUESS, state ;K, c∗);
if ∃i ∈ S0�S1 : (i, c∗) ∈ QD or (S0�S1) ∩QC �= ∅
then return 0; else return b′;

Fig. 5. Security games for ABE

Advano−acca
Π (κ, τ,N, qC , qD)

= max
A
{Pr[Expano−acca−1

Π,A (κ,N) = 1]− Pr[Expano−acca−0
Π,A (κ,N) = 1]}.

This definition includes ANO-ACPA (for Chosen-Plaintext Attacks) when qD = 0,
and thus we denote the advantage Advano−acpa

Π (k, τ,N, qC). When no corruption

is allowed, we denote the advantage Advano−cpa
Π (κ, τ,N).

Leakage-Resilient Spatial Encryption

Michel Abdalla and Jill-Jênn Vie

Département d’Informatique, École Normale Supérieure, France
{Michel.Abdalla,Jill-Jenn.Vie}@ens.fr

http://www.di.ens.fr/users/{mabdalla,jvie}

Abstract. Spatial encryption is a generic public-key cryptosystem where
vectors play the role of public keys and secret keys are associated to affine
spaces. Any secret key associated to a space can decrypt all ciphertexts
encrypted for vectors in that space, and the delegation relation is defined
by subspace inclusion. Though several constructions of spatial encryption
schemes have been proposed in the literature, none of them are known to
remain secure in the leakage-resilient setting, in which the adversary may
be capable of learning limited additional information about the master
secret key and other secret keys in the system. In this paper, we pro-
pose the first spatial encryption scheme achieving leakage resilience in
the standard model, based on existing static assumptions over bilinear
groups of composite order. Our new scheme is based on the leakage-
resilient HIBE scheme by Lewko, Rouselakis, and Waters in TCC 2011
and can be seen as a generalization of Moriyama-Doi spatial encryption
scheme to the leakage-resilient setting.

Keywords: Spatial encryption, leakage resilience.

1 Introduction

When a theoretical scientist designs a cryptosystem, he is often unpleasantly
surprised by the weaknesses that its physical implementation can induce. Indeed,
history has proven that these attempts to break the system, called side-channel
attacks, can be devastating. In order to design schemes that can provably resist
these attacks, a stronger notion of security has been established. A leakage-
resilient scheme considers that an attacker is able to learn partial information
about some secret values used throughout the lifetime of the system.

1.1 Leakage Models

This paper will be mainly concerned with achieving leakage resilience based on
the model of memory attacks, introduced by Akavia, Goldwasser, and Vaikun-
tanathan in [AGV09]. According to their model, the adversary can learn arbitrary
information about the secret state of a system, by selecting polynomial-time com-
putable functions fi : {0, 1}∗ → {0, 1}λi and learning the value of fi applied to
the internal state of the system.

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 78–99, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Leakage-Resilient Spatial Encryption 79

As mentioned in [BSW11], there are two main variants of the memory attacks
model, known as the bounded-leakage and the continual-leakage models.

In a bounded-leakage model, we define a leakage bound λ such that the overall
amount of information learned by the adversary throughout the entire lifetime
of the system is

∑
i λi ≤ λ.

If a system is used continually for a sufficiently long time, then any static piece
of information that stays unmodified on the system can eventually be recovered
by the adversary. Thus, the secret keys of such systems must be periodically
refreshed. Recently, Dodis et al. [DHLAW10] and Brakerski et al. [BKKV10]
concurrently suggested the continual-leakage model, which allows for its internal
secret keys to be refreshed periodically without changing the value of the corre-
sponding public key. In their model, the adversary is allowed to learn functions
of the entire secret state of the system all the time, including the secret key itself
and the random bits generated by the system. Moreover, the leakage bound λ
only refers to the overall amount of information learned by the adversary be-
tween any two successive refreshes. Hence, we can think of λ as the leakage rate
of the scheme.

1.2 Spatial Encryption

The goal of this work is to consider leakage resilience in the context of spatial
encryption, which is a generic public-key cryptosystem first defined in [BH08]
where vectors play the role of public keys and secret keys are associated to affine
spaces. In a spatial encryption scheme, any user possessing a secret key for a
certain space W1 can delegate a secret key for a space W2 included in W1. A
message encrypted for a certain vector u can be decrypted by any user possessing
a secret key associated to a space that contains u.

In addition to proposing the concept of spatial encryption, Boneh and Ham-
burg [BH08] also provided a construction based on bilinear maps which is prov-
ably secure in the selective security model based on the BDDHE assumption
([BGW05]). In the selective secure model, the adversary decides on the vector
upon which he wants to be challenged before seeing the public key of the scheme.
Their work was later improved by Moriyama and Doi in [MD11] who proposed
a fully secure (as opposed to selective secure) spatial encryption scheme in the
standard model based on bilinear groups of composite order.

1.3 Our Contributions

In this paper, we propose the first spatial encryption scheme achieving leakage
resilience in the bounded leakage model. Our scheme is based on the leakage-
resilient HIBE scheme by Lewko, Rouselakis, and Waters in [LRW11] and can
be seen as a generalization of Moriyama-Doi spatial encryption scheme to the
leakage-resilient setting. Like the Lewko-Rouselakis-Waters HIBE scheme, our
new scheme works over bilinear groups of composite order and is proven secure
under static assumptions used in [LOS+10, LW10, LRW11].

80 M. Abdalla and J.-J. Vie

1.4 Outline

In Section 2, we recall some basic definitions and state the complexity assump-
tions that will be needed for the proof of security of our scheme. In Section 2.4,
we recall the formal definition of spatial encryption, which is a generalization
of hierarchical identity-based encryption. In Section 3, we present our leakage-
resilient spatial encryption scheme. It is worth noting that, to date, none of the
existing constructions of spatial encryption are leakage resilient and that our
scheme is the first one to achieve this level of security. We conclude this article
by listing some possible directions for future work.

2 Preliminaries

2.1 Notation and Conventions

We denote by a, b, c
R←− S the fact that a, b, c are picked independently and

uniformly at random from a set S. By negl(λ), we denote a negligible function
of λ, i.e. a function f : N→ R such that for every c > 0 and for all but a finite
number of λ’s: f(λ) ≤ λ−c.

By |x|, we denote the size/number of bits of term x. The empty vector is
denoted ε. Also, the special symbol ⊥ is meant to serve as a unique dummy
value in all our systems. Finally, by PPT we denote a probabilistic polynomial-
time algorithm.

2.2 Composite Order Bilinear Groups

Composite order bilinear groups were first used in cryptography in [BGN05] (see
also [Bon07]). To generate these groups, we suppose the existence of an efficient
group generator algorithm G which takes as input the security parameter λ and
outputs a description I = (N,G,GT , ê) of a bilinear setting, where G and GT

are cyclic groups of order N , and ê : G × G → GT is a map with the following
properties:

1. (bilinearity) ∀g, h ∈ G and a, b ∈ ZN it holds that ê(ga, hb) = ê(g, h)ab;

2. (non-degeneracy) ∃g ∈ G such that ê(g, g) has order N in GT .

We assume that the group descriptions of G and GT include generators of the
respective cyclic groups. We require that the group operations in G and GT as
well as the bilinear map ê are computable in deterministic polynomial time in
λ. In our construction, we will make hardness assumptions for bilinear settings
whose order N is product of three distinct primes each of length Θ(λ). For an
integer m dividing N , we let Gm denote the subgroup of G of order m. From
the fact that the group is cyclic, it is easy to verify that if g and h are group
elements of co-prime orders then ê(g, h) = 1. This is called the orthogonality
property and is a crucial tool in our constructions.

Leakage-Resilient Spatial Encryption 81

2.3 Complexity Assumptions

The proof of security of our system will rely on Assumptions 1, 2, and 3 from
[LRW11]. These assumptions work over bilinear groups of composite order and
were already used in the security proof of several other systems (e.g., [LOS+10,
LW10]). For completeness, we restate these assumptions below.

To simplify, we will write in the proof T ∈ Gp1p?
2p3

when T is a challenge term
either in Gp1p3 or in Gp1p2p3 , for example.

Assumption 1. Given D1 = (N,G,GT , ê, g1, g3), no PPT (probabilistic poly-
nomial-time) adversary has a non-negligible advantage in distinguishing

T1 = ga1 from T2 = ga1g
b
2

where a, b
R←− ZN .

The advantage of an algorithm A in breaking Assumption 1 is defined as:

AdvA1 (λ) =
∣∣Pr[A(D1, T1) = 1]− Pr[A(D1, T2) = 1]

∣∣
We say that Assumption 1 holds if for all PPTA, AdvA1 (λ) is a negligible function
of λ.

Assumption 2. Given D2 = (N,G,GT , ê, g1, g3, g
x
1g

y
2 , g

y′
2 gz

′
3) where x, y, y′,

z′
R←− ZN , no PPT adversary has a non-negligible advantage in distinguishing

T1 = ga1g
c
3 from T2 = ga1g

b
2g

c
3

where a, b, c
R←− ZN .

The advantage of an algorithm A in breaking Assumption 2 is defined as:

AdvA2 (λ) =
∣∣Pr[A(D2, T1) = 1]− Pr[A(D2, T2) = 1]

∣∣
We say that Assumption 2 holds if for all PPTA, AdvA2 (λ) is a negligible function
of λ.

Assumption 3. Given D3 = (N,G,GT , ê, g1, g2, g3, g
x
1g

y
2 , g

x′
1 gy

′
2) where x, y, x′,

y′
R←− ZN , no PPT adversary has a non-negligible advantage in distinguishing

T1 = ê(g1, g1)xx
′ ∈ GT from T2

R←− GT .

The advantage of an algorithm A in breaking Assumption 3 is defined as:

AdvA3 (λ) =
∣∣Pr[A(D3, T1) = 1]− Pr[A(D3, T2) = 1]

∣∣
We say that Assumption 3 holds if for all PPTA, AdvA3 (λ) is a negligible function
of λ.

82 M. Abdalla and J.-J. Vie

2.4 Spatial Encryption

The notion of spatial encryption proposed by Boneh and Hamburg in [BH08] is
a generalization of the notion of hierarchical identity-based encryption [HL02],
in which vectors play the role of public keys and secret keys are associated to
affine spaces. In these schemes, any user possessing a secret key for a certain
space W1 can delegate a secret key for a space W2 included in W1. A message
encrypted for a certain vector u can be decrypted by any user possessing a secret
key associated to a space that contains u. We denote Aff(M,u) the affine space
{u + Mv,v ∈ Zn

N}. All affine spaces considered will be subspaces of E = Zn
N ,

the whole space.
More formally, a spatial encryption scheme is defined by the following set of

algorithms.

Setup(1λ, n) → (PP, SKE) The setup algorithm takes an integer security param-
eter λ as input and outputs the public parameters PP and the original key for
the whole space SKE . In the rest of this paper, all algorithms will take implicitly
the security parameter and the public parameters as inputs.

KeyGen(SKE ,W) → K The key generation algorithm takes a key for the whole
space SKE and an affine space W . It outputs a secret key K = SKW , for the
affine space W . If W = E, it outputs another key for the whole space, K = SK′

E ,
such that |SKE | = |SK′

E |. This new key can now be used instead of the original
key in calls of KeyGen.

Encrypt(M,u) → CT The encryption algorithm takes in a message M and a
vector u. It outputs a ciphertext CT.

Delegate(W1, SKW1 ,W2) → SKW2 The algorithm takes in an affine space W1, a
secret key for that space, and a subspace W2 included in W1. It outputs a secret
key for W2.

Decrypt(CT,u,W, SKW) → m The decryption algorithm takes in a ciphertext
CT for message m and for vector u, and a secret key SK for space W . If W con-
tains u, it first delegates SKW to obtain SKu. Then it outputs the message m.

Security. The standard notion of security for spatial encryption schemes is
indistinguishability of plaintexts under chosen-plaintext attacks [BH08], in which
the adversary cannot distinguish between the encryption of two equal-length
messages of its choice for a challenge vector, even if it is given access to secret
keys corresponding to affine spaces that do not contain the challenge vector. In
this paper, we propose an extension of the above security notion, which also
takes into account the leakage of the secret keys used throughout the lifetime of
the system.

The new notion of leakage-resilient security for spatial encryption schemes is
based on a game, called MasterLeakSpatial, which is an adaptation of the notion

Leakage-Resilient Spatial Encryption 83

of master-key leakage security (MasterLeak) for HIBE schemes introduced by
Lewko, Rouselakis and Waters in [LRW11] to the spatial encryption setting. In
this game, the challenger first makes a call to Setup to get a secret key for the
whole space, and public parameters that it can give to the adversary, which runs
in two phases. In a first phase, the adversary can make a polynomial number of
Create, Delegate, Leak, and Reveal queries, in any order.

– Via a Create query, the adversary can ask the challenger to create a key
for a space W and to store it in an array. The adversary has to additionally
supply a handle h which indicates the master key to be used during the
key generation. In return, the challenger outputs a unique handle associated
with the new key or ⊥ if the handle provided by the adversary does not
correspond to a master key.

– Via a Delegate query, the adversary can ask the challenger to create a key
for a space W ′ starting from a key associated with a handle h. Let W and
SKW be the space and the corresponding key associated with the handle h.
For simplicity, we assume that W contains W ′. To answer this query, the
challenger computes the new key by running the Delegate algorithm, stores
it in a new position of the array, and returns the unique handle associated
with it to the adversary.

– Via a Leak query, the adversary can ask the challenger to compute a leak
function f to the key associated with a handle h. Let W, SKW , leaked be
the space, key, and total amount of leaked bits associated with the handle
h. If leaked + |f(SK)| ≤ �SK, then the challenger simply returns f(SK) to
the adversary. Otherwise, the challenger returns ⊥.

– Via a Reveal query, the adversary can ask the challenger to recover a entire
key associated with handle h, as long as it is not a key associated to the
entire space.

At the end of the first phase, the adversary chooses a challenge vector u∗ that
should not be contained in a space associated with any of the revealed keys, as
well as two challenge messages m0,m1. The adversary then gives (u∗,m0,m1)
to the challenger, which in turn chooses a random bit β and returns CT∗ =
Encrypt(mβ ,u

∗) to the adversary. From then on, the second phase starts, and
the adversary can make additional Create and Delegate queries. It can also
make additional Reveal queries as well as long as the associated space does not
contain u∗. At the end of the second phase, the adversary outputs a guess value
β′ for β and wins if β′ = β. Finally, the scheme is considered leakage resilient if no
PPT adversary can win the MasterLeakSpatial game with probability significantly
better than 1/2.

In order to define more formally the MasterLeakSpatial security game, let us
first introduce the following parameters:

– the set R ∈ P(E) of spaces for which a key has been revealed;
– the array T ⊂ E×SK×N that holds tuples of the form (space, key, leaked).

The formal definition of the game MasterLeakSpatial, which is described in Fig-
ure 1, consists of the following phases:

84 M. Abdalla and J.-J. Vie

Setup. The challenger makes a call to Setup(1λ) and gets a key SK for the whole
space E and the public parameters PP. It gives PP to the adversary.

Phase 1. In this phase, the adversary can make any of the following queries to
the challenger, in any possible way: Create, Leak, Reveal, Delegate. These
algorithms are listed in Figure 1.

Challenge. The adversary chooses a challenge vector u∗ such that no element
of R contains it, as well as two messages m0,m1 of equal size. It makes a call to
LR(u∗,m0,m1) and obtains a ciphertext CT∗.

Phase 2. This is the same as Phase 1, except that only queries to Create,
Delegate, and Reveal are allowed. Moreover, Reveal should not refer to a
secret key whose associated space contains u∗.

Guess. The adversary chooses a bit β′ and calls Finalize(β′). If the output is
True, it succeeds.

Game MasterLeakSpatial

procedure Initialize

(PP,SK)
R←− Setup

R ← ∅
T [0]← (E,SK, 0)
nbKeys← 1

β
R←− {0, 1}

Return PP

procedure Create(h,W)

If T [h].space = E then

SKW
R←− KeyGen(T [h].key,W)

h′ ← nbKeys

T [h′]← (W,SKW , 0)
nbKeys← nbKeys + 1
Return h′

Else
Return ⊥

procedure Delegate(h,W ′)
SKW ′ ← Delegate(T [h].space, T [h].key,W ′)

h′ ← nbKeys

T [h′]← (W ′,SKW ′ , 0)
nbKeys← nbKeys + 1
Return h′

procedure Leak(h, f)

SK← T [h].key
If T [h].leaked + |f(SK)| ≤ �SK then
T [h].leaked ← T [h].leaked + |f(SK)|
Return f(SK)

Else
Return ⊥

procedure Reveal(h)

If T [h].space �= E then
R ← R∪ T [h].space
Return T [h].key

Else
Return ⊥

procedure LR(u∗,m0,m1)

CT∗ R←− Encrypt(u∗, mβ)
Return CT∗

procedure Finalize(β′)
Return (β′ = β)

Fig. 1. Algorithms of the game MasterLeakSpatial

Finally, the security definition that we use is the following:

Leakage-Resilient Spatial Encryption 85

Definition 1. A spatial encryption system Π is �SK-master-leakage secure if
for all PPT adversaries A it is true that

AdvMasterLeakSpatial
A,Π (λ, �SK) ≤ negl(λ)

where AdvMasterLeakSpatial
A,Π (λ, �SK) is the advantage of A in game MasterLeakSpatial

with security parameter λ and leakage parameter �SK = �SK(λ) and is formally
defined as:

AdvMasterLeakSpatial
A,Π (λ, �SK) =

∣∣∣∣Pr[A succeeds]− 1

2

∣∣∣∣ ,
where the probability is over all random bits used by the challenger and the
attacker.

3 Our New Leakage-Resilient Spatial Encryption Scheme

We now present our construction of a leakage-resilient spatial encryption scheme,
which can be seen as an extension of the leakage-resilient HIBE scheme by Lewko,
Rouselakis, and Waters in [LRW11]. As in the original scheme, ciphertexts con-
tain a constant number of group elements. The security proof of this system is
available in Appendix A.

3.1 A Few Useful Notations

For a vector v = (v1, . . . , vn)	 ∈ Zn
N of field elements, we use gv to denote the

vector of group elements

gv = (gv1 , . . . , gvn)
	 ∈ Gn

To simplify the notation, we introduce an operator

ψ : Gn × Zn
N → G

(gv, w) �→ g〈v,w〉

and its extension:

ψ∗ : Gn × Zn×d
N → Gd(

gv,

(
C1, . . . ,Cd

))
�→ (ψ(gv ,C1), . . . , ψ(gv,Cd))

	

We can notice that ψ is easily computable.

Given a pairing ê : G × G → GT , we can define an extension ên in a similar
way:

ên : Gn ×Gn → GT

((g1, . . . , gn), (g′1, . . . , g
′
n)) �→

n∏
i=1

ê(gi, g
′
i)

86 M. Abdalla and J.-J. Vie

3.2 Construction

The system parameters for our spatial encryption system will be primes p1, p2, p3
(where each log pi is approximately the security parameter λ) and two groups
G and GT of order N = p1p2p3, with a bilinear pairing ê : G × G → GT .
Additionally, the public parameters will include group elements g1 ∈ Gp1 , g3 ∈
Gp3 , g

ϕ
1 ∈ G, t ∈ GT and a vector gα1 ∈ Gn.

A secret key for an affine space W = Aff(M,u) of dimension d will be com-
posed of d + n + 2 elements from the group G:

(kρ, kr, ku,kdel) =
(
gρ1 , g

r
1, g

τ+r(ϕ+〈u,α〉)−〈ρ,σ〉
1 , grM

�α
1

)
× gμ3 ∈ Gd+n+2.

Setup(λ) generates the system parameters N = p1p2p3,G,GT . It then chooses
parameters

g1
R←− Gp1 g3

R←− Gp3 r, ϕ
R←− ZN α,ρ,σ

R←− Zn
N μ

R←− Z2n+2
N

and secret parameter τ
R←− ZN , then computes t = ê(g1, g1)τ . It outputs public

parameters

PP = (N, g1, g3, g
ϕ
1 , g

α
1 , t, gσ1)

and secret key

SKE =
(
gρ1 , g

r
1 , g

τ+rϕ−〈ρ,σ〉
1 , grα1

)
× gμ3 .

Delegate(W1, SKW1 ,W2) takes two subspaces W1 = Aff(M1,u1) and W2 =
Aff(M2,u2) and a key SKW1 under the form (kρ, kr, ku1 ,kdel). Let μ be the
Gp3 part of SKW1 . We similarly divide μ into (μρ, μr, μu1 ,μdel). Since W2 is a
subspace of W1, we must have M2 = M1T and u2 = u1 + M1v for some matrix
T and vector v. We can then compute a key for W2:

ŜKW2 = (kρ, kr, ku1 · ψ(kdel, v)︸ ︷︷ ︸
ku2

, ψ∗(kdel, T)︸ ︷︷ ︸
k′
del

)

=
(
gρ1 , g

r
1 , g

τ+r(ϕ+〈u1,α〉)−〈ρ,σ〉
1 · grv

�M1
�α

1 , grT
�M1

�α
1

)
×
(
g
μρ

3 , gμr

3 , g
μu1+〈v,μdel〉
3 , gT

�μdel

3

)
=
(
gρ1 , g

r
1 , g

τ+r(ϕ+〈u1,α〉)−〈ρ,σ〉+r〈M1v,α〉
1 , grM2

�α
1

)
× gμ

′
3

=
(
gρ1 , g

r
1 , g

τ+r(ϕ+〈u2,α〉)−〈ρ,σ〉
1 , grM2

�α
1

)
× gμ

′
3

where μ′ = (μρ, μr, μu1 + 〈v,μdel〉 , T	μdel).

Then we pick Δr
R←− ZN , Δρ

R←− Zn
N and Δμ

R←− Zd+n+2
N to re-randomize it:

SKW2 = ŜKW2 ×
(
gΔρ
1 , gΔr

1 , g
Δr(ϕ+〈u2,α〉)−〈Δρ,σ〉
1 , gΔrM2

�α
1

)
× gΔμ

3 .

=
(
gρ+Δρ
1 , gr+Δr

1 , g
τ+(r+Δr)(ϕ+〈u2,α〉)−〈ρ+Δρ,σ〉
1 , g

(r+Δr)M2
�α

1

)
×gμ

′+Δμ
3 .

Leakage-Resilient Spatial Encryption 87

Notice that Delegate(W1, SKW1 ,W1) is a re-randomization of SKW1 .

KeyGen(SKE ,W) can be seen as Delegate(E, SKE ,W).

Encrypt(m,u), where m is encoded as an element of the target group GT , picks

a random s
R←− Zn

N and computes the ciphertext

CT = (cσ, cu, cs, cm) =
(
gsσ1 , g

−s(ϕ+〈u,α〉)
1 , gs1,m · ts

)
∈ Gn+2 ×GT .

Decrypt(CT,u,W, SKW) where CT = (CT∗, cm) = (cσ, cu, cs, cm) first delegates

SKW to obtain the key SKu = (kρ, kr, ku) =
(
gρ1 , g

r
1 , g

τ+r(ϕ+〈u,α〉)−〈ρ,σ〉
1

)
× gμ3 .

It then recovers

cm
ên+2(CT∗, SKu)

=
cm

ên(cσ,kρ) · ê(cu, kr) · ê(cs, ku)

=
m · ts

ê(g1, g1)
s〈ρ,σ〉−rs(ϕ+〈u,α〉)+s(τ+r(ϕ+〈u,α〉)−〈ρ,σ〉)

=
m · ê(g1, g1)sτ

ê(g1, g1)sτ
= m.

3.3 Security of Our Scheme

The security of our spatial encryption scheme follows from the following theorem:

Theorem 1. Under Assumptions 1, 2, 3 and for �SK = (n−1−2c) logp2, where
c > 0 is any fixed positive constant, the spatial encryption scheme described in
Section 3.2 is �SK-master-leakage secure.

Since the proof of Theorem 1 uses the dual system encryption technique, first
developed by Waters in [Wat09], let us first recall this proof methodology.

Dual System Encryption. In a dual system encryption scheme, both cipher-
texts and secret keys can take one of two indistinguishable forms: normal, or
semi-functional. A normal secret key can be used to decrypt any type of ci-
phertext (normal or semi-functional). Likewise, a normal ciphertext can be de-
crypted by any type of secret key (normal or semi-functional). As shown in
Table 1, the only combination that does not work is a semi-functional key with
a semi-functional ciphertext.

The idea behind the proof of security of a dual system encryption scheme is
to gradually modify the secret keys and ciphertexts of the system to make them
semi-functional. When both secret keys and ciphertexts are semi-functional,
proving security is straightforward.

88 M. Abdalla and J.-J. Vie

Table 1. Different combinations of secret keys and ciphertexts

secret key ciphertext decryption

normal normal correct
normal semi-functional correct
semi-functional normal correct
semi-functional semi-functional incorrect

Proof Overview. In order to prove Theorem 1, we need to prove that the
advantage of the adversary in the MasterLeakSpatial game is negligible. Towards
this goal, we will define a sequence of games that are closely related to each other.
We will prove that the difference in probability of winning for the adversary is
negligible between two consecutive games of this sequence, until we get to a game
where both keys and ciphertexts are semi-functional, in which the adversary only
has a negligible chance of winning the game.

A semi-functional key has Gp2 parts, while a normal key has not. We pick at
random g2, a generator of Gp2 .

KeyGenSF(SK,W) first calls Delegate(E, SK,W) so as to get a normal key SKW =

(kρ, kr, ku,kdel). It then picks γ
R←− Zn+2

N , θ
R←− Zd

N and computes

S̃KW =
(
(kρ, kr, ku)× gγ2 ,kdel × gθ2

)

Game MasterLeakC
procedure Initialize

(PP,SK)
R←− Setup

R ← ∅
T [0]← (E,SK, 0)
nbKeys← 1

β
R←− {0, 1}

Return PP

procedure Create(h,W)

If T [h].space = E then

SKW
R←− KeyGen(T [h].key,W)

h′ ← nbKeys

T [h′]← (W,SKW , 0)
nbKeys← nbKeys + 1
Return h′

Else
Return ⊥

procedure Delegate(h,W ′)
Return Create(0,W ′)

procedure Leak(h, f)

SK← T [h].key
If T [h].leaked + |f(SK)| ≤ �SK then
T [h].leaked ← T [h].leaked + |f(SK)|
Return f(SK)

Else
Return ⊥

procedure Reveal(h)

If T [h].space �= E then
R ← R∪ T [h].space
Return T [h].key

Else
Return ⊥

procedure LR(u∗,m0,m1)

CT∗ R←− EncryptSF (u∗,mβ)

Return CT∗

procedure Finalize(β′)
Return (β′ = β)

Fig. 2. Algorithms of the game MasterLeakC

Leakage-Resilient Spatial Encryption 89

Game MasterLeakCK
procedure Initialize

(PP,SK)
R←− Setup

S̃K← KeyGenSF(SK, E)

R ← ∅
T [0]← (E,SK, S̃K , 0)
nbKeys← 1

β
R←− {0, 1}

Return PP

procedure Create(h,W)

If T [h].space = E then

SKW
R←− KeyGen(T [h].key,W)

S̃KW
R←− KeyGenSF(T [h].key,W)

h′ ← nbKeys

T [h′]← (W,SKW , S̃KW , 0)

nbKeys← nbKeys + 1
Return h′

Else
Return ⊥

procedure Delegate(h,W ′)
Return Create(0,W ′)

procedure Leak(h, f)

S̃K← T [h].keySF

If T [h].leaked + |f(S̃K)| ≤ �SK then

T [h].leaked ← T [h].leaked + |f(S̃K)|
Return f(S̃K)

Else
Return ⊥

procedure Reveal(h)

If T [h].space �= E then
R ← R∪ T [h].space

Return T [h].keySF

Else
Return ⊥

procedure LR(u∗,m0,m1)

CT∗ R←− EncryptSF(u∗,mβ)
Return CT∗

procedure Finalize(β′)
Return (β′ = β)

Fig. 3. Algorithms of the game MasterLeakCK

EncryptSF(u,m) first calls Encrypt(u,m) to get CT = (cσ, cu, cs, cm). It then

picks δ
R←− Zn+2

N and computes the ciphertext

C̃T =
(
(cσ, cu, cs)× gδ2 , cm

)
.

γ, θ, δ are called the semi-functional parameters of the secret key, the delegation
key and the ciphertext, respectively. If someone uses a semi-functional key S̃K
for space W = Aff(M,u1) with parameters (γ, θ) to construct a secret key
for vector u2 = u1 + Mv with KeyGen, then this will be semi-functional with
parameter γ′ = γ + (0, . . . , 0, 〈v, θ〉).

A semi-functional secret key for vector u is called nominal with respect to a
ciphertext for vector u′ if it can correctly decrypt it, thus if and only if:

〈γ, δ〉 = 0 mod p2 and u = u′

because we get an extra term ê(g2, g2)〈γ,δ〉 by the pairing. If the secret key cannot
decrypt it, it is called truly semi-functional.

First, we define MasterLeakSpatial*, which is the same game as MasterLeakSpa-
tial except that all Delegate(h,W ′) calls have been replaced by Create(0,W ′)

90 M. Abdalla and J.-J. Vie

W0

SKW0

S̃KW0

j − 2

4 W1

SKW1

S̃KW1

j − 1

6 W2

SKW2

S̃KW2

j

2 W3

SKW3

S̃KW3

j + 1

3

Fig. 4. Example of T array being filled in the MasterLeakCKj game. Each cell contains
the quadruplet (space, key, keySF, leaked). The adversary has access to the semi-
functional versions of the j − 1 first keys, and to the normal versions of the other
keys.

calls. As the keys are identically distributed, the advantage of the adversary in
MasterLeakSpatial is negligibly close to its advantage in MasterLeakSpatial*.

Then we define MasterLeakC in Figure 2, which is similar to MasterLeakSpa-
tial* except that the challenge ciphertext is now semi-functional. Using Assump-
tion 1, we will show that the advantages of the adversary in those games are
negligibly close.

In MasterLeakCK, which is described in Figure 3, the semi-functional versions
of the secret keys are stored in T as well: it contains quadruplets of the form
(space, key, keySF, leaked). The Create calls use the normal versions of the
keys while the Leak and Reveal queries apply to the semi-functional versions.

Game MasterLeakCKj

procedure Initialize

(PP,SK)
R←− Setup

S̃K← KeyGenSF(SK, E)
R ← ∅
T [0]← (E,SK, S̃K, 0)
nbKeys← 1

β
R←− {0, 1}

Return PP

procedure Create(h,W)

If T [h].space = E then

SKW
R←− KeyGen(T [h].key,W)

S̃KW
R←− KeyGenSF(T [h].key,W)

h′ ← nbKeys

T [h′]← (W,SKW , S̃KW , 0)
nbKeys← nbKeys + 1
Return h′

Else
Return ⊥

procedure Delegate(h,W ′)
Return Create(0,W ′)

procedure Leak(h, f)

SK← h > j ? T [h].key : T [h].keySF

If T [h].leaked + |f(SK)| ≤ �SK then
T [h].leaked ← T [h].leaked + |f(SK)|
Return f(SK)

Else
Return ⊥

procedure Reveal(h)

If T [h].space �= E then
R ← R∪ T [h].space

Return h > j ? T [h].key : T [h].keySF

Else
Return ⊥

procedure LR(u∗,m0,m1)

CT∗ R←− EncryptSF(PP,u∗,mβ)
Return CT∗

procedure Finalize(β′)
Return (β′ = β)

Fig. 5. Algorithms of the game MasterLeakCKj

Leakage-Resilient Spatial Encryption 91

We will need Assumption 3 to prove that the advantage of the adversary is
negligible in this game.

In the MasterLeakCKj game, which is described in Figure 5, for the j− 1 first
keys the attacker creates, it will have access to the semi-functional versions of
them via Leak or Reveal queries. For the other keys, it will have access to
the normal versions (see also Figure 4). Notice that MasterLeakCK0 is exactly
MasterLeakC while MasterLeakCKnbKeys is exactly MasterLeakCK. We will show
that if Assumption 2 holds, the difference of probability of winning for the ad-
versary in MasterLeakCKj versus MasterLeakCKj+1 is negligible. To conclude the
proof, we show that the adversary’s probability of winning in MasterLeakCK is
negligible as long as Assumption 3 holds.

4 Concluding Remarks

We have designed the first leakage-resilient spatial encryption scheme, which is
an important instance of generalized identity-based encryption. Our scheme is
proven secure in the bounded-leakage model. To obtain stronger security guar-
antees, we need to consider models such as continual leakage and tolerate leakage
during key updates. To address this problem, a promising direction would be to
adapt the result of [LLW11] to the spatial encryption scenario.

Acknowledgements. This work was supported in part by the French ANR-
10-SEGI-015 PRINCE Project and by the European Commission through the
ICT Program under Contract ICT-2007-216676 ECRYPT II.

References

[AGV09] Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore
Bits and Cryptography against Memory Attacks. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

[BFO08] Boldyreva, A., Fehr, S., O’Neill, A.: On Notions of Security for Deter-
ministic Encryption, and Efficient Constructions without Random Ora-
cles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359.
Springer, Heidelberg (2008)

[BGN05] Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ci-
phertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341.
Springer, Heidelberg (2005)

[BGW05] Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast En-
cryption with Short Ciphertexts and Private Keys. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg
(2005)

[BH08] Boneh, D., Hamburg, M.: Generalized Identity Based and Broadcast
Encryption Schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS,
vol. 5350, pp. 455–470. Springer, Heidelberg (2008)

92 M. Abdalla and J.-J. Vie

[BKKV10] Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the
hole in the bucket: Public-key cryptography resilient to continual mem-
ory leakage. In: FOCS Annual Symposium on Foundations of Computer
Science, pp. 501–510. IEEE Computer Society (2010)

[Bon07] Boneh, D.: Bilinear Groups of Composite Order (Invited Talk). In: Tak-
agi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007.
LNCS, vol. 4575, p. 1. Springer, Heidelberg (2007)

[BSW11] Boyle, E., Segev, G., Wichs, D.: Fully Leakage-Resilient Signatures. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108.
Springer, Heidelberg (2011)

[DHLAW10] Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography
against continuous memory attacks. In: FOCS Annual Symposium on
Foundations of Computer Science, pp. 511–520. IEEE Computer Society
Press (2010)

[HL02] Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–
481. Springer, Heidelberg (2002)

[LLW11] Lewko, A.B., Lewko, M., Waters, B.: How to leak on key updates. In:
43rd ACM STOC Annual ACM Symposium on Theory of Computing,
pp. 725–734. ACM Press (2011)

[LOS+10] Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully
Secure Functional Encryption: Attribute-Based Encryption and (Hierar-
chical) Inner Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)

[LRW11] Lewko, A., Rouselakis, Y., Waters, B.: Achieving Leakage Resilience
through Dual System Encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 70–88. Springer, Heidelberg (2011)

[LW10] Lewko, A., Waters, B.: New Techniques for Dual System Encryption and
Fully Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010)

[MD11] Moriyama, D., Doi, H.: A fully secure spatial encryption scheme. IEICE
Transactions 94-A(1), 28–35 (2011)

[Wat09] Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and
HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)

A Security Proof of Theorem 1

A.1 Lemma for Leakage Analysis

Our analysis of the leakage resilience of our system will rely on the following
lemma from [BKKV10, LRW11], which is proven in [BFO08]. Below, we let
dist(X1, X2) denote the statistical distance of two random variables X1 and X2.

Lemma 2. Let m, l, d ∈ N, m ≥ l ≥ 2d and let p be a prime. Let X
R←− Zm×�

p ,

let Y
R←− Zm×d

p , and let T
R←− Rkd(Z�×d

p), where Rkd(Z�×d
p) denotes the set of

�×d matrices of tank d with entries in Zp. Let f : Zm×d
p →W be some function.

Then,
dist((X, f(X · T)), (X, f(Y))) ≤ ε

as long as

Leakage-Resilient Spatial Encryption 93

|W | ≤ 4 ·
(

1− 1

p

)
· p�−(2d−1) · ε2.

More precisely, we will use the following corollary.

Corollary 3. Let m ∈ N,m ≥ 3, and let p be a prime. Let Δ
R←− Zm

p , ν
R←− Zm

p

and let ν′ be chosen uniformly randomly from the set of vectors in Zm
p which

are orthogonal to Δ under the dot product modulo p. Let f : Zm
p →W be some

function. Then,
dist ((Δ, f(ν)), (Δ, f(ν′))) ≤ ε

as long as

|W | ≤ 4 ·
(

1− 1

p

)
· pm−2 · ε2.

Proof. We apply Lemma 2 with d = 1 and � = m − 1. Y then corresponds to
ν, while X corresponds to a basis of the orthogonal space of Δ. We note that

ν′ is then distributed as X · T , where T
R←− Rk1(Zm−1×1

p). We note that X

is determined by Δ, and is distributed as X
R←− Zm×m−1

p , since Δ is chosen
uniformly randomly from Zm

p . It follows that

dist ((Δ, f(ν)), (Δ, f(ν′))) = dist((X, f(X · T)), (X, f(Y))) ≤ ε.

This corollary allows us to set �SK = (n− 1− 2c) log p2 for our construction (we
will have n + 1 = m), where c is any fixed positive constant (so that ε = p−c

2 is
negligible).

A.2 Proof

The proof of Theorem 1 follows easily from Lemmas 5, 6, and 9, and is largely
based on that of [LRW11].

Table 2. Assumptions that will be used for the proofs.

game game proof

MasterLeakSpatial MasterLeakSpatial* Lemma 4
MasterLeakSpatial* MasterLeakC Lemma 5
MasterLeakCKj MasterLeakCKj+1 Lemma 6
MasterLeakCK Lemma 9

Lemma 4. Any polynomial-time attacker A has an identical probability of win-
ning in MasterLeakSpatial versus MasterLeakSpatial*.

Proof. It is easy to verify that the output of Delegate(W1, SKW1 ,W2) is identi-
cally distributed to the output of KeyGen(SKE ,W2).

94 M. Abdalla and J.-J. Vie

Lemma 5. If Assumption 1 holds, any polynomial-time attacker A has only a
negligibly different probability of winning in MasterLeakSpatial* versus Master-
LeakC.

Proof. We suppose there exists a PPT attacker A which attains a non-negligible
difference in probability of winning between those two games. We will build a
PPT algorithm B that breaks Assumption 1 with non-negligible advantage.
B receives D1 = (N,G,GT , ê, g1, g3) and a challenge term T ∈ Gp1p?

2
. Then it

plays the MasterLeakSpatial* or the MasterLeakC game with A in the following
way.

Setup. B picks (τ,σ,α, ϕ)
R←− ZN × Zn

N × Zn
N × ZN then gives

PP = (N, g1, g3, g
ϕ
1 , g

α
1 , ê(g1, g1)τ , gσ1)

to A, where N , g1 and g3 are given by the challenger.

Phase 1. Knowing α, the simulator can generate a secret key for the whole
space E and use it to execute all secret queries (Create, Leak, KeyGen).

Challenge. The adversary A gives B two messages m0 and m1 and a challenge

vector u∗. The simulator B chooses β
R←− {0, 1} and outputs the ciphertext

CT = (cσ, cu∗ , cs, cm) = (Tσ, T−(ϕ+〈u∗,α〉), T,mβ · ê(T, gτ1)).

Phase 2. B works the same way as in Phase 1.

If T = ga1g
b
2, then the ciphertext is semi-functional. This implicitly sets

s = a and δ = b(σ,−ϕ− 〈u∗,α〉 , 1).

s is properly distributed since a
R←− ZN according to the assumption. δ is prop-

erly distributed in the attacker’s view because the factors σ,−ϕ − 〈u∗,α〉 are
only seen modulo p1 in the public parameters and not modulo p2. Thus they
are random modulo p2 in A’s view. Therefore, B has properly simulated the
MasterLeakC game.

If T = ga1 , the ciphertext is normal since it has no Gp2 parts. In this case,
B has properly simulated the MasterLeakSpatial* game.

Guess. If A wins (β′ = β), B guesses T ∈ Gp1 . If A loses, B guesses T ∈ Gp1p2 .
As A has a non-negligible difference in probability of winning between those two
games, B will have a non-negligible advantage in breaking Assumption 1.

Lemma 6. If Assumption 2 holds, any polynomial-time attacker A has only a
negligibly different probability of winning in MasterLeakCKj versus
MasterLeakCKj+1.

Leakage-Resilient Spatial Encryption 95

Proof. B receives D2 = (N,G,GT , ê, g1, g3, g
x
1g

y
2 , g

y′
2 gz

′
3) and a challenge term

T ∈ Gp1p?
2p3

. Then it plays the MasterLeakCKj or the MasterLeakCKj+1 game
with A as follows.

Setup. B picks (τ,σ,α, ϕ)
R←− ZN × Zn

N × Zn
N × ZN then gives

PP = (N, g1, g3, g
ϕ
1 , g

α
1 , ê(g1, g1)τ , gσ1)

to A, where N , g1 and g3 are given by the challenger.

Phase 1.

– For the first j− 1 keys, B picks (ρ′, r,μ)
R←− Zn

N ×ZN ×Zd+n+2
N and, for the

semi-functional parameters, (γ′, θ′) R←− Zn+2
N × Zd

N . It then computes:

SK =

((
gρ

′
1 , gr1, g

τ+r(ϕ+〈u,α〉)−〈ρ′,σ〉
1

)
×(gy

′
2 gz

′
3)γ

′
, grM

�α
1 × (gy

′
2 gz

′
3)θ

′
)
×gμ3

The Gp1 and Gp3 parts are properly distributed and the semi-functional
parameters are γ = y′γ′ and θ = y′θ′. These are properly distributed as
well.

– For the j-th key, B will use the challenge term to generate the secret key. It

picks (ρ′,μ)
R←− Zn

N × Zd+n+2
N and outputs

SK =
(
T ρ′

, T, gτ1T
ϕ+〈u,α〉−〈ρ′,σ〉, TM�α

)
× gμ3

If T = ga1g
b
2g

c
3, then this key is semi-functional with

r = a ρ = aρ′ γ = b (ρ′, 1, ϕ + 〈u,α〉 − 〈ρ′,σ〉) θ = bM	α.

Since the public parameters only determine ϕ and α modulo p1, the semi-
functional parameters are random modulo p2 in A’s view.

– From the j + 1 key, B picks (ρ′, r,μ)
R←− Zn

N × ZN × Zd+n+2
N and computes:

SK =

(
gρ

′
1 , gr1, g

τ+r(ϕ+〈u,α〉)−〈ρ′,σ〉
1 , grM

�α
1

)
× gμ3

Challenge. In this phase, B has to create a semi-functional ciphertext with
EncryptSF. A gives B two messages m0 and m1 and a challenge vector u∗.

B chooses β
R←− {0, 1} and outputs the ciphertext

C̃T = (cσ, cu∗ , cs, cm)

=
(

(gx1g
y
2)

σ
, (gx1 g

y
2)

−(ϕ+〈u∗,α〉)
, (gx1g

y
2) ,mβ · ê((gx1 g

y
2), gτ1)

)
.

Phase 2. B works the same way as in Phase 1.

Guess. If A wins, B guesses T ∈ Gp1p3 . If A loses, B guesses T ∈ Gp1p2p3 .

96 M. Abdalla and J.-J. Vie

The ciphertext parameters are:

s = x and δ = y(σ,−ϕ− 〈u∗,α〉 , 1).

s is properly distributed, but the semi-functional parameters are not: if the space
of the j-th key contains the challenge vector u∗, the secret key is nominal with
respect to the ciphertext. Indeed:

(γ + (0, . . . , 0, 〈v, θ〉)) · δ

= b
(
ρ′, 1, ϕ + 〈u,α〉 − 〈ρ′,σ〉+

〈
v,M	α

〉)
· y(σ,−ϕ− 〈u∗,α〉 , 1)

= by (〈ρ′,σ〉 − ϕ− 〈u∗,α〉+ ϕ + 〈u,α〉 − 〈ρ′,σ〉+ 〈Mv,α〉)

= by 〈u + Mv − u∗,α〉

= 0 (mod p2)

Notice that if the space of the j-th key contains a vector w which is equal to
u∗ modulo p2, we obtain the same result. With the help of two lemmas, we will
show that the change in the adversary’s advantage is negligible.

Lemma 7. If Assumption 2 holds, then for any PPT adversary A, A’s advan-
tage in the MasterLeakCKj game, or in the MasterLeakCKj+1 game, changes only
by a negligible amount if we restrict it to make queries only on the challenge vec-
tor and on spaces that do not contain a vector equal to the challenge vector u∗

modulo p2.

Proof. If there exists an adversary A whose advantage changes by a non-negligi-
ble amount under this restriction, then with non-negligible probability, A issues
a query on W = Aff(M,u) which contains u′ that satisfies u′ ≡ u∗ (mod p2).

Let us consider the equation u + Mx = u∗ for the unknown x. It has no
solution modulo N (because u∗ �∈ W) but it has a solution modulo p2 (because
u∗ ≡ u′ ∈W (mod p2)).

By Gaussian elimination, we can reduce the equation Mx = y (where y =
u∗ − u) to the following form:⎛⎜⎜⎜⎜⎜⎝

1 ∗ ∗
. . . ∗

1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
x1

...

...
xn

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
y1
...
...
yn

⎞⎟⎟⎟⎟⎠
The first d row vectors are not equal to 0 because the d column vectors of M
are independent. The n − d remaining rows are filled with 0’s (d < n). As this
equation has no solution modulo N , there exists some i ∈ [|d + 1, n|] such that
yi �≡ 0 (mod N). But as this equation has a solution modulo p2, we have yi ≡ 0
(mod p2).

Thus we can find a non-trivial factor of N with non-negligible probability:
we denote p = gcd(yi, N) and p′ = n

p . If p′ = p1 or p′ = p1p3, we can break

Leakage-Resilient Spatial Encryption 97

Assumption 1 by computing T p′
: if it equals 1, then T ∈ Gp1 , else T ∈ Gp2 .

Otherwise, p′ = p3 and we can break Assumption 3 by computing ê(T p′
, gy

′
2 gz

′
3):

if it equals 1, then T ∈ Gp1p3 (T p′
has no Gp2 parts), else T ∈ Gp1p2p3 .

Lemma 8. We suppose the leakage is at most �SK = (n− 1 − 2c) log p2, where
c > 0 is a positive constant. Then, for any PPT adversary A, A’s advantage in
the MasterLeakCKj+1 game changes only by a negligible amount when the truly
semi-functional j-th key is replaced by a nominal semi-functional key whenever
A declares the j-th key to be associated to a space that contains the challenge
ciphertext vector.

Proof. Let us suppose there exists a PPT algorithm A whose advantage changes
by a non-negligible amount when the MasterLeakCKj+1 game changes as de-
scribed above. Using A, we will create a PPT algorithm B which will distinguish
between (Δ, f(ν)) and (Δ, f(ν′)) from Corollary 3 with non-negligible advan-
tage (when m = n + 1 and p = p2). This will yield a contradiction, since these
distributions have a negligible statistical distance.
B simulates MasterLeakCKj+1 as follows. It runs Setup and givesA the public

parameters. Since B knows α and generators of all the subgroups, it can respond
to A’s queries in Phase 1.

With non-negligible probability, the j-th key A chooses in Phase 1 must
be associated to a space that contains u∗. (If it only did this with negligible
probability, then the difference in advantages whenever it happens would be
negligible.)
B will not create that key but instead will encode the leakage A asks for, as

a single polynomial-time computable function f with domain Zn+1
p2

and with an

image of size 2�SK . B receives a sample (Δ, f(Γ)), where Γ = (Γ1, . . . , Γn+1) is
either distributed as ν or as ν′. B will use f(Γ) to answer all of A’s leakage
queries on the j-th key by implicitly defining this key as follows.

B chooses (r1, r2, θ)
R←− Zd+2

p2
. We let g2 denote a generator of Gp2 . B implicitly

sets the Gp2 components of the key to be gΓ
′

2 , where Γ ′ is defined to be:

Γ ′ = (Γ1, . . . , Γn, Γn+1 + r1, r2, θ).

B defines the other components of the key to fit their appropriate distribution.
At some point, A declares the challenge vector u∗. If the space of the j-th

key does not contain u∗, then B aborts the simulation and guesses whether
Γ is orthogonal to Δ randomly. However, the simulation continues with non-
negligible probability. Suppose the space of the j-th key is W = Aff(M,u) and
let v be the vector such that u∗ = u + Mv.

B chooses a random element t2
R←− Zp2 such that Δn+1r1 + (r2 + 〈v, θ〉)t2 = 0

(mod p2). It then constructs the challenge ciphertext, using (Δ, t2) ∈ Zn+2
p2

as
parameter.

98 M. Abdalla and J.-J. Vie

If Γ is orthogonal to Δ, then the j-th key is nominally semi-functional (and
well distributed):

((Γ1, . . . , Γn, Γn+1 + r1, r2) + (0, . . . , 0, 〈v, θ〉)) · (Δ, t2)

= Γ ·Δ + Δn+1r1 + (r2 + 〈v, θ〉)t2
= 0 (mod p2).

If Γ is not orthogonal to Δ, then the challenge key is truly semi-functional (and
also well distributed).

It is clear that B can easily handle Phase 2 queries, since the j-th key can-
not be queried when its space contains u∗. Therefore, B can use the output of
A to gain a non-negligible advantage in distinguishing (Δ, f(ν)) and (Δ, f(ν′)),
which violates Corollary 3.

The above lemmas conclude the proof of Lemma 6.

Lemma 9. If Assumption 3 holds, any polynomial-time attacker A has only a
negligible advantage in MasterLeakCK.

Proof. We suppose there exists a PPT attacker A which attains a non-negligible
advantage in MasterLeakCK. We will build a PPT algorithm B that breaks As-
sumption 3 with non-negligible advantage.

B receives D3 = (N,G,GT , ê, g1, g2, g3, g
τ
1g

y
2 , g

x′
1 gy

′
2) and a challenge term T

which is either ê(g1, g1)τx
′

or a random term of GT . Algorithm B works as
follows.

Setup. B picks (σ,α, ϕ)
R←− Zn

N × Zn
N × ZN . Notice that now τ is unknown.

The term ê(g1, g1)τ is computed as ê(gτ1 g
y
2 , g1). It gives PP = (N, g1, g3, g

ϕ
1 , g

α
1 ,

ê(g1, g1)
τ , gσ1) to A, where N , g1 and g3 are given by the challenger.

Phase 1. For each secret key requested by the adversary, the simulator B picks

the random exponents (r,ρ,μ)
R←− ZN×Zn

N×Zd+n+2
N and for the semi-functional

parameters, γ′ R←− Zn+2
N and θ

R←− Zd
N . It uses the secret key

SK =

((
gρ1 , g

r
1 , (g

τ
1g

y
2)g

r(ϕ+〈u,α〉)−〈ρ′,σ〉
1

)
× gγ

′
2 , grM

�α
1 × gθ2

)
× gμ3

It is a properly distributed semi-functional key with parameters

γ = γ′ + (0, . . . , 0, y) and θ.

Challenge. The adversary A gives B two messages m0,m1 and a challenge vec-

tor u∗. The simulator chooses β
R←− {0, 1} and outputs the following ciphertext:

CT =

((
gx

′
1 gy

′
2

)σ
,
(
gx

′
1 gy

′
2

)−ϕ−〈u∗,α〉
,
(
gx

′
1 gy

′
2

)
,mβ · T

)
.

Leakage-Resilient Spatial Encryption 99

Phase 2. B works the same way as in Phase 1.

If T = ê(g1, g1)
τx′

, then we get a semi-functional ciphertext of mβ with pa-
rameters

s = x′ and δ = y′(σ,−ϕ− 〈u∗,α〉 , 1).

δ is properly distributed since all terms are random modulo p2. Therefore, B has
properly simulated game MasterLeakCK.

If T
R←− GT , then cm is entirely random and we get a semi-functional cipher-

text of a random message. Hence, the value of β is information-theoretically

hidden and the probability of success of A is exactly 1/2, since β
R←− {0, 1}.

Therefore, B can use the output of A to break Assumption 3 with non-negligible
advantage.

Guess. If A wins, B guesses T = ê(g1, g1)τx
′
. If A loses, B guesses T

R←− GT .As

A has a non-negligible difference in probability of winning between those two
games, B will have a non-negligible advantage in breaking Assumption 3.

This concludes the proof of Lemma 9.

On the Pseudorandom Function Assumption

in (Secure) Distance-Bounding Protocols

PRF-ness alone Does Not Stop the Frauds!

Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

{ioana.boureanu,katerina.mitrokotsa,serge.vaudenay}@epfl.ch

Abstract. In this paper, we show that many formal and informal
security results on distance-bounding (DB) protocols are incorrect/
incomplete. We identify that this inadequacy stems from the fact that the
pseudorandom function (PRF) assumption alone, invoked in many secu-
rity claims, is insufficient. To this end, we identify two distinct shortcom-
ings of invoking the PRF assumption alone: one leads to distance-fraud
attacks, whilst the other opens for man-in-the-middle (MiM) attacks.
First, we describe –in a more unitary, formal fashion– why assuming
that a family of functions classically used inside DB protocols is solely a
PRF is unsatisfactory and what generic security flaws this leads to. Then,
we present concrete constructions that disprove the PRF-based claimed
security of several DB protocols in the literature; this is achieved by us-
ing some PRF programming techniques. Whilst our examples may be
considered contrived, the overall message is clear: the PRF assumption
should be strengthened in order to attain security against distance-fraud
and MiM attacks in distance-bounding protocols!

1 Introduction

Distance-bounding (DB) protocols were introduced by Brands and Chaum [3]
with the view of combating man-in-the-middle attacks against ATM systems.
The main idea of DB protocols is that a tag (RFID card, smart card, etc.)
should prove a short distance between them and a reader, and –most often than
not– authenticate themselves in front of this reader. The authentication part is
based on a pre-established secret. By default, this shared secret is a key hard-
coded on the tag which the reader associates to the tag’s id via a stored database.
The tag is often referred to as the prover whereas the reader is referred to as a
verifier. In the vast literature covering such protocols (e.g., [10,12,14,16]), three
main/classical types of possible attacks have been distinguished. The first is
distance-fraud (DF), in which a prover tries to convince that he is closer than
what he really is. The second type of attack is the mafia-fraud (MF) attack, which
involves three entities: an honest prover, an honest verifier and an adversary.
The adversary communicates with both the prover and the verifier and tries to
demonstrate to the verifier that the prover is in the verifier’s proximity although

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 100–120, 2012.
� Springer-Verlag Berlin Heidelberg 2012

On the Pseudorandom Function Assumption in (Secure) DB Protocols 101

the prover is in reality far away from the verifier. Finally, the third type of attack
is denoted as terrorist-fraud (TF). Here, the adversary has the same goal as in
the mafia-fraud attack, but in this case the prover is dishonest and colludes with
the adversary up to the non-disclosure of essential information, i.e., secret keys
or any other information that may more easily facilitate later impersonations of
the tag. Other more generic MiM attacks have been imagined [4,6], generalising
mainly distance-fraud or mafia-fraud respectively.

Meant to protect against such intricate attacks [3], implemented versions of
DB protocols have only proven to be efficient in preventing relay attacks [5]. This
is undeniably an important step. However, given the clear view of progressing
in secure remote unlocking (e.g., [8]), distance-bounding protocols should be de-
signed to resist against more generic (MiM, DF, TF,etc.) attacks, as aimed [3].
Whilst some attempts of formal models and formal proofs of security have re-
cently arisen [1,6], provably secure distance-bounding is not at all a stable, well-
founded area. For instance, we consider that [1], addressing the protection against
terrorist-fraud using secret sharing schemes, only provides rather heuristic secu-
rity analyses, failing to pinpoint the (necessary and) sufficient conditions for
preventing TF on distance-bounding. On a parallel front, the model of Dürholz
et al. in [6] is more attentive to detail, moving closer to provably secure DB. But,
whilst [6,7] claim some security results, we believe that their informal proofs of
security for DF and for MF are flawed. Thus, it is therein common to replace a
PRF by a random function in a game-reduction proof, even if the PRF key is held
by the adversary. This practice is obviously flawed. In this paper, we will show
where these formal or informal proofs fell short of the correct arguments. Whilst
we leave the concrete amendments of these issues for future work, we underline
some concrete aspects that the state-of-art on (secure) DB has overlooked in
their assessments, aspects that fundamentally compromise the security of these
protocols. We formalise these concerns. We provide supporting examples, using
PRF programming techniques, on a list of (claimed-to-be-secure) DB protocols1

in the literature. We suspect that there are many more DB protocols susceptible
to the kind of attacks we exhibit, especially since the DB protocols bear clear
resemblances amongst them; The list of attacks herein is summarised in Table 1;
as one can see, it comprises the somewhat popular DB protocols.

Table 1. Protocols Broken by DF or MiM attacks based On Faulty PRFs

Protocol Distance-Fraud MiM attack

TDB [1] page 108 page 109

DFKO (Enhanced Kim-Avoine Protocol) [6] page 110 –

Hancke and Kuhn’s [9] page 112 –

Avoine and Tchamkerten’s [2] page 114 –

Reid’s et al [14] page 115 page 116

Swiss Knife [12] – page 118

1 In the concrete presentation, we will make this clear. Whilst a protocol may have
not been claimed to be secure against all frauds, it was claimed to be secure against
a specific fraud. In our analysis/exemplification, we will show the contrary.

102 I. Boureanu, A. Mitrokotsa, and S. Vaudenay

Structure of the paper. The remainder of the paper is structured as follows. In
Section 2, we present some reminders about distance-bounding protocols and
PRF functions. In Section 3, we give one general construction of PRFs with
trapdoors. This construction prompts to distance-fraud and MiM attacks in DB
protocols. In Section 4, we present such attacks on the protocols listed in Table 1.
We conclude in Section 5.

2 Distance-Bounding Protocols and the PRF Assumption

In this section, we will recall general facts about distance-bounding protocols
and basic notions about pseudorandom functions.

Verifier V Prover P

shared secret x shared secret x

Initialisation phase

messagesV−−−−−−−−−−−−−−−−→
messagesP←−−−−−−−−−−−−−−−−

a := fx(messagesP ,messagesV)

Distance-bounding phase
for i = 1 to n

Start Clock
ci−−−−−−−−−−−−−−−−→

ri := F (ci, ai, xi)

Stop Clock
ri←−−−−−−−−−−−−−−−−

Fig. 1. Informative Sketch on Most Distance-Bounding Protocols

Distance-Bounding Protocols. The great majority of distance-bounding proto-
cols [10,12,14,16] consist of a data-agreement phase or initialisation phase and
a time-critical, fast computation-based distance-bounding phase. Fig. 1 captures
the core of distance-bounding (DB). In the initialisation phase, a prover P and
a verifier V use their randomnesses, their common secret x and a PRF f to
exchange messagesP and messagesV respectively and establish a sub-secret a;
a is normally a bitstring or a vector of elements in a finite space of small
size. In the DB phase which is time-critical, the responses are normally defined
via a response-function F . The i-th (one-bit) response ri to the i-th randomly
picked small-size challenge ci is most often given by a computation of the sort
F (ci, ai, xi), where i ∈ {1, . . . , n}. The initialisation phase makes it possible for
both parties to evaluate this function even though they do not have their coun-
terpart’s coins (i.e., the two honest parties have agreed over the vector a, they
share xi and they both know ci).

On the Pseudorandom Function Assumption in (Secure) DB Protocols 103

Pseudorandom functions. A pseudorandom function (PRF) is a family of (poly-
nomially computable) functions: a set of functions of arbitrary-length input and
arbitrary-length output indexed on a set of keys. On this family, a computational
assumption is taken, which is denoted as the pseudorandom function (PRF) as-
sumption, i.e.,: for an instance sampled uniformly from the family, there exists
no polynomial algorithm that distinguishes this instance from a real random
function based on a black-box interaction with an oracle simulating them.

One can use the game-methodology [15] to formalise the PRF assumption.
To this end, we give the descriptions/definitions below. Let F be a family of
functions with domain D and range R. Let b be a bit. Let D be a ppt. distin-
guisher that can interact in a black-box manner with an oracle O. We denote
this interaction as DO and it is depicted as follows in Fig. 2.

1: Parameters: security parameter s; poly a polynomial; a ppt. algorithm D; � :=
�(s); L := L(s); D = {0, 1}�; R = {0, 1}L;

2: viewD := ∅
3: while nb. of iterations ≤ poly(s) do
4: x← D(viewD; rD); x ∈ D
5: if x = “end : b” with b ∈ {0, 1}, stop and return b
6: y ← O(x); y ∈ R
7: viewD := viewD ∪ {y}
8: end while
9: return 0

Fig. 2. The DO Interaction

Below, we will simply refer to the oracle implementing f0 or f1 by f b ac-
cordingly, responding with fb(x) ∈ R for a query x ∈ D. Assume the following
description of the PRF game, in Fig. 2.

1: Parameters: security parameter s; � := �(s); L := L(s); D = {0, 1}�, R = {0, 1}L;
a family F := F(s) of functions from D→ R; a ppt. algorithm D; a bit b.

2: f0 ←−U [D → R] // pick a random function from D to R
3: f1 ←−U F //sample a function from the family

4: b←− Dfb

5: return b

Fig. 3. The PRF Game PRF b
F ,D

The output of the above game (0 or 1) is denoted Out(PRF b
F ,D).

Definition 1 (The PRF assumption2). Let s be a security parameter, k,
�, L be some parameters taken as functions of s, K = {0, 1}k, D = {0, 1}�,
2 This is formalised similarly to [13].

104 I. Boureanu, A. Mitrokotsa, and S. Vaudenay

R = {0, 1}L. Let F be a family of functions (fk)k∈K with fk : D → R3 (an
indexed-set of functions over K).

We say that the family F is a PRF or that the family F respects the PRF
assumption if for any ppt. algorithm D,∣∣∣∣Pr[Out(PRF 0

F ,D) = 1]− Pr[Out(PRF 1
F ,D) = 1]

∣∣∣∣ < negl(s),

where negl is a function over natural numbers eventually lower than the inverse
of any polynomial and the probability is taken over the random coins of D.

We will also employ the notion of a hard-core function.

Definition 2 (Hard-core function). Let s be a security parameter, k, �, L
be some parameters taken as functions of s, K = {0, 1}k, D = {0, 1}�, R =
{0, 1}L. Let F be a family of functions (fk)k∈K with fk : D → R. A func-
tion h on {0, 1}∗ is a hard-core function for F if for all polynomial-time or-
acle adversary A playing the following game, the probability that it wins is
negligible.

1: pick k ∈ K
2: run z = Afk(·)

3: win if and only if z = h(k)

Note that if F is a PRF, then the identity function is hard-core. Further, observe
that if h truncates to half of the first bits, it may not be hard-core for a PRF.
Indeed, let fk0,k1(x) = k0 when x = 0 and fk0,k1(x) = gk1(x) when x �= 0; if g is
a PRF, then f is a PRF as well, but h(k0, k1) = k0 is clearly not hard-core. We
could still transform a PRF g into a PRF f for which h is hard-core, for instance
with fk0,k1(b, x) = gkb

(x).

3 PRFs with a Trapdoor

In this section, we are going to show how, out of a PRF G, one can program
another PRF F to accommodate a trapdoor making its instances leak a special
value when called on that trapdoor. Otherwise, an instance of the thus-wise
constructed PRF F “behaves” like the corresponding instance of G. The ultimate
goal of these constructions is to (help) show that the PRF assumption is not
enough for the security of DB protocol, as claimed [1,6]. In fact, inappropriate
PRFs used in DB protocols can lead to frauds: the first construction points to
distance-fraud and the second to man-in-the-middle (MiM) attacks.

Consider the following informal explanations related to construction. Consider
a function σ, with the aim of mapping an element of a domain K ×D onto an
element of a domain R. Typically, σ embeds the input k ∈ K so that its output
leaks k. Similarly, correctPad maps elements from K onto disjoint subsets of the
set D above. Also, correctPad(k) must be such that its inverse is computable,

3 We denote a function fk ∈ F , for a fixed k ∈ K as a PRF instance.

On the Pseudorandom Function Assumption in (Secure) DB Protocols 105

i.e., the token k is extractable out of any correctPad(k) element. We formalise
this below and use it to formulate our result on PRF-constructions.

Theorem 3. Let s be a security parameter. Let the following sizes of domains
be expressed in function of s: �, �̄, L, L̄, k. Consider the following three sets
D = {0, 1}�, D̄ = {0, 1}�̄, R = {0, 1}L, R̄ = {0, 1}L̄, K = {0, 1}k.

Let h be a polynomially computable function on {0, 1}∗.
Let G be a family of functions (gk)k∈K and gk : D̄ → R̄. We assume that G

is a PRF and that h is a hard core function for G. Let TO be a polynomial-time
oracle-algorithm accessing O, admitting inputs in D and outputs in R.

Consider a polynomially computable function σ from K ×D to R.
Consider a map correctPad from K to the set of subsets of D such that there

exists a polynomial time oracle-algorithm extractgk(·) from D such that for any
k ∈ K and x ∈ correctPad(k), we have extractgk(·)(x) = h(k). It is further
assumed that given x and k, it can be decided in polynomial time whether x
belongs to correctPad(k) or not.

Let a F be a family of functions (fk)k∈K and, for some arbitrarily fixed k ∈ K,
fk : D → R defined as follows:

fk(x) =

{
σ(k, x), if x ∈ correctPad(k)

T gk(·)(x), otherwise .

Then, the family F is a PRF.

The proof of Theorem 3 is natural, following the game-reduction methodol-
ogy [15], by indistinguishability between games based on failure-events.

Proof. We first observe that since membership of correctPad and σ can be com-
puted in polynomial time, then f is polynomially computable as well.

Let k ∈ K be arbitrarily fixed. Consider the distinguisher D distinguishing
(fk)k∈K in the PRF b

F ,D game. Let (x1, fk(x1)), . . . , (xn, fk(xn)) be the query-

reply tuples between D and the oracle in PRF 1
F ,D, for n ≤ poly(s), with poly

and s defined in PRF b
F ,D, xi ∈ D, fk(xi) ∈ R, for all i ∈ {1, . . . , n}.

Clearly, Pr[D wins in PRF 0
F ,D] = Pr[D wins in PRF 0

G,D]. Since G is a PRF,
we further have∣∣Pr[D wins in PRF 0

G,D]− Pr[D wins in PRF 1
G,D]
∣∣ = negl(s).

So, we just have to show that∣∣Pr[D wins in PRF 1
F ,D]− Pr[D wins in PRF 1

G,D]
∣∣ = negl(s).

Unless D queries xi (i ∈ {1, . . . , n}) with xi ∈ correctPad(k), his view is that of
D in the “corresponding”PRF 1

G,D with the same random coins, i.e.,

. . . , (xi−1, T
gk(·)(xi−1)), (xi, T

gk(·)(xi)), (xi+1, T
gk(·)(xi+1)), . . . , (xn, T

gk(·)(xn))

In the contrary case, where he does query xi ∈ correctPad(k), the view of D
contains σ(k, xi) instead of T g(xi) (for this fixed i).

106 I. Boureanu, A. Mitrokotsa, and S. Vaudenay

So, the game PRF 1
F ,D is indistinguishable from the game PRF 1

G,D unless the
failure-event F of querying the specific xi ∈ correctPad(k) occurs. In other words,
Pr[D wins in PRF 1

F ,D|¬F] = Pr[D wins in PRF 1
G,D|¬F]. So,∣∣Pr[D wins in PRF 1

F ,D]− Pr[D wins in PRF 1
G,D]
∣∣ ≤ Pr[F].

What is left to be proven is that Pr[F] is negligible. To bound the probability
Pr[F] of F occurring, we let pi be the probability that xi ∈ correctPad(k) and
that xj �∈ correctPad(k) for j ∈ {1, . . . , i− 1}. Clearly, Pr[F] ≤

∑
i pi.

So, this reduces to proving that pi is negligible for each i. To do so, we con-
struct a new algorithm Agk(·). Namely, A simulates D and T until it computes
xi. Then, the algorithm A uses xi to get k′ = extractgk(·)(xi).
In the case that xj �∈ correctPad(k) for j = 1, . . . , i− 1, the simulation is perfect.
If xi ∈ correctPad(k), then k′ = h(k) and we obtain that A outputs h(k). So,
Pr[A yields h(k)] ≥ pi. Since h is hard-core, pi is negligible. ��

The first note on Theorem 3 is that a PRF can be constructed, if PRFs exist.
I.e., starting from G being some PRF, Theorem 3 gives the concrete construction
of another PRF F , with a trapdoor.

Then, one of the aims of this result is to indicate that if an inappropriate PRF
F is used in (the initialisation phase of) DB protocols, then a distance-fraud can
be mounted onto those protocols. To see this easily, you may want to refresh
the notations in Fig. 1 informally describing the DB protocols. Now, imagine
a dishonest prover P ∗ (who of course has the shared-key x and) that wants to
mount a distance-fraud onto a DB protocol using a trapdoor-enhanced PRF F
as the one in Theorem 3. By applying an input from correctPad(x), he sends
messages to the verifier V such that (messagesP ,messagesV) ∈ correctPad(x).
Then, fx(messagesP ,messagesV) = σ(x,messagesP ,messagesV). Usually, in DB
protocols (e.g., [1,6,9,2], etc.), messagesP is in fact a nonce NP and messagesV
is a nonce NV . So, an example of such adaptive choices and exploitation of poor
PRFs is the following: P ∗ can choose adaptively NP to be, say, x and then
fx(messagesP ,messagesV) becomes fx(x,NV) which is equal –by the trapdoor
property– with, say, x‖x‖ . . . ‖x. Since the responses are based on this output
and x, this usually enables P ∗ to answer any challenge before they even arrive at
him. This means that he successfully mounts a distance-fraud attack. Of course,
this sort of artificial function and its trapdoor depend on the protocol under dis-
cussion, as Section 4 will show. I.e., we need appropriate special σ(x,NP , NV) to
be output of the PRF instances. (Usually, it simply implies that the response is
a constant in terms of the challenge). Also, other forms of output of the PRF in-
stances can be imagined, as long as they facilitate the responses of the DB phase
to be independent from the challenge (i.e., instead of σ(x,messagesP ,messagesP)
we could directly some constant cte known to P ∗ and lying in the appropriate do-
mains used in the above theorem). It is also needed that the distribution of such
outputs and the domains we have at hand, σ(x,messagesP ,messagesP) seems a
reasonable choice for the “conned” protocols participants.

On the Pseudorandom Function Assumption in (Secure) DB Protocols 107

This construction of a “trapdoor PRF” (from a given PRF) uses an oracle in
the inversion of correctPad only for the purpose of it giving raise not only to DF
but to MiM attacks also. The basic idea of MiM attacks of this sort relies on
a PRF (fx)x∈K such that fx(y) = x when y = gx(cte) + x, where gx is a PRF
instance from a given PRF G. By adapting this generic construction, we could
have an adversary first getting y by querying a specific set of challenges ci to the
prover, then using y as a nonce to extract x from the prover. A specific, detailed
description of an attack of the sort is presented in page 109 against the TDB
protocol [1]. For the proof of such (fx)x∈K being a PRF when constructed as
in Theorem 3, there is the need that the inversion of correctPad is made via an
access to an oracle of the stated sort.

4 PRF-Based Attacks

4.1 TDB Protocol

In this protocol, due to [1] and depicted in Fig. 4, the prover P and the verifier
V share a secret s that can be viewed as a vector (s1, . . . , sm) of m coordinates
over a group G, i.e., si ∈ G, i ∈ {1,m}. The prover P and the verifier V use
an (n, k) threshold scheme on some sub-secrets obtained via a pseudo-random
function instance fs. Like in most cases, the protocol is divided into two phases:
the initialisation phase and the distance-bounding phase.

Verifier V Prover P

shared key s ∈ Gm shared key s ∈ Gm

Initialisation phase

NV ← {0, 1}m
NP←−−−−−−−−−−−−−−−− NP ← {0, 1}m
NV−−−−−−−−−−−−−−−−→

For i = 1, . . . , n, j = 1, . . . ,m, compute ri,j based on fs(NP , NV)

Distance-bounding phase
for i = 1 to m

Pick ci ∈ [1, n]

Start Clock
ci−−−−−−−−−−−−−−−−→

Stop Clock
rci,i←−−−−−−−−−−−−−−−−

verify the responses and that for all rounds Δti ≤ 2Δtmax

Fig. 4. The TDB protocol [1]

- Initialisation Phase: This phase is not time critical. The prover P and the
verifier V select two random nonces NP and NV correspondingly and transmit
them to each other. Then, both the prover P and the verifier V compute an n×m
matrix R, where each column (r1,i, r2,i, . . . , rn,i)

T of R is obtained using the

108 I. Boureanu, A. Mitrokotsa, and S. Vaudenay

(n, k) threshold scheme applied on si. Namely, the rci,i’s are generated with the
help of a pseudorandom function f by computing fs(NP , NV) and the elements
of the last row of the matrix are generated by summing all the elements in the
upper rows on the same column and adding the corresponding secret bit of s.
For instance, if we consider the case where n = k = 3, G = F2 and a specific
secret sharing scheme, then the response matrix will have dimension 3×m and
will have the form:

R1 =

⎛⎜⎝ r1,1 · · · r1,m

r2,1
. . . r2,m

s1 ⊕ r1,1 ⊕ r2,1 · · · sm ⊕ r1,m ⊕ r2,m

⎞⎟⎠
- Distance Bounding Phase: This phase is time critical and involves the ex-

change of challenges-responses (rounds) at maximum bit-rate. Such an exchange
is repeated m times (i.e., there are m rounds). Assume a generic round i (for i
varying from 1 to m). At each round i the challenge-response delay Δti is mea-
sured. The verifier V starts by choosing a random ci in its domain {1, . . . , n},
initialising the clock to zero and transmitting ci to P . The prover P responds
with rci,i which denotes the element located at the ci-th row and the i-th col-
umn of the table R. On receiving rci,i, V stops the clock and stores the received
response and the delay time Δti.

After the end of the distance-bounding phase, a verification phase is performed
and the verifier V checks if the received responses are correct and if for the
response times Δti it holds that Δti ≤ 2Δtmax, where Δtmax denotes the time
it takes for a bit to be transmitted from the prover to the verifier.

Based on the construction and significance of Theorem 3, we construct the
following attack on an instantiation of the TDB protocol. The same sort of attack
would work for other instantiations of the TDB protocol (i.e., with different secret
sharing schemes inside).

Distance Fraud Attack on an Instantiation of the TDB Protocol. Let
g be a PRF from {0, 1}2m to itself. Let us consider the PRF f constructed from
Theorem 3 based on g and the following elements. Let T g(x) = g(x). Let D be the
set of (NP , NV) pairs. Let σ(s,NP , NV) = s‖s, correctPad(s) = {s‖NV ;NV ∈
{0, 1}m}, and extractgs(.)(NP , NV) = NP . We have

fs(NP , NV) =

{
s‖s, if NP = s

gs(NP , NV), otherwise

By Theorem 3, f is a PRF. Consider an instantiation of the TDB protocol, where
the response matrix is R1 above and the PRF f is being used.

In this instance of the TDB protocol, it is obvious that a legitimate, far-away
but dishonest prover could easily perform a distance-fraud attack. He just needs
to choose NP to be equal to s (as shown above). Then, the R1 matrix has all
its rows equal to s. So for any challenge ci the response will be the i-th bit of
the secret key s. This sort of fixed responses can be sent before receiving the

On the Pseudorandom Function Assumption in (Secure) DB Protocols 109

challenge. Thus, he can defeat the distance-bound. The extension to n, k greater
than 3 is trivial: in the trapdoor case of fs, one repeats s for n − 1 times and
then considers the case where n is odd and even separately.

So, if a PRF exists, then we can exhibit instances of TDB which are insecure
against DF! The PRF assumption is not enough for the security of the TDB
protocols against DF.

Man-in-the-Middle Attack on an Instantiation of the TDB Protocol.
Consider again the instantiation of the TDB protocol with n = k = 3, G = F2

and with R1 being the response matrix. Let the shared key be denoted by s. Let
g be a PRF mapping {0, 1}m

2 to itself and from {0, 1}2m to {0, 1} 3m
2 . We assume

that the least significant half of s is hard-core for g. We define T gs(·)(NP , NV) =
(α, β, γ, β ⊕ gs(α)) where gs(NP , NV) = (α, β, γ). Let us consider the following
elements: σ(s,NP , NV) = s‖s, correctPad(s) = {NP‖α‖(gs(α) ⊕ lsbm

2
(s)) ; α ∈

{0, 1}m
2 }, and extractgs(.)(NP , α, β) = β ⊕ gs(α). Let f be constructed from

Theorem 3 based on g as below. By Theorem 3, f is a PRF.

fs(NP , NV) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(α, β, γ, β ⊕ gs(α)), if NV is not of the form α‖(gs(α)⊕ lsbm

2
(s))

and (α, β, γ) = gs(NP , NV)

s‖s, if NV = α‖(gs(α)⊕ lsbm
2

(s)), for some α

In the notations of the TDB protocol, r1 = (α, β) and r2 = (γ, β ⊕ gs(α)).
We are now going to explain the attack. The attacker has the goal of recovering

s from the prover, so that he can later impersonate this prover as he pleases.
To do so, the attacker impersonates first the verifier to the prover. He sends an
arbitrary NV , so the prover calculates the generic subsecret vectors (α′, β′, γ′, ψ′)
as some (α, β, γ, β ⊕ gs(α)). Then the adversary sends many challenges equal to
1, ci = 1, e.g., for i ∈ {1, . . . , m

2 }. In this way, he gets the first half of the
first subsecret-vector r1=(α, β), i.e., he obtains α,. Then, the adversary sends
the prover many challenges equal to 3, some ci = 3. By the secret sharing
scheme used, the responses to the latest challenges are equal to r1 + r2 + s =
(α, β)⊕(γ, β⊕gs(α))⊕s = (α⊕γ, gs(α))⊕s. So, from this approach, the attacker
gets gs(α) ⊕ lsbm

2
(s). Finally, he can now form N ′

V = α‖(gs(α) ⊕ lsbm
2

(s)). The
second step of the attack (in a new hijacked session in which the attacker is
again impersonating the verifier to the honest prover) consists in the attacker
to employ his knowledge gained as above to choose NV equal to N ′

V . By then
injecting any challenges to the prover, the attacker will know (due to the built-in
PRF) that the responses of the prover will be the bits of s. Like this, he will
learn the whole of the secret key and he will be subsequently able to impersonate
this prover in any circumstance.

Again, according to Theorem 3, the resulting family of functions (fs)s∈Gm is
a PRF. The attack exhibited does therefore disprove the claims of MiM security
in [1] based solely on the PRF assumption.

110 I. Boureanu, A. Mitrokotsa, and S. Vaudenay

4.2 DFKO Protocol (Enhancement of the Kim-Avoine Protocol)

The protocol proposed by Dürholz et al. [6] is based on the protocol proposed
by Kim and Avoine [11]. More precisely, the protocol proposed by Kim and
Avoine [11] is claimed to be mafia and distance-fraud resistant. Dürholz et al. [6]
have modified it in order to safeguard against impersonation attacks. Its sketch
is depicted in Fig. 5. This protocol is again discriminated into two phases: the
initialisation phase and the distance-bounding phase. During the initialisation
phase both the prover P and the verifier V select a random nonce NP and a
random nonce NV correspondingly. Then, both of them compute the output of
a PRF instance fx that takes as input the two random nonces that they have
exchanged, i.e.,: I‖C‖D‖v0‖v1 := fx(NV ‖NP), where x is shared secret/key.
The prover P also sends part of this output (i.e., I) to the verifier and V verifies
that this is the correct value for I.

During the distance-bounding phase the verifier V sends the bit-challenges Ri

to the prover that are either generated randomly or using the value D (i.e., a part
of the output of fx(NP , NV) generated in the initialisation phase). If the chal-
lenges are random, then the responses are also random otherwise the responses
depend on the value v0 (i.e., a part of the output of fx(NP , NV) generated in
the initialisation phase). For more details regarding the Dürholz et al. protocol,
we refer the readers to [6].

Based on Theorem 3, we now give an attack on an instantiation of DFKO.

Distance Fraud Attack on the DFKO Protocol. Let g be a PRF with
parameters as the one needed in the DFKO protocol. Let us consider the PRF f
constructed from Theorem 3 based on g and the following elements. Let T g(x) =
g(x). Let σ(x,NP , NV) = I‖0 · · ·0‖D‖v0‖v1 where gx(NP , NV) parses into I‖ ·
‖D‖v0‖v1, correctPad(x) = {x‖NV ;NV nonce}, and extractgx(.)(NP , NV) = NP .
We have

fx(NP , NV) =

{
I‖0 . . .0‖D‖v0‖v1, if NP = x for gx(x,NV) = I‖C‖D‖v0‖v1

gx(NP , NV) otherwise,

By Theorem 3, f is a PRF.
Consider an instantiation of the DFKO protocol, where the PRF f is being

used. In this instance of the DFKO protocol, if a prover is dishonest and picks
NP to be equal to x, then the response of the prover P will always be a bit
of D. Thus, this dishonest prover would be able to know in advance all the
responses to every possible challenge. Thus, when being in fact far-away from V ,
he would perform successfully a distance-fraud attack. This obviously contradicts
the security against distance-fraud attacks that is claimed by Dürholz et al. in
Theorem 2 of [6], based solely on the PRF assumption and described only by a
sketch-proof in the appendix of [6].

4.3 Hancke and Kuhn’s Protocol

Hancke and Kuhn’s protocol [9] is again separated conceptually into two phases:
an initialisation phase and a distance-bounding phase. In the initialisation phase

On the Pseudorandom Function Assumption in (Secure) DB Protocols 111

Verifier V Prover P

shared key x shared key x
Initialisation phase

NV ← {0, 1}∗
NV−−−−−→ NP ← {0, 1}∗

I‖C‖D‖v0‖v1 := fx(NV ‖NP)
NP ,I←−−−−− I‖C‖D‖v0‖v1 := fx(NV ‖NP)

Verify I

set cnt := 0; errV := 0 set state st =⊥; errT := 0
Distance-bounding phase

for i = 1 to n

Pick Si ∈U {0, 1}
Ri := Si, if Ci = 1
Ri := Di, if Ci = 0

Start Clock
Ri−−−−−→

if st �= rnd do:
if Ci = 1, then Ti = v0i if Ri = 0

Ti = v1i if Ri = 1
if Ci = 0, then Ti = v0i if Ri = Di

Ti ∈U {0, 1} if Ri �= Di.
if Ri �= Di, do errT := errT + 1
if errT > Emax, do st = rnd

else Ti ∈U {0, 1}
Stop Clock

Ti←−−−−−
set errV := errV + 1 if Ti does not match
set cnt := cnt + 1 if Δt > tmax

verify the responses and that for all rounds Δti ≤ 2Δtmax

output b = 1 if cnt ≤ Tmax anderrR ≤ Emax, else b = 0

Fig. 5. Protocol Dürholz et al. [6] (Enhanced Kim-Avoine Protocol)

112 I. Boureanu, A. Mitrokotsa, and S. Vaudenay

the verifier V and the prover P exchange nonces NV and NP correspondingly,
then both of them compute the output of a PRF instance fx that takes as input
the two nonces, i.e., v0‖v1 := fx(NP , NV), where x is the shared secret/key.
During the distance-bounding phase the verifier V selects a random bit-challenge
ci, where i ∈ {1, . . . , n} and the prover P responds with a bit ri that has the

following form: ri :=

{
v0i , if ci = 0

v1i , if ci = 1.

After the end of the distance-bounding phase the verifier checks all the received
responses and if the response times Δti satisfy the condition: Δti ≤ 2Δtmax.
The protocol is depicted in Fig. 6.

Verifier V Prover P

shared key x shared key x
Initialisation phase

NV ← {0, 1}m
NV−−−−−−−−−−−−−−−−→ NP ← {0, 1}m

v0‖v1 := fx(NP , NV)
NP←−−−−−−−−−−−−−−−− v0‖v1 := fx(NP , NV)

Distance-bounding phase
for i = 1 to n

Pick ci ∈U {0, 1}
Start Clock

ci−−−−−−−−−−−−−−−−→

ri :=

{
v0i , if ci = 0

v1i , if ci = 1

Stop Clock
ri←−−−−−−−−−−−−−−−−

verify the responses
and that for all rounds
it holds Δti ≤ 2Δtmax

Fig. 6. Protocol proposed by Hancke and Kuhn’s [9]

Based on the construction and significance of Theorem 3, we construct the
following attack on an instantiation of Hancke and Kuhn’s protocol.

Distance Fraud Attack on Hancke and Kuhn’s Protocol. Let g be a
PRF with parameters as the one needed in the protocol. Let us consider the
PRF f constructed from Theorem 3 based on g and the following elements. Let
T g(x) = g(x). Let D be the set of (NP , NV) pairs. Let σ(x,NP , NV) = v‖v
where v is an arbitrary constant, correctPad(x) = {x‖NV ;NV ∈ {0, 1}m}, and
extractgx(.)(NP , NV) = NP . We have

fx(NP , NV) =

{
v‖v, if NP = x

gx(NP , NV), otherwise

By Theorem 3, f is a PRF.

On the Pseudorandom Function Assumption in (Secure) DB Protocols 113

Consider an instantiation of the Hancke and Kuhn where the PRF f is being
used. In this instance of the Hancke and Kuhn protocol, if a prover is dishonest
and picks NP to be equal to x, then the responses ri will always be the same
for all challenges ci where i ∈ {1, . . . , n}. Thus, such a legitimate, far-away but
dishonest prover can successfully perform a distance-fraud attack by sending the
responses before receiving the challenges. This obviously contradicts the security
against distance-fraud attacks that was claimed in Theorem 3.2 of [7] solely based
on the PRF assumption and that claims of [9].

4.4 Avoine and Tchamkerten’s Protocol

This protocol from [2], presented in Fig. 7, is again divided into two phases
an initialisation and a distance-bounding base. The prover P and the verifier
V share a common secret x and they have agreed on some parameters m and
n. In the initialisation phase which is not time critical, the verifier V selects a
random nonce NV and transmits it to the prover P . The prover P also selects
a random nonce NP and transmits it to V . Then, they compute the output of a
PRF instance fx on the input given by the two nonces NP and NV , i.e., v0‖v1 :=
fx(NP , NV). The output of this computation has length at least m + 2n+1 − 2.
We denote the first m bits of this output by v0 and the rest of the bits by v1.
Then, the prover P sends to the verifier V the value v0 for verification purposes.

Verifier V Prover P

shared key x shared key x
Initialisation phase

NV ← {0, 1}m
NV−−−−−−−−−−−−−−−−→ NP ← {0, 1}m

v0‖v1 := fx(NP , NV)
v0,NP←−−−−−−−−−−−−−−−− v0‖v1 := fx(NP , NV)

abort if v0 is incorrect where |v0| = m
and |v1| = 2n+1 − 2

Distance-bounding phase
for i = 1 to n

Pick ci ∈U {0, 1}
Start Clock

ci−−−−−−−−−−−−−−−−→
ri = Node(c1, . . . , ci)

Stop Clock
ri←−−−−−−−−−−−−−−−−

verify the responses
and that for all rounds
it holds Δti ≤ 2Δtmax

Fig. 7. Protocol proposed by Avoine and Tchamkerten [2]

For the distance-bounding phase using v1, the prover P and the verifier V
label a full binary tree of depth n. The left and right edges of the tree are

114 I. Boureanu, A. Mitrokotsa, and S. Vaudenay

labelled with 0 and 1 respectively, while each node of the tree (except of the
root node) is assigned a value of a particular bit of v1 in an one-to-one fashion
(starting from the lowest level nodes and moving from left to right, moving
up the tree after assigning all the nodes in the current level). The distance-
bounding phase has n challenge-response exchanges/rounds. At each round i the
challenge-response delay Δti is measured. The verifier V chooses a random bit
ci, initialises the clock to zero and transmits ci to P . Then, P answers with
the value ri = Node(c1, . . . , ci). This function gives the value of the label of
node in the tree which we would reach from the root by taking the path labelled
c1, c2, . . . , ci on the edges.

Based on the construction and significance of Theorem 3, we construct the
following attack on an instantiation of the Avoine and Tchamkerten protocol.

Distance Fraud Attack on the Avoine and Tchamkerten Protocol. Let
g be a PRF with parameters as the one needed in the protocol. Let us consider
the PRF f constructed from Theorem 3 based on g and the following elements.
Let T g(x) = g(x). Let D be the set of (NP , NV) pairs. Let σ(x,NP , NV) =
v0‖T where v0 and T are constant defined below, correctPad(x) = {x‖NV ;NV ∈
{0, 1}m}, and extractgx(.)(NP , NV) = NP . We have

fx(NP , NV) =

{
v0‖T, if NP = x

gx(NP , NV), otherwise

The constant v0 is an arbitrary admissible value for v0. The constant T denotes
the full binary tree of length n where all the paths constructed by reading-out
the labels of the nodes are equal. A tree with such a property is, e.g., the one
where all nodes in the same level have the same label (either all 0 or all 1 per
one level). By Theorem 3, f is a PRF.

Consider an instantiation of the Avoine and Tchamkerten protocol, where the
PRF f is being used. In that case a dishonest, far-away prover which forges NP to
x will always give the correct response without the need to wait for the challenge
to arrive. Thus, he would be able to respond earlier and perform successfully a
distance-fraud attack. This obviously contradicts the security against distance-
fraud attacks that was claimed in Theorem 3.3 of [7], page 11.

4.5 Reid’s et al. Protocol

In the Reid et al. [14] protocol (depicted in Fig. 8, the prover and the verifier
that share a secret key x. During the initialisation phase both of them generate
random nonces NP and NV and exchange them, as well as exchanging their iden-
tities. Then both of them generate a session key k as k := fx(IDP ‖IDV ‖NV ‖NP)
and encrypt the shared key x with the session key k, i.e., e := Ek(x), where fx
is a PRF instance. One can view k as an ephemeral key. Based on Theorem 3.4
in [7], the assumption needed for the security of this protocol is that E should
be a IND-CPA secure, symmetric encryption. For instance, we can use one-time
pad Ek(x) = x⊕ k.

On the Pseudorandom Function Assumption in (Secure) DB Protocols 115

The distance-bounding phase contains n rounds. At each round i the challenge-
response delay Δti is measured, where i ∈ {1, . . . , n}. The verifier chooses a
random challenge ci and the prover responds with ri such that:

ri :=

{
ei, if ci = 0

ki, if ci = 1

After the end of the distance-bounding phase the verifier checks the responses
and verifies that all response times are below a pre-defined threshold.

Based on the construction and significance of Theorem 3, we construct the
following attack on an instantiation of Reid et al.’s protocol.

Distance-Fraud Attack on Reid’s et al. Protocol. Let g be a PRF with
parameters as the one needed in the protocol. Let us consider the PRF f con-
structed from Theorem 3 based on g and the following elements. Let T g(x) =
g(x). Let D be the set of (IDV ‖IDP ‖NP , NV) tuples. Let σ(x, IDV , IDP , NV ,
NP) = x, correctPad(x) = {IDV ‖IDP‖NV ‖x}, and extractgx(.)(IDV , IDP , NV ,
NP) = NP . We have

fx(IDV ‖IDP‖NV ‖NP) =

{
x, if NP = x

gx(IDV ‖IDP‖NV ‖NP) otherwise,

By Theorem 3, f is a PRF.

Verifier V Prover P

shared key x shared key x
Initialisation phase

NV ← {0, 1}m
IDV ,NV−−−−−−→ NP ← {0, 1}m

k := fx(IDV ‖IDP ‖NV ‖NP)
IDP ,NP←−−−−−− k := fx(IDV ‖IDP ‖NV ‖NP)

e := Ek(x) e =: Ek(x)

Distance-bounding phase
for i = 1 to m

Pick ci ∈U {0, 1}
Start Clock

ci−−−−−→

ri :=

{
ei, if ci = 0

ki, if ci = 1

Stop Clock
ri←−−−−−

verify the responses
and that for all rounds
it holds Δti ≤ 2Δtmax

Fig. 8. Protocol proposed by Reid et al. [14]

116 I. Boureanu, A. Mitrokotsa, and S. Vaudenay

Consider an instantiation of the Reid’s et al. protocol where the PRF f is
being used. Also, we assume that the following encryption function instance is
employed:

Enew
k (x) =

⎧⎪⎨⎪⎩
Ek(x), if k �= x and Ek(x) �= x

x, if k = x

Ek(k), if Ek(x) = x and k �= x.

Similarly to Theorem 3, we can show that if E is an IND-CPA secure symmetric
encryption, so is Enew.

If a far-away dishonest prover indeed chooses NP to be equal to x, then the
responses ri will always be equal to xi (for all i ∈ {1, . . . , n}). Thus, a dishonest,
far-away prover can perform a successful distance-fraud attack and claim that he
is nearer to the verifier than he really is. This obviously contradicts the security
against distance-fraud attacks given in Theorem 3.4, in page 13 of [7], solely
based on the PRF assumption and Theorem 1, in page 17 of [14].

Another weak PRF leading to a distance-bounding attack is provided in the
next example.

Man-in-the-Middle Attack on Reid’s et al.’s Protocol. We first construct
a PRF producing some unforgeable outputs. To this end, we start with a PRF
g such that fx(u, v) = gx(u, v)‖gx(gx(u, v)) has parameters as the one needed in
the protocol. We define a predicate Vx(a, b) which is true if and only if gx(a) = b.
Clearly, Vx(fx(u, v)) holds for all x, u, v. It is easy to see that f is a PRF. Next,
we consider the encryption function E defined by

Ek(y) =

{
y, if Vy(k) or Vy(k ⊕ y)

k ⊕ y, otherwise

We can show that, for k random (an unknown to the adversary), it is hard to
forge y such that Vy(k) or Vy(k ⊕ y) hold. So, E if IND-CPA.

Consider now an instantiation of Reid’s et al. protocol, where f and E are
as constructed. In this instantiation of the protocol, the encryption is such that
Ek(x) = x for all choices of the nonces. The attacker impersonates the verifier
to the prover. First, he starts a session in which he inflicts NV = 0. So, in this
session, he sends many challenges equal to 0. Like this, he retrieves Ek(x) from
the responses, which is the secret key x.

Note that by changing the encryption so that Ek(x) = k, we can make a
distance fraud attack.

4.6 The Swiss-Knife Protocol

In the Swiss-Knife protocol [12] (depicted in Fig. 9), the prover and the veri-
fier share a secret key x. During the initialisation phase both of them generate
random nonces NP and NV correspondingly and exchange them. Furthermore,
both of them generate a session key a as: a := fx(cte,NP), where cte denotes a

constant and two values Z0 and Z1 such that:

{
Z0 := a

Z1 := a⊕ x

On the Pseudorandom Function Assumption in (Secure) DB Protocols 117

Verifier V Prover P

shared key x shared key x
Initialisation phase

NV ← {0, 1}m
NV−−−−−−−−−−−−−−−−→ NP ← {0, 1}m

a := fx(cte,NP) a := fx(cte,NP){
Z0 := a

Z1 := a⊕ x

NP←−−−−−−−−−−−−−−−−
{
Z0 := a

Z1 := a⊕ x

Distance-bounding phase
for i = 1 to n

Pick ci ∈U {0, 1}
Start Clock

ci−−−−−−−−−−−−−−−−→

ri :=

{
Z0

i , if c′i = 0

Z1
i , if c′i = 1

Stop Clock
ri←−−−−−−−−−−−−−−−−

End of distance-bounding phase

tB,C=(c′1,...,c
′
n)←−−−−−−−−−−−−−−−− tB := fx(C, ID,NP , NV)

Check ID via database
Compute Z0, Z1

Compute errc := #{i : ci �= c′i}
errr := #{i : ci = c′i, ri �= Zci

i }
errt := #{i : ci = c′iΔti > tmax.

If errc + errr + errt ≥ τ ,
then REJECT.
tA := fx(NP)

tA−−−−−−−−−−−−−−−−→

Fig. 9. Swiss-Knife protocol [12]

118 I. Boureanu, A. Mitrokotsa, and S. Vaudenay

In the distance bounding phase which is repeated n times the verifier selects
a random challenge ci where i ∈ {1 . . . n} and the prover responds with ri such
that:

ri :=

{
Z0
i , if c′i = 0

Z1
i , if c′i = 1,

where c′i is the challenge that the prover actually received in the i-th round, i.e., c′i
will be ci itself, if the transmission was correct, or c′i will be ci, if ci was perturbed
by noise. After the end of the distance bounding phase the prover transmits a
message tB such that: tB := fx(C, ID,NP , NV) where C = c′1, . . . , c

′
n.

Based on the construction and significance of Theorem 3, we construct the
following attack on an instantiation of the Swiss-Knife protocol.

Man-in-the-Middle Attack on the Swiss-Knife Protocol. Let g be a
PRF with parameters as the one needed in the protocol such that the function
truncating the the leading half is hard-core. Let us consider the PRF f con-
structed from Theorem 3 based on g and the following elements. Let T g(x) =
g(x). Let D be the set of (C, ID,NP , NV) tuples. Let σ(x,C, ID,NP , NV) =
x, correctPad(x) = {C‖ID‖NP‖NV ;C = 1

m
2 ‖msbm

2
(gx(cte,NP) ⊕ x)}, and

extractgx(.)(C, ID,NP , NV) = lsbm
2

(C)⊕msbm
2

(gx(cte,NP)). (Note that extract
only recovers the leading half of x so it is not exactly compatible with the as-
sumptions of Theorem 3.) We have

fx(cte,NP) = gx(cte,NP),

fx(C, ID,NP , NV) =

{
x, if C = 1

m
2 ‖msbm

2
(gx(cte,NP)⊕ x)

gx(C, ID,NP , NV), otherwise,

fx(NP) = gx(NP).

By Theorem 3, f is a PRF. Indeed, since extract only recovers half of x, we need
another trick in the proof of Theorem 3 to show that Pr[F] is negligible.

Consider an instantiation of the Swiss-Knife protocol where the PRF f is
being used. Then, an adversary can extract the key and conduct successfully
an impersonation attack. Namely, he can query ci=1 for i ∈ {1, . . . , n

2 } and
ci = ri− n

2
for i = {n

2 + 1, . . . , n}. Given the error-tolerance of the protocol, we
can presume that the adversary is powerful enough to make the communication
noiseless and thus the prover will respond to this very challenges, and, due to
the shape of fx, the adversary will learn x out of his strategy.

The attack exhibited does therefore disprove the claim of MiM security in
Theorem 3.5 in [7] based solely on the PRF assumption and the achievement of
authentication claimed in [12]. Moreover, it appears [12] that Swiss-Knife was
aimed to resist MiM attacks.

5 Conclusions

In this paper, we gave two constructions of PRFs with trapdoors by PRF pro-
gramming, assuming that PRFs exist. These constructions respectively prompt

On the Pseudorandom Function Assumption in (Secure) DB Protocols 119

to distance-frauds and MiM attacks in DB protocol. In fact, we presented such
attacks on important DB protocols, thus disproving different security claims or
proofs that appeared in the literature. The latter claims were relying on the
PRF assumption for families of function used inside these DB protocol. Our re-
sults show that such an assumption is then not enough for the security of DB
protocols.

As future work, we will prove how to restore security by additional tricks.
Distance fraud security can be achieved by key-masking, i.e., by using fx(·)⊕M
for a random M instead of fx(·). MiM security can be restored by introducing
an extra security notion to the PRF, so that using fx(·)⊕ x is still safe.

Acknowledgements. The authors acknowledge the support of the Marie Curie
IEF project “PPIDR: Privacy-Preserving Intrusion Detection and Response in
Wireless Communications”, grant number: 252323, and of the National Compe-
tence Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), under the Swiss National Science Foundation.

References

1. Avoine, G., Lauradoux, C., Martin, B.: How Secret-sharing can Defeat Terrorist
Fraud. In: Proceedings of the 4th ACM Conference on Wireless Network Security
– WiSec 2011, Hamburg, Germany. ACM, ACM Press (June 2011)

2. Avoine, G., Tchamkerten, A.: An Efficient Distance Bounding RFID Authenti-
cation Protocol: Balancing False-Acceptance Rate and Memory Requirement. In:
Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS,
vol. 5735, pp. 250–261. Springer, Heidelberg (2009)

3. Brands, S., Chaum, D.: Distance Bounding Protocols (Extended Abstract). In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer,
Heidelberg (1994)

4. Cremers, C., Rasmussen, K.B., Čapkun, S.: Distance hijacking attacks on dis-
tance bounding protocols. Cryptology ePrint Archive, Report 2011/129 (2011),
http://eprint.iacr.org/

5. Drimer, S., Murdoch, S.J.: Keep your enemies close: distance bounding against
smartcard relay attacks. In: Proceedings of the 16th USENIX Security Symposium
on USENIX Security Symposium, pp. 7:1–7:16. USENIX Association, Berkeley
(2007)

6. Dürholz, U., Fischlin, M., Kasper, M., Onete, C.: A Formal Approach to Distance-
Bounding RFID Protocols. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS,
vol. 7001, pp. 47–62. Springer, Heidelberg (2011)

7. Fischlin, M., Onete, C.: Provably secure distance-bounding: an analysis of promi-
nent protocols. Cryptology ePrint Archive, Report 2012/128 (2012)

8. Ford. Safe and Secure SecuriCodeTM Keyless Entry (2011),
http://www.ford.com/technology/

9. Hancke, G.P., Kuhn, M.G.: An RFID Distance Bounding Protocol. In: Proceedings
of SECURECOMM, pp. 67–73 (2005)

10. Kapoor, G., Zhou, W., Piramuthu, S.: Distance Bounding Protocol for Multiple
RFID Tag Authentication. In: Proceedings of the 2008 IEEE/IFIP International
Conference on Embedded and Ubiquitous Computing, EUC 2008, vol. 02, pp.
115–120. IEEE, IEEE Computer Society, Shanghai, China (2008)

http://eprint.iacr.org/
http://www.ford.com/technology/

120 I. Boureanu, A. Mitrokotsa, and S. Vaudenay

11. Kim, C.H., Avoine, G.: RFID Distance Bounding Protocol with Mixed Challenges
to Prevent Relay Attacks. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS
2009. LNCS, vol. 5888, pp. 119–133. Springer, Heidelberg (2009)

12. Kim, C.H., Avoine, G., Koeune, F., Standaert, F.-X., Pereira, O.: The Swiss-Knife
RFID Distance Bounding Protocol. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008.
LNCS, vol. 5461, pp. 98–115. Springer, Heidelberg (2009)

13. Nielsen, J.B.: A Threshold Pseudorandom Function Construction and Its Applica-
tions. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 401–416. Springer,
Heidelberg (2002)

14. Reid, J., Gonzalez Nieto, J.M., Tang, T., Senadji, B.: Detecting Relay At-
tacks with Timing-based Protocols. In: Proceedings of the 2nd ACM Symposium
on Information, Computer and Communications Security, ASIACCS 2007, pp.
204–213. ACM, Singapore (March 2007)

15. Shoup, V.: Sequences of Games: a Tool for Taming Complexity in Security Proofs
(2006) (manuscript)

16. Tu, Y.-J., Piramuthu, S.: RFID Distance Bounding Protocols. In: Proceedings of
the First International EURASIP Workshop on RFID Technology (2007)

Lattice-Based Hierarchical Inner Product Encryption

Michel Abdalla1, Angelo De Caro2, and Karina Mochetti3

1 Département d’Informatique, École Normale Supérieure, France
Michel.Abdalla@ens.fr

http://www.di.ens.fr/users/mabdalla
2 Dipartimento di Informatica ed Applicazioni, Università degli Studi di Salerno, Italy

decaro@dia.unisa.it
http://www.dia.unisa.it/dottorandi/decaro/

3 Instituto de Computação, UNICAMP, Brazil
mochetti@ic.unicamp.br

http://www.ic.unicamp.br/˜mochetti/

Abstract. The notion of inner-product encryption (IPE), introduced by Katz, Sa-
hai, and Waters at Eurocrypt 2008, is a generalization of identity-based encryp-
tion in which ciphertexts and secret keys are associated to vectors in some finite
field. In an IPE scheme, a ciphertext can only be decrypted by a secret key if the
vector associated with the latter is orthogonal to that of the ciphertext. In its hier-
archical version, first proposed by Okamoto and Takashima (Asiacrypt’09), there
exists an additional delegation mechanism which allows users to delegate their
decryption capabilities to other users in the system. In this paper, we propose
the first construction of a hierarchical inner-product encryption (HIPE) scheme
based on lattices assumptions. To achieve this goal, we extend the lattice-based
IPE scheme by Agrawal, Freeman, and Vaikuntanathan (Asiacrypt’11) to the hi-
erarchical setting by employing basis delegation technics by Peikert et al. (Euro-
crypt’10) and by Agrawal et al. (Eurocrypt’10). As the underlying IPE scheme,
our new scheme is shown to be weak selective secure based on the difficulty of
the learning with errors (LWE) problem in the standard model, as long as the
total number of levels in the hierarchy is a constant. As an application, we show
how our new primitive can be used to build new chosen-ciphertext secure IPE and
wildcarded identity-based encryption schemes.

Keywords. Lattice-based cryptography, inner product, functional cryptography,
hierarchical.

1 Introduction

Functional encryption has become quite popular in the last few years because it pro-
vides the system administrator with a fine-grained control over the decryption capabil-
ities of its users. Such ability makes functional encryption schemes appealing in many
emerging applications such as cloud services where the notion of public-key encryption
reveals its inadequacy.

Even though several different flavors of functional encryption have appeared in the
literature (see [7,9,13]), it was only recently that a systematic study of this notion has

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 121–138, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

122 M. Abdalla, A. De Caro, and K. Mochetti

been proposed by Boneh, Sahai and Waters [8]. In their notion, each functional encryp-
tion scheme is associated with a functionality, which defines the set of admissible func-
tions of the plaintext to which a secret decryption key may be linked. More specifically,
in a functional encryption system for functionality F (·, ·), an authority holding a mas-
ter secret key msk , can generate a key dk that enables the computation of the function
F (k, ·) on the encrypted data. Then, using dk the decryptor can compute F (k, x) from
an encryption of x. Important examples of functional encryption are attribute-based
encryption (ABE) [20,12] and predicate encryption (PE) [9,13].

In this paper, we focus on the notion of inner-product encryption (IPE), introduced
by Katz, Sahai, and Waters at Eurocrypt 2008 [13], which is a generalization of identity-
based encryption. In an IPE scheme, ciphertexts and secret keys are associated to vec-
tors in some finite field and a ciphertext can only be decrypted by a secret key if the
vector associated with the latter is orthogonal to that of the ciphertext. In its hierar-
chical version (HIPE), first proposed by Okamoto and Takashima [16], there exists an
additional delegation mechanism which allows users to delegate their decryption ca-
pabilities to other users in the system. As pointed out in [13], IPE is a very powerful
primitive as it can be used to support conjunction, subset and range queries on encrypted
data as well as disjunctions, polynomial evaluation, and CNF and DNF formulas. More-
over, the delegation mechanism proposed by Okamoto and Takashima [16] extends even
further the capabilities of this primitive.

Since its introduction, there has been an extensive amount of work on the construc-
tion of IPE and HIPE schemes, most of them based on bilinear groups. The first IPE
scheme was proposed by Katz et al. [13]. They proved the security of their scheme in
the selective model, where the adversary must commit to the input on which it wishes to
be challenged before seeing the public parameters, under variants of the subgroup de-
cisional assumption in composite order bilinear groups. Later on, Okamoto et al. [16]
were able to move to prime order bilinear groups introducing at the same time the con-
cept of HIPE primitive. There the security was still proved in the selective model. More
recently, Okamoto et al. [17] presented a HIPE scheme that achieves full security under
the standard d-linear assumption on prime order bilinear groups.

In the lattice-based setting, the only known construction of an inner product scheme
is due to Agrawal et al. [3], which was shown to be weak selective secure based on the
difficulty of the learning with errors (LWE) problem. Informally, in a weak selective
secure IPE scheme, the set of secret keys to which the adversary can query is more
restricted than the one allowed in a standard selective secure definition.

Our Contributions. In this paper, we propose the first construction of a hierarchical
inner-product encryption scheme based on lattices assumptions. To achieve this goal,
we extend the lattice-based IPE scheme by Agrawal et al. [3] to the hierarchical setting
by employing basis delegation technics by Peikert et al. [10] and by Agrawal et al. [2].
As the underlying IPE scheme, our new scheme is shown to be weak selective secure
based on the difficulty of the learning with errors (LWE) problem in the standard model,
as long as the total number of levels in the hierarchy is a constant. As an application,
we show how our new primitive can be used to build new chosen-ciphertext secure IPE
and wildcarded identity-based encryption schemes based on lattices.

Lattice-Based HIPE 123

2 Definitions

In this section we introduce hierarchical inner-product encryption primitive and the
tools that we will use to implement it. In doing so, we adopt the same notation and
definition style used in [16,14,3].

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q
and we represent Zq as integers in (q/2, q/2]. We let Zn×m

q denote the set of n × m
matrices with entries in Zq . We use bold capital letters (e.g. A) to denote matrices,
bold lowercase letters (e.g. w) to denote vectors that are components of our encryption
scheme. The notation A	 denotes the transpose of the matrix A. When we say a matrix
defined over Zq has full rank, we mean that it has full rank modulo each prime factor
of q. If A1 is an n×m matrix and A2 is an n×m′ matrix, then [A1‖A2] denotes the
n×(m+m′) matrix formed by concatenatingA1 andA2. If w1 is a length m vector and
w2 is a length m′ vector, then we let [w1‖w2] denote the length (m+m′) vector formed
by concatenating w1 and w2. However, when doing matrix-vector multiplication we
always view vectors as column vectors. We say a function f(n) is negligible if it is
O(n−c) for all c > 0, and we use negl(n) to denote a negligible function of n. We
say f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n) to denote a
polynomial function of n. We say an event occurs with overwhelming probability if its
probability is 1− negl(n). The function lg x is the base 2 logarithm of x. The notation
�x� denotes the nearest integer to x, rounding towards 0 for half-integers. The norm of
a matrix R ∈ Rk×m is defined as ‖R‖ := sup‖u‖=1 ‖Ru‖. The notation [d] denotes
the set of positive integers {1, 2, . . . , d}.

2.1 Hierarchical Inner-Product Encryption

Let μ be a tuple of positive integers μ = (�, d;μ1, . . . , μd) such that
∑

i∈[d] μi = �.
We call μ an hierarchical format of depth d. Let Σ|h = (Σ1 × . . .×Σh) where h ≤ d
and Σi = F

μi

N for finite field FN of order N . A hierarchical predicate fv, with v =
(v1, . . . ,vh) ∈ Σ|h, is defined as follows: fv(w) = 1, with w = (w1, . . . ,wt) ∈ Σ|t,
if and only if h ≤ t and for all i ∈ [h] we have that 〈vi,wi〉 = 0. An hierarchical inner-
product encryption with hierarchical format μ is defined by the following algorithms:

Setup(1λ, μ). Takes as input security parameter λ and hierarchical format μ and
outputs public parameters mpk and master secret key msk .

Derive(mpk , dv, vt). Takes as input the master public key mpk , the secret key for
the vector v = (v1, . . . ,vt−1) ∈ Σ|t−1, and a vector vt ∈ Σt, and outputs a secret key
dv′ for the vector v′ = (v1, . . . ,vt−1,vt).

Enc(mpk ,m, w = (w1, . . . , wt) ∈ Σ|t)). Takes as input public parameters m in
some associated message space, public parameters mpk and an attribute vector w and
outputs a ciphertext C .

Dec(mpk ,C , dv). Takes as input public parameters mpk , ciphertext C and secret
key dv and outputs the message m. We make the following consistency requirement.
Suppose ciphertext C is obtained by running Enc on input mpk , message m and at-
tribute vector w and that dv is a secret key for attribute vector v obtained through a

124 M. Abdalla, A. De Caro, and K. Mochetti

sequence of Derive calls using the same mpk . Then Dec, on input mpk ,C and dv ,
returns m, except with negligible probability, if and only if fv(w) = 1.

Security Definition. Security is modeled by means of a game between a challenger C
and a PPT adversary A. In this work, we achieve selective attribute security, meaning
that A must declare its challenge attribute vectors (w0,w1) before seeing the public
key. Moreover, A is allowed to ask queries before and even after seeing the challenge
ciphertext but it is required A to ask for keys of predicates v that cannot decrypt the
challenge ciphertext; that is, for which fv(w0) = fv(w1) = 0. This notion is called
weak attribute hiding. Specifically, the game is defined in the following way:
Init. A is given hierarchical format μ of depth d and outputs challenge vectors w0,
w1 ∈ Σ|h.

Setup. The challenger C runs the Setup algorithm to generate public parameters mpk
which it gives to the adversaryA.

Phase 1. A is given oracle access to Derive(mpk ,msk , ·). Then,A can delegate secret
keys directly by invoking the Derive algorithm.

Challenge. A gives a pair of message (m0,m1) to C. We require that for all attribute
vectors v derivable from any revealed secret key in Phase 1, fv(w0) = fv(w1) = 0.
Then C chooses random η

$← {0, 1}, encrypts mη under wη and sends the resulting
ciphertext to A.

Phase 2. The same as Phase 1 with the same restriction of the Challenge phase.

Guess. A must output a guess β′ for β. The advantage of A is defined to be
Pr [η′ = η]− 1

2 .

Definition 1. An hierarchical inner-product encryption scheme is weak attribute hiding-
selective attribute secure (IND-wAH-sAT-HIPE-CPA for short), if all polynomial time
adversaries achieve at most a negligible (in λ) advantage in the previous security
game.

2.2 Lattices

In this section we collect results from [2,3,5,15,11,10] that we will need for our con-
struction and the proof of security.

An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. A basis of Λ is
a linearly independent set of vectors whose span is Λ. We will focus on integer lattices
and among these we will focus on the q-ary lattices defined as follows: for any integer
q ≥ 2 and any A ∈ Zn×m

q , we define

Λ⊥
q (A) := {e ∈ Zm : A · e = 0 mod q}

Λu
q (A) := {e ∈ Zm : A · e = u mod q}

Λq(A) := {e ∈ Zm : ∃ s ∈ Zm
q with At · s = e mod q}.

The lattice Λu
q (A) is a coset of Λ⊥

q (A); namely, Λu
q (A) = Λ⊥

q (A) + t for any t such
that A · t = u mod q.

Lattice-Based HIPE 125

Gram-Schmidt Norm. Let S = {s1, . . . , sk} be a set of vectors in Rm. Let ‖S‖ de-
notes the length of the longest vector in S, i.e., max1≤i≤k ‖si‖, and S̃ := s̃1, . . . , s̃k ⊂
Rm denotes the Gram-Schmidt orthogonalization of the vectors s1, . . . , sk. We refer to
‖S̃‖ as the Gram-Schmidt norm of S.

Gaussian Distributions. Let L be a discrete subset of Zn. For any vector c ∈ Rn

and any positive parameter σ ∈ R>0, let ρσ,c(w) := exp
(
−π‖x− c‖2/σ2

)
be the

Gaussian function on Rn with center c and parameterσ. Let ρσ,c(L) :=
∑

w∈L ρσ,c(w)
be the discrete integral of ρσ,c overL, and letDL,σ,c be the discrete Gaussian distribution
over L with center c and parameter σ. Specifically, for all v ∈ L, we haveDL,σ,c(v) =
ρσ,c(v)
ρσ,c(L) . For notational convenience, ρσ,0 and DL,σ,0 are abbreviated as ρσ and DL,σ

respectively. The following lemma captures standard properties of these distributions.

Lemma 2. Let q ≥ 2 and let A be a matrix in Zn×m
q with m > n. Let TA be a basis

for Λ⊥
q (A) and σ ≥ ‖T̃A‖ · ω(

√
logm). Then for c ∈ Rm and u ∈ Zn

q :

1. Pr
[
‖w − c‖ > σ

√
m : w

$← DΛ,σ,c

]
≤ negl(n)

2. A set of O(m logm) samples from DΛ⊥
q (A),σ contains a full rank set in Zm, except

with negligible probability.
3. There is a PPT algorithm SampleGaussian(A,TA, σ, c) that returns x ∈ Λ⊥

q (A)
drawn from a distribution statistically close to DΛ,σ,c.

4. There is a PPT algorithm SamplePre(A,TA,u, σ) that returns x ∈ Λ⊥
q (A) sam-

pled from a distribution statistically close to DΛu
q (A),σ, whenever Λu

q (A) is not
empty.

The Norm of a Random Matrix. The following lemmata can be used to bound the
norm of a random matrix in {−1, 1}m×m.

Lemma 3. ([2, Lemma 15]) Let R be a k × m matrix chosen at random from
{−1, 1}k×m. Then Pr

[
‖R‖ > 12

√
k + m

]
< e−(k+m) .

Lemma 4. ([2, Lemma 16]) Let u ∈ Rm be some vector of norm 1. Let R be a k ×
m matrix chosen at random from {−1, 1}k×m. Then Pr[‖Ru‖ >

√
kω(

√
log k)] <

negl(k).

Sampling Algorithms. Following [2,10,4,5] we will need the following algorithms to
sample short vectors and random basis from specific lattices.

Algorithm ToBasis. Micciancio and Goldwassser [31] showed that a full-rank set S
in a lattice Λ can be converted into a basis T for Λ with an equally low Gram-Schmidt
norm.

Lemma 5. ([31, Lemma 7.1]) Let Λ be an m-dimensional lattice. There is a deter-
ministic polynomial-time algorithm that, given an arbitrary basis of Λ and a full-
rank set S = s1, . . . , sm in Λ, returns a basis T of Λ satisfying ‖T̃ ‖ ≤ ‖S̃‖ and
‖T‖ ≤ ‖S‖

√
m/2

126 M. Abdalla, A. De Caro, and K. Mochetti

Algorithm TrapGen. Ajtai [4] and later Alwen and Peikert [5] showed how to sample
an essentially uniform matrix A ∈ Zn×m

q along with a basis S of Λ⊥
q (A) with low

Gram-Schmidt norm.

Theorem 6. ([5, Theorem 3.2] with δ = 1/3) Let q, n,m be positive integers with q ≥
2 andm ≥ 6n lg q. There is a probabilistic polynomial-time algorithmTrapGen(q, n,m)
that outputs a pair (A ∈ Zn×m

q ,S ∈ Zm×m) such that A is statistically close to

uniform in Zn×m
q and S is a basis for Λ⊥

q (A), satisfying ‖S̃‖ ≤ O(
√
n log q) and

‖S‖ ≤ O(n log q) w.o.p. in n.

We let σTG = O(
√
n log q) denote the maximum with high probability Gram-Schmidt

norm of a basis produced by TrapGen.

Algorithm ExtendBasis. Peikert et al. [10] shows how to construct a basis for
Λ⊥
q (A‖B‖C) from a basis for Λ⊥

q (B).

Theorem 7. For i = 1, 2, 3 let Ai be a matrix in Zn×mi
q and let A := (A1‖A2‖A3).

Let T 2 be a basis of Λ⊥
q (A2). There is deterministic polynomial time algorithm

ExtendBasis(A1,A2,A3,T 2) that outputs a basis T for Λ⊥
q (A) such that ‖T̃ ‖ =

‖T̃ 2‖
Algorithm SampleLeft. The algorithm takes as input a full rank matrix A ∈ Zn×m

q ,
a short basis TA of Λ⊥

q (A), a matrix B ∈ Zn×m1
q , a vector u ∈ Zn

q , and a Gaussian
parameter σ. Let F := (A‖B), then the algorithm outputs a vector e ∈ Zm+m1 in the
coset Λu

q (F).

Theorem 8. ([2, Theorem 17], [10, Lemma 3.2]) Let q > 2,m > n and σ > ‖TA‖ ·
ω(
√

log(m + m1)). Then SampleLeft(A,B,TA,u, σ) outputs a vector e ∈ Zm+m1

statistically close to DΛu
q (F),σ.

Algorithm SampleRight. The algorithm takes as input matrices A ∈ Zn×k
q and R ∈

Zk×m, a full rank matrix B ∈ Zn×m
q and a short basis TB of Λ⊥

q (B), a vectoru ∈ Zn
q ,

and a Gaussian parameter σ. Let F := (A‖AR + B), then the algorithm outputs a
vector e ∈ Zk+m in the coset Λu

q (F).
Often the matrix R given to the algorithm as input will be a random matrix in

{−1, 1}m×m. Let Sm be the m-sphere {x ∈ Rm+1 : ‖x‖ = 1}. We define sR :=
‖R‖ = supx∈Sm−1 ‖R · x‖.

Theorem 9. ([2, Theorem 19]) Let q > 2,m > n and σ > ‖TB‖·sR·ω(
√

log(k + m)).
Then SampleRight(A,B,R,TB,u, σ) outputs a vector e ∈ Zk+m distributed statis-
tically close to DΛu

q (F),σ.

The LWE Problem. The Learning with Errors problem, or LWE, is the problem of
determining a secret vector over Fq given a polynomial number of noisy inner products.
The decision variant is to distinguish such samples from random. More formally, we
define the (average-case) problem as follows:

Definition 10. ([19]) Let n ≥ 1 and q ≥ 2 be integers, and let χ be a probability
distribution on Zq . For r ∈ Zn

q , let Ar,χ be the probability distribution on Zn
q × Zq

obtained by choosing a vector a ∈ Zn
q uniformly at random, choosing e ∈ Zq according

to χ, and outputting (a, 〈a, r〉+ e).

Lattice-Based HIPE 127

(a) The search-LWEq,n,χ problem is: for uniformly random r ∈ Zn
q , given a poly(n)

number of samples from Ar,χ, output r.
(b) The decision-LWEq,n,χ problem is: for uniformly random r ∈ Zn

q , given a poly(n)
number of samples that are either (all) from Ar,χ or (all) uniformly random in
Zn
q × Zq , output 0 if the former holds and 1 if the latter holds.

We say the decision-LWEq,n,χ problem is infeasible if for all polynomial-time algo-
rithms A, the probability that A solves the decision-LWE problem (over r and As ran-
dom coins) is negligibly close to 1/2 as a function of n.

The hardness of the LWE problem is summarized in the following:

Definition 11. For α ∈ (0, 1) and an integer q > 2, let Ψα denote the probability
distribution over Zq obtained by choosing x ∈ R according to the normal distribution
with mean 0 and standard deviation α/

√
2π and outputting �qx�.

Theorem 12. ([19]) Let n, q be integers and α ∈ (0, 1) such that q = poly(n) and
αq > 2

√
n. If there exists an efficient (possibly quantum) algorithm that solves decision-

LWEq,n,Ψα
, then there exists an efficient quantum algorithm that approximates SIVP

and GapSVP to within Õ(n/α) in the worst case.

Theorem 13. ([18]) Let n, q be integers and α ∈ (0, 1), and q =
∑

i qi ≤ 2n/2,
where the qi are distinct primes satisfying ω(logn)/α ≤ qi ≤ poly(n). If there exists
an efficient (classical) algorithm that solves decision-LWEq,n,Ψα

, then there exists an

efficient (classical) algorithm that approximates GapSVP to within Õ(n/α) in the worst
case.

The following lemma will be used to show correctness of decryption.

Lemma 14. ([2, Lemma 12]) Let e be some vector in Zm and let v ← Ψ
m

α . Then the
quantity |〈e,v〉| when treated as an integer in (−q/2, q/2] satisfies |〈e,v〉| ≤ ‖e‖ ·(
qα · ω(

√
log m) +

√
m/2

)
w.o.p. (in m).

3 Hierarchical Inner Product Encryption Scheme

This section describes our hierarchical inner-product encryption scheme based on [3].

Intuitions. For hierarchical format μ = (�, d;μ1, . . . , μd), the public parameters will
contain random matrices (A, {Ai,j,γ}) in Zn×m

q . The master secret key is a trapdoor
TA for A. To generate a secret key for vector v = (v1, . . . ,vt) at depth t ≤ d we use
the matrix:

Fv =

⎛⎝A‖
∑

j∈[μ1]

k∑
γ=0

v1,j,γ ·A1,j,γ‖ . . . ‖
∑
j∈[μt]

k∑
γ=0

vt,j,γ ·At,j,γ

⎞⎠ ∈ Zn×(t+1)m
q

(1)
where each vi,j is r-decomposed for a certain fixed r and k = �logr q�. Then the secret
key for v is a short basis for the lattice Λ⊥

q (Fv). By using the short basis for Λ⊥
q (Fv) is

128 M. Abdalla, A. De Caro, and K. Mochetti

possible to generate a random short basis for Λ⊥
q (Fv‖vt+1

). This provides the delegation
mechanism.

Let us sketch briefly the security reduction. For challenge vector w� = (w�
1, . . . ,

w�
t�), the simulator chooses the matrices A and B uniformly at random in Zn×m

q and
construct the matrices Ai,j,γ as follows:

Ai,j,γ = ARi,j,γ − rγw�
i,jB

where Ri,j,γ ∈ {−1, 1}m×m. Since the matrices A, {Ri,j,γ} are uniform and inde-
pendent in Zn×m

q , we have that the Ai,j,γ’s are uniform in Zn×m
q as in the real system.

Moreover the simulator has a trapdoor TB for Λ⊥
q (B) but no trapdoor for Λ⊥

q (A). To
generate a secret key for vector v = (v1, . . . ,vt), the simulator must produce a short
basis for Λ⊥

q (Fv) where

Fv =
(
A‖AR1 − 〈v1,w

�
1〉B‖ . . . ‖ARt − 〈vt,w

�
t 〉B

)
Then let

Ri =
∑

j∈[μi]

k∑
γ=0

vi,j,γ ·Ri,j,γ ∈ Zm×m
q

R =
[
R1‖ . . . ‖Rt

]
∈ Zm×t·m

q

Bv = [−〈v1,w
�
1〉B‖ . . . ‖ − 〈vt,w

�
t 〉B] ∈ Zn×t·m

q

Thus Fv can be written as:

Fv =
(
A‖AR + Bv

)
∈ Zn×(t+1)m

q . (2)

When v is not a prefix of w meaning that there exists an index i such that 〈vi,w
�
i 〉 �= 0,

the simulator can then extend TB to a short basis for the entire lattice Λ⊥
q (Bv). The

simulator can now generate short vectors in Λ⊥
q (Fv) using algorithm SampleRight,

which is sufficient for constructing a short basis for Λ⊥
q (Fv), as required. When v is

a prefix of w, meaning that for each i = 1, . . . , t, 〈vi,w
�
i 〉 = 0, then the matrix Fv

no longer depends on B and the simulators trapdoor disappears. Consequently, the
simulator can generate secret keys for all vectors other than prefixes of w�. As we will
see, for w� the simulator can produce a challenge ciphertext that helps it solve the given
LWE challenge.

3.1 Sampling a Random Basis

In this Section we describe the algorithms that we will use to realize the delegation
mechanism and for the simulation. Following [2,10], let Λ be an m-dimensional lattice
and letO(Λ, σ) be an algorithm that generates independent samples from a distribution
statistically close to DΛ,σ . The following algorithm called SampleBasisO(Λ, σ) usesO
to generate a basis T of Λ in the following way:

Lattice-Based HIPE 129

1. For i = 1, . . . ,m, generate v
$← O(Λ, σ), if v is independent of {v1, . . . , vi−1},

set vi ← v, if not, repeat.
2. Convert the set of independent vectors v1, . . . , vm to a basis T using Lemma 6 (and

using some canonical basis of Λ) and output T .

The following theorem summarizes properties of this algorithm.

Lemma 15. For σ > b̃l(Λ)ω(
√

logm) algorithm SampleBasisO(Λ, σ) satisfies the
following properties:

1. Step 1 requires at most O(m log m) w.h.p and 2m samples in expectation.
2. With overwhelming probability ‖T̃‖ ≤ ‖T ‖ ≤ σ

√
m.

3. Up to a statistical distance, the distribution of T does not depend on the implemen-
tation of O. That is, the random variable SampleBasisO(Λ, σ) is statistically close
to SampleBasisO

′
(Λ, σ) for any algorithm O′ that samples from a distribution sta-

tistically close to DΛ,σ .

Algorithm SampleBasisLeft. We are interested in the lattice Λ⊥
q (Fv) where Fv is

defined in (1) for v = (v1, . . . ,vt). Write Fv = (A|M) for some matrices A and
M , then given a short basis TA for Λ⊥

q (A) we can implement algorithm O(Fv , σ)

by invoking SampleLeft(A,M ,TA, 0, σ). When σ > ‖T̃A‖ · ω(
√

log((t + 1)m)),
Theorem 8 shows that the resulting vector is distributed statistically close to DΛ⊥

q (Fv),σ

as required for SampleBasis. Using the above algorithm in algorithm SampleBasis leads
to an algorithm to sample a random basis of Λ⊥

q (Fv) given a short basis of A. We refer
to this algorithm as SampleBasisLeft and summarize its properties in the following
corollary.

Corollary 16. Algorithm SampleBasisLeft(A,M ,TA, σ) outputs a basis of Λ⊥
q (Fv)

satisfying the three properties in Lemma 15 provided that A is rank n and σ > ‖T̃A‖ ·
ω
(√

log((t + 1)m)
)

.

Algorithm SampleBasisRight. In the simulation, the matrix Fv is defined as in (2).
In this case, given a short basis TB for Λ⊥

q (B) we can implement algorithm O(Fv , σ)
as follows:

1. Using Theorem 7, extend basis TB for Λ⊥
q (B) to a basis TBv for Λ⊥

q (Bv) such

‖T̃Bv
‖ = ‖T̃B‖.

2. Then run SampleRight(A,Bv,R,TBv
, 0, σ) and output the result. When Bv

is rank n and v is not a prefix of w� the matrix Bv is rank n as required for
SampleRight.

Let sR := ‖R‖ be the norm of the matrixR. When σ > ‖T̃B‖·sR·ω(
√

log((t + 1)m)),
Theorem 9 shows that the resulting vector is distributed statistically close to DΛ⊥

q (Fv),σ

as required for SampleBasis. Using the above algorithm in algorithm SampleBasis leads
to an algorithm to sample a random basis of Λ⊥

q (Fv) for Fv defined in (2) given a short
basis of B. We refer to this algorithm as SampleBasisRight and summarize its proper-
ties in the following corollary.

130 M. Abdalla, A. De Caro, and K. Mochetti

Corollary 17. Algorithm SampleBasisRight(A,Bv ,R,TB, σ) outputs a basis of
DΛ⊥

q (Fv),σ satisfying the three properties in Lemma 15 provided that B is rank n, that

v is not a prefix of w� and σ > ‖T̃B‖ · sR · ω(
√

log((t + 1)m)).

3.2 Our Construction

Let n > 0 be the security parameter and μ = (�, d;μ1, . . . , μd) the hierarchical format.
Let q = q(n,μ) and m = m(n,μ) be positive integers. Let r = r(n,μ) ≥ 2 be and
integer and define k = k(n,μ) := �logr q�. Our hierarchical inner-product encryption
for hierarchical format μ consists of the following algorithms.

Setup(1n, μ). On input a security parameter n, and an hierarchical format of depth d
μ = (�, d;μ1, . . . , μd), the algorithm generates public and secret parameters as follows:
Use algorithm TrapGen(q, n,m) to select a uniformly random n × m-matrix A ∈
Zn×m
q with a basis TA ∈ Zm×m for Λ⊥

q (A) such that ‖T̃A‖ ≤ O(
√
n log q). For

i ∈ [d], j ∈ [μi] and γ = 0, . . . , k, choose uniformly random matrices Ai,j,γ ∈ Zn×m
q .

Select a uniformly random vector u ∈ Zn
q . Output mpk = (A, {Ai,j,γ},u) and msk =

TA.

Derive(mpk , dv, vt). On input the master public key mpk , the secret key for the
vector v = (v1, . . . ,vt−1), and the vector vt, the algorithm generates a secret key
for the vector v′ = (v1, . . . ,vt) as follows: Construct short basis for Λ⊥

q (Fv′) by
invokingS ← SampleBasisLeft(Fv,

∑
j∈[μi]

∑
γ∈k vt,j,γ ·At,j,γ , dv , σt) where Fv′ =[

Fv‖
∑

j∈[μi]

∑k
γ=0 vt,j,γ ·At,j,γ

]
and dv is a short basis for Λ⊥

q (Fv). By Corollary

16, when σt > ‖d̃v‖ · ω(
√

log((t + 1)m)) then ‖d̃v′‖ ≤ ‖dv′‖ ≤ σt ·
√

(t + 1)m.
Output dv′ = S. Notice that, for the special case of the first level secret keys when v is
the empty vector ε, we define Fε := A and dv = msk .

Enc(mpk , w,m). On input the master public key mpk , the vectorw = (w1, . . . ,wt),
and the message m ∈ {0, 1}, the algorithm generates a ciphertext C as follows: Choose
a uniformly random matrix B

$← Zn×m
q and s

$← Zn
q . Choose a noise vector x← Ψ

m

αt

and a noise term x ← Ψαt . Compute c0 = A	s + x ∈ Zm
q . For i ∈ [t], j ∈ [μi]

and γ = 0, . . . , k choose a random matrix Ri,j,γ ∈ {−1, 1}m×m and compute ci,j,γ =

(Ai,j,γ + rγwi,jB)	s + R	
i,j,γx ∈ Zm

q . Compute c′ = u	s + x + m · �q/2� ∈ Zq .
Output C = (c0, {ci,j,γ}, c′).

Dec(mpk , dv,C). On input the master public key mpk , the secret key for the vec-
tor v = (v1, . . . ,vt), and a ciphertext C = (c0, {ci,j,γ}, c′), the algorithm does the
following: For i ∈ [t] define the r-ary expansion of the vector vi and compute cvi

=∑
j∈[μi]

∑k
γ=0 vi,j,γ · ci,j,γ . Let c = [c0‖cv1

‖ . . . ‖cvt
]. Set τt := σt ·

√
(t + 1)m ·

ω(
√

(t + 1)m). Then τt ≥ ‖d̃v‖ · ω(
√

(t + 1)m). Compute ev = SamplePre(Fv , dv ,
u, τt) and z = c′ − e	v · c.

Interpreter z as in integer in (−q/2, q/2], then output 0 if |z| < q/4 and 1 otherwise.

Lattice-Based HIPE 131

3.3 Correctness

Lemma 18. For hierarchical format μ = (�, d;μ1, . . . , μd) of depth d, suppose the
parameters q and αt, for each t ∈ [d], are such that q/ log q = Ω(σt · μ · r

log r ·m3/2)

and αt ≤ (t·log q·σt ·μ· r
log r ·m·ω(

√
logm))−1, where μ = maxi∈[d] μi. Moreover, for

vectors v = (v1, . . . ,vt) and w = (w1, . . . ,wh), let dv be the basis of the lattice Fv

obtained through a sequence of calls to the Derive algorithm, let C ← Enc(mpk ,w,m)
and m′ ← Dec(mpk , dv,C).

Then, if fv(w) = 1, namely 〈vi,wi〉 = 0 (mod q) for each i ∈ [t], then with
overwhelming probability we have m′ = m.

Proof. Just for notation simplification, let

Ãi =

⎛⎝∑
j∈[μ]

k∑
γ=0

vi,j,γAi,j,γ

⎞⎠ and R̃i =
∑
j∈[μ]

k∑
γ=0

vi,j,γR
	
i,j,γx .

Then, for each i ∈ [t], the decryption algorithm computes:

cvi
=
∑
j∈[μ]

k∑
γ=0

vi,j,γ · ci,j,γ

=
∑
j∈[μ]

k∑
γ=0

vi,j,γ ·
[
(Ai,j,γ + rγwi,jB)	s + R	

i,j,γx
]

= Ãi

	
s +

⎛⎝∑
j∈[μ]

k∑
γ=0

rγvi,j,γwi,j

⎞⎠
︸ ︷︷ ︸

〈vi,wi〉

B	s + R̃i .

If 〈vi,wi〉 = 0 then we have:

cvi
= Ãi

	
s + R̃i (mod q) .

Thus, if for each i ∈ [t], 〈vi,wi〉 = 0 then c can be written as:

c =[c0‖cv1
‖ . . . ‖cvt

]

=
[
A‖Ã1‖ . . . ‖Ãt

]	
s +

[
x‖R̃1‖ . . . ‖R̃t

]	
(mod q)

= F	
v · s +

[
x‖R̃1‖ . . . ‖R̃t

]	
(mod q) .

At this point, the short vector ev = SampleLeft(Fv , dv,u, τt) is computed by the
decryption algorithm such that by Theorem 8, Fv · ev = u (mod q). It follows that

e	v c = u	s + e	v

[
x‖R̃1‖ . . . ‖R̃t

]	
(mod q) .

132 M. Abdalla, A. De Caro, and K. Mochetti

Finally, the decryption algorithm computes:

z = c′ − e	v c (mod q)

=
(
u	s + x + m · �q/2�

)
− u	s− e	v

[
x‖R̃1‖ . . . ‖R̃t

]	
(mod q)

= m · �q/2�+

(
x− e	v

[
x‖R̃1‖ . . . ‖R̃t

])
︸ ︷︷ ︸

noise term

(mod q) .

Thus, to have a successful decryption, it suffices to set the parameters so that with
overwhelming probability,⏐⏐⏐⏐x− e	v

[
x‖R̃1‖ . . . ‖R̃t

]	⏐⏐⏐⏐ <
q

4
.

Let us write ev = [ev,0‖ev,1‖ . . . ‖ev,t] with ev,i ∈ Zm for i = 0, . . . , t. Then the
noise term can be rewritten as

x−

⎛⎝ev,0 +
∑
i∈[t]

∑
j∈[μ]

k∑
γ=0

vi,j,γRi,j,γev,i

⎞⎠	

x .

By Lemma 2, we have ‖ev‖ < τt
√

(t + 1)m with overwhelming probability. Moreover
by Lemma 3, we have ‖Ri,j,γ ·ev,i‖ ≤ 12

√
2m·‖ev,i‖with overwhelming probability,

and since vi,j,γ ∈ [0, r − 1] it follows that∥∥∥∥∥∥ev,0 +
∑
i∈[t]

∑
j∈[μ]

k∑
γ=0

vi,j,γRi,j,γev,i

∥∥∥∥∥∥ = O(t · μ · k · r · σt ·m) .

Finally, by Lemma 14, the error term has absolute value at most:(
qαt · ω(

√
logm) +

√
m/2

)
· O (t · μ · k · r · σt ·m) .

3.4 Security Reduction

In this section we prove the following theorem.

Theorem 19. If the decision-LWEq,n,χ problem is infeasible, then the predicate en-
cryption scheme described above is weak attribute hiding-selective attribute secure.

Following [2,3], we define additional algorithms. These will not be used in the real
scheme, but we need them in our proofs.

Sim.Setup(1n, μ, w�). The algorithm choses random A, R�
i,j,k and u, it uses

TrapGen to generate B� and defines Ai,j,γ ← AR�
i,jγ − rγw�

i,jB
�. Specifically,

on input a security parameter n, an hierarchical format of depth d μ = (�, d;μ1,

Lattice-Based HIPE 133

. . . , μd), and a challenge vector w� = (w�
1, . . . ,w

�
d), the algorithm generates pub-

lic and secret parameters as follows: Choose random matrix A ∈ Zn×m
q . For i ∈ [d],

j ∈ [μi] and γ = 0, . . . , k, choose uniformly random matrices R�
i,j,γ ∈ Zn×m

q . Se-
lect a uniformly random vector u ∈ Zn

q . Use algorithm TrapGen(q, n,m) to select
a uniformly random n × m-matrix B� ∈ Zn×m

q with a basis TB� ∈ Zm×m for

Λ⊥
q (B�) such that ‖T̃B�‖ ≤ O(

√
n log q). For i ∈ [d], j ∈ [μi] and γ = 0, . . . , k,

set Ai,j,γ ← AR�
i,j,γ − rγw�

i,jB
�.

Output mpk = (A, {Ai,j,γ},u) and msk = ({R�
i,j,γ},B�,TB�).

Sim.Derive(mpk , dv, vt). Secret keys are now created by using the trapdoor TB� ,
sampled by Sim.Setup, and the SampleBasisRight algorithm. Specifically, on input the
master public key mpk , the secret key for the vector v = (v1, . . . ,vt−1), and the
vector vt, the algorithm generates a secret key for the vector v′ = (v1, . . . ,vt) by
constructing a short basis for Λ⊥

q (Fv′), as defined by Equation 2, by invoking S ←
SampleBasisRight(A,B�

v′ ,R�,TB� , σt). Output dv′ = S.

Sim.Enc(mpk , w,m). The algorithm differs from Enc in the sense that it uses matri-
ces R�

i,j,γ andB� instead of matricesRi,j,γ and B. Specifically, on input master public
key mpk , vector w = (w1, . . . ,wt), and message m ∈ {0, 1}, the algorithm generates

a ciphertext C as follows: Choose a uniformly random vector s
$← Zn

q , a noise vector

x ← Ψ
m

αt
and a noise term x ← Ψαt . Compute c0 = A	s + x ∈ Zm

q . For i ∈ [t],

j ∈ [μi] and γ = 0, . . . , k compute ci,j,γ = (Ai,j,γ + rγwi,jB
�)	s+R�	

i,j,γx ∈ Zm
q .

Compute c′ = u	s + x + m · �q/2� ∈ Zq . Output C = (c0, {ci,j,γ}, c′).

For a probabilistic polynomial-time adversary A, our proof of security will consist
of the following sequence of 6 games between A and C. The six games are defined as
follows:
Game0. C runs the Setup algorithm, answers A’s secret key queries using the Derive
algorithm, and generates the challenge ciphertext using the Enc with vector w0 and
message m0.

Game1. In this game C uses the simulation algorithms. Specifically, C runs the
Sim.Setup algorithm with w� = w0, answers A’s secret key queries using the
Sim.Derive algorithm, and generates the challenge ciphertext using the Sim.Enc with
vector w0 and message m0.

Game2. It is the same as the Game1 except that the challenge ciphertext is randomly
chosen from the ciphertext space.

Game3. It is the same as the Game2 except that C runs the Sim.Setup algorithm with
w� = w1.

Game4. It is the same as the Game3 except that C generates the challenge ciphertext
using the Sim.Enc with vector w1 and message m1.

Game5. C runs the Setup algorithm, answers A’s secret key queries using the Derive
algorithm, and generates the challenge ciphertext using the Enc with vector w1 and
message m1.

We defer the proof that, for i = 0, . . . , 4,Gamei is indistinguishable formGamei+1

under the appropriate assumptions, to the full version of this paper.

134 M. Abdalla, A. De Caro, and K. Mochetti

Parameters. From the previous sections we can extract the parameters required for
correctness and security of the system.

– We need to ensure that for each t ∈ [d], correctness holds. Specifically, Lemma 18
requires q/ log q = Ω(σt · μ · r

log r ·m3/2) and αt ≤ (t · log q · σt · μ · r
log r ·m ·

ω(
√

logm))−1.
– By Theorem 6, algorithm TrapGen requires q > 2 and m > 6n lg q to work.
– By Corollary 16, to have algorithm SampleBasisLeft working correctly in the
Derive algorithm, we need for each t ∈ [d], σt > ‖d̃v‖ · ω(

√
log((t + 1)m)).

Thus, we have σt > σTG · ω((log m)t/2).
– By Corollary 17, to have algorithm SampleBasisRight working correctly in

the Sim.Derive algorithm, we need for each t ∈ [d], σt > ‖T̃B‖ · sR ·
ω(
√

log((t + 1)m)). Thus, by Theorem 6, ‖T̃B‖ < σTG and, by Lemma 3,
sR = ‖R‖ = O(t · μ · (logr q + 1) ·

√
(t + 1)m) due the particular structure

of R, where μ = maxi∈[d] μi. Thus, σt > O(
√
n log q) · O(μ · (logr q + 1) ·√

(t + 1)m) · ω(
√

(t + 1)m).
– Regev’s reduction must apply: q > 2

√
n/αt

3.5 Wrapping Up

Proof of Theorem 19. From the previous sections and lemmata, we have shown that
our hierarchical inner-product encryption is weak attribute hiding-selective attribute se-
cure assuming decision-LWEq,n,χ problem is infeasible.

4 Application

4.1 Identity-Based Encryption with Wildcards

One of the main applications of IBE and HIBE schemes is email encryption, where
users can encrypt a message to the owner of the email address without having to obtain
a certified copy of the owner’s public key first. Motivated by the fact that many email
addresses correspond to groups of users rather than single individuals, Abdalla et al.
[1] introduced the concept of identity-based cryptography with wildcards (WIBE). In a
WIBE scheme, decryption keys are issued exactly as in a standard HIBE scheme and
the main difference lies in the encryption process. More specifically, in a WIBE scheme,
the sender can encrypt messages to more general patterns consisting of identity strings
and wildcards so that any identity matching the given pattern can decrypt.

Next we show how to convert any HIPE scheme in a WIBE one by using an encoding
first introduced in [13]. This let us to obtain the first WIBE scheme based on lattice
assumptions.

Let us start with some notation. A pattern is described by a vectorP = (P1, . . . , P�) ∈
({0, 1}�

⋃
{*})�, where * is a special wildcard symbol. We say that identity ID =

(ID1, . . . , ID�′) matches P , denoted ID ∈* P , if and only if �′ ≤ � and for all
i = 1, . . . , �′ we have that ID i = Pi or Pi = *. Note that under this definition,
any ancestor of a matching identity is also a matching identity. This is reasonable for

Lattice-Based HIPE 135

our purposes because any ancestor can derive the secret key of a matching descendant
identity anyway. If P = (P1, . . . , P�) is a pattern, then we define W(P) to be the set
of wildcard positions in P , i.e. W(P) = {1 ≤ i ≤ � : Pi = *}. Formally, a WIBE
scheme is a tuple of algorithms (Setup,Derive,Enc,Dec) providing the following func-
tionality. The Setup and Derive algorithms behave exactly as those of a HIPE scheme.
To create a ciphertext of a message m ∈ {0, 1}� intended for all identities matching
pattern P , the sender computes C ← Enc(mpk , P,m). Any of the intended recipients
ID ∈* P can decrypt the ciphertext using its own decryption key as m← Dec(dID ,C).

Let HIPE = (SetupH, DeriveH, EncH, DecH) be a Hierarchical inner-product en-
cryption. We can construct the scheme WIBE = (SetupW, DeriveW, EncW, DecW) as
follows:

SetupW(1λ, 1�). The algorithm returns the output of SetupH(1λ,μ = (2�, �; (μi =
2)i∈[�])). So the hierarchy μ is of depth � and each level has dimension 2.

DeriveW(msk , ID). For a pattern ID = (ID1, . . . , ID�), the key generation algo-
rithm constructs vector y ∈ Σ by setting, for each i ∈ [�], yi = (1, Pi). We denote
this transformation by y = KEncode(ID). Then the key generation algorithm returns
dP = DeriveH(msk ,y).

EncW(mpk , P). The algorithm constructs vector x ∈ Σ in the following way: For
each i ∈ [�] the algorithms sets xi = (−ri ·Pi, ri) if Pi �= *, xi = (0, 0) otherwise. We
denote this transformation by x = CEncode(z). Then the encryption algorithm returns
C = EncH(mpk ,x).

DecW(dP ,C). The algorithm returns the output of DecH(dP ,C).

Correctness. Correctness follows from the observation that for identity ID and pattern
P , we have that fKEncode(ID)(CEncode(P)) = 1 if and only if ID ∈* P .

Security. Let A be an adversary for WIBE that tries to break the scheme for an hierar-
chy of depth � and consider the following adversaryB for HIPE that usesA as a subrou-
tine and tries to break a HIPE with hierarchy format μ = (2�, �; (μi = 2i)i∈[�]) by in-
teracting with challenger C. B receives a mpk for HIPE and passes it toA. WheneverA
asks for the key for identity ID , B constructs y = KEncode(P) and asks C for a key dy
for y and returns it toA. WhenA asks for a challenge ciphertext by providing (m0, P

�
0)

and (m1, P
�
1), B simply computes x0 = CEncode(P �

0) and x1 = CEncode(P �
1) and

gives the pair (m0,x0), (m1,x1) to C. B then returns the challenge ciphertext obtained
from C toA. Finally,B outputsA’s guess. Notice that, B’s simulation is perfect. Indeed,
we have that if for all A’s queries satisfy the game constraint, then all B’s queries have
the same property. Thus B’s advantage is the same as A’s.

4.2 Chosen-Ciphertext Security

As we have seen in the previous section, given an HIPE scheme is possible to construct
a WIBE scheme. Thus, to apply the techniques of [6] to obtain an �-level HIPE scheme
secure against chosen-ciphertext attacks we will face the same issues faced by [1].

Thus, following [1], we show that we may use a IND-wAH-sID-HIPE-CPA-
secure HIPE of depth 2d + 2 and a strongly unforgeable signature scheme

136 M. Abdalla, A. De Caro, and K. Mochetti

(SigGen, Sign,Verify) to construct an IND-wAH-sID-HIPE-CCA-secure HIPE of
depth d. We adapt the encoding function Encode defined in [1] to the HIPE case
in the following way: For a HIPE scheme for hierarchical format μ = (�, d;μ1,
. . . , μd), we define two encoding functions, one to encode secret keys and one to
encode ciphertext. Specifically, for any two values a and b in Z�

N such that a �=
b, the encode function for secret keys KEncode works as follow: KEncode(v) =
((1, a),v1, . . . , (1, a),vt), for any vector v = (v1, . . . ,vt) with t ≤ d and
KEncode(v, vk) = ((1, a),v1, . . . , (1, a),vt, (1, b), (1, vk)). On the other hand,
the encode function for ciphertext CEncode works as follow: CEncode(w) =
((a,−1),w1, . . . , (a,−1),wt), for any vector w = (w1, . . . ,wt) with t ≤ d and
CEncode(w, vk) = ((a,−1),w1, . . . , (a,−1),wt, (b,−1), (vk ,−1)).

Construction. Given a HIPE scheme HIPE = (Setup,Derive,Enc,Dec) for hierarchi-
cal format μ = (�, 2d + 2; 2, μ1, 2, μ2, . . . , 2, μd, 2, 2), consider the following HIPE
scheme HIPE′ = (Setup′,Derive′,Enc′,Dec′) for hierarchical format μ = (�, d;μ1,
μ2, . . . , μd).

Key Derivation. The secret key for vector v = (v1, . . . ,vt), with t ≤ d under HIPE′

is the secret key corresponding to identity KEncode(v) under HIPE.

Encryption. To encrypt a message m under a vector w = (w1, . . . ,wt) and using a
master public key mpk , the following steps are performed: First, generate a signature
key pair (sk , vk)

$← SigGen. Then compute C
$← Enc(mpk ,CEncode(w, vk),m) and

σ
$← Sign(sk ,C). The final ciphertext is (vk ,C , σ).

Decryption. To decrypt a ciphertext (vk ,C , σ) using a private key dv for a vector
v, first check that Verify(vk ,C , σ) = valid. If not, output ⊥. Otherwise, compute
d = Derive(dv , ((1, b), (1, vk))) and output Dec(d ,C). Note that in this case d is the
decryption for the identity KEncode(v, vk) in HIPE.

Proof Sketch. Let A be an IND-wAH-sID-HIPE-CCA adversary against the HIPE′

scheme. Then there exists an IND-wAH-sID-HIPE-CPA attacker C against HIPE that
uses A as a subroutine. C can simulate A’s environment in a straight forward way.
Then C wins the game whenever A does as long as C does not make any illegal key
derivation queries. We will argue this fact briefly. First consider the queries that C
makes to respond to A’s key derivation query v. Let v′ = KEncode(v) and let w

′� =
CEncode(w�, vk�). We have the following:

1. If |v′| > |w′�| then fv′(w
′�) = 0.

2. If |v| = |w′�| then still fv′(w
′�) = 0 because v′ and w

′� are different on the next
to last level (v′ contains (1, a) there, while w

′� contains a (b,−1) and they are not
orthogonal).

3. If |v′| < |w′�| then the only way to have fv′(w
′�) = 1 is if also fv(w�) = 1,

which are illegal queries in A’s game as well.

Second, consider the key derivation queries that C makes in order to respond to A’s
decryption queries. If A makes decryption query (v, (vk ,C , σ)), then C makes a key
derivation query for v′ = KEncode(v, vk). Let w

′� = CEncode(w�, vk�). Then we
have two cases:

Lattice-Based HIPE 137

1. If vk �= vk� then fv′(w
′�) = 0 either because v has a (1, a) where w

′� has a
(b,−1), or because they differ on the last level.

2. If vk = vk�, then we have the following three sub-cases:
(a) If |v′| > |w′�| then fv′(w

′�) = 0.
(b) If |v′| < |w′�| then still fv′(w

′�) = 0 because v′ and w
′� are different on

the next to last level (v′ contains (1, a) there, while w
′� contains a (b,−1) and

they are not orthogonal).
(c) If |v| = |w′�| then the only way to have fv′(w

′�) = 1 is if also fv(w) = 1
but this case can be proved to have negligible probability under the one-time
security of the signature scheme.

Acknowledgments. This work was supported by the French ANR-09-VERS-016 BEST
Project, by the Brazilian CAPES Foundation, and by the European Commission through
the ICT Program under Contract ICT-2007-216676 ECRYPT II and the FP7-ICT-2011-
EU-Brazil Program under Contract 288349 SecFuNet.

References

1. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.: Identity-
Based Encryption Gone Wild. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg (2006)

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg
(2010)

3. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional Encryption for Inner Prod-
uct Predicates from Learning with Errors. In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS,
vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

4. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: ACM STOC
Annual ACM Symposium on Theory of Computing, pp. 99–108. ACM Press (May 1996)

5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS 2009,
pp. 75–86 (2009)

6. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. SIAM Journal on Computing 36(5), 1301–1328 (2007)

7. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Key-
word Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 506–522. Springer, Heidelberg (2004)

8. Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Challenges. In:
Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)

9. Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted Data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)

10. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice
Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer,
Heidelberg (2010)

11. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic
constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC Annual ACM Symposium
on Theory of Computing, pp. 197–206. ACM Press (May 2008)

138 M. Abdalla, A. De Caro, and K. Mochetti

12. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS
2006: 13th Conference on Computer and Communications Security, pp. 89–98. ACM Press
(October/November 2006)

13. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial
Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 146–162. Springer, Heidelberg (2008)

14. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional
Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg
(2010)

15. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: 45th FOCS Annual Symposium on Foundations of Computer Science, pp.
372–381. IEEE Computer Society Press (October 2004)

16. Okamoto, T., Takashima, K.: Hierarchical Predicate Encryption for Inner-Products. In: Mat-
sui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009)

17. Okamoto, T., Takashima, K.: Adaptively Attribute-Hiding (Hierarchical) Inner Product En-
cryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
591–608. Springer, Heidelberg (2012)

18. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended
abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC Annual ACM Symposium on Theory
of Computing, pp. 333–342. ACM Press (May/June 2009)

19. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In:
Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC Annual ACM Symposium on Theory of
Computing, pp. 84–93. ACM Press (May 2005)

20. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

Towards Efficient Arithmetic for Lattice-Based

Cryptography on Reconfigurable Hardware

Thomas Pöppelmann and Tim Güneysu∗

Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany

Abstract. In recent years lattice-based cryptography has emerged as
quantum secure and theoretically elegant alternative to classical cryp-
tographic schemes (like ECC or RSA). In addition to that, lattices are
a versatile tool and play an important role in the development of effi-
cient fully or somewhat homomorphic encryption (SHE/FHE) schemes.
In practice, ideal lattices defined in the polynomial ring Zp[x]/〈xn + 1〉
allow the reduction of the generally very large key sizes of lattice con-
structions. Another advantage of ideal lattices is that polynomial multi-
plication is a basic operation that has, in theory, only quasi-linear time
complexity of O(n log n) in Zp[x]/〈xn +1〉. However, few is known about
the practical performance of the FFT in this specific application domain
and whether it is really an alternative. In this work we make a first step
towards efficient FFT-based arithmetic for lattice-based cryptography
and show that the FFT can be implemented efficiently on reconfigurable
hardware. We give instantiations of recently proposed parameter sets
for homomorphic and public-key encryption. In a generic setting we are
able to multiply polynomials with up to 4096 coefficients and a 17-bit
prime in less than 0.5 milliseconds. For a parameter set of a SHE scheme
(n=1024,p=1061093377) our implementation performs 9063 polynomial
multiplications per second on a mid-range Spartan-6.

Keywords: Lattice-Based Cryptography, Ideal Lattices, FFT, NTT,
FPGA Implementation.

1 Introduction

Currently used cryptosystems rely on similar number theoretical problems such
as the hardness of factoring (RSA) or the elliptic curve discrete logarithm prob-
lem (ECC). Unfortunately, these do not hold any more in case it becomes feasible
to build a large enough quantum computer [52]. Even without quantum comput-
ers it may occur that improvements of cryptanalytic algorithms heavily impact
the security of the currently used schemes or raise their required security param-
eters beyond practicability. Therefore, it is necessary to investigate practical and
efficient alternative cryptosystems on relevant architectures (hardware/software)
that can withstand quantum attacks [12].

∗ This work was partially supported by European Commission through the ICT pro-
gramme under contract ICT-2007-216676 ECRYPT II.

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 139–158, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

140 T. Pöppelmann and T. Güneysu

Promising candidates to satisfy this need are lattice-based cryptosystems.
They rely on well-studied problems for which no efficient quantum algorithms
are known and also enable elegant security proofs and worst-case to average-case
reductions. However, for long lattice-based cryptography has been considered se-
cure only for large parameter sets beyond practicability (e.g., a key size around
one megabyte [42]) and required complex operations like multiplication of large
matrices. This has changed since the introduction of cyclic [41] and ideal lat-
tices [35] which enable the construction of a great variety of theoretically sound
and also efficient cryptosystems.

Besides being considered as a replacement for classical schemes, (ideal) lat-
tices are also employed for new primitives like fully or somewhat homomor-
phic encryption (SHE/FHE) that have the potential to secure cloud computing.
The first fully homomorphic encryption system has been proposed by Gentry in
2009 [24] and with his work, research in SHE/FHE gathered momentum due to
the great variety of applications and new ideas. However, efficiency is still far
from being practical and a lot of research focuses on performance improvements
for SHE/FHE [25,11,43].

When considering the runtime performance of proposed ideal lattice-based
cryptosystems, the most common and also most expensive operation is poly-
nomial multiplication in Zp[x]/〈xn + 1〉. This is also one reason for the often
claimed asymptotic speed advantage of lattice-based schemes over number theo-
retical constructions, as polynomial multiplication is equivalent to the negacyclic
or negative-wrapped convolution product which can be efficiently computed in
quasi-linear time O(n logn)1 using the Fast Fourier Transform (FFT). However,
this notation omits constants and terms of lower order and in practice it is not al-
ways clear if simpler algorithms like schoolbook multiplication or Karatsuba [32]
perform better on a specific platform.

In case of software implementations it is usually easy to determine which
polynomial multiplication algorithm yields the best performance for a target
architecture by running a few experiments with the desired parameter sets. Es-
pecially, as the simple algorithms are easy to implement and the more evolved
ones are already available and heavily optimized in the NTL [53] library of Vic-
tor Shoup. However, for hardware this is different as only very few results are
available [29,26] which consume lots of FPGA resources and do not target larger
parameter sets needed for SHE/FHE.

Some examples of previous implementations of polynomial multiplication not
designed for lattice-based cryptography are [56,14,7] but they mostly deal with
Galois Fields GF (2n). Other implementations are only optimized for the com-
putation of approximate results due to the complex floating-point arithmetic.
This lack of reference implementations may prevent the usage of lattice-based
cryptography in hardware. We therefore present a versatile implementation of
arithmetic for lattice-based cryptography and hope that this will allow designers
to focus more on the specific nature of a scheme than on the tedious implemen-
tation of the underlying FFT arithmetic.

1 All logarithms in this paper are of base two.

Arithmetic for Lattice-Based Cryptography on Reconfigurable Hardware 141

Our Contribution. In this work we present an adaptable and extensible
FPGA implementation of polynomial multiplication based on the FFT in Zp.
All arithmetic operations are specifically optimized for the ring Zp[x]/〈xn + 1〉
which is heavily used in ideal lattice-based cryptography, especially homomor-
phic encryption. Our implementation supports a broad range of parameters and
we give optimized variants for previously proposed parameter sets for public key
encryption and SHE. We show that the FFT seems to be the method of choice
for future implementations and that homomorphic encryption can benefit from
FPGA hardware accelerators. Our design is scalable, has small area consumption
on a low-cost FPGA and offers decent performance compared to general purpose
computers. We will make our source files, test-cases and documentation available
in order to allow other researchers to use and evaluate our implementation.2

Outline. This work is structured as follows. At first we give a short introduc-
tion to lattice-based cryptography and introduce different methods for polyno-
mial multiplication and outline their theoretical complexity in the next section.
We then discuss several design options in Section 4 and detail our implemen-
tations of these algorithms on reconfigurable hardware in Section 5. We finally
give considerations on the expected runtime and present performance results for
a broad range of parameters in Section 6. We finish this paper with future work
and a conclusion.

2 Ideal Lattice-Based Cryptography

Lattice-based cryptography has become more and more important in the last
years starting with the seminal result by Ajtai [2] who proved a worst-case to
average-case reduction between several lattice problems. In addition to that, no
efficient quantum algorithms solving lattice problems are currently known. The
two most commonly used average-case lattice problems are the short integer
solution (SIS) [2] and the learning with errors (LWE) [48] problem. Both can be
shown to be as hard as solving other lattice problems in the worst-case, e.g., the
(gap) shortest vector problem (SVP).

However, while schemes based on SIS or LWE admit very appealing theoret-
ical properties they are not efficient enough for practical usage, especially as in
most schemes the key-size grows (at least) quadratically in O(n2) for the secu-
rity parameter n [42]. This problem can be mitigated by introducing algebraic
structure into the previously completely randomly generated lattice. This led to
the definition of cyclic [41] and the more generalized ideal lattices [35] which
correspond to ideals in the ring Z[x]/〈f〉 for some irreducible polynomial f of
degree n. They proved to be a valuable tool for the construction of signature
schemes [37,38], collision resistant hash functions [39,3], public key encryption
schemes [36,54], identification schemes [34] as well as FHE [24] and SHE [43].
While certain properties can be established for various rings, in most cases the
ring R = Zp[x]/〈xn + 1〉 is used with f(x) = xn + 1, n being a power of 2 and p
being a prime such that p ≡ 1 mod 2n (e.g., [37,39,43,54])

2 See our web page at http://www.sha.rub.de/research/projects/lattice/

http://www.sha.rub.de/research/projects/lattice/

142 T. Pöppelmann and T. Güneysu

In the ring variant of the previously mentioned decisional LWE problem the
attacker has to decide whether the samples (a1, t1), . . . , (am, tm) ∈ R × R are
chosen completely random or whether each ti = ais+ei with s, e1, . . . , em having
small coefficients from a Gaussian distribution. The pseudo-randomness of the
ring-LWE distribution can then directly be applied to construct a semantically
secure public-key cryptosystem. When defining this cryptosystem in Zp[x]/〈xn+
1〉 it is also possible to compute the polynomial product of the noisy coefficients of
the ring-LWE problem efficiently by using the Fast Fourier Transform (FFT) in
the field Zp. This gives lattice-based cryptosystems the advantage that for most
cases the runtime is quasi-linear in O(n log n) and an increase of the security
parameter affects the efficiency far less than in other proposals [36].

For practical applications theoretical proofs of security are an important foun-
dation but the choice of parameters is much more relevant. If the parameters
are chosen in a way that the underlying problem, to which the security of a
scheme is reduced, is actually easy, then not much is gained. Therefore, as of
now lattice-based cryptosystems have to proof that they allow efficient and fast
implementations for reasonable parameters that yield practical key and cipher-
text sizes while maintaining quantum security and reducibility to hard lattice
problems. As ideal lattice cryptosystems allow actually practical or at least not
totally out of reach parameters, several researchers have suggested parameters
for their schemes. The general approach for selecting parameters used by [37]
and [42] is based on the experiments by Gama and Nguyen [22]. However, other
works [50,33,13] extends these method and provide frameworks for the derivation
of parameters for several security levels. These security levels allow the direct
calculation of the key and plaintext size.

Concerning implementations, lattice-based cryptography has very recently re-
ceived attention by researchers. For example Györfi et al. proposed a high-speed
implementation of the SWIFFT and SWIFFTX hash function on reconfigurable
hardware [29] which uses the FFT/NTT of order 64 over Z257. This hardware im-
plementation is considerably faster (claimed 16× speed-up) compared to a SIMD
software implementation provided by the designers of SWIFFT(X) in their sub-
mission to the NIST competition [39]. A software implementations of an LWE-
based public key encryption systems is described in [21] and an implementation
in hardware for power-constrained RFID applications is presented in [61]. Very
recent work by Göttert et al. [26] covers a software implementation as well as an
optimized realization of the scheme with the help of the FFT/NTT on reconfig-
urable hardware. An efficient signature scheme implemented on reconfigurable
hardware is presented in [27]. However, the number of available implementations
is still limited compared to the high number of proposed lattice-based cryptosys-
tems. Due to the large variety in possible parameter sets it is still a challenge to
determine how fast and efficient lattice-based cryptography can be on general
purpose processors, micro-controllers and also reconfigurable hardware. A no-
table exception to this is the ad-hoc designed NTRU encryption system (defined
in Zp[x]/〈xn − 1〉) [30] for which several implementation results and also two
standards have been published over the years (e.g., [31,4,5]).

Arithmetic for Lattice-Based Cryptography on Reconfigurable Hardware 143

3 Efficient Polynomial Multiplication in Zp[x]/〈xn + 1〉
In this section we shortly revisit well-known polynomial multiplication algo-
rithms applicable for ideal lattice-based cryptosystems (see [9] for a compre-
hensive treatment). As mentioned in Section 2, the currently used ideal lat-
tices are equivalently characterized as ideals of the ring of modular polynomials
Zp[x]/〈xn + 1〉 with n integer coefficients such that f(x) = f0 + f1x + f2x

2 +
... + fn−1x

n−1 ∈ Zp[x] [49]. Two elements in these rings can be easily added
coefficient-wise with a complexity of O(n). However, multiplication is much more
complicated and for Zp[x]/〈xn + 1〉 the product c(x) = a(x)·b(x) can be com-
puted by considering the special rule that xn ≡ −1. This leads to

ab =

⎡⎣n−1∑
i=0

n−1∑
j=0

aibjx
i+j

⎤⎦ mod 〈xn + 1〉 =

n−1∑
i=0

n−1∑
j=0

(−1)�
i+j
n �aibjxi+j mod n.

This classical ”schoolbook” algorithm has a quadratic complexity O(n2) and
generally requires n2 multiplications and (n− 1)2 additions or subtractions [57].
The modulus n operation can be performed efficiently by a right shift when

n is a power of two and (−1)�
i+j
n � is 1 for i + j < n and −1 otherwise as

i + j ≤ 2n− 2. The complexity of polynomial multiplication can be lowered to
O(nlog(3)) with the Karatsuba method [32] but due to its recursive structure
the original algorithm is not supposed to perform well on hardware (see [17] for
implementation decisions regarding a Karatsuba multiplier).

3.1 The Number Theoretic Transform

A quasi-linear complexity of O(n log n) for polynomial multiplication can be
achieved with the Fast Fourier Transform (FFT) popularized by Cooley and
Turkey [15]. One main application is integer multiplication (e.g., Schönhage
and Strassen [51]) and signal processing [10]. The Number Theoretic Trans-
form (NTT) [46] is essentially an FFT defined in a finite field or ring so that no
inaccurate floating point or complex arithmetic is needed. For a given primitive
n-th root of unity ω, the generic forward NTTω(a) of a sequence {a0, .., an−1}
to {A0, . . . , An−1} with elements in Zp and length n is defined as

Ai =
n−1∑
j=0

ajω
ij mod p, i = 0, 1, ..., n− 1 (1)

with the inverse NTT−1
ω (A) being denoted as

ai = n−1
n−1∑
j=0

Ajω
−ij mod p, i = 0, 1, ..., n− 1. (2)

The NTT exists if and only if the block length n divides q − 1 for every prime
factor q of p [10]. The value ω is a primitive n-th root of unity if (1) ωn = 1 mod p

144 T. Pöppelmann and T. Güneysu

and (2) ωn/q − 1 �= 0 mod p for any prime divisor q of n [7]. For p being a prime
and n being a power of two, the NTT can be computed with a simple algorithm
with time complexity O(n log n) when n mod (p− 1) ≡ 1.

Theorem 1 (Convolution Theorem [59]). Let ω be a primitive 2n-th root
of unity in Zp. Let a = (a0, ..., an−1) and b = (b0, ..., bn−1) be vectors of length

n with elements in Zp and ã = (a0, ..., an−1, 0, ..., 0),b̃ = (b0, ..., bn−1, 0, ..., 0)
the corresponding vectors of length 2n, where the trailing components have been
filled with zeros. With ◦ meaning component-wise multiplication then a·b =
NTT−1

ω (NTTω(ã)◦NTTω(b̃)).

By Theorem 1 we can now multiply arbitrary polynomials represented as vectors
and later (if necessary) reduce them with a reduction polynomial of our choice.
However, as we have to append n zeros, the length of the input sequence to the
transform doubles.

Theorem 2 (Wrapped Convolution [59]). Let ω be a primitive n-th root of
unity in Zp and ψ2 = ω. Let a = (a0, ..., an−1) and b = (b0, ..., bn−1) be vectors
of length n with elements in Zp.

1. The positive wrapped convolution of a and b is NTT−1
w (NTTw(a)◦ NTTw(b)).

2. Let d = (d0, ..., dn−1) be the negative wrapped convolution of a and b. Let
ā, b̄ and d̄ be defined as (a0, ψa1, ..., ψ

n−1an−1), (b0, ψb1, ..., ψ
n−1bn−1), and

(d0, ψd1, ..., ψ
n−1dn−1). Then d̄ = NTT−1

w (NTTw(ā)◦NTTw(b̄)).

In order to avoid the doubling of the input length of the NTT as described in
Theorem 1 we can directly perform a positive wrapped convolution for arithmetic
in Zp[x]/〈xn − 1〉 and use the negative wrapped convolution for Zp[x]/〈xn + 1〉.
The latter case is already exploited in practice for a lattice-based hash function
(see SWIFFT [39]) and particularly interesting as we are getting the necessary
reduction by the polynomial xn + 1 for ”free” and can work with a transform
length that is equal to the number of polynomial coefficients. The only restriction
is that we have to find an n-th root of unity ω and its modular square root
ψ such that ψ2 ≡ ω mod p. As a consequence, when p is a prime and n a
power of two, the negative wrapped convolution approach is only possible in
case p ≡ 1 mod 2n [39].

3.2 Efficient Computation of the NTT

An implementation of the FFT is possible with complexity O(n log n). The fast
algorithms exploit symmetry introduced by the n-th root of unity ω and can
be described recursive, iterative or as a composition of varying size NTTs [10].
In Algorithm 1 [16,10] we just present a common Cooley and Turkey radix-2
decimation in time approach which we have also used for our hardware imple-
mentation. This algorithm contains at its core (line 12 and 13) the ”butterfly
operation” which is the multiplication of the factor ωN mod n with d and the
adding or subtraction of the result from c. The Bit-Reverse(g) operation is used
to reorder the input vector g where the new position of an element at position k
is determined by the value obtained by reversing the binary representation of k.

Arithmetic for Lattice-Based Cryptography on Reconfigurable Hardware 145

Algorithm 1.1: Iterative-NTT

Input: g ∈ Zp[x] of degree less than n = 2k with k ∈ N and a primitive n-th
root of unity ω ∈ Zp

Output: y = NTTω(a)
1 A← Bit-Reverse(g)
2 m← 2
3 while m ≤ N do
4 s← 0
5 while s < N do
6 for i to m/2− 1 do
7 N ← i · n/m
8 a← s + i
9 b← s + i + m/2

10 c← A[a]
11 d← A[b]

12 A[a]← c + ωN mod nd mod p

13 A[b]← c− ωN mod nd mod p

14 s← s + m

15 m← m · 2
16 return A

4 Designing an Efficient NTT Polynomial Multiplier
on Reconfigurable Hardware

In this section we deal with the overall design of a polynomial multiplier for
lattice-based cryptography. For this purpose we also consider previous imple-
mentation of the FFT for signal processing and introduce concepts that can also
be applied for polynomial multiplication.

4.1 Existing FFT Implementations

The implementation of the FFT in hardware has been considered for more than
forty years and a large variety of approaches exist for certain demands regard-
ing throughput, power usage as well as memory and resource consumption or
latency [8,44]. One of the two most common design approaches are pipelined
implementations [19] where usually one stage of the FFT is performed in one
clock cycle in parallel. However, while being extremely fast, this approach is ex-
pensive in terms of hardware resources - especially memory and register space.
When dedicated memory blocks are available, like on an FPGA, the FFT can
also be implemented memory-based [58] with the coefficients and constants be-
ing stored in this memory. The processing is then usually performed iteratively
by only one or a low number of processing elements (PE) controlled by a digi-
tal address generator (DAG). For radix-2 algorithms the PE usually resembles

146 T. Pöppelmann and T. Güneysu

the well-known butterfly structure and is used to multiply elements of the pro-
cessed vector by powers of ω (also known as twiddle factors). In some cases the
length of the processed sequence is fixed but there exist also very flexible variable
length memory-based FFT implementations [23]. A more detailed characteriza-
tion of FFT architectures can be found in [55]. An implementation of the NTT
on graphic cards is described in [20]. A cryptographic processor for performing
elliptic curve cryptography (ECC) in the frequency domain is presented in [6].

4.2 Design Decisions for Lattice-Based Cryptography

As lattice-based cryptography is still a very active field of research and the hard-
ness of ideal lattice-based cryptography not fully understood, no ”standard”
parameters like specific reduction primes or certain numbers of polynomial co-
efficients have emerged yet. This is different for established cryptosystems, e.g.,
elliptic curve cryptography (ECC). For the ECC example NIST primes have
been specified for efficient modular reduction [28] and just a few parameter sets
have to be considered which allows much more optimized implementations. As
such standardization is not yet achieved for lattice based cryptography, we have
made our implementation of polynomial multiplication as generic as possible.
The only general requirement, that can be considered ”standard” in the litera-
ture is that p mod 2n ≡ 1, n is a power of two and p is a prime so that the NTT
can be efficiently computed in Zp.

The NTT is not considered as a very efficient method for most applications
as approximate solutions in signal processing are usually sufficient (see [45] for
calculations of the required accuracy for polynomial multiplication). Especially,
the complexity of the butterfly structure in the PE takes a lot of resources as
multiplication by the twiddle factor is just a general purpose multiplication fol-
lowed by a modular reduction. When using the Fermat [1] or Mersenne [47]
number theoretic transform (FNT/MNT) the butterfly can be implemented by
shifters (as ω can be 2), no ROM for twiddle factors is needed and the modular
reduction is also heavily simplified [10, Chap. 10][7]. However, in this case the
transform length has to be doubled (Theorem 1), more storage space for coef-
ficients is needed and the modular reduction has to be performed separately.
But the most important observation when reusing the PE for polynomial multi-
plication is that the component-wise multiplication step a◦b requires a general
purpose multiplication and cannot be implemented just with shifters. As a con-
sequence, we decided to reuse the multiplication hardware that we need for the
component-wise multiplication step also in the NTT. This makes sense, as such
hardware will be instantiated and would idle most of the time which is a waste
of resources.

When utilizing (2) of Theorem 2 it seems that more arithmetic operations and
additional ROM storage space is necessary due to the needed table entries for
ψ and ψ−1. However, compared to a general purpose NTT based on Theorem 1
with a subsequent polynomial modular reduction we are still saving memory
resources. When multiplying two polynomial of length n by appending n zeros,
we have to store 2n + 2n = 4n twiddle factors with 2n for the forward and 2n

Arithmetic for Lattice-Based Cryptography on Reconfigurable Hardware 147

for the backward transform. When directly implementing the negative wrapped
convolution we can use a transform size of n. In this case we need additional
storage for the ψi values. But as ψ2i = ωi, every second value in the lower half
of the ωi table is also an entry for ψi. As a consequence, we are just requiring
2n + 0.5n + 0.5n = 3n entries in the ROM and two RAMs, each with n entries
when implementing the negative wrapped convolution directly.

5 Implementation Details

In this section we describe our FPGA implementation of a flexible NTT-based
polynomial multiplication core specifically designed for high performance lattice-
based cryptography.

Fig. 1. Block structure of the implemented NTT butterfly which is reused as
general purpose multiplier in the polynomial multiplication core. The final addi-
tion/subtraction is modulo p.

The processing element (PE) of the polynomial multiplier (depicted in Fig-
ure 1) and NTT resembles the common butterfly structure and computes one
node of the NTT flow every clock cycle. In order to allow generic usage, a mul-
tiplier and a subsequent modular reduction circuit is synthesized for a given
reduction prime p. However, it is also possible to write plug-ins that exploit
specific structures in the prime number for a more efficient reduction (e.g., for
the Fermat prime 216 + 1) or multiplication (e.g., table lookup for small values
of ab mod p). At synthesis time, it is checked if a specific circuit is available
which then takes precedence over the generic implementation. This also allows
resource trade-offs, as the plug-ins can be designed to make use of slices, DSPs
or table lookups in block memory. The generic multipliers are just instantiations
of the Xilinx provided multiplication IP cores for various bit widths (maximum
64 × 64-bit). The usage of these cores also allows trade-offs between DSPs and
logic slices as well as between performance and latency.

The polynomial multiplication unit depicted in Figure 2 uses the memory
elements RAM A and RAM B, each of size n�log p� bits to store the coefficients
of the polynomials a and b. When coefficients ai or bi with 0 ≤ i < n are
loaded sequentially into the multiplier, the BITREV component ensures that they
are multiplied by ψi and stored at bit-reversed locations into the RAM. For

148 T. Pöppelmann and T. Güneysu

Fig. 2. Architecture of the polynomial multiplication unit. The arrows indicate main
data flows on the bus.

this, the modular arithmetic of the shared processing element PE is used whose
butterfly structure also allows simple addition or multiplication of two values
in Zp. The ROM component stores the twiddle factors ωi as well as ψi for 0 ≤
i < n and requires 3n�log p� bits of block RAM. The NTT unit then performs the
number theoretic transform in the forward direction in-place on the coefficients in
RAM A and RAM B. Then the content is multiplied component-wise by the PW Mul

unit with the result being stored in BRAM B. After an inverse NTT (forward
NTT with different values from the ROM component) the IPSI MUL and INVN MUL

components just multiply the output of the inverse NTT by the inverse of n and
the inverse values of powers of ψi and output the result sequentially.

One of our goals is maximum utilization of the most expensive arithmetic in
the PE component. Therefore, the PE component is shared between all other parts
of the design. This yields a near one-hundred percent utilization of the multiplier.
Note also, that it would be possible to execute the two forward NTTs in parallel
with two PEs and NTT components. However, during the inverse NTT one of
these units would idle which seems not efficient in terms of resource usage.

Integrated block RAM on FPGAs usually supports dual-port access so that
only two values can be written and/or read independently in one clock cycle. This
is not optimal, as the butterfly structure depicted in Figure 1 needs two inputs

Arithmetic for Lattice-Based Cryptography on Reconfigurable Hardware 149

and produces two outputs during one clock cycle. An option would be to just
perform one butterfly calculation every two clock cycles but this would double
the runtime of the NTT component. Therefore, we use a transparent mechanism
for the realization of a conflict free access scheme. We rely on an observation by
Pease [44] that the parity of the address lines requesting the inputs and outputs
for the butterfly always differ. This division is transparently realized in a wrapper
in RAM A and RAM B. In Figure 2 this division is also visible as each RAM element
contains actually two RAMs (one for equal and another one for unequal parity
addresses). This allows standard dual-port access for modules like PW Mul and
also provides two additional pseudo-ports exclusively to the NTT component.

The interface of our implementation consists of a port for coefficients of a and
b and the result c is then outputted on another port. Configuration of the core
just requires the specification of n, p, ψ, ψ−1, n−1. All needed tables in the ROM

component are initialized by the synthesizer and mapped into an optimal block
RAM structure. Obtaining these values is possible by using brute-force or more
complex algorithms that find n-th roots of unity (e.g., with a computer algebra
system) and its square root. Our design could even be adapted to other rings
or used for general purpose polynomial multiplication but may then not be as
competitive as for the Zp[x]/〈xn + 1〉 case.

6 Results and Comparison

All results were obtained post place-and-route (PAR), generated with Xilinx ISE
13.3 and implemented stand-alone on the medium-cost Spartan-6 LX100 (speed-
grade −3) with some optimizations turned on (using the SmartExplorer [60]).
The Spartan-6 LX100 has 180 integrated DSPs, 268 18K block RAMs and sup-
ports up to 126K registers and 63K LUTs on 15K slices.

The general performance of the polynomial multiplication mainly depends on
the runtime of the NTT core which uses ≈ n log n

2 cycles as the butterfly step
executes the inner loop of Algorithm 1 every cycle. Therefore, by executing two
forward NTTs, multiplying the polynomials component-wise and then executing
an inverse NTT we multiply two polynomials in Zp[x]/〈xn +1〉 in ≈ 3 ·(n log n

2)+
5.5n cycles. The additional 5.5n cycles are introduced by loading of coefficients
(2n), component-wise multiplication (1.5n) and multiplication of the final result
by ψ−i and n−1 (2n).

The resource consumption of the polynomial multiplier instantiated on the
FPGA is mainly influenced by the resource consumption of the �log p�×�log p�-
bit multiplier and modular p reduction circuit in the butterfly module. For all
reduction primes we have designed specialized reduction circuits that take into
account the number and position of ones in the binary representation of the
prime (see [18,28]). The resource consumption is generally also influenced by the
number of coefficients as for larger values of n the address path becomes larger.
For our comparison we just consider a scenario in which two dense polynomials
(very few zero coefficients) with coefficients in the range from zero to p− 1 are
multiplied. With one BRAM we denote a full 18K-bit block RAM which can be
split into two independent 9K-bit block RAMs (denoted as 0.5 BRAM).

150 T. Pöppelmann and T. Güneysu

6.1 Polynomial Multiplication in Z216+1〈xn + 1〉
In Table 1 we detail the performance and resource consumption for the biggest
known Fermat prime p = 216 + 1 = 65537 which yields a very efficient reduc-
tion algorithm [7] and may therefore be used when parameterizing lattice-based
schemes. As previously stated, the amount of required slices slowly increases for
larger values of n but the limiting factor seems to be the increasing number of
occupied block RAMs. However, note that it is still possible to implement the
multiplier even for n = 4096 on a low-cost FPGA like the Spartan-6 LX16.

Table 1. Resource consumption and performance results (post PAR) of the NTT
polynomial multiplier on the Spartan-6 LX100 for the biggest Fermat prime p = 216 +
1 = 65537 and a variable number of coefficients n. The column ”Mul/s” contains the
number of polynomial multiplication that the core can execute per second.

n p LUT FF Slice DSP BRAM MHz Cycles Mul/s

128 65537 1407 1123 535 1 2.5 209 2342 89239

256 65537 1438 1123 520 1 2.5 209 4774 43778

512 65537 1585 1205 615 1 4 196 10014 19572

1024 65537 1644 1241 659 1 6.5 200 21278 9399

2048 65537 1757 1350 707 1 12.5 204 45326 4500

4096 65537 1844 1390 684 1 25 197 96526 2040

6.2 Ring-LWE Encryption

Secure parameters for the multi-bit ring-LWE encryption system are derived in
[50]. Arithmetic is defined over the ring R = Zp[x]/〈xn+1〉 and the R-module Rm

with elements x̂. The first multiplication defined in Rm is just component-wise
while the second is a convolution � : Rm × Rm → R, (x̂, ŷ) �→

∑m
i=1 xiyi. The

ciphertext (u, c) is then computed from the public key pk = (â ∈ Rm, p̂ ∈ Rm)

u = â� r̂ ∈ R, c = p̂� r̂ + k
p− 1

2
∈ R (3)

where r̂ consists only of m small polynomials with coefficients (−2, . . . , 2) and
the plaintext k only has zero or ±1 coefficients. The two parameter sets that
should offer long term security are (n = 256, p = 1049089,m = 14) and (n =
512, p = 5941249,m = 16). The results in Table 2 show that the multiplications
of airi and piri can be performed very efficiently with our implementation just
requiring 22μs and 53μs per polynomial multiplication, respectively.

6.3 Homomorphic Encryption

Our hardware implementation could significantly accelerate homomorphic en-
cryption and is beneficial in terms of energy and device costs. In [43] the im-
plementation and parameterization of a ”somewhat” homomorphic encryption

Arithmetic for Lattice-Based Cryptography on Reconfigurable Hardware 151

scheme (SHE) in the computer algebra system MAGMA is presented. It is based
on ideal lattices with the ring-LWE problem as hardness assumption [40] and
allows the computation of a fixed amount of additions and multiplications on
encrypted data (depending on the parameters). Encryption requires two multi-
plications in Zp[x]/〈xn +1〉 which make up for most of the runtime. The number
of coefficients of the used polynomials ranges from n = 512 to n = 131072. A
reasonable set is (n = 1024,p = 1061093377) for the homomorphic computation
of the mean and (n = 2048, q = 257 + 25 · 213 + 1 = 144115188076060673)
for the computation of the variance on encrypted data. In Table 2 the perfor-
mance and resource consumption for these parameter sets is detailed. With a
clock frequency of 161 MHz we can compute 3542 polynomial multiplication in
one second (0.28 ms per multiplication) for the larger parameter set. In [43] it
is reported that the same operation takes 11 ms on a 2.1 GHz dual core pro-
cessor and thus we achieve a speed-up by a factor of 39 for this operation that
contributes heavily to the overall runtime.

Table 2. Resource consumption and performance results for the application of the
NTT polynomial multiplier for LWE encryption and SHE. Numbers are post-PAR
obtained on a Spartan-6 LX100.

App. n p LUT FF Slice DSP BRAM MHz Cycles Mul/s

LWE [50] 256 1049089 1637 1507 640 4 5.5 218 4806 45359

LWE [50] 512 5941249 3228 2263 1145 4 7 193 10174 18969

SHE [43] 1024 1061093377 2690 2317 997 4 11.5 194 21405 9063

SHE [43] 2048 257+25·213+1 3846 3986 1310 16 22.5 161 45453 3542

6.4 Comparison with Schoolbook Multiplication

In order to compare our NTT-based results with the naive approach we have
developed a basic schoolbook polynomial multiplier according to the description
in Section 3. For easier comparison of the resource consumption we reuse the
arithmetic already implemented in the NTT butterfly (see Section 5 and Fig-
ure 1). Our schoolbook implementation uses n2 + 2n cycles with the constant
2n being attributed to loading of the two inputs while outputting of the result is
performed directly in the final round. The multiplier needs three distinct memo-
ries (each with n entries) for the storage of the input polynomials a and b as well
as for the temporary result. The implementation results for selected parameters
are given in Table 3.

We would like to note that the schoolbook approach is generally more versa-
tile than the NTT core (e.g., no restrictions on the reduction prime p) and allows
the reduction of runtime or resources when special constrains apply to the in-
put polynomial. The first is the density of the polynomial as a more advanced
schoolbook polynomial multiplication circuit (than the one we used) could detect
zeros in both polynomials and may avoid the inner multiplications with them.
Therefore, for a sparse polynomial the runtime can be calculated as the num-
ber of non-zero coefficients in the first polynomial times the number of non-zero

152 T. Pöppelmann and T. Güneysu

coefficients in the second polynomial. Considering this, our results for the NTT
allow an estimation when a schoolbook implementation with detection of sparse
coefficients may be advantageous. The resource consumption of the multiplier
can be lowered with a special schoolbook multiplier when the coefficients of the
two input polynomials are bounded (e.g., only zero or one). This also applies
to the polynomial multiplication performed in the ring-LWE encryption scheme
but as noted before, only impacts the resource consumption and not the general
runtime as a smaller internal multiplier can be used (e.g., 2 × 21-bit multiplier
instead of a 21×21-bit multiplier). This also enables a smaller modular reduction
circuit and in some special cases like when one polynomial contains only zero or
ones, the multiplier becomes just an adder.

Table 3. Performance of selected instantiations of a schoolbook polynomial multiplier
for the multiplication of two dense and equally sized polynomials. Numbers are post
PAR obtained on a Spartan-6 LX100.

App. n p LUT FF Slice DSP BRAM MHz Cycles Mul/s

Fermat 128 65537 547 555 201 1 1.5 320 16670 19196

Fermat 256 65537 495 550 213 1 1.5 300 66078 4540

Fermat 512 65537 507 563 217 1 1.5 302 263198 1147

Fermat 1024 65537 529 576 224 1 3 295 1050654 280

Fermat 2048 65537 679 663 291 1 6 295 4198430 70

Fermat 4096 65537 703 678 304 1 13.5 273 16785438 16

LWE [50] 256 1049089 997 1327 375 4 3 263 66088 3979

SHE [43] 1024 1061093377 1725 2365 687 4 6 185 1050674 147

6.5 Comparison with Related Work

As mentioned in Section 2 some implementations of lattice-based cryptography
have been recently proposed. In this section we compare our implementation
of polynomial multiplication with relevant implementations on reconfigurable
hardware and highlight the different approaches.

For their implementation of the SWIFFT(X) hash function which uses the
FFT/NTT as a core primitive Györfi et al. [29] utilize the fact that the small
reduction prime p = 257 is fixed. This allows the usage of look-up tables instead
of DSP-based arithmetic. Furthermore, they utilize the diminished-one number
system in order to represent numbers modulo p = 2k + 1. The resource con-
sumption is quite costly with 3,639 slices and 68 BRAMs of a large Virtex-5
LX110T FPGA but their pipelined implementation is able to compute the FFT
in one clock cycle per sample with a latency of log(n) at a frequency of 150 MHz.
Note that a fair comparison to our results is not possible as the parameters of
SWIFFT (n = 64, p = 257) are much smaller parameter than those we have
considered.

A complete and fully functional reconfigurable hardware implementation of
LWE encryption is given in [26] with a special emphasis on efficient Gaussian

Arithmetic for Lattice-Based Cryptography on Reconfigurable Hardware 153

sampling and the parallel implementation of the FFT/NTT. The result is avail-
able in O(log n) time instead of O(n log n) as for our implementation. However,
due to this parallel approach the resource consumption of the implementation
is excessively high requiring a very large Virtex-7 2000T FPGA at the cost of
several thousand US$ per device. For the smallest secure parameter set with
n = 256 and p = 7681 the encryption engine requires 140K registers and 320K
LUTs while decryption takes 65K registers and 124K LUTs. The encryption and
decryption throughput for this parameter set is approx. 16 MBits/s.

6.6 Optimizations

The given performance figures show that the NTT is fast and resource efficient
even on low-cost devices. However, optimizations and extensions of the current
architecture are still possible. Recall, that the NTT is performed in place and
that the result of the component-wise multiplication is stored in BRAM B. Thus the
transformed coefficients in RAM A are only overwritten when a new polynomial
multiplication is started. This allows us to keep the transformed value in BRAM A

and just read in new coefficients into BRAM B. As a consequence we can flexibly
declare one polynomial that has been transformed once as constant and save one
forward NTT for further multiplication with this constant.

We also improved the resource consumption by the instantiation of an array
of s polynomial multipliers that share the constants stored in the ROM component
(as depicted in Figure 3 for s = 3). As only a global valid signal exists, all multi-
pliers are operated and loaded simultaneously so that the same powers of ψ and
ω are needed in every unit. Thus the required amount of memory entries (ROM
and RAM) is s · 2n+ 3n ≈ s · 2n for large values of s. The approximate resource
consumption for a multiplier array that simultaneously computes all 28 poly-
nomial (2m) multiplications in the two convolutions of the multi-bit ring-LWE
encryption function (n = 256, p = 1049089) on a Spartan-6 LX100 is 48k slice
registers, 39k LUTs, 14k slices, 113 BRAMs and 112 DPSs with a clock frequency
of 127 MHz. This allows an impressive amount of 26425 calls to the encryption
function per second (omitting the other cheaper or at least parallelizable oper-
ations like final summation or error sampling). Combining the array structure
with the ability to multiply efficiently by a constant is particularly useful for
the ring-LWE encryption system when a large number of encryptions have to
be performed for a fixed public key so that â, p̂ can be treated as transformed
quasi-constant and stored in each part of the array.

7 Conclusion and Future Work

In this work we have shown that the underlying arithmetic of lattice-based
schemes can be efficiently implemented on FPGAs with a runtime under one mil-
lisecond for a great variety of parameters (n = 128, . . . , 4096/�logp� = 16, . . . , 58)
that have been previously proposed by other researchers. Our implementation
can act as a building block for future implementations and should be helpful in

154 T. Pöppelmann and T. Güneysu

Fig. 3. A master-slave architecture for multiple synchronized polynomial multipliers
Poly Mul. Coefficients are simultaneously loaded and outputted as only one global valid
signal exists.

order to compare the efficiency of current or future lattice-based proposals with
other classical or post-quantum secure alternatives.

In future work we plan to integrate the presented polynomial multiplier into
a fully functional implementation of a ring-LWE or homomorphic encryption
scheme. Moreover, our implementation should act as the basis for a lattice co-
processor with a configurable amount of registers and more versatile operations
like addition of constants, adding of two polynomials or random sampling. It
may even be possible to define the required operations in a higher level language
and to synthesize the processor based on such an abstract description. We would
also like to investigate how our direct approach performs in comparison with im-
plementations of the Mersenne or Fermant number transform [7,6] in terms of
performance and resource usage. As explained, some corner cases exist in which
schoolbook multiplication may be faster or at least more resource efficient than
our proposal. We are therefore planning to provide optimized implementations
for multiplication of sparse polynomials or polynomials with different coefficient
bit-widths. Another interesting topic may be the leakage resilience of the de-
signed multiplier.

References

1. Agarwal, R., Burrus, C.: Fast convolution using fermat number transforms with
applications to digital filtering. IEEE Transactions on Acoustics, Speech and Signal
Processing 22(2), 87–97 (1974)

2. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108.
ACM (1996)

Arithmetic for Lattice-Based Cryptography on Reconfigurable Hardware 155

3. Arbitman, Y., Dogon, G., Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen,
A.: SWIFFTX: A proposal for the SHA-3 standard. Submission to NIST (2008)

4. Atici, A.C., Batina, L., Fan, J., Verbauwhede, I., Yalcin, S.B.O.: Low-cost im-
plementations of NTRU for pervasive security. In: International Conference on
Application-Specific Systems, Architectures and Processors, ASAP 2008, pp. 79–
84. IEEE (2008)

5. Bailey, D.V., Coffin, D., Elbirt, A., Silverman, J.H., Woodbury, A.D.: NTRU in
Constrained Devices. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 262–272. Springer, Heidelberg (2001)

6. Baktir, S., Kumar, S., Paar, C., Sunar, B.: A state-of-the-art elliptic curve cryp-
tographic processor operating in the frequency domain. Mob. Netw. Appl. 12(4),
259–270 (2007)

7. Baktir, S., Sunar, B.: Achieving efficient polynomial multiplication in fermat fields
using the fast fourier transform. In: Proceedings of the 44th Annual Southeast
Regional Conference, ACM-SE 44, pp. 549–554. ACM, New York (2006)

8. Bergland, G.: Fast fourier transform hardware implementations–an overview. IEEE
Transactions on Audio and Electroacoustics 17(2), 104–108 (1969)

9. Bernstein, D.J.: Fast multiplication and its applications. Algorithmic Number The-
ory 44, 325–384 (2008)

10. Blahut, R.E.: Fast Algorithms for Signal Processing. Cambridge University Press
(2010)

11. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. 18, p. 111 (2011)

12. Buchmann, J., May, A., Vollmer, U.: Perspectives for cryptographic long-term se-
curity. Communications of the ACM 49(9), 50–55 (2006)

13. Buchmann, J., Lindner, R.: Secure Parameters for SWIFFT. In: Roy, B., Sendrier,
N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 1–17. Springer, Heidelberg
(2009)

14. Cheng, L.S., Miri, A., Yeap, T.H.: Efficient FPGA implementation of FFT based
multipliers. In: Canadian Conference on Electrical and Computer Engineering, pp.
1300–1303. IEEE (2005)

15. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
fourier series. Math. Comput 19(90), 297–301 (1965)

16. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (July 2009)

17. Corona, C.C., Moreno, E.F., Henriquez, F.R., et al.: Hardware design of a 256-
bit prime field multiplier suitable for computing bilinear pairings. In: 2011 Inter-
national Conference on Reconfigurable Computing and FPGAs (ReConFig), pp.
229–234. IEEE (2011)

18. Deschamps, J.P., Sutter, G.: Comparison of FPGA implementation of the mod M
reduction. Latin American Applied Research 37(1), 93–97 (2007)

19. Dreschmann, M., Meyer, J., Huebner, M., Schmogrow, R., Hillerkuss, D., Becker,
J., Leuthold, J., Freude, W.: Implementation of an Ultra-High Speed 256-Point
FFT for Xilinx Virtex-6 Devices. In: 2011 9th IEEE International Conference on
Industrial Informatics (INDIN), pp. 829–834 (July 2011)

20. Emeliyanenko, P.: Efficient Multiplication of Polynomials on Graphics Hardware.
In: Dou, Y., Gruber, R., Joller, J.M. (eds.) APPT 2009. LNCS, vol. 5737, pp.
134–149. Springer, Heidelberg (2009)

156 T. Pöppelmann and T. Güneysu

21. Frederiksen, T.K.: A practical implementation of Regev’s LWE-based cryp-
tosystem (2010), http://daimi.au.dk/~jot2re/lwe/resources/A%20Practical

%20Implementation%20of%20Regevs%20LWE-based%20Cryptosystem.pdf
22. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Proceedings of the The-

ory and Applications of Cryptographic Techniques 27th Annual International Con-
ference on Advances in Cryptology, pp. 31–51. Springer (2008)

23. Gautam, V., Ray, K.C., Haddow, P.: Hardware efficient design of variable length
FFT processor. In: 2011 IEEE 14th International Symposium on Design and Di-
agnostics of Electronic Circuits Systems (DDECS), pp. 309–312 (April 2011)

24. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM
(2009)

25. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
IACR Cryptology ePrint Archive, 2012:99 (2012)

26. Göttert, N., Feller, T., Schneider, M., Huss, S.A., Buchmann, J.: On the design of
hardware building blocks for modern lattice-based encryption schemes. In: Cryp-
tographic Hardware and Embedded Systems–CHES 2012 (2012)

27. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: A signature scheme for embedded systems. In: Cryptographic Hardware and
Embedded Systems–CHES 2012 (2012)

28. Güneysu, T., Paar, C.: Ultra High Performance ECC over NIST Primes on Com-
mercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 62–78. Springer, Heidelberg (2008)

29. Györfi, T., Cret, O., Hanrot, G., Brisebarre, N.: High-throughput hardware archi-
tecture for the SWIFFT / SWIFFTX hash functions. In: IACR Cryptology ePrint
Archive, 2012:343 (2012)

30. Hoffstein, J., Pipher, J., Silverman, J.: NTRU: A ring-based public key cryptosys-
tem. Algorithmic Number Theory, 267–288 (1998)

31. Kamal, A.A., Youssef, A.M.: An FPGA implementation of the NTRUEncrypt
cryptosystem. In: 2009 International Conference on Microelectronics (ICM), pp.
209–212. IEEE (2009)

32. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata. So-
viet Physics Doklady 7, 595 (1963)

33. Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

34. Lyubashevsky, V.: Lattice-Based Identification Schemes Secure Under Active At-
tacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer,
Heidelberg (2008)

35. Lyubashevsky, V., Micciancio, D.: Generalized Compact Knapsacks Are Collision
Resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006, Part II. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

36. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
1–23. Springer, Heidelberg (2010)

37. Lyubashevsky, V.: Fiat-Shamir with Aborts: Applications to Lattice and Factoring-
Based Signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009)

38. Lyubashevsky, V.: Lattice Signatures without Trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

http://daimi.au.dk/~jot2re/lwe/resources/A%20Practical%20Implementation%20of%20Regevs%20LWE-based%20Cryptosystem.pdf
http://daimi.au.dk/~jot2re/lwe/resources/A%20Practical%20Implementation%20of%20Regevs%20LWE-based%20Cryptosystem.pdf

Arithmetic for Lattice-Based Cryptography on Reconfigurable Hardware 157

39. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A Modest
Proposal for FFT Hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
54–72. Springer, Heidelberg (2008)

40. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
1–23. Springer, Heidelberg (2010)

41. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Computational Complexity 16(4), 365–411 (2007)

42. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Post-Quantum Cryp-
tography, pp. 147–191 (2009)

43. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, CCSW 2011, pp. 113–124. ACM, New York (2011)

44. Pease, M.C.: An adaptation of the fast fourier transform for parallel processing. J.
ACM 15(2), 252–264 (1968)

45. Percival, C.: Rapid multiplication modulo the sum and difference of highly com-
posite numbers. Mathematics of Computation 72(241), 387–396 (2003)

46. Pollard, J.M.: The fast fourier transform in a finite field. Mathematics of Compu-
tation 25(114), 365–374 (1971)

47. Rader, C.M.: Discrete convolutions via mersenne transforms. IEEE Transactions
on Computers 100(12), 1269–1273 (1972)

48. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: STOC 2005: Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, Baltimore, Maryland, USA, May 22-24, p. 84. ACM Press (2005)

49. Regev, O.: The learning with errors problem. Invited Survey in CCC (2010)
50. Rückert, M., Schneider, M.: Estimating the security of lattice-based cryptosystems.

Cryptology ePrint Archive, Report 2010/137 (2010), http://eprint.iacr.org/
51. Schönhage, A., Strassen, V.: Schnelle Multiplikation Grosser Zahlen. Comput-

ing 7(3), 281–292 (1971)
52. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-

ing. In: 1994 Proceedings of 35th Annual Symposium on Foundations of Computer
Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)

53. Shoup, V.: NTL: A library for doing number theory (2001)
54. Stehlé, D., Steinfeld, R.: Making NTRU as Secure as Worst-Case Problems Over

Ideal Lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp.
27–47. Springer, Heidelberg (2011)

55. Suleiman, A., Saleh, H., Hussein, A., Akopian, D.: A family of scalable FFT archi-
tectures and an implementation of 1024-point radix-2 FFT for real-time communi-
cations. In: IEEE International Conference on Computer Design, ICCD 2008, pp.
321–327 (October 2008)

56. von zur Gathen, J., Shokrollahi, J.: Efficient FPGA-based Karatsuba multipliers
for polynomials over F2. In: Selected Areas in Cryptography, pp. 359–369. Springer
(2006)

57. Weimerskirch, A., Paar, C.: Generalizations of the Karatsuba algorithm for poly-
nomial multiplication (2003)

58. Wey, C.-L., Lin, S.-Y., Tang, W.-C.: Efficient memory-based FFT proces-
sors for OFDM applications. In: 2007 IEEE International Conference on Elec-
tro/Information Technology, pp. 345–350 (May 2007)

http://eprint.iacr.org/

158 T. Pöppelmann and T. Güneysu

59. Winkler, F.: Polynomial Algorithms in Computer Algebra (Texts and Monographs
in Symbolic Computation), 1st edn. Springer (August 1996)

60. Xilinx. Smartxplorer for ISE project navigator users, Version 12.1 (2010),
http://www.xilinx.com/support/documentation/sw manuals/xilinx13 1/

ug689.pdf

61. Yao, Y., Huang, J., Khanna, S., Shelat, A., Calhoun, B.H., Lach, J., Evans, D.: A
sub-0.5V lattice-based public-key encryption scheme for RFID platforms in 130nm
CMOS. In: Workshop on RFID Security (RFIDsec 2011 Asia), Cryptology and
Information Security, pp. 96–113. IOS Press (April 2011)

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/ug689.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/ug689.pdf

The Security Impact
of a New Cryptographic Library

Daniel J. Bernstein1, Tanja Lange2, and Peter Schwabe3

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7053, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven
P.O. Box 513, 5600MB Eindhoven, The Netherlands

tanja@hyperelliptic.org
3 Research Center for Information Technology Innovation and

Institute of Information Science
Academia Sinica

No. 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
peter@cryptojedi.org

Abstract. This paper introduces a new cryptographic library, NaCl,
and explains how the design and implementation of the library avoid var-
ious types of cryptographic disasters suffered by previous cryptographic
libraries such as OpenSSL. Specifically, this paper analyzes the security
impact of the following NaCl features: no data flow from secrets to load
addresses; no data flow from secrets to branch conditions; no padding
oracles; centralizing randomness; avoiding unnecessary randomness; ex-
tremely high speed; and cryptographic primitives chosen conservatively
in light of the cryptanalytic literature.

Keywords: confidentiality, integrity, simplicity, speed, security.

1 Introduction

For most cryptographic operations there exist widely accepted standards, such
as the Advanced Encryption Standard (AES) for secret-key encryption and 2048-
bit RSA for public-key encryption. These primitives have been extensively stud-
ied, and breaking them is considered computationally infeasible on any existing
computer cluster.

This work was supported by the National Science Foundation under Grant 1018836;
by the European Commission through the ICT Programme under Contract ICT-
2007-216499 CACE and Contract ICT-2007-216676 ECRYPT II; by the US Air
Force Office of Applied Research & Development under Grant AOARD-11-4092; and
by the National Science Council, National Taiwan University and Intel Corporation
under Grant NSC-100-2911-I-002-001 and 101R7501. Part of this work was carried
out when Peter Schwabe was employed by National Taiwan University; part of this
work was carried out when Peter Schwabe was employed by Technische Universiteit
Eindhoven. Permanent ID of this document: 5f6fc69cc5a319aecba43760c56fab04.
Date: 2012.07.31.

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 159–176, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

160 D.J. Bernstein, T. Lange, and P. Schwabe

For each of these cryptographic primitives there exist various implementa-
tions and software libraries, and it has become common best practice in the
development of secure systems to use the implementations in these libraries as
building blocks. One should thus expect that the cryptographic layer of modern
information systems does not expose any vulnerabilities to attackers. Unfortu-
nately this expectation is far from reality, as demonstrated by one embarrassing
cryptographic failure after another.

A New Cryptographic Library: NaCl. To address the underlying problems
we have designed and implemented a new cryptographic library. The library
name, NaCl, is pronounced “salt” and stands for “Networking and Cryptogra-
phy Library”. This paper discusses only the cryptographic part of NaCl; the
networking part is still in prototype form.

NaCl is in the public domain and is available from http://nacl.cr.yp.to

and http://nacl.cace-project.eu, along with extensive documentation. The
signature component of NaCl is integrated only into the latest development
version, which is not yet online, but the same code is available separately as
part of the SUPERCOP benchmarking package at http://bench.cr.yp.to.
NaCl steers clear of all patents that we have investigated and has not received
any claims of patent infringement.

The first announcement of NaCl was in 2008. We considered changing the
name of the project when Google announced Native Client, but decided that
there was no real risk of confusion. The first release of NaCl was in 2009 but was
missing some of the important features discussed in this paper; the C++ NaCl
API was not released until 2010, for example, and signatures were not released
until 2011.

A research paper on cryptographic software normally focuses on optimizing
the choice and implementation of a single cryptographic primitive at a specified
security level: for example, [11] reports speed records for signatures at a 2128 se-
curity level. This paper is different. Our goal is to analyze the real-world security
benefits of switching from an existing cryptographic library such as OpenSSL
[30] to a completely new cryptographic library. Some of these security benefits
are tied to performance, as discussed later, so we naturally use the results of
papers such as [11]; but what is new in this paper is the security analysis.

Credits. Several of the implementations used in NaCl are partially or entirely
from third parties. The portability of NaCl relies on the ref implementation of
Curve25519 written by Matthew Dempsky (Mochi Media, now Google). From
2009 until 2011 the speed of NaCl on common Intel/AMD CPUs relied on the
donna and donna c64 implementations of Curve25519 written by Adam Lan-
gley (Google) — which, interestingly, also appear in Apple’s acknowledgments
[4] for iOS 4. The newest implementations of Curve25519 and Ed25519 were
joint work with Niels Duif (Technische Universiteit Eindhoven) and Bo-Yin
Yang (Academia Sinica). The core2 implementation of AES was joint work
with Emilia Käsper (Katholieke Universiteit Leuven, now Google).

Prototype Python wrappers around C NaCl have been posted by Langley; by
Jan Mojzis; and by Sean Lynch (Facebook). We will merge these wrappers and

http://nacl.cr.yp.to
http://nacl.cace-project.eu
http://bench.cr.yp.to

The Security Impact of a New Cryptographic Library 161

integrate them into the main NaCl release as a single supported Python NaCl,
in the same way that we support C++ NaCl.

2 Background for the Security Analysis: The NaCl API

The reader is assumed to be familiar with the fact that most Internet commu-
nication today is cryptographically unprotected. The primary goal of NaCl is to
change this: to cryptographically protect every network connection, providing
strong confidentiality, strong integrity, and state-of-the-art availability against
attackers sniffing or modifying network packets.

Confidentiality is limited to packet contents, not packet lengths and timings,
so users still need anti-traffic-analysis tools: route obfuscators such as Tor [38],
timing obfuscators, etc. Of course, users also need vastly better software security
in operating systems, web browsers, document viewers, etc. Cryptography is only
one part of security.

This section introduces the functions provided by NaCl, with an emphasis on
the simplicity of these functions: more precisely, the simplicity that these func-
tions bring to cryptographic applications. There are enough differences between
the NaCl API and previous APIs to justify a discussion of the details. Subse-
quent sections of the paper analyze the security benefits of NaCl, starting from
the background provided in this section.

The crypto_box API. The central job of a cryptographic library is public-
key authenticated encryption. The general setup is that a sender, Alice,
has a packet to send to a receiver, Bob. Alice scrambles the packet using Bob’s
public key and her own secret key. Bob unscrambles the packet using Alice’s
public key and his own secret key. “Encryption” refers to confidentiality: an
attacker monitoring the network is unable to understand the scrambled packet.
“Authenticated” refers to integrity: an attacker modifying network packets is
unable to change the packet produced by Bob’s unscrambling. (Availability, to
the extent that it is not inherently limited by network resources, is provided by
higher-level networking protocols that retransmit lost packets.)

A typical cryptographic library uses several steps to authenticate and encrypt
a packet. Consider, for example, the following typical combination of RSA, AES,
etc.:

– Alice generates a random AES key.
– Alice uses the AES key to encrypt the packet.
– Alice hashes the encrypted packet using SHA-256.
– Alice reads her RSA secret key from “wire format.”
– Alice uses her RSA secret key to sign the hash.
– Alice reads Bob’s RSA public key from wire format.
– Alice uses Bob’s public key to encrypt the AES key, hash, and signature.
– Alice converts the encrypted key, hash, and signature to wire format.
– Alice concatenates with the encrypted packet.

162 D.J. Bernstein, T. Lange, and P. Schwabe

Often even more steps are required for storage allocation, error handling, etc.
NaCl gives Alice a simple high-level crypto_box function that does everything

in one step, putting a packet into a box that is protected against espionage and
sabotage:

c = crypto_box(m,n,pk,sk)

The function takes the sender’s secret key sk (32 bytes), the recipient’s public
key pk (also 32 bytes), a packet m, and a nonce n (24 bytes), and produces an
authenticated ciphertext c (16 bytes longer than m). All of these objects are C++
std::string variables, represented in wire format as sequences of bytes suitable
for transmission; the crypto_box function automatically handles all necessary
conversions, initializations, etc. Bob’s operation is just as easy, with the keys and
packets reversed, using his secret key, Alice’s public key, and the same nonce:

m = crypto_box_open(c,n,pk,sk)

Each side begins with

pk = crypto_box_keypair(&sk)

to generate a secret key and a public key in the first place.
These C++ functions are wrappers around C functions; the C functions can

also be used directly by C applications. The C NaCl API has the same func-
tion names but more arguments: for example, std::string m is replaced by
unsigned char *m and unsigned long long mlen, and std::string c is re-
placed by unsigned char *c. The formats of m and c in the C NaCl API are
padded so that clen matches mlen, removing the need to pass clen explicitly
and allowing ciphertexts to be stored on top of plaintexts. Failures are indicated
by exceptions in C++ NaCl and a -1 return value in C NaCl.

Validation of the API. The API described above might seem too simple
to support the needs of real-world applications. We emphasize that NaCl has
already been integrated into high-security applications that are running on the
Internet today.

DNSCurve [9], designed by the first author, provides high-security authen-
ticated encryption for Domain Name System (DNS) queries between a DNS
resolver and a DNS server. (The server’s public key is provided by its parent
DNS server, which of course also needs to be secured; the client’s public key is
provided as part of the protocol.) NaCl has been used successfully for several
independent DNSCurve implementations, including an implementation used [19]
by the OpenDNS resolvers, which handle billions of DNS queries a day from mil-
lions of computers and automatically use DNSCurve for any DNSCurve server.
OpenDNS has also designed and deployed DNSCrypt, a variant of DNSCurve
that uses NaCl to authenticate and encrypt DNS queries from a DNS client to a
DNS resolver; two months after the introduction of DNSCrypt, [40] stated that
DNSCrypt was already in use by tens of thousands of clients. Other applications
of NaCl so far include the QuickTun VPN software [33]; the Ethos operating

The Security Impact of a New Cryptographic Library 163

system [35]; and the first author’s prototype implementation of CurveCP [10], a
high-security cryptographic version of TCP.

C NaCl allows crypto_box to be split into two steps, crypto_box_beforenm
followed by crypto_box_afternm, slightly compromising simplicity but gaining
extra speed as discussed in Section 4. The beforenm step preprocesses pk and
sk, preparing to handle any number of messages; the afternm step handles n

and m. Most applications actually use this two-step procedure.

Nonces. The crypto_box API leaves nonce generation to the caller. This is not
meant to suggest that nonce generation is not part of the cryptographer’s job;
on the contrary, we believe that cryptographers should take responsibility not
just for nonces but also for other security aspects of high-level network protocols.
The exposure of nonces simply reflects the fact that nonces are integrated into
high-level protocols in different ways.

It might seem simplest to always generate a random 24-byte nonce n, and
to transmit this nonce as part of the authenticated ciphertext; 24-byte random
strings have negligible chance of colliding. If ciphertexts are long then one can
tolerate the costs of generating this randomness and of expanding each ciphertext
by 24 bytes. However, random nonces do nothing to stop the simplest type of
forgery, namely a replay. One standard strategy to prevent replays is to include
an increasing number in each packet and to reject any packet whose number is not
larger than the number in the last verified packet; using these sequence numbers
as nonces is simpler than giving each packet a number and a random nonce. On
the other hand, choosing public nonces as sequence numbers means giving away
traffic information that would otherwise be somewhat more expensive for an
attacker to collect. Several different solutions appear in the literature; constraints
on nonce generation are often tied directly to questions of the security and
privacy that users expect.

Current applications of NaCl, such as DNSCurve and CurveCP, have different
requirements regarding nonces, replays, forward secrecy, and many other security
issues at a higher level than the crypto_box API. A nonceless API would require
higher-level complications in all of these applications, and would not simplify
their security analysis.

The crypto_sign API. Sometimes confidentiality is irrelevant: Alice is sending
a public message to many people. In this situation it is helpful for a cryptographic
library to provide public-key signatures: Alice scrambles the message using
her own secret key, and Bob unscrambles the message using Alice’s public key.
Alice’s operations are independent of Bob, allowing the scrambled message to be
broadcast to any number of receivers. Signatures also provide non-repudiation,
while authenticators are always repudiable.

NaCl provides simple high-level functions for signatures: Alice uses

pk = crypto_sign_keypair(&sk)

to generate a key pair (again 32 bytes for the public key but 64 bytes for the
secret key), and

164 D.J. Bernstein, T. Lange, and P. Schwabe

sm = crypto_sign(m,sk)

to create a signed message (64 bytes longer than the original message). Bob uses

m = crypto_sign_open(sm,pk)

to unscramble the signed message, recovering the original message.

Comparison to Previous Work. NaCl is certainly not the first cryptographic
library to promise a simple high-level API. For example, Gutmann’s cryptlib
library [22] advertises a “high-level interface” that “provides anyone with the
ability to add strong security capabilities to an application in as little as half
an hour, without needing to know any of the low-level details that make the
encryption or authentication work.” See [23, page 1].

There are, however, many differences between high-level APIs, as illustrated
by the following example. The first code segment in the cryptlib manual [23, page
13] (“the best way to illustrate what cryptlib can do”) contains the following six
function calls, together with various comments:

cryptCreateEnvelope(&cryptEnvelope, cryptUser,

CRYPT_FORMAT_SMIME);

cryptSetAttributeString(cryptEnvelope,

CRYPT_ENVINFO_RECIPIENT,

recipientName, recipientNameLength);

cryptPushData(cryptEnvelope, message, messageSize,

&bytesIn);

cryptFlushData(cryptEnvelope);

cryptPopData(cryptEnvelope, encryptedMessage, encryptedSize,

&bytesOut);

cryptDestroyEnvelope(cryptEnvelope);

This sequence has a similar effect to NaCl’s

c = crypto_box(m,n,pk,sk)

where message is the plaintext m and encryptedMessage is the ciphertext c.
The most obvious difference between these examples is in conciseness: cryptlib

has separate functions

– cryptCreateEnvelope to allocate storage,
– cryptSetAttributeString to specify the recipient,
– cryptPushData to start the plaintext input,
– cryptFlushData to finish the plaintext input,
– cryptPopData to extract the ciphertext, and
– cryptDestroyEnvelope to free storage,

while NaCl handles everything in one function. The cryptlib program must also
call cryptInit at some point before this sequence.

A much less obvious difference is in reliability. For example, if the program
runs out of memory, NaCl will raise an exception, while the above cryptlib code

The Security Impact of a New Cryptographic Library 165

will fail in unspecified ways, perhaps silently corrupting or leaking data. The
cryptlib manual [23, page 35] states that the programmer is required to check
that each function returns CRYPT_OK, and that the wrong code shown above is
included in the manual “for clarity”. Furthermore, [23, page 53] says that if mes-
sages are large then “only some of the data may be copied in” by cryptPushData;
the programmer is required to check bytesIn and loop appropriately. Trouble
can occur even if messages are short and memory is ample: for example, [23, page
14] indicates that recipient public keys are retrieved from an on-disk database,
but does not discuss what happens if the disk fails or if an attacker consumes
all available file descriptors.

Some of the differences between these code snippets are really differences
between C and C++: specifically, NaCl benefits from C++ exceptions and C++
strings, while cryptlib does not use these C++ features. For applications written
in C, rather than C++, the cryptlib API should instead be compared to the C
NaCl API:

crypto_box(c,m,mlen,n,pk,sk)

This C NaCl function cannot raise C++ exceptions, but it also does not need to:
its only possible return value is 0, indicating successful authenticated encryption.
C NaCl is intended to be usable in operating-system kernels, critical servers, and
other environments that cannot guarantee the availability of large amounts of
heap storage but that nevertheless rely on their cryptographic computations to
continue working. In particular, C NaCl functions do not call malloc, sbrk,
etc. They do use small amounts of stack space; these amounts will eventually
be measured by separate benchmarks, so that stack space can be allocated in
advance and guaranteed to be adequate.

Perhaps the most important difference between these NaCl and cryptlib ex-
amples is that the crypto_box output is authenticated and encrypted using
keys from Alice and Bob, while the cryptlib output is merely encrypted to Bob
without any authentication; cryptlib supports signatures but does not add them
without extra programming work. There is a long history of programs omitting
cryptographic authentication, incorrectly treating all successfully decrypted data
as authentic, and being exploited as a result; with cryptlib, writing such pro-
grams is easier than writing programs that include proper authentication. With
NaCl, high-security authenticated encryption is the easiest operation.

3 Core Security Features and Their Impact

This section presents various case studies of cryptographic disasters, and explains
the features of NaCl that eliminate these types of disasters.

Two specific types of disasters are addressed in subsequent sections: Section 4
discusses users deliberately weakening or disabling cryptography to address cryp-
tographic performance problems; Section 5 discusses cryptographic primitives
being broken.

166 D.J. Bernstein, T. Lange, and P. Schwabe

No Data Flow from Secrets to Load Addresses. In 2005, Osvik, Shamir,
and Tromer described a timing attack that discovered the AES key of the
dm-crypt hard-disk encryption in Linux in just 65 milliseconds. See [31] and
[39]. The attack process runs on the same machine but does not need any privi-
leges (for example, it can run inside a virtual machine) and does not exploit any
kernel software security holes.

This attack is possible because almost all implementations of AES, including
the Linux kernel implementation, use fast lookup tables as recommended in the
initial AES proposal; see [18, Section 5.2]. The secret AES key inside the kernel
influences the table-load addresses, which in turn influence the state of the CPU
cache, which in turn influences measurable timings of the attack process; the
attack process computes the AES key from this leaked information.

NaCl avoids this type of disaster by systematically avoiding all loads from
addresses that depend on secret data. All of the implementations are thus in-
herently protected against cache-timing attacks. This puts constraints on the
implementation strategies used throughout NaCl, and also influences the choice
of cryptographic algorithms in NaCl, as discussed in Section 5.

For comparison, Gutmann’s cryptlib manual [23, pages 63–64] claims that
cache-timing attacks (specifically “observing memory access latencies for cached
vs. un-cached data”) and branch-timing attacks (see below) provide almost the
same “level of access” as “an in-circuit emulator (ICE)” and that there are
therefore “no truly effective defences against this level of threat”. We disagree.
Software side channels on common CPUs include memory addresses and branch
conditions but do not include, e.g., the inputs and outputs to a XOR operation;
it is well known that the safe operations are adequate in theory to perform
cryptographic computations, and NaCl demonstrates that the operations are
also adequate in practice. Typical cryptographic code uses unsafe operations, and
cache-timing attacks have been repeatedly demonstrated to be effective against
such code, but NaCl’s approach makes these attacks completely ineffective.

OpenSSL has responded to cache-timing attacks in a different way, not pro-
hibiting secret load addresses but instead using complicated countermeasures
intended to obscure the influence of load addresses upon the cache state. This
obviously cannot provide the same level of confidence as the NaCl approach: a
straightforward code review can convincingly verify the predictability of all load
addresses in NaCl, while there is no similarly systematic way to verify the efficacy
of other countermeasures. The review of load addresses and branch conditions
(see below) can be automated, as explained in [28] and [27], and in fact has
already been formalized and automated for large parts of NaCl; see [3] (which
comments that “NaCl code follows strict coding policies that make it formal
verification-friendly” and explains how parts of the code were verified).

No Data Flow from Secrets to Branch Conditions. Brumley and Tu-
veri announced in 2011 that they had used a remote timing attack to find the
ECDSA private key used for server authentication in a TLS handshake. See [15].
The implementation targeted in this attack is the ECDSA implementation in
OpenSSL.

The Security Impact of a New Cryptographic Library 167

The underlying problem is that most scalar-multiplication (and exponentia-
tion) algorithms involve data flow from secret data into branch conditions: i.e.,
certain operations are carried out if and only if the key has certain properties.
In particular, the OpenSSL implementation of ECDSA uses one of these algo-
rithms. Secret data inside OpenSSL influences the state of the CPU branch unit,
which in turn influences the amount of time used by OpenSSL, which in turn
influences measurable timings of network packets; the attacker computes the
ECDSA key from this leaked information.

NaCl avoids this type of disaster by systematically avoiding all branch condi-
tions that depend on secret data. This is analogous to the prohibition on secret
load addresses discussed above; it has pervasive effects on NaCl’s implementation
strategies and interacts with the cryptographic choices discussed in Section 5.

No Padding Oracles. In 1998 Bleichenbacher successfully decrypted an RSA-
encrypted SSL ciphertext by sending roughly one million variants of the cipher-
text to the server and observing the server’s responses. The server would apply
RSA decryption to each variant and publicly reject the (many) variants not
having “PKCS #1” format. Subsequent integrity checks in SSL would defend
against forgeries and reject the remaining variants, but the pattern of initial
rejections already leaked so much information that Bleichenbacher was able to
compute the plaintext. See [14].

NaCl has several layers of defense against this type of disaster:

– NaCl’s authenticated-encryption mechanism is designed as a secure unit,
always wrapping encryption inside authentication. Nothing is decrypted un-
less it first survives authentication, and the authenticator’s entire job is to
prevent the attacker from forging messages that survive authentication.

– Forged messages always follow the same path through authenticator verifi-
cation, using constant time (depending only on the message length, which is
public) and then rejecting the message, with no output other than the fact
that the message is forged.

– Even if the attacker forges a variant of a message by sheer luck, the forgery
will be visible only through the receiver accepting the message, and standard
nonce-handling mechanisms in higher-level protocols will instantly reject any
further messages under the same nonce. NaCl derives new authentication and
encryption keys for each nonce, so the attacker will have no opportunity to
study the effect of those keys on any further messages.

Note that the third defense imposes a key-agility requirement on the underlying
cryptographic algorithms.

Most cryptographic libraries responded to Bleichenbacher’s attack by trying
to hide different types of message rejection, along the lines of the second defense;
for example, [24] shows that this approach was adopted by the GnuTLS library
in 2006. However, typical libraries continue to show small timing variations, so
this defense by itself is not as confidence-inspiring as using strong authentica-
tion to shield decryption. Conceptually similar attacks have continued to plague
cryptographic software, as illustrated by the SSH attack in [1] in 2009 and the
very recent DTLS attack in [2].

168 D.J. Bernstein, T. Lange, and P. Schwabe

Centralizing Randomness. In 2006 a Debian developer removed one critical
line of randomness-generation code from the OpenSSL package shipped with
Debian GNU/Linux. Code-verification tools had complained that the line was
producing unpredictable results, and the developer did not see why the line
was necessary. Until this bug was discovered in 2008 (see [34]), OpenSSL keys
generated under Debian and Ubuntu were chosen from a set of size only 32768.
Breaking the encryption or authentication of any communication secured with
such a key was a matter of seconds.

NaCl avoids this type of disaster by simply reading bytes from the operating-
system kernel’s cryptographic random-number generator. Of course, the relevant
code in the kernel needs to be carefully written, but reviewing that code is a
much more tractable task than reviewing all of the separate lines of randomness-
generation code in libraries that decide to do the job themselves. The benefits
of code minimization are well understood in other areas of security; we are
constantly surprised by the amount of unnecessary complexity in cryptographic
software.

A structural deficiency in the /dev/urandom API provided by Linux, BSD,
etc. is that using it can fail, for example because the system has no available
file descriptors. In this case NaCl waits and tries again. We recommend that
operating systems add a reliable urandom(x,xlen) system call.

Avoiding Unnecessary Randomness. Badly generated random numbers
were also involved in the recent collapse of the security system of Sony’s PlaySta-
tion 3 gaming console. Sony used the standard elliptic-curve digital-signature al-
gorithm, ECDSA, but ignored the ECDSA requirement of a new random secret
for each message: Sony simply used a constant value for all messages. Attackers
exploited this mistake to compute Sony’s root signing key, as explained in [16,
slides 122–130], breaking the security system of the PlayStation 3 beyond repair.

NaCl avoids this type of disaster by using deterministic cryptographic opera-
tions to the extent possible. The keypair operations use new randomness, but
all of the other operations listed above produce outputs determined entirely by
their inputs. Of course, this imposes a constraint upon the underlying crypto-
graphic primitives: primitives that use randomness, such as ECDSA, are rejected
in favor of primitives that make appropriate use of pseudorandomness.

Determinism also simplifies testing. NaCl includes a battery of automated
tests shared with eBACS (ECRYPT Benchmarking of Cryptographic Systems),
an online cryptographic speed-measurement site [12] designed by the first two
authors; this site has received, and systematically measured, 1099 implementa-
tions of various cryptographic primitives from more than 100 people. The test
battery found, for example, that software for a cipher named Dragon was some-
times reading outside its authorized input arrays; the same software had passed
previous cryptographic test batteries. All of the core NaCl functions have also
been tested against pure Python implementations, some written ourselves and
some contributed by Matthew Dempsky.

The Security Impact of a New Cryptographic Library 169

4 Speed and Its Security Impact

Cryptographic performance problems have frequently caused users to reduce
their cryptographic security levels or to turn off cryptography entirely. Consider
the role of performance in the following examples:

– https://sourceforge.net/account is protected by SSL, but https://

sourceforge.net/develop redirects the user’s web browser to http://

sourceforge.net/develop, actively turning off SSL and exposing the web
pages to silent modification by sniffing attackers. Cryptography that is not
actually used can be viewed as the ultimate disaster, providing no more se-
curity than any of the other cryptographic disasters discussed in this paper.

– OpenSSL’s AES implementations continue to use table lookups on most
CPUs, rather than obviously safe bitsliced computations that would be
slower on those CPUs. The table lookups have been augmented with several
complicated countermeasures that are hoped to protect against the cache-
timing attacks discussed in Section 3.

– Google has begun to allow SSL for more and more services, but only with a
1024-bit RSA key, despite

• recommendations from the RSA company to move up to at least 2048-bit
RSA by the end of 2010;

• the same recommendations from the U.S. government; and
• analyses from 2003 concluding that 1024-bit RSA was already breakable

in under a year using hardware that governments and large companies
could already afford.

See, e.g., [32] for an analysis by Shamir (the S in RSA) and Tromer; [25]
for an end-of-2010 recommendation from the RSA company; and [5] for an
end-of-2010 recommendation from the U.S. government.

– DNSSEC recommends, and uses, 1024-bit RSA for practically all signa-
tures rather than 2048-bit RSA, DSA, etc.: “In terms of performance, both
RSA and DSA have comparable signature generation speeds, but DSA is
much slower for signature verification. Hence, RSA is the recommended al-
gorithm. . . . The choice of key size is a tradeoff between the risk of key
compromise and performance. . . . RSA-SHA1 (RSA-SHA-256) until 2015,
1024 bits.” See [17].

– The Tor anonymity network [38] also uses 1024-bit RSA.

Speed of NaCl. We do not provide any low-security options in NaCl. For
example, we do not allow encryption without authentication; we do not allow
any data flow from secrets to load addresses or branch conditions; and we do
not allow cryptographic primitives breakable in substantially fewer than 2128

operations, such as RSA-2048.
The remaining risk is that users find NaCl too slow and turn it off, replacing it

with low-security cryptographic software or no cryptography at all. NaCl avoids
this type of disaster by providing exceptionally high speeds. NaCl is generally
much faster than previous cryptographic libraries, even if those libraries are

170 D.J. Bernstein, T. Lange, and P. Schwabe

asked for lower security levels. More to the point, NaCl is fast enough to handle
packet rates beyond the worst-case packet rates of a typical Internet connection.

For example, using a single AMD Phenom II X6 1100T CPU (6 cores, 3.3GHz,
purchased for $190 a year ago), NaCl performs

– more than 80000 crypto_box operations (public-key authenticated encryp-
tion) per second;

– more than 80000 crypto_box_open operations (public-key authenticator
verification and decryption) per second;

– more than 70000 crypto_sign_open operations (signature verification) per
second; and

– more than 180000 crypto_sign operations (signature generation) per second

for any common packet size. To put these numbers in perspective, imagine a
connection flooded with 50-byte packets, each requiring a crypto_box_open;
80000 such packets per second would consume 32 megabits per second even
without packet overhead. A lower volume of network traffic means that the
CPU needs only a fraction of its time to handle the cryptography.

NaCl provides even better speeds than this, for four reasons:

– NaCl uses a single public-key operation for a packet of any size, allowing
large packets to be handled with very fast secret-key cryptography; 80000
1500-byte packets per second would fill up a gigabit-per-second link.

– A single public-key operation is shared by many packets from the same
public key, allowing all the packets to be handled with very fast secret-key
cryptography, if the caller splits crypto_box into crypto_box_beforenm and
crypto_box_afternm.

– NaCl uses “encrypt-then-MAC”, so forged packets are rejected without being
decrypted; a flood of forgeries thus has even more trouble consuming CPU
time.

– The signature system in NaCl supports fast batch verification, effectively
doubling the speed of verifying a stream of valid signatures.

Most of these speedups do not reduce the cost of handling forgeries under new
public keys, but a flooded server can continue providing very fast service to
public keys that are already known.

Comparison to Previous Work. See [7], [11], and [12] for detailed surveys of
previous speeds. We give an example here of widely used cryptographic software
running much more slowly than NaCl; this type of slowness plays an obvious
role in the examples at the beginning of the section.

We ran openssl speed on the same AMD Phenom II X6 1100T CPU men-
tioned above. The OpenSSL version shipped with the operating system (64-bit
Ubuntu 11.10) was 1.0.0e, released September 2011. OpenSSL reports speeds
on just 1 out of the 6 CPU cores, so we multiplied its operation counts by 6,
optimistically assuming that separate operations on separate CPU cores would
not interfere with each other.

The Security Impact of a New Cryptographic Library 171

For public-key authenticated encryption at a security level we would accept,
the fastest option in OpenSSL was nistp256 ECDH (plus secret-key cryptogra-
phy), running at 9300 operations/second for small packets. (The lowest-security
option in OpenSSL was secp160r1 ECDH, running at 29800 operations/second.)
For signing at the same security level, the fastest option was nistp256 ECDSA,
running at 37700 operations/second, but with verification running at only 7800
operations/second. RSA-2048 is much faster for encryption and signature veri-
fication, running at 102500 operations/second, but much slower for decryption
and signing, running at 2800 operations/second.

Embedded Systems. The optimized implementations in the current version of
NaCl are aimed at large CPUs, but all of the cryptographic primitives in NaCl
can fit onto much smaller CPUs: there are no requirements for large tables or
complicated code. NaCl also makes quite efficient use of bandwidth: as mentioned
earlier, public keys are only 32 bytes, signed messages are only 64 bytes longer
than unsigned messages, and authenticated ciphertexts are only 16 bytes longer
than plaintexts.

The first and third authors of this paper reported in [13] new implementations
of the NaCl public-key primitives running at more than 1000 operations/second
on an ARM Cortex A8 core (e.g., the Apple A4 CPU in the iPad 1 and iPhone
4). We are integrating this software into NaCl.

5 Cryptographic Primitives in NaCl

Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, and de Weger announced
in 2008 (see [36] and [37]) that, by exploiting various weaknesses that had been
discovered in the MD5 hash function, they had created a rogue CA certificate.
They could, if they wanted, have impersonated any SSL site on the Internet.

This type of disaster, cryptographic primitives being broken, is sometimes
claimed to be prevented by cryptographic standardization. However, there are
many examples of standards that have been publicly broken, including DES,
512-bit RSA, and these MD5-based certificates. More to the point, there are
some existing standards that can reach NaCl’s speeds, but those standards fall
far short of NaCl’s security requirements.

Our main strategy for avoiding dangerous primitives in NaCl has been to
pay attention to cryptanalysis. There is an extensive cryptanalytic literature ex-
ploring the limits of attacks on various types of cryptographic primitives; some
cryptographic structures are comfortably beyond these limits, while others in-
spire far less confidence. This type of security evaluation is only loosely related
to standardization, as illustrated by the following example: Dobbertin, Bosse-
laers, and Preneel wrote “It is anticipated that these techniques can be used to
produce collisions for MD5 and perhaps also for RIPEMD” in 1996 [20], eight
years before collisions in MD5 (and RIPEMD) were published and a decade be-
fore most MD5-based standards were withdrawn. They recommended switching
to RIPEMD-160, which fifteen years later has still not been publicly broken.

172 D.J. Bernstein, T. Lange, and P. Schwabe

This strategy, choosing cryptographic algorithms in light of the cryptanalytic
literature, has given us higher confidence in NaCl’s cryptographic primitives than
in most standards. At the same time this strategy has given us the flexibility
needed to push NaCl to extremely high speeds, avoiding the types of disasters
discussed in Section 4.

The rest of this section discusses the cryptographic primitives used in NaCl,
and explains why we expect these choices to reduce the risk of cryptographic
disasters. Specifically, NaCl uses elliptic-curve cryptography, not RSA; it uses
an elliptic curve, Curve25519, that has several advanced security features; it uses
Salsa20, not AES (although it does include an AES implementation on the side);
it uses Poly1305, not HMAC; and for an elliptic-curve signature system it uses
EdDSA, not ECDSA.

We are aware that many existing protocols require AES and RSA, and that
taking advantage of NaCl as described in this paper requires those protocols to be
upgraded. We have prioritized security over compatibility, and as a consequence
have also prioritized speed over compatibility. There are other projects that
have explored the extent to which speed and security can be improved without
sacrificing compatibility, but NaCl is aiming at a different point in the design
space, and at applications that are not well served by the existing protocols.
DNSCrypt (see Section 2) illustrates the feasibility of our deployment approach.

Cryptographic Choices in NaCl. RSA is somewhat older than elliptic-curve
cryptography: RSA was introduced in 1977, while elliptic-curve cryptography
was introduced in 1985. However, RSA has shown many more weaknesses than
elliptic-curve cryptography. RSA’s effective security level was dramatically re-
duced by the linear sieve in the late 1970s, by the quadratic sieve and ECM in
the 1980s, and by the number-field sieve in the 1990s. For comparison, a few
attacks have been developed against some rare elliptic curves having special al-
gebraic structures, and the amount of computer power available to attackers has
predictably increased, but typical elliptic curves require just as much computer
power to break today as they required twenty years ago.

IEEE P1363 standardized elliptic-curve cryptography in the late 1990s, in-
cluding a stringent list of security criteria for elliptic curves. NIST used the
IEEE P1363 criteria to select fifteen specific elliptic curves at five different se-
curity levels. In 2005, NSA issued a new “Suite B” standard, recommending the
NIST elliptic curves (at two specific security levels) for all public-key cryptog-
raphy and withdrawing previous recommendations of RSA.

Curve25519, the particular elliptic curve used in NaCl, was introduced in [7] in
2006. It follows all of the standard IEEE P1363 security criteria; it also satisfies
new recommendations for “twist security” and “Montgomery representation”
and “Edwards representation”. What this means is that secure implementations
of Curve25519 are considerably simpler and faster than secure implementations
of (e.g.) NIST P-256; there are fewer opportunities for implementors to make
mistakes that compromise security, and mistakes are more easily caught by re-
viewers.

The Security Impact of a New Cryptographic Library 173

Montgomery representation allows fast single-scalar multiplication using a
Montgomery ladder [29]; this is the bottleneck in Diffie–Hellman key exchange
inside crypto_box. It was proven in [7] that this scalar-multiplication strategy
removes all need to check for special cases inside elliptic-curve additions. NaCl
uses a ladder of fixed length to eliminate higher-level branches. Edwards repre-
sentation allows fast multi-scalar multiplication and general addition with the
same advantage of not having to check for special cases. The fixed-base-point
scalar multiplication involved in crypto_sign uses Edwards representation for
additions, and eliminates higher-level branches by using a fixed sequence of 63
point additions as described in [11, Section 4].

Salsa20 [8] is a 20-round 256-bit cipher that was submitted to eSTREAM,
the ECRYPT Stream Cipher Project [21], in 2005. The same project collected
dozens of submissions from 97 cryptographers in 19 countries, and then hun-
dreds of papers analyzing the submissions. Four refereed papers from 14 cryp-
tographers studied Salsa20, culminating in a 2151-operation “attack” against 7
rounds and a 2249-operation “attack” against 8 rounds. After 3 years of review
the eSTREAM committee selected a portfolio of 4 software ciphers, including
Salsa20; they recommended 12 rounds of Salsa20 as having a “comfortable mar-
gin for security”.

For comparison, AES is a 14-round 256-bit cipher that was standardized ten
years ago. Cryptanalysis at the time culminated in a 2140-operation “attack”
against 7 rounds and a 2204-operation “attack” against 8 rounds. New research
in 2011 reported a 2254-operation “attack” against all 14 rounds, marginally
exploiting the slow key expansion of AES, an issue that was avoided in newer
designs such as Salsa20. (Salsa20 also has no penalty for switching keys.) Overall
each round of Salsa20 appears to have similar security to each round of AES,
and 20 rounds of Salsa20 provide a very solid security margin, despite being
faster than 14 rounds of AES on most CPUs.

A further difficulty with AES is that it relies on lookup tables for high-speed
implementations; avoiding lookup tables compromises the speed of AES on most
CPUs. Recall that, as discussed in Section 3, NaCl prohibits loading data from
secret addresses. We do not mean to say that AES cannot be implemented
securely: the NaCl implementation of AES is the bitsliced assembly-language
implementation described in [26], together with a portable C implementation
following the same approach. However, we are concerned about the extent to
which security for AES requires compromising speed. Salsa20 avoids these issues:
it avoids all use of lookup tables.

Poly1305 is an information-theoretically secure message-authentication code
introduced in [6]. Using Poly1305 with Salsa20 is guaranteed to be as secure as
using Salsa20 alone, with a security gap of at most 2−106 per byte: an attacker
who can break the Poly1305 authentication can also break Salsa20. HMAC does
not offer a comparable guarantee.

EdDSA was introduced quite recently in [11]. It is much newer than other
primitives in NaCl but is within a well-known cloud of signature systems that
includes ElGamal, Schnorr, ECDSA, etc.; it combines the safest choices available

174 D.J. Bernstein, T. Lange, and P. Schwabe

within that cloud. EdDSA is like Schnorr and unlike ECDSA in that it diversifies
the hash input, adding resilience against hash collisions, and in that it avoids
inversions, simplifying and accelerating implementations. EdDSA differs from
Schnorr in using a double-size hash function, further reducing the risk of any
hash-function problems; in requiring Edwards curves, again simplifying and ac-
celerating implementations; and in including the public key as a further input to
the hash function, alleviating concerns regarding attacks targeting many keys at
once. EdDSA also avoids a minor compression mechanism, as discussed in [11];
the compression mechanism is public, so it cannot improve security, and skip-
ping it is essential for EdDSA’s fast batch verification. Finally, EdDSA generates
per-message secret nonces by hashing each message together with a long-term
secret, rather than requiring new randomness for each message.

NaCl’s implementation of crypto_sign does use lookup tables but never-
theless avoids secret indices: each lookup from the table loads all table entries
and uses arithmetic to obtain the right value. For details see [11, Section 4].
NaCl’s signature verification uses signed-sliding-window scalar multiplication,
which takes different amounts of time depending on the scalars, but this does
not create security problems and does not violate NaCl’s prohibition on secret
branches: the scalars are not secret.

To summarize, all of these cryptographic choices are quite conservative. We
do not expect any of them to be broken until someone succeeds in building a
large quantum computer; before that happens we will extend NaCl to support
post-quantum cryptography.

References

1. Albrecht, M.R., Paterson, K.G., Watson, G.J.: Plaintext recovery attacks against
SSH. In: Evans, D., Myers, A. (eds.) 2009 IEEE Symposium on Security and Pri-
vacy, Proceedings, pp. 16–26. IEEE Computer Society (2009),
http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf 3

2. Alfardan, N.J., Paterson, K.G.: Plaintext-recovery attacks against datagram TLS.
In: NDSS 2012 (to appear, 2012), http://www.isg.rhul.ac.uk/~kp/dtls.pdf 3

3. Bacelar Almeida, J., Barbosa, M., Pinto, J.S., Vieira, B.: Formal verification of
side channel countermeasures using self-composition. Science of Computer Pro-
gramming (to appear), http://dx.doi.org/10.1016/j.scico.2011.10.008 3

4. Apple. iPhone end user licence agreement. Copy distributed inside each iPhone 4;
transcribed at http://rxt3ch.wordpress.com/2011/09/27/iphone-end-user-

liscence-agreement-quick-refrence/ 1
5. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key

management—part 1: General (revised). NIST Special Publication 800-57 (2007),
http://csrc.nist.gov/groups/ST/toolkit/documents/

SP800-57Part1 3-8-07.pdf 4
6. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,

Handschuh, H. (eds.) Fast Software Encryption. LNCS, vol. 3557, pp. 32–49.
Springer (2005), http://cr.yp.to/papers.html#poly1305 5

The Security Impact of a New Cryptographic Library 175

7. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) Public Key Cryptography—PKC 2006.
LNCS, vol. 3958, pp. 207–228. Springer (2006),
http://cr.yp.to/papers.html#curve25519 4, 5

8. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet,
O. (eds.) New stream cipher designs: the eSTREAM finalists. LNCS, vol. 4986,
pp. 84–97. Springer (2008), http://cr.yp.to/papers.html#salsafamily 5

9. Bernstein, D.J.: DNSCurve: Usable security for DNS (2009),
http://dnscurve.org/ 2

10. Bernstein, D.J.: CurveCP: Usable security for the Internet (2011),
http://curvecp.org/ 2

11. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 124–142. Springer (2011), http://eprint.iacr.org/2011/368 1, 4, 5

12. Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT benchmarking of crypto-
graphic systems, http://bench.cr.yp.to 3, 4

13. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.)
Cryptographic Hardware and Embedded Systems: CHES 2012. LNCS, vol. 7428,
pp. 320–339. Springer (2012), http://cr.yp.to/papers.html#neoncrypto 4

14. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS#1. In: Krawczyk, H. (ed.) Advances in Cryptology—
CRYPTO ’98. LNCS, vol. 1462, pp. 1–12. Springer (1998),
http://www.bell-labs.com/user/bleichen/papers/pkcs.ps 3

15. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Diaz, C. (eds.) Computer Security—ESORICS 2011. LNCS, vol. 6879, pp. 355–371.
Springer (2011), http://eprint.iacr.org/2011/232/ 3

16. “Bushing”, Hector Martin “marcan” Cantero, Boessenkool, S., Peter, S.: PS3
epic fail (2010), http://events.ccc.de/congress/2010/Fahrplan/attachments/
1780_27c3_console_hacking_2010.pdf 3

17. Chandramouli, R., Rose, S.: Secure domain name system (DNS) deploy-
ment guide. NIST Special Publication 800-81r1 (2010), http://csrc.nist.gov/
publications/nistpubs/800-81r1/sp-800-81r1.pdf 4

18. Daemen, J., Rijmen, V.: AES proposal: Rijndael, version 2 (1999),
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf 3

19. Dempsky, M.: OpenDNS adopts DNSCurve,
http://blog.opendns.com/2010/02/23/opendns-dnscurve/ 2

20. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A strengthened version
of RIPEMD. In: Gollmann, D. (ed.) Fast Software Encryption. LNCS, vol. 1039,
pp. 71–82. Springer (1996) 5

21. ECRYPT. The eSTREAM project, http://www.ecrypt.eu.org/stream/ 5
22. Gutmann, P.: cryptlib security toolkit,

http://www.cs.auckland.ac.nz/~pgut001/cryptlib/ 2
23. Gutmann, P.: cryptlib security toolkit: version 3.4.1: user’s guide and manual,

ftp://ftp.franken.de/pub/crypt/cryptlib/manual.pdf 2, 3
24. Josefsson, S.: Don’t return different errors depending on content of decrypted

PKCS#1. Commit to the GnuTLS library (2006),
http://git.savannah.gnu.org/gitweb/?p=gnutls.git;a=commit;

h=fc43c0d05ac450513b6dcb91949ab03eba49626a 3
25. Kaliski, B.: TWIRL and RSA key size, http://web.archive.org/web/

20030618141458/http://rsasecurity.com/rsalabs/technotes/twirl.html 4

176 D.J. Bernstein, T. Lange, and P. Schwabe

26. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,
C., Gaj, K. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2009.
LNCS, vol. 5747, pp. 1–17. Springer (2009), http://cryptojedi.org/
papers/#aesbs 5

27. Langley, A.: ctgrind—checking that functions are constant time with Valgrind
(2010), https://github.com/agl/ctgrind 3

28. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: Automatic detection and removal of control-flow side channel attacks. In:
Won, D., Kim, S. (eds.) Information Security and Cryptology: ICISC 2005. LNCS,
vol. 3935, pp. 156–168. Springer (2005) 3

29. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factoriza-
tion. Mathematics of Computation 48(177), 243–264 (1987),
http://www.ams.org/journals/mcom/1987-48-177/

S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf 5
30. OpenSSL. OpenSSL: The open source toolkit for SSL/TLS,

http://www.openssl.org/ 1
31. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case

of AES. In: Pointcheval, D. (ed.) Topics in Cryptology—CT-RSA 2006. LNCS,
vol. 3860, pp. 1–20. Springer (2006) 3

32. Shamir, A., Tromer, E.: Factoring large numbers with the TWIRL device. In:
Boneh, D. (ed.) Advances in Cryptology—CRYPTO 2003. LNCS, vol. 2729,
pp. 1–26. Springer (2003), http://tau.ac.il/~tromer/papers/twirl.pdf 4

33. Smits, I.: QuickTun, http://wiki.ucis.nl/QuickTun 2
34. Software in the Public Interest, Inc. Debian security advisory, DSA-1571-1

openssl—predictable random number generator (2008),
http://www.debian.org/security/2008/dsa-1571 3

35. Solworth, J.A.: Ethos: an operating system which creates a culture of security,
http://rites.uic.edu/~solworth/ethos.html 2

36. Sotirov, A., Stevens, M., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A., de
Weger, B.: MD5 considered harmful today (2008),
http://www.win.tue.nl/hashclash/rogue-ca/ 5

37. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A., de
Weger, B.: Short chosen-prefix collision for MD5 and the creation of a rogue CA
certificate. In: Halevi, S. (ed.) Advances in Cryptology—CRYPTO 2009. LNCS,
vol. 5677, pp. 55–69. Springer (2009), http://eprint.iacr.org/2009/111/ 5

38. Tor project: Anonymity online, https://www.torproject.org/ 2, 4
39. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-

measures. Journal of Cryptology 23(1), 37–71 (2010) 3
40. Ulevitch, D.: Want to do something that matters? Then read on,

http://blog.opendns.com/2012/02/06/dnscrypt-hackers-wanted/ 2

Faster Implementation of Scalar Multiplication
on Koblitz Curves

Diego F. Aranha1, Armando Faz-Hernández2,
Julio López3, and Francisco Rodríguez-Henríquez2

1 Departament of Computer Science, University of Brasília
dfaranha@unb.br

2 Computer Science Department, CINVESTAV-IPN
armfaz@computacion.cs.cinvestav.mx, francisco@cs.cinvestav.mx

3 Institute of Computing, University of Campinas
jlopez@ic.unicamp.br

Abstract. We design a state-of-the-art software implementation of field
and elliptic curve arithmetic in standard Koblitz curves at the 128-bit
security level. Field arithmetic is carefully crafted by using the best
formulae and implementation strategies available, and the increasingly
common native support to binary field arithmetic in modern desktop
computing platforms. The i-th power of the Frobenius automorphism on
Koblitz curves is exploited to obtain new and faster interleaved versions
of the well-known τNAF scalar multiplication algorithm. The usage of
the τ �m/3� and τ �m/4� maps are employed to create analogues of the
3-and 4-dimensional GLV decompositions and in general, the �m/s�-th
power of the Frobenius automorphism is applied as an analogue of an
s-dimensional GLV decomposition. The effectiveness of these techniques
is illustrated by timing the scalar multiplication operation for fixed, ran-
dom and multiple points. In particular, our library is able to compute a
random point scalar multiplication in just below 105 clock cycles, which
sets a new speed record across all curves with or without endomorphisms
defined over binary or prime fields. The results of our optimized imple-
mentation suggest a trade-off between speed, compliance with the pub-
lished standards and side-channel protection. Finally, we estimate the
performance of curve-based cryptographic protocols instantiated using
the proposed techniques and compare our results to related work.

Keywords: Efficient software implementation, Koblitz elliptic curves,
scalar multiplication.

1 Introduction

Since its introduction in 1985, Elliptic Curve Cryptography (ECC) has become
one of the most important and efficient public key cryptosystems in use. Its
security is based on the computational intractability of solving discrete logarithm
problems over the group formed by the rational points on an elliptic curve.

Anomalous binary curves, also known as Koblitz elliptic curves, were intro-
duced in [1]. Since then, these curves have been subject of extensive analysis and

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 177–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

178 D.F. Aranha et al.

study. Given a finite field Fq for q = 2m, a Koblitz curve Ea(Fq), is defined as
the set of points (x, y) ∈ Fq × Fq that satisfy the equation

Ea : y2 + xy = x3 + ax2 + 1, a ∈ {0, 1}, (1)

together with a point at infinity denoted by O. It is known that Ea(Fq) forms an
additive Abelian group with respect to the elliptic point addition operation. In
this paper, Ea is a Koblitz curve with order #Ea(F2m) = 22−ar, where r is an
odd prime. Let 〈P 〉 be an additively written subgroup in Ea of prime order r, and
let k be a positive integer such that k ∈ [0, r− 1]. Then, the elliptic curve scalar
multiplication operation computes the multiple Q = kP , which corresponds to
the point resulting of adding P to itself, k − 1 times. Given r, P and Q ∈ 〈P 〉,
the Elliptic Curve Discrete Logarithm Problem (ECDLP) consists of finding the
unique integer k such that Q = kP holds.

Since Koblitz curves are defined over the binary field F2, the Frobenius map
and its inverse naturally extend to an automorphism of the curve denoted by
τ . The τ map takes (x, y) to (x2, y2) and O to O. It can been shown that
(x4, y4) + 2(x, y) = μ(x2, y2) for every (x, y) on Ea, where μ = (−1)1−a. In
other words, τ satisfies τ2 + 2 = μτ . By solving the quadratic equation, we can
associate τ with the complex number τ = −1+

√−7
2 .

Elliptic curve scalar multiplication is the most expensive operation in crypto-
graphic protocols whose security guarantees are based on the ECDLP. Improving
the computational efficiency of this operation is a widely studied problem. Across
the years, a number of algorithms and techniques providing efficient implementa-
tions with higher performance have been proposed [2]. Many research works have
focused their efforts on the unknown point scenario, where the base point P is
not known in advance and when only one single scalar multiplication is required,
as in the case of the Diffie-Hellman key exchange protocol [3,4,5]. However, there
are situations where a single scalar multiplication must be performed on fixed
base points such as in the case of the key and signature generation procedures
of the Elliptic Curve Digital Signature Algorithm (ECDSA) standard. In other
scenarios, such as in the ECDSA signature verification, the simultaneous compu-
tation of two scalar multiplications (one with unknown point and the other with
fixed point) of the form R = kG + lQ, is required. Comparatively less research
works have studied the latter cases [6,7,8].

In [9,3], authors evaluated the achievable performance of binary elliptic curve
arithmetic in the latest 64-bit micro-architectures, presenting a comprehensive
analysis of unknown-point scalar multiplication computations on random and
Koblitz NIST elliptic curves at the 112-bit and 192-bit security levels. However,
for the 128-bit security level they only considered a random curve with side-
channel resistant scalar multiplication.1 This was mainly due to the unavail-
ability of benchmarking data for curves equipped with endomorphisms and the

1 Scalar multiplication on curve CURVE2251 was implemented in [3] using the Mont-
gomery laddering approach that is naturally protected against first-order side-
channel attacks.

Faster Implementation of Scalar Multiplication on Koblitz Curves 179

performance penalty of halving-based approaches when applied to standardized
curves.

In this work we revisit the software serial computation of scalar multiplication
on Koblitz curves defined over binary fields. This study includes the computa-
tion of the scalar multiplication using unknown and fixed points; and single and
simultaneous scalar multiplication computations as required in the generation
and verification of discrete-log based digital signatures. We extend the analysis
given in [3,9] and further investigate an alternate curve choice to provide a com-
plete picture of the performance scenario, while also showing through operation
counting and experimental results that Koblitz curves are still the fastest choice
for deploying curve-based cryptography if sufficient native support for binary
field arithmetic is available in the target platform and if resistance to software
side-channel attacks can be disregarded.

To this end, we adopted several techniques previously proposed by differ-
ent authors: (i) formulation of binary field arithmetic using vector instruc-
tions [10]; (ii) time-memory trade-offs for the evaluation of fixed 2k-powers in
binary fields [11]; (iii) new formulas for polynomial multiplication over F2 and
its extensions [12]; (iv) efficient support for the recently introduced carry-less
multiplier [3].

Besides building on these advancements on finite field arithmetic, this pa-
per presents several novel techniques including: (i) improved implementation of
width-w τNAF integer recoding; (ii) a new precomputation scheme for small
multiples of a random point in a Koblitz curve; (iii) lazy-reduction formulae for
mixed addition in binary elliptic curves; (iv) novel interleaving strategies of the
τNAF algorithm for scalar multiplication in Koblitz curves via powers of the
Frobenius automorphism. We remark that the interleaved techniques proposed
in this work can be seen as the effective application for the first time in Koblitz
curves of an s-dimensional GLV decomposition. Moreover, in this work only the
“tried and tested” Koblitz curve NIST-K283 is considered, providing immediate
compatibility and interoperability with standards and existing implementations.
Note, however, that several of our techniques are not restricted in any sense to
this curve choice, and can therefore be used to accelerate scalar multiplication
in other Koblitz curves at different security levels.

Our main implementation result is a speed record for the unknown-point
single-core scalar multiplication computation over the NIST-K283 curve in a
little less than 105 clock cycles. Running on an Intel Core i7-2600K processor
clocked at 3.4 GHz we were able to compute a random point scalar multiplication
in just 29.18μs. To our knowledge, this is the fastest software implementation of
this operation across all curves ever proposed for cryptographic applications at
the 128-bit security level.

This document is structured as follows: Section 2 discusses the low-level tech-
niques used for the implementation of field arithmetic and integer recoding.
Section 3 presents high-level techniques for arithmetic in the elliptic curve, com-
prising improved formulas for mixed addition by means of lazy reduction and
strategies for speeding up the scalar multiplication computation by using powers

180 D.F. Aranha et al.

of the Frobenius automorphism. Section 4 illustrates the efficiency of the pro-
posed techniques reporting operation counts and timings for scalar multiplication
in the fixed, unknown and multiple point scenarios; and extensively compares
the results with related work. Additionally in this section we estimate the per-
formance of signature and key agreement protocols when they are instantiated
with Koblitz curves. The final section concludes the paper with perspectives for
further performance improvement based on upcoming instruction sets.

2 Low-Level Techniques

Let f(z) be a monic irreducible polynomial of degreem over F2. Then, the binary
extension field F2m is isomorphic to F2m ∼= F2[z]/ (f(z)), i.e., F2m is a finite field
of characteristic 2, whose elements are the finite set of all the binary polynomials
of degree less than m. In order to achieve a security level equivalent to 128-bit
AES when working with binary elliptic curves, NIST recommends to choose the
field extension F2283 , along with the irreducible pentanomial f(z) = z283 +
z12 + z7 + z5 + 1. In a modern 64-bit computing platform, an element from the
field F2m represented in canonical basis requires n64 = �m

64� processor words, or
n64 = 5 when m = 283. In the rest of this section, descriptions of algorithms and
formulas will refer to either generic or fixed versions of the binary field, depending
on whether or not the optimization is restricted to the choice of m = 283.

As mentioned before, in this work we made an extensive use of vector in-
struction sets present in contemporary desktop processors. The platform model
given in Table 1 extends the notation reported in [10]. There is limited sup-
port for flexible bitwise shifting in vector registers, because propagation of bits
between the two contiguous 64-bit words requires additional operations. Notice
that vectorized multiple-precision or intra-digit shifts can always be made faster
when the shift amount is a multiple of 8 by means of the memory alignment in-
struction or the bytewise shift instruction, respectively, and that a simultaneous
table lookup mapping 4-bit indexes to bytes can be implemented through the
byte shuffling instruction called PSHUFB in the SSE instruction set.

Table 1. Relevant vector instructions for the implementation of binary field arithmetic

Mnemonic Description SSE
⊗ Carry-less multiplication PCLMULQDQ

��8,��8 64-bit bitwise shifts PSLLQ,PSRLQ
�8,�8 128-bit bytewise shift PSLLDQ,PSRLDQ
⊕,∧,∨ Bitwise XOR,AND,OR PXOR,PAND,POR
�, � Memory alignment/Multi-precision shifts PALIGNR

In the following, we provide brief implementation notes on how relevant field
arithmetic operations such as, addition, multiplication, squaring, multi-squaring,
modular reduction and inversion; and integer width-w τNAF recoding, were
implemented.

Faster Implementation of Scalar Multiplication on Koblitz Curves 181

Addition. It is the simplest operation in a binary field and can employ the
exclusive-or instruction with the largest operand size in the target platform.
This is particularly beneficial for vector instructions, but according to our
experiments, the 128-bit SSE [13] integer instruction proved to be faster
than the 256-bit AVX [14] floating-point instruction due to a higher recip-
rocal throughput [15] when operands are stored into registers.

Multiplication. Field multiplication is the performance-critical arithmetic op-
eration for elliptic curve arithmetic. Given two field elements a(z), b(z) ∈
F2283 we want to compute a third field element c(z) = a(z) · b(z) mod f(z).
This can be accomplished by performing two separate steps: first the poly-
nomial multiplication of the two operands a(z), b(z) is evaluated and then
the resulting double length polynomial is modular reduced by f(z). From
our field element representation, the polynomial multiplication step can be
seen as the computation of the product of two (n64 − 1)-degree polynomials,
each with n64 64-bit coefficients. Alternatively, the two operands may also
be seen as (�n64

2 � − 1)-degree polynomials, each with �n64
2 � 128-bit coeffi-

cients. In the latter case, each term-by-term multiplication can be solved
via the standard Karatsuba formula by performing 3 carry-less multiplica-
tions. When n64 = 5, the above approaches require 13 (see [12,16]) and 14
invocations of the carry-less multiplier instruction, respectively. Algorithm 1
below presents our implementation of field multiplication over the field F2283

with 64-bit granularity using the formula given in [12]. The computational
complexity of Algorithm 1 is of 13 carry-less multiplications and 32 vector
additions, respectively, plus one modular reduction (Alg. 1, step 22) that will
be discussed later. The most salient feature of Algorithm 1 is that all the 13
carry-less multiplications have been grouped into one single loop on steps 6-8.
This is an attractive feature from a throughput point of view, as it is impor-
tant to potentially reduce the cost of the carry-less multiplication instruction
from 14 to 8 clock cycles in the Intel Sandy Bridge micro-architecture; and
from 12 to 7 clock cycles in an AMD Bulldozer [15]. The rationale behind
this cost reduction is that the batch execution of independent multiplica-
tions directly benefits the micro-architecture pipeline occupancy level. It is
worth mentioning that in [3], authors concluded that the 64-bit granular ap-
proach tends to consume more resources and complicate register allocation,
limiting the natural throughput exhibited by the carry-less multiplication in-
struction. However, if the digits are stored in an interleaved form (see [17]),
these side effects are mitigated and higher throughput can again be achieved.

Squaring and Multi-Squaring. Squaring is a cheap operation in a binary
field due to the action of the Frobenius map, consisting of a linear expan-
sion of coefficients. Vectorized approachs using simultaneous table lookups
through byte shuffling instructions allow a particularly efficient formulation
of the coefficient expansion step [10]. Modular reduction usually is the most
expensive step when computing a squaring, especially when f(z) is an or-
dinary pentanomial (see [18]) for the word size. Dealing efficiently with

182 D.F. Aranha et al.

ordinary pentanomials requires flexible and often not directly supported
shifting instructions in the target platform. Multi-squaring is a time-memory
trade-off in which a table of 16�m

4 � field elements allows computing any fixed
2k power with the cost equivalent of just a few squarings [11]. It is usually the
case that the multi-squaring approach becomes faster than repeated squar-
ing, whenever k ≥ 6 [3]. Contrary to addition, the availability of 256-bit
instructions here contributes significantly to a performance increase. This
happens because this operation basically consists of a sequence of additions
with field elements obtained through a precomputed table stored in main
memory.

Algorithm 1. Proposed implementation of multiplication in F2283

Input: a(z) = a[0..4], b(z) = b[0..4].
Output: c(z) = c[0..4] = a(z) · b(z).
Note: Pairs ai, bi, ci, mi of 64-bit words represent vector registers.
1: for i← 0 to 4 do
2: ci ← (a[i], b[i])
3: end for
4: c5 ← c0 ⊕ c1, c6 ← c0 ⊕ c2, c7 ← c2 ⊕ c4, c8 ← c3 ⊕ c4

5: c9 ← c3 ⊕ c6, c10 ← c1 ⊕ c7, c11 ← c5 ⊕ c8, c12 ← c2 ⊕ c11

6: for i← 0 to 12 do
7: mi ← ci[0] ⊗ ci[1]
8: end for
9: c0 ← m0, c8 ← m4

10: c1 ← c0 ⊕m1, c2 ← c1 ⊕m6

11: c1 ← c1 ⊕m5, c2 ← c2 ⊕m2

12: c7 ← c8 ⊕m3, c6 ← c7 ⊕m7

13: c7 ← c7 ⊕m8, c6 ← c6 ⊕m2

14: c5 ← m11 ⊕m12, c3 ← c5 ⊕m9

15: c3 ← c3 ⊕ c0 ⊕ c10

16: c4 ← c1 ⊕ c7 ⊕m9 ⊕m10 ⊕m12

17: c5 ← c5 ⊕ c2 ⊕ c8 ⊕m10

18: c9 ← c7 �8 64
19: (c7, c5, c3, c1)← (c7, c5, c3, c1) � 8
20: c0 ← c0 ⊕ c1, c1 ← c2 ⊕ c3, c2 ← c4 ⊕ c5

21: c3 ← c6 ⊕ c7, c4 ← c8 ⊕ c9

22: return c = (c4, c3, c2, c1, c0) mod f(z)

Modular Reduction. Efficient modular reduction of a double-length value re-
sulting of a squaring or multiplication operation to a proper field element
involves expressing the required shifted additions in terms of the best shifting
instructions possible. For the instruction sets available in our target platform,
this amounts to converting the highest possible number of shifts to memory
alignment instructions or byte-wise shifts. Curve NIST-K283 is defined over
an ordinary pentanomial, a particularly inefficient choice for our vector reg-
ister size. However, by observing that f(z) = z283 + z12 + z7 + z5 + 1 =

Faster Implementation of Scalar Multiplication on Koblitz Curves 183

z283 + (z7 + 1)(z5 + 1), one can take advantage of this factorization to for-
mulate faster shifted additions. Algorithm 2 presents our explicit scheduling
of shift instructions to perform modular reduction in F2283 . Suppose that
the polynomial c is written as c = p1||p0 where the polynomial p0 represent
the lower 283 bits of c. The computation of c mod f(z) in Algorithm 2 is
performed as follows: in lines 1 to 3, the polynomial p1 is computed by shift-
ing the vector (c4, c3, c2) to the right exactly 27 bits. Then, in lines 4 to 10,
the operation c + p1(z7 + 1)(z5 + 1) is performed, thus getting the vector
(c2, c1, c0) . Finally, in lines 11 to 14, the remaining 101 most significant
bits of c2 are reduced, a process that again involves a multiplication by the
polynomial (z7 + 1)(z5 + 1).

Algorithm 2. Implementation of reduction by f(z) = z283 + (z7 + 1)(z5 + 1)
Input: Double-precision polynomial stored into 128-bit registers c = (c4, c3, c2, c1, c0).
Output: Field element c mod f(z) stored into 128-bit registers (c2, c1, c0).
1: t2 ← c2, t0 ← (c3, c2) � 64, t1 ← (c4, c3) � 64
2: c4 ← c4 ��8 27, c3 ← c3 ��8 27, c3 ← c3 ⊕ (t1 ��8 37)
3: c2 ← c2 ��8 27, c2 ← c2 ⊕ (t0 ��8 37)
4: t0 ← (c4, c3) � 120, c4 ← c4 ⊕ (t0 ��8 1)
5: t1 ← (c3, c2) � 64, c3 ← c3 ⊕ (c3 ��8 7)⊕ (t1 ��8 57)
6: t0 ← c2 �8 64, c2 ← c2 ⊕ (c2 ��8 7)⊕ (t0 ��8 57)
7: t0 ← (c4, c3) � 120, c4 ← c4 ⊕ (t0 ��8 3)
8: t1 ← (c3, c2) � 64, c3 ← c3 ⊕ (c3 ��8 5)⊕ (t1 ��8 59)
9: t0 ← c2 �8 64, c2 ← c2 ⊕ (c2 ��8 5)⊕ (t0 ��8 59)

10: c0 ← c0 ⊕ c2, c1 ← c1 ⊕ c3, c2 ← t2 ⊕ c4

11: t0 ← c4 ��8 27
12: t1 ← t0 ⊕ (t0 ��8 5)
13: t0 ← t1 ⊕ (t1 ��8 7)
14: c0 ← c0 ⊕ t0, c2 ← c2∧ (0x0000000000000000,0x0000000007FFFFFF)
15: return c = (c2, c1, c0)

Inversion. The field inversion approach that probably is the friendliest to vector
instruction sets is the Itoh-Tsuji inversion [19] that computes the field inverse

of a using the identity a−1 =
(
a2m−1−1

)2

. The term a2m−1−1 is obtained by
sequentially computing intermediate terms of the form(

a2i−1
)2j

· a2j−1. (2)

where the exponents 0 ≤ i, j ≤ m−1, are elements of the addition chain asso-
ciated to the exponent e = m−1 [20,21]. The shortest addition chain for e =
282 has length 12 and is 1→2→4→8→16→17→34→35→70→140→141→282.
The computation of the above outlined procedure introduces an impor-
tant memory cost of storing 4 multi-squaring tables (for computing powers

184 D.F. Aranha et al.

217, 235, 270, 2141), with each table containing 16�m
4 � field elements. However,

several of those tables can be reused in the interleaving approach for scalar
multiplication by exploiting powers of the Frobenius automorphism as will
be explained in the next section. We note that other approaches for comput-
ing multiplicative field inverses, such as a polynomial version of the extended
euclidean algorithm, tend to be not so efficient when vectorized mostly be-
cause they require intensive shifting of the intermediate values generated by
the algorithm.

Integer τNAF Recoding. Solinas [22] presented a τ -adic analogue of the cus-
tomary Non-Adjacent Form (NAF) recoding. An element ρ ∈ Z[τ] is found
with ρ ≡ k (mod τm−1

τ−1), of as small norm as possible, where for the sub-
group of interest, kP = ρP and a width-w τNAF representation for ρ can
be obtained in a way that mimics the usual width-w NAF recoding. As
in [22], let us define αi = i mod τw for i ∈ {1, 3, 5, . . . , 2w−1− 1}. A width-w
τNAF of a nonzero element k is an expression k =

∑l−1
i=0 uiτ

i where each
ui ∈ {0,±α1,±α3, . . . ,±α2w−1−1} and ul−1 �= 0, and at most one of any con-
secutive w coefficients is nonzero. Under reasonable assumptions, this proce-
dure outputs an expansion with length l ≤ m+1. Although the cost of width-
w NAF recoding is usually negligible when compared with the overall cost
of scalar multiplication, this is not generally the case with Koblitz curves,
where integer to width-w τNAF recoding can reach more than 10% of the
computational time for computing a scalar multiplication [3]. In this work,
the recoding was implemented by employing as much as possible branchless
techniques: the branches inside the recoding operation essentially depend on
random values, presenting a worst-case scenario for branch prediction and
causing severe performance penalties. In addition to that, the code was also
completely unrolled to handle only the precision required in the current it-
eration. Since the magnitude of the involved scalars gets reduced with each
iteration, it is suboptimal to perform operations considering the initial full
precision. The deterministic nature of the algorithm allows one to know in
which precise iteration of the main recoding loop, the most significant word
of the intermediate values become zero, which permits to represent these
values with one less processor word.

3 High-Level Techniques

In the last section, several notes gave a general description of our algorithmic and
implementation choices for field arithmetic. This section describes the higher-
level strategies used in the elliptic curve arithmetic layer for increasing the per-
formance of scalar multiplication.

3.1 Exploiting Powers of the Frobenius Automorphism

Scalar multiplication algorithms on Koblitz curves are always tailored to exploit
the Frobenius automorphism τ on E(F2m) given by τ(x, y) = (x2, y2). One such

Faster Implementation of Scalar Multiplication on Koblitz Curves 185

example is the classic τNAF scalar multiplication algorithm [22] and its width-w
window variants. Given k ∈ Z and P ∈ E(F2m), these methods work by first
writing k =

∑
kiτ

i for ki ∈ {0,±α1,±α3, . . . ,±α2w−1−1}, with αi = i mod τw

for i ∈ {1, 3, 5, . . . , 2w−1 − 1}. Then the scalar multiplication is computed as
kP =

∑
kiτ

iP .
While powers τ i of the automophism can be automatically considered en-

domorphisms in the context of the GLV method [23], this does not bring any
performance improvement, since applying these powers to a point has exactly
the same cost of iterating the automorphism during a standard execution of
the τNAF algorithm. Nevertheless, by employing time-memory trade-offs for
computing fixed 2i-th powers with cost significantly smaller than i consecutive
squarings, a map of the form τ�m/i� can now be seen as an endomorphism useful
for accelerating scalar multiplication through interleaving strategies. For exam-
ple, the map ψ ≡ τ�m/2� allows an interleaved scalar multiplication of two points
from the expression kP = k1P +2�m/2�k2P =

∑
k1,iτ

iP +
∑
k2,iτ

iψ(P), saving
the computational cost of �m

2 applications of the Frobenius, or 3�m
2 squarings.

This might be seen as a modest saving, since squaring in a binary field is often
considered a free of cost operation. However, this is not entirely true when work-
ing with cumbersome irreducible polynomials that lead to relatively expensive
modular reductions. This is exactly the case studied in this work and, to be more
precise, it can be said instead that interleaving via the ψ endomorphism saves
the computational cost associated to 3�m

2 modular reductions.
As explained above, the map ψ achieves an analogue of a bidimensional GLV

decomposition for a Koblitz curve. Similarly, the usage of the τ�m/3� and τ�m/4�

maps can be seen as analogues to 3- and 4-dimensional GLV decompositions
or, more generally, the �m/s-th power of the Frobenius automorphism as an
analogue of an s-dimensional GLV decomposition. In our working case where
m = 283, note that the addition chain for Itoh-Tsuji inversion was already chosen
to include �m/2 and �m/4. Thus, exploiting these powers of the automorphism
does not imply additional storage costs. Observe that [24,9] already explored this
concept to obtain parallel formulations of scalar multiplication in Koblitz curves.

3.2 Lazy-Reduced Mixed Point Addition

The fastest formula for the mixed addition R = (X3, Y3, Z3) of points P =
(X1, Y1, Z1) and Q = (X2, Y2) in binary curves use López-Dahab coordinates [25]
and were proposed in [26]. When the a-coefficient of the curve is 0, the formula
is given below:

A = Y1 + Y2 · Z2
1 , B = X1 +X2 · Z1, C = B · Z1

Z3 = C2, D = X2 · Z3, E = A · C
X3 = E + (A2 + C ·B2), Y3 = (D +X3) · (E + Z3) + (Y2 +X2) · Z2

3 .

Evaluating this formula has a cost of 8 field multiplications, 5 field squarings and
8 additions. It is possible to further save 2 modular reductions when computing

186 D.F. Aranha et al.

sums of products in the expressions for the coordinates X3 and Y3 given above.
This technique is called lazy reduction [27] and trades off a modular reduction
by a double-length addition. Our working case presents the best conditions for
lazy reduction due to the poor choice of the irreducible pentanomial associated
to the NIST K-283 elliptic curve, and the high computational efficiency of the
field addition operation. It is then possible to evaluate the formula with a cost
equivalent to 8 unreduced multiplications, 5 unreduced squarings, 11 modular
reductions, and 10 field addditions. This is very similar to the formula proposed
in [28], but without introducing any new coordinates to chain unreduced values
across sequential additions.

3.3 Scalar Multiplication Algorithm

Algorithm 3 provides a generic interleaved version of the width-w τNAF point
multiplication method when the main loop is folded s times by exploring the
�m/s-th power of the Frobenius automorphism. In comparison with the original
algorithm, approximately 3(s−1)�m

s field squarings are saved. Notice however,
that incrementing the value s also increases the time and space computational
cost of constructing the table of base-point multiples performed in Steps 2-5. In
the following, the construction of this table of points is referred as precomputation
phase.

3.4 Precomputation Scheme

The scalar multiplication algorithm presented in Algorithm 3 requires the com-
putation of the set of affine points P0,u = αuP , for u ∈ {1, 3, 5, . . . , 2w−1 − 1}.
Basically, there are two simple approaches to compute this set: use inversion-free
addition in projective coordinates and convert all the points at the end to affine
coordinates using the Montgomery’s simultaneous inversion method; or perform
the additions directly in affine coordinates. High inversion-to-multiplication ra-
tios clearly favor the former approach. The latter can be made more viable when
the ratio is moderate and simultaneous inversion is employed for computing the
denominators in affine addition.

For an illustration of both approaches, assume the choice w = 5, and let
M,S,A, I be the cost of multiplication, squaring, addition and inversion in F2m ,
respectively. Let us consider first the strategy of performing most of the opera-
tions in projective coordinates. For the selected value of w, the first four point
multiples of the precomputation table given as,

α1P = P ; α3P = (τ2 − 1)P ; α5P = (τ2 + 1)P ; α7P = (τ3 − 1)P ;

can be computed in projective coordinates at a cost of three point additions
plus three Frobenius operations. However, the last 4 point multiples in the table,
namely,

α9P = (τ3α5 + 1)P ; α11P = (−τ2α5 − 1)P ;
α13P = (−τ2α5 + 1)P ; α15P = (−τ2α5 − α5)P ;

Faster Implementation of Scalar Multiplication on Koblitz Curves 187

Algorithm 3. Interleaved width-w τNAF scalar multiplication using τ�m/s�

Input: k ∈ Z, P ∈ E(F2m), integer s denoting the interleaving factor.
Output: kP ∈ E(F2m).
1: Compute width-w τ -NAF(k) =

∑l−1
i=0 uiτ

i

2: Compute P0,u = αuP , for u ∈ {1, 3, 5, . . . , 2w−1 − 1}
3: for i← 1 to (s− 1) do
4: Compute Pi,u = τ �m/s�Pi−1,u

5: end for
6: Q←∞
7: for i← l − 1 to s�m

s
� do

8: Q← τQ
9: if ui �= 0 then

10: Let u be such that αu = ui or α−u = −ui

11: if ui > 0 then Q← Q + P0,u; else Q← Q− P0,u

12: end if
13: end for
14: for i← (�m

s
� − 1) to 0 do

15: Q← τQ
16: for j ← 0 to (s− 1) do
17: if ui+j�m/s� �= 0 then
18: Let u be such that αu = ui+j�m/s� or α−u = −ui+j�m/s�
19: if ui > 0 then Q← Q + Pj,u; else Q← Q− Pj,u

20: end if
21: end for
22: end for
23: return Q = (x, y)

can be only computed until the point τ2α5P has been calculated [2]. This situ-
ation requires either an expensive conversion to affine coordinates of the point
τ2α5P or the lower penalty of performing one general instead of a mixed point
addition with an associated cost of (13M + 4S + 9A). Hence, it is possible to
compute all the required points with just 6 point additions or subtractions, a
single general point addition, 6 Frobenius in affine or projective coordinates and
a simultaneous conversion of 7 points to affine coordinates. Half of the 6 point
additions and subtractions mentioned above are between points in affine coordi-
nates and considering the associated cost of simultaneous Montgomery inversion,
each of them has a computational cost of just (5M + 3S + 8A) and one single
inversion. Hence, the total precomputation cost for w = 5 is given as,

Proj. Precomputation cost = 3 · (5M + 3S + 8A) + 3 · (8M + 5S + 8A) +
3 · 2S + 3 · 3S + (13M + 4S + 9A) +
3 · (7 − 1)M + I + 7 · (2M + S)

= 84M + 50S + 57A+ I.

On the other hand, let us consider the second approach where all the additions
are directly performed in affine coordinates. Let us recall that one affine addition

188 D.F. Aranha et al.

costs 2M + S + I + 8A. Due to the dependency previously mentioned, we have
to split all the affine addition computations into two groups {α3P, α5P, α7P}
and {α9P, α11P, α13P, α15P}, without dependencies. Computing the first group
requires 3 affine additions and a simultaneous inversion to obtain 3 line slopes;
whereas the second group requires 4 affine additions and a simultaneous inversion
to obtain the 4 slopes, for a total of 7 · (2M+S+8A)+3(3−1)M+3(4−1)M+
2I = 29M + 7S + 56A+ 2I. Considering only the dominant multiplications and
inversions, the affine precomputation scheme will be faster than the projective
precomputation scheme whenever the inversion-to-multiplication ratio is lower
than 55, an assumption entirely compatible with the target platform [3].

4 Estimates, Results and Discussion

4.1 Performance Estimates

Now we are in a position to estimate the performance of Algorithm 3 for the
values of m = 283, s = 1, w = 5. The algorithm executes the precomputation
scheme described in the last section, an average of m applications of the Frobe-
nius automorphism, an expected number of m

w+1 additions and a final conversion
to affine coordinates. This amounts to a cost of about,

Estimated cost of Algorithm 3 = 29M + 7S + 56A+ 2I + 283 · 3M +
47 · (8M + 5S + 8A) + (I + 2M + S)

= 407M + 1092S + 3I

For comparison, the current state-of-the-art serial implementation of a random
point multiplication, using a 4-dimensional GLV method over a prime curve and
the same choice of w, takes 2 inversions, 665 multiplications, 413 squarings and
844 additions in Fp2 , where p has approximately 128 bits [29]. By using the latest
formula for 5-term polynomial multiplication described in the last section, the
scalar multiplication in Koblitz curves is expected to execute 407 · 13 = 5291
word multiplications, while the GLV-capable prime curve is expected to execute
(665 ·3+413 ·2) ·4 = 11284 word multiplications. This rough comparison means
that a scalar multiplication in a Koblitz curve should be considerably faster
than a prime curve equipped with endomorphisms if sufficient support to binary
field multiplication is present, or even twice faster if support is equivalent to
integer multiplication. Although the latency of the fastest carry-less multiplier
available (7 cycles at best [15]) is substantially higher than the integer multiplier
counterpart (3 cycles [15]), from our analysis above it is still entirely possible
that a careful implementation of a Koblitz curve exhibits lower computational
cost.

4.2 Experimental Results

In order to illustrate the performance obtained by the proposed techniques,
we implemented a library targeted to the Intel Westmere and Sandy Bridge

Faster Implementation of Scalar Multiplication on Koblitz Curves 189

micro-architectures, focusing our efforts on benefitting from the SSE and AVX
instruction sets with the corresponding availability of 128-bit and 256-bit regis-
ters. The library was implemented in the C programming language, with vector
instructions accessed through their intrinsics interface. Both version 4.7.1 of the
GNU C Compiler Suite (GCC) and version 12.1 of the Intel C Compiler (ICC)
were used to build the library in a GNU/Linux environment.

Benchmarking was conducted on Intel Core i5-540M and Core i7-2600K pro-
cessors clocked at 2.5GHz and 3.4 GHz, respectively, following the guidelines
provided in the EBACS website [30]. Namely, automatic overclocking, frequency
scaling and HyperThreading technologies were disabled to reduce randomness
in the results.

Table 2 presents timings and ratios related to the cost of multiplication for the
low-level field arithmetic layer of the library, which computes basic operations
in the field F2283 . Note how modular reduction dominates the cost of squaring
and how the moderate inversion-to-multiplication ratios justify the algorithmic
choices. Our best timing on Sandy Bridge for unreduced multiplication is 5%
faster than the 135 cycles reported in [31], this saving is obtained by a careful
implementation of the same polynomial multiplication formula used in [31].

Table 2. Timings given in clock cycles for basic operations in F2283

Westmere Sandy Bridge
Base field operation GCC ICC op/M GCC ICC op/M

Modular reduction 28 28 0.11 20 22 0.15
Unreduced multiplication 159 163 0.89 128 132 0.89
Multiplication 182 182 1.00 142 149 1.00
Squaring 42 39 0.21 28 29 0.18
Multi-Squaring 287 295 1.62 235 243 1.63
Inversion 4,372 4,268 23.45 3,286 3,308 22.20

Table 3 shows the number of clock cycles for elliptic curve operations, such
as point addition, Frobenius endomorphism, and point doubling. The latter is
shown only to reflect the improvement of using point doubling-free scalar mul-
tiplication as is the case in Koblitz curves. Integer recoding is almost 3 times
faster than [3,9], even with longer scalars.

Timings reported for scalar multiplication are divided into three scenarios:
(i) known point, where the point to be multiplied is already known before the
execution of scalar multiplication; (ii) unknown point, the general case, where
the input point is not known until scalar multiplication is processed; (iii) double
multiplication of a fixed and a random point, a case usually needed for verify-
ing curve-based digital signatures. For the three scenarios, we used interleaved
versions of the left-to-right width-w window τNAF scalar multiplication algo-
rithm with different choices of w. We present timings in Table 4. It was verified
experimentally that s = 2 is the best choice for random and double point multi-

190 D.F. Aranha et al.

Table 3. Elliptic curve operations on NIST-K283 when points are represented in affine
or López-Dahab coordinates [25]

Westmere Sandy Bridge
Elliptic curve operation GCC ICC op/M GCC ICC op/M

Frobenius (Affine) 84 70 0.38 55 55 0.37
Frobenius (LD) 118 115 0.63 85 83 0.55
Doubling (LD) 965 939 5.15 741 764 5.12
Addition (LD Mixed) 1,684 1,650 9.06 1,300 1,336 8.96
Addition (LD General) 2,683 2,643 14.52 2,086 2,145 14.39
Width-w τNAF recoding 4,841 6,652 36.55 3,954 4,693 31.50

plication, providing a speedup of 3-5% over the conventional case s = 1, and that
s = 4 provides a significant performance increase for fixed point multiplication.

Table 4. Scalar multiplication in three different scenarios: fixed, random and multiple
points. Timings are given in 103 processing cycles.

Westmere Sandy Bridge
Scalar multiplication GCC ICC GCC ICC

Random point (kP), w = 5, s = 1 139.6 135.1 105.3 105.3
Random point (kP), w = 5, s = 2 130.9 127.8 99.2 99.7
Fixed point (kG), w = 8, s = 2 80.8 79.0 61.5 62.3
Fixed point (kG), w = 8, s = 4 72.6 71.7 55.1 55.9
Fixed/random point (kG + lQ), wG = 6, wQ = 5, s = 2 207.8 206.8 157.7 160.8
Fixed/random point (kG + lQ), wG = 8, wQ = 5, s = 2 192.3 190.6 146.3 148.7

4.3 Comparison to Related Work

The previous state-of-the-art implementation at the 128-bit security level on a
Sandy Bridge platform achieves a scalar multiplication of a random point on a
prime curve in 120,000 clock cycles [29]2. A side-channel resistant implementa-
tion by Bernstein et al. [8] reports 226,872 cycles for computing this operation
on Westmere and 194,208 cycles on Sandy Bridge [30]. Another implementation
by Hamburg [32] reports 153,000 cycles on Sandy Bridge. Our implementation
is up to 49% faster than related works in this scenario, allowing a significant
speedup when computing instances of the ECDH key agreement protocol.

Computing curve-based digital signatures usually amounts to scalar multi-
plication of fixed points. The authors of [8] report a latency of 87,548 cycles
to compute this operation on the Westmere and 70,292 cycles on the Sandy
Bridge [30] micro-architectures, while using a precomputed table of 256 points.
Hamburg [32] implemented this operation on Sandy Bridge in just 52,000 cycles
2 The authors reported via private communication that the paper will be updated

with new results, costing around 99,000 cycles.

Faster Implementation of Scalar Multiplication on Koblitz Curves 191

with 160 precomputed points. Compared to the first implementation and using
the same number of points, our timings are faster by 22%. Comparing to the
second implementation while reducing the number of precomputed points to 128,
our timings are slower by 15%.

The last scenario to analyze is signature verification, where work [8] reports
single signature verification timings of 273,364 cycles on Westmere and 226,516
cycles on Sandy Bridge [30], while reporting significantly improved timings for
batch verification. A faster implementation [32] verifies a signature using 32 pre-
computed points on Sandy Bridge in 165,000 cycles. We obtain speedups between
5% and 35% on this scenario, considering implementations with the same num-
ber of points, and leave the possibility of batch verification as a future direction
of this work. It is important to stress that our implementation provides a trade-
off between side-channel protection and standards compliance. Consequently, it
allows faster and interoperable curve-based cryptography when resistance to side
channels is not required.

5 Conclusion

In this work, we presented a software implementation of elliptic curve arithmetic
in Koblitz curves defined over binary fields. By reusing several low-level tech-
niques recently-introduced by other authors and proposing a number of useful
high-level techniques, we obtained state-of-the-art timings for computing scalar
multiplication of a random point, modelling a curve-based key agreement pro-
tocol. Our implementation also provides a trade-off between execution time and
storage overhead for computing digital signatures and significantly improves the
time to verify a single signature. We expect our timings to be accelerated fur-
ther as support to binary field arithmetic improves on modern 64-bit platforms,
either through a faster carry-less multiplier or via the 256-bit integer vector
instructions from the upcoming AVX2 instruction set. Our computational cost
analysis suggests that if the target platform had a binary field multiplication
instruction as efficient as integer multiplication, our implementation could still
receive a further factor-2 speedup.

References

1. Koblitz, N.: CM-Curves with Good Cryptographic Properties. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)

2. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Secaucus (2003)

3. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodríguez-Henríquez, F., Hanker-
son, D., López, J.: Speeding scalar multiplication over binary elliptic curves using
the new carry-less multiplication instruction. Journal of Cryptographic Engineer-
ing 1(3), 187–199 (2011)

4. Longa, P., Gebotys, C.: Efficient Techniques for High-Speed Elliptic Curve Cryp-
tography. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 80–94. Springer, Heidelberg (2010)

192 D.F. Aranha et al.

5. Gaudry, P., Thomé, E.: The mpFq library and implementing curve-based key ex-
changes. In: Software Performance Enhancement of Encryption and Decryption
(SPEED 2007), pp. 49–64 (2009),
http://www.hyperelliptic.org/SPEED/record.pdf

6. Brown, M., Hankerson, D., López, J., Menezes, A.: Software Implementation of
the NIST Elliptic Curves Over Prime Fields. In: Naccache, D. (ed.) CT-RSA 2001.
LNCS, vol. 2020, pp. 250–265. Springer, Heidelberg (2001)

7. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for Faster Elliptic Curve Cryp-
tography on a Large Class of Curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 518–535. Springer, Heidelberg (2009)

8. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-Speed High-
Security Signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 124–142. Springer, Heidelberg (2011)

9. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodríguez-Henríquez, F., Hanker-
son, D., López, J.: Software Implementation of Binary Elliptic Curves: Impact
of the Carry-Less Multiplier on Scalar Multiplication. In: Preneel, B., Takagi, T.
(eds.) CHES 2011. LNCS, vol. 6917, pp. 108–123. Springer, Heidelberg (2011)

10. Aranha, D.F., López, J., Hankerson, D.: Efficient Software Implementation of Bi-
nary Field Arithmetic Using Vector Instruction Sets. In: Abdalla, M., Barreto,
P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 144–161. Springer, Hei-
delberg (2010)

11. Bos, J.W., Kleinjung, T., Niederhagen, R., Schwabe, P.: ECC2K-130 on Cell CPUs.
In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp.
225–242. Springer, Heidelberg (2010)

12. Cenk, M., Özbudak, F.: Improved Polynomial Multiplication Formulas over F2

Using Chinese Remainder Theorem. IEEE Trans. Computers 58(4), 572–576 (2009)
13. Intel: Intel Architecture Software Developer’s Manual Volume 2: Instruction Set

Reference (2002), http://www.intel.com
14. Firasta, N., Buxton, M., Jinbo, P., Nasri, K., Kuo, S.: Intel AVX: New frontiers in

performance improvement and energy efficiency (2008), White paper available at
http://software.intel.com/

15. Fog, A.: Instruction tables: List of instruction latencies, throughputs and micro-
operation breakdowns for Intel, AMD and VIA CPUs (2012),
http://www.agner.org/optimize/instruction_tables.pdf

16. Montgomery, P.: Five, six, and seven-term Karatsuba-like formulae. IEEE Trans-
actions on Computers 54(3), 362–369 (2005)

17. Gaudry, P., Brent, R., Zimmermann, P., Thomé, E.: The gf2x binary field multi-
plication library, https://gforge.inria.fr/projects/gf2x/

18. Scott, M.: Optimal Irreducible Polynomials for GF (2m) Arithmetic. Cryptology
ePrint Archive, Report 2007/192 (2007), http://eprint.iacr.org/

19. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Inf. Comput. 78(3), 171–177 (1988)

20. Guajardo, J., Paar, C.: Itoh-Tsujii inversion in standard basis and its application in
cryptography and codes. Designs, Codes and Cryptography 25(2), 207–216 (2002)

21. Rodríguez-Henríquez, F., Morales-Luna, G., Saqib, N.A., Cruz-Cortés, N.: Parallel
Itoh—Tsujii multiplicative inversion algorithm for a special class of trinomials. Des.
Codes Cryptography 45(1), 19–37 (2007)

22. Solinas, J.A.: Efficient Arithmetic on Koblitz Curves. Designs, Codes and Cryp-
tography 19(2-3), 195–249 (2000)

http://www.hyperelliptic.org/SPEED/record.pdf
http://www.intel.com
http://software.intel.com/
http://www.agner.org/optimize/instruction_tables.pdf
https://gforge.inria.fr/projects/gf2x/
http://eprint.iacr.org/

Faster Implementation of Scalar Multiplication on Koblitz Curves 193

23. Gallant, R., Lambert, R., Vanstone, S.: Faster Point Multiplication on Elliptic
Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

24. Ahmadi, O., Hankerson, D., Rodríguez-Henríquez, F.: Parallel formulations of
scalar multiplication on Koblitz curves. Journal of Universal Computer Sci-
ence 14(3), 481–504 (2008)

25. López, J., Dahab, R.: Improved Algorithms for Elliptic Curve Arithmetic in
GF(2n). In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201–212.
Springer, Heidelberg (1999)

26. Al-Daoud, E., Mahmod, R., Rushdan, M., Kiliçman, A.: A New Addition Formula
for Elliptic Curves over GF(2n). IEEE Trans. Computers 51(8), 972–975 (2002)

27. Weber, D., Denny, T.: The Solution of McCurley’s Discrete Log Challenge. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 458–471. Springer, Hei-
delberg (1998)

28. Kim, K.H., Kim, S.I.: A new method for speeding up arithmetic on elliptic
curves over binary fields. Cryptology ePrint Archive, Report 2007/181 (2007),
http://eprint.iacr.org/

29. Birkner, P., Longa, P., Sica, F.: Four-Dimensional Gallant-Lambert-Vanstone
Scalar Multiplication. Cryptology ePrint Archive, Report 2011/608 (2011),
http://eprint.iacr.org/,
http://www.patricklonga.bravehost.com/speed_ecc.html#speed

30. Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT Benchmarking of Crypto-
graphic Systems (May 18, 2012), http://bench.cr.yp.to

31. Su, C., Fan, H.: Impact of Intel’s new instruction sets on software implementation
of GF(2)[x] multiplication. Inf. Process. Lett. 112(12), 497–502 (2012)

32. Hamburg, M.: Fast and compact elliptic-curve cryptography. Cryptology ePrint
Archive, Report 2012/309 (2012), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.patricklonga.bravehost.com/speed_ecc.html#speed
http://bench.cr.yp.to
http://eprint.iacr.org/

Zero-Knowledge for Multivariate Polynomials

Valérie Nachef1, Jacques Patarin2, and Emmanuel Volte1

1 Department of Mathematics, University of Cergy-Pontoise, CNRS UMR 8088
2 avenue Adolphe Chauvin, 95011 Cergy-Pontoise Cedex, France

2 PRISM, University of Versailles
45 avenue des Etats-Unis, 78035 Versailles Cedex, France
{valerie.nachef,emmanuel.volte}@u-cergy.fr,

jacques.patarin@prism.uvsq.fr

Abstract. In [15] a protocol ZK(2) using zero-knowledge argument of
knowledge was designed from a solution of a set of multivariate quadratic
equations over a finite field (i.e. from MQ problem). In this paper, we
propose a new scheme ZK(d) which is a generalization of ZK(2), i.e. we
consider systems of polynomials of degree d. The key idea of the scheme
ZK(d) is to use a polarization identity that allows to get a d-linear
function and then use a cut-and-choose technique. We also observe that
the scheme ˜ZK(d), which is the natural generalization of the protocol
based on the MQ problem to higher degree, is more efficient in terms of
computations whereas the ZK(d) scheme is better in terms of bits to be
sent. Moreover these properties are still true for all kinds of polynomials:
for example if the polynomials are sparse or dense. Finally, we will present
two examples of applications: with Brent equations, or with morphisms
of polynomials.

Keywords: Authentication scheme, Zero-Knowledge, Multivariate
polynomials.

1 Introduction

The first protocols using zero-knowledge arguments of knowledge were based on
the factorization problem, for example Fischer-Micali-Rackoff in 1984, or Fiat-
Shamir in 1986, or the Graph Isomorphism Problem. However the factorization
problem is not expected to be an NP complete problem (since it is in NP and
Co NP) and it has sub-exponential algorithms (such as NFS) and even polyno-
mial algorithms on quantum computers (Shor algorithm). Then, it was proved in
1991 by O. Goldreich, S. Micali and A. Widgerson that any problem of NP has a
zero-knowledge proof [6]. But the general construction (cf [6]) of zero-knowledge
proofs of knowledge from any problem of NP is usually not very efficient. This is
why various zero-knowledge proof of knowledge have been specifically designed
from some well suited and well chosen NP complete schemes based on simple
combinatorial problems expected to be exponentially difficult, such as PKP of
Adi Shamir [16], PP of David Pointcheval [13] or CLE [18] or SD [17] of Jacques
Stern for example. In [15] such a scheme was designed from the MQ problem,

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 194–213, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Zero-Knowledge for Multivariate Polynomials 195

i.e. the problem of finding a solution from a set of multivariate quadratic equa-
tions over a finite field. This MQ problem is related to various primitives in
cryptography [2,8,10,11], and is NP-complete over any finite field [4,12].

However, in some cases, it is really interesting to manipulate higher degree
systems. For example, when the systems are sparse, or when non random equa-
tions with high degree arise naturally like with Brent equations as we will see
in this paper. Moreover, the evolution of the algorithms that solve multivariate
polynomial equations (we will define this problem as the “MPol” problem) for
example with Gröbner basis might imply that we need in the future to make
different choices regarding the number of variables, the degree, the field or the
type of equation.

This problem was also studied independently of us, and recently in [14] the
author designs a public-key identification scheme based on multivariate cubic
polynomials. But his technique can not be generalized to multivariate polynomi-
als of degree d ≥ 4. For example in [14] p. 187 it is written: “An open problem.
Efficient constructions based on multivariate polynomials of degree ≥ 4 remains
as an open problem. However it might be difficult to construct them by using
techniques similar to those of [15] or of ours”.

In this paper, we will generalize the construction of [15] in order to design a
zero-knowledge argument of knowledge from a solution of any set of multivariate
polynomials of degree d over a finite field (i.e. not only d = 2 or d = 3). We
consider two schemes extending the results of [15] and [14]. First we define the
scheme called ZK(d), for which the key new idea is to use a polarization identity
that allows to consider any degree d. In [14] the author uses a linearization of
one of the variables. Our polarization technique is more general. Our second
scheme, called Z̃K(d), is the natural generalization of the protocol based on
the MQ problem to higher degree. This scheme is “quasi-optimal” in terms of
computations, i.e. the number of computations is just proportional to the time to
compute the polynomials on the given point. However this scheme was mentioned
independently of us in [14] and it was pointed out that it is not efficient (in terms
of bits to be sent).

For practical applications the case d = 3 (i.e. cubic equations) is particularly
important, since from these polynomials we will be able to design zero-knowledge
argument of knowledge based on the (NP-complete) Morphism problem (MP)
or from the Brent equations related to the optimal way to solve sets of linear
equations (i.e. improvements of the Gauss elimination). We will explain in this
paper why these two problems are really interesting for cryptography. We can
notice that MP (morphism of Polynomial) is NP hard while IP (isomorphism
of Polynomials) is expected not to be NP hard (since it has an Arthur-Merlin
game for yes or no answers).

2 Zero-Knowledge Arguments of Knowledge
and Commitments

In an interactive protocol, there are two entities: the prover and the verifier.
The prover wants to convince the verifier that she knows a secret. Both interact

196 V. Nachef, J. Patarin, and E. Volte

and at the end, the verifier accepts or refuses. In zero-knowledge argument of
knowledge, there is a possibility of fraud. A cheater will be able to answer some of
the questions (but not all of them). The zero-knowledge arguments of knowledge
must be designed such that an answer to one of the questions does not give any
indication on the secret but if someone is able to answer all the questions then
this will reveal the prover’s secret. Informally, the security requirements of a zero-
knowledge argument of knowledge are the following (for a more formal reference,
see [5]):

1. The zero-knowledge argument of knowledge has perfect correctness if a
legitimate prover is always accepted.

2. The zero-knowledge argument of knowledge is statistically zero knowl-
edge if there exists an efficient simulating algorithm U such that for every
feasible Verifier strategy V , the distributions produced by the simulator and
the proof protocol are statistically indistinguishable.

3. The zero-knowledge argument of knowledge has knowledge error α if there
is a knowledge extractor K and a polynomial Q such that if p denotes the
probability that K finds a valid witness for x using its access to a prover P ∗

and px denotes the probability that P ∗ convinces the honest verifier on x,
and px > α, then we have p ≥ Q(px−α). We emphasize that our scheme has
only computational soundness, i.e. the existence of the knowledge extractor
will be based on some computational assumption.

In our zero-knowledge arguments of knowledge, we will need string commitment
schemes. A string commitment function is denoted by Com. The commitment
scheme runs in two phases. In the first phase, the sender computes a commitment
value c = Com(s; ρ) and sends c to the receiver, where s is the committed string
and ρ is a random string. In the second phase, the sender gives (s, ρ) and the
receiver verifies if c = Com(s; ρ). We require the two security properties, statis-
tically hiding and computationally binding. Informally, the first property means
that, at the end of the first phase, no receiver can distinguish two commitments
values generated from two different strings even if the receiver is computation-
ally unbounded. The second property means that no polynomial-time sender
can change the committed string after the first phase. The formal definition and
a practical construction of such a commitment is given in [7]. We will assume
the existence of such a commitment scheme which can be constructed from a
collision resistant hash function [7].

3 Systems of Multivariate Equations of Degree d
and the Family of Functions MPol(d, n,m,Fq)

We denote by MPol(d) the problem of finding at least one solution for a system of
multivariate polynomials of degree d over finite field. Then we have MPol(2)=MQ
for the quadratic case and MPol(3)=MC for the cubic case. More generally, we
will denote simply by “MPol”, the problem of finding at least one solution for a
system of multivariate polynomials over finite fields. In “MPol” the degree d is

Zero-Knowledge for Multivariate Polynomials 197

not necessary a critical parameter, for example if there is only one monomial of
degree d.

We consider the following function of degree d from Fn
q to Fm

q :

F (x) = (f1(x), f2(x), . . . , fm(x))

where ∀�, 1 ≤ � ≤ m, and x = (x1, . . . , xn):

f�(x) =
∑

1≤i1≤...≤id≤n

γ�
i1...id

xi1xi2 . . . xid +
∑

1≤i1≤...≤id−1≤n

γ�
i1...id−1

xi1xi2 . . . xid−1

+ . . . +
∑

1≤i1≤i2≤n

γ�
i1i2xi1xi2 +

∑
1≤i1≤n

γ�
i1xi1 .

We omit the constant term since we are going to deal with a system of the form
F (v) = s.

We denote by MPol(d, n,m,Fq), the family of the functions F defined above.
For example, for quadratic polynomials, the family is denoted by MPol(2, n,
m,Fq). In [15], the authors used the notation MQ(n,m,Fq).

Let the function G defined from (Fn
q)d to Fm

q by:

G(r0, r1, . . . , rd−1) =

d∑
i=1

(−1)d−i
∑

S⊂{0,...,d−1}
|S|=i

F (
∑
j∈S

rj). (∗)

This polarization identity (∗) which gives the function G is the keystone of the
generalization to any degree d.

For example, when d = 3 we have: F (x) = (f1(x), f2(x), . . . , fm(x)) where
∀�, 1 ≤ � ≤ m and x = (x1, . . . , xn)

f�(x) =
∑

1≤i≤j≤k≤n

γ�
ijkxixjxk +

∑
1≤i≤j≤n

γ�
ijxixj +

∑
1≤i≤n

γ�
ixi.

And G is defined by:

G(x,y, z) = F (x+y+z)−F (x+y)−F (x+z)−F (y+z)+F (x)+F (y)+F (z).

If: G(x,y, z) = (g1(x,y, z), g2(x,y, z), . . . , gm(x,y, z))
where ∀�, 1 ≤ � ≤ m, x = (x1, . . . , xn) , y = (y1, . . . , yn) and z = (z1, . . . , zn)
then:

g�(x,y, z) =
∑

1≤i≤j≤k≤n

γ�
ijk(xiyjzk + xiykzj + xjyizk + xjykzi + xkyizj + xkyjzi).

It’s easy to check that g�(x+x′,y, z) = g�(x,y, z)+g�(x
′,y, z). We obtain that

G is trilinear. For any d we can prove that G is d-linear (see also [20]).
An intractability assumption for a random instance of MPol(d, n,m,Fq) is

defined as follows:

198 V. Nachef, J. Patarin, and E. Volte

Definition 1. For polynomially bounded functions n = n(λ), m = m(λ), and
q = q(λ), it is said thatMPol(d, n,m,Fq) is intractable if there is no polynomial-
time algorithm that take (F ,v) generated via R ∈RMPol(d, n,m,Fq), s ∈ Fn

q ,
and v ←− F (s) and finds a preimage s′ ∈ Fn

q such that F (s′) = v with non-
negligible probability ε(λ).

For F , a multivariate function of degree d, we define a binary relation RF =
{(v,x) ∈ Fm

q × Fn
q ; v = F (x)}. Given an instance F ∈ MPol(d, n,m,Fq) and a

vector v ∈ Fm
q the MPol(d) problem is finding s ∈ Fn

q such that F (s) = v, i.e.
s ∈ RF (v).

4 ZK(3) Schemes

Here we consider the MPol(3) problem which is denoted MC in [14].

4.1 Techniques for Our Constructions

Our constructions employ the cut-and-choose approach, where a prover first
divides her secret into shares and then proves the correctness of some shares
depending on the choice of a verifier without revealing the secret itself. The
shared secrets are the following: s = r0 +r1 +r2, r0 = t0 +t1, F (r0) = e0 +e1,
F (r0 + r1) = f0 + f1 and F (r0 + r2) = h0 + h1.

Since G is trilinear we have: G(r0, r1, r2) = G(t0, r1, r2) + G(t1, r1, r2).
Moreover:

G(r0, r1, r2) = F (s)−F (r0+r1)−F (r0+r2)−F (r1+r2)+F (r0)+F (r1)+F (r2)

= v − f0 − f1 − h0 − h1 − F (r1 + r2) + e0 + e1 + F (r1)+F (r2).

So the prover can express v = F (s) in terms of G(t0, r1, r2), G(t1, r1, r2),
t0, t1, e0, e1, f0, f1, h0, h1 and reveals it piece by piece so that r0, r1 and
r2 are never revealed together. We must care that if, for example, r1 and r2
are revealed together, we should reveal no information on F (r0 + r1) nor on
F (r0 + r2) since it could reveal something about r0.

The basic idea is that a prover proves that she has a tuple (r0, r1, r2, t0, t1, e0,
e1,f0,f1,h0,h1) satisfying the five equalities:

t0 = r0 − t1 (1)

e0 = F (r0)− e1 (2)

f0 = F (r0 + r1)− f1 (3)

h0 = F (r0 + r2)− h1 (4)

v −G(t1, r1, r2) + e1 − f1 − h1

−F (r1 + r2) + F (r1) + F (r2) = G(t0, r1, r2)− e0 + f0 + h0 (5)

Zero-Knowledge for Multivariate Polynomials 199

4.2 3-Pass Scheme

For simplicity, the random string in Com is not written explicitly. If X is a set,
x ∈R X means that x is randomly chosen in X with the uniform distribution.

1. The Prover picks up r0, r1, t0 ∈R Fn
q and e0,f0,h0 ∈R Fm

q . Then she
computes

r2 = s− r1 − r0, t1 = r0 − t0
e1 = F (r0)− e0, f1 = F (r0 + r1)− f0, h1 = F (r0 + r2)− h0

The Prover sends to the Verifier

c0 = Com(r1, r2,G(t0, r1, r2)− e0 + f0 + h0)
c1 = Com(r1, t0, e0,f0), c2 = Com(r1, t1, e1,f1)
c3 = Com(r2, t0, e0,h0), c4 = Com(r2, t1, e1,h1)

2. The verifier chooses a query Q ∈R {0, 1, 2, 3} and sends Q to the prover.
3. The figure 1 summarizes how the verifier deals with the commitments.

(a) If Q = 0 then the Prover sends (r0, r1, t1, e1,f1). The Verifier checks if
c1 = Com(r1, r0 − t1,F (r0) − e1,F (r0 + r1) − f1), c2 = Com(r1, t1,
e1,f1). Here we use (1), (2) and (3).

(b) If Q = 1 then the Prover sends (r0, r2, t1, e1,h1). The Verifier checks if
c3 = Com(r2, r0−t1,F (r0)−e1,F (r0+r2)−h1), c4 = Com(r2, t1, e1,
h1). Here we use (1), (2) and (4).

(c) If Q = 2 then the Prover sends (r1, r2, t1, e1,f1,h1). The Verifier checks
if c0 = Com(r1, r2,v−G(t1, r1, r2)+e1−f1−h1−F (r1+r2)+F (r1)+
F (r2)), c2 = Com(r1, t1, e1,f1), c4 = Com(r2, t1, e1,h1). Here we use
(5).

(d) If Q = 3 then the Prover sends (r1, r2, t0, e0,f0,h0). The Verifier checks
if c0 = Com(r1, r2,G(t0, r1, r2)−e0+f0+h0), c1 = Com(r1, t0, e0,f0),
c3 = Com(r2, t0, e0,h0).

The verifier outputs 1 if the she gets the correct value in the commitments, 0
otherwise.

4.3 Properties of the 3-Pass Scheme

It is easy to see that the verifier always accepts an interaction with the honest
prover. Thus the 3-pass scheme has perfect correctness.

Fig. 1. Check of the commitments

200 V. Nachef, J. Patarin, and E. Volte

Theorem 1. The 3-pass protocol is statistically zero knowledge when the com-
mitment scheme Com is statistically hiding.

Proof. We construct a black-box simulator S which have oracle access to a cheat-
ing verifier CV takes F and v, and outputs a simulated transcripts with proba-
bility 3/4 as follows. The simulator randomly chooses a value Q∗ ∈R {0, 1, 2, 3}
and vectors s′, r′

0, r
′
1, t

′
0 ∈R Fn

q and e′0,f ′
0,h

′
0 ∈R Fm

q , where Q∗ is a prediction
what value the cheating verifier CV will not choose. Then it computes

r′
2 = s′ − (r′

0 + r′
1), t′1 ← r′

0 − t′0, e
′
1 ← F (r′

0)− e′0.

Moreover it sets in order to simulate the transcripts:

1. If Q∗ = 0, f ′
1 = v − F (s′) + F (r′

0 + r′
1)− f ′

0, else f ′
1 = F (r′

0 + r′
1)− f ′

0.

2. If Q∗ = 1, h′
1 = v − F (s′) + F (r′

0 + r′
2)− f ′

0, else h′
1 = F (r′

0 + r′
2)− h′

0.

3. If Q∗ = 3, c′0 = Com(r′
1, r

′
2,v−G(t′1, r′

1, r
′
2)−f ′

1−h′
1 +e′1−F (r′

1 + r′
2) +

F (r′
1) + F (r′

2)), else c′0 = Com(r′
1, r

′
2,G(t′0, r′

1, r
′
2)− f ′

0 − h0 + e′0)

It also computes:

c′1 = Com(r′
1, t

′
0, e

′
0,f

′
0), c′2 = Com(r′

1, t
′
1, e

′
1,f

′
1)

c′3 = Com(r′
2, t

′
0, e

′
0,h

′
0), c′4 = Com(r′

2, t
′
1, e

′
1,h

′
1)

and sends (c′0, c
′
1, c

′
2, c

′
3, c

′
4) to CV.

Receiving a query Q from CV the simulator outputs ⊥ if Q = Q∗ and stops.
If S does not output ⊥, it produces a transcript as follows:

– If Q = 0, it outputs ((c′0, c
′
1, c

′
2, c

′
3, c

′
4), 0, (r′

0, r
′
1, t

′
1, e

′
1,f

′
1))

– If Q = 1, it outputs ((c′0, c
′
1, c

′
2, c

′
3, c

′
4), 1, (r′

0, r
′
2, t

′
1, e

′
1,h

′
1))

– If Q = 2, it outputs ((c′0, c
′
1, c

′
2, c

′
3, c

′
4), 2, (r′

1, r
′
2, t

′
1, e

′
1,f

′
1,h

′
1))

– If Q = 3, it outputs ((c′0, c
′
1, c

′
2, c

′
3, c

′
4), 3, (r′

1, r
′
2, t

′
0, e

′
0,f

′
0,h

′
0))

We can check that if S does not output ⊥, the transcript is accepted. For exam-
ple, we consider the case where Q∗ = 0 and Q = 2. The output is ((c′0, c

′
1, c

′
2, c

′
3,

c′4), 2, (r′
1, r

′
2, t

′
1, e

′
1,f

′
1,h

′
1)). Thus, we have the right values for c′2 and c′4. Now,

c′0 is computed as follows: c′0 = Com(r′
1, r

′
2,v −G(t′1, r′

1, r
′
2) + e′1 − f ′

1 − h′
1 −

F (r′
1 + r′

2) + F (r′
1) + F (r′

2)). Here f ′
1 = v − F (s′) + F (r′

0 + r′
1) − f ′

0. Thus
we obtain c′0 = Com(r′

1, r
′
2,G(t′0, r′

1, r
′
2) − f ′

0 − h0 + e′0) and the transcript is
accepted. The other cases are checked similarly.

The distribution of the output S is statistically close to the distribution of a
real transcript since the commitment is statistically hiding and the values are
randomly chosen in Fn

q or in Fm
q . The details can be found in the extended ver-

sion of the paper. �

Theorem 2. The 3-pass protocol is proof of zero knowledge with zero knowledge
error 3/4 when the commitment scheme Com is computationally binding.

Zero-Knowledge for Multivariate Polynomials 201

Proof. Suppose that there exists a false prover C that can answer all the ques-
tions. Then either C will compute a collision for Com or will extract a solution for
(F ,v). Let ((c0, c1, c2, c3, c4),Q0, Rsp0), ((c0, c1, c2, c3, c4),Q1, Rsp1), ((c0, c1,
c2, c3, c4),Q2, Rsp2), ((c0, c1, c2, c3, c4),Q3, Rsp3), be four transcripts such that
Qi = i and all the responses are accepted. Consider the situation where the re-

sponses are parsed as Rsp0 = (r
(0)
0 , r

(0)
1 , t

(0)
1 , e

(0)
1 ,f

(0)
1), Rsp1 = (r

(1)
0 , r

(1)
2 , t

(1)
1 ,

e
(1)
1 ,h

(1)
1), Rsp2 = (r

(2)
1 , r

(2)
2 , t

(2)
1 , e

(2)
1 ,f

(2)
1 ,h

(2)
1), Rsp3 = (r

(3)
1 , r

(3)
2 , t0, e0,f0,

h0).
We obtain:

c0 = Com(r
(2)
1 , r

(2)
2 , v −G(t

(2)
1 , r

(2)
1 , r

(2)
2)− f

(2)
1 − h

(2)
1 + e

(2)
1

−F (r
(2)
1 + r

(0)
2) + F (r

(2)
1) + F (r

(2)
2))

= Com(r
(3)
1 , r

(3)
2 , G(t0, r

(3)
1 , r

(3)
2) + f0 + h0 − e0) (a)

c1 = Com(r
(0)
1 , r

(0)
0 − t

(0)
1 , F (r

(0)
0)− e

(0)
1 , F (r

(0)
0 + r

(0)
1)− f

(0)
1)

= Com(r
(3)
1 , t0, e0, f0) (b)

c2 = Com(r
(0)
1 , t

(0)
1 , e

(0)
1 ,f

(0)
1) = Com(r

(2)
1 , t

(2)
1 , e

(2)
1 ,f

(2)
1) (c)

c3 = Com(r
(1)
2 , r

(1)
0 − t

(1)
1 , F (r

(1)
0)− e

(1)
1 , F (r

(1)
0 + r

(1)
2)− h

(1)
1)

= Com(r
(3)
2 , t0, e0, h0) (d)

c4 = Com(r
(1)
2 , t

(1)
1 , e

(1)
1 ,h

(1)
1) = Com(r

(2)
2 , t

(2)
1 , e

(2)
1 ,h

(2)
1) (e)

If two tuples of the arguments of Com are are distinct on either of the above
equations, then we have a collision for Com. Otherwise, these equalities give:

h
(1)
1

(e)
= h

(2)
1 , r

(0)
1

(b)
= r

(3)
1

(a)
= r

(2)
1 , t

(0)
1

(c)
= t

(1)
1

(e)
= t

(2)
1 , r

(0)
0

(c,d)
= r

(1)
0

and r
(2)
2

(a)
= r

(3)
2

(d)
= r

(1)
2 , e

(2)
1

(c)
= e

(0)
1

(b,d)
= e

(1)
1 ,f

(0)
1

(c)
= f

(2)
1 .

So, all upper scripts are useless and from (a) we have:

v = G(t1+t0, r1, r2)+f1+h1−e1+F (r1+r2)−F (r1)−F (r2)+f0+h0−e0.

Then, from (b) and (d) we have r0 = t0 + t1, F (r0) = e0 + e1, F (r0 + r1) =
f0 + f1 and F (r0 + r2) = h0 +h1, so if we replace these values in the previous
equality, we obtain: v = G(r0, r1, r2) + F (r0 + r1) + F (r0 + r2) + F (r1 +
r2) − F (r0) − F (r1) − F (r2) = F (r0 + r1 + r2). This means that a solution
r0 + r1 + r2 for v is extracted. �

4.4 Computations in the 3-Pass Scheme

We give the maximum number of computations that have to be done either by
the prover or by the receiver in the case of F2. We must calculate the number
of computations for F and for G. Moreover we see that F is computed at most

202 V. Nachef, J. Patarin, and E. Volte

3 times and G is computed just one time. We only count multiplications. In F2,
we have: x3

i = x2
i = xi. We can write:

f�(x) =

n∑
i=1

xi

[
γ�
i + γ�

ii + γ�
iii +

n∑
j=i+1

xj

(
γ�
ij + γ�

ijj +

n∑
k=j+1

γ�
ijkxk

)]
Let M denotes the number of multiplications needed to compute F . Using the

above expression for F , we obtain M � n3

6 m. We want to set the parame-
ters in order to have 80-bit security. Since even for a quadratic system with
84 variables and 80 equations over F2 satisfies 80-bits security [15], we will use
MPol(3, 84, 80,F2). In the following table, we give the characteristics of the
scheme ZK(3) and the values that we obtain when we choose n = 84, m = 80,
in order to have 80-bit security (cf. [2]). Moreover, if we want an impersonation
probability less than 2−30, we need to perform at least 73 rounds. R stands for the
number of rounds and C for the maximum number of computations that have to
be done either by the prover or by the receiver. Moreover, we will use a standard
trick for saving communication data size. We employ a collision resistant hash
function H . Let cα = H(c1, c2), cβ = H(c3, c4) and c = H(c0, cα, cβ). In the first
pass, the sender send the value c, instead of five commitments (c0, c1, c2, c3, c4).
In the third pass, she will proceed as follows:

– If Q = 0, the pair (c0, cβ) is appended to the prover’s responses.
– If Q = 1, the pair (c0, cα) is appended to the prover’s responses.
– If Q = 2, the pair (c1, c3) is appended to the prover’s responses.

– If Q = 3, the pair (c2, c4) is appended to the prover’s responses.

Finally she checks if c = H(c0, cα, cβ). She can obtain the needed values from
the prover’s responses in each case. As a result, the number of hash values sent
is reduced from 5 to 3. This modified version of the 3-pass protocol has the same
properties. Table 1 summarizes the features of ZK(3).

Table 1. ZK(3) Scheme

Formulas Parameters for 280 security

Public key (Number of bits) m 80

Secret key (Number of bits) n 84

M n3

6
×m 7902720

Communication (bit) (3× 160 + 2 + 3n + 3m)×R 71102

Number of multiplications C=9MR 233

Remarks. We may need less computations. It depends on the number of non
zero coefficients. This is the case for Brent equations as explain in Section 8.

It is also possible to design a 5-pass scheme. This in done in the extended
version of this paper.

Zero-Knowledge for Multivariate Polynomials 203

5 ZK(d) Scheme for any d

5.1 The ZK(d) Scheme

We will design a 3-pass scheme.
We consider the following function of degree d from Fn

q to Fm
q :

F (x) = (f1(x), f2(x), . . . , fm(x))

where ∀�, 1 ≤ � ≤ m,

f�(x) =
∑

1≤ii≤...≤id≤n

γ�
i1...id

xi1xi2 . . . xid+

∑
1≤ii≤...≤id−1≤n

γ�
i1...id−1

xi1xi2 . . . xid−1
+ . . .+

∑
1≤ii≤i2≤n

γ�
i1i2xi1xi2 +

∑
1≤ii≤n

γ�
i1xi1

and x = (x1, . . . , xn). We omit the constant term. Let

G(r0, r1, . . . , rd−1) =

d∑
i=1

(−1)d−i
∑

S⊂{0,...,d−1}
|S|=i

F (
∑
j∈S

rj).

The public key is (F ,v). The secret is s such that F (s) = v.

1. The Prover picks up at random r0, r1, . . . , rd−2, t0 ∈R Fn
q , f0 ∈R Fm

q , and

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d − 1, f
i1...ip
0 ∈R Fm

q .
Then she computes

rd−1 = s−
∑d−2

i=1 ri
t1 = r0 − t0
f1 = F (r0)− f0

and
∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1

f
i1...ip
1 = F (r0 + ri1 + . . . + rip)− f

i1...ip
0 .

Then the Prover sends to the Verifier

c0 ← Com
(
r1, . . . , rd−1,

G(t0, r1, . . . , rd−1) +
d−2∑
p=1

(−1)d−p
∑

1≤i1<...<ip≤d−1

f
i1...ip
0 + (−1)df0

)
and she sends also ∀i, 1 ≤ i ≤ d− 1:

c2i−1 ← Com
(
r1, . . . , ri−1, ri+1, . . . , rd−1, t0,f0,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

204 V. Nachef, J. Patarin, and E. Volte

such that ∀j, ij �= i, f
i1...ip
0

)
c2i ← Com

(
r1, . . . , ri−1, ri+1, . . . , rd−1, t1,f1,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j ij �= i, f
i1...ip
1

)
.

The verifier chooses a query Q ∈R {0, 1, . . . , d} and sends Q to the prover.
2. (a) If Q = 0, then the Prover sends (r1, r2, . . . , rd−1, t0,f0,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1, f
i1...ip
0).

The Verifier checks if

c0 = Com
(
r1, . . . , rd−1,G(t0, r1, . . . , rd−1) +

d−2∑
p=1

(−1)d−p

∑
1≤i1<...<ip≤d−1

f
i1...ip
0 + (−1)df0

)
and ∀i, 1 ≤ i ≤ d− 1,

c2i−1 = Com
(
r1, . . . , ri−1, ri+1, . . . , rd−1, t0,f0,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij �= i, f
i1...ip
0

)
.

(b) If Q = d, then the Prover sends (r1, r2, . . . , rd−1, t1,f1,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1, f
i1...ip
1).

∀i, 1 ≤ i ≤ d− 1,
The Verifier checks if

c0 = Com
(
r1, . . . , rd−1,v −G(t1, r1, . . . , rd−1)

−
d−2∑
p=1

(−1)d−p
∑

1≤i1<...<ip≤d−1

f
i1...ip
1 −

(−1)df1 +
d∑

i=1

(−1)d−i
∑

S⊂{1,...,d−1}
|S|=i

F (
∑
j∈S

rj)
)

and ∀i, 1 ≤ i ≤ d− 1,

c2i = Com
(
r1, . . . , ri−1, ri+1, . . . , rd−1, t1,f1,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij �= i, f
i1...ip
1

)
.

Zero-Knowledge for Multivariate Polynomials 205

(c) if Q = i, then the prover sends (r0, r1, . . . , ri−1, ri+1, . . . , rd−1, t1,f1,
∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij �= i, f
i1...ip
1)

The Verifier checks if

c2i−1 = Com
(
r1, . . . , ri−1, ri+1, . . . , rd−1, r0 − t1,F (r0)− f1,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij �= i, F (r0 + ri1 + . . . + rip)− f
i1...ip
1

)
and

c2i = Com
(
r1, . . . , ri−1, ri+1, . . . , rd−1, t1,f1,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij �= i, f
i1...ip
1

)
.

We now give the properties of the ZK(d) Scheme. The proof are detailed in the
extended version of this paper.

Theorem 3. The 3-pass protocol is statistically zero knowledge when the com-
mitment scheme Com is statistically hiding.

Theorem 4. The 3-pass protocol is proof of zero knowledge with knowledge error
d

d+1 when the commitment scheme Com is computationally binding.

We provide the features of this scheme in table 2. The trick used to compute the
number of communication bits for ZK(3) can be generalized to ZK(d).

Remark. As for the case d = 3, it is possible to design a 5-pass scheme.

6 The Z̃K(d) Scheme

In this section, we propose another scheme inspired from [15] and also mentioned
in [14]. The idea is to transform the system of degree d into a quadratic one and
the to use the scheme given in [15]. As we will see, the number of computations
is smaller, but the number of communication bits is more important.

First, we investigate the transformation of a system with cubic equations to
a system with quadratic equations. We will introduce new variables. Once we
have obtained a system of equations with quadratic polynomials, we can apply
the identification scheme of [15]. We will calculate the number of multiplications
in this case. In our system, we have F (x) = (f1(x), f2(x), . . . , fm(x)) where
∀�, 1 ≤ � ≤ m,

f�(x) =
∑

1≤i≤j≤k≤n

γ�
ijkxixjxk +

∑
1≤i≤j≤n

γ�
ijxixj +

∑
1≤i≤n

γ�
ixi

206 V. Nachef, J. Patarin, and E. Volte

Table 2. ZK(d) scheme

ZK(d) scheme

Public key (Number of bits) m

Secret key (Number of bits) n

M
nd

d!
×m

Rounds R = � 30 ln(2)

ln(1+1/d)
�

Number of

Communication (160d + � ln d
2
�+ 2d−1 − 1) ·R

(bits)

Multiplications C = 9(2d−1 − 1 + d!)MR

and x = (x1, . . . , xn). We introduce the new variables ∀i, j, 1 ≤ i ≤ j ≤ n, Xij =

xixj . The number of new variables is n(n−1)
2 , if q = 2, and n(n+1)

2 , if q �= 2. In
our new system, we have

F̃ = (f̃1, . . . , f̃m, (f̃ij)1≤i≤j≤n)

where for x̃ = (x1, . . . , xn, (Xij)1≤i≤j≤n) and 1 ≤ � ≤ m,

f�(x̃) =
∑

1≤i≤j≤k≤n

γ�
ijkXijxk +

∑
1≤i≤j≤n

γ�
ijXij +

∑
1≤i≤n

γ�
ixi

and for 1 ≤ i ≤ j ≤ n, fij(x̃) = Xij − xixj . Here the number of variables

is ñ � n + n2

2 and the number of equations is m̃ = m + n2

2 . As before, M

denotes the number of multiplications needed to compute F . M̃ denotes the
number of multiplications for the computation of F̃ . We choose q = 2. Then

M̃ = M + n(n−1)
2 . Thus M̃ � M � n3

6 m. C̃ stands for the maximum number
of computations that have to be done either by the prover or by the receiver. If
R̃ denotes the number of rounds performed in order to have an impersonation
probability less than 2−30, then R̃ = 52 (cf. [15]).

More generally, for d ≥ 4, we introduce new variables and new equations
in order to get a system of quadratic equations. Again there are two functions
F and F̃ . If M (resp. M̃) denotes the number of computations for F (resp.

F̃), then M � nd/d! and M̃ � nd

d! + n� d
2 �/�d2�! � M . For ZK(d), there are n

variables and m equations. For ˜ZK(d), there are ñ � n + n� d
2 �/�d2�! variables

and m̃ � m + n� d
2 �/�d2�! equations. The following table gives the characteristics

of the ˜ZK(d) scheme and the values we get when n = 84 and m = 80.

7 Relations between the Number of Computations
and the Number of Coefficients

In the previous computations, we considered the MPol(d) problem since we sup-
posed that we have the maximum number of coefficients. Then we obtained that

Zero-Knowledge for Multivariate Polynomials 207

Table 3. ˜ZK(d) scheme

˜ZK(3) ˜ZK(d) Z̃K(3)

Formulas 2−80 security

Public key (bit) m̃ � m + n� d
2
�/� d

2
�! 3483

Secret key (bit) n 84

M n3

6
×m

nd

d!
×m 7902720

Rounds R̃ = 52

Communication 2× 160 + 2 + 2ñ + m̃ 322 + 2n + m + 3n� d
2
�/� d

2
�! 560508

(bits) ×R̃ ×R̃
Multiplications C̃ = 3M̃R̃ 231

in both cases, M � M̃ � nd

d! . Then the total number of multiplications is a

function of M or M̃ and the number of rounds. For sparse systems, M or M̃ will
be smaller but we will still have the same relations between C, M and R (and
similarly C̃, M̃ and R̃). Here again, we can see that there are more variables and
more communications bits in the ˜ZK(d) schemes and more computations in the
ZK(d) schemes. This is related to the “MPol” problem.

More precisely with the ZK(d) scheme, we have:

f�(x1, x2, . . . , xn) =
∑

(i1,...,id)∈S�
d

γ�
i1...id

xi1xi2 . . . xid+
∑

ii,...,id−1∈S�
d−1

γ�
i1...id−1

xi1xi2 . . . xid−1

+ . . . +
∑

ii,i2∈S�
2

γ�
i1i2xi1xi2 +

∑
ii∈S�

2

γ�
i1xi1

where each S�
u is a subset of {1, 2, . . . , n}u.

The number of multiplications for f� is given by

d|S�
d|+ (d− 1)|S�

d−1|+ (d− 2)|S�
d−2|+ . . . + 2|S�

2|+ |S�
1|

and for F the number M of multiplications is

M =

m∑
�=1

[
d|S�

d|+ (d− 1)|S�
d−1|+ (d− 2)|S�

d−2|+ . . . + 2|S�
2|+ |S�

1|
]
.

Moreover, F is computed at most 2d−1 − 1 times during the process. For gl

we have
(
d!(d − 1) + 1

)
|S�

d| multiplications and for G,

m∑
�=1

(
d!(d − 1) + 1

)
|S�

d|

multiplications and G is computed one time. Finally, for one round, the number
of multiplications is given by(m∑

�=1

[(
d(2d−1 − 1) + d!(d− 1) + 1

)
|S�

d|+ (d− 1)|S�
d−1|+ (d− 2)|S�

d−2|+ . . .+

208 V. Nachef, J. Patarin, and E. Volte

2|S�
2|+ |S�

1|
])

(�)

and then we have to multiply by the number of rounds R to get C.
For the Z̃K(d) scheme, we have M̃ = M + n� d

2 �/�d2�!.
Then C̃ = 3M̃R̃.

8 An Application of ZK(3) and ˜ZK(3) to Brent
Equations

8.1 Brent Equations

These equations arise when we want to compute efficiently the product of two
N × N matrices in only s multiplications of entries. Of course, we require s to
be less that N3, since the naive method uses N3 multiplications. For N = 2,
Strassen’s algorithm [19] requires 7 multiplications instead of 8 multiplications
and Laderman showed that for N = 3, it is possible to use 23 multiplications
instead of 33 = 27 [9]. For N = 2, the least number we can obtain is seven. For
N = 3, it is not known if 23 is the least number in the non-commutative case.
For the commutative case, only 22 multiplications are needed. However we still
do not know if it is the least. But the non-commutative case is more important
since it allows to consider the product of matrices whose entries are themselves
matrices and not only scalars. So the same technique can be generalized for
larger matrices.

For sake of completeness, we recall how we get Brent equations (cf [1]). Sup-
pose that we want to compute the product of the two matrices A = (Aij) 1≤i≤N

1≤j≤N

and B = (Bij) 1≤i≤N
1≤j≤N

. We set C = AB with C = (Cij) 1≤i≤N
1≤j≤N

. We want to com-

pute AB using only s multiplications. We will use the following method. We
have to find coefficient (αabk), (βcdk), (γijk), with 1 ≤ k ≤ s and a, b, c, d, i, j ∈
{1, 2, . . . , n}. These coefficients do not depend on the choice of the matrices. Now
for 1 ≤ k ≤ s, we set Lk =

∑
a,b αabkAab, Rk =

∑
cd βcdkBcd and Pk = LkRk.

Then we have Cij =
∑s

k=1 γijkPk. Since matrix multiplication is a bilinear map
and the space of matrices is a linear space, we can apply the process to each
element of the basis and we are led to the so-called “Brent equations”:

s∑
k=1

γijkαabkβcdk = δbcδiaδjd where a, b, c, d, i, j ∈ {1, 2, . . . , n}. This is a sys-

tem of cubic equations and with the previous notations, we have: n = 3sN2 and
m = N6. It is still unknown if it is possible to multiply 3× 3 matrices with less
than 23 multiplications. The best known algorithms so far for solving the Brent
equations for the 3 × 3 matrix multiplication require more than 280 computa-
tions. Generally the work done consists in looking for solutions in a restricted
area (with more symmetries for example), or to try some algorithms such as
SAT Solver for some time (as Nicolas Courtois proposed in [3]).

Zero-Knowledge for Multivariate Polynomials 209

8.2 A Zero-Knowledge Arguments of Knowledge Based on Brent
Equations

The idea is to be as close as we can of the Brent equations in order to have in-
formal arguments to show that if somebody is able to break our authentication
scheme, then there is “probably a high probability” that he will able to break
the Brent equations as well. Thus we will not use exactly Brent equations to
construct a zero-knowledge arguments of knowledge. In order to be very near
the Brent equations, but with a solution, we have essentially made 2 changes:

a) We consider the equations mod 2. This is justified in the sense that if a solu-
tion of the Brent equation would be found mod 2, it would some insight about
the real solution and allow us to progress in finding a solution (it would cut the
problem in easier independent steps).
b) We changed only the constant terms in the Brent equations, i.e. all the mul-
tivariate polynomials are exactly the same, except the constant terms. Then, we
have generated some random input in the equations, so our constant terms will
look random. Of course, we cannot exclude the possibility that somebody may
found one day an algorithm that would be able to solve the Brent equations with
its very specific constant terms, and not with random constant terms. However,
with all the known algorithms on multivariate polynomials this seems to be at
present rather unlikely since the complexity of these known algorithms do not
really depend of the specific constant terms (as soon as they are not all 0 for
example). More precisely, we proceed as follows:

1. We consider the finite field F2.
2. We take the left part of the Brent equations with s = 22 in order obtain an

open problem in the non-commutative case.

3. We pick randomly variables α,β,γ in F2
N2s.

4. We deduce the values
∑s

k=1 γijkαabkβcdk where a, b, c, d, i, j ∈ {1, 2, . . . , n}.
This gives the value v ∈ F2

M .
5. We then use either ZK(3) (or ˜ZK(3)) to have a zero-knowledge arguments

of knowledge with the system F (α,β,γ) = v. Here α = (αabk), 1 ≤ k ≤
s, a, b ∈ {1, 2, . . . , n}, β = (βcdk), 1 ≤ k ≤ s, c, d ∈ {1, 2, . . . , n} and
γ = (γijk), 1 ≤ k ≤ s, i, j ∈ {1, 2, . . . , n}. The system is sparse and
F ∈MC(n,m,F2) where n = 794 and m = 729.

8.3 More Comments about Brent Equations

Solving Brent equation would be a real progress for the scientific community, and
would accelerate many algorithms. Therefore we think that it is really interesting
to have a security based on them or as near as possible of them. The problem is
mathematically and for computer science interesting and valuable. Similarly, it is
interesting to have a security based on factorization for example instead of based
on a new an unknown problem, since this problem has been studied for years.
Indeed, a devastating progress in factoring (as for Brent) would be scientifically
interesting, i.e. it would not be just sad news for the crypto-systems, but also
good news for the scientific community.

210 V. Nachef, J. Patarin, and E. Volte

9 Morphisms of Polynomials and Systems of Cubic
Equations

9.1 The IP and MP Problems

We explain the IP and MP problem in the case of quadratic forms. Let u and n
two integers. On Fq, we consider a public set (A) of public quadratic equations:

(A) ck =
∑

1≤i≤n, 1≤j≤n

γk
ijaiaj +

n∑
i=1

μk
i ai + δk, 1 ≤ k ≤ u.

Let S be a bijective affine transformation of the variables ai, 1 ≤ i ≤ n and
T be a bijective affine transformation of the variables ck, 1 ≤ k ≤ u. We have
S(a1, . . . , an) = (x1, . . . , xn) and T (c1, . . . , cu) = (z1, . . . , zu). Then from (A),
we obtain another set (B) of u equations:

(B) zt =
∑

1≤i≤n, 1≤j≤n

αt
ijxixj +

n∑
i=1

βt
ixi + ωt, 1 ≤ t ≤ u.

We say that (S, T) is an isomorphism from (A) to (B) and that (A) and (B) are
isomorphic.

The IP (isomorphism of polynomials) problem is the following: if (A) and (B)
are two public sets of u quadratic equations, find an isomorphism (S, T) from
(A) to (B).

When S and T are not bijective the corresponding problem is the MP (mor-
phism of polynomials) problem.

The IP problem (Isomorphism of Polynomials) has been used to construct
pubic key schemes (cf [11]). On one hand, this is not a NP-complete problem
since it admits an Arthur-Merlin game when the answer is yes and when the
answer is no. On the other hand, the MP problem (morphisms of polynomials)
where matrices are not supposed to be invertible is proved to be NP-complete
[4,12] and thus is much more difficult. So it is interesting to design a public key
authentication scheme based on MP. We explain briefly below how it is possible
to construct such a scheme by transforming MP very efficiently into a system of
equations of degree 3 and then applying our ZK(3) or ˜ZK(3) protocols.

9.2 A Zero-Knowledge Arguments of Knowledge Based on the MP
Problem

We consider the two following systems:

(A) ck =
∑

1≤i≤n, 1≤j≤n

γk
ijaiaj +

n∑
i=1

μk
i ai, 1 ≤ k ≤ u

(B) zt =
∑

1≤i≤p, 1≤j≤p

αt
ijxixj +

p∑
i=1

βt
ixi, 1 ≤ t ≤ v

Zero-Knowledge for Multivariate Polynomials 211

We want to find 2 matrices M = (mrs) 1≤r≤v
1≤s≤u

and H = (hdf) 1≤d≤n
1≤f≤p

such that

M

⎛⎜⎝ c1
...
cu

⎞⎟⎠ =

⎛⎜⎝ z1
...
zv

⎞⎟⎠ and H

⎛⎜⎝x1

...
xp

⎞⎟⎠ =

⎛⎜⎝ a1
...
an

⎞⎟⎠ .

For all t, 1 ≤ t ≤ v, on one hand, we have: zt =

u∑
s=1

mts

(∑
1≤i≤n
1≤j≤n

γs
ijaiaj+

n∑
i=1

μs
iai

)

zt =
u∑

s=1

mts

(∑
1≤i≤n
1≤j≤n

γs
ij

(p∑
f=1

hifxf

)(p∑
b=1

hjbxb

)
+

n∑
i=1

μs
i

(p∑
f=1

hifxf

))

zt =

p∑
f=1

p∑
b=1

[u∑
s=1

∑
1≤i≤n
1≤j≤n

γs
ijmtshifhjb

]
xfxb +

p∑
f=1

[u∑
s=1

n∑
i=1

μs
imtshif

]
xf . On the

other hand, we have: zt =
∑

1≤i≤p
1≤j≤p

αt
ijxixj +

p∑
i=1

βt
ixi. This gives ∀t 1 ≤ t ≤

v, ∀f, 1 ≤ f ≤ p, ∀b, 1 ≤ b ≤ p, αt
fb + βt

f =

u∑
s=1

∑
1≤i≤n
1≤j≤n

γs
ijmtshifhjb +

u∑
s=1

n∑
i=1

μs
imtshif . Thus we obtain a system of vp2 cubic equations with np + vu

unknowns. Then it is possible to construct zero-knowledge arguments of knowl-
edge with ZK(3), (or ˜ZK(3)).

10 Conclusion

In [15], a very efficient zero-knowledge proof based on the MQ problem (multi-
variate quadratic polynomials) is given. In this paper we proved that this con-
struction can be generalized to polynomials of degree d for any d ≥ 3 (unlike
in [14] where a construction valid only for d = 3 was given) . We studied sev-
eral constructions and we presented here the two most efficient ones denoted by
ZK(d) and ˜ZK(d). ZK(d) is more efficient in terms of number of communica-
tion bits, and K̃Z(d) in terms of computations. In table 4, we can compare our
schemes for d = 3 from the recent scheme [14]. It is interesting to notice that if
the polynomials are sparse, our schemes will be able to use this fact in order to
be more efficient (for ˜ZK(d) for example, the numbers of computations is still
proportional to the time to compute the polynomial on a given point). Finally,
we also presented two important specific problems (Brent equations and mor-
phisms of polynomials) that can be transformed into efficient public key schemes
using ZK(d) and ˜ZK(d).

212 V. Nachef, J. Patarin, and E. Volte

Table 4. Comparison of schemes on 80-bit security against key-recovery attack when
the impersonation probability is less than 2−30

MC ZK(3) Z̃K(3)

round 73 73 52

communication (bit) 53,290 74,022 560,000

arithmetic operations (times/field) 232/F2 233/F2 231/F2

generalization for d ≥ 4 NO YES YES

References

1. Bard, G.V.: New Practical Strassen-like Approximate Matrix-multiplication Algo-
rithms found via solving a system of cubic equations,
http://www.users.math.umd.edu/~bardg/

2. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A Practical Stream Cipher with
Provable Security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 109–128. Springer, Heidelberg (2006)

3. Courtois, N., Bard, G.V., Hulme, D.: A new general-purpose method to multiply
3x3 matrices using only 23 multiplications. CoRR, abs/1108.2830 (2011)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completness. W.H. Freeman and Co. (1979)

5. Goldreich, O.: Foundations of Cryptography: Volume I. Basic Tools. Cambridge
University Press, Cambridge (2001)

6. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in np have zero-knowledge proof systems. J. ACM 38, 690–728
(1991)

7. Halevi, S., Micali, S.: Practical and Provably-Secure Commitment Schemes from
Collision-Free Hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
201–215. Springer, Heidelberg (1996)

8. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes.
In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1492, pp. 206–222.
Springer, Heidelberg (1998)

9. Laderman, J.: A noncomuutative algorithm for multiplying 3 x3 matrices using 23
multiplication. Bulletin of the American Mathematical Society 82, 126–128 (1976)

10. Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Efficient
Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EURO-
CRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

11. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EU-
ROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

12. Patarin, J., Goubin, L.: Trapdoor One-Way Permutations and Multivariate Poly-
nomials. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 356–368.
Springer, Heidelberg (1997)

13. Pointcheval, D.: A New Identification Scheme Based on the Perceptrons Problem.
In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp.
319–328. Springer, Heidelberg (1995)

14. Sakumoto, K.: Public-Key Identification Schemes Based on Multivariate Cubic
Polynomials. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 172–189. Springer, Heidelberg (2012)

http://www.users.math.umd.edu/~bardg/

Zero-Knowledge for Multivariate Polynomials 213

15. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-Key Identification Schemes Based on
Multivariate Quadratic Polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 706–723. Springer, Heidelberg (2011)

16. Shamir, A.: An Efficient Identification Scheme Based on Permuted Kernels (Ex-
tended Abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
606–609. Springer, Heidelberg (1990)

17. Stern, J.: A New Identification Scheme Based on Syndrome Decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

18. Stern, J.: Designing Identification Schemes with Keys of Short Size. In: Desmedt,
Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 164–173. Springer, Heidelberg
(1994)

19. Strassen, V.: Gaussion Elimination is not optimal. Numerische Mathematik 13(3),
354–356 (1969)

20. Thomas, E.G.F.: A Polarizatin Identity for Multilinear Maps. University of Gronin-
gen - Preprint (1997)

Improved Exponentiation and Key Agreement

in the Infrastructure of a Real Quadratic Field

Vanessa Dixon�, Michael J. Jacobson Jr.��, and Renate Scheidler

Department of Computer Science, University of Calgary
2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
vanessa.dixon@gmail.com, {jacobs,rscheidl}@ucalgary.ca

Abstract. We describe improvements to the performance of a key agree-
ment protocol based in the infrastructure of a real quadratic field through
investigating fast methods for exponentiating ideals. We present adap-
tations of non-adjacent form and signed base-3 exponentiation and com-
pare these to the binary method. To adapt these methods, we introduce
new algorithms for squaring, cubing, and dividing w-near (f, p) represen-
tations of ideals in the infrastructure. Numerical results from an imple-
mentation of the key agreement protocol using our new algorithms and
all three exponentiation methods are presented, demonstrating that non-
adjacent form exponentiation improves the speed of key establishment
for most of the currently recommended security levels.

Keywords: real quadratic field, infrastructure, (f, p) representation,
non-adjacent form exponentiation, signed base-3 exponentiation, cryp-
tographic key agreement.

1 Introduction

In 1988, Buchmann and Williams [3] presented a key establishment protocol
analogous to that of Diffie-Hellman [6], but performed in the class group of an
imaginary quadratic field. Interestingly, the security of this key agreement is
related to computing the class number of the field, which is known to be at
least as hard as integer factorization [15, p. 360]. The following year, Buchmann
and Williams proposed a method for performing an analogous key agreement
protocol in the infrastructure of the principal class of a real quadratic field [4],
an abelian group-like structure that was discovered by Shanks in 1972 [18]. This
contribution was noteworthy because it represented the first such protocol for
which the underlying structure is not a group. Furthermore, the security of
this protocol is believed to be independent of the hardness assumptions used in
other public-key systems, such as the difficulty of extracting discrete logarithms
on algebraic curves or in finite fields. Thus, although such systems are known
to sucumb to quantum algorithms, they are nevertheless a viable alternative

� The results in this paper are from the first author’s M.Sc. thesis.
�� The second and third authors are supported in part by NSERC of Canada.

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 214–233, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Improved Exponentiation and Key Agreement in the Infrastructure 215

to other widely used public-key cryptosystems that can be used in the event
that efficient classical algorithms are found for discrete logarithm computation
or integer factorization.

The infrastructure is comprised of the set of reduced principal ideals in the
maximal order of a real quadratic field, each paired with an approximation of a
floating-point distance that keeps track of the ideal’s position in the infrastruc-
ture. The challenge is to maintain sufficient accuracy throughout the key estab-
lishment protocol to make sure that both parties obtain a shared key ideal at
the end. One method for handling this problem is to use a concept called w-near
(f, p) representations. These were introduced in [15], based on ideas originally
presented in [13].

In this paper, we consider three methods for exponentiation of w-near (f, p)
representations: binary exponentiation (BINEXP), non-adjacent form exponen-
tiation (NAFEXP), and a signed base-3 exponentiation (SB3EXP). The first
of these was previously investigated in [15], while the other two are new. The
non-adjacent form of an integer is sparser than its binary form, so NAFEXP re-
quires fewer multiplication/division steps than BINEXP on average. The base-3
representation of an integer is shorter than its binary form, so SB3EXP requires
fewer cubings than BINEXP requires squarings. Hence, if cubing and division
have similar time requirements to squaring and multiplying, we would expected
that these algorithms improve the speed at which exponentiation can be done.

A major ingredient of all our exponentiation techniques is the efficient mul-
tiplication method for w-near (f, p) representations given as Algorithm 11.3
on pp. 275-276 of [15]. Algorithms for squaring, cubing, and division of (f, p)-
representations are also required for NAFEXP and SB3EXP and are newly in-
troduced herein. A comparative precision analysis is provided for each of these
new algorithms and for key agreement using each of our three exponentiation
methods. All relevant algorithms were implemented in C using the GNU Multi-
precision Arithmetic Library, and test trials were run to examine their efficiency.
Our timing results show that NAFEXP mostly outperforms BINEXP, whereas
SB3EXP does not.

2 Infrastructure of a Real Quadratic Field

For a general introduction to real quadratic fields and their infrastructure, the
reader is referred to [15]. Throughout this paper, we fix a positive square-free
integer D > 1, and set r = 2 if D ≡ 1 (mod 4), r = 1 otherwise. The field
and 2-dimensional Q-vector space K = Q ⊕ Q

√
D is a real quadratic field . Its

discriminant is Δ = 4D/r2, and its maximal order is the subring and rank 2
Z-module O = Z⊕ Zω, where ω = (r − 1 +

√
D)/r.

2.1 Ideals and Infrastructure

An O-ideal (or ideal for short) is an additive subgroup of O that is closed under
multiplication by elements in O. An O-ideal a is principal if it consists of all the

216 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

O-multiples of some element α ∈ O, called a generator of a; we write a = (α).
It will at times be useful to consider fractional principal ideals a = (α) with
α ∈ K, which are no longer subsets of O, but (d)a ⊆ O for some d ∈ Z. Two
non-zero O-ideals a and b are equivalent is there exists a non-zero θ ∈ K with
b = (θ)a. Note that the non-zero principal O-ideals are exactly the O-ideals that
are equivalent to O.

The non-zero O-ideals are exactly the rank 2 Z-submodules of O of the form
a = ZSQ/r ⊕ ZS(P +

√
D)/r with S,Q, P ∈ Z, S,Q > 0, r dividing Q and

rQ dividing D−P 2. Here, S and Q are unique and P is unique modulo Q. The
norm of a is the positive integer N(a) = S2Q. An O-ideal a is primitive if S = 1,
in which case we simply write a = (Q,P). The conjugate of a primitive ideal
a = (Q,P) is the primitive ideal a = (Q,−P); note that aa = (N(a)) = (Q).

A primitive ideal a = (Q,P) is reduced if P can be taken modulo Q so that
0 <

√
D − P < Q <

√
D + P . This forces 0 < P <

√
D and 0 < Q < 2

√
D, so

P and Q are bounded. Consequently, the number of reduced O-ideals is finite.
The infrastructure of K is the set R of all reduced principal O-ideals. Each

infrastructure ideal a is associated with its unique distance δ(a) = logα ∈ R≥0,
where α ∈ O is the smallest generator of a that is at least 1. The infrastructure
is thus a finite set that is ordered by distance, where the first ideal is O and
has distance 0. Baby steps move cyclically through the infrastructure, obtaining
from any infrastructure ideal a the next infrastructure ideal ρ(a) in the distance
ordering, along with the relative distance δ(ρ(a))− δ(a) ∈ R>0.

The product ab of two reduced principal ideals a, b is generally a non-reduced
(and even non-primitive) principal O-ideal; more exactly, ab = (S)c with S ∈ Z+

and c a primitive O-ideal. Reduction applies the same arithmetic as the baby
step operation to c, producing a reduced ideal equivalent to ab. Suppose a and b
are infrastructure ideals, and let r = (θ)ab ∈ R, with θ ∈ K, be the first reduced
ideal thus obtained. Then the operation that computes r and θ from a and b is a
giant step. Instead of using multiplication with subsequent reduction, giant steps
can be performed more efficiently using the NUCOMP algorithm first proposed
by Shanks [19]. The distance “error” log θ = δ(r) − δ(a)− δ(b) ∈ R is generally
very small compared to the distances of a and b. It follows that under the giant
step operation, the infrastructure behaves almost like a finite abelian group,
where the identity is O and the “inverse” operation is conjugation; associativity
fails, but only barely since the distance is nearly additive under giant steps.

2.2 (f, p) Representations

When performing infrastructure arithmetic, one needs to keep track of the rel-
ative distances of ideals which are real numbers. These are approximated using
w-near (f, p) representations of ideals, a concept first introduced in [13] and
subsequently developed in [14].

Definition 1. [15, Definition 11.1, p. 267 and Section 11.2, p. 270] Let p ∈
Z+, f ∈ R≥1 and a an O-ideal. An (f, p) representation of a is a triple of
parameters (b, d, k) where

Improved Exponentiation and Key Agreement in the Infrastructure 217

1. b is an O-ideal equivalent to a, d ∈ Z+ with 2p < d ≤ 2p+1, k ∈ Z, and
2. there exists θ ∈ K such that b = (θ)a with |2p−kθ/d− 1| < f/2p.

The (f, p) representation (b, d, k) is reduced if b is a reduced O-ideal, and is
w-near if in addition

3. k < w and
4. if ρ(b) = (φ)b, then there exist k′, d′ ∈ Z with k′ ≥ w and 2p < d′ ≤ 2p+1

such that |2p−k′
θφ/d′ − 1| < f/2p.

The intuition behind (f, p)-representations is that d2k−p is an approximation of
the (generally unknown) relative generator θ of b with respect to the (generally
unknown) ideal a with an accuracy of f2−p. In this respect, p can be regarded as
the precision of the approximation which will be fixed throughout our computa-
tions, and f as a measure of the error which will increase with each computation
(error propagation). Also, since 2p < d ≤ 2p+1 and d2k−p ≈ θ, k represents a
rough approximation of the relative distance log θ from b to a.

Property 4 of Definition 1 implies that if (b, d, k) is a w-near (f, p) represen-
tation of a, then (ρ(b), d′, k′) is a reduced (but not necessarily w-near) (f, p)
representation of a. In this case, the bounds in Lemma 11.3, p. 270, of [15]
imply that qualitatively, θ and k are approximated by 2w and w, respectively.
Moreover, if (c, g, h) is another w-near (f, p) representation of a, then by [15,
Theorem 11.4, p. 271], b ∈ {ρ−2(c), ρ−1(c), c, ρ(c), ρ2(c)}. Hence, any two w-
near (f, p) representations of the same ideal are within a few baby steps of one
another. When exponentiation of w-near (f, p) representations is used in crypto-
graphic key agreement, the preservation of the w-near property throughout the
exponentiation algorithm will thus guarantee that the keys computed by Alice
and Bob will be close to each other in the infrastructure. Experimentally it has
been verified that if f is much less than 2p, it is most often the case that b = c
(see also [15, Theorem 11.5, p. 272]).

Using w-near (f, p) representations also leads to computational improvements
when performing infrastructure arithmetic. Each giant step r = (θ)ab performed
on infrastructure ideals a and b produces a distance error log θ which is gener-
ally negative. Qualitatively, this means that a small distance shortfall of log θ is
introduced in each giant step. By calculating the average distance lost due to
reduction following ideal multiplication, the number of operations required to ac-
count for this lost distance can be decreased. One purpose of using w-near (f, p)
representations is to counter this “head wind”: the approximations of the dis-
tances of a and b after a giant step are adjusted (increased) so that the distance
lost during the giant step is added back, thereby reducing the computational
overhead required when exponentiation and key agreement are performed.

We now provide a summary of known and new results on basic arithmetic in-
volving (f, p) representations. Our first theorem gives parameters for the product
of two such representations.

Theorem 1. [15, Theorem 11.2, p. 268] Let (b′, d′, k′) be an (f ′, p) representa-
tion of an O-ideal a′ and (b′′, d′′, k′′) an (f ′′, p) representation of an O-ideal a′′.

218 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

If d′d′′ ≤ 22p+1, put e = �d′d′′/2p� and h = k′ + k′′, else put e = �d′d′′/2p+1�
and h = k′ + k′′ + 1. Then (b′b′′, e, h) is an (f, p) representation of a′a′′ where
f = f ′ + f ′′ + 2−pf ′f ′′ + 1.

Given an (f, p) representation of some ideal, we can compute a w-near (f +
9/8, p) representation of the same ideal using an algorithm called WNEAR. The
complete algorithm can be found in [15, Algorithm 11.2, pp. 454-456].

Multiplication of two w-near representations, obtaining a w-near representa-
tion of the product, is achieved using the WMULT algorithm [15, Algorithm 11.3,
pp. 275-276]. WMULT first computes the ideal product followed by some reduc-
tion steps along with the necessary parameters for a reduced representation of
that product. This increases the f -value of Theorem 1 by 9/8; see [15, Algorithm
11.1, p. 269]. Now the w-near property is re-established for the resulting repre-
sentation of the product using WNEAR, which increases the f -value by another
9/8. Hence, given (f ′, p) and (f ′′, p) representations (b′, d′, k′) and (b′′, d′′, k′′)
of a′ and a′′, respectively, WMULT computes a w-near (f, p) representation of
a′a′′, where f = f ′ + f ′′ + 2−pf ′f ′′ + 13/4. For the complete algorithm, see [15,
Algorithm 11.3, pp. 275-276].

Squaring is the special case of multiplication applied to two identical inputs
and requires a′ = a′′, b′ = b′′, d′ = d′′ and k′ = k′′ in Theorem 1. The corre-
sponding algorithm, WDUPL, is presented in the Appendix as Algorithm A.3.
It contains simplifications over the general WMULT algorithm which achieve
some computational improvements when performing exponentiation on (f, p)
representations.

3 Cubing and Division with (f, p) Representations

An integer expressed in terms of a larger base has fewer terms compared to a
smaller base, thus requiring fewer steps when used as an exponent in exponen-
tiation. For example, it might be desirable to represent the exponent in base-3.
This type of exponentiation in turn requires a cubing method for (f, p) repre-
sentations and, in case signed digits are allowed, a division technique for (f, p)
representations.

An algorithm for cubing ideals can be found in [11, Algorithm 4, p. 16].
This technique outputs an ideal that is at most two steps away from being
reduced. The following theorem gives the parameters of an (f, p) representation
((b′)3, e, h) of (a′)3, given an (f ′, p) representation of a′. This result is attributed
to A. Silvester; a proof will appear in his doctoral dissertation [20].

Theorem 2. Let (b′, d′, k′) be an (f ′, p) representation of an O-ideal a′. If
(d′)3 ≤ 23p+1, put e = �(d′)3/22p� and h = 3k′. If 23p+1 < (d′)3 ≤ 23p+2,
put e = �d′3/22p+1� and h = 3k + 1. If (d′)3 > 23p+2, put e = �(d′)3/22p+2�
and h = 3k′ + 2. Then ((b′)3, e, h) is an (f, p) representation of (a′)3, where
f = 3f ′ + 2−p3(f ′)2 + 2−2p(f ′)3 + 1.

Obtaining a w-near representation of a cube proceeds analogous to multiplication
or squaring: first compute the ideal cube, then apply reduction and compute the

Improved Exponentiation and Key Agreement in the Infrastructure 219

parameters of the corresponding reduced representation, then restore the w-near
property and again compute the parameters of the resulting w-near represen-
tation. The overall algorithm, called WCUBE, is presented as Algorithm A.4
in the Appendix. Note that some minor mistakes from [11, Algorithm 4, p. 16]
have been corrected.1 As before, given an (f ′, p) representation (b′, d′, k′) of
an O-ideal a′, WCUBE computes a w-near (f, p) representation of (a′)3, where
f = 3f ′ + 2−p3(f ′)2 + 2−2p(f ′)3 + 13/4.

In order to implement exponentiation using signed digits such as NAF or
signed base-3 exponentiation, we require a division algorithm for (f, p) repre-
sentations. First, we give a brief overview of how ideal division is accomplished.
Let b′ = (θ′)a′ and b′′ = (θ′′)a′′ with O-ideals a′, a′′, b′, b′′ and relative gen-
erators θ′, θ′′ ∈ K. Then b′b′′(θ′′)a′′ = b′b′′b′′ = b′(N(b′′)) = (θ′)a′(N(b′′)).
Suppose that a′′ divides a′, i.e. there exists an O-ideal c such that a′ = ca′′.
For example, in our context, we will always have a′ = (a′′)n for some n ∈ Z+.
Then b′b′′ = (θ′N(b′′)/θ′′)c. Thus, when “dividing” an (f ′, p) representation
(b′, d′, k′) of a′ by an (f ′′, p) representation (b′′, d′′, k′′) of a′′, the resulting (f, p)
representation should approximate the new relative generator θ = θ′N(b′′)/θ′′

of b′b′′ with respect to c. The following theorem provides the exact parameters.
Its proof is rather long and detailed, so for the sake of brevity, we only state the
result here; the complete proof can be found in [7, Theorem 3.6.2].

Theorem 3. [7, Theorem 3.6.2, p. 51] Let (b′, d′, k′) be an (f ′, p) representation
of an O-ideal a′ and (b′′, d′′, k′′) an (f ′′, p) representation of an O-ideal a′′ divid-
ing a′, with a′ = ca′′ for some O-ideal c. Define κ ∈ Z via 2κ < N(b′′) ≤ 2κ+1 and
d∗ = d′N(b′′)/(2κd′′). If 1/2 < d∗ ≤ 1, put e = �2p+1d∗� and h = k′−k′′+κ−1.
If 1 < d∗ ≤ 2, put e = �2pd∗� and h = k′−k′′+κ. If 2 < d∗ < 4, put e = �2p−1d∗�
and h = k′ − k′′ + κ + 1. Then (b′b′′, e, h) is an (f, p) representation of c where
f = f ′ + f ′′/(1− f ′′/2p) + f ′f ′′/(2p − f ′′) + 1.

WDIV performs division on w-near representations, followed by WNEAR. It
takes as input a w-near (f ′, p) representation (b′, d′, k′) of a′ and a w-near (f ′′, p)
representation (b′′, d′′, k′′) of a′′ where a′′ divides a′, and computes a w-near (f, p)
representation of the quotient ideal, with f = f ′ + f ′′/(1− f ′′/2p) + f ′f ′′/(2p−
f ′′) + 13/4. It is presented in the Appendix as Algorithm A.5.

4 Non-adjacent Form and Signed Base-3 Exponentiation

To explore how to improve the performance of key agreement in the infra-
structure of a real quadratic field, we examine various exponentiation algorithms
and adapt them to the setting of w-near (f, p) representations. The well known
method of binary exponentiation (BINEXP) was already presented in [15]; it is

1 The algorithm as presented in [11] computes N = Q′/S, L = NQ′/r2, K = R0v1(2+
v1(v1(Q0/r)(R0/r)(2P0)/r)) (mod L) on line 3 and M2 = (Ri(P

′ + P ′′) + R′S)/L
on line 19. The corrections herein are attributed to M. Jacobson, A. Silvester, and
V. Dixon.

220 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

given for the sake of completeness as Algorithm A.6 in the Appendix. Here, we
investigate non-adjacent form exponentiation (NAFEXP) and a signed base-3
exponentiation method (SB3EXP) for w-near (f, p) representations.

The non-adjacent form (NAF) of an integer is the signed base-2 representation
for which no two adjacent digits are both non-zero. Given a positive integer n,
the non-adjacent form of n is n =

∑�N
i=0 ni2

�N−i where n0 = 1, ni ∈ {−1, 0, 1},
and nini−1 = 0 for 1 ≤ i ≤ �N . The NAF of an integer can be computed using
for example [10, Algorithm 3.30, p. 98].

The NAF has several useful properties that make it amenable for exponentia-
tion; see [10, Theorem 3.29, p. 98] for example. The average number of required
operations decreases from (3/2) logn to (4/3) logn as compared to BINEXP.
However, because the binary digits are signed, both multiplication and division
steps are required. If our division algorithm WDIV is approximately as fast as
the multiplication algorithm WMULT, then we expect an improvement.

The algorithm NAFEXP, using non-adjacent form to exponentiate w-near
(f, p) representations of O-ideals, is given in the Appendix as Algorithm A.7.
It is an adaptation of [10, Algorithm 3.31, p. 99], a binary NAF method for
point multiplication on elliptic curves, adapted to work in the infrastructure of
a real quadratic field. Theorem 3.29 of [10] implies that, compared to BINEXP,
NAFEXP requires at most one more squaring, but reduces the average number
of multiplications from �B/2 to �N/3 ≤ (�B +1)/3 multiplications and divisions;
here �B + 1 is the binary length.

In order to use NAFEXP for key establishment, we must determine bounds
on the error estimate f in the final w-near (f, p) representation of an ideal an.
The proof is again long and very technical, so we only quote the final result. It
establishes an upper bound ai, given recursively in terms of ai−1, on the value
f = fi after the i-th step of the exponentiation. Solving the recurrence for ai
provides an upper bound a�N on the final value f = f�N . The complete proof
can be found in [7, Section 4.2.1].

Theorem 4. [7, Theorem 4.2.4, p. 73] Let p ≥ 8, n ≥ 2, h ≥ max{16, log2 n}
and f0 < 2p−4. Put m = 3.54f0 + 10.72. If hmn < 2p, then after NAFEXP
has executed on input an (f0, p) representation and an exponent n, the resulting
(f, p) representation satisfies f < mn, and hence f < 2p/h ≤ 2p−4.

Both the binary form and the non-adjacent form of an integer are base-2 rep-
resentations. A base-3 representation could be advantageous because it has a
shorter length. However, cubing an (f, p) representation is a more costly opera-
tion than squaring. This led us to investigate if using a signed base-3 exponen-
tiation would provide advantages over the binary method of exponentiation.

The signed base-3 representation of an integer n is n =
∑�S

i=0 ni3
�S−i, where

n0 = 1 and ni ∈ {−1, 0, 1} for 1 ≤ i ≤ �S. This representation can be computed
by repeatedly dividing by 3 and choosing the remainders in {−1, 0, 1}. The
premier advantage of this representation is its shorter length compared to the
NAF or binary representation, namely �S ≤ log3 n + 1 = log2 n/ log2 3 + 1.
However, unlike NAF, it is not generally true that no two adjacent digits are
non-zero. Since every digit in the signed base-3 representation can be either 0, 1

Improved Exponentiation and Key Agreement in the Infrastructure 221

or −1 with an expected uniform distribution, the average density of non-zero bits
is 2/3. So the number of multiplication and division operations is on average

2�S/3 ≤ (2 log3 n + 1)/3 = (2 log2 n)/(3 log2 3) + 1/3 ≈ 0.42 log2 n + 0.33.

The average number of operations for SB3EXP is thus less than that required
for BINEXP, but greater than that required for NAFEXP.

SB3EXP employs a signed base-3 representation of the exponent in a cube and
multiply/divide method for exponentiating w-near (f, p) representations, using
the algorithms WCUBE, WMULT and WDIV from the previous two sections.
The algorithm is given in the Appendix as Algorithm A.8. The precision analysis
and proof proceed analogously to that of NAFEXP. Again, we only quote the
final result; the complete proof can be found in [7, Section 4.3.1].

Theorem 5. [7, Theorem 4.3.3, p. 84] Let p ≥ 8, n ≥ 2, h ≥ max{16, log2 n}
and f0 < 2p−4. Put m = 13.7f0 + 41.3. If hmn < 2p, then after SB3EXP
has executed on input an (f0, p) representation and an exponent n, the resulting
w-near (f, p) representation satisfies f < mn, and hence f < 2p/h ≤ 2p−4.

5 Key Agreement Protocols

NAFEXP and SB3EXP can be used in a Diffie-Hellman type key agreement
protocol in which two parties, Alice and Bob, establish a shared secret crypto-
graphic key suitable for use in a block cipher such as AES. The protocol is based
on the key agreement procedure presented by Buchmann and Williams [4]. Alice
and Bob agree on a real quadratic field K, an ideal g in the infrastructure of K,
and an exponent bound B. Informally, the protocol proceeds as follows.

Protocol 6. (Infrastructure cryptographic key agreement [15, p. 365])

1. Alice secretly generates a random integer a with 0 < a < B. She computes
an infrastructure ideal a = (θa)ga with θa ≈ 1 and sends a to Bob.
Bob secretly generates a random integer b with 0 < b < B. He computes an
infrastructure ideal b = (θb)g

b with θb ≈ 1 and sends b to Alice.
2. Alice computes ka = (θα)ba, where θα ≈ 1.

Bob computes kb = (θβ)ab, where θβ ≈ 1.

Clearly, ka and kb are both equivalent to gab. Ensuring that the relative gener-
ators in each step are close to 1 guarantees that ka = (α)gab and kb = (β)gab

where α, β ≈ 1. By tracking the relative generators with enough precision, it
is possible to ensure that ka = kb. However, if the precision requirements are
relaxed, then the computation speed and memory requirements of the protocol
may be improved. In this case, the key ideal ka computed by Alice may not be
the same as Bob’s key ideal kb, but will instead be within a few baby steps of kb,
resulting in a small set of possible key ideals. The ambiguity arising from this
can be resolved by encrypting and decrypting a message [15, p. 369].

222 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

Approximating the relative generators can be accomplished using w-near
(f, p) representations. We adapt the key agreement protocol from [15, Pro-
tocol 14.1, pp. 368-369] to use the exponentiation algorithms NAFEXP and
SB3EXP from the previous section. In this protocol, Alice and Bob agree on
a discriminant Δ, a w-near (f, p) representation (g0, d0, k0) of some reduced
principal ideal in the infrastructure of Q(

√
Δ), an exponent bound B and a pre-

cision value p which depends on the exponentiation algorithm used and must be
chosen large enough so that Alice’s and Bob’s keys are close to each other in
the infrastructure (see Theorem 8 below). As described in [7, p. 88], the value
w = �(logΔ)/4� is selected in order to minimize the number of required adjust-
ment steps in the infrastructure. We also use the fact that by [15, Lemma 14.2,
p. 367], if (b, d, k) is a w-near (f, p) representation of some O-ideal and r < p,
then (b, d′, k) is a w-near (f + 2r, p) representation of the same O-ideal with
d′ = 2r�2−rd�. This means that d-values can be truncated by r bits at the
expense of an error increase of 2r. In the protocol, EXP is one of BINEXP,
NAFEXP or SB3EXP, and r = �log2 B�.
Protocol 7. (Key agreement using (f, p) representations)

1. Alice secretly generates a random integer a with 0 < a < B, computes
(a, da, ka) = EXP((g0, d0, k0), a, w, p), and sends (a, �2−rda�, ka) to Bob.
Bob secretly generates a random integer b with 0 < b < B, computes
(b, db, kb) = EXP((g0, d0, k0), b, w, p), and sends (b, �2−rdb�, kb) to Alice.

2. Alice computes (k, d, k) = EXP((a, 2r�2−rda�, ka), b, w, p).
Bob computes (m, e, h) = EXP((b, 2r�2−rdb�, kb), a, w, p).

If all parameters are chosen appropriately, then we generally expect that k = m,
which is the shared key ideal. In general, by Theorem 8 below, k is within two
baby steps of m in either direction, and a common key ideal can be established
through a test encryption/decryption as mentioned above.

The security of Protocol 7 rests on the assumption that the principal ideal
problem is hard. Given an O-ideal a, the principal ideal problem is to determine
whether a is principal and, if so, compute an approximation of logα where
a = (α); see [15, Definition 13.21, p. 331]. Using an algorithm described in [15,
Section 13.5, pp. 331-333], it has been established [15, Theorem 13.24, p. 332]
that assuming the Generalized Riemann Hypothesis and the Extended Riemann
Hypothesis, the principal ideal problem in a real quadratic field of discriminant
Δ ≥ 42 can be solved in expected time

LΔ[1/2,
√

2 + o(1)] = exp
(
(
√

2 + o(1))(log |Δ|)1/2(log log |Δ|)1/2
)
.

6 Error Analysis for Key Agreement

In order for Protocol 7 to be successful, the precision p must be sufficiently
high to ensure that Alice and Bob’s keys are within two baby steps (backwards
or forwards) of each other. For BINEXP, this was analyzed in [15], while the
corresponding results for NAFEXP and SB3EXP are new. The proofs are very
technical and are thus omitted herein.

Improved Exponentiation and Key Agreement in the Infrastructure 223

Theorem 8. Let p,B ∈ Z+ with B ≥ 14 and set r = �log2 B�. Let a, b,∈ Z with
0 < a, b < B, and let (g0, d0, k0) be a �(logΔ)/4�-near (17/8, p) representation
of a reduced principal ideal g. Set

C =

⎧⎪⎨⎪⎩
66 if EXP = BINEXP,

68 if EXP = NAFEXP,

982 if EXP = SB3EXP.

If 2p ≥ CB2 max{16, log2 B}, then (k, d, k) and (m, e, h) as given in round 2
of Protocol 7 are w-near (f, p) representations of gab with f < 2p−4. Hence
k ∈ {ρ−2(m), ρ−1(m),m, ρ(m), ρ2(m)}.

Proof. For BINEXP, see [15, Theorem 14.3, p. 367, and Theorem 14.4, p. 368].
For NAFEXP, see [7, Theorems 5.3.1, p. 93, and Theorem 5.3.2, p. 94]. Finally,
for SB3EXP, see [7, Theorem 5.4.1, p. 96, and Theorem 5.4.2, p. 97].

Theorem 8 can be used directly for key agreement: Alice and Bob simply use
a precision value p such that p ≥ log2(CB2 max{16, log2 B}) where C is the
appropriate value as specified in the theorem. Note that the above bounds on p
imply that NAFEXP requires at most one more bit of precision than BINEXP,
and SB3EXP at most 15 bits more, to guarantee the result of Theorem 8.

7 Numerical Results

The algorithms BINEXP, NAFEXP and SB3EXP were implemented in C on a
Dell Power Edge R910 server provided by the Department of Mathematics and
Statistics at the University of Calgary. This server has 64 logical CPUs Intel(R)
Xeon(R) CPU X7550 @ 2.00GHz with 128G RAM. The operating system is
Red Hat Enterprise Linux Server 5.6. The GNU Multiple Precision Arithmetic
Library (GMP) [8] was used for integer arithmetic.

We used discriminants with the bit lengths recommended in [2], which provide
the same level of security as block ciphers with 112, 128, 192, and 256 bit keys as
recommended by NIST [1]. We also used the exponent bound B = 22k where k
is the number of bits in the corresponding block cipher (112, 128, 192, 256) [15,
pp. 372-373]. This bound ensures that an attack on the protocol using a baby-
step giant-step method would take time approximately 2k, which is roughly the
same time required to solve the principal ideal problem (which is believed to be
hard) using index calculus [15, p. 372]. The values of p and w were computed as
described in the previous section. The parameters used in Protocol 7 that were
not trial dependent are listed in Table 1.

The choice of the discriminant Δ of K is important for cryptographic security.
Heuristically, to ensure that the infrastructure has a cardinality of order

√
Δ,

the best choices are prime discriminants Δ ≡ 1 (mod 4); see the discussion on
p. 371 of [15]. Hence, for each trial, we generated a random probable prime
value Δ = D ≡ 1 (mod 4) using random number generating and probable prime
finding algorithms in GMP.

224 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

Table 1. Parameters for the trials. The values of pB , pN , pS correspond to the precision
values of BINEXP, NAFEXP, and SB3EXP, respectively.

log2 B log2 Δ w pB pN pS

224 1341 335 462 462 446
256 1818 454 527 527 530
384 3586 896 783 783 787
512 5957 1489 1040 1040 1043

For better performance, the partial GCD steps (lines 7-12 of WDUPL and
lines 11-16 of WCUBE) were implemented using Lehmer’s algorithm [16,17];
this is not reflected in the pseudocode as it appears in the Appendix .

The entries in Table 2 are the result of 10 000 trials for each discriminant
size. We used a w-near (17/8, p) representation of ρ5(O), obtained by running
WNEAR on input the reduced (1, p) representation (ρ5(O), 2p + 1, 0) of ρ5(O),
as the input ideal in each trial. Two exponents a, b < B were also generated
randomly for each trial. The time required to perform Protocol 7 (double expo-
nentiation) was recorded, and we took the average over all trials. Columns 3, 4
and 6 record these times using BINEXP, NAFEXP and SB3EXP, respectively.
Columns 5 and 7 show the percentage difference between the new methods (NAF-
EXP and SB3EXP) and BINEXP, computed using the formula 100%·(tB−t)/tB
where tB is the average CPU time from column 3 of Table 2 and t is the aver-
age CPU time from column 4 for NAFEXP or column 6 for SB3EXP from the
same table. We see that NAFEXP is initially faster than BINEXP on average,
as is SB3EXP for the smallest discriminant bit length, but as the size of the dis-
criminant grows, the computational advantage diminishes. We conjecture that,
especially in the SB3EXP case, this may be due to the relative costs of WDIV
and WCUBE with respect to WMULT and WDUPL; further investigation is re-
quired to determine this and reduce any observed discrepancies. Another factor
may be that the binary expansion does not require pre-computation or storage,
whereas the NAF and SB3EXP must be pre-computed. Using a “right-to-left”
variant of NAF may alleviate this problem.

Table 2. Average CPU times (in seconds) per key agreement per partner with Lehmer’s
partial GCD algorithm for 1000 trials

log2 B log2 Δ BINEXP NAFEXP % diff SB3EXP % diff

224 1341 0.122770 0.109070 11.2 0.119250 2.9
256 1818 0.193320 0.169720 7.8 0.197480 -2.2
384 3586 0.712660 0.674110 5.4 0.823520 -15.6
512 5957 1.932860 2.029010 -5.0 2.593800 -32.4

Improved Exponentiation and Key Agreement in the Infrastructure 225

It is of interest to find out how often Alice and Bob might not compute the
same key ideal using the methods described above. For 10 000 trials using a 1341-
bit discriminant, no mismatches were found for the ideals computed with any of
the three exponentiation methods. The number of mismatches for BINEXP was
found to decrease with discriminant size in previous work [15, Table 14.1, p. 369].

We also wished to determine whether the precision bounds established in our
analysis herein were tight. Using 200 trials, we determined for each exponen-
tiation method the minimum precision value for which all of the 200 trial key
agreements were successful (i.e. established ideals that were within ±2 baby steps
of each other). We found that BINEXP required 15-16 fewer bits of precision
than the theoretical lower bound. For NAFEXP we could use 14-17 fewer bits
of precision, and for SB3EXP, 17-19 fewer bits of precision were sufficient. The
precision results of these trials are listed in [7, Table 5.9]. The 200 precision
tests were timed in order to determine if an improved precision analysis could
change our efficiency results. We found that the timings with the reduced pre-
cision followed the same trends as those of Table 2, and that the performance
improvement was negligible. These results are listed in [7, Table 5.10].

8 Conclusions

We investigated methods for exponentiation in the infrastructure of a real qua-
dratic field that were used in a key agreement protocol. We found that using the
non-adjacent form exponentiation method for w-near (f, p) representations im-
proved the computing time for most discriminant sizes tested and, according to
our analysis, typically did not increase the precision requirements compared to
the corresponding binary exponentiation method. However, it remains an open
problem to determine why NAFEXP slows in comparison to BINEXP as the dis-
criminant size increases. Our preliminary investigation of this behavior showed
that the time devoted to computing the non-adjacent form of the exponents
did not fully account for why NAFEXP slowed down in comparison to BIN-
EXP. Similar further work is required for SB3EXP. It remains to be determined
whether this observed slowing is a result of the implementation of the methods
or if it is a property of the methods themselves.

There are exponentiation methods that improve on NAFEXP. One could em-
ploy a sliding window NAF method [10, Algorithm 3.38, p. 101] which uses
pre-computations to decrease the number of operations in the actual algorithm.
An adaptation of a double-base method such as the ternary/binary method de-
scribed in [5] would also be of interest as this could limit the use of the cubing
steps compared to SB3EXP while still reducing the overall number of operations
compared to BINEXP. To use these methods, an investigation of the precision
requirements would be needed.

Further optimization of our algorithms and their implementations is possible.
For example, the NUCOMP and WNEAR methods could be combined in such
a way so that NUCOMP passes certain values to WNEAR, thereby reducing
computation effort. Our precision analysis assumed a worst case scenario, so the

226 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

required precision is not tight in practice. It is also worthwhile to investigate
whether w = (log Δ)/4 is the best choice of w for SB3EXP; if this choice of w is
not optimal, then the performance of our ternary algorithm could be improved.

Recent results from hyperelliptic curve cryptography, particularly those from
[12], employ scalar multiplication methods in which a large number of giant steps
is replaced by a series of (much faster) baby steps. These could potentially be
adapted to the real quadratic field infrastructure setting.

Section 7 established that using NAFEXP improved the efficiency of infras-
tructure based key agreement compared to using BINEXP, which is not the
case, for example, in the original Diffie-Hellman protocol [6]. Improvements of
this kind are important for practical use. It is essential to have a varied set
of cryptographic protocols for key agreement due to the constant pressure of
technology and advancement of cryptographic attacks. The methods developed
herein could also be used to develop a signature scheme similar to that of Guillou
and Quisquater [9], which would expand the breadth of cryptographic protocols
available for use.

References

1. Barker, E., Barker, W., Polk, W., Smid, M.: Recommendation for key management
- part 1: General (revised). NIST Special Publication 800-57, National Institute of
Standards and Technology (NIST) (March 2007),
http://csrc.nist.gov/groups/ST/toolkit/documents/

SP800-57Part1 3-8-07.pdf

2. Biasse, J.-F., Jacobson Jr., M.J., Silvester, A.K.: Security Estimates for Quadratic
Field Based Cryptosystems. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS,
vol. 6168, pp. 233–247. Springer, Heidelberg (2010),
http://dl.acm.org/citation.cfm?id=1926211.1926229

3. Buchmann, J., Williams, H.C.: A key-exchange system based on imaginary
quadratic fields. Journal of Cryptology 1, 107–118 (1988)

4. Buchmann, J., Williams, H.C.: A Key Exchange System Based on Real Quadratic
Fields. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 335–343.
Springer, Heidelberg (1990),
http://dl.acm.org/citation.cfm?id=646754.705067

5. Ciet, M., Joye, M., Lauter, K., Montgomery, P.: Trading inversions for multiplica-
tions in elliptic curve cryptography. Designs, Codes and Cryptography 39, 189–206
(2006)

6. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

7. Dixon, V.: Fast Exponentiation in the Infrastructure of a Real Quadratic Field.
Master’s thesis, University of Calgary, Calgary, Alberta (2011)

8. Free Software Foundation: The GNU Multiple Precision Arithmetic Library (2011),
http://gmplib.org

9. Guillou, L.C., Quisquater, J.-J.: A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessor Minimizing Both Transmission and Memory. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988)

http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf
http://dl.acm.org/citation.cfm?id=1926211.1926229
http://dl.acm.org/citation.cfm?id=646754.705067
http://gmplib.org

Improved Exponentiation and Key Agreement in the Infrastructure 227

10. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography,
pp. 98–99. Springer Science and Buisness Media, LLC (2004)

11. Imbert, L., Jacobson Jr., M.J., Schmidt, A.: Fast ideal cubing in imaginary
quadratic number and function fields. Advances in Mathematics of Communica-
tions 4(2), 237–260 (2010)

12. Jacobson Jr., M.J., Scheidler, R., Stein, A.: Cryptographic aspects of real hyper-
elliptic curves. Tatra Mountains Mathematical Publications 45, 1–35 (2010)

13. Jacobson Jr., M.J., Scheidler, R., Williams, H.C.: The efficiency and security of a
real quadratic field based key exchange protocol. In: Public Key Cryptography and
Computational Number Theory (Warsaw 2000), pp. 89–112. Walter de Gruyter,
Berlin (2001)

14. Jacobson Jr., M.J., Scheidler, R., Williams, H.C.: An improved real quadratic field
based key exchange procedure. Journal of Cryptology 19, 211–239 (2006)

15. Jacobson Jr., M.J., Williams, H.C.: Solving the Pell Equation. CMS Books in
Mathematics. Springer (2009) iSBN 978-0-387-84922-5

16. Jebelean, T.: A double-digit Lehmer-Euclid algorithm for finding the GCD of long
integers. Journal of Symbolic Computation 19, 145–157 (1995)

17. Lehmer, D.H.: Euclid’s algorithm for large numbers. The American Mathematical
Monthly 45(4), 227–233 (1938)

18. Shanks, D.: The infrastructure of real quadratic fields and its applications. In:
Proc. 1972 Number Theory Conf., Boulder, Colorado, pp. 217–224 (1972)

19. Shanks, D.: On Gauss and composition I, II. In: Proceedings NATO ASI on Number
Theory and Applications, pp. 163–204. Kluwer, Dordrecht (1989)

20. Silvester, A.: Doctoral Dissertation, University of Calgary (in progress, 2012)

A Appendix

For reference, pseudocode for our new algorithms is listed below. WDUPL,
WCUBE, and WDIV all require the sub-algorithms REMOVE (for adjusting
the relative generator approximation obtained after the operation) and WNEAR
(for adjusting the output to satisfy the definition of a w-near (f, p) representa-
tion). The specifications of these algorithms are listed for convenience, together
with references to their descriptions. Complete descriptions of the remaining
algorithms can be found in [7].

Algorithm A.1. REMOVE [15, Algorithm A.1, p. 448]

Input: (b, e, h), T, C, s, p, where ((μ)b, e, h) is an (f, p) representation of some
ideal a with μ = |(A + B

√
D)/C| ≥ 1 (A,B,C ∈ Z and C �= 0), T =

2sA + B�2s
√
D�, and s ∈ Z≥0 with 2s|C| > 2p+4|B|.

Output: An (f + 9/8, p) representation (b, e′, h′) of a.

Algorithm A.2. WNEAR [15, Algorithm 11.2, pp. 454-456]

Input: (b, d, k), w, p, where (b, d, k) is an (f, p) representation of some O-ideal

a. Here, b =
[
Q/r, (P +

√
D)/r

]
, where P +

√
D ≥ Q, 0 ≤ �

√
D� − P ≤ Q.

Output: A w-near (f + 9/8, p) representation (c, g, h) of a.

228 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

Algorithm A.3. WDUPL

Input: (b′, d′, k′), w, p, where (b′, d, k) is a w-near (f ′, p) representation of some
ideal a. Here b′ = [Q′/r, (P ′ +

√
D)/r].

Output: A reduced w-near (f, p) representation (c, d, k) of a2 where f = 2f ′ +
2−p(f ′)2 + 13/4.

/* Finding a reduced b and μ = |(A + B
√
D)/C| ∈ K satisfying (μ)b =

(b′)2. */
1: Compute S = Z(Q′/r)+Y (2P ′/r) where S = gcd(Q′/r, 2P ′/r) for S, Y ∈ Z.
2: Set N = Q′/(Sr), L = Q′/S, K = Y R′ (mod L).
3: Set R−1 = L, R0 = K, C−1 = 0, C0 = −1 and i = 0.

4: if R−2 < �
√

2rD1/2� then
5: Put Qi+1 = (Q′)2/(rS2) and Pi+1 ≡ P ′ + Y R′Q′/(rS) (mod Qi+1).

6: else
7: while Ri >

√
2r|D|1/4 do

8: i← i + 1
9: q = �Ri−2/Ri−1�

10: Ri = Ri−2 − qiRi−1

11: Ci = Ci−2 − qiCi−1

12: end while
13: M2 = (Ri2P

′ + rSR′Ci)/L
14: Qi+1 = (−1)i−1(R2

i /r − CiM2)
15: Pi+1 = (NRi + Qi+1Ci−1)/Ci − P ′

16: end if
/* Final reduction steps */

17: j = 1
18: Q′

i+1 = |Qi+1|
19: ki+1 = �(

√
D − Pi+1)/Q′

i+1�
20: P ′

i+1 = ki+1Q
′
i+1 + Pi+1

21: σ = sign(Qi+1)
22: Bi−1 = σ|Ci−1|
23: Bi−2 = |Ci−2|.
24: if P ′

i+1 + �
√
D� < Q′

i+1 then
25: j = 2
26: qi+1 = �(Pi+1 + �

√
D�)/Q′

i+1�
27: Pi+2 = qi+1Q

′
i+1 − pi+1, Qi+2 = (D − P 2

i+2)/Q′
i+1

28: Q′
i+2 = |Qi+2|

29: ki+2 = �(
√
D − Pi+2)/Q′

i+2�
30: P ′

i+2 = ki+2Q
′
i+2 + Pi+2

31: Bi+1 = qi+1Bi + Bi+1.
32: if P ′

i+2 + �
√
D� < Q′

i+2 then
33: j = 3
34: qi+2 = �(Pi+2 + �

√
D�)/Qi+2�

35: Pi+3 = qi+2Qi+2 − pi+2

Improved Exponentiation and Key Agreement in the Infrastructure 229

36: Qi+3 = (D − P 2
i+3)/Qi+2

37: Q′
i+3 = |Qi+3|

38: ki+3 = �(
√
D − Pi+3)/Q′

i+3�
39: P ′

i+3 = ki+3Q
′
i+3 + Pi+3

40: Bi+2 = qi+2Bi+1 + Bi+2.
41: end if

42: end if
43: Put b = [Q′

i+j/r, (P
′
i+1 +

√
D)/r], A = S(Qi+jBi+j−2 + Pi+jBi+j−1),

B = −SBi+j−1, and C = Qi+j .

/* Using Theorem 1 with equal inputs */
44: if (d′)2 ≤ 22p+1 then

45: Put e = �(d′)2/2p�, h = 2k′.
46: else

47: Put e = �(d′)2/2p+1�, h = 2k′ + 1.
48: end if

/* Bounding μ and calling REMOVE. */
49: Find s ≥ 0 such that 2sQ > 2p+4B and put T = 2sA + B�2s

√
D�.

50: (b, e′, h′) = REMOVE((b, e, d), T, C, s, p).

/* Calling WNEAR */
51: (c, d, k) = WNEAR((b, e′, h′), w, p)

230 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

Algorithm A.4. WCUBE

Input: (b′, d′, k′), w, p where (b′, d′, k′) is a reduced w-near (f ′, p) representa-

tion of an invertible O-ideal a′. Here b′′ =
[
Q′/r, (P ′ +

√
D)/r

]
.

Output: A w-near (3f ′+3(f ′)22−p+(f ′)32−2p+13/4, p) representation (c, d, k)
of (a′)3.

/* Finding a reduced b and μ = (A + B
√
D)/C ∈ K for which (μ)b = (b′)2.

Lines 1-22 are [11, Algorithm 4, p. 16]. */
1: Find S′, v1 ∈ Z such that S′ = gcd(Q′/r, 2P ′/r) and S′ = u1(Q′/r) +

v1(2P ′/r).
2: if S′ = 1 then

3: Set S = 1, N = Q′/r, L = NQ′, and
K = R′v1(2− v1(v1(Q′/r)(R′/r) + (2P ′)/r)) (mod L).

4: else
5: Compute S = u2(S′Q′/r) + v2((3(P ′)2 + D)/r2), N = Q′/(rS), L =

NQ′, and K = R′(u2v1(Q′/r) + v2(2P ′/r)) (mod L).
6: end if
7: if L <

√
Q′/r2|D|1/4 then

8: Set Q = NL and P = P ′ + NK.
9: else

10: Set R−1 = L,R0 = K,C−1 = 0, C0 = −1, i = 0.
11: while Ri >

√
Q′/r2|D|1/4 do

12: i← i + 1
13: qi = �Ri−2/Ri−1�
14: Ri = Ri−2 − qiRi−1

15: Ci = Ci−2 − qiCi−1

16: end while
17: P ′′ = P ′ + NK (mod L)
18: M1 = (NRi + (P ′′ − P ′)Ci)/L
19: M2 = (Ri(P

′ + P ′′) + rR′SCi)/L
20: Q = (−1)i−1(RiM1 − CiM2)
21: P = (NRi + QCi−1)/Ci − P ′

22: end if
/* Final reduction steps (using the same method as NUCOMP). */

23: j = 1
24: Q′

i+1 = Qi = |Q|
25: k = �(

√
D − Pi+1)/Q′

i+1�
26: P ′

i+1 = ki+1Q
′
i+1 + Pi+1

27: σ = sign(Q)
28: Bi−1 = σ|Ci−1|
29: Bi = |Ci|
30: if P ′

i+1 + �
√
D� < Q′

i+1 then
31: j = 2

Improved Exponentiation and Key Agreement in the Infrastructure 231

32: qi+1 = �(Pi+1 + �
√
D�)/Q′

i+1�
33: Pi+2 = qi+1Q

′
i+1 − pi+1, Qi+2 = (D − P 2

i+2)/Q′
i+1

34: Q′
i+2 = |Qi+2|

35: ki+2 = �(
√
D − Pi+2)/Q′

i+2�
36: P ′

i+2 = ki+2Q
′
i+2 + Pi+2

37: Bi+1 = qi+1Bi + Bi+1.
38: if P ′

i+2 + �
√
D� < Q′

i+2 then
39: j = 3
40: qi+2 = �(Pi+2 + �

√
D�)/Qi+2�

41: Pi+3 = qi+2Qi+2 − pi+2

42: Qi+3 = (D − P 2
i+3)/Qi+2

43: Q′
i+3 = |Qi+3|

44: ki+3 = �(
√
D − Pi+3)/Q′

i+3�
45: P ′

i+3 = ki+3Q
′
i+3 + Pi+3

46: Bi+2 = qi+2Bi+1 + Bi+2.
47: end if

48: end if
49: Put b = [Q′

i+j/r, (P
′
i+1 +

√
D)/r], A = S(Qi+jBi+j−2 + Pi+jBi+j−1),

B = −SBi+j−1, and C = Qi+j .

/* Using Theorem 2 */
50: if (d′)3 ≤ 23p+1 then

51: Put e = �(d′)3/22p� and h = 3k′.
52: else if 23p+1 < (d′)3 ≤ 23p+2 then

53: Put e = �(d′)3/22p+1� and h = 3k′ + 1.
54: else

55: Put e = �(d′)3/22p+2� and h = 3k′ + 2.
56: end if

/* Bounding μ and calling REMOVE */
57: Find s ≥ 0 such that 2sQ > 2p+4B and put T = 2sA + B�2s

√
D�.

58: (b, e′, h′) = REMOVE((b, e, h), T, C, s, p).

/* Re-establishing the w-near property */
59: (c, d, k) = WNEAR((b, e′, h′), w, p).

232 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

Algorithm A.5. WDIV

Input: (b′, d′, k′), (b′′, d′′, k′′), p where (b′, d′, k′) is a w-near (f ′, p) representa-
tion of an invertible O-ideal a′ and (b′′, d′′, k′′) is a w-near (f ′′, p) represen-
tation of an invertible O-ideal a′′ dividing a′. Here,

b′ = [Q′/r, (P ′ +
√
D)/r] and b′′ = [Q′′/r, (P ′′ +

√
D)/r].

Output: (c, d, k), a reduced (f∗∗ + 13/4, p) representation of a′(a′′)−1 where
f∗∗ = f ′ + f ′′/(1− f ′′2−p) + f ′f ′′/(2p − f ′′).

/* Computing a reduced ideal b and μ = (A + B
√
D)/C ∈ K where (μ)b =

b′b′′. */
1: Let b∗ = [Q′′/r, (qQ′′ − P ′′ +

√
D)/r] where q = �(P ′′ +

√
D)/Q′′�.

2: if Q′ ≥ Q′′ then
3: Compute (b, A,B,C) = NUCOMP(b′, b∗) where b = [Q/r, (P+

√
D)/r].

4: else
5: Compute (b, A,B,C) = NUCOMP(b∗, b′) where b = [Q/r, (P+

√
D)/r].

6: end if

/* Computing e, h for which (b′′b′′, e, h) is an (1 + f∗∗, p) representation of
a(a′′)−1 using Theorem 3. */

7: Find κ such that 2κ < N(b′′) = Q′′/r ≤ 2κ+1.
8: if d′′2κ−1 < d′N(b′′) ≤ d′′2κ then

9: e = �2p−κ+1d′N(b′′)/d′′�
10: h = k′ − k′′ + κ− 1

11: else if d′′2κ < d′N(b′′) ≤ d′′2κ+1 then
12: e = �2p−κd′N(b′′)/d′′�
13: h = k′ − k′′ + κ

14: else
15: e = �2p−κ−1d′N(b′′)/d′′�
16: h = k′ − k′′ + κ + 1.

17: end if

/* Computing e′, h′ for which (b, e′, h′) is an (17/8 + f∗∗, p) representation
of a′(a′′)−1. */

18: Find s ≥ 0 such that 2sQ > 2p+4B.
19: Put T = 2sA + B�2s

√
D�.

20: (b, e′, h′) = REMOVE((b, e, h), T, C, s, p)

/* Computing a reduced w-near (13/4+f∗∗, p) representation of a′(a′′)−1. */

21: (c, d, k) = WNEAR((b, e′, h′), w, p)

Improved Exponentiation and Key Agreement in the Infrastructure 233

Algorithm A.6. BINEXP [15, Algorithm 11.4, pp. 276-277]

Input: (b0, d0, k0), n, w, p where (b0, d0, k0) is a w-near (f0, p) representation of
an invertible O-ideal a and n ∈ N.

Output: A w-near (f, p) representation (b, d, k) of an for some f ∈ [1, 2p).
1: Compute (n0, . . . , n�B) = BIN(n).
2: Set (b, d, k) = (b0, d0, k0).
3: for i = 1 → �B do

4: (b, d, k) ←WDUPL((b, d, k), w, p)
5: if ni = 1 then

6: (b, d, k) ←WMULT((b, d, k), (b0, d0, k0), w, p)
7: end if

8: end for

Algorithm A.7. NAFEXP

Input: (b0, d0, k0), n, w, p where (b0, d0, k0) is a w-near (f0, p) representation of
an invertible O-ideal a and n ∈ N.

Output: A w-near (f, p) representation (b, d, k) of an for some f ∈ [1, 2p).
1: Compute (n0, . . . , n�N) = NAF(n).
2: Set (b, d, k) = (b0, d0, k0).
3: for i = 1 → �N do

4: (b, d, k) ←WDUPL((b, d, k), w, p)
5: if ni = 1 then

6: (b, d, k) ←WMULT((b, d, k), (b0, d0, k0), w, p)
7: else if ni = −1 then

8: (b, d, k) ←WDIV((b, d, k), (b0, d0, k0), w, p)
9: end if

10: end for

Algorithm A.8. SB3EXP

Input: (b0, d0, k0), n, w, p where (b0, d0, k0) is a w-near (f0, p) representation of
an invertible O-ideal a and n ∈ N.

Output: A w-near (f, p) representation (b, d, k) of an for some f ∈ [1, 2p).
1: Compute (n0, . . . , n�S) = SB3(n).
2: Set (b, d, k) = (b0, d0, k0).
3: for i = 1 → �S do

4: (b, d, k) ←WCUBE((b, d, k), w, p)
5: if ni = 1 then

6: (b, d, k) ←WMULT((b, d, k), (b0, d0, k0), w, p)
7: else if ni = −1 then

8: (b, d, k) ←WDIV((b, d, k), (b0, d0, k0), w, p)
9: end if

10: end for

UOWHFs from OWFs: Trading Regularity

for Efficiency

Kfir Barhum and Ueli Maurer

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
{barhumk,maurer}@inf.ethz.ch

Abstract. A universal one-way hash function (UOWHF) is a shrinking
function for which finding a second preimage is infeasible. A UOWHF,
a fundamental cryptographic primitive from which digital signature can
be obtained, can be constructed from any one-way function (OWF). The
best known construction from any OWF f : {0, 1}n → {0, 1}n, due to
Haitner et. al. [2], has output length Õ(n7) and Õ(n5) for the uniform
and non-uniform models, respectively. On the other hand, if the OWF
is known to be injective, i.e., maximally regular, the Naor-Yung con-
struction is simple and practical with output length linear in that of the
OWF, and making only one query to the underlying OWF.

In this paper, we establish a trade-off between the efficiency of the
construction and the assumption about the regularity of the OWF f .
Our first result is a construction comparably efficient to the Naor-Yung
construction but applicable to any close-to-regular function. A second
result shows that if |f−1f(x)| is concentrated on an interval of size 2s(n),
the construction obtained has output length Õ(n ·s(n)6) and Õ(n ·s(n)4)
for the uniform and non-uniform models, respectively.

Keywords: Complexity-Based Cryptography, One-Way Functions,
Universal One-Way Hash Functions, Computational Entropy.

1 Introduction

1.1 Constructions of Cryptographic Primitives

A main task in cryptographic research is to construct a (strong) cryptographic
primitive P from a (weaker) cryptographic primitive Q, for example to con-
struct a pseudo-random generator from a one-way function (OWF). This paper
is concerned with constructing a universal one-way hash function (UOWHF), a
fundamental cryptographic primitive, from a OWF.

The term “construct” means that one gives an efficient reduction of the prob-
lem of breaking the underlying primitive Q to the problem of breaking the con-
structed primitive P . For two primitives P and Q, the most basic question is
whether P can be constructed in principle from Q, meaning that the construction
and the reduction must be efficient (i.e., polynomial-time) and that the reduc-
tion translates a non-negligible probability of breaking P into a non-negligible
probability of breaking Q.

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 234–253, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

UOWHFs from OWFs: Trading Regularity for Efficiency 235

The principle possibility of constructing a UOWHF from a OWF was proved
by Rompel [7], using a highly inefficient construction and reduction. When trying
to improve the construction, one can choose two orthogonal routes. Either one
improves the construction for a general OWF, or one makes specific assumptions
about the OWF allowing for special-purpose constructions that do not neces-
sarily work in general, and can hence be more efficient. Of course, a key issue is
how restrictive or how plausible the assumption one has to make is.

The best known general construction of a universal one-way hash function
from any one-way function f : {0, 1}n → {0, 1}m, due to Haitner et. al. [2],
has output length Õ(n7) and Õ(n5) for the uniform and non-uniform cases,
respectively. The best known special-purpose construction is due to Naor and
Yung [6] and makes a single call to f (per argument to the constructed UOWHF),
and the output length is linear in n, but the assumption one needs to make is
that f is injective, which is a very strong assumption.

In this paper we investigate the middle grounds between completely general
constructions and those requiring such a very specific assumption. Concretely,
we investigate the trade-off between the regularity assumption for f and the ef-
ficiency of the construction. The regularity is characterized by how concentrated
the preimage size spectrum, the random variable |f−1(f(X))| corresponding to
the preimage size of the function value f(X) for a uniformly random argument
X , is. For injective functions, the preimage size spectrum is constant 1. Prior to
our work, we do not know of any specific construction for a function which is
anywhere between regular and arbitrary.

In this work we relate the assumptions made about the spectrum of f to the
efficiency of the overall construction. Qualitatively speaking, the more is assumed
about the regularity of f , the more efficient is the resulting construction.

1.2 Contributions of This Paper

A first result on the way to fully utilizing an assumption about the regularity of a
function is an almost optimal construction of a universal one-way hash function
from a regular (or almost regular) one-way function. Recall that a function is
2r-regular if for every image there are 2r preimages.

Following previous work, for simplicity of presentation, we assume that for a
one-way function f the input length n is the security parameter. For this case,
we get a construction with output length and key length O(n · α(n) · log(n)),
where the construction makes O(α(n) · log(n)) invocations to f for any super-
constant function α(n). This improves on [8] by a factor of log(n) (see Section
1.3 for comparison with previous work).

We introduce a natural relaxation of the notion of regularity:

Definition 1 (roughly-regular function). A function f : {0, 1}n → {0, 1}m is
called (r, s)-roughly-regular, if for every x in {0, 1}n it holds that |f−1(f(x))|
lies in the interval [r, rs]. A family of functions f = {fn}n>0 is called (r, s)-
roughly-regular, where (r, s) = (r(n), s(n)), if for every n it holds that fn is
(r(n), s(n))-roughly regular. Whenever s(n) = nc for some constant c the family
is called r-polynomially-roughly-regular.

236 K. Barhum and U. Maurer

We call r and s the regularity and the roughness parameters of f , respectively.
Indeed, whenever the roughness parameter is trivial, that is, s(n) = 1 for all n,
this definition coincides with the standard definition of an r-regular function.
This definition, we argue, is both intuitive and quantifies the irregularity of a
function.

For the case where f is a 2r-polynomially-roughly-regular OWF, we observe
that the construction for the 2r-regular case with minor changes works (we omit
the details in this extended abstract). For a pseudo-random generator based on
a regular OWF an analog relaxation was already observed by [1].

Finally, in Section 4 we utilize the ideas developed in Section 3 and improve on
[2] with the most general version (Theorem 3). We establish a trade-off between
the regularity assumption made about the underlying one-way function and the
overall efficiency of the construction. When f is a (2r(n), 2s(n))-roughly regular
one-way function, we show a construction with output length and key length
of Õ(n · s4) for the non-uniform model and of Õ(n · s6) for the uniform model.
Indeed, our construction ties up both ends of the existing constructions: When
s is constant, we get an almost linear construction, and when s = O(n) our
construction matches that of [2].

The analysis of the construction presented in Section 3 improves by a factor
of O(log2(n)) on the construction presented in Section 4 when instantiated with
a 2r-regular function.

1.3 Related Work

Inaccessible Entropy. Our work uses the framework of [2] for constructing
UOWHFs from OWFs using the notion of inaccessible entropy. Inaccessible en-
tropy was first introduced in [5] and along with work done in [3] and [4], it
completes the construction of the fundamental cryptographic primitives: univer-
sal one-way hash functions, pseudo-random generators and commitment schemes
using this notion.

A Regularity-Efficiency Trade-Off for the Construction of a UOWHF.
In [8] it was first shown how to construct a UOWHF for the almost-regular case.
Our construction achieves the same query complexity to the underlying one-way
function (O(α(n) · log(n)) calls), but is superior in two aspects: It makes its
queries to the underlying one-way function in a non-adaptive manner, and our
resulting primitive has an output (and seed) length of n · log(n) · α(n) whereas
the construction from [8] has an additional log(n) factor.

While for the almost-regular case the improvement is not dramatic, we believe
that our analysis, which extends the approach suggested in [2], sheds more light
on what is achieved at each step. The way the almost-regularity property of the
underlying one-way function is utilized later allows to generalize it to any level
of regularity. This is in contrast to the construction in [8] which is more ad-hoc.

UOWHFs from OWFs: Trading Regularity for Efficiency 237

2 Preliminaries

2.1 Notations and Basics

Throughout the paper we use capital letters to denote random variables and
small letters for specific values they assume. We denote by N the set of natural
numbers. For an integer n we denote by [n] the set {1, . . . , n}. For two bit-
strings x and y we denote their concatenation by x‖y. For a random variable
X we denote by E[X] and V[X] its expectation and variance, accordingly. For
an event A we denote its indicator random variable (which assumes the value
1 whenever A happens and 0 otherwise) by 1lA, and its complement event by
A. We implicitly make use of the fact that E[1lA] = Pr[A]. The support of a
random variable X is defined as Supp(X) = {x : Pr[X = x] > 0}. For a function
f : X → Y , we define the preimage spectrum function πf : X → N , where
πf (x) = |f−1(f(x))|.

For understood Y1 × · · · × Yn we denote by φi : Y1 × · · · × Yn → Yi the
projection onto the i’th component. We extend this to a set S ⊆ Y1 × · · · × Yn

with φi(S)
def
= {φi(s) : s ∈ S}. A non-decreasing function f : N → N is called

super-constant if for all c ∈ N there exists an n ∈ N , such that f(n) > c. All log
functions are to the base 2.

We cite the Hoeffding bound and bring the definition of a t-wise independent
hash family in Appendix A.

2.2 OWF and UOWHF

Definition 2 (OWF). A family of functions {f : {0, 1}n(ρ) → {0, 1}m(ρ)}ρ∈N ,
where ρ is a security parameter, is a one-way function if:

1. There exists an efficient algorithm that, given x, evaluates f(x).
2. For any efficient randomized algorithm A:

Pr
x

r←{0,1}n(ρ)

[
A(1ρ, f(x)) ∈ f−1(f(x))

]
≤ negl(ρ) .

Definition 3 (UOWHF). A family of keyed functions {{fk : {0, 1}n(ρ) →
{0, 1}m(ρ)}k∈K(ρ)}ρ∈N , where ρ is a security parameter, is a universal one-way
hash function if:

1. There exists an efficient algorithm that, given x and k, evaluates fk(x).
2. m(ρ) < n(ρ).
3. For any pair of efficient randomized algorithms (A1, A2):

Pr
k

r←K(ρ),(x,σ)
r←A1(1ρ)

[
A2(x, k, σ) ∈ fk

−1(fk(x)) \ {x}
]
≤ negl(ρ) .

As noted, we focus on families of functions where the input domain parameter n
equals to the security parameter, i.e., n(ρ) = ρ, in which case we parameterize the
family by n. Additionally, we slightly abuse notation when referring to a function
f : {0, 1}n → {0, 1}m(n), where formally f = {fn : {0, 1}n → {0, 1}m(n)}n∈N
is a parametrized family of functions, and often we omit the security parameter
when referring to fn or other parametrized values.

238 K. Barhum and U. Maurer

2.3 Entropy Measures

For a random variable X and x ∈ Supp(X) the point-wise entropy of X is

HX(x)
def
= − log(Pr[X = x]). The Shannon entropy H(X) and min-entropy

H∞(X) of X are defined as:

H(X)
def
= E [HX(X)] , H∞(X)

def
= − log

(
max

x∈ Supp(X)
Pr[X = x]

)
.

These measures extend naturally to the case of a joint distribution of two random
variables X,Y . Namely, the conditional point-wise entropy for (x, y) ∈ Supp(X,Y)

is HX|Y (x, y)
def
= − log(Pr[X = x|Y = y]) and the conditional Shannon entropy is

H(X |Y) = E
(x,y)

r←(X,Y)

[HX|Y (x, y)] = E
y

r←Y

[H(X |Y = y)] = H(X,Y)−H(Y).

The next definition measures the average and absolute guarantees as for the
preimage-size of f in terms of entropy bits.

Definition 4 (preimage entropy measures). For a function f : {0, 1}n →
{0, 1}m(n), define its real preimage-entropy as Hp(f)

def
= H(X |f(X)), where X is

uniformly distributed on {0, 1}n. f has min-preimage-entropy at least k = k(n)
(and denote this by Hp,min(f) ≥ k), if there is a negligible function ε = ε(n) such
that

Pr
x

r←{0,1}n

[HX|f(X)(x, f(x)) ≥ k] ≥ 1− ε.

As the argument X in the definition is uniform, we have that for all x it holds
that HX|f(X)(x, f(x)) = log(πf (x)).

2.4 Collision Finders and Accessible Entropy

Definition 4 captures the average and absolute preimage set size guarantees for
f . Clearly, when f is shrinking it has high preimage-entropy. Recall that our goal
is to build a universal one-way hash function, namely, a shrinking function for
which there exist many preimages, but at the same time any efficient algorithm,
when given an x, cannot compute a different preimage from f−1(f(x)).

Definition 5 (f -collision-finder). Let f : {0, 1}n → {0, 1}m(n) be a function. An
f -collision-finder is a randomized algorithm A such that A(x) ∈ f−1(f(x)) for
every x ∈ {0, 1}n.

The requirement that A(x) outputs a preimage of f(x) can be made without
loss of generality, as every algorithm A can be changed to one that outputs x
whenever A(x) /∈ f−1(f(x)).

Using the notion of an f -collision-finder, one can define a computational ana-
log of the definitions of real- and min-preimage-entropy of f . The analogous
definitions capture the maximal, average, and absolute size of the preimage sets
that are accessible to any efficient algorithm.

UOWHFs from OWFs: Trading Regularity for Efficiency 239

Definition 6. A function f : {0, 1}n → {0, 1}m(n) has accessible max-preimage-
entropy at most k = k(n) if there exists a family of sets {Sx}x∈{0,1}n such that for
any efficient randomized f -collision-finder A, there exists a negligible function
ε = ε(n) such that for all sufficiently large n:

1. Pr
x

r←{0,1}n

[A(x) ∈ Sx] ≥ 1− ε.

2. log(|Sx|) ≤ k for all x.

Definition 7. A function f : {0, 1}n → {0, 1}m(n) has accessible average max-
preimage-entropy at most k = k(n) if it satisfies Definition 6 where instead of
(2.) we have:

2. E
x

r←{0,1}n

[log(|Sx|)] ≤ k.

We stress that these two definitions1 are different from the classical definitions
of Shannon entropy. As they capture the inputs accessible only to efficient algo-
rithms, both definitions only bound from above the performance of such algo-
rithms. Specifically, for an arbitrary function, we do not know how to compute
exactly (as in the standard definition of entropy) these bounds. Nevertheless, as
we see next, these bounds are a useful tool (see also [5]). We use the notation
Heff

p,max(f) ≤ k and Heff
p,avg−max(f) ≤ k to denote that the corresponding bound

holds.
The next two definitions are used to distinguish between two types of ’entropy

gaps’:

Definition 8. A function f : {0, 1}n → {0, 1}m(n) has an average inaccessible
preimage-entropy gap Δ = Δ(n), if there exists some k = k(n) such that:

Heff
p,avg−max(f) ≤ k ≤ k + Δ ≤ Hp(f) . (1)

That is, there is a gap of Δ between its average accessible max-preimage-entropy
and its preimage-entropy. At times we will refer to this gap as an average entropy
gap or a weak type of gap.

Definition 9. A function f : {0, 1}n → {0, 1}m(n) has an absolute inaccessible
preimage-entropy gap Δ = Δ(n), if there exists some k = k(n) such that:

Heff
p,max(f) ≤ k ≤ k + Δ ≤ Hp,min(f) . (2)

1 In fact, one may consider a weaker notion of algorithm-dependent accessible max-
preimage-entropy and algorithm-dependent accessible average max-preimage-entropy
where the sets {Sx} may also depend on the algorithm. Such a definition would
only require that for every algorithm there exist sets {SA,x}. This weaker variant of
Definitions 6 and 7 is enough for the purpose of constructing a universal one-way
hash function and potentially may be easier to satisfy. In this work we do not make
use of the weaker definition.

240 K. Barhum and U. Maurer

At times we will refer to this gap as an absolute or strong gap.
An important observation is that UOWHFs are just length-decreasing func-

tions with accessible max-preimage-entropy 0, and an appropriate absolute en-
tropy gap. Haitner et. al. observed that it is possible to achieve a noticeable
gap of inaccessible entropy as an intermediate step, and then amplify it and
transform it into a UOWHF.

2.5 Entropy Measures for t-fold Parallel Repetitions

For a function f : X → Y we define its t-fold parallel repetition f t : Xt → Y t

as f t(x1, . . . , xt) = (f(x1), . . . , f(xt)). It is well-known that using the definition

of conditional entropy, properties of log()̇ and noting that choosing a random
xt ∈ Xt can be done by t independent choices of x,

Hp(f t) = H(X1, . . . , Xt|f(X1), . . . , f(Xt)) = H(X1|f(X1)) + . . .

+H(Xt|f(Xt)) = t ·Hp(f) . (3)

The corresponding computational bound is given by the following claim and its
corollary. Namely, the accessible preimages of the t-fold repetition of f come
from the product set of the accessible preimages set of f :

Lemma 1. Let f : X → X with accessible max-preimage-entropy at most k(n),
with sets Sx (as in Definition 6). Then for t = poly(n) any efficient f t-collision-
finder A′ outputs a collision (except with negligible probability) from the set

Sxt
def
= Sx1 × · · · × Sxt .

Proof. Let A′ be an f t-collision-finder algorithm with probability ε to output a
collision x′

1, . . . , x
′
t outside of Sxt . Observe that this implies that for a randomly

chosen coordinate i
r← [t] it holds that Pr[φI(f t(Xt)) /∈ SφI(Xt)] ≥ ε/t. This calls

for the following f -collision-finder A: on input x choose uniformly at random a
location i from [t] and uniformly at random inputs x1, x2, . . . , xi−1, xi+1, . . . , xt

from X . Set xi = x and return φi(A
′(x1, . . . , xt)). It follows that A outputs

a collision for f outside of Sx with probability greater than ε/t. The lemma
follows. ��

Using linearity of expectation, the union bound, Definitions 6 and 7, and the
fact that log(|Sxt |) = Σt

i=1log(|Sxi |), we get:

Corollary 1.

1. If Heff
p,max(f) ≤ k then Heff

p,max(f t) ≤ t · k.
2. If Heff

p,avg−max(f) ≤ k then Heff
p,avg−max(f t) ≤ t · k.

2.6 An Overview of the Construction of Haitner et. al.

The construction consists of two independent parts. First they show how to get a
function with a noticeable gap of average inaccessible entropy from any one-way

UOWHFs from OWFs: Trading Regularity for Efficiency 241

function. Specifically, they show that a prefix of a random length of a three-wise
independent hashing of the output already has some weak form of an average
entropy gap. Namely, on average over the inputs to the new construction, there
is a noticeable gap of Δ = Ω(log n/n) between the real preimage-entropy and
the average accessible max-preimage-entropy.

The second part of the construction starts with any function with some no-
ticeable gap Δ and shows how to obtain a UOWHF. This is achieved using the
following steps:

1. Gap amplification and transformation of an average type gap into an absolute
type of gap.

2. Entropy reduction.
3. Output length reduction.
4. Random inputs collision-resistance to a UOWHF.
5. Removing the non-uniformity.

The composition of Steps 2 through 5 of their construction2 is summarized in
the following theorem, which we later use in a black-box manner:

Theorem 1.

1. There exists an explicit black-box construction taking parameters a function
ψ = {ψn}n∈N , where ψn : {0, 1}λ(n) → {0, 1}m(n), and a number τ = τ(n)
such that if Heff

p,avg−max(ψn) + ω(log(n)) ≤ τ(n) ≤ Hp(ψn) holds, the con-
struction implements a UOWHF with output length and key length O(λ(n)).

2. Moreover, for all efficiently computable l = l(n) there exists an explicit black-
box construction taking parameters ψ (as before) and sets of numbers τ =

τ(n) = {τn,i}l(n)i=1 , such that if one of {(ψn, τn,i)}l(n)i=1 satisfies the condition of
part (1.), the construction implements a UOWHF with output length O(λ(n)·
l(n)) and key length of O(λ(n) · l(n) · log(l(n))).

3 UOWHF from a 2r-Regular OWF

Let f : {0, 1}n → {0, 1}m be a 2r-regular one-way function. Our construction
also works in two steps: First we obtain an entropy gap of O(log(n)) applying
f only once and use a variant of the Naor-Yung construction. Next, we show
that the type of gap that we get by our first step is almost of the required
absolute type. Namely, the average entropy gap is essentially concentrated on a
smaller interval of size almost O(log(n)), and in this case the structured gap can
be transformed to an absolute type of gap via taking only a super-logarithmic
number of independent samples. The main result of this section is:

Theorem 2. Let f : {0, 1}n → {0, 1}m(n) be a 2r-regular one-way function,
where r = r(n) is efficiently computable. Then there exists an explicit black-box
construction of a universal one-way hash function based on f with output length
and key length of O(n · log(n) · α(n)) for any super-constant function α(n).

2 Lemmas 5.3 − 5.4, 5.6 in [2].

242 K. Barhum and U. Maurer

3.1 Inaccessible Entropy from 2r-Regular One-Way Functions

In this case f has exactly 2n−r different images. If we randomly distribute the

images among b buckets, we expect to have roughly 2n−r

b images in each bucket.
Consider the composed function, F (x, g) = (g(f(x)), g) where g is the description
of a three-wise independent hash-function from some family G. We show that an
appropriate choice of the family G allows us to reduce the preimage inaccessibility
of F to the hardness of the underlying function f .

For injective one-way functions this was already observed in [6]. The difference
is that for an injective f , the resulting F is already a universal one-way hash
function, whereas in the case where f is regular we get:

Lemma 2. Let f : {0, 1}n → {0, 1}m(n) be a 2r-regular one-way function, where

r = r(n) is efficiently computable. Let d > 0 and let G = G(n)
def
= G(n−r)−4d log(n)

n

be a family of constructible three-wise independent hash functions. Then the func-
tion F : {0, 1}n × G → {0, 1}(n−r)−4d log(n) × G given by: F (x, g) = (g(f(x)), g)
satisfies the following properties:

1. Hp(F) ≥ r + 3d log(n).
2. Heff

p,max(F) ≤ r.

Proof.

1. Recall that when the input is chosen uniformly at random from the input
space the preimage-entropy of F is just the expected log-value of the size of
the preimage set. We first compute the expected number of preimages for a
fixed x with some random g from G. Since F (x, g) already determines g it
follows that any potential preimage must have the same g component.
For all fixed x, g we have the set equality:

F−1(F (x, g)) =
⋃

y′:g(f(x))=g(y′)

(
f−1(y′)× {g}

)
(4)

and the union is over disjoint sets. We get that:

πF (x, g) = πf (x) +
∑

y′ �=f(x)

1lg(f(x))=g(y′) · |f−1(y′)|

= 2r ·

⎛⎝1 +
∑

y′ �=f(x)

1lg(f(x))=g(y′)

⎞⎠ , (5)

where due to the regularity it holds that πf (x) = |f−1(y)| = 2r.
Now we observe that for every fixed x ∈ {0, 1}n and y′ �= f(x)

E
g

r←G

[
1lg(f(x))=g(y′)

]
= 2−(n−r−4d log(n)) , (6)

where the equality is due to due to the pair-wise independence of G.

UOWHFs from OWFs: Trading Regularity for Efficiency 243

Using (5), (6) and linearity of expectation we have that

E
g

r←G
[πF (x, g)] = 2r ·

⎛⎝1 +
∑

y′ �=f(x)

E
g

r←G
[1lg(f(x))=g(y′)]

⎞⎠ > 2r+4d·log(n) , (7)

where again due to the regulariry the summation is over 2n−r−1 indicators.
Furthermore, as the family is three-wise independent, we also have that
for different f(x), y′, y′′ it holds that the random variables 1lg(f(x))=g(y′) and
1lg(f(x))=g(y′′) are independent (and in particular, uncorrelated) and therefore

V
g

r←G
[πF (x, g)] = (2r)2 ·

∑
y′ �=f(x)

V
g

r←G

[
1lg(f(x))=g(y′)

]
≤
(

2r+2·d·log(n)
)2

. (8)

where the equality holds for the sum of uncorrelated random variables and
the the inequality holds as for all indicator random variables V[1lA] ≤ E[1lA]
and using (6). Now, the Chebysev Inequality establishes that for all α > 0:

Pr
g

r←G

[∣∣∣∣∣πF (x, g)− E
g

r←G
[πF (x, g)]

∣∣∣∣∣ > α · 2r+2·d·log(n)

]
<

1

α2
. (9)

Whenever the event in (9) does not happen plugging (7) we obtain

πF (x,G) ≥ 2r+4·d·log(n) − α · 2r+2·d·log(n) ≥ 2r+3.5·d·log(n) ,

for all fixed α and sufficiently large n.
Finally, recall that due to the regularity we always have πF (x, g) ≥ 2r and so
using conditional expectation on the event from (9) with α = 5 and plugging
(7) we obtain:

E
g

r←G
[log(πF (x, g))] > r +

24

25
· (3.5 · d · log(n)) ≥ r + 3 · d · log(n) . (10)

As this holds for every fixed x, it also holds for a random one, and we are
done.

2. We show that any efficient algorithm that finds a collision for a random
input (X,G) outside of f−1(X) × {G} leads to one that inverts f . Let AF

be an F -collision-finder. We denote the randomness taken by AF explicitly
(as an additional argument) by r, and for some fixed randomness r and a

fixed input x, denote by εx,r
def
= Pr

g
r←G [AF (x, g, r) /∈ f−1(f(x)) × {g}].

We show3 that the algorithm B inverts y = f(x′), where x′ r← {0, 1}n
uniformly at random, with probability at least ε/n−d.

3 In similar manner to [6] and [2].

244 K. Barhum and U. Maurer

Algorithm B(y) // On input y ∈ {0, 1}n

(a) Choose x uniformly at random from {0, 1}n.
(b) Choose randomness r for AF uniformly at random.
(c) Choose g uniformly at random subject to g(f(x)) = g(y).
(d) Output φ1(AF (x, g, r)).

It holds that

εx,r =
∑

y �=f(x)

Pr
g

r←G

[
φ1(AF (x, g, r)) ∈ f−1(y)

]
(11)

=
∑

y �=f(x)

Pr
g

r←G

[
φ1(AF (x, g, r)) ∈ f−1(y) | g(f(x)) = g(y)

]
(12)

· Pr
g

r←G
[g(f(x)) = g(y)]

=
∑

y �=f(x)

Pr
g

r←G

[
φ1(AF (x, g, r)) ∈ f−1(y) | g(f(x)) = g(y)

]
(13)

· 2−(n−r−d log(n)) .

It follows that conditioned on the random choices X = x and R = r of the
algorithm B, we obtain that

Pr
x′ r←{0,1}n

[B(f(x′)) ∈ f−1(f(x′)) | X = x ∧R = r]

= Pr
y

r←f({0,1}n)

[B(y) ∈ f−1(y) | X = x ∧R = r]

≥
∑

y �=f(x)

Pr[Y = y] · Pr
g

r←G

[
φ1(AF (x, g, r)) ∈ f−1(y) | g(f(x)) = g(y)

]
≥ 2−d log(n) · εx,r . (14)

As X and R are chosen uniformly at random, and by the fact that
ε = E[εX,R] we get that the algorithm inverts f with probability at least
n−d · ε. Thus we have shown that AF ’s output on input (x, g) is limited to
f−1(f(x)) × {g}. By the regularity of f we have that its size is exactly 2r.
Thus F has accessible max-preimage-entropy at most r.

��

We next show that by a more careful analysis of the amplification results in an
almost-linear construction.

3.2 Amplifying the Entropy Gap and Converting Average to
Absolute Entropy Gaps

Lemma 3 (Fast gap amplification and real- to min- preimage-entropy conversion).
Let f and F be as in Lemma 2, F t be the t-fold application of F and α(n) be any

UOWHFs from OWFs: Trading Regularity for Efficiency 245

super-constant function. Then for t = α(n) · log(n), F t has a strong inaccessible
entropy gap of α(n) · log2(n). Moreover, the following entropy-gap holds:

1. Hp,min(F t) ≥ t(r + 2d log(n)).

2. Heff
p,max(F t) ≤ t · r.

Proof.

1. We first show that by the Markov inequality, the probability that the point-
wise entropy exceeds its expected value by more than α(n) · log(n) bits
is negligible. Specifically, from the first part of Lemma 2, we know that
the expected value of the preimage size of inputs to F is 2r+4d log(n). The
Markov inequality asserts that the probability we get an input with more
than 2α(n)·log(n) · 2r+4d log(n) preimages is at most 1/nα(n). Let us denote
this ’bad’ event as A. By Lemma 5 4 we get that E[log(πF (X,G)) |A] ≥
r + 4d log(n)− n1−α(n).

From now on we assume that this unlikely event does not happen. We
get that the value of the real entropy is limited to an interval of size
O(α(n) · log(n)), as we always have a at least r bits of point-wise entropy
due to the regularity of f .

Now we can apply the Hoeffding bound which asserts that for this case
a super-logarithmic number of repetitions suffice to bound from below the
min-preimage-entropy of the t-fold application of F . Specifically, we get that

Pr
(x,g)t

r←({0,1}n×G)t

[
log
(
πF t((x, g)t)

)
≥ t(r + 2d log(n))

]
≤ exp

(
−2t

α2(n)

)
.

The choice of t = O(α3(n)·log(n)) ensures that this happens with probability
at most 1/nα(n).

2. This is just the t-fold accessible max-preimage-entropy we get by the second
part of Lemma 2 and Corollary 1.

��

Proof (Theorem 2). By Lemma 3, F t already has the required strong type
of entropy gap between its accessible max-preimage-entropy and its real min-
preimage-entropy. Moreover, it tells us exactly where this gap is (there are at
most t · r bits of accessible max-preimage-entropy). Now, note that if α(n) is a
super-constant function, then so is α′(n) = α1/3(n). Finally, utilizing Theorem
1 with parameter (F t, t · (r + 2d log(n))) completes the construction and yields
a UOWHF with output length and key length O(n · log(n) · α(n)). ��

4 We use Lemma 5 in the uniform setting, where l = l(n) = n (as we consider the
point-wise Shannon entropy) and An is an event that happens with some negligible
probability, that is, Pr[An] < n−α(n) for some super-constant function α(n).

246 K. Barhum and U. Maurer

4 UOWHF from a (2r(n), 2s(n))-Roughly-Regular OWF

The main theorem proved in this section is:

Theorem 3. Let f : {0, 1}n → {0, 1}m(n) be a (2r, 2s)-roughly-regular one-way
function, where r = r(n) and s = s(n) are efficiently computable. Then there
exists an explicit construction of a UOWHF with output length and key length
of Õ(n · s6(n)) (resp., Õ(n · s4(n))) in the uniform (resp., non-uniform) model.

4.1 log(n)/s(n) Bits of Average Inaccessible Entropy

Haitner et. al. showed that for a general one-way function f , a random truncation
of a hashing of f(x) using a three-wise independent family of hash functions
yields an average entropy gap of Ω(log(n)/n) entropy bits. We observe that a
modification of their first step achieves an average inaccessible entropy gap of
log(n)/s(n) bits from any (2r(n), 2s(n))-roughly-regular one-way function.

The idea is to divide the images f(x) (and respectively, the inputs x) into
buckets, such that every bucket contains images with roughly the same number

of preimages. We set m
def
= s(n)/d log(n) and J

def
= {j0, . . . , jm−1}, where ji

def
=

n − r(n) − s(n) + (i − 1)d log(n), and show that truncating the output of the
application of a three-wise independent hashing of f(x) to a random length from
J yields a function with the required gap. Recall that Hf(X)(f(x)) ∈ (ji, ji+1]

if and only if πf (x) ∈ [2r+s−i(d log(n)), 2r+s−(i−1)(d log(n))). Let us denote qi
def
=

Pr[Hf(X)(f(x)) ∈ (ji, ji+1]]. By the roughly-regularity assumption on f , it holds

that
∑m

i=1 qj = 1.Now we set G def
= Gn

n a family of three-wise independent hash

functions, X
def
= {0, 1}n and define F : X × G × J → X × G × J as F (x, g, j) =

(g(f(x))1,...,j‖0n−j, g, j), where we denote the domain and range of F by Z def
=

X × G × J .

Lemma 4. The function F as defined above has an average preimage-entropy
gap of s(n)/log(n) bits.

Proof. Recall that our goal in this step is to achieve an average inaccessible
entropy gap of Ω(log(n)/s(n)) bits. That is, we need to show that for each
z = (x, g, ji) there exists a set Sz, such that: (1) any efficient collision-finder
outputs an element of Sz (except for an event that happens with negligible
probability) and (2) E

z
r←Z [log(πF (z))− log(|Sz|)] > Ω(log(n)/s(n)).

In a similar manner to the regular case, the set of inputs accessible by an
efficient algorithm is limited only to those with relatively few images, where
”few” corresponds to the length of the random truncation. Essentially, we show
that when we hash to length ji, any preimages an efficient algorithm finds are
either already preimages of f(x) (we refer to these as ’trivial’ collisions) 5 or stem
from some non-trivial collision, that is F (x′, g, ji) = F (x, g, ji) but f(x) �= f(x′).

5 Note that the definition of a one-way function does not rule out the possibility that
given a preimage it is difficult to compute other preimages from f−1(f(x)).

UOWHFs from OWFs: Trading Regularity for Efficiency 247

For the latter, we further distinguish between those x that have significantly
fewer preimages than expected for a random function with output length ji,
and the rest. More precisely, we consider those preimages z′ = (x′, g, ji) for
which πf (x′) ≤ 2ji+2 and call these ’ji+2-light’ preimages of f(x). The remaining
’heavy’ collisions stem from inputs z′ for which πf (x′) > 2ji+2 .

We define:
Tz

def
= T(x,g,ji) = f−1(f(x))× {g} × {j},

Lz
def
= L(x,g,ji) = {x′ ∈ {0, 1}n | g(f(x))1,...,ji = g(f(x′))1,...,ji

∧ Hf(X)(f(x)) ≥ ji+2 ∧ x′ /∈ f−1(f(x))} × {g} × {j}

and

Hz
def
= H(x,g,ji) = {x′ ∈ {0, 1}n|g(f(x))1,...,ji = g(f(x′))1,...,ji

∧ Hf(X)(f(x)) < ji+2 ∧ x′ /∈ f−1(f(x))} × {g} × {j} ,

where T, L and H stand for ’trivial’, ’light’ and ’heavy’, respectively. It follows
that for every z,

F−1(F (z)) = Tz ∪ Lz ∪Hz , (15)

where the union is over disjoint sets.
The rest of the proof is involved with proving that indeed the only accessible

sets to any efficient algorithm are Tz ∪ Lz, and that they constitute a large
fraction of the preimage set F−1(F (z)). The analysis follows the construction
from [3] and is brought for completeness in Appendix B. ��

4.2 Faster Amplification of the Inaccessible Entropy Gap of F

Our goal in this section is to amplify the entropy gap of F from the previous sec-
tion. We show how to construct a function F ′ with ω(log(n)) bits of inaccessible
entropy with an absolute type of gap.

Haitner et. al. [2] assert that independent repetitions of F achieve both these
goals. They show that Õ(n4) repetitions are enough for getting this gap from
an arbitrary one-way function. We are able to utilize the information about the
underlying f (and in turn, that of F) and get a faster convergence, using the
roughly-regularity assumption.

Set Δ
def
= (c · log(n)/s(n)) as the entropy gap of F , where c is the constant

corresponding to the Ω notation, and fix k, such that F has preimage-entropy
Hp(F) = k + Δ. Lemma 4 asserts that Heff

p,avg−max(F) ≤ k. Using (3) and
Corollary 1 we know that for the t-fold parallel repetition of F it holds that

Hp(F t) = t · (k + Δ) , (16)

Heff
p,avg−max(F t) ≤ t · k . (17)

Thus for F t we obtain an average entropy gap of t ·Δ bits.

248 K. Barhum and U. Maurer

Using the analysis of Lemma 4 and Lemma 1 we get that for an input zt =
(z1, . . . , zt) to F t, the only accessible inputs to F t are those that are contained
in Sz = (Tz1 ∪ Lz1) × · · · × (Tzt ∪ Lzt), and that the set of preimages of zt is

just F t−1
(F t(zt)) = (Tz1 ∪ Lz1 ∪ Hz1) × · · · × (Tzt ∪ Lzt ∪Hzt), except for an

event B1 that occurs with negligible probability. Next, we would like to apply
the Hoeffding bound to get the required gap. Similarly to Lemma 3 we show
that although for some inputs the preimage size of F may be very large (a priori
there may be inputs with up to 2n preimages, but not more, since F (x, g, ji)
determines (g, ji) uniquely as part of its output), this is not likely. First observe
that log(πF (z)) ∈ [r, n] for all z. This is due to the fact that every image of
f(x) has at least 2r(n) preimages. We show that we can bound this also from
above: except with negligible probability we have that for any super-constant
function α(n): log(|Tz ∪Lz|) ≤ log(πF (z)) < r(n) + s(n) + d log(n) +α(n) log(n)
. Consider πF (Z) for a uniformly chosen random input Z = (X,G, J). This
value is maximized for J = j0 because of the inclusion φ1(F−1(F (x, g, j′i))) ⊂
φ1(F−1(F (x, g, ji))) for ji ≤ j′i. It follows that in order to bound E[πF (X,G, J)]
it is sufficient to bound E[πF (X,G, j0)].

As in Lemma 2, using the three-wise independence of G, and the roughly-
regularity of f we have that for fixed x it holds that:

E
g

r←G
[πF (x, g, j0)] ≤ 2r(n)+s(n)+d log(n)+2 .

Next, fix any super-constant function α(n). Markov’s inequality asserts that

Pr
g

r←G

[
πF (x, g, j0) ≥ 2r(n)+s(n)+d log(n) · 2α(n) log(n)

]
≤ n−α(n) .

Denote the event that this happens in any of the repetitions by B2 and note that
it happens only with negligible probability (as t is polynomial in n and using
the union bound). We summarize this as follows: whenever B2 does not occur,
we get that

r(n) ≤ log(|TZ ∪ LZ |) ≤ log(πF (Z)) ≤ r(n) + s(n) + (d + α(n)) log(n) .

When this is the case, both quantities are within an interval of size s′
def
= 3 ·

max {s(n), α(n) · log(n)}.
By Lemma 5 we know that the preimage-entropy and the average accessi-

ble max-preimage-entropy values change by at most a negligible quantity when
ignoring an event of negligible probability. Specifically, we get that whenever
B1 ∧B2 happen we have:

k′
def
= E

z
r←Z

[
log(|Sz |) |B1 ∧B2

]
≤ E

z
r←Z

[log(|Sz|)] + negl(n) (18)

and

k′′
def
= E

z
r←Z

[
log(πF (z)) |B1 ∧B2

]
≥ E

z
r←Z

[log(πF (z))]− negl(n) (19)

with a gap of Δ′ def
= k′′ − k′ ≥ Δ− negl(n).

UOWHFs from OWFs: Trading Regularity for Efficiency 249

The Hoeffding bound yields that setting t
def
= O(s

′2(n)·s2(n)
log(n)) assures that the

inaccuracies due to the sampling of the independent inputs to F are already
smaller than the accumulated gap. Specifically:

Pr
zt r←Zt

[
log (|Szt |) > t · k′ +

c

6
· s′(n) ·

√
t · α(n) · log(n)

]
≤ n−α(n) , (20)

Pr
zt r←Zt

[
log
(
πF t(zt)

)
< t·(k′+Δ′))− c

6
·s′(n)·

√
t · α(n) · log(n)

]
≤ n−α(n).(21)

Plugging (18) and (19) we get that except with negligible probability there is an
absolute entropy gap of at least

t ·Δ− t · negl(n)− c

3
· s′(n) ·

√
t · α(n) · log(n) ∈ ω(log(n)) . (22)

4.3 A UOWHF in the Non-uniform Model

To finish the construction we would like to apply the first part of Theorem 1. We
use the preimage-entropy of F from Section 4.1 (in the form of a non-uniform
advice), which equals k + Δ. By what we have shown in Section 4.2 it holds

that F t has real min-preimage-entropy of at least τ
def
= t · (k + Δ) − c

4 · s′(n) ·√
t · α(n) · log(n) bits. Additionally, it enjoys the required absolute entropy gap.

The first part of Theorem 1 with parameters (F t, τ) yields a UOWHF with

output length and key length O(n · s′2(n) · s2(n)/ log(n)).

4.4 An Efficient Non-uniform to Uniform Reduction

As explained, the construction obtained requires a non-uniform advice (i.e., the
Shannon preimage-entropy of f). We remove the non-uniformity by ’trying all
possibilities’. However, as opposed to the case of a general one-way function,
where we need to try O(n2) different values, we show that using the roughness
regularity assumption we only need O(s2(n)) tries.

Recall that by the roughly-regularity assumption on f , it follows that the
preimage-entropy of F lies in the interval [r + d log(n), s + d log(n)].

For i ∈ [�4 · s(n)/c log(n)�] set ki
def
= r+d log(n)+i · 1

4·s(n) . It holds that one of

the ki is within an additive distance of Δ
4 from the real value k+Δ. Accordingly,

set τi
def
= t · (ki + Δ)− c

4 · s′(n) ·
√

t · α(n) · log(n). It follows that for the same i,
(Ft, τi) satisfies the premise of the first part of Theorem 1, and thus the second
part of the theorem yields a construction of a UOWHF with output length of
O(n · s′2(n) · s4(n)/ log3(n)) and key length of O(n · s′2(n) · s4(n)/ log2(n)).

250 K. Barhum and U. Maurer

5 Conclusions

We demonstrated how to obtain more efficient constructions of a UOWHF from
different assumptions on the structure of the underlying OWF. For the case
of known regularity the resulting construction is very efficient and makes an
almost logarithmic number of calls to the underlying OWF. In the case when
the underlying OWF is known to be either 2r1-regular or 2r2-regular (i.e., the
construction is given r1 and r2 and should be secure when instantiated with
any function of the corresponding regularity), we observe that one obtains a
construction that makes Õ(n) calls (combining our construction for the regular
case with the second part of Theorem 1). Of course, the main open problem
remains to further improve the construction of Haitner et. al. for a general OWF.

Acknowledgments. We would like to thank the anonymous reviewers for their
helpful comments. The first author would like to thank David Adjiashvili and
Sandro Coretti for their comments on an earlier version of this work.

References

1. Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudorandom genera-
tors. SIAM J. Comput. 22(6), 1163–1175 (1993)

2. Haitner, I., Holenstein, T., Reingold, O., Vadhan, S., Wee, H.: Universal One-Way
Hash Functions via Inaccessible Entropy. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 616–637. Springer, Heidelberg (2010)

3. Haitner, I., Nguyen, M.-H., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hid-
ing commitments and statistical zero-knowledge arguments from any one-way func-
tion. SIAM J. Comput. 39(3), 1153–1218 (2009)

4. Haitner, I., Reingold, O., Vadhan, S.P.: Efficiency improvements in constructing
pseudorandom generators from one-way functions. In: Schulman, L.J. (ed.) STOC,
pp. 437–446. ACM (2010)

5. Haitner, I., Reingold, O., Vadhan, S.P., Wee, H.: Inaccessible entropy. In: Mitzen-
macher, M. (ed.) STOC, pp. 611–620. ACM (2009)

6. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic ap-
plications. In: STOC, pp. 33–43. ACM (1989)

7. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In:
STOC, pp. 387–394. ACM (1990)

8. De Santis, A., Yung, M.: On the Design of Provably-Secure Cryptographic Hash
Functions. In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp.
412–431. Springer, Heidelberg (1991)

A Further Preliminaries

A.1 The Hoeffding Bound

For independent bounded random variables X1, . . . , Xt, where Xi ∈ [ai, bi], set
St = Σt

i=1Xi, then:

Pr [|St −E[St]| ≥ k] ≤ 2 · exp

(
−2k2

Σt
i=1(bi − ai)2

)
.

UOWHFs from OWFs: Trading Regularity for Efficiency 251

A.2 t-wise Independent Hashing

Let Gm
n

def
= {gk : {0, 1}n → {0, 1}m}k∈K be a family of keyed functions. Gm

n is
t-wise independent if for all y1, . . . , yt ∈ {0, 1}m and all distinct x1, . . . , xt ∈
{0, 1}n it holds that

Pr
k

r←K

[gk(x1) = y1 ∧ · · · ∧ gk(xt) = yt] = 2−tm .

The family is called constructible if, for all y1, . . . , ys and distinct x1, . . . , xs

where s ≤ t, it is possible to sample a function uniformly subject to gK(x1) =
y1, . . . , gK(xs) = ys.

It is well-known that if Gn
n is a t-wise independent family, then by truncating

the last n − l bits of Gn
n one gets a t-wise independent family Gl

n. Moreover, if
Gn
n is constructible, then so is Gl

n.
The next lemma shows that ignoring an unlikely event of a random variable

that takes a value in some limited range, does not change much its expected
value. The standard proof is omitted in this extended abstract.

Lemma 5. Let X be a random variable with Supp(X) ⊂ [0, l] and A an event
that happens with probability at most ε. Then:∣∣E [X]−E

[
X |A

]∣∣ ≤ 2 · l · ε . (23)

B Proof of Lemma 4, continued.

Our next goal is to show that the sets {Tz ∪ Lz}z∈Z satisfy the needed require-
ments. Claim 4.9 in [2] shows that any efficient collision-finder cannot (except
with negligible probability) output a preimage of F (z) in Hz, as such an al-
gorithm can be used to invert f . Specifically, they show (again, using the con-
structibility of the three-wise independent hash family as in the second part of
Lemma 2) how to efficiently convert any F -collision-finder that outputs a preim-
age from Hz with probability ε to one that inverts a random input of f with
probability ε/nd.

As the preimage sets {Hz}z∈Z are inaccessible, it remains to show that they
constitute a noticeable part of the preimage sets. In order to complete the proof,
we need to bound:

E
z

r←Z
[πF (z)]− E

z
r←Z

[log(|Tz ∪ Lz|)] = E
z

r←Z

[
log

(
πF (z)

|Tz ∪ Lz|

)]
(24)

= E
z

r←Z

[
log

(
|Tz|+ |Lz|+ |Hz|

|Tz|+ |Lz|

)]
(25)

= E
z

r←Z

[
log

(
1 +

|Hz|
|Tz|+ |Lz|

)]
(26)

≥ 1

2
E

z
r←Z

[
|Hz|

|Tz|+ |Lz|+ |Hz|

]
(27)

252 K. Barhum and U. Maurer

where the second equality is due to the partition in (15) and the inequality uses
the fact that log(1 + x) ≥ x/2 for x ∈ [0, 1). Thus, it is left to show that indeed
|Hz| constitutes a noticeable part of πF (z).

Proposition 1. Conditioned on X = x and J = ji, define the events:

E1
ji

def
=
{
|Hz|+ |Lz| ≤ 3 · 2n−ji

}
E2

ji

def
=

{
|Hz| ≥

(
qi − 4 ·

√
1/nd

)
· 2n−ji−1

}
.

Then Pr
g

r←G
[E1

ji
] > 2/3 and Pr

g
r←G

[E2
ji

] > 3/4 hold.

This is just Claim 4.11 from [2] 6. It follows that:

= E
z

r←Z
[log(πF (z))]− E

z
r←Z

[log(|Tz ∪ Lz|)] (28)

≥ 1

2
E

z
r←Z

[
|Hz |

|Tz|+ |Lz|+ |Hz|

]
(29)

=
1

2

m−1∑
i=0

Pr
z

r←Z
[J = ji] · E

z
r←Z

[
|Hz|

|Tz|+ |Lz|+ |Hz|

∣∣∣∣ J = ji

]
(30)

≥ 1

2m

m−1∑
i=0

Pr
z

r←Z
[Hf(X)(f(X)) > ji] ·

E
z

r←Z

[
|Hz|

|Tz|+ |Lz|+ |Hz|

∣∣∣∣ Hf(X)(f(X)) > ji, J = ji

]
(31)

≥ 1

2m

m−1∑
i=0

(qi + · · ·+ qm) · (1− 1

3
− 1

4
) ·

E
z

r←Z

[
|Hz|

|Tz|+ |Lz|+ |Hz |

∣∣∣∣ E1
ji , E

2
ji , Hf(X)(f(X)) > ji, J = ji

]
(32)

≥ 1

2m

m−1∑
i=0

(qi + · · ·+ qm) · (1− 1

3
− 1

4
) · (qi+1 − 4/(nd/2)) · 2n−ji−1

2n−ji+2
(33)

≥ 1

96m

∑
0≤i≤k≤m−1

(qi · qk)−O

(
1

nd/2

)
(34)

≥ 1

200m
− negl(n)−O(n−d/2) , (35)

where we used conditional expectations, the union bound, the fact that
Hf(X)(f(x)) ≥ ji is equivalent to |Tz| ≤ 2n−ji and the roughness-regularity
assumption that

∑m
i=1 qi = 1− negl(n).

6 We use it with α = 4 and note that Heavy = |Hz| and Light = |Lz |.

UOWHFs from OWFs: Trading Regularity for Efficiency 253

We conclude that the log-size of the set of the accessible inputs to an efficient
collision-finder is, on average, bounded away from the point-wise entropy. Put
differently, we get a noticeable fraction of Ω(1/m) = Ω(log(n)/s(n)) average
inaccessible entropy bits.

Random Mappings with Restricted Preimages

Andrew MacFie and Daniel Panario

School of Mathematics and Statistics
Carleton University, Ottawa, ON K1S 5B6, Canada

andrewmacfie@gmail.com, daniel@math.carleton.ca

Abstract. In this paper we refer to finite endofunctions where each
image has at most r preimages as r-mappings. Probabilistic analysis of
these mappings provides heuristics for problems arising in cryptography
which involve similar but more complicated classes of mappings. We give
asymptotic probabilities and expectations related to the joint distribu-
tion of some pairs of mapping parameters for these mappings, extending
work done previously for general, unrestricted mappings. We give an el-
ementary derivation of the expected value of the maximum of tail length
and cycle length of a random node in a random r-mapping, which is a
useful component in the heuristic analysis of Pollard’s rho algorithm. All
distributions considered are uniform.

Keywords: Random mappings, preimages, asymptotic probabilities.

Dedicated to the memory of Philippe Flajolet

1 Introduction

Let Fn be the set of functions (“mappings”) from the set [1..n] to itself. Mappings
have a combinatorial structure: With any ϕ ∈ Fn there is associated a functional
graph on n nodes, with a directed edge from vertex u to vertex v if and only if
ϕ(u) = v. Clearly, we have |Fn| = nn. In applications, when the analysis of the
mappings in a subset of Fn is (so far) intractable, they are heuristically modeled
by the “average” map from the entire set Fn if, for example, experimental sim-
ulations give justification for this. Thus, once the cardinality of Fn is obtained,
it is natural to seek to count the number of mappings of a certain type and find
probabilities. Specifically, one may define functions from the set of mappings
to the nonnegative integers, such as the longest possible period of the sequence
of function iterates, and look at the distribution of these values. This leads to
“global” results about the structure of mappings. “Local” properties have been
studied too: One may ask about functions on the set of nodes in mappings, such
as the period of the sequence of function iterates starting at a given node.

There is plenty of work along these lines in the literature
[1,2,3,4,5,6,7,8,9,10,11]. A clear framework for random mapping problems
based on generating functions and asymptotic analysis was laid down in [12]
(and later [13]), which guides the present work. An interesting extension to

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 254–270, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Random Mappings with Restricted Preimages 255

parts of [12] can be found in [14]. Some general tools applicable to random
mappings were presented in [15].

One may also work with some subset of Fn instead of the entire set, as done
for example in [16,17]. Flajolet and Odlyzko [12] define an r-node in a functional
graph as a node with indegree r. We define an r-mapping as a mapping ϕ :
[1..n] → [1..n] where each node in the functional graph has indegree at most r,
i.e.

max
u∈[1..n]

∣∣ϕ−1(u)
∣∣ ≤ r.

Let Fr
n be the set of r-mappings in Fn. In this paper we study the functions Fr

n,
where r ≥ 2, considering each to be equally likely.

In some applications, we are concerned with a set of mappings to which Fr
n

gives a “closer” approximation than Fn since we know the mappings have the
bounded-preimage-cardinality property. This is the case, for example, in Pol-
lard’s rho algorithm [18] for integer factorization. In the analysis of that al-
gorithm we are given a composite integer m and we are interested in proper-
ties of the polynomial mappings x �→ x2 − 1 mod k, where k|m. If k is prime,
this mapping has the property that every image has at most 2 preimages. This
type of property can also be desirable for mappings used in cryptographic hash
functions.

The same kinds of analysis done for general mappings mentioned above have
been done for r-mappings [19,20,21,22]. As discussed in [23], largely the same
methods used in the general mappings case can be used for r-mappings. This
paper continues such work. In Sect. 2 we present the generating function frame-
work for studying r-mappings, which is a slight modification of the scheme used
in [12] for general mappings. We begin the analysis in Sect. 3, where we intro-
duce some r-mapping parameters and discuss previous results for distributions
of single parameters. In Sect. 4 we look at pairs of parameters and we give some
new results, such as number of size-r1 cycles and number of size-r2 trees. Then,
in Sect. 5 we present some results on extremal parameters such as expected
largest component size. In Sect. 6 we rederive a known result on the expected
value of the maximum of tail length and cycle length of a random node in a
random r-mapping using generating functions. We also discuss how this can be
used in the analysis of the Pollard-Rho algorithm when Brent’s variant for cycle
detection is used. We conclude in Sect. 7 by mentioning opportunities for further
work.

2 Basics

In this paper we use the symbolic method for generating functions along with
singularity analysis to derive our results. These methods are the subject of [13],
where they are described in great generality.

We begin, closely following [12], by finding the following labeled combinatorial
constructions for the functional graphs corresponding to the mappings Fr

n:

256 A. MacFie and D. Panario

Functional graph: F ∼= Set(C),
Connected component: C ∼= Cyc≥1(R),
Root: R ∼= N ! Set≤r−1(T),
r-ary tree: T ∼= N ! Set≤r(T),

Node: N ∼=
{

1
}
.

This says that the functional graphs of r-mappings are sets of connected com-
ponents; the components are directed cycles of nodes with up to r − 1 children;
and each of those children is the root of a tree in which each node can have up
to r children.

According to the symbolic method [13], these constructions immediately trans-
late into the following equations in exponential generating functions:

Functional graph: F (z) = exp(C(z)),

Connected component: C(z) = log
(

(1−R(z))
−1
)
,

Root: R(z) = z
∑r−1

i=0
T (z)i

i! ,

r-ary tree: T (z) = z
∑r

i=0
T (z)i

i! .

By exponential generating function we mean, for example, that C(z) =∑
n≥0 cnz

n/n!, where cn is the number of connected component objects with
n nodes.

In this paper, we apply Flajolet and Odlyzko’s singularity analysis [24] re-
peatedly. We only require and state its simplest form, which can be expressed
as the following theorem; for more details see [13,24].

Theorem 1 (Singularity analysis [24]). Fix the range of Arg to be [−π, π).
Let f be a complex function analytic in a domain

D =
{
z : |z| ≤ s1, |Arg(z − s)| > π

2
− η
}
,

where s, s1 > s, and η are three positive real numbers. Assume that, with σ(u) =
uα logβ u and α /∈ {0,−1,−2, . . .}, we have

f(z) ∼ σ

(
1

1− z/s

)
as z → s in D. (1)

Then the Maclaurin coefficients of f satisfy, as n→∞,

[zn]f(z) ∼ s−n σ(n)

nΓ (α)
. (2)

Put simply, singularity analysis entails that if the generating function f(z) of
interest behaves as stated in (1) when z is close to the dominant singularity s (the
unique singularity of smallest modulus) then, asymptotically, the nth Maclaurin
coefficient of f(z) behaves as stated in (2).

In order to use singularity analysis, we first obtain asymptotic forms of the
generating functions introduced above, starting with T . The function T satisfies
f(z, T (z)) = 0, where

Random Mappings with Restricted Preimages 257

f(z, T (z)) = z

r∑
i=0

T (z)i

i!
− T (z),

for all z in a neighborhood of 0.
The minimum of |z0| among the solutions (z0, T (z0)) to

f(z, T (z)) = f (0,1)(z, T (z)) = 0 (3)

gives the dominant singularity of T , which is real and positive.1 Thus T has the
following asymptotic form as z → z0:

T (z) ∼ T (z0)−
(

2
f (1,0)(z0, T (z0))

f (0,2)(z0, T (z0))

)1/2√
z0 − z .

We write this as
T (z) ∼ yT − cT

√
z0 − z ,

where

yT = T (z0) and cT =

(
2
f (1,0)(z0, T (z0))

f (0,2)(z0, T (z0))

)1/2

.

Now looking at R(z) we have

R(z) = z

r−1∑
i=0

T (z)i

i!
∼
(
z0

r−1∑
i=0

yiT
i!

)
−
(
z0

r−1∑
i=0

iyi−1
T cT
i!

)
√
z0 − z .

Equation (3) implies z0
∑r−1

i=0
yi
T

i! = 1, thus we have

R(z) ∼ 1− cR
√
z0 − z ,

where

cR = z0

r−1∑
i=0

iyi−1
T cT
i!

.

Applying singularity analysis to this gives, as n→∞,

rn
n!
∼ cRz

1/2−n
0

2
√
πn3

.

With the expansion of R we can get the expansion of C:

C(z) = log
1

1−R(z)
∼ 1

2
log

1

1− z/z0
,

cn
n!
∼ z−n

0

2n
.

1 We use the notation f (i,j) to denote the function obtained from f by differentiating
i times with respect to the first argument and j times with respect to the second
argument.

258 A. MacFie and D. Panario

Finally, using F (z) = 1
1−R(z) we have

F (z) ∼ 1

cR
√
z0

1

(1− z/z0)1/2
,

fn
n!

∼ z
−n−1/2
0

cR
√
πn

.

We remark that the numbers yT , cT and cR appear in the statements of some of
our main propositions.

3 Single Mapping Parameters

We use the phrase “mapping parameter” to refer to a function ξ : Fr
n → Z≥0.

Several such parameters have been studied previously in [19,22,23] including
number of cyclic nodes (nodes on cycles), number of components, and number
of nodes with a given number of immediate predecessors. In this section we give
a further example of such a parameter: number of components of a given size.
We call a component with r nodes an r-component.

To obtain basic facts about the distribution associated with a mapping pa-
rameter, the following procedure – of which the proof of Proposition 1, below, is
an example – may be used; for more background on the technique, see [13]. If ξ
is a parameter of interest, we use the generating function F (z, u) for r-mappings
with u marking the parameter ξ, that is, F (z, u) =

∑
n,k≥0 fn,kz

nuk/n!, where
fn,k is the number of r-mappings on [1..n] with ξ-value k. If Φ is a random ele-
ment of Fr

n, then we find E [ξ(Φ)] and P [ξ(Φ) = a] directly from F (z, u): Writing
DuF (z, u) for the derivative of F (z, u) with respect to u, we have

E [ξ(Φ)] =
[zn]DuF (z, u)|u=1

[zn]F (z, 1)
, P [ξ(Φ) = a] =

[znua]F (z, u)

[zn]F (z, 1)
. (4)

Proposition 1. Let ξ(ϕ) be the number of r-components in ϕ ∈ Fr
n. Then, as

n→∞,

E [ξ(Φ)] ∼ crz
r
0

r!
, and P [ξ(Φ) = a] ∼ 1

a!

(
cr

zr0
r!

)a

exp

(
−cr

zr0
r!

)
, a ≥ 0.

Proof. By marking the components of size r, we have

F (z, u) = exp

(
C(z) + (u − 1)cr

zr

r!

)
.

Differentiating with respect to the variable u and setting u = 1 we obtain

DuF (z, u)|u=1 = cr
zr

r!

1

1−R(z)
∼ cr

zr0
r!
F (z), and

[ua]F (z, u) =
1

a!

(
cr
zr

r!

)a

exp

(
−cr

zr

r!

)
1

1−R(z)
∼ 1

a!

(
cr
zr0
r!

)a

exp

(
−cr

zr0
r!

)
F (z).

All that remains is to apply singularity analysis and substitute into (4). ��

Random Mappings with Restricted Preimages 259

4 Pairs of Mapping Parameters

In this section we consider, simultaneously, two mapping parameters ξ1 and ξ2.
(To simplify notation, we use only these two symbols in this section, defining
the parameters they represent in each subsection.) Some joint distributions have
been studied before, such as the number of components and number of cyclic
nodes [15], and size-r cycles and components [22]. Here we obtain three kinds of
results for new pairs of parameters. Again let Φ be a random element of Fr

n, and
let F (z, u1, u2) be the generating function for r-mappings, with u1 marking ξ1
and u2 marking ξ2, that is, n![znua1

1 ua2

2]F (z, u1, u2) is the number of mappings
in Fr

n with ξ1-value a1 and ξ2-value a2. Then

P [ξ1(Φ) = a1 ∧ ξ2(Φ) = a2] =
[znua1

1 ua2
2]F (z, u1, u2)

[zn]F (z, 1, 1)
,

P [ξ1(Φ) = a1|ξ2(Φ) = a2] =
[znua1

1 ua2
2]F (z, u1, u2)

[znua2
2]F (z, 1, u2)

,

P [ξ2(Φ) = a2|ξ1(Φ) = a1] =
[znua1

1 ua2
2]F (z, u1, u2)

[znua1
1]F (z, u1, 1)

,

E [ξ1(Φ)|ξ2(Φ) = a2] =
[znua2

2]Du1F (z, u1, u2)|u1=1

[znua2
2]F (z, 1, u2)

, and

E [ξ2(Φ)|ξ1(Φ) = a1] =
[znua1

1]Du2F (z, u1, u2)|u2=1

[znua1
1]F (z, u1, 1)

.

The denominators have been obtained either in the previous section or in
the literature. It remains to obtain asymptotic forms for [ua1

1 ua2
2]F (z, u1, u2),

[ua2
2]Du1F (z, u1, u2)|u1=1 and [ua1

1]Du2F (z, u1, u2)|u2=1, and apply singularity
analysis.

4.1 r-Components and Components

Proposition 2. If ϕ ∈ Fr
n, let ξ1(ϕ) be the number of r-components in ϕ and

let ξ2(ϕ) be the number of components (of any size) in ϕ. Let

θ =

(
cr

zr0
r!

)a1
(
a2
a1

)
2a1−a2

a2!
(a2 − a1).

Then, as n→∞,

P [ξ1(Φ) = a1 ∧ ξ2(Φ) = a2] ∼ θcR
√
πz0 n

−1/2 loga2−a1−1 n,

P [ξ1(Φ) = a1|ξ2(Φ) = a2] ∼ θ2a2(a2 − 1)! log−a1 n,

P [ξ2(Φ) = a2|ξ1(Φ) = a1] ∼ θ
cR
√
πz0 a1! exp

(
cr

zr
0

r!

)
(
cr

zr
0

r
!
)a1

n−1/2 loga2−a1−1 n,

E [ξ1(Φ)|ξ2(Φ) = a2] ∼ 2crz
r
0

r!
(a2 − 1)

1

logn
, and

E [ξ2(Φ)|ξ1(Φ) = a1] ∼ 1

2
logn, 0 ≤ a1 < a2.

260 A. MacFie and D. Panario

Proof. Let u1 mark the number of r-components, and let u2 mark the number
of components. We have

F (z, u1, u2) = exp

(
u2

(
C(z) + (u1 − 1)cr

zr

r!

))
.

First we have

[ua1
1 ua2

2]F (z, u1, u2) = [ua1
1]

1

a2!

(
C(z) + (u1 − 1)cr

zr

r!

)a2

=
1

a2!

(
cr

zr

r!

)a1
(
C(z)− cr

zr

r!

)a2−a1
(
a2
a1

)
∼
(
cr

zr0
r!

)a1
(
a2
a1

)
2a1−a2

a2!

(
log

1

1− z/z0

)a2−a1

.

Then we have

[ua2
2]Du1F (z, u1, u2)|u1=1 = [ua2

2] exp (u2C(z))u2cr
zr

r!
= cr

zr

r!

C(z)a2−1

(a2 − 1)!

∼ cr
zr0
r!

21−a2

(a2 − 1)!

(
log

1

1− z/z0

)a2−1

.

To extract coefficients from the previous two generating functions we can use the

fact from [25] that [zn] logβ(1−z)−1 = β!
n!

[
n
β

]
∼ βn−1 logβ−1 n, where

[
n
β

]
is the

number of permutations of n elements with β disjoint cycles (Stirling numbers
of the first kind). Lastly,

[ua1
1]Du2F (z, u1, u2)|u2=1

=[ua1
1] exp

(
C(z) + (u1 − 1)cr

zr

r!

)(
C(z) + (u1 − 1)cr

zr

r!

)
= exp

(
C(z)− cr

zr

r!

)(
1

a1!

(
C(z)− cr

zr

r!

)(
cr
zr

r!

)a1

+
1

(a1 − 1)!
cr
zr

r!

(
cr
zr

r!

)a1−1
)

∼1

2
exp

(
−cr

zr0
r!

)(
cr
zr0
r!

)a1 1

a1!

1

cR
√
z0

√
1− z/z0

log
1

1− z/z0
.

�

4.2 r-Components and Cyclic Nodes

Proposition 3. If ϕ ∈ Fr
n, let ξ1(ϕ) be the number of r-components in ϕ and

let ξ2(ϕ) be the number of cyclic nodes in ϕ. Let

θ =

a2∑
j=0

j

⎛⎝∑
k≥0

(−zr0)
k

k!

[
ua2−j
2

](
[zr] log

1

1− u2R(z)

)k+a1

⎞⎠ .

Random Mappings with Restricted Preimages 261

Then, as n→∞,

P [ξ1(Φ) = a1 ∧ ξ2(Φ) = a2] ∼ θ
c2Rz

ra1+1
0

2a1!
n−1,

P [ξ1(Φ) = a1|ξ2(Φ) = a2] ∼ θ
zra1
0

a2a1!
,

P [ξ2(Φ) = a2|ξ1(Φ) = a1] ∼ θ
c2Rz0

2

(
r!

cr

)a1

exp

(
cr

zr0
r!

)
n−1,

E [ξ1(Φ)|ξ2(Φ) = a2] ∼
a2−1∑
j=0

jzr0
a2(a2 − j)

[zr]R(z)a2−j , and

E [ξ2(Φ)|ξ1(Φ) = a1] ∼
√
π

cR
√
z0

n1/2, a1 ≥ 0, a2 ≥ 1.

Proof. Let u1 mark the number of r-components and let u2 mark the number of
cyclic nodes. We have

F (z, u1, u2) = exp

(
log

(
1

1− u2R(z)

)
+ (u1 − 1)zr

(
[zr] log

1

1− u2R(z)

))
.

From this, we first get

[u
a2
2 u

a1
1]F (z, u1, u2) = [u

a2
2]

1

1 − u2R(z)
exp

(
−z

r
[z

r
] log

1

1 − u2R(z)

)
1

a1!

(
z
r
[z

r
] log

1

1 − u2R(z)

)a1

=
zra1

a1!

a2∑
j=0

R(z)
j
∑
k≥0

(−zr)k

k!
[u

a2−j
2]

(
[z

r
] log

1

1 − u2R(z)

)k+a1

∼ z
ra1
0

a1!

a2∑
j=0

⎛
⎝∑

k≥0

(−zr
0

)k
k!

[u
a2−j
2]

(
[z

r
] log

1

1 − u2R(z)

)k+a1

⎞
⎠(1 − jcR

√
z0 − z

)
.

Now

[ua2
2]Du1F (z, u1, u2)|u1=1 = [ua2

2]
1

1− u2R(z)
zr
(

[zr] log
1

1− u2R(z)

)
=

a2−1∑
j=0

R(z)jzr[zr]R(z)a2−j/(a2 − j)

∼
a2−1∑
j=0

(
1− jcR

√
z0 − z

)
zr0[zr]R(z)a2−j/(a2 − j),

262 A. MacFie and D. Panario

and

[u
a1
1]Du2F (z, u1, u2)|u2=1

=[u
a1
1]

(
R(z)

(1 − R(z))2
exp

(
(u1 − 1)cr

zr

r!

)
+

1

1 − R(z)
exp

(
(u1 − 1)cr

zr

r!

)
(u1 − 1)zr[zr]

R(z)

1 − R(z)

)

=
R(z)

(1 − R(z))2
exp

(
−cr

zr

r!

)
1

a1!

(
cr

zr

r!

)a1

+
zr

1 − R(z)

(
[zr]

R(z)

1 − R(z)

)
exp

(
−cr

zr

r!

)

(
1

(a1 − 1)!

(
cr

zr

r!

)a1−1

−
1

a1!

(
cr

zr

r!

)a1
)

∼ exp

(
−cr

zr
0

r!

)(
cr

zr
0

r!

)a1 1

a1!

1

c2Rz0(1 − z/z0)
. �

4.3 r1-Cycles and r2-Cycle Trees

Proposition 4. If ϕ ∈ Fr
n, let ξ1(ϕ) be the number of r1-cycles (cycles with

r1 cyclic nodes) in ϕ and let ξ2(ϕ) be the number of r2-cycle trees (r-node trees

rooted on a cycle) in ϕ. Let p0 = rr2
z
r2
0

r2!
. Then, as n→∞,

E [ξ1(Φ)|ξ2(Φ) = a2] ∼ pa2+2
0

r1(a2 + 1)

r1∑
j=0

r1−j∑
i=0

ipr1−i−1
0 + (a2 − j + 1)pr1−i−2

0 ,

E [ξ2(Φ)|ξ1(Φ) = a1] ∼ p0
√
π

cRz
1/2
0

n1/2, a1 ≥ 0, a2 ≥ r.

Proof. Let u1 mark the number of r1-cycles and let u2 mark the number of
r2-cycle trees. We have

F (z, u1, u2)=exp

(
log

1

1− (R(z) + (u2 − 1)p)
+ (u1 − 1)

(R(z) + (u2 − 1)p)r1

r1

)
.

This gives

[u
a2
2]Du1F (z, u1, u2)|u1=1

=[u
a2
2]

1

1 − (R(z) + (u2 − 1)p)

(R(z) + (u2 − 1)p)r1

r1
=

pa2

r1

r1∑
j=0

(R(z) − p)
r1−j 1

(1 − R(z) + p)a2−j+1

∼ 1

r1

⎛
⎝
⎛
⎝ r1∑

j=0

r1−j∑
i=0

p
r1−i−1
0

⎞
⎠−

⎛
⎝cR

r1∑
j=0

r1−j∑
i=0

ip
r1−i−1
0 + (a2 − j + 1)p

r1−i−2
0

⎞
⎠√z0 − z

⎞
⎠ ,

and

[u
a1
1]Du2F (z, u1, u2)|u2=1

=[u
a1
1]pF (z, u1, 1)

(
1

1 − R(z)
+ (u1 − 1)R(z)

r1−1
)

=p

(
1

1 − R(z)
− R(z)

r1−1
)

[u
a1
1

]F (z,u1, 1) + pR(z)
r1−1

[u
a1−1
1

]F (z,u1, 1)

∼ r1
−a1

a1!
exp

(
− 1

r1

)
p0

c2
R
z0(1 − z/z0)

. �
Remark 1. We note that ξ1(Φ) and ξ2(Φ) have not been asymptotically indepen-
dent for any of the pairs of ξ1, ξ2 for which the joint probability was found in
this section.

Random Mappings with Restricted Preimages 263

5 Extremal Parameters

In this section we obtain results for expected maximum–type properties of r-
mappings. All parameters in this section were studied in the general mapping
setting in [12]. The expected size of the longest cycle in an r-mapping was found
in [19] to be the Golomb–Dickman constant (OEIS A084945) times the expected
number of cyclic nodes.

Again, let Φ be a random element of Fr
n.

5.1 Largest Tree

Let ξ(ϕ) be the size of the largest tree rooted on a cycle in ϕ ∈ Fr
n. Then

Theorem 3 in [26] applies, and we have, as n→∞,

E[ξ(Φ)] ∼ c1n, Var[ξ(Φ)] ∼ c2n
2,

where, with α = 1/2, γ = −1,

c1 =
1

αγ

∫ ∞

0

((
1− 1

Γ (−α)

∫ ∞

x

e−t

tα+1
dt

)γ

− 1

)
dx

.
= 0.4834983472,

and

c2 =
2

αγ(1− αγ)

∫ ∞

0

((
1− 1

Γ (−α)

∫ ∞

x

e−t

tα+1
dt

)γ

− 1

)
xdx− c21

.
= 0.04946985228.

These are the same results as for general mappings. Results on the limiting
distribution are also available in [26].

5.2 Largest Component

We adapt the proof in [12] for unrestricted mappings to the case of r-mappings.
We use the following notation: If A(z) = a0 + a1z + a2z

2 + · · · is a power series,

Tm[A(z)] =
∑
n≤m

anz
n, Rm[A(z)] =

∑
n>m

anz
n.

Let ξ(ϕ) be the size of the largest component in ϕ ∈ Fr
n, and let Ξ(z) =∑

n≥0 ξn
zn

n! where ξn =
∑

ϕ∈Fr
n
ξ(ϕ).

Proposition 5. As n→∞,

E[ξ(Φ)] ∼ cn,

where

c = −2 log(z0)

∫ ∞

0

1− exp

(
−
∫ ∞

x

zu0
2u

du

)
dx.

264 A. MacFie and D. Panario

Proof. Since F (z) = exp(C(z)) = (1 −R(z))−1, we have

Ξ(z) =
∑
m≥0

(F (z)− exp (Tm[C(z)])) =
1

1−R(z)

∑
m≥0

(1− exp (Tm[C(z)]− C(z))) .

Set z = z1+y
0 . As discussed in [12], we assume that we only need to analyze Ξ(z)

on the real line. Thus y is real and

Tm[C(z)]− C(z) ≈ −
∑
n>m

zyn0
2n

≈ −
∫ ∞

m

zyv0
2v

dv = −
∫ ∞

my

zu0
2u

du.

Now we substitute back and use Euler-Maclaurin summation:

Ξ(z) ∼ 1

1−R(z)

∑
m≥0

(
1− exp

(
−
∫ ∞

my

zu0
2u

du

))

∼ 1

1−R(z)

∫ ∞

0

1− exp

(
−
∫ ∞

wy

zu0
2u

du

)
dw

=
1

1−R(z)

∫ ∞

0

1− exp

(
−
∫ ∞

x

zu0
2u

du

)
dx

y

=
1

1−R(z)

z0 log(z0)

z − z0

∫ ∞

0

1− exp

(
−
∫ ∞

x

zu0
2u

du

)
dx,

∼ − log(z0)

cR
√
z0

1

(1− z/z0)3/2

∫ ∞

0

1− exp

(
−
∫ ∞

x

zu0
2u

du

)
dx.

We now have a form for Ξ(z) to which singularity analysis can be directly
applied. ��

6 Tail Length and Cycle Length

A node parameter is a function ξ : {ψ ∈ ϕ : ϕ ∈ Fr
n} → Z≥0, where ψ ∈ ϕ

means ψ is a node in (the functional graph of) ϕ. This section focuses on the
two node parameters tail length ξ1 (the distance from a node to the root of its
tree) and cycle length ξ2 (the size of the cycle in the component containing a
node). We explain at the end of this section how the distribution of these two
parameters gives information on the running time of Brent’s variant of Pollard’s
rho algorithm.

Let Ψ be a random node in a mapping in Fr
n, where all nn+1 such nodes

are equally likely. The limiting joint distribution of ξ1(Ψ) and ξ2(Ψ) has been
obtained in [21]. This section contains rederivations using relatively elementary
methods without leaving the framework of [12].

Random Mappings with Restricted Preimages 265

Proposition 6. If a2 ≥ 1, as n→∞,

E [ξ1(Ψ)] ∼
(√

π√
z0 c3R

r−2∑
i=0

yi+1
T

i!

)
n1/2,

P [ξ1(Ψ) = a1] ∼

⎧⎨⎩
(√

πz0
cR

∑r−2
i=0

yi+1
T

i!

)
n−1/2 if a1 ≥ 1,

√
π

cR
√
z0

n−1/2 if a1 = 0,

E [ξ2(Ψ)] ∼
√
π

2cR
√
z0

n1/2,

P [ξ2(Ψ) = a2] ∼ cR
√
πz0

2
n−1/2,

P [ξ1(Ψ) = a1 ∧ ξ2(Ψ) = a2] ∼
{
z0
∑r−2

i=0
yi+1
T

i! n−1 if a1 ≥ 1,

n−1 if a1 = 0,

P [ξ1(Ψ) = a1|ξ2(Ψ) = a2] ∼

⎧⎨⎩
(

2
√
z0

cR
√
π

∑r−2
i=0

yi+1
T

i!

)
n−1/2 if a1 ≥ 1,

2
cR

√
πz0

n−1/2 if a1 = 0,

P [ξ2(Ψ) = a2|ξ1(Ψ) = a1] ∼ cR
√
z0√
π

n−1/2,

E [ξ1(Ψ)|ξ2(Ψ) = a2] ∼
(

4

c3R
√
πz0

r−2∑
i=0

yi+1
T

i!

)
n1/2, and

E [ξ2(Ψ)|ξ1(Ψ) = a1] ∼ 2

cR
√
πz0

n1/2.

Proof. Let

ΞF (z, u1, u2) =
∑
n≥0

∑
a1,a2≥0

ξF (n, a1, a2)ua1
1 ua2

2

zn

n!
,

where ξF (n, a1, a2) is the number of nodes ψ in mappings in Fr
n such that ξ1(ψ) =

a1 and ξ2(ψ) = a2, and let

ΞC(z, u1, u2) =
∑
n≥0

∑
a1,a2≥0

ξC(n, a1, a2)ua1
1 ua2

2

zn

n!
,

where ξC(n, a1, a2) is the number of nodes ψ in size-n components such that
ξ1(ψ) = a1 and ξ2(ψ) = a2. Define ΞT (z, u1) and ΞR(z, u1) analogously with
only u1 marking tail length, since cycle length is defined for nodes in a compo-
nent.

As proof of the proposition, we merely obtain an explicit expression for
ΞF (z, u1, u2); respective extraction of coefficients provides the stated results.

First we look at ΞT (z, u1). A node in an r-ary tree is either a root with tail
length 0, or a node in a subtree of the root, with tail length equal to the tail

266 A. MacFie and D. Panario

length in that subtree, plus 1. This yields

ΞT (z, u1) = T (z) + zu1ΞT (z, u1)
r−1∑
i=0

T (z)i

i!
=

T (z)

1− u1R(z)
.

Similarly

ΞR(z, u1) = R(z) + zu1ΞT (z, u1)

r−2∑
i=0

T (z)i

i!
.

Now we wish to use ΞR(z, u) to obtain ΞC(z, u). A labeled tree will appear once
in a component for every combination of trees that make up the rest of the cycle,
and the nodes in a tree have cycle length a2 if the tree is part of a cycle with
a2 − 1 other trees, so

ΞC(z, u1, u2) = ΞR(z, u1)
u2

1− u2R(z)
.

Now we note that n![zn]ΞF (z, u1, u2) is a sum of ξC(i, a1, a2)ua1
1 ua2

2 weighted by
the number of times a component of size i can appear in a mapping in Fr

n:

n![zn]ΞF (z, u1, u2) =
∑

a1,a2≥0

n∑
i=0

(
n

i

)
ξC(i, a1, a2)ua1

1 ua2
2 fn−i.

This implies

ΞF (z, u1, u2) = F (z)ΞC(z, u1, u2)

=
1

1−R(z)

(
R(z) +

zu1T (z)

1− u1R(z)

r−2∑
i=0

T (z)i

i!

)
u2

1− u2R(z)
.

We note that because of the form of this generating function, the asymptotic
results stated in the proposition are largely free of a1 and a2. ��

If (but not iff) Pollard’s rho algorithm [18] on a composite integer m terminates,
a cycle has been found, via Brent’s algorithm [27], in the functional graph of the
mapping x �→ x2 − 1 mod k, for some k where k|m. If k is prime, the images of
this mapping have at most r = 2 preimages. If x ∈ Zk is the starting value for
the sequence of iterates, then Brent’s algorithm on the mapping will find a cycle
after ξ2(x) + 2�lg(max(ξ1(x),ξ2(x)))� iterations. We note that we have the simple
bounds

ξ2(x) + max(ξ1(x), ξ2(x)) ≤ ξ2(x) + 2�lg(max(ξ1(x),ξ2(x)))� ≤ ξ2(x) + 2 max(ξ1(x), ξ2(x)).

In the following proposition we obtain E [max(ξ1 (Ψ) , ξ2 (Ψ))] in terms of the
generating functions defined up to now, and then we use it in Corollary 1 to give
bounds on the expected number of iterations of Brent’s algorithm on 2-mappings.

Random Mappings with Restricted Preimages 267

Proposition 7. As n→∞,

E [max(ξ1 (Ψ) , ξ2 (Ψ))] ∼
(

3
√
π

2c3R
√
z0

r−2∑
i=0

yi+1
T

i!

)
n1/2.

Proof. Let ΞF (z, u1, u2) be defined as in the proof of Proposition 6 above, and
let

M(z) =
∑
n≥0

∑
a1,a2≥0

max(a1, a2)ξF (n, a1, a2)
zn

n!
.

Rearranging the double sum we get

M(z) =
∑
n≥0

(
2
∑

a1>a2>0

a1ξF (n, a1, a2) +
∑
a2>0

a2ξF (n, 0, a2) +
∑
a1>0

a1ξF (n, a1, 0)

+
∑
j≥0

jξF (n, j, j)

⎞⎠ zn

n!
.

The fact that
∑

a1>a2>0 a1ξF (n, a1, a2) =
∑

a2>a1>0 a2ξF (n, a1, a2) follows from
the expression obtained for ΞF (z, u1, u2) in Proposition 6. Now,

∑
n≥0

∑
a2>0

a2ξF (n, 0, a2)
zn

n!
=
∑
n≥0

∑
a2≥0

a2ξF (n, 0, a2)
zn

n!
= Du2ΞF (z, 0, u2)

∣∣∣∣
u2=1

= Du2

R(z)

1−R(z)

u2

1− u2R(z)

∣∣∣∣
u2=1

=
R(z)

(1− R(z))3
.

To obtain
∑

j≥0 jξF (n, j, j), we extract the diagonal from u1Du1ΞF (z, u1, u2)
using a standard trick:

∑
n≥0

∑
j≥0

jξF (n, j, j)
zn

n!
= [u

0
1]

((
u1Du1ΞF (z, u1, u2)

)
|
u2=u

−1
1

)

=

(
zT (z)

1 − R(z)

r−2∑
i=0

T (z)i

i!

)
[u0

1]

⎛
⎝∑

j≥0

(j + 1)uj
1R(z)j

⎞
⎠
⎛
⎝∑

j≥0

u−j
1 R(z)j

⎞
⎠

=

(
zT (z)

1 − R(z)

r−2∑
i=0

T (z)i

i!

)⎛
⎝∑

j≥0

(j + 1)R(z)2j

⎞
⎠

=

(
zT (z)

1 − R(z)

r−2∑
i=0

T (z)i

i!

)
1

(1 − R(z)2)2
,

where [z0]f(z) is the constant term of the formal Laurent series f(z). Finally,
we use a similar technique to obtain

∑
a1>a2>0 a1ξF (n, a1, a2). As in [28], if

f(z) =
∑∞

n=−∞ fnz
n is a formal Laurent series, we use the notation

[
z

1−z

]
f(z)

268 A. MacFie and D. Panario

to denote f1 + f2 + · · ·. We have∑
n≥0

∑
a1>a2>0

a1ξF (n, a1, a2)
zn

n!
=

[
u1

1− u1

] (
(u1Du1)ΞF (z, u1, u2)|u2=u−1

1

)

=

(
zT (z)

1−R(z)

r−2∑
i=0

T (z)i

i!

)[
u1

1− u1

]⎛⎝∑
j≥0

(j + 1)uj
1R(z)j

⎞⎠⎛⎝∑
j≥0

u−j
1 R(z)j

⎞⎠
=

(
zT (z)

1−R(z)

r−2∑
i=0

T (z)i

i!

)∑
n≥0

R(z)n
n∑

j=�n/2�+1

(j + 1)

=

(
zT (z)

1−R(z)

r−2∑
i=0

T (z)i

i!

)(
5 + 10R(z)− 3R(z)2

16(1−R(z))3
+

−5− 3R(z)

16(1 + R(z))2

)
.

We note that
∑

a1>0 a1ξF (n, a1, 0) is just 0. Putting all this together, we have

M(z) =
R(z)

(1−R(z))3
+

(
zT (z)

1−R(z)

r−2∑
i=0

T (z)i

i!

)(
1

(1−R(z)2)2
+ 2

5 + 10R(z)− 3R(z)2

16(1−R(z))3

+ 2
−5− 3R(z)

16(1 + R(z))2

)
∼ z0yT

r−2∑
i=0

yi
T

i!

3/2

(1−R(z))4
.

The result now follows since

E [max(ξ1 (Ψ) , ξ2 (Ψ))] =
[zn]M(z)

n[zn]F (z)
. �

This allows us to state the following corollary.

Corollary 1. Let g(n) be the expected number of iterations Brent’s algorithm
requires to find a cycle in a random mapping in F2

n starting from a uniform
random point. Then there exist functions gL and gU such that, for all n,

gL(n) ≤ g(n) ≤ gU (n),

and, as n→∞,

gL(n) ∼ 5

4

√(
1 +

√
2
)
π

23/4
n1/2 gU (n) ∼ 21/4

√(
1 +

√
2
)
π n1/2.

Proof. This follows from the preceding discussion and the following fact, from
[19]:

E [ξ2 (Ψ)] ∼
√
π

2cR
√
z0

n1/2,

as n→∞. ��

Random Mappings with Restricted Preimages 269

7 Conclusion

We have shown in this paper how the generating function framework described
in [12] and [13] can be used to solve problems related to r-mappings, some
motivated by cryptographic applications, in a relatively unified manner. Gen-
erating functions can often lead to the simplest proofs because of their ease
of manipulation and the existence of asymptotic moment extraction theorems,
and sometimes they provide the only known solution to problems in asymptotic
counting and probability. We hope that this paper may encourage more work
towards understanding random mappings.

A natural continuation of this work would be to find limiting distributions
for all parameters mentioned, since limiting distributions have already been ob-
tained in the literature for a number of parameters and pairs of parameters. In
addition, there are two parameters from [12], largest tail length and largest rho
length, which could be studied in the r-mapping setting.

Acknowledgements. We would like to thank Igor Shparlinski for suggesting
this line of research and its applications to cryptography, and anonymous referees
for their helpful comments.

References

1. Aldous, D.J.: Exchangeability and related topics. In: École D’été de Probabilités
de Saint-Flour, XIII—1983. Lecture Notes in Math., vol. 1117, pp. 1–198. Springer,
Berlin (1985)

2. Arratia, R., Tavaré, S.: Limit theorems for combinatorial structures via discrete
process approximations. Random Structures Algorithms 3(3), 321–345 (1992)

3. Baron, G., Drmota, M., Mutafchiev, L.: Predecessors in random mappings. Com-
bin. Probab. Comput. 5, 317–335 (1995)

4. DeLaurentis, J.M.: Components and Cycles of a Random Function. In: Pomerance,
C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 231–242. Springer, Heidelberg (1988)

5. Drmota, M., Gittenberger, B.: Strata of random mappings—a combinatorial ap-
proach. Stochastic Process. Appl. 82, 157–171 (1999)

6. Hansen, J.C.: A functional central limit theorem for random mappings. Ann.
Probab. 17, 317–332 (1989)

7. Harris, B.: Probability distributions related to random mappings. The Annals of
Mathematical Statistics 31, 1045–1062 (1960)

8. Kolchin, V.F.: A problem of the allocation of particles in cells and random map-
pings. Theory Probab. Appl. 21, 48–63 (1976)

9. Kolchin, V.F.: Random mappings. Translation Series in Mathematics and Engi-
neering. Optimization Software Inc. Publications Division, New York (1986); Trans-
lated from the Russian, with a foreword by Varadhan, S.R.S.

10. Mutafchiev, L.R.: Limit properties of components of random mappings. C. R. Acad.
Bulgare Sci. 31(10), 1257–1260 (1978)

11. Mutafchiev, L.R.: The limit distribution of the number of nodes in low strata of a
random mapping. Statist. Probab. Lett. 7(3), 247–251 (1988)

270 A. MacFie and D. Panario

12. Flajolet, P., Odlyzko, A.M.: Random Mapping Statistics. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 329–354. Springer,
Heidelberg (1990)

13. Flajolet, P., Sedgewick, R.: Analytic combinatorics. Cambridge University Press,
Cambridge (2009)

14. Aldous, D., Pitman, J.: The asymptotic distribution of the diameter of a random
mapping. C. R. Math. Acad. Sci. Paris 334(11), 1021–1024 (2002)

15. Drmota, M., Soria, M.: Marking in combinatorial constructions: generating func-
tions and limiting distributions. Theoret. Comput. Sci. 144(1-2), 67–99 (1995)

16. Hansen, J.C., Jaworski, J.: Local properties of random mappings with exchangeable
in-degrees. Adv. in Appl. Probab. 40(1), 183–205 (2008)

17. Hansen, J.C., Jaworski, J.: Random mappings with a given number of cyclical
points. Ars Combin. 94, 341–359 (2010)

18. Pollard, J.M.: A Monte Carlo method for factorization. Nordisk Tidskr. Informa-
tionsbehandling (BIT) 15(3), 331–334 (1975)

19. Arney, J., Bender, E.A.: Random mappings with constraints on coalescence and
number of origins. Pacific J. Math. 103(2), 269–294 (1982)

20. Gittenberger, B.: On the number of predecessors in constrained random mappings.
Statist. Probab. Lett. 36(1), 29–34 (1997)

21. Rubin, H., Sitgreaves, R.: Probability distributions related to random transforma-
tions on a finite set. Technical Report 19a, Applied Mathematics and Statistics
Laboratory, Stanford (1954)

22. Stepanov, V.E.: Limit distributions of certain characteristics of random mappings.
Teor. Verojatnost. i Primenen. 14, 639–653 (1969)

23. Drmota, M., Soria, M.: Images and preimages in random mappings. SIAM J. Dis-
crete Math. 10(2), 246–269 (1997)

24. Flajolet, P., Odlyzko, A.: Singularity analysis of generating functions. SIAM J.
Discrete Math. 3(2), 216–240 (1990)

25. Wilf, H.S.: The asymptotic behavior of the Stirling numbers of the first kind. J.
Combin. Theory Ser. A 64(2), 344–349 (1993)

26. Gourdon, X.: Largest component in random combinatorial structures. Discrete
Math. 180, 185–209 (1998)

27. Brent, R.P.: An improved Monte Carlo factorization algorithm. BIT 20(2), 176–184
(1980)

28. Knuth, D.E.: A Classical Mind: Essays in Honour of C.A.R. Hoare, pp. 247–258.
Prentice Hall International (UK) Ltd., Hertfordshire (1994)

On the Sosemanuk Related Key-IV Sets

Aleksandar Kircanski and Amr M. Youssef

Concordia Institute for Information Systems Engineering
Concordia University

Montreal, Quebec, H3G 1M8, Canada
{a kircan,youssef}@encs.concordia.ca

Abstract. Sosemanuk is a software-based stream cipher that has
passed all three stages of the ECRYPT stream cipher project and is
currently a member of the eSTREAM software portfolio. In the recent
works on cryptanalysis of Sosemanuk, its relatively small inner state
size of 384 bits was identified to be one of the reasons that the attacks
were possible. In this paper, we show that another consequence of the
small inner state size of Sosemanuk is the existence of several classes of
(K, IV), (K′, IV ′) pairs that yield correlated keystreams. In particular,
we provide a distinguisher which requires less than 2 kilobytes of data
and an inner state recovery algorithm that works for two sets of key-IV
pairs of expected size ≈ 2128 each. In addition, a distinguisher requiring
252 keystream words is provided for another set of pairs of Sosemanuk
instances. The expected number of such key-IV pairs is 2192. Although
the security of Sosemanuk is not practically threatened, the found fea-
tures add to understanding of the security of the cipher and also provide
the basis for an elegant attack in the fault analysis model.

1 Introduction

Sosemanuk [5] is a fast software-oriented stream cipher that has passed all the
three phases of the ECRYPT eSTREAM competition and is currently a member
of the eSTREAM Profile 1 (software portfolio). It uses a 128-bit initialization
vector and allows keys of either 128-bit or 256-bits, whereas the claimed security
is always 128-bits. The design of Sosemanuk is based on the SNOW 2.0 stream
cipher [10] and utilizes elements of the Serpent block cipher [6]. Sosemanuk
aims to fix weaknesses of the SNOW 2.0 design and achieves better performance,
notably in the cipher’s initialization phase.

The preliminary analysis [5], conducted during the Sosemanuk design pro-
cess, includes the assessment of the cipher with respect to different cryptan-
alytic attacks such as correlation attacks, distinguishing attacks and algebraic
attacks. Public analysis that followed can be divided into two threads: guess-and-
determine attacks and linear attacks. In [21], Tsunoo et al. reported a guess-
and-determine attack that requires about 2224 operations. The computational
complexity of the latter attack was reduced to 2176 operations by Feng et al.
[12]. The two recent works on linear cryptanalysis of Sosemanuk include [16,9].
The time complexity and storage requirement of both attacks is about 2148.

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 271–287, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

272 A. Kircanski and A.M. Youssef

In particular, Cho et al. [9] relax the amount of required keystream needed by
the attack by Lee et al. [16] by a factor of about 210 and require about 2135.7

keystream bits for the inner state recovery by linear cryptanalysis to succeed. It
should be noted that the size of the inner state in Sosemanuk was stated as a
principal reason that the attacks in [21,16] were possible. In [19], an attack in
the fault analysis model requiring about 6144 faults to recover the secret inner
state was provided. Finally, the slide attacks on stream ciphers were introduced
in [8], where Grain stream cipher was shown to be susceptible to this type of
analysis.

When compared to other recent software oriented stream ciphers, such as
HC-128 [23], Rabbit [7] and SNOW 2.0 [10], Sosemanuk has the following two
particularities:

(i) A comparatively small inner state of 384 bits
(ii) Delay mechanism, by which words are sent to the output every 4 steps

Property (i) stems from the Sosemanuk design goal which aims to reduce the
processor cache pressure in order to allow the execution of the cipher primarily
utilizing processor cache registers, thus achieving higher speed [5]. As a conse-
quence of having a relatively small state, a measure of defense against guess-
and-determine attacks had to be introduced. Instead of releasing 32-bit words
to the output as they are generated in each step, the words are accumulated and
at every 4 steps, i.e., at the end of one Sosemanuk iteration, the 4 accumulated
32-bit words are permuted, passed through a non-linear layer and finally released
as a 128-bit keystream word, which resulted in increased complexity of guess-
and-determine attacks. In other words, the Sosemanuk iteration is self-similar,
in the sense that it contains 4 identical steps.

In this paper, we examine the impact of properties (i) and (ii) on the security
of Sosemanuk. In particular, of interest are related inner states of Sosemanuk
that are preserved over time and that, as shown in this work, yield correlated
keystreams. A trivial example of such a relation is full equality between the
inner states. The existence of key-IV pairs that lead to related inner states
follows due to property (i), more precisely, due to the ratio between the key-IV
size and inner state size, given a reasonable assumption on the random behavior
of 6-round cascades of the Serpent block cipher and a simple birthday paradox
argument. As for particularity (ii), the self-similarity of the iteration induced by
the delay mechanism gives rise to slid inner states. Again, such slid states are
achievable due to the ratio between the key-IV size and the inner state size.

The results in the paper are summarized in Table 1. In particular, a distin-
guisher requiring 251 keystream words generated by two Sosemanuk instances
with equal LFSRs is constructed. The expected size of the set of key-IV pairs
leading to such related inner states is about 2192 pairs. Next, it is shown that
there exist two distinct types of slid Sosemanuk inner states, the difference
being in the state slide distance d ∈ {1, 2}. Distinguishers requiring less than
2 kilobytes of data are constructed for both slid states variants. Moreover, an
inner state recovery algorithm that requires a work of less than 232 and 247.7

Sosemanuk iterations is given, for the cases d = 1 and d = 2, respectively.

On the Sosemanuk Related Key-IV Sets 273

Table 1. The expected number of related key-IV pairs, distinguisher and inner state
recovery complexities.

Underlying inner state
relation

Expected # of
related key-IV
pairs

Distinguisher
complexity

Inner state
recovery

Full equality 2128 trivial -

LFSR equality, (Sect. 4) 2192 252 words -

Slid LFSR, Slid FSM,
d = 1 (Sect. 5)

2128 < 28 words
232 time,
223.8 space

Slid LFSR, Slid FSM,
d = 2 (Sect. 5)

2128 < 28 words
247.7 time,
223.8 space

Slid LFSR 2192 - -

The two sets of key-IV pairs leading to variants of such slid inner states are
expected to have about 2128 pairs each. Finally, the relation by which only the
corresponding two LFSRs are slided is pointed out. It is presented in the last
row of Table 1 and the question whether it is possible to efficiently distinguish
and mount inner state recovery attacks against such instance pairs is brought
up for future research.

From the perspective of fault analysis, the slide properties of Sosemanuk
provided in this paper show that the security of Sosemanuk is highly sensitive
to instruction skipping type of faults. Inserting such faults has been shown to be
practically possible, for example by using supply voltage variation [3,4,22,20]. If
the injected fault in the cryptographic device causes certain instructions to be
skipped, slid Sosemanuk keystreams may be obtained and then, the practical-
complexity inner state recovery algorithms provided in this paper apply.

The rest of the paper is organized as follows. In Section 2, the specification of
Sosemanuk is provided. Inner state relations preserved by the iteration steps are
identified and analyzed in Section 3. A distinguisher for Sosemanuk instances
with identical LFSRs is given in Section 4. The inner state recovery algorithm
for the case of slide Sosemanuk pairs is provided in Section 5. Finally, our
conclusion is provided in Section 6.

2 The Sosemanuk Specification and Notation
Conventions

The following notation will be utilized throughout the rest of the paper:

- xi, xj...,i: i-th bit of word x and bits from i to j of word x, respectively
- �,× : addition and multiplication modulo 232, respectively
- ⊕ bit-wise XOR

- <<< : left rotation defined on 32 bit values

274 A. Kircanski and A.M. Youssef

- wt,i: a 4-bit value defined by wt,i = zi mod 8
t,� i

8 �
zi mod 8
t,� i

8 �+4
zi mod 8
t,� i

8 �+8
zi mod 8
t,� i

8 �+12
, for

t ≥ 0, 0 ≤ i ≤ 31 where zt,i represents the i-th byte in the big-endian
notation of the keystream word zt. In other words, wt,i extracts the 4 bits
from zt that correspond to the application of one Serpent S-box.

- ISt: Sosemanuk inner state after t steps have been executed (four steps
represent one full cipher iteration)

1−α α

⊕
output

0s3s9s

1R 2R

⊕

⊕

4×tf

1s

⊕ ⊕

Fig. 1. Overview of the Sosemanuk stream cipher

While the claimed security level of Sosemanuk is 128 bits, it supports a
variable key length of 128 or 256 bits, whereas the length of the initialization
value can be only 128 bits. As depicted in Fig. 1, the secret inner state of
Sosemanuk consists of 12 32-bit words and utilizes three main components to
generate the keystream output: a linear feedback shift register (LFSR), a finite
state machine (FSM) and the function Serpent1 that represents the S-box layer
of a Serpent round, specified using Serpent S-box S2. The inner state at time t is
denoted by (st, . . . , st+9, R1t, R2t). For notation convenience, the FSM counters
in the specifications below are moved by 1 when compared to the original cipher
description.

For the purpose of specifying one Sosemanuk iteration, let α be a root of the
primitive polynomial P (X) = X4 +β23X3 +β245X2 +β48X +β239 over GF(28)
and let β be a root of the primitive polynomial Q(X) = X8 +X7 +X5 +X3 + 1
over GF(2). Also, let

mux(c, x, y) =

{
x if c = 0
y if c = 1

Finally, let Trans(x) = (M × x) <<< 7 and M = 0x54655307. A Sosemanuk
inner state update step consists of repeating the following transformations for 4
times:

On the Sosemanuk Related Key-IV Sets 275

R1t+1 = (R2t �mux(lsb(R1t), st+1, st+1 ⊕ st+8) (1)

R2t+1 = Trans(R1t) (2)

st+10 = st+9 ⊕ α−1st+3 ⊕ αst (3)

The multiplications by α and α−1 in (3) are in GF(232). Once every four steps,
a 128-bit keystream word is sent to the output. In each step, between applying
(2) and (3), a 32-bit ft value is computed using

ft = (st+9 �R1t+1)⊕R2t+1 (4)

The 128-bit keystream word is computed using

zt = Serpent1(ftft+1ft+2ft+3)⊕ stst+1st+2st+3 (5)

As for the initialization procedure of Sosemanuk, it consists of expanding the
key K by the Serpent key schedule and encrypting the IV using the first 24
Serpent rounds. Denote the 128-bit i-th round output by (Y i

3 , Y
i
2 , Y

i
1 , Y

i
0). The

Sosemanuk inner state at t = 0 is then defined by

(s6, s7, s8, s9) = (Y 12
3 , Y 12

2 , Y 12
1 , Y 12

0)

(s5, R20, s4, R10) = (Y 18
3 , Y 18

2 , Y 18
1 , Y 18

0)

(s0, s1, s2, s3) = (Y 24
3 , Y 24

2 , Y 24
1 , Y 24

0)

where the 12-th and 18-th round outputs are taken right after the linear layer
and the 24-th round output is taken after the addition with the 25-th subkey.

3 The Existence and the Size of the Related Key-IV Sets

In this section, we argue the existence of related key-IV sets and determine their
respective expected sizes. First, we identify relations between the two inner states
that are preserved by the Sosemanuk iteration step. A trivial example of such
iteration-preserving relation is the full equality between the two inner states.

For the purpose of identifying more such relations, observe that one Sose-
manuk iteration can be regarded as 4 steps, each consists of one FSM update
followed by one LFSR update, i.e., transformations due to a single application
of (1), (2) and (3). The value ft computed in step t is preserved and at the end
of the iteration, i.e., every four steps, a 128-bit keystream output value is com-
puted using (5) and sent to the output. Note that, as for the update part, the
Sosemanuk iteration is self-similar. In other words, the distance between two
inner states expressed in steps is invariant with time, which makes the following
definition meaningful.

Definition 1. We say that the two inner states ISt and ISt+d (and also their
corresponding cipher instances) are on distance d. Furthermore, if d is not a
multiple of 4, we call such two inner states slid states.

276 A. Kircanski and A.M. Youssef

An analogous definition can be stated for distance between the two LFSRs.
Now, four different iteration-preserving relations between the two inner states
of Sosemanuk can be identified:

(R1) Equality between inner states (inner states on distance d = 0)

(R2) Equality between LFSRs (LFSRs on distance d = 0)

(R3) Slid inner states (inner states on distance 1 ≤ d ≤ 3)

(R4) Slid LFSRs (LFSRs on distance 1 ≤ d ≤ 3)

Relations (R2) and (R4) leave the corresponding FSM content unrelated and are
preserved over time since the LFSR is independent of the FSM. Relations (R1)
and (R3) are trivially preserved. Note that if d /∈ {0, 1, 2}, the two keystreams
can be accordingly aligned, after which algorithms for (R1)-(R4) below become
applicable. Since properly aligning the keystream adds more complexity to the
distinguishing task, in this paper, we limit the related key-IV pair scope to only
those that refer to the starting states in both instances.

To argue the existence of key-IV pairs that lead to pairs of states (R1)-(R4),
let EK(Y 12) and E′

K(Y 18) denote a composition of Serpent rounds 12, . . . , 18
and 18, . . . , 24, respectively, where E′

K also includes the addition with the 25-th
round subkey. Then, it is convenient to represent the set of starting inner states
with fixed value Y 12 = (s6, s7, s8, s9) by

I(Y 12) =
{

(Y 12, EK(Y 12), E′
K(EK(Y 12))) | K ∈ {0, 1}128

}
Clearly, the whole set of possible starting inner states is a union of I(Y 12) sets
for each Y 12 ∈ {0, 1}128.

Consider, for example, the relation (R3) for d = 1. The Sosemanuk key-IV
size is 256 bits and the inner state size is 384 bits. Assume for now that EK

and E′
K behave as random functions when regarded as functions of K for fixed

inputs. Such an assumption is commonly adopted in the context of time-memory
tradeoff attacks [14], see also [18]. A necessary condition for the inner state IS0

to precede state IS′
0 is that s10 = s′9, s9 = s′8, s8 = s′7, s7 = s′6. Consider the

set
⋃

α∈{0,1}32 I(α, Y 12
2 , Y 12

1 , Y 12
0) for a fixed Y 12

2 , Y 12
1 , Y 12

0 . The set contains at

most 2128 × 232 elements. After introducing a constraint that fixes s10 as well,
the size decreases to about 2128 values since, due to birthday paradox, there
will be only a negligible number of collisions among its elements. The only place
where its potential key-IV pairs can be found is the set I(Y 12

2 , Y 12
1 , Y 12

0 , s10)
which contains about 2128 elements. The birthday paradox can be applied to the
two sets using the approximation p(m,n) ≈ 1− e−n2/m, where m is the number
of elements in the two sets and n is the number of draws from the sets [17]. By
noting that p(2256, 2128) ≈ 0.63212, the probability that there exists a key-IV

pair that yield two slid states on d = 1 will be given by 1 − 0.632122
128 ≈ 1.

Analogous reasoning holds for the case when d = 2. Again, clearly, in case (R4), a
higher existence probability is achieved both for cases d = 1 and d = 2. A simpler
probabilistic argument shows that in the case of relations (R1) and (R2), related
key-IV pairs almost certainly exist.

On the Sosemanuk Related Key-IV Sets 277

In case the Serpent 6-round cascades randomness assumption above is aban-
doned, the existence of Sosemanuk related key-IV pairs is still almost certain.
Assume for example that (EK(Y 12), E′

K(EK(Y 12))), regarded as a function of
K, is injective in a degree significantly higher than it is the case for a randomly
chosen function. In that case, the probabilistic arguments establishing relation
(R1) between IS0 and IS′

0 do not hold. However, consider the same arguments
for IS0 and IS′

n for a sufficiently large n > 0. Since the inner state has been
randomized sufficiently by n Sosemanuk iterations, the probabilistic arguments
above can be reiterated.

The expected number of related key-IV pairs in sets specified by (R1), (R2),
(R3) and (R4) is 2128, 2192, 2128 and 2192, respectively. The details of the counting
are given in Appendix A.

4 Sosemanuk Instances with the Identical LFSRs

In this section, we provide a distinguisher for a pair of keystreams originating
from cipher instances with same LFSRs, i.e., related according to relation (R2).
Since in Sosemanuk the LFSR does not depend on the FSM registers, the
equality of the LFSRs is preserved as the two instances iterate. At the first
glance, it may appear that the FSM registers of the two cipher instances will
become equal after about 264 steps and that therefore it is trivial to distinguish
the two keystreams given such long keystreams. However, as shown below, this
is not the case.

Lemma 1. The inner states of two Sosemanuk instances with the same LFSRs
and different FSMs will never become equal.

Proof: It suffices to show that one Sosemanuk step preserves the FSM difference.
Whenever R1t �= R1′t, it follows that R2t+1 �= R2′t+1, since Trans is injective.
If R1t = R1′t, but R2t �= R2′t, then R1t+1 �= R1′t+1, since the mux control bits
in step t are equal. �

4.1 Distinguishing a Pair of Keystreams from Random Data

Lemma 1 states that as the two instances iterate, the corresponding FSM regis-
ters will not become identical. However, as shown below, once a zero-difference is
established on certain bits of the two FSMs, the equality between the bits prop-
agates in the next steps with biased probability, yielding almost equal keystream
words. The distinguisher provided below is based on this property.

The equality between the keystream words is captured by event Ot(l).
Namely, consider the two inner states with identical LFSRs at some time t by
(st, . . . , st+9, R1t, R2t) and (st, . . . , st+9, R1′t, R2′t), where t ≡ 0 mod 4. Let the
event Ot(l) take place if wt,0 = w′

t,0, . . . , wt,l−1 = w′
t,l−1, i.e., if the bits in the

two keystream words at time t that correspond to l least significant S-boxes are
equal. Below, we show that if l > 7, i.e., if l is larger than the rotation constant
in the Trans function, the probability of event Ot(l) is significantly higher than
the corresponding probability for randomly generated data.

278 A. Kircanski and A.M. Youssef

In particular, the reason that the probability of Ot(l) is biased when l > 7
can be illustrated as follows. For some fixed l and i ∈ {1, 2}, define

Δ(Ril−1..0
t) =

{
0 if Ril−1..0

t = Ri
′l−1..0
t ,

1 otherwise.

Then, if t0 is a starting step of some Sosemanuk iteration, the event Ot0(l)
will take place if (Δ(R1l−1..0

t), Δ(R2l−1..0
t)) = (0, 0) for t ∈ {t0, t0 + 1, t0 +

2, t0 + 3}. Now, the mentioned bias for l > 7 can be observed as follows. Con-
sider the probability P [(0, 0) → (0, 0)], i.e., the probability that the equal-
ity between the corresponding bits in the two FSMs will be preserved. Since
(Δ(R1l−1..0

t), Δ(R2l−1..0
t)) = (0, 0), the mux control bits will be equal in the

two instances of the cipher and therefore R1l−1..0
t+1 = R1

′l−1..0
t+1 will hold. On the

other hand, since Trans(x) = (M×x mod 232) <<< 7, we have that P [R1l+7..7
t+1 =

R1
′l+7..7
t+1] = 1 and P [R17..0t+1 = R1

′7..0
t+1] = 2−7. Therefore

P [(0, 0) → (0, 0)] =

{
2−l if l ≤ 7
2−7 if l > 7

Thus, increasing l to greater than 7 leaves the probability above constant, which
shows that equality among the least significant bits of R1 and R2 between the two
instances of the cipher propagates with good probability. To have a distinguisher,
l needs to be increased up to a point where the probability of Ot(l) for randomly
generated data is significantly smaller than for Sosemanuk outputs. Below, the
advantage of the distinguisher for l = 14 is shown to be sufficiently high.

Since (Δ(R1l−1..0
t), Δ(R2l−1..0

t)) = (0, 0) for l = 14 imposes two 14-bit condi-
tions on the two inner states, the proportion of steps in which the (0, 0) event
takes place is 2−28. Consequently, it can be shown that, in 253 steps, the event
(0, 0) will occur more than 224.9995 times with probability 0.98. Out of 224.9995

(0, 0) states, only 222.9995 will represent the starting step of a Sosemanuk iter-
ation. Each such starting step may develop into Ot(14) event with probability
P [(0, 0) → (0, 0)]3 = 2−7×3 = 2−21. Out of 222.9995 such steps, one will develop

into Ot(14) with probability 1−(1−2−21)2
22.9995

= 0.98. Therefore, the probabil-
ity that Ot(14) will occur within 253 steps, or 251 Sosemanuk iterations of the
two cipher instances is higher than 0.98 × 0.98 = 0.96. On the other hand, the
probability of that Ot(14) will occur in a pair of randomly generated sequences

of 251 128-bit words is 1− (1−24×14)2
51

= 0.03, which gives rise to the following
distinguisher:

- If the event Ot(14) took place for some t in the two keystreams, then return
Sosemanuk. Otherwise, return Random.

The overall amount of data required for the distinguisher is 251 × 2 = 252

keystream words. The probability of false positives is 0.03 and the probability
of false negatives is 1 − 0.96 = 0.04. Tuning the number of observed keystream
words as well as the value of l yields different success rates with respect to false
positives, false negatives and the required data amount.

On the Sosemanuk Related Key-IV Sets 279

5 Sosemanuk Instances with Slid Inner States

In this section we present a practical inner state recovery algorithm, that requires
a small amount of keystream generated by two instances following relation (R3)
with d = 1 or d = 2. Such keystreams are easily distinguished from random
keystreams given only about 32 and 64 keystream words generated by both
instances for d = 1 and d = 2, respectively. The details of the distinguisher in
question are provided in Appendix B.

5.1 Equations Due to Slid Sosemanuk Instances

Consider the bits that interact with one particular S-box, up to the point where
they reach the output as 4 bits dispersed in the keystream word zt. The S-boxes
are applied to the input values of the form f i

t+3f
i
t+2f

i
t+1f

i
t , for 0 ≤ i ≤ 31 and

the corresponding S-box output, after addition to the LFSR bits, represents the
4 bit output wt,i = S(f i

t+3f
i
t+2f

i
t+1f

i
t)⊕ sit+3s

i
t+2s

i
t+1s

i
t . The particular position

of the wt,i bits in the 128-bit keystream word is made explicit in the notation
part of Section 2.

Slid state generated keystreams introduce equations that leak the inner state
material. In this section, and without loss of generality, these equations are
written for t = 0. Expand w0,i, w4,i, w8,i and w12,i for some 0 ≤ i ≤ 31 using
the expression S(f i

t+3f
i
t+2f

i
t+1f

i
t) ⊕ sit+3s

i
t+2s

i
t+1s

i
t = wt,i. Now, in case the 4

starting keystream words due to inner state IS1 are also known, the system can
be extended as follows

S(f i
3f

i
2f

i
1f

i
0)⊕ si3s

i
2s

i
1s

i
0 = w0,i, S(f i

4f
i
3f

i
2f

i
1)⊕ si4s

i
3s

i
2s

i
1 = w1,i (6)

S(f i
7f

i
6f

i
5f

i
4)⊕ si7s

i
6s

i
5s

i
4 = w4,i, S(f i

8f
i
7f

i
6f

i
5)⊕ si8s

i
7s

i
6s

i
5 = w5,i (7)

S(f i
11f

i
10f

i
9f

i
8)⊕ si11s

i
10s

i
9s

i
8 = w8,i, S(f i

12f
i
11f

i
10f

i
9)⊕ si12s

i
11s

i
10s

i
9 = w9,i (8)

S(f i
15f

i
14f

i
13f

i
12)⊕si15s

i
14s

i
13s

i
12 =w12,i, S(f i

16f
i
15f

i
14f

i
13)⊕si16s

i
15s

i
14s

i
13 =w13,i (9)

If instead of IS1, the keystream due to inner state IS2 is known, the equations
analogous to (6)-(9) for the case when the slide is by 2 steps are:

S(f i
3f

i
2f

i
1f

i
0)⊕ si3s

i
2s

i
1s

i
0 = w0,i, S(f i

5f
i
4f

i
3f

i
2)⊕ si5s

i
4s

i
3s

i
2 = w2,i (10)

S(f i
7f

i
6f

i
5f

i
4)⊕ si7s

i
6s

i
5s

i
4 = w4,i, S(f i

9f
i
8f

i
7f

i
6)⊕ si9s

i
8s

i
7s

i
6 = w6,i (11)

S(f i
11f

i
10f

i
9f

i
8)⊕si11s

i
10s

i
9s

i
8 =w8,i, S(f i

13f
i
12f

i
11f

i
10)⊕si13s

i
12s

i
11s

i
10 =w10,i (12)

S(f i
15f

i
14f

i
13f

i
12)⊕si15s

i
14s

i
13s

i
12 =w12,i, S(f i

17f
i
16f

i
15f

i
14)⊕si17s

i
16s

i
15s

i
14 =w14,i (13)

The problem is how to recover the inner state given the right-hand values of
(6)-(9) or (10)-(13), for each bit position i = 0, . . . , 31.

5.2 Recovering the Inner State

The inner state is recovered by first recovering the LFSR and then the FSM.
To recover the LFSR, first, equations (6)-(9) or (10)-(13) are solved, yielding a

280 A. Kircanski and A.M. Youssef

constraint on the extended LFSR (i.e., s0, . . . , s16.) Note that the equations have
been deliberately chosen to cover variables of the extended LFSR, rather than
the LFSR. That way, the dependence between the LFSR registers expressed by
(3) can be used to further restrict the LFSR space. Namely, having a restriction
against s0, . . . , s16 in case of system (6)-(9), instead of against only s0, . . . , s9,
allows pruning the wrong s0, . . . , s9 candidates by using (3) for t = 0, . . . , 6.

To find the expected number of solutions to the system (6)-(9), the exact
distribution of the number of solutions was calculated. The problem of calcu-
lating the distribution was divided into two parts. The distribution was found
first for (6)-(7) and then for (8)-(9), where care has been taken about bits s8
and f8 which participate in both subsystems. Once the joint distribution that
represents the distribution of the number of solutions of the full system (6)-(9)
was calculated, the expected number of solutions for the system was found to
be 23.357. The same strategy has been applied for the case d = 2, and the ex-
pected number of solutions to (10)-(13) is found to be equal to 24.5278. Since the
32 systems corresponding to different 0 ≤ i ≤ 31 are independent, the overall
number of candidates for (s0, . . . , s16) is expected to be 23.357×32 ≈ 2107.42 and
232×4.528 ≈ 2144.896 for d = 1 and d = 2, respectively. As for mutual dependencies
between (s0, . . . , s16), relation (3) for t = 0, . . . , 6 imposes 7 32-bit constraints on
the extended LFSR. Therefore, the two restrictions ensure that the final number
of candidates for the extended LFSR is restricted only to 1 (correct) value with
high probability both in cases d = 1 and d = 2, since 7 × 32 = 224 >> 107.42
and 7× 32 = 224 >> 144.896, respectively.

Recovering the LFSR To recover the LFSR in case d = 1, the attacker obtains
the first 4 keystream words of both instances and solves 32 systems of the form
(6)-(9), by simply trying all the possibilities for the f i

0, . . . , f
i
16 and whenever

possible, deducing the corresponding si0, . . . , s
i
16. The resulting extended LFSR

restriction is specified “i-th-bit-wise”, that is to say, the solution of the 32 sys-
tems can be regarded as sets S0, . . . , S31 where each set Si contains about 23.357

17-bit values as candidates for value si0 . . . , s
i
16. To prune the false candidates, a

naive approach of going through all candidates of the 32 sets and discarding in
case the α relations are not satisfied would require an impractical complexity of
2108.16 operations. A more efficient approach is to utilize the properties of the
α and α−1 multiplication in GF (232) in order to derive an early contradiction
after choosing candidates from Sl1 , . . . , Slm for m significantly smaller than 32.

Multiplication by α and α−1 in GF(232) can be represented as [5]:

α(x) = (x >> 8)⊕ Tα(x&255), α−1(x) = (x << 8)⊕ Tβ(x >> 24) (14)

where Tα and Tβ represent 8 × 32 S-boxes. Let st,b, 0 ≤ b ≤ 3 denote the b-th
least significant byte of the LFSR word st. Isolating the i-th bit of each value
participating in relation (3) and using (14), the following bit relation is obtained

sit+10 = sit+9 ⊕ si−8
t+3 ⊕ T i

β(st+3,3)⊕ si+8
t ⊕ T i

α(st,0) (15)

On the Sosemanuk Related Key-IV Sets 281

with the convention that bits si−8
t+3 for 0 ≤ i ≤ 7 and si+8

t for 24 ≤ i ≤ 31
are equal to 0. Choosing a candidate from the set Si for some 0 ≤ i ≤ 31
produces one such equation for each 0 ≤ t ≤ 6, i.e., 7 equations of form (15). In
each equation, due to the candidate choice, sit+10 and sit+9 are known bits. No
two equations among the 7 equations have common variables. More generally,
choosing a candidate from each of the m different Si sets for some 0 ≤ m ≤ 31,
generates 7 independent systems, each having m equations of the form (15).
Since increasing the number of sets Si from which the candidates are chosen
enlarges the search space, the strategy is to select a minimal family of Si sets so
that each of the systems is solvable in st+3,3 and st,0, the two input bytes for Tα

and Tβ S-boxes and moreover, so that the system becomes overdefined. Then,
in case the solution to any of the systems does not exist, the candidates choice
from the Si sets can be discarded.

The strategy above is illustrated as follows. Let i = 0 and let a candidate be
chosen from S0. Note that (15) for i = 0 contains the unknown variable s8t . Since
the goal is to make the systems solvable for Tα and Tβ S-box inputs, in order to
fix s8, a candidate from S8 is chosen. Similarly, other enforced choices are from
sets S16 and S24. For a fixed 0 ≤ t ≤ 6, the system is of the form

s0t+10 = s0t+9 ⊕ s8t ⊕ T 0(st+3,3, st,0)

s8t+10 = s8t+9 ⊕ s0t+3 ⊕ s16t ⊕ T 8(st+3,3, st,0)

s16t+10 = s16t+9 ⊕ s8t+3 ⊕ s24t ⊕ T 16(st+3,3, st,0)

s24t+10 = s24t+9 ⊕ s16t+3 ⊕ T 24(st+3,3, st,0)

(16)

where T (st+3,3, st,0) = Tβ(st+3,3)⊕Tα(st,0) is a 16× 32 one-to-one S-box (as we
verified) convenient to define for the consideration below. Given the system (16),
the bits T 0(st+3,3, st,0), T

8(st+3,3, st,0), T
16(st+3,3, st,0) and T 24(st+3,3, st,0) can

be determined. Moreover, the choice of candidates from S0 and S24 imposes a
constraint on the T input by fixing the least significant bit of st,0 and st+3,0,
respectively. The same holds for any i, 0 ≤ i ≤ 7. Thus, the system constraints
the T input-output value by fixing its 4 output and 2 input bits.

Similarly, for 0 ≤ i < 8, choosing elements from Si+8k, k = 0, 1, 2, 3, yields
a system analogous to (16), for each 0 ≤ t ≤ 6. Thus, the T input-output is
constrained by fixing 2 input and 4 output bits, for each 0 ≤ t ≤ 6. Now,
extending the guess to sets Si0+8k, . . . , Sin+8k, for k = 0, 1, 2, 3 and some 0 ≤
i0, . . . , in ≤ 7 will overdefine the T input with good probability if n ≥ 3. In
particular, for n = 3, each system constraints the T input value by fixing 6 input
bits and 12 output bits. Since there exists only 216 possible input-output pairs for
T , at most 216 out of 218 such constraints will be satisfiable. As it is reasonable
to assume that the constraint values are distributed uniformly, the candidate
choice will pass with probability of at most 2−2 for one fixed 0 ≤ t ≤ 6. Then,
the pruning is done by verifying whether for the given choice from Si0+8k, Si1+8k

and Si2+8k, for k = 0, 1, 2, 3 all of the 7 systems are satisfiable, which happens
with probability less than 2−2×7 = 2−14. Since the initial number of candidates
is expected to be 212×3.357 = 240.284, less than 240.56−14 = 226.56 candidates

282 A. Kircanski and A.M. Youssef

are expected to pass the test. In case n = 4, using analogous arguments, each
of the 7 16-equation systems is satisfiable with probability of at most 2−8 and
thus applying this criterion provides reduction of at least 2−8×7 = 2−56. The
initial expected number of candidates in this case is 23.357×16 = 253.712 and thus
no false candidates are expected to pass the test. It can thus be observed that
for n = 3, the criterion is weaker but there is a smaller number of candidates,
whereas for n = 4, the criterion is stronger, but the initial number of candidates
is relatively high. Note that above values i0, . . . , i3 can be chosen arbitrarily.
However, to decrease the complexity of the search, it is useful to start from ij
values such that |Sij | are small.

The discussion above indicates a breadth-first style search procedure to ef-
ficiently prune incorrect candidates. Namely, given the solution to (6)-(9), in
the form of sets S0, . . . , S31, the LFSR recovery proceeds as follows. Let h(i) =∏

0≤k≤3 |Si+8k|. Determine i0, . . . , i7 so that h(i0), h(i1), . . . , h(i7) represents a
sequence sorted in increasing order. Choose a candidate from each of the Si0+8k,
Si1+8k and Si2+8k, 0 ≤ k ≤ 3. Generate 7 systems, 12 equations of form (15)
each, using the guessed candidates. If for any of the 7 systems, the constrained
T input-output value does not exist, discard the candidates choice. Otherwise,
for the candidates that passed the criterion, continue the search by guessing the
next four Sij+8k sets simultaneously and looking for contradiction in a breadth-
first manner, i.e., not by recursing into the search tree, but rather looking for
contradiction after every fourplet guess. Note that solving the systems appear-
ing during the attack can be done efficiently by utilizing precomputed tables.
For some 0 ≤ i0, i1, i2 ≤ 7, consider verifying whether a guess from sets Si0+8k,
Si1+8k and Si2+8k, 0 ≤ k ≤ 3 yields a contradiction or not. Each such guess
yields an 18-bit constraint on the input-output value of T , where the set of fixed
bit positions uniquely depends on the set {i0, i1, i2}. A yes/no information on the
existence of such T input-output value can be preserved in precomputed tables
T{i0,i1,i2}, for each set {i0, i1, i2} ∈ {0, 1, . . . , 7}. The storage demand amounts

to
(
8
3

)
×218 ≈ 223.8 bits and the same number of T lookup operations is required

to fill in the tables.

Estimated Complexities and Experimental Results. In the previous sec-
tion, a procedure for recovering the LFSR was provided. After the LFSR is recov-
ered, the FSM can be recovered by guessing one FSM register, then recovering
the other one and verifying the guess against the keystream. The computational
effort of such a procedure is less than 232 Sosemanuk iterations. According to
the previous subsection, the computational effort of the LFSR recovery amounts
to the search over candidates from sets Si0+8k, Si1+8k and Si2+8k, for 0 ≤ k ≤ 3,
where 0 ≤ i0, i1, i2 ≤ 7 are the three points of the function h(i) =

∏
0≤k≤3 |Si+8k|

with the smallest values. To estimate the expected value of such three smallest
values, for both d = 1 and d = 2, the exact distribution of h(i) was calculated
exhaustively, using the exact distribution of |Si+8k|, found at the beginning of
this section. The attacker has a chance to choose the three smallest points of h,
out of 8 independent h(i) for 0 ≤ i < 8. The 1st, 2nd and 3rd order statistics of

On the Sosemanuk Related Key-IV Sets 283

an 8 element sample has been found to be 29.517, 210.602 and 211.372, respectively.
Therefore, the overall attack requirements for d = 1 are

- Data of 4 words, produced by 2 slid Sosemanuk instances
- The computation of 29.517+10.602+11.372 = 231.491 table lookups for the LFSR

recovery and the work equivalent to 232 iterations for the FSM recovery
- Storage requirement of 223.8 bits

For d = 2, the data and storage complexity remain the same. Since the ex-
pected 1st, 2nd and 3rd order statistics of h(i), 0 ≤ i ≤ 7, are 215.081, 215.996 and
216.627, respectively, the overall expected number of candidates to go through is
215.081+15.996+16.627 = 247.704. Note that the computational cost can be lowered
at the cost of increasing the available data. Namely, if more than 4 keystream
words are available, the attack can be performed using the 4 consecutive
keystream words of both instances for time t where h(i0), h(i1), h(i2) are
minimal.

The attack was implemented for d = 1 on a 2.4 GHz AMD processor, using
the Java Sosemanuk implementation provided with the cipher specification.
The search procedure behaved as predicted above and the two slid Sosemanuk
inner states have been uniquely recovered in less than a day.

Slide Sosemanuk instances in the context of fault attacks The properties
exposed in this section yield a fault attack, in which the attacker introduces
instruction skipping faults [15], e.g., by varying the supply voltage of the device
that performs encryption at carefully chosen times. In such a setting, transient
faults start occurring in a relatively large number [4] and the attacker waits until
the slid keystreams are detected, using the distinguisher from Section 5. At that
point, the inner state recovery procedure provided above applies and the secret
inner state of the cipher can be efficiently recovered.

6 Conclusion and Future Work

This work provides the first steps in the analysis of the related keys of Sose-
manuk. We showed that Sosemanuk’s related key pairs exist and that observing
pairs of keystreams generated under such related key-IV pairs can lead to the
recovery of the inner state. In particular, an efficient inner state recovery algo-
rithm and also a distinguisher have been provided for two particular classes of
expected size of 2128 key-IV pairs. A distinguisher requiring 252 keystream words
was presented for a larger class of related key-IV pairs, of size 2192. While the
results from this paper do not directly threaten the security of Sosemanuk, the
non-random properties of Sosemanuk should be brought to light and the users
of the cipher should be aware of it. Finally, this work also shows that Sose-
manuk is highly sensitive to a specific kind of a fault analysis attack in which
the execution flow is disturbed.

As for future work, the natural next step is to find an efficient procedure
for constructing particular ((K, IV), (K ′, IV ′)) pairs that yield the presented
related Sosemanuk instances.

284 A. Kircanski and A.M. Youssef

References

1. Ahamadi, H., Eghidos, T., Khazaei, S.: Improved Guess and Determine Attack on
Sosemanuk, Tehran (2006),
http://www.ecrypt.eu.org/stream/sosemanukp3.html

2. Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

3. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
Apprentice Guide to Fault Attacks. Proceedings of the IEEE 94(2), 370–382 (2006)

4. Barenghi, A., Bertoni, G., Breveglieri, L., Pellicioli, M., Pelosi, G.: Low Voltage
Fault Attacks to AES and RSA on General Purpose Processors, ePrint IACR
Report, 130/2010

5. Berbain, C., Billet, O., Canteaut, A., Courtois, N., Gilbert, H., Goubin, L., Gouget,
A., Granboulan, L., Lauradoux, C., Minier, M., Pornin, T., Sibert, H.: Sosemanuk,
a Fast Software-Oriented Stream Cipher. In: Robshaw, M., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 98–118. Springer, Heidelberg (2008)

6. Biham, E., Anderson, R., Knudsen, L.R.: Serpent: A New Block Cipher Proposal.
In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidel-
berg (1998)

7. Boesgaard, M., Vesterager, M., Pedersen, T., Christiansen, J., Scavenius, O.: Rab-
bit: A New High-Performance Stream Cipher. In: Johansson, T. (ed.) FSE 2003.
LNCS, vol. 2887, pp. 307–329. Springer, Heidelberg (2003)

8. De Cannière, C., Küçük, Ö., Preneel, B.: Analysis of Grain’s Initialization Algo-
rithm. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 276–289.
Springer, Heidelberg (2008)

9. Cho, J.Y., Hermelin, M.: Improved Linear Cryptanalysis of SOSEMANUK. In: Lee,
D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 101–117. Springer, Heidelberg
(2010)

10. Ekdahl, P., Johansson, T.: A New Version of the Stream Cipher SNOW. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 47–61. Springer, Heidelberg
(2003)

11. eSTREAM, the ECRYPT Stream Cipher Project,
http://www.ecrypt.eu.org/stream/

12. Feng, X., Liu, J., Zhou, Z., Wu, C., Feng, D.: A Byte-Based Guess and Determine
Attack on SOSEMANUK. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 146–157. Springer, Heidelberg (2010)

13. Grinstead, C.M., Snell, L.J.: Introduction to Probability. American Mathematical
Society, 2nd edn. (1998)

14. Hellman, M.: A Cryptanalytic Time-Memory Trade-Off. IEEE Transactions on
Information Theory IT-26, 401–406 (1980)

15. Kim, C.H., Quisquater, J.-J.: Fault Attacks for CRT Based RSA: New Attacks,
New Results, and New Countermeasures. In: Sauveron, D., Markantonakis, K.,
Bilas, A., Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 215–228.
Springer, Heidelberg (2007)

16. Lee, J.-K., Lee, D.-H., Park, S.: Cryptanalysis of Sosemanuk and SNOW 2.0 Using
Linear Masks. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 524–
538. Springer, Heidelberg (2008)

17. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1997)

http://www.ecrypt.eu.org/stream/sosemanukp3.html
http://www.ecrypt.eu.org/stream/

On the Sosemanuk Related Key-IV Sets 285

18. Quisquater, J.-J., Delescaille, J.-P.: How Easy Is Collision Search? Application
to DES. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS,
vol. 434, pp. 429–434. Springer, Heidelberg (1990)

19. Esmaeili Salehani, Y., Kircanski, A., Youssef, A.: Differential Fault Analysis of
Sosemanuk. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS,
vol. 6737, pp. 316–331. Springer, Heidelberg (2011)

20. Schmidt, J.-M., Herbst, C.: A Practical Fault Attack on Square and Multiply.
In: Fault Diagnosis and Tolerance in Cryptography, 3rd International Workshop,
FDTC 2008. IEEE-CS Press (2008)

21. Tsunoo, Y., Saito, T., Shigeri, M., Suzaki, T., Ahmadi, H., Eghlidos, T., Khaz-
aei, S.: Evaluation of Sosemanuk With Regard to Guess-and-Determine attacks
(2006), http://www.ecrypt.eu.org/stream/soemanukp3.html

22. Vertanen, O.: Java Type Confusion and Fault Attacks. In: Breveglieri, L., Koren,
I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 237–251.
Springer, Heidelberg (2006)

23. Wu, H.: The Stream Cipher HC-128. In: Robshaw, M., Billet, O. (eds.) New Stream
Cipher Designs. LNCS, vol. 4986, pp. 39–47. Springer, Heidelberg (2008)

A Estimating the Expected Number of Related Key-IV
Pairs

Having shown the almost certain existence of related key-IV pairs in Section
3, in this appendix, we estimate their corresponding number. This is done for
each relation (R1)-(R4), under the assumption that (EK(Y 12), E′

K(EK(Y 12)))
behaves randomly when regarded as functions of the key. Note that if m elements
are drawn with replacement from a set of n elements, the expected number of
drawn elements that will repeat is E1(m,n) =

(
m
2

)
1
n , since the probability that

two elements will collide is 1
n and there exist

(
m
2

)
elements pairs. Similarly, if

two sets of m elements are drawn from an n-element set, the expected number

of collisions is E2(m,n) = m2

n .
As for case (R1), for some Y 12 ∈ {0, 1}128, the expected number of collisions

in I(Y 12) is E1(2128, 2256) ≈ 1. Since there is 2128 possibilities for Y 12, we
have that the final expected number of key-IV pairs that yield identical inner
states is 2128 × E1(2128, 2256) ≈ 2128. In case (R2), since only the LFSRs are
required to be identical, we have that the expected number of key-IV pairs is
2128 × E1(2128, 2192) ≈ 2192.

As for slid pairs, described by case (R3), let Y 12
2 , Y 12

1 , Y 12
0 be fixed. Con-

sider the subset of the set
⋃

α∈{0,1}32 I(α, Y 12
2 , Y 12

1 , Y 12
0) that fixes the cor-

responding s10 value. As described in the previous subsection, such a set is
expected to have 2128 elements. The corresponding slid pairs can only be in
I(Y 12

2 , Y 12
1 , Y 12

0 , s10). Since the two sets have 2128 elements, and there is 2128

such set pairs, the expected number of states that have a corresponding slid
state is 2128 × E2(2128, 2256) ≈ 2128. Even though when α = Y 12

2 = Y 12
1 = Y 12

0

there may be an overlap between the corresponding sets, it is easy to show
that the final expected number of slid pairs does not change significantly in this
case. Applying analogous reasoning, it follows that the number of key-IV pairs
corresponding to case (R4) is 2128 × E2(2128, 2192) ≈ 2192.

http://www.ecrypt.eu.org/stream/soemanukp3.html

286 A. Kircanski and A.M. Youssef

B Distinguishing Slid Sosemanuk Instances

In this appendix, we show that the output of two Sosemanuk instances on
distance d = 1 or d = 2 can easily be distinguished from random stream. Let
z0, z4, . . . , z4n and z1, z5, . . . , z4n+1, be two Sosemanuk keystream outputs gen-
erated by slid inner state on distance d = 1. First, we show that it is possible
to efficiently compute the probability that the two slid Sosemanuk instances
generate a given sequence z = (z0, z1, z4, z5, . . . , z4n, z4n+1).

Assume that sequence z is due to two slid Sosemanuk instances and extract
the S-box outputs corresponding to different bit positions 0 ≤ i ≤ 31. Write
down each of the 32 subsequences in the form

w0,i, w1,i, w4,i, w5,i, w8,i, w9,i, . . . , w4n,i, w4n+1,i (17)

The first 8 elements in the sequence (17) are generated according to (6)-(9)
and the rest are generated by analogous equations. Consider the dependence
between the elements of the sequence (17) by focusing for example on the value
w4,i defined by the left-hand equation of (7). Observe that values participating in
its generation f4, . . . , f7 and s4, . . . , s7 participate only in the generation of w1,i

and w5,i. The same observation generalizes to any sequence element in (17). We
adopt the assumption that ft and st, t ≥ 0, are uniformly distributed. Although
the assumption does not fully ressemble the real case, it serves to simplify the
model and moreover, does not create any relevant deviation from the real case,
as verified by the experimental results below. Now each value in (17) depends
only on its predecessor. Thus, the behavior of the subsequence is completely
determined by transition probabilities, which are different for even and odd
steps of the sequence (17). As for the transitions of the form w4t,i to w4t+1,i,
the transition matrix M1,1 is provided. The elements of M1,1 that represent
transition probabilities have been calculated by going through all of the left-
hand values of a pair of equations (6) and recording the number of transitions
for each (w0,i, w1,i):

M1,1 =
1

64

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 4 3 5 3 5 6 2 4 4 3 5 3 5 6 2
4 4 3 5 3 5 6 2 4 4 3 5 3 5 6 2
4 4 5 3 5 3 2 6 4 4 5 3 5 3 2 6
4 4 5 3 5 3 2 6 4 4 5 3 5 3 2 6
3 5 4 4 6 2 3 5 3 5 4 4 6 2 3 5
3 5 4 4 6 2 3 5 3 5 4 4 6 2 3 5
5 3 4 4 2 6 5 3 5 3 4 4 2 6 5 3
5 3 4 4 2 6 5 3 5 3 4 4 2 6 5 3
3 5 6 2 4 4 3 5 3 5 6 2 4 4 3 5
3 5 6 2 4 4 3 5 3 5 6 2 4 4 3 5
5 3 2 6 4 4 5 3 5 3 2 6 4 4 5 3
5 3 2 6 4 4 5 3 5 3 2 6 4 4 5 3
6 2 3 5 3 5 4 4 6 2 3 5 3 5 4 4
6 2 3 5 3 5 4 4 6 2 3 5 3 5 4 4
2 6 5 3 5 3 4 4 2 6 5 3 5 3 4 4
2 6 5 3 5 3 4 4 2 6 5 3 5 3 4 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

On the Sosemanuk Related Key-IV Sets 287

The factor 1
64 comes from the fact that fixing w0,i in (6) leaves 24 possibilities for

f0, f1, f2, f3, s0, s1, s2 and s3 and thus 24+2 = 64 possibilities for the left-hand
side of the equation for w1,i. From matrix M1,1 it is clear that the transition
probabilities are heavily biased.

In the case of transitions from w4t+1,i to w4(t+1),i, the bias does not exist and

all the values in the 16 × 16 matrix M1,2 are equal to 1
16 . Now the probabil-

ity PrD0 [z], where D0 is the distribution that describes the output of two slid
Sosemanuk instances, can be calculated efficiently. Namely, given a reasonable
independence assumption, this probability is equal to a product of probabili-
ties of 32 subsequences of form (17) extracted from z. Each of the subsequence
probabilities is calculated by using the Markovian assumption and the transition
matrices M1,1, M1,2. On the other hand, the probability PrD1 [z] of z occurring
in a random stream is equal to 1/2(2n+2)×128.

Finally, as for the matrix M2,1 that corresponds to the case d = 2, this
16 × 16 matrix has been found to be populated only by 13

256 and 19
256 values.

Denote the elements of the matrix in question by M2,1 = [ai,j]. Then, for
i ∈ {1, 2, 3, 4, 13, 14, 15, 16}, ai,j = 13

256 if j ∈ {1, 4, 5, 8, 9, 12, 13, 16}. For i ∈
{5, 6, 7, 8, 9, 10, 11, 12}, ai,j = 13

256 if j ∈ {2, 3, 6, 7, 10, 11, 14, 15}. Other ai,j ele-
ments are equal to 19

256 .
To optimally decide whether the sample z comes from distribution D0 or D1

[2], the acceptance region is defined by

A = {z : LR(z) ≥ 1}, where LR(z) =
PrD0 [z]

PrD1
[z]

If z ∈ A, the distinguisher returns D0 and otherwise D1. Thus, to distinguish
outputs of two Sosemanuk slid instances from random data, it suffices to com-
pute the probability of the sample under distributions D0 and D1 and compare
the two probabilities.

The distinguisher above has been implemented and the following experiments
have been performed to estimate the number of keystream words necessary for
the overall probability of error Pe to be sufficiently low. Each experiment con-
sisted of generating 32 keystream words by each of the two random instances
of Sosemanuk which are on distance 1 and then applying the distinguisher,
whereas the probability multiplicative structure has been replaced by the usual
logarithmic additive representation. The experiment was repeated for 1024 times
and no false negatives or false positives have been reported. It can be con-
cluded that the input size of 32 keystream words is sufficient to distinguish
Sosemanuk with high probability. The analogous experiment was executed for
the case d = 2 using 64 keystream words from both instances. Neither false pos-
itives nor false negatives occurred in 1024 experiments repetitions, which shows
that 64 keystream words are sufficient to make Pe sufficiently small when d = 2.

High Speed Implementation of Authenticated

Encryption for the MSP430X Microcontroller

Conrado P.L. Gouvêa� and Julio López

University of Campinas (Unicamp)
{conradoplg,jlopez}@ic.unicamp.br

Abstract. Authenticated encryption is a symmetric cryptography
scheme that provides both confidentiality and authentication. In this
work we describe an optimized implementation of authenticated encryp-
tion for the MSP430X family of microcontrollers. The CCM, GCM,
SGCM, OCB3, Hummingbird-2 and MASHA authenticated encryption
schemes were implemented at the 128-bit level of security and their per-
formance was compared. The AES accelerator included in some models
of the MSP430X family is also studied and we explore its characteristics
to improve the performance of the implemented modes, achieving up to
10 times of speedup. The CCM and OCB3 schemes were the fastest when
using the AES accelerator while MASHA and Hummingbird-2 were the
fastest when using only software.

Keywords: authenticated encryption, MSP430, AES, software imple-
mentation.

1 Introduction

Constrained platforms such as sensor nodes, smart cards and radio-frequency
identification (RFID) devices have a great number of applications, many of which
with security requirements that require cryptographic schemes. The implemen-
tation of such schemes in these devices is very challenging since it must provide
high speed while consuming a small amount of resources (energy, code size and
RAM). In this scenario, symmetric cryptography becomes an essential tool in
the development of security solutions, since it can provide both confidentiality
and authenticity after being bootstrapped by some protocol for key agreement or
distribution. Encryption and authentication can be done through generic compo-
sition of separate methods; however, the study of an alternative approach named
authenticated encryption (AE) has gained popularity.

Authenticated encryption provides both confidentiality and authenticity
within a single scheme. It is often more efficient than using separate methods and
usually consumes a smaller amount of resources. It also prevents common crit-
ical mistakes when combining encryption and authentication such as not using
separate keys for each task. There are many AE schemes; see e.g. [10] for a non-
exhaustive list. Some AE schemes are built using a block cipher, in this case, they

� Supported by FAPESP, grant 2010/15340-3.

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 288–304, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

High Speed Implementation of Authenticated Encryption 289

are also called AE modes. In this work, we follow the approach from [10] and
compare the Counter with CBC-MAC (CCM) mode [18], the Galois/Counter
Mode (GCM) [13] and the Offset Codebook (OCB3) mode [10]. We have also
implemented the Sophie Germain Counter Mode [14], the Hummingbird-2 ci-
pher [5] and the MASHA cipher [9]. The CCM mode and GCM have been stan-
dardized by the National Institute of Standards and Technology (NIST); CCM
is used for Wi-Fi WPA2 security (IEEE 802.11i) while GCM is used in TLS,
IPSec and NSA Suite B, for example. The recently proposed OCB3 mode is the
third iteration of the OCB mode and appears to be very efficient in multiple
platforms. The SGCM is a variant of GCM and was proposed to be resistant
against some existing attacks against GCM while being equally or more efficient;
we have implemented it in order to check this claim and compare it to GCM.
The Hummingbird-2 cipher (which may be referred to as HB2 in this work) is
specially suited for 16-bit platforms and was implemented in order to compare
it to the other non-specially suited modes. The MASHA cipher is based on a
stream cipher and claims to fill the gap for authenticated encryption algorithms
based on stream ciphers which achieve a good balance between security and
performance.

The goal of this work is to provide an efficient implementation and comparison
of the aforementioned AE schemes (CCM, GCM, SGCM, OCB3, Hummingbird-
2, and MASHA) for the MSP430X microcontroller family from Texas Instru-
ments. This family is an extension of the MSP430 which have been used in
multiple scenarios such as wireless sensor networks; furthermore, some micro-
controllers of this family feature an AES accelerator module which can encrypt
and decrypt using 128-bit keys. Our main contributions are: (i) to study (for
the first time, to the best of our knowledge) the efficient usage and impact of
this AES accelerator module in the implemented AE schemes; (ii) to describe
a high speed implementation of those AE schemes for the MSP430X, achiev-
ing performance 10 times faster for CCM using the AES accelerator instead of
AES in software; (iii) to describe an efficient implementation of AES for 16-bit
platforms; (iv) to show that CCM is the fastest of those schemes whenever a
non-parallel AES accelerator is available; and (v) and to provide a comparison
of the six AE schemes, with and without the AES accelerator. We remark that
the results regarding the efficient usage of the AES accelerator can be applied
to other devices featuring analogue accelerators, such as the AVR XMEGA.

This paper is organized as follows. In Section 2, the MSP430X microcontroller
family is described. Section 3 offers an introduction to AE. Our implementation
is described in Section 4, and the obtained results are detailed in Section 5.
Section 6 provides concluding remarks.

2 The MSP430X Family

The MSP430X family is composed by many microcontrollers which share the
same instruction set and 12 general purpose registers. Although it is essentially a
16-bit architecture, its registers have 20 bits, supporting up to 1 MB of addressing
space. Each microcontroller has distinct clock frequency, RAM and flash sizes.

290 C.P.L. Gouvêa and J. López

Some MSP430X microcontrollers (namely the CC430 series) have an in-
tegrated radio frequency transceiver, making them very suitable for wireless
sensors. These models also feature an AES accelerator module that supports
encryption and decryption with 128-bit keys only. The study of this accelerator
is one key aspect of this study and for this reason we describe its basic usage as
follows. In order to encrypt a block of 16 bytes, a flag must be set in a control
register to specify encryption and the key must be written sequentially (in bytes
or words) in a specific memory address. The input block must then be written,
also sequentially, in another memory address. After 167 clock cycles, the result
is ready and must be read sequentially from a third address. It is possible to poll
a control register to check if the result is ready. Further blocks can be encrypted
with the same key without writing the key again. The decryption follows the
same procedure, but it requires 214 clock cycles of processing. It is worth noting
that these memory read and writes are just like regular reads and writes to the
RAM, and therefore the cost of communicating with the accelerator is included
in our timings.

3 Authenticated Encryption

An authenticated encryption scheme is composed of two algorithms: authenti-
cated encryption and decryption-verification (of integrity). The authenticated
encryption algorithm is denoted by the function EK(N,M,A) that returns
(C, T), where K ∈ {0, 1}k is the k-bit key, N ∈ {0, 1}n is the n-bit nonce,
M ∈ {0, 1}∗ is the message, A ∈ {0, 1}∗ is the associated data, C ∈ {0, 1}∗ is the
ciphertext and T ∈ {0, 1}t is the authentication tag. The decryption-verification
algorithm is denoted by the function DK(N,C,A, T) that returns (M,V) where
K,N,C,A, T,M are as above and V is a boolean value indicating if the given
tag is valid (i.e. if the decrypted message and associated data are authentic).

Many AE schemes are built using a block cipher such as AES. Let EK(B)
denote the block cipher, where the key K is usually the same used in the AE
mode and B ∈ {0, 1}b is a b-bit message (a block). The inverse (decryption) func-
tion is denoted DK(B′) where B′ is also a block (usually from the ciphertext).
The CCM, GCM, SGCM and OCB3 are based on block ciphers, while HB2 and
MASHA are not.

It is possible to identify several properties of AE schemes; we offer a non-
exhaustive list. The number of block cipher calls used in the scheme is an im-
portant metric related to performance. A scheme is considered online if it is
able to encrypt a message with unknown length using constant memory (this is
useful, for example, if the end of the data is indicated by a null terminator or a
special packet). Some schemes only use the forward function of the underlying
block cipher (EK), which reduces the size of software and hardware implemen-
tations. A scheme supports preprocessing of static associated data (AD) if the
authentication of the AD depends only on the key and can be cached between
different messages being sent (this is useful for a header that does not change).
Some schemes are covered by patents, which usually discourages its use. A scheme

High Speed Implementation of Authenticated Encryption 291

Table 1. Comparison of implemented AE schemes

Property CCM (S)GCM OCB3 HB2 MASHA

Block cipher callsa 2m + a + 2b m m + a + 1b — —
. . . in key setup 0 1 1 — —
Online No Yes Yes Yesc Yes
Uses only EK Yes Yes No — —
Prepr. of static AD No Yes Yes No N/A
Patent-free Yes Yes No No No
Parallelizable No Yes Yes No No
Standardized Yes (No) Yes No No No
Input order AD first AD first Any AD last N/A
a m,a are the number of message and AD blocks, respectively
b May have an additional block cipher call
c AD size must be fixed

is parallelizable if it is possible to process multiple blocks (or partially process
them) in a parallel manner. Some schemes support processing regular messages
and AD in any order, while some schemes require the processing of AD before
the message, for example. The properties of the AE schemes implemented in this
work are compared in Table 1.

Remarks about Security. The weak key attack against GCM, pointed out by the
author of SGCM [14], has probability n/2128 of working, where n is the number
of blocks in the message; this is negligible unless the message is large. There
are related key attacks against Hummingbird-2 [2,19] which, while undesirable,
can be hard to apply in practice since keys are (ideally) random. Finally, there
is a key-recovery attack in the multi-user setting [3] that can be applied to all
schemes in this paper; however, they can be avoided by using random nonces.

4 Efficient Implementation

We have written a fast software implementation of the AE schemes in the C
language, with critical functions written in assembly. The target chip was a
CC430F6137 with 20 MHz clock, 32 KB flash for code and 4 KB RAM. The
compiler used was the IAR Embedded Workbench version 5.30. For the AE
modes based on block ciphers, we have used the AES with 128-bit keys both in
software and using the AES accelerator. Our source code is available1 to allow
reproduction of our results.

The interface to the AES accelerator was written in assembly, along with a
function to xor two blocks and another to increment a block.

1 http://conradoplg.cryptoland.net/software/

authenticated-encryption-for-the-msp430/

http://conradoplg.cryptoland.net/software/authenticated-encryption-for-the-msp430/
http://conradoplg.cryptoland.net/software/authenticated-encryption-for-the-msp430/

292 C.P.L. Gouvêa and J. López

4.1 CCM

The CCM (Counter with CBC-MAC) mode [18] essentially combines the CTR
mode of encryption with the CBC-MAC authentication scheme. For each mes-
sage block, a counter is encrypted with the block cipher and the result xored
to the message to produce the ciphertext; the counter is then incremented. The
message is also xored to an “accumulator” which is then encrypted; this accu-
mulator will become the authentication tag after all blocks are processed.

Its implementation was fairly straightforward, employing the assembly rou-
tines to xor blocks and increment the counter.

4.2 GCM

The GCM (Galois/Counter Mode) [13] employs the arithmetic of the finite field
F2128 for authentication and the CTR mode for encryption. For each message
block, GCM encrypts the counter and xors the result into the message to produce
the ciphertext; the counter is then incremented. The ciphertext is xored into an
accumulator, which is then multiplied in the finite field by a key-dependent
constant H . The accumulator is used to generated the authentication tag.

In order to speed up the GCM mode, polynomial multiplication was imple-
mented in unrolled assembly with the López-Dahab (LD) [12] algorithm using
4-bit window and two lookup tables; it is described for reference in Appendix A,
Algorithm 3. The first precomputation lookup table holds the product of H and
all 4-bit polynomials. Each of the 16 lines of the table has 132 bits, which take 9
words. This leads to a table with 288 bytes. The additional lookup table (which
can be computed from the first one, shifting each line 4 bits to the left) allows
the switch from three 4-bit shifts of 256-bit blocks to a single 8-bit shift of a
256-bit block, which can be computed efficiently with the swpb (swap bytes)
instruction of the MSP430.

4.3 SGCM

The SGCM (Sophie Germain Counter Mode) [14] is a variant of GCM that is
not susceptible to weak key attacks that exist against GCM. While these attacks
are of limited nature, the author claims that they should be avoided. It has the
same structure as GCM, but instead of the F2128 arithmetic, it uses the prime
field Fp with p = 2128 + 12451.

Arithmetic in Fp can be carried out with known algorithms such as Comba
multiplication. We follow the approach in [7] which takes advantage of the
multiply-and-accumulate operation present in the hardware multiplier of the
MSP430 family, also taking advantage of the 32-bit multiplier present in some
MSP430X devices, including the CC430 series.

4.4 OCB3

The OCB3 (Offset Codebook) mode [10] also employs the F2128 arithmetic (using
the same reduction polynomial from GCM), but in a simplified manner: it does

High Speed Implementation of Authenticated Encryption 293

not require full multiplication, but only multiplication by powers of z (the vari-
able used in the polynomial representation of the field elements). For each i-th
message block, OCB3 computes the finite field multiplication of a nonce/key-
dependent constant L0 by the polynomial zj, where j is the number of trailing
zeros in the binary representation of the block index i; the result is xored into
an accumulator Δ. This accumulator is xored to the message, encrypted, and
the result is xored back with Δ to generate the ciphertext. The message block
is xored into another accumulator Y , which is used to generate the tag.

A lookup table with 8 entries (128 bytes) was used to hold the some precom-
puted values of L0 · zj. Two functions were implemented in assembly: multipli-
cation by z (using left shifts) and the function used to compute the number of
trailing zeros (using right shifts).

4.5 Hummingbird-2 (HB2)

The Hummingbird-2 [5] is an authenticated encryption algorithm which is not
built upon a block cipher. It processes 16-bit blocks and was specially designed
for resource-constrained platforms. The small block size is achieved by main-
taining an 128-bit internal state that is updated with each block processed.
Authenticated data is processed after the confidential data by simply processing
the blocks and discarding the ciphertext generated. The algorithm is built upon
the following functions for encryption:

S(x) = S4(x[0..3]) | (S3(x[4..7]) " 4)

| (S2(x[8..11]) " 8) | (S1(x[12..15]) " 12)

L(x) = x⊕ (x ≪ 6)⊕ (x ≪ 10)

f(x) = L(S(x))

WD16(x, a, b, c, d) = f(f(f(f(x⊕ a)⊕ b)⊕ c)⊕ d) ;

where S1, S2, S3, S4 are S-boxes and ≪ denotes the circular left shift of a 16-bit
word. For each 16-bit message block, HB2 calls WD16 four times, using as inputs
different combinations of the message, state and key.

We have unrolled the WD16 function. The function f is critical since it is
called 16 times per block and must be very efficient; our approach is to use
two precomputed lookup tables fL, fH each one with 256 2-byte elements, such
that f(x) = fL[x & 0xFF] ⊕ fH [(x & 0xFF00) # 8]. These tables are generated
by computing fL[x] ← L(S4(x[0..3]) | (S3(x[4..7]) " 4)) for every byte x and
fH [x] ← L((S2(x[8..11]) " 8) | (S1(x[12..15]) " 12)) also for every byte x. This
optimization does not apply for f−1(x) since the inverse S-boxes are applied
after the shifts in L−1(x) . In this case, we have used precomputed lookup tables
LL, LH such that L(x) = LL[x & 0xFF] ⊕ LH [(x & 0xFF00) # 8]. These are
computed as fL[x] ← L(x[0..7]), fH [x] ← L(x[8..15] " 8) for every byte x.
The four 4-bit inverse S-boxes have been merged in two 8-bit inverse S-boxes
S−1
L , S−1

H such that S−1(x) = S−1
L (x[0..7]) | (S−1

H (x[8..15]) " 8).

294 C.P.L. Gouvêa and J. López

4.6 MASHA

MASHA [9] is an authenticated encryption algorithm based on a stream cipher.
Stream ciphers are interesting since they are often more efficient than block
ciphers. However, many stream ciphers which also provide authentication either
have security issues (e.g. Phelix) or performance issues. The MASHA authors
propose the algorithm in order to attempt to fill this gap.

Our implementation was based on C source provided by the designers. We
have changed it to reduce code size and memory footprint. The code stores
the linear shift registers in circular buffers in order to avoid the actual shifts.
The scheme requires multiplication, in F28 , by four distinct constants. These are
precomputed in a 256-element table which stores the multiplication of all bytes
by these constants. Two such tables are required for each of the two distinct fields
used by MASHA, totaling 2 KB. Since this is already large, we chose to use a
byte-oriented approach for the MixColumns step instead of the 16-bit tailored
code we will describe below. Therefore, the total space for the precomputed
values becomes 2.75 KB.

4.7 Improving AES for 16-bit

We have used a software implementation of AES in order to perform compar-
isons with the hardware accelerator. Our implementation was based on the byte-
oriented version from [6], but we have modified it to take advantage of the 16-bit
platform. The first change was to improve the AddRoundKey function (which sim-
ply computes the xor of 128-bit blocks) in order to xor 16-bit words at a time.
The second change was to improve the use of lookup tables as follows.

As it is well known, the input and output blocks of the AES can be viewed
as 4 × 4 matrices in column-major order whose elements are in F28 ; and the
AES function SubBytes, ShiftRows and MixColumns steps can be combined in
a single one. In this step, the column j of the result matrix can be computed as⎡⎢⎢⎣
e0,j
e1,j
e2,j
e3,j

⎤⎥⎥⎦ = S[a0,j]

⎡⎢⎢⎣
02
01
01
03

⎤⎥⎥⎦⊕ S[a1,j−1]

⎡⎢⎢⎣
03
02
01
01

⎤⎥⎥⎦⊕ S[a2,j−2]

⎡⎢⎢⎣
01
03
02
01

⎤⎥⎥⎦⊕ S[a3,j−3]

⎡⎢⎢⎣
01
01
03
02

⎤⎥⎥⎦⊕
⎡⎢⎢⎣
k0,j
k1,j
k2,j
k3,j

⎤⎥⎥⎦ ,

where e is the output matrix, a is the input matrix, S is the forward S-box, k is
the round key matrix, and matrix indices are computed modulo four. Inspired
by the 32-bit optimization of using four precomputed tables with 256 elements
of with 4-byte each (totaling 4 KB), we employ the following tables:

T0[a] =

[
S[a] · 02
S[a]

]
, T1[a] =

[
S[a]

S[a] · 03

]
, T2[a] =

[
S[a] · 03
S[a] · 02

]
, T3[a] =

[
S[a]
S[a]

]
.

They consume 2 KB, half the size of the 32-bit version, providing a good compro-
mise between the 8-bit and 32-bit oriented implementations. These tables allow
the computation of column ej as

High Speed Implementation of Authenticated Encryption 295[
e0,j
e1,j

]
= T0[a0,j]⊕ T2[a1,j−1]⊕ T1[a2,j−2]⊕ T3[a3,j−3] ,[

e2,j
e3,j

]
= T1[a0,j]⊕ T3[a1,j−1]⊕ T0[a2,j−2]⊕ T2[a3,j−3] .

4.8 Using the AES Accelerator

As previously mentioned, the AES encryption and decryption using the AES
hardware accelerator requires waiting for 167 and 214 cycles, respectively, before
reading the results. The key to an efficient implementation using the module is
to use this “delay slot” to carry out other operations that do not depend on the
result of the encryption/decryption.

For example, in the CCM mode, the counter incrementation and the xor
between the message and the accumulator can be carried out while the counter
is being encrypted: the counter is written to the AES accelerator, the counter
is incremented, we then wait for the result of the encryption and xor the result
to the message when it is ready. In CCM it is also possible to generate the
ciphertext (xor the encrypted result and the message) while the accumulator
is being encrypted. In the GCM mode, it is possible to increment the counter
while the counter is being encrypted. In the OCB3 mode, the xor between the
message and the accumulator Y can be carried out while the message, xored to
Δ, is being encrypted. For reference, these computations which can be carried
out in the delay slot are marked in the algorithms of Appendix A.

5 Results

The performance of the implemented AE schemes was measured for the authen-
ticated encryption and decryption-verification of messages with 16 bytes and
4 KB, along with the Internet Performance Index (IPI) [13], which is a weighted
timing for messages with 44 bytes (5%), 552 bytes (15%), 576 bytes (20%), and
1500 bytes (60%). For each message size, we have measured the time to compute
all nonce-dependent values along with time for authenticated encryption and
decryption-verification with 128-bit tags (except MASHA, which uses 256-bit
tags). The derivation of key-dependent values is not included. For OCB3, it was
assumed that the block cipher call in init ctr was cached.

The timings were obtained using a development board with a CC430F6137
chip and are reported on Table 2; this data can also be viewed as throughput in
Figures 1 and 2, considering a 20 MHz clock. The number of cycles taken by the
algorithms was measured using the built-in cycle counter present in the CC430
models, which can be read in the IAR debugger. Stack usage was also measured
using the debugger. Code size was determined from the reports produced by the
compiler, adding the size for text (code) and constants.

Using the AES Accelerator. First, we analyze the results using the AES ac-
celerator, for IPI and 4 KB messages. The GCM performance is more than 5

296 C.P.L. Gouvêa and J. López

Table 2. Timings of implemented AE schemes for different mes-
sage lengths, in cycles per byte

Using AES accelerator Using AES in software

Scheme 16 bytes IPI 4 KB 16 bytes IPI 4 KB

Encryption
CTRa 26 23 23 195 194 193
CCM 116 38 36 778 381 375
GCM 426 183 180 696 320 314
SGCM 242 89 87 567 254 250
OCB3 144 39 38 469 209 205

HB2b 569 200 196

MASHAb 3 014 182 152

Decryption
CTRa 26 23 23 195 194 193
CCM 129 47 46 781 380 375
GCM 429 183 180 699 319 314
SGCM 243 89 87 571 254 250
OCB3 217 48 46 510 245 242

HB2b 669 297 292

MASHAb 3 016 182 151
a Non-authenticated encryption scheme included for

comparison.
b Does not use AES.

times slower than the other schemes; this is due to the complexity of the full
binary field multiplication. The SGCM is more than 50% faster than GCM,
since the prime field arithmetic is much faster on this platform, specially us-
ing the 32-bit hardware multiplier. Still, it is slower than the other schemes.
Both CCM and OCB3 have almost the same speed, with CCM being around
4% faster. This is surprising, since that OCB3 essentially outperforms CCM in
many platforms [10]. The result is explained by the combination of two facts:
the hardware support for AES, which reduces the overhead of an extra block
cipher call in CCM; and the fact that the AES accelerator does not support par-
allelism, which prevents OCB3 from taking advantage of its support for it. We
have measured that the delay slot optimization improves the encryption speed
of GCM, SGCM and OCB3 by around 12% and CCM by around 24%.

Using the AES in Software. We now consider the performance using the software
AES implementation, for large messages. For reference, the block cipher takes
180 cycles per byte to encrypt and 216 cycles per byte to decrypt. The CCM
mode becomes slower due to the larger overhead of the extra block cipher call.
The GCM is still slower than OCB3 due to its expensive field multiplication. The
SGCM is also faster than GCM, but the improvement is diluted to 20% with the
software AES. The MASHA cipher is the fastest, followed by Hummingbird-2,

High Speed Implementation of Authenticated Encryption 297

Fig. 1. Encryption throughput in Kbps of CTR and AE schemes for 4 KB messages at
20 MHz

Fig. 2. Encryption throughput in Kbps of CTR and AE schemes for 16-byte messages
at 20 MHz

which is 22% slower. Interestingly, Hummingbird-2 fails to outperform AES in
CTR mode, which is surprising since it is specially tailored for the platform (of
course, it must be considered that it provides authentication while AES-CTR
by itself does not).

AES Accelerator vs. AES in Software. Using the AES accelerator, it is possible
to encrypt in the CTR mode approximately 8 times faster than using AES in
software; and it is possible to encrypt with CCM approximately 10 times faster
for encryption and 8 times faster for decryption. The AES accelerator speedup
for GCM, SGCM and OCB3 is smaller (around 1.7, 2.8, and 5.4, respectively),
due to the larger software overhead.

Encryption vs. Decryption. When considering the usage of the AES accelerator,
GCM has roughly the same performance in encryption and decryption, since

298 C.P.L. Gouvêa and J. López

the algorithm for both is almost equal; the same applies for SGCM. For both
CCM and OCB3, decryption is around 25% and 20% slower, respectively. This
is explained by the differences in the data dependencies of the decryption, which
prevents the useful use of the delay slot, and that DK (used by OCB3) is slower
than EK in the AES accelerator. Considering now the usage of the AES in soft-
ware, encryption and decryption have the same performance in CCM and GCM
(since there is no delay slot now) as well as in MASHA. However, decryption
is almost 18% slower for OCB3, since the underlying block cipher decryption
is also slower than the encryption. The decryption in Hummingbird-2 is almost
50% slower due to the f−1(x) function not being able to be fully precomputed,
in contrast to f(x). It is interesting to note that the decryption timings are often
omitted in the literature, even though they may be substantially different from
the encryption timings.

Performance for Small Messages. The timings for 16-byte messages are usu-
ally dominated by the computation of nonce-dependent values. The CCM using
software AES has the second worst performance since all of its initialization is
nonce-dependent (almost nothing is exclusively key-dependent) and it includes
two block cipher calls. When using the AES accelerator, this overhead mostly
vanishes, and CCM becomes the faster scheme. The nonce setup of GCM is very
cheap (just a padding of the nonce) while the nonce setup of OCB3 requires
the left shift of an 192-bit block by 0–63 bits. Still, the GCM performance for
16-byte messages is worse than OCB3 since it is still dominated by the block
processing. Hummingbird-2 loses to OCB3 due to its larger nonce setup and tag
generation. The greatest surprise is the MASHA performance which is almost
four times slower than CCM, making it the slowest scheme for small messages.
This result is explained by the fact that its nonce setup and tag generation are
very expensive, requiring more than 20 state updates each (which take roughly
the same time as encrypting ten 128-bit blocks).

Further Analysis. In order to evaluate our AES software implementation, con-
sider the timings from [4] (also based on [6]) which achieved 286 Kbps at 8 MHz
in the ECB mode. Scaling this to 20 MHz we get 716 Kbps, while our ECB im-
plementation achieved 889 Kbps. We conclude that our 16-bit implementation is
24% faster then the byte-oriented implementation.

Table 3 lists the ROM and RAM usage for programs implementing AE
schemes for both encryption and decryption, using the AES accelerator. The
reported sizes refer only to the code related to the algorithms and excludes the
benchmark code. We recall that the MSP430X model we have used features
32 KB of flash for code and 4 KB RAM. The code for GCM is large due to
the unrolled F2128 multiplier, while the code for CCM is the smallest since it
mostly relies on the block cipher. The RAM usage follows the same pattern:
GCM has the second largest usage, since it has the largest precomputation ta-
ble; the Hummingbird-2 cipher (followed by CCM) has the smallest RAM usage
since it requires no runtime precomputation at all. The MASHA cipher requires
the largest code space, due to the many precomputed tables used; this can be

High Speed Implementation of Authenticated Encryption 299

reduced by sacrificing speed. When using the software AES implementation,
2 904 additional ROM bytes are required for CCM, GCM and SGCM (which use
EK only) and 5 860 additional ROM bytes are required for OCB3.

Table 3. ROM and RAM (stack) usage of AE schemes, in bytes. When using software
AES, 2 904 additional ROM bytes are required for CCM, GCM and SGCM and 5 860
bytes for OCB3.

CTR CCM GCM SGCM OCB3 HB2 MASHA

ROM 130 1 094 4 680 2 172 1 724 3 674 5 602
RAM 100 258 886 322 538 196 499

5.1 Related Work

A commercial 128-bit AES implementation for the MSP430 [8] achieves
340 cycles per byte for encryption and 550 cpb for decryption, in ECB mode,
using 2536 bytes. Our implementation provides 180 cpb and 216 cpb, respec-
tively, but uses 5860 bytes. With space-time tradeoffs, it should be feasible to
achieve similar results, but we have not explored them.

Simplicio Jr. et al. [16] have implemented EAX, GCM, LetterSoup, OCB2
and CCFB+H for the MSP430, using Curupira as the underlying block cipher.
The EAX mode is [1] is described as an “cleaned-up” CCM and has similar
performance. The authors report the results in milliseconds, but do not state the
clock used. Assuming a 8 MHz clock, their timings (in cycles per byte, considering
their timings for 60-byte messages and our timings for 16-byte messages) are
1 733 cpb for EAX, 5 133 cpb for GCM, 1 680 cpb for LetterSoup, 1 506 cpb for
OCB2 and 2 266 cpb for CCFB+H with 8-byte tag. Our CCM is 2.2 times faster
than their EAX, while our GCM is 7.3 times faster, and our OCB3 3.2 times
faster than their OCB2. This difference can probably be explained by the fact
that the authors have not optimized the algorithms for performance.

In [4], the encryption performance using the AES module present in the
CC2420 transceiver is studied, achieving 110 cycles per byte. This is still 5 times
slower than our results for the CTR mode, probably because the CC2420 is a
peripheral and communicating with it is more expensive.

The Dragon-MAC [11] is based on the Dragon stream cipher. Its authors
describe an implementation for the MSP430 that achieves 21.4 cycles per byte
for authenticated encryption (applying Dragon then Dragon-MAC), which is
faster than all timings in this work. However, it requires 18.9 KB of code. Our
CCM implementation using the AES accelerator is 1.7 times slower, but 11 times
smaller; while our HB2 is 9.2 times slower and 5.1 times smaller.

The Hummingbird-2 timings reported for the MSP430 in its paper [5] are
about 6% and 2% faster for encryption and decryption than the timings we have
obtained. However, the authors do not describe their optimization techniques,

300 C.P.L. Gouvêa and J. López

nor the exact MSP430 model used and their timing methodology, making it dif-
ficult to explain their achieved speed. However, we believe that our implementa-
tion is good enough for comparisons. Furthermore, by completely unrolling the
encryption and decryption functions, we were able to achieve timings 3% and
4% faster than theirs, increasing code size by 296 and 432 bytes, respectively.

6 Conclusion and Future Work

The CCM and OCB3 modes were found to provide similar speed results using
the AES accelerator, with CCM being around 5% faster. While OCB3 is the
fastest scheme in many platforms, we expect CCM to be faster whenever a non-
parallel AES accelerator is available. This is the case for the MSP430X models
studied and is also the case for other platforms, for example, the AVR XMEGA
microcontroller with has an analogue AES module.

The CCM appears to be the best choice for MSP430X models with AES
accelerator considering that it also consumes less code space and less stack RAM.
If one of the undesirable properties of CCM must be avoided (not being online,
lack of support for preprocessing of static AD), a good alternative is the EAX
mode [1] and should have performance similar to CCM. Considering software-
only schemes, it is harder to give a clear recommendation: SGCM, OCB3 and
HB2 provide good results, with distinct advantages and downsides. The GCM
mode, even though it has many good properties, does not appear to be adequate
in software implementation for resource-constrained platforms since it requires
very large lookup tables in order to be competitive.

Some other relevant facts we have found are that Hummingbird-2 is slower
than AES; that SGCM is 50% faster than GCM when using the AES accelerator
and 20% when not; and that OCB3 and Hummingbird-2 in particular have
a decryption performance remarkably slower than encryption (18% and 50%
respectively). MASHA has great speed for large enough messages (29% faster
than the second fastest, HB2) but very low performance for small messages
(almost 4 times slower than the second slowest, CCM). For this reason, we
believe there is still the need for a fast, secure and lightweight authenticated
encryption scheme based on a stream cipher.

For future works it would be interesting to implement and compare lightweight
encrypt-and-authenticate or authenticated encryption schemes such as Letter-
Soup [15] and Rabbit-MAC [17] for the MSP430X. Another possible venue for
research is to study the efficient implementation of authenticated encryption us-
ing the AES accelerator featured in other platforms such as the AVR XMEGA
and devices based on the ARM Cortex such as the EFM32 Gecko, STM32 and
LPC1800.

References

1. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004)

High Speed Implementation of Authenticated Encryption 301

2. Chai, Q., Gong, G.: A cryptanalysis of HummingBird-2: The differential sequence
analysis. Cryptology ePrint Archive, Report 2012/233 (2012),
http://eprint.iacr.org/

3. Chatterjee, S., Menezes, A., Sarkar, P.: Another Look at Tightness. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 293–319. Springer, Heidelberg
(2012)

4. Didla, S., Ault, A., Bagchi, S.: Optimizing AES for embedded devices and wire-
less sensor networks. In: Proceedings of the 4th International ICST Conference
on Testbeds and Research Infrastructures for the Development of Networks and
Communities, pp. 4:1–4:10 (2008)

5. Engels, D., Saarinen, M.-J.O., Schweitzer, P., Smith, E.M.: The Hummingbird-2
Lightweight Authenticated Encryption Algorithm. In: Juels, A., Paar, C. (eds.)
RFIDSec 2011. LNCS, vol. 7055, pp. 19–31. Springer, Heidelberg (2012)

6. Gladman, B.: AES and combined encryption/authentication modes (2008),
http://gladman.plushost.co.uk/oldsite/AES/

7. Gouvêa, C.P.L., López, J.: Efficient software implementation of public-key cryp-
tography on sensor networks using the MSP430X microcontroller. Journal of Cryp-
tographic Engineering 2(1), 19–29 (2012)

8. Institute for Applied Information Processing and Communication: Crypto software
for microcontrollers - Texas Instruments MSP430 microcontrollers (2012),
http://jce.iaik.tugraz.at/sic/Products/Crypto Software for

Microcontrollers/Texas Instruments MSP430 Microcontrollers

9. Kiyomoto, S., Henricksen, M., Yap, W.-S., Nakano, Y., Fukushima, K.: MASHA –
Low Cost Authentication with a New Stream Cipher. In: Lai, X., Zhou, J., Li, H.
(eds.) ISC 2011. LNCS, vol. 7001, pp. 63–78. Springer, Heidelberg (2011)

10. Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption
Modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

11. Lim, S.Y., Pu, C.C., Lim, H.T., Lee, H.J.: Dragon-MAC: Securing wireless sen-
sor networks with authenticated encryption. Cryptology ePrint Archive, Report
2007/204 (2007), http://eprint.iacr.org/

12. López, J., Dahab, R.: High-Speed Software Multiplication in F2m . In: Roy, B.,
Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 203–212. Springer,
Heidelberg (2000)

13. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In: Canteaut, A., Viswanathan, K. (eds.) IN-
DOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

14. Saarinen, M.J.O.: SGCM: The Sophie Germain counter mode. Cryptology ePrint
Archive, Report 2011/326 (2011), http://eprint.iacr.org/

15. Simplicio Jr., M.A., Barbuda, P.F.F.S., Barreto, P.S.L.M., Carvalho, T.C.M.B.,
Margi, C.B.: The MARVIN message authentication code and the LETTERSOUP
authenticated encryption scheme. Security and Communication Networks 2(2),
165–180 (2009)

16. Simplicio Jr., M.A., de Oliveira, B.T., Barreto, P.S.L.M., Margi, C.B., Carvalho,
T.C.M.B., Naslund, M.: Comparison of authenticated-encryption schemes in wire-
less sensor networks. In: 2011 IEEE 36th Conference on Local Computer Networks
(LCN), pp. 450–457 (2011)

http://eprint.iacr.org/
http://gladman.plushost.co.uk/oldsite/AES/
http://jce.iaik.tugraz.at/sic/Products/Crypto_Software_for_Microcontrollers/Texas_Instruments_MSP430_Microcontrollers
http://jce.iaik.tugraz.at/sic/Products/Crypto_Software_for_Microcontrollers/Texas_Instruments_MSP430_Microcontrollers
http://eprint.iacr.org/
http://eprint.iacr.org/

302 C.P.L. Gouvêa and J. López

17. Tahir, R., Javed, M., Cheema, A.: Rabbit-MAC: Lightweight authenticated en-
cryption in wireless sensor networks. In: International Conference on Information
and Automation, ICIA 2008, pp. 573–577 (2008)

18. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM) (2002),
http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html

19. Zhang, K., Ding, L., Guan, J.: Cryptanalysis of Hummingbird-2. Cryptology ePrint
Archive, Report 2012/207 (2012), http://eprint.iacr.org/

A Algorithms

Algorithm 1 presents CCM, where the function format computes a header
block B0 (which encodes the tag length, message length and nonce), the blocks
A1, . . . , Aa (which encode the length of the associated data along with the data
itself) and the blocks M1, . . . ,Mm which represent the original message. The
function init ctr returns the initial counter based on the nonce. The function
inc increments the counter.

Algorithm 1. CCM encryption

Input: Message M , additional data A, nonce N , key K
Output: Ciphertext C, authentication tag T with t bits
1. B0, A1, . . . , Aa,M1, . . . ,Mm ← format(N,A,M)
2. Y ← EK(B0)
3. for i← 1 to a do
4. Y ← EK(Ai ⊕ Y)
5. end for
6. J ← init ctr(N)
7. S0 ← EK(J)
8. J ← inc(J)
9. for i← 1 to m do

10. U ← EK(J)
11. J ← inc(J) {delay slot}
12. S ←Mi ⊕ Y {delay slot}
13. Y ← EK(S)
14. Ci ←Mi ⊕ U {delay slot}
15. end for
16. T ← Y [0..t − 1]⊕ S0[0..t − 1]

Algorithm 2 describes GCM, where the function init ctr initializes the
counter and the function inc ctr increments the counter. The operation A · B
denotes the multiplication of A and B in F2128 . The mode benefits from pre-
computed lookup tables since the second operand is fixed for all multiplications
(lines 6, 15 and 18 from Algorithm 1). The LD multiplication with two tables,
used in the field multiplication, is described in Algorithm 3.

OCB3 is described in Algorithm 4, where the function init delta derives
a value from the nonce and it may require a block cipher call, as explained

http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html
http://eprint.iacr.org/

High Speed Implementation of Authenticated Encryption 303

Algorithm 2. GCM encryption

Input: Message M , additional data A, nonce N , key K
Output: Ciphertext C, authentication tag T with t bits
1. A1, . . . , Aa ← A
2. M1, . . . ,Mm ←M
3. H ← EK(0128)
4. Y ← 0128

5. for i← 1 to a do
6. Y ← (Ai ⊕ Y) ·H
7. end for
8. J ← init ctr(N)
9. S0 ← EK(J)

10. J ← inc(J)
11. for i← 1 to m do
12. U ← EK(J)
13. J ← inc(J) {delay slot}
14. Ci ←Mi ⊕ U
15. Y ← (Ci ⊕ Y) ·H
16. end for
17. L← [len(A)]64 || [len(M)]64
18. S ← (L⊕ Y) ·H
19. T ← (S ⊕ S0)[0..t − 1]

Algorithm 3. López-Dahab multiplication in F2128 for 16-bit words and 4-bit
window, using 2 lookup tables

Input: a(z) = a[0..7], b(z) = b[0..7]
Output: c(z) = c[0..15]
1. Compute T0(u) = u(z)b(z) for all polynomials u(z) of degree lower than 4.
2. Compute T1(u) = u(z)b(z)z4 for all polynomials u(z) of degree lower than 4.
3. c[0..15] ← 0
4. for k← 1 down to 0 do
5. for i← 0 to 7 do
6. u0 ← (a[i]� (8k)) mod 24

7. u1 ← (a[i]� (8k + 4)) mod 24

8. for j ← 0 to 8 do
9. c[i + j]← c[i + j]⊕ T0(u0)[j] ⊕ T1(u1)[j]

10. end for
11. end for
12. if k > 0 then
13. c(z)← c(z)z8

14. end if
15. end for
16. return c

304 C.P.L. Gouvêa and J. López

later. The function ntz(i) returns the number of trailing zeros in the binary
representation of i (e.g. ntz(1) = 0, ntz(2) = 1). The function getL(L0, x)
computes the field element L0 · zx and can benefit from a precomputed lookup
table. Notice that the multiplication by z is simply a left shift of the operand by
one bit, discarding the last bit and xoring the last byte of the result with 135
(which is the representation of z7 + z2 + z1 + 1) if the discarded bit was 1. The
function hash authenticates the additional data and is omitted for brevity.

Algorithm 4. OCB3 mode encryption

Input: Message M , additional data A, nonce N , key K
Output: Ciphertext C, authentication tag T with t bits
1. A1, . . . , Aa ← A
2. M1, . . . ,Mm ←M
3. L∗ ← EK(0128)
4. L$ ← L∗ · z
5. L0 ← L$ · z
6. Y ← 0128

7. Δ← init delta(N,K)
8. for i← 1 to m do
9. Δ← Δ⊕ getL(L0, ntz(i))

10. U ← EK(Mi ⊕Δ)
11. Y ← Y ⊕Mi {delay slot}
12. Ci ← U ⊕Δ
13. end for
14. Δ← Δ⊕ L$

15. F ← EK(Y ⊕Δ)
16. G← hash(K,A)
17. T ← (F ⊕G)[0..t − 1]

Infective Computation and Dummy Rounds:

Fault Protection for Block Ciphers without
Check-before-Output

Benedikt Gierlichs1, Jörn-Marc Schmidt2, and Michael Tunstall3

1 KU Leuven Dept. Electrical Engineering-ESAT/SCD-COSIC and IBBT
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

benedikt.gierlichs@esat.kuleuven.be
2 Graz University of Technology

Institute for Applied Information Processing and Communications
Inffeldgasse 16a, A–8010 Graz, Austria
joern-marc.schmidt@iaik.tugraz.at

3 Department of Computer Science, University of Bristol
Merchant Venturers Building, Woodland Road

Bristol BS8 1UB, United Kingdom
tunstall@cs.bris.ac.uk

Abstract. Implementation attacks pose a serious threat for the security
of cryptographic devices and there are a multitude of countermeasures
that are used to prevent them. Two countermeasures used in implemen-
tations of block ciphers to increase the complexity of such attacks are
the use of dummy rounds and redundant computation with consistency
checks to prevent fault attacks. In this paper we present several counter-
measures based on the idea of infective computation. Our countermea-
sures ensure that a fault injected into a cipher, dummy, or redundant
round will infect the ciphertext such that an attacker cannot derive any
information on the secret key being used. This has one clear advantage:
the propagation of faults prevents an attacker from being able to conduct
any fault analysis on any corrupted ciphertexts. As a consequence, there
is no need for any test at the end of an implementation to determine if
a fault has been injected and a ciphertext can always be returned.

Keywords: Implementation Attacks, Dummy Rounds, Infective Com-
putation.

1 Introduction

Implementation attacks are currently one of the most powerful threats for cryp-
tographic devices. Instead of considering a cryptographic device like a smart card
as a black box, these attacks try to benefit from characteristics of the implemen-
tation, either by measuring properties of the device during a computation or by
actively manipulating the execution of an algorithm. These can be grouped into
two main types: Passive attacks based on measuring and analyzing properties

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 305–321, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

306 B. Gierlichs, J.-M. Schmidt, and M. Tunstall

of the device (referred to as a side-channel attack), and active attacks where an
attacker seeks to modify the behavior of a device (referred to as a fault attack).
Both attack methods may reveal cryptographic keys used inside a device, irre-
spective of the theoretical (black-box) security of the underlying cryptographic
algorithm.

Side-channel analysis was introduced to the cryptographic community by
Kocher [1], who noted that the time taken to compute a cryptographic algo-
rithm can potentially reveal the cryptographic key being used. The idea of the
attack was later extended by Kocher et al. [2], who noted that the power con-
sumption of a microprocessor depends on the code being executed. Moreover,
the instantaneous power consumption is dependent on the data being manipu-
lated at that point in time (typically proportional to the Hamming weight of
the data [3]). This allows information on cryptographic keys to be determined,
since one can verify a hypothetical set of values that occur after the input is
combined with a key. It was later observed that the same attacks could be ap-
plied to the electromagnetic emanations surrounding a microprocessor [4,5]. A
suitable countermeasure to such attacks is to mask all intermediate states of an
algorithm with some random value [6,7]. One can further complicate the task
of an attacker by executing an algorithm in some non-deterministic order, such
that data is not processed at a set point in time. This spreads the information
an attacker would want to exploit over numerous points in time. One way to
introduce time randomization in an implementation of a block cipher is the use
of dummy rounds. That is, each round observed by an attacker will be a dummy
round with some probability, and produce false hypotheses for an attacker.

Fault analysis seeks to exploit the effect of a fault inserted into an instance of
a cryptographic algorithm [8,9,10]. When implementing a block cipher a simple
countermeasure is, as for side-channel analysis, to use time randomization, e.g.
dummy rounds, that can render precise fault injection more difficult. However,
dummy rounds do not affect an attacker directly, since injecting a fault into a
dummy round will have no observable effect. Another simple countermeasure is
to introduce redundancy in a certain number of rounds at the beginning and the
end of a block cipher. This can, for instance, involve repeating the execution of
functions in software implementations or using parallel blocks in hardware. At
the end of the redundant computation the implementation checks if all redun-
dantly computed results are equal and suppresses the output if they are not.

Contribution. In this paper we show how one can link cipher rounds, dummy
rounds, and redundant rounds to further increase the security in implementa-
tions of block ciphers. The countermeasures disturb the ciphering process each
time a fault is injected into a cipher, dummy, or redundant round, and give an
attacker no information with which to deduce information on a secret key. As
a consequence, an implementation does not need to use any consistency checks,
which may themselves become targets for a fault attack and which inherently
leak information about the success of fault injection.

Infective Computation and Dummy Rounds 307

Our countermeasures even provide some protection against an adversary who
attempts to inject the same fault in both (all) branches of redundant compu-
tation to bypass the final consistency check. While the check actually aids the
adversary since it will only output the ciphertext if the fault injection was suc-
cessful, our proposed algorithms always output a ciphertext (exploitable or not).
Thus, an adversary has to analyze the output without knowing whether the fault
injection was successful and the output contains exploitable information, or not.

Organization. The rest of this paper is organized as follows: Section 2 provides
background information on fault analysis of block cipher implementations and
countermeasures. Section 3 presents our countermeasures and their application
to S-P networks and Feistel ciphers. Section 4 provides the security evaluation of
the countermeasures in both cases. Section 5 explains how the countermeasures
can be hardened to prevent the detection of dummy rounds by side-channel
analysis and Section 6 concludes the paper.

2 Background

Since the introduction of fault attacks by Boneh et al. [9], the idea of exploiting
erroneous results to reveal secrets was applied to many cryptographic algorithms.
The ideas are steadily improved for reducing the number of faults required. For
example, it is noted in [11] that a single fault may be sufficient to break an
AES implementation by using differential fault analysis. For such attacks, the
same plaintext is encrypted twice, while a fault is injected during one of the
computations. From the resulting difference in the outputs, the secret key or
parts of it are derived. In contrast to differential fault analysis, collision fault
analysis [8] relies on finding a plaintext that maps to the same output as a faulty
encryption of a different plaintext. This technique is often applied to attack early
rounds of an algorithm. Safe-error attacks [12] and ineffective fault analysis [10]
do not require the actual output of the computation. The information whether
the result is erroneous is sufficient. The same idea can also be used to easily
detect dummy operations in a computation.

In order to detect fault attacks some kind of redundancy is typically intro-
duced into implementations of cryptographic algorithms. A straightforward ap-
proach is computing the same algorithm twice and comparing the results. If the
results differ, the output of the algorithm is suppressed. In order to protect the
algorithm without repeating it, the proposals include limiting the repetition to
a few rounds, introducing a parity byte for the state [13], and generating di-
gest values that are tailored to the operations of the cipher [14]. While these
approaches try to reduce the overhead compared to doubling the cipher, other
proposals aim at a higher detection rate for injected faults, such as involving the
inverse round-function of the cipher for the check [15] and enlarging the field the
algorithm computes in [16].

However, irrespective of how the redundancy is introduced, the check of the
result before it is released is a potential target for an adversary. Kim and
Quisquater demonstrated that one can attack a cryptographic algorithm and

308 B. Gierlichs, J.-M. Schmidt, and M. Tunstall

then inject a fault in the verification stage [17]. The natural response would be
to make the verification itself redundant but van Woudenberg et al. [18] have
shown that three faults can be used to attack two tests after the execution of a
cryptographic algorithm, i.e. inject one fault in the algorithm itself and use two
faults to overcome the redundant verification.

In order to prevent an adversary from using multiple fault-injection to bypass
checking routines, Yen and Joye introduced the principle of infective comput-
ing [12]. Their proposal defines a method of generating RSA signatures where
any fault injected into a computation changes the output of the cryptographic
algorithm in such a way that it does not reveal any secret information. That
is, the output of the cryptographic algorithm should not be exploitable. The
usual way to implement infective computation is to introduce a (secret) error
in an input, then to compute the result, and finally to remove the effect of the
previously introduced error. If a fault is injected in the computation, then the
output of the algorithm is incorrect and cannot be exploited because the initial
error is unknown. An alternative way is to introduce additional computation on
secret data in the algorithm that will have no effect on the result, if no fault is
injected.

In the following section we describe how the latter approach can be applied
to block ciphers using dummy rounds.

3 Smart Use of Dummy Rounds and Redundant
Computation

We first explain how our approach can be used to make smart use of dummy
rounds. This leads to an algorithm where dummy rounds can no longer be iden-
tified by fault injection, and where a fault injected into a dummy round renders
the ciphertext useless to an attacker. Then we extend the approach to redundant
implementations with dummy rounds.

We provide algorithms for the application of our countermeasures to S-P
networks and Feistel ciphers that use the following notation:

BlockCipher — The entire block cipher under consideration which takes a
plaintext P and enciphers it with a secret key K to produce a ciphertext C.
We will consider a block cipher that consists of n rounds.

RoundFunction — The round function of the block cipher. It operates on a
given register and requires the correct subkey ki for that round.

RandomBit — This function returns a random bit that governs whether a dummy
round will occur or not. If this bit is equal to zero a dummy round will be
computed, otherwise a cipher round will take place. This function can be
replaced by any suitable function that returns one bit, if, for example, one
wants to limit the number of dummy rounds that could occur in a given
instantiation of the block cipher.

We denote a bitwise logical AND operation by ∧, a bitwise logical NOT operation
by ¬, and a bitwise logical exclusive-OR (XOR) operation by ⊕.

Infective Computation and Dummy Rounds 309

3.1 Smart Use of Dummy Rounds

We propose a countermeasure where a dummy round takes a secret input value
β that is known to produce a result of β after one round when combined with
the secret dummy round-key k0. That is

RoundFunction(β, k0) = β .

The result of the dummy round is then XORed into the cipher state, and then
XORed with β, ensuring that any fault is propagated into the block cipher.
The result of the dummy round further overwrites β held in registers. This
ensures that any fault is propagated into subsequent dummy rounds. The same
operations are conducted when a cipher round is computed. This means that any
fault that modifies the output of a dummy round will affect the input of every
subsequent round, making any collision or differential fault analysis impossible.

Application to S-P Networks. Algorithm 1 shows how the countermeasure
can be applied to a straightforward implementation of a S-P network. The

Algorithm 1. S-P network with smart dummy rounds

Input: P , ki for i ∈ {1, . . . , n + 1} (n + 1 subkeys from key K), (β, k0).
Output: C = BlockCipher(P,K)

1 State: R0 ← P ; Dummy state R1 ← β ; i← 1 ;

2 while i ≤ n do
3 λ← RandomBit() ; // λ = 0 implies a dummy round
4 κ← i λ ;
5 R¬λ ← RoundFunction(R¬λ, kκ) // infection of the dummy state
6 R0 ← R0 ⊕R1 ⊕ β ; // infection of the cipher state
7 i← i + λ ;

8 end

9 return R0

algorithm clearly achieves the goal of propagating a fault injected into a dummy
round into every subsequent round.

Application to Feistel Ciphers. Another commonly used mechanism for
block ciphers is the Feistel structure. This operates by dividing the input of
one round into two equally sized sets and using a round function on one set
before combining it with the other set using an XOR. For example, if we define
Li and Ri as the left and right hand inputs to the ith round of a block cipher
respectively, then Li+1 and Ri+1 are computed in the following manner:

Li+1 ← Ri

Ri+1 ← RoundFunction(Ri, ki+1)⊕ Li.

310 B. Gierlichs, J.-M. Schmidt, and M. Tunstall

Algorithm 2 shows how the countermeasure can be applied to a straightforward
implementation of a Feistel cipher. It uses the following additional notation: let
Pr be the right-hand side and Pl be the left-hand side of the plaintext, respec-
tively. Further, let α be some arbitrary, constant value where the relationship
between α, β and k0 is RoundFunction(β, k0)⊕ α = β.

Algorithm 2. Feistel cipher with smart dummy rounds

Input: P , ki for i ∈ {1, . . . , n} (n subkeys from key K), (β, α, k0).
Output: C = BlockCipher(P,K)

1 State R0 ← Pr ; Dummy state R1 ← β ; i← 1 ;
2 State T0 ← Pl ; T1 ← α ;

3 while i ≤ n do
4 λ← RandomBit() ; // λ = 0 implies a dummy round
5 κ← i λ ;
6 R¬λ ← RoundFunction(R¬λ, kκ)⊕ T¬λ // infection of the dummy state
7 R0 ← R0 ⊕R1 ⊕ β ; // infection of the cipher state
8 T0 ← T0 ⊕R1 ⊕ β ; // infection of the cipher state
9 i← i + λ ;

10 end

11 return T0‖R0

We can note that a fault in a dummy round will affect both R0 and T0 and
therefore provoke a larger change in the resulting ciphertext.

3.2 Smart Use of Redundant Rounds and Dummy Rounds

Algorithms 1 and 2 both achieve the goal of propagating faults injected into
a dummy round into every subsequent round. However, both algorithms still
require the output of some of the first and last rounds to be checked to prevent
collision and differential fault analysis based on a fault injected into a cipher
round.

To overcome this limitation we further propose algorithms where each round
is repeated and any fault in a single round (cipher, dummy, or redundant round)
will affect the resulting ciphertext such that no information is available to an at-
tacker. This means that a verification stage is not necessary since an attacker will
not receive any information from a fault. As before, an attacker will not be able to
determine if any particular round is a dummy round by means of fault injection.

Note that repeating each round implies that each round can be observed twice
through some side-channel, which can ease side-channel analysis. However, the
time randomization due to the dummy rounds provides some level of protection.
In addition, although each cipher round is repeated, this will occur in a somewhat
random manner. That is, a cipher round may be followed by a dummy round
or a redundant round with some probability determined by how RandomBit is

Infective Computation and Dummy Rounds 311

defined, and the round counter only increases once the redundant round has
been computed.

As above, we assume that β and k0 are chosen such that the result of the
round function is β. That is

RoundFunction(β, k0) = β .

The algorithms also use additional notation:

SNLF — This stands for Some NonLinear Function, which is used to ensure
that any fault in the block cipher will not provide an attacker with any
information. We discuss the reasons for this in more detail in Section 4. In
our algorithms we assume that SNLF(0) �→ 0.

Application to S-P Networks. Algorithm 3 shows how the countermeasure
can be applied to a redundant implementation of an S-P network.

Algorithm 3. Redundant S-P Network with Dummy Rounds

Input: P , ki for i ∈ {1, . . . , n + 1} (n + 1 subkeys from key K), (β, k0).
Output: C = BlockCipher(P,K)

1 State R0 ← P ; Redundant state R1 ← P ; Dummy state R2 ← β ;
2 C0 ← 0 ; C1 ← 0 ; C2 ← β ; i← 0 ;

3 while i < 2n do
4 λ← RandomBit() ; // λ = 0 implies a dummy round
5 κ← (i ∧ λ)⊕ 2 (¬λ) ;
6 ζ ← �i/2� λ ; // ζ is actual round counter, 0 for dummy
7 Rκ ← RoundFunction(Rκ, kζ) ;
8 Cκ ← Rκ ⊕ C2 ⊕ β ; // infect Cκ to propagate a fault
9 ε← λ(¬(i ∧ 1)) · SNLF(C0 ⊕ C1) ; // check if i is even

10 R2 ← R2 ⊕ ε ;
11 R0 ← R0 ⊕ ε ;
12 i← i + λ ;

13 end

14 R0 ← R0 ⊕ RoundFunction(R2, k0) ;

15 return R0

Algorithm 3 progresses by computing the same round twice before advancing
to the next round using i as a counter. When i is an even number the difference
between the result of a cipher round and a redundant round should be equal to
zero and any difference is XORed into β. This difference also goes through some
nonlinear function to make it difficult for an attacker to make any hypotheses
about any fault that has been induced. If i is an odd number, or a dummy
round occurs, the difference between the cipher round and the redundant round

312 B. Gierlichs, J.-M. Schmidt, and M. Tunstall

is multiplied by zero since it will be non-zero during the normal functioning of the
algorithm. Tables 1(a), 1(b) and 1(c) illustrate the functioning of the algorithm
with examples.

Table 1. Examples of Algorithm 3

(a) A dummy round. A fault will
change C2 infecting every subse-
quent round.

λ = 0

κ← (i ∧ λ)⊕ 2 (¬λ) = 2
ζ ← �i/2� λ = 0
R2 ← RoundFunction(R2, k0) = β
C2 ← R2 ⊕ C2 ⊕ β = β
ε← 0 · SNLF(C0 ⊕ C1) = 0
R2 ← R2 ⊕ ε
R0 ← R0 ⊕ ε
i← i + 0

(b) A round where i is even. A
fault will change R0 that will
infect every subsequent round
where i is odd and every round
after the next dummy round.

i = even, λ = 1

κ← (i ∧ λ)⊕ 2 (¬λ) = 0
ζ ← �i/2�
R0 ← RoundFunction(R0, kζ)
C0 ← R0 ⊕ C2 ⊕ β = R0

ε← 0 · SNLF(C0 ⊕ C1) = 0
R2 ← R2 ⊕ ε
R0 ← R0 ⊕ ε
i← i + 1

(c) A round where i is odd. A
fault will change R1 that will
infect every subsequent round
where i is even and every round
after the next dummy round.

i = odd, λ = 1

κ← (i ∧ λ)⊕ 2 (¬λ) = 1
ζ ← �i/2�
R1 ← RoundFunction(R1, kζ)
C1 ← R1 ⊕ C2 ⊕ β = R1

ε← 1 · SNLF(C0 ⊕C1)
R2 ← R2 ⊕ ε
R0 ← R0 ⊕ ε
i← i + 1

An extra dummy round is added to the end of the algorithm to ensure that
any fault that has been propagated through the algorithm masks the ciphertext
in such a way that no information is available to an attacker. Moreover, this
will ensure the countermeasure is effective if an attacker is able to affect the
RandomBit function such that no dummy rounds occur.

The extra dummy round and the use of the nonlinear function are discussed in
more detail using an example in Section 4. We do not need to add a dummy round
at the beginning of the block cipher to protect against collision fault analysis
since an attacker will not be able to find a collision. That is, if an attacker injects
a fault in one of the early rounds of a block cipher, the effect of this fault will
be propagated by the proposed countermeasure in such a way that an attacker
cannot hope to find a collision by making hypotheses on a subset of the secret
key bits.

Infective Computation and Dummy Rounds 313

Application to Feistel Ciphers. In Algorithm 4 we define a redundant algo-
rithm for use with Feistel ciphers using the same principles.

Algorithm 4. Redundant Feistel Cipher with Dummy Rounds

Input: P , ki for i ∈ {1, . . . , n} (n subkeys from key K), (β, α, k0).
Output: C = BlockCipher(P,K)

1 State R0 ← Pr ; Redundant State R1 ← Pr ; Dummy state R2 ← β ;
2 State T0 ← Pl ; Redundant State T1 ← Pl ; Dummy state T2 ← α ;
3 C0 ← 0 ; C1 ← 0 ; C2 ← β ; i← 1 ;

4 while i ≤ 2n do
5 λ← RandomBit(); // λ = 0 implies a dummy round
6 κ← (i ∧ λ)⊕ 2 (¬λ) ;
7 ζ ← �i/2� λ ; // ζ is actual round counter, 0 for dummy
8 Rκ ← RoundFunction(Rκ, kζ)⊕ Tκ ;
9 Cκ ← Rκ ⊕ C2 ; // infect Cκ to propagate a fault

10 ε← λ(¬(i ∧ 1)) · SNLF(C0 ⊕ C1) ; // check if i is even
11 T0 ← T0 ⊕ ε ;
12 R0 ← R0 ⊕ ε ;
13 R2 ← R2 ⊕ ε ;
14 i← i + λ ;

15 end

16 C2 ← RoundFunction(R2, k0)⊕ T2 ;
17 R0 ← R0 ⊕ C2 ;

18 return T0‖R0

Remark. In our algorithms we assume that the block cipher consists of either
an S-P network or a Feistel construction. In both cases it is straightforward to
compute a constant pair (β, k0) resp. triplet (α, β, k0) by simply inverting the
round function and choosing a suitable k0 for a chosen β (and α).

In defining the countermeasures to protect a secure implementation, one would
use a redundant implementation to protect a certain number of rounds at the
beginning and the end of the block cipher. That is, one would use a round as
defined in Algorithm 1 resp. 2 for rounds that do not require explicit protection
and a round as defined in Algorithm 3 resp. 4 for those that do. Further, the
dummy rounds should not be distinguishable from every other round by means
of side-channel analysis. We detail how this can be achieved in Section 5.

3.3 Performance

We assess the performance overhead of the proposed algorithms, first for S-P
networks and then for Feistel ciphers. We begin with determining the cost of
making “normal” dummy rounds smart, then we add the cost of making the im-
plementations redundant. We assume that the baseline implementation already

314 B. Gierlichs, J.-M. Schmidt, and M. Tunstall

uses dummy rounds, and the analysis is independent of the chosen function
RandomBit, i.e. of the number of dummy rounds. The number of redundant
rounds is also not covered by our analysis.

For S-P networks, the overhead to make dummy rounds smart (Algorithm 1)
is: one additional constant (β) the size of the cipher state, and two XOR opera-
tions on operands the size of the cipher state in each round. The generation of
the random bits, the additional (dummy) rounds, and the second cipher state
are already required by using dummy rounds without our countermeasure.

In order to further equip the implementation of the S-P network with smart
redundant rounds, as done in Algorithm 3, four additional states, and one round
execution followed by an XOR at the end of the implementation are required.
In addition, some nonlinear function, four XORs and four logic operations have
to be computed for each round.

For Feistel ciphers, the overhead to make dummy rounds smart (Algorithm 2)
is: one additional state of half the block size, two constants of half the block size
(α and β), and four additional XOR operations on operands half the block size
per round.

The fault protection for Feistel ciphers in Algorithm 4 requires five additional
states of half the block size, and one round execution followed by two XORs
at the end of the implementation. Moreover, each round requires an additional
evaluation of some nonlinear function, two XOR operations, and four logic op-
erations. Table 2 shows a summary of the results.

Table 2. Performance overheads: from dummy rounds to smart dummy rounds (left),
and from smart dummy rounds to smart dummy rounds with redundancy (right)

Smart Dummy rounds + Redundant Rounds
Overall per round Overall per round

S-P Network
+ 1 Const + 2 XOR + 4 States + 4 XOR

+ 1 XOR + 4 Logic
+ 1 RF + 1 NLF

Feistel Cipher
+ 1/2 State + 4 XOR + 5/2 States + 2 XOR
+ 2/2 Const + 2 XOR + 4 Logic

+ 1RF + 1 NLF

4 Evaluating the Countermeasure

In this section we evaluate the security of the above presented redundant algo-
rithms for S-P networks and Feistel ciphers. We describe how the weakest in-
stance of the presented countermeasure would affect the strongest attacks avail-
able. Any other attacks from the literature will typically require a more complex
analysis, e.g. a larger fault, more faulty ciphertexts, or a fault further into the
algorithm, and the effect of the last dummy round will become more pronounced.
Some complex attacks and those requiring particular circumstances, such as col-
lision fault analysis, are not considered since they are completely prevented by
the countermeasure.

Infective Computation and Dummy Rounds 315

4.1 S-P Networks

In this section we discuss Algorithm 3 in terms of its resistance to differential
fault analysis. To demonstrate this we use the AES as an example, since it will
be the most likely instance of our countermeasure in S-P networks.

The Advanced Encryption Standard (AES) [19] was standardized in 2001
from a proposal by Daemen and Rijmen [20]. Note that we restrict ourselves
to considering AES-128 and that in discussing the AES we consider that all
variables are arranged in a 4× 4 array of bytes, known as the state matrix. For
example the 128-bit plaintext P = (p1, p2, . . . , p16)(256) is arranged as follows:⎛⎜⎜⎝

p1 p5 p9 p13
p2 p6 p10 p14
p3 p7 p11 p15
p4 p8 p12 p16

⎞⎟⎟⎠ .

The encryption itself is conducted by the repeated use of a round function that
comprises the following operations executed in sequence:

SubBytes — The only nonlinear step of the block cipher, consisting of a substi-
tution table applied to each byte of the state.

ShiftRows — A byte-wise permutation of the state that operates on each row.
MixColumns — Each column of the state matrix is considered as a vector where

each of its four elements belong to F(28). A 4×4 matrix M whose elements
are also in F(28) is used to map this column into a new vector. This operation
is applied to the four columns of the state matrix. Here M is defined as

M =

⎛⎜⎜⎝
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

⎞⎟⎟⎠
where all the elements in M are elements of F(28) expressed in decimal. This
function is not included in the last round.

AddRoundKey — XORs each byte of the array with a byte from a corresponding
subkey. An initial subkey addition precedes the first round.

The simplest, yet strongest, example of differential fault analysis was proposed
by Piret and Quisquater [21], where it is assumed that a one byte fault is induced
at the beginning of the ninth round. If, for example, the byte at index one is
modified by a fault, the difference between the result and what it ought to be at
the end of the ninth round becomes:⎛⎜⎜⎝

2 θ 0 0 0
θ 0 0 0
θ 0 0 0
3 θ 0 0 0

⎞⎟⎟⎠

316 B. Gierlichs, J.-M. Schmidt, and M. Tunstall

An attacker can compare a faulty and the correct ciphertext using the following
relationship, using the notation defined above,

2 θ = S−1(c1 ⊕ k1)⊕ S−1(c′1 ⊕ k1)

θ = S−1(c14 ⊕ k14)⊕ S−1(c′14 ⊕ k14)

θ = S−1(c11 ⊕ k11)⊕ S−1(c′11 ⊕ k11)

3 θ = S−1(c8 ⊕ k8)⊕ S−1(c′8 ⊕ k8) ,

where c′i and ki for i ∈ {1, . . . , 16} represents the bytes from the state matrix
of the faulty ciphertext and the last subkey respectively. This will allow the 232

possible key hypotheses for {k1, k8, k11, k14} to be reduced to 28 possibilities.
The procedure can then be repeated to derive the entire last subkey.

With our countermeasures in place, the equations would become:

2 θ = S−1(c1 ⊕ k1)⊕ S−1(c′1 ⊕ k1 ⊕ (b1 ⊕ γ1))

θ = S−1(c14 ⊕ k14)⊕ S−1(c′14 ⊕ k14 ⊕ (b14 ⊕ γ14))

θ = S−1(c11 ⊕ k11)⊕ S−1(c′11 ⊕ k11 ⊕ (b11 ⊕ γ11))

3 θ = S−1(c8 ⊕ k8)⊕ S−1(c′8 ⊕ k8 ⊕ (b8 ⊕ γ8)) ,

where we define bi for i ∈ {1, . . . , 16} as the output of the SNLF(C0 ⊕ C1) at
the end of the penultimate round, and γi for i ∈ {1, . . . , 16} as the result of the
last dummy round. The SNLF cannot be implemented as the SubBytes operation
since it does not map a zero to a zero as required, but one could, for example,
use inversion in F(28).

In this example we consider that the MixColumns operation is not included to
simplify the analysis. However, an equivalent analysis would be straightforward
if the dummy round included a MixColumns operation. One can simplify the
above by rewriting each bi ⊕ γi, for i ∈ {1, 8, 11, 14}, as one unknown byte.
However, an attacker will not be able to use the equations to reduce the number
of possible keys since there will be 248 solutions.

4.2 Feistel Structures

We discuss Algorithm 4 in terms of its resistance to differential fault analysis
and use the Data Encryption Standard (DES) as an example. We consider DES
relevant since it is still widely used in banking.

DES was introduced by NIST in the mid 1970s [22], and was the first openly
available cryptography standard. DES can be considered as a transformation of
two 32-bit variables (L0, R0), i.e. the message block, through sixteen iterations
of the Feistel structure to produce a ciphertext block (L16, R16). The Expansion
and P-permutations are bitwise permutations. For clarity of expression, these
permutations will not always be considered and the round function for round n
will be written as:

Ln = Rn−1

Rn = S(Rn−1 ⊕Kn)⊕ Ln−1

where S is a nonlinear substitution function.

Infective Computation and Dummy Rounds 317

In this section we describe the strongest attack that can be applied to an
implementation of DES. This fault attack on DES involves injecting a fault in
the fifteenth round and was described by Biham and Shamir [23]. The last round
of DES can be expressed in the following manner:

R16 = S(R15 ⊕K16)⊕ L15

= S(L16 ⊕K16)⊕ L15 .

For ease of expression we ignore the bitwise permutations since they will only
impact an implementation of the described attack. If a fault occurs during the
execution of the fifteenth round, i.e. R15 is randomized by a fault to become
R′

15, then:
R′

16 = S(R′
15 ⊕K16)⊕ L15

= S(L′
16 ⊕K16)⊕ L15

and
R16 ⊕R′

16 = S(L16 ⊕K16)⊕ L15 ⊕ S(L′
16 ⊕K16)⊕ L15

= S(L16 ⊕K16)⊕ S(L′
16 ⊕K16) .

This provides an equation in which only the last subkey, K16, is unknown. All of
the other variables are available from the ciphertext block. This equation holds
for each S-box in the last round, which means that it is possible to search for key
hypotheses in sets of six bits. This will return an expected 224 key hypotheses
for the last round key and, therefore, 232 hypotheses for the block cipher key.

If an attacker attempts to apply this attack to an instance of Algorithm 4,
the last dummy round would need to be taken into account. A faulty ciphertext
would have the form:

R′
16 = S(R′

15 ⊕K16)⊕ L15 ⊕ (b⊕ γ)

= S(L′
16 ⊕K16)⊕ L15 ⊕ (b ⊕ γ) ,

where b denotes the result of the SNLF(C0 ⊕ C1) function at the end of the
last round and γ denotes the result of the last dummy round. We obtain the
difference

R16 ⊕R′
16 = S(L16 ⊕K16)⊕ S(L′

16 ⊕K16)⊕ (b⊕ γ) .

As in the previous example, this would have too many solutions to provide any
information on the last subkey since b⊕ γ is unknown.

5 Further Strengthening the Countermeasure

In Algorithm 1 we require that

RoundFunction(β, k0) = β . (1)

If the pair (β, k0) is fixed for a given implementation, the computation during all
dummy rounds will be identical. Therefore, the pattern in a given side-channel

318 B. Gierlichs, J.-M. Schmidt, and M. Tunstall

generated by a dummy round would have a given form. An attacker could po-
tentially exploit this weakness to identify dummy rounds by cross correlation or
template analysis [24].

To solve this problem one can simply refresh the pair (β, k0) with a frequency
determined by how powerful an attacker is assumed to be. More precisely, one
would randomly generate β (or k0) and change k0 (or β) such that (1) holds.
This fully randomizes the computation during a dummy round but it may still
be possible to identify a dummy round as a round with equal input and output.

A better, but also more costly, approach would be to generate a triplet of
random values (β, k0, δ) where

RoundFunction(β, k0) = δ .

The input and output of a dummy round would be random and an attacker
would no longer be able to identify a dummy round. However, this approach
requires that the effect of the δ be corrected. For example, in Algorithm 1, line 6
would need to be replaced with

R0 ← R0 ⊕R1 ⊕ β ⊕ δ.

This makes the countermeasure more expensive but ensures that an attacker
would be unable to identify a dummy round by any means.

The application of this latter idea to Algorithm 2 would require a randomly
generated quartet (β, k0, α, δ), since we would require that

RoundFunction(β, k0)⊕ α = δ .

Otherwise, strengthening the countermeasure for Feistel ciphers would be similar
to strengthening that for S-P networks in Algorithm 1.

6 Conclusion

In this paper we describe algorithms where dummy and redundant rounds can
be used to implement infective computation in block ciphers. This would allow
a block cipher to be implemented where no check is required to detect whether a
fault has occurred since no information would be available to an attacker. This
would prevent an attacker from implementing a multiple-fault attack that affects
tests at the end of a block cipher [25,18].

We have demonstrated that the algorithms will be secure against the strongest
available differential fault analysis that can be applied to AES and DES. We
have not demonstrated this for all fault attacks that have been described in the
literature since many attacks will not be possible. For example, collision fault
analysis requires an attacker to inject a fault in one of the first rounds of a
block cipher to produce a faulty ciphertext. The attacker will then try to find
a plaintext that will produce the same ciphertext without a fault. Given that
such a fault will re-infect the implementation numerous times, such an attack
becomes impossible.

Infective Computation and Dummy Rounds 319

The current state-of-the-art in implementing block ciphers is to implement
some form of consistency check in order to detect faults, so that the output can
be withheld if a fault has occurred. This is potentially vulnerable to an attacker
who can inject the same fault into both redundant paths of the algorithm, thus
by-passing the check at the end of the algorithm. This would be a complex at-
tack, but the verification would aid an attacker since a faulty result would only
appear once the fault injection is successful. With our countermeasures an at-
tacker will always receive a ciphertext. Thus, an adversary has to analyze the
output without knowing whether the fault injection was successful and the out-
put contains exploitable information, or not. Given that injecting two identical
faults into a single run of an unknown implementation with random dummy
rounds is very hard and will only succeed with a very low probability, it would
be very difficult to determine at what point a sufficient number of exploitable
faulty ciphertexts have been collected, and to distinguish them from the ones
that do not provide any information on the secret key.

The use of the proposed countermeasures will also help to avoid a situation
where a new fault attack is published that allows an attacker to exploit faults
over more rounds than that considered necessary when a given algorithm is
implemented. This is because such attacks will typically require a relatively
large number of faulty ciphertexts [26,27], and our countermeasure will insert
faulty ciphertexts containing no information into the analysis. This will hinder
or prevent new attacks.

Acknowledgements. The work described in this paper has been supported
in part by the European Commission through the ICT Programme under con-
tract ICT-2007-216676 ECRYPT II and under contract ICT-SEC-2009-5-258754
TAMPRES, by the EPSRC via grant EP/I005226/1, by the Research Council
of KU Leuven: GOA TENSE (GOA/11/007), by the IAP Programme P6/26
BCRYPT of the Belgian State (Belgian Science Policy), by the Flemish Govern-
ment FWO G.0550.12N and by the Hercules Foundation AKUL/11/19. Benedikt
Gierlichs is Postdoctoral Fellow of the Fund for Scientific Research - Flanders
(FWO).

References

1. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

2. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

3. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

4. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

320 B. Gierlichs, J.-M. Schmidt, and M. Tunstall

5. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

6. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

7. Goubin, L., Patarin, J.: DES and Differential Power Analysis: the “Duplication”
Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

8. Blömer, J., Seifert, J.-P.: Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181.
Springer, Heidelberg (2003)

9. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryp-
tographic Protocols for Faults (Extended Abstract). In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

10. Clavier, C.: Secret External Encodings Do Not Prevent Transient Fault Analysis.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 181–194.
Springer, Heidelberg (2007)

11. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential Fault Analysis of the Ad-
vanced Encryption Standard Using a Single Fault. In: Ardagna, C.A., Zhou, J.
(eds.) WISTP 2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011)

12. Yen, S.-M., Joye, M.: Checking Before Output Not be Enough Against Fault Based
Cryptanalysis. IEEE Transactions on Computers 49(9), 967–970 (2000)

13. Karpovsky, M.G., Kulikowski, K.J., Taubin, A.: Robust Protection Against Fault-
Injection Attacks on Smart Cards Implementing the Advanced Encryption Stan-
dard. In: International Conference on Dependable Systems and Networks (DSN
2004), pp. 93–101. IEEE (2004)

14. Genelle, L., Giraud, C., Prouff, E.: Securing AES Implementation Against Fault
Attacks. In: Naccache, D., Oswald, E. (eds.) Fault Diagnosis and Tolerance in
Cryptography, pp. 51–62. IEEE (2009)

15. Malkin, T., Standaert, F.-X., Yung, M.: A Comparative Cost/Security Analysis of
Fault Attack Countermeasures. In: Breveglieri, L., Koren, I., Naccache, D., Seifert,
J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 159–172. Springer, Heidelberg (2006)

16. Medwed, M., Schmidt, J.-M.: A Continuous Fault Countermeasure for AES Pro-
viding a Constant Error Detection Rate. In: Breveglieri, L., Joye, M., Koren, I.,
Naccache, D., Verbauwhede, I. (eds.) Fault Diagnosis and Tolerance in Cryptogra-
phy, pp. 66–71. IEEE (2010)

17. Kim, C.H., Quisquater, J.-J.: Fault Attacks for CRT Based RSA: New Attacks,
New Results, and New Countermeasures. In: Sauveron, D., Markantonakis, K.,
Bilas, A., Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 215–228.
Springer, Heidelberg (2007)

18. van Woudenberg, J.G.J., Witteman, M.F., Menarini, F.: Practical Optical Fault
Injection on Secure Microcontrollers. In: Breveglieri, L., Guilley, S., Koren, I., Nac-
cache, D., Takahashi, J. (eds.) Fault Diagnosis and Tolerance in Cryptography, pp.
91–99. IEEE (2011)

19. FIPS PUB 197: Advanced Encryption Standard (AES). Federal Information Pro-
cessing Standards Publication 197, National Institute of Standards and Technology
(NIST), Gaithersburg, MD, USA (2001)

20. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. In: AES Round 1 Technical Eval-
uation CD-1: Documentation, NIST (August 1998), http://www.nist.gov/aes

http://www.nist.gov/aes

Infective Computation and Dummy Rounds 321

21. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

22. NIST: Data Encryption Standard (DES) (FIPS–46-3). National Institute of Stan-
dards and Technology (1999)

23. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

24. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 172–186. Springer, Heidelberg
(2003)

25. Kim, C.H., Quisquater, J.-J.: New Differential Fault Analysis on AES Key Sched-
ule: Two Faults Are Enough. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS
2008. LNCS, vol. 5189, pp. 48–60. Springer, Heidelberg (2008)

26. Derbez, P., Fouque, P.-A., Leresteux, D.: Meet-in-the-Middle and Impossible Dif-
ferential Fault Analysis on AES. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 274–291. Springer, Heidelberg (2011)

27. Rivain, M.: Differential Fault Analysis on DES Middle Rounds. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 457–469. Springer, Heidelberg
(2009)

Author Index

Abarzúa, Rodrigo 37
Abdalla, Michel 78, 121
Aranha, Diego F. 177

Barhum, Kfir 234
Bernstein, Daniel J. 159
Boureanu, Ioana 100

De Caro, Angelo 121
Dixon, Vanessa 214

Faz-Hernández, Armando 177
Fouque, Pierre-Alain 1

Gierlichs, Benedikt 305
Gouvêa, Conrado P.L. 288
Güneysu, Tim 139

Jacobson Jr., Michael J. 214

Kircanski, Aleksandar 271

Lange, Tanja 159
López, Julio 177, 288

MacFie, Andrew 254
Maurer, Ueli 234
Mesnager, Sihem 18

Mitrokotsa, Aikaterini 100
Mochetti, Karina 121

Nachef, Valérie 194

Panario, Daniel 254
Patarin, Jacques 194
Phan, Duong Hieu 56
Pointcheval, David 56
Pöppelmann, Thomas 139

Rodŕıguez-Henŕıquez, Francisco 177

Scheidler, Renate 214
Schmidt, Jörn-Marc 305
Schwabe, Peter 159
Strefler, Mario 56

Thériault, Nicolas 37
Tibouchi, Mehdi 1
Tunstall, Michael 305

Vaudenay, Serge 100
Vie, Jill-Jênn 78
Volte, Emmanuel 194

Youssef, Amr M. 271

	Title
	Preface
	LATINCRYPT 2012
	Table of Contents
	Elliptic Curves
	Indifferentiable Hashing to Barreto–Naehrig Curves
	Introduction
	Preliminaries
	Barreto–Naehrig Elliptic Curves
	Chebotarev Density Theorem
	Admissible Encodings and Indifferentiability
	Well-Distributed Elliptic Curve Encodings
	The Shallue–van de Woestijne Encoding

	An Encoding to BN Curves
	Computing the Image Size
	Obtaining Indifferentiability
	Efficient Computation
	References

	Semi-bent Functions with Multiple Trace Terms and Hyperelliptic Curves
	Introduction
	Notation and Preliminaries
	Boolean Functions in Polynomial Forms
	Walsh Transform and Semi-bent Functions
	Dickson Polynomial

	Characterizations of Semi-bent Functions with Multiple Trace Terms by Means of Exponential Sums Involving Dickson Polynomials
	Efficient Characterizations of Semi-bent Functions with Multiple Trace Terms by Means of Cardinalities of Hyperelliptic Curves
	Point Counting on Algebraic Curves
	Characterizations of Semi-bentness in Terms of Cardinalities of Hyperelliptic Curves
	Advantage of the Reformulation and Experimental Results

	References

	Complete Atomic Blocks for Elliptic Curves in Jacobian Coordinates over Prime Fields
	Introduction
	State of the Art for Atomic Blocks
	Mathematical Background
	Atomic Blocks and C-Safe Attacks
	Generating Complete Atomic Blocks
	Case 1: Left-to-right and Multi-Basis Scalar Multiplications
	Case 2: Right-to-left Scalar Multiplication
	Case 3: Unified Formulae

	Conclusion
	References

	Cryptographic Protocols I
	Message-Based Traitor Tracing with Optimal Ciphertext Rate
	Introduction
	Definitions
	Primitives
	Marking Content
	Fingerprinting Codes
	Message-Traceable Encryption

	A Generic Construction from PKE
	A Simple Construction
	Improved Construction
	Adapting the Code for Deletions
	Reusing Randomness
	Security

	A Construction with Shorter Keys
	Construction of a Message-Traceable Encryption Scheme
	Security of the Construction
	A 2-user Anonymous Broadcast Encryption Scheme
	Security of the 2ABE

	Conclusion
	References

	Leakage-Resilient Spatial Encryption
	Introduction
	Leakage Models
	Spatial Encryption
	Our Contributions
	Outline

	Preliminaries
	Notation and Conventions
	Composite Order Bilinear Groups
	Complexity Assumptions
	Spatial Encryption

	Our New Leakage-Resilient Spatial Encryption Scheme
	A Few Useful Notations
	Construction
	Security of Our Scheme

	Concluding Remarks
	References

	On the Pseudorandom Function Assumption in (Secure) Distance-Bounding Protocols PRF-ness alone Does Not Stop the Frauds!
	Introduction
	Distance-Bounding Protocols and the PRF Assumption
	PRFs with a Trapdoor
	PRF-Based Attacks
	TDB Protocol
	DFKO Protocol (Enhancement of the Kim-Avoine Protocol)
	Hancke and Kuhn's Protocol
	Avoine and Tchamkerten's Protocol
	Reid's et al. Protocol
	The Swiss-Knife Protocol

	Conclusions
	References

	Lattice-Based Hierarchical Inner Product Encryption
	Introduction
	Definitions
	Hierarchical Inner-Product Encryption
	Lattices

	Hierarchical Inner Product Encryption Scheme
	Sampling a Random Basis
	Our Construction
	Correctness
	Security Reduction
	Wrapping Up

	Application
	Identity-Based Encryption with Wildcards
	Chosen-Ciphertext Security

	References

	Implementations
	Towards Efficient Arithmetic for Lattice-Based Cryptography on Reconfigurable Hardware
	Introduction
	Ideal Lattice-Based Cryptography
	Efficient Polynomial Multiplication in Zp[x]/"426830A xn+1"526930B
	The Number Theoretic Transform
	Efficient Computation of the NTT

	Designing an Efficient NTT Polynomial Multiplier on Reconfigurable Hardware
	Existing FFT Implementations
	Design Decisions for Lattice-Based Cryptography

	Implementation Details
	Results and Comparison
	Polynomial Multiplication in Z216+1 "426830A xn +1 "526930B
	Ring-LWE Encryption
	Homomorphic Encryption
	Comparison with Schoolbook Multiplication
	Comparison with Related Work
	Optimizations

	Conclusion and Future Work
	References

	The Security Impact of a New Cryptographic Library
	Introduction
	Background for the Security Analysis: The NaCl API
	Core Security Features and Their Impact
	Speed and Its Security Impact
	Cryptographic Primitives in NaCl
	References

	Faster Implementation of Scalar Multiplication on Koblitz Curves
	Introduction
	Low-Level Techniques
	High-Level Techniques
	Exploiting Powers of the Frobenius Automorphism
	Lazy-Reduced Mixed Point Addition
	Scalar Multiplication Algorithm
	Precomputation Scheme

	Estimates, Results and Discussion
	Performance Estimates
	Experimental Results
	Comparison to Related Work

	Conclusion
	References

	Cryptographic protocols II
	Zero-Knowledge for Multivariate Polynomials
	Introduction
	Zero-Knowledge Arguments of Knowledge and Commitments
	Systems of Multivariate Equations of Degree d and the Family of Functions MPol(d,n,m, F q)
	ZK(3) Schemes
	Techniques for Our Constructions
	3-Pass Scheme
	Properties of the 3-Pass Scheme
	Computations in the 3-Pass Scheme

	 ZK (d) Scheme for any d
	The ZK (d) Scheme

	The "707EZK (d) Scheme
	Relations between the Number of Computations and the Number of Coefficients
	An Application of ZK(3) and "707EZK(3) to Brent Equations
	Brent Equations
	A Zero-Knowledge Arguments of Knowledge Based on Brent Equations
	More Comments about Brent Equations

	Morphisms of Polynomials and Systems of Cubic Equations
	The IP and MP Problems
	A Zero-Knowledge Arguments of Knowledge Based on the MP Problem

	Conclusion
	References

	Improved Exponentiation and Key Agreement in the Infrastructure of a Real Quadratic Field
	Introduction
	Infrastructure of a Real Quadratic Field
	Ideals and Infrastructure
	(f,p) Representations

	Cubing and Division with (f,p) Representations
	Non-adjacent Form and Signed Base-3 Exponentiation
	Key Agreement Protocols
	Error Analysis for Key Agreement
	Numerical Results
	Conclusions
	References

	Foundations
	UOWHFs from OWFs: Trading Regularity for Efficiency
	Introduction
	Constructions of Cryptographic Primitives
	Contributions of This Paper
	Related Work

	Preliminaries
	Notations and Basics
	OWF and UOWHF
	Entropy Measures
	Collision Finders and Accessible Entropy
	Entropy Measures for t-fold Parallel Repetitions
	An Overview of the Construction of Haitner et. al.

	UOWHF from a 2r-Regular OWF
	Inaccessible Entropy from 2r-Regular One-Way Functions
	Amplifying the Entropy Gap and Converting Average to Absolute Entropy Gaps

	UOWHF from a (2r(n),2s(n))-Roughly-Regular OWF
	log(n)/s(n) Bits of Average Inaccessible Entropy
	Faster Amplification of the Inaccessible Entropy Gap of F
	A UOWHF in the Non-uniform Model
	An Efficient Non-uniform to Uniform Reduction

	Conclusions
	References

	Random Mappings with Restricted Preimages
	Introduction
	Basics
	Single Mapping Parameters
	Pairs of Mapping Parameters
	r-Components and Components
	r-Components and Cyclic Nodes
	 r1-Cycles and r2-Cycle Trees

	Extremal Parameters
	Largest Tree
	Largest Component

	Tail Length and Cycle Length
	Conclusion
	References

	Symmetric-key Cryptography
	On the Sosemanuk Related Key-IV Sets
	Introduction
	The Sosemanuk Specification and Notation Conventions
	The Existence and the Size of the Related Key-IV Sets
	Sosemanuk Instances with the Identical LFSRs
	Distinguishing a Pair of Keystreams from Random Data

	Sosemanuk Instances with Slid Inner States
	Equations Due to Slid Sosemanuk Instances
	Recovering the Inner State

	Conclusion and Future Work
	References

	High Speed Implementation of Authenticated Encryption for the MSP430X Microcontroller
	Introduction
	The MSP430X Family
	Authenticated Encryption
	Efficient Implementation
	CCM
	GCM
	SGCM
	OCB3
	Hummingbird-2 (HB2)
	MASHA
	Improving AES for 16-bit
	Using the AES Accelerator

	Results
	Related Work

	Conclusion and Future Work
	References

	Infective Computation and Dummy Rounds: Fault Protection for Block Ciphers without Check-before-Output
	Introduction
	Background
	Smart Use of Dummy Rounds and Redundant Computation
	Smart Use of Dummy Rounds
	Smart Use of Redundant Rounds and Dummy Rounds
	Performance

	Evaluating the Countermeasure
	S-P Networks
	Feistel Structures

	Further Strengthening the Countermeasure
	Conclusion
	References

	Author Index

