

Lecture Notes in Computer Science 7604
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Jos C. M. Baeten Tom Ball
Frank S. de Boer (Eds.)

Theoretical
Computer Science
7th IFIP TC 1/WG 2.2 International Conference, TCS 2012
Amsterdam, The Netherlands, September 26-28, 2012
Proceedings

13

Volume Editors

Jos C. M. Baeten
Centrum Wiskunde & Informatica (CWI)
Science Park 123, 1098 XG Amsterdam, The Netherlands
E-mail: jos.baeten@cwi.nl

Tom Ball
Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA
E-mail: tball@microsoft.com

Frank S. de Boer
Centrum Wiskunde & Informatica (CWI)
Science Park 123, 1098 XG Amsterdam, The Netherlands
E-mail: f.s.de.boer@cwi.nl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33474-0 e-ISBN 978-3-642-33475-7
DOI 10.1007/978-3-642-33475-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012946731

CR Subject Classification (1998): F.1.1-2, F.4.3, F.2.2, F.4.1, G.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© IFIP International Federation for Information Processing 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The conference TCS 2012, the 7th IFIP International Conference on Theoretical
Computer Science, was organised by IFIP Technical Committee 1 (Foundations
of Computer Science) and its 9 working groups, and IFIP Working Group 2.2
(Formal Descriptions of Programming Concepts), and was associated to the IFIP
World Computing Congress, also held in Amsterdam in the same week. The
TCS conference provides a meeting place for the theoretical computer science
community where the latest results in computation theory can be presented and
more broadly experts in theoretical computer science can get together to share
insights and ask questions about the future directions of the field. TCS 2012 was
associated with The Alan Turing Year 2012. Previous conferences of this series
were held in Sendai (2000), Montreal (2002), Toulouse (2004), Santiago (2006),
Milan (2008), and Brisbane (2010).

This volume contains the papers presented at the TCS conference held on
September 26–28, 2012, hosted by the Centrum Wiskunde & Informatica in
Amsterdam. There were 48 submissions. Each submission was reviewed by 3
program committee members (exceptionally, by 4 or 2). The committee decided
to accept 25 papers. The conference program also included 3 invited talks by
Rajeev Alur, Yuri Gurevich, and Jiri Wiedermann.

TCS 2012 was sponsored by the International Federation for Information
Processing (IFIP), the Netherlands Organisation for Scientific Research (NWO),
Microsoft Research, the Institute for Programming research and Algorithmics
(IPA), and Centrum Wiskunde & Informatica (CWI).

We thank the members of the program committee and the additional review-
ers for their work, the invited speakers for their contributions, and all authors
who submitted their work to TCS 2012.

July 2012 Jos C.M. Baeten
Tom Ball

Frank S. de Boer

Organization

Program Committee

Jos C.M. Baeten Centrum Wiskunde & Informatica
Tom Ball Microsoft Research
Ahmed Bouajjani LIAFA, University of Paris 7 (Paris Diderot)
Ana Cavalcanti University of York
Frank S. De Boer Centrum Wiskunde & Informatica
Susanne Graf Université Joseph Fourier / CNRS /

VERIMAG
Peter Gruenwald Centrum Wiskunde & Informatica
Juraj Hromkovic ETH Zurich
Jan Jürjens TU Dortmund and Fraunhofer ISST
Joseph Kiniry IT University of Copenhagen
Martin Kutrib Universität Giessen
Aart Middeldorp University of Innsbruck
Ugo Montanari Università di Pisa
Peter Müller ETH Zürich
David Naumann Stevens Institute of Technology
Catuscia Palamidessi INRIA and LIX, Ecole Polytechnique
Jan Rutten Centrum Wiskunde & Informatica
Davide Sangiorgi University of Bologna
Jeffrey Shallit University of Waterloo
Leen Torenvliet University of Amsterdam
Igor Walukiewicz CNRS, LaBRI
Jim Woodcock University of York

Additional Reviewers

Andova, Suzana
Atig, Mohamed Faouzi
Bergfeld, Jort
Bodlaender, Hans
Boeckenhauer, Hans-Joachim
Bonchi, Filippo
Bonsangue, Marcello
Bors, Adrian
Brengos, Tomasz
Bruni, Roberto
Butterfield, Andrew
Caires, Luis

Cairns, Paul
Cimini, Matteo
Courcelle, Bruno
Dal Lago, Ugo
De Liguoro, Ugo
de Wolf, Ronald
Enea, Constantin
Fantechi, Alessandro
Felgenhauer, Bertram
Fenner, Stephen
Fijalkow, Nathanaël
Fiore, Marcelo

VIII Organization

Fokkink, Wan
Foniok, Jan
Foster, Simon
Freitas, Leo
Gebauer, Heidi
Geuvers, Herman
Gouw, Stijn
Hansen, Helle
Herbreteau, Frédéric
Hirschkoff, Daniel
Holzer, Markus
Horbach, Matthias
Jaghoori, Mohammad Mahdi
Jakobi, Sebastian
Jongmans, Sung-Shik T.Q.
Kameyama, Yukiyoshi
Keller, Lucia
Kishida, Kohei
Klin, Bartek
Komm, Dennis
Kosowski, Adrian
Kratsch, Dieter
Krug, Sacha
Loreti, Michele
Lozes, Etienne
Luettgen, Gerald
Mackie, Ian
Malcher, Andreas
Markovski, Jasen

Martin, Barnaby
Meckel, Katja
Miller, Dale
Montanaro, Ashley
Mytkowicz, Todd
Neurauter, Friedrich
Pirandola, Stefano
Rispal, Chloé
Rossmanith, Peter
Rot, Jurriaan
Rutten, Jan
Salvati, Sylvain
Sammartino, Matteo
Sangnier, Arnaud
Schöpp, Ulrich
Silva, Alexandra
Smula, Jasmin
Sobocinski, Pawel
Steffen, Björn
Sternagel, Christian
Thiemann, René
Truthe, Bianca
Ummels, Michael
van Leeuwen, Erik Jan
Van Raamsdonk, Femke
Vicario, Enrico
Winter, Joost
Zantema, Hans
Zhang, Lijun

Table of Contents

Computability and Non-computability Issues in Amorphous
Computing . 1

Jǐŕı Wiedermann

Static Single Information Form for Abstract Compilation 10
Davide Ancona and Giovanni Lagorio

Input-Driven Stack Automata . 28
Suna Bensch, Markus Holzer, Martin Kutrib, and Andreas Malcher

Probabilistic Inference and Monadic Second Order Logic 43
Marijke Hans L. Bodlaender

Cinderella versus the Wicked Stepmother . 57
Marijke Hans L. Bodlaender, Cor A.J. Hurkens, Vincent J.J.
Kusters, Frank Staals, Gerhard J. Woeginger, and Hans Zantema

Worst- and Average-Case Privacy Breaches in Randomization
Mechanisms . 72

Michele Boreale and Michela Paolini

Weak Bisimulations for Coalgebras over Ordered Functors 87
Tomasz Brengos

A Context-Free Linear Ordering with an Undecidable
First-Order Theory . 104

Arnaud Carayol and Zoltán Ésik

Open Bisimulation for Quantum Processes . 119
Yuxin Deng and Yuan Feng

A Modular LTS for Open Reactive Systems . 134
Fabio Gadducci, Giacoma Valentina Monreale, and Ugo Montanari

Unidirectional Channel Systems Can Be Tested . 149
Petr Jančar, Prateek Karandikar, and Philippe Schnoebelen

On Properties and State Complexity of Deterministic State-Partition
Automata . 164

Galina Jirásková and Tomáš Masopust

On Union-Free and Deterministic Union-Free Languages 179
Galina Jirásková and Benedek Nagy

X Table of Contents

A Characterisation of Languages on Infinite Alphabets with Nominal
Regular Expressions . 193

Alexander Kurz, Tomoyuki Suzuki, and Emilio Tuosto

Formal Verification of Distributed Algorithms: From Pseudo Code to
Checked Proofs . 209

Philipp Küfner, Uwe Nestmann, and Christina Rickmann

A Temporal Logic for Multi-threaded Programs . 225
Salvatore La Torre and Margherita Napoli

The Algorithmic Complexity of k -Domatic Partition of Graphs 240
Hongyu Liang

Unique Parallel Decomposition in Branching and Weak Bisimulation
Semantics . 250

Bas Luttik

Modal Interface Automata . 265
Gerald Lüttgen and Walter Vogler

Proofs as Executions . 280
Emmanuel Beffara and Virgile Mogbil

Efficient Algorithms for the max k -vertex cover Problem 295
Federico Della Croce and Vangelis Th. Paschos

A Model Theoretic Proof of Completeness of an Axiomatization of
Monadic Second-Order Logic on Infinite Words . 310

Colin Riba

Compositional Abstraction Techniques for Probabilistic Automata 325
Falak Sher and Joost-Pieter Katoen

Broadcast Abstraction in a Stochastic Calculus for Mobile Networks 342
Lei Song and Jens Chr. Godskesen

An Intersection Type System for Deterministic Pushdown Automata . . . 357
Takeshi Tsukada and Naoki Kobayashi

An Output-Based Semantics of Λμ with Explicit Substitution in the
π-Calculus: Extended Abstract . 372

Steffen van Bakel and Maria Grazia Vigliotti

Author Index . 389

Probabilistic Inference and Monadic Second Order Logic
Marijke Hans L. Bodlaender

Cinderella versus the Wicked Stepmother .
Marijke Hans L. Bodlaender, Cor A.J. Hurkens, Vincent J.J.
Kusters, Frank Staals, Gerhard J. Woeginger, and Hans Zantema

Errata

E2

E1

Computability and Non-computability Issues
in Amorphous Computing�

Jiřı́ Wiedermann

Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod Vodárenskou věžı́ 2, 182 07 Prague 8, Czech Republic

jiri.wiedermann@cs.cas.cz

Abstract. Amorphous computing systems consist of a huge set of tiny simple
stationary or mobile processors whose computational, communication and sen-
sory part is reduced to an absolute minimum. In an airborne medium the pro-
cessors communicate via a short-range radio while in a waterborne medium via
molecular communication. In some cases the computational part of the proces-
sors can be simplified down to finite state automata or even combinatorial circuits
and the system as a whole can still possess universal computational power with
a high probability. We will argue that the amorphous systems belong among the
simplest (non-uniform) universal computational devices. On the other hand, it is
questionable as to what extent the standard universal models of computation can
faithfully capture the behavior of amorphous computing systems whose function-
ality also depends on the non-computational and/or unpredictable operations of
certain parts of the entire system.

1 Introduction

The notion of amorphous computing systems, i.e., of computational systems lacking any
concrete “architecture”, has emerged by the end of the 1990’s. Initially, the development
of such systems started as an engineering enterprise motivated by technological advance-
ment in the field of micro-electro-mechanical systems, wireless communications and
digital electronics (cf. [1], [2], [4], [5], [6], [7], [12], [13], [14]). Technological progress
enabled integration of sensing, data processing and wireless communication capabili-
ties into a single processor. In these systems the miniaturization has been pushed to its
limits resulting, presumably, into processors of almost molecular size with the respec-
tive communication and computing facilities adequately (and thus, severely) restricted.
These limitations alone, and the fact that systems consisting of huge numbers of pro-
cessors are considered, have jointly called for the change of the basic computational
and communication paradigms of distributed computing systems. These new paradigms
also seem to have a potential to challenge certain computability issues related to our
understanding of computing.

Nowadays we see amorphous computing systems in many forms (cf. [19]). Amor-
phous computing systems typically consist of a huge set of tiny simple processors
equipped with small memory, random number generator, simple wireless communi-
cation means, sensors and an energy source. The processors are randomly distributed

� This work was partially supported by RVO 67985807 and the GA ČR grant No. P202/10/1333.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 1–9, 2012.
c© IFIP International Federation for Information Processing 2012

2 J. Wiedermann

over a closed area in which they can move, or are static. In the former case, the proces-
sors move by their own locomotion means, or by external forces, like Brownian motion,
wind or stream. In an airborne medium the processors communicate via radio while in
a waterborne medium via molecular communication. Moreover, in order to operate as
envisaged some amorphous computing systems may exploit non-computable features,
i.e., operations that cannot be realized computationally, such as self-replication or dis-
integration.

In this note we will focus our attention on specific instances of amorphous computing
systems by which we will illustrate some remarkable aspects of amorphous computing
systems.

First, we will be interested in their universality, i.e., in their ability to simulate arbi-
trary computations (of a Turing machine, say). Namely, for some amorphous computing
systems this ability is by far not obvious due to the drastic restrictions imposed on com-
putational and communication parts of the system’s processors.

Strictly speaking, many (envisaged) applications of amorphous systems do not re-
quire universality. Single-purpose systems enabling, e.g., centralized data collection, a
geographic area monitoring, intra-body multi-modal health monitoring, or drug deliv-
ery to certain body locations, often do. Nevertheless, universality qualifies these sys-
tems among the programmable systems which are, in principle, capable to perform an
arbitrary algorithmic or even robotic task.

The second intriguing feature which we will be interested in is the problem of the
reverse simulation of amorphous computing systems by standard models of universal
computations. Namely, by their very nature, some amorphous computing systems are in
fact described as physical (rather than purely computational) systems whose operation
also depends on abilities of their processors and those of their environment that are
of non-computational nature. This appears to be a serious obstacle for their faithful
simulation on standard computational devices.

In the sequel, in Section 2 we will briefly describe two relatively advanced and un-
usual amorphous computing systems: an airborne, so-called flying amorphous com-
puting system, and a waterborne system, so-called nanomachines. Here we will only
provide a high-level description of the respective machines and of their computational
and non-computational mechanisms in order to give the reader the main ideas of their
functioning. In a more detail these systems have been introduced in earlier writings of
the present author (cf. [11], [18]). Based on the previous descriptions, we will discuss
the related universality issues in Section 3. In Section 4 we will concentrate on the
problem of a reverse simulation of the previously described amorphous systems on a
universal computational model. Conclusions are in Section 5.

2 Universality in Amorphous Computing Systems

2.1 Flying Amorphous Computer

A flying amorphous computer consists of a set of asynchronous processors. Each pro-
cessor posses a clock running with the same speed as all the other processors; however,
the “ticking” of all clocks is not synchronized. Each processor is modeled by a “minia-
ture” RAM with a finite number of registers capable of storing integers up to size N,

Computability and Non-computability Issues in Amorphous Computing 3

with N denoting the number of nodes of the underlying amorphous system. Each pro-
cessor is equipped by a random number generator and a single-channel radio device of
a limited communication range. Initially, the processors have no unique identifier.

A severe restriction is imposed on the communication abilities of processors. A pro-
cessor P1 could receive a message sent by processor P2 if and only if the following
conditions hold true: (i) the processors are in the communication range of each other,
(ii) P1 is in a listening mode, and (iii) P2 is in a broadcast mode, and it is the only
processor within the communication radius of P1 broadcasting at that time.

There is no mechanism making it possible to distinguish the case of no broadcast
from that of broadcast collision. These restrictions concerning the radio communica-
tion are among the weakest ones that one can expect to be fulfilled by any simple radio
communication device. The expected benefit from such restrictions is a simple engi-
neering design of processors.

Note that the communication among the processors is complicated by the fact that
the processors work asynchronously, have no identifiers, communication is one-way
only, and there is no broadcast collision detection mechanism. As long as the processors
remain anonymous (i.e., have no identifiers) a broadcasting processor has no means to
learn that its message has been received by some processor. Under such circumstance,
the randomized protocol designed in [10] enabling a reliable delivery of a message
among processors within the communication range of each other works with a high
probability, as follows.

The key idea is that the processors should broadcast a message sporadically in order
to prevent message delivery (i.e., broadcast) conflicts, and repeatedly in order to maxi-
mize the likelihood of a successful delivery. The analysis of such a protocol reveals that
the probability of sending should depend inversely on the expected number of a node’s
neighbors and should be repeated more times to handle the case of more processors in
a node’s neighborhood (cf. [17]).

Now, let us assume that cN of such processors, c > 1, fly around randomly in a con-
fined convex volume. They form a dynamic network with a variable topology. The nodes
of the network are created by processors with wireless communication links emerging
asynchronously among the processors that find themselves within the communication
radius of each other and fulfill the restriction for a successful one-way communication
mentioned before. Our goal is to program the processors in such a way that they all
together can simulate a RAM with N registers. Doing so, each RAM register will be
represented in one processor of the flying computer.

The main problem is to keep the system operating under steadily changing topology
of the communication network where new communication paths emerge, while the pre-
vious ones vanish. Some nodes may even become temporarily inaccessible since they
may not find themselves within the communication range of other nodes. The latter
problem can be solved under the assumption that no node in the network remains for
ever isolated.

Thanks to this assumption, once processors do possess unique addresses, a message
sent to a node with a given address would in a finite time reach this node and this node
could send an acknowledgment that in a finite time will reach the sender.

4 J. Wiedermann

The schema of the simulation is as follows. There is one specific node, a so-called
leader. First, the leader invites all nodes to generate a random number within the range
[1..cN]. Such an invitation is realized by “flooding” the net by an appropriate signal
reaching all nodes with a high probability using the previously described protocol. Do-
ing so, we cannot make use of the acknowledgments (since addresses are not yet avail-
able) and therefore a sufficient time must be allowed for the signal to spread over the
entire volume with a high probability. Once the addresses are generated, the acknowl-
edgment mechanism is used in all subsequent computations. Next, the duplicates are
eliminated by a randomized algorithm described in [11] and the addresses are trans-
formed into the range [1..N]. Now the simulation itself can start. It is a relatively
straightforward procedure in which the next step is initiated by the leader only after
the sender (i.e., the leader) obtains an acknowledgment from the receiver.

Although the whole system can correctly simulate a RAM (with a bounded memory
size) with arbitrary high probability, the simulation time cannot be bounded by any
function. However, if the address assignment process is successful (and this can be
guaranteed with an arbitrary large probability), the simulation terminates within a finite
time and always delivers the correct result. This computer has been described in full
detail in [9] and later it was presented in [11].

2.2 Nanomachines

Recent unmatched improvements in nanotechnologies have enabled serious considera-
tion of nano-scale machines whose size is of order 10−6 mm. Their prospective fabri-
cation will make use of molecular self-assembly or of modifications of real bacteria via
genetical engineering. To get an idea about the dimensions of objects we are consider-
ing, the size of a real bacteria is of the order of a few micrometers (i.e., of thousandths
of millimeter, 10−6 m) while the size of a molecule is of the order of nanometers (i.e.,
10−9 m). Thus, a nanomachine is about 1000 times bigger than a molecule and its
surface and volume is still larger by a few orders of magnitude.

Next we will briefly describe so-called self-reproducing mobile embodied automata
(nanomachines for short) whose information exchange mechanism is based on molec-
ular communication.

Each nanomachine consists of two main components: there is its embodiment — the
body, and its computational part.

The embodiment of any nanomachine consists of a set of receptors and emitters
(pores), internal sensors, a set of timers, a self-reproducing mechanism, random bit
generator and possibly of other devices depending on the type of embodiment (e.g.,
locomotive organs in the form of flagella, cilia, etc.).

Each receptor is specialized for detection of a specific type of molecules. These
molecules find themselves in the environment surrounding the machine. Both the ma-
chines and the molecules move by convection (diffusion and advection). Moreover, the
nanomachines can also move by their own means. For each type of molecules each
nanomachine has at its disposal several tens of receptors; their exact number is irrele-
vant. A molecule gets recognized only in the case when it enters into contact with the
respective receptor.

Computability and Non-computability Issues in Amorphous Computing 5

Timers are internal mechanisms (“organs”) without any external input. Each timer
is preset for a fixed time. Each timer returns either 0 or 1. A timer can be reset to 0
by the machine’s finite state control. Upon expiration of time for which the timer has
been initially set the timer returns 1. Values to which the timers are preset depend on
the type of a timer as well as on the properties of the environment (especially on its
volume, but also on the properties of some molecules detected by the sensors — e.g.,
on the degradation time of the molecules). Timers of the same type are the same in all
nanomachines.

The self-reproducing mechanism is a non-computational mechanism which is trig-
gered by automaton entering a special reproducing state. In such a case, the nanoma-
chine splits into two identical copies of itself, with their finite controls entering the
initial state.

The random bit generator is an “organ” that upon each activation returns either 0 or 1
with the same probability.

The computational part of each nanomachine is created by a finite-state (Mealy) au-
tomaton whose actions are controlled by a transition function. In a single move each
automaton reads its inputs obtained from its receptors and from other sensors or organs.
Depending on these inputs and on its current state, the automaton issues instructions for
the machine’s organs concerning their next actions: releasing the molecules from the re-
ceptors, secreting signal molecules via the pores (output ports), resetting the timers, and
instructing its locomotive organs. Last but not least, the control enters a new (possibly
a reproduction) state. The use of timers and of a random number generator effectively
turns the automata at hand into timed probabilistic automata.

Thus, the instructions for the machines are transmitted via elements from a finite set
of molecular signals. Prior to sending a new signal, the environment must be cleared
of the previous signal molecules. This is done by endowing the molecules with a cer-
tain self-destruction ability — after a certain time they spontaneously disintegrate into
components that are not interpreted as any signals. These components are continuously
absorbed by nanomachines and re-cycled inside their bodies in order to produce other
molecular structures.

During their operation the self-reproducing mobile nanomachines communicate via
so-called quorum sensing, i.e., by making collective decisions based on the density
of nanomachine population. This density is inferred from the concentration of signal
molecules emitted by the machines within a confined space.

In a given volume the machines multiply and emit the signal molecules until their
maximal concentration has been reached. Then, they make a collective decision in
which they simulate one step of a counter automaton. The resulting amorphous sys-
tem was shown to be able to model a counter automaton [18], [15]. Thus, sequences of
nanomachine populations of growing size obey a universal computing power.

Except of the timers and an organ serving as a random bit generator a further mod-
ification of the embodiment of the underlying automata may include a memory organ.
Then, the task of memorizing the current state can be delegated to that organ. Conse-
quently, the computational mechanism of each nanomachine could be simplified down
to combinatorial circuits of bounded depths (circuits from the complexity class AC0).

6 J. Wiedermann

The last mentioned model is of interest not only from a practical point of view, since
it could lead to a simpler engineering of nanomachines, but also from the viewpoint of
the theory of universal computing machines, as we will see in the sequel.

3 What Is the Simplest Universal Computational Model?

For many computer scientists, a Turing machine, or a counter machine (also known as
Minsky machine [8]) is considered as the simplest computational model possessing a
universal computing power. In fact, there exists a plethora of universal computational
devices and it is a matter of taste to select the simplest one from among those models.
As a rule, they are represented by the devices with a fixed rigid architecture that en-
ables them to enter configurations from a potentially infinite set of configurations: they
are, in fact, infinite automata. None finite device (finite even in the physical meaning
of this word) can subsequently enter an unbounded number of different configurations.
Inevitably, the size of the device must grow with the number of reachable configura-
tions. This is also the case of the cellular automata possessing a universal computing
power. Note that for each input the corresponding cellular automaton is finite; however,
the number of its elements grows with the input size.

The next (in)appreciable property of the known universal computational systems is
their “non-homogeneity” — they cannot be disassembled into smaller, in some sense el-
ementary identical computational parts that could be reassembled in an arbitrary manner
so as to give rise to a universal computing system. A partial departure from this rule is
given by cellular automata that almost satisfy our requirement of homogeneity. Clearly,
a cellular automaton can be disassembled into individual finite automata. It is obvious
that finite automata are simpler computational devices than, e.g., Turing machines —
they only accept regular languages and, therefore, are not universal. Nevertheless, upon
a re-assemblage into a cellular automaton one must respect the original topology of the
underlying network although the individual automata need not be returned to their orig-
inal positions — they can be interchanged at wish. Then a universal computing power
“emerges” again. Note that in the latter case the universal computing power will not
emerge from among any (multi)set of arbitrarily connected finite automata — the con-
dition for that to happen is that the the communication links among the automata must
follow a certain regular pattern.

The last consideration brings us to the following reformulation of the question from
the title of this section: does there exist a simple computational device whose multi-
sets possess universal computational power even when there is no fixed topology of
communication links among their individual elements?

The answer to this question had been prepared in the previous two subsections. Both
flying amorphous computers and the nanomachines are the candidates for such devices.
This answer must further be stated more precisely. First, in order to ensure that com-
putations of arbitrary space complexity could be realized we must always speak of
sequences (or populations) of growing size of such systems. (The corresponding de-
vices are called non-uniform computational devices.) Second, we can only speak of
simulations achieving their goal with a high probability.

If we had to make a choice between the two amorphous computing systems standing
as candidates for the position of the simplest universal computing device the priority

Computability and Non-computability Issues in Amorphous Computing 7

should probably be given to the population of nanomachines controlled by circuits.
This is because their activity is governed by the simplest computing devices (viz. cir-
cuits). However, there is a price we have to pay for this simplicity. This is the fact
that in addition to the purely computational part there is a non-computational mecha-
nism comprising the “body” of the corresponding units of the system. In both cases,
this body mainly consists of a communication mechanism, and in the case of nanoma-
chines, the body also contains other, more complicated non-computational components,
such as a self-reproducing mechanism, locomotive organs, etc. Moreover, in the case
of nanomachines, a “collaboration” of the signal molecules — their disintegration in
due time, was necessary. The operation of the system as a whole has been achieved by
cooperation and orchestration of activities of all participating components controlled by
computational parts of the units. From this point of view, cellular automata can bee seen
as highly idealized models of amorphous systems considered in this paper in which it
has been abstracted from the embodiment and communication mechanisms.

We conclude that amorphous computing systems considered above belong among the
simplest (non-uniform) universal computing devices since their functionality is fully
defined by the functionality of any of its parts, and there is no need to describe the
“architecture” of the system as a whole.

4 The Problematic Simulation of Amorphous Systems by Turing
Machines

When speaking about the universal computing power of amorphous computing systems
in the previous sections we indicated how such systems can simulate devices which are
already known to possess such a power. For the purpose of their reverse simulation,
thanks to their embodiment and many non-computational features, amorphous comput-
ing systems should better be regarded as physical, rather than abstract mathematical
systems. Thus, in this case, simulation should bridge the gap between a physical system
and an abstract mathematical system. The crux of the problem is that behavior of the
underlying physical system cannot be formally described down to the smallest detail.
This is a source of difficulties when considering the reverse simulation of amorphous
computing systems on universal models of computation.

What we have to do in this case is to duplicate, or imitate the functioning of amor-
phous computing systems on some formal model of computation in such a way that the
behavior of the latter system closely mimics the observed behavior of the former sys-
tem. Unfortunately, this appears to be practically impossible due to the unpredictable
behavior of important elements of amorphous computing systems. For instance, in the
case of flying amorphous computer, the trajectories of processors are continuous and
random as well as the asynchronous communication activities of processors. All these
activities run in parallel and concurrently. Moreover, e.g., in the case of nanomachines,
the degree of parallelism increases with time (in the first phase of rising up the popula-
tion of nanomachines). There are additional parallel processes running at each nanoma-
chine (such as signal molecules sensing/emitting) and also those corresponding to the
interactions of molecules in the environment. The disintegration processes of signal
molecules must also be taken into account. It is difficult to imagine how emulation

8 J. Wiedermann

of such processes could run on a sequential computer (or any other computer with a
bounded parallelism) keeping track of a potentially unbounded number of spatially and
temporally related physical variables. Discretization of continuous processes underly-
ing the operation of amorphous computing systems (e.g., think of the movement of
the processors) within a discrete computational model, asynchronicity and a potentially
unbounded parallelism may thus introduce unsurmountable timing problems for simu-
lation of such processes.

These facts challenge the popular belief that any physical computational device can
be emulated within any other, and especially, within any universal model of computation
(cf. [3] and the references therein).

Amorphous computing systems also offer an interesting answer to the question ”what
everything can compute?”. At the same time, they seem to present an example of com-
putations that is captured neither by Turing machines nor by any of their parallelized
or other known variants. Obviously, any answer to the question ”what is computation?”
should also cover computations of amorphous computing systems.

5 Conclusions

Amorphous computing systems confront us with an interesting dichotomy. They har-
ness non-computational mechanisms for the purpose of computing, but they also exploit
computing in order to control these non-computational mechanisms. Thus, amorphous
computing systems present a class of computing systems in which physical aspects,
manifested through their embodiment, play an important role. Amorphous computing
systems can be proved to be computationally universal with a high probability. The re-
spective proofs can come through thanks to focusing to certain computational aspects
of their functionality and postulating the expected outcomes of non-computational op-
erations that also contribute to the mechanism of computation. Thus, when reasoning
about computational universality of amorphous systems we reason, in fact, about a more
abstract, simplified, often probabilistic model of an amorphous system.

The situation changes when we want to capture the behavior of a “real” amorphous
computing system (as opposed to that of its model) on a universal computer. This might
be the case when we want, e.g., to tune some physical parameters of an amorphous
system in order to achieve its better practical performance. In such a case, we have to
simulate the physical system as it is, i.e., inclusively of its non-computational aspects
which are important for keeping the entire system performing its computational task.
The non-computational aspects are determined by complex physical and in some cases,
also chemical interactions among the basic elements of amorphous systems which can-
not be described as computational processes.

An additional problem in simulating (or more precisely: in emulating) an amorphous
computing system stems from the fact that such systems, in dependence on the input
size, are capable to perform a potentially unbounded number of parallel operations in
constant time. This cannot be done by any uniform physical model of a known parallel
universal computer with a constant number of processors. Perhaps the self-reproduction
mobile embodied automata present the first step towards a truly universal computational
model.

Computability and Non-computability Issues in Amorphous Computing 9

References

1. Abelson, H., et al.: Amorphous Computing. MIT Artificial Intelligence Laboratory Memo
No. 1665 (August 1999)

2. Abelson, H., Allen, D., Coore, D., Hanson, Ch., Homsy, G., Knight Jr., T.F., Nagpal,
R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous Computing. Communications of the
ACM 43(5), 74–82 (2000)

3. Nagy, N., Akl, S.G.: Time inderterminacy, non-universality in computation, and the demise
of the Church-Turing thesis, School of Computing, Queen’s University, Kingston, Ontario.
Technical Report No. 2011-580, August 19, 27 p. (2011)

4. Arvind, D.K., Wong, K.J.: Speckled Computing - A Disruptive Technology for Network
Information Appliances. In: Proc. IEEE International Symposium on Consumer Electronics
(ISCE 2004), pp. 219–223 (2004)

5. Coore, D.: Introduction to Amorphous Computing. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-
L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 99–109. Springer, Heidelberg (2005)

6. Kahn, J.M., Katz, R.H., Pister, K.S.J.: Next century challenges: mobile networking for
“Smart Dust”. In: Proceedings of the 5th Annual ACM/IEEE International Conference on
Mobile Computing and Networking, MobiCom 1999, pp. 271–278. ACM (August 1999)

7. Kahn, J.M., Katz, R.H., Pister, K.S.J.: Emerging Challenges: Mobile Networking for Smart
Dust. Journal of Communications and Networks 2, 188–196 (2000)

8. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)
9. Petrů, L.: Universality in Amorphous Computing. PhD Disseration Thesis. Dept. of Math.

and Physics, Charles University, Prague (2009)
10. Petrů, L., Wiedermann, J.: A Model of an Amorphous Computer and Its Communication

Protocol. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil,
F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 446–455. Springer, Heidelberg (2007)

11. Petrů, L., Wiedermann, J.: A Universal Flying Amorphous Computer. In: Calude, C.S., Kari,
J., Petre, I., Rozenberg, G. (eds.) UC 2011. LNCS, vol. 6714, pp. 189–200. Springer, Heidel-
berg (2011)

12. Sailor, M.J., Link, J.R.: Smart dust: nanostructured devices in a grain of sand. Chemical
Communications 11, 1375 (2005)

13. Shah, S.C., Chandio, F.H., Park, M.: Speckled Computing: Evolution and Challenges. In:
Proc. IEEE International Conference on Future Networks, pp. 181–185 (2009)

14. Warneke, B., Last, M., Liebowitz, B., Pister, K.S.J.: Smart Dust: communicating with a
cubic-millimeter computer. Computer 34(1), 44–51 (2001)

15. Wiedermann, J., Petru, L.: Computability in Amorphous Structures. In: Cooper, S.B., Löwe,
B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 781–790. Springer, Heidelberg (2007)

16. Wiedermann, J., Petrů, L.: Communicating Mobile Nano-Machines and Their Computational
Power. In: Cheng, M. (ed.) NanoNet 2008. LNICST, vol. 3, pp. 123–130. Springer, Heidel-
berg (2009)

17. Wiedermann, J., Petrů, L.: On the Universal Computing Power of Amorphous Computing
Systems. Theory of Computing Systems 46(4), 995–1010 (2009),
http://www.springerlink.com/content/
k2x6266k78274m05/fulltext.pdf

18. Wiedermann, J.: Nanomachine Computing by Quorum Sensing. In: Kelemen, J., Kele-
menová, A. (eds.) Pǎun Festschrift. LNCS, vol. 6610, pp. 203–215. Springer, Heidelberg
(2011)

19. Wiedermann, J.: The Many Forms of Amorphous Computational Systems. In: Zenil, H. (ed.)
A Computable Universe: Understanding and Exploring Nature As Computation. World Sci-
entific Publishing Company (to appear, 2012)

http://www.springerlink.com/content/k2x6266k78274m05/fulltext.pdf
http://www.springerlink.com/content/k2x6266k78274m05/fulltext.pdf

Static Single Information Form

for Abstract Compilation�

Davide Ancona and Giovanni Lagorio

DIBRIS, Università di Genova, Italy
{Davide.Ancona,Giovanni.Lagorio}@unige.it

Abstract. In previous work we have shown that more precise type anal-
ysis can be achieved by exploiting union types and static single assign-
ment (SSA) intermediate representation (IR) of code.

In this paper we exploit static single information (SSI), an extension
of SSA proposed in literature and adopted by some compilers, to allow
assignments of more precise types to variables in conditional branches.
In particular, SSI can be exploited rather easily and effectively to infer
more precise types in dynamic object-oriented languages, where explicit
runtime typechecking is frequently used.

We show how the use of SSI form can be smoothly integrated with
abstract compilation, our approach to static type analysis. In particular,
we define abstract compilation based on union and nominal types for
a simple dynamic object-oriented language in SSI form with a runtime
typechecking operator, to show how precise type inference can be.

1 Introduction

In previous work [6] we have shown that more precise type analysis can be
achieved by exploiting union types and static single assignment (SSA) [8] in-
termediate representation (IR) of code. Most modern compilers (among others,
GNU’s GCC [15], the SUIF compiler system [14], Java HotSpot [12], and Java
Jikes RVM [10]) and formal software development tools implement efficient al-
gorithms for translating code in advanced forms of IR particularly suitable for
static analysis, thus offering the concrete opportunity of exploiting such IRs to
obtain more precise type analysis and inference, and to fruitfully reuse those
software components devoted to IR generation.

Abstract compilation [5,4,6] is a modular approach to static type analysis
aiming to reconcile types and symbolic execution: an expression e is well-typed
if the goal generated by compiling e succeeds w.r.t. the coinductive1 model of
the constraint logic program obtained by compiling the source program in which
the expression is executed. In such a model terms are types representing possibly
infinite sets of values, and goal resolution corresponds to symbolic execution.

� This work has been partially supported by MIUR DISCO - Distribution, Interaction,
Specification, Composition for Object Systems.

1 Coinduction allows proper treatment of recursive types and methods [5].

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 10–27, 2012.
c© IFIP International Federation for Information Processing 2012

Static Single Information Form for Abstract Compilation 11

Abstract compilation is particularly suited for implementing type inference
and global type analysis of dynamic object-oriented languages in a modular
way since one can provide several compilation schemes for the same language,
each corresponding to a different kind of analysis, without changing the in-
ference engine, which typically implements coinductive constraint logic pro-
gramming [17,16,4]. For instance, in previous work we have defined compilation
schemes based on union and structural object types, to support parametric and
data polymorphism, (that is, polymorphic methods and fields) to obtain pre-
cise type analysis, and a smooth integration with the nominal type annotations
contained in the programs and the inferred structural types [5]; other proposed
compilation schemes aim to detect uncaught exceptions [4], or to integrate SSA
IR in the presence of imperative features [6].

In this paper we exploit static single information (SSI), an extension of SSA
proposed in literature [2,19], to allow more precise type inference in conditional
branches guarded by runtime typechecks. SSI has been already adopted by com-
piler frameworks as LLVM [20], PyPy [3], and SUIF [18], and proved to be
more effective than SSA for performing data flow analysis, program slicing, and
interprocedural analysis. Similar IRs are adopted as well in formal software de-
velopment tools.

We show how SSI can be exploited rather easily and effectively by abstract
compilation to improve type inference of dynamic object-oriented languages,
where explicit runtime typechecks are frequently used.

To this aim, we formally define the operational semantics of a simple dynamic
object-oriented language in SSI form equipped with a runtime typechecking op-
erator, and then provide an abstract compilation scheme based on union and
nominal types supporting more precise type inference of branches guarded by
explicit runtime typechecks.

The paper is structured as follows: Section 2 introduces SSA and SSI IRs and
motivates their usefulness for type analysis; Section 3 formally defines the SSI
IR of a dynamic object-oriented language equipped with an operator instanceof
for runtime typechecking. Section 4 presents a compilation scheme for the de-
fined IR, based on nominal and union types, and Section 5 concludes with some
considerations on future work. Abstract compilation of the code examples in
Section 2 together with the results of the resolution of some goals can be found
in an extended version of this paper.2

2 Type Analysis with SSA and SSI

In this section SSA and SSI IRs are introduced and their usefulness for type
analysis is motivated.

Type Analysis with Static Single Assignment Form
Method read() declared below, in a dynamic object-oriented language, creates
and returns a shape which is read through method nextLine() that reads the

2 Available at ftp://ftp.disi.unige.it/person/AnconaD/tcs12long.pdf

ftp://ftp.disi.unige.it/person/AnconaD/tcs12long.pdf

12 D. Ancona and G. Lagorio

next available string from some input source. The partially omitted methods
readCircle() and readSquare() read the needed data from the input, create,
and return a new corresponding instance of Circle or Square.

class ShapeReader {
...
nextLine () {...}
readCircle() { ... return new Circle (...); }
readSquare() { ... return new Square (...); }
read() {

st = this.nextLine ();
i f (st.equals("circle")) {

sh = this.readCircle();
this.print("A circle with radius ");
this.print(sh.getRadius());

}
else i f (st.equals("square")) {

sh = this.readSquare();
this.print("A square with side ");
this.print(sh.getSide ());

}
else throw new IOException();
this.print("Area = ");
this.print(sh.area());
return st;

}
}

Although method read() is type safe, no type can be inferred for sh to correctly
typecheck the method; indeed, when method area() is invoked, variable sh may
hold an instance of Circle or Square, therefore the most precise type that can be
correctly assigned to sh is Circle∨Square. However, if sh has type Circle∨Square,
then both sh.getRadius() and sh.getSide() do not typecheck.

There are two different kinds of approaches to solve the problem shown above.
One can either define a rather sophisticated flow-sensitive type system, where
each occurrence of a single variable can be associated with a different type, or
typecheck the SSA IR, in which the method can be compiled.

In an SSA IR the value of each variable is determined by exactly one assign-
ment statement [8]. To obtain this property, a flow graph is built, and a suitable
renaming of variables is performed to keep track of the possibly different versions
of the same variable; following Singer’s terminology [19] we call these versions
virtual registers. Conventionally, this is achieved by using a different subscript
for each virtual register corresponding to the same variable. For instance, in the
SSA IR of method read() there are three virtual registers (sh0, sh1 and sh2) for
the variable sh.

read() {
b1:{st0 = this.nextLine ();

i f (st0.equals("circle"))
jump b2;

else
jump b3;}

b2:{sh0=this.readCircle();
this.print("A circle with radius ");

this.print(sh0.getRadius());
jump b5;}

b3:{ i f (st0.equals("square"))
jump b4;

else
jump b6;}

Static Single Information Form for Abstract Compilation 13

b4:{sh1=this.readSquare();
this.print("A square with side ");

this.print(sh1.getSide ());
jump b5;}

b5:{sh2=ϕ(sh0,sh1);
this.print("Area = ");

this.print(sh2.area());
jump out;}

b6:{throw new IOException();}
out:{return sh2;}

}

To transform a program into SSA form, a pseudo-function, conventionally called
ϕ-function, needs to be introduced to correctly deal with merge points. For
instance, in block b5 the value of sh can be that of either sh0 or sh1, therefore
a new virtual register sh2 has to be introduced to preserve the SSA property.
The expression ϕ(sh0,sh1) simply keeps track of the fact that the value of sh2
is determined either by sh0 or sh1.

Fig. 1. Type theoretic interpretation of ϕ-function and σ-function

At the level of types, the ϕ-function naturally corresponds to the union type
constructor (Figure 1): arrows correspond to data flow and, as usual, to ensure
soundness the type at the origin of an arrow must be a subtype of the type the
arrow points to. That is, for the types shown in the figure, τ0, τ1 ≤ τ0 ∨ τ1 ≤ τ2.

Thanks to pretty standard and efficient algorithms for transforming source
programs into SSA IR [8,9], the flow analysis phase, where source code is trans-
formed into IR, can be kept separate from the subsequent type analysis phase,
favoring simplicity and reuse. Indeed, flow analysis and consequent transforma-
tion into IR is implemented by most compilers and formal software development
tools. Abstract compilation makes such an approach even more modular, by
dividing the overall process into three separate stages. First, the source code
is transformed into a suitable IR. Then, the IR is compiled into a set of Horn
clauses and a goal. Finally, the goal is resolved with an appropriate inference
engine (typically, implementing coinductive constraint logic programming [4]).

This paper mainly focuses on the second stage of the overall process (that is,
compilation from IR into Horn clauses), in the particular case when the adopted
IR allows precise flow analysis, as happens with SSI, of dynamic object-oriented
languages.

14 D. Ancona and G. Lagorio

Type Analysis with Static Single Information Form

Let us consider method largerThan(sh) of class Square, where instanceof is ex-
ploited to make the method more efficient in case the parameter sh contains an
instance of (a subclass) of Square.

class Square {
...

largerThan(sh) {
i f (sh instanceof Square)

return this.side > sh.side;
else

return this.area() > sh.area();
}

}

The method is transformed into the following SSA IR:

largerThan(sh0) {
b1:{ i f (sh0 instanceof Square)

jump b2;
else

jump b3;}
b2:{r0=this.side > sh0.side;

jump out;}
b3:{r1=this.area() > sh0.area();

jump out;}
out:{r2=ϕ(r0,r1);

return r2;}
}

Since variable sh is not updated, both blocks b2 and b3 refer to the same virtual
register sh0. As a consequence, the only possible type that can be correctly
associated with sh0 is Square, thus making the method of little use. However,
this problem can be addressed if one considers the SSI IR of the method [2,19].

largerThan(sh0) {
b1:{ i f (sh0 instanceof Square) with (sh1,sh2) = σ(sh0)

(this1,this2) = σ(this0)
jump b2;

else
jump b3;}

b2:{r0=this1.side > sh1.side;
jump out;}

b3:{r1=this2.area() > sh2.area();
jump out;}

out:{r2=ϕ(r0,r1);
return r2;}

}

SSI is an extension of SSA enforcing the additional constraint that all variables
must have different virtual registers in the branches of conditional expressions.
Such a property is obtained by a suitable renaming and by the insertion of a
pseudo function, called σ-function. As a consequence, suitable virtual registers
and a σ-function have to be introduced also for the read-only pseudo-variable
this.

The notion of σ-function is the dual of ϕ-function (Figure 1); the type the-
oretic interpretation of σ depends on the specific kind of guard. If it is a run-
time typecheck (of the form (sh0 instanceof Square) as in the example), then
σ splits the type τ0 of sh0 in the type τ0∧Square, assigned to sh1, and in the

Static Single Information Form for Abstract Compilation 15

type τ0\Square, assigned to sh2, where the intersection and the complement op-
erators have to be properly defined (see Section 4). For instance, if sh0 has type
Square∨Circle, then sh1 has type (Square∨Circle)∧Square=Square, and sh2 has
type (Square∨Circle)\Square=Circle, therefore Square∨Circle turns out to be
a valid type for the parameter sh0 of the method largerThan.

For what concerns this, in this particular example no real split would be
necessary: this0 has type Square, so Square is split into (Square,Square), that is,
both this1 and this2 have the same type Square.

3 Language Definition

In this section we formally define an SSI IR for a simple dynamic object-oriented
language equipped with an instanceof operator for performing runtime type-
checking. Even though we have chosen a familiar Java-like syntax both for the
IR and the source code used in the examples, the language is fully dynamic:
code does not contain any type annotation, hence, under this point of view the
language is quite different from Java.

prog ::= cd
n {bn}

cd ::= class c1 extends c2 { f n md
k } (c1 �= Object)

md ::= m(rn) {bn}
b ::= l :e
r ::= xi
e ::= r | new c(en) | e.f | e0.m(en) | e1; e2 | r = e

| e1.f = e2 | jump l | r = ϕ(rn) | return r

| if (r instanceof c) with (r ′, r ′′) = σ(r ′′′)
n
jump l1 else jump l2

Syntactic assumptions: inheritance is not cyclic, method bodies are in correct SSI form
and are terminated with a unique return statement, method and class names are
disjoint, no name conflicts in class, field, method and parameter declarations, main
expression and declared parameters cannot be this.

Fig. 2. SSI intermediate language

A program is a collection of class declarations followed by an anonymous main
method with no parameters and contained in an anonymous class (conventionally
its fully qualified name is ε.ε), whose body is a sequence of blocks (see the
comments on method bodies below).

The notation cd
n
is a shortcut for cd1, . . . , cdn. A class declares its direct

superclass (only single inheritance is supported), its fields, and its methods.
Object is the usual predefined root class of the inheritance tree; every class
comes equipped with the implicit constructor with parameters corresponding to
all fields, in the same order as they are inherited and declared. For simplicity,
no user constructors can be declared.

16 D. Ancona and G. Lagorio

Method bodies are sequences of uniquely labeled blocks that contain sequences
of expressions. We assume that all blocks contain exactly one jump, necessarily
placed at the end of the block. Three different kinds of jumps are considered:
local unconditional and conditional jumps, and returns from methods. Method
bodies are implicitly assumed to be in correct SSI IR: each virtual register is
determined by exactly one assignment statement, and all variables must have
different virtual registers in the branches of conditional expressions. Finally, all
method bodies contain exactly one return expression, which is always placed at
the end of the body.3

Virtual registers have the form xi, where x is the corresponding variable. If
r is a virtual register, then var (r) returns the variable the register refers to,
therefore if r = xi, then var (r) = x . The receiver object can be referred inside
method bodies with the special implicit parameter this, hence the IR contains
virtual registers of the form thisi.

Besides usual statements and expressions, we consider ϕ and σ pseudo-function
assignments. Conditional jumps contain σ-functions which split each virtual reg-
ister r occurring in either branches into two new distinct versions used in the
blocks labeled by l1, and l2, respectively. The guard can only be of the form
(r instanceof c); however, more elaborated guards can be easily expressed in
terms of this primitive one by suitable transformations during the compilation
from the source code to the IR. Depending on the types and abstract compila-
tion scheme, there could be other kinds of guards for which SSI would improve
type analysis; for instance, if one includes the type corresponding to the null
references, then a guard of the form (r == null) would take advantage of SSI to
enhance null reference analysis. For those guards for which no type refinement
is possible the σ-function performs no split, that is, σ(τ)=(τ,τ).

Semantics. To define the small step semantics of the language we first need to
specify values v (see Figure 3), which are just identities o of dynamically created
objects. Furthermore, we add frame expressions ec{e}, where ec is an execution
context; frame expressions are runtime expressions needed for defining the small
step semantics of method calls. An execution context ec is a pair consisting of
a stack frame fr and a fully qualified name μ. A frame expression 〈fr , μ〉{e}
corresponds to the execution of a call to a method m declared in class c, where
e is the residual expression (yet to be evaluated) of the currently executed block,
fr is the stack frame of the method call, and μ = c.m is the fully qualified name
of the method.

Stack frames fr map virtual registers to their corresponding values. Each as-
sociation is labeled with a distinct time-stamp t, which specifies how recently the
register has been updated (higher time-stamp values correspond to more recent
updates). Such labels are used to define the semantics of ϕ-function assignments.

Heaps H map object identifiers o to objects, that is, pairs consisting of a class
name c and the set of field names f with their corresponding value v.

3 Such a constraint does not imply any loss of generality, since it is always possible to
add new virtual registers and to insert a ϕ-function when the source code contains
multiple returns.

Static Single Information Form for Abstract Compilation 17

v ::= o (values)
e ::= v | ec{e} | . . . (runtime expressions)
ec ::= 〈fr , μ〉 (execution context)

fr ::= r �→t v
k (stack frames)

μ ::= c.m (full method names)

H ::= o �→ 〈c, f �→ v
j〉

k

(heaps)
C[·] ::= [·] | ec{C[·]} | new c(vn, C[·], ej) | C[·].f | C[·].m(ek) | v0.m(vj , C[·], ek)

| C[·]; e | x = C[·] | C[·].f = e | v.f = C[·]
| if (C[·]) with (x ′, x ′′) = σ(x ′′′)

n
jump l1 else jump l2

Fig. 3. Syntactic definitions instrumental to the operational semantics

Figure 4 shows the execution rules. Three different judgments are defined: the
main judgment cd

n {bn} ⇒ v states that the main method {bn} of program cd
n

evaluates to value v. Such a judgment directly depends on the auxiliary judgment
H � e → H′, e ′, stating that e rewrites to e ′ in H, yielding the new heap H′,
and whose definition uses the auxiliary judgment H, ec � e → H′, ec′, e ′, having
the meaning that redex e rewrites to e ′ in H and ec, yielding the new execution
context ec′ and heap H′. All the auxiliary judgments and functions4 should
be parametrized by the whole executing program, cd

n
, which, however, is kept

implicit to favor readability.
Rule (main) defines the main judgment; a value v is returned if the runtime

expression 〈εfr , ε.ε〉{e}, where e is the first block (retrieved by the auxiliary
function firstBlock) of the main method, transitively rewrites to v (and a heap
H which is discarded). The evaluation context 〈εfr , ε.ε〉 of the frame expression
specifies that initially the frame (εfr) is empty (neither this, nor parameters are
accessible), and that execution starts in the main method, whose fully qualified
name is ε.ε (recall that, conventionally, the main method is anonymous and is
contained in an anonymous class).

The auxiliary judgment H � e → H′, e ′ is defined by the three rules (meth-
call) (a new execution context is created), (ctx) (evaluation continues in the
currently active execution context), and (return) (the current execution context
is closed).

In rule (meth-call), the object referenced by o is retrieved from the heap to
find its class, c. Then, the auxiliary functions firstBlock and params return the
first block of the method and its parameters, respectively. The result of the eval-
uation is a frame expression, where the new stack frame maps parameters to
their corresponding arguments, and this0 to o, the fully qualified name c.m
corresponds to the invoked method, and the expression is the first block of the
method. Rule (ctx) deals with context closure. Contexts (the standard defini-
tion is in Figure 3) correspond to a deterministic call-by-value and left-to-right
evaluation strategy. A single computation step in the current execution context
(corresponding to the most nested frame expression) is performed. The active
execution context is extracted by currentEC ; then, if the redex e rewrites to e ′

4 The straightforward definitions of the auxiliary functions have been omitted.

18 D. Ancona and G. Lagorio

(main)
firstBlock (ε.ε) = e εH 	 〈εfr , ε.ε〉{e} →∗ H, v

cd
n {bn} ⇒ v

(meth-call)

H(o) = 〈c, 〉
firstBlock (c.m) = e
params(c.m) = rn

fr = r �→ vn, this0 �→ o

H 	 C[o.m(vn)]
→H, C[〈fr , c.m〉{e}]

(ctx)

currentEC (C[·]) = ec
H, ec 	 e →H′, ec′, e ′

C′[·] = updateEC (C[·], ec′)
H 	 C[e]→H′, C′[e ′]

(return)H 	 C[〈fr , μ〉{return r}]
→H, C[fr(r)]

(fld-acc)
H(o) = 〈c, f �→ v

n〉 f = fj
H, ec 	 o.f →H, ec, vj

(reg)H, 〈fr , μ〉 	 r →H, 〈fr , μ〉, fr(r) (new)

o fresh in H
fieldNames(c) = f

n

H, ec 	 new c(vn)

→H[〈c, f �→ v
n〉/o], ec, o

(seq)H, ec 	 v; e →H, ec, e (reg-asn)H, 〈fr , μ〉 	 r = v
→H, 〈fr [v/r], μ〉, v

(fld-asn)

H(o) = 〈c, f �→ v
n〉

f = fj if i = j then v′i = v
else v′i = vi

H, ec 	 o.f = v

→H[〈c, f �→ v′
n〉/o], ec, v

(jump)
block(μ, l) = e

H, 〈fr , μ〉 	 jump l
→ H, 〈fr , μ〉, e

(phi)H, 〈fr , μ〉 	 r0 = ϕ(rn)→H, 〈fr [mru(fr , rn)/r0], μ〉, v

(if)

H(fr(r)) = 〈c′, 〉
if c′ ≤ c then l ′ = l1, fr

′ = fr [fr(r ′′′)/r ′
n
]

else l ′ = l2, fr
′ = fr [fr(r ′′′)/r ′′

n
]

block(μ, l ′) = e

H, 〈fr , μ〉 	 if (r instanceof c) with (r ′, r ′′) = σ(r ′′′)
n

jump l1 else jump l2
→H, 〈fr , μ〉, e

Fig. 4. Small-step semantics

Static Single Information Form for Abstract Compilation 19

yielding H′ and ec′ (see the other rules defining the auxiliary evaluation judg-
ment), then the C[e] rewrites to C′[e ′], yielding the new heap H′; context C′[]
is obtained from C[] by updating the frame expression corresponding to the
active execution context with the new execution context ec′. In rule (return) the
current execution context is closed, the heap is unaffected, and the result is the
value associated with the returned virtual register r in the frame of the closing
context.

The remaining rules define the auxiliary judgment H, ec � e → H′, ec′, e ′,
one for any distinct kind of redex. In rule (reg) a virtual register is accessed by
extracting the corresponding value from the stack frame fr .Variable and field
assignments evaluate to their right values; rule (reg-asn) has the side effect of
updating, in the current stack frame fr , the value of the virtual register r and
its associated time-stamp (this is implicit in the definition of fr [v/r]) since, after
the assignment, r becomes the most recently updated register. Rule (fld-asn)
deals with field assignments: the object referenced by o is retrieved from the
heap, and its value updated. In rule (seq) the left-hand-side value in a sequence
expression is discarded to allow evaluation to proceed with the next expression.
In rule (phi), register r0 is updated with the value (denoted bymru(fr , rn)) of the
most recently updated register in the stack frame, between rn. In rule (new) a
new object, identified by a fresh reference o, is added to the heapH. The fields f n

of the newly created object are initialized by the values passed to the constructor.
In rule (fld-acc) field accesses are evaluated: the object is retrieved from the heap,
and the resulting expression is the value of the selected field. Rules (jump) and (if)
deal with unconditional and conditional jumps, respectively. The evaluation of a
jump returns the expression e contained in the block labeled by l ′ in the method
μ of the current execution context. The conditional jump (rule (if)) selects which
branch to execute and which virtual registers have to be updated, depending on
whether the value fr(r) of the register r is a reference to an object of a subclass
of c. If it is the case, then the returned expression is that labeled by l1 and
the virtual registers r ′

n
are updated; otherwise, the returned expression is that

labeled by l2 and the virtual registers r ′′
n
are updated.

As an example, let us consider the expression x0=new C();return x0 in a
program where C is defined and has no fields.

Then εH � 〈εfr , ε.ε〉{x0=new C();return x0} → H, 〈εfr , ε.ε〉{x0=o;return x0}
by rules (ctx) (with context x0=[·]; return x0) and (new), where H = o 	→ 〈C, ε〉;
H � 〈εfr , ε.ε〉{x0=o;return x0} → H, 〈fr , ε.ε〉{o;return x0} by rules (ctx) (with
context [·]; return x0) and (var-asn), where fr = x 	→ o, x0 	→ o;
H � 〈fr , ε.ε〉{o;return x0} → H, 〈fr , ε.ε〉{return x0} by rules (ctx) (with context
〈fr , ε.ε〉{[·]}) and (seq); finally, H � 〈fr , ε.ε〉{return x0} → H, o by rule (return)
(with context [·]).

4 Abstract Compilation

In this section we define an abstract compilation scheme for programs in the
SSI IR presented in Section 3. Programs are translated into a Horn formula Hf

20 D. Ancona and G. Lagorio

(that is, a logic program) and a goal B ; type analysis and inference amounts
to coinductive resolution of B , that is the greatest Herbrand model of Hf [5]
is considered. The proof of soundness of such a translation is sketched in the
Appendix.

In previous work [5,6] we have used expressive structural types; however,
since SSI favors more precise type analysis, we have preferred to follow a simpler
approach based on nominal types. Structural types could be used as well to allow
data polymorphism, with the downside that subtyping relation becomes much
more involved and termination issues must be addressed.

Subtyping is treated as an ordinary predicate, thus allowing only global anal-
ysis; compositional analysis can be obtained by considering subtyping as a con-
straint, and by using coinductive constraint logic programming [4].

The compilation of programs, class, and method declarations is defined in
Figure 5. We follow the usual syntactic conventions for logic programs: logical
variable names begin with upper case, whereas predicate and functor names
begin with lower case letters. Underscore denotes anonymous logical variables
that occur only once in a clause; [] and [e|l] respectively represent the empty
list, and the list where e is the first element, and l is the rest of the list.

(prog)
∀ i = 1..n cd i � Hf i e � (t |B)

cd
n
e � (Hf d ∪ Hf

n|B)

(class)
∀ i = 1..k md i in c1 � Hf i inhFields(c1) = f ′

h

class c1 extends c2 { f n md
k }� Hf

k∪⎧
⎪⎪⎨

⎪⎪⎩

class(c1)← true .
extends(c1 , c2)← true .

dec field(c1 , f)
n ← true .

new (CE , c1 , [T ′h ,T
n
])← new (CE , c2 , [T ′h]),field upd(CE , c1 , f ,T)

n
.

⎫
⎪⎪⎬

⎪⎪⎭

(meth)
b
n � (t |B)

m(rn){bn} in c �{
dec meth(c,m)← true .
has meth(CE , c,m, [This0 , r

n], t)← subclass(This0 , c),B .

}

(body)
∀ i = 1..n bi � Bi

b
n
l :return r � (r |Bn

)

Fig. 5. Compilation of programs, class, and method declarations and bodies

Each rule defines a different compilation judgment. The judgment cd
n
e �

(Hf d ∪ Hf
n|B) states that the program cd

n
e is compiled into the pair (Hf d ∪

Hf
n|B), where Hf d ∪Hf n is a Horn formula (that is, a set of Horn clauses), and

B is a goal.5 Type inference of the main expression is obtained by coinductive

5 For simplicity we use the same meta-variable B to denote conjunctions of atoms (that
is, clause bodies), and goals, even though more formally goals are special clauses of
the form false ← B .

Static Single Information Form for Abstract Compilation 21

resolution of the goal B in Hf d∪Hf n. The Horn formula Hf d contains all clauses
that are independent of the program (Figure 7), whereas each Hf i is obtained
by compiling the class declaration cd i (see below); the goal B is generated from
the compilation of the main expression e (see below); the term t corresponds
to the returned type of e; it is ignored here, but it is necessary for compiling
expressions.

The compilation of a class declaration class c1 extends c2 { f
n

md
k } is

a set of clauses, including each clause Hf i obtained by compiling the method
md i (see below), clauses asserting that class c1 declares field fi, for all i = 1..n,
and three specific clauses for predicates class , extends , and new . The clause for
new deserves some explanations: the atom new(ce, c, [t

n
]) succeeds iff the invo-

cation of the implicit constructor of c with n arguments of type t
n
is type safe

in the global class type environment ce. The class environment ce is required
for compiling field access and update expressions (Figure 6): it is a finite map
(simply represented by a list) associating class names with field records (finite
maps again simply represented by lists) assigning types to all fields of a class.
Class environments are required because of nominal types: abstract compilation
with structural types allows data polymorphism on a per-object basis, whereas
here we obtain only a very limited form of data polymorphism on a per-class
basis. Type safety of object creation is checked by ensuring that object creation
for the direct superclass c2 is correct, where only the first part h of the argu-
ments corresponding to the inherited fields (returned by the auxiliary function
inhFields whose straightforward definition has been omitted) are passed; then,
predicate field upd defined in Figure 7 checks that all remaining n arguments,
corresponding to the new fields declared in c1, have types that are compatible
with those specified in the class environment. The clause dealing with the base
case for the root class Object is also defined in Figure 7.

The judgment m(rn){bn} in c � Hf states that the method declaration
m(rn){bn} contained in class c compiles to Horn clauses Hf . Two clauses are
generated per method declaration: the first simply states that method m is
declared in class c (and is needed to deal with inherited methods Figure 7),
whereas the second is obtained by compiling the body of the method. The atom
has meth(ce, c,m, [t0, t

n
], t) succeeds iff, in class environment ce method m of

class c can be safely invoked on target object of type t0, with n arguments of
type t

n
and returned value of type t . The predicate subclass (defined in Figure 7)

ensures that the method can be invoked only on objects that are instances of c
or one of its subclasses. For simplicity we assume that all names (including this)
are translated to themselves, even though, in practice, appropriate injective re-
naming should be applied [5]. The compilation of a method body b

n
l :return r

consists of the type of the returned virtual register r , and the conjunction of all
the atoms generated by the compilation of blocks b

n
.

Figure 6 defines abstract compilation for blocks, and expressions.

22 D. Ancona and G. Lagorio

(block)
e � (t |B)

l :e � B
(seq)

e1 � (t1 |B1) e2 � (t2 |B2)

e1; e2 � (t2 |B1,B2)

(c-jmp)

if var(r ′′′i) = var(r)
then t ′i = T, t ′′i = F
else t ′i = r ′′′i , t ′′i = r ′′′i T, F fresh

if (r instanceof c) with (r ′, r ′′) = σ(r ′′′)
n
jump l1 else jump l2 in �

(void | inter(r , c, T),diff (r , c, F), var upd(r ′, t ′), var upd(r ′′, t ′′)
n
)

(var-upd)
e � (t |B)

r = e � (t |B , var upd(r , t))
(jmp)

jump l � (void | true)

(field-upd)
e1 � (t1 |B1) e2 � (t2 |B2)

e1.f = e2 � (t2 |B1,B2,field upd(CE , t1, f , t2))

(phi)
r = ϕ(rn)� (∨rn | var upd(r ,∨rn))

(new)
∀ i = 1..n ei � (ti |Bi)

new c(en)� (c |Bn
,new (CE , c, [t

n
]))

(field-acc)
e � (t |B) R fresh

e.f � (R |B ,field(CE , t , f , R))

(invk)
∀ i = 0..n ei � (ti |Bi) R fresh

e0.m(en)� (R |B0,B
n
, invoke(CE , t0,m, [t

n
], R))

(var)
r � (r | true)

Fig. 6. Compilation of blocks and expressions

Compiling a block l :e returns the conjunction of atoms obtained by compiling
e; the type t of e is discarded. The compilation of e1; e2 returns the type of e2
and the conjunction of atoms generated from the compilation of e1 and e2. The
compilation of an unconditional jump generates the type void and the empty
conjunction of atoms true. A conditional jump has type void as well, but a non-
empty sequence of predicates is generated to deal with the splitting performed
by the σ-functions; predicates inter and diff (defined in Figure 7) compute the
intersection T and the difference F between the type of r and c, respectively,
and predicate var upd (defined in Figure 7) ensures that the type of virtual
registers r ′i and r ′′i are compatible with the pairs of types returned by the σ-
functions. In case r ′′′i refers to the same variable of r the types of such a pair
are the computed intersection T and difference F , respectively, otherwise the
pair (r ′′′i , r ′′′i) is returned (hence, no split is actually performed). Compilation of
assignments to virtual registers and fields yields the conjunction of the atoms
generated from the corresponding sub-expressions, together with the atoms that
ensure that the assignment is type compatible (with predicates var upd and
field upd defined in Figure 7). The returned type is the type of the right-hand
side expression. Compilation of ϕ-function assignments to virtual registers is

Static Single Information Form for Abstract Compilation 23

just an instantiation of rule (var-upd) where the type of the expression is the
union of the types of the virtual registers passed as arguments to ϕ. Compilation
rules for object creation, field selection, and method invocation follow the same
pattern: the type of the expression is a fresh logical variable (except for object
creation) corresponding to the type returned by the specific predicate (new ,
field , and invoke defined in Figure 7). The generated atoms are those obtained
from the compilation of the sub-expressions, together with the atom specific of
the expression. Rules (var) is straightforward.

The clauses (see Hf d in (prog)) that do not depend on the specific program
are defined in Figure 7 in the Appendix.

Predicate subtype defining the subtyping relation deserves some comments:
as expected, classes c1 and c2 are both subtypes of c1 ∨ c2, but c1 is not a
subtype of c2 when C1 is a proper subclass of c2: since no rule is imposed
on method overriding, subclassing is not subtyping. Consider for instance the
following source code snippet:

class Square { ... equals(s){return this.side==s.side;} ... }
class ColoredSquare extends Square {

... equals(cs){return this.side==cs.side&& this.color==cs.color;} ... }

According to our compilation scheme, the expression s1.equals(s2) has type
Bool if s1 and s2 have type Square and Square∨ColoredSquare, respectively,
but the same expression is not well-typed if s1 has type ColoredSquare (hence,
ColoredSquare �≤Square), since s2 cannot contain an instance of Square for which
field color is not defined. Subtyping is required for defining the predicates
var upd and field upd for virtual register and field updates: the type of the
source must be a subtype of the type of the destination.

Type empty is the bottom of the subtyping relation. The predicates inter and
diff (see below) can generate empty when a branch is unreachable. Of course,
field accesses and method invocations on type empty are correct (in practice
they can only occur in dead code).

Predicate field looks up the type of a field in the global class environment, and
is defined in terms of the auxiliary predicates has field , class fields , field type,
and no def . In particular, predicate has field checks that a class has actu-
ally a certain field, either declared or inherited. The definitions of class fields ,
field type, and no def are straightforward (no def ensures that a map does not
contain multiple entries for a key), whereas the clause for has field dealing with
inherited fields is similar to the corresponding one for invoke (see below).

If the target object has a class type c, then the correctness of method invoca-
tion is checked with predicate has meth applied to class c and to the same list
of arguments where, however, the type c of this is added at the beginning. If the
target object has a union type, predicate invoke checks that method invocation
is correct for both types of the union, and then merges the types of the results
into a single union type.

Finally, the clause for has meth deals with the inherited methods: if class c
does not declare method m, then has meth must hold on the direct superclass
of c.

24 D. Ancona and G. Lagorio

Predicates inter and diff define type splitting for σ-functions; both predicates
never fail, but the type empty is returned when a branch is not reachable. Their
definition is straightforward: the former keeps all classes that satisfies the runtime
typechecking, the latter all classes that do not satisfy it.

5 Conclusion

We have shown how SSI IR can be exploited by abstract compilation for static
global type analysis of programs written in a dynamic object-oriented language
equipped with an instanceof operator for runtime typechecks. The approach
allows a rather precise analysis with just nominal and union types.

We have stated soundness of type inference and sketched the proof; to do
that, a small step operational semantics of the SSI IR language has been for-
mally defined; this is also an original contribution, since, to our knowledge, no
prior formal definition of the semantics of an SSI IR language can be found in
literature.

There already exists interesting work on type inference of dynamic object-
oriented languages, and several papers have defined and studied flow sensitive
type systems [7,1,11,13] (to mention just a few). The main distinguishing feature
of abstract compilation, when compared with all other approaches, is its modu-
larity. Abstract compilation allows one to implement different kinds of analysis,
for different languages with a suitable compilation scheme, by using the same
inference engine. Furthermore, abstract compilation is particularly suited for di-
rectly compiling IR languages, as SSI, to greatly improve the precision of the
analysis.

Guarded type promotion [21] for Java allows more precise type analysis of
branches guarded by dynamic type checks in a very similar way as in our ap-
proach. However, here we consider the more challenging problem of inferring
types for a dynamic language where no type annotations are provided by the
programmers.

References

1. An, J., Chaudhuri, A., Foster, J.S., Hicks, M.: Dynamic inference of static types
for Ruby. In: POPL, pp. 459–472 (2011)

2. Ananian, C.S.: The static single information form. Technical Report MITLCS-TR-
801. MIT (1999)

3. Ancona, D., Ancona, M., Cuni, A., Matsakis, N.: RPython: a Step Towards Recon-
ciling Dynamically and Statically Typed OO Languages. In: DLS 2007, pp. 53–64.
ACM (2007)

4. Ancona, D., Corradi, A., Lagorio, G., Damiani, F.: Abstract Compilation of Object-
Oriented Languages into Coinductive CLP(X): Can Type Inference Meet Verifica-
tion? In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 31–45.
Springer, Heidelberg (2011)

5. Ancona, D., Lagorio, G.: Coinductive Type Systems for Object-Oriented Lan-
guages. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 2–26.
Springer, Heidelberg (2009)

Static Single Information Form for Abstract Compilation 25

6. Ancona, D., Lagorio, G.: Idealized coinductive type systems for imperative object-
oriented programs. RAIRO - Theoretical Informatics and Applications 45(1), 3–33
(2011)

7. Anderson, C., Giannini, P., Drossopoulou, S.: Towards Type Inference for
JavaScript. In: Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 428–452.
Springer, Heidelberg (2005)

8. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph.
TOPLAS 13, 451–490 (1991)

9. Das, D., Ramakrishna, U.: A practical and fast iterative algorithm for phi-function
computation using DJ graphs. TOPLAS 27(3), 426–440 (2005)

10. Alpern, B., et al.: The jalapeño virtual machine. IBM Systems Journal 39 (2000)
11. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: PLDI, pp.

1–12 (2002)
12. Griesemer, R., Mitrovic, S.: A compiler for the java hotspottm virtual machine. In:

The School of Niklaus Wirth, ”The Art of Simplicity”, pp. 133–152 (2000)
13. Heidegger, P., Thiemann, P.: Recency Types for Analyzing Scripting Languages.

In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 200–224. Springer, Hei-
delberg (2010)

14. Holloway, G.: The machine-SUIF static single assignment library. Technical report,
Harvard School of Engineering and Applied Sciences (2001)

15. Novillo, D.: Tree SSA - a new optimization infrastructure for GCC. In: GCC De-
velopers’ Summit, pp. 181–193 (2003)

16. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-Logic Programming: Extending
Logic Programming with Coinduction. In: Arge, L., Cachin, C., Jurdziński, T.,
Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Heidelberg
(2007)

17. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive Logic Programming.
In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345.
Springer, Heidelberg (2006)

18. Singer, J.: Static single information form in machine SUIF. Technical report, Uni-
versity of Cambridge Computer Laboratory, UK (2004)

19. Singer, J.: Static Program Analysis based on Virtual Register Renaming. PhD
thesis, Christs College (2005)

20. Tavares, A., Pereira, F.M., Bigonha, M., Bigonha, R.: Efficient SSI conversion. In:
SBLP 2010 (2010)

21. Winther, J.: Guarded type promotion (eliminating redundant casts in Java). In:
FTfJP 2011. ACM (2011)

26 D. Ancona and G. Lagorio

class(object)← true .
subclass(X ,X)← class(X).
subclass(X ,Y)← extends(X ,Z), subclass(Z ,Y).
subtype(empty ,)← true .
subtype(T ,T)← true .
subtype(T1 ∨ T2 ,T)← subtype(T1 ,T), subtype(T2 ,T).
subtype(T ,T1 ∨)← subtype(T ,T1).
subtype(T , ∨ T2)← subtype(T ,T2).
field(CE , empty , ,)← true .
field(CE ,C ,F ,T)← has field(C ,F), class fields(CE ,C ,R),field type(R,F ,T).
field(CE ,T1 ∨ T2 ,F ,FT1 ∨ FT2)← field(CE , T1, F, FT1),

field(CE , T2, F, FT2).
class fields([C : R|CE],C ,R)← no def (C ,CE).
class fields([C1 : |CE],C2 ,R)← class fields(CE ,C2 ,R),C1 �= C2 .
field type([F :T |R],F ,T)← no def (F ,R).
field type([F1 : |R],F2 ,T)← field type(R,F2 ,T),F1 �= F2 .
no def (, [])← true .
no def (K1 , [K2 : |Tl])← no def (K1 ,Tl),K1 �= K2 .
invoke(, empty , , ,)← true .
invoke(CE ,C ,M ,A,RT)← has meth(CE ,C ,M , [C |A],RT).
invoke(CE ,T1 ∨ T2 ,M ,A,RT1 ∨ RT2)← invoke(CE ,T1 ,M ,A,RT1),

invoke(CE ,T2 ,M ,A,RT2).
new(, object , [])← true .
has field(C ,F)← dec field(C ,F).
has field(C ,F)← extends(C ,P),has field(P ,F),¬dec field(C ,F).
has meth(CE ,C ,M ,A,R)← extends(C,P), has meth(CE , P,M,A,R),

¬dec meth(C,M).
var upd(T1 ,T2)← subtype(T2 ,T1).
field upd(CE ,C ,F ,T2)← field(CE ,C ,F ,T1), subtype(T2 ,T1).
inter(C1 ,C2 ,C1)← subclass(C1 ,C2).
inter(C1 ,C2 , empty)← ¬subclass(C1 ,C2).
inter(T1 ∨ T2 ,C , IT1 ∨ IT2)← inter(T1 ,C , IT1), inter(T2 ,C , IT2).
diff (C1 ,C2 ,C1)← class(C1),¬subclass(C1 ,C2).
diff (C1 ,C2 , empty)← class(C1), subclass(C1 ,C2).
diff (T1 ∨ T2 ,C , IT1 ∨ IT2)← diff (T1 ,C , IT1), diff (T2 ,C , IT2).

Fig. 7. Clauses defining the predicates used by the abstract compilation

A Proof of Soundness

To sketch the proof of soundness of abstract compilation, abstract compilation of
expressions has to be extended to cover also runtime expressions, hence we define
the new judgmentH, fr , e � (t |B) (defined in Figure 8) stating that the runtime
expression e compiles to the type t and the conjunction of atoms B in the heap
H and stack frame fr . Heaps and stack frames are needed for compiling object
values and virtual registers. All rules obtained as straightforward extension of
the corresponding rules in Figure 6 have been omitted. In the sequel, all
statements depend on a particular program cd

n
; furthermore, we state that the

Static Single Information Form for Abstract Compilation 27

(obj)
H(o) = 〈c, 〉

H, fr , o� (c | true)
(frame)

H, fr ′, e � (t |B)

H, fr , 〈fr ′, μ〉{e}� (t |B)

(c-jmp-then)
fr(r) = c′ c′ ≤ c ∀ i = 1..n fr(r ′

i) = t ′i
if var(r ′′′

i) = var(r)
then t ′′i = c′ else t ′′i = fr(r ′′′

i)

H, fr , if (r instanceof c) with (r ′, r ′′) = σ(r ′′′)
n
jump l1 else jump l2 in �

(void | var upd(t ′, t ′′)
n
)

(c-jmp-else)
fr(r) = c′ c′ �≤ c ∀ i = 1..n fr(r ′′

i) = t ′i
if var(r ′′′

i) = var(r)
then t ′′i = c′ else t ′′i = fr(r ′′′

i)

H, fr , if (r instanceof c) with (r ′, r ′′) = σ(r ′′′)
n
jump l1 else jump l2 in �

(void | var upd(t ′, t ′′)
n
)

(var-upd)
H, fr , e � (t |B) fr(r) = t ′

H, fr , r = e � (t |B , var upd(t ′, t))

(phi)
∀ i = 0..n fr(ri) = ti

H, fr , r0 = ϕ(rn)� (∨t
n | var upd(t0,∨t

n
))

(var)
fr(r) = t

H, fr , r � (t | true)

Fig. 8. Compilation of runtime expressions

coinductive resolution of a goal succeeds to mean that it succeeds w.r.t. the
abstract compilation of cd

n
.

Lemma 1 (Progress). If H, εfr , e � (t |B), and the coinductive resolution of
B succeeds, then either e is a value, or there exist H′ and e ′ s.t. H � e → H′, e ′.

Lemma 2 (Subject Reduction). If H � e → H′, e ′ and H, εfr , e � (t |B)
and the coinductive resolution of B succeeds with grounding substitution θ, then
there exist t ′ and B ′ s.t. H, εfr , e ′ � (t ′ |B ′), the coinductive resolution of B ′

succeeds with grounding substitution θ′, and subtype(θ′t ′, θt) succeeds.

Theorem 1 (Soundness). If H, εfr , e � (t |B) and the coinductive resolution
of B succeeds with grounding substitution θ, and H � e →∗ H′, e ′, and there
exist no H′′ and e ′′ s.t. H′ � e ′ → H′′, e ′′, then e ′ is an object value o s.t.
H′(o) = 〈c, 〉, and subtype(c, θt) succeeds.

Input-Driven Stack Automata

Suna Bensch1, Markus Holzer2, Martin Kutrib2, and Andreas Malcher2

1 Department of Computing Science,
Ume̊a University, 90187 Ume̊a, Sweden

suna@cs.umu.se
2 Institut für Informatik, Universität Giessen,

Arndtstr. 2, 35392 Giessen, Germany
{holzer,kutrib,malcher}@informatik.uni-giessen.de

Abstract. We introduce and investigate input-driven stack automata,
which are a generalization of input-driven pushdown automata that re-
cently became popular under the name visibly pushdown automata. Basi-
cally, the idea is that the input letters uniquely determine the operations
on the pushdown store. This can nicely be generalized to stack automata
by further types of input letters which are responsible for moving the
stack pointer up or down. While visibly pushdown languages share many
desirable properties with regular languages, input-driven stack automata
languages do not necessarily so. We prove that deterministic and non-
deterministic input-driven stack automata have different computational
power, which shows in passing that one cannot construct a deterministic
input-driven stack automaton from a nondeterministic one. We study the
computational capacity of these devices. Moreover, it is shown that the
membership problem for nondeterministic input-driven stack automata
languages is NP-complete.

1 Introduction

Finite automata have intensively been studied and, moreover, have been ex-
tended in several different ways. Typical extensions in the view of [8] are push-
down tapes [4], stack tapes [9], or Turing tapes. The investigations in [8] led to
a rich theory of abstract families of automata, which is the equivalent to the
theory of abstract families of languages (see, for example, [18]). On the other
hand, slight extensions to finite automata such as a one-turn pushdown tape lead
to machine models that can no longer be determinized, that is, the nondeter-
ministic machine model is more powerful than the deterministic one. Moreover,
fundamental problems such as membership become more complicated than for
languages accepted by finite automata. For example, the equivalence problem
turns out to be undecidable, while for regular languages this problem is decid-
able, and its complexity depends on the machine type used (deterministic or
nondeterministic finite automata).

Recently a pushdown automaton model, called visibly pushdown automaton,
was popularized by [1], which shares many desirable properties with regular lan-
guages, but still is powerful enough to describe important context-free-like be-
havior. The idea on visibly pushdown automata is that the input letters uniquely

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 28–42, 2012.
c© IFIP International Federation for Information Processing 2012

Input-Driven Stack Automata 29

determine whether the automaton pushes a symbol, pops a symbol, or leaves the
pushdown unchanged. Such devices date back to the seminal paper [15] and its
follow-ups [2] and [6], where this machine model is called input-driven pushdown
automaton. One of the most important properties on visibly pushdown automata
languages or, equivalently, input-driven pushdown automata languages is that
deterministic and nondeterministic automata are equally powerful. Moreover,
the language class accepted is closed under almost all basic operations in formal
language theory. Since the recent paper [1], visibly pushdown automata are a
vivid area of research, which can be seen by the amount of literature, for exam-
ple, [1,3,5,10,16,17]. In some of these papers yet another name is used for visibly
pushdown automata, namely nested word automata, which may lead to some
confusion.

Here we generalize the idea of input-driven pushdown automata to input-
driven stack automata. Since the main difference between a pushdown and a
stack is that the latter storage type is also allowed to read information from
the inside of the stack and not only from the top, the idea that input letters
control the stack behavior easily applies. Hence, in addition to the letters that
make the automaton push, pop, or leave the stack unchanged, two new types of
letters that allow the movement of the stack pointer up or down are introduced.
This leads us to the strong version of a input-driven stack automaton. Relaxing
the condition on being input-driven when reading the stack contents, gives the
basic idea of a weak input-driven stack automaton. We compare both automata
models and show that the strong version is strictly less powerful than the corre-
sponding weak version for deterministic devices. Moreover, when staying with the
same model, nondeterminism turns out to be more powerful than determinism,
which shows in passing that in both cases determinization is not possible. This
sharply contrasts the situation for input-driven pushdown automata. Concerning
decidability questions, we would like to note that the results in [9] imply that
emptiness is decidable for nondeterministic input-driven stack automata and
equivalence with regular languages is decidable for deterministic input-driven
stack automata. Finally, we also show that the fixed membership problem for
input-driven stack automata languages, even for the strong automaton model,
has the same complexity as for languages accepted by ordinary stack automata,
namely it is NP-complete, and therefore intractable. This again is in sharp con-
trast to the situation on input-driven pushdown automata languages, whose
membership problem is NC1-complete [6] while ordinary pushdown automata
languages are LOGCFL-complete [20].

2 Preliminaries and Definitions

We write Σ∗ for the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and we set Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR and for the length of w we write |w|. We use ⊆ for inclusions and ⊂ for
strict inclusions.

30 S. Bensch et al.

A nondeterministic one-way stack automaton is a classical nondeterministic
pushdown automaton which is enhanced with an additional pointer that is al-
lowed to move inside the stack without altering the stack contents. In this way
it is possible to read but not to change information which is stored on the stack.
Such a stack automaton is called input-driven, if the next input symbol defines
the next action on the stack, that is, pushing a symbol onto the stack, popping a
symbol from the stack, changing the internal state without changing the stack,
or moving inside the stack by going up or down. To this end, we assume that
the input alphabet Σ is partitioned into the sets Σc, Σr, Σi, Σu, and Σd, that
control the actions push (call), pop (return), state change without changing the
stack (internal), and up and down movement of the stack pointer. A formal
definition reads as follows.

Definition 1. A strong nondeterministic one-way input-driven stack automa-
ton (1sNVSA) is a system M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉, where

1. Q is the finite set of internal states,
2. Σ is the finite set of input symbols consisting of the disjoint union of sets

Σc, Σr, Σi, Σu, and Σd,
3. Γ is the finite set of stack symbols,
4. ⊥ ∈ Γ is the initial stack or bottom-of-stack symbol,
5. Γ ′ is a marked copy of Γ , that is Γ ′ = { a′ | a ∈ Γ }, where the symbol ⊥′ is

denoted by ⊥,
6. q0 ∈ Q is the initial state,
7. F ⊆ Q is the set of accepting states, and
8. δc is the partial transition function mapping Q × Σc into the subsets of

Q× (Γ ′ \ {⊥}),
9. δr is the partial transition function mapping Q × Σr × Γ ′ into the subsets

of Q,
10. δi is the partial transition function mapping Q×Σi into the subsets of Q,
11. δd is the partial transition function mapping Q × Σd × (Γ ∪ Γ ′) into the

subsets of Q,
12. δu is the partial transition function mapping Q × Σu × (Γ ∪ Γ ′) into the

subsets of Q.

A configuration of a 1sNVSA M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉 at some
time t ≥ 0 is a quadruple ct = (q, w, s, p), where q ∈ Q is the current state,
w ∈ Σ∗ is the unread part of the input, s ∈ Γ ′Γ ∗⊥ ∪ {⊥} gives the cur-
rent stack contents, and 1 ≤ p ≤ |s| gives the current position of the stack
pointer. Let s = snsn−1 · · · s1 denote the stack contents. Consider the projec-
tion [·] : (Γ ∪ Γ ′)+ → (Γ ∪ Γ ′) such that s[p] = sp, for 1 ≤ p ≤ n. Furthermore,
let ϕ be a mapping which marks the first letter of a string in Γ+, that is,
ϕ : Γ+ → Γ ′Γ ∗ such that ϕ(a1a2 · · · an) = a′1a2 · · · an. By definition, ϕ(⊥) = ⊥.

The initial configuration for input w is set to (q0, w,⊥, 1). During its course
of computation, M runs through a sequence of configurations. One step from a
configuration to its successor configuration is denoted by �. Let a ∈ Σ, w ∈ Σ∗,
s ∈ Γ ′Γ ∗⊥ ∪ {⊥}, t ∈ Γ ∗⊥, 1 ≤ p ≤ |s|, and Z ∈ Γ . We set

Input-Driven Stack Automata 31

1. (q, aw, s, p) � (q′, w, Z ′ϕ−1(s), |s|+ 1), if a ∈ Σc and (q′, Z) ∈ δc(q, a),
2. (q, aw, Z ′t, p) � (q′, w, ϕ(t), |t|), if a ∈ Σr and q′ ∈ δr(q, a, Z

′),
3. (q, aw,⊥, 1) � (q′, w,⊥, 1), if a ∈ Σr and q′ ∈ δr(q, a,⊥),
4. (q, aw, s, p) � (q′, w, s, p), if a ∈ Σi and q′ ∈ δi(q, a),
5. (q, aw, s, p) � (q′, w, s, p+ 1), if a ∈ Σu, q

′ ∈ δu(q, a, s[p]), and s[p] �∈ Γ ′,
6. (q, aw, s, p) � (q′, w, s, p), if a ∈ Σu, q

′ ∈ δu(q, a, s[p]), and s[p] ∈ Γ ′,
7. (q, aw, s, p) � (q′, w, s, p− 1), if a ∈ Σd, q

′ ∈ δd(q, a, s[p]), and s[p] �= ⊥,
8. (q, aw, s, p) � (q′, w, s, p), if a ∈ Σd, q

′ ∈ δd(q, a, s[p]), and s[p] = ⊥.

As usual, we define the reflexive, transitive closure of � by �∗.
So, the pushing of a symbol onto the stack is described by Σc and δc, and the

popping of a symbol is described by Σr and δr. With the help of the mappings ϕ
and ϕ−1 it is possible to mark the new topmost symbol suitably. The internal
change of the state without altering the stack contents is described by Σi and
δi. We remark that δc and δi do not depend on the topmost stack symbol, but
only on the current state and input symbol. This is not a serious restriction since
every automaton can be modified in such a way that the topmost stack symbol
is additionally stored in the state set. In this context, the question may arise of
how a state can store the new topmost stack symbol in case of popping. This
can be solved by a similar construction as given in [12], where every pushdown
automaton is converted to an equivalent pushdown automaton such that every
stack symbol is a pair of stack symbols consisting of the symbol on the stack
and its immediate predecessor.

The moves inside the stack are described by Σd, δd and Σu, δu, respectively.
Up-moves at the top of the stack and down-moves at the bottom of the stack
can only change the state, but do not affect the position of the stack pointer.
So, the pointer can never go below the bottom and beyond the top of the stack.
To ensure the latter the topmost stack symbol is suitably marked. By definition,
transition functions δc and δr can only be applied if the stack pointer is at the
topmost stack symbol. Thus, we stipulate the following behavior: if δc or δr have
to be applied and the stack pointer is inside the stack, then the stack pointer
is set to the topmost symbol, and the new symbol is pushed onto the stack or
the topmost symbol is popped off the stack. The bottom-of-stack symbol ⊥ can
neither be pushed onto nor be popped from the stack.

The language accepted by a 1sNVSA is precisely the set of words w such that
there is some computation beginning with the initial configuration and ending
in a configuration in which the whole input is read and an accepting state is
entered:

L(M) = {w ∈ Σ∗ | (q0, w,⊥, 1) �∗ (q, λ, s, p) with q ∈ F,

s ∈ Γ ′Γ ∗⊥ ∪ {⊥}, and 1 ≤ p ≤ |s| }.

If in any case each δr, δc, δi, δu, and δd is either undefined or a singleton,
then the stack automaton is said to be deterministic. Strong deterministic stack
automata are denoted by 1sDVSA. In case that no symbol is ever popped from
the stack, that is, δr = ∅, the stack automaton is said to be non-erasing. Strong

32 S. Bensch et al.

nondeterministic and deterministic non-erasing stack automata are denoted by
1sNENVSA and 1sNEDVSA. The family of all languages accepted by an input-
driven stack automaton of some type X is denoted by L (X).

In order to clarify our notion we continue with an example.

Example 2. The non-context-free language { anbncn+1 | n ≥ 1 } is accepted
by the 1sNEDVSA M = 〈{q0, q1, q2, q3}, Σ, {A,⊥},⊥, q0, {q3}, δc, δr, δi, δu, δd〉,
where Σc = {a}, Σu = {c}, Σd = {b}, and Σr = Σi = ∅. The transition
functions δr and δi are undefined, and δc, δu, and δd are as follows.

(1) δc(q0, a) = (q0, A
′)

(2) δd(q0, b, A
′) = q1

(3) δd(q1, b, A) = q1

(4) δu(q1, c,⊥) = q2
(5) δu(q2, c, A) = q2
(6) δu(q2, c, A

′) = q3

Since δr is undefined,M is non-erasing. An input is accepted only ifM eventually
enters state q3. To this end, it must be in state q2. Similarly, to get into state q2
it must be in state q1, and the only possibility to change into state q1 is from q0.

If the input does not begin with an a, the computation blocks and rejects
immediately. So, any accepting computation starts with a sequence of tran-
sitions (1) reading a prefix of the form an, for n ≥ 1. This yields a con-
figuration (q0, w1, A

′An−1⊥, n + 1). Since for input symbol c no transition is
defined from q0, the remaining input w1 must have a prefix of the form bm, for
m ≥ 1. Therefore, M applies one transition (2) and, subsequently, tries to apply
m− 1 transitions (3). If m < n, this yields a configuration (q1, w2, A

′An−1⊥, p),
where 2 ≤ p ≤ n, and M blocks and rejects if an a or a c follows. Similarly,
if m > n, after reading bn a configuration (q1, w2, A

′An−1⊥, 1) is reached, on
which M blocks and rejects when trying to read the next b. Therefore, in any
accepting computation w1 must begin with exactly n copies of b. Since for in-
put symbol a no transition is defined from q1, the remaining input w2 must
have a prefix of the form c�, for � ≥ 1. Therefore, M applies one transition (4)
and, subsequently, applies transitions (5). If � < n, this yields a configuration
(q2, w3, A

′An−1⊥, p), where 2 ≤ p ≤ n, and M blocks and rejects if an a or a b
follows, and does not accept if the input has been consumed. If � ≥ n, a config-
uration (q2, w3, A

′An−1⊥, n + 1) is reached. Next, if � = n + 1 then M applies
transition (6) and accepts the input anbbcn+1. For � > n + 1 the computation
blocks. ��

Next, we introduce weak variants of input-driven stack automata, for which
moves inside the stack are not necessarily input-driven. To this end, we have
to extend the domain of δd and δu appropriately and to adapt the derivation
relation � accordingly. First we explain how to modify the transition functions
in the definition of input-driven stack automata, where items 11 and 12 are
changed to

11′. δd is the partial transition function mapping Q × Σ × (Γ ∪ Γ ′) into the
subsets of Q,

12′. δu is the partial transition function mapping Q × Σ × (Γ ∪ Γ ′) into the
subsets of Q.

Input-Driven Stack Automata 33

In the weak mode, the stack can only by entered by reading an input symbol
from Σd. Being inside the stack, the pointer may move up and down for any
input symbol. When the top of the stack is reached, the stack is left and any
new entering needs another input symbol from Σd. So, Σu is not necessary, but
we keep it for the sake of compatibility. For the weak mode, the relation � is
adapted by replacing items 5 to 8 by the following ones:

5′. (q, aw, s, p) � (q′, w, s, p+ 1), if a ∈ Σ, q′ ∈ δu(q, a, s[p]), and s[p] �∈ Γ ′,
6′. (q, aw, s, p) � (q′, w, s, p), if a ∈ Σu, q

′ ∈ δu(q, a, s[p]), and s[p] ∈ Γ ′,
7′a. (q, aw, s, p) � (q′, w, s, p − 1), if a ∈ Σd, q

′ ∈ δd(q, a, s[p]), s[p] ∈ Γ ′, and
s[p] �= ⊥,

7′b. (q, aw, s, p) � (q′, w, s, p − 1), if a ∈ Σ, q′ ∈ δd(q, a, s[p]), s[p] ∈ Γ , and
s[p] �= ⊥,

8′a. (q, aw, s, p) � (q′, w, s, p), if |s| = 1, a ∈ Σd, q
′ ∈ δd(q, a, s[p]), and s[p] = ⊥.

8′b. (q, aw, s, p) � (q′, w, s, p), if |s| ≥ 2, a ∈ Σ, q′ ∈ δd(q, a, s[p]), and s[p] = ⊥.

If for every q ∈ Q, a ∈ Σ, and Z ∈ Γ ′ ∪ Γ each of the three sums |δr(q, a, Z)|+
|δu(q, a, Z)|+ |δd(q, a, Z)|, |δc(q, a)|+ |δu(q, a, Z)|+ |δd(q, a, Z)|, and |δi(q, a)|+
|δu(q, a, Z)|+|δd(q, a, Z)| is at most one, then the weak stack automaton is said to
be deterministic. Weak deterministic stack automata are denoted by 1wDVSA.
Moreover, weak nondeterministic and deterministic non-erasing stack automata
are denoted by 1wNENVSA and 1wNEDVSA, respectively.

3 Computational Capacity

We investigate the computational capacity of input-driven stack automata work-
ing in strong and weak mode, and prove that these machines induce a strict hier-
archy of language families with respect to the following three features: (i) strong
and weak mode, (ii) determinism and nondeterminism, and (iii) non-erasing and
erasing stack. First we consider deterministic machines and compare weak non-
erasing mode with strong erasing mode.

Lemma 3. L1 = { anban−1c | n ≥ 1 } ∈ L (1wNEDVSA) \L (1sDVSA).

Proof. The main idea for a 1wNEDVSA accepting L1 is to push some symbol on
the stack for every input symbol a. When the b appears in the input the stack
pointer is moved one position down, that is, to position n. At the same time
a certain state is entered which ensures that the stack pointer moves down for
subsequent symbols a. In this way, the pointer reaches the bottom of the stack
after reading an−1. If in this situation a c follows, the input is accepted with an
up move, otherwise the input is rejected. Clearly, the automaton constructed is
deterministic and non-erasing.

To show that L1 �∈ L (1sDVSA), we assume in contrast to the assertion
that L1 is accepted by a 1sDVSA M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉. Sup-
pose that a �∈ Σc. Since the stack is initially empty up to ⊥, any application

34 S. Bensch et al.

of δi, δu, δd, or δr can only alter the current state. Therefore, there are two
sufficiently large natural numbers n1 �= n2 and a state q ∈ Q, so that

(q0, a
n1ban1−1c,⊥, 1) �∗ (q, ban1−1c,⊥, 1) �∗ (f1, λ, s1, p1)

and
(q0, a

n2ban2−1c,⊥, 1) �∗ (q, ban2−1c,⊥, 1) �∗ (f2, λ, s2, p2),

for f1, f2 ∈ F , s1, s2 ∈ Γ ′Γ ∗⊥∪{⊥}, and 1 ≤ pi ≤ |si|, for i = 1, 2. This implies

(q0, a
n1ban2−1c,⊥, 1) �∗ (q, ban2−1c,⊥, 1) �∗ (f2, λ, s2, p2)

and, thus, an1ban2−1c ∈ L1, which is a contradiction.
Now suppose that a ∈ Σc. Then for every symbol a, some stack symbol is

pushed onto the stack. Since Q is finite, the sequence of states passed through
while reading a large number of a’s is eventually periodic. Therefore, the sequence
of symbols pushed onto the the stack is also eventually periodic. Say, it is of the
form uv∗w, where u is a suffix of v, v ∈ Γ+, w ∈ Γ ∗⊥, and |w|, |v| ≤ |Q|.
Therefore, there are two sufficiently large natural numbers n1 �= n2, a state
q ∈ Q, strings u, v, w, where u is a suffix of v, v ∈ Γ+, w ∈ Γ ∗⊥, and natural
numbers k2 > k1 > 0 so that

(q0, a
n1ban1−1c,⊥, 1) �∗ (q, ban1−1c, ϕ(u)vk1w, n1 + 1) �∗ (f1, λ, s1, p1)

and
(q0, a

n2ban2−1c,⊥, 1) �∗ (q, ban2−1c, ϕ(u)vk2w, n2 + 1) �∗ (f2, λ, s2, p2)

for f1, f2 ∈ F , s1, s2 ∈ Γ ′Γ ∗⊥, and 1 ≤ pi ≤ |si| for i = 1, 2. Since the input
symbol b forces M to push or to pop a symbol, or to leave the stack as it is, the
stack is decreased by at most one symbol when the b is read. The subsequent
input symbols a increase the stack again. So, the bottommost n1 (n2) stack
symbols are not touched again. Since ϕ(u)vk1w and ϕ(u)vk2w have a common
prefix of length at most 2, we derive

(q0, a
n1ban2−1c,⊥, 1) �∗ (q, ban2−1c, ϕ(u)vk1w, n1 + 1) �∗ (f2, λ, s3, p3)

for some s3 ∈ Γ ′Γ ∗⊥ and p3 = |s3|. This implies that an1ban2−1c ∈ L1 which is
a contradiction and, hence, L1 �∈ L (1sDVSA). ��

Now we turn to show how input-driven stack automata languages are related to
some important context-free language families. Let CFL refer to the family of
context-free languages. Then Example 2 shows the following result.

Lemma 4. L2 = { anbncn+1 | n ≥ 1 } ∈ L (1sNEDVSA) \ CFL. ��

The next lemma proves a converse relation, namely that a deterministic and
linear context-free language is not accepted by any deterministic weak input-
driven stack automaton. Let DCFL refer to the family of deterministic context-
free and LIN to the family of linear context-free languages, which are both strict
sub-families of CFL.

Input-Driven Stack Automata 35

Lemma 5. Let L3 = { anbmabman | n,m ≥ 1 } ∪ { bnan | n ≥ 1 }. Then,
L3 ∈ (DCFL ∩ LIN) \L (1wDVSA).

Proof. Clearly, L3 belongs to DCFL ∩ LIN. Now assume that L3 is accepted by
some 1wDVSA M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉. Similarly as in the proof
of Lemma 3, we conclude a ∈ Σc and b ∈ Σc, since otherwise the words from L3

of the form b+a+ could not be accepted. Thus, every input from {a, b}+ forcesM
to only push symbols onto the stack. Continuing similar as in the second part of
the proof of Lemma 3 shows that then words not belonging to L3 are accepted.
This contradiction shows the lemma. ��

For the proof of the following lemma that compares deterministic weak and
strong input-driven stack automata (conversely to Lemma 3), we use an incom-
pressibility argument. General information on Kolmogorov complexity and the
incompressibility method can be found in [14]. Let w ∈ {0, 1}+ be an arbi-
trary binary string of length n. Then the plain Kolmogorov complexity C(w|n)
of w denotes the minimal size of a program that knows n and describes w. It
is well known that there exist binary strings w of arbitrary length n such that
C(w|n) ≥ n (see [14], Theorem 2.2.1). Similarly, for any natural number n, C(n)
denotes the minimal size of a program that describes n. It is known that there
exist infinitely many natural numbers n such that C(n) ≥ log(n).

Lemma 6. Let ˆ : {0, 1}∗ → {0̂, 1̂}∗ be the homomorphism that maps 0 to 0̂
and 1 to 1̂. L4 = { an+mbmwŵRbn | m,n ≥ 1, w ∈ {0, 1}+ } ∪ { anbn | n ≥ 1 } ∈
L (1sDVSA) \L (1wNEDVSA).

Proof. The rough idea of a 1sDVSA M for L4 is to push a symbol A onto the
stack for every input symbol a, and to pop symbol A from the stack for every
input symbol b read. In order to check the infix wŵR, M pushes a Z for every 0
and an O for every 1 while reading w. Subsequently, it pops a Z for every 0̂ and
an O for every 1̂ while reading ŵ. If eventually the stack is empty up to ⊥, the
input is to be accepted and otherwise rejected. The concrete construction on M
is straightforward except for one detail. The machine must be able to recognize
when the stack is empty. To be more precise, it must know when the stack
pointer is moved at the bottom-of-stack symbol even if there are no more moves,
as for accepting computations. In order to implement this detail, M marks the
first symbol on the stack. When this symbol is popped again, M knows that the
stack is empty even without reading ⊥.

Next, we show that L4 �∈ L (1wNEDVSA). Contrarily, assume that L4 is
accepted by a 1wNEDVSA M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉. Similar as in
the proof of Lemma 3, we conclude that a ∈ Σc. Moreover, since { anbn | n ≥ 1 }
is a subset of L4, we conclude that b ∈ Σd. Otherwise, b ∈ Σc or b ∈ Σi

which leads to a contradiction as shown before. Now we consider an accepting
computation K on an input of the form z = an+mbmwŵRbn, for w ∈ {0, 1}+,
n ≥ 2, k = �log(n)�, and m = 22

k − n. We distinguish two cases.

1. First, we assume that inK nothing is pushed onto the stack while reading the
infix w, and consider the configuration c = (q, ŵRbn, s, p) with s ∈ Γ ′Γ ∗⊥

36 S. Bensch et al.

and 1 ≤ p ≤ |s| after reading an+mbmw. We claim that the knowledge of M ,
n, m, |w|, q, and p suffices to write a program that outputs w. This is seen
as follows.
Since n and m are known, the stack contents s can be computed by simulat-
ing M on input an+m. Furthermore, due to our assumption that nothing is
pushed while reading w, and since q and the pointer position p are known, it
is possible to simulateM starting with a situation as configuration c but with
arbitrary input. This is done successively on all inputs v̂bn with |v̂| = |w|.
If v̂ = ŵR, then the simulation ends accepting. On the other hand, if the
simulation is accepting, then v̂ = ŵR, since otherwise an+mbmwv̂bn with
v̂ �= ŵR would belong to L4 which is a contradiction. This suffices to iden-
tify and output w. The size of the program is a constant for the code itself
plus the sizes of M , n, m, |w|, q, and p. The size of M and, thus, of q is
also a constant, while p ≤ n + m. So, the size of the program is of order
O(log(n) + log(m) + log(n +m) + log(|w|)). Fixing n and m and choosing
|w| large enough, we obtain C(w||w|) ∈ o(|w|) which is a contradiction to
the above-cited result that there exist binary strings w of arbitrary length
such that C(w||w|) ≥ |w|.

2. Second, we assume that in K something is pushed onto the stack while
reading the infix w, and consider the configuration c = (q, x, s, |s|) with
s ∈ Γ ′Γ ∗⊥ and x ∈ {0, 1}∗{0̂, 1̂}+b+ is the remaining input when the first
symbol has been pushed onto the stack while reading w. We claim that the
knowledge of M , k, |w|, the length � of the prefix w′ of w which has been
already read, q, and the last symbol B pushed suffices to write a program
that outputs n.

The stack height |s| is m+ n+ 1 = 22
k

+ 1. Therefore, the stack contents s
can be computed by simulating M on input a|s|−1 using solely the knowledge
of k, and adding B on the top. Next the simulation of M beginning in state q
while having the stack pointer on the top of the stack contents s is started
successively on all inputs uv̂bi with u ∈ {0, 1}∗, |u| = |w| − �, |v̂| = |w|, and
1 ≤ i ≤ 22

k

. If w′uv̂ = wŵR and i = n, then the simulation ends accepting.
On the other hand, if the simulation is accepting, then w′uv̂ = wŵR and
i = n. This suffices to identify and output n. Again, the size of the program
is a constant for the code itself plus the sizes of M , k, |w|, �, q, and |Γ |. The
size of M and, thus, of q and |Γ | is also a constant, while � ≤ |w|. So, the size
of the program is of order O(log(k) + log(|w|)) = O(log(log(n)) + log(|w|)).
Fixing w and choosing n large enough, we obtain C(n) ∈ o(log(n)) which is
a contradiction since there are infinitely many natural numbers n such that
C(n) ≥ log(n).

This proves the lemma. ��

With the help of the previous four lemmata we can show the following strict
inclusion relations and incomparability results.

Theorem 7. All inclusions shown in Figure 1 are strict. Moreover, language
families that are not linked by a path are pairwise incomparable.

Input-Driven Stack Automata 37

L (1wDVSA) L (1wNEDVSA)

CFL L (1sDVSA) L (1sNEDVSA)

L (VPDA)

Fig. 1. Inclusion structure of deterministic language families. The arrows indicate strict
inclusions. All families not linked by a path are pairwise incomparable.

Proof. The inclusions of the language families induced by the input-driven stack
automata are clear by definition. Moreover, L (VPDA) ⊆ CFL is immediate and
L (VPDA) ⊆ L (1sDVSA) follows since every visibly (deterministic) pushdown
automaton is also a deterministic strong input-driven stack automaton (that is
not allowed to read the internal contents of the stack). First, we show that these
inclusions are strict. The strictness of the inclusion L (1sDVSA) ⊆ L (1wDVSA)
as well as the inclusion L (1sNEDVSA) ⊆ L (1wNEDVSA) is ensured by lan-
guage L1 of Lemma 3. Furthermore, a language similar to L1 was used in [1]
to show that the inclusion L (VPDA) ⊆ CFL is proper. Finally, the strict-
ness of both inclusions L (1sNEDVSA) ⊆ L (1sDVSA) and L (1wNEDVSA) ⊆
L (1wDVSA) follows by language L4 of Lemma 6. Next, we show the incompa-
rability results. The languages L2 and L3 from Lemmata 4 and 5 imply the
incomparability of CFL with the all language families of deterministic vari-
ants of input-driven stack automata, namely L (1sNEDVSA), L (1wNEDVSA),
L (1sDVSA), and L (1wDVSA). The incomparability of L (VPDA) with both
language families L (1sNEDVSA) and L (1wNEDVSA) follows by the
languages L2 from Lemma 4 and L4 from Lemma 6, and the obvious fact that L4

is a visibly pushdown language. Finally, L (1sDVSA) and L (1wNEDVSA) are
incomparable due to the languages L1 and L4 from Lemmata 3 and 6. This
proves the stated claim. ��

In the remainder of this section we investigate the relation between deterministic
and nondeterministic input-driven stack automata. To this end consider the
language L5 = T1 ∪ T2 ∪ T ′

1 ∪ T ′
2 ∪ T3 ∪ T4 with

T1 = { andn1un+1
1 | n ≥ 1 }

T2 = { andn2un+1
2 | n ≥ 1 }

T ′
1 = { anum

1 dn1u
n+1
1 | m,n ≥ 1 }

T ′
2 = { anum

2 dn2u
n+1
2 | m,n ≥ 1 }

T3 = { andn+1
1 | n ≥ 1 }

and
T4 = { an+mdm1 dn2u

n+1
2 um

1 wŵRdm1 dn+1
2 | m,n ≥ 1, w ∈ {0, 1}+ },

38 S. Bensch et al.

where ˆ is the mapping introduced in Lemma 6. Then we can prove the following
result, which allows us to categorize the different symbols used in the definition
of language L5.

Lemma 8. Let M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉 be a 1wDVSA.

1. If T1 is accepted by M , then d1 �∈ Σc ∪Σr.
2. If T2 is accepted by M , then d2 �∈ Σc ∪Σr.
3. If T ′

1 is accepted by M , then u1 �∈ Σc ∪Σr.
4. If T ′

2 is accepted by M , then u2 �∈ Σc ∪Σr.

Proof. We only prove the first claim. The other claims can be shown by similar
arguments. So assume that T1 is accepted by M . In order to show d1 �∈ Σc ∪Σr,
we assume in contrast to the assertion that d1 is in Σc orΣr. Thus, we distinguish
two cases—note that we make no assumption on the containment of the letter a
within the sub-alphabets that come from the partition of Σ:

1. Assume that d1 ∈ Σr. Note that after reading the word andn1 the stack
of M is empty up to the bottom of stack symbol ⊥. This is due to the fact,
that M is deterministic and d1 ∈ Σr. Since Q is finite, there are two distinct
sufficiently large numbers n1 �= n2 and a state q ∈ Q, such that

(q0, a
n1dn1

1 un1+1
1 ,⊥, 1) �∗ (q, un1+1

1 ,⊥, 1) �∗ (f1, λ, s1, p1)

and
(q0, a

n2dn2
1 un2+1

1 ,⊥, 1) �∗ (q, un2+1
1 ,⊥, 1) �∗ (f2, λ, s2, p2),

for f1, f2 ∈ F , s1, s2 ∈ Γ ′Γ ∗⊥ ∪ {⊥}, and 1 ≤ pi ≤ |si|, for i = 1, 2. This
implies

(q0, a
n1dn1

1 un2+1
1 ,⊥, 1) �∗ (q, un2+1

1 ,⊥, 1) �∗ (f2, λ, s2, p2)

and, thus, an1dn1
1 un2+1

1 ∈ T1, which is a contradiction.
2. Now suppose that d1 ∈ Σc. Then we argue as follows. Since M is deter-

ministic and d1 ∈ Σc, we know that the stack height is at least n + 1 after
reading word andn1 and the stack pointer is on the topmost symbol. Then
further reading of un+1

1 —here we make no assumption on letter u1 and its
containment in Σc Σr, Σi, Σu, or Σd—may only touch the topmost n + 1
symbols of the stack. Since Q and Γ are finite we find two sufficiently large
numbers n1 �= n2, a state q ∈ Q and a stack symbol Z ∈ Γ , such that

(q0, a
n1dn1

1 un1+1
1 ,⊥, 1) �∗ (q, dn1

1 un1+1
1 , Z ′γ1, |γ1|+ 1) �∗ (f1, λ, s1, p1)

and
(q0, a

n2dn2

1 un2+1
1 ,⊥, 1) �∗ (q, dn2

1 un2+1
1 , Z ′γ2, |γ2|+ 1) �∗ (f2, λ, s2, p2),

for γi = λ, if Z = ⊥, and γi ∈ Γ ∗⊥, if Z �= ⊥, for i = 1, 2, and f1, f2 ∈ F ,
s1, s2 ∈ Γ ′Γ ∗⊥ ∪ {⊥}, and 1 ≤ pi ≤ |si|, for i = 1, 2. Since both topmost
stack symbols after processing an1 and an2 , respectively, are identical, and

Input-Driven Stack Automata 39

the stack contents below that particular symbol is never touched while pro-
cessing the remaining part dn1

1 un1+1
1 and dn2

1 un2+1
1 , respectively, we obtain

the accepting computation

(q0, a
n1dn2

1 un2+1
1 ,⊥, 1) �∗ (q, dn2

1 un2+1
1 , Z ′γ1, |γ1|+ 1) �∗ (f2, λ, s3, p3),

for some s3 ∈ Γ ′Γ ∗⊥∪{⊥} with |s3| ≥ |γ1|, and p3 ≥ |γ1|. This implies that
the word an1dn2

1 un2+1
1 ∈ T1, which is a contradiction. ��

Next we need some notation. Let Σc, Σr, Σi, Σu, and Σd be a partitioning of Σ.
Then we say that a partitioning Σ′

c, Σ
′
r, Σ

′
i, Σ

′
u, and Σ′

d of Σ′ ⊆ Σ is compatible
with the partitioning of Σ, if Σ′

c ⊆ Σc, Σ
′
r ⊆ Σr, Σ

′
i ⊆ Σi, Σ

′
u ⊆ Σu, and

Σ′
d ⊆ Σd. Then the next lemma, which can be shown by an easy adaptation of

the well-known Cartesian product construction for pushdown automata, reads
as follows:

Lemma 9. Let M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉 be a 1wDVSA (1sDVSA)
and R ⊆ Σ∗ be a regular language. Then the language L(M) ∩R is accepted by
a 1wDVSA (1sDVSA) with a compatible partitioning of the alphabet Σ. ��

Now we are ready to show that there exists a language that belongs to the
class induced by the most restricted form of nondeterministic input-driven au-
tomata, namely 1sNENVSA, but is not a member of the larger deterministic
class 1wDVSA.

Lemma 10. L5 ∈ L (1sNENVSA) \L (1wDVSA).

Proof. The idea for a 1sNENVSA accepting L5 is first to guess whether the
input belongs to T1, T2, T

′
1, T

′
2, T3, or T4. The construction to accept inputs

from T1, T2, T
′
1, T

′
2, and T3 is similar to the construction in Lemma 4. In the

constructions for T ′
1 and T ′

2 we observe that u1 and u2 belong to Σu. Since the
stack pointer is on the top after reading an, the processing of u1 and u2 only
affects the current state, but not the stack or the position of the stack pointer.
The construction to accept T4 is as follows. While reading a’s some symbol A
is pushed onto the stack up to some moment in which it is nondeterministically
decided to push some different symbol B onto the stack for every remaining input
symbol a. Then, while reading d1’s and seeing B’s the stack pointer moves down
and continues moving down while reading d2’s and seeing A’s. If the bottom of
the stack is reached, the stack pointer moves up while reading u2’s and seeing
A’s and continues moving up, while reading u1’s and seeing B’s on the stack.
If the top of the stack is reached, the processing of the infix wŵR is done in a
similar way as in the proof of Lemma 6. The only difference is that symbols from
{0̂, 1̂} now ensure that the stack pointer moves down instead of popping off the
topmost symbol. If the first B of the stack is again reached, the stack pointer
continues moving down while reading d1’s and seeing B’s and continues to move
down while reading d2’s and seeing A’s. The input is accepted if the bottom
of the stack is eventually reached and rejected otherwise. We observe from the

40 S. Bensch et al.

constructions that a, 0, 1 ∈ Σc, d1, d2, 0̂, 1̂ ∈ Σd, and u1, u2 ∈ Σu. Thus, the
automaton constructed is non-erasing and works in the strong mode.

Next, we show by way of contradiction that L5 �∈ L (1wDVSA). Assume
that L5 is accepted by a 1wDVSA M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉. Simi-
lar as in the proof of Lemma 3, we conclude that a ∈ Σc. Now, we assume that
d1 ∈ Σc∪Σr. Due to Lemma 9 with R = a+d+1 u

+
1 we obtain that T1 is accepted

by some 1wDVSA having d1 ∈ Σc ∪ Σr. This is a contradiction to Lemma 8.
Thus, d1 �∈ Σc ∪ Σr. Similarly, it can be shown that also d2, u1, u2 �∈ Σc ∪ Σr.
Finally, we claim that d1 ∈ Σd. Otherwise, due to Lemma 9 with R = a+d+1 ,
language T3 would be accepted by some 1wDVSA having d1 ∈ Σi ∪Σu which is
a contradiction.

The rest of the proof is similar to the proof of Lemma 6 and we leave out
some details here. We consider an accepting computation K on an input of the
form z = an+mdm1 dn2u

n+1
2 um

1 wŵRdm1 dn2 , for w ∈ {0, 1}+, n ≥ 2, k = �log(n))�,
and m = 22

k − n. Due to the above considerations, we know that nothing is
pushed onto or popped off the stack while reading the infix dm1 dn2u

n+1
2 um

1 . We
distinguish now two cases.

1. First, we assume that nothing is pushed onto or popped off the stack while
reading the infix w, and consider the configuration c = (q, ŵRdm1 dn2 , s, p)
with s ∈ Γ ′Γ ∗⊥ and 1 ≤ p ≤ |s| after reading an+mdm1 dn2u

n+1
2 um

1 w. Then,
the knowledge of M,n,m, |w|, q, and p is sufficient to write a program that
outputs w. The size of this program is bounded by O(log(n) + log(m) +
log(n + m) + log(|w|)). Hence, C(w||w|) ∈ o(|w|) which is a contradiction
for |w| large enough.

2. Second, we assume that something is pushed onto or popped off the stack
while reading the infix w. We consider the configuration c = (q, x, s, |s|)
with s ∈ Γ ′Γ ∗⊥ and x ∈ {0, 1}∗{0̂, 1̂}+d+1 d+2 being the remaining input
when the first symbol has been pushed onto or popped off the stack while
reading w. Again, the knowledge of M , k, |w|, the length � of the prefix
w′ of w which has been already read, q, and the last pushed or popped
symbol B ∈ Γ ′ is sufficient to write a program that outputs n. The size of
this program is bounded by O(log(k)+log(|w|)) = O(log(log(n))+log(|w|)).
Thus, C(n) ∈ o(log(n)) which is a contradiction since there are infinitely
natural numbers n such that C(n) ≥ log(n).

Hence, there cannot be any 1wDVSA that accepts the language L5. ��
As an immediate corollary of the previous lemma we obtain the following strict
inclusions.

Corollary 11. 1. L (1sNEDVSA) ⊂ L (1sNENVSA).
2. L (1sDVSA) ⊂ L (1sNVSA).
3. L (1wNEDVSA) ⊂ L (1wNENVSA).
4. L (1wDVSA) ⊂ L (1wNVSA). ��
These strict inclusions show a large difference between input-driven pushdown
automata languages or equivalently visibly pushdown languages, where deter-
minism coincides with nondeterminism on the underlying automaton model. For

Input-Driven Stack Automata 41

input-driven stack automata, even for the most restrictive version, the strong
machines, nondeterminism is more powerful than determinism. These strictness
results are also reflected in the forthcoming result on the complexity of the
fixed membership problem. Since the family of languages accepted by ordinary
deterministic stack automata belongs to deterministic polynomial time P [13]
it follows that this is also true for every language family induced by a deter-
ministic input-driven stack automaton, regardless whether we have a strong or
weak machine, or whether the device is non-erasing or not. On the other hand,
when changing from ordinary deterministic stack automata to nondeterministic
ones, we obtain an NP-complete language family [11,19]. This is also the case for
the nondeterministic versions of input-driven stack automata, even for strong
non-erasing machines, which is shown next.

Theorem 12. Each of the language families L (1sNENVSA), L (1sNVSA),
L (1wNENVSA), and L (1wNVSA) has an NP-complete fixed membership
problem.

Proof. The containment in NP follows immediately from the fact that ordinary
nondeterministic stack automata have an NP-complete fixed membership prob-
lem [11,19]. It remains to show NP-hardness. To this end, it suffices to show
that the (with respect to set inclusion) smallest language family L (1sNENVSA)
has an NP-hard membership problem. We reduce the well-known NP-complete
3SAT problem [7] to the problem under consideration. We encode a Boolean
formula F = c1 ∧ c2 ∧ · · · ∧ cm with variables X = {x1, x2, . . . , xn}, where
each clause ci with 1 ≤ i ≤ m is a disjunction of three literals, by a word
〈F 〉 ∈ 1n({0,+,−}∗#∗$)∗. The prefix encodes the number of input variables.
Then each clause ci, for 1 ≤ i ≤ m, of the formula F is encoded by a word wci

in {0,+,−}n#n, where at position j, for 1 ≤ j ≤ n, there is a 0 (+, −), if the
variable xj does not appear (positively appears, negatively appears) in ci. These
words are separated by $-symbols and are placed in sequence. Then the language

L = { 〈F 〉 | F is a Boolean formula that evaluates to 1 }

is NP-hard. We informally describe how a 1wNENVSA automaton M accepts L.
Set Σc = {1}, Σr = ∅, Σi = {$}, Σu = {#}, and Σd = {0,+,−}. On prefix 1n

the automaton pushes either the symbol 0 or 1. In this way, the automaton
guesses an assignment to the n variables of the formula. Then the sequence
that encodes a clause is used to read into the stack in order to determine the
assignments of the involved variables. In passing the automaton checks whether
this clause evaluates to 1. Then the block of # symbols is used to reset the stack
pointer to the top of the stack, and after reading $ the checking procedure for
the next clause is restarted. If all clauses evaluate to 1, the whole encoding is
accepted, otherwise it is rejected. It is easy to see that the automaton is non-
erasing. This shows that already the language family L (1sNENVSA) contains
an NP-hard language. ��

42 S. Bensch et al.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56, Article
16 (2009)

2. von Braunmühl, B., Verbeek, R.: Input-driven Languages are Recognized in log n
Space. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 40–51. Springer,
Heidelberg (1983)

3. Chervet, P., Walukiewicz, I.: Minimizing Variants of Visibly Pushdown Automata.
In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 135–146.
Springer, Heidelberg (2007)

4. Chomsky, N.: Formal Properties of Grammars. In: Handbook of Mathematic Psy-
chology, vol. 2, pp. 323–418. Wiley & Sons (1962)

5. Crespi Reghizzi, S., Mandrioli, D.: Operator Precedence and the Visibly Pushdown
Property. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS,
vol. 6031, pp. 214–226. Springer, Heidelberg (2010)

6. Dymond, P.W.: Input-driven languages are in log n depth. Inform. Process.
Lett. 26, 247–250 (1988)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. Freeman (1979)

8. Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages.
North-Holland (1975)

9. Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM 14,
389–418 (1967)

10. Han, Y.S., Salomaa, K.: Nondeterministic state complexity of nested word au-
tomata. Theoret. Comput. Sci. 410, 2961–2971 (2009)

11. Hunt, H.: On the complexity of finite, pushdown and stack automata. Math. Sys-
tems Theory 10, 33–52 (1976)

12. Kutrib, M., Malcher, A.: Reversible Pushdown Automata. In: Dediu, A.-H., Fernau,
H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 368–379. Springer,
Heidelberg (2010)

13. Lange, K.J.: A note on the P-completeness of deterministic one-way stack lan-
guages. J. Univ. Comput. Sci. 16, 795–799 (2010)

14. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applica-
tions. Springer (1993)

15. Mehlhorn, K.: Pebbling Mountain Ranges and Its Application of DCFL-
recongnition. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS,
vol. 85, pp. 422–435. Springer, Heidelberg (1980)

16. Okhotin, A., Salomaa, K.: State Complexity of Operations on Input-Driven Push-
down Automata. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907,
pp. 485–496. Springer, Heidelberg (2011)

17. Piao, X., Salomaa, K.: Operational state complexity of nested word automata.
Theoret. Comput. Sci. 410, 3290–3302 (2009)

18. Salomaa, A.: Formal Languages. ACM Monograph Series. Academic Press (1973)
19. Shamir, E., Beeri, C.: Checking Stacks and Context-free Programmed Grammars

Accept P-complete Languages. In: Loeckx, J. (ed.) ICALP 1974. LNCS, vol. 14,
pp. 27–33. Springer, Heidelberg (1974)

20. Sudborough, I.H.: On the tape complexity of deterministic context-free languages.
J. ACM 25, 405–414 (1978)

Probabilistic Inference

and Monadic Second Order Logic

Marijke Hans L. Bodlaender

P.O. Box 80.089, Department of Computing Sciences, Utrecht University,
The Netherlands

h.l.bodlaender@uu.nl

Abstract. This paper combines two classic results from two different
fields: the result by Lauritzen and Spiegelhalter [21] that the probabilis-
tic inference problem on probabilistic networks can be solved in linear
time on networks with a moralization of bounded treewidth, and the
result by Courcelle [10] that problems that can be formulated in count-
ing monadic second order logic can be solved in linear time on graphs of
bounded treewidth. It is shown that, given a probabilistic network whose
moralization has bounded treewidth and a property P of the network and
the values of the variables that can be formulated in counting monadic
second order logic, one can determine in linear time the probability that
P holds.

1 Introduction

This paper combines two classic results from two different fields from computer
science: the result by Lauritzen and Spiegelhalter [21] that the probabilistic infer-
ence problem can be solved in linear time for probabilistic network whose moral
graph has treewidth bounded by some constant, and the result by Courcelle [10]
that problems that can be formulated in counting monadic second order logic
can be solved in linear time on graphs of bounded treewidth.

Probabilistic networks (also called Bayesian networks or belief networks) are
the underlying technology of several modern decision support systems. See for
more background, e.g., [16,22]. A probabilistic network consists of a directed
acyclic graph, and for each vertex in the graph a table of conditional probabili-
ties. Each vertex in the graph represents a statistical variable, which can assume
one of a fixed number of values; the table for a vertex gives the probability dis-
tribution for the values for that vertex, conditional on the values of the parents
of the vertex.

Probabilistic networks are a topic of intense study. A central problem for
probabilistic networks is the inference problem. One of the most commonly used
algorithm to solve this problem is the clique tree propagation algorithm of Lau-
ritzen and Spiegelhalter [21]. It consists of the following steps: first the moral
graph or moralization is formed from the probabilistic network. (See Section 2
for the definition of moral graph.) To this moral graph, edges are added such
that a triangulated (or chordal) graph is formed. To a triangulated graph G, one

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 43–56, 2012.
c© IFIP International Federation for Information Processing 2012

44 M.H.L. Bodlaender

can associate a clique tree: a tree with every tree node associated to a unique
maximal clique in G, with the additional property that for each node of the
graph, the cliques to which it belong form a connected subtree of the tree. The
clique tree can be used to solve the inference problem, with the time exponential
in the sizes of the cliques, but linear when these sizes are bounded by a con-
stant. An alternative way of describing the algorithm of [21] is by means of tree
decompositions. Doing so, we have an algorithm for the probabilistic inference
problem that is linear in the number of variables, but exponential in the width
of the tree decomposition, in other words: the problem is linear time solvable
when the moral graph has its treewidth bounded by a constant.

There are many other problems with the property that they are intractable
(e.g., NP-hard) for general graphs, but become linear time solvable on graphs
with bounded treewidth. A very powerful characterization of a class of such
problems is by [10] by the notion ofMonadic Second Order Logic, or extensions of
this notion. In this paper, we use the notion of Counting Monadic Second Order
Logicand the notion of regularity. The result of Courcelle has been extended a
number of times (e.g., [1,8,12], see also [9].)

In this paper, we show that the results by Lauritzen and Spiegelhalter and
by Courcelle can be combined. Suppose we have a probabilistic network whose
moral graph has bounded treewidth. We can state some property of the network
and of the values of the variables. Our result shows that if the property can be
formulated in a language called (Counting) Monadic Second Order Logic, then
we can compute the probability that it holds in linear time; i.e., to compute such
a probability is fixed parameter tractable when parameterized by treewidth. (The
result can also be seen as a variant of results shown by Courcelle and Mosbah
[12].) Examples of such CMSOL properties are: do the variables that are true
form a connected subgraph of the network, does no directed path in the network
have all its variables alternatingly true and false along the path, are there an odd
number of variables true, is the subgraph of the network induced by the false
variables 3-colorable? It includes many properties that are NP-hard to check for
arbitrary networks.

In Section 2, we give some preliminary results and definitions, including a
hypergraph model that can be used instead of moral graphs. In Section 3, we
sketch the proof of the main result. Some variants, extensions, and applications
are discussed in Section 4. Some conclusions are given in Section 5.

2 Preliminaries

2.1 Probabilistic Networks and the Inference Problem

To ease descriptions, we assume all variables in the probabilistic networks that
are dealt with to be binary (boolean). Notations in the paper sometimes follow
conventions from algorithmic graph theory, and sometimes follow conventions
from probabilistic networks theory.

For a set S, a configuration on S is a function S → {true, false}. We denote
the set of all configurations on S as C(S). A configuration on a set S is often

Probabilistic Inference and Monadic Second Order Logic 45

denoted as xS ; when S is a single vertex v, we write xv for x{v}. x∅ denotes the
unique configuration on the empty domain.

For sets S and S’ and configurations xS ∈ C(S) and xS′ ∈ C(S′), we say that
xS agrees with xS′ , notated xS ∼ xS′ , if for all v ∈ S ∩ S′ : xS(v) = xS′(v).
Given a configuration xS ∈ C(S) and a subset S′ ⊆ S, we write xS(S

′) for the
configuration on S′ that is a restriction of xS to the smaller domain: xS(S

′) ∈
C(S′) with xS(S

′) ∼ xS .
Given a directed graph G = (V,A) with a vertex v ∈ V , par(v) denotes the

set of vertices that have an arc to v: par(v) = {w ∈ V | ∃(w, v) ∈ A}. par(v) is
called the set of parents of v.

Let G = (V,A) be a directed graph. The moral graphof G is the undirected
graph, obtained by adding an edge between each pair of different vertices that
are parents of the same vertex, and then dropping all directions of arcs, i.e., the
graph (V, {{v, w} | (v, w) ∈ A ∨ (w, v) ∈ A ∨ ∃x ∈ V : v, w ∈ par(x)}. (The
process of obtaining the moral graph of a directed graph is called moralization.
The term, frequently used in probabilistic network research, comes from the
notion to ’marry the parents’.)

A probabilistic network is a pair (G, κ), with G = (V,A) a directed acyclic
graph, and κ a set of functions, as follows. For each v ∈ V , we have a function
κv : C({v})× C(par(v))→ [0, 1].

κv is meant to describe the conditional probability distribution for v, here
conditional on the values of the parents of v, i.e., for configurations xv, xpar(v),
κv(xv, xpar(v)) should give the value Pr(xv |xpar(v)).

G and κ together define a joint probability distribution on the set of proba-
bilistic variables V in the following way.

A full configuration of a probabilistic network (G, κ), G = (V,A) is a config-
uration xV ∈ CV on the set V of all vertices in G.

For each full configuration, define the probability of the configuration as the
product of the conditional probabilities over all vertices, as follows. Assume
xV ∈ C(V).

Pr(xV) =
∏
v∈V

κv(xV ({v}), xV (par(v))) (1)

Throughout this paper, we write xV as the stochastic variable, that selects one
full configuration with the distribution as given by (1) for the considered prob-
abilistic network (G, κ).

For each configuration, its probability now is the sum of the probabilities of
all full configurations that agree with it. Assume xW ∈ C(W), W ⊆ V .

Pr(xW) =
∑

xV ∈C(V), xV ∼xW

Pr(xV) (2)

In applications of probabilistic networks, one generally desires to know the prob-
ability that a variable has a certain value, conditional to given values for some
other variables. For instance, in a network, modeling a medical application, one
may want to know if a patient has a certain disease, given some symptoms.
The given values of variables are called the observations. The set of observed

46 M.H.L. Bodlaender

variables is denoted by O, and the observed configuration is denoted xO. The
probabilistic inference problem is to compute the conditional probability
Pr(xv | xO), for a variable v ∈ V and xv ∈ C(v), or, more generally, the proba-
bility distribution for each variable, conditional to xO. To compute Pr(xv | xO),
we can use that Pr(xv | xO) = Pr(xv ∧ xO)/Pr(xO).

Computational Model. In the paper, we assume all computations with values
of probabilities can be done in constant time. In a practical setting, one could
work with standard rounded representations of real numbers. To be precise, we
should assume each conditional probability in κ is given as a fraction of two
integers. Analysis of the algorithms show that each value remains a fraction of
two integers, both expressible with a polynomial number of bits; the algorithms
we give involve a linear number of operations with such integers, while each such
operation involves a polynomial number of bit operations. The details are not
given here.

2.2 A Mixed Hypergraph Model

Instead of using the more standard method of using a moralization of a prob-
abilistic network, we instead associate with each probabilistic network a mixed
hypergraph.

A mixed hypergraph is a pair H = (V,E,A), with V a finite set of vertices,
and E a finite set of hyperedges, and A a set of arcs; each hyperedge e ⊆ V is a
non-empty subset of the vertices; an arc is an ordered pair of distinct vertices.

To a directed acyclic graph G = (V,A), we associate a mixed hypergraph
H = (V,E,A) in the following way. H has the same vertices and arcs as G.
For each vertex v ∈ V , we take a hyperedge consisting of v and its parents:
E = {{v} ∪ par(v) | v ∈ V }. H is the mixed hypergraph associated with G. The
following lemma shows there is a one-to-one correspondence between the vertices
and the hyperedges.

Lemma 1. Let G = (V,A) be a directed acyclic graph. If v, w ∈ V , v �= w, then
{v} ∪ par(v) �= {w} ∪ par(w).

Besides the hypergraph model of the directed acyclic graph, we also define a set
of functions κe : C(e) → [0, 1], one for each hyperedge e ∈ E; these reflect the
conditional probability functions κv.

Consider an edge e = {v}∪par(v). Let for each configuration on e, xe ∈ C(e):

κe(xe) = κv(xe({v}), xe(par(v))) (3)

We introduce one more notation. Let xS ∈ C(S) be a configuration. Let e be a
hyperedge with e ⊆ S. Then we write κ(xS , e) = κ(xe) for the configuration xe,
obtained by restricting the function xS to domain e.

We now can rephrase Equation 1 in terms of the κe functions. The next (well
known) proposition follows directly from the definitions. See also [25].

Probabilistic Inference and Monadic Second Order Logic 47

Proposition 1. Let (G = (V,A), κ) be a probabilistic network. For each full
configuration xV ∈ C(V):

Pr(xV) =
∏
e∈A

κe(xV)

2.3 Monadic Second Order Logic

The Monadic Second Order Logic language (MSOL) allows us to express prop-
erties of (mixed hyper)graphs. The language has the following constructs:

– Quantification over vertices, (hyper)edges, arcs: ∃v ∈ V , ∃e ∈ E, ∀v ∈ V ,
∀e ∈ E, ∀a ∈ A,

– Quantification over sets of vertices, sets of (hyper)edges, sets of arcs: ∃W ⊆
V , ∃F ⊆ E, ∀W ⊆ V , ∀F ⊆ E, . . .

– Membership tests: v ∈ W , e ∈ F .

– Identity tests: v = w, e = f .

– Adjacency tests: v ∈ e, {v, w} ∈ E, {v, w} ∈ F , v is tail (head) of a, . . .

– Logic operations: ∨, ∧, ⇒, ¬, . . .

MSOL is a powerful language. Many graph properties can be expressed in it. E.g,
Borie et al. [8] show how many graph properties can be expressed in MSOL. For
example, the following property expresses that directed graph G = (V,A) is
acyclic:

∀W ⊆ V : ∃v ∈W : ¬∃w ∈ W : (v, w) ∈ A

Extensions of MSOL can include the following language constructs:

– For fixed constants c1, c2: |W | mod c1 = c2, |F | mod c1 = c2. MSOL with
these constructs, for all fixed c1 and c2 is called Counting MSOL, or CMSOL.

– If the vertices, edges, or arcs of G are labeled with a bounded number of
different labels, L the labeling function, we have label tests: L(v) = c, L(e) =
e.

To these, we add one more construct, for the case that G is a probabilistic
network.

– Value tests for vertices: xv = true, xv = false. (Or: xv, ¬xv.)

Call the resulting language CMSOL with value tests. For example, one can write
the property that an even number of variables is true as follows:

∃W : (∀v : v ∈W ↔ xv) ∧ (|W | mod 2) = 0

Given a property in CMSOL with value tests, we are interested in the probability
that this property holds for a given probabilistic network.

48 M.H.L. Bodlaender

2.4 Treewidth, Terminal Hypergraphs, and Parse Trees

The notion of treewidth was introduced by Robertson and Seymour in [23]. There
are several equivalent notions known, e.g., the treewidth of a graph is exactly one
larger than the minimum over all chordal supergraphs of the maximum clique
size; and graphs of treewidth at most k are also known as partial k-trees. See [3]
for an overview. The definition here is given in terms of mixed hypergraphs.

Definition 1. A tree decomposition of a mixed hypergraph H = (V,E,A) is a
pair ({Xi | i ∈ I}, T = (I, F)) with {Xi | i ∈ I} a collection of subsets of vertices
(called bags), and T a tree, such that

–
⋃

i∈I Xi = V .
– For each hyperedge e ∈ E and each arc (v, w) ∈ A: there exists an i ∈ I with

e ⊆ Xi, or {v, w} ⊆ Xi, respectively.
– For all vertices v ∈ V : the set of nodes {i ∈ I | v ∈ Xi} is connected in T .

The width of tree decomposition ({Xi | i ∈ I}, T = (I, F)) is maxi∈I |Xi|−1. The
treewidth of a graph G is the minimum width over all possible tree decompositions
of G.

Instead of using tree decompositions, we use an equivalent framework, where we
use an ‘algebra’ on terminal mixed hypergraphs. A k-terminal mixed hypergraph
is a 4-tuple G = (V,E,A, (x1, . . . , xk)) with V a finite set of vertices, E ⊆ P(V)
a set of hyper edges, A ⊆ V × V a set of arcs, and (x1, . . . , xk) ∈ V k an ordered
set of k vertices from V , called the terminals. A terminal mixed hypergraph is a
k-terminal mixed hypergraph for some k ≥ 0.

We define the following operations on terminal mixed hypergraphs.

– CreateHyperedgek(). Has no arguments. Yields a k-terminal hypergraph
with k vertices and one hyperedge, containing all vertices: ({v1, . . . , vk},
{{v1, . . . , vk}}, ∅, (v1, . . . , vk)).

– CreateArc(). AsCreateHyperedge, but creates a directed arc: ({v1, v2},
∅, {(v1, v2)}, (v1, v2)).

– DropTerminalk,�(G). Has a k-terminal mixed hypergraph as argument,
and turns the �th terminal into a non-terminal: (V,E,A, (x1, . . . , xk)) maps
to (V,E,A, (x1, . . . , x�−1, x�+1, . . . , xk)).

– AddTerminalk(G). Has a (k−1)-terminal mixed hypergraph as argument,
and adds a new terminal vertex. Hyperedges and arcs are not affected. So,
(V,E,A, (x1, . . . , xk−1)) maps to (V ∪ {xk}, E,A, (x1, . . . , xk)).

– Joink(G,H). Has two k-terminal mixed hypergraphs as argument. Yields
the k-terminal mixed hypergraph obtained by taking the union of the argu-
ments and then identifying the corresponding terminals. So, Joink((V,E,A,
(x1, . . . , xk)), (V

′, A′, E′, (x1, . . . , xk))) = (V ∪V ′, E∪E′, A∪A′, (x1, . . . , xk)),
with V ∩ V ′ = {x1, . . . , xk}.

Let Ok be the set of operations, containing for all k′, �, 1 ≤ � ≤ k′ ≤ k, the
operations CreateHyperedgek′ , CreateArck′ , DropTerminalk′,�,
AddTerminalk′ , Joink′ .

Probabilistic Inference and Monadic Second Order Logic 49

Lemma 2. Let (G = (V,A), κ) be a probabilistic network, let H be the moral
graph of G, and let H ′ = (V,E′, A) be the associated mixed hypergraph of G.
The following statements are equivalent.

1. H has treewidth at most k − 1.
2. H is subgraph of a triangulated graph with maximum clique size k.
3. H ′ has treewidth at most k − 1.
4. The 0-terminal mixed hypergraph (V,E′, A, ∅) can be constructed using the

operations from Ok.

This can be shown using proofs and techniques from [26], see also [3]. Note that
the notion is a minor twist on the well known notion of nice tree decompositions,
see e.g., [3,19].

If we have a method to construct a terminal mixed hypergraph with oper-
ations from Ok, we can express this in a parse tree. Each node of such a tree
is labeled with one operation from Ok. To each tree node i, we associate a
terminal mixed hypergraph Gi = (Vi, Ei, Ai, (x

i
1, . . . , x

i
k′); the terminal mixed

hypergraph associated to the node is the graph obtained by applying its opera-
tion to the terminal mixed hypergraphs associated with its children. We assume
that the root r of the parse tree is a 0-terminal mixed hypergraph, otherwise, use
some DropTerminal operations at the top of the tree. If Gr = (Vr, Er, Ar, ∅),
(Vr, Er, Ar) is the mixed terminal hypergraph represented by the parse tree.

It is well known (see e.g., [6]) that if W is a clique in G, then a tree de-
composition of G has a bag that contains all vertices in W . .Note that for each
vertex v, v ∪ par(v) forms a clique in the moral graph and thus, for each tree
decomposition of the moral graph, there is a bag that contains v ∪ par(v).

2.5 Regular Properties and Finite State Tree Automata

Many of the linear time algorithms on graphs of bounded treewidth can be
expressed as a finite state tree automaton, a generalization of the classic finite
state automaton. Such an automaton can be written as a 4-tuple (S, SA, t,�),
with S a finite set of states, SA ⊆ S a set of accepting states, � a special symbol,
and t a state transition function: t : (S ∪ {�}) × (S ∪ {�}) × Ok → S. The
automaton works on a binary tree with nodes labeled with elements from Ok

(and in particular: on a parse tree), in the following way. Each element i of
the tree is associated a state s(i) with s(i) = t(sL, sR, o(i)), with sL (sR) the
state s(j) of the left (right) child j of i, s(i) = � if i has no left (right) child,
and o(i) the operation from Ok with which i is labeled. Note that these states
can be computed in bottom-up order (e.g., in postorder) in the tree. We say an
automaton accepts the labeled tree, if the state of the root belongs to the set
SA.

A property P of graphs (or, of mixed hypergraphs) is regular, if for each k,
there is a finite state tree automaton Mk, such that for each G: P (G) holds, if
and only if Mk accepts all parse trees of G with operations from Ok, if and only
if Mk accepts at least one such parse tree. Courcelle’s theorem can be stated as
follows.

50 M.H.L. Bodlaender

Theorem 1. [10] A graph property in CMSOL is regular.

Courcelle conjectured that all regular properties belong to CMSOL; for some
special cases, the conjecture has been shown by Kabanets [17] and Kaller [18].
Regularity implies that for each k, there is a linear time algorithm that, given
a (mixed hyper)graph G of treewidth at most k, decides if the property holds
for G or not: the parse tree with operations in Ok can be constructed in linear
time, and then the automaton M is run in linear time on the parse tree; decide
‘yes’, if M ends in an accepting state.

We need to look at a minor variant of Theorem 1 for graph expressions with
one free vertex set variable, i.e., properties of the form P (G,W), G = (V,E,A)
a mixed hyper graph, W ⊆ V a set of vertices. Our finite state tree automaton
gets as input a labeled tree, and for each node in the tree that gives a new vertex
(i.e., one that is not used by any node that is a descendant in the tree) whether
this vertex belongs to the vertex set we denote by W . The state transition
function gets a fourth argument, that is empty, except for the AddTerminal,
CreateArc, and CreateHyperedgek′ operations, where it gets a series of 1,
2, or k′ booleans telling whether the new vertices belong to set W or not.

Theorem 2. [10] Let P be an expression in CMSOL with free set variable W .
Then P is regular.

We write as shorthand notation: {xV } = {v ∈ V | xV (v) = true}, i.e., the set of
variables with value true in configuration xV . For a probabilistic network (G, κ)
and (regular) property P with free vertex set variable W , we can ask for the
probability that P (G, xV } holds. Examples of such properties are given in the
introduction. We can write:

Pr(P (G, {xV }) =
∑

W⊆V, P (G,W)

Pr(xW
V) (4)

with xW
V the full configuration with {xV } = W . This generalizes (2).

3 Main Results

The main result of this paper is given now. It shows that we can combine the
results of Courcelle (Theorem 2) and [21]. Note that the treewidth of the moral
graph of G is at least the treewidth of G.

Theorem 3. Let P be a property of (mixed hyper)graphs with one free vertex
set variable. Suppose P is regular. For each constant k, there is a linear time
algorithm that, when given a probabilistic network (G, κ) with the treewidth of
the moral graph of G at most k, computes the probability of P (G, {xV }}.

Proof. Let k be fixed. Assume we have the finite state tree automaton M =
(S, SA, t,�) for P and Ok+1. We first build in linear time a parse tree T with
operations in Ok+1 for the hypergraph associated with (G, κ). Then, we compute

Probabilistic Inference and Monadic Second Order Logic 51

for each node in T a table called Qi. These tables can be computed in bottom
up order in the tree. Given the table of the root node, the requested value can
be computed.

For each node i in T , we denote its associated terminal graph Gi = (Vi, Ei, Ai,
(xi

1, . . . , x
i
ki
)), and write Xi = {xi

1, . . . , x
i
ki
}. Qi maps each pair (xXi , s) to a real

value in the interval [0, 1], with xXi a configuration on Xi, and s ∈ S a state,
such that

Qi(CXi , s) =
∑ ∏

e∈Ei

κ(xVi,e)

where we sum over all configurations xVi on Vi that agree with xXi and that
have the property that when we run machine M on the subtree with root i with
W = {xVi} then M gives state s in i. Tables have size 2|Xi| · |S| ≤ 2k+1 · |S| =
O(1).

Claim. Let i be a node in the parse tree. Given tables Qj for all children j of i,
we can compute the table Qi in O(1) time.

Proof. i is labeled with some operation from Ok+1. For each type of operation,
we must show the claim separately. We consider two more interesting cases, and
omit the others here.

Join. Suppose i is labeled Joink′ and has children j1 and j2. Xi = Xj1 = Xj2 =
Vj1 ∩ Vj2 . For each configuration xXi and state s:

Qi(xXi , s) =
∑

Qj1(xXi , s1) ·Qj2(xXi , s2) (5)

where the sum is taken over all pairs (s1, s2) with t(s1, s2,Joink′) = s. There are
O(1) such pairs, and thus each of the O(1) values Qi(xXi , s) can be computed
in O(1) time.

AddTerminal. Suppose j is the child of node i, i is labeled AddTerminal
′
k,

with z the added new vertex. Consider a configuration xXi and a state s. We
look at the case that z has value true in xXi , the other case is similar. Now, one
can show

Qi(xXi , s) =
∑

Qj(xXi−{z}, s′) (6)

where xXi−{z} is the restriction of xXi to domain Xi−{z}, and the sum is taken
over all s′ ∈ S with t(s,�,AddTerminal

′
k) = s. This implies that Qi can be

computed in O(1) time, given Qj . ��

Claim. Let r be the root of the parse tree of G.

Pr(P (G, {v | v = true})) =
∑
s∈SA

Qr(x∅, s)

Proof. Gr has 0 terminals, so there is a unique configuration xXr = x∅.

52 M.H.L. Bodlaender

Pr(P (G, {xV })) equals∑
Pr(xV) =

∑ ∏
e∈E

κ(xVi , e)

where the sum is taken over all configurations xV on V = Vr where P (G, {xV })
holds. Each such configuration trivially agrees with x∅. As M is the finite state
tree automaton for P , these configurations are exactly those where M accepts
when W = {xV }. So, the sum equals∑

s∈SA

∑ ∏
e∈E

κ(xVi , e)

where the second sum is taken over the configurations xV on V that have M
end in state s when W is as above. This equals

∑
s∈SA

Qr(x∅, s). ��

So, working bottom-up in the parse tree, we can compute in linear time all tables
Qi, and then compute the requested answer in O(1) time using the table of the
root of the parse tree. ��

4 Extensions

We briefly mention a few extensions of the result.

4.1 Non-binary Variables

While most results were described in terms of binary variables, the same results
hold when variables are non-binary but can attain a number of values bounded
by some constant.

4.2 Conditional Probabilities

Suppose we want to compute the probability that property P holds, conditional
to the observations xO. The value can be computed with the same method. We
use that Pr(P (G, xV)|xO) = Pr(P (G, xV) ∧ xO)/Pr(xO) and that regularity
and CMSOL are closed under conjunction, and compute Pr(P (G, xV)∧xO) and
Pr(xO) separately.

4.3 Different Types of Edges

To the mixed hypergraph model, we can add additional edges and arcs that are
not part of the probabilistic network, but can be used in CMSOL queries on the
network. Assuming that we work with bounded width tree decompositions that
also fulfill the property that for each of the different types of edges there are
bags that contain the endpoints, we can also answer compute the probability of
CMSOL queries on properties about the graph formed by these additional edges
in linear time.

Probabilistic Inference and Monadic Second Order Logic 53

4.4 Different Models

Possibly, the results can also be applied to different probabilistic models, whose
structure can be modeled by hypergraphs. See e.g. [13].

5 Conclusions

Examples. The results in this paper can be applied to a large number of prob-
lems, as many graph properties can be formulated in CMSOL. See e.g., [8] for
many examples of CMSOL graph properties. Some examples are:

– ’Suggested causality’: for two variables x and y: what is the probability that
x and y hold and there is a path from x to y of variables that all are true?

– Independence: what is the probability that no true variables are adjacent?
– In graphical games: some vertices represent an agent. Agents have states,

which are modeled by a probabilistic network. For a collection of pairs of
agents F , we ask: what is the probability that no two pair in F of agents
have the same state? Or: can we partition the agents into three (or any other
constant) number of groups, such that adjacent agents with the same state
belong to a different group?

Time and space considerations. The time and space used by the algorithm of
Theorem 3 is approximately the product of the time, respectively the space,
of the Lauritzen Spiegelhalter algorithm and the number of states of the tree
automaton. In some cases this number of states is large, in particular, when the
property whose probability is to be computed is NP-hard when the treewidth
is not bounded. In some other cases, the number of states can be reasonably
small. For instance, when P is the property that an even number of variables
has the value true, then a machine with only two states suffices. So, while in
some cases, the algorithm implied by Theorem 3 is not practical, in other cases,
we get algorithms that are sufficiently efficient.

It is also often possible to use some optimizations that decrease the running
time. For instance, many machines will have a state sr that will never lead to an
accepting state later. Here, we can see that we do not need to compute values
of the form Qi(c, sr) for any node i and any configuration c. (For notation, see
the proof of Theorem 3.) More Myhill-Nerode type optimizations (compare [15])
are also possible. For instance, computing the probability that there is at most
one true variable needs tables with �+3 entries per node in the parse tree, � the
treewidth.

Finally, in practical cases, one can try to design more efficient algorithms by
hand. The situation can resemble the experiences with the use of Courcelle’s the-
orem: Consider some practical problem P , which can be formulated in monadic
second order logic. Courcelle’s theorem directly tells us that the problem can be
solved in linear time for graphs of bounded treewidth. However, a direct use of
the machinery behind the proof of Courcelle’s theorem would most probably give
an algorithm that is too slow in practice, due to large hidden constants in the

54 M.H.L. Bodlaender

O-notation. However, in most cases, algorithms that are tailor made for problem
P will have much better constant factors, and may be practical for small values
of treewidth (see e.g. [20].)

A direct application of Courcelle’s theorem may also yield an automaton that
is too large to effectively build.A recent technique by Courcelle and Durand [11]
helps to (partially) overcome such problems. It is interesting to investigate if
the techniques from [11] can give practical improvements for implementations of
Theorem 3.

If a tree decomposition of bounded width is not given with the input, it is
possible to find one in linear time (assuming the width bound is a constant): run
the algorithm of [2] on the undirected graph, obtained by dropping directions
of edges and replacing hyperedges by a clique. Unfortunately, this algorithm is
not practical, even for small values of the treewidth. However, there are good
heuristics that often perform very well, see [4,5] for overviews.

Final conclusions. In this paper, we have shown that two famous results from
different fields of computer science can be combined: the algorithm for prob-
abilistic inference by Lauritzen and Spiegelhalter, and the result by Courcelle
that problems in CMSOL can be solved in linear time when the treewidth of
the graph is bounded. The formalism chosen in this paper to present the results
may depart from what is sometimes usual; a description in other formalisms
(tree decompositions or clique trees) is also possible, but seems to require more
clumsy details.

The result allows us to compute the probability of several properties of the
network and the values of the variables in linear time. For some properties,
the constant factor hidden in the ‘O’ may yield it impractical, but for other
properties, one can expect that the resulting algorithm is indeed sufficiently
efficient.

An interesting question is whether other problems that were studied for prob-
abilistic networks have a similar CMSOL variant. Other interesting theoretical
questions include:

– Is Inference on probabilistic networkswithmoral graphs of bounded treewidth
solvable in logspace? (Compare [14].)

– Inference is #P -hard [24]. What complexities have computing the probabil-
ities of CMSOL properties on general probabilistic networks (i.e., without
bounds on treewidth)?

– Are there other graph problems for which a variant of Theorem 3 holds? One
possible direction may be to look at optimization problems, e.g., with the
finite integer index property [7]. Also, when we allow polynomial running
time instead of linear, it is to be expected that a larger class of problems
can be handled.

Acknowledgement. I thank the referees for several very helpful comments,
and colleagues from the Decision Support Systems and the Algorithmic Systems
groups at the Department of Information and Computing Science of Utrecht
University for useful discussions.

Probabilistic Inference and Monadic Second Order Logic 55

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
Journal of Algorithms 12, 308–340 (1991)

2. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

3. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science 209, 1–45 (1998)

4. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds.
Information and Computation 208, 259–275 (2010)

5. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations II. Lower bounds.
Information and Computation 209, 1103–1119 (2011)

6. Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. SIAM
Journal on Discrete Mathematics 6, 181–188 (1993)

7. Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Reduction algorithms for graphs
of small treewidth. Information and Computation 167, 86–119 (2001)

8. Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algo-
rithms from predicate calculus descriptions of problems on recursively constructed
graph families. Algorithmica 7, 555–581 (1992)

9. Borie, R.B., Parker, R.G., Tovey, C.A.: Solving problems on recursively constructed
graphs. ACM Computing Surveys 41(4) (2008)

10. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of
finite graphs. Information and Computation 85, 12–75 (1990)

11. Courcelle, B., Durand, I.A.: Fly-Automata, Their Properties and Applications. In:
Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA
2011. LNCS, vol. 6807, pp. 264–272. Springer, Heidelberg (2011)

12. Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-
decomposable graphs. Theoretical Computer Science 109, 49–82 (1993)

13. Daskalakis, C., Papadimitriou, C.H.: Computing pure Nash equilibria in graphical
games via Markov random fields. In: Feigenbaum, J., Chuang, J.C.-I., Pennock,
D.M. (eds.) Proceedings 7th ACM Conference on Electronic Commerce EC-2006,
pp. 91–99. ACM (2006)

14. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bod-
laender and Courcelle, pp. 143–152 (2010)

15. Fellows, M.R., Langston, M.A.: An analogue of the Myhill-Nerode theorem and its
use in computing finite-basis characterizations. In: Proceedings of the 30th Annual
Symposium on Foundations of Computer Science, FOCS 1989, pp. 520–525 (1989)

16. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn.
Information Science and Statistics. Springer (2007)

17. Kabanets, V.: Recognizability Equals Definability for Partial k-paths. In: Degano,
P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256,
pp. 805–815. Springer, Heidelberg (1997)

18. Kaller, D.: Definability equals recognizability of partial 3-trees and k-connected
partial k-trees. Algorithmica 27, 348–381 (2000)

19. Kloks, T.: Treewidth. Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994)

20. Koster, A.M.C.A., van Hoesel, S.P.M., Kolen, A.W.J.: Solving partial constraint
satisfaction problems with tree decomposition. Networks 40(3), 170–180 (2002)

21. Lauritzen, S.J., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. The Journal of the
Royal Statistical Society. Series B (Methodological) 50, 157–224 (1988)

56 M.H.L. Bodlaender

22. Pearl, J.: Probablistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann, Palo Alto (1988)

23. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms 7, 309–322 (1986)

24. Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82,
273–302 (1996)

25. van der Gaag, L.C.: Probability-Based Models for Plausible Reasoning. PhD thesis,
University of Amsterdam (1990)

26. Wimer, T.V.: Linear Algorithms on k-Terminal Graphs. PhD thesis, Dept. of Com-
puter Science, Clemson University (1987)

Cinderella versus the Wicked Stepmother

Marijke Hans L. Bodlaender1, Cor A.J. Hurkens2, Vincent J.J. Kusters2,
Frank Staals2, Gerhard J. Woeginger2, and Hans Zantema2

1 Dept. of Information and Computing Sciences, Universiteit Utrecht, Netherlands
2 Dept. of Mathematics and Computer Science, TU Eindhoven, Netherlands

Abstract. We investigate a combinatorial two-player game, in which
one player wants to keep the behavior of an underlying water-bucket
system stable whereas the other player wants to cause overflows. This
game is motivated by data management applications in wireless sen-
sor networks. We construct optimal strategies and characterize optimal
bucket sizes for many instances of this game.

1 Introduction

Motivated by a data management application in wireless sensor networks,
Bender & al [1] study the minimum-backlog problem which is a two-player game
on an undirected graph. The vertices of the graph contain buckets (which model
buffers) that can store water (which models data). In every time step the ad-
versary distributes exactly one liter of water over the buckets. The player then
moves from his current vertex to an adjacent one and empties the corresponding
bucket. The player’s objective is to minimize the maximum amount of water in
any bucket at any time, or in other words, to prevent the buckets from over-
flowing while using the smallest possible bucket size. Bodlaender & al [2] discuss
another variant where in every time step the player can empty a subset of buckets
standing in an arbitrary independent set in the graph. Polishchuk & Suomela [7]
investigate the variant of the minimum-backlog problem where the underlying
metric space is not a graph but the Euclidean plane. Chrobak & al [3] discuss
related scenarios in undirected graphs where data/water arrives continuously
over time and where the player can (continuously) empty an entire independent
set of buckets/buffers; if the player spends t time units on a bucket set, then the
contents of each such bucket is decreased by t. Note that in [1] the graph struc-
ture constrains the route taken by the player, whereas in [3] the graph structure
constrains the sets of buckets that the player can empty simultaneously.

In the current paper we will concentrate on discrete scenarios where
data/water arrives in rounds and where in every round the player can empty
certain subsets of the buckets. One of the simplest cases of our game is as
follows [8,6].

“Five empty buckets of capacity b stand in the corners of a regular pentagon.
Cinderella and her wicked Stepmother play a game that goes through a sequence
of rounds: at the beginning of every round, the Stepmother takes one liter of
water from the nearby river, and distributes it arbitrarily over the five buckets.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 57–71, 2012.
c© IFIP International Federation for Information Processing 2012

58 M.H.L. Bodlaender et al.

Then Cinderella chooses a pair of neighboring buckets, empties them into the
river, and puts them back into the pentagon. Then the next round begins. The
Stepmother’s goal is to make one of these buckets overflow. Cinderella’s goal is
to prevent this. For which bucket sizes b can the Stepmother eventually enforce
a bucket overflow? And for which bucket sizes can Cinderella keep the game
running forever?”

We study a general bucket game BG(n, c) for integers n and c with 1 ≤ c ≤ n−1,
where there are n ≥ 2 buckets standing in a circle. Throughout we will use
the term Cinderella to denote the player and the wicked Stepmother to denote
the adversary. In every round the Stepmother first distributes one liter over
the n buckets, and then Cinderella empties an arbitrary group of c consecutive
buckets. The Stepmother wants to reach a bucket overflow, and Cinderella wants
to avoid this. Clearly the above Cinderella puzzle coincides with BG(5, 2). We
define F ′(n, c) as the infimum of all bucket sizes for which Cinderella can keep
the game running forever, and we furthermore introduce the quantity F (n, c) =
F ′(n, c)−1. If Cinderella consistently avoids overflows for buckets of size F ′(n, c),
then at the end of every round she will only leave buckets with contents F (n, c)
or less.

Summary of Results. Table 1 lists the values F (n, c) for all games with n ≤ 12
buckets. For every single entry in this table with n ≤ 10 we have proofs that
were constructed by humans (and that are presented in this paper) as well as
computerized proofs (that have been done with the SMT solver YICES [5]). For
some of the entries in the lines n = 11 and n = 12, we only have computer
proofs.

The entries in the table might seem somewhat chaotic at first sight. But taking
a second look, the reader perhaps notices that the topmost numbers 1, 1/2, 1/3,
. . ., 1/11 in the columns are the reciprocals of the positive integers. This indeed
is a (fairly shallow) mathematical fact which we present in Section 3, and which
says that F (c+1, c) = 1/c for all c ≥ 1. Next let us discuss the values F (c+2, c)
immediately below the topmost numbers, which are

3/2, 1, 5/9, 1/2, 7/20, 1/3, 9/35, 1/4, 11/54, 1/5.

We note that the values in the even positions again are the reciprocals of integers.
Indeed Section 2 shows that the function values F (n, c) only depend on the ratio
n/c, which for even c = 2s implies F (2s+ 2, 2s) = F (s + 1, s) = 1/s. Section 3
shows that the remaining values in the odd positions satisfy F (c+ 2, c) = (2c+
4)/(c2 + 3c). By stepping further down in the columns, we meet the values
F (c+ 3, c) which read

11/6, 1, 1, 17/30, 1/2, 1/2, 69/196, 1/3, 1/3.

The values F (3s + 3, 3s) = F (s + 1, s) = 1/s are of course once again the
reciprocals of the integers. Section 3 shows that also the values F (3s+2, 3s−1) =
1/s are such reciprocals, and it fully explains the (more complicated) structure
of the remaining values F (3s+ 1, 3s− 2).

Cinderella versus the Wicked Stepmother 59

Table 1. Summary of the values F (n, c) for n ≤ 12 buckets. For the entries with
n ≤ 10, we even have proofs constructed by humans.

n\c 1 2 3 4 5 6 7 8 9 10

2 1 – – – – – – – – –

3 3/2 1/2 – – – – – – – –

4 11/6 1 1/3 – – – – – – –

5 25/12 1 5/9 1/4 – – – – – –

6 137/60 3/2 1 1/2 1/5 – – – – –

7 49/20 3/2 1 17/30 7/20 1/6 – – – –

8 363/140 11/6 1 1 1/2 1/3 1/7 – – –

9 761/280 11/6 3/2 1 299/525 1/2 9/35 1/8 – –

10 7129/2520 25/12 3/2 1 1 5/9 69/196 1/4 1/9 –

11 7381/2520 25/12 3/2 1 1 77/135 1/2 1/3 11/54 1/10

12 83711/27720 137/60 11/6 3/2 1 1 5/9 1/2 1/3 1/5

Moving further down in Table 1, we eventually hit an area that entirely con-
sists of 1-entries. The uppermost 1-entry in every column is F (2c, c) = F (2, 1) =
1, and these entries form the so-called half-diagonal of the table (the diagonal
where c is half of n). This half-diagonal is a natural separation line, and it turns
out that the combinatorics of the games below the half-diagonal behaves quite
differently from the combinatorics of the games above the half-diagonal. Go-
ing even further down, we see that the lowermost 1-entry in every column is
F (3c−1, c) = 1. In other words F (n, c) = 1 holds whenever 2c ≤ n ≤ 3c−1, and
this is a mathematical theorem which we establish in Section 5. This theorem
actually is our main result, and its proof is long and involved and uses quite
delicate invariants.

What else is going on below the half-diagonal? The first column lists the
harmonic numbers Hk = 1+ 1

2 +
1
3 + . . .+ 1

k . The second column (below the half-
diagonal) seems to list again the harmonic numbers, but this time with every
term occurring twice. And also the third column (below the half-diagonal) seems
to list the harmonic numbers, with every term occurring thrice. And so on. We
settle the behavior of the first column in Section 5, and we furthermore derive
some partial results on the other columns. Many questions remain open.

Also the global structure of Table 1 shows many interesting properties. Of
course, the values in every row form a non-increasing sequence (since c increases
and Cinderella becomes more powerful), and for similar reasons the values in

60 M.H.L. Bodlaender et al.

every column form a non-decreasing sequence. In fact an even stronger property
holds true (see Section 2): the function F (n, c) is non-decreasing in the ratio
n/c. Here is one application of this fact: from F (3, 2) = F (8, 5) = 1/2 and from
3/2 < 11/7 < 8/5 we immediately deduce F (11, 7) = 1/2.

Organization of the Paper. Section 2 states simple observations, summarizes the
notation, and explains the general setup of our proofs. Section 3 deals with the
games above the half-diagonal, and Section 5 deals with the games below the
half-diagonal. Section 6 gives some conclusions.

2 Preliminaries, Notations, and Conventions

The n buckets in any fixed game BG(n, c) are ordered along the circle and
denoted 1, 2, . . . , n. The numbering of buckets is always taken modulo n, so that
k and n+ k denote the same bucket. We use d(i, j) = min{|i− j|, n− |i− j|} to
denote the distance between buckets i and j along the circle. If d(i, j) ≥ c, then
Cinderella can not simultaneously empty i and j within a single round. A subset
S of buckets is called independent, if it does not contain two adjacent buckets.
The family I consists of all independent bucket subsets.

The contents of the buckets at a particular moment in time are often summa-
rized in a vector x = (x1, . . . , xn) where xi denotes the current contents of bucket
i. For a subset S of the buckets, we use x(S) =

∑
i∈S xi. To keep the notation

simple, we write x(i, j) short for x({i, j}) and x(i, j, k) short for x({i, j, k}), and
we use xi and x(i) interchangeably.

The following two lemmas imply that function F (n, c) only depends on the
ratio n/c, and that it is non-decreasing in this ratio.

Lemma 1. F (λn, λc) = F (n, c) for all integers λ ≥ 1.

Proof. Consider an arbitrary strategy for the Stepmother for BG(n, c). The
Stepmother can emulate this strategy in BG(λn, λc) by using the buckets
λ, 2λ, . . . , nλ. This yields F (λn, λc) ≥ F (n, c). Vice versa, Cinderella can carry
over strategies from BG(n, c) to BG(λn, λc). She cuts the circle into n intervals
with λ buckets, treats every interval as a super-bucket, and uses her strategy for
BG(n, c) on the super-buckets. This yields F (λn, λc) ≤ F (n, c). �

Lemma 2. (Monotonicity lemma) F (n1, c1) ≤ F (n2, c2) whenever n1/c1 ≤
n2/c2.

Proof. This follows from F (n1, c1) = F (n1n2, c1n2) ≤ F (n1n2, c2n1) =
F (n2, c2). �
By the definition of F ′(n, c), Cinderella wins the game BG(n, c) if the bucket size
is strictly larger than F ′(n, c), and the Stepmother wins the game if the bucket
size is strictly smaller than F ′(n, c). What happens at the threshold F ′(n, c)?

Lemma 3. If BG(n, c) is played with buckets of size F ′(n, c), then Cinderella
can keep the game running forever.

Cinderella versus the Wicked Stepmother 61

Proof. Let G(n, c, R) denote the maximum amount of water that the Stepmother
can accumulate in some bucket within the first R rounds of game BG(n, c); it
can be proved by an inductive argument that this maximum indeed exists.

Now suppose that the Stepmother could enforce an overflow for buckets of
size F ′(n, c). Then she can enforce this overflow after a finite number R of
rounds, which means G(n, c, R) > F ′(n, c). But then within R rounds the Step-
mother could as well enforce overflows for any bucket size between F ′(n, c) and
G(n, c, R), which conflicts with the definition of F ′(n, c). �

Lower Bounds from Balancing Stepmothers. Our lower bound arguments for
F (n, c) use a special adversary which we call balancing Stepmother. A balancing
Stepmother balances the water levels in certain buckets, and works in two phases.
During the first phase, the Stepmother always distributes her liter in such a way
that all n buckets are filled to the same level. This common filling level is 1/n
in the first round, and in later rounds increases and converges to 1/c. The first
phase ends, when the common filling level exceeds 1/c − ε (where ε is a tiny
positive real number that can be made arbitrarily close to 0). The set of n − c
buckets that are filled to level L1 ≈ 1/c at the end of the last round of the first
phase is denoted by S1.

In the second phase, we will usually ignore the dependence of our bounds on ε,
so that the presentation remains simple and our formulas stay clean. The second
phase goes through n − c − 1 further rounds. At the beginning of the r-th one
of these rounds (r = 1, . . . , n− c− 1), there are (n− c)− r + 1 buckets filled to
the same level Lr that Cinderella could not empty in the preceding round; these
buckets form the set Sr. The balancing Stepmother then picks an appropriate
set Tr ⊇ Sr of buckets, such that in the current round Cinderella must leave at
least (n− c)− r buckets in Tr untouched. All buckets in Tr are then filled to the
same level Lr+1 = (|Sr|Lr+1)/|Tr|. At the end of the last round n−c−1, there
remains a single non-empty bucket whose contents Ln−c−1 forms the resulting
lower bound.

Upper Bounds from Invariants. Our upper bound arguments for F (n, c) are
based on appropriate systems of invariants that (i) can be maintained by Cin-
derella, and that (ii) imply that every bucket contents remains below F (n, c). A
typical invariant system bounds the contents of every bucket by xi < F (n, c),
and furthermore bounds the overall contents of certain groups of buckets. All
invariants are trivially satisfied at the beginning of the first round when all buck-
ets are empty. In our proofs we usually assume inductively that these invariants
are satisfied at the beginning of some fixed round (just before the Stepmother
moves), and then show that Cinderella can re-establish them at the end of the
round. In doing this, we always let xi denote the contents of bucket i at the
beginning of the round, and we always let yi denote the contents of bucket i
after the Stepmother has moved.

62 M.H.L. Bodlaender et al.

3 Above the Half-Diagonal

By definition the games BG(n, c) above the half-diagonal satisfy n < 2c. It is not
hard to see that all these games satisfy F (n, c) < 1 (as at the end of her move,
Cinderella can keep the total amount of water in the system below n/c− 1). We
fully understand the games BG(c+ 1, c), BG(c+ 2, c), and BG(c+ 3, c).

Theorem 1. F (c+ 1, c) = 1/c holds for all c ≥ 1.

Proof. (Upper bound) As invariant, Cinderella always leaves a single bucket
untouched whose contents is below 1/c. The Stepmother adds one liter to the
system and increases the total amount of water to less than (c + 1)/c. By av-
eraging, one of the c+ 1 buckets has contents below 1/c, and that’s the bucket
that Cinderella does not touch in her move.

(Lower bound) In her first phase, the balancing Stepmother brings the con-
tents of all buckets arbitrarily close to 1/c. �

Theorem 2. F (c + 2, c) = (2c + 4)/(c2 + 3c) holds for all odd c ≥ 1, and
F (c+ 2, c) = 2/c holds for all even c ≥ 2.

Theorem 3. The values F (c+ 3, c) behave as follows for c ≥ 1.

(i) F (3s+ 2, 3s− 1) = 1/s
(ii) F (3s+ 3, 3s) = 1/s

(iii) F (3s+ 4, 3s+ 1) =
(s+ 1)(6s+ 11)

(s+ 2)(2s+ 3)(3s+ 1)

Theorem 4. F (9, 5) = 299/525.

The proofs of Theorems 2, 3 and 4 are to be found in the subsections below.
It is easily verified that these theorems (together with monotonicity) imply all
entries for n ≤ 10 above the half-diagonal of Table 1.

We think that also all values F (c + 4, c) are within reach and could be fully
characterized, if one invests sufficient time and energy. We actually determined
many values F (n, c) above the half-diagonal with the help of computer programs.
For instance we know that F (13, 9) = 37/105 and F (17, 13) = 1961/7605, and
it took us hours of computation time to establish F (16, 11) = 252/715. We
see many patterns and regularities in the data, but we can not find a unifying
conjecture that would systematically cover all possible cases; certain divisibility
properties seem to kick in and totally mess up the structure. Our data suggests
the following conjecture (which is fairly weak and only covers a small part of the
unknown area).

Conjecture 1. F (n, c) = 1/2 holds for all n and c with 3/2 ≤ n/c < 5/3.

3.1 The Proof of Theorem 2

Since monotonicity settles the cases with even c, we only discuss the games where
c is odd (and n = c+ 2).

Cinderella versus the Wicked Stepmother 63

(Upper bound) At the end of every round, Cinderella leaves two non-empty
buckets (say buckets 1 and 2) whose loads x1 and x2 satisfy the following two
invariants:

x(1, 2) < 2/c (1a)

x1, x2 < L2 := (2c+ 4)/(c2 + 3c) (1b)

Then the Stepmother moves and yields bucket contents y1, . . . , yc+2. Cinderella
maintains the invariants by leaving a pair j, j + 1 of neighboring buckets with
smallest total contents. Since the Stepmother only adds a single liter, invariant
(1a) implies

c+2∑
i=1

yi < (c+ 2)/c. (2)

By averaging we get y(j, j+1) ≤ (2
∑

yi)/(c+2) < 2/c, which ensures invariant
(1a). Next, suppose for the sake of contradiction that yj ≥ L2. Partition the
remaining c + 1 buckets (except bucket j) into (c + 1)/2 pairs of neighboring
buckets. The total contents of every such pair is at least y(j, j + 1) ≥ L2, which

implies
∑c+2

i=1 yi ≥ 1
2 (c + 3)L2 = (c + 2)/c, and thus contradicts (2). Hence

yj < L2, and an analogous argument yields yj+1 < L2.
(Lower bound) The first phase of the balancing Stepmother ends with two

buckets (say 1 and 2) of contents very close to 1/c. In the second phase, the
Stepmother chooses set T1 to contain buckets 1 and 2 together with all buckets
with even numbers; note that |T1| = (c+3)/2. Then all buckets in T1 are brought
to level at least (2/c + 1)/|T1| = L2. Since Cinderella cannot simultaneously
empty all buckets in T1, we get F (c+ 2, c) ≥ L2.

3.2 The Proof of Theorem 3.(i) and (ii)

Monotonicity and Theorem 1 yield the lower bound F (3s+ 2, 3s− 1) ≥ F (3s+
3, 3s) = F (s + 1, s) = 1/s. Hence we will concentrate on the upper bound for
the game with n = 3s+ 2 buckets and c = 3s− 1.

At the end of some fixed round Cinderella leaves three adjacent buckets, say
the buckets 3, 4, 5. She always maintains the following two invariants.

x4 < 1/s (3a)

x(3, 5) < 1/s (3b)

The Stepmother adds one liter to the system and brings the contents to
y1, y2, . . . , y3s+2. A triple is a group of three consecutive buckets i, i + 1, i + 2
in the circle. A triple is called good, if y(i, i + 1, i + 2) < 1/s. By emptying all
buckets outside a good triple, Cinderella can maintain the invariants. Hence we
assume from now on that there is no good triple.

We denote by W the total amount of water in all buckets except bucket 4.
Invariant (3b) implies W < 1 + 1/s. Since there are no good triples, we have

64 M.H.L. Bodlaender et al.

y(1, 2, 3) ≥ 1/s and y(5, 6, 7) ≥ 1/s. By subtracting these two inequalities from
W < 1 + 1/s, we get

3s+2∑
i=8

yi < 1− 1/s. (4)

Next suppose for the sake of contradiction that y3i+2 ≥ 1/s holds for some i
with 2 ≤ i ≤ s. Then the 3i− 6 buckets 8, 9, . . . , 3i+ 1 and the 3s− 3i buckets
3i + 3, 3i + 4, . . . , 3s + 2 can be divided into s − 2 non-good triples. Therefore
the overall amount of water in these s − 2 triples together with y3i+2 would be
at least (s− 1)/s, which contradicts (4). This contradiction implies y3i+2 < 1/s
for 2 ≤ i ≤ s. Furthermore we assume y(3i + 1, 3i + 3) ≥ 1/s, since otherwise
Cinderella could easily maintain the invariants by emptying all buckets except
the triple 3i + 1, 3i + 2, 3i + 3. Summing these s − 1 inequalities for 2 ≤ i ≤ s
yields

s∑
i=2

y3i+1 +

s∑
i=2

y3i+3 ≥ 1− 1/s. (5)

If y(6, 8) ≥ 1/s, then (5) yields that the Stepmother has added her entire liter to
the buckets outside the triple 3, 4, 5, and Cinderella can maintain all invariants
by reverting the system to the preceding state. Hence we assume from now on
y(6, 8) < 1/s, and a symmetric argument yields y(3s + 2, 2) < 1/s. If y7 < 1/s
or y1 < 1/s, then Cinderella maintains the invariants by emptying everything
except the triple 6, 7, 8, respectively by emptying everything except the triple
3s+ 2, 1, 2. Hence we assume from now y7 ≥ 1/s and y1 ≥ 1/s.

Finally note that the 3s− 5 buckets 8, 9, 10, . . . , 3s+ 2 contain s− 2 pairwise
disjoint triples, each of which is non-good and has total contents at least 1/s.
Together with y1 ≥ 1/s and y7 ≥ 1/s this shows that the Stepmother must have
added her entire liter to the buckets 7, 8, 9, 10, . . . , 3s + 2, and 1. By emptying
these buckets, Cinderella reverts the system to the preceding state and maintains
all invariants.

3.3 The Proof of Theorem 3.(iii)

We discuss the game with n = 3s+ 4 and c = 3s+ 1. For s ≥ 1, we introduce
three parameters L1, L2, L3 by

L1 =
1

3s+ 1

L2 =
3s+ 4

(2s+ 3)(3s+ 1)

L3 =
(s+ 1)(6s+ 11)

(s+ 2)(2s+ 3)(3s+ 1)

Cinderella versus the Wicked Stepmother 65

Note that these three parameters satisfy

L2 =
3L1 + 1

2s+ 3
and L3 =

2L2 + 1

s+ 2
. (6)

Furthermore, we have

L1 ≤ L2 ≤ L3 ≤ 2L2 ≤ 3L1, (7)

and finally there is the useful inequality

3L1 + 1 ≤ (s+ 1)L3 + 2L2. (8)

(Upper bound) At the end of some fixed round Cinderella leaves three non-empty
buckets, say buckets 1, 2, 3. She maintains the following three invariants.

xi < L3 for 1 ≤ i ≤ 3 (9a)

x(i, j) < 2L2 for 1 ≤ i < j ≤ 3 (9b)

x(1, 2, 3) < 3L1 (9c)

Then the Stepmother moves, and raises the bucket contents to y1, y2, . . . , y3s+4.
By invariant (9c) the overall amount of water in the system is bounded by

3s+4∑
j=1

yj < 3L1 + 1. (10)

A bucket i with yi ≥ L3 is called large. A triple is a group of three consecutive
buckets i, i+1, i+2 in the circle. A triple is called good, if (i) none of its buckets
is large and (ii) y(i, i+1, i+2) < 2L2. If Cinderella empties all buckets outside a
good triple, she automatically maintains the invariants. Hence we assume from
now on that there is no good triple.

Lemma 4. If there is no good triple, then there also are no large buckets.

Proof. We distinguish several cases on the number � of large buckets. The overall
amount of water in the system is at least �L3, and below 3L1 + 1 by (10). By
using (8) and (7) this yields

�L3 < 3L1 + 1 ≤ (s+ 1)L3 + 2L2 ≤ (s+ 3)L3.

Therefore � ≤ s + 2. If � = s + 2 and at most two of the buckets 1, 2, 3 are
large, then (9b) implies that the overall amount W of water in the large buckets
satisfies

(s+ 2)L3 ≤ W < 2L2 + 1,

which contradicts (6). If � = s + 2 and all three buckets 1, 2, 3 are large, then
these s+2 large buckets divide the 2s+2 non-large buckets into at most s non-
empty intervals along the circle. One of these intervals contains at least three

66 M.H.L. Bodlaender et al.

non-large buckets, and hence a non-good triple whose total contents is at least
2L2. Then the overall amount W of water in the large buckets plus the water in
this non-good triple satisfies

(s+ 2)L3 + 2L2 ≤ W < 3L1 + 1,

which contradicts (8). In the remaining cases we have � ≤ s+ 1.
If � ≥ 1, the large buckets divide the 3s + 4 − � non-large buckets into �

intervals along the circle. If an interval consists of k non-large buckets, we can
find �k/3� pairwise disjoint triples in this interval. It can be seen that altogether
we find at least s+2− � pairwise disjoint triples in all � intervals. Each of these
triples is non-good and has total contents at least 2L2. By applying (10) the
total contents W of all buckets satisfies

�L3 + 2L2(s+ 2− �) ≤ W < 3L1 + 1.

Since L3 − 2L2 ≤ 0, the expression in the left hand side is decreasing in �.
Together with � ≤ s+1 this yields (s+1)L3+2L2 < 3L1+1, which contradicts
(8). This leaves � = 0 as the only possible case. ��

By the lemma there is no large bucket, and we see that all buckets a priori
satisfy invariant (9a). Consider a fixed bucket i, and divide the remaining 3s+3
buckets into s+ 1 non-good triples. Then

yi + (s+ 1) · 2L2 ≤
3s+4∑
j=1

yj < 3L1 + 1 = (2s+ 3)L2,

which implies yi < L2. Hence any pair of buckets satisfies invariant (9b). By
averaging, there exists a triple of buckets whose total contents is

yj + yj+1 + yj+2 < 3 · 3L1 + 1

3s+ 4
= 3L1.

Cinderella empties all buckets except this triple, and thereby also fulfills
invariant (9c).

(Lower bound) The first phase of the balancing Stepmother ends with three
buckets (say buckets 1, 2, 3) having contents very close to L1. The second phase
goes through two further rounds.

In the first of these rounds, the Stepmother selects the set T1 to contain all
buckets except the buckets 3i+ 1 with i = 1, . . . , s+ 1. Then T1 contains 2s+ 3
buckets which the Stepmother all brings to contents L2. Cinderella leaves a set
S2 of two buckets with contents L2; these two buckets are either adjacent (say
1 and 2) or separated by a single other bucket (say buckets 3s+ 4 and 2).

In the second round, the Stepmother selects the set T2 to contain the two
buckets in set S2 together with the buckets 3i + 2 with i = 1, . . . , s. Then
T2 consists of s + 2 buckets which the Stepmother all brings to contents L3.
Cinderella must leave one bucket with contents L3 at the end of the round.

Cinderella versus the Wicked Stepmother 67

4 The Proof of Theorem 4

(Upper bound) Assume that in the game BG(9, 5), Cinderella leaves a bucket
configuration that satisfies the following four invariants.

xi < 299/525 ≈ 0.569 for 1 ≤ i ≤ 9 (11a)

x(S) < 124/175 ≈ 0.708 for all S with |S| = 2 (11b)

x(S) < 27/35 ≈ 0.771 for all S with |S| = 3 (11c)

x(S) < 4/5 = 0.800 for all S with |S| = 4 (11d)

The Stepmother moves and raises the bucket contents from x1, . . . , x9 to
y1, . . . , y9. Note that

∑9
i=1 yi < 9/5 by (11d). A quadruple is a set of four

consecutive buckets in the circle. A quadruple is called good, if its four buckets
satisfy (11a)–(11d). If there is a good quadruple, then Cinderella can maintain
the invariants by emptying all buckets outside the quadruple.

Lemma 5. If yj ≥ 299/525 for some j, then Cinderella can maintain the in-
variants.

Proof. A bucket j with yj ≥ 299/525 =: L is called large. If the Stepmother
leaves three large buckets i, j, k, then x(i, j, k) ≥ y(i, j, k) − 1 ≥ 3L − 1 =
124/175. This implies that xi, xj , xk all are non-zero, since otherwise two of
these buckets would have violated (11b). Hence i, j, k all belong to the quadruple
that Cinderella did not touch in the preceding round. If Cinderella empties this
quadruple (together with some fifth bucket), the remaining volume of water
decreases to 9/5− 3L < 124/175, and all invariants are maintained.

If the Stepmother leaves two large buckets i and j, then Cinderella empties
these large buckets (together with three other buckets). The remaining volume
of water decreases to 9/5− 2L < 124/175, and all invariants are maintained.

Finally assume that the Stepmother leaves a single large bucket, which without
loss of generality is bucket 1. Then y(2, 3, 4, 5) + y(6, 7, 8, 9) ≤ 9/5 − L < 2 ·
124/175, which implies that one of the quadruples 2, 3, 4, 5 and 6, 7, 8, 9 must be
good. ��

Lemma 6. If yj ≥ 62/175 for some j, then Cinderella can maintain the
invariants.

Proof. By the preceding lemma we assume yi < 299/525 for all i. We assume
furthermore that bucket 1 with y1 ≥ 62/175 is the fullest bucket, and that the
quadruples 2, 3, 4, 5 and 6, 7, 8, 9 both are non-good (so that the total contents
of either quadruple is at least 124/175). If the quadruple 2, 3, 4, 5 violates (11c)
or (11d), then we would get the contradiction

y1 + y(2, 3, 4, 5) + y(6, 7, 8, 9) ≥ 62/175+ 27/35 + 124/175 > 9/5.

Hence the quadruple 2, 3, 4, 5 contains two buckets b1, b2 that violate (11b) with
y(b1, b2) ≥ 124/175. Symmetric arguments show that the quadruple 6, 7, 8, 9
contains two buckets b3, b4 with y(b3, b4) ≥ 124/175.

68 M.H.L. Bodlaender et al.

Let T = {1, b1, b2, b3, b4} and note x(T) ≥ y(T) − 1 ≥ 27/35. Now (11c)
implies that T contains all the four buckets that Cinderella did not touch in
the preceding round. By emptying this quadruple (together with some fifth
bucket), the remaining volume of water goes below 124/175 and all invariants are
maintained. ��
By the above lemmas we assume from now on yi < 62/175 for all i, so that
invariants (11a) and (11b) become harmless. Consider an arbitrary bucket k,
and consider the partition of the remaining eight buckets into two quadruples
T1 and T2, so that

yk < 9/5− y(T1)− y(T2). (12)

We may assume that both quadruples T1 and T2 are non-good. Then the lower
bounds y(T1), y(T2) ≥ 27/35 and (12) together yield yk < 9/35. Since k was an
arbitrary bucket, this means that every bucket triple satisfies (11c), which also
makes invariant (11c) harmless. Since T1 and T2 are non-good, we now conclude
y(T1), y(T2) ≥ 4/5. But then (12) yields yk < 1/5 for all k, and any move of
Cinderella will maintain all invariants. This completes the proof.

(Lower bound) The first phase of the balancing Stepmother ends with four
consecutive buckets (say buckets 1, 2, 3, 4) having contents very close to 1/5. The
second phase goes through three further rounds.

In the first of these rounds, the Stepmother uses set T1 = {1, 2, 3, 4, 6, 7, 8}
with all buckets except 5 and 9. The Stepmother brings every bucket in T1 to
contents 9/35. Cinderella leaves a set of four buckets, at least three of which are
in T1. These three buckets are either adjacent (say 2, 3, 4 in this first case) or
separated by a single empty bucket (say 3, 4, 6 in the second case).

In the second round the Stepmother selects the set T2 to contain five buck-
ets; in the first case she uses T2 = {2, 3, 4, 7, 8} and in the second case
T2 = {3, 4, 6, 7, 8}. The Stepmother brings every bucket in T2 to contents 62/175.
Cinderella leaves a set of four buckets, at least two of which are in T2. We rename
the buckets so that 1 and b ∈ {2, 3, 4} keep their contents 62/175.

In the third round the Stepmother uses T3 = {1, b, 6}, and fills these three
buckets up to level 299/525. Cinderella must leave at least one such bucket with
contents 299/525 at the end of the round.

5 Below the Half-Diagonal

By definition the games BG(n, c) below the half-diagonal satisfy n ≥ 2c. For
these games the harmonic sums Hk = 1 + 1

2 + 1
3 + 1

4 + . . . + 1
k seem to play a

major role. The following theorem has been observed before by Dietz & Sleator
[4] and Chrobak & al. [3].

Theorem 5. F (n, 1) = Hn−1 holds for all n ≥ 2.

Proof. (Upper bound) Let xi denote the contents of bucket i at the beginning
of some round. We argue that Cinderella can maintain the following invariants.

x(T) < (1 +Hn−1 −H|T |) |T | for all bucket sets T (13)

Cinderella versus the Wicked Stepmother 69

The Stepmother raises the bucket contents to y1, . . . , yn, and we assume that
yn ≥ yi for all i. Then for any bucket set T ⊆ {1, . . . , n− 1} we have

1

|T | y(T) ≤
1

|T |+ 1
(y(T) + yn) ≤

1

|T |+ 1
(x(T) + xn + 1)

< 1 +Hn−1 −H|T |+1 +
1

|T |+ 1
= 1 +Hn−1 −H|T |.

Therefore Cinderella can maintain the invariants by emptying the fullest
bucket n. By applying (13) to a single bucket set T = {i}, we get that all
buckets satisfy xi < Hn−1.

(Lower bound) In the first phase, the balancing Stepmother brings the filling
level of all buckets very close to 1. The first phase terminates with a set S1

of n − 1 buckets with contents L1 ≈ 1. In the second phase, the Stepmother
always chooses Tr := Sr as the set of the n− r currently fullest buckets (which
Cinderella could not empty in the preceding round), and fills all of them to level
Lr+1 = 1+Hn−1 −Hn−r−1. Then at the end of round n− 2 Cinderella has left
a bucket of contents Hn−1. �

Theorem 6. (i) F (7, 2) = 3/2 and (ii) F (9, 2) = 11/6.

Theorem 7. F (n, c) = 1 holds for all n and c with 2 ≤ n/c < 3.

The proof of Theorem 6 and the (long and technical) proof of Theorem 7 can
be found in the full version of this paper. Note that the theorems in this section
together with the monotonicity property imply all entries for n ≤ 10 below the
half-diagonal of Table 1. Furthermore Theorem 7 covers the cases with �n/c� = 2
for the following clean and natural conjecture.

Conjecture 2. F (n, c) = F (�n/c� , 1) holds for all n and c with 2 ≤ n/c.

If true, then this conjecture (in combination with Theorem 5) would determine all
values of F (n, c) below the half-diagonal. Note that the monotonicity Lemma 2
yields F (n, c) ≥ F (�n/c� , 1), and that therefore the hard part of the conjecture
is to come up with the right systems of invariants. Unfortunately, we have no
idea how to settle Conjecture 2. In fact, we cannot even settle the special case
F (13, 2) = 137/60. The games BG(n, 2) with odd n ≤ 11 can be handled by
certain types of invariant systems that we understand very well; all these sys-
tems are built around subsets of pairwise non-adjacent buckets that follow a
certain pattern. With the help of YICES we can prove that the most natural
generalization of this pattern to BG(13, 2) will not work out, since there exist
situations where Cinderella cannot maintain the corresponding invariants.

6 Final Remarks

We have settled all bucket games BG(n, c) with n ≤ 12. Some of our smaller
results started to grow together, and eventually resulted in general theorems

70 M.H.L. Bodlaender et al.

that cover large families of games (as for instance the families in Theorem 3 and
Theorem 7). There remain many open questions, and in particular there remains
our tantalizing Conjecture 2.

All our lower bounds have been derived by a suitable balancing Stepmother
strategy (sometimes in combination with monotonicity). For many games, we
performed extensive computer experiments and used backtracking algorithms
(written in Haskell) to detect the strongest balancing Stepmothers; this boils
down to checking a huge but finite number of cases.

Question 1. Does every value F (n, c) result from an adversary argument with a
balancing Stepmother (in combination with monotonicity)?

A positive answer to Question 1 would also imply the truth of the following
conjecture.

Conjecture 3. The function F (n, c) only takes rational values, and is Turing-
computable.

For some of the considered games it was far from clear how to choose the right
system of invariants, and several attempts were required before finding the right
choice. For experimenting with such invariants it was convenient to use an SMT
solver (Satisfiability Modulo Theories) which checks the satisfiability of any
Boolean formula on linear inequalities. Note that this goes far beyond linear
programming, as in linear programming the set of constraints is the conjunction
of a set of linear inequalities, whereas in SMT any combination of disjunctions
and conjunctions is allowed. Now I is an invariant system for Cinderella if the
formula

I ∧
(∑

i

yi = 1 +
∑
i

xi

)
∧

(∧
i

yi ≥ xi

)
∧

∨
j

¬Ij

is unsatisfiable. Here the formula Ij (1 ≤ j ≤ n) is obtained from I as follows. For
i = j+1, . . . , j+ c every occurrence of xi is replaced by 0, and for the remaining
indices i every occurrence of xi is replaced by yi. Our approach was to check
this by the SMT solver YICES for several candidates for I. If this formula is
unsatisfiable, we have proved the invariance and thereby derived an upper bound
on F (n, c); if it is satisfiable then YICES provides the corresponding values of xi

and yi that can be interpreted as a counterexample for the invariance. Internally,
YICES works with rational numbers in unbounded precision, and typically the
proof trees consist of thousands of indigestible case distinctions, but are found
within at most a few seconds.

References

1. Bender, M.A., Fekete, S.P., Kröller, A., Mitchell, J.S.B., Liberatore, V., Polishchuk,
V., Suomela, J.: The minimum-backlog problem. In: Proceedings of the Interna-
tional Conference on Mathematical Aspects of Computer and Information Sciences
(MACIS 2007), pp. 1–18 (2007)

Cinderella versus the Wicked Stepmother 71

2. Bodlaender, M.H.L., Hurkens, C.A.J., Woeginger, G.J.: The Cinderella Game on
Holes and Anti-holes. In: Kolman, P., Kratochv́ıl, J. (eds.) WG 2011. LNCS,
vol. 6986, pp. 71–82. Springer, Heidelberg (2011)

3. Chrobak, M., Csirik, J.A., Imreh, C., Noga, J., Sgall, J., Woeginger, G.J.: The
Buffer Minimization Problem for Multiprocessor Scheduling with Conflicts. In: Yu,
Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 862–
874. Springer, Heidelberg (2001)

4. Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. In: Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC
1987), pp. 365–372 (1987)

5. Dutertre, B., de Moura, L.: Yices – A high-performance SMT solver. Downloadable
from http://yices.csl.sri.com

6. Hurkens, A.J.C., Hurkens, C.A.J., Woeginger, G.J.: How Cinderella won the bucket
game (and lived happily ever after). Mathematics Magazine 84, 285–290 (2011)

7. Polishchuk, V., Suomela, J.: Optimal Backlog in the Plane. In: Fekete, S. (ed.)
ALGOSENSORS 2008. LNCS, vol. 5389, pp. 141–150. Springer, Heidelberg (2008)

8. Woeginger, G.J.: Combinatorics problem C5. In: Problem Shortlist of the 50th In-
ternational Mathematical Olympiad, Bremen, Germany, pp. 33–35 (2009)

http://yices.csl.sri.com

Worst- and Average-Case Privacy Breaches
in Randomization Mechanisms�

Michele Boreale1 and Michela Paolini2

1 Università di Firenze, Italy
michele.boreale@unifi.it

2 imt - Institute for Advanced Studies, Lucca, Italy

Abstract. In a variety of contexts, randomization is regarded as an effective tech-
nique to conceal sensitive information. We model randomization mechanisms as
information-theoretic channels. Our starting point is a semantic notion of security
that expresses absence of any privacy breach above a given level of seriousness
ε, irrespective of any background information, represented as a prior probability
on the secret inputs. We first examine this notion according to two dimensions:
worst vs. average case, single vs. repeated observations. In each case, we charac-
terize the security level achievable by a mechanism in a simple fashion that only
depends on the channel matrix, and specifically on certain measures of “distance”
between its rows, like norm-1 distance and Chernoff Information. We next cla-
rify the relation between our worst-case security notion and differential privacy
(dp): we show that, while the former is in general stronger, the two coincide if
one confines to background information that can be factorised into the product of
independent priors over individuals. We finally turn our attention to expected uti-
lity, in the sense of Ghosh et al., in the case of repeated independent observations.
We characterize the exponential growth rate of any reasonable utility function. In
the particular case the mechanism provides ε-dp, we study the relation of the
utility rate with ε: we offer either exact expressions or upper-bounds for utility
rate that apply to practically interesting cases, such as the (truncated) geometric
mechanism.

Keywords: Foundations of security, quantitative information flow, differential
privacy, utility, information theory.

1 Introduction

In a variety of contexts, randomization is regarded as an effective means to conceal
sensitive information. For example, anonymity protocols like Crowds [24] or the Dining
Cryptographers [11] rely on randomization to “confound” the adversary as to the true
actions undertaken by each participant. In the field of Data Mining, techniques have
been proposed by which datasets containing personal information that are released for
business or research purposes are perturbed with noise, so as to prevent an adversary

� Work partially supported by the eu funded project Ascens. Corresponding author: Michele
Boreale, Università di Firenze, Dipartimento di Sistemi e Informatica, Viale Morgagni 65,
I-50134 Firenze, Italy.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 72–86, 2012.
c© IFIP International Federation for Information Processing 2012

Worst- and Average-Case Privacy Breaches in Randomization Mechanisms 73

from re-identifying individuals or learning sensitive information about them (see e.g.
[15] and references therein).

In the last few years, interest in the theoretical principles underlying randomization-
based information protection has been steadily growing. Two major areas have by now
clearly emerged: Quantitative Information Flow (qif) [8,19,5,6,9,10,26] and Differen-
tial Privacy (dp) [13,14,21,22,16,17]. As discussed in [4], qif is mainly concerned with
quantifying the degree of protection offered against an adversary trying to guess the
whole secret; dp is rather concerned with protection of individual bits of the secret,
possibly in the presence of background information, like knowledge of the remaining
bits. The areas of qif and dp have grown separately for some time: only very recently
researchers have begun investigating the relations between these two notions [1,2,3,4].

The present paper is an attempt at distilling and systematizing the notions of security
breach underlying qif and dp. We view a randomization mechanism as an information-
theoretic channel with inputs in X and outputs inY. The starting point of our treatment
is a semantical notion of breach. Assume X is a finite set of items containing the secret
information X, about which the adversary has some background knowledge or belief,
modeled as a prior probability distribution p(x). Consider a predicate Q ⊆ X – in a
dataset about individuals, one may think of Q as gender, or membership in a given
ethnical group etc. The mere fact that X is in Q or not, if ascertained, may convey sen-
sitive information about X. Henceforth, any observation y ∈ Y that causes a significant
change in the adversary’s posterior belief about X ∈ Q must be regarded as dangerous.
In probabilistic terms, Q is a breach if, for some prior probability on X, the posterior
probability of Q after interaction with the randomization mechanism exhibits a signifi-
cant change, compared to its prior probability. We decree a randomization mechanism
as secure at level ε, if it exhibits no breach of level > ε, independently of the prior
distribution on the set of secret data X. The smaller ε, the more secure the mechanism.
This simple idea, or variations thereof, has been proposed elsewhere in the Data Min-
ing literature – see e.g. [15]. Here, we are chiefly interested in analyzing this notion of
breach according to the following dimensions.

1. Worst- vs. average-case security. In the worst-case approach, one is interested in
bounding the level of any breach, independently of how likely the breach is. In the
average-case, one takes into account the probability of the observations leading to
the breach.

2. Single vs. repeated, independent executions of the mechanism.
3. Expected utility of the mechanism and its asymptotic behavior, depending on the

number of observations and on a user-defined loss function.

To offer some motivations for the above list, we observe that worst-case is the type of
breach considered in dp, while average-case is the type considered in qif. In the worst-
case scenario, another issue we consider is resistance to background information. In
the case of dp, this is often stated in the terms that [13]: Regardless of external know-
ledge, an adversary with access to the sanitized database draws the same conclusions
whether or not my data is included, and formalized as such [17]. We investigate how
this relates to the notion of privacy breach we consider, which also intends to offer
protection against arbitrary background knowledge.

74 M. Boreale and M. Paolini

Concerning the second point, a scenario of repeated observations seems to arise quite
naturally in many applications. For instance, an online, randomized data-releasing me-
chanism might offer users the possibility of asking the same query a number of times.
This allows the user to compute more accurate answers, but also poses potential secu-
rity threats, as an adversary could remove enough noise to learn valuable information
about the secret. This is an instance of the composition attacks which are well known
in the context of dp, where they are thwarted by allotting each user or group of users
a privacy budget that limits the overall number of queries to the mechanism; see e.g.
[21,16]. For another example, in a de-anonymization scenario similar to [23], [6] shows
that gathering information about a target individual can be modeled as collecting mul-
tiple observations from a certain randomization mechanism. In general, one would like
to assess the security of a mechanism in these situations. In particular, one would like
to determine exactly how fast the level of any potential breach grows, as the number n
of independent observations grows.

The third point, concerning utility, has been the subject of intensive investigation
lately (see related work paragraph). Here, we are interested in studying the growth of
expected utility in the model of Ghosh et al. [18] as the number of independent obser-
vations grows, and to understand how this is related to security.

In summary, the main results we obtain are the following.

– In the scenario of a single observation, both in the average and in the worst case,
we characterize the security level (absence of breach above a certain threshold) of
the randomization mechanism in a simple way that only depends on certain row-
distance measures of the underlying matrix.

– We prove that our notion of worst-case security is stronger than dp. However, we
show the two notions coincide when one confines to background information that
factorises as the product of independent measures over all individuals. This, we
think, sheds further light on resistance of dp against background knowledge.

– In the scenario of repeated, independent observations, we determine the exact
asymptotic growth rate of the (in)security level, both in the worst and in the average
case.

– In the scenario of repeated, independent observations, we determine the exact
asymptotic growth rate of any reasonable expected utility. We also give bounds
relating this rate to ε-dp, and exact expressions in the case of the geometric me-
chanisms. In this respect, we argue that the geometric mechanism is superior to its
truncated version [18].

Related work. There is a large body of recent literature on qif [8,19,5,6] and dp [13,14].
The earliest proposal of a worst-case security notion is, to the best of our knowledge,
found in [15]. As mentioned, the investigation of the relations between qif and dp has
just begun. Both [4] and [2,3] discuss the implication of ε-dp on information leakage
guarantees, and vice-versa, in the case of a single observation. In the present work,
we propose and characterize both worst- and average-case semantic notions of privacy
breach, encoding resistance to arbitrary side-information, and clarify their relationships
with qif and dp. We also study the asymptotic behavior of privacy breaches depending
on the number of observations.

Worst- and Average-Case Privacy Breaches in Randomization Mechanisms 75

The notion of utility has been the subject of intensive investigation in the field of dp,
see e.g. [22,18,1,2,3] and references therein. A general goal is that of designing mecha-
nisms achieving optimal expected utility given a certain security level ε. Ghosh et al.
[18] propose a model of expected utility based on user preferences, and show that both
the geometric mechanism and its truncated version achieve universal optimality. Here
we provide the growth rate of utility, and we highlight a difference between a mecha-
nism and its truncated version, in the presence of repeated observations. Alvim et al.
[1] have shown the tight connection between utility and Bayes risk, hence information
leakage, in the case of a single observation. A different, somewhat stronger notion of
utility, called accuracy, is considered by McSherry and Talwar [22]. They do not pre-
suppose any user-specific prior over the set of possible answers; rather, they show that,
in the exponential mechanism they propose, for any database, the expected score of the
answer comes close to the maximum.

Structure of the Paper. The rest of the paper is organized as follows. In Section 2 we
review some terminology and basic concepts about Bayesian hypothesis testing and
information leakage. Section 3 characterizes the semantic security of randomization
mechanisms, both in the worst and in the average case, but limited to a single observa-
tion on the part of the adversary. Section 4 discusses the relation between dp and our
worst-case security. Section 5 discusses the asymptotic behavior of the security level in
the case of n independent observations where the secret input remains fixed, again both
in the worst and in the average case. In the worst case, we also offer a result charac-
terizing the probability, depending on n, that some sequence of observations causes a
breach. In Section 6 we deal with utility in the case of repeated observations. Section
7 discusses further work and draws some concluding remarks. Due to space limitations
proofs have been omitted; they can be found in a full version available online [7].

2 Preliminaries

We review some notation and basic concepts about Bayesian hypothesis testing and
information leakage.

2.1 Basic Terminology

Let X be a finite nonempty set. A probability distribution on X is a function p : X →
[0, 1] such that

∑
x∈X p(x) = 1. The support of p is defined as supp(p)

�
= {x ∈ X|p(x) >

0}. For any Q ⊆ X we let p(Q) denote
∑

x∈Q p(x). Given n ≥ 0, we let pn : Xn → [0, 1]
denote the n-th extension of p, defined as pn(x1, . . . , xn) �

∏n
i=1 p(xi); this is in turn a

probability distribution on the set Xn. When Q ⊆ Xn and n is clear from the context,
we shall abbreviate pn(Q) as just p(Q). For n = 0, we set p0(ε) = 1, where ε denotes
the empty tuple. Pr(·) will generally denote a probability measure defined on some pro-
bability space (understood from the context). Given a random variable X taking values
in X, we write X ∼ p(x) if X is distributed according to p(x), that is for each x ∈ X,
Pr(X = x) = p(x). We shall only consider discrete random variables. Suppose we are

76 M. Boreale and M. Paolini

given random variables X, Y,... taking values in X, Y,... and defined on the same pro-
bability space. We shall use abbreviations such as p(y|x) for Pr(Y = y|X = x), p(y|Q)
for Pr(Y = y|X ∈ Q), and so on, whenever no confusion arises about the involved
random variables X and Y. Finally, when notationally convenient, we shall denote the
conditional probability distribution onY p(·|x) (x ∈ X) as px(·). Randomization mecha-
nisms are information-theoretic channels. The use of this concept in the field of qif has
been promoted by Chatzikokolakis, Palamidessi and collaborators [9,10,8]; the systems
amenable to this form of representation are sometimes referred to as information hiding
systems (see also [5,6]).

Definition 1 (randomization mechanism). A randomization mechanism is a triple
R = (X,Y, p(·|·)), composed by a finite set of inputs X representing the secret informa-
tion, a finite set of observablesY representing the observable values, and a conditional
probability matrix, p(·|·) ∈ [0, 1]X×Y, where each row sums up to 1.

The entry of row x and column y of the channel’s matrix will be written as p(y|x), and
represents the probability of observing y, given that x is the (secret) input of the system.
For each x, the x-th row of the matrix is identified with the probability distribution on
Y given by y 	→ p(y|x), which is denoted by px. We say R is non-degenerate if x � x′
implies px � px′ , and strictly positive if p(y|x) > 0 for each x and y. Note that p(·) on X
and the conditional probability matrix p(y|x) together induce a probability distribution
q on X × Y defined as q(x, y) � p(x) · p(y|x), hence a pair of discrete random variables
(X, Y) ∼ q(x, y), with X taking values in X and Y taking values inY. Of course, one has
X ∼ p(x) and, for each x ∈ X and y ∈ Y s.t. p(x) > 0, Pr(Y = y|X = x) = p(y|x).

2.2 Bayesian Hypothesis Testing, Min-entropy, Leakage

Assume we are given a randomization mechanism R = (X,Y, p(·|·)) and an a priori
distribution p(x) on X. Assume an attacker wants to identify X on the basis of the
observation Y, where, as explained above, (X, Y) ∼ p(x) · p(y|x). This scenario can be
formalized in terms of Bayesian hypothesis testing, as follows. The attacker’s strategy
is represented by a guessing function g : Y → X. The success probability after 1
observation (relative to g) is defined as by

P(g)
succ

�
= Pr(g(Y) = X) . (1)

Correspondingly, the error probability is P(g)
e

�
= 1 − P(g)

succ. It is well-known (see e.g.
[12]) that optimal strategies, that is strategies maximizing the success probability, are
those obeying the following Maximum A Posteriori (map) criterion: for each y ∈ Y and
x ∈ X g(y) = x implies p(y|x)p(x) ≥ p(y|x′)p(x′) ∀x′ ∈ X .In what follows, we shall
always assume that g is map and consequently omit the superscript (g). The quantity
Psucc admits a number of equivalent formulations. For example, it is straightforward to
check that (cf. e.g. [26,5,6]; the sums below run over y of positive probability)

Psucc =
∑

y

p(y) max
x

p(x|y) (2)

=
∑

y

max
x

p(y|x)p(x) . (3)

Worst- and Average-Case Privacy Breaches in Randomization Mechanisms 77

Equation (2) shows clearly that Psucc results from an average over all observations y ∈
Y. This equation also establishes a connection with Rényi’s min-entropy [25]. This, for
a random variable X ∼ p(x), is defined thus (in the following, all the log’s are taken with
base 2): H∞(X)

�
= − log maxx p(x) .Conditional min-entropy of X given Y is defined as:

H∞(X|Y)
�
= − log

∑
y p(y) maxx p(x|y) .Therefore from (2)

Psucc = 2−H∞(X |Y) . (4)

Success probability is the key to defining information leakage of X given Y. This quan-
tity expresses, in bits, how much, on the average, one observation increases the success
probability of the attacker. The intuition is that a gain of one bit of leakage corresponds

to doubling the a priori success probability:L(X; Y)
�
= H∞(X)−H∞(X|Y) = log Psucc

maxx p(x) .

2.3 Asymptotic Behavior

The scenario of a single observation generalizes to the case of several, say n, indepen-
dent observations as follows. Given a prior p(x) and fixed any n ≥ 0, the adversary gets
to know the observations corresponding to n independent executions of the mechanism
R, say yn = (y1, ..., yn) ∈ Yn, throughout which the secret state x is kept fixed. Formally,
the adversary knows a random vector of observations Yn = (Y1, ..., Yn) such that, for
each i = 1, ..., n, Yi is distributed like Y and the individual Yi are conditionally indepen-
dent given X. That is, the following equality holds true for each yn ∈ Yn and x ∈ X
s.t. p(x) > 0 Pr

(
Yn = (y1, . . . , yn) | X = x

)
=
∏n

i=1 p(yi|x) .We will often abbreviate the
right-hand side of the last expression as p(yn|x). Again, for any n, the attacker’s stra-
tegy is modeled by a guessing function g : Yn → X; the optimal strategy, that we will
assume throughout the paper, is when g is map. The corresponding success and error
probabilities, which depend on n, will be denoted by Pn

succ and Pn
e , respectively1. It is

quite expected that, as n → +∞, Pn
succ → 1, and this is indeed the case, under very

mild conditions. What is important, though, is to characterize how fast the probability
of success approaches 1. Intuitively, we want be able to determine an exponent ρ ≥ 0
such that, for large n, Pn

succ ≈ 1 − 2−nρ. To this purpose, we introduce some concepts in
what follows.

Let {an}n≥0 be a sequence of nonnegative reals. Assume that τ = limn→+∞ an exists
and that an ≤ τ for each n. We define the rate of {an}n≥0 as follows:

rate({an}) �= lim
n→+∞−

1
n

log(τ − an) (5)

provided this limit exists2. When rate({an}) = ρ we also say that an reaches τ at rate
ρ, and write this as an � τ − 2−nρ .Intuitively, for large values on of n, this � can
be interpreted as ≈. The above definition is modified as expected for the case when

an ≥ τ for each n: we set rate({an}) �= limn→+∞ − 1
n log(an − τ) and write an � τ + 2−nρif

1 For the case n = 0, we set for uniformity yn �= ε (empty tuple) and p(ε|x)
�
= 1. With this choice,

P0
succ = maxx p(x).

2 More generally, we define the upper-rate (resp. lower-rate) rate({an}) (resp. rate({an})) by re-
placing the lim in (5) by lim sup (resp. lim inf).

78 M. Boreale and M. Paolini

ρ = rate({an}). Note that we do allow rate({an}) = +∞, a case that arises for example
when {an}n≥0 is a constant sequence.

The rate of growth of Pn
succ is given by Chernoff Information. Given two probability

distributions p, q on Y, we let their Chernoff Information be

C(p, q)
�
= − min

0≤λ≤1
log(

∑

y∈supp(p)∩supp(q)

pλ(y)q1−λ(y)) (6)

where we stipulate that C(p, q) = +∞ if supp(p) ∩ supp(q) = ∅. Here C(p, q) can be
thought of as a sort of distance3 between p and q: the more p and q are far apart, the
the less observations are needed to discriminate between them. More precisely, assume
we are in the binary case X = {x1, x2} (binary hypothesis testing) and let pi = p(·|xi) for
i = 1, 2. Then a well-known result gives us the rate of convergence for the probabilities
of success and error, with the proviso that p(x1) > 0 and p(x2) > 0 (cf. [12]): Pn

succ �
1−2−nC(p1,p2) and Pn

e � 2−nC(p1 ,p2)(here we stipulate 2−∞ = 0). Note that this rate does not
depend on the prior distribution p(x) on {x1, x2}, but only on the probability distributions
p1 and p2. This result extends to the general case |X| ≥ 2. ProvidedR is non-degenerate,
it is enough to replace C(p1, p2) by minx�x′ C(px, px′), thus (see [5,20]):

Pn
succ � 1 − 2−n minx�x′ C(px ,px′) (7)

Pn
e � 2−n minx�x′ C(px ,px′) (8)

(with the understanding that, in the min, p(x) > 0 and p(x′) > 0).

3 Semantic Security of Randomization Mechanisms

We shall consider two scenarios. In the worst-case scenario, one is interested in the
seriousness of a breach, independently of how much the breach is likely; this is also
the scenario underlying differential privacy, which we will examine in Section 6. In the
average-case scenario, one considers, so to speak, the seriousness of the breach avera-
ged on the probability of the observed Y. In each scenario, our aim is to characterize
when a randomization mechanism can be considered secure both in a semantic and in
an operational fashion. We fix a generic randomization mechanism R for the rest of the
section.

3.1 The Worst-Case Scenario

In the worst-case definition, we compare the probability of predicates Q ⊆ X of the
inputs, prior and posterior to one observation y ∈ Y: a large variation in the posterior
probability relative to any y implies a breach. Note that even the situation when the
posterior probability is small compared to the prior is considered as dangerous, as it
tells the adversary that X ∈ Qc is likely.

3 Note that C(p, q) = 0 iff p = q and that C(p, q) = C(q, p). However C(·, ·) fails to satisfy the
triangle inequality.

Worst- and Average-Case Privacy Breaches in Randomization Mechanisms 79

Definition 2 (worst-case breach). Let ε ≥ 0. A ε-breach (privacy breach of level ε) for
R is a subset Q ⊆ X such that for some a priori probability distribution p(x) on X, we
have p(Q) > 0 and

max
p(y)>0

| log
p(Q|y)
p(Q)

| > ε .

R is ε-secure if it has no breach of level ε. The security level of R is defined as εR
�
=

inf{ε ≥ 0 : R is ε-secure}.
If | log p(Q|y)

p(Q) | > ε, we say y causes a Q-breach of level ε.

Remark 1. Note that the condition maxy | log p(Q|y)
p(Q) | > ε can be equivalently reformu-

lated as maxy max{ p(Q|y)
p(Q) ,

p(Q)
p(Q|y) } > 2ε .

For each y ∈ Y, let πM,y and πm,y be the maximum and the minimum in the column y
of the matrix p(·|·), respectively. We give the following operational characterization of
ε-security. A similar property (amplification) was considered as a sufficient condition
for the absence of breaches in [15]. In the theorem below, we stipulate that πM,y

πm,y
= +∞

if πM,y > 0 and πm,y = 0.

Theorem 1. R is ε-secure iff log maxy
πM,y

πm,y
≤ ε.

Example 1. The following example is inspired by [15]. The private information is re-
presented by the set of integers X = {0, ..., 5}, and Y = X. We consider a mechanism
that replaces any x ∈ X by a number y that retains some information about the original
x. More precisely, we let Y = �X + ξ� mod 6, where with probability 0.5 ξ is a cho-
sen uniformly at random in {− 1

2 ,
1
2 }, and with probability 0.5 it is chosen uniformly at

random in X. We can easily compute the resulting conditional probability matrix.
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.2500 0.2500 0.0833 0.0833 0.0833 0.2500

0.2500 0.2500 0.2500 0.0833 0.0833 0.0833

0.0833 0.2500 0.2500 0.2500 0.0833 0.0833

0.0833 0.0833 0.2500 0.2500 0.2500 0.0833

0.0833 0.0833 0.0833 0.2500 0.2500 0.2500

0.2500 0.0833 0.0833 0.0833 0.2500 0.2500

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The security level of this mechanism is εR = log 0.25
0.083 = 3.0012.

3.2 The Average-Case Scenario

We want to asses the security of R by comparing the prior and posterior success proba-
bility for an adversary wanting to infer whether the secret is in Q or not after observing
Y. This will give us an average measure of the seriousness of the breach induced by Q.

Fix a prior probability distribution p(x) on X. For every nonempty Q ⊆ X, we shall
denote by Q̂ the binary random variable IQ(X), where IQ : X → {0, 1} is the indicator
function of Q – in this notation, the dependence from p(x) is left implicit, as p(x) will
always be clear from the context. An adversary, after observing Y, wants to determine
whether it holds Q̂ or Q̂c. This is a binary Bayesian hypothesis testing problem, which,
as seen in Section 2, can be formulated in terms of min-entropy.

80 M. Boreale and M. Paolini

Definition 3 (Average-case breach). Let ε ≥ 0. A ε-A-breach (average case breach
of level ε) of R is a Q ⊆ X s.t. for some a priori distribution p(x) on X, we have
that p(Q) > 0 and L(Q̂; Y) = H∞(Q̂) − H∞(Q̂|Y) > ε. R is ε-A-secure if it has no
average case breach of level ε. The A-security level of R is defined as εAR

�
= inf{ε ≥ 0 :

R is ε-A-secure}.
Of course, Y leaks at most one bit about the truth of Q: 0 ≤ L(Q̂; Y) ≤ 1. In the next
theorem, recall that for each x ∈ X, px(·) denotes the distribution p(·|x).

Theorem 2. Let l
�
= maxx,x′ ||px − px′ ||1 and ε ≥ 0. Then R is ε-A-secure iff

log(l
2 + 1) ≤ ε.

4 Worst-Case Security vs. Differential Privacy

We first introduce dp, then discuss its relation to worst-case security. The definition of
differential privacy relies on a notion of “neighborhood” between inputs of an underly-
ing randomization mechanism. In the original formulation, two neighbors x and x′ are
two database instances that only differ by one entry. More generally, one can rely upon
a notion of adjacency. An undirected graph is a pair (V, E) where V is a set of nodes
and E is a set of unordered pairs {u, v} with u, v ∈ V and u � v. We also say that E is an
adjacency relation on V and if v ∼ v′ say v and v′ are adjacent.

Definition 4 (differential privacy). A differentially private mechanism D is a pair
(R,∼) where R = (X,Y, p(·|·)) is a randomization mechanism and ∼ is an adjacency
relation on X, that is, (X,∼) forms an undirected graph.

Let ε > 0. We sayD provides ε-differential privacy if for each x, x′ ∈ X s.t. x ∼ x′, it
holds that for each y ∈ Y:

max
y
| log

p(y|x)
p(y|x′) | ≤ ε . (9)

Note that condition (9) is exactly that given in Theorem 1 to characterize worst-case
privacy breaches, but limited to pairs of adjacent rows x and x′. This prompts the ques-
tion of the exact relationship between the two notions. In the rest of the section, we will
consider the standard domain X = {0, 1}n of databases, corresponding to subsets of a
given set of individuals {1, ..., n}. We deem two databases x, x′ adjacent if they differ
for the value of exactly one individual, that is if their Hamming distance is 1 [14,3,1].
Throughout the section, we let D = (R,∼) be a generic mechanism equipped with this
X and this adjacency relation. Moreover, we will denote by Qi (i ∈ {1, ..., n}) the set of
databases {x ∈ X | xi = 1}, that is databases containing individual i.

The following theorem provides a precise characterization of (worst-case) ε-security
in terms of privacy of individuals: interaction with the mechanism does not significantly
change the belief about the participation of any individual to the database.

Theorem 3. R satisfies ε-security iff for each i ∈ {1, ..., n} and prior p(·), Qi is not an
ε-breach.

Remark 2. The above theorem is of course still valid if one strengthens the “only if”
part by requiring that both Qi and Qc

i are not ε-breach.

Worst- and Average-Case Privacy Breaches in Randomization Mechanisms 81

We proceed now by linking (worst-case) ε-security to ε-dp. The next result sets limits
to the “arbitrariness” of background information against which dp offers guarantees: for
example, it fails in some cases where an adversary has sufficient background informa-
tion to rule out all possible databases but two, which are substantially different from
each other.

Theorem 4. If R satisfies ε-security then D = (R,∼) provides ε-dp. On the contrary,
for each n there exist mechanisms providing ε-dp but not ε-security; in particular, these
mechanisms exhibit Qi-breaches (i ∈ {1, ..., n}) of level arbitrarily close to nε > ε.

Example 2. Let us consider the mechanism with input domain X = {0, 1}2, correspon-
ding to the following matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3

1
6

1
12

1
64

1
48

1
48

1
3

1
3

1
6

1
12

1
24

1
24

1
6

1
6

1
3

1
6

1
12

1
12

1
12

1
12

1
6

1
3

1
6

1
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This mechanism provides ε-dp with ε = 1. However, it is not ε-secure, as e.g. 2/3
1/12 =

8 > 2ε .

We recover coincidence between ε-security and ε-dp if we confine ourselves to back-
ground knowledge that can be factorised as the product of independent measures over
individuals. This provides another characterization of ε-dp. In what follows, for any
x ∈ X, we denote by x\i the element of {0, 1}n−1 obtained by removing the i-th compo-
nent from x.

Theorem 5. The following statements are equivalent:

1. D satisfies ε-dp;
2. for each i ∈ {1, ..., n} and p(x) of the form pi(xi)q(x\i), Qi is not an ε-breach;
3. for each p(x) of the form

∏n
j=1 p j(x j) and for each i ∈ {1, ..., n}, Qi is not an ε-

breach.

5 Asymptotic Security

We assume that the attacker collects a tuple yn = (y1, y2, . . . , yn) ∈ Yn of observations
generated i.i.d from the mechanism R. We expect that, given Q, as n grows, the breach
level approaches a threshold value. In order to the characterize synthetically the security
of the randomization mechanism, though, it is important to characterize how fast this
threshold is approached. Again, we distinguish a worst- from an average-case scenario
and, for the rest of the section, fix a generic randomization mechanism R.

5.1 Worst-Case Scenario

We begin with an obvious generalization of the notion of breach.

82 M. Boreale and M. Paolini

Definition 5 (n-breach of level ε). A (n, ε)-privacy breach is a subset Q ⊆ X s.t. for
some prior distribution p(x) on X, we have that p(Q) > 0 and

max
p(yn)>0

| log
p(Q|yn)

p(Q)
| > ε .

The next proposition says that a notion of security based on bounding the level of n-
breaches is not achievable. For the sake of simplicity, we shall discuss some of the
following results in the case R is non-degenerate (all rows of the matrix are distinct).

Proposition 1. Assume R is non-degenerate. For n large enough, R has n-breaches of
arbitrary level. More explicitly, for any nonempty Q ⊆ X and any ε ≥ 0 there is a
prior distribution p(x) s.t. for any n large enough there is yn (p(yn) > 0) such that
log p(Q|yn)

p(Q) > ε.

The above proposition suggests that, in the case of a large number of observations,
worst-case analysis should focus on how fast p(Q|yn) can grow, rather than looking at
the maximum level of a breach.

Definition 6 (rate of a breach). Let ρ ≥ 0. A breach of rate ρ is a subset Q ⊆ X such
that there exist a prior distribution p(x) on X with p(Q) > 0 and a sequence of n-tuples,
{yn}n≥0, with p(yn) > 0, such that p(Q|yn) � 1 − 2−nρ′ with ρ′ > ρ. A randomization
mechanism is ρ-rate secure if it has no privacy breach of rate ρ. The rate security level

is defined as ρR
�
= inf{ρ ≥ 0 : R is ρ-rate secure}.

Theorem 6. R is ρ-rate secure iff ρ ≥ log maxy
πM,y

πm,y
.

The above theorem says that, for large n, the seriousness of the breach, for certain yn,

can be as bad as ≈ log
1 − (πm

πM
)n

p(Q)
. The result, however, does not tell us how likely a

serious breach is depending on n. The next result shows that the probability that some
observable yn causes a Q-breach grows exponentially fast. We premise some notation.

Fix a prior p(x) over X. Recall that we let X ∼ p(x) denote a random variable rep-
resenting the secret information, and Yn = (Y1, ..., Yn) be the corresponding random
vector of n observations, which are i.i.d. given X. Let us fix Q ⊆ X s.t. p(Q) > 0. Then
p(Q|Yn) is a random variable. For any fixed ε > 0, let us consider the two events

Breachεn
�
=
{ p(Q|Yn)

p(Q)
> 2ε
}

and Breach
ε

n
�
=
{ p(Q)

p(Q|Yn)
> 2ε
}
.

Clearly, the event Breachεn ∪ Breach
ε

n is the event that Yn causes a Q-breach of level
ε. As n grows, we expect that the probability of this event approaches 1 quite fast. The
next theorem tells us exactly how fast.

Theorem 7. Assume R is non-degenerate and strictly positive. Then, with the notation
introduced above

Pr(Breachεn|X ∈ Q) � 1 − 2−nC and Pr(Breach
ε

n|X ∈ Qc) � 1 − 2−nC

where C = minx∈Q,x′∈Qc C(px, px′), with the understanding that x and x′ in the min
are taken of positive probability. As a consequence, the probability that Yn causes a
Q-breach reaches 1 at rate at least C.

Worst- and Average-Case Privacy Breaches in Randomization Mechanisms 83

5.2 Average-Case Scenario

It is straightforward to extend the definition of average-case breach to the case with
multiple observations. For any nonempty subset Q ⊆ X, and random variable X ∼ p(x),
s.t. p(Q) > 0, we consider Q̂ = IQ(X) and define the leakage imputable to Q after n
observations as

Ln(Q̂; Yn) � H∞(Q̂) − H∞(Q̂|Yn).

An n-breach of level ε ≥ 0 is a Q such that Ln(Q̂; Yn) > ε. Recall from (4) that
Pn

succ = 2−H∞(Q̂|Yn) is the success probability of guessing between p(·|Q) and p(·|Qc)
after observing Yn. Provided p(·|Q) � p(·|Qc), (7) implies that, as n → +∞ we have
Pn

succ → 1, hence Ln(Q̂; Yn) → − log max{p(Q), 1 − p(Q)} . If p(·|Q) = p(·|Qc) then
Pn

succ is constantly max{p(Q), 1 − p(Q)}, so that the observations give no advantage to
the attacker. These remarks suggest that, in the case of repeated observations, it is again
important to characterize how fast Pn

succ → 1.

Definition 7 (rate of a breach - average case). Let ρ ≥ 0. An A-breach of rate ρ is
a subset Q ⊆ X such that for some prior distribution p(x) on X with p(Q) > 0 one
has that Pn

succ � 1 − 2−nρ′ , for some ρ′ > ρ. A randomization mechanism is ρ-rate
A-secure if it has no privacy breach of rate ρ. The rate A-security level is defined as

ρA
R
�
= inf{ρ ≥ 0 : R is ρ-rate A-secure}.

Now we can proceed with the following theorem.

Theorem 8. R is ρ-rate A-secure iff maxx,x′ C(px, px′) ≤ ρ.

6 Utility

We next turn to the study of utility. In the rest of the section, we fix a mechanism R and
a prior distribution p(·). Without any significant loss of generality, we shall assume that
R is strictly positive and that supp(p) = X. Moreover, in this section, we shall work
under the more general assumption that Y is finite or denumerable.

For any n ≥ 1, we are now going to define the expected utility of R, depending on
user-specific belief, modeled as a prior p(·) on X, and on function loss : X × X → R+.
Here, loss(x, x′) represents the loss of a user who interprets the result of an observation
ofR as x′, given that the real answer is x. For the sake of simplicity, we shall assume that
loss achieves a proper minimum when x = x′: for each x � x′, loss(x, x) < loss(x, x′).
We also presuppose a guessing function g : Yn → X. The expected utility of D –
relative to g – after n observations is in fact defined as an expected loss (the lower the
better), thus

Un
�
=
∑

x

p(x)
∑

yn

p(yn|x)loss(x, g(yn)) . (10)

Note that this definition coincides with that of Ghosh et al. [18] when one interprets our
guessing function g as the remap considered in [18]. This is also the utility model of
Alvim et al. [3], modulo the fact they only consider the 0/1-loss, or better, the comple-
mentary gain.

84 M. Boreale and M. Paolini

Example 3. When Y is a subset of the reals, legal loss functions include the absolute
value error loss(x, x′) = |x′ − x| and the squared error loss(x, x′) = (x′ − x)2. The binary
loss function defined as 0 if x = x′ and 1 otherwise is another example: the resulting
expected loss is just error probability, Un = Pn

e .

It is quite easy to argue that, since a proper minimum in loss(x, x′) is reached when
x = x′, the utility is maximized asymptotically when g respects the map criterion:
p(g(yn)|yn) ≥ p(x|yn) for each x ∈ X. In what follows, we just assume that g is a fixed
map function. Below, we study the behavior of utility in relation to differential privacy.
The crucial quantity is

ρR
�
= min

x,x′∈X,px�px′
C(px, px′) . (11)

We will show that the the asymptotic rate of utility is determined solely by ρR. Note
that this quantity does not depend on the user-defined loss function, nor on the prior
p(·). For the sake of simplicity, below we discuss the result only in the case when R is
non-degenerate4.

Remark 3. We note that the formula (6) for Chernoff Information extends to the case
when p(·) and q(·) have the same denumerable support.

Theorem 9. Assume R is non-degenerate. Then Un � UR + 2−nρR , where UR
�
=

∑
x p(x)loss(x, x).

Having established the centrality of ρR in the asymptotic behavior of utility, we now
discuss the relationship of this quantity with the worst-case security level ε provided
by the mechanism. The first result provides us with a simple, general bound relating ρR
and ε.

Theorem 10. Assume R is worst-case ε-secure. Then ρR ≤ ε. The same conclusion
holds ifD = (R,∼) provides ε-dp.

In what follows, we will obtain more precise results relating ε to the utility rate ρR
in the case of a class of mechanisms providing ε-dp. Specifically, we will consider
mechanisms with a finite input domain X = {0, 1, . . . ,N}, a denumerable Y = Z and
a conditional probability matrix of the form pi(j) = Mc|i− j|, for some positive c <
1. This class of mechanisms includes the geometric mechanism (a discrete variant of
the Laplacian mechanism, see [18]) and also a version extended to Z of the optimal
mechanism considered by Alvim et al. [3].

Theorem 11. LetR be a mechanism as described above. Then ρR = log(1+c)− 1
2 log c−1 .

Remark 4. The geometric mechanism is obtained by equipping the above described
mechanism with the the line topology overX = {0, ...,N}: i ∼ j iff di j

�
= |i− j| = 1. This

is the topology for counting queries in “oblivious” mechanisms, for example. If we set
c = 2−ε , then this mechanism provides ε-dp. The above theorem tells us that in this case
ρR = ε2 + log 1+2−ε

2 . By setting e.g. ε = 1, one gets ρR ≈ 0.085.

4 The result carries over to the general case, at the cost of some notational burden: one has to
replace UR with a more complicated expression.

Worst- and Average-Case Privacy Breaches in Randomization Mechanisms 85

For any mechanism R with input X = {0, ...,N} and outputY = Z, we can consider the
corresponding truncated mechanism R′: it has X = Y = {0, 1, . . . ,N} and its matrix
is obtained from R’s by summing all the columns y < 0 to column y = 0, and all the
columns y > N to column y = N.

Corollary 1. Assume R′ is the truncated version of a mechanism R. Then ρR′ < ρR.

In the case of a single observation case, treated by Ghosh et al. [18], there is no sub-
stantial difference between the geometric mechanism and the truncated geometric one.
Corollary 1 shows that the situation is different in the case with repeated observations.

7 Conclusion and Further Work

We have analyzed security of randomization mechanisms against privacy breaches with
respect to various dimensions (worst vs. average case, single vs. repeated observations,
utility). Whenever appropriate, we have characterized the resulting security measures
in terms of simple row-distance properties of the underlying channel matrix. We have
clarified the relation our worst-case measure with dp.

A problem left open by our study is the exact relationship between our average-case
security notion and the maximum leakage considered in qif – see e.g. [19]. We would
also like to apply and possibly extend the results of the present paper to the setting
of de-anonymization attacks on dataset containing micro-data. [23] has shown that the
effectiveness of these attacks depends on certain features of sparsity and similarity of
the dataset, which roughly quantify how difficult it is to find two rows of the dataset that
are similar. The problem can be formalized in terms of randomization mechanisms with
repeated observations – see [6] for some preliminary results on this aspect. Then the
row-distance measures considered in the present paper appear to be strongly related to
the notion of similarity, and might play a crucial in the formulation of a robust definition
of dataset security.

References

1. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: Differential
Privacy: On the Trade-Off between Utility and Information Leakage. In: Barthe, G., Datta,
A., Etalle, S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 39–54. Springer, Heidelberg (2012)

2. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Palamidessi, C.: Quantitative Information
Flow and Applications to Differential Privacy. In: Aldini, A., Gorrieri, R. (eds.) FOSAD
2011. LNCS, vol. 6858, pp. 211–230. Springer, Heidelberg (2011)

3. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Palamidessi, C.: On the Relation between
Differential Privacy and Quantitative Information Flow. In: Aceto, L., Henzinger, M., Sgall,
J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 60–76. Springer, Heidelberg (2011)

4. Barthe, G., Köpf, B.: Information-theoretic Bounds for Differentially Private Mechanisms.
In: 24rd IEEE Computer Security Foundations Symposium, CSF 2011, pp. 191–204. IEEE
Computer Society (2011)

5. Boreale, M., Pampaloni, F., Paolini, M.: Asymptotic Information Leakage under One-Try
Attacks. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 396–410. Springer,
Heidelberg (2011), Full version to appear on MSCS available at
http://rap.dsi.unifi.it/~boreale/Asympt.pdf

http://rap.dsi.unifi.it/~boreale/Asympt.pdf

86 M. Boreale and M. Paolini

6. Boreale, M., Pampaloni, F., Paolini, M.: Quantitative Information Flow, with a View. In:
Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 588–606. Springer, Heidel-
berg (2011)

7. Boreale, M., Paolini, M.: Worst- and average-case privacy breaches in randomization mecha-
nisms. Full version of the present paper,
http://rap.dsi.unifi.it/~boreale/FullBreach.pdf

8. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative Notions of Leakage for One-
try Attacks. In: Proc. of MFPS 2009. Electr. Notes Theor. Comput. Sci, vol. 249, pp. 75–91
(2009)

9. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy chan-
nels. Information and Computation 206(2-4), 378–401 (2008)

10. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: On the Bayes risk in information-
hiding protocols. Journal of Computer Security 16(5), 531–571 (2008)

11. Chaum, D.: The Dining Cryptographers Problem: Unconditional Sender and Recipient Un-
traceability. Journal of Cryptology 1(1), 65–75 (1988)

12. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. John Wiley Sons
(2006)

13. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

14. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private
Data Analysis. In: Proc. of the 3rd IACR Theory of Cryptography Conference (2006)

15. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting Privacy Breaches in Privacy Preserving
Data Mining. In: Proc. of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (2003)

16. Friedman, A., Shuster, A.: Data Mining with Differential Privacy. In: Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
(2010)

17. Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition Attacks and Auxiliary Informa-
tion in Data Privacy. In: Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD (2008)

18. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy me-
chanisms. In: STOC 2009, pp. 351–360 (2009)

19. Köpf, B., Smith, G.: Vulnerability Bounds and Leakage Resilience of Blinded Cryptography
under Timing Attacks. In: CSF 2010, pp. 44–56 (2010)

20. Leang, C.C., Johnson, D.H.: On the asymptotics of M-hypothesis Bayesian detection. IEEE
Transactions on Information Theory 43, 280–282 (1997)

21. McSherry, F.: Privacy Integrated Queries. In: Proceedings of the 2009 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD (2009)

22. McSherry, F., Talwar, K.: Mechanism Design via Differential Privacy. In: Proceedings An-
nual IEEE Symposium on Foundations of Computer Science, FOCS (2007)

23. Narayanan, A., Shmatikov, V.: Robust De-anonymization of Large Sparse Datasets. In: Proc.
of IEEE Symposium on Security and Privacy (2008)

24. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for Web Transactions. ACM Trans. Inf. Syst.
Secur. 1(1), 66–92 (1998)

25. Rényi, A.: On Measures of Entropy and Information. In: Proc. of the 4th Berkeley Sympo-
sium on Mathematics, Statistics, and Probability, pp. 547–561 (1961)

26. Smith, G.: On the Foundations of Quantitative Information Flow. In: de Alfaro, L. (ed.)
FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

http://rap.dsi.unifi.it/~boreale/FullBreach.pdf

Weak Bisimulations for Coalgebras

over Ordered Functors

Tomasz Brengos�

Faculty of Mathematics and Information Sciences
Warsaw University of Technology

Koszykowa 75
00-662 Warszawa, Poland

t.brengos@mini.pw.edu.pl

Abstract. The aim of this paper is to introduce a coalgebraic setting in
which it is possible to generalize and compare the two known approaches
to defining weak bisimulation for labelled transition systems. We intro-
duce two definitions of weak bisimulation for coalgebras over ordered
functors, show their properties and give sufficient conditions for them to
coincide. We formulate a weak coinduction principle.

Keywords: coalgebra, bisimulation, saturator, weak bisimulation, weak
coinduction.

1 Introduction

The notion of a strong bisimulation for different transition systems plays an im-
portant role in theoretical computer science. A weak bisimulation is a relaxation
of this notion by allowing silent, unobservable transitions. It is a well estab-
lished notion for many deterministic and probabilistic transition systems (see
[1], [4], [7], [8]). For many state-based systems one can equivalently introduce
weak bisimulation in two different ways one of which has computational advan-
tages over the other. To be more precise we will demonstrate this phenomenon
on labelled transition systems. By a labelled transition system (or LTS in short)
we mean a tuple 〈A,Σ,→〉, where A is a set of states, Σ is a non-empty set
called an alphabet and → is a subset of A×Σ×A and is called a transition. For
an LTS 〈A,Σ,→〉 and s ∈ Σ we define a relation on A by

s→:= {(a, a′) ∈ A2 | (a, s, a′) ∈→}.

For a fixed alphabet letter τ ∈ Σ, representing a silent, unobservable transition

label, and an LTS 〈A,Σ,→〉 let τ∗
→ be the reflexive and transitive closure of the

relation
τ→. The following definition of a weak bisimulation for LTS can be found

in [4].

� This work has been supported by the European Union in the framework of European
Social Fund through the Warsaw University of Technology Development Programme
and the grant of Warsaw University of Technology no. 504M for young researchers.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 87–103, 2012.
c© IFIP International Federation for Information Processing 2012

88 T. Brengos

Definition 1. A relation R ⊆ A × A is a weak bisimulation if it satisfies the

following conditions. For (a, b) ∈ R and σ �= τ if a
τ∗
→ ◦ σ→ ◦ τ∗

→ a′ then there

is b′ ∈ A such that b
τ∗
→ ◦ σ→ ◦ τ∗

→ b′ with (a′, b′) ∈ R and conversely, for

b
τ∗
→ ◦ σ→ ◦ τ∗

→ b′′ there is a′′ ∈ A such that a
τ∗
→ ◦ σ→ ◦ τ∗

→ a′′ and (a′′, b′′) ∈ R.

Moreover, for σ = τ if a
τ→

∗
a′ then b

τ→
∗
b′ for some b′ ∈ B with (a′, b′) ∈ R

and conversely, if b
τ→

∗
b′′ then a

τ→
∗
a′′ for some a′′ ∈ A and (a′′, b′′) ∈ R.

It is easily shown we can equivalently restate the definition of a weak bisimulation
as follows.

Definition 2. A relation R ⊆ A × A is a weak bisimulation if it satisfies the

following condition. If (a, b) ∈ R then for σ �= τ if a
σ→ a′ then b

τ→
∗
◦ σ→ ◦ τ→

∗
b′

for some b′ ∈ A and (a′, b′) ∈ R, for σ = τ if a
τ→ a′ then b

τ→
∗
b′ for some

b′ ∈ A and (a′, b′) ∈ R, moreover for σ �= τ if b
σ→ b′ then a

τ→
∗
◦ σ→ ◦ τ→

∗
a′ for

some a′ ∈ A and (a′, b′) ∈ R, for σ = τ if b
τ→ b′ then a

τ→
∗
a′ for some a′ ∈ A

and (a′, b′) ∈ R.

From the point of view of computation and automatic reasoning the latter ap-
proach to defining weak bisimulation is better since, unlike the former, it does
not require the knowledge of the full saturated transition. Indeed, in order to
show that two states a, b ∈ A of a labelled transition system 〈A,Σ,→〉 are
weakly bisimilar in the sense of Definition 1 one needs to consider all states

a′ ∈ A reachable from a via the saturated transitions
τ→

∗
◦ σ→ ◦ τ→

∗
or

τ→
∗
and

compare them with similar states reachable from b. Whereas, to prove that two
states a, b ∈ A are weakly bisimilar in the sense of Definition 2 one needs to
consider all states reachable from a via single step transitions

σ→ and compare
them with some states reachable from b via the saturated transitions.

The notion of a strong bisimulation, unlike the weak bisimulation, has been
well captured coalgebraically (see e.g. [2],[11]). Different approaches to defining
weak bisimulations for coalgebras have been presented. The earliest paper is
[10], where the author studies weak bisimulations for while programs. In [5] the
author introduces a definition of weak bisimulation for coalgebras by translating
a coalgebraic structure into an LTS. This construction works for coalgebras over
a large class of functors but does not cover the distribution functor, hence it is not
applicable to different types of probabilistic systems. In [6], weak bisimulations
are introduced via weak homomorphisms. As noted in [9] this construction does
not lead to intuitive results for probabilistic systems. Finally, in [9] the authors
present a definition of weak bisimulation for classes of coalgebras over functors
obtained from bifunctors. Here, weak bisimulation of a system is defined as a
strong bisimulation of a transformed system. First of all, it is worth noting
that, although very interesting, neither of the approaches cited above expresses
coalgebraically the computational advantages of Definition 2 over Definition 1.
Secondly, all of them require to explicitly work with observable and unobservable
part of the coalgebraic structure. The method of defining weak bisimulation
presented in this paper only requires that a saturator is given and no explicit
knowledge of silent and visible part of computation is neccessary.

Weak Bisimulations for Coalgebras over Ordered Functors 89

The aim of this paper is to introduce a coalgebraic setting in which we can
define weak bisimulation in two ways generalizing Definition 1 and Definition
2 and compare them. Additionally, we formulate a weak coinduction principle.
The paper is organized as follows. In Section 2 we present basic definitions and
properties from known universal coalgebra. In Section 3 we present a definition
of a saturator and present some natural and well-known examples of saturators.
In Section 4 we give two approaches to defining weak bisimulation via saturators
and show their properties. Finally, Section 5 is devoted to formulation of a weak
coinduction rule.

2 Basic Notions and Properties

Let Set be the category of all sets and mappings between them. Let F : Set→ Set
be a functor. An F -coalgebra is a tuple 〈A,α〉, whereA is a set and α is a mapping
α : A→ FA. The set A is called a carrier and the mapping α is called a structure
of the coalgebra 〈A,α〉.

A homomorphism from an F -coalgebra 〈A,α〉 to a F -coalgebra 〈B, β〉 is a
mapping f : A→ B such that T (f) ◦ α = β ◦ f .

An F -coalgebra 〈S, σ〉 is said to be a subcoalgebra of an F -coalgebra 〈A,α〉
whenever there is an injective homomorphism from 〈S, σ〉 into 〈A,α〉. This fact
is denoted by 〈S, σ〉 ≤ 〈A,α〉.

We denote the disjoint union of a family {Xj}j∈J of sets by Σj∈JXj . Let
{〈Ai, αi〉}i∈I be a family of F -coalgebras. The disjoint sum Σi∈I〈Ai, αi〉 of the
family {〈Ai, αi〉}i∈I of F -coalgebras is an F -coalgebra defined as follows. The
carrier set of the disjoint sum Σi∈I〈Ai, αi〉 is the disjoint union of the carriers
of 〈Ai, αi〉, i.e. A := Σi∈IAi. The structure α of the disjoint sum Σi∈I〈Ai, αi〉 is
defined as

α : A→ FA;Ai � a 	→ F (ei) ◦ αi(a),

where ei : Ai → A; a 	→ (a, i) for any i ∈ I.
A functor F : Set → Set preserves pullbacks if for any mappings f : A → B

and g : C → B and their pullback P (f, g) = {(a, c) ∈ A× C | f(a) = g(c)} with
π1 and π2 the following diagram is a pullback diagram.

FA
Ff �� FB

F [P (f, g)]

Fπ1

��

Fπ2 �� FC

Fg

��

We say that F weakly preserves pullbacks if the diagram above is a weak pullback.
A functor F (weakly) preserves kernel pairs if it (weakly) preserves pullbacks
P (f, f), π1, π2 for any mapping f : A → B. For a detailed analysis of pullback
and kernel pair preservations the reader is referred to [2].

Let Pos be the category of all posets and monotonic mappings. Note that
there is a forgetful functor U : Pos → Set assigning to each poset (X,≤) the
underlying set X and to each monotonic map f : (X,≤) → (Y,≤) the map
f : X → Y .

90 T. Brengos

From now on we assume that a functor F we work with is F : Set→ Pos. We
may naturally assign to F its composition F̄ = U ◦ F with the forgetful functor
U : Pos → Set. For the sake of simplicity of notation most of the times we will
identify the functor F : Set → Pos with the Set-endofunctor F̄ = U ◦ F and
write F to denote both F and F̄ . Considering set-based coalgebras over functors
whose codomain category is a concrete category different from Set is not a new
approach. A similar one has been adopted by e.g. J. Hughes and B. Jacobs in
[3] when definining simulations for coalgebras.

Example 1. The powerset endofunctor P : Set→ Set can be considered a functor
P : Set→ Pos which assigns to any set X the poset (P(X),⊆) and to any map
f : X → Y the order preserving map P(f).

Example 2. For any functorH : Set→ Set the composition PH may be regarded
as a functor PH : Set→ Pos with a natural ordering given by inclusion. In this
paper we will focus our attention on coalgebras over the following functors:

– P(Σ × Id),
– P(Σ + Id),
– P(Σ ×D),

where D is the distribution functor, i.e. a functor which assigns to any set X the
set DX := {μ : X → [0, 1] |

∑
x∈X μ(x) = 1} of discrete measures and to any

mapping f : X → Y a mapping Df : DX → DY , which assigns to any measure
μ ∈ DX the measure Df(μ) : Y → [0, 1] such that

Df(μ)(y) =
∑

f(x)=y

μ(x) for any y ∈ Y.

The coalgebras over the first functor are exactly labelled transition systems.
The coalgebras for P(Σ+Id) expand a class of coalgebras studied by J. Rutten
in [10]. Finally, the P(Σ × D)-coalgebras generalize the class of simple Segala
systems introduced and thoroughly studied in [7],[8].

For a functor F : Set→ Pos and for any sets X,Y we introduce an order on the
set Hom(X,FY) as follows. For f, g ∈ Hom(X,FY) put

f ≤ g
def⇐⇒ f(x) ≤FY g(x) for any x ∈ X.

Given f : X → Y , α : X → FZ, g : Z → U and β : Y → FU an inequality
Fg ◦α ≤ β ◦f will be denoted by a diagram on the left and an equality Fg ◦α =
β ◦ f will be denoted by a diagram on the right:

X
≤

f ��

α ��

Y
β��

X
=

f ��

α ��

Y
β��

FZ
Fg

�� FU FZ
Fg

�� FU

Weak Bisimulations for Coalgebras over Ordered Functors 91

Lemma 1. Let α, β ∈ Hom(X,FY) and let f : Z → X be an epimorphism in
Set. If α ◦ f ≤ β ◦ f in Hom(Z, FY) then α ≤ β in Hom(X,FY).

Proof. Since α ◦ f ≤ β ◦ f then for any z ∈ Z we have α(f(z)) ≤FY β(f(z)).
Because f(Z) = X we have α(x) ≤FY β(x) for any x ∈ X . Hence, α ≤ β in
Hom(X,FY). ��

3 Coalgebraic Operators and Saturators

Definition 3. Let U : SetF → Set be the forgetful functor and let C be full
subcategory of the category of F -coalgebras and homomorphisms between them
which is closed under taking inverse images of homomorphisms, i.e. if 〈B, β〉 ∈
C and there is a homomorphism f : 〈A,α〉 → 〈B, β〉 for 〈A,α〉 ∈ SetF then
〈A,α〉 ∈ C. A coalgebraic operator o with respect to a class C is a functor
o : C→ SetF such that the following diagram commutes:

C
o ��

U ���
��

��
��

� SetF

U

��
Set

In other words, if f : A → B is a homomorphism between two F -coalgebras
〈A,α〉 and 〈B, β〉 belonging to C then f is a homomorphism between 〈A, oα〉 and
〈B, oβ〉, i.e.

A
=α ��

f �� B
β =⇒��

A
=oα ��

f �� B
oβ��

FB
Ff

�� FB FA
Ff

�� FB

We say that a coalgebraic operator s with respect to a class C is a saturator if
for any two F -coalgebras 〈A,α〉, 〈B, β〉 from C and any mapping f : A→ B the
inequality Ff ◦α ≤ sβ ◦ f is equivalent to Ff ◦ sα ≤ sβ ◦ f . We may express the
property in diagrams as follows:

A
≤α ��

f �� B
sβ ⇐⇒��

A
≤sα ��

f �� B
sβ��

FA
Ff

�� FB FA
Ff

�� FB

Lemma 2. Let s : C → SetF be an operator w.r.t. a full subcategory C of SetF
and additionally let s(C) ⊆ C. Then s is a saturator if and only if it satisfies the
following three properties:

– α ≤ sα for any coalgebra 〈A,α〉 ∈ C (extensivity),
– s ◦ s = s (idempotency),
– if Ff ◦α ≤ β ◦ f then Ff ◦ sα ≤ sβ ◦ f for any f : X → Y (monotonicity):

92 T. Brengos

A
≤α ��

f �� B
β =⇒��

A
≤sα ��

f �� B
sβ��

FA
Ff

�� FB FA
Ff

�� FB

The intuition behind the notion of a saturator is the following. Given a coal-
gebraic structure α : A → FA it contains some information about observable
and unobservable single step transitions. The process of saturating a structure
intuitively boils down to adding additional information to α about multiple com-
positions of unobservable steps and a single composition of observable transitions
(see examples below). Since for any set A the set FA is intuitively considered
as the set of all possible outcomes of a computation, the partial order ≤ on FA
compares those outcomes. In particular, the property of extensivity of a satu-
rator means the saturated structure sα contains at least the same information
about single-step transitions as α (in the sense of the partial order ≤). Idempo-
tency means that the process of adding new information to α by saturating it
ends after one iteration. Finally, monotonicity is self-explanatory.

Example 3. Let Σ be a non-empty set. Any LTS 〈A,Σ,→〉 may be represented
as a P(Σ × Id)-coalgebra 〈A,α〉 as follows. We define α : A→ P(Σ ×A) by:

(σ, a′) ∈ α(a) ⇐⇒ a
σ→ a′.

Let τ ∈ Σ be a silent transition label. For a coalgebra structure α : A→ P(Σ×A)
we define its saturation sα : A → P(Σ × A) as follows. For any element a ∈ A
put

sα(a) := α(a) ∪ {(τ, a′) | a τ∗
→ a′} ∪ {(σ, a′) | a τ∗

→ ◦ σ→ ◦ τ∗
→ a′ for σ �= τ}.

Verifying that s : SetP(Σ×Id) → SetP(Σ×Id); 〈A,α〉 	→ 〈A, sα〉 is a coalgebraic
saturator with respect to the class of all P(Σ × Id)-coalgebras is left to the
reader.

Example 4. Consider the functor F = P(Σ + Id). Let α : A → P(Σ + A) be a
structure of an F -coalgebra 〈A,α〉. For the sake of simplicity of notation for any
a ∈ A let η(a) := α(a)∩A and θ(a) := α(a)∩Σ. Put η∗(a) := {a}∪

⋃
n∈N

ηn(a),
where ηn(a) := η(ηn−1(a)) for n > 1 and θ∗(a) := θ(η∗(a)). Define the saturation
sα : A→ FA as follows:

sα(a) := η∗(a) ∪ θ∗(a) for any a ∈ A.

The assignment s is a coalgebraic saturator with respect to the class of all F -
coalgebras.

Example 5. For the functor F = P(Σ×D), an F -coalgebra 〈A,α〉, a state a ∈ A

and σ ∈ Σ we write a
σ→ μ if (σ, μ) ∈ α(a). For a state a ∈ A and a measure

ν ∈ D(Σ × A) a pair (a, ν) is called a step in 〈A,α〉 only if there is σ ∈ A

and μ ∈ DA such that a
σ→ μ and ν(σ, a′) = μ(a′) for any a′ ∈ A. A combined

Weak Bisimulations for Coalgebras over Ordered Functors 93

step in 〈A,α〉 is a pair (a, ν), where a ∈ A and ν ∈ D(Σ × A) for which there
is a countable family of non-negative numbers {pi}i∈I such that

∑
i∈I pi = 1

and a countable family of steps {(a, νi)}i∈I in 〈A,α〉 such that ν =
∑

i∈I pi · νi.
The definition of a combined step is a slight modification of a similar definition
presented in [7]. The notion of weak arrows

σ
=⇒ P remains the same regardless

of the small difference between the two definitions. Let τ ∈ Σ be the invisible
transition. As in [7] for any σ ∈ Σ we write a

σ
=⇒ P μ whenever σ = τ and

μ ∈ DA for which μ(a) = 1 or there is a combined step (a, ν) in 〈A,α〉 such that if
(σ′, a′) /∈ {σ, τ}×A then ν(σ′, a′) = 0 and μ =

∑
(σ′,a′)∈{σ,τ}×A ν(σ′, a′) ·μ(σ′,a′)

and if σ′ = σ then a′ τ
=⇒ P μ(σ′,a′) otherwise σ

′ = τ and a′ σ
=⇒ P μ(σ′,a′). Now,

define sα : A→ FA by putting sα(a) := {(σ, μ) | a σ
=⇒ P μ} for any a ∈ A. A

proof that s is a coalgebraic saturator is left to the reader.

4 Two Approaches to Defining Weak Bisimulation

In this section we assume that 〈A,α〉 and 〈B, β〉 are members of the class C.

Definition 4. A relation R ⊆ A×B is called a weak bisimulation provided that
there is a structure γ1 : R→ FR and a structure γ2 : R→ FR for which:

– α ◦ π1 = Fπ1 ◦ γ1 and Fπ2 ◦ γ1 ≤ sβ ◦ π2,
– β ◦ π2 = Fπ2 ◦ γ2 and Fπ1 ◦ γ2 ≤ sα ◦ π1.

A

=α ��

R

γ1 ��

π1�� π2 ��

≤
B

sβ��

A

≥sα ��

R

γ2 ��

π1�� π2 ��

=

B

β��
FA FR

Fπ1

��
Fπ2

�� FB FA FR
Fπ1

��
Fπ2

�� FB

Example 6. Consider the LTS functor F = P(Σ × Id) and the saturator s
introduced in Example 3. Let 〈A,α〉 be an F -coalgebra. Consider a relation
R ⊆ A × A which satisfies the assumptions of Definition 4. This means that if
(a, b) ∈ R then there is γ1 : R → P(Σ × R) such that α(a) = F (π1)(γ1(a, b))
and F (π2)(γ1(a, b)) ⊆ sα(b). In other words, there is a subset S ⊆ Σ × R such
that γ1(a, b) = S and F (π1)(S) = α(a) and F (π2)(S) ⊆ sα(b). This means that
for any (σ, a′) ∈ α(a) there is b′ ∈ A such that (σ, b′) ∈ sα(b) and (a′, b′) ∈ R.

Hence, if σ = τ then a
τ→ a′ implies b

τ∗
→ b′ and (a′, b′) ∈ R otherwise a

σ→ a′

implies b
τ∗στ∗
→ b′ and (a′, b′) ∈ R. The second condition from Definition 4 gives

us the following assertion. If (a, b) ∈ R and b
τ→ b′ then there is a′ ∈ A such

that a
τ∗
→ a′ and (a′, b′) ∈ R. Moreover, if for σ �= τ we have b

σ→ b′ then there

is a′ ∈ A such that a
τ∗στ∗
→ a′ and (a′, b′) ∈ R. We see that this is exactly the

condition presented in Definition 2.

Example 7. Consider the functor F = P(Σ + Id) and the saturator s from
Example 4. Since the functor Σ + Id is a subfunctor of F take an F -coalgebra

94 T. Brengos

〈A,α〉 which is a Σ + Id-coalgebra, i.e. the structure α is a mapping α : A →
Σ+A. Now take a relation R ∈ A×A which satisfies the assumptions presented
in Definition 4 and let (a, b) ∈ R. This means that there is a structure γ1 :
R → P(Σ + R) such that F (π1)(γ1(a, b)) = α(a) and F (π2)(γ1(a, b)) ⊆ sα(a).
In other words there is a pair X,S of subsets, where X ⊆ R and S ⊆ Σ, and
F (π1)(X ∪ S) = (π1(X) ∪ S) = α(a) and F (π2)(X ∪ S) = (π2(X) ∪ S) ⊆ sα(a).
If α(a) = a′ ∈ A then this means that π1(X) = {a′} and S = ∅. Hence,
there is b′ ∈ A such that (a′, b′) ⊆ X ⊆ R and b′ ∈ η∗(b) = {b′′ | b →∗ b′′}.
If α(a) = σ ∈ Σ then π1(X) = ∅, and hence X = ∅, S = {σ}. Therefore,
σ ∈ θ∗(b). It follows that there is b′ ∈ B such that b →∗ b′ and b′ ↓ σ. By the
second condition of Definition 4 we infer that if b → b′ then there is a′ ∈ A
such that a →∗ a′ and (a′, b′) ∈ R. Otherwise if b ↓ σ ∈ Σ then there is a′ ∈ A
such that a→∗ a′ and a′ ↓ σ. This definition coincides with a definition of weak
bisimulation between Σ + Id-coalgebras presented in [10].

Example 8. Let F = P(Σ × D) and consider the saturator s : SetF → SetF
defined in Example 5. It is easy to see that for two simple Segala systems
〈A,α〉, 〈B, β〉 a relation R ⊆ A × B is a weak bisimulation provided that

the following condition holds. If (a, b) ∈ R and a
σ→ μ then b

σ
=⇒ P μ′ and

(μ, μ′) ∈ (Fπ1, Fπ2)(DR). Moreover, if (a, b) ∈ R and b
σ→ μ′ then a

σ
=⇒ P μ

and (μ, μ′) ∈ (Fπ1, Fπ2)(DR). This definition coincides with the one presented
in [7],[8].

Proposition 1. Let R ⊆ A×B be a standard bisimulation between 〈A,α〉 and
〈B, β〉. Then R is also a weak bisimulation between 〈A,α〉 and 〈B, β〉.

Theorem 1. If a relation R ⊆ A×B is a weak bisimulation between 〈A,α〉 and
〈B, β〉 then R−1 = {(b, a) | (a, b) ∈ R} is a weak bisimulation between 〈B, β〉
and 〈A,α〉.

Theorem 2. If all members of a family {Ri}i∈I of relations Ri ⊆ A × B are
weak bisimulations between 〈A,α〉 and 〈B, β〉 then

⋃
i∈I Ri is also a weak bisim-

ulation between 〈A,α〉 and 〈B, β〉.

Proof. Let {Ri}i∈I together with γi
1 : Ri → FRi and γi

2 : Ri → FRi be a family
of weak bisimulations between 〈A,α〉 and 〈B, β〉.

A

=α
��

Ri

γi
1 ��

π1�� π2 ��

≤
B

sβ��

A

≥sα ��

Ri

γi
2 ��

π1�� π2 ��

=

B

β��
FA FRi

Fπ1

��
Fπ2

�� FB FA FRi
Fπ1

��
Fπ2

�� FB

First consider the disjoint sum
∑

i∈I

〈
Ri, γ

i
1

〉
=

〈∑
i∈I Ri, γ1

〉
. We will prove

that given τ :
∑

i∈I Ri → A × B; (r, i) → r the mappings p1 = π1 ◦ τ and
p2 = π2 ◦ τ satisfy:

α ◦ p1 = F (p1) ◦ γ1,
sβ ◦ p2 ≥ F (p2) ◦ γ1.

Weak Bisimulations for Coalgebras over Ordered Functors 95

Note that for any i ∈ I we have

α ◦ p1 ◦ ei = α ◦ π1 = F (π1) ◦ γi
1 = F (p1) ◦ F (ei) ◦ γi

1 = F (p1) ◦ γ1 ◦ ei.

Hence, α ◦ p1 = F (p1) ◦ γ1. Moreover, for any i ∈ I we have

sβ ◦ p2 ◦ ei = sβ ◦ π2 ≥ F (π2) ◦ γi
1 = F (p2) ◦ F (ei) ◦ γi

1 = F (p2) ◦ γ1 ◦ ei.

By Lemma 1 it follows that sβ ◦ p2 ≥ F (p2) ◦ γ1.

Σi∈IRi

=

p1

��

γ1
��

Ri

γi
1 ��

ei
��

π1

��

=

A

α
��

Σi∈IRi

=

p2

��

γ1
��

Ri

γi
1 ��

ei
��

π2

��

≤
B

sβ
��

FΣi∈IRi

Fp1

��FRi
Fei�� Fπ1 �� FA FΣi∈IRi

Fp2

��FRi
Fei�� Fπ2 �� FB

Note that the image of
∑

i∈I Ri under the map τ :
∑

i∈I Ri → A×B is equal to⋃
i∈I Ri ⊆ A × B. Put γ′

1 :
⋃

i∈I Ri → F (
⋃

i∈I Ri) so that, for any r ∈
⋃

i∈I Ri

there is (r, i) ∈
∑

i∈I Ri such that γ′
1(r) = F (τ)(γ1(r, i)). Observe that

α(π1(r)) = α(π1(τ(r, i))) = α(p1(r, i)) = F (p1)(γ1(r, i)) =

= F (π1)(F (τ)(γ1(r, i))) = F (π1) ◦ γ′
1(r),

sβ(π2(r)) = sβ(π2(τ(r, i))) = sβ ◦ p2(r, i) ≥ F (p2) ◦ γ1(r, i) =
= F (π2) ◦ F (τ) ◦ γ1(r, i) = F (π2) ◦ γ′

1(r).

Hence, α ◦ π1 = F (π1) ◦ γ′
1 and sβ ◦ π2 ≥ F (π2) ◦ γ′

1. Similarily we prove
existence of γ′

2 :
⋃

i∈I Ri → F (
⋃

i∈I Ri) possessing the desired properties and
making

⋃
i∈I Ri a weak bisimulation. ��

The following lemma is an analogue of a similar result for standard bisimulations
presented in e.g. [11] (Lemma 5.3). Moreover, the proof of Lemma 3 is a direct
translation of the proof of the analogous result. Hence, we leave the following
result without a proof.

Lemma 3. Let X be a set and let ξ1 : X → FX and ξ2 : X → FX be two
coalgebraic structures. Finally, let f : X → A, g : X → B be mappings such that
f is a homomorphism from 〈X, ξ1〉 to 〈A,α〉, g is a homomorphism from 〈X, ξ2〉
to 〈B, β〉 and the mappings f , g satisfy:

X
≤ξ1 ��

g �� B
sβ��

X
≤ξ2 ��

f �� A
sα��

FX
Fg

�� FB FX
Ff

�� FA

then the set 〈f, g〉 (X) = {(f(x), g(x)) ∈ A× B | x ∈ X} is a weak bisimulation
between 〈A,α〉 and 〈B, β〉.

96 T. Brengos

Theorem 3. Let F : Set→ Set weakly preserve pullbacks and let 〈A,α〉, 〈B, β〉
and 〈C, δ〉 be F -coalgebras from the class C. Let R1 be a weak bisimulation be-
tween 〈A,α〉 and 〈B, β〉 and R2 be a weak bisimulation between 〈B, β〉 and 〈C, δ〉.
Then

R1 ◦R2 = {(a, c) | ∃b ∈ B s.t. (a, b) ∈ R1 and (b, c) ∈ R2}

is a weak bisimulation between 〈A,α〉 and 〈C, δ〉.

Corollary 1. If F : Set→ Set weakly preserves pullbacks then the greatest weak
bisimulation on a coalgebra 〈A,α〉 is an equivalence relation.

Definition 5. A relation R ⊆ A×B is said to be a saturated weak bisimulation
between 〈A,α〉 and 〈B, β〉 provided that there is a structure γ : R→ FR for which
the following diagram commutes:

A
=sα ��

R
=γ ��

π1�� π2 �� B
sβ��

FA FR
Fπ1

��
Fπ2

�� FB

Remark 1. We see that a saturated weak bisimulation between 〈A,α〉 and 〈B, β〉
is defined as a standard bisimulation between saturated models 〈A, sα〉 and
〈B, sβ〉. Hence, any property true for standard bisimulation is also true for a
saturated weak bisimulation.

Proposition 2. Let R ⊆ A×B be a standard bisimulation between 〈A,α〉 and
〈B, β〉. Then R is also a saturated weak bisimulation between 〈A,α〉 and 〈B, β〉.

Theorem 4. Let F : Set→ Set weakly preserve kernel pairs and let R ⊆ A×A
be an equivalence relation which is a weak bisimulation on 〈A,α〉. Then R is a
saturated weak bisimulation on 〈A,α〉.

Proof. Let γ1 : R→ FR be a structure for which α◦π1 = Fπ1◦γ1 and Fπ2◦γ1 ≤
sα ◦ π2. By properties of the saturator s it follows that sα ◦ π1 = Fπ1 ◦ sγ1 and
Fπ2 ◦ sγ1 ≤ sα ◦ π2. In other words,

A

=sα ��

R
sγ1��

π1�� π2 ��

≤
A

sα��
FA FR

Fπ1

��
Fπ2

�� FA

Let p : A → A/R; a 	→ a/R. Since F : Set → Set preserves kernel pairs the
following diagram is a weak pullback diagram:

FRFπ1

		����
Fπ2

���
�

FA

Fp
����

FA

Fp
����

F (A/R)

Weak Bisimulations for Coalgebras over Ordered Functors 97

Since Fp◦Fπ1 = Fp◦Fπ2 we have Fp◦sα◦π1 = Fp◦Fπ1◦sγ1 = Fp◦Fπ2◦sγ1 ≤
Fp ◦ sα ◦ π2. Let k : R → R; (a, b) 	→ (b, a). We see that Fp ◦ sα ◦ π1 ◦ k ≤
Fp ◦ sα ◦ π2 ◦ k. Since π1 ◦ k = π2 and π2 ◦ k = π1 it follows that

Fp ◦ sα ◦ π2 ≤ Fp ◦ sα ◦ π1.

Hence, Fp◦sα◦π1 = Fp◦sα◦π2. In other words, the set R together with sα◦π1

and sα ◦ π2 is a cone over the diagram FA
Fp→ F (A/R)

Fp← FA. Recall that FR

with Fπ1 and Fπ2 is a weak pullback of FA
Fp→ F (A/R)

Fp← FA. The fact that F
preserves weak pullbacks provides us with a mediating morphism γ : R → FR
satisfying

sα ◦ π1 = Fπ1 ◦ γ and sα ◦ π2 = Fπ2 ◦ γ.
��

We say that two elements a, b ∈ A are weakly bisimilar, and write a ≈w b if there
is a weak bisimulation R ⊆ A×A on 〈A,α〉 for which (a, b) ∈ R. We say that a
and b are saturated weakly bisimilar, and write a ≈sw b, if there is a saturated
weak bisimulation R on 〈A,α〉 containing (a, b).

Corollary 2. Let F : Set→ Set be a functor weakly preserving pullbacks. Then
the relations ≈w and ≈sw are equivalence relations and

≈w ⊆ ≈sw .

Definition 6. We say that a functor F : Set→ Pos preserves downsets provided
that for any f : X → Y and any x ∈ FX the following equality holds:

Ff(x ↓) = Ff({x′ ∈ FX | x′ ≤ x}) = Ff(x) ↓= {y ∈ FY | y ≤ Ff(x)}.

It is easy to see that all functors from Example 2 preserve downsets. In the
following example we will present a functor weakly preserving pullbacks and not
preserving downsets for which the greatest weak bisimulation and the greatest
saturated weak bisimulation do not always coincide.

Example 9. Define a functor F : Set→ Set by F = Id2+Id. Clearly, the functor
F weakly preserves pullbacks. For any set X let us introduce a partial order ≤
on FX as the smallest partial order satisfying

x ≤ (x, x) for any x ∈ X.

The order ≤ is well defined and turns the functor F into F : Set → Pos. Now
consider sets X = {x1, x2}, Y = {y} and the unique mapping f : X → Y .
Take (y, y) ∈ FY and note that y ≤ (y, y) = (f(x1), f(x2)) = Ff((x1, x2)). In
other words, y ∈ Ff(x1, x2) ↓ and (x1, x2) ↓= {(x1, x2)}. Hence, the functor
F does not preserve downsets. For any F -coalgebra 〈A,α〉 define an operator
sα : A→ FA by

sα(a) := if α(a) = b then (b, b) else α(a).

98 T. Brengos

The operator s : SetF → SetF is a coalgebraic saturator with respect to the
class of all F -coalgebras. Now consider a set A = {x, y} and define a structure
α : A→ FA by α(x) = x and α(y) = (x, y). Clearly, x ≈sw y since sα(x) = (x, x)
and sα(y) = (x, y) and if we put R = {(x, y), (x, x)} then for γ : R→ FR defined
by γ(x, y) = ((x, x), (x, y)), γ(x, x) = ((x, x), (x, x)) we have sα◦π1 = Fπ1◦γ and
sα ◦π2 = Fπ2 ◦ γ. At the same time the states x and y are not weakly bisimilar.
Indeed, if there was a weak bisimulation R containing (x, y) then it would imply
existence of γ1 : R → FR satisfying α ◦ π1 = Fπ1 ◦ γ1 and Fπ2 ◦ γ1 ≤ sα ◦ π2.
Since (x, y) ↓= {(x, y)} we would then have

x = α(x) = α(π1(x, y)) = Fπ1(γ(x, y)),

(x, y) = sα(y) = sα(π2(x, y)) = Fπ2(γ(x, y))

which is impossible.

Theorem 5. Let F : Set → Set weakly preserve kernel pairs and preserve
downsets. Let R ⊆ A × A be an equivalence relation which is a saturated weak
bisimulation on 〈A,α〉. Then R is a weak bisimulation on 〈A,α〉.
Proof. Let γ : R → FR be the structure for which sα ◦ π1 = Fπ1 ◦ γ and
Fπ2 ◦ γ = sα ◦ π2. Let p : A → A/R; a 	→ a/R. Since F : Set → Set preserves
kernel pairs the following diagram is a weak pullback diagram:

FR
Fπ1

���
�� Fπ2

����
���

FA

Fp
��		

		
FA

Fp

F (A/R)

Consider the mappings Fp ◦ α ◦ π1 and Fp ◦ sα ◦ π2 and observe that

Fp ◦ α ◦ π1 ≤ Fp ◦ sα ◦ π1 =

Fp ◦ Fπ1 ◦ γ = Fp ◦ Fπ2 ◦ γ = Fp ◦ sα ◦ π2.

This means that for any pair (a, b) ∈ R we have Fp(α(a)) ≤ Fp(sα(b)). In other
words,

Fp(α(a)) ∈ Fp(sα(b)) ↓
Since F preserves downsets, there exists an element x ∈ FA such that x ≤ sα(b)
for which

Fp(α(a)) = Fp(x).

Because FR together with Fπ1 and Fπ2 is a weak pullback of the diagram

FA
Fp→ F (A/R)

Fp← FA, there is an element r(a,b) ∈ FR such that Fπ1(r(a,b)) =
α(a) and Fπ2(r(a,b)) = x. Define γ1 : R→ FR; (a, b) 	→ r(a,b). The structure γ1
satisfies α ◦ π1 = Fπ1 ◦ γ1 and Fπ2 ◦ γ1 ≤ sα ◦ π2. Similarily, we prove existence
of γ2 : R→ FR satisfying sα ◦ π1 ≥ Fπ1 ◦ γ2 and Fπ2 ◦ γ2 = α ◦ π2. ��
Corollary 3. Let S : Set→ Set weakly preserve pullbacks and preserve downsets.
Then for any S-coalgebra 〈A,α〉 the relations ≈w and ≈sw are equivalence rela-
tions and

≈w = ≈sw .

Weak Bisimulations for Coalgebras over Ordered Functors 99

5 Weak Coinduction Principle

In this section we assume that the saturator s we work with is an operator defined
on the whole category of F -coalgebras. In the category SetF for any mapping
f : A → B we have f : 〈A,α〉 → 〈B, β〉 is a homomorphism if and only if the
relation gr(f) = {(a, f(a)) ∈ A × B | a ∈ A} is a standard bisimulation (see
[2],[11]). This motivates considering the following category (F. Bonchi, personal
communication). Let SetwF denote the category in which objects are standard
F -coalgebras and in which a map f : A→ B is a morphism between two objects
〈A,α〉 and 〈B, β〉 provided that the relation gr(f) = {(a, f(a)) | a ∈ A} is a
weak bisimulation.

Lemma 4. Let 〈A,α〉 be an F -coalgebra and let a family 〈Si, σi〉, where Si ⊆ A,
be a family of subcoalgebras of 〈A,α〉 in SetF such that sσi = σi. Then there is
a structure σ :

⋃
Si → F (

⋃
Si) making 〈

⋃
Si, σ〉 a subcoalgebra of 〈A,α〉 and

sσ = σ.

Corollary 4. Let 〈A,α〉 be an F -coalgebra. There is the greatest subcoalgebra
〈S, σ〉 of 〈A,α〉 such that sσ = σ.

Lemma 5. Let 〈T, t〉 be a terminal coalgebra in the category SetF . Then 〈T, st〉
is a weakly terminal object in SetwF .

Let 〈Ts, t
′〉 be the greatest subcoalgebra of the terminal coalgebra 〈T, t〉 in SetF

such that st′ = t′.

Lemma 6. If F admits a terminal coalgebra 〈T, t〉 in SetF and weakly preserves
pullbacks then the greatest weak bisimulation on 〈Ts, t

′〉 is the equality relation.

Proof. Assume that for x, y ∈ Ts we have x ≈w y. This implies x ≈sw y. Since,
st′ = t′ this means that the saturated weak bisimulation ≈sw is a standard
bisimulation on 〈Ts, t

′〉. Since, the coalgebra 〈Ts, t
′〉 is a subcoalgebra of the

terminal coalgebra 〈T, t〉 the bisimulation ≈sw is an equality relation (see [2,11]
for details). Hence x = y. ��

The above lemma allows us to formulate a weak coinduction principle for 〈Ts, t
′〉.

For two states x, y ∈ Ts we have x ≈w y ⇐⇒ x = y.

Theorem 6. If F admits a terminal coalgebra 〈T, t〉 in SetF and weakly pre-
serves pullbacks then the coalgebra 〈Ts, t

′〉 is a terminal object in SetwF .

Proof. To prove that 〈Ts, t
′〉 is weakly terminal it is enough to construct a ho-

momorphism in SetwF from 〈T, st〉 to 〈Ts, t
′〉 and apply Lemma 5. Since 〈T, t〉 is

terminal in SetF there exists a unique homomorphism �−�st : 〈T, st〉 → 〈T, t〉.
Any homomorphic image is a subcoalgebra of the codomain (see [2], [11] for
details). Therefore, we can consider �−�st as an onto homomorphism between
〈T, st〉 and

〈
�T �st, t|�T �st

〉
, where the object

〈
�T �st, t|�T �st

〉
is a subcoalgebra of

〈T, t〉 in SetF . In other words, we have

100 T. Brengos

T

=st ��

�−�st�� �T �st
t|�T�st��

FT
F �−�st

�� F �T �st

Hence,

T

=st ��

�−�st�� �T �st
st|�T�st��

FT
F �−�st

�� F �T �st

Therefore, st|�T �st = t|�T �st and
〈
�T �st, t|�T �st

〉
is a subcoalgebra of 〈Ts, t

′〉. For
uniqueness consider two homomorphisms f1, f2 from an F -coalgebra 〈A,α〉 to
〈Ts, t

′〉 in SetwF . This means that the relations gr(f1) and gr(f2) are weak bisim-
ulations between 〈A,α〉 and 〈Ts, t

′〉. By the properties of weak bisimulations the
relation gr(f1)

−1 ◦ gr(f2) = {(f1(a), f2(a)) | a ∈ A} is a weak bisimulation on
〈Ts, t

′〉. By Lemma 6 we get that f1(a) = f2(a) for any a ∈ A. ��

For an F -coalgebra 〈A,α〉 let �−�wα denote the unique homomorphism from
〈A,α〉 to 〈Ts, t

′〉 in SetwF . We see in the proof of Theorem 6 that �−�wα =
�−�st ◦ �−�α.

Theorem 7. Let F weakly preserve pullbacks. For two elements a, b ∈ A we
have

a ≈w b ⇐⇒ �a�wα = �b�wα

Proof. Assume a ≈w b. Since �−�wα is a homomorphism in SetwF the relation
gr(�−�wα) is a weak bisimulation between 〈A,α〉 and 〈Ts, t

′〉. Since F weakly pre-
serves pullbacks the relation gr(�−�wα)

−1◦ ≈w ◦gr(�−�wα) is a weak bisimulation
on 〈Ts, t

′〉 such that

(�a�wα , �b�
w
α) ∈ gr(�−�wα)

−1◦ ≈w ◦gr(�−�wα).

By Lemma 6 we get that �a�wα = �b�wα . Conversely, let �a�wα = �b�wα . This means
that the weak bisimulation gr(�−�wα) ◦ gr(�−�wα)

−1 on 〈A,α〉 contains a pair
(a, b). Hence, a ≈w b. ��

6 Summary and Future Work

In this paper we introduced a coalgebraic setting in which we can define weak
bisimulation in two ways generalizing Definition 1 and Definition 2 and compared
them. We showed that the definitions coincide with the standard definitions of
weak bisimulation for labelled transition systems and simple Segala systems.
The approach towards defining weak bisimulation presented in this paper has
two main advantages. First of all, it is a very general and simple approach. In

Weak Bisimulations for Coalgebras over Ordered Functors 101

particular it does not require an explicit specification of the observable and un-
observable part of the functor. Second of all, it easily captures the computational
aspects of weak bisimilarity. It is worth noting that it has some limitations. Part
of the author’s ongoing research is to establish the reason why it does not work
for e.g. fully probabilistic processes introduced in [1] and studied from the per-
spective of coalgebra in [9]. Moreover, it may seem that the setting presented in
the paper is too general. To justify the statement note that for instance for an
LTS coalgebra 〈A,α〉 we may define a saturator as follows:

sα(a) := {(τ, a)} ∪ {(σ, a′) | a τ∗
→ ◦ σ→ a′}.

The above definition of a saturator would lead to a different definition of weak
bisimulation for LTS. Therefore, it is necessary to establish more concrete ways
for definining standard saturators of coalgebras that lead to standard definitions
of weak bisimulations.

Acknowledgements. I would like to thank Jan Rutten for many interesting
comments and hospitality in CWI, Amsterdam, where part of the work on this
paper was completed. I am very grateful to F. Bonchi, M. Bonsangue, H. Hansen,
B. Klin and A. Silva for various suggestions for improvement of my results and
for future work. I would also like to express my gratitude to anonymous referees
of the paper for valuable comments and remarks.

References

1. Baier, C., Hermanns, H.: Weak Bisimulation for Fully Probabilistic Processes. In:
Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119–130. Springer, Heidelberg
(1997)

2. Gumm, H.P.: Elements of the general theory of coalgebras. In: LUATCS 1999,
Rand Afrikaans University, Johannesburg (1999)

3. Hughes, J., Jacobs, B.: Simulations in coalgebra. TCS 327(1-2), 71–108 (2004)
4. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-

delberg (1980)
5. Rothe, J.: A syntactical approach to weak (bi)-simulation for coalgebras. In: Moss,

L. (ed.) Proc. CMCS 2002. ENTCS, vol. 65, pp. 270–285 (2002)
6. Rothe, J., Masulović, D.: Towards weak bisimulation for coalgebras. In: Proc. Cat-

egorical Methods for Concurrency, Interaction and Mobility. ENTCS, vol. 68(1),
pp. 32–46 (2002)

7. Segala, R., Lynch, N.: Probabilistic Simulations for Probabilistic Processes. In: Jon-
sson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer,
Heidelberg (1994)

8. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis. MIT (1995)

9. Sokolova, A., de Vink, E., Woracek, H.: Coalgebraic Weak Bisimulation for Action-
Type Systems. Sci. Ann. Comp. Sci. 19, 93–144 (2009)

10. Rutten, J.J.M.M.: A note on coinduction and weak bisimilarity for while programs.
Theoretical Informatics and Applications (RAIRO) 33, 393–400 (1999)

11. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. TCS 249(1), 3–80
(2000)

102 T. Brengos

Appendix

Proof (Lemma 2). Let s be a saturator and let 〈A,α〉 ∈ C. We see that for the
identity mapping idA : A→ A we have

F (idA) ◦ sα = sα ≤ sα = sα ◦ idA.

This implies that F (idA)◦α ≤ sα◦idA. Hence, α ≤ sα. We see that by extensivity
rule and the assumption s(C) ⊆ C we get sα ≤ s(sα). Therefore, to prove
idempotency it is enough to show that s(sα) ≤ sα. To do this consider the
following inequality F (idA) ◦ sα = sα ≤ sα = sα ◦ idA. By order preservation
it implies that F (idA) ◦ s(sα) ≤ sα ◦ idA. Thus, s(sα) ≤ sα. Finally, consider
two coalgebras 〈A,α〉 and 〈B, β〉 from C and a mapping f : A → B such that
Ff ◦ α ≤ β ◦ f . Note that Ff ◦ α ≤ β ◦ f ≤ sβ ◦ f . Since Ff ◦ α ≤ sβ ◦ f then
by the fact that s is a saturator it follows that Ff ◦ sα ≤ sβ ◦ f .

Now in order to prove the converse consider a coalgebraic operator s : C→ C
which is a closure operator (i.e. is extensive, idempotent and monotonic). Let
〈A,α〉 and 〈B, β〉 be coalgebras from C and let f : A→ B be a mapping. Assume
that Ff ◦α ≤ sβ ◦f . By idempotency and monotonicity we get Ff ◦sα ≤ sβ ◦f .
By extensivity we conclude that Ff ◦ α ≤ sβ ◦ f . ��

Proof (Lemma 4). Let σ :
⋃
Si → F (

⋃
Si) be the unique structure making

〈
⋃
Si, σ〉 a subcoalgebra of 〈A,α〉 (such a structure always exists [2],[10]). Let

ei : Si →
⋃
Si denote the inclusions. Then σ ◦ ei = F (ei) ◦ σi. Since s is a

saturator this means that sσ ◦ ei = F (ei) ◦ sσi = F (ei) ◦ σi. Therefore, for any i
we have sσ ◦ ei = σ ◦ ei. Hence, sσ = σ. ��

Proof (Lemma 5). Let 〈A,α〉 be any F -coalgebra. Let �−�α : 〈A,α〉 → 〈T, t〉 be
the unique homomorphism in SetF with 〈T, t〉 as codomain. Then �−�α is also
a homomorphism between 〈A, sα〉 and 〈T, st〉. Since �−�α is a standard homo-
morphim the relation gr(�−�α) = {(a, �a�α) | a ∈ A} is a standard bisimulation
between 〈A,α〉 and 〈T, t〉. I.e. there is γ : gr(�−�α)→ F (gr(�−�α)) such that

A

=α
��

gr(�−�α)

γ
��

π1�� π2 ��

=

T

t
��

FA Fgr(�−�α)
Fπ1

��
Fπ2

�� FT

Since t ≤ st and sst = st this implies that

A

α
��

=

gr(�−�α)

γ
��

π1�� π2 ��

≤
T

sst=st
��

FA Fgr(�−�α)
Fπ1

��
Fπ2

�� FT

Weak Bisimulations for Coalgebras over Ordered Functors 103

Moreover, by saturating the same diagram we get

A

=sα
��

gr(�−�α)

sγ
��

π1�� π2 ��

=

T

st
��

FA Fgr(�−�α)
Fπ1

��
Fπ2

�� FT

This means that gr(�−�α) together with γ and sγ is a weak bisimulation between
〈A,α〉 and 〈T, st〉 which concludes the proof. ��

A Context-Free Linear Ordering

with an Undecidable First-Order Theory�

Arnaud Carayol1 and Zoltán Ésik2

1 Laboratoire d’Informatique Gaspard-Monge, Université Paris-Est, France
2 Institute of Informatics, University of Szeged, Hungary

Abstract. The words of a context-free language, ordered by the lexi-
cographic ordering, form a context-free linear ordering. It is well-known
that the linear orderings associated with deterministic context-free lan-
guages have a decidable monadic second-order theory. In stark contrast,
we give an example of a context-free language whose lexicographic order-
ing has an undecidable first-order theory.

1 Introduction

When the alphabet of a language L is linearly ordered, we may equip L with
the lexicographic ordering. It is known that every countable linear ordering is
isomorphic to the lexicographic ordering of a (prefix) language.

The lexicographic orderings of regular languages (i.e., the regular linear order-
ings) were studied in [1–4, 12, 15, 20, 24, 28]. These linear orderings agree with
the leaf orderings of the regular trees, and are all automatic linear orderings as
defined in [22]. It follows from results in [20] that all scattered regular linear
orderings have finite Hausdorff rank, or finite condensation rank (FC-rank), as
defined in [27]. In fact all automatic linear orderings have finite FC-rank [22].
Moreover, an ordinal is the order type of a regular well-ordering if and only if it
is strictly less than ωω.

The study of the lexicographic orderings of context-free languages (context-
free linear orderings) was initiated in [4] and further developed in [5, 6, 8, 16–18]
and was extended to languages generated by deterministic higher order gram-
mars in [7].

It follows from early results in [13] that the lexicographic orderings of de-
terministic context-free languages are (up to isomorphism) identical to the leaf
orderings of the algebraic trees, cf. [5]. In [4], it was shown that every ordinal

� Arnaud Carayol has been supported by the project AMIS (ANR 2010 JCJC 0203 01
AMIS). Both authors received partial support from the project TÁMOP-4.2.1/B-
09/1/KONV-2010-0005 “Creating the Center of Excellence at the University of
Szeged”, supported by the European Union and co-financed by the European Re-
gional Fund. Zoltán Ésik was also partly supported by the National Foundation of
Hungary for Scientific Research, grant no. K 75249, and by a chair Labex Bézout as
part of the program “Investissements d’Avenir” (ANR-10-LABX-58).

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 104–118, 2012.
c© IFIP International Federation for Information Processing 2012

A Context-Free Linear Ordering with an Undecidable First-Order Theory 105

less than ωωω

is the order type of a deterministic context-free linear ordering
and it was conjectured that a well-ordering is isomorphic to a context-free lin-
ear ordering if and only if its order type is less than ωωω

. This conjecture was
confirmed in [5] for deterministic context-free linear orderings, and in [18] for
context-free linear orderings. Moreover, it was shown in [6] and [18] that the
FC-rank of every scattered deterministic context-free linear ordering and in fact
every scattered context-free linear ordering is less than ωω. Since the FC-rank
of a well-ordering is less than ωω exactly when its order type is less than ωωω

, it
follows in conjunction with results proved in [4] that a well-ordering is isomor-
phic to the lexicographic ordering of a context-free language or deterministic
context-free language if and only if its order type is less than ωωω

. Exactly the
same ordinals are the order types of the tree automatic well-orderings, see [14].
Eventually, it was proved in [8] that the FC-rank of every context-free linear or-
dering is less than ωω. However, the question whether there exists a context-free
linear ordering that is not a deterministic context-free linear ordering remained
open.

Since deterministic context-free linear orderings belong to the pushdown hier-
archy [9–11, 25], they all have decidable monadic second-order theories. In fact,
there exists an algorithm that takes two inputs, an LR(1) grammar (or equiv-
alently a deterministic pushdown automaton) and a sentence of the monadic
second-order logic of linear orders and tells whether the sentence holds in the
lexicographic ordering of the language generated by the grammar. Such a deci-
sion procedure does not exist for all context-free grammars and monadic second-
order or even first-order sentences, since as shown in [16], it is undecidable to
tell whether a context-free linear ordering (given by a context-free grammar)
is dense. In contrast, it is decidable whether a context-free linear ordering is a
well-ordering or a scattered ordering.

In this paper we prove that there is a context-free linear ordering whose first-
order theory is undecidable. Thus there exists a context-free linear ordering
which is not the lexicographic ordering of a deterministic context-free language.
The context-free language defining this linear ordering is a finite disjoint union
of deterministic context-free languages. Hence our undecidability result holds for
the class of unambiguous context-free linear orderings.

As a corollary, we also obtain the existence of a (unambiguous) context-free
language whose associated tree has an undecidable monadic second-order theory.
The tree of a language is composed of the set of all prefixes of the words of the
language as set of vertices, and its ancestor relation is simply the prefix relation.
This result in turn proves the existence a context-free language that cannot be
accepted by any deterministic collapsible pushdown automaton (an extension of
the classical notion of pushdown automaton with nested stacks and links [19]),
as shown previously by Pawe�l Parys using a pumping argument [26].

The paper is organised as follows. In Section 2, we recall basic definitions
on linear orderings. Definitions concerning first-order logic and the structures
associated with languages are given in Section 3. Section 1 presents our main
result and its corollaries are given in Section 5. Section 6 concludes the paper.

106 A. Carayol and Z. Ésik

2 Linear Orderings

A piece of notation: for a nonnegative integer n, we will denote the set {1, . . . , n}
by [n].

When A is an alphabet, we let A∗ denote the set of all finite words over A,
including the empty word ε. The set A+ is A∗−{ε}. We let uR denote the mirror
image of a word u ∈ A∗.

A linear ordering [27] (I,<) is a set I equipped with a strict linear order
relation <. As usual, we will write x ≤ y for x, y ∈ I if x < y or x = y. A linear
ordering (I,<) is finite or countable if I is. A morphism of linear orderings is an
order preserving map. Note that every morphism is necessarily injective. When
(I,<) and (J,<′) are linear orderings such that I ⊆ J and the embedding I ↪→ J
is a morphism, we call (I,<) a subordering of (J,<′). In this case the relation <
is the restriction of the relation <′ onto I and we usually write just I for (I,<).

An isomorphism is a bijective morphism. Isomorphic linear orderings are said
to have the same order type. The order types of the positive integers N, negative
integers N−, all integers Z, and the rationals Q, ordered as usual, are denoted
ω, ω∗, ζ and η, respectively. As usual, the finite order types may be identified
with the nonnegative integers.

Recall that a linear ordering (I,<) is dense if it has at least two elements and
for every x, y ∈ I with x < y there is some z ∈ I with x < z < y. A quasi-dense
linear ordering is a linear ordering that has a dense subordering, and a scattered
linear ordering is a linear ordering that is not quasi-dense. For example, N and
Z are scattered, Q is dense, and the ordering obtained by replacing each or some
point in Q with a 2-element linear ordering is quasi-dense but not dense. Clearly,
every subordering of a scattered linear ordering is scattered. It is well-known that
a linear ordering is quasi-dense if and only if it has a subordering of order type η.
Moreover, up to isomorphism, there are 4 countable dense linear orderings, the
ordering Q of the rationals possibly equipped with a least or greatest element,
or both.

When (I,<) is a linear ordering and for each i ∈ I, (Ji, <i) is a linear ordering,
the ordered sum ∑

i∈I

(Ji, <i)

is the disjoint union
⋃

i∈I(Ji × {i}) equipped with the order relation (x, i) <
(y, j) if and only if either i < j, or i = j and x <i y. When each (Ji, <i) is
the linear ordering (J,<′), we call the ordered sum the product of (I,<) and
(J,<′), denoted (I,<)× (J,<′). Finite ordered sums are also denoted as (I1, <1

) + · · · + (In, <n). Since the operation of ordered sum preserves isomorphism,
we may also define ordered sums of order types. For example, 1 + η + 1 is the
order type of the rationals equipped with both a least and a greatest element.
It is known that every scattered sum of scattered linear orderings is scattered.
This means that if (I,<) is scattered as is each (Ji, <i), then

∑
i∈I(Ji, <i) is

also scattered. A sum over a dense linear ordering (I,<) is referred to as a dense
sum.

A Context-Free Linear Ordering with an Undecidable First-Order Theory 107

3 First-Order Logic

A signature is a ranked set σ of symbols. We let |R| denote the arity (≥ 1) of
the symbol R. A relational structure S over σ is given by a tuple (D, (RS)R∈σ),
where D is the domain of S, and where for all R ∈ σ, the interpretation of R
in S denoted RS is a subset of D|R|. When S is clear from the context, we just
write R for its interpretation RS .

Let S = (D, (RS)R∈σ) and S′ = (D′, (RS′
)R∈σ) be two structures over σ.

An isomorphism h from D to D′ is a bijection from D to D′ such that for
all R ∈ σ and for all u1, . . . , u|R| ∈ D, (u1, . . . , u|R|) ∈ RS if and only if

(h(u1), . . . , h(u|R|)) ∈ RS′
. We let S ∼= S′ denote the existence of an isomor-

phism between S and S′.
A linear ordering (I,<I) is naturally represented as a structure over the sig-

nature σord with one symbol < of arity 2. Its domain is the set I and the symbol
< is interpreted as <I .

First-order formulas use first-order variables, which are interpreted by ele-
ments of the structure and are denoted by lower case letters x, y Atomic
first-order formulas are of the form R(x1, . . . , x|R|), where R is a relation symbol
from the signature and x1, . . . , x|R| are first-order variables, or x = y for first-
order variables x, y with the obvious semantics. Complex formulas are built as
usual from atomic ones by the use of Boolean connectives and quantifiers. Free
and bound occurrences of variables in a formula are defined as usual. We write
ϕ(x1, . . . , xn) to denote that the formula ϕ has free variables in {x1, . . . , xn}. A
closed formula has no free variables.

For a formula ϕ(x1, . . . , xn) and elements of the domain u1, . . . , un, we write
S |= ϕ[u1, . . . , un] to denote that the structure S satisfies the formula ϕ when
the free variable xi, i ∈ [n], is interpreted as ui. For a closed formula ϕ, we
simply write S |= ϕ.

For example, the following formula over the signature σord expresses that the
structure is a linear ordering:

∀x∀y x < y → ¬(y < x)
∧ ∀x∀y x < y ∨ y < x ∨ x = y
∧ ∀x∀y ∀z (x < y ∧ y < z)→ x < z

3.1 First-Order Interpretations

First-order interpretation is a transformation defining a structure in another
structure using first-order logic.

Definition 1. A first-order interpretation from a signature σ to a signature σ′ is
given by a tuple (δ, (ϕR)R∈σ′), where δ is a formula over σ with one free variable
x1, and for each symbol R ∈ σ′, ϕR is a formula over σ with free variables
x1, . . . , x|R|.

Applying a first-order interpretation I to a structure S over the signature σ
gives rise to a structure over the signature σ′, denoted I(S). Its domain is the

108 A. Carayol and Z. Ésik

set D′ = {u ∈ D | S |= δ[u]}. A symbol R ∈ σ′ is interpreted in I(S) as the set
of all tuples satisfying ϕR :

{(u1, . . . , u|R|) ∈ (D′)|R| | S |= ϕR[u1, . . . , u|R|]}.

An example of first-order interpretation is given in Section 3.2.

3.2 Structures Associated with Words and Languages

Let A be a finite alphabet. A word w over A can be represented by a structure
over the signature σA = {Pa | a ∈ A} ∪ σord with |Pa| = 1 for all a ∈ A. This
structure, denoted Sw, has the set [|w|] of positions in the word as its domain.
The symbol < is interpreted (in Sw) as the natural order and for all a ∈ A, Pa

is interpreted as the predicate marking all occurrences of the letter a.
For A = 2 = {0, 1}, the formula ϕ over the signature σA given below expresses

that a word starts with the letter 0 (i.e., for all w ∈ A∗, Sw |= ϕ if and only if
w stars with 0) :

∃x (∀y ¬(y < x) ∧ P0(x)) .

Similarly, when L ⊆ A∗, we define the structure SL over the signature σA as-
sociated with a language L. This structure is obtained by taking the disjoint
union of all the structures Sw for w ∈ L. Note that as soon as L contains two
nonempty words, the relation < is no longer a linear ordering.

The following formula is satisfied by the languages in which all nonempty
words start with the letter 0.

∀x (∀y ¬(y < x)→ P0(x))

0 1 0 1 1 0 1 1 1 0< < < < < <

< < <

<

Fig. 1. The structure SL associated with the language L = 1∗0

3.3 Lexicographic Ordering and Countable Words Associated with
a Language

We will consider countable linear orderings that arise as lexicographic orderings
of languages. Suppose that A is an alphabet which is linearly ordered by the
relation <. Then we define a strict partial order <s on A∗ by u <s v if and
only if u = xay and v = xbz for some x, y, z ∈ A∗ and a, b ∈ A with a < b.
We also define u <p v if and only if u is a proper prefix of v, and u <� v if
and only if u <s v or u <p v. The lexicographic order relation <� turns A∗ into
a linear ordering. In particular, any language L ⊆ A∗ gives rise to a structure
over the signature σord denoted OL and called the lexicographic ordering of L.
The domain of OL is the language L and the symbol < is interpreted as the
lexicographic ordering <�.

A Context-Free Linear Ordering with an Undecidable First-Order Theory 109

We say that a language L ⊆ A∗ is scattered, dense, etc. if its lexicographic
ordering has the corresponding property. Moreover, we say that a lexicographic
ordering is a regular or a context-free linear ordering if it is isomorphic to the lex-
icographic ordering of a regular or context-free language. Deterministic context-
free linear orderings are defined in the same way.

Example 1. Consider the alphabet 2 = {0, 1} ordered by 0 < 1. The lexico-
graphic ordering of the regular language 1∗0 is of order type ω and is depicted
below.

0 10 110 1110< < <

< <

<

Similarly the lexicographic orderings of the regular languages 0∗1, 0+1 + 1+0 are
of order type ω∗ and ζ, respectively. The lexicographic ordering of (00 + 11)∗01
is η. The context-free linear ordering (

⋃
n≥0 1

n0(1∗0)n, <�) is of order type 1 +

ω + ω2 + · · · = ωω. The context-free linear orderings (
⋃

n≥1 1
n0(0(0+1 + 1+0) +

10<n), <�) and (
⋃

n≥1 1
n0(0(00 + 11)∗01 + 1(1∗0)n), <�) have respective order

types ζ + 1 + ζ + 2 + · · · and η + ω + η + ω2 + · · ·.

A countable word (called arrangement in [12]) over an alphabet B is a countable
linear ordering whose elements are labelled by letters of B. Each language over
an ordered alphabet A not containing the empty word gives rise to a countable
word WL over A, which is represented by a structure over the signature σA. Its
domain is the language L. The symbol < is interpreted as the lexicographic order
<�, and for all a ∈ A, Pa is interpreted as the set of words of L ending with the
letter a. We say that a countable word is context-free if it is isomorphic to the
countable word of some context-free language.

Lemma 1. Every context-free linear ordering (resp. word) can be represented
by a prefix context-free language not containing the empty word.

Proof. We establish the result for context-free words. Let A = {a1, . . . , an} with
a1 < · · · < an, and let L ⊆ A+ be a context-free language which does not contain
the empty word.

Let A′ = {a′1, . . . , a′n} be an alphabet disjoint from A and let π : A∗ 	→ (A′)∗

be the morphism mapping ai to a′i for all i ∈ [n].
Consider the context-free language L′ over A∪A′ ordered by a1 < · · · < an <

a′1 < · · · < a′n defined by

L′ = {π(wa)a | wa ∈ L and a ∈ A}.

The language L′ is prefix (as L′ is included in (A′)+A and A and A′ are assumed
to be disjoint). To conclude the proof, we observe that the mapping θ : L 	→ L′

mapping wa ∈ L to π(wa)a ∈ L′ is an isomorphism from WL to WL′ . ��

110 A. Carayol and Z. Ésik

Context-free words are clearly closed under substitution. Thus we have:

Lemma 2. Let L be context-free language over an ordered alphabet A which does
not contain the empty word, and suppose that for each a ∈ A, Pa is a context-free
linear ordering. Then the ordered sum∑

u∈L

Pλ(u) where λ(u) designates the last letter of u,

obtained by replacing each u ∈ L ending with a ∈ A by a copy of Pa, is a
context-free linear ordering.

Proof. By Lemma 1, we can assume w.l.o.g. that L is prefix. For all a ∈ A, let
La be a context-free language (which does not contain the empty word) defining
the context-free linear ordering Pa. The ordered sum

∑
u∈L Pu(|u|) is isomorphic

to the context-free linear ordering defined by

{waLa | wa ∈ L and a ∈ A}.

��
This property in turn implies that context-free words can be defined in context-
free linear orderings.

Lemma 3. Let A be an ordered alphabet and let L be a context-free language
not containing the empty word. There exists a context-free language L′ and a
first-order interpretation I such that WL is isomorphic to I(OL′).

Proof. Let L be a context-free language not containing the empty word over the
alphabet A = {a1, . . . , an}. Consider the linear ordering O obtained by replacing
in WL each vertex labelled ai by a copy of a linear ordering of order type ζ+i+ζ.
As for all i ≥ 0, ζ+ i+ ζ is a context-free linear ordering, we obtain by Lemma 2
that O is a context-free linear ordering. Let L′ be a context-free language such
that OL′ is isomorphic to O.

We now define a first-order interpretation transforming OL′ into WL. The
first-order interpretation I only keeps vertices that have no predecessor. These
vertices correspond to the first vertex in between two consecutive copies of ζ.
Therefore these vertices are in a one to one correspondence with the elements of
L. The order relation < is inherited by I. The predicate Pa1 is defined for those
vertices with no successors, hence guaranteeing that the vertex (which must have
no predecessor) lies in a copy of ζ + 1 + ζ. Similarly Pa2 is defined for vertices
having a successor with no successor, etc. Formally the interpretation is defined
by

δ(x) = ∀y ¬Succ(y, x)
ϕ<(x, y) = x < y
ϕPai

(x1) = ∃x2 . . . ∃xi

∧
j∈[i−1] Succ(xj , xj+1) ∧ ∀y ¬Succ(xi, y)

where Succ(x, y) is the formula expressing that y is the successor of x. ��

A Context-Free Linear Ordering with an Undecidable First-Order Theory 111

3.4 Tree of Language

The tree of a language L over A is a structure, denoted TL, over the signature
σanc = σA ∪ {≺}, where ≺ is of arity 2. The domain is the the set of prefixes of
the language L. For all a ∈ A, Pa is interpreted as the set of words of L ending
with the letter a, and ≺ is interpreted as the prefix relation <p.

It is possible to define the tree of a language over a more restricted signature
σsuc = σA ∪ {Succ}, where Succ is interpreted as the direct successor relation.

(ε)

(0) (1)

(10) (11)

Fig. 2. The tree TL of the language L = 1∗0 where full edges represent the Succ
relation and dashed edges represent the relation ≺. The root is not labelled, all leaves
are labelled by 0, and all other nodes by 1.

Lemma 4. For any language L over an ordered alphabet A, the linear ordering
OL can be first-order interpreted in TL over the signature σanc.

4 Main Undecidability Result

This section is devoted to establishing the following theorem.

Theorem 1. There exists a context-free word with an undecidable first-order
theory. Furthermore, such a context-free word can be defined by a finite disjoint
union of deterministic context-free languages.

We now proceed with the proof of Theorem 1. The key ingredient of the proof are
the languages obtained by a special form of product, denoted ⊗, of deterministic
context-free languages.

Definition 2. Let L1, . . . , Ln be languages over the alphabet A. We let L1 ⊗
· · · ⊗ Ln denote the language over the alphabet A× 2n containing all nonempty
words

(a1, b̄1) · · · (am, b̄m)

such that for all i ∈ [m], ai belongs to A and b̄i belongs to 2n and furthermore
for all � ∈ [n], the �-th component of the “flag” b̄i is equal to 1 if and only if the
word a1 · · · ai belongs to L�.

Intuitively the �th bit of the ith letter of the attached flag signals if the prefix
of length i projected on A belongs to the language L�.

112 A. Carayol and Z. Ésik

Example 2. Let A be the alphabet {a, b, c, d}. Consider the two deterministic
context-free languages L1 = {w ∈ A∗ | |w|a = |w|b} and L2 = {w ∈ A∗ | |w|c =
|w|d}. The language L1 ⊗ L2 contains the word⎛⎝a

0
1

⎞⎠⎛⎝ c
0
0

⎞⎠⎛⎝ b
1
0

⎞⎠⎛⎝d
1
1

⎞⎠⎛⎝a
0
1

⎞⎠⎛⎝d
0
0

⎞⎠
Note that the language L1 ⊗ L2 is not a context-free language1.

The key observation is that the structure associated with the product L1⊗L2 of
two deterministic context-free languages L1 and L2 can be defined in first-order
logic in some context-free word.

Proposition 1. Let L1 and L2 be two deterministic context-free languages.
There exists a language L over an ordered alphabet which is the disjoint union
of deterministic context-free languages not containing the empty word such that
the structure SL1⊗L2 can be first-order interpreted in WL.

Proof. Let L1 and L2 be two deterministic context-free languages. Using a stan-
dard binary encoding, we can assume that L1 and L2 are on the binary alphabet
A = {a, b} ordered by a < b.

Consider the alphabet B = {�, ā, b̄, 01, 11, 02, 12, �,#, a, b} with � < ā < b̄ <
01 < 11 < 02 < 12 < � < # < a < b and the language L which is the (disjoint)
union of the following languages:

{u#� | u ∈ A∗}
{u#uR� | u ∈ A∗}
{u#vxx̄ | u ∈ A∗, v ∈ A∗, x ∈ A and vx ≤p uR}
{u#v0i | u ∈ A∗, v ∈ A+ and v �∈ Li}, i = 1, 2
{u#v1i | u ∈ A∗, v ∈ A+ and v ∈ Li}, i = 1, 2.

We now define a first-order interpretation transforming WL into SL1⊗L2 . The
interpretation only keeps the vertices labelled by the predicate ā or b̄:

δ(x) = Pā(x) ∨ Pb̄(x).

The order relation < coincides with the order relation of WL but restricted to
vertices lying between a vertex labelled by � and a vertex labelled by � with no
vertex labelled by � in between:

ϕ<(x, y) = ∃z1∃z2 (z1 < x < y < z2 ∧ P�(z1) ∧ P�(z2)
∧ ∀z′ (z1 < z′ < z2 → ¬P�(z

′))).

1 Indeed, by taking the intersection of L1⊗L2 with the regular language (A×22)∗(A×
{1} × {1}) and then projecting on the first component, we can obtain the language
{w ∈ A∗ | w �= ε, |w|a = |wb| and |w|c = |w|d}, which is known not to be context-
free.

A Context-Free Linear Ordering with an Undecidable First-Order Theory 113

a

b

b

#

�

a b

01 02

b

b̄ 01 02

b

b̄ 01 02

a

ā 01 02 �

Fig. 3. Assuming that L1 = A∗b and L2 = A∗ba, we depict the part of the tree
TL corresponding to the subset of the language producing after interpretation the
word (b, 1, 0)(b, 1, 0)(a, 0, 1). The white nodes correspond to words that are kept by the
interpretation.

For (a, b, c) ∈ A× 2× 2, the predicate P(a,b,c) is defined by

ϕP(a,b,c)
(x) = Pā(x) ∧ ∃y∃z (Succ(x, y) ∧ Succ(y, z) ∧ Pb1(y) ∧ Pc2(z))

where b1 is 01 if b = 0 and 11 otherwise, and similarly, c2 is 02 if c = 0 and 12
otherwise. ��

To conclude the proof, it remains to show that there exists a product of two
deterministic context-free languages whose structure has an undecidable first-
order theory.

Proposition 2. There exist two deterministic context-free languages L1 and L2

such that SL1⊗L2 has an undecidable first-order theory.

Proof. Let A be the alphabet containing the symbols +1,+2,−1,−2,= and $.
Consider the following deterministic context-free languages:

L1 = {w ∈ A∗ | |w|+1 = |w|−1}
L2 = {w ∈ A∗ | |w|+2 = |w|−2}.

In our argument, we will use reduction from the halting problem of 2-counter
machines. A program for a 2-counter machine is a nonempty sequence I1; . . . ; In
of instructions, where In is a halt instruction and all other instructions Ii are of
the form Incj , Decj or Testj(k), j = 1, 2, k ∈ [n]. Here, Incj increments the value

114 A. Carayol and Z. Ésik

of the jth counter by 1, Decj decrements it by 1 – provided that the current value
is not 0. If the current value is 0, then Decj corresponds to a skip instruction.
A conditional branch instruction Testj(k), where k ∈ [n], tests the current value
of the jth counter and transfers the control to the kth instruction if this value
is 0. Initially, the values of the counters are 0. The instructions are executed
sequentially, except for the effect of the conditional branch instructions. The
machine halts when In is executed. Without loss of generality we will consider
machines that do not try to decrease the value of a counter whose value is 0. This
condition can be syntactically enforced by prefacing each decrease operation with
a test.

Formally, a computation sequence for the program is a sequence i1, . . . , im
of instruction numbers in [n] such that one can define a valuation mapping
v : [m] 	→ N × N associating to every index � ∈ [m], the value of the two
counters before executing the �th instruction. The computation sequence and
the valuation must satisfy the following properties:

– i1 = 1 and v(1) = (0, 0)
– for all � ∈ [m − 1], if Ii� = Inc1 (resp. Ii� = Inc2), then i�+1 = i� + 1 and

v(� + 1) = v(�) + (1, 0) (resp. v(� + 1) = v(�) + (0, 1)),
– for all � ∈ [m − 1], if Ii� = Dec1 (resp. Ii� = Dec2), then i�+1 = i� + 1 and

v(� + 1) = v(�) + (−1, 0) (resp. v(� + 1) = v(�) + (0,−1)),
– for all � ∈ [m−1], if Ii� = Test1(k) (resp. Ii� = Test2(k)), then v(�+1) = v(�),

and i�+1 = k if the first (resp. second) component of v(�) is equal to zero
and i�+1 = i� + 1 otherwise.

Furthermore, a computation sequence is halting if im = n.
A word w over A is said to represent a computation sequence if it satisfies the

following conditions:

1. it is of the form $i1x1 · · ·xm−1$
im with x1, . . . , xm−1 ∈ {+1,+2,−1,−2,=}

and i� ∈ [n] for � ∈ [m];
2. for all � ∈ [m− 1], x� is +1 if Ii� = Inc1, +2 if Ii� = Inc2, −1 if Ii� = Dec1,
−2 if Ii� = Dec2, and = otherwise;

3. i1, . . . , im is a computation sequence.

Claim. The exists a first-order formula ϕHalt such that for every word w ∈ L1⊗
L2, Sw |= ϕHalt if and only if w projected on A represents a halting computation
sequence.

Proof. It is straightforward to write a first-order formula ensuring that w pro-
jected onA satisfies the conditions 1 and 2 above. To be able to express condition
3 in first-order, the only difficulty consists in testing if before the �th instruc-
tion the value of a given counter is 0, where � ∈ [n]. For this it is enough to
notice that if the value of the two counters before the �th instruction is given
by (|w�|+1 − |w�|−1 , |w�|+2 − |w�|−2), where w� = $i1x1 · · ·x�−1$

i� – recall that
we do not consider machines that can decrease the value of a counter when its
value is zero –, then by the definition of L1 ⊗ L2, the fact that the jth counter
has value 0 can be tested by reading the jth bit of the attached flag.

A Context-Free Linear Ordering with an Undecidable First-Order Theory 115

To conclude the proof, we construct a formula φP such that SL1⊗L2 |= φP if
and only if L1⊗L2 contains at least one word satisfying ϕHalt (and hence if and
only if P is halting). The formula φP is equal to ∃x ϕ′

Halt(x), where ϕ′
Halt(x) is

the formula obtained from ϕHalt by relativizing all quantifications to elements
that are comparable to x with respect to < or =. ��

We can now prove Theorem 1.

Proof (Proof of Theorem 1). By Proposition 2, there exist two deterministic
context-free languages L1 and L2 such that SL1⊗L2 has an undecidable first-order
theory. By Proposition 1, there exists a language L over an ordered alphabet
which is the disjoint union of deterministic context-free languages (not containing
the empty word), such that SL1⊗L2 can be first-order interpreted in WL. Thus
WL has an undecidable first-order theory. ��

5 Corollaries of Theorem 1

Using Lemma 3, Theorem 2 can be transferred to context-free linear orderings.

Corollary 1. There exists a context-free linear ordering with an undecidable
first-order theory. Furthermore such a context-free linear ordering can be defined
by a finite disjoint union of deterministic context-free languages.

Proof. By Theorem 1, there exists a finite union L of deterministic context-free
languages such that WL has an undecidable first-order theory. By Lemma 3,
there exists a context-free language L′ and a first-order interpretation I of WL

in OL′ . Since the first-order theory of WL is undecidable, it follows that the
first-order theory of OL′ is also undecidable.

Observe that as L is a finite disjoint union of deterministic context-free lan-
guages, the language L′ constructed in Lemma 3 can also be chosen to be a finite
disjoint union of deterministic context-free languages. ��

As all deterministic context-free linear orderings have a decidable monadic second-
order theory, this result provides an example of a context-free linear ordering that
is not deterministic context-free.

Corollary 2. There exists a context-free linear ordering that is not a determin-
istic context-free linear ordering.

Moving our focus to trees, we obtain a simple proof of a result first proved in
[26].

Corollary 3. There exists a finite disjoint union of deterministic context-free
languages such that

1. the associated tree has an undecidable first-order theory over the signature
σanc (which includes the ancestor relation),

2. it cannot be accepted by any deterministic collapsible automaton.

116 A. Carayol and Z. Ésik

Proof. The first claim is a direct consequence of Corollary 1 and Lemma 4.
The second claim then follows form the fact that any language accepted by a
deterministic collapsible automaton has a tree with a decidable MSO-theory [25],
and hence a decidable first-order theory over the signature σanc. ��

In a draft of this article, we asked if there exists a context-free language whose
associated tree has an undecidable first-order theory over the signature σsuc.
This question was positively answered by Markus Lohrey [23].

Proposition 3 (M. Lohrey). There exists a context-free language whose as-
sociated tree has an undecidable first-order theory over the signature σsuc.

Proof. The proof starts by establishing that there exists a context-free language
L0 over an alphabet A such that the following problem is undecidable : “Given
a word w ∈ A+, decide if L0 contains all words ending with w”.

To construct L0, we consider a universal Turing machine M with a set Q of
states and a set Γ of tape symbols. It is well-known that the set LM of words
representing ill-formed or non-terminating computations of a Turing machine is
a context-free language [21]. More precisely, a configuration is represented by a
word in Γ ∗QΓ ∗ and a computation c0 � · · · � cn is represented by the word
w = c0�c

R
1 �c2 · · ·. For the language L0, we take LR

M = {wR | w ∈ LM}. For a
word w representing an initial configuration c0 of M , it is clear that LR

M contains
all words ending with wR if and only if M does not have a halting computation
starting from c0. Hence the aforementioned problem is undecidable for L0.

Let $ be a fresh symbol. We show that the first-order theory over σsuc of TL0$

is undecidable.
Let w = a1 · · · an with n > 0 be a word over A. The formula ϕw over σsuc,

ϕw = ∀x ∃x1 · · · ∃xn+1 Succ(x, x1) ∧
∧

i∈[n] Succ(xi, xi+1)

∧
∧

i∈[n] Pai(xi) ∧ P$(xn+1),

expresses that for every word u, the word uw$ is in the domain of TL0$ and
hence that uw belongs to L0. Hence for all w ∈ A+, TL0$ |= ϕw if and only if L0

contains all words ending in w. We conclude that the undecidability of the first-
order theory of TL0$ follows from the undecidability of the above problem. ��

As observed by M. Lohrey, the above proposition can be stated for the more
restrictive signature {Succ} in which labels are omitted. Indeed, this follows
from the following lemma that shows that a context-free tree over σsuc can be
first-order interpreted in a context-free trees over {Succ}.

Lemma 5. Let L be a context-free language. There exists a context-free language
L′ such that TL over the signature σsuc can be first-order interpreted in TL′ over
the signature {Succ}.

Proof. Let L be a context-free language over the alphabet A = {a1, . . . , an}.
Without loss of generality we may assume that L contains a nonempty word.
Consider the context-free language

L′ = {uaji | i ≤ j and ∃w ∈ L, uaj ≤p w}

A Context-Free Linear Ordering with an Undecidable First-Order Theory 117

over the alphabet A ∪ [n]. The first-order interpretation of TL over σsuc in TL′

over {Succ} only keeps non-leaf nodes. The Succ relation is inherited. For i ∈ [n],
the predicate Pai holds at those non-leaf nodes which have exactly i sons which
are leaves. Formally the interpretation is defined by

δ(x) = ¬Leaf(x)
ϕSucc(x, y) = Succ(x, y)
ϕPai

(x) = ∃=iy Succ(x, y) ∧ Leaf(y)

where Leaf(x) is a formula expressing that x is a leaf. ��

It would be interesting to know if Property 3 remains true when only consider-
ing context-free languages which are finite unions of deterministic context-free
languages.

6 Discussion

In this article, we have established that the linear orderings and trees associated
with context-free languages are more complex than those associated to deter-
ministic context-free languages. This result even holds for finite disjoint unions
of deterministic context-free languages and hence for unambiguous context-free
languages. It would be interesting to investigate whether such a separation result
exists for context-free scattered linear orderings.

Acknowledgements. The authors would like to thank Markus Lohrey for his
remarks on a previous draft of this article as well as for the proof of Proposition 3.
The authors are also grateful for the remarks of the anonymous referees.

References

1. Bloom, S.L., Choffrut, C.: Long words: the theory of concatenation and omega-
power. Theoretical Computer Science 259, 533–548 (2001)

2. Bloom, S.L., Ésik, Z.: Deciding whether the frontier of a regular tree is scattered.
Fundamenta Informaticae 55, 1–21 (2003)

3. Bloom, S.L., Ésik, Z.: The equational theory of regular words. Information and
Computation 197, 55–89 (2005)

4. Bloom, S.L., Ésik, Z.: Regular and Algebraic Words and Ordinals. In: Mossakowski,
T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 1–15.
Springer, Heidelberg (2007)

5. Bloom, S.L., Ésik, Z.: Algebraic ordinals. Fundamenta Informaticae 99, 383–407
(2010)

6. Bloom, S.L., Ésik, Z.: Algebraic linear orderings. Int. J. Foundations of Computer
Science 22, 491–515 (2011)

7. Braud, L., Carayol, A.: Linear Orders in the Pushdown Hierarchy. In: Abramsky,
S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 88–99. Springer, Heidelberg (2010)

8. Carayol, A., Ésik, Z.: The FC-rank of a context-free language (to appear)

118 A. Carayol and Z. Ésik

9. Carayol, A., Wöhrle, S.: The Caucal Hierarchy of Infinite Graphs in Terms of Logic
and Higher-Order Pushdown Automata. In: Pandya, P.K., Radhakrishnan, J. (eds.)
FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)

10. Caucal, D.: On Infinite Terms Having a Decidable Monadic Theory. In: Diks, K.,
Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg
(2002)

11. Caucal, D.: On infinite transition graphs having a decidable monadic theory. The-
oretical Computer Science 290, 79–115 (2003)

12. Courcelle, B.: Frontiers of infinite trees. Theoretical Informatics and Applica-
tions 12, 319–337 (1978)

13. Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer Sci-
ence 25, 95–169 (1983)

14. Delhommé, C.: Automaticité des ordinaux et des graphes homogènes. C. R. Acad.
Sci. Paris, Ser. I 339, 5–10 (2004)

15. Ésik, Z.: Representing small ordinals by finite automata. In: 12th Workshop De-
scriptional Complexity of Formal Systems, Saskatoon, Canada. EPTCS, vol. 31,
pp. 78–87 (2010)

16. Ésik, Z.: An undecidable property of context-free linear orders. Information Pro-
cessing Letters 111, 107–109 (2010)

17. Ésik, Z.: Scattered Context-Free Linear Orderings. In: Mauri, G., Leporati, A.
(eds.) DLT 2011. LNCS, vol. 6795, pp. 216–227. Springer, Heidelberg (2011)

18. Ésik, Z., Iván, S.: Hausdorff Rank of Scattered Context-Free Linear Orders. In:
Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 291–302. Springer,
Heidelberg (2012)

19. Hague, M., Murawski, A., Ong, C.-H.L., Serre, O.: Collapsible Pushdown Au-
tomata and Recursion Schemes. In: LICS 2008, pp. 452–461. IEEE (2008)

20. Heilbrunner, S.: An algorithm for the solution of fixed-point equations for infinite
words. Theoretical Informatics and Applications 14, 131–141 (1980)

21. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

22. Khoussainov, B., Rubin, S., Stephan, F.: Automatic linear orders and trees. ACM
Trans. Comput. Log. 6, 625–700 (2005)

23. Lohrey, M.: Private communication (2012)
24. Lohrey, M., Mathissen, C.: Isomorphism of Regular Trees and Words. In: Aceto, L.,

Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 210–221.
Springer, Heidelberg (2011)

25. Luke Ong, C.-H.: On model-checking trees generated by higher-order recursion
schemes. In: LICS 2006, pp. 81–90. IEEE Press (2006)

26. Parys, P.: Higher-order stacks can not replace nondeterminism. Note published on
the authors webpage (3 p.) (February 2010)

27. Rosenstein, J.G.: Linear Orderings. Pure and Applied Mathematics, vol. 98. Aca-
demic Press (1982)

28. Thomas, W.: On frontiers of regular trees. Theoretical Informatics and
Applications 20, 371–381 (1986)

Open Bisimulation for Quantum Processes

Yuxin Deng1,� and Yuan Feng2,��

1 Shanghai Jiao Tong University
and Chinese Academy of Sciences, China

2 University of Technology, Sydney, Australia
and Tsinghua University, China

Abstract. Quantum processes describe concurrent communicating sys-
tems that may involve quantum information. We propose a notion of
open bisimulation for quantum processes and show that it provides both
a sound and complete proof methodology for a natural extensional be-
havioural equivalence between quantum processes. We also give a modal
characterisation of the behavioural equivalence, by extending the
Hennessy-Milner logic to a quantum setting.

1 Introduction

The theory of quantum computing has attracted considerable research efforts in
the past twenty years. Benefiting from the superposition of quantum states and
linearity of quantum operations, quantum computing may provide considerable
speedup over its classical analogue [30,13,14].

As is well known, it is very difficult to guarantee the correctness of classical
communication protocols at the design stage, and some simple protocols were
eventually found to have fundamental flaws. One expects that the design of com-
plex quantum protocols is at least as error-prone, if not more, than in the classi-
cal case. In view of the success that classical process algebras [23,18,1] achieved
in analyzing and verifying classical communication protocols, several research
groups proposed various quantum process algebras with the purpose of modeling
quantum protocols. Jorrand and Lalire [21,22] defined a language QPAlg (Quan-
tum Process Algebra) by adding primitives expressing unitary transformations
and quantum measurements, as well as communications of quantum states, to a
CCS-like classical process algebra. An operational semantics of QPAlg is given,
and further a probabilistic branching bisimulation between quantum processes is
defined. Gay and Nagarajan [12,11] proposed a language CQP (Communicating
Quantum Processes), which is obtained from the pi-calculus [24] by adding prim-
itives for measurements and transformations of quantum states, and allowing
transmission of qubits. They presented a type system for CQP, and in particular
proved that the semantics preserves typing and that typing guarantees that each
qubit is owned by a unique process within a system. A probabilistic branching

� Supported by the Natural Science Foundation of China (61173033 and 61033002).
�� Supported by Australian Research Council (FT100100218 and DP110103473).

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 119–133, 2012.
c© IFIP International Federation for Information Processing 2012

120 Y. Deng and Y. Feng

bisimulation for CQP was proposed by Davidson [3] and shown to be a con-
gruence. The second author of the current paper, together with his colleagues,
proposed a language named qCCS [8,31,9] for quantum communicating systems
by adding quantum input/output and quantum operation/measurement prim-
itives to classical value-passing CCS [15,16]. One distinctive feature of qCCS,
compared to QPAlg and CQP, is that it provides a framework to describe, as
well as reason about, the communication of quantum systems which are entan-
gled with other systems. Furthermore, a bisimulation for processes in qCCS has
been introduced, and the associated bisimilarity is proven to be a congruence
with respect to all process constructors of qCCS. Uniqueness of the solutions to
recursive process equations is also established, which provides a powerful proof
technique for verifying complex quantum protocols.

In the study of quantum systems, as well as classical communicating systems,
an important problem is to tell if two given systems exhibit the same behaviour,
as this may allow us to replace a complex system with a simplified but equiva-
lent one. To approach the problem we first need to give criteria for reasonable
behavioural equivalence. Two systems should only be distinguished on the basis
of the chosen criteria. Therefore, these criteria induce an extensional equivalence
between systems, ≈behav, namely the largest equivalence which satisfies them.

Having an independent notion of which systems should, and which should
not, be distinguished, one can then justify a particular notion of equivalence, e.g.
bisimulation, by showing that it captures precisely the touchstone equivalence.
In other words, a particular definition of bisimulation is appropriate because
the associated bisimulation equivalence, say ≈bis, is sound with respect to the
touchstone equivalence and provides for it a complete proof methodology, i.e.
s1 ≈bis s2 if and only if s1 ≈behav s2.

This approach originated in [19] but has now been widely used for differ-
ent process description languages; for example, see [20,28] for its application to
higher-order process languages, [26] for mobile ambients, [10] for asynchronous
languages and [6] for probabilistic timed languages. Moreover, in each case the
distinguishing criteria are almost the same. The touchstone equivalence should
be compositional (preserved by some natural operators for constructing sys-
tems), barb-preserving (equivalent processes exhibit the same observables) and
reduction-closed (nondeterministic choices are in some sense preserved).

We adapt this approach to quantum processes. Using natural versions of these
criteria we obtain an appropriate touchstone equivalence, which we call reduction
barbed congruence, ≈r. We then develop a theory of bisimulations which is both
sound and complete for ≈r. Moreover, we provide a modal characterisation of
≈r in a quantum logic based on Hennessy-Milner logic [17] by establishing the
coincidence of the largest bisimulation with logical equivalence.

Due to lack of space, we omit all proofs; they can be found in [5]. We also
refer the readers to [25] for the basic notions of linear algebra and quantum
information theory used in this paper.

Open Bisimulation for Quantum Processes 121

2 A Probabilistic Model

We review the model of probabilistic labelled transition systems (pLTSs). Later
on we will interpret the behaviour of quantum processes in terms of pLTSs
because quantum measurements give rise to probability distributions naturally.

We begin with some notations. A (discrete) probability distribution over a set
S is a function Δ : S → [0, 1] with

∑
s∈S Δ(s) = 1; the support of such a Δ is

the set %Δ& = { s ∈ S | Δ(s) > 0 }. The point distribution s assigns probability
1 to s and 0 to all other elements of S, so that %s& = {s}. In this paper we only
need to use distributions with finite support, and let Dist(S) denote the set of
finite support distributions over S, ranged over by Δ,Θ etc. If

∑
k∈K pk = 1 for

some collection of pk ≥ 0, and the Δk are distributions, then so is
∑

k∈K pk ·Δk

with (
∑

k∈K pk ·Δk)(s) =
∑

k∈K pk ·Δk(s).

Definition 1. A probabilistic labelled transition system is a triple 〈S,Actτ ,→〉,
where S is a set of states, Actτ is a set of labels Act augmented with distinguished
element τ , and → is a subset of S × Actτ ×Dist(S).

We often write s
α−→ Δ for (s, α,Δ) ∈→, and s

α−→ for ∃Δ : s
α−→ Δ. In a

pLTS actions are only performed by states, in that actions are given by relations
from states to distributions. But in general we allow distributions over states
to perform an action. For this purpose, we lift these relations so that they also
apply to distributions [7].

Definition 2. Let R ⊆ S × Dist(S) be a relation from states to distributions
in a pLTS. Then R◦ ⊆ Dist(S)×Dist(S) is the smallest relation that satisfies
the two rules: (i) s R Θ implies s R◦ Θ; (ii) Δi R◦ Θi for all i ∈ I implies
(
∑

i∈I pi ·Δi) R◦ (
∑

i∈I pi · Θi) for any pi ∈ [0, 1] with
∑

i∈I pi = 1, where I is
a countable index set.

We apply this operation to the relations
α−→ in the pLTS for α ∈ Actτ , where

we also write
α−→ for (

α−→)
◦
. Thus as source of a relation

α−→ we now also allow

distributions. But note that s
α−→ Δ is more general than s

α−→ Δ because if
s

α−→ Δ then there is a collection of distributions Δi and probabilities pi such
that s

α−→ Δi for each i ∈ I and Δ =
∑

i∈I pi ·Δi with
∑

i∈I pi = 1.

We write s
τ̂−→ Δ if either s

τ−→ Δ or Δ = s. We define weak transitions
â

=⇒ by letting
τ̂

=⇒ be the reflexive and transitive closure of
τ̂−→ and writing

Δ
â

=⇒ Θ for a ∈ Act whenever Δ
τ̂

=⇒ a−→ τ̂
=⇒ Θ. If Δ is a point distribution, we

often write s
â

=⇒ Θ instead of s
â

=⇒ Θ.
Let R ⊆ S×S be a relation between states. It induces a special relation R̂ ⊆

S × Dist(S) between states and distributions by letting R̂ def
= {(s, t) | s R t}.

Then we can use Definition 2 to lift R̂ to be a relation (R̂)◦ between distributions.
For simplicity, we combine the above two lifting operations and directly writeR◦

for (R̂)◦ in the sequel, with the intention that a relation between states can be
lifted to a relation between distributions via a special application of Definition 2.
In this particular case, it holds that Δ R◦ Θ implies Θ (R−1)

◦
Δ, where s R t iff

122 Y. Deng and Y. Feng

t R−1 s for any s, t ∈ S. This way of lifting relations has elegant mathematical
characterisations; see [4] for more details.

3 Quantum CCS

We introduce a quantum extension of classical CCS (qCCS) which was originally
studied in [8,31,9]. Three types of data are considered in qCCS: as classical data
we have Bool for booleans and Real for real numbers, and as quantum data
we have Qbt for qubits. Consequently, two countably infinite sets of variables
are assumed: cVar for classical variables, ranged over by x, y, ..., and qVar for
quantum variables, ranged over by q, r, We assume a set Exp, which includes
cVar as a subset and is ranged over by e, e′, . . . , of classical data expressions over
Real, and a set of boolean-valued expressions BExp, ranged over by b, b′, . . . ,
with the usual boolean constants true, false, and operators ¬, ∧, ∨, and →.
In particular, we let e �� e′ be a boolean expression for any e, e′ ∈ Exp and
�� ∈ {>,<,≥,≤,=}. We further assume that only classical variables can occur
freely in both data expressions and boolean expressions. Two types of channels
are used: cChan for classical channels, ranged over by c, d, ..., and qChan for
quantum channels, ranged over by c, d,.... A relabelling function f is a map
on cChan ∪ qChan such that f(cChan) ⊆ cChan and f(qChan) ⊆ qChan .
Sometimes we abbreviate a sequence of distinct variables q1, ..., qn into q̃.

The terms in qCCS are given by:

P,Q ::= nil | τ.P | c?x.P | c!e.P | c?q.P | c!q.P | E [q̃].P | M [q̃;x].P |
P +Q | P || Q | P [f] | P\L | if b then P | A(q̃; x̃)

where f is a relabelling function and L ⊆ cChan ∪ qChan is a set of chan-
nels. Most of the constructors are standard as in CCS [23]. We briefly explain
a few new constructors. The process c?q.P receives a quantum datum along
quantum channel c and evolves into P , while c!q.P sends out a quantum datum
along quantum channel c before evolving into P . The symbol E represents a
trace-preserving super-operator applied on the systems q̃. The process M [q̃;x].P
measures the state of qubits q̃ according to the observable M and stores the
measurement outcome into the classical variable x of P .

Free classical variables can be defined in the usual way, except for the fact
that the variable x in the quantum measurement M [q̃;x] is bound. A process P
is closed if it contains no free classical variable, i.e. fv(P) = ∅.

The set of free quantum variables for process P , denoted by qv(P) can be
inductively defined as in Figure 1. For a process to be legal, we require that

1. q �∈ qv(P) in the process c!q.P ;
2. qv(P) ∩ qv(Q) = ∅ in the process P || Q;
3. Each constant A(q̃; x̃) has a defining equation A(q̃; x̃) := P , where P is a

term with qv(P) ⊆ q̃ and fv(P) ⊆ x̃.

The first condition says that a quantum system will not be referenced after it
has been sent out. This is a requirement of the quantum no-cloning theorem.

Open Bisimulation for Quantum Processes 123

qv(nil) = ∅ qv(τ.P) = qv(P)
qv(c?x.P) = qv(P) qv(c!e.P) = qv(P)
qv(c?q.P) = qv(P)− {q} qv(c!q.P) = qv(P) ∪ {q}
qv(E [q̃].P) = qv(P) ∪ q̃ qv(M [q̃; x].P) = qv(P) ∪ q̃
qv(P +Q) = qv(P) ∪ qv(Q) qv(P || Q) = qv(P) ∪ qv(Q)
qv(P [f]) = qv(P) qv(P\L) = qv(P)

qv(if b then P) = qv(P) qv(A(q̃; x̃)) = q̃.

Fig. 1. Free quantum variables

The second condition says that parallel composition || models separate parties
that never reference a quantum system simultaneously.

Throughout the paper we implicitly assume the convention that processes are
identified up to α-conversion, bound variables differ from each other and they
are different from free variables.

We now give the semantics of qCCS. For each quantum variable q we assume
a 2-dimensional Hilbert space Hq. For any nonempty subset S ⊆ qVar we write
HS for the tensor product space

⊗
q∈S Hq and HS for

⊗
q �∈S Hq. In particular,

H = HqVar is the state space of the whole environment consisting of all the
quantum variables, which is a countably infinite dimensional Hilbert space.

Let P be a closed quantum process and ρ a density operator on H,1 the pair
〈P, ρ〉 is called a configuration. We write Con for the set of all configurations,
ranged over by C and D. We interpret qCCS with a pLTS whose states are all the
configurations definable in the language, and whose transitions are determined
by the rules in Figure 2; we have omitted the obvious symmetric counterparts
to the rules (C-Com), (Q-Com), (Int) and (Sum). The set of actions Act takes
the following form, consisting of classical/quantum input/output actions.

{c?v, c!v | c ∈ cChan , v ∈ Real} ∪ {c?r, c!r | c ∈ qChan , r ∈ qVar}

We use cn(α) for the set of channel names in action α. For example, we have
cn(c?x) = {c} and cn(τ) = ∅.

In the first eight rules in Figure 2, the targets of arrows are point distributions,
and we use the slightly abbreviated form C α−→ C′ to mean C α−→ C′.

The rules use the obvious extension of the function || on terms to configu-
rations and distributions. To be precise, C || P is the configuration 〈Q || P, ρ〉
where C = 〈Q, ρ〉, and Δ || P is the distribution defined by:

(Δ || P)(〈Q, ρ〉) def
=

{
Δ(〈Q′, ρ〉) if Q = Q′ || P for some Q′

0 otherwise.

Similar extension applies to Δ[f] and Δ\L.

1 As H is infinite dimensional, ρ should be understood as a density operator on some
finite dimensional subspace of H which contains Hqv(P).

124 Y. Deng and Y. Feng

(Tau)

〈τ.P, ρ〉 τ−→ 〈P, ρ〉

(C-Inp)

v ∈ Real

〈c?x.P, ρ〉 c?v−→ 〈P [v/x], ρ〉
(C-Outp)

v = [[e]]

〈c!e.P, ρ〉 c!v−→ 〈P, ρ〉

(C-Com)

〈P1, ρ〉 c?v−→ 〈P ′
1, ρ〉 〈P2, ρ〉 c!v−→ 〈P ′

2, ρ〉
〈P1 || P2, ρ〉 τ−→ 〈P ′

1 || P ′
2, ρ〉

(Q-inp)

r �∈ qv(c?q.P)

〈c?q.P, ρ〉 c?r−→ 〈P [r/q], ρ〉
(Q-Outp)

〈c!q.P, ρ〉 c!q−→ 〈P, ρ〉
(Q-Com)

〈P1, ρ〉 c?r−→ 〈P ′
1, ρ〉 〈P2, ρ〉 c!r−→ 〈P ′

2, ρ〉
〈P1 || P2, ρ〉 τ−→ 〈P ′

1 || P ′
2, ρ〉

(Oper)

〈E[q̃].P, ρ〉 τ−→ 〈P, Eq̃(ρ)〉
(Meas)

M =
∑

i∈I λiE
i pi = tr(Ei

q̃ρ)

〈M [q̃; x].P, ρ〉 τ−→ ∑
i∈I pi〈P [λi/x], E

i
q̃ρE

i
q̃/pi〉

(Int)

〈P1, ρ〉 α−→ Δ qbv(α) ∩ qv(P2) = ∅
〈P1 || P2, ρ〉 α−→ Δ || P2

(Sum)

〈P1, ρ〉 α−→ Δ

〈P1 + P2, ρ〉 α−→ Δ
(Rel)

〈P, ρ〉 α−→ Δ

〈P [f], ρ〉 f(α)−→ Δ[f]

(Res)

〈P, ρ〉 α−→ Δ cn(α) ∩ L = ∅
〈P\L, ρ〉 α−→ Δ\L

(Cho)

〈P, ρ〉 α−→ Δ [[b]] = true

〈if b then P , ρ〉 α−→ Δ

(Cons)

〈P [ṽ/x̃, r̃/q̃], ρ〉 α−→ Δ A(x̃, q̃) := P

〈A(ṽ, r̃), ρ〉 α−→ Δ

Fig. 2. Operational semantics of qCCS. Here in rule (C-Outp), [[e]] is the evaluation
of e, and in rule (Meas), Ei

q̃ denotes the operator Ei acting on the quantum systems q̃.

4 An Extensional Equivalence

Let C = 〈P, ρ〉. We use the notation qv(C) := qv(P) for free quantum variables
and env(C) := trqv(P)(ρ) for partial traces. Let Δ =

∑
i∈I pi · 〈Pi, ρi〉. We write

E(Δ) for the distribution
∑

i∈I pi · 〈Pi, E(ρi)〉.
We formally define three criteria, namely barb-preservation,

reduction-closedness and compositionality, in order to judge whether two pro-
cesses are equivalent.

Definition 3. A relation R is

– barb-preserving if C R D implies that C ⇓≥p
c iff D⇓≥p

c for any p ∈ [0, 1] and

any classical channel c, where C ⇓≥p
c holds if C τ̂

=⇒ Δ for some Δ with∑
{Δ(C′) | C′ c!v−→ for some v} ≥ p;

– reduction-closed if C R D implies

• whenever C τ̂
=⇒ Δ, there exists Θ such that D τ̂

=⇒ Θ and Δ R◦ Θ,

• whenever D τ̂
=⇒ Θ, there exists Δ such that C τ̂

=⇒ Δ and Δ R◦ Θ;

Open Bisimulation for Quantum Processes 125

– compositional if C R D implies (C||R) R (D||R) for any process R with
qv(R) disjoint from qv(C) ∪ qv(D), and R is closed under super-operator
application, namely C R D implies E(C) R E(D) for any E ∈ T SO(Hqv(C)),
where T SO(Hqv(C)) stands for the set of trace-preserving super-operators on

finite dimensional subspaces of Hqv(C).

Here barb-preservation means that two related configurations have the same
probability to send out values on classical channels. Reduction-closure ensures
that non-deterministic choices are in some sense preserved. In the definition of
compositionality, it is worth noting that we only allow the super-operator E to be
applied on Hqv(C). The intuition behind this restriction is that systems in qv(C)
are actually the local quantum variables of C, and they cannot be manipulated
by the outer environment.

Definition 4 (Reduction barbed congruence). Let reduction barbed con-
gruence, written ≈r, be the largest relation over configurations which is barb-
preserving, reduction-closed and compositional, and furthermore, if C ≈r D then
qv(C) = qv(D) and env(C) = env(D).

With the above definition, it is difficult to prove if two given configurations are
related by reduction barbed congruence. Therefore, we need to discover some
proof techniques which are easy to use.

4.1 Open Bisimulations

We now introduce a coinductively defined relation which will be used later on
to characterise reduction barbed congruence.

Definition 5. A relation R ⊆ Con × Con is an open simulation if C R D
implies that qv(C) = qv(D), env(C) = env(D), and for any E ∈ T SO(Hqv(C)),

– whenever E(C) α−→ Δ, there is some Θ with E(D) α̂
=⇒ Θ and Δ R◦ Θ.

A relation R is an open bisimulation if both R and R−1 are open simulations.
We let ≈o be the largest open bisimulation.

Two quantum processes P and Q are bisimilar, denoted by P ≈o Q, if for any
quantum state ρ and any indexed set ṽ of classical values, we have

〈P{ṽ/x̃}, ρ〉 ≈o 〈Q{ṽ/x̃}, ρ〉.

Here x̃ is the set of free classical variables contained in P and Q.

The above definition is inspired by the work of Sangiorgi [27], where a notion
of bisimulation is defined for the π-calculus by treating name instantiation in
an “open” style (name instantiation happens before any transition). Here we
deal with super-operator application in an “open” style, but the instantiation of
variables is in an “early” style (variables are instantiated when input actions are
performed) because the operational semantics given in Figure 2 is essentially an
early semantics. For more variants of semantics, see e.g. [29].

126 Y. Deng and Y. Feng

4.2 A Useful Proof Technique

In Definition 5 super-operator application and transitions are considered at the
same time. In fact, we can separate the two issues and approach the concept of
open bisimulation in an incremental way, which turns out to be very useful when
proving that two configurations are bisimilar.

Definition 6. A relation R ⊆ Con × Con is a ground simulation if C R D
implies that qv(C) = qv(D), env(C) = env(D), and

– whenever C α−→ Δ, there is some distribution Θ with D α̂
=⇒ Θ and Δ R◦ Θ.

A relation R is a ground bisimulation if both R and R−1 are ground simulations.

Proposition 1. Suppose that a relation R

1. is a ground bisimulation, and
2. is closed under all super-operator application.

Then R is an open bisimulation.

Proposition 1 provides us with a useful proof technique: in order to show that
two configurations C and D are open bisimilar, it suffices to exhibit a binary
relation including the pair (C,D), and then to check that the relation is a ground
bisimulation and is closed under all super-operator application. This is analogous
to a proof technique of open bisimulation for the π-calculus [27], where name
instantiation is playing the same role as super-operator application here.

Proposition 2. ≈o is the largest ground bisimulation that is closed under all
super-operator application.

For a sanity check, we can prove that ≈o is an equivalence relation. As a relation
between configurations, ≈o is preserved by all static constructors.

Proposition 3. If 〈P, ρ〉 ≈o 〈Q, σ〉 then

1. 〈P‖R, ρ〉 ≈o 〈Q‖R, σ〉;
2. 〈P [f], ρ〉 ≈o 〈Q[f], σ〉;
3. 〈P\L, ρ〉 ≈o 〈Q\L, σ〉;
4. 〈if b then P, ρ〉 ≈o 〈if b then Q, σ〉.

We do not have a counterpart of the above proposition for dynamic constructors
such as prefix. For example, consider the two configurations taken from [9]: 〈P, ρ〉
and 〈Q, ρ〉, where P = M0,1[q;x].nil with M0,1 = λ0|0〉〈0| + λ1|1〉〈1| being the
1-qubit measurement according to the computational basis, Q = I[q].nil, and
ρ = |0〉〈0|q ⊗ σ with σ being a state on Hq. We have 〈P, ρ〉 ≈o 〈Q, ρ〉, but
〈H [q].P, ρ〉 �≈o 〈H [q].Q, ρ〉, where H is the Hadamard operator.

Nevertheless, as a relation between processes, ≈o is preserved by almost all
constructors of qCCS.

Open Bisimulation for Quantum Processes 127

Theorem 1. The relation ≈o between processes is preserved by all the construc-
tors of qCCS except for summation.

It turns out that reduction barbed congruence can be captured by open bisimu-
lation precisely. This gives a coinductive technique to judge if two configurations
are behaviourally equivalent.

Theorem 2 (Soundness). If C ≈o D then C ≈r D.
In order to obtain completeness, the converse of Theorem 2, we make use of a
proof technique that involves examining the barbs of processes in certain con-
texts; the following technical lemma enhances this technique.

Lemma 1. If Δ||c!0 (≈r)
◦
Θ||c!0 where c is a fresh channel, then Δ (≈r)

◦
Θ.

We are now in a position to show that ≈r is complete with respect to ≈o.

Theorem 3 (Completeness). If C ≈r D then C ≈o D.

Proof. (Schema) Since ≈r is closed under any super-operator application, by
Proposition 1 it suffices to show that ≈r is a ground bisimulation. The key idea is
the following. For any transition C α−→ Δ, we design a test process T , depending

on the form of α, such that C||T τ̂
=⇒ Γ1 for some distribution Γ1 which exhibits

certain barbs. Since C ≈r D we know C||T ≈r D||T by the compositionality of

≈r. Since ≈r is reduction-closed, there is some Γ2 such that D||T τ̂
=⇒ Γ2 and

Γ1 (≈r)
◦ Γ2. Since ≈r is barb-preserving, Γ2 must exhibit similar barbs as Γ1.

The careful design of T ensures that D α̂
=⇒ Θ for some Θ with Δ (≈r)

◦
Θ, and

the last step involves Proposition 1. See [5] for more details. ��

4.3 Modal Characterisation

We extend the Hennessy-Milner logic by adding a probabilistic choice modality to
express the behaviour of distributions, as in [7], and a super-operator modality to
express trace-preserving super-operator application, as well as atomic formulae
involving projectors for dealing with density operators.

Definition 7. The class L of modal formulae over Act, ranged over by φ, is
defined by the following grammar:

φ := E≥p
q̃ |

∧
i∈I φi | 〈α〉ψ | ¬φ | E .φ

ψ :=
⊕

i∈I pi · φi

where α ∈ Actτ , E is a super-operator, and E is a projector associated with a
certain subspace of Hq̃. We call φ a configuration formula and ψ a distribution
formula. Note that a distribution formula ψ only appears as the continuation of
a diamond modality 〈α〉ψ.

The satisfaction relation |= ⊆ Con × L is defined by

– C |= E≥p
q̃ if qv(C) ∩ q̃ = ∅ and tr(Eq̃ρ) ≥ p where C = 〈P, ρ〉.

– C |=
∧

i∈I φi if C |= φi for all i ∈ I.

128 Y. Deng and Y. Feng

– C |= 〈α〉ψ if for some Δ ∈ Dist(Con), C α̂
=⇒ Δ and Δ |= ψ.

– C |= ¬φ if it is not the case that C |= φ.
– C |= E .φ if E ∈ T SO(Hqv(C)) and E(C) |= φ.

– Δ |=
⊕

i∈I pi · φi if there are Δi ∈ Dist(Con) for all i ∈ I, and for all
D ∈ %Δi&, with D |= φi, such that Δ =

∑
i∈I pi ·Δi.

With a slight abuse of notation, we write Δ |= ψ above to mean that Δ satisfies
the distribution formula ψ. A logical equivalence arises from the logic naturally:
we write C =L D if C |= φ⇔ D |= φ for all φ ∈ L. Using the logical equivalence,
we provide a modal characterisation of reduction barbed congruence as follows.

Theorem 4. C ≈r D if and only if C =L D.

Proof. (Schema) In view of Theorems 2 and 3, it suffices to prove that C ≈o D
if and only if C =L D. For one direction, we show that C |= φ ⇔ D |= φ for all
φ ∈ L by structural induction on φ; for the other direction, we show that =L is
an open bisimulation by using Proposition 1. ��

5 Examples

BB84, the first quantum key distribution protocol developed by Bennett and
Brassard in 1984 [2], provides a provably secure way to create a private key
between two parties, say, Alice and Bob. Its security relies on the basic property
of quantum mechanics that information gain about a quantum state is only
possible at the expense of changing the state, if the states to be distinguished
are not orthogonal. The basic BB84 protocol goes as follows:

(1) Alice randomly creates two strings of bits B̃a and K̃a, each with size n.
(2) Alice prepares a string of qubits q̃, with size n, such that the ith qubit of q̃ is
|xy〉 where x and y are the ith bits of B̃a and K̃a, respectively, and |00〉 = |0〉,
|01〉 = |1〉, |10〉 = |+〉, and |11〉 = |−〉. Here the symbols |+〉 and |−〉 have
their usual meaning: |+〉 def= (|0〉+ |1〉)/

√
2 and |−〉 def= (|0〉 − |1〉)/

√
2.

(3) Alice sends the qubit string q̃ to Bob.
(4) Bob randomly generates a string of bits B̃b with size n.
(5) Bob measures each qubit received from Alice according to a basis determined

by the bits he generated: if the ith bit of B̃b is k then he measures with
{|k0〉, |k1〉}, k = 0, 1. Let the measurement results be K̃b, which is also a
string of bits with size n.

(6) Bob sends his choice of measurement bases B̃b back to Alice, and upon
receiving the information, Alice sends her bases B̃a to Bob.

(7) Alice and Bob determine at which positions the bit strings B̃a and B̃b are
equal. They discard the bits in K̃a and K̃b where the corresponding bits of
B̃a and B̃b do not match.

After the execution of the basic BB84 protocol above, the remaining bits of K̃a

and K̃b, denoted by K̃ ′
a and K̃ ′

b respectively, should be the same, provided that
the channels used are perfect, and no eavesdropper exists.

To detect a potential eavesdropper Eve, Alice and Bob proceed as follows:

Open Bisimulation for Quantum Processes 129

(8) Alice randomly chooses %k/2&, where k is the size of K̃ ′
a, bits of K̃

′
a, denoted

by K̃ ′′
a , and sends Bob K̃ ′′

a and their indexes in the original string K̃ ′
a.

(9) Upon receiving the information from Alice, Bob sends back to Alice his
substring K̃ ′′

b of K̃ ′
b according to the indexes received from Alice.

(10) Alice and Bob check if the strings K̃ ′′
a and K̃ ′′

b are equal. If yes, then the

remaining substring K̃f
a (resp. K̃f

b) of K̃
′
a (resp. K̃ ′

b) by deleting K̃ ′′
a (resp.

K̃ ′′
b) is the secure key shared by Alice (reps. Bob). Otherwise, an eaves-

dropper is detected, and the protocol halts without generating any secure
keys.

For simplicity, we omit the processes of information reconciliation and privacy
amplification. Now we describe the above protocol in qCCS. To ease the nota-
tions, we assume a special measurement Ran[q̃; x̃] which can create a string of n
random bits, independent of the initial states of the q̃ system, and store it to x̃.
In effect, Ran[q̃; x̃] = Setn+[q̃].M

n
0,1[q̃; x̃].Set

n
0 [q̃] where Setn+ (resp. Setn0) is the

super-operator which sets each of the n qubits it applies on to |+〉 (resp. |0〉),
Mn

0,1[q̃; x̃] is the quantum measurement on q̃ according to the basis {|0〉, |1〉},
and stores the result into x̃. Then the basic BB84 protocol can be defined as

Alice
def
= Ran[q̃; B̃a].Ran[q̃; K̃a].SetK̃a

[q̃].HB̃a
[q̃].A2B!q̃.WaitA(B̃a, K̃a)

WaitA(B̃a, K̃a)
def
= b2a?B̃b.a2b!B̃a.keya!cmp(K̃a, B̃a, B̃b).nil

Bob
def
= A2B?q̃.Ran[q̃′; B̃b].MB̃b

[q̃; K̃b].b2a!B̃b.WaitB(B̃b, K̃b)

WaitB(B̃b, K̃b)
def
= a2b?B̃a.keyb!cmp(K̃b, B̃a, B̃b).nil

BB84
def
= (Alice‖Bob)\{a2b, b2a,A2B}

where SetK̃a
[q̃] sets the ith qubit of q̃ to the state |K̃a(i)〉, HB̃a

[q̃] applies H or

does nothing on the ith qubit of q̃ depending on whether the ith bit of B̃a is 1
or 0, and MB̃b

[q̃; K̃b] is the quantum measurement on q̃ according to the basis

determined by B̃b, i.e., for each 1 ≤ k ≤ n, it measures qk with respect to the
basis {|0〉, |1〉} (reps. {|+〉, |−〉}) if B̃b(k) = 0 (resp. 1), and stores the result into
K̃b(k). We also abuse the notation slightly by writing EB̃[q̃].P when we mean∑1n

x̃=0n(if B̃ = x̃ then Ex̃[q̃].P) where in is the all i string of size n, i = 0, 1.
The function cmp takes a triple of strings x̃, ỹ, z̃ with the same size as inputs,
and returns the substring of x̃ where the corresponding bits of ỹ and z̃ match.
When ỹ and z̃ match nowhere, we let cmp(x̃, ỹ, z̃) = ε, the empty string.

To show the correctness of this basic form of BB84 protocol, we let

BB84spe
def
= Ran[q̃; B̃a].Ran[q̃; K̃a].Ran[q̃′; B̃b].

(keya!cmp(K̃a, B̃a, B̃b).nil‖keyb!cmp(K̃a, B̃a, B̃b).nil).

The pLTSs of BB84 and BB84spe for the special case of n = 2 can be depicted as

in Figure 3, where for simplicity, we only specify the branch where B̃a = K̃a = 00.
Each arrow in the graph denotes a sequence of τ actions, and all probabilistic

130 Y. Deng and Y. Feng

�

� � � �

� � � �
00 01 10 11

00 01 10 11B̃a :

K̃a :

� � � �
00 01 10 11B̃b :

� � � � � �� ��

� �
00

� � �����
0 0 0 0ε ε

K̃b : 1000010000 00 ... 11

ε ε

BB84

�

� � � �

� � � �
00 01 10 11

00 01 10 11B̃a :

K̃a :

� � � �
00 01 10 11B̃b :

00 0 0 ε

BB84spe

Fig. 3. pLTSs for BB84 and BB84spe

distributions are uniform. The strings at the bottom line are the outputs of the
protocol. Then it can be easily checked from the pLTSs that BB84 ≈o BB84spe.
The key is, for each extra branch in BB84 caused by the measurement of Bob
(the K̃b line), the final states are bisimilar; they all output the same string.

Now we proceed to describe the protocol with an eavesdropper. Let

Alice′
def
= (Alice‖keya?K̃ ′

a.P str|K̃′
a|[q̃a; x̃].a2b!x̃.a2b!SubStr(K̃

′
a, x̃).b2a?K̃

′′
b .

(if SubStr(K̃ ′
a, x̃) = K̃ ′′

b then key′a!RemStr(K̃ ′
a, x̃).nil

else alarma!0.nil)))\{keya}

Bob′
def
= (Bob‖keyb?K̃ ′

b.a2b?x̃.a2b?K̃
′′
a .b2a!SubStr(K̃

′
b, x̃).

(if SubStr(K̃ ′
b, x̃) = K̃ ′′

a then key′b!RemStr(K̃ ′
b, x̃).nil

else alarmb!0.nil))\{keyb}

where |x̃| is the size of x̃, the function SubStr(K̃ ′
a, x̃) returns the substring of

K̃ ′
a at the indexes specified by x̃, and RemStr(K̃ ′

a, x̃) returns the remaining
substring of K̃ ′

a by deleting SubStr(K̃ ′
a, x̃). The special measurement Pstrm,

which is similar to Ran, randomly generates a %m/2&-sized string of indexes
from 1, . . . ,m.

To get a taste of the security of BB84, we consider a special case where Eve’s
strategy is to simply measure the qubits sent by Alice, according to randomly
guessed bases, to get the keys. She then prepares and sends to Bob a fresh
sequence of qubits, employing the same method Alice used to encode keys, but
using her own guess of bases and the keys she obtained. That is, we define

Eve
def
= A2E?q̃.Ran[q̃′′; B̃e].MB̃e

[q̃; K̃e].SetK̃e
[q̃].HB̃e

[q̃].E2B!q̃.key′e!K̃e,

BB84E
def
= (Alice′[fa]‖Eve‖Bob′[fb])\{a2b, b2a,A2E,E2B}.

where fa(A2B) = A2E, and fb(A2B) = E2B. Let

Open Bisimulation for Quantum Processes 131

TestBB84
def
= (BB84E‖key′a?x̃.key′b?ỹ.key′e?z̃.

(if x̃ �= ỹ then fail!0.nil else keye!z̃.skey!x̃.nil))\K

where K = {key′a, key′b, key′e}. It is generally very complicated to prove the
security of the full BB84 protocol. Here we choose to reduce TestBB84 to a
simpler process which is easier for further verification. To be specific, we can
show that TestBB84 is bisimilar to the following process:

TB
def
= Ran[q̃; B̃a].Ran[q̃; K̃a].Ran[q̃′′; B̃e].Ran′

B̃a,B̃e,K̃a
[q̃; K̃e].Ran[q̃′; B̃b].

Ran′
B̃e,B̃b,K̃e

[q̃; K̃b].P str|K̃ab|[q̃a; x̃].

(if K̃ab = K̃ba then keye!K̃e.skey!RemStr(K̃ab, x̃).nil

else (if K̃ x̃
ab �= K̃ x̃

ba then alarma!0.nil‖alarmb!0.nil else fail!0.nil))

where to ease the notations, we let K̃ab = cmp(K̃a, B̃a,
B̃b), K̃ba = cmp(K̃b, B̃a, B̃b), K̃

x̃
ab = SubStr(K̃ab, x̃), and K̃ x̃

ba = SubStr(K̃ba, x̃).
Similar to Ran, the special measurement Ran′ here, which takes three parame-
ters, delivers a string of n bits. For example, Ran′

B̃a,B̃e,K̃a
[q̃; K̃e] will first gen-

erate a string of n − |K̃ae| random bits x̃, replace with x̃ the substring of K̃a

at the positions where B̃a and B̃e do not match, and store the string after the
replacement in K̃e.

6 Conclusion and Related Work

In our opinion, bisimulation should be considered as a proof methodology for
demonstrating behavioural equivalence between systems, rather than providing
the definition of the extensional behavioural equivalence itself. We have adapted
the well-known reduction barbed congruence to obtain a touchstone extensional
behavioural equivalence for quantum processes considered in [9], and equipped
it with a coinductive proof technique and a modal characterisation.

Below we briefly compare our open bisimulation with other bisimulations for
quantum processes proposed in the literature. A branching bisimulation was de-
fined for QPAlg [21,22]. However, it cannot always distinguish different quantum
operations, as quantum states are only compared when they are input or out-
put. And the derived bisimilarity is not a congruence; it is not preserved by
restriction. Bisimulation defined in [8] indeed distinguishes different quantum
operations but it works well only for finite processes. Again, it is not preserved
by restriction. In [31], a congruent (strong) bisimulation was proposed for a spe-
cial model where no classical datum is involved. However, as many important
quantum communication protocols such as superdense coding and teleportation
cannot be described in that model, its applicability is very limited. Furthermore,
as all quantum operations are regarded as visible in [31], the bisimulation is too
strong to identify some intuitively equivalent quantum processes.

The first general (both classical and quantum data are involved, and recursive
definition is allowed), weak (quantum operations are regarded as invisible, thus

132 Y. Deng and Y. Feng

can be combined arbitrarily), and congruent bisimulation for quantum processes
was defined in [9]. It differentiates quantum input from other actions because,
to match a quantum input, an arbitrarily chosen super-operator should be con-
sidered. The open bisimulation in this paper makes a step further by treating
the super-operator application in an open style: applying super-operators before
an action to be matched is selected. This makes it possible to separate ground
bisimulation and the closedness under super-operator application, and by doing
so, we are able to provide not only a neater and simpler definition, but also a
powerful technique for proving bisimilarity. Comparing our open bisimulation
with the bisimulation in [9], there are two main differences:

1. In [9] a non-standard weak transition =⇒ c?q−→ is used to match the transition
c?q−→. This is for a purely technical reason but makes possible the following
example which demonstrates that open bisimulation is strictly coarser. Let
P = c?q.(τ + c!0) and Q = P + c?q. Then P and Q are open bisimilar
but not bisimilar in the sense of [9]. This is actually a classical example,
however, as no quantum operation is included; restricting to this special
form of transitions also makes classical bisimulation strictly stronger.

2. In [9] any super-operator application is performed on Hqv(C′)−q, provided

that C c?q−→ C′; while in open bisimulation of this paper, it is performed on
Hqv(C). As qv(C′)− q can be a proper subset of qv(C), there are more choices

of super-operators in the former case. This observation suggests letting P =
c?q.E [q, r̃1]+I[r̃2] and Q = c?q.F [q, r̃1]+I[r̃2]. We conjecture that by taking
suitable E and F , we will have a real quantum example showing that open
bisimilarity in this paper is strictly coarser than the bisimilarity in [9].

References

1. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press
(1990)

2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and
coin tossing. In: Proceedings of the IEEE International Conference on Computer,
Systems and Signal Processing, pp. 175–179 (1984)

3. Davidson, T.A.S.: Formal Verification Techniques using Quantum Process Calcu-
lus. PhD thesis, University of Warwick (2011)

4. Deng, Y., Du, W.: Logical, metric, and algorithmic characterisations of probabilis-
tic bisimulation. Technical Report CMU-CS-11-110. Carnegie Mellon University
(March 2011)

5. Deng, Y., Feng, Y.: Open bisimulation for quantum processes. Full Version of the
current paper, http://arxiv.org/abs/1201.0416

6. Deng, Y., Hennessy, M.: On the Semantics of Markov Automata. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 307–318.
Springer, Heidelberg (2011)

7. Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C.: Testing Finitary Probabilis-
tic Processes (Extended Abstract). In: Bravetti, M., Zavattaro, G. (eds.) CONCUR
2009. LNCS, vol. 5710, pp. 274–288. Springer, Heidelberg (2009)

http://arxiv.org/abs/1201.0416

Open Bisimulation for Quantum Processes 133

8. Feng, Y., Duan, R., Ji, Z., Ying, M.: Probabilistic bisimulations for quantum pro-
cesses. Information and Computation 205(11), 1608–1639 (2007)

9. Feng, Y., Duan, R., Ying, M.: Bisimulation for quantum processes. In: Proc. POPL
2011, pp. 523–534. ACM (2011)

10. Fournet, C., Gonthier, G.: A hierarchy of equivalences for asynchronous calculi.
Journal of Logic and Algebraic Programming 63(1), 131–173 (2005)

11. Gay, S.J., Nagarajan, R.: Types and typechecking for communicating quantum
processes. Mathematical Structures in Computer Science 16(03), 375–406 (2006)

12. Gay, S.J., Nagarajan, R.: Communicating quantum processes. In: Palsberg, J.,
Abadi, M. (eds.) Proc. POPL 2005, pp. 145–157 (2005)

13. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc.
ACM STOC, pp. 212–219 (1996)

14. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack.
Physical Review Letters 78(2), 325 (1997)

15. Hennessy, M.: A proof system for communicating processes with value-passing.
Formal Aspects of Computer Science 3, 346–366 (1991)

16. Hennessy, M., Ingólfsdóttir, A.: A theory of communicating processes value-passing.
Information and Computation 107(2), 202–236 (1993)

17. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32(1), 137–161 (1985)

18. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
19. Honda, K., Tokoro, M.: On reduction-based process semantics. Theoretical Com-

puter Science 151(2), 437–486 (1995)
20. Jeffrey, A., Rathke, J.: Contextual equivalence for higher-order pi-calculus revis-

ited. Logical Methods in Computer Science 1(1:4) (2005)
21. Jorrand, P., Lalire, M.: Toward a quantum process algebra. In: Proceedings of the

1st Conference on Computing Frontiers, pp. 111–119. ACM (2004)
22. Lalire, M.: Relations among quantum processes: Bisimilarity and congruence.

Mathematical Structures in Computer Science 16(3), 407–428 (2006)
23. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
24. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Parts I and II.

Information and Computation 100, 1–77 (1992)
25. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cam-

bridge University Press (2000)
26. Rathke, J., Sobociński, P.: Deriving Structural Labelled Transitions for Mobile

Ambients. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 462–476. Springer, Heidelberg (2008)

27. Sangiorgi, D.: A theory of bisimulation for the pi-calculus. Acta Informatica 33(1),
69–97 (1996)

28. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-
order languages. In: Proc. LICS 2007, pp. 293–302. IEEE Computer Society (2007)

29. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge
University Press (2001)

30. Shor, P.W.: Algorithms for quantum computation: discrete log and factoring. In:
Proc. FOCS 1994, pp. 124–134 (1994)

31. Ying, M., Feng, Y., Duan, R., Ji, Z.: An algebra of quantum processes. ACM
Transactions on Computational Logic 10(3), 1–36 (2009)

A Modular LTS for Open Reactive Systems�

Fabio Gadducci, Giacoma Valentina Monreale, and Ugo Montanari

Dipartimento di Informatica, Università di Pisa, Italy

Abstract. The theory of reactive systems (RSs) represents a fruitful
proposal for deriving labelled transition systems (LTSs) from unlabelled
ones. The synthesis of an LTS allows for the use of standard techniques
in the analysis of systems, as witnessed by the widespread adoption of
behavioral semantics. Recent proposals addressed one of the main draw-
backs of RSs, namely, its restriction to the analysis of ground (i.e., com-
pletely specified) systems. A still unresolved issue concerns the lack of
a presentation via inference rules for the derived LTS, thus hindering
the modularity of the presentation. Our paper considers open RSs. We
first introduce a variant of the current proposal based on “luxes”: our
technique is applicable to a larger number of case studies and, under
some conditions, it synthesises a smaller LTS. Then, we illustrate how
the LTS derived by using our approach can be equipped with a SOS-like
presentation via an encoding into tile systems.

Keywords: Open reactive systems, labelled transitions, tile systems.

1 Introduction

The ever increasing diffusion of concurrent and distributed systems stimulated
the development of novel formalisms for their specification. These formalisms
usually provide an abstract presentation of the behaviour of such a system by
resorting to some kind of operational description, possibly adopting also an ob-
servational equivalence over the system configurations.

At its simplest, the dynamics of a computational model is defined by means of
a reduction semantics : a set representing the possible states of the system, plus
an unlabelled relation among these states, denoting the potential evolutions of
the system. The set of states is often provided by means of an equational speci-
fication, referred to as “structural congruence” in the process calculi literature,
stating which presentations intuitively specify the same system, up to a syntac-
tical rearrangement of its components.

Despite the advantage of conveying the semantics with relatively few rules,
the main drawback of reduction semantics is that the dynamics of a system is
described in a monolithic way. Thus, it can be observationally interpreted only
by inserting a system in appropriate contexts, where a reduction may take place.

� Partly supported by the EU FP7-ICT IP ASCEns and by the MIUR PRIN SisteR.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 134–148, 2012.
c© IFIP International Federation for Information Processing 2012

A Modular LTS for Open Reactive Systems 135

To ease the analysis of systems, it is often necessary to consider descriptions
allowing the analysis of the behaviour of each single subcomponent, thus in-
creasing modularity and enhancing the opportunities for verification. In such a
context, labelled transition systems (LTSs) represent the most widely used tool.
LTSs open the way for the definition of observational equivalences, abstractly
characterising when two systems have the same behaviour, thus allowing the
possibility of verifying the properties of system composition. However, the iden-
tification of the “right” labels is a difficult task and it is usually left to the
ingenuity of the researcher. A case at hand is the Calculus of Mobile Ambients
(MA) [5]: despite its rapid acceptance and the intense scrutiny it was subject
to, the development of a suitable labelled semantics defied the researchers until
quite recently [11], and chances are that it might not be fully settled [1,15].

The theory of reactive systems (RSs) [9] represents one of the most success-
ful meta-frameworks among those addressing the need of deriving suitable LTSs
and behavioural equivalences starting from reduction semantics. The key idea is
simple: a system h has a labelled transition h

c−→ h′ if the system obtained by
inserting h inside the “minimal” context c may reduce to h′. The framework uses
categories to model the state space of a formalism and it exploits the categorical
notion of relative pushout (RPO) to capture the intuitive notion of “minimal”
environment into which a system specification has to be inserted, in order to
allow for a reduction to occur. However, in several examples where calculi with
even simple structural congruences are considered, the theory cannot be immedi-
ately applied. So, A futher advance is represented by G-reactive systems (GRSs),
[16], a 2-categorical extension of RSs that allows for an easier representation of
those calculi such that the structural congruence is an integral part of the theory.

A success story for GRSs is represented by the application to MA, and the
proposal of slender LTSs, yet inducing the same behavioural semantics of the
original proposal [11] (see [1,15]). Despite its applicability, the main limit suffered
by GRSs is the restriction to the use of ground rules for describing the dynamics
of a system: often a strong requirement, in the modelling of open-ended systems
operating in an ever changing environment. Consider e.g. Milner’s CCS, and
the reduction rule modelling the communication over a channel a, namely a.P |
a.Q→ P | Q. In the GRS framework, it is represented by an infinite set of ground
rules, one for each possible pair P and Q of processes. One would instead like
to have a more general and succinct theory allowing to express parametric rules
such as a.1 | a.2→ 1 | 2, for 1 and 2 placeholders that can be freely instantiated.

This paper aims at addressing this problem, by developing a theory consider-
ing also open terms and parametric rewriting rules. So now the transitions will
be labelled not only with the minimal context but also with the most general
instantiation allowing a reduction. More explicitly, h

c−→
x
h′ if h instantiated with

the (possibly open) term x and inserted into the context c may evolve into a
state h′. Quite intuitively, our proposal exploits the notions of RPO and the
symmetric relative pullback (RPB), suitably extended to GRSs, to capture the
notions of minimal context and most general instantiation, respectively.

136 F. Gadducci, G.V. Monreale, and U. Montanari

The framework recalls the one in [8] based on luxes, the only approach we
are aware of for an open variant of GRSs. Their formalism advances a notion
of labelled transition that captures at once the requirements on context and
substitution. Our proposal weakens the constraints and it can thus be applied to
more case studies, as well as generating, under some conditions, a smaller LTS.

Another clear limitation of the standard GRSs approach is represented by the
lack of a finitary presentation of the derived LTS, possibly via a set of inference
rules according to the SOS-style. So, following the solution for closed GRSs
suggested in [3], we draw the connection with the tile model [6], showing how to
build a (double) category of “squares” that generates precisely the LTS derived
by an open GRS according to the proposal offered in this paper.

The main concepts of the paper are illustrated by a small running example,
based on a Simplified Calculus of Mobile Ambients (SMA). Despite its minimal
syntax, with respect to more basic, CCS-like calculi, SMA will allow us to better
show the usefulness of taking into account contexts and instantiations.

The paper is organized as follows. Sect. 2 briefly recalls 2-categories. Sect. 3
introduces open GRSs and the technique that we propose to derive LTSs, while
Sect. 4 presents a preliminary comparison with the theory in [8]. Sect. 5 shows
how to construct a tile system simulating the reductions of an open GRS. Sect. 6
concludes the paper by illustrating some venues for further works.

2 Some Background on 2-Categories

This section introduces the 2-categorical definitions used later on (see [4,7]).

Definition 1 (2-category). A 2-category C consists of

1. a family of objects a, b, c, . . .;
2. for each a, b ∈ C a category C(a, b). The objects of C(a, b) are called 1-cells

or arrows and denoted by f : a → b. Identity arrows are instead denoted by
ida : a → a. The morphisms are called 2-cells, and are written α : f ⇒ g :
a → b. Composition in C(a, b) is denoted by • and referred to as vertical
composition. Identity 2-cells are denoted by 1f : f ⇒ f ;

3. for each a, b, c ∈ C a functor ∗ : C(a, b)×C(b, c)→ C(a, c), called horizontal
composition. It is associative and admits 1ida as identities.

The functoriality of ∗ amounts to imposing the exchange law (α • γ) ∗ (β • δ) =
(α ∗ β) • (γ ∗ δ) for any 4-tuple α, β, γ and δ of composable cells.

2-categories are used to simulate the reduction semantics of formalisms [14,12],
where reductions are modelled by 2-cells. Starting from an abstract presentation
of the basic reduction steps of a system, the closure with respect to contexts is
then obtained by the 2-categorical operation of whiskering [7].

Definition 2 (G-category). A groupoidal category (G-category) is a 2-
category whose 2-cells are invertible.

We will show an example of G-category based on the PROP category [10].

A Modular LTS for Open Reactive Systems 137

Definition 3. A product and permutation (PROP) category C has natural num-
bers 0, 1, 2, . . . as objects and it is equipped with two further structures

– for each n, the group of permutations S(n) of n elements is a subgroup of
all the invertible elements of the homset C(n, n). The identity permutation
is the identity morphism 1n : n→ n;

– a functor ⊗ : C×C→ C, called product and written between its arguments,
which acts as addition on the objects, i.e., m⊗ n = m+ n, and such that
1. it is associative, i.e., (f ⊗ f ′)⊗ f ′′ = f ⊗ (f ′ ⊗ f ′′);
2. given σ ∈ S(n) and σ′ ∈ S(n′), we have σ⊗σ′ = σ×σ′ : n+n′ → n+n′,

where × denotes the product of permutations;
3. given f : m → n and f ′ : m′ → n′, we have that γn,n′(f ⊗ f ′) =

(f ′ ⊗ f)γm,m′ , where γn,n′ : n+ n′ → n+ n′ denotes the permutation in
S(n+ n′) interchanging the first block of n and the second block of n′.

A G-PROP is a PROP where the underlying category is a G-category.

Example 1 (GPROP PA2CP). We now show how a signature of a calculus (mod-
ulo term equations) may induce a G-PROP. Inspired by the characterization of
(a fragment of) CCS in [8], we model a simplified version of Mobile Ambients
(MA). The richer structure of this calculus, as well as the complexity of its ba-
sic reduction rules, will later allow us to highlight the need of considering open
terms and parametric reduction rules.

Let us then denote SMA the finite, restriction free fragment of MA with only
the in action. The syntax of the calculus is shown on the left of the upper row of
Fig. 1. We assume a set N of names ranged over bym,n, u, . . .We let P,Q,R, . . .
range over the set P of closed processes, containing no holes.

The semantics is given by the combination of an equivalence between pro-
cesses, the structural congruence, and a relation among them. The former, de-
noted by ≡, is induced by the two rightmost axioms in the first row of Fig. 1.
It is used to define the reduction relation �, which is inductively generated by
the axioms and inference rules shown in the lower rows of Fig. 1. It is used only
later on, but we introduce it here for the sake of presentation.

P ::= ε, n[P], in n.P, P1|P2 (P |Q)|R ≡ P |(Q|R) P |Q ≡ Q|P

n[in m.P |Q]|m[R]� m[n[P |Q]|R] if P � Q then P |R� Q|R
if P � Q then n[P]� n[Q] if P ′ ≡ P, P � Q,Q ≡ Q′ then P ′ � Q′

Fig. 1. Syntax, structural congruence and reduction relation of SMA

The signature corresponding to SMA is Σ = ε : 0, n[] : 1, in n. : 1, | : 2.
The G-PROP PA2CP has arrows h : m → n, representing n-tuples of terms

over Σ, quotiented by associativity, that altogether contain m distinct holes.
Permutations in (n, n) are tuples built solely of holes, ⊗ acts on arrows as tuple
juxtaposition, and arrow composition is term substitution.

138 F. Gadducci, G.V. Monreale, and U. Montanari

To define the 2-cells of the category, an explicit representation of the arrows
of the category is used. A term can be indeed represented as a finite, ordered
tree with nodes of any degree, where an immediate child of a node of degree
higher than 1 must have degree at most 1. Leaves of such a tree correspond to
occurrences of the constant ε. Nodes of degree 1 correspond to an application
either of an ambient operator or of a capability. In the former case the node
is labelled with a name belonging to N , while in the latter case it is labelled
with the capability followed by an ambient name. Finally, nodes of higher degree
correspond to term fragments built solely of the parallel operator. So, arrows can
be represented as tuples of these trees.

A 2-cell from h to h′ models the equivalence of h and h′ according to the
commutative axiom. So, it is a family, indexed by the nodes of (the explicit
representation of) h, of permutations on the sets of their immediate children,
such that the application of all these permutations to h yields h′.

3 A New LTS for Open Reactive Systems

This section presents an extension of G-reactive systems (GRSs) [16]. The theory
aims at deriving labelled transition systems (LTSs) for specification formalisms
whose operational semantics is provided by reduction rules. The technique was
originally given for closed systems, that is, closed terms and ground reduction
rules. As in [8], our proposal considers terms with variables and parametric rules.
The idea is simple: a system specified by an open term h has a labelled transition
h

c−→
x
h′ if h may evolve into a state h′ after being instantiated with the (possibly

open) term x and inserted into the context c.
A G-category C models the syntax of a formalism. An (open) system is an

arrow h : a1 → a2: it can be plugged into g : a2 → a3 via arrow composition.
Given arrows h, g : a1 → a2, a 2-cell α : h ⇒ g represents an isomorphism (i.e.,
a proof of equivalence) between systems h and g. The semantics is given via
reduction rules : pairs of systems 〈l, r〉 belonging to the same hom-set.

Definition 4 (Open GRS). An open G-reactive system (GRS) C consists of

1. a G-category C;
2. a composition-reflecting, 2-cell closed, subcategory D of reactive contexts;
3. a set R ⊆

⋃
a1,a2∈|C|C(a1, a2)×C(a1, a2) of reduction rules.

Intuitively, reactive contexts are those arrows inside which a reduction can occur.
By 2-cell closed we mean that d ∈ D and α : d⇒ d′ in C implies d′ ∈ D, while
by composition-reflecting we mean that d′; d ∈ D implies d, d′ ∈ D.

Given an open GRS C, the reduction relation over the terms of C is generated
by closing the reduction rules under all reactive contexts, instantiations and 2-
cells. Formally, the reduction relation is defined by taking h � h′ if there exist
〈l, r〉 ∈ R, d ∈ D, x ∈ C, α : h⇒ x; l; d and α′ : h′ ⇒ x; r; d.

A Modular LTS for Open Reactive Systems 139

Example 2. Consider the G-category G-PROP PA2CP shown in Example 1. We
can then construct an open GRS CSMA over it by taking as the set of reduction
rules the set

⋃
n,m∈N {〈n[inm.1 | 2] | m[3],m[n[1 | 2] | 3]〉} (denoting here and

in the following, with an abuse of notation, idi with i for i = 1, 2, 3), and as
the subcategory of reactive contexts the smallest composition-reflecting, 2-cell
closed subcategory including arrows of the shape 1 | P : 1→ 1 and n[1] : 1→ 1.
Note that it does not contain contexts with a hole after a capability.

The behaviour of an open GRS is given by an unlabelled transition system. To
obtain a labelled one, we instantiate an open system h with a subterm x, plug
the result into a context c and observe if a reduction occurs. Categorically, it
means that x;h; c is isomorphic to y; l; d (there exists α : x;h; c⇒ y; l; d) for an
instantiation x, a rule 〈l, r〉, and a reactive context d (Fig. 2(a)).

The resulting LTS is often infinite-branching, since any context (or instan-
tiation) allowing a reduction may occur as label. It also has redundant tran-
sitions: the SMA open term T = n[inm.1 | 2] would have both transitions

T
1|m[R]−−−−→
〈P,Q〉

m[n[P | Q] | R] and T 1|m[R]|S−−−−−−→
〈P,Q〉

m[n[P | Q] | R] | S , yet S does not

“concur” to the reduction. We thus consider only “minimal contexts allowing
a reduction”, captured by the categorical notion of groupoidal-idem pushouts
(GIPOs) in G-categories, and the “most general instantiations”, modelled by
the categorical notion of groupoidal-idem pullbacks (GIPBs). We refer to [16]
for the notion of GIPO, the one of GIPB being perfectly symmetric.

Definition 5 (GIPO-GIPB LTS). Let C be an open GRS and C its under-
lying G-category. The GIPO-GIPB LTS gglts(C) is defined as follows

– states: h : a1 → a2 in C, for arbitrary a1 and a2;
– transitions: h

c−→
x
h′ if there exist d ∈ D and 〈l, r〉 ∈ R such that the upper

rhombus of the diagram in the middle of Fig. 2 is a GIPO, the lower one is
a GIPB, and h′ = y; r; d.

a6

a4

c
��

a5

d
��					

α ��

a2

h

��

a3

l

��

a1

x

��					 y

��

(a)

a7

a5

c
������� α1 �� a6

d
��					

1h �� a4 1l ��
h1		

��		
l1��

����

a2

h

��

h2��
����

α2

�� a3

l

��

l2		
��		

a1

x

��					 y

�������

(b)

a7

a5

c
������� GIPO

a6

d
��					

a4
h1

��					
l1

�������

0

h2l2
��

l

��

h

��

(c)

Fig. 2. The 2-cell α : x;h; c⇒ y; l; d, a labelled transition h
c−→
x

and a GIPO

140 F. Gadducci, G.V. Monreale, and U. Montanari

Example 3. Consider the open GRS CSMA introduced in Example 2. The left-

most diagram of Fig. 3 shows the derived transition 〈n[inm.1 | Q], 3〉 1|m[3]−−−−→
m[n[1 | Q] | 3] (omitting here and in the following any identity instantiation
such as 〈1, 3〉 in a label). The initial state offers an ambient containing a capa-
bility inm in parallel with a closed process Q, while the environment provides
the ambient m which is going to be in parallel with n, so the reduction can
occur. Only the identity instantiation is instead provided.

The transition 〈n[1 | Q], 3〉 1|m[3]−−−−−−→
〈inm.1,3〉

m[n[1 | Q] | 3] is shown in the diagram

on the right of Fig. 3: it needs both a context and an instantiation. The initial
open term again offers an ambient n, but now it contains a hole in parallel with
Q. Therefore, the instantiation provides the capability inm.1, replacing the hole
inside n, while the environment once more provides the ambient m.

This transition shows the importance of using both instantiations and con-
texts. In this case, we can note the interaction of the three parts occurring in
the reduction: the initial state, the instantiation and the context. This situa-
tion never occurs in simpler calculi such as CCS, where we can only have the
synchronization between two systems in parallel.

Remark 1. The original notion of closed GRS [16] is very similar to the one for
open GRSs. One difference is that in the category C there exists a chosen object
0, which is the codomain of no arrow and denotes the lack of holes. Arrows
having 0 as domain are deemed to represent closed terms. Another difference is
that the rules are closed, i.e., they are pairs of closed terms, and also the states
of the derived (GIPO) LTS are so: h

c−→ h′ if there exist d ∈ D and 〈l, r〉 ∈ R,
such that the square h, c, l, d is a GIPO and h′ = r; d.

Our proposal may be specialized to consider either closed terms or closed
rules, and it then subsumes the standard GRS formalism. Indeed, let us assume
that rules and terms are ground. This means that in the diagram (b) of Fig. 2
the objects a1, a2 and a3 are equal to 0. We therefore obtain the diagram (c) of
Fig. 2, and if e.g. l2 is an epimorphism then the external square of diagram (c)

is a GIPO, and so h
c−→ in the standard GIPO LTS.

1

2

1|m[3]
��������� GIPO

1

1
���������

2
〈1,3〉

��������� 1|m[3]

���������

2

〈n[inm.1|Q],3〉

��

〈n[inm.1|Q],3〉 ��������� GIPB
3

n[inm.1|2]|m[3]

��

〈n[inm.1|2],3〉���������

2
〈1,3〉

��������� 〈1,Q,3〉

���������

1

2

1|m[3]
������� GIPO

1

1
��

3
〈n[1|2],3〉

��
n[1|2]|m[3]

�������

2

〈n[1|Q],3〉

��

〈1,Q,3〉 ������� GIPB
3

n[inm.1|2]|m[3]

��

〈in m.1,2,3〉��

2
〈inm.1,3〉

�� 〈1,Q,3〉

�������

Fig. 3. Transitions 〈n[inm.1 | Q], 3〉 1|m[3]−−−−→ T and 〈n[1 | Q], 3〉 1|m[3]−−−−−−→
〈inm.1,3〉

T

A Modular LTS for Open Reactive Systems 141

4 On G-Luxes

This section presents a preliminary comparison between the technique presented
in the previous section and the one in [8]. These proposals share the same idea:
labels should include both the minimal context and the most general instanti-
ation allowing a reduction. As we will argue, the main conceptual difference is
that in [8] the authors introduce the novel notion of G-locally universal hexagon
(G-lux) in order to capture at the same time the two components of a label via
a suitable universal property, while our proposal considers contexts and instan-
tiations separately, thus resorting to standard GIPOs and GIPBs, respectively.

Our definition turns out to encompass a wider range of case studies. Indeed,
categories with G-luxes always have GIPOs and GIPBs [8, Theorem 1], and
from that fact our statement follows. We now recall the notion of G-lux LTS
adopting a simple characterization via GIPOs and GIPBs [8, Lemma 10].

Definition 6 (G-lux). The hexagon (a) in Fig. 2 is a G-locally universal
hexagon (G-lux) if in Fig. 4, (a) is a GIPO and (b) is a GIPB.

A G-category has G-luxes if every hexagon as diagram (a) in Fig. 2 has an
inner G-lux as diagram (c) of Fig. 4, and α = δ ∗ 1h ∗ β • 1z ∗ ψ ∗ 1e • ϕ ∗ 1l ∗ γ.

Definition 7 (GLUX Transition System). Let C be an open GRS and C
its underlying G-category. The GLUX LTS (llts(C)) is defined as follows

– states: h : a1 → a2 in C, for arbitrary a1 and a2;
– transitions: h

c−→
x
h′ if there exist d ∈ D, 〈l, r〉 ∈ R and α : x;h; c ⇒ y; l; d

such that the diagram (a) of Fig. 2 is a G-lux and h′ = y; r; d.

The diagrams of Fig. 5 show two examples of G-luxes in the category PA2CP. The

left-most one gives the labelled transition n[inm.1 | 2] 1|m[R]−−−−→ m[n[1 | 2] | R].
This transition shows one of the main problems luxes suffer from, already dis-
cussed in the last paragraph of [8, Example 5]: the intertwining of context and
instantiation may sometimes result in the offering of components that are not
necessary for the reduction. In particular, in the example R is redundant, since
it appears both in the context on the left and in the instantiation on the right.
Moreover, since R is arbitrary, the derived LTS is infinitely branching.

a6

a4

c
���������

a5

d
���������

a1

x;h

��

y;l

��

a6

a2

h;c

��

a3

l;d

��

a1

x

��������� y

���������

a6

β
��
����

a4

c
���������

c′
�� a8

γ

������
e

��

a5

d
���������

d′
��

ψ

��

a2

h

��

a7
x′��

ϕ ��
����
y′ �� a3

l

��

δ ������

a1

z

��

x

��������� y

���������

(a) (b) (c)

Fig. 4. G-lux

142 F. Gadducci, G.V. Monreale, and U. Montanari

1

1

1|m[R] �������
1

1
��

��

0

n[inm.1|2]

��

3

n[inm.1|2]|m[3]

��

2
〈1,2〉

�� 〈1,2,R〉

�������

1

1

1|n[inm.P |Q]|m[R] �������
1

n[inm.S|T]|1��

��

2

n[inm.1|2]

��

3

n[inm.1|2]|m[3]

��

0
〈S,T〉

�� 〈P,Q,R〉

�������

Fig. 5. G-luxes transitions originating from n[inm.1 | 2]

If we apply our theory to derive the labelled transitions for the same process
n[inm.1 | 2], it is easy to verify that no labelled transition originates from it.
For every splitting of the process and the right-hand side of the reduction rule,
it is indeed never possible to obtain a GIPO-GIPB diagram.

Another example of G-lux in the category PA2CP is depicted on the right

of Fig. 5. It represents the labelled transition n[inm.1 | 2] 1|n[inm.P |Q]|m[R]−−−−−−−−−−−−→
〈S,T 〉

n[inm.S | T] | m[n[P | Q] | R], where the context offers all the components that
are needed to the reduction. Moreover, there is once more redundancy: processes
S and T appear both in the instantiation on the left and in the context on the
right, and processes P , Q and R appear both in the instantiation on the right
and in the context on the left. Instead, by applying our theory we cannot derive
this transition, and indeed, it is not an interesting transition: it is not relevant
for the bisimilarity, since it is possible to derive it for any term.

From the examples above, it seems that our theory performs better at ob-
taining LTSs with less redundancy. This can be stated formally under certain
conditions, as shown by the theorem below.

Definition 8. Let C be a G-category, f1, f2 : a1 → a2 two morphisms of C and
α : f1 ⇒ f2 a 2-cell. We say that it is a right-factor if for all g1, g2 : a0 → a1
and β : g1; f1 ⇒ g2; f2 there exists γ : g1 ⇒ g2 such that γ ∗ α = β.

Let f : a1 → a2 be a morphism of C. We say that it is a 2-monomorphism if
for all g1, g2 : a0 → a1 and γ, γ′ : g1 ⇒ g2, γ ∗ 1f = γ′ ∗ 1f implies γ = γ′.

The dual notions of right-factor and 2-mono are respectively the one of left-factor
and 2-epi, respectively, with 2-iso defined as obvious.

Theorem 1. Let C be an open GRS such that its underlying category has G-
luxes and all its arrows are 2-iso. If h

c−→
x
h′ belongs to gglts(C) (Fig. 2 (b)),

α1 is a right- and α2 a left-factor, then h
c−→
x
h′ also belongs to llts(C).

5 From Open G-Reactive Systems to Tile Systems

In this section we show how an open GRS can be used to generate a 2-category:
this fact is going to be used to associate to a GRS a tile system, hence to obtain
a finitary presentation of the derived LTS via a set of inference rules.

A Modular LTS for Open Reactive Systems 143

From Open GRSs to 2-Categories. In order to derive a 2-category from an open
GRS, we adapt the construction used in [3] for RSs with closed rules.

Definition 9 (2-category of interactions). Let C be an open GRS 〈C,D,R〉.
Then, Ci denotes the 2-category freely generated from 〈C,R〉.

The 2-cells in Ci are freely generated from the G-category C and the reduction
rules R, by adding the identity cells and closing under vertical and horizontal
composition, subject to the exchange law. A 2-cell of Ci may not denote a mean-
ingful computation in C, since also reductions inside non-reactive contexts are
allowed. Differently from [3], it indeed seems impossible to identify a suitable
sub-2-category of Ci precisely characterizing the arrows of the open LTS: the
problem is that reductions can occur only inside open terms representing reac-
tive contexts, while any open term can represent a possible instantiation. We
therefore need a way to distinguish the two types of arrows, and to this end, it
is necessary to resort to double categories.

From 2-Categories to Double Categories. We now recall a construction for de-
riving a double category of squares from a 2-category [13]. As shown later, it
suggests an automatic generation of a labelled relation (abstracted by a double
category) starting from an unlabelled one (abstracted by a 2-category).

In the following, we fix a chosen 2-category C.

Definition 10 (C squares). Let a, a′, b, b′ objects and h : a → a′, g : b → b′

1-cells of C. The four sets of C squares, each square characterized by a 6-tuple
(signature; left, right; top, bottom; inside) of data from C, are defined below.

Square S−/− from 1-cells v− : a → b and u− : a′ → b′ and 2-cell
α−/− : h;u− ⇒ v−; g (first diagram in Fig. 6). We indicate the data for
S−/− by the 6-tuple d(S−/−) = (−/−; v−, u−;h, g;α−/−) of data from C.
The left identity l(S−/−) for S−/− is (v−, v−; ida, idb; 1v−), the right one is
r(S−/−) = (u−, u−; ida′ , idb′ ; 1u−), the top one is t(S−/−) = (ida, ida′ ;h, h; 1h)
and the bottom one is b(S−/−) = (idb, idb′ ; g, g; 1g).

Square S+/+ from 1-cells v+ : a ← b and u+ : a′ ← b′ and 2-cell α+/+ :
v+;h ⇒ g;u+ (second diagram in Fig. 6), with data (+/+; v+, u+;h, g, α+/+)
and l(S+/+) = (v+, v+; ida, idb; 1v+), r(S+/+) = (u+, u+; ida′ , idb′ ; 1u+),
t(S+/+) = (ida, ida′ ;h, h; 1h), and b(S+/+) = (idb, idb′ ; g, g; 1g).

Square S+/− from 1-cells v+ : a ← b and u− : a′ → b′ and 2-cell α+/− :
v+;h;u− ⇒ g (third diagram in Fig. 6), with data (+/−; v+, u−;h, g, α+/−) and
l(S+/−) = (v+, v+; ida, idb; 1v+), r(S+/−) = (u−, u−; ida′ , idb′ ; 1u−), t(S+/−) =
(ida, ida′ ;h, h; 1h), and b(S+/−) = (idb, idb′ ; g, g; 1g).

Square S−/+ from 1-cells v− : a → b and u+ : a′ ← b′ and 2-cell α−/+ :
v−; g;u+ ⇐ h (last diagram in Fig. 6), with data (−/+; v−, u+;h, g;α−/+) and
l(S−/+) = (v−, v−; ida, idb; 1v−), r(S−/+) = (u+, u+; ida′ , idb′ ; 1u+), t(S−/+) =
(ida, ida′ ;h, h; 1h), and b(S−/+) = (idb, idb′ ; g, g; 1g).

144 F. Gadducci, G.V. Monreale, and U. Montanari

a
h ��

v−

��

a′

α−/−
	� ��

��
��
��
��
�

��
��
��
��
��
�

u−
��

b
g

�� b′

a
h ��

α+/+

�
�
��

��
��

��
��

��
��

��
��

��
� a′

b
g

��

v+

��

b′

u+

�� a
h ��

α+/−

��

a′

u−
��

b
g

��

v+

��

b′

a
h ��

v−

��
α−/+

��

a′

b
g

�� b′

u+

��

Fig. 6. C squares

In the following we define the vertical and the horizontal composition.

Definition 11 (Vertical Composition). Let S and S′ be two C squares with
arbitrary signatures a/b and c/d, respectively, and such that b(S) equals t(S′).
This forces the equality of signatures a = c and b = d. So, the data of S and S′

have respectively the form (a/b; v, u;h, g;α) and (a/b; v′, u′; g, g′;α′), while the
one for the composition S • S′ are (a/b; v′′, u′′;h, g′;α′′). Items v′′, u′′ and α′′

vary with the signature. Since there are four possibilities for original signatures
(both a and b can have + and − as possible values) there are four cases of vertical
composition listed in the leftmost table of Fig. 7.

C squares form a category (CSq)• under • composition.

a/b v′′ u′′ α′′

+/+ v′; v u′; u (1v′ ∗ α) • (α′ ∗ 1u)
+/− v′; v u;u′ (1v′ ∗ α ∗ 1u′) • α′

−/+ v; v′ u′; u α • (1v ∗ α′ ∗ 1u)
−/− v; v′ u;u′ (α ∗ 1u′) • (1v ∗ α′)

a/b α′′

(+,+,+) (α ∗ 1h′) • (1g ∗ α′)
(+,+,−) (α ∗ 1h′ ∗ 1u′) • (1g ∗ α′)
(+,−,+) (1v ∗ 1h ∗ α′) • (α ∗ 1g′ ∗ 1u′)
(+,−,−) (1v ∗ 1h ∗ α′) • (α ∗ 1g′)
(−,+,+) (α ∗ 1h′) • (1v ∗ 1g ∗ α′)
(−,+,−) (α ∗ 1h′ ∗ 1u′) • (1v ∗ 1g ∗ α′)
(−,−,+) (1h ∗ α′) • (α ∗ 1g′ ∗ 1u′)
(−,−,−) (1h ∗ α′) • (α ∗ 1g′)

Vertical composition Horizontal Composition

Fig. 7. Instances of vertical and horizontal compositions

Note that in both tables the vertical and horizontal compositions used in the
last columns are the ones of the 2-category C.

Definition 12 (Horizontal Composition). Let S and S′ be two C squares
with arbitrary signatures a/b and c/d, respectively, and such that r(S) equals
l(S′). This forces the equality of signatures b = c. So, the data of S and S′ have
respectively the form (a/b; v, u;h, g;α) and (b/d;u, u′;h′, g′;α′), while the one
for the composition S ∗S′ are (a/d; v, u′;h;h′, g; g′;α′′). Item α′′ varies with the
signature. Since there are eight possibilities for original signatures (each of a, b
and d can have + and − as possible values) there are eight cases of horizontal
composition, which are listed in the rightmost table of Fig. 7.

C squares form a category (CSq)∗ under ∗ composition.

A Modular LTS for Open Reactive Systems 145

a
h ��
α

�

 a′

b
g

��
α′

�

v

��

b′
u

��

c
g′

��
v′
��

c′
u′
��

a
h �� a′

b

v
��

c
v′
��

1v′∗α===⇒ a′

b
g

�� b′
u

��

c
v′
��

α′∗1u===⇒ a′

b′
u

��

c
g′

�� c′
u′
��

a
h ��
α′′

�

 a′

c
g′

��
v′;v

��

c′
u′;u
�� v′; v; h

1v′∗α===⇒ v′; g;u
α′∗1u===⇒ g′;u′; u

a
h ��
α

�

 a′ h′ ��
α′

�
�
���

�
���

��
a′′

b
g

��
v

��

b′
u

��

g′
�� b′′

u′
�� a

h;h′
��

α′′

�
�
���

�
���

�� a′′

b
g;g′

��
v

��

b′′
u′
��

a
h �� a′ h′

�� a′′

b

v
��

α∗1h′
===⇒ a′ h′

�� a′′

b
g

�� b′
u

��
1g∗α′
===⇒ a′′

b
g

�� b′
g′

�� b′′
u′
��

v;h; h′ α∗1h′
===⇒ g;u;h′ 1g∗α′

===⇒ g; g′;u′

Fig. 8. Vertical and horizontal composition of two +/+C squares

The upper part of Fig. 8 depicts the first case of vertical composition of the
leftmost table of Fig. 7. The leftmost diagram on the top shows the two squares
to be composed, the leftmost diagram on the bottom depicts the resulting square,
and the remaining part shows how the 2-cell α′′ is obtained.

The lower part of Fig. 8 depicts an example of horizontal composition. Again,
we consider two C squares with signature +/+. So, the leftmost diagram on the
top shows the two squares to be composed, the diagram on the right depicts the
resulting square, and the remaining part shows how the 2-cell α′′ is obtained.

Proposition 1. Squares and compositions above form a double category CSq,
for (CSq)∗ and (CSq)• the horizontal and vertical category, respectively.

From GRSs to double categories. Some cells of CSq do not represent labelled
transitions derived by the GIPO-GIPB mechanism. We thus introduce a way to
cut them, precisely characterising the LTS synthesised from an open GRS.

Definition 13 (Observational double category). Let C = 〈C,D,R〉 be an
open GRS. The observational double category of C, denoted O(C), is the small-
est sub-double category of Ci square (Ci Sq) which includes the cells in Fig. 9
where the cells of type (i) correspond to GIPBs in C, those of type (ii) to the
rules of R, with l2; l1 = l for l the left-hand side of a rule in R, and those of
type (iii) to GIPOs in C, with g ∈ D.

The squares of O(C) wth signature +/− correspond to the derivations of
gglts(C), as stated by the theorem below.

Theorem 2. Let C be an open GRS. The gglts(C) has a transition h
c−→
x
h′ if

and only if in O(C) there is a C square with data (+/−;x, c;h, h′;α).

146 F. Gadducci, G.V. Monreale, and U. Montanari

a
h ��

α

��	
			

			
			

			

			
			

			
			

	 a′

b
g

��

v

��

b′

u

��

(i)

a
ida ��

α

��

a

l1

��
b

r
��

l2

��

b′

(ii)

a
h ��

v

��

a′

α

�� ���
���

���
���

��

���
���

���
���

��

u

��
b

g
�� b′

(iii)

Fig. 9. The basic cells generating the observational double category of C

Example 4. Consider the open GRS CSMA = 〈C,D,R〉 introduced in Example
2. Its observational double category O(CSMA) is the smallest sub-double cate-
gory of the double category Ci Sq which includes the cells of type (i), (ii) and
(iii), as stated in the previous definition.

In particular, it contains the cells corresponding to the only rule of R, some of
which are shown in Fig. 10. Among the cells of type (i) and (iii) there are the
ones in the upper row of Fig. 11, since they are respectively two GIPBs and two
GIPOs, and moreover the context offering just a hole 1 is reactive. Therefore, it
is easy to see that from the composition of the above cells we obtain the cells in
the upper row of Fig. 12, corresponding to the labelled transitions in Fig. 3.

Also the lower cell represents a labelled transition. It can be obtained from the
one above it by composing this with the leftmost and rightmost squares of the
lower transition, which are respectively a GIPB and a GIPO. It is easy to see that

it represents the transition 〈n[1 | Q] | S, 3 | R〉 1|m[3]−−−−−−→
〈inm.1,3〉

m[n[1 | Q] | 3 | R] | S.

Indeed, the cell in the middle of the diagram is of type (ii), and since the two
rightmost cells are GIPOs, it is obvious that also the cell obtained composing
them is so; similarly, the cell obtained composing the two leftmost squares is a
GIPB, since the two squares are so.

Remark 2. Let us now consider a closed GRS. Then, for any cell of type (ii) the
object b always coincide with the chosen object 0. In order to allow horizontal
composition, also for any cell of type (i) both b and b′ should always coincide
with 0 and, should we consider only closed terms, also a would be 0. In the
generation of the observation double category it would then suffice to consider
as cells of type (i) only those C squares with data (+/+; id0, l2; l2, id0;α), for l2
an epimorphim. We thus recover the observational double category for ground
rules and terms proposed in [3, Definition 11].

1
1 �� 1

1

��
3

m[n[1|2]|3]
��

n[inm.1|2]|m[3]

��

1

2
〈1,3〉 �� 2

1|m[3]

��
3

m[n[1|2]|3]
��

〈n[inm.1|2],3〉

��

1

3
〈1,2,3〉 �� 3

n[1|2]|m[3]

��
3

m[n[1|2]|3]
��

〈inm.1,2,3〉

��

1

Fig. 10. Some cells corresponding to the rule 〈n[inm.1 | 2] | m[3], m[n[1 | 2] | 3]〉

A Modular LTS for Open Reactive Systems 147

2
〈1,Q,3〉 �� 3

2
〈1,Q,3〉

��

〈inm.1,3〉

��

3

〈inm.1,2,3〉

�� 2
〈n[inm.1|Q],3〉�� 2

2
〈1,Q,3〉

��

〈1,3〉

��

3

〈n[inm.1|2],3〉

�� 3
〈n[1|2],3〉 ��

n[1|2]|m[3]

��

2

1|m[3]

��
1

1
�� 1

2
〈1,3〉 ��

1|m[3]

��

2

1|m[3]

��
1

1
�� 1

Fig. 11. Cells of O(CSMA) of type (i) and (iii)

2
〈n[in m.1|Q],3〉�� 2

〈1,3〉 �� 2

1|m[3]

��

〈1,3〉 �� 2

1|m[3]

��
2

〈1,Q,3〉
��

〈1,3〉

��

3

〈n[inm.1|2],3〉

��

m[n[1|2]|3]
�� 1

1
�� 1

2
〈1,Q,3〉 �� 3

〈1,2,3〉 �� 3

n[1|2]|m[3]

��

〈n[1|2],3〉 �� 2

1|m[3]

��
2

〈1,Q,3〉
��

〈inm.1,3〉

��

3

〈inm.1,2,3〉

��

m[n[1|2]|3]
�� 1

1
�� 1

2
〈1,3|R〉 �� 2

〈1,Q,3〉 �� 3
〈1,2,3〉 �� 3

n[1|2]|m[3]

��

〈n[1|2],3〉 �� 2

1|m[3]

��

〈1|S,3〉 �� 2

1|m[3]

��
3

〈1,3|R〉
��

〈inm.1,3〉

��

2
〈1,Q,3〉

��

〈inm.1,3〉

��

3

〈inm.1,2,3〉

��

m[n[1|2]|3]
�� 1

1
�� 1

1|S
�� 1

Fig. 12. Cells of O(CSMA) representing labelled transitions

6 Conclusions and Further Works

We presented a mechanism to derive LTSs for GRSs with open terms and para-
metric rules. With respect to the only alternative proposal we are aware of [8],
our approach almost straightforwardly exploits the well-known categorical no-
tions of GIPO and GIPB to respectively capture the notions of minimal context
and most general instantiation that allow for a reduction to occur.

We illustrated the main concepts by using a small running example, a simpli-
fied version of Mobile Ambients. The use of SMA allowed us to better highlight
the role of instantiations and contexts in labelled transitions for open terms.
It also gave the chance of performing an informal comparison between our ap-
proach and the one of [8]. This is made precise by observing that our approach
can be used for a wider range of case studies and that it seems to derive in gen-
eral a more concise LTS (even if this has been formally proved so far only under
quite stringent conditions). However, we leave as future work the comparison of
the results obtained by applying the two techniques to real-life formalisms, as
well as the comparison between our technique and the more complex synthesis
mechanism based on irredundant G-luxes (also championed in [8]).

As in [3], our paper draws a connection with the tile model [6]: the derivation
from an open GRS C of a (freely constructed) double category is illustrated,
exploiting a functorial construction proposed in [13]. It results in a finitary,
SOS-like presentation of the LTS derived from that same C via a suitable double
category. Preliminary obervations suggest that the LTS synthesised via G-luxes
cannot be offered the same modular presentation: the simultaneous requirement
on contexts and instantiations seems to require an infinite set of basic tiles in
the observational double category, in order to model G-lux transitions via cells.

Despite its features, our framework suffers from the same problem as the
synthesis mechanism based on irredundant G-luxes: the bisimilarity over the de-

148 F. Gadducci, G.V. Monreale, and U. Montanari

rived LTS is not a congruence. Consider e.g. the SMA process n[inm.1 | 2]. As
said in Section 4, no labelled transition starting from it can be derived. This
implies that it is equivalent to n[in o.1 | 2], for any channel name o. Clearly,
this equivalence is not preserved by all contexts. We leave as future work the
study of this problem. It could lead towards a further refinement of our synthesis
mechanism for LTSs, possibly by acting directly on the generating cells of the
observational double category. Otherwise, one could consider an alternative def-
inition of bisimilarity: as it has been carried out for the closed GRSs approach
[2], one could study barbed saturated bisimilarity for open terms, by giving a
labelled characterization of it through the GGLTS.

References

1. Bonchi, F., Gadducci, F., Monreale, G.V.: Labelled Transitions for Mobile Am-
bients (As Synthesized Via a Graphical Encoding). In: EXPRESS 2008. ENTCS,
vol. 242(1), pp. 73–98. Elsevier, Amsterdam (2009)

2. Bonchi, F., Gadducci, F., Monreale, G.V.: Reactive Systems, Barbed Semantics,
and the Mobile Ambients. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504,
pp. 272–287. Springer, Heidelberg (2009)

3. Bruni, R., Gadducci, F., Montanari, U., Sobociński, P.: Deriving Weak Bisimu-
lation Congruences from Reduction Systems. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 293–307. Springer, Heidelberg (2005)

4. Bruni, R., Meseguer, J., Montanari, U.: Symmetric Monoidal and Cartesian Double
Categories as a Semantics Framework for tile Logic. MSCS 12(1), 53–90 (2002)

5. Cardelli, L., Gordon, A.: Mobile Ambients. TCS 240(1), 177–213 (2000)
6. Gadducci, F., Montanari, U.: The Tile Model. In: Proof, Language and Interaction:

Essays in Honour of Robin Milner, pp. 133–166. MIT Press, Cambridge (2000)
7. Kelly, G.M., Street, R.: Review of the Elements of 2-Categories. In: Sydney Cate-

gory Seminar. LNM, vol. 420, pp. 75–103. Springer, Heidelberg (1974)
8. Klin, B., Sassone, V., Sobociński, P.: Labels from Reductions: Towards a Gen-

eral Theory. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.)
CALCO 2005. LNCS, vol. 3629, pp. 30–50. Springer, Heidelberg (2005)

9. Leifer, J.J., Milner, R.: Deriving Bisimulation Congruences for Reactive Systems.
In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer,
Heidelberg (2000)

10. MacLane, S.: Categorical Algebra. Bull. Amer. Math. Soc. 71, 40–106 (1965)
11. Merro, M., Zappa Nardelli, F.: Behavioral Theory for Mobile Ambients. Journal of

the ACM 52(6), 961–1023 (2005)
12. Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency.

TCS 96(1), 73–155 (1992)
13. Palmquist, P.H.: The Double Category of Adjoint Squares. In: Midwest Category

Seminar. LNM, vol. 195, pp. 123–153. Springer, Heidelberg (1971)
14. Power, A.J.: An Abstract Formulation for Rewrite Systems. In: Dybjer, P., Pitts,

A.M., Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) CTCS 1989. LNCS, vol. 389,
pp. 300–312. Springer, Heidelberg (1989)

15. Rathke, J., Sobociński, P.: Deriving Structural Labelled Transitions for Mobile
Ambients. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 462–476. Springer, Heidelberg (2008)

16. Sassone, V., Sobocinski, P.: Deriving Bisimulation Congruences Using 2-Categories.
Nordic Journal of Computing 10(2), 163–183 (2003)

Unidirectional Channel Systems Can Be Tested

Petr Jančar1,�, Prateek Karandikar2,��, and Philippe Schnoebelen3,� � �

1 Techn. Univ. Ostrava
2 Chennai Mathematical Institute

3 LSV, ENS Cachan, CNRS

Abstract. “Unidirectional channel systems” (Chambart & Schnoebelen,
CONCUR 2008) are systems where one-way communication from a sender to
a receiver goes via one reliable and one unreliable (unbounded fifo) channel.
Equipping these systems with the possibility of testing regular properties on the
contents of channels makes verification undecidable. Decidability is preserved
when only emptiness and nonemptiness tests are considered: the proof relies on a
series of reductions eventually allowing us to take advantage of recent results on
Post’s Embedding Problem.

1 Introduction

Channel systems are a family of computational models where several, usually finite-
state, agents communicate via usually unbounded fifo communication channels [1].
These models are well-suited to the formal specification and algorithmic analysis of
asynchronous communication protocols [2–5]. They are sometimes called queue au-
tomata when there is only one agent using the channels as fifo memory buffers.

A particularly interesting class of channel systems are the lossy channel systems,
“LCS” for short, popularized by Abdulla, Bouajjani, Jonsson, Finkel, et al. [6–8]. Lossy
channels are unreliable and can lose messages nondeterministically and without any
notification. A bit surprisingly, this makes lossy systems easier to analyse: safety, in-
evitability and several more properties are decidable for this model [6, 7, 9–11] while
they are undecidable when channels are reliable.

It should be stressed that LCS’s have also been very useful outside the field of com-
municating systems and distributed computing. During the last decade, they have been
used to show the decidability, or (more often) the hardness, of problems on Timed Au-
tomata, Metric Temporal Logic, modal logics, etc. [12–16]. With other unreliable com-
putational models, lossy channel systems are now an important tool for the complexity
analysis of algorithms that rely on well-quasi-ordering theory [17–19].

Unidirectional channel systems, “UCS” for short, are a variant of LCS’s where a Sender
process communicates to a Receiver process via one reliable and one lossy channel.
Fig. 1 gives an example.

� Supported by the European Regional Development Fund in the IT4Innovations Centre of
Excellence project (CZ.1.05/1.1.00/02.0070), and by the project GAČR:P202/11/0340.

�� Partially funded by Tata Consultancy Services.
��� Currently visiting Oxford Univ. Comp. Sci. Dept, supported by Grant ANR-11-BS02-001

and by the Leverhulme Trust.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 149–163, 2012.
c© IFIP International Federation for Information Processing 2012

150 P. Jančar, P. Karandikar, and P. Schnoebelen

qp

l?a

r?a

l?b r?b

l?c

r?c

p1

p2

Odd : r

l!a

Even : r

Even : r

l!a

Odd : r

r

l

a b c a c

a

Fig. 1. Unidirectional channels: Sender on the right, Receiver on the left

The presence of one reliable channel put UCS’s beyond plain LCS’s. On the other
hand, the unidirectionality (there is no channel from Receiver to Sender) is a limitation
that LCS’s do not share.

UCS’s were first studied by Chambart and Schnoebelen who considered mixed chan-
nel systems (i.e., communicating systems using both reliable and lossy channels in ar-
bitrary combinations) and showed how to reduce safety and reachability problems for
arbitrary network topologies to reachability problems on either queue automata (unde-
cidable), or LCS’s (decidable), or the previously unidentified UCS’s [20].

The reachability problem for UCS’s is quite challenging: it was proved decidable
by reformulating it more abstractly as PEP, aka the Regular Post Embedding Problem,
which is easier to analyze [21–23]. We want to stress that, while PEP is a natural variant
of Post’s Correspondence Problem, it was only identified through questions on UCS’s.
Recently, PEP has proved useful in other areas, starting with Graph Logics [24].

Testing channel contents. Basic channel machines are not allowed to inspect the con-
tents of the channels. However, it is natural to enrich the basic setup with tests (con-
ditions on channel contents) as in, e.g., Fig. 1 where some sender’s actions depend on
(the parity of) the number of messages currently in r. Adding tests goes smoothly and
painlessly for LCS’s where the main decidability results extend directly with almost un-
changed algorithms [10, sect. 3.3]. Adding even simple tests to UCS’s is a completely
different story, as we discovered. One meets two obstacles when trying to extend the
approach that worked for UCS’s:

1. The “reformulation” of UCS reachability as a Post Embedding Problem is a non-
trivial reduction that reorders the events in a UCS run, relying on the independence
(in a concurrency-theoretical sense) of sendings wrt readings. Tests on channel con-
tents introduce global dependencies that are not reflected in PEP problems.

2. One is then led to consider extensions of PEP where said dependencies can be
reflected, raising a new question: how to show the decidability of these extensions?

Our contribution. We extend UCS’s with the possibility of testing channel contents with
simple regular predicates. This makes reachability undecidable even with restricted sets
of simple tests. Our main result is that reachability remains decidable when only empti-
ness and non-emptiness tests are allowed. The proof goes through a series of reductions
that leave us with UCS’s extended by only emptiness tests on a single side of a sin-
gle channel (called “Zl

1 tests”). This minimal extension can then be reformulated as

Unidirectional Channel Systems Can Be Tested 151

PEP
partial
codir , or “PEP with partial codirectness”, a nontrivial extension of PEP that was

recently proved decidable [25].

Outline of the paper. Unidirectional channel systems with tests are defined in Section 2.
Section 3 shows how undecidability creeps in when regular tests are allowed. Sec-
tion 4 presents protocols for simulating (non-)emptiness in UCST’s with only empti-
ness tests by Sender, thus reducing UCST to UCST[Z1]. Section 5 proves decidability
for UCST[Zl

1] by reducing to PEP
partial
codir . This is then leveraged in section 6 to account

for the whole of UCST[Z1]. Finally, Section 7 proves that (non-)emptiness tests strictly
enrich the basic UCS model.

2 Unidirectional Channel Systems

Structure. Formally, a UCST (for Unidirectional Channel System with Tests) is a tuple
S = (Ch,M,Q1,Δ1,Q2,Δ2), where M is a finite alphabet of messages, Q1, Q2 are disjoint
finite sets of states of Sender and Receiver, respectively, and Δ1, Δ2 are finite sets of
rules of Sender and Receiver, respectively. Ch= {r,l} is a fixed set of channel (names),
r being reliable and l unreliable, so called “lossy”.

A rule δ ∈ Δi is a tuple (q,c,α,q′) ∈ Qi× Ch×Act×Qi where the set of actions
Act contains tests R (checking whether the contents of c ∈ Ch belongs to R, a regular
language) and communications w (sending a sequence of messages to c in the case of

Sender’s actions, reading it for Receiver’s) and is thus given by Act
def
= Reg(M)∪M∗.

We write q
R:c−→ q′ for a rule where the action is a test on c, and q

c!w−→ q′ (resp., q
c?w−→ q′)

when the action is a communication by Sender (resp., by Receiver).
In graphical representations like Fig. 1, Sender and Receiver are depicted as two

disjoint directed graphs, where states appear as nodes and where rules q
α−→ q′ appear as

edges from q to q′ with action and channel name labeling the edge. We may omit the
label, or just use /, for trivial tests, R = M∗, or empty communications, w = ε.

Remark 2.1 (On separating tests from communications). Our definition requires that an
action is a test or a communication. It does not allow performing both atomically inside
a single step (but they can be chained using intermediary states). This choice, which is
no real loss of generality, lets us focus on simulating tests by other constructs (or other
tests) without having to account for accompanying communications. ��

Operational Semantics. The behaviour of S is defined via an operational semantics
defined along standard lines. A configuration of S = (Ch,M,Q1,Δ1,Q2,Δ2) is a tuple

C ∈ Conf S
def
= Q1×Q2×M∗×M∗. In C = (q1,q2,u,v), q1 and q2 are the current states of,

respectively, Sender and Receiver, while u and v are the current contents of, respectively,
r and l.

Rules give rise to transitions in the expected way. We start with so-called “reliable”
steps where the effect of a rule is deterministic. Formally, given two configurations
C = (q1,q2,u,v), C′ = (q′1,q

′
2,u
′,v′) and a rule δ = (q,c,α,q′), there is a reliable step

denoted C
δ−→rel C′ if, and only if, the following four conditions are satisfied:

152 P. Jančar, P. Karandikar, and P. Schnoebelen

states: q = q1 and q′ = q′1 and q2 = q′2 (for Sender rules), or q = q2 and q′ = q′2 and
q1 = q′1 (for Receiver rules);

tests: if δ is a test rule q
R:c−→ q′, then c= r and u∈R, or c= l and v∈R, and furthermore

u′ = u and v′ = v;
writes: if δ is a writing rule q

c!w−→ q′, then c = r and u′ = uw and v′ = v, or c = l and
u′ = u and v′ = vw;

reads: if δ is a reading rule q
c?w−→ q′, then c = r and u = wu′ and v′ = v, or c = l and

u′ = u and v = wv′.

Now to unreliable, aka lossy, steps denoted C
δ−→los C′. As is standard, a lossy step is

defined as a combination of message losses (where the contents of l may be replaced
with a subword) with a reliable step. For v1,v2 ∈ M∗, we write v1 0 v2 when v1 is a
subword of v2, i.e., a (scattered) subsequence. In particular, ε 0 v2 and v2 0 v2 for any
v2. This is extended to configurations and we write C 0 D when C = (q1,q2,u,v) and
D = (q1,q2,u,v′) with v0 v′.1 We now define:

C
δ−→los C′

def⇔∃D,D′ : C 1 D ∧ D
δ−→rel D′ ∧ D′ 1C′ . (1)

In other words, a lossy step is a reliable step sandwiched between arbitrary message
losses on l. In particular, reliable steps are a special case of lossy steps. In the rest

of this paper, we consider reachability via lossy steps, and often write simply C
δ−→ C′

without a “los” subscript. (When we refer to reliable steps and runs, we always use “rel”
subscript.)

Remark 2.2 (On reliable steps). As is usual with lossy channel systems, the reliable
semantics plays a key role even though the object of our study is reachability via un-
reliable steps. First −→rel is a normative yardstick from which the unreliable semantics
depart: −→los is defined as a modification of −→rel. Then many hardness results on lossy
systems are proved with reductions where a lossy system simulates in some way the
reliable (and Turing-powerful) behaviour. ��

A run from C0 to Cn is a sequence of chained steps C0
δ1−→C1

δ2−→C2 · · ·
δn−→Cn, abbreviated

as C0
∗−→Cn (or C0

+−→Cn when we rule out zero-length runs).

Definition 2.3. The Reachability Problem is the question, given a UCST S and some
states pin, pfi ∈ Q1, qin,qfi ∈ Q2, whether S has a (lossy) run Cin = (pin,qin,ε,ε)

∗−→
Cfi = (pfi,qfi,ε,ε).

The Extended Reachability Problem asks, further given regular languages
U,V,U ′,V ′ ⊆ M∗, whether there exist u ∈ U, v ∈ V, u′ ∈ U ′, and v′ ∈ V ′ such that S
has a (lossy) run (pin,qin,u,v)

∗−→ (pfi,qfi,u′,v′).

In the following we only consider reachability problems with empty channels in Cin and
Cfi since this is technically convenient. There is no loss of generality:

Lemma 2.4. The extended reachability problem many-one reduces to the reachability
problem.

1 Note that (Conf ,0) is not a well-quasi-order since C 0 D requires equality on channel r.

Unidirectional Channel Systems Can Be Tested 153

Roughly speaking, we can transform an instance of the extended reachability problem
to an “empty-channel” instance by letting Sender start with generating some u ∈ U ,
v ∈V into the channels, and by letting Receiver read some u′ ∈U ′, v′ ∈V ′ in the end.

The two problems are thus equivalent. Moreover, the reduction does not need to
introduce any new tests, and the equivalence thus also holds for UCST’s with restricted
sets of tests which we will consider.

3 Testing Channels and the Undecidability of Reachability

Despite their similarities, UCS’s and LCS’s (lossy channel systems) behave differently.
The algorithms deciding reachability for LCS’s can easily accommodate regular (or
even more expressive) tests [10, Sect. 3.3]. By contrast, this section gives several ver-
sions of the following result:

Theorem 3.1. Reachability is undecidable for UCST.

3.1 Simulating Queue Automata

We now show how even simple tests lead to undecidability. The main technique we use
is to simulate queue automata which are a Turing-powerful model already with a single
reliable channel.

UCS’s already have a reliable channel but Sender (or Receiver) cannot both read and
write from/to it. If Sender could somehow read from the head of r as well as write to its
tail, it would be as powerful as a queue automaton. Now, with regular tests on channels,
there exists a simple protocol making Receiver act as a proxy for Sender and implement
read actions on its behalf.

Described informally, the protocol is the following2:

1. Channel l is initially empty.
2. In order to “read” from r, Sender checks and records whether the length of the

contents of r is odd or even, using a regular test on r.
3. It then sends on l the message, say a, that it wants to read.
4. It checks that (equivalently, waits until) the parity of the contents of r has changed,

and on detecting this change, concludes that the read was successful.
5. Receiver waits in its initial qproxy (or qp) state and tries to read from l. When it

reads a message a from l, it understands it as an request telling it to read a from r

on behalf of Sender. Once it has performed this read on r, it returns to qproxy and
waits for the next instruction.

6. l is now empty and the simulation of a read by Sender is concluded.

If no messages are lost on l, the protocol allows Sender to read on r. If a message is lost
on l, the protocol deadlocks. Also, Sender deadlocks if it attempts to read a message
that is not at the head of r (it has to guess correctly). We note that these deadlocks do
not make the simulation incorrect since we are only concerned with reachability.

2 We describe the protocol informally but Fig. 1 page 150 depicts exactly how Receiver im-

plements a proxy on M = {a,b,c} and how Sender simulates a rule p1
r?a−→ p2 for a queue

automaton.

154 P. Jančar, P. Karandikar, and P. Schnoebelen

3.2 Restricted Sets of Tests

In the above reduction only parity tests were used. When T ⊆ Reg(M), we write
UCST[T] to denote the class of UCST’s where only tests belonging to T are allowed.
Thus UCST and UCS coincide with UCST[Reg(M)] and UCST[∅], respectively.

More interestingly, defining Odd,Even ∈ Reg(M) with Even
def
= (M.M)∗ and Odd

def
=

M.Even, and letting P
def
= {Even,Odd} denote the parity tests, section 3.1 shows that

reachability is undecidable already for UCST[P].
We further observe that in Fig. 1 only the sender uses tests, and only r is submitted

to tests. We denote such restricted uses of tests by qualifying test sets like T with a
subscript 1 (for Sender) or 2 (for Receiver), and/or by a superscript r or l. We can now
state the following stronger form of Theorem 3.1:

Theorem 3.2. Reachability is undecidable for UCST[Pr
1].

In the rest of this paper, we single out other simple test sets by letting:

Z
def
= {ε}, N

def
= M+, Ha

def
= a.M∗, H

def
= {Hx | x ∈ M}.

In other words, Z is the emptiness (or “zero”) test, N is the non-emptiness test and H
are the head tests (that allow checking what is the first message in a channel without
consuming it). Note that non-emptiness tests can be simulated with head tests, hence
are weaker. Below we abuse notation and, when R,R′ ∈ Reg(M∗), we write UCST[R]
and UCST[R,R′] rather than UCST[{R}] and UCST[{R,R′}].

One difference with parity tests and the Z,N,H tests is that parity tests are “global”
in that their outcome depends on the entire contents of a channel. With H tests, only
one message at the head needs be scanned. Still, “local” H tests are sufficient for unde-
cidability:

Theorem 3.3. Reachability is undecidable for UCST[Hr
1].

Proof (Idea). Sender can simulate parity tests Pr
1 by using two copies of the message

alphabet, say using different colors. It alternates strictly between the two colors when
writing on r. This requires an extra bit of memory, encoded in local states. Then the
parity of the length of r contents can be tested by looking at the first message, using
Hr

1 tests, and comparing with the color of the last written message. (This assumes that
r is never completely emptied, otherwise deadlocks will occur, but this is no loss of
generality.) ��

4 Simulating UCST[ZZZ,,,NNN] by Using Sender’s Emptiness Tests Only

This section describes two simulations that, put together, entail Theorem 4.1.
Remark. The simulations are tailored to the reachability problem. They may not pre-
serve, e.g., termination or deadlock-freedom.

Theorem 4.1. Reachability for UCST[Z,N] many-one reduces to reachability for
UCST[Z1].

Unidirectional Channel Systems Can Be Tested 155

4.1 Reducing UCST[ZZZ,,,NNN] to UCST[ZZZ111,,,NNN111]

We now explain how to eliminate Z and N tests by Receiver. W.l.o.g. we assume that
x in c!x and c?x is always one symbol (x ∈ M), and we use two special new messages,
“z” and “n”, with which Sender will signal to Receiver about the status, empty or not,
of the channels.

Formally, for S ∈UCST[Z,N], where S = ({r,l},M,Q1,Δ1,Q2,Δ2), we construct S′

arising from S as follows (see Fig. 2):

– S′ uses the special new messages z,n, and it thus has alphabet M′
def
= M∪{n,z};

– for each channel c ∈ {r,l} and each sender state p ∈ Q1 we add new states p1
c, p2

c

and an “(emptiness) testing loop” p
Z:c−→ p1

c
c!z−→ p2

c
Z:c−→ p;

– for every sender rule θ of the form p
c!x−→ p′ we add a new state pθ, and the rule is

replaced in S′ by the following three rules: p
/−→ pθ, pθ

c!n−→ pθ (a “padding loop”),

and pθ
c!x−→ p′;

– every receiver rule q
Z:c−→ q′ testing emptiness of c is replaced by q

c?z−→ q′;

– every receiver rule q
N:c−→ q′ testing non-emptiness of c is replaced by q

c?n−→ q′.

q

q′ q′′

Z : c N : c′

p

p′

c!a

S

r

l

a ⇒
q

q′ q′′

c?z c′?n

p

p′

pθ

p1
c

p2
c

p1
c′

p2
c′

Z : c
c!z

Z : c /

c!a

c!n

S′

r

l

n a

z

Fig. 2. From S to S′: eliminating Receiver’s N and Z tests

Lemma 4.2 (Correctness of the reduction). S has a run Cin
∗−→los Cfi if, and only if, S′

has a run Cin
∗−→los Cfi.

Proof (Sketch). The “⇒” direction. Suppose a run Cin
∗−→los Cfi of S. For each concrete

occurrence o of a message x ∈ M which is written to a channel c there is a number ko

such that the run uses ko steps where Receiver tests c for non-emptiness (i.e., performs

transitions q
N:c−→ q′) in the situation when o is the first symbol (the head) in c. We can

use this for constructing a run of S′ which mimics the above run of S. Any original

Sender’s step p
c!x−→ p′, writing an occurrence o of x to c, is replaced by p

/−→ pθ
c!n−→

pθ
c!n−→ ·· · c!n−→ pθ

c!x−→ p′ where the padding loop is used ko times; any Receiver’s step

q
N:c−→ q′ is replaced by q

c?n−→ q′. Any original Receiver’s step q
Z:c−→ q′, when Sender is in

state p, is replaced with the sequence of steps corresponding to p
Z:c−→ p1

c
c!z−→ p2

c, q
c?z−→ q′,

p2
c

Z:c−→ p. The inserted n’s (and z’s) are never lost; other message losses are the same as
originally.

156 P. Jančar, P. Karandikar, and P. Schnoebelen

The “⇐” direction. Suppose a run Cin
∗−→los Cfi of S′. It is convenient to consider the

run as a sequence of fine-grained steps, i.e., Cin
δ1−→ C1

δ2−→ C2
δ3−→ ·· ·Cn−1

δn−→ Cfi, where

each step is either a reliable step Ci−1
δi−→rel Ci or the loss of a single message. The idea

is to repeatedly switch two consecutive steps conveniently so that the validity of the
obtained (fine-grained) runs is kept, with the aim to achieve a “straight run” which can
be easily translated to a run Cin

∗−→los Cfi of S. Imagine first that we give the priority to
Sender’s (reliable) steps: whenever some (current) δi is a Receiver’s step or a loss and
δi+1 is a Sender’s step then we switch the steps if the result is still a valid run. It is easy
to observe that the writing steps in the resulting run (in which no above switches are

possible) are only in the segments corresponding to p
/−→ pθ

c!n−→ pθ
c!n−→ ·· · c!n−→ pθ

c!x−→ p′

(uninterrupted by Receiver or message losses). Regarding the steps corresponding to

testing loops, we get segments p
Z:c−→ p1

c

c!z−→ p2
c, σ, p2

c

Z:c−→ p where σ is a sequence of
Receiver’s steps and/or message losses. Now we can switch (anyhow) inside such a

segment, with the aim to get σ1, p
Z:c−→ p1

c
c!z−→ p2

c,σ2, p2
c

Z:c−→ p for a shortest σ2. It turns

out that σ2 is, in fact, one step, either q
c?z−→ q′ or a loss of z. There is a final issue: we

arrange that the finally achieved run is also “head-lossy”, i.e. any loss-step loses the
first message (the head) of l; thus we never have only n’s in l when Sender tests the
non-emptiness of l. It is then straightforward to translate the finally achieved run of S′

to the corresponding run of S. ��

4.2 Reducing UCST[ZZZ111,,,NNN111] to UCST[ZZZ111]

When there are no receiver tests, N1 tests can be eliminated by a buffering technique on
Sender’s side. With any S ∈UCST[Z1,N1] we associate a derived system S′ as follows:

For each channel c ∈ Ch, S′ uses an auxiliary 1-place buffer between Sender and the
channel c. In any S′ configuration, a buffer is empty (containing no messages) or full
(containing a single message). Now the sender does not write to the channels, it can only
directly write to the auxiliary buffers, and it may only write to a buffer when it is empty,
making it full. Buffers may be nondeterministically flushed at any time, transferring
their contents to the actual channel (in a potentially lossy way for l). Finally, the buffers
are not actual extra peripherals, rather they are encoded in the finite control of Sender,
which also simulates the lossy behavior of writing to channel l. Within this setup, an
Nc

1 test translates to “c’s auxiliary buffer is full”, and a Zc
1 test translates to “c’s buffer

is empty and c is empty”.
Finally, S′ ∈UCST[Z1] simulates S without any need of N1 tests, as stated by the

following lemma.

Lemma 4.3 (Correctness of the reduction). S has a run Cin
∗−→los Cfi if, and only if, S′

has a run C′in
∗−→los C′fi (where C′in and C′fi are the configurations in S′ corresponding to

Cin and Cfi with empty auxiliary buffers).

5 Reachability for UCST[ZZZl
111] via Post’s Embedding Problem

This section develops a many-one reduction from the reachability problem for
UCST[Zl

1] to PEP
partial
codir , a generalization of Post’s Embedding Problem.

Unidirectional Channel Systems Can Be Tested 157

Definition 5.1 (Post embedding with partial codirectness [25]).PEPpartial
codir is the ques-

tion, given two finite alphabets Σ,Γ, two morphisms u,v : Σ∗ → Γ∗, and two regular lan-
guages R,R′ ∈ Reg(Σ), whether there is σ ∈ R (called a solution) such that u(σ)0 v(σ),
and such that furthermore u(σ′)0 v(σ′) for all suffixes σ′ of σ that belong to R′.3

The above definition uses the same subword relation, “0”, that captures message
losses. PEPpartial

codir can be compared with Post’s Correspondence Problem, where the
question is whether there exists σ ∈ Σ+ such that u(σ) = v(σ).

Since PEP
partial
codir is decidable [25], we deduce:

Corollary 5.2. Reachability is decidable for UCST[Zl
1].

The reduction from UCST[Zl
1] to PEP

partial
codir extends an earlier reduction from UCS to

PEP [22]. Here the presence of Zl
1 tests creates new difficulties.

We fix an instance S = ({r,l},M,Q1,Δ1,Q2,Δ2), Cin = (pin,qin,ε,ε), Cfi =
(pfi,qfi,ε,ε) of the reachability problem for UCST[Zl

1]. (We again assume x ∈ M in each

c!x, c?x.) We construct a PEP
partial
codir instance P = (Σ,Γ,u,v,R,R′) intended to express

the existence of a run from Cin to Cfi.
We first put Σ def

= Δ1 ∪ Δ2 and Γ def
= M so that words σ ∈ Σ∗ are sequences of

UCST rules and their images u(σ),v(σ) ∈ Γ∗ are sequences of messages. With any
δ ∈ Σ, we associate write_r(δ) defined by write_r(δ) = x if δ is a sender rule

of the form .
r!x−→ ., and write_r(δ) = ε in all other cases. This is extended to se-

quences with write_r(δ1 · · ·δn) = write_r(δ1) · · ·write_r(δn). In a similar way we de-
fine write_l(σ) ∈ M∗, the sequence written to l by the sequence σ, and read_r(σ) and
read_l(σ), the sequences read by σ from r and l, respectively. We define Er ∈ Reg(Σ)
where Er

def
= E1∪E2 and

E1
def
={δ ∈ Σ | write_r(δ) = read_r(δ) = ε} ,

E2
def
={δ1 ·δ2 ∈ Σ2 | write_r(δ1) = read_r(δ2) �= ε} .

In other words, E1 gathers the rules that do not write to or read from r, and E2 contains
all pairs of sender/receiver rules that write/read a same letter to/from r.

Let now P1 ⊆ Δ∗1 be the set of all sequences of sender rules of the form pin = p0
..−→

p1
..−→ p2 · · · ..−→ pn = pfi, i.e., sequences which take the sender state from pin to pfi.4

Similarly, let P2⊆Δ∗2 be the set of all sequences of receiver rules which take the receiver
component from qin to qfi. Since P1 and P2 are defined by finite state systems, they are
regular languages. We write P1‖P2 to denote the set of all interleavings (shuffles) of
a word in P1 with a word in P2. This operation is regularity-preserving, so P1‖P2 ∈
Reg(Σ). Let Zl ⊆ Δ1 be the set of all sender rules which test the emptiness of l (which
are the only test rules in S). We define R and R′ as the following regular languages:

R = E∗r ∩ (P1‖P2), R′ = Zl ·
(
Δ1∪Δ2

)∗
.

Finally, the morphisms u,v : Σ∗ → Γ∗ are given by u
def
= read_l and v

def
= write_l.

3 This problem is actually called PEP
partial
codir in [25].

4 I.e., all paths from pin to pfi in the directed graph of the sender, seeing rules as directed edges.

158 P. Jančar, P. Karandikar, and P. Schnoebelen

Lemma 5.3 (Correctness). S has a run Cin
∗−→Cfi iff P has a solution.

Proof. We first introduce a notion bridging the difference between runs of S and solu-
tions of P . We call σ ∈ (Δ1∪Δ2)

∗ a pre-solution if all the following conditions hold:

1. σ ∈ P1‖P2;
2. read_r(σ) = write_r(σ);
3. read_r(σ1) is a prefix of write_r(σ1) for each prefix σ1 of σ;
4. read_l(σ)0 write_l(σ);
5. for each factorization σ = σ1zσ2 where z ∈ Zl we have read_l(σ2)0 write_l(σ2).

A pre-solution σ has a receiver-advancing switch if σ = σ1δδ′σ2 where δ is a sender
rule, δ′ is a receiver rule, and σ′ = σ1δ′δσ2 is a pre-solution. A receiver-postponing
switch is defined analogously, for δ being a receiver rule and δ′ being a sender rule.

It is obvious that if there is a pre-solution σ then there is an advance-stable pre-
solution σ′, which means that σ′ has no receiver-advancing switch; there is also a
postpone-stable pre-solution σ′′ which has no receiver-postponing switch.

Claim. Any advance-stable pre-solution σ is in E∗r , and it is thus a solution of P .

Proof of the claim. Let us write an advance-stable pre-solution σ as σ1σ2 where σ1 is
the longest prefix such that σ1 ∈ E∗r ; hence read_r(σ1) = write_r(σ1) by the definition
of Er = E1∪E2. Now suppose σ2 �= ε. Then σ2 = δ1δ2 · · ·δk where δ1 �∈ E1. Since now

σ1 ∈ E∗r , hence read_r(σ1) = write_r(σ1), δ1 must be of the form .
r!x−→ . (to keep 3.).

Let us pick the smallest � such that δ� = .
r?x−→ . (which must exist by 2.) and note that

�≥ 3 since σ1δ1δ2 �∈ E∗r . If we now pick the first j with 1≤ j≤ �−1 and such that δ j is
a sender rule and δ j+1 is a receiver rule, switching δ j, δ j+1 leads again to a pre-solution
(as can be checked by inspecting 1.–5.). This contradicts the assumption that σ is an
advance-stable pre-solution.

Claim. Any postpone-stable pre-solution σ corresponds to a run Cin
∗−→Cfi of S.

Proof of the claim. Consider a presentation σ = σ1σ2zσ3 where z ∈ Zl, σ2 contains
no rules from Zl, and σ1 is either empty or finishes with some z′ ∈ Zl; recall that
read_l(σ2zσ3) 0 write_l(σ2zσ3) and read_l(σ3) 0 write_l(σ3). We then must have

read_l(σ2)0write_l(σ2): otherwise we had σ2 = σ′δσ′′ where δ is of the form .
l?x−→ .,

σ′′ contains no l-reading rules and read_l(δσ′′zσ3)0 write_l(σ3); then switching the
leftmost receiver-sender pair in δσ′′z would lead to a pre-solution, as can be easily
checked. Moreover, in σ2 each sender rule precedes all receiver rules. It is now easy to

verify that there is a run Cin
δ1−→C1

δ2−→ ·· ·Cn−1
δn−→Cfi of S where δ1δ2 · · ·δn = σ.

Finally we observe that if Cin
δ1−→C1

δ2−→ ·· ·Cn−1
δn−→Cfi is a run of S then σ = δ1δ2 · · ·δn

is a pre-solution; then there is also an advance-stable pre-solution, i.e. a solution of P .
On the other hand, if σ is a solution of P then σ is a pre-solution, and then there is a
postpone-stable pre-solution, which corresponds to a run Cin

∗−→Cfi of S. ��

Actually, PEPpartial
codir and UCST[Zl

1] are equivalent (inter-reducible) problems:

Theorem 5.4. PEP
partial
codir many-one reduces to the Reachability Problem for UCST[Zc

i]
for any i ∈ {1,2} and c ∈ Ch.

Unidirectional Channel Systems Can Be Tested 159

Proof (Idea). These reductions are easy and follow basically the same pattern: a UCST
system nondeterministically guesses a solution and validates it. As an example, let us
informally describe the simplest one and show how to solve a PEP

partial
dir instance with

a UCST[Zr
1] system. We recall from [25] that PEPpartial

dir is the question whether there is
a σ ∈ R such that u(σ) 0 v(σ) and furthermore u(σ′) 0 v(σ′) for all prefixes of σ that
belong to R′ (thus PEP

partial
dir and PEP

partial
codir are equivalent problems and one switches

from one to the other by taking the mirror images of u,v,R,R′).
Given (Σ,Γ,u,v,R,R′) we build an UCST where Sender nondeterministically gener-

ates a σ ∈ R, sending u(σ) on channel r and v(σ) on channel l. A subword of v(σ) is
written on l. Receiver checks that l and r contain exactly the same sequence of mes-
sages, that is, u(σ). Whenever the prefix of σ generated so far (call it σ′) is in R′, Sender
waits for r to be empty before going on with the generation of σ. This forces Receiver
to match u(τ) with a prefix of v(τ), or more precisely, with a prefix of the subword of
v(τ) that ends up in l after message losses may have occurred.

The other three reductions are similar. ��

6 Reducing UCST[ZZZ111] to UCST[ZZZl
111]

In this section we prove the decidability of reachability for UCST[Z1] by reducing to
UCST[Zl

1]. Since this involves eliminating Z tests on r, the configurations in which r

is empty are of interest. For a UCST S, we let Confr=ε be the subset of configurations
(p,q,ε,v) in which r is empty. We abuse terminology and say that a subset W ⊆Confr=ε
is regular if there are some state-indexed regular languages (Vp,q)p∈Q1,q∈Q2 in Reg(M)
such that W = {(p,q,ε,v) | v ∈ Vp,q}. Such regular subsets of Confr=ε can be finitely
represented using, e.g., regular expressions or finite-state automata.

We have put C = (p,q,u,v)0C′ = (p′,q′,u′,v′) iff p = p′, q = q′, u = u′, and v0 v′.
Confr=ε is thus a well-quasi order under0, unlike Conf .

W ⊆Confr=ε is upward-closed (in Confr=ε) if C ∈W , C0C′ and C′ ∈Confr=ε imply
C′ ∈W . It is downward-closed if Confr=ε �W is upward-closed. The upward-closure
↑W of W ⊆ Confr=ε is the smallest upward-closed set that contains W . A well-known
consequence of Higman’s Lemma is that upward-closed and downward-closed subsets
of Confr=ε are regular, and that upward-closed subsets can be canonically represented
by their finitely many minimal elements.

For W ⊆ Confr=ε, we let Pre∗(W)
def
= {C ∈ Confr=ε | ∃D ∈W : C

∗−→D}: observe that
Pre∗(W) only contains configurations with empty r.

Lemma 6.1. If W is an upward-closed subset of Confr=ε and if S is a UCST[Zl
1], then

Pre∗(W) is upward-closed and is computable uniformly from S and W .

Proof (Sketch). That Pre∗(W) is upward-closed is an immediate consequence of the
definition of lossy steps in Eq. (1). That it is computable from S and W is more interest-
ing: this is an application of the VJGL Lemma: “an upward-closed set U is computable
if one can decideC ∈U and V ∩U �=∅ for arbitrary configurationsC and regular sets V”
(see [26, Theorem 2] for details). Here the two questions, “C ∈U?” and “V ∩U �=∅?”,
i.e., “C

∗−→W?” and “U
∗−→W?”, reduce to instances of the extended reachability prob-

lem for UCST[Zl
1], hence are decidable. ��

160 P. Jančar, P. Karandikar, and P. Schnoebelen

Theorem 6.2. Reachability is decidable for UCST[Z1].

Proof (Sketch). Given a UCST[Z1] S, a run π =Cin
∗−→Cfi can be presented in the form

(Cin =)C0
∗−→S′ D1

Z:r−→C1
∗−→S′ D2

Z:r−→C2 · · · ∗−→S′ Dm (=Cfi)

where the Di −→Ci steps gather all occurrences of Zr
1 tests: note that necessarily Di and

Ci are in Confr=ε. The Ci−1
∗−→S′ Di subruns can be seen as runs of a new system S′,

which is obtained from S by removing all Zr
1 testing rules from Δ1. The point is that we

can apply Lemma 6.1 to S′ since it is a UCST[Zl
1].

So for k = 0,1, . . ., we define T ′k and Tk by letting T ′0 = ↑Cfi, Tk = Pre∗S′(T
′

k) and

T ′k+1 = T ′k ∪{C | ∃D ∈ Tk : C
Z:r−→D} (note that Tk is defined with a Pre∗S′ restricted to S′).

Tk collects all configurations C ∈ Confr=ε from which one can reach T0 with at most
k uses of a Z : r test. We observe that all T ′k ,Tk are upward-closed subsets of Confr=ε,
that Tk is computable from T ′k by Lemma 6.1, and that T ′k+1 is obviously computable
from Tk and T ′k . Furthermore, the Tk’s are increasing: T0 ⊆ T1 ⊆ ·· ·Tk ⊆ Tk+1 · · · . Since
they are upward-closed, they eventually stabilize by the well-quasi-ordering property:

letting Tω
def
=

⋃
k∈N Tk, there is n such that Tn = Tn+1 = Tω. Since there is a run Cin

∗−→Cfi

of S iff Cin ∈ Tω, the proof is finished. ��

Observe that Lemma 6.1 and Theorem 6.2 exhibit a Turing reduction (from reachability
for UCST[Z1] to reachability for UCST[Zl

1]) and not a many-one reduction like all the
other reductions in this paper.

With the results of sections 4 and 5, one obtains the following corollary.

Theorem 6.3. Reachability is decidable for UCST[Z,N].

Remark 6.4 (On complexity). Based on known results on the complexity of PEPpartial
codir

(see [17, 25]), our reductions prove that reachability for UCST[Z,N] is at level Fωω

in the extended Grzegorczyck hierarchy, and at level Fωm−1 , where m = |M|, when we
restrict to systems with a fixed-sized alphabet of messages. ��

7 Some Undecidable Problems for UCST[ZZZ,,,NNN]

The main result of this paper is that reachability is decidable for UCST[Z,N] (Theo-
rem 6.3). In this section we argue that emptiness and non-emptiness tests strictly add to
the expressive power of UCS’s. This point is made in two different ways.

We start with recurrent reachability. Formally, the Recurrent Reachability Problem

asks whether a given S has an infinite run Cin
+−→ (p,q,u1,v1)

+−→ (p,q,u2,v2)
+−→ ·· ·

visiting infinitely often a given control pair (p,q)∈Q1×Q2 (but with no constraints on
channel contents).

Theorem 7.1. Recurrent reachability is undecidable for UCST[Zr
1].

Proof (Idea). We prove Theorem 7.1 by reducing from the undecidable question
whether a length-preserving string rewrite system (aka semi-Thue system) has a loop

Unidirectional Channel Systems Can Be Tested 161

x
+−→ x. We design a UCST S where Sender guesses a word y0, writes it on l, and then

guesses pairs xi,yi for i = 1,2, . . . such that each xi −→ yi is a rewrite step. It writes xi

on r and yi on l. Receiver’s job is to check that yi−1 = xi. With Zr
1 tests, Sender can

wait for a check on xi to be concluded before issuing the next pair. This way we ensure
progress of the checking phase and avoid confusion between pairs if a separator is lost.
Since the rewrite system is length-preserving, any infinite run of S must eventually stop
losing messages and witness a loop. ��

Since recurrent reachability is decidable for UCS (see [22]), Theorem 7.1 shows that Z
tests, even just Zr

1 tests, cannot be simulated in UCS’s.
As another illustration, we consider UCST’s with write-lossy semantics, that is,

UCST’s with the assumption that messages are only lost during steps that (attempt to)
write them to l. Once they are in l, they are never lost. This is formalized via a new
transition relation C −→wrlo C′ (definition omitted, but as expected) that is intermediary
between −→rel and −→los.

In many cases the two lossy semantics coincide:

Lemma 7.2. Assume S is a UCST[Z] system. Then Cin
∗−→los Cfi iff Cin

∗−→wrlo Cfi.

Proof (Idea). Prove that C
δ−→los C′ iff D

δ−→wrlo C′ for some D0C. Deduce Cin
n+1−−→los C′

iff Cin
n+1−−→wrlo C′ by induction on n. See [18, App. A]. ��

Corollary 7.3. Reachability is decidable for UCST[Z] with write-lossy semantics.

Remark 7.4. Write-lossy semantics is meaningful when modeling unreliability of the
writing actions as opposed to unreliability of the channels. However, in the literature,
write-lossy semantics is mostly used as a way of restricting the nondeterminism of lossy
channel systems without losing any essential generality, as stated by Lemma 7.2. ��

Write-lossy and (plain) lossy semantics do not coincide when N tests are allowed. In
fact, Theorem 6.3 does not extend to write-lossy systems.

Theorem 7.5. Reachability is undecidable for UCST[Zl
1 ,N

l
1] with write-lossy seman-

tics.

Proof (Idea). As before, Sender simulates queue automata using tests and the help of
Receiver. See Fig. 3. Channel l is initially empty. To read a from r, Sender does the
following: (1) write a on l; (2) check that l is nonempty (hence the write was not lost);
(3) check that, or wait until, l is empty. Meanwhile, Receiver reads identical letters
from r and l. ��

qproxy

r?a

l?a

r?b l?b

r?c

l?c

p1

p2

l!a

N : l

Z : l

r

l

a b c a c

Fig. 3. Write-lossy Sender simulates “p1
r?a−→ p2” with N and Z tests and proxy Receiver

162 P. Jančar, P. Karandikar, and P. Schnoebelen

Thus, at least in the write-lossy setting, we can separate UCST[Z] and UCST[Z,Nl
1]

w.r.t. decidability of reachability.

8 Conclusion

UCS’s are communicating systems where a Sender can send messages to a Receiver
via one reliable and one unreliable, lossy, channel, but where no direct communication
is possible in the other direction. We introduced UCST, an extension of UCS’s where
steps can be guarded by tests, i.e., regular predicates on channel contents. This exten-
sion introduces limited but real possibilities for synchronization between Sender and
Receiver. For example, Sender (or Receiver) may use tests to detect whether the other
agent has read (or written) some message. As a consequence, adding tests leads to un-
decidable reachability problems in general. Our main result is that reachability remains
decidable when only emptiness and non-emptiness tests are allowed. The proof goes
through a series of reductions from UCST[Z,N] to UCST[Zl

1] and finally to PEP
partial
codir ,

an extension of Post’s Embedding Problem that was motivated by the present paper and
whose decidability was recently proved by the last two authors [25].

We see two main directions for future works:

1. The limits of decidability: is it possible to characterize precisely the families of
tests T ⊆ Reg(M) for which UCST[T] has a decidable reachability problem? We
gave positive and negative examples, but a precise characterization would help un-
derstand the phenomenon at hand.

2. Beyond reachability: we focused on reachability questions since they are the most
natural starting point as far as verification is concerned. However several other nat-
ural verification problems, e.g., termination, are known to be decidable for UCS’s.

References

1. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342
(1983)

2. Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with infinite
state spaces using QDDs. Formal Methods in System Design 14(3), 237–255 (1999)

3. Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel systems with
nonregular sets of configurations. Theor. Comp. Sci. 221(1–2), 211–250 (1999)

4. Atig, M.F., Bouajjani, A., Touili, T.: On the Reachability Analysis of Acyclic Networks
of Pushdown Systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS,
vol. 5201, pp. 356–371. Springer, Heidelberg (2008)

5. Muscholl, A.: Analysis of Communicating Automata. In: Dediu, A.-H., Fernau, H., Martín-
Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 50–57. Springer, Heidelberg (2010)

6. Cécé, G., Finkel, A., Purushothaman Iyer, S.: Unreliable channels are easier to verify than
perfect channels. Inf. Comp. 124(1), 20–31 (1996)

7. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Comp. 127(2),
91–101 (1996)

8. Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using forward reacha-
bility analysis for verification of lossy channel systems. Formal Methods in System De-
sign 25(1), 39–65 (2004)

Unidirectional Channel Systems Can Be Tested 163

9. Abdulla, P.A., Bertrand, N., Rabinovich, A., Schnoebelen, P.: Verification of probabilistic
systems with faulty communication. Inf. Comp. 202(2), 141–165 (2005)

10. Baier, C., Bertrand, N., Schnoebelen, P.: On Computing Fixpoints in Well-Structured Regular
Model Checking, with Applications to Lossy Channel Systems. In: Hermann, M., Voronkov,
A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 347–361. Springer, Heidelberg (2006)

11. Baier, C., Bertrand, N., Schnoebelen, P.: Verifying nondeterministic probabilistic channel
systems against ω-regular linear-time properties. ACM Trans. Comput. Logic 9(1) (2007)

12. Abdulla, P.A., Deneux, J., Ouaknine, J., Worrell, J.B.: Decidability and Complexity Re-
sults for Timed Automata via Channel Machines. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1089–1101. Springer,
Heidelberg (2005)

13. Ouaknine, J., Worrell, J.B.: On Metric Temporal Logic and Faulty Turing Machines. In:
Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 217–230. Springer,
Heidelberg (2006)

14. Kurucz, A.: Combining modal logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.)
Handbook of Modal Logics, vol. 3, ch. 15, pp. 869–926. Elsevier Science (2006)

15. Konev, B., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Dynamic topological logics over
spaces with continuous functions. In: Advances in Modal Logic, vol. 6, pp. 299–318. College
Publications (2006)

16. Lasota, S., Walukiewicz, I.: Alternating timed automata. ACM Trans. Computational
Logic 9(2) (2008)

17. Schmitz, S., Schnoebelen, P.: Multiply-Recursive Upper Bounds with Higman’s Lemma. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 441–
452. Springer, Heidelberg (2011)

18. Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel systems.
In: LICS 2008, pp. 205–216. IEEE Comp. Soc. Press (2008)

19. Haddad, S., Schmitz, S., Schnoebelen, P.: The ordinal-recursive complexity of timed-arc
Petri nets, data nets, and other enriched nets. In: LICS 2012, pp. 355–364. IEEE Comp. Soc.
Press (2012)

20. Chambart, P., Schnoebelen, P.: Mixing Lossy and Perfect Fifo Channels. In: van Breugel, F.,
Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355. Springer, Heidelberg
(2008)

21. Chambart, P., Schnoebelen, Ph.: Post Embedding Problem Is Not Primitive Recursive, with
Applications to Channel Systems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS,
vol. 4855, pp. 265–276. Springer, Heidelberg (2007)

22. Chambart, P., Schnoebelen, P.: The ω-Regular Post Embedding Problem. In: Amadio, R.M.
(ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 97–111. Springer, Heidelberg (2008)

23. Chambart, P., Schnoebelen, P.: Pumping and Counting on the Regular Post Embedding Prob-
lem. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.) ICALP 2010. LNCS, vol. 6199, pp. 64–75. Springer, Heidelberg (2010)

24. Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations and the generalized
intersection problem. In: LICS 2012, pp. 115–124. IEEE Comp. Soc. Press (2012)

25. Karandikar, P., Schnoebelen, P.: Cutting through Regular Post Embedding Problems. In: Lep-
istö, A. (ed.) CSR 2012. LNCS, vol. 7353, pp. 229–240. Springer, Heidelberg (2012)

26. Goubault-Larrecq, J.: On a generalization of a result by Valk and Jantzen. Research Report
LSV-09-09, Laboratoire Spécification et Vérification, ENS Cachan, France (May 2009)

On Properties and State Complexity

of Deterministic State-Partition Automata

Galina Jirásková 1,� and Tomáš Masopust 2,��

1 Mathematical Institute, Slovak Academy of Sciences
Grešákova 6, 040 01 Košice, Slovak Republic

jiraskov@saske.sk
2 Institute of Mathematics, Academy of Sciences of the Czech Republic

Žižkova 22, 616 62 Brno, Czech Republic
masopust@math.cas.cz

Abstract. A deterministic automaton accepting a regular language L is
a state-partition automaton with respect to a projection P if the state set
of the deterministic automaton accepting the projected language P (L),
obtained by the standard subset construction, forms a partition of the
state set of the automaton. In this paper, we study fundamental proper-
ties of state-partition automata. We provide a construction of the mini-
mal state-partition automaton for a regular language and a projection,
discuss closure properties of state-partition automata under the standard
constructions of deterministic automata for regular operations, and show
that almost all of them fail to preserve the property of being a state-
partition automaton. Finally, we define the notion of a state-partition
complexity, and prove the tight bound on the state-partition complexity
of regular languages represented by incomplete deterministic automata.

Keywords: Regular languages, finite automata, descriptional complex-
ity, projections, state-partition automata.

1 Introduction

A deterministic finite automaton G accepting a regular language L is a state-
partition automaton with respect to a projection P if the state set of the de-
terministic automaton accepting the projected language P (L), obtained by the
standard subset construction [5,23], forms a partition of the state set of the au-
tomaton G. This means that the projection of a string uniquely specifies the
state of the projected automaton. Therefore, all projected strings of a language
with the same observation, that is, with the same projections, lead to the same
state of the projected automaton. This property immediately implies that the
size of the minimal state-partition automaton is not smaller than the size of the
minimal deterministic automaton accepting the projected language.

� Research supported by the Slovak Research and Development Agency under contract
APVV-0035-10 “Algorithms, Automata, and Discrete Data Structures”.

�� Research supported by the GAČR grant no. P202/11/P028 and by RVO: 67985840.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 164–178, 2012.
c© IFIP International Federation for Information Processing 2012

On Properties and State Complexity of Deterministic SPAs 165

From the practical point of view, state-partition automata are of interest
in engineering and computer science, especially in applications where the user,
supervisor, or controller has only a partial observation of the whole behavior
of a system, which is modeled by a projection. From the theoretical point of
view, state-partition automata have found applications as a proof formalism for
systems with partial observations. Namely, they have been successfully used to
simplify constructions and proofs, and are useful in applications of natural pro-
jections to obtain or describe an abstraction of a system. Note that projections
are sometimes generalized to so-called causal reporter maps , see [21,24]. We refer
the reader to [3,4,11,12] for applications of state-partition automata in super-
visory control of discrete-event systems. Note that state-partition automata are
related to the Schützenberger covering. More specifically, the construction of a
state-partition automaton is close to the Schützenberger construct [15].

A system represented by a state-partition automaton with respect to a pro-
jection that describes an abstraction or a partial observation has a projected
automaton that is not larger than the original automaton. This is the most im-
portant property from the application point of view. Notice that, up to now, there
is only one well-known condition ensuring that a projected automaton is smaller
than the original automaton, an observer property, cf. [20]. The study of state-
partition automata is thus a further step to the understanding and characteriza-
tion of the class of automata useful for practical applications in, e.g., coordination
or hierarchical supervisory control of discrete-event systems [1,9,10,17,18].

In this paper, we discuss fundamental properties of state-partition automata.
In Section 3, we recall the known result proving that every regular language has
a state-partition automaton with respect to a given projection. A procedure to
construct this automaton is also known, see [3]. We repeat the construction here
and use it to obtain the minimal state-partition automaton for a given language
and a projection. The last result of this section describes a regular language and
two projections with respect to which the language has no state-partition au-
tomaton. This negative result indicates that state-partition automata are useful
for systems with either a partial observation or abstraction, but not with the
combination of both.

Then, in Section 4, we study the closure properties of state-partition automata
under the standard constructions of deterministic automata for the operations
of complement, union, intersection, concatenation, Kleene star, reversal, cyclic
shift, and left and right quotients. We show that almost all of them fail to preserve
the property of being a state-partition automaton. Only two of the considered
operations preserve this property, namely, the construction of a deterministic au-
tomaton for the right quotient of two regular languages, and the construction of
a deterministic automaton for the complement of regular languages represented
by complete deterministic automata.

Finally, in the last section of this paper, we introduce and study the state-
partition complexity of regular languages with respect to a projection, defined
as the smallest number of states in any state-partition automaton (with respect
to the projection) accepting the language. The first result of this section shows

166 G. Jirásková and T. Masopust

that a language represented by a minimal incomplete deterministic automaton
with n states has state-partition complexity at most 3n ·2n−3. The second result
then proves the tightness of this upper bound using a language defined over a
three-letter alphabet and a projection on binary strings.

2 Preliminaries and Definitions

In this paper, we assume that the reader is familiar with the basic notions
and concepts of formal languages and automata theory, and we refer the reader
to [5,14,16] for all details and unexplained notions.

For a finite non-empty set Σ, called an alphabet, the set Σ∗ represents the
free monoid generated by Σ. A string over Σ is any element of Σ∗, and the unit
of Σ∗ is the empty string denoted by ε. A language over Σ is any subset of Σ∗.
For a string w in Σ∗, let |w| denote the length of w, and for a symbol a in Σ,
let |w|a denote the number of occurrences of the symbol a in w. If w = xyz, for
strings x, y, z, w in Σ∗, then x is a prefix of w, and y is a factor of w.

A deterministic finite automaton (a DFA, for short) is a quintuple G =
(Q,Σ, δ, s, F), where Q is a finite non-empty set of states, Σ is an input al-
phabet, δ : Q × Σ → Q is a partial transition function, s ∈ Q is the initial
(or start) state, and F ⊆ Q is the set of final states. Note that we consider
incomplete deterministic finite automata that are also called generators in the
literature, cf. [2,22]. That is why we prefer to use G to denote an incomplete
deterministic automaton. The transition function can be naturally extended to
the domain Q×Σ∗ by induction. The language accepted by the automaton G is
the set of strings L(G) = {w ∈ Σ∗ | δ(s, w) ∈ F}. A state q of G is called reach-
able if q = δ(s, w) for a string w in Σ∗, and it is called useful, or co-reachable, if
δ(q, w) ∈ F for a string w.

A nondeterministic finite automaton (an NFA, for short) is a quintuple N =
(Q,Σ, δ, S, F), where Q, Σ, and F are as in a DFA, S ⊆ Q is the set of initial
states, and δ : Q × (Σ ∪ {ε}) → 2Q is the nondeterministic transition function
that can be extended to the domain 2Q × Σ∗ by induction. The language ac-
cepted by the NFA N is defined as the set L(N) = {w ∈ Σ∗ | δ(S,w) ∩ F �= ∅}.
Notice that our NFAs may have ε-transitions and multiple initial states. How-
ever, ε-transitions and multiple initial states can be eliminated by a standard
technique [5].

Two automata are equivalent if they accept the same language. Every NFA
N = (Q,Σ, δ, S, F) without ε-transitions can be converted to an equivalent DFA
det(N) = (2Q, Σ, δd, sd, Fd) by an algorithm known as the “subset construc-
tion” [13], where we have

δd(R, a) = δ(R, a) for each R in 2Q and a in Σ,

sd = S, and

Fd = {R ∈ 2Q | R ∩ F �= ∅}.

We call the deterministic automaton det(N) the subset automaton corresponding
to the automaton N . Notice that the state set of the subset automaton is the

On Properties and State Complexity of Deterministic SPAs 167

set of all subsets of Q, even though some of them may be unreachable from the
initial state sd.

Let Σ be an alphabet and Σo ⊆ Σ. A homomorphism P from Σ∗ to Σ∗
o is

called a (natural) projection if it is defined by P (a) = a for each a in Σo and
P (a) = ε for each a in Σ \Σo. The inverse image of P is a mapping P−1 from
Σ∗

o to 2Σ
∗
defined by P−1(w) = {u ∈ Σ∗ | P (u) = w}.

Let G = (Q,Σ, δ, s, F) be a DFA accepting a language L and P be the pro-
jection from Σ∗ to Σ∗

o with Σo ⊆ Σ. From the DFA G, we construct an NFA
NG accepting the language P (L) by replacing all transitions labeled by symbols
from Σ \Σo with ε-transitions, and by eliminating these ε-transitions. Then the
projected automaton for the language P (L) is the deterministic automaton

P (G) = (Q′, Σo, δ
′, s′, F ′)

that forms the reachable part of the subset automaton det(NG). Thus, Q
′ is

the set of all states of 2Q reachable from the initial state s′. Notice that we
do not eliminate states, from which no final state is reachable. This is due to
applications in supervisory control, where this problem is known as the problem
of nonblockingness [2].

A DFA G = (Q,Σ, δ, s, F) is a state-partition automaton (an SPA, for short)
with respect to a projection P from Σ∗ to Σ∗

o with Σo ⊆ Σ if the states of
the projected automaton P (G) = (Q′, Σo, δ

′, s′, F ′) are pairwise disjoint as sets.
Note that if all states of G are reachable, then the state set of the projected
automaton P (G) defines a partition of the state set of G.

For an automaton A (deterministic or nondeterministic), let sc(A) denote the
number of states of the automaton A.

We immediately have the following result.

Lemma 1. Let G be a DFA over an alphabet Σ that has no unreachable states.
Let P be a projection from Σ∗ to Σ∗

o with Σo ⊆ Σ. If G is a state-partition
automaton with respect to P , then sc(P (G)) ≤ sc(G). ��
Now we define a parallel composition of two incomplete deterministic automata,
which is basically the intersection of two automata defined over two different
alphabets. Therefore, it is first necessary to unify their alphabets by adding the
missing symbols.

For two deterministic finite automata G1 = (Q1, Σ1, δ1, s1, F1) and G2 =
(Q2, Σ2, δ2, s2, F2), we define the parallel composition of G1 and G2, denoted by
G1 ‖ G2, as the reachable part of the DFA (Q1×Q2, Σ1∪Σ2, δ, (s1, s2), F1×F2),
where

δ((p, q), a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(δ1(p, a), δ2(q, a)), if δ1(p, a) is defined in G1 and

δ2(q, a) is defined in G2;
(δ1(p, a), q), if δ1(p, a) is defined in G1 and a /∈ Σ2;
(p, δ2(q, a)), if a /∈ Σ1 and δ2(q, a) is defined in G2;
undefined, otherwise.

From the language point of view, it can be shown that

L(G1 ‖ G2) = P
−1
1 (L(G1)) ∩ P−1

2 (L(G2)) ,

168 G. Jirásková and T. Masopust

where Pi is the projection from (Σ1 ∪Σ2)
∗ to Σ∗

i for i = 1, 2.
Let us briefly recall definitions of the operations of reversal, cyclic shift, and

left and right quotients for languages over an alphabet Σ. The reversal of a string
w over Σ is defined by εR = ε and (va)R = avR for a symbol a in Σ and a string
v in Σ∗. The reversal of a language L is the language LR = {wR ∈ Σ∗ | w ∈ L}.
The cyclic shift of a language L is defined as the language Lshift = {uv ∈ Σ∗ |
vu ∈ L}. The left and right quotients of a language L by a language K are
the languages K\L = {x ∈ Σ∗ | there exists w ∈ K such that wx ∈ L} and
L/K = {x ∈ Σ∗ | there exists w ∈ K such that xw ∈ L}, respectively. By Lc

we denote the complement of a language L, that is, the language Σ∗ \ L.

3 Minimal State-Partition Automata

The fundamental question is whether every regular language can be accepted
by a state-partition automaton with respect to a given projection. If this is the
case, can we construct such a state-partition automaton efficiently? The answer
to this question is known, and we repeat it in the following theorem. Although
a proof has been given in [3], we prefer to recall it here since some fundamental
observations play a role later in the paper.

Theorem 1 ([3,4]). Let P be a projection from Σ∗ to Σ∗
o with Σo ⊆ Σ. Let L

be a language over the alphabet Σ, and let G be a DFA accepting the language
L. Then the automaton P (G) ‖ G is a state-partition automaton with respect to
the projection P that accepts the language L.

Proof. Let G = (Q,Σ, δ, s, F) be a DFA accepting the language L, and let
P (G) = (Q′, Σo, δ

′, s′, F ′) be the corresponding projected automaton. By defini-
tion of the parallel composition and the comment below the definition, we have
that

L(P (G) ‖ G) = P−1(P (L(G))) ∩ L(G) = L(G) .

Hence, the automaton P (G) ‖ G accepts the language L.
Let w be a string over the alphabet Σo. Then the state of the projected

automaton P (P (G) ‖ G) reached from the initial state by the string w is{
(δ′(s′, w), q) | q ∈ δ(s, P−1(w))

}
.

Since δ(s, P−1(w)) = δ′(s′, w), by definition of the transition function of the
automaton P (G), the state reachable from its initial state by the string w in the
DFA P (P (G) ‖ G) is, in fact,

{(δ′(s′, w), q) | q ∈ δ′(s′, w)} .

It then follows that the states of the projected automaton P (P (G) ‖ G) reachable
by two different strings are either the same or disjoint. ��

On Properties and State Complexity of Deterministic SPAs 169

Next we prove that the state-partition automaton constructed from a mini-
mal DFA using the construction of the previous theorem is the minimal state-
partition automaton with respect to the number of states. To prove this, we
need the notion of isomorphic automata, and the result proved in the following
lemma.

Let G1 = (Q1, Σ, δ1, s1, F1) and G2 = (Q2, Σ, δ2, s2, F2) be two DFAs. Let f
be a mapping from Q1 to Q2 such that

• f(δ1(q, a)) = δ2(f(q), a) for each q in Q1 and a in Σ,
• f(s1) = s2, and
• q ∈ F1 if and only if f(q) ∈ F2.

The mapping f is called a homomorphism from G1 to G2. If f is a bijection,
then it is called an isomorphism, and G1 and G2 are said to be isomorphic.

The next lemma shows that the parallel composition of automata P (G) and
G is isomorphic to G for a state-partition automaton G.

Lemma 2. Let G be an SPA with respect to a projection P from Σ∗ to Σ∗
o , in

which all states are reachable. Then the DFA P (G) ‖ G is isomorphic to G.

Proof. Let G = (Q,Σ, δ, s, F) be a state-partition automaton with respect to the
projection P , and let P (G) = (Q′, Σo, δ

′, s′, F ′) be the corresponding projected
automaton. Define a mapping f : Q′ × Q → Q by f(X, q) = q. Then it holds
that δ(q, a) = δ(f(X, q), a), and f is an isomorphism from P (G) ‖ G to G. ��

The following result constructs the minimal state-partition automaton for a given
regular language and a projection.

Theorem 2. Let L be a regular language over an alphabet Σ, and let G be the
minimal DFA accepting the language L. Let P be a projection from Σ∗ to Σ∗

o .
Then the DFA P (G) ‖ G is the minimal state-partition automaton with respect
to the projection P that accepts the language L.

Proof. Let G = (Q,Σ, δ, s, F) be the minimal DFA accepting the language L,
and let G2 = (Q2, Σ, δ2, s2, F2) be a state-partition automaton with respect to
the projection P that also accepts the language L. We may assume that all states
of the DFA G2 are reachable and useful; otherwise, we can remove unreachable
and useless states from G2 and obtain a smaller state-partition automaton.

Define a mapping f : Q2 → Q as follows. For a state q in Q2 that is reachable
in the automaton G2 from the initial state s2 by a string w, set f(q) = δ(s, w),
that is, f(q) is a state in Q that is reachable in the automaton G from the
initial state s by the string w. Notice that f is well-defined since if a state in
Q2 is reached by two different strings u and v, then states δ(s, u) and δ(s, v)
must be equivalent in the automaton G, and since G is minimal, we must have
δ(s, u) = δ(s, v).

Next, we have f(δ2(q, a)) = δ(f(q), a) for each state q in Q2 and symbol a in
Σ, f(s2) = s, and q ∈ F2 if and only if f(q) ∈ F . Hence f is a homomorphism
from G2 to G.

170 G. Jirásková and T. Masopust

Now, extend the mapping f to a mapping from the state set of the automaton
P (G2) ‖ G2 to the state set of the automaton P (G) ‖ G by setting

f(X, q) = (f(X), f(q)) .

Then f is surjective. Since the automaton G2 is a state-partition automaton
with respect to the projection P , we have, using Lemma 2, that

sc(P (G) ‖ G) ≤ sc(P (G2) ‖ G2) = sc(G2) .

This completes the proof. ��

Corollary 1. Let L be a regular language over an alphabet Σ, and let P be a
projection from Σ∗. Then the minimal state-partition automaton accepting the
language L is unique up to isomorphism. ��

It is natural to ask whether an automaton can be a state-partition automaton
with respect to more than one projection. This property would be useful in
applications, where both an abstraction and a partial observation are combined,
cf. [1]. Unfortunately, the following result shows that this does not hold true in
general [8].

Lemma 3. There exist a language L and projections P and P̃ such that no
DFA accepting the language L is a state-partition automaton with respect to
both projections P and P̃ .

Proof. Let Σ = {a, b}. Let P and P̃ be projections from Σ∗ onto {a}∗ and {b}∗,
respectively. Consider the language L = (ab)∗. Assume that G = (Q,Σ, δ, s, F) is
a state-partition automaton for both projections P and P̃ accepting the language
L. Notice that the DFA G does not have any loop, that is, no state of G goes to
itself on any symbol, because otherwise the automaton G would accept a string
that does not belong to the language L.

Let w be a string of the language L of length at least |Q|. Then at least one
state appears twice in the computation of the automaton G on the string w. Let
p be the first such state. Then w = xyz, where x is the shortest prefix of w such
that the initial state s goes to state p by x, and y is the shortest non-empty
factor of w by which p goes to itself. Since the automaton G has no loops, the
length of y is at least two. Therefore, y = cy′d, where c, d ∈ {a, b}. In addition,
c �= d because xyyz = xcy′dcy′dz belongs to the language L. Let q be the state
of the automaton G that is reached from the state p on reading the string cy′.
Fig. 1 illustrates the computation of G on the string w. Since x is the shortest
prefix of w that moves G to state p, and y is the shortest non-empty factor of w
by which p goes to itself, we have p �= q.

In case d = b, we consider the projected automaton

P (G) = (Q′, {a}, δ′, s′, F ′) .

Let X = δ′(s′, P (x)) and Y = δ′(X,P (ay′)) be two states of the automaton
P (G). Then p ∈ X and p, q ∈ Y . Notice that X = δ(s, P−1(P (x))). Since

On Properties and State Complexity of Deterministic SPAs 171

Fig. 1. The computation of G on the string w = xcy′dz

c = a and w ∈ L, we have x = (ab)k for a non-negative integer k. Therefore,
P−1(P (x)) = P−1(ak).

Assume that there exists a string u in P−1(ak) that moves the automaton
G from the initial state s to the state q. Then the string udz is accepted by
the automaton G. Since d = b, we must have u = (ab)k−1a. However, then the
state q would be the first state in the computation on the string w that appears
at least twice in it, which contradicts the choice of the state p. It follows that
q /∈ X , and, therefore, X �= Y . Hence, the automaton G is not a state-partition
automaton with respect to the projection P .

The case d = a is similar. ��

4 Closure Properties

Since every regular language has a state-partition automaton with respect to a
given projection, the class of languages accepted by state-partition automata is
closed under all regular operations. In the following, we consider the closure prop-
erties of state-partition automata under the standard constructions of determin-
istic automata for regular operations as described in the literature [5,16,19,23].
Hence, we investigate the following question: Given state-partition automata
with respect to a projection, is the deterministic automaton resulting from the
standard construction for a regular operation a state-partition automaton with
respect to the same projection?

We prove that almost all standard constructions, except for the complement
of complete state-partition automata and right quotient, fail to preserve the
property of being a state-partition automaton.

Theorem 3. State-partition automata are not closed under the operations of
complement, intersection, union, concatenation, star, reversal, cyclic shift, and
left quotient.

Proof. We briefly recall the standard construction of a deterministic automa-
ton for each operation under consideration. Let us emphasize that we do not
minimize the resulting deterministic automata.

Complement: To get a deterministic automaton for complement from a possibly
incomplete DFA G, add the dead state, if necessary, and interchange the final and
non-final states. We prove that state-partition automata are not closed under
this operation.

Consider the two-state DFA G in Fig. 2 (left). The DFA accepts the language
ab∗. Let P be the projection from {a, b}∗ to {a}∗. Then G is a state-partition
automaton with respect to the projection P since the projected automaton P (G)

172 G. Jirásková and T. Masopust

Fig. 2. SPA G (left), and DFA Gc for the complement of the language L(G) (right);
projection P : {a, b}∗ → {a}∗

is deterministic. However, the complement of G, the DFA Gc shown in Fig. 2
(right), is not a state-partition automaton with respect to the projection P
because we have to add the dead state, 3, which then appears in two different
reachable sets of the projected automaton P (Gc), namely, in {1, 3} reached by
ε and in {2, 3} reached by a. However, as the next theorem shows, the resulting
DFA is a state-partition automaton if the given DFA is complete.

Intersection and Union: To get the deterministic automaton for intersection and
union, we apply the standard cross-product construction.

Consider two automata G1 and G2 shown in Fig. 3, and their cross-product
automaton G1×G2 depicted in Fig. 3. In the case of intersection, the only final
state is state 3, while in the case of union, the final states are states 3 and 4. Let
P be the projection from {a, b}∗ to {a}∗. Both G1 and G2 are state-partition
automata with respect to the projection P . However, the automaton G1 × G2

is not since the sets {2, 3} and {3, 4} are reachable in the projected automaton
P (G1 ×G2) by strings a and aa, respectively.

Concatenation: Recall that an NFA for concatenation of two DFAs G1 and G2 is
obtained from G1 and G2 by adding ε-transitions from final states of G1 to the
initial state of G2, and by setting the initial state to be the initial state of G1,
and final states to be final states of G2. The corresponding subset automaton
restricted to its reachable states provides the resulting DFA for concatenation.

Now, let G be the DFA shown in Fig. 4 (left). Let P be the projection from
{a, b}∗ to {b}∗. The projected automaton P (G) is a one-state automaton and,
therefore, the DFA G is a state-partition automaton with respect to the projec-
tion P . The DFA G ·G for concatenation is depicted in Fig. 4 (right), and states
{1, 2, 3} and {1, 2, 3, 4} are reachable in the projected automaton P (G · G) by
strings ε and b, respectively. Hence, the DFA G · G for concatenation is not a
state-partition automaton for the projection P .

Fig. 3. SPAs G1 (left) and G2 (middle), and their cross-product G1 × G2 (right);
projection P : {a, b}∗ → {a}∗

On Properties and State Complexity of Deterministic SPAs 173

Fig. 4. SPA G (left) and DFA G · G for concatenation of the languages L(G) · L(G)
(right); projection P : {a, b}∗ → {b}∗

Star: To construct an NFA for star of a DFA G, add a new initial and final state
and ε-transitions from all final states, including the new one, to the original
initial state of the automaton G. The subset construction results in a DFA for
star.

Consider the DFA G in Fig. 5 (left), and the projection P from {a, b, c}∗ to
{a, b}∗. The automaton G is a state-partition automaton with respect to the
projection P since the projected automaton P (G) is deterministic. However, the
deterministic automaton G∗ for star, shown in Fig. 5 (right), is not a state-
partition automaton with respect to the projection P because the sets {3} and
{3, 4} are reachable in the projected automaton P (G∗) by strings ab and aba,
respectively.

Fig. 5. SPA G (left), and DFA G∗ for the star of the language L(G) (right); projection
P : {a, b, c}∗ → {a, b}∗

Reversal: We can get an NFA for reversal from a DFA G by swapping the roles
of initial and final states, and by reversing all transitions. After the application
of the subset construction, we obtain a DFA for reversal.

Consider the DFA G in Fig. 6 (left), and the projection P from {a, b, c}∗ to
{a, c}∗. The DFA G is a state-partition automaton with respect to P since the
states of the projected automaton P (G) are {2, 3} and {1}. On the other hand,
the DFA GR in Fig. 6 (right) is not a state-partition automaton with respect to
the projection P because the sets {2} and {2, 3} are reachable in the projected
automaton P (GR) by strings a and ac, respectively.

Cyclic Shift: For the construction of an NFA for cyclic shift, we refer to [7]. Fig. 7
(middle) shows an NFA for the cyclic shift of the language accepted by the DFA
G of Fig. 7 (left). Let P be the projection from {a, b}∗ to {b}∗. Then G is a
state-partition automaton with respect to the projection P since the projected
automaton P (G) has just one state {1, 2}. However, the automaton Gshift in
Fig. 7 (right) is not a state-partition automaton with respect to the projection
P since states {1, 2, 3} and {2, 3, 4, 5, 6, 7, 8} are reachable by strings ε and b,
respectively.

174 G. Jirásková and T. Masopust

Fig. 6. SPA G (left), and DFA GR for the reversal of the language L(G) (right);
projection P : {a, b, c}∗ → {a, c}∗

Fig. 7. SPA G (left), NFA for shift(L(G)) (middle), and DFA Gshift (right); projection
P : {a, b}∗ → {b}∗

Left Quotient: Construct a DFA for left quotient by a string w from a DFA G
by making the state reached after reading the string w initial.

Consider the DFA G shown in Fig. 8 (left) and the projection P from {a, b}∗
to {b}∗. The automaton G is a state-partition automaton with respect to the
projection P as in the case of cyclic shift. The automaton a\G for the left
quotient by the string a is shown in Fig. 8 (right). It is not a state-partition
automaton with respect to the projection P since the sets {2} and {1, 2} are
reachable in the projected automaton by strings ε and b, respectively. ��

The following theorem demonstrates that if the structure of the automaton is
not changed after an operation, then the automaton remains state-partition with
respect to the same projection.

Theorem 4. State-partition automata are closed under the operations of right
quotient and complement of complete state-partition automata.

Proof. Let G be a complete state-partition automaton. Construct a deterministic
automaton Gc for the complement of L(G) from the DFA G by interchanging
final and non-final states. The result now follows from the fact that the states

Fig. 8. SPA G (left) and DFA a\G for the left quotient by the string a (right); projec-
tion P : {a, b}∗ → {b}∗

On Properties and State Complexity of Deterministic SPAs 175

of the projected automaton P (Gc) are the same as the states of the projected
automaton P (G) since the structure of the automaton Gc is the same as the
structure of the automaton G.

Now, consider the right quotient of a language L(G) by a language K; here,
the DFA G may be incomplete. Construct an automaton for the right quotient
L(G)/K from the automaton G by replacing the set of final states with the set
of states of G from which a string of the language K is accepted. Again, the
structure of the automaton remains the same; we only change the set of final
states. ��

5 State-Partition Complexity

Let L be a regular language over an alphabet Σ, and let P be a projection from
Σ∗ to Σ∗

o . We define the state-partition complexity of the language L, denoted
by spc(L), as the smallest number of states in any automaton accepting the
language L that is a state-partition automaton with respect to the projection P .
By Theorem 2, the state-partition complexity of the language L is the number of
states of the DFA P (G) ‖ G, where G is the minimal incomplete DFA accepting
the language L.

Now, we give the upper bound on the state-partition complexity of regular
languages, and prove that this bound is tight. We omit the proof due to space
constraints.

Theorem 5. Let L be a language over an alphabet Σ accepted by the minimal
incomplete DFA G with n states. Let P be a projection from Σ∗ to Σ∗

o . Then
spc(L) ≤ 3n · 2n−3. ��

Finally, we prove that the bound proved in the previous theorem is tight.

Theorem 6. For every integer n ≥ 3, there exists a regular language L accepted
by the minimal incomplete DFA G with n states such that spc(L) = 3n · 2n−3.

Proof. Consider the language L accepted by the DFA G depicted in Fig. 9 and
the projection P from {a, b, c}∗ to {a, b}∗. We need to prove that all subsets
of the state set {0, 1, . . . , n − 1}, except for the sets that contain n − 1 and do
not contain 0, are states of the automaton P (G). Notice that if X is reachable
in P (G) by a string u over {a, b} and q ∈ X , then state q is reachable in the
automatonG by a string w in P−1(u). This means that (X, q) is a reachable state
in the automaton P (G) ‖ G since (X, q) =

(
δ(s, P−1(P (w)), δ(s, w)

)
. First, we

construct an NFA accepting the language P (L) as shown in Fig. 10. Let us show
that all subsets of the state set {0, 1, . . . , n− 1} containing state 0, as well as all
non-empty subsets of the set {1, 2, . . . , n− 2} are reachable.

The proof is by induction on the size of subsets. Each set {i}, where i ≤ n−2,
is reached from {0} by the string ai. Let 2 ≤ k ≤ n. Assume that each subset
of size k − 1, satisfying the above mentioned conditions, is reachable. Let X =
{i1, i2, . . . , ik}, where 0 ≤ i1 < i2 < · · · < ik ≤ n − 1, be a subset of size k.
Consider two cases:

176 G. Jirásková and T. Masopust

Fig. 9. The minimal incomplete DFA G meeting the upper bound 3n · 2n−3

Fig. 10. An NFA for language P (L(G)), where G is shown in Fig. 9

(i) i1 = 0. Take Y = {ij − i2 − 1 | 3 ≤ j ≤ k} ∪ {n − 2}. Then Y is of size
k − 1 and it does not contain state n− 1. Therefore, it is reachable by the
induction hypothesis. The subset Y goes to X on the string aabi2−1 since
we have

Y
a→ {0, n− 1} ∪ {ij − i2 | 3 ≤ j ≤ k}
a→ {0, 1} ∪ {ij − i2 + 1 | 3 ≤ j ≤ k}
bi2−1

−−−→ X.

(ii) i1 ≥ 1. Then ik ≤ n − 2. Take Y = {0} ∪ {ij − i1 | 2 ≤ j ≤ k}. Then the
subset Y is of size k and contains state 0. Therefore, it is reachable as shown
in case (i). The subset Y goes to X on the string ai1 .

This proves the reachability of all 3 · 2n−2 − 1 subsets of the automaton P (G).
The number of all reachable pairs (X, q) with q ∈ X of the automaton P (G) ‖

G is
∑n−1

i=0

(
n−1
i

)
(i+1)+

∑n−2
i=0

(
n−2
i

)
i = 3n ·2n−3, which proves the theorem. ��

6 Conclusions and Discussion

We investigated deterministic state-partition automata with respect to a given
projection. The state set of such an automaton is partitioned into disjoint subsets
that are reachable in the projected automaton. Using a result from the literature
that every regular language has a state-partition automaton with respect to a

On Properties and State Complexity of Deterministic SPAs 177

given projection, we provided the construction of the minimal state-partition
automaton for a regular language and a projection. We also described a regular
language and two projections such that no automaton accepting this language
is a state-partition automaton with respect to both projections.

Next, we studied closure properties of state-partition automata under the
standard constructions of deterministic automata for the operations of comple-
ment, union, intersection, concatenation, star, reversal, cyclic shift, and left and
right quotients. We showed that except for the right quotient and complement
of complete deterministic automata, all other constructions fail to preserve the
property of being a state-partition automaton.

Finally, we defined the notion of the state-partition complexity of a regular
language as the smallest number of states of any state-partition automaton with
respect to a given projection accepting the language. We proved that the tight
bound on the state-partition complexity of a language represented by an incom-
plete deterministic automaton with n states is 3n · 2n−3. To prove the tightness
of this bound, we used a language defined over the ternary alphabet {a, b, c}
and the projection from {a, b, c}∗ to {a, b}∗. Note that it follows from the results
of [6] that this bound cannot be reached using a smaller alphabet or a projection
to a singleton.

State-partition complexity of regular operations may be investigated in the
future. We only know that state-partition complexity of a language and its com-
plement differs by one in the case of complete deterministic automata, and by
3n if the automata are incomplete. Defining nondeterministic state-partition au-
tomata and investigating their properties may also be of interest.

Acknowledgements. We wish to thank Jan Komenda, Klaus Schmidt, and
Jan H. van Schuppen for a discussion on state-partition automata.

References

1. Boutin, O., Komenda, J., Masopust, T., Schmidt, K., van Schuppen, J.H.: Hier-
archical control with partial observations: Sufficient conditions. In: Proc. of IEEE
Conference on Decision and Control and European Control Conference (CDC-ECC
2011), Orlando, Florida, USA, pp. 1817–1822 (2011)

2. Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems, 2nd edn.
Springer (2008)

3. Cho, H., Marcus, S.I.: On supremal languages of classes of sublanguages that arise
in supervisor synthesis problems with partial observation. Mathematics of Control,
Signals, and Systems 2, 47–69 (1989)

4. Cho, H., Marcus, S.I.: Supremal and maximal sublanguages arising in supervisor
synthesis problems with partial observations. Theory of Computing Systems 22(1),
177–211 (1989)

5. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation. Addison-Wesley, Boston (2003)

6. Jirásková, G., Masopust, T.: On a structural property in the state complexity of
projected regular languages. Theoretical Computer Science 449C, 93–105 (2012)

178 G. Jirásková and T. Masopust

7. Jirásková, G., Okhotin, A.: State complexity of cyclic shift. RAIRO – Theoretical
Informatics and Applications 42(2), 335–360 (2008)

8. Komenda, J., Masopust, T., Schmidt, K., van Schuppen, J.H.: Personal communi-
cation (2011)

9. Komenda, J., Masopust, T., van Schuppen, J.H.: Synthesis of controllable and
normal sublanguages for discrete-event systems using a coordinator. Systems &
Control Letters 60(7), 492–502 (2011)

10. Komenda, J., Masopust, T., van Schuppen, J.H.: Supervisory control synthesis of
discrete-event systems using a coordination scheme. Automatica 48(2), 247–254
(2012)

11. Komenda, J., van Schuppen, J.H.: Supremal normal sublanguages of large dis-
tributed discrete-event systems. In: Proc. of International Workshop on Discrete
Event Systems (WODES 2004), Reims, France, pp. 73–78 (2004)

12. Komenda, J., van Schuppen, J.H.: Modular control of discrete-event systems with
coalgebra. IEEE Transactions on Automatic Control 53(2), 447–460 (2008)

13. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3(2), 114–125 (1959)

14. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 1–3. Springer
(1997)

15. Sakarovitch, J.: A construction on finite automata that has remained hidden. The-
oretical Computer Science 204(1-2), 205–231 (1998)

16. Salomaa, A.: Formal languages. Academic Press, New York (1973)
17. Schmidt, K., Breindl, C.: Maximally permissive hierarchical control of decentralized

discrete event systems. IEEE Transactions on Automatic Control 56(4), 723–737
(2011)

18. Schmidt, K., Moor, T., Perk, S.: Nonblocking hierarchical control of decentralized
discrete event systems. IEEE Transactions on Automatic Control 53(10), 2252–
2265 (2008)

19. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company,
Boston (1997)

20. Wong, K.: On the complexity of projections of discrete-event systems. In: Proc. of
Workshop on Discrete Event Systems (WODES 1998), Cagliari, Italy, pp. 201–206
(1998)

21. Wong, K.C., Wonham, W.M.: Hierarchical control of discrete-event systems. Dis-
crete Event Dynamic Systems: Theory and Applications 6(3), 241–273 (1996)

22. Wonham, W.M.: Supervisory control of discrete-event systems, lecture notes, Uni-
versity of Toronto (2011) (Online), http://www.control.utoronto.ca/DES/

23. Yu, S.: Regular languages. In: Handbook of Formal Languages, vol. I, pp. 41–110.
Springer (1997)

24. Zhong, H., Wonham, W.M.: On the consistency of hierarchical supervision in
discrete-event systems. IEEE Transactions on Automatic Control 35(10), 1125–
1134 (1990)

http://www.control.utoronto.ca/DES/

On Union-Free and Deterministic Union-Free

Languages

Galina Jirásková 1,� and Benedek Nagy 2,��

1 Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia

jiraskov@saske.sk
2 Department of Computer Science, Faculty of Informatics,

University of Debrecen, Debrecen, Hungary
nbenedek@inf.unideb.hu

Abstract. The paper continues the study of union-free and determin-
istic union-free languages. In contrast with the fact that every regular
language can be described as a finite union of union-free languages, we
show that the finite unions of deterministic union-free languages define a
proper subfamily of regular languages. Then we examine the properties
of this subfamily.

1 Introduction

The regular languages are the most common, well-known, and well-applicable
languages. They are the simplest languages in the Chomsky-hierarchy, and can
be represented by regular expressions or finite automata. Nowadays, some sub-
families of the regular languages have become important in various fields [4–6].
One of them is the family of union-free languages: those languages described by
regular expressions without the union operation.

Since the Parikh images of regular languages coincide with semi-linear sets, it
is an interesting question if the Parikh images of languages in a subregular class
still contain every semi-linear set. We address this question in Section 3, and
show that only certain special semi-linear sets — the so-called conditional-linear
sets — can be obtained by Parikh images of union-free languages.

The union-free languages are accepted by special nondeterministic finite au-
tomata, the so called one-cycle-free-path automata, in which there is exactly one
cycle-free path from each state to the final state [10]. The deterministic ver-
sions of one-cycle-free-path automata are not as powerful, and define the class
of deterministic union-free languages [8].

� Research supported by the Slovak Research and Development Agency under contract
APVV-0035-10 “Algorithms, Automata, and Discrete Data Structures”.

�� Research supported by the TÁMOP 4.2.1/B-09/1/KONV-2010-0007 project. The
project is implemented through the New Hungary Development Plan, co-financed
by the European Social Fund and the European Regional Development Fund.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 179–192, 2012.
c© IFIP International Federation for Information Processing 2012

180 G. Jirásková and B. Nagy

One of the most important results on union-free languages states that every
regular language can be expressed as a union of a finite number of union-free
languages [9]. Moreover, the minimal number of required union-free languages is
algorithmically computable [3].

Motivated by these results, we address an analogous question for deterministic
union-free languages, and provide a negative answer by describing a regular
language which cannot be expressed as a union of a finite number of deterministic
union-free languages. Our proof uses the representation of deterministic union-
free languages by so-called balloon automata.

We also define the classes dUn as the classes of regular languages that can
be described as a union of n deterministic union-free languages, and show that
they define a proper hierarchy.

Finally, we consider the class dU∗ as the union of classes dUn, and conclude
the paper with some closure properties.

2 Preliminaries

We assume that the reader is familiar with the basic concepts of formal languages
and automata theory. For all unexplained notions, we refer the reader to [7, 11].

For a finite non-empty set of symbols Σ, called an alphabet, Σ∗ denotes the
set of all strings over Σ including the empty string ε. A language over Σ is any
subset of Σ∗. We denote the size of a finite set A by |A| and its powerset by 2A.

A regular expression over an alphabet Σ is defined inductively as follows: ∅,
ε, and a, for a in Σ, are regular expressions. If r and t are regular expressions,
then also (r+ t), (r · t), and (r)∗ are regular expressions. A regular expression is
union-free if no symbol + occurs in it. A regular language is union-free if there
exists a union-free regular expression describing the language.

A nondeterministic finite automaton (nfa) is a quintuple M = (Q,Σ, δ, s, F),
where Q is a finite set of states, Σ is an input alphabet, s is the initial state, F is
the set of accepting states, and δ is the transition function that mapsQ×(Σ∪{ε})
into 2Q. The transition function is naturally extended to the domain Q × Σ∗.
The language accepted by nfa M is L(M) = {w ∈ Σ∗ | δ(s, w) ∩ F �= ∅}.

AutomatonM is deterministic (dfa) if it has no ε-transitions, and |δ(q, a)| ≤ 1
for all states q in Q and symbols a in Σ. Hence, we consider incomplete dfa’s,
in which some transitions may be undefined.

A path from state p to state q in an nfa/dfaM is a sequence p0a1p1a2 · · · anpn,
where p0 = p, pn = q, and pi ∈ δ(pi−1, ai) for i = 1, 2, . . . , n. The length of this
path is n; note that p0 is a path of length 0. The path is a cycle if n > 0 and
p0 = pn. The path is called a cycle-free accepting path if pn is an accepting
state, and either the path is of length 0, or pi �= pj whenever i �= j. An nfa/dfa
is a one-cycle-free-path (1cfp) nfa/dfa if there is a unique accepting cycle-free
path from each of its states. It is known that the family of union-free languages
coincides with the set of languages accepted by 1cfp nfa’s [10]. The 1cfp dfa’s
define the family of deterministic union-free languages [8].

On Union-Free and Deterministic Union-Free Languages 181

The accepting path from the initial state of a 1cfp automaton defines the
backbone of the automaton, and the string accepted by this path is called the
backbone string. The backbone string is contained in each string of the accepted
language in a scattered way, and therefore the shortest string is unique in every
union-free language [10].

3 On Parikh Images of Union-Free Languages

The Parikh image of a string w over an ordered alphabet {a1, . . . , ak} is the
vector Ψ(w) = (m1, . . . ,mk) of non-negative integers such that mi is the number
of occurrences of ai in w. The Parikh image of a language L is the set of vectors
Ψ(L) = {Ψ(w) | w ∈ L}.

A set of the form {α0 + n1α1 + · · · + nmαm | nj ≥ 0 for j = 1, 2, . . . ,m},
where α0, α1, . . . , αm are vectors of non-negative integers, is said to be a linear
set. A semilinear set is a finite union of linear sets. It is well-known that the
Parikh images of regular languages coincide with semilinear sets.

The aim of this section is to analyse the Parikh images of union-free languages.
We show that the Parikh images of union-free languages are somewhere between
linear and semilinear sets. Then we define the so-called conditional-linear sets,
and prove that such sets coincide with the Parikh image of union-free languages.

Lemma 1. Every linear set is the Parikh image of a union-free language.

Proof. Let a linear set be given by the vectors αj for j = 0, 1, . . . ,m. For each
vector αj , consider a string wj with Parikh image αj . First, construct an nfa
accepting the singleton set {w0}. Now, in the final state, add m disjoint cycles
labelled by strings wj for j = 1, . . . ,m. This results in a one-cycle-free-path nfa
accepting a union-free language with desired Parikh image. ��

We have seen that the set of Parikh images of union-free languages is a superset
of linear sets, now we give ‘upper and lower bounds’:

Lemma 2. There exists a union-free language whose Parikh image is not linear.

Proof. Consider the language given by the regular expression a(bb(aab)∗ba)∗a.
Its Parikh image is {(2, 0)+n(1, 3) | n ∈ N}∪{(3, 3)+m(1, 3)+k(2, 1) |m, k ∈ N}.
This set cannot be described by only one linear set. Moreover, this language is
even deterministic union-free. ��

Lemma 3. There exists a semilinear set W such that there is no union-free
language L with Ψ(L) =W .

Proof. Consider the semilinear set W = {(3, 1), (4, 0)}. Every language with
Parikh image W is finite and contains at least two shortest strings. ��

182 G. Jirásková and B. Nagy

Lemma 4. Let a language be accepted by a one-cycle-free-path nfa that consists
of a backbone and several, up to starting state, disjoint cycles starting and ending
in a state of the backbone; each cycle contains just one state of the backbone.
Then the Parikh image of the language is a linear set.

Proof. The Parikh image of the language is a linear set given by the Parikh
vector of the backbone, and the Parikh vectors of the labels of all the cycles. ��

The previous result can be stated as follows: The Parikh image of a union-free
language with star-height 1 is linear. Now we define conditional-linear sets and
show that they coincide exactly with Parikh images of union-free languages.

Definition 1. A set of vectors W is conditional-linear if every vector α is in
W if and only if it can be written in the form

α = α0 + δ1n1α1 + δ2n2αi + · · ·+ δmnmαm,

where nj are non-negative integers and αj are fixed vectors of non-negative in-
tegers, and δi are conditional coefficients defined in the following way: δ1 = 1,
and if i > 1, then δi is either without any condition and equals 1, or depends
on the coefficient of some αj with j < i, and in such a case it is equal to 1 if
δjnj > 0 and to 0 if δjnj = 0:

δi = 1, if there is no condition for αi,

δi =

{
1, if δjnj > 0,
0, if δjnj = 0,

if αi depends on the coefficient of αj .

Having δi = 1 for all i without any conditions, the linear sets can be obtained.
Thus conditional-linear sets are a kind of extension of linear sets. Moreover,
all conditional linear sets are semilinear; however not every semilinear set is
conditional linear. In a conditional-linear set some vectors αi have conditions,
i.e., they can be present only if another vector with a smaller index is present.

Theorem 1. Conditional-linear sets coincide with the Parikh images of union-
free languages.

Proof. Let a union-free language be given by a regular expression

x1(r1)
∗x2 · · ·xn(rn)∗xn+1,

where the parts xi are star-free; it is allowed that xi = ε for some i. Let α0

be the Parikh vector of x1x2 · · ·xn+1, that is, of the backbone string; these
symbols are not under any Kleene-star in the tree for the expression. Next,
let αi be the Parikh image of the string obtained from the child-subexpression
ri by substituting ε for the parts under Kleene-star inside. These symbols are
below exactly one Kleene-star in the tree. The obtained vectors αi are without
conditions, because their mother expression is the original expression, so let
δ1 = · · · = δn = 1.

On Union-Free and Deterministic Union-Free Languages 183

Now, for any subexpression r∗ which has not been considered yet, using the
order of subexpressions as they are in the tree form of the regular expression
starting from the top, let the next vector αi be the Parikh image of the symbols
under this Kleene-star using ε for its child-subexpressions of the form p∗. Let
the conditional coefficient δi depend on the coefficient of the vector αj where j is
the index of the mother subexpression. Since the union-free expression contains
finitely many stars this procedure terminates after finitely many steps.

Next, let a conditional-linear setW be given by its vectors and δ’s. Construct a
one-cycle-free-path nfa with Parikh imageW as follows. Let A be the automaton
accepting only a backbone string with Parikh vector α0. Consider every vector
αi which is without condition, that is, δi = 1 independently on any other values.
Add a cycle labelled by a string with Parikh vector αi starting and ending at
the same state of the backbone of A.

Then consider each other vector αi in order of increasing i. Let the condition
for this vector depend on the coefficient of a vector αj . The cycle for vector αj

is already included in the automaton, since j < i. Add new states to form a
subcycle labelled by a string with Parikh vector αi in a state of the cycle for αj ;
it always can be done by adding new states and ε-transitions to the cycle for αj .
Finally, after adding subcycles for all the vectors, we get a one-cycle-free-path
nfa that accepts a language with Parikh image W . ��

4 Representation of Deterministic Union-Free Languages

Let us turn our attention to deterministic union-free languages defined as lan-
guages accepted by deterministic one-cycle-free-path dfa’s [8].

First we fix further terms used in the paper. A state p of a 1cfp automaton
is a branching state if at least two transitions are defined from state p, thus if
δ(p, a) = q1 and δ(p, b) = q2, where q1, q2 are states of the automaton and a, b
are symbols in the input alphabet such that a �= b. Since the automaton is a
1cfp automaton, we must have q1 �= q2. The accepting state is a branching state
if there is at least one transition defined from it. If p is not the accepting state,
then exactly one transition from p lies on the cycle-free accepting path from
state p. All the other transition defined in state p start different cycles. All the
transitions in the accepting state start new cycles.

Let a path paq contain a transition (p, a, q) starting a cycle. In the case p = q,
the cycle has length 1. Otherwise, let us consider the cycle-free accepting path
from state q. This path must contain state p, thus the path is of the form qz1pz2,
where z1 ∈ Σ(QΣ)∗ and z2 ∈ (ΣQ)∗. The cycle paqz1p is a starting cycle at
state p. As an example, consider the cycles 4a6b4 and 4c2a3a4 that are starting
cycles at state 4 in Fig. 2 (left).

Cycles may only start at branching states. The state where a cycle contains
a previously (surely) visited state is the returning state of the cycle. A cycle
may return to a previously (surely) visited state in various ways: A cycle may
return at the same state as it starts like the cycle 4a6b4 in Fig. 2 (left), or a

184 G. Jirásková and B. Nagy

Fig. 1. A toydog from long balloon

cycle may return to another state like the cycle 2b0a1a2 in Fig. 2; here state 0
is the returning state.

Since a one-cycle-free-path dfa over a unary alphabet cannot have a branch-
ing state, except the accepting state, the automaton may only have one cycle
starting at the accepting state. Consequently, a deterministic union-free lan-
guage over a unary alphabet either contains at most one string or is of the form
am(an)∗ for some positive integersm,n. The other direction also holds: All these
languages are accepted by 1cfp dfa’s. Therefore, the unary case seems to be not
so interesting. In what follows, we always assume that an alphabet has at least
two symbols.

There can be several one-cycle-free-path dfa’s for the same language. One
of them plays an important role for us. We call it a balloon automaton. This
name comes from the toys made by clowns for children from long balloons; for
example, toydog (see Fig. 1).

Now we give the definition of a balloon automaton. We use balloon automata
later to get regular expressions for deterministic union-free languages.

Definition 2 (Balloon DFA). A backbone 1cfp dfa, that is, a dfa consisting
of states of the backbone connected through the symbols of the backbone string is
a balloon dfa. If A is a balloon automaton, then any extension of A obtained in
the following way is a balloon automaton:

– pick a state p of A and a string a1 · · · ak of length k with k ≥ 1 such that
there is no transition on a1 from p in A;

– add k − 1 new states p1, . . . , pk−1 to A connected through transitions

p
a1−→ p1

a2−→ p2
a3−→ · · · ak−1−→ pk−1

ak−→ p.

Thus a deterministic one-cycle-free-path automaton is called a balloon dfa, if
every starting cycle returns at the same (branching) state as it starts. Fig. 2
shows a one-cycle-free-path dfa and the corresponding balloon automaton.

The following result helps us to characterize deterministic union-free lan-
guages by regular expressions.

On Union-Free and Deterministic Union-Free Languages 185

b

a

b

a

a b

a

a

0 1 2 3 4 5
a a a a

a

b

b

6

b

a

a

0 1 2 3 4 5
a a a a

a

b

b

b c
c

6

a

c

a

a

a

c

ca

Fig. 2. A 1cfp dfa (up) and the corresponding balloon automaton (down)

Theorem 2. Every deterministic union-free language is accepted by a balloon
dfa.

Proof. Let a deterministic union-free language L be given by a 1cfp dfa A. We
are going to construct a regular expression and a balloon automaton for L in
parallel from 1cfp dfa A. We use mixed-form expressions that contain symbols
and names of the states of the automaton alternatively. We start with the ex-
pression r0 = sx1q1x2 · · · qm−1xmf that contains the symbols of the backbone
string x1x2 · · ·xm and the names of the states s, q1, . . . , qm−1, f that occur on
the backbone. All the states in expression r0 are pairwise distinct.

As an example, consider the 1cfp dfa shown in Fig. 2. In this example, we
have r0 = 0a1a2a3a4b5.

The construction of the balloon automaton starts with the deterministic au-
tomaton A0 that accepts only the backbone string: accordingly, it has states
s′, q′1, . . . , q

′
m−1, f

′.
We continue recursively while the automaton has branching states, that is,

states that go to at least two distinct states by some symbols.
If the initial automaton A has no branching state, then it only accepts the

backbone string, and it is a balloon automaton.

186 G. Jirásková and B. Nagy

A0

0 1 2 3 4 5
a a baa

0 1 2 3 4 5b

6

a
c

a

a

a
c

A

a a a

b a

a

a

b
a c

a

2

a ab

a

b

a

b

a

0 1 2 3 4 5
a a a a

a

b

b

b c
c

6

A

a

0 1 2 3 4 5a a a a

a

b

b

6

b

a

a

a

c

a

a

a
c

ca

A

0 1 2 3 4 5a a a a

a

b

b

6

c
a

A1

3

b

a

a b

a

a b

a

Fig. 3. The construction of a balloon automaton

Assume that our current expression is ri, and our current automaton is Ai.
Construct expression ri+1 by modifying expression ri as follows. Choose the last
branching state p that has not been considered yet, that is, the branching state
that has the last occurrence in the mixed form ri among the not yet considered
mixed states. Put a pair of brackets into expression ri to the points immediately
after each occurrence of p. Put a star after the brackets, that is, use the following
form:

u1p()
∗u2 · · ·ump()∗um+1,

where p has m occurrences in ri, and uj’s do not contain any p. Then put into
these brackets as many sequences ()∗ as many starting cycles exist at state p.
After this, write into these brackets the mixed form expressions for the starting
cycles using all the starting branches at state p without symbol p. The resulting
expression is ri+1. If only one cycle starts from a branching state, then the form
((z)∗)∗ can be simplified to (z)∗, where z denotes the mixed form representing
the cycle. In our example, we have

r1 = 0a1a2a3a4((a6b)∗(c2a3a)∗)∗b5,

r2 = 0a1a2a3(c2a)∗a4((a6b)∗(c2a3(c2a)∗a)∗)∗b5,

r3 = 0a1a2(b0a1a)∗a3(c2(b0a1a)∗a)∗a4((a6b)∗(c2(b0a1a)∗a3(c2(b0a1a)∗a)∗a)∗)∗b5.

On Union-Free and Deterministic Union-Free Languages 187

Notice that after each step, the number of occurrences of p remains m; and all
the states which occur in, say, k cycles starting from p have km new occurrences.
Moreover, since the automaton is a 1cfp dfa, there are no states appearing in
the new brackets which have already been considered.

Now construct automaton Ai+1 corresponding to expression ri+1 by modify-
ing automaton Ai. Extend automaton Ai by cycles corresponding to the new
subexpressions (z)∗; the ones that are not in ri, but which are in ri+1. For each
of these new subexpressions, add a new cycle to every copy of state p′ starting
and ending in this state (in a similar way as we draw the backbone). In this
step, we use various copies of the original states. Fig. 3 shows automata Ai in
our example.

Repeat the above procedure until no more branching states exist. Since there
are only finitely many branching states in the given automaton, this procedure
terminates after finitely many steps. Let rn be the resulting expression. After
deleting the names of the states in rn, we get a union-free expression which de-
scribes language L. The resulting automaton An accepts language L. Moreover,
after each step, automaton Ai is a balloon automaton. ��

The proof of the previous theorem gives also a regular expression for every one-
cycle-free-path dfa. By this construction, we can characterize the deterministic
union-free languages by regular expressions as follows. Every deterministic union-
free language can be expressed by a regular expression of the following form:

(i) there is at most 1 symbol that continues the expression “in the same level”;
(ii) the other symbols may enter for brackets: if there is one such symbol, then

we use b: (b · · ·)∗; if there are two or more symbols, then we use b1, b2, . . . , b�:
((b1 · · ·)∗(b2 · · ·)∗ · · · (b� · · ·)∗)∗).

On the other hand, every regular expression that satisfies (i) and (ii) describes
a deterministic union-free language since a 1cfp dfa for such a language can be
constructed by our proof.

We conjecture that the balloon dfa has maximal number of states among all
the incomplete dfa’s that accept the language and for each of its state there is
exactly one accepting cycle free path.

A rough idea for the proof of the conjecture could be the following: By the
construction of the balloon automata for a 1cfp dfa, the number of its states is
not smaller than the number of the states of the original automaton. Moreover,
the balloon automaton cannot be extended further by states. Since it is deter-
ministic, by adding a new state, some new transitions are needed. This modifies
the backbone or a cycle, or creates a new cycle; thus modifies the accepted
language.

One of the most important complexity measures of regular languages is the
star height that is connected to the number of nested stars in the regular ex-
pressions [11]. To measure the complexity of balloon automata, we define the
following concept.

188 G. Jirásková and B. Nagy

Definition 3 (Cycle Depth of Balloon Automata). The cycle depth of a
balloon automaton is the maximal number of its nested cycles.

The cycle depth of a balloon automaton is 0 for cycle-free automata. For example,
the depth of the automaton A0 in Figure 3 is 0. Such automata only accept
singleton languages. The cycle depth of A1, A2, A3 is 1, 2 and 3, respectively.

The cycle depth of the balloon automata and the (nested) star-height of the
obtained regular expressions have a strong relation: Actually, if expressions of the
form ((r1)

∗(r2)∗)∗ are rewritten of the form (r1 + r2)
∗, then this new expression

has the same star height as the cycle depth of the original balloon automaton.
A cycle pzp of a 1cfp dfa, where z ∈ Σ(QΣ)∗, is called an inner cycle if there

is no branching state in z. For example, the cycle 2b0a1a2 in Figure 2 is an inner
cycle. In balloon automata, these cycles are at the deepest level. For example,
the cycles of length 2 of A2 in Figure 3 are inner cycles.

We have some important observations about graphs of 1cfp deterministic au-
tomata, in particular, we formulate them for balloon automata.

Lemma 5. Let A = (Q,Σ, δ, s, f) be a 1cfp dfa accepting a non-empty language.
Then

1. The branching factor at each state of A is at most |Σ|.
2. If the cycle depth of a balloon automaton is zero, then there is a state, in

which at most one symbol in Σ defines a transition; the transition on the
other symbols are undefined.

3. If the cycle depth of a balloon automaton is at least one, and the length of
the/an inner cycle is at least two, then there is a state where only one of the
symbols defines a transition.

Proof. 1. In every state of a dfa, at most |Σ| transitions may be defined.
2. Balloon automata with cycle depth zero accept exactly one string, and all

the transitions in the final state f are undefined.
3. If the cycle depth of a balloon automaton is one, then there is a cycle

starting from a state on the backbone with, by our assumption, length at least
two. This means that after the first transition of this cycle, there is a state that
is outside of the backbone. In this inner state, exactly one transition is defined.

Now assume that the cycle depth of a balloon automaton is at least two.
The argument is quite similar to the previous case. In a balloon automaton,
one transition could go to the direction of the final state; the first symbol of
the unique cycle-free accepting path gives this transition. All the other symbols
may start a new cycle going more deeply in the cycle depth of the automaton.
Consider the/an inner cycle; its length is at least two by the assumption of the
lemma. In this cycle, there is no new starting cycle. Therefore, in the/an inner
state, there exists only one transition, which starts the cycle-free accepting path
from that state. ��

We conclude this section with the following result showing that the class of
deterministic union-free languages is not closed under basic regular operations.

On Union-Free and Deterministic Union-Free Languages 189

Theorem 3 (Closure properties). The class of deterministic union-free lan-
guages is not closed under boolean operations, concatenation, square, star, re-
versal, cyclic shift, homomorphism, and inverse morphism.

Proof. For each operation, we present deterministic union-free languages such
that the language resulting from the operation is not deterministic union-free.
Recall that if a language has at least two shortest strings, or if its minimal dfa
has at least two final states, then the language is not deterministic union-free.

Complement: {ε}c = Σ+,
Union: {a} ∪ {b} = {a, b},
Intersection: b∗ab∗ ∩ a∗ba∗ ⊆ {ab, ba} ∪ {a, b}≥3

Symmetric difference: {a} ⊕ {b} = {a, b},
Cyclic shift: Shift({ab}) = {ab, ba},
Shuffle: {a} {b} = {ab, ba},
Inverse morphism: h−1({aa}) = {aa, ab, ba, bb}
h(a) = h(b) = a

For square and concatenation, consider the deterministic union-free language
L1 accepted by the 1cfp dfa shown in Fig. 4 (left). For reversal, consider the
deterministic union-free language L2 accepted by the 1cfp dfa shown in Fig. 4
(middle), and for star, the deterministic union-free language L3 accepted by the
1cfp dfa shown in Fig. 4 (right). The minimal dfa’s for L2

1, L
R
2 , and L

∗
3 have two

final states, and therefore the resulting languages are not deterministic union-
free.

a a

b b

a

b
b

a a

b aL L L
1 2 3

Fig. 4. The 1cfp dfa languages L1, L2, L3 such that L2
1, L

R
2 , and L∗

3 are not deterministic
union-free

For homomorphisms, consider the deterministic union-free language ab∗ac∗

and homomorphism h(a) = a, h(b) = ab, h(c) = c. Then h(ab∗ac∗) = a(ab)∗ac∗,
the minimal dfa for which has two final states. ��

5 Finite Union of Deterministic Union-Free Languages

Every regular language can be expressed as the union of a finite number of
union-free languages [9]. This is one of the most important results on union-free
languages. We can ask whether or not a similar result also holds for deterministic
union-free languages. The next theorem provides a negative answer, and states
one of the main results of this paper.

190 G. Jirásková and B. Nagy

Theorem 4. The language L described by the regular expression ((a+b)(a+b))∗

cannot be expressed as a union of a finite number of deterministic union-free
languages.

Proof. The language L contains exactly the strings over {a, b} of an even length.
Therefore, each string over {a, b} is a prefix of infinitely many strings in L.

Assume for the contradiction that L is given as a finite union of some deter-
ministic union-free languages. Let us consider the balloon automata for these
languages. None of these automata has a cycle of length one because otherwise
this loop would allow to pump some strings of the accepted language symbol by
symbol which would lead to the acceptance of strings of an odd length.

Now let us order all the balloon automata in a list A1, A2, . . . , A�. By Lemma
5, each of these automata contains at least one state, in which at most one
symbol defines a transition. Moreover, such a state is reachable from every state
of a balloon automaton: If there is no cycle at the final state, then the final state
is such a state. If there is a cycle starting at the final state, then there is an
inner cycle here with at least one such state. And since this state is reachable
from the final state, it can be reached from each state of the automaton. Let qi
refer to such a state in automaton Ai.

Let us construct a string w in the following way: Let the prefix of w be the
string w1 that leads to the state q1 in automaton A1. Then let the next symbol
of w be the one for which there is no transition from q1. Now let i = 2, and hence
the next automaton in the list is considered. Let us continue the construction of
w by appending wi to it, where wi is defined as follows. If the already constructed
initial part of w cannot be processed by the automaton Ai, then wi is the empty
string. Elsewhere let q′i be the state reached by automaton Ai after reading w.
Then wi is the string that leads automaton Ai from state q′i to state qi. The
next symbol of w is the/a symbol, for which there is no transition from qi in Ai.
Then, we increase i and consider the next automaton in the list until all of them
are considered.

Finally, we add one or two symbols to the end of w, depending on length of
w; for example, we add a if the length of w is odd, and aa in the other case.
The constructed string has an even length, and therefore it is in L. However,
our construction proves that no automaton in our list accepts the constructed
string, which is a contradiction to our assumption that L is expressed as the
union of languages L(Ai). The theorem is proved. ��

The proof also works for any language L that has the the following properties:

– the minimal complete dfa for the language has no dead state, that is, each
string w in Σ∗ is a prefix of a string in L;

– L contains only strings of an even/odd length.

To conclude the paper, let us consider the finite unions of deterministic union-
free languages.

On Union-Free and Deterministic Union-Free Languages 191

Definition 4. For every positive integer n, we define dUn as the family of lan-
guages that can be expressed as a union of n deterministic union-free languages.
Furthermore, let

dU∗ =

∞⋃
i=1

dUi.

The following result shows that the classes dUn define a proper hierarchy.

Theorem 5. For every n, there exists a languageLn such thatLn ∈ dUn \ dUn−1.

Proof. Let Ln = {aibn−i | i = 1, 2, . . . , n} be a language consisting of n strings
over {a, b} of length n. Then Ln is accepted by the union of n backbone au-
tomata. On the other hand, this language cannot be accepted by the union of
any n − 1 deterministic one-cycle-free-path automata because otherwise one of
them would accept a language containing at least two shortest strings. ��

Now we give some non-closure properties of the language classes dUn.

Theorem 6. The classes dUn are not closed under union, concatenation, square,
cyclic shift. If n ≥ 4, then the class dUn is not closed under star.

Proof. For n = 1, that is, for the class of deterministic union-free languages,
we have already proved these non-closure properties. Otherwise, consider the
languages K = {bi | 1 ≤ i ≤ n} and L = {aib | 1 ≤ i ≤ n} in dUn. The union of
these languages, as well as their concatenation, is a finite language, however, it
contains more than n strings. The square of the language L, as well as its cyclic
shift, is a finite language containing more than n strings.

The star of the language aa + ab + ba+ bb is not in dU∗ by Theorem 4, and
therefore the last statement of the theorem holds. ��

The next theorem gives some closure properties of the class dU∗.

Theorem 7. The class dU∗ is closed under union, and it is not closed under
star, intersection, and complement.

Proof. For star, consider the language {ε, aa, ab, ba, bb} which is in dU5. After
applying the star operation, we get the language ((a+b)(a+b))∗. By Theorem 4,
this language is not in dU∗.

For intersection, consider the languagesK = ((b∗a)2)∗b∗ and L = ((a∗b)2)∗a∗,
the first of which contains the strings with an even number of a’s, while the
second one consists of strings with an even number of b’s. The proof of Theorem 4
works for the language K ∩ L as well since every string in {a, b} is a prefix of a
string in K ∩ L, and K ∩ L contains only strings of an even length.

Hence the class dU∗ is not closed under complement because otherwise, since
it is closed under union, it would be closed also under intersection. ��

We leave as an open problem whether or not the class dU∗ is closed under other
regular operations.

192 G. Jirásková and B. Nagy

6 Conclusions

We examined in detail the classes of union-free and deterministic union-free
languages. First we studied the Parikh images of union-free languages, and we
proved that they coincide with so-called conditional-linear sets.

Then we defined balloon automata for deterministic union-free languages, and
we used them to get regular expressions for deterministic union-free languages,
as well as to prove one of the main results of our paper. This result shows that the
finite unions of deterministic union-free languages describe a proper subfamily
of regular languages. We also investigated the properties of classes represented
as a finite union of deterministic union-free languages.

Some closure properties remain open. The characterization of the subregular
language class containing the regular languages that cannot be expressed as a
finite union of deterministic union-free languages is an interesting further task.
Providing minimal 1cfp dfa for deterministic union-free languages, and prov-
ing/disproving our conjecture about the maximality of the balloon automata
seem to be interesting challenges as well.

References

1. http://www.funstufffordogs.com/Qstore/Qstore.cgi?CMD=011&

PROD=1296626935&PNAME=Balloon+Animal+Dog+Toy+-+Dog

2. http://www.facebook.com/pages/Black-Balloon-Shop-baguio-Only/

183737488331381

3. Afonin, S., Golomazov, D.: Minimal Union-Free Decompositions of Regular Lan-
guages. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS,
vol. 5457, pp. 83–92. Springer, Heidelberg (2009)

4. Dassow, J.: Contextual Grammars with Subregular Choice. Fundamenta Informat-
icae 64, 109–118 (2005)

5. Dassow, J., Manea, F., Truthe, B.: Networks of Evolutionary Processors with Sub-
regular Filters. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011.
LNCS, vol. 6638, pp. 262–273. Springer, Heidelberg (2011)

6. Bordihn, H., Holzer, M., Kutrib, M.: Henning Bordihn, Markus Holzer, Martin
Kutrib: Determination of finite automata accepting subregular languages. Theo-
retical Computer Science 410(35), 3209–3222 (2009)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley Publishing Company, Reading MA (1979)

8. Jirásková, G., Masopust, T.: Complexity in union-free regular languages. Interna-
tional Journal of Foundations of Computer Science 22, 1639–1653 (2011)

9. Nagy, B.: A normal form for regular expressions. Calude, C.S., Calude, E., Dinnen,
M.J. (eds.) Supplemental Papers for DLT 2004, CDMTCS, Auckland (2004)

10. Nagy, B.: Union-free regular languages and 1-cycle-free-path-automata. Publ.
Math. Debrecen 68, 183–197 (2006)

11. Yu, S.: Chapter 2: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Hand-
book of Formal Languages, vol. I, pp. 41–110. Springer, Heidelberg (1997)

http://www.funstufffordogs.com/Qstore/Qstore.cgi?CMD=011&PROD=1296626935&PNAME=Balloon+Animal+Dog+Toy+-+Dog
http://www.funstufffordogs.com/Qstore/Qstore.cgi?CMD=011&PROD=1296626935&PNAME=Balloon+Animal+Dog+Toy+-+Dog
http://www.facebook.com/pages/Black-Balloon-Shop-baguio-Only/183737488331381
http://www.facebook.com/pages/Black-Balloon-Shop-baguio-Only/183737488331381

A Characterisation of Languages on Infinite Alphabets
with Nominal Regular Expressions

Alexander Kurz, Tomoyuki Suzuki, and Emilio Tuosto

Department of Computer Science, University of Leicester, UK

Abstract. We give a characterisation of languages on infinite alphabets in a
variant of nominal regular expressions with permutations (p-NREs). We also in-
troduce automata with fresh name generations and permutations (fp-automata),
inspired by history-dependent automata (HDAs) and fresh-register automata.
Noteworthy, permutations require to deal with dynamic context-dependent ex-
pressions. Finally, we give a Kleene theorem for p-NREs and fp-automata to for-
mally characterise languages on infinite alphabets.

1 Introduction

The study of languages on infinite alphabets has been pushed by the need of formalising
data structures built on top of infinite domains of values [16]. In this context, it is nat-
ural to appeal to the theory of automata [11,19,3,22] operating on a countably infinite
alphabet N of names to express languages of interest such as L1 below, see [22],

L1 = {n1 . . .nk ∈N ∗ ∣∣ ∀i .1≤ i< k .ni �= ni+1}

In [13], we extended this line of investigations to languages where words do not only
consist of names but also of binders (e.g. lambda-calculus terms). In particular, [13]
studies a notion of regular expression for words with binders and the associated notion
of finite automata, aiming at applications to the design and analysis of programming
languages (as in [20] or [18]) or to verification and testing.

Here, we move back to languages of words without binders and apply the techniques
of [13] in order to obtain a novel notion of regular expression for languages on infinite
alphabets. While being built from concatenation, sum, and Kleene star in the usual way,
the nominal regular expressions introduced in this paper may also contain a binder

〈nne〉mn (1)

Intuitively, 〈nne allocates a fresh resource within ne, whereas 〉mn deallocates it. The
crucial new ingredient, which allows us to capture for example the language L1 above,
is that 〉mn permutes n and m before deallocating n. For example, we can read

〈m (〈n n〉mn)∗ 〉mm (2)

as follows. First 〈m allocates a name m, then 〈n allocates a fresh (i.e. different) name
n. Now the permutation specified by 〉mn makes sure that it is the first name m that is

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 193–208, 2012.
© IFIP International Federation for Information Processing 2012

194 A. Kurz, T. Suzuki, and E. Tuosto

deallocated and the second name n that is retained, before looping back to the beginning
as specified by the Kleene star ∗.

Note that permutations have a slightly subtle effect on concatenation. For example,
in 〈m 〈n n〉mn ◦ne〉mm, due to the permutation specified by 〉mn , the name m in ne semanti-
cally represents n. So it will take some care, in § 3, to describe how nominal regular
expressions give rise to nominal regular languages. In § 4 we introduce the correspond-
ing notion of automata with fresh-name generation and permutations (fp-automata).
Like HD-automata they have allocation transitions, corresponding to 〈n, but unlike HD-
automata permutations only appear in special deallocation transitions corresponding
to 〉mn . In § 5 we prove a Kleene-type theorem stating that the languages accepted by
fp-automata are precisely the nominal regular languages.

Finally, we argue that the work nominal languages with binders also sheds new light
on well-established work on languages on infinite alphabets.

Related Work. Apart from languages on infinite alphabets, our research draws on HD-
automata [17,14] and nominal sets [9], as well as on the recent confluence of these three
areas in [6,22,3,8,4,13]. Moreover, the way we deal with scope and binders is related to
nested words [1] and automata working on lambda-calculus terms [21].

Although our paper does neither require nor use the theory of nominal sets, the work
on nominal sets does suggest to view automata as (co)algebras in the category of nomi-
nal sets. As nominal sets are themselves permutation algebras one would expect regular
expressions, as it is the case in our work, to contain permutations, see [15].

A form of regular expressions, called UB-expressions, for languages on infinite al-
phabets investigated in [10]. There it is shown that UB-expressions are as expressive as
finite-state unification based automata (FSUBA), which are somewhat weaker than the
finite-memory automata (FMA) of [11]. In a nutshell, FSUBA do not account for fresh-
ness (they can, for example, accept the first but not the second language of Example 6
in § 3.2). Moreover, UB-expressions do not have permutations, although their device of
labelling the Kleene-star allows them to accept L1 in a similar fashion to ours.

2 Motivating Examples: Languages on Infinite Alphabets

Languages on infinite alphabets can suitably formalise data structures on infinite do-
mains (take data words in [16,5] as an example). In this context, typical languages
consist of finite words — that is finite sequences of symbols — whose symbols are
possibly drawn from an infinite set. This is illustrated in the next example.

Example 1 ([22]). Assume that a,a′,a1, . . . range on an infinite set A. The language

L1
def
= {a1 · · ·ak

∣∣ k ≥ 0 ∧ ∀i ∈ {1, . . . ,k− 1}.ai �= ai+1}

consists of finite sequences on A in which all two consecutive letters are different. 4
In general, the infinite alphabet has a very simple structure that permits to test just for
equality or inequality of symbols (see e.g., [16]) as in Example 1 (in recent work this
is being reconsidered, see § 6 for a discussion). For practical reasons, it is sometimes
convenient to consider words whose letters can be taken either from an infinite alphabet
or from a disjoint finite set, as in Example 2.

Languages on Infinite Alphabets with Nominal Regular Expressions 195

The next example shows how languages on infinite alphabets could be used to repre-
sent computations where resources have to be acquired and released before their usage.

Example 2. Assume that a,a′,a1, . . . range on an infinite set A while α (for “acquire”)
and ρ (“for release”) are two distinguished symbols not in A. The language

Lαρ
def
= αA∗ρ∪

⋃

a �= a′

{
α a · · ·a︸ ︷︷ ︸

i≥0 times

α a1 · · ·a j ρ a′ · · ·a′︸ ︷︷ ︸
h≥0 times

ρ
∣∣ j≥ 0 ∧ ∀1≤ r≤ j.ar ∈{a,a′}

}
represents the executions of a process that acquires, uses, and then releases either one
or two resources. 4

3 Nominal Regular Expressions with Permutations

In order to characterise languages on infinite alphabets, we extend regular expressions
with name-abstraction and permutation. Let N be an infinite set of names and S a finite
set of letters. We assume that N and S are disjoint. A language on N ∪S is a subset of
(N ∪S)∗, namely a collection of words on infinite alphabets.

The nominal regular expressions with permutations (p-NREs) are given by

ne ::= 1 | 0 | n | s | ne+ne | ne◦ne | ne∗ | 〈nne〉mn
where 1 denotes the singleton with the empty word, 0 denotes the empty language, n
ranges over N , s ranges over S ; the operators +, ◦, and ∗ are as the classical operators
of regular expressions, while 〈nne〉mn is a binder. Note that the superscript m on the
closing bracket is not bound unless it is the same as the subscript. Closed and bound
occurrences of names are defined in the natural way and we call closed any p-NRE with
no occurrence of free names.

Intuitively, 〈nne allocates a fresh resource within ne; as in nominal calculi, this is
rendered by declaring a fresh local name n. Novel is here that 〉mn specifies a permutation
when disposing the resource denoted by n, to the effect that to the right of 〉mn every
syntactic occurrence of m is semantically read as n. One can think of n and m as registers
whose contents are swapped when n is deallocated. To make this work, we assume
that the superscript m on 〉mn is in the syntactic scope of some 〈m. For example, the p-
NRE 〈n〈mnm〉nmn〉nn is acceptable while 〈n〈mnm〉lmm〉nn is not, because the subexpression
〈mnm〉lm is not within a scope of a 〈l, and the rightmost m is outside of the scope of 〈m.

We aim to contribute to a foundational theory of interactions based on nominal cal-
culi. This requires to consider interactions with an environment that can be seen as a
resource handler for requiring and releasing resources. In this respect, the role of the
execution environment can be suitably represented using contexts. In our theory, con-
texts capture two fundamental notions: one notion is the fresh name generation (read
the environment) and the other is the permutation action (change the environment). To
generate a fresh local name, we have to know which names are already in the envi-
ronment. And, to leave the permutation result, we must update the environment which
could be different from the original environment.

Our contexts are finite lists of names in N . For a p-NRE ne, we call a triple L ‡ ne ‡ R
an expression-in-contexts, where L and R are respectively called pre- and post-context.

196 A. Kurz, T. Suzuki, and E. Tuosto

Intuitively, L ‡ ne ‡ R is an expression ne that is interpreted in the pre-context L and
modifies it to the post-context R.

3.1 Preliminaries

Given a function f , the update f[a	→b] extends dom(f) to dom(f)∪{a} with f (a) = b;
⊥ is the empty map. Let L, M, . . . range over lists of N and let lth(L) be the length of
the list L. The empty list is denoted as []. For n ∈N , write n#L (read “n is fresh for L,”)
when n �= l for any element l in L and write L@n to be the list appending n to the tail
of L. We consider only lists with no repeated elements. Given a list L we may abuse the
notation and denote its underlying set by L.

The transposition of n and m, denoted by (m n), is the permutation that swaps m
and n and is the identity on any other names. Given two lists of the same length k, say
N = [n1, . . . ,nk] and M = [m1, . . . ,mk], let N�M be the bijection from N to M such that

N�M : ni 	→mi for each i ∈ {1, . . . ,k}

and define the bijection π[N�M] on N as

π[N�M](x)
def
=

⎧⎪⎨⎪⎩
N�M(x), if x ∈ N

N��M(x), if x ∈M \N

x, if otherwise

where N��M(x) is a function from M \N to N \M recursively defined as follows:

N��M(mi)
def
=

{
(N�M)−1 (mi), if (N�M)−1 (mi) �∈ N \M

N��M(m j), if (N�M)−1 (mi) = m j for some j �= i

For example, if M = [b,c,d] and N = [a,b,c], we have π[N�M] as follows:

N

π[N�M]

��

· · · x�

��

· · · a�

��

b�

���
�
�
�

c�

���
�
�
�

d�

��
N · · · x · · · b c d a

where the target of d (defined by N��M) is traced by going backwards along � �� and
the dashed lines.

We define the action of a permutation π on p-NREs and on lists as follows. For a
p-NRE ne, the permutation action of π on a p-NRE ne, denoted as π ·ne, is

1. π ·1 = 1; π ·0 = 0; π ·n = π(n); π · s = s
2. π · (ne1 +ne2) = (π ·ne1)+ (π ·ne2)
3. π · (ne1 ◦ne2) = (π ·ne1)◦ (π ·ne2)
4. π · (ne∗) = (π ·ne)∗

5. π · (〈nne〉mn) = 〈π(n)(π ·ne)〉
π(m)
π(n)

while, the permutation action of π on L = [l1, . . . , lk] is π ·L = [π(l1), . . . ,π(lk)].

Languages on Infinite Alphabets with Nominal Regular Expressions 197

3.2 From p-NREs to Languages on Infinite Alphabets

The interpretations of p-NREs depend on pre- and post-contexts, therefore we introduce
the set of rules in Fig. 1.

L ‡ ne1 +ne2 ‡ R
(+̂1)

L ‡ ne1 ‡ R
L ‡ ne1 +ne2 ‡ R

(+̂2)
L ‡ ne2 ‡ R

L ‡ ne1 ◦ne2 ‡ R
(◦̂)

L ‡ ne1 ‡ L L ‡ ne2 ‡ R

L ‡ ne∗ ‡ R
(∗̂)

L ‡ ne◦ · · · ◦ne︸ ︷︷ ︸
k times

‡R

L ‡ 〈nne〉mn ‡ R m �= n
(♦̂ �=)

(L@�) ‡ (n �) ·ne ‡ (((m �) ·R)@m)

L ‡ 〈nne〉mn ‡ R m = n
(♦̂=)

(L@�) ‡ (n �) ·ne ‡ (R@�)

Fig. 1. Rules computing expressions-in-contexts

Given a closed p-NRE ne, we start applying the rules to the expression-in-contexts
[] ‡ ne ‡ []. In (∗̂) in Fig. 1, k is a natural number; if k = 0, the conclusion of the rule is
L ‡ 1 ‡ R. Also, in (♦̂=) and (♦̂�=), � denotes a name fresh for L and for R.

Fact 1. For any derivation of L ‡ ne′ ‡ R from an expression-in-contexts [] ‡ ne ‡ []
using the rules in Fig. 1 we have that

– there is a permutation π such that R = π ·L (and hence lth(L) = lth(R))
– names in L are pairwise disjoint (and similarly for R)

Example 3. Application of the rules in Fig. 1 to 〈m〈nm〉mn 〈nnm〉nn〉mm gives:

[] ‡ 〈m〈nm〉mn 〈nnm〉nn〉mm ‡ []
(♦̂=)

[a] ‡ 〈na〉an〈nna〉nn ‡ [a]
(◦̂)

[a] ‡ 〈na〉an ‡ [a]
(♦̂ �=)

[a,b] ‡ a ‡ [b,a]

[a] ‡ 〈nna〉nn ‡ [a]
(♦̂=)

[a,c] ‡ ca ‡ [a,c]
(◦̂)

[a,c] ‡ c ‡ [a,c] [a,c] ‡ a ‡ [a,c]

the derivation tree is
read from top to bot-
tom

Note that b and c are distinct from a, but b may be the same as c (Fact 1). Also, in
the first step of the derivation, we can take n instead of a as a fresh name, yielding
[n] ‡ 〈mn〉nm〈mmn〉mm ‡ [n] as the conclusion. 4

By the rules of Fig. 1, there may be more than one derivation tree for [] ‡ ne ‡ [] (one
can choose either of the branches in a sum or unfold any number of times a Kleene-
star). We associate a language to each derivation tree T . This is done by applying the
rules in Fig. 2, starting from the leaves of T and going upwards to the root. Finally, we
define the language of ne to be the union of the languages of all derivation trees for ne,
and call such languages nominal regular.

To define the rules in Fig. 2, we extend the notation of expressions-in-contexts to
languages and write e.g., L ‡ L(ne) ‡ R. Rules (1), (0), (n) and (s) yield the natural
interpretation for basic expressions. Rule (◦̌) deals with the concatenation of languages;
note that, since permutations may change the post-context, it is necessary to rename

198 A. Kurz, T. Suzuki, and E. Tuosto

L ‡ 1 ‡ R
(1)

L ‡ {ε} ‡ R
L ‡ 0 ‡ R

(0)
L ‡ /0 ‡ R

L ‡ n ‡ R
(n)

L ‡ {n} ‡ R

L ‡ s ‡ R
(s)

L ‡ {s} ‡ R

L ‡ L(ne1) ‡ M M′ ‡ L(ne2) ‡ R
(◦̌)

L ‡ {w◦
(

π[M′�M] · v
)
| w ∈ L(ne1),v ∈ L(ne2)} ‡

(
π[M′�M] ·R

)
(L@n) ‡ L(ne) ‡ (R@m)

(♦̌)
L ‡ {(n �) ·w | � ∈N ,w ∈ L(ne) and �#L} ‡ ((n �) ·R)

Fig. 2. Rules computing languages

everything by a permutation π[M′�M] before combining them (recall π[M′�M] from § 3.1).
Also, the fact that the rule is applied on proof trees obtained by rules in Fig. 1 implies
that lth(M′) = lth(M).

Rule (♦̌) deallocates n. If n∈ R, then (n �) ·R remembers the fresh name � in the new
post-context. This rule maintains the invariant that the set of names in the pre-context
is in bijection to the set of names in the post-context.

For simplicity, in Fig. 2 we do not explicitly consider e.g., rules for the + operator;
when such kind of nodes are reached, the computed language is just the language of the
branch and similarly for the Kleene-star (cf. Example 5 below).

Example 4. Starting from the tree in Example 3, we calculate the language of the ex-
pression 〈m〈nm〉mn 〈nnm〉nn〉mm

[a,b] ‡ a ‡ [b,a]
(a)

[a,b] ‡ {a} ‡ [b,a]
(♦̌)

[a] ‡ {(b �1) ·a | �1 ∈N ,�1 �= a} ‡ [�1]

[a] ‡ {a | �1 ∈N ,�1 �= a} ‡ [�1]

[a,c] ‡ c ‡ [a,c]
(c)

[a,c] ‡ {c} ‡ [a,c]

[a,c] ‡ a ‡ [a,c]
(a)

[a,c] ‡ {a} ‡ [a,c]
(◦̌)

[a,c] ‡ {ca} ‡ [a,c]
(♦̌)

[a] ‡ {(c �2) · ca | �2 ∈N ,�2 �= a} ‡ [a]

[a] ‡ {�2a | �2 ∈N ,�2 �= a} ‡ [a]
(◦̌)

[a] ‡ {a◦ ((a �1) ·�2a) | �1,�2 ∈N ,�1 �= a,�2 �= a} ‡ [�1]

[a] ‡ {a�2 �1 | �1,�2 ∈N ,�1 �= a,�2 �= �1} ‡ [�1]
(♦̌)

[] ‡ {(a �3) ·a�2 �1 | �1,�2,�3 ∈N ,�1 �= a,�2 �= �1} ‡ []

[] ‡ {�3 �2 �1 | �1,�2 ,�3 ∈N ,�1 �= �3,�2 �= �1} ‡ []

(where the dashed lines are just simplifications of expressions) and we obtain that

L(〈m〈nm〉mn 〈nnm〉nn〉mm)
def
= {acb | a,b,c ∈N .b �= a and c �= b}.

Interestingly, the application of rule (♦̌) in the left branch of the above derivation
corresponds to the deallocation of m (which yields the name a) and the contextual re-
naming of the content of n with the new name chosen for n (that is �1) due to the
permutation dictated by the subexpression 〈nm〉mn . Instead, the application of (♦̌) in the
right branch, simply cuts out the last names of both the left and right contexts because
the subexpression 〈nnm〉nn does not involve any permutation. 4

Example 5 below shows that the language L1 in Example 1 is nominal regular.

Example 5. To show how the rules in Fig. 2 apply when the expressions contain a
Kleene-star, we consider 〈m(〈nn〉mn)

∗〉mm with the derivation tree corresponding to a three-
fold unfolding of the Kleene-star.

Languages on Infinite Alphabets with Nominal Regular Expressions 199

[] ‡ 〈m(〈nn〉mn)
∗〉mm ‡ []

(♦̂=)
[a] ‡ (〈nn〉an)

∗ ‡ [a]
(∗̂)

[a] ‡ 〈nn〉an〈nn〉an〈nn〉an ‡ [a]
(◦̂)

[a] ‡ 〈nn〉an ‡ [a]
(♦̂ �=)

[a,b] ‡ b ‡ [b,a]

[a] ‡ 〈nn〉an〈nn〉an ‡ [a]
(◦̂)

[a] ‡ 〈nn〉an ‡ [a]
(♦̂ �=)

[a,c] ‡ c ‡ [c,a]

[a] ‡ 〈nn〉an ‡ [a]
(♦̂ �=)

[a,d] ‡ d ‡ [d,a]

[a,b] ‡ b ‡ [b,a]
(b)

[a,b] ‡ {b} ‡ [b,a]
(♦̌)

[a] ‡ {�1 | �1 �= a} ‡ [�1]

[a,c] ‡ c ‡ [c,a]
(c)

[a,c] ‡ {c} ‡ [c,a]
(♦̌)

[a] ‡ {�2 | �2 �= a} ‡ [�2]

[a,d] ‡ d ‡ [d,a]
(d)

[a,d] ‡ {d} ‡ [d,a]
(♦̌)

[a] ‡ {�3 | �3 �= a} ‡ [�3]
(◦̌)

[a] ‡ {�2�3 | �2 �= a,�3 �= �2} ‡ [�3]
(◦̌)

[a] ‡ {�1 �2 �3 | �1 �= a,�2 �= �1,�3 �= �2} ‡ [�3]
(♦̌)

[] ‡ {�1 �2 �3 | �1 �= �0,�2 �= �1,�3 �= �2} ‡ []

[] ‡ {�1 �2 �3 | �2 �= �1,�3 �= �2} ‡ []

Generalising to a k-fold unfolding, we have the language Lk = {a1 · · ·ak | a1 �= a0, . . . ,
ak �= ak−1} which yields

L(〈m(〈nn〉mn)
∗〉mm)

def
=

⋃

k∈N
Lk = {a1 · · ·ak | ∀k ∈N,∀i ∈ {1, . . . ,k− 1}.ai �= ai+1} 4

We can also express the following languages taken from [11]. Note that the second is
not quasi-regular in the sense of [11], that is, it cannot be accepted by FMAs.

Example 6. Define N
def
= 〈nn〉nn. Note that L(N) = N . We have

L(〈nN∗nN∗n〉nnN∗) = {a1 · · ·ak | ∃i, j .1 ≤ i< j ≤ k & ai = a j},
L(〈nN∗n〉nn) = {a1 · · ·ak | ∀i .1 ≤ i< k ⇒ ai �= ak}. 4

The language Lαρ in Example 2 is nominal regular as discussed in the next example.

Example 7. Calculations similar to those in Examples 4 and 5 can be done to show that
the p-NRE α〈m((m∗〈n(m+ n)ρ〉mn m∗)+m∗)ρ〉mm (where α,ρ ∈ S) defines Lαρ. 4

α-conversion on p-NREs. Permutations can be used to define α-conversion on p-NREs.
Let S be a finite set of N and let πS be a bijection on N which fixes each element in S.
We say that L ‡ πL ·ne ‡ R is an α-conversion of an expression-in-contexts L ‡ ne ‡ R.
For a p-NRE ne, ne′ is an α-conversion of ne, if ne′ is obtained by α-converting a
subexpression of ne which appears in a derivation tree from [] ‡ ne ‡ [] using the rules
Fig. 1 (taking care of unfolding Kleene-stars only once and of avoiding any renam-
ings in name abstractions). For example, a p-NRE 〈m〈nm〉mn 〈nnm〉nn〉mm is α-converted to
〈l〈ml〉lm〈nnl〉nn〉ll.

[a] ‡ 〈na〉an ‡ [a]
(m n)

[a] ‡ 〈ma〉am ‡ [a] [a] ‡ 〈nna〉nn ‡ [a]
(◦̂)

[a] ‡ 〈ma〉am〈nna〉nn ‡ [a]
(♦̂)

[] ‡ 〈a〈ma〉am〈nna〉nn〉aa ‡ []
(l a)

[] ‡ 〈l〈ml〉lm〈nnl〉nn〉ll ‡ []

Proposition 1. α-conversion on p-NREs is an equivalence relation on p-NREs.

Theorem 1. For p-NREs ne1 and ne2, if they are α-equivalent, they define the same
nominal regular languages, i.e. L(ne1) = L(ne2).

200 A. Kurz, T. Suzuki, and E. Tuosto

The above results are due to the fact that a completely fresh name is always available
when applying the rules (♦̂�=) and (♦̂=) in Fig. 1.

4 Automata with Fresh-Name Generations and Permutations

To handle binders (fresh names) and permutations, we extend automata on binders over
S and N fin in [13]. Denote the set of natural numbers with N and define i as {1, . . . , i}
for each i ∈ N.

The automata in Definition 1 below have a set (of states) Q and a map ‖ ‖ : Q→ N
which yield the local registers of q ∈Q as ‖q‖. Also, given q ∈ Q,

L(q)
def
= S ∪‖q‖∪{�}∪{�i| i ∈ ‖q‖},

is the set of possible labels of q.

Definition 1. An automaton with fresh-name generation and permutations over S , an
fp-automaton for short , is a tuple H = 〈Q,q0,F, tr〉 such that

– Q is a finite set (of states) equipped with a map ‖ ‖ : Q→ N
– q0 ∈ Q is the initial state and ‖q0‖= 0
– F ⊆ Q is the set of final states and ‖q‖= 0 for each q ∈ F
– for each q ∈ Q and α ∈ L(q)∪ {ε}, the set tr(q,α) ⊆ Q contains the successor

states of q; for all q′ ∈ tr(q,α), the following conditions must hold:

α = � =⇒ ‖q′‖= ‖q‖+ 1

α =�i for i ∈ ‖q‖ =⇒ ‖q′‖= ‖q‖− 1

α ∈ S ∪‖q‖ or α = ε =⇒ ‖q′‖= ‖q‖

An fp-automaton is deterministic, if for each q ∈ Q and each label α ∈ L(q){
|tr(q,ε)|= 0,

|tr(q,α)|= 1, otherwise.

Finally, the i-th layer of H is the subset Qi def
= {q ∈ Q | ‖q‖= i} of Q.

In an fp-automaton, the i-th layer is connected only by � to the (i+ 1)-th layer, and
only by {� j| j ∈ i} to the (i− 1)-th layer. Note that the i-th layer forms an automaton
over S ∪ i∪ {ε} in the classical sense. Note that each state on the 0-th layer cannot
have any � transition, by definition; similarly, states in the highest layer cannot have
�-transitions. For a technical reason, we assume every fp-automaton is accessible in the
usual sense.

Hereafter we fix an fp-automaton as H = 〈Q,q0,F, tr〉. A configuration of H is a
triple 〈q,w,σ〉 consisting of a state q, a map σ : ‖q‖→N assigning names to the local
registers in q and a word w. The following definition is almost the same as the one in
[13]. The only exceptions are �-transitions and �i-transitions.

Languages on Infinite Alphabets with Nominal Regular Expressions 201

Definition 2. Given q,q′ ∈ Q and two configurations t = 〈q,w,σ〉 and t ′ = 〈q′,w′,σ′〉,
an fp-automaton H moves from t to t ′ (written t

H→ t ′) if there is α ∈ L(q)∪{ε} such
that q′ ∈ tr(q,α) and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α ∈ ‖q‖, w = σ(α) w′ and σ′ = σ
α ∈ S , w = α w′ and σ′ = σ
α = ε, w = w′ and σ′ = σ
α = �, w = w′,n ∈N \ Im(σ) and σ′ = σ[‖q′‖	→n]

α =�i, w = w′ and σ′ = (σ · (‖q‖ i))|‖q′‖

where (σ · (‖q‖ i))|‖q′‖ is the restriction on ‖q′‖ of the function σ · (‖q‖ i), i.e. σ per-

muted by (‖q‖ i). A configuration 〈q,w,σ〉 is initial if q = q0, w is a word and σ = ⊥,
and it is accepting if q ∈ F, w = ε and σ =⊥.

The set reachH (t) of states reached by H from the configuration t is defined as

reachH (t)
def
=

{
{q} if t = 〈q,ε,σ〉
⋃

t
H→t ′

reachH (t ′) otherwise

A run of H on a word w is a sequence of moves of H from 〈q0,w,⊥〉.

Intuitively, � means “generate a fresh name” and store it in the highest register. Transi-
tions labelled by �i are meant to permute the value in highest register with the one in
the i-th register and dispose the highest register. The � and �i transitions are performed
independently of the word w and introduce some non-determinism even to deterministic
fp-automata.

Definition 3. The fp-automaton H accepts, or recognises, a word w on S ∪N when
F ∩ reachH (〈q0,w,⊥〉) �= /0. The language of H is the set LH of words accepted by H .

Example 8. The fp-automaton below

2nd layer

1st layer

0th layer
�

�

�

�1

�1

�2

1 1

2

�

accepts the language L(〈m〈nm〉mn 〈nnm〉nn〉mm), see Examples 3 and 4. 4

202 A. Kurz, T. Suzuki, and E. Tuosto

5 A Kleene Theorem

We show a Kleene theorem for nominal regular languages: Every nominal regular lan-
guage is recognised by an fp-automaton (Theorem 2) and, vice versa, every language
accepted by an fp-automaton is nominal regular (Theorems 3 and 4).

The interpretation of p-NREs via the rules of Fig. 1 has to be extended to expressions-
in-contexts and to languages-in-contexts. For example, for [a] ‡ 〈nn〉an〈nn〉an ‡ [a], the
language-in-contexts is [a] ‡ {cd | ∀c �= a,∀d �= c} ‡ [a].

5.1 From p-NREs to fp-Automata

Given a p-NRE ne, we shall inductively construct an fp-automaton:

Theorem 2. Given a p-NRE ne, there exists an fp-automaton H which accepts the
nominal language L(ne), i.e. L(ne) = LH .

As seen in § 3, our expressions are context-dependent and the contexts are dynamic.
Similarly, we construct automata-in-contexts L ‡ H ‡ R, that is generalised fp-automata
where initial and final states may have lth(L) = lth(M) registers equipped with a func-
tion η mapping the h-th register of the initial state to the h-th name of L. Abusing
notation, we let H to range over automata-in-contexts.

Base cases. Let L ‡ ne ‡ R be an expression-in-contexts. By Fact 1, we can assume that
L and R have the same elements (hence lth(L) = lth(R)). Since L and R are in general
non-empty, we equip fp-automata with a function η that maps the local registers of the
initial state to names (in L).

When ne= 1 or ne= 0, we define

H�1� = 〈Q,q0, tr,F,η〉 as follows

– Q
def
= {q0} with ‖q0‖= lth(L);

– tr(q0,α)
def
= /0 for each α ∈ L(q0);

– F
def
= {q0};

– η(k) def
= lk, for each k ∈ {1, . . . , lth(L)}.

H�0� = 〈Q,q0, tr,F,η〉 as follows:

– Q
def
= {q0} with ‖q0‖= lth(L);

– tr(q0,α)
def
= /0 for each α ∈ L(q0);

– F
def
= /0;

– η(k) def
= lk for each k ∈ {1, . . . , lth(L)}.

When ne= n, we let H�n� = 〈Q,q0, tr,F,η〉 as follows:

– Q
def
= {q0,q1} with ‖q0‖= lth(L) and ‖q1‖= lth(L);

– tr(q0,α)
def
=

{
{q1} α = k and lk = n

/0 otherwise
and tr(q1,α)

def
= /0 for each α ∈ L(q1);

– F
def
= {q1}; η(k) def

= lk for each k ∈ {1, . . . , lth(L)}.

When ne= s, we let H�s� = 〈Q,q0, tr,F,η〉 as follows:

– Q
def
= {q0,q1} with ‖q0‖= lth(L) and ‖q1‖= lth(L);

– tr(q0,α)
def
=

{
{q1} α = s

/0 otherwise
and tr(q1,α)

def
= /0 for each α ∈ L(q1);

– F
def
= {q1}; η(k) def

= lk for each k ∈ {1, . . . , lth(L)}.

Languages on Infinite Alphabets with Nominal Regular Expressions 203

Proposition 2. The automata-in-contexts L ‡ H�1� ‡ R, L ‡ H�0� ‡ R, L ‡ H�n� ‡ R and
L ‡ H�s� ‡ R accept the languages-in-contexts L ‡ {ε} ‡ R, L ‡ /0 ‡ R, L ‡ {n} ‡ R and
L ‡ {s} ‡ R, respectively. Furthermore, for every final state q in L ‡ H�1� ‡ R, L ‡ H�0� ‡
R, L ‡ H�n� ‡ R and L ‡ H�s� ‡ R, we have ‖q‖= lth(R).

For automata-in-contexts we consider configurations and runs as in Definition 2, with
the exception that the η in the initial and final configurations 〈q,w,η〉 takes into account
the names in the pre- and post-contexts.

Example 9. The automaton-in-contexts [m,n] ‡ H�n� ‡ [n,m] below

2nd layer

1 	→
2 	→n

2m 1 	→
2 	→n

m

is constructed from [m,n] ‡ n ‡ [n,m] 4

Union. Let L ‡ H�ne1� ‡ R and L ‡ H�ne2� ‡ R be automata-in-contexts, where H�ne1� =
〈Q1,q1,0, tr1,F1,η1〉 and H�ne2� = 〈Q2,q2,0, tr2,F2,η2〉 for the corresponding expressions-
in-contexts L ‡ ne1 ‡ R and L ‡ ne2 ‡ R. Therefore, η1 and η2 are identical. Then, we
let H�ne1+ne2� = 〈Q+,q+

0 , tr
+,F+,η+〉 as follows:

– Q+ def
= {q+0 }5Q1 5Q2 with

∥∥q+0
∥∥= lth(L);

– tr+(q+0 ,α)
def
=

{
{q1,0,q2,0} α = ε
/0 otherwise

and the others are the same as before;

– F+ def
= F15F2; η def

= η1 (= η2).

Proposition 3. The automaton-in-contexts L ‡ H�ne1+ne2� ‡ R accepts the language-in-
contexts L ‡ L(ne1+ne2) ‡ R. Furthermore, for each final state q in L ‡ H�ne1+ne2� ‡ R,
we have ‖q‖= lth(R).

Concatenation. By the context calculus of Fig. 1, the post-context of the first expression
must be the same as the pre-context of the second expression. Let L ‡ H�ne1� ‡ L and
L ‡ H�ne2� ‡ R be automata-in-contexts with H�ne1� = 〈Q1,q1,0, tr1,F1,η1〉 and H�ne2� =
〈Q2,q2,0, tr2,F2,η2〉, and L ‡ ne1 ‡ L and L ‡ ne2 ‡ R the corresponding expressions-in-
contexts. By the definition of the context calculus, the post-context of the first expres-
sion must be the same as the pre-context of the second expression. We let H�ne1◦ne2� =
〈Q◦,q◦0, tr◦,F◦,η◦〉 as follows:

– Q◦
def
= Q15Q2; q◦0

def
= q1,0; F◦

def
= F2; η◦ def

= η1;

– tr◦(q,α) def
=

⎧⎪⎨⎪⎩
tr1(q,α)∪{q2,0} q ∈ F1 and α = ε
tr1(q,α) q ∈ Q1 and either q �∈ F1 or α �= ε
tr2(q,α) q ∈ Q2

.

Proposition 4. The automaton-in-contexts L ‡ H�ne1◦ne2� ‡ R accepts the language-in-
contexts L ‡ L(ne1 ◦ne2) ‡ R. Furthermore, for each final state q in L ‡ H�ne1◦ne2� ‡ R,
we have ‖q‖= lth(R).

204 A. Kurz, T. Suzuki, and E. Tuosto

Name-abstraction. Let (L@n) ‡ H�ne� ‡ (R@m) be an automaton-in-contexts, where
H�ne� = 〈Q,q0, tr,F,η〉, and (L@n) ‡ ne ‡ (R@m) the expression-in-contexts. We let
H�〈nne〉mn � = 〈Q♦,q♦

0 , tr
♦,F♦,η♦〉 as follows:

– Q♦ def
= Q5{qs,qt} with ‖qs‖= lth(L) and ‖qt‖= lth(L);

– q♦0
def
= qs; F♦ def

= {qt}; η♦ def
= η;

– tr♦(q,α) def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{q0} q = qs and α = �

/0 q = qs and α �= �
/0 q = qt

{qt} q ∈ F and α =�k for k with rk = n

/0 q ∈ F and α =�k for k with rk �= n

tr(q,α) otherwise

;

where (R@m) = [r1, . . . ,rlth(R)+1] (so rlth(R)+1 = m).

Proposition 5. The automaton-in-contexts L ‡ H�〈nne〉mn � ‡ R recognises the language-
in-contexts L ‡ L(〈nne〉mn) ‡ R. Furthermore, for the final state qt in L ‡ H�〈nne〉mn � ‡ R,
we have ‖qt‖= lth(R).

Example 10. For [m,n] ‡ H�n� ‡ [n,m], the fp-automaton below
2nd layer

1st layer

Traces of fresh names
1 	→
2 	→

1 	→
2 	→

1 	→m

m
� �

�

2

�1

m

1 	→ �

is constructed according to the name-abstraction in contexts [m] ‡ H�〈nn〉mn � ‡ [m]. 4

Kleene star. For an automaton-in-contexts L ‡ H�ne� ‡ R with H�ne� = 〈Q,q0, tr,F,η〉
and the expression-in-contexts L ‡ ne ‡ R, let H�ne∗� = 〈Q∗,q∗0, tr∗,F∗,η∗〉 as follows:

– Q∗
def
= Q; q∗0

def
= q0; F∗

def
= {q∗0}; η∗ def

= η;

– tr∗(q,α) def
=

{
tr(q,α)∪{q∗0} q ∈ F and α = ε
tr(q,α) otherwise

.

Proposition 6. The automaton-in-contexts L ‡ H�ne∗� ‡ R recognises the language-in-
contexts L ‡ L(ne∗) ‡ R. Furthermore, for the final state q0 in L ‡ H�ne∗� ‡ R, we have
‖q0‖= lth(R).

Example 11. For [m] ‡ H�〈nn〉mn � ‡ [m], the fp-automaton
2nd layer

1st layer

Traces of fresh names
1 	→
2 	→

1 	→
2 	→

1 	→1 	→m

m
�

�

�
�

2

ε

�1

is replaced bym �

m

Languages on Infinite Alphabets with Nominal Regular Expressions 205

is the Kleene star construction for [m] ‡ H�(〈nn〉mn)
∗� ‡ [m]. 4

From the fp-automaton in Example 11 we build an fp-automaton that accepts the lan-
guage L1 in Example 1 by name-abstraction of [m] ‡ H�(〈nn〉mn)

∗� ‡ [m]. This yields the
following fp-automaton

2nd layer

1st layer

0th layer

Traces of fresh names
1 	→
2 	→

1 	→
2 	→

1 	→1 	→�1

�1 �1
�2

�2

�2

�

�

2

ε

�1

�1

is replaced by�1 �2

5.2 From fp-Automata to p-NREs

Deterministic and non-deterministic fp-automata are equivalent.

Theorem 3. Given an fp-automaton H , there is a deterministic fp-automaton which
accepts the same language as LH .

Proof (Sketch). The main proof technique is a “layer-wise” powerset construction.
Since the i-th layer is basically a classical automaton over S ∪ i∪ {ε}, the powerset
construction allows us to make each layer deterministic. The only thing we have to care
about is how to connect these deterministic layers by � and {�i′ | i′ ∈ i} in a determin-
istic way. This is shown below.

For each subset {qi
1, . . . ,q

i
k} of the i-th layer Qi, we let

tr({qi
1, . . . ,q

i
k},�)

def
= {qi+1 ∈ Qi+1 | ∃ j ∈ k. qi+1 ∈ tr(qi

j,�)}

tr({qi
1, . . . ,q

i
k},�i′)

def
= {qi−1 ∈ Qi−1 | ∃ j ∈ k. qi−1 ∈ tr(qi

j,�i′)}

for each i′ ∈ i. Hence we obtain a deterministic automaton of H . ��

Note that the powerset construction in the proof above has to be performed layer-wise
due to the presence of local registers.

Theorem 4. Any language accepted by a deterministic fp-automaton H is a nominal
regular language. That is, there exists a p-NRE ne such that LH = L(ne).

Proof (Sketch). The states Q of a deterministic fp-automaton H can be decomposed
into h = maxq∈Q ‖q‖ layers (where h is the highest layer of H):

Q0 = {q0
1, . . . ,q

0
m0
}, Q1 = {q1

1, . . . ,q
1
m1
}, · · · Qh = {qh

1, . . . ,q
h
mh
} (3)

206 A. Kurz, T. Suzuki, and E. Tuosto

Note that q0 ∈ Q0 (we assume q0
1 = q0) and F ⊆ Q0. We fix an arbitrary order on states

given by their index in (3), let sRk
i, j denote the set of paths from qs

i to qs
j which visit only

states on layers higher than s or states qs
r ∈ Qs with r ≤ k, and let Ei, j

def
= /0 if i �= j and

Ei,i
def
= {ε}. Then, sRk

i, j is defined by

hR0
i, j

def
= {α

∣∣ qh
j ∈ tr(qh

i ,α)}∪Ei, j
hRk

i, j
def
= hRk−1

i,k

(
hRk−1

k,k

)∗
hRk−1

k, j ∪ hRk−1
i, j

on the highest layer h. On the other layers (s< h), it is defined by

sR0
i, j

def
= {α

∣∣ qs
j ∈ tr(qs

i ,α)}∪
⋃

s′∈s+1

〈
s+1

⋃

(i′, j′)∈Γs,s′
i, j

s+1Rms+1
i′, j′

〉s′

s+1
∪Ei, j

sRk
i, j

def
= sRk−1

i,k

(
sRk−1

k,k

)∗
sRk−1

k, j ∪ sRk−1
i, j ∪

⋃

s′∈s+1

〈
s+1

⋃

(i′, j′)∈Γs
i, j

s+1Rms+1
i′, j′

〉s′

s+1

where Γs,s′

i, j
def
= {(i′, j′)

∣∣ qs+1
i′ ∈ tr(qs

i ,�) & qs
j ∈ tr(qs+1

j′ ,�s′)} for each s′ ∈ s+ 1. Hence,
⋃

s′∈s+1

〈
s+1

⋃

(i′, j′)∈Γs,s′
i, j

s+1Rms
i′, j′

〉s′

s+1
is the collection of all paths from qs

i to qs
j visiting only

states on the higher layers. Finally, we translate all paths from the initial state to final
states into a nominal regular expression, but this is analogous to the classical theory.
The only distinction is how to choose fresh names for binders. However, this is done by

reserving names for fresh names as a distinct subset {n1, . . . ,nh} of N , with the
〈

s+1

and
〉s′

s+1
indicating how to generate expressions for the binding construct. ��

Therefore, by the above theorems, we conclude that every fp-automaton H has a p-NRE
ne such that LH = L(ne).

6 Conclusion

We have extended the nominal regular expressions and automata presented in [13] with
permutations in order to provide a notion of regular expression for languages on infinite
alphabets (without binders). Our main technical contribution is a Kleene theorem that
establishes an equivalence between nominal regular expressions with permutations and
fp-automata.

A novelty of our approach is how to handle the environments and how permutations
change the local views of the environment. This is done with the help of the context
calculus in Fig. 1, which represents the views on the environments by “contexts” similar
to Hoare triples. The language construction of Fig. 2 then explains how this information
flow generates nominal regular languages.

Yet another delicate aspect of our theory is the subtle non-deterministic behaviour
present even in deterministic automata. As highlighted by the first language of Exam-
ple 6, Definition 2 does not require the automaton to consume a letter if moving on

Languages on Infinite Alphabets with Nominal Regular Expressions 207

an allocation or deallocation transition. These moves are non-deterministic in the sense
that they are not controlled by the word to be recognised. This is crucial to the equiva-
lence established in Theorem 4. Indeed, non-deterministic models are more expressive
than deterministic ones when considering languages on infinite alphabets [11,16].

The natural next step to take in our research is to exploit the results presented here to
compare the expressiveness of nominal regular expressions with other models featuring
languages on infinite alphabets. We note that our nominal regular languages are closed
under union, intersection, concatenation and Kleene-star, but not under complement.
Whereas the regular languages of [13] are closed under resource-sensitive complement,
this is no longer the case here, since allocation and deallocation transitions are no longer
controlled by explicit binders in the words. This situation is similar to the FMA of [11]
although FMA do not accept the second language of Example 6. A precise comparison
with FMA and related models such as those of [16] or [22] is left for future work.

Further investigations should reveal the categorical and (co)algebraic nature of our
automata. In particular, the fact that the automata work level-wise suggests a many-
sorted approach via presheaves (see also the two-sorted coalgebras of [7]). It would also
be interesting to combine the work of this paper with [13] along the lines suggested
by [2], which investigates how the implicit scope of names in words without binders
interacts with binders having explicit scope. In another direction, we plan to extend
our approach towards Kleene algebras (with tests) [12] and possible applications to
verification. Other interpretations of the binders in the style of the research programme
devised in [4] will also be of interest.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able comments and suggestions.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009)
2. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Hard life with weak binders. Electr.

Notes Theor. Comput. Sci. 242(1), 49–72 (2009)
3. Bojanczyk, M.: Data monoids. In: STACS, pp. 105–116 (2011)
4. Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: IEEE Symposium on

Logic in Computer Science, pp. 355–364 (2011)
5. Bouyer, P., Petit, A., Thérien, D.: An algebraic approach to data languages and timed lan-

guages. Inf. Comput. 182(2), 137–162 (2003)
6. Ciancia, V., Tuosto, E.: A novel class of automata for languages on infinite alphabets. Tech-

nical Report CS-09-003, Leicester (2009)
7. Ciancia, V., Venema, Y.: Stream automata are coalgebras. In: 11th International Workshop

on Coalgebraic Methods in Computer Science, CMCS 2012 (2012)
8. Gabbay, M.J., Ciancia, V.: Freshness and Name-Restriction in Sets of Traces with Names.

In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 365–380. Springer, Heidelberg
(2011)

9. Gabbay, M., Pitts, A.: A new approach to abstract syntax involving binders. In: Symbolic on
Logics in Comput Science, pp. 214–224 (1999)

10. Kaminski, M., Tan, T.: Regular expressions for languages over infinite alphabets. Fundam.
Inform. 69(3), 301–318 (2006)

208 A. Kurz, T. Suzuki, and E. Tuosto

11. Kaminski, N., Francez, M.: Finite-memory automata. TCS 134(2), 329–363 (1994)
12. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log. 1(1),

60–76 (2000)
13. Kurz, A., Suzuki, T., Tuosto, E.: On Nominal Regular Languages with Binders. In: Birkedal,

L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 255–269. Springer, Heidelberg (2012)
14. Montanari, U., Pistore, M.: π-Calculus, Structured Coalgebras and Minimal HD-Automata.

In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 569–578. Springer,
Heidelberg (2000)

15. Myers, R.: Rational Coalgebraic Machines in Varieties: Languages, Completeness and Au-
tomatic Proofs. PhD thesis, Imperial College London (2011)

16. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets.
ACM Trans. Comput. Logic 5(3), 403–435 (2004)

17. Pistore, M.: History Dependent Automata. PhD thesis, Dipartimento di Informatica, Univer-
sità di Pisa (1999)

18. Pouillard, N., Pottier, F.: A fresh look at programming with names and binders. In: Proceed-
ing of the 15th ACM SIGPLAN International Conference on Functional Programming, pp.
217–228 (2010)

19. Segoufin, L.: Automata and Logics for Words and Trees over an Infinite Alphabet. In: Ésik,
Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

20. Shinwell, M., Pitts, A., Gabbay, M.: Freshml: programming with binders made simple. In:
Proceedings of the Eighth ACM SIGPLAN International Conference on Functional Program-
ming, pp. 263–274 (2003)

21. Stirling, C.: Dependency Tree Automata. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS,
vol. 5504, pp. 92–106. Springer, Heidelberg (2009)

22. Tzevelekos, N.: Fresh-Register Automata. In: Symposium on Principles of Programming
Languages, pp. 295–306. ACM (2011)

Formal Verification of Distributed Algorithms

From Pseudo Code to Checked Proofs

Philipp Küfner, Uwe Nestmann, and Christina Rickmann

Technische Universität Berlin

Abstract. We exhibit a methodology to develop mechanically-checkable
parameterized proofs of the correctness of fault-tolerant round-based dis-
tributed algorithms in an asynchronous message-passing setting. Moti-
vated by a number of case studies, we sketch how to replace often-used
informal and incomplete pseudo code by mostly syntax-free formal and
complete definitions of a global-state transition system. Special emphasis
is put on the required deepening of the level of proof detail to be able to
check them within an interactive theorem proving environment.

1 Introduction

Lamport, Shostak and Pease [LSP82] write about an argument concerning the
Byzantine Generals Problem: “This argument may appear convincing, but we
strongly advise the reader to be very suspicious of such nonrigorous reasoning.
Although this result is indeed correct, we have seen equally plausible “proofs” of
invalid results. We know of no area in computer science or mathematics in which
informal reasoning is more likely to lead to errors than in the study of this type of
algorithm.” Along these lines, our goal is to develop mechanically checked proofs
about distributed algorithms. In this paper, we address “positive” results on
the correctness of problem-solving algorithms, as opposed to “negative” results
about the impossibility to solve a problem. We strive for experimental answers to:

– Which description techniques fit best to prove the desired properties of a
distributed algorithm when using a theorem prover?

– How big is the gap between informal paper proofs and computer-checked
proofs? Is the gap merely due to the level of detail that is hidden in words
like “straightforward”, or is it due to the incompleteness or inadequacy of
the model and the used proof techniques?

Fault-Tolerant Distributed Algorithms. Any analysis of distributed algo-
rithms is placed within a particular context provided by a system model in which
both the algorithm and its specification are to be interpreted.

Basic Process Model. We assume a setting of finitely many processes that be-
have at independent speeds. The controlled global progress of a synchronous
system, often paraphrased by means of a sequence of communication rounds, is
not available. Moreover, in our model, processes communicate via asynchronous

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 209–224, 2012.
c© IFIP International Federation for Information Processing 2012

210 P. Küfner, U. Nestmann, and C. Rickmann

messaging, i.e., without any bound on the delay between emission and reception
of messages. Processes typically perform atomic steps consisting of three kinds
of actions: (1) input of a message, followed by (2) local computation, followed by
(3) output of messages. Starting from some initial configuration of processes and
the messaging mechanism, system runs are generated by subsequently perform-
ing steps, typically (though not necessarily) in an interleaving fashion. In our
model, processes may crash, but do not recover. Here, a process is called correct
(in a run) if it does not crash (in this run). In other models, where processes
may recover, the notion of processes’ correctness needs to be adapted.

Distributed Consensus [Lyn96] (or short: Consensus) is a well-known prob-
lem in the field of distributed algorithms: n processes with symmetric behavior,
but possibly different initial data, are to commonly decide on one out of several
possible values. The task is to find an algorithm satisfying the following three
trace properties: (1) Validity: If a process decides a value v, then v was initially
proposed by some process. (2) Agreement: No two correct processes decide dif-
ferently. (3) Termination: Every correct process (eventually) decides some value.
Fischer, Lynch and Paterson ([FLP85]) showed that Consensus is not solvable in
a fault-prone environment like the above. Essentially, this is due to the fact that
in an asynchronous setting, processes that wait for messages to arrive cannot
know whether the sender has crashed or whether the message is just late. Often,
this is phrased as a lack of synchrony in the communication infrastructure.

Failure Detection and Round-Based Solutions. To enhance the setting by some
degree of partial synchrony, Chandra and Toueg [CT96] introduced the notion of
failure detectors (FD). They allow to determine what is needed to make Consen-
sus solvable in an asynchronous crash-failure environment. A failure detector can
be regarded as a local instance at every process that monitors the crash status of
all [other] processes. The information provided by the failure detector is usually
imperfect, i.e., unreliable to a certain degree. In addition to an enhancement of
the model, a common modeling idiom is to use round-based algorithms, which
help to simulate the spirit of synchronized executions of the processes to some
extent: every process keeps and controls a local round number in its own state.
This round number can be attached to messages, which can thereby be uniquely
identified. In asynchronous systems, this enables receiving processes to arrange
the messages sent by other processes into their intended sequential order.

Proofs Revisited. Our set of case studies comprises several distributed algorithms
that solve the problem of Consensus for various system models and with vary-
ing degree of complexity, taken from [CT96, Lam98, FH07]. For all of these
algorithms, proofs of correctness are available, though of quite different level of
detail and employing rather different techniques. The proofs often use an induc-
tion principle based on round numbers. This counters the fact that executions of
distributed algorithms in an asynchronous model do usually not proceed globally
round-by-round—which resembles the reasoning in a synchronous model—but
rather locally step-by-step. More precisely, the proof does not follow the step-by-
step structure of executions, but rather magically proceeds from round to round,
while referring to (“the inspection of”) individual statements in the pseudo code.

Formal Verification of Distributed Algorithms 211

Own Work. Motivated by the lack of formality in typical published proofs
of the properties of distributed algorithms, it is part of our own research pro-
gramme to provide comprehensive formal models and develop formal—but still
intuitive—proofs, best mechanically checked by (interactive) theorem provers.

Previous Work. In [FMN07, Fuz08], one of the algorithms of [CT96] and the
related Paxos algorithm [Lam98] were presented with a high degree of detail and
formality: (i) the previously implicit setting of the networked processes including
the communication infrastructure is made explicit by global state structures;
(ii) the previous pseudo code is replaced by a syntax-free description of actions
that transform vectors of state variables; (iii) the behavior of these two parts is
modeled as a labeled global transition system, on which the three trace properties
required for Consensus are defined; (iv) all proof arguments are backed up by
explict reference to this transition system.

Contributions. (1) We demonstrate a method based on the models of [FMN07,
Fuz08] to represent distributed algorithms, including the underlying mechanisms
for communication and failure detection, together with their respective fair-
ness assumptions, within the theorem-proving environment Isabelle [NPW02].
It turns out that the representation of the transition system specification is
quite similar to the syntactic representation of actions in Lamport’s Temporal
Logic of Actions (TLA) [Lam02], enriched by the notion of global configura-
tion and system runs. (2) We explain how this representation, especially the
first-class status of system runs, can be used to verify both safety and—as a
novelty—liveness properties within a theorem prover. We argue that, to prove
safety properties, it is more intuitive to replace the mere invariant-based style
(as exemplified in Isabelle by [JM05]) by arguments that make explicit reference
to system runs. Moreover, also to prove liveness properties, explicit system runs
represent a convenient proof vehicle. (3) Accompanied by the concrete running
example1 inspired by [FH07], we present a formal framework for distributed al-
gorithms and explain techniques for verifying different classes of properties of
the algorithm. (4) We give a quick overview of our case studies and provide links
to the mechanized proofs in Isabelle. To our knowledge, it is the first time that
algorithms from [CT96] have been mechanically checked. In the case of the Paxos
proof of [Fuz08], we were able to correct some bugs, while developing the formal-
ization in Isabelle. In contrast, the case study drawn from [FH07] was previously
subject to a process-algebraic proof; here, we just used it as a reasonably simple
example to demonstrate the quick applicability of our method, small enough to
be presented within the space limits of this paper.

Overview of the Paper. In §2, we introduce our formal model based on transition
rules and explicit traces that is fundamental for this work. In §3, we present the
respective formalization of the required properties. In §4, we discuss how the
proof techniques in the respective settings differ, referring to round-based induc-
tion and history variables. In §5, we summarize the results of our case studies on
doing mechanized proofs for Consensus algorithms. For the sake of readability,

1 Full details at http://www.mtv.tu-berlin.de/fileadmin/a3435/Isa/RotCoord.zip

http://www.mtv.tu-berlin.de/fileadmin/a3435/Isa/RotCoord.zip

212 P. Küfner, U. Nestmann, and C. Rickmann

we only sketch essential details of the simplest algorithm to demonstrate the
method and the shape of the model on which to carry out proofs.

2 Modeling the Algorithm

Distributed algorithms are often described in terms of state machines [Lam78,
Sch90], which are used to capture the individual processes’ behavior. As in au-
tomata theory, transitions from one state to the next may be given by abstractly
named actions. In a more concrete version of this model, states can be consid-
ered as vectors of values of the relevant variables and transitions are directed
manipulations of these vectors. An essential part of a distributed system is the
interprocess communication (IPC) infrastructure, e.g., shared memory, point-
to-point messaging, broadcast, or remote procedure calls ([Lyn96]). Thus, the
global collection of local state machines for the individual processes must be
accompanied by some appropriate representation of the IPC.

2.1 Pseudo Code for State Machines

Listing 1.1 exemplifies a common style to present distributed algorithms: a piece
of pseudecode that indicates what is executed by each process locally. We use it
as a running example to illustrate our experience with Isabelle-checked proofs.

The algorithm solves Consensus in the presence of a strong failure detector
(see [CT96] and below). We use process ids (PIDs) p1 to pn to refer to the
n processes. The algorithm proceeds in rounds. For every round, there is one
process playing the role of a coordinator. For the given algorithm, coordination
means to propose a single value to all processes, while the latter wait for this
proposal. The function alive contacts the above-mentioned failure detector to
detect the possible failure of the coordinator. The (only) assumption about the
failure detector is that at least one correct process is not suspected to be crashed,
i.e. the function alive does always return ‘True’ for some process that never
crashes. Correct processes that are not suspected are called trusted-immortal.

Listing 1.1. The Rotating Coordinator Algorithm for participant pi

1 x i := Inpu t
2 f o r r := 1 to n do {
3 i f r = i then b r oad ca s t x i ;
4 i f a l i v e (p r) then x i := i n p u t f r om b r o a d c a s t ;
5 }
6 output x i ;

As there is no formal semantics and no compiler for pseudo code, formal rea-
soning is impossible at this level of abstraction. Furthermore, the environment
including the IPC-infrastructure (e.g., the various messages in transit) is usually
not an explicit part of the pseudo code model. Nevertheless, we choose pseudo
code as a starting point for our formalization, as many algorithms are given in

Formal Verification of Distributed Algorithms 213

locale Algorithm =
fixes
InitPred :: ′configuration ⇒ bool and
ProcActionSet :: (′configuration ⇒ ′configuration ⇒ proc ⇒ bool) set and
ComActionSet :: (′configuration ⇒ ′configuration ⇒ bool) set and
ProcessState :: ′configuration ⇒ proc ⇒ ′process-state

assumes
ActionSetsFin:

finite ProcActionSet
finite ComActionSet and
StateInv :∧
A i . [[A∈ProcActionSet ; A c c ′ i ; ProcessState c j �= ProcessState c ′ j]]=⇒ i = j∧
A. [[A∈ComActionSet ; A c c ′]]=⇒ ProcessState c j = ProcessState c ′ j

Fig. 1. Locale for Distributed Algorithm

this style. Hence, the model is both informal and incomplete; it cannot be trans-
ferred into a theorem-proving environment without giving a formal semantics to
the usually textual description of actions and not without providing a complete
representation of the IPC-infrastructure. We provide a formal model for this
example, mention more general modeling aspects and show the key techniques
used for the respective correctness proofs.

2.2 State Machines in Isabelle

Fuzzati et al. [FMN07] define the algorithm in terms of transition rules where
the transitions are computation steps between so-called configurations, which
represent the global states of the distributed system. In [FMN07], a configuration
at time t consists of three components: (1) an array of the local states of the
processes, (2) the message history (a set of all point-to-point messages sent until
t) and (3) the broadcast history (a set of all broadcast messages sent until t).

The concrete definition of configurations obviously depends on the respective
algorithm. To get a general model for distributed algorithms we introduce an
abstract type variable ′configuration. We apply ideas from Merz et al. [CDM11]
and model distributed algorithms as interpretations of the locale given in Fig. 1.
Locales are used to introduce parameterized modules in Isabelle’s theories (see
[Bal03]). In the definition of the locale Algorithm, InitPred is a predicate that
returns true if a given configuration is a valid initial configuration. ProcAction-
Set contains all valid actions that a process can execute: examples are local
computations or the sending of messages by placing messages into the local out-
box. ComActionSet contains (communication) actions that can be performed
independently from a dedicated process (by the system or the communication
infrastructure); as an example, imagine the loss of a message during transmis-
sion. There is no sense in assigning such an action to the sender or the receiver
of the message. Both action sets have to be finite. ProcessState must be instan-
tiated with a mapping that returns a process state for a given configuration and
a process. Of course communication actions are not allowed to change the state

214 P. Küfner, U. Nestmann, and C. Rickmann

definition
LocalStep:: ′configuration ⇒ ′configuration ⇒ bool where
LocalStep c c ′ ≡ ∃ i ∈ procs. ∃A ∈ ProcActionSet . A c c ′ i

definition
ComStep:: ′configuration ⇒ ′configuration ⇒ bool where
ComStep c c ′ ≡ ∃A ∈ ComActionSet . A c c ′

definition
Step:: ′configuration ⇒ ′configuration ⇒ bool (infixl → 900) where
Step c c ′ ≡ LocalStep c c ′ ∨ ComStep c c ′

definition
deadlock :: ′configuration ⇒ bool where
deadlock c ≡ ∀ c ′. ¬ c → c ′

definition
FinalStuttering :: ′configuration ⇒ ′configuration ⇒ bool where
FinalStuttering s s ′ ≡ (s = s ′) ∧ deadlock s

definition
Run :: (T ⇒ ′configuration) ⇒ bool where
Run R ≡ InitPred (R 0) ∧ (∀ t ::T . ((R t) → (R (t+1)))
∨ FinalStuttering (R t) (R (t+1)))

Fig. 2. Definition: Steps and Runs

of any process and performed by some process may not change the state of any
other process. This is asserted by StateInv. This allows us to formulate some
standard lemmas to be used for each interpretation of the locale. An action A
from ProcActionSet is a predicate that takes two configurations c, c ′ and a proc
i and returns true if and only if A is a valid step from c to c ′ executed by process
i. Likewise, an action A from ComActionSet is a predicate over configurations.

We call LocalStep the execution of an action from ProcActionSet, and ComStep
the execution of an action from ComActionSet. A step from c to c ′ happens if
and only if there is a LocalStep or a ComStep from c to c ′ (see Fig. 2). To
verify properties of an algorithm, all possible executions of the algorithm must
be inspected. We use the term Run for the execution of the algorithm and define
it as an infinite sequence of configurations where InitPred holds in the initial
configuration and every configuration and its successor is in the step relation.
Of course there might be configurations where no further step is possible. In
this case the system is deadlocked. For these cases where the actual execution
would be finite we allow the system to take stuttering steps, i.e. to repeat the
last configuration until the end of time. (see Fig. 2).

IPC. The given example requires to implement a message passing mechanism
to enable the communication between processes. In our model, a message will
traverse three states on its way from the sender to the receiver:

– outgoing: When a sender wants to send a message (or a set of messages) it
puts the message into its outgoing buffer. Messages in the outgoing buffer are
still at the senders site, i.e. outgoing messages are lost if the sender crashes.

– transit: The message is on its way to the receiver.
A crash of the sender does no longer concern messages that are in transit.

Formal Verification of Distributed Algorithms 215

record MsgStatus =
outgoing :: nat
transit :: nat
received :: nat

record content =
snd :: nat
rcv :: nat

definition Msgs :: ((′a content-scheme) ⇒ MsgStatus) ⇒ ((′a content-scheme) set)
where
Msgs M ≡ {m. outgoing (M m) > 0 ∨ transit (M m) > 0 ∨ received (M m) > 0}

definition OutgoingMsgs :: ((′a content-scheme) ⇒ MsgStatus) ⇒ ((′a
content-scheme) set) where OutgoingMsgs M ≡ {m. outgoing (M m) > 0}

definition TransitMsgs :: ((′a content-scheme) ⇒ MsgStatus) ⇒ ((′a content-scheme)
set) where TransitMsgs M ≡ {m. transit (M m) > 0}

definition ReceivedMsgs :: ((′a content-scheme) ⇒ MsgStatus) ⇒ ((′a
content-scheme) set) where ReceivedMsgs M ≡ {m. received (M m) > 0}

Fig. 3. Messages

– received: The message has already arrived on the receiver’s site.
It is now ready to be processed by the receiver.

We use a multiset-like structure to represent messages in our system, i.e. for
every message the number of copies that are outgoing, (respectively transit,
received) are stored by mapping messages to records of typeMsgStatus, a record
that can store a number for each option. For such a mapping we use the term
message history. The message history is part of each configuration of our algo-
rithm and represents the state of the message evolution. In our model, sender
and receiver are stored for each message. The type Message will later be ex-
tended by the payload of the message (depending on the algorithm we want to
model). To work with the set of messages (respectively the set of outgoing mes-
sages, of transit messages, of received messages) we define functions that return
the respective set for a given message history M (see Fig. 3). Now we are ready
to define relations between message histories that describe

– the placement of a message into the outgoing buffer
– the sending of a message, i.e. the change of status from outgoing to transit
– the receiving of a message

Our running example requires to put a set of messages in the outbox. Therefore,
we define a directive MultiSend : it is a predicate that is true for two message
histories M,M ′ and a set of messages msgs if and only if M and M ′ are equal,
except for the outgoing values for messages in msgs, which are incremented
by one in M ′. The definitions for changing a message status from outgoing
to transit (Transmit) and from transit to received (Receive) are for single

216 P. Küfner, U. Nestmann, and C. Rickmann

definition MultiSend :: ((′a content-scheme) ⇒ MsgStatus) ⇒ ((′a content-scheme)
⇒ MsgStatus) ⇒ (′a content-scheme) set ⇒ bool where
MultiSend M M ′ msgs ≡ M ′ = (λm. if (m ∈ msgs) then incOutgoing (M m) else

M m)

definition Transmit :: ((′a content-scheme) ⇒ MsgStatus) ⇒ ((′a content-scheme)
⇒ MsgStatus) ⇒ (′a content-scheme) ⇒ bool where
Transmit M M ′ m ≡ m ∈ OutgoingMsgs M
∧ M ′ = M (m := (| outgoing = (outgoing (M m))−(1 ::nat), transit = Suc(transit

(M m)), received = received (M m)|))

definition Receive :: ((′a content-scheme) ⇒ MsgStatus) ⇒ ((′a content-scheme) ⇒
MsgStatus) ⇒ (′a content-scheme) ⇒ bool where
Receive M M ′ m ≡ m ∈ TransitMsgs M
∧ M ′ = M (m := (| outgoing = (outgoing (M m)), transit = transit (M m)−(1 ::nat),

received = Suc(received (M m))|))
Fig. 4. Message movements

messages only and straightforward (see Fig. 4). Note that their preconditions
‘m ∈ OutgoingMsgs M’ (‘m ∈ TransitMsgs M’) are necessary to rule out a decre-
ment of zero accidentally generating infinitely many messages.

Rotating Coordinator Model. For the concrete model of our algorithm, we
need to define a data structure configuration that contains all relevant informa-
tion of the system for one point in time. We already identified message histories
as one important part of every configuration. Of course, processes can take steps
and change their local state without changing the message history (for example,
by doing local computations or processing received messages). Hence, another
important component of a configuration must be the local states of processes.
In our case, the state of a process pi can be defined by five variables:

r - The round of pi.
phs - The phase of pi, i.e. a next-step indicator.
x - The value of the variable xi (cp. listing 1.1)
crashed - A flag showing whether pi has crashed.
decision - A value that is set from ⊥ to v value when pi decides v.

We use the value P1 in phs if the process is in line 3 and P2 if it is in line 4 (c.p.
listing 1.1). We do not need more values, as being in line 6 can be detected by
testing if r > n (where n is the number of processes) and the remaining lines are
just initialization of variables that will be modeled by the respective InitPred.

As in [FMN07], we use the term program counter for the pair (r, phs). In a
configuration, we have to store a process state entry for each process. Hence,
we use a mapping from processes to process states as another component of
configurations. As explained above, the message type must be extended by the
respective payload. In our case, the content a process has to send is its current x

Formal Verification of Distributed Algorithms 217

record process-state =
r :: nat
phs :: Phase
x :: Input
crashed :: bool
decision :: Input option

record msg = Message +
cnt-v :: Input

record configuration =
St :: proc ⇒ process-state
Me :: msg ⇒ MsgStatus

Fig. 5. Definition: configuration

definition
p1msgset :: proc ⇒ Input ⇒ msg set where
p1msgset i v ≡ {m. ∃ j ∈ procs.

m = (|snd = i , rcv = j , cnt-v = v |) }

definition
MsgGen :: configuration ⇒ configuration ⇒ proc ⇒ bool where
MsgGen c c ′ i ≡ crashed (St c i) = False
∧ phs (St c i) = P1 ∧ r (St c i) ≤ N
∧ St c ′ = (St c) (i := (|
r = r (St c i),
phs = P2 ,
x = x (St c i),
crashed = False,
decision = decision (St c i) |))
∧ (if (r (St c i) = PID i) then
MultiSend (Me c) (Me c ′) (p1msgset i (x (St c i)))

else
Me c ′ = Me c)

Fig. 6. Definition: Action MsgGen

value, here of type Input. Hence, the message type is extended by a field cnt-v.
As a result of these considerations, we get the type for a configuration as a record
consisting of an array of process states and a message history (see Fig. 5).

Next, we define the communication and process actions. Regarding Listing 1.1
after the initialization, a process pi checks whether it is itself the coordinator of
its current round. If so, then it sends a set of messages with pii as the sender,
the current value of x at pi as the content, and all processes as the receivers.
p1msgset in Fig. 6 constructs such a set for the respective arguments pi and x.

Based on this definition, for example, the definition of action MsgGen is read
as follows: A step from c to c ′ is a MsgGen step taken by pi if and only if

– pi is not crashed in c
– phs of pi is P1 in c and P2 in c ′

– r of pi is less or equal than N and is not changed to c ′

218 P. Küfner, U. Nestmann, and C. Rickmann

– x, crashed and decision of pi do not change from c to c ′

– states of all other processes do not change
– a multisend of the respective p1msgset happens from c to c ′ if the current

round of the process equals its process id (PID).

We use the Isabelle function update syntax to implement the desired behaviour:
St c ′ = (St c) (i := (|X |)) denotes the update in (St c) at i to X to yield (St c ′).
Thanks to currying in Isabelle, crashed (St c i) denotes the crashed variable
of process pi’s state in configuration c. MsgRcvTrust trusts an awaited sender
and receives its message, while MsgRcvSuspect suspects a sender by no longer
waiting for its message. Finish implements the decision step of a process and
Crash disables a process by setting its crashed variable. There are also the two
communication actions MsgSend and MsgDeliver which push messages one step
further (from outgoing to transit, respectively from transit to received).

For runs, initial configurations are those where, for all processes pi, (1) (r,phs)
is (1,P1), (2) x is the input of pi, (3) (crashed,decision) is (false,⊥) and (4) for
all messages outgoing, transit and received are set to 0.

We define two sets ProcActions and Networkactions and write down the in-
terpretation of the introduced locale Algorithm as RotCoord with St as the
required mapping from configuration and processes to process states (given in
Fig. 7). Note that proofs for the finiteness of ProcActions and NetworkActions
and for the assertions about process states are required. Two lemmas StateInv1
and StateInv2 show that the locale assumption StateInv is satisfied.

type-synonym procAction = configuration ⇒ configuration ⇒ proc ⇒ bool

definition
ProcActions :: procAction set where
ProcActions ≡ {MsgGen, MsgRcvTrust , MsgRcvSuspect , Crash, Finish}

type-synonym networkAction = configuration ⇒ configuration ⇒ bool

definition
NetworkActions :: networkAction set where
NetworkActions ≡ {MsgSend , MsgDeliver}

interpretation RotCoord : Algorithm
Init
ProcActions
NetworkActions
St
by (unfold-locales,
auto simp add : ProcActions-def NetworkActions-def StateInv1 StateInv2)

Fig. 7. Interpretation RotCoord

Formal Verification of Distributed Algorithms 219

3 Requirement Specification

Validity and Agreement (see the Introduction) are safety properties; as pure
invariants of the algorithm they can be formulated as state predicates. Hence, for
Validity and Agreement, it would be sufficient to reason about individual states,
and whether the properties are preserved by every transition. Termination is a
liveness property; it requires us to consider full runs as first-class entities.

We do not include a formulation of Validity in this paper. Instead, next to the
formalizations of Agreement and Termination (see Fig. 8), we explicitly mention
Irrevocability for decisions, i.e, that decisions cannot be undone or overwritten.

lemma Irrevocability : assumes R: Run R and
d : decision (St (R t) i) �= None and z : z≥t
shows
the(decision(St (R z) i)) = the (decision(St (R t) i))
decision (St (R z) i) �= None

theorem Agreement : assumes R: Run R and
di : decision(St (R t) i) �= None and
dj : decision(St (R t) j) �= None
shows the(decision(St (R t) i)) = the (decision(St (R t) j))

theorem Termination: assumes R: Run R and i : i ∈ Correct R
shows ∃ t . decision (St (R t) i) �= None

Fig. 8. Irrevocability, Agreement and Termination

4 Proof Techniques

‘Inspection of the Code’. To show that an algorithm exhibits certain prop-
erties, we need to refer to its ‘code’. Since pseudo code has no formal semantics,
this kind of reference cannot be formal. The reader has to believe that certain
basic assertions are implied by single lines of the code; e.g., if line 27 states
x := 5 then, after line 27 is executed by pi, variable x will indeed have value 5.
Reasoning is done by ‘inspection of the code’. For distributed algorithms, this
kind of local reasoning is of course error-prone, because one might assume x = 5
when executing line 28, which might be wrong if x is shared and another process
changes x while pi moves from line 27 to 28. In [FMN07], the reference to local
pseudo code is replaced by the reference to formally-defined global transition
rules. Then, if some rule A is provably the only one that changes the variable x
of process pi and process pi’s variable has changed from time tx to t then, obvi-
ously “by inspection of” the rules, we can infer that A was executed between tx
and t. Such a setup is a useful basis for its application within a theorem prover.

220 P. Küfner, U. Nestmann, and C. Rickmann

Invariant-Based Reasoning. This well-known technique boils down to the
preservation of properties from one configuration to another during computation
steps: essentially, it requires a proof by case analysis for all possible actions in
such a step. Here, the formal version of ‘inspection of the code’ is pertinent.
Finding a proof that an invariant property holds in some initial configuration
leads to the standard proof technique of induction over time t, i.e., along the
configurations of a run, which we evidently use a lot in our examples.

History-Based Reasoning. Reasoning along the timeline gets more difficult
if also assertions about the past are made. Showing that pi received a message
m on its way to configuration c would require to inspect every possible prefix of
a run, unless there is some kind of bookkeeping implemented in the model. In
[FMN07], this problem is solved by the introduction of history variables [Cli73,
Cla78, Cli81] that keep track of events during the execution of the algorithm.
For verification purposes of concurrent programs, history variables are common
(see [GL00, Owi76]). Technically, we make history variables an explicit part of
our model that also serves for the needed IPC. This provides access to the entire
communication history. Every sent message is stored in the history and will
not be deleted during a run. Hence, when inspecting a configuration (R t), all
messages sent before t are accessible. Therefore, the above-mentioned assertion
can be reduced to the simple check that m is in the message history of c.

Application of Proof Techniques. As Validity is an invariant, the technique
for invariant-based reasoning is applied. For the used induction principle, it is to
show that Validity holds in the initial state of every run and every step of the
algorithm preserves it. Hence the main part of the proof is a classical example
for the most-used proof technique mentioned above: fix a run R and a time t,
then perform induction on t. As a consequence, the remaining proof goals are:

– show that for every initial configuration R(0) ∈ Init P (R(0)) holds.
– show that P (R(t)) implies P (R(t+1)).

Mostly, the first goal is implied by the definition of the initial states Init. The
second goal requires that every defined transition rule preserves P ; the induction
hypothesis can be strengthened by the knowledge that the step R(t)→ R(t+1)
is derived by exactly one application of one of the defined transition rules (dis-
tinction of cases). Hence, it remains to show that every application of some rule
leads to a successor configuration R(t+1) with P (R(t+1)).

The main argument for Agreement in our running example is that processes
cannot skip messages of trusted-immortal processes. Let ti be a trusted-immortal
process. We sketch the proof that every process has the same value stored in x
before entering a round higher than PID ti (where PID is a function that returns
a unique process id from 1..N for every process): Every process j that decides
a value must traverse every round number between 1 and n and, therefore, also
the round number PID ti where ti is the coordinator. Since j cannot skip the
message of a trusted-immortal process, j has to assign the value vti of ti to its
state variable x before entering round (PID ti) + 1. Therefore, afterwards, all

Formal Verification of Distributed Algorithms 221

processes j in higher rounds than PID ti will send the value vti or nothing (if
they crash before) and, hence, processes can only apply value vti in such rounds.
Formally, this is expressed by the Lemma uniformRndsAfterTI2 asserting that
two processes in rounds higher than the process id of some trusted-immortal
process must have the same x value. This implies agreement since every process
that decides, decides for its x value and must be in round n+1 and n+1 is
greater than every process id. Many more invariants must be derived to prove
this lemma and both introduced proof techniques are applied in multiple steps.

The proof for Termination appears to be, at first sight, quite obvious: Pro-
cesses can only block while waiting for messages of trusted-immortal processes.
We sketch the proof how mutual waiting is ruled out. Let ti1 and ti2 be two
trusted-immortal processes waiting for each other’s messages. Without loss of
generality, let PID ti1 ≤ PID ti2. Since ti1 waits for the message of ti2, it must
be in round PID ti2 and therefore in a round greater than or equal to its own
round. Thus, ti1 already must have sent the message for round PID ti1 and
therefore ti2 must eventually receive this message.

In our formal model, this proof is quite more difficult. The suggested proof
relies on the implicit fairness assumption that every possible process step and
every possible message transition from outgoing to transit and from transit
to received will eventually happen, which is implicitly implied by the model.

Nevertheless, in the given example, it is possible to give a formal proof without
introducing further fairness assumptions about the execution of ProcActions :
since we allow FinalStuttering only if no further defined actions are possible,
in runs with FinalStuttering, there can be no infinitely enabled actions. Hence,
one can prove that every action that is enabled either gets disabled later or
is executed later on. The proof of Termination therefore relies on proving two
assertions: every run of the algorithm has FinalStuttering and, at the beginning
of the FinalStuttering, a correct process is in round number n+1 and therefore
has decided (otherwise the action Finish would still be enabled).

5 More Case Studies

Our much more complicated case studies are two widely known Consensus al-
gorithms: (1) one by Chandra and Toueg [CT96] (thus, from now on referenced
as CT) that uses the failure detector �S—known as the weakest that allows
to solve Consensus—and (2) Paxos, by Lamport [Lam98]. The latter does not
satisfy Termination, but it does not need failure detectors.

A formal review of both algorithms is found in [Fuz08]. Compared to the
running example (Listing 1.1), both cases are much more complex caused by the
weaker assumptions on the asynchrony of the environment. For each algorithm,
we required approximately 10k LOC in Isabelle/HOL2. The basic model and the
proof techniques are essentially the same except for a few mentionable details.

2 Full models and proofs can be found at
http://www.mtv.tu-berlin.de/fileadmin/a3435/Isa/CT.zip

http://www.mtv.tu-berlin.de/fileadmin/a3435/Isa/Paxos.zip

http://www.mtv.tu-berlin.de/fileadmin/a3435/Isa/CT.zip
http://www.mtv.tu-berlin.de/fileadmin/a3435/Isa/Paxos.zip

222 P. Küfner, U. Nestmann, and C. Rickmann

In the Rotating Coordinator algorithm all n processes decide in the same
round (in round n+1), while in Paxos and CT processes might decide in different
rounds; also, there is no upper bound for the traversed round numbers. Moreover,
processes can decide values broadcast in different rounds. Hence, we need some
kind of global view on the system, i.e. to consider whole configurations. For this
purpose, already [CT96] introduce the notion of Locked Values. A value is locked
for a round r if more than the half of all processes acknowledged the value sent
by the coordinator of r. A central lemma for both algorithms states that if v1
and v2 are locked values in rounds r1 and r2 then v1 = v2. Inspired by the proof
sketches in [CT96], Fuzzati et al. [FMN07] use induction on the round number
to prove this lemma: To prove a proposition P holds for all rounds r′ with r′ ≥ r
the first step is to show P holds for r = r′. In the inductive step, P is shown for
round k under the assumption that P holds for all r′ with r ≤ r′ < k.

Regarding the timeline, this approach dissents from standard temporal rea-
soning techniques, as the ‘global’ round number does not proceed consistently
with the global clock. In fact, the round number might be different in all local
states of the processes and can evolve independently from the global progress
as long as it is monotonically increasing; it is possible that a round number ri
of process pi is greater than the round number rj of a process j and later in
time ri < rj holds. Therefore, proofs done by this technique are intricate, hard
to follow by a reader, and not preferred for doing formal proofs. This is docu-
mented by errors that we found in [FMN07, Fuz08] (see below). Making such
errors within a theorem proving environment is not possible and, hence, we were
forced to correct them.

Another difference due to the complexity of Paxos and CT is that there are
different types of messages within single rounds; hence, we get dependencies of
messages. For example, if message m2 depends on the prior reception of message
m1, we can deduce that, if pi sent m2 to pi, it must have received m1. Moreover,
the sender of m1 must indeed have sent m1. Thus, new proof patterns arise for
dependencies between and also concerning their contents.

One important contribution of the mechanizing proofs is the awareness that
even proofs at such a formal level as [Fuz08] can exhibit severe faults without
being noticed. During our work, we found several problems both in the model and
the proofs. The major problems we found in the proof for Paxos of [Fuz08] are:

– There was an error in the broadcast mechanism that circumvented a delivery
of broadcasts to all processes except for its sender and therefore would render
executions, where only the minimal majority of processes are alive when the
first process decides, nonterminating. Moreover an assumption about the
mechanism claimed that every broadcast will eventually be received by all
correct processes. Due to the error mentioned before this is in contradiction
to the transition rules. Of course from this contradiction one could derive
any property needed.

– Another problem concerned the basic orderings that are introduced for the
reasoning on process states. It turned out that the ordering does not fullfill

Formal Verification of Distributed Algorithms 223

the required monotoncity in time that was assumed. Since many proofs for
the following lemmas relied on this ordering, this problem is serious.

– The proof for one of the central lemmas (Locking Agreement) is wrong.
It uses another lemma (Proposal Creation), but its assumptions are not
fullfilled. Therefore, we had to find an adequate version of this lemma with
weaker assumptions and redo both proofs (a similar error occurs in [FMN07]).

6 Conclusion

Exemplified with Consensus algorithms, we show how to represent their wide-
spread informal and incomplete pseudo-code descriptions instead in a formal
and complete way that can be processed within a theorem prover. It is not our
intention to suggest algorithm designers shall start with pseudo code; we rather
show how given pseudo descriptions can be formalized. Furthermore, we may
thus point out alternative algorithm representations that can be formalized in
theorem proving environments. By intention, our approach (continuing our pre-
vious ‘pencil-and-paper’ work [FMN07]) is close to the well-known abstract state
machines from Gurevich[Gur93], and also actions in the TLA-format, as it is our
goal to achieve formalizations of algorithms and their proofs that are reasonably
close to the intuitions of typical researchers in the field. The formalization usu-
ally requires to add details to the pseudo code so it hardly ever correponds
one-to-one. However, this can also be seen as an advantage as it forces to clarify
potential sources of misinterpretation.

When mechanizing the proofs (or rather: previous proof sketches), we tried
to stick to the intuitive arguments and proof techniques as much as possible.
Hence automatic tools like Sledgehammer or Quickcheck were not used. But,
mechanization requires us to write out all the details; thereby, it proves that the
intuitive reasoning (also in our own previous work) is often enough too sloppy.

We report on three case studies within this paper. (1) Our running example
is very simple, as it is based on strong assumptions about the system model. We
chose it just as a convenient representative for this paper, as it is impossible to
show the more interesting case studies within the space constraints. Still, most
of the method can be exemplified with it. We found this example in a process-
algebraic setting [FH07], and also wanted to be able to roughly compare the
amount of work needed in the two completely different settings. We now believe
that the approach of the current paper is more intuitive—and mechanized!—and
thus leads to quicker proofs. (2) The CT-algorithm has now, to our knowledge
the first mechanically-checked proofs, including Termination. The latter is only
possible, as our formal model includes an explicit representation of runs. (3) The
Paxos algorithm can, modulo some changes to the model, be seen as a variant
of CT. As mentioned before, the work on Disk Paxos in [JM05] is quite similar
to our work for safety properties. The main difference is based on the different
model that allows us to comfortably prove liveness properties in the case of CT.

224 P. Küfner, U. Nestmann, and C. Rickmann

References

Bal03. Ballarin, C.: Locales and Locale Expressions in Isabelle/Isar. In: Berardi, S.,
Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 34–50.
Springer, Heidelberg (2004)

CDM11. Charron-Bost, B., Debrat, H., Merz, S.: Formal Verification of Consensus
Algorithms Tolerating Malicious Faults. In: Défago, X., Petit, F., Villain, V.
(eds.) SSS 2011. LNCS, vol. 6976, pp. 120–134. Springer, Heidelberg (2011)

Cla78. Clarke, E.M.: Proving the correctness of coroutines without history variables.
In: ACM-SE 16, pp. 160–167. ACM, New York (1978)

Cli73. Clint, M.: Program proving: Coroutines. Acta Informatica 2, 50–63 (1973)
Cli81. Clint, M.: On the use of history variables. Acta Informatica 16, 15–30 (1981)
CT96. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed

systems. Journal of the ACM 43, 225–267 (1996)
FH07. Francalanza, A., Hennessy, M.: A Fault Tolerance Bisimulation Proof for

Consensus (Extended Abstract). In: De Nicola, R. (ed.) ESOP 2007. LNCS,
vol. 4421, pp. 395–410. Springer, Heidelberg (2007)

FLP85. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed con-
sensus with one faulty process. J. ACM 32(2), 374–382 (1985)

FMN07. Fuzzati, R., Merro, M., Nestmann, U.: Distributed Consensus, Revisited.
Acta Informatica 44(6), 377–425 (2007)

Fuz08. Fuzzati, R.: A Formal Approach to Fault Tolerant Distributed Consensus.
PhD thesis, EPFL, Lausanne (2008)

GL00. Gafni, E., Lamport, L.: Disk Paxos. In: Herlihy, M.P. (ed.) DISC 2000. LNCS,
vol. 1914, pp. 330–344. Springer, Heidelberg (2000)

Gur93. Gurevich, Y.: Evolving algebras: An attempt to discover semantics (1993)
JM05. Jaskelioff, M., Merz, S.: Proving the correctness of disk paxos. In: The Archive

of Formal Proofs (2005), http://afp.sf.net/entries/DiskPaxos.shtml
Lam78. Lamport, L.: The implementation of reliable distributed multiprocess sys-

tems. Computer Networks 2(2), 95–114 (1976)
Lam98. Lamport, L.: The part-time parliament. ACM Transactions on Computer

Systems 16, 133–169 (1998)
Lam02. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hard-

ware and Software Engineers. Addison-Wesley (2002)
LSP82. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM

ToPLaS 4(3), 382–401 (1982)
Lyn96. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Pub. (1996)
NPW02. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL - A Proof Assistant

for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
Owi76. Owicki, S.: A consistent and complete deductive system for the verification

of parallel programs. In: Proceedings of STOC 1976, pp. 73–86. ACM (1976)
Sch90. Schneider, F.B.: Implementing fault-tolerant services using the state machine

approach: A tutorial. ACM Computing Surveys 22, 299–319 (1990)

http://afp.sf.net/entries/DiskPaxos.shtml

A Temporal Logic for Multi-threaded Programs�

Salvatore La Torre and Margherita Napoli

Dipartimento di Informatica, Università degli Studi di Salerno, Italy

Abstract. Temporal logics for nested words are a specification for-
malism for procedural programs, since they express requirements about
matching calls and returns. We extend this formalism to multiply nested
words, which are natural models of the computations of concurrent pro-
grams. We study both the satisfiability and the model-checking prob-
lems, when the multiply nested words are runs of multi-stack pushdown
systems (Mpds). In particular, through a tableau-based construction, we
define a Büchi Mpds for the models of a given formula. As expected both
problems are undecidable, thus we consider some meaningful restrictions
on the Mpds, and show decidability for the considered problems.

1 Introduction

Temporal logic is a standard specification language in program verification. Tra-
ditional linear time temporal logic (Ltl) [14] allows to express ω-regular proper-
ties and recent research has enriched this formalism with temporal operators that
allow to take into account the call-return structure of the control flow in sequen-
tial programs with recursive procedure calls, such as CaRet [2] and Nwtl [1].
In these call-return temporal logics, the key intuition is to look at the program
computations not simply as a word but as a nested word, which is essentially a
graph with two kinds of edges: the linear edges capturing the sequential structure
of computations (total ordering among the program states), and the call-return
edges, that connect a call to its matching return in the computation (defining a
matching relation). The Ltl operators refer only to the total ordering given by
the linear edges. The mentioned call-return logics instead present versions of the
standard Ltl operators which refer to the call-return edges, and thus properties
such as “a procedure A is always invoked through calls of a procedure B” and
“a write to a variable x should be followed by a read of x in the same procedure
invocation”, become expressible.

In concurrent programs communicating through a shared memory and with
recursive procedure calls, each thread has its own control flow structured into
procedure calls. A suitable model for the computations of such programs are the
multiply nested words, that is graphs with linear edges and different kinds of call-
return edges (one for each thread and each kind defining a different matching re-
lation). Along the line of the call-return temporal logics, we can define extensions
of temporal operators that refer to the different types of call-return edges.

� This work was partially funded by the MIUR grants FARB 2010-2011 Università
degli Studi di Salerno (Italy).

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 225–239, 2012.
c© IFIP International Federation for Information Processing 2012

226 S. La Torre and M. Napoli

In this paper, we consider the logic MultiCaRet that extends CaRet to
multiply nested words, and study both the satisfiability and the model-checking
problems. We model the programs as multi-stack pushdown systems (Mpds).
The computations of Mpds naturally define multiply nested words, and thus,
the model checking question we ask is: given a MultiCaRet formula ϕ and a
Mpds M , do all the nested words generated by M satisfy ϕ?

We face these problems using the automata-theoretic approach. In particular,
for a formula ϕ over n-nested words (i.e., multiply nested words with n matching
relations), we give a tableau-based construction that defines a Büchi Mpds Mϕ

which generates all the n-nested words satisfying ϕ. We show that the size ofMϕ

is linear in n and exponential in the size of ϕ. Defining with L(M) the language
of multiply nested words defined by M , satisfiability is reduced to checking the
non-emptiness of L(Mϕ) and model-checking reduces to checking the emptiness
of L(M)∩L(M¬ϕ). Observe that, since the push and pop transitions of a Mpds

are visible on a generated multiply nested word, by a standard cross product
synchronized on the labels, we can construct a Büchi Mpds that generates the
intersection language. Therefore, both the considered problems reduce to solving
the emptiness problems for Büchi Mpds.

Unfortunately, the emptiness problem for Mpds is known to be undecidable
already with two stacks (two stacks are sufficient to encode the computations
of a Turing machine), and this can be used to show that indeed also the Mul-

tiCaRet model-checking problem is undecidable. Moreover, we prove that also
MultiCaRet satisfiability is undecidable with a simple reduction from PCP.
We thus consider some known restrictions that have been recently studied to
obtain decidable models of Mpds that are meaningful when dealing with non-
terminating computations. In particular, we look at multiply nested words that
correspond to Mpds computations where each symbol that is popped has been
pushed into a stack during the last k contexts (scope-bounded multiply nested
words) [11] or where a symbol is popped from stack i if all stacks j < i are
empty (ordered multiply nested words) [8]. Observe that, both the restrictions
do not limit the number of execution contexts where we can do push or pop
transitions of any stack and thus are suitable to take into account non-trivial
infinite interactions among the different threads of a program.

It is known that the emptiness problem for Büchi Mpds restricted to ordered
multiply nested words is decidable in time doubly exponential in the number
of stacks and polynomial in the number of states, and is 2Etime-complete [3]
(we recall that 2Etime denotes the class of all the decision problems which are

solvable by a deterministic Turing machine in time 22
O(n)

). Combining this result
with our construction we get that the MultiCaRet satisfiability and model
checking problems on ordered multiply nested words are 2Etime-complete.

A further contribution of our paper is to solve the emptiness problem for
Büchi Mpds restricted to scope-bounded multiply nested words. We reduce this
problem to checking the emptiness of a standard Büchi automaton of size expo-
nential in the number of stacks and the bound k on the scope of the matching
relations. The solution relies on defining for each stack a pushdown automaton

A Temporal Logic for Multi-threaded Programs 227

whose reachable states correspond to thread interfaces of dimension at most k
(tuples of pairs summarizing the control states when context-switching into and
out of a thread along with the information if in a context an accepting state has
been seen). The entire contribution of a thread to a k-scoped computation of
the Mpds can be summarized with an infinite thread interface which is the com-
position of thread interfaces of dimension at most k (see [12]). Thus, we define
an automaton that nondeterministically selects a thread interface of dimension
k (k-thread-interface) for each thread and simulates a computation modifying
the current state by applying the next pair of one such thread interface. Once
a k-thread-interface is completely used, a new k-thread-interface is nondeter-
ministically selected for that thread. In this simulation, we make accepting all
the states that are introduced by a pair corresponding to a context where an
accepting state has been visited. By the above described reduction, we thus have
that the MultiCaRet satisfiability and model-checking problems are both de-
cidable in time exponential in the size of the formula, the number of stacks, and
the bound k. Since this problems are already Exptime-hard for CaRet [2], we
get Exptime-completeness.

As a final contribution, we show that the logicMultiCaRet can be expressed
in FO, and since MSO is decidable on all classes of MSO-definable multiply
nested words of bounded tree-width [13], we also get that MultiCaRet is de-
cidable for all such classes. We recall that the class of ordered multiply nested
words defined by a Mpds have bounded tree-witdh and are MSO-definable [13],
and so do the class of scope-bounded multiply nested words [12], therefore the
decidability of MultiCaRet satisfiability and model-checking for these classes
can also be obtained using these arguments.

Related Work. Besides the already cited research there are few other papers that
are related to ours.

A general temporal logic for concurrent programs which subsumes Multi-

CaRet is introduced in [6]. However, the decidability results there are obtained
by restricting the computations to a bounded number of phases [10], where in
each phase pop transitions are all from the same stack. The phase restriction
looks quite limiting when considering infinite computations: the last phase is
infinite and there is no unbound alternation between popping different stacks,
i.e., from some point there is only one stack that is really used. Besides, it is
orthogonal to the scope-bounded restriction and does not allow to express more
behaviors than placing an ordering on the matching relations [4]. It is not known
a relation between these two last restrictions. We also note that the approach
followed here is completely different from [6].

Another concurrent extension of CaRet is considered in [7]. This logic differ
from MultiCaRet both in the syntax and the semantics. The model checking
question for Ltl formulas with respect to ordered Mpds is settled in [3]. The
scope-bounded restriction strictly extends the notion of bounded-context switch
that have been successfully used in finding bugs in concurrent programs [15].

The scope-bounded restriction on matching relation defined here is more per-
missive than that introduced in [11]. Here, we do not bind this definition to a

228 S. La Torre and M. Napoli

round-based organization of computations (a round is a sequence of contexts
where each stack is active exactly once). Therefore, while there the number of
context-switches between a push and its matching pop is always bounded (nk
where n is the number of stacks and k is the bound on the scope of the matching
relations), here we can have unboundedly many context switches. As an exam-
ple, consider a sequence a1(a2a3b2b3)

mb1 where ai is a push and bi is a pop of
the i-th stack. For each m, this satisfies the 2-scoped restriction given in this
paper, while it does not satisfy the 2m-scoped restriction given in [11].

Simultaneously and independently of our research, in [5] the model-checking
of linear-time temporal properties (Ltl) for Mpds under the scope-bounded
restriction has been shown to be Exptime-complete. This result can be obtained
as a corollary of our results since our logic MultiCaRet syntactically subsumes
CaRet and thus Ltl.

2 A Temporal Logic over Multi-nested Words

Given two positive integers i and j, i ≤ j, we denote with [i, j] the set of integers
k with i ≤ k ≤ j, and with [j] the set [1, j].

Multiply Nested Words. In this section, we recall the concept of multiply nested
word which a natural formalism for expressing the computations of multi-stack
pushdown systems, which in turns carefully capture the flow of control in con-
current programs with shared memory and recursive procedure calls.

Fix an alphabet Σ, an infinite word over Σ is a mapping that assigns to
each position i ∈ N a symbol σi ∈ Σ, and is denoted as {σi}i∈N or equivalently
σ1, . . . , σn Each infinite word defines a linear ordering among its positions
which corresponds to the ordering induced by the relation < over N. In this
paper, we make use only of the infinite words therefore we will refer to them
also simply as words. A multiply nested word is a word equipped with one or
more matching relations. For a word {σi}i∈N, a matching relation expresses a
relation between two disjoint sets of its positions, the calls and the returns, such
that each call i is matched to at most one return j that follows i in the linear
ordering (i.e., i < j) and each return i is matched to at most one call j that
precedes i in the linear ordering (i.e., j < i), and matched calls and returns
are well-nested. Formally, a matching relation over N is a triple (μ,C,R) where
C,R ⊆ N (respectively, the set of calls and the set of returns of the relation),
C ∩R = ∅, and μ ⊆ C ×R is such that for all i, j, h ∈ N :

– μ(i, j) implies i < j (respects the linear ordering of w);
– μ(i, j) and μ(i, h) implies j = h (each call matches at most one return);
– μ(i, j) and μ(h, j) implies i = h (each return matches at most one call);
– i ≤ j, i ∈ C, and j ∈ R implies that there is a i ≤ k ≤ j such that either
μ(i, k) or μ(k, j).

An n-nested word w is ({σi}i∈N, {〈μi, Ci, Ri〉 | i ∈ [n]}) where C1, R1, . . . , Cn, Rn

are pairwise disjoint and for i ∈ [n], μi is a matching relation with set of calls

A Temporal Logic for Multi-threaded Programs 229

Ci and set of returns Ri. A multiply nested word is an n-nested word for some
n ∈ N. A 1-nested word is also called a nested word [1].

It is simple to see that a multiply nested word w = ({σi}i∈N, {〈μi, Ci, Ri〉 | i ∈
[n]}) can be graphically represented as a labeled directed graph Gnw = (N, E, λ)
where: N is the set of vertices, E is the set of edges and is defined as the union of
all μi along with the set {(i, i+ 1) | i ∈ N} denoting the linear ordering induced
by <, and the labeling function λ : N→ Σ that maps each vertex i to σi.

a1 a2 e3 a4

c5
b6

c7
b8 a9

d10

e11

d12

e13 b14 b15

Fig. 1. A fragment of a 2-nested word

In Fig. 1, we report the ini-
tial fragment of a 2-nested word
where μ1 matches each occur-
rence of a’s with an occurrence
of b, μ2 matches each occurrence
of c with an occurrence of d,
and the occurrences of e stay un-
matched. The calls and the re-
turns are the positions of respectively the a’a and the b’s for μ1, and the c’s
and the d’s for μ2. We use subscripts to stress the position of each symbol. The
relation μ1 is denoted with the full curved edges and the relation μ2 with dashed
curved edges.

Paths in Multiply Nested Words. Different kinds of paths can be defined in
multiply nested words depending on the notion of successor which is used. In
this section we define the different notions of successors that will be used to
give the semantics of the temporal logic we introduce in the next section. These
successors are the adaptation to multiply nested words of those defined on nested
words for defining the logic CaRet [2].

Fix a multiply nested word w = ({σi}i∈N, {〈μi, Ci, Ri〉 | i ∈ [n]}). The first
kind of successor we consider is the linear successor that is defined by the linear
order induced by < on N. The linear successor of a position j ∈ N is simply j+1.

The abstract successor over the i-th matching relation of a position j, denoted
nextai (j), is defined as the abstract successor in the nested word which is obtained
by ignoring all the matching relations but the i-th one. In particular, it is the
matching return for matched calls, is not defined on unmatched calls and on
linear predecessors of matched returns, and is the linear successor in all the
other cases (i.e. for positions that are not calls and whose linear successors are
not returns). For each position j ∈ N, nextai (j) is: h if μi(j, h) holds; otherwise,
⊥ (undefined) if either j+1 ∈ Ri and μi(h, j+1) holds for some h < j, or j ∈ Ci

and μi(j, h) does not hold for each h > j; and j + 1 in all the remaining cases.
Analogously to the abstract successors, the call successor over the i-th match-

ing relation of a position j, denoted next−i (j), is defined as the call successor in
the nested word which is obtained by ignoring all the matching relations but the
i-th one. In particular, it is the largest call h that precedes j and is not matched
up to j, if any, and is undefined otherwise. Formally, for each position j ∈ N,
next−i (j) is the largest h < j such that h ∈ Ci and either {k | μi(h, k)} = ∅ (h
is unmatched) or μi(h, k) holds for some k > j (the call is not matched yet), if
any, and ⊥ otherwise.

230 S. La Torre and M. Napoli

The Temporal Logic MultiCaRet. Multiply nested words naturally arise as
models of the computations of concurrent threads communicating through shared
memory. In this interpretation, the nesting relations capture the call-return rela-
tion of the recursive procedure calls within each thread. We will make this more
precise in the next section where we will model such computations as multi-stack
pushdown systems.

We use multiply nested words to interpret the formulas of the logic Mul-

tiCaRet which extends the logic CaRet [2] to express properties of multi-
threaded programs. The logicMultiCaRet (CaRet for multiply nested words)
has the usual linear temporal logic modalities according to the linear ordering
and CaRet modalities indexed over the different matching relations. For each
i ∈ [n], we use the atomic propositions call i and ret i to identify the respectively
a call and a return of the i-th matching relation of an n-nested word.

Formally, we fix a finite sets of atomic propositions AP and {call i, ret i | i ∈
[n]}, for n ∈ N. The formulas of MultiCaRet are inductively defined as follows:

ϕ ::= p | call i | ret i | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕ U ϕ | ©b ϕ | ϕ Ub ϕ
where i ∈ [n], b ∈ {ai,−i | i ∈ [n]} and p ∈ AP .

The constants true and false are defined as abbreviations: / ≡ ϕ ∨ ¬ϕ and
⊥ ≡ ϕ∧¬ϕ. Other common abbreviations are �bϕ ≡ /Ub ϕ and �bϕ ≡ ¬�b¬ϕ.
The semantics of the logic operators is given as usual. Each of the introduced
temporal operators correspond to one of the given notions of successor. In par-
ticular, the global modalities © and U refer to the linear successor, the ab-
stract modalities ©ai and Uai to the abstract successor, and the call modal-
ities ©ai and Uai to the call successor. Formally, fix an n-nested word w =
({σi}i∈N, {〈μi, Ci, Ri〉 | i ∈ [n]}) over the alphabet 2AP . The truth value of a
formula w.r.t. a position i ∈ N in w is defined as follows:

– (w, i) |= p iff p ∈ σi (where p ∈ AP);
– (w, i) |= call j (resp. ret j)iff i ∈ Cj (resp. i ∈ Rj);
– (w, i) |= ¬ϕ iff (w, i) |= ϕ does not hold;
– (w, i) |= ϕ1 ∨ ϕ2 iff either (w, i) |= ϕ1 or (w, i) |= ϕ2:
– (w, i) |=©ϕ iff (w, i + 1) |= ϕ;
– (w, i) |=©bjϕ (with b ∈ {a,−}) iff nextbj(i) �= ⊥ and (w,nextbj(i)) |= ϕ;
– (w, i) |= ϕ1Uϕ2 iff there exists a h ≥ i such that (w, h) |= ϕ2 and (w, k) |= ϕ1

for all k ∈ [i, h− 1];
– (w, i) |= ϕ1Ubjϕ2 (with b ∈ {a,−}) iff there exists a h ∈ N such that

(w, h) |= ϕ2, i = x1, x2, . . . , xm = h where xk+1 = nextbj(xk) for k ∈ [m− 1],
and (w, xk) |= ϕ1 for k ∈ [m− 1] .

We say that a multiply nested word w satisfies a formula ϕ, written w |= ϕ, if
(w, 1) |= ϕ.

Satisfiability. The satisfiability problem for MultiCaRet formulas is defined
as the problem of determining if given a MultiCaRet formula ϕ there ex-
ists a multiply nested word w such that w |= ϕ. This problem turns out to
be undecidable already for formulas using only two matching relations. A proof

A Temporal Logic for Multi-threaded Programs 231

of this can be obtained by reducing thePost’s Correspondence Problem (PCP).
Given a set of pairs (ui, vi), i ∈ [m], where ui, vi ∈ Σ∗ for a finite alphabet Σ,
the PCP consists of determining if there is a sequence of indices i1, . . . , ih such
that ui1 . . . uih = vi1 . . . vih .

The reduction consists of writing a formula that is satisfied only on multiply
nested words ({σi}i∈N, {〈μi, Ci, Ri〉 | i ∈ [2]}) where denoting the word {σi}i∈N

as the concatenation αβγ: α ∈ (
⋃

i∈[m](i.ui.vi))
∗ and β ∈ {σ.σ | σ ∈ Σ}∗; each

position of the α part is in C1, if it is labeled with a piece of a ui, and is in C2, if it
is labeled with a piece of vi; the positions in β are alternately in R1 and R2; none
of the positions of the γ part is either a call or a return; there are no unmatched
calls and returns; for i ∈ [2], if μi(x, y) holds then σx = σy. It is simple to
write a MultiCaRet formula ϕPCP that checks all the above properties. By a
simple proof one can prove that the considered PCP instance admits a solution iff
ϕPCP is satisfiable. Moreover, the formula is parameterized on the PCP instance,
therefore, this construction reduces the PCP toMultiCaRet satisfiability using
only two matching relations:

Theorem 1. The MultiCaRet satisfiability problem is undecidable already
with two matching relations.

Expressing Properties of Multi-threaded Programs. The main motivation for
MultiCaRet is to introduce a suitable temporal logic for multi-threaded pro-
grams.MultiCaRet is the natural extension ofCaRet with abstract and caller
modalities over many matching relations, and thus can also capture the usual
linear time temporal logic properties. A typical correctness requirement that can
be expressed in MultiCaRet consists of the pairs of pre- and post-conditions
that must be fulfilled by procedure invocations within each computation. For
instance, we can require that a procedure A must satisfy a pre-condition pA
upon invocation and a post-condition qA on returning from a call (note that
as an additional correctness requirement this also implies that it must return
from each call), and this has to hold for each thread. We can express this
as: �

∧
i[(call i ∧ pA) → ©aiqA]. Variations of such property requiring different

pre/post-conditions for different threads, or limiting the request only to some
threads, or admitting that some call may be not returned, can be easily designed.

Additional correctness properties can be required when two procedures are
simultaneously invoked in different threads:

�
∧

i�=j [(©−ipA ∧©−jpB)→ (©−i ©ai qA ∧©−j ©aj qB)].

The temporal modalities based on the call successors allows to express properties
on the contents of the stacks, which can be used to specify a variety of security
properties. For instance, the requirement that a procedure A should be invoked
only when in each thread i a call to a procedure Bi is still pending and no
overriding call to procedure Ci is happening can be expressed by the formula
�[(

∨
i call i ∧ pA)→

∧
i(¬pCi U−ipBi)].

232 S. La Torre and M. Napoli

3 MultiCaRet Model-Checking

In this section we first recall the definition of multi-stack pushdown systems
and show how their runs define multiply nested words. Then we consider the
MultiCaRet model checking problem.

Multistack Pushdown Systems. A multi-stack pushdown system consists of a
finite control along with one or more stacks and is equipped with a labelling
function of its states. The system can push a symbol on any of its stacks, or pop
a symbol from any of them, or just change its control location by maintaining
unchanged the stack contents. Thus there are several push/pop functions (one
for each stack) and one internal action function. We also allow pop transitions
on empty stack to take into account the unmatched returns. This is modeled
with a bottom-of-the-stack symbol γ⊥ which is never removed from the stack.

Let n ∈ N. A n-stack pushdown system (n-Mpds) M is a tuple (Q,Q0, Γ ∪
{γ⊥}, Σ, λ, δint , {(δpushi , δpopi)}i∈[n]) whereQ is a finite set of control states,Q0 ⊆
Q is the set of initial states, Γ is a finite stack alphabet, γ⊥ is the bottom-of-
the-stack symbol, Σ is the alphabet of the state labels, λ : Q→ Σ is a labelling
function, δint ⊆ (Q × Q) is a set of internal transitions and, for every i ∈ [n],

δpushi ,⊆ (Q× Γ ×Q) and δpopi ⊆ (Q× Γ ∪ {γ⊥} ×Q) are respectively push and
pop transitions involving the i’th stack. A Pds is a n-Mpds with n = 1.

A configuration of M is a tuple C = 〈q, {wi}i∈[n]〉, where q ∈ Q is the state

of the configuration and each wi ∈ Γ ∗.{γ⊥} is the content of the i’th stack.
Moreover, C is initial if q ∈ Q0 and wi = γ⊥ for every i ∈ [n]. Let Act =⋃

i∈[n]{pushi, popi} ∪ {int} be the set of all actions of M . A transition between
two configurations over an action act ∈ Act is defined as follows:

〈q, {wi}i∈[n]〉
act−−→M 〈q′, {w′

i}i∈[n]〉 if one of the following holds for some i ∈ [n]

[Internal] act = int , (q, q′) ∈ δint , and w′
h = wh for every h ∈ [n].

[Push] act = pushi, (q, γ, q
′) ∈ δpushi , w′

i = γ.wi, and w
′
h = wh for h ∈ ([n]\{i}).

[Pop] act = popi, (q, γ, q
′) ∈ δpopi , w′

h = wh for h ∈ ([n] \ {i}), and either
wi = γ.w

′
i or wi = w

′
i = γ = γ⊥.

A run ρ of M is a possibly empty sequence of transitions C0
act1−−−→ C1

act2−−−→
Furthermore, ρ is a computation of M if C0 is initial.

MultiCaRet Model-Checking. Each run ρ = C0
act1−−−→ C1

act2−−−→ . . . of M defines
a multiply nested word 〈〈ρ〉〉 = ({σs}s∈N, {〈μρi , C

ρ
i , R

ρ
i 〉 | i ∈ [n]}) with σs =

λ(qs), where qs is the state of the configuration Cs in ρ, Ci = {s | acts = pushi},
Ri = {s | acts = popi} and μ

ρ
i (s, t) holding true if the t’th transition of ρ pops

the symbol pushed on stack i at the s’th transition. With L(M) we denote the
language {〈〈ρ〉〉 | ρ is a computation of M}. Moreover, we say that M satisfies a
MultiCaRet formula ϕ, written M |= ϕ, if w |= ϕ holds for each w ∈ L(M).
Thus, the model-checking problem for Mpds and MultiCaRet formulas is:

Given a Mpds M and a MultiCaRet formula ϕ, does M |= ϕ?
From the undecidability of reachability of Turing machines and the fact that a
2-Mpds can simulate a Turing machine, the following theorem holds.

A Temporal Logic for Multi-threaded Programs 233

Theorem 2. The model-checking problem for 2-Mpds and MultiCaRet for-
mulas is undecidable.

Büchi Mpds. For a MpdsM , a Büchi condition is a subset F of the set of states
ofM . A Büchi Mpds is a Mpds along with a Büchi condition. Denoting with FC

the set configurations of M of the form C = 〈q, {wi}i∈[n]〉 where q ∈ F , we say

that a run ρ = C0
act1−−−→ C1

act2−−−→ . . . is accepted by the Büchi Mpds (M,F) (or
equivalently satisfies a Büchi condition F) if for infinitely many s, Cs ∈ FC . If
M is a Büchi Mpds, we extend the notation L(M) by requiring that the nested
words in L(M) also satisfy the Büchi condition.

The problem of determining the existence of an accepting run for a given
Büchi Mpds (emptiness problem) is in general undecidable, again from the un-
decidability of reachability problem for Turing machines.

4 Büchi Mpds for MultiCaRet Formulas

In this section, we give a tableau-based construction of a Büchi Mpds which gen-
erates the multiply nested words satisfying a givenMultiCaRet formula. We fix
a formula ϕ over the set of atomic propositions AP ∪ {call i, ret i | i ∈ [n]}, for
n ∈ N, and denote with topi, for i ∈ [n], a new atomic proposition. The closure

1. ¬ψ ∈ clϕ if and only if ψ ∈ clϕ
2. if ψ1 ∨ ψ2 ∈ A if and only if ψ1 ∈ A or ψ2 ∈ A

3. if ©ψ ∈ clϕ or ©bψ ∈ clϕ then ψ ∈ clϕ
4. if ψ1 U ψ2 ∈ clϕ then ψ1, ψ2,©(ψ1 U ψ2) ∈ clϕ
5. if ψ1 Ub ψ2 ∈ clϕ then ψ1, ψ2,©b(ψ1 Ub ψ2) ∈ clϕ

Fig. 2. Properties defining clϕ

of ϕ, denoted clϕ, is the smallest
set of formulas that contains ϕ,
¬ϕ, topi, call i and ret i for i ∈
[n], and satisfies the properties de-
scribed in Fig. 2 (where ¬¬ψ
is identifiedwithψ and b ∈ {ai,−i |
i ∈ [n]}).

1. for each ψ ∈ clϕ, either ¬ψ ∈ A or ψ ∈ A
2. A contains at most one among {calli, reti | i ∈ [n]}
3. ψ1 ∨ ψ2 ∈ A iff ψ1 ∈ A or ψ2 ∈ A
4. ψ1 U ψ2 ∈ A iff ψ2 ∈ A or ψ1,©(ψ1 U ψ2) ∈ A

5. ψ1 Ub ψ2 ∈ A iff ψ2 ∈ A or ψ1,©
b(ψ1 Ub ψ2) ∈ A

6. if ©aiψ ∈ A then calli ∈ A.

Fig. 3. An atom A of ϕ

An atom A of ϕ is a maximal
and logically consistent subset of
clϕ (see Fig. 3). We denote the
set of all atoms of ϕ as Atomsϕ,
and the set of all atoms that con-
tain a formula of the form ©aiψ
or ψ1Uaiψ2, for some i ∈ [n], as
Atomsaϕ. Calls and returns of the i-th matching relation are identified by atoms
containing respectively call i and ret i.

The main idea in the construction of an Mpds Mϕ which defines the set of
models of ϕ, is to mimic the labeling of each position of a multiply nested word
with the atom of ϕ that contains exactly all the formulas of clϕ that are fulfilled
from there. Therefore, the states of Mϕ are exactly the atoms of ϕ. The state
labelling function ofMϕ labels each atom A of ϕ with A∩AP (the set of atomic
propositions contained in A).

The set of initial states Atoms0ϕ contains all the atoms A of ϕ such that ϕ ∈ A,
and for all i ∈ [n], topi ∈ A and no formula of the form ©−iψ belongs to A.
Actually, each atomic proposition topi is used to mark the top positions for the

234 S. La Torre and M. Napoli

i-th matching relation, i.e., the positions that are not in between a call of the
i-th relation and its matching return. (Observe that all the topi positions form
an infinite sequence of linearly ordered positions that are related by the abstract
successor nextai , and among all the maximal such sequences -paths- this is the
only one which is infinite.)

Besides the bottom-of-the-stack symbol γ⊥, for the stack symbols, we take
only the atoms that contain sub-formulas of the form ©aiψ or ψ1Uaiψ2 and
a new symbol ∂. This symbol is never popped from a stack and is used as a
placeholder for unmatched calls.

The transition functions are defined such that states and stack contents are
consistently updated to ensure the correct propagation of the next modalities
and the correct labeling with the topi propositions.

– Each internal transition (A,A′) is such that: ©ψ ∈ A iff ψ ∈ A′ (global
formulas propagation) and for each i ∈ [n]: call i, ret i �∈ A (internal moves
are not from calls or returns), topi ∈ A iff topi ∈ A′ (topi status is preserved),
©aiψ ∈ A iff ψ ∈ A′ (abstract formulas propagation), and A and A′ contain
the same formulas of the form©−iψ (call formulas propagation). Moreover,
if ret i ∈ A′ and topi �∈ A, then A must not contain any formula of the form
©aiψ (undefined i-abstract successor of A).

– Each push transition (A,B,A′) of stack i ∈ [n] satisfies the following. call i ∈
A (push transitions are from calls),©ψ ∈ A iff ψ ∈ A′ holds (global formulas
propagation) and for j �= i: topj ∈ A iff topj ∈ A′ (topj status is preserved on
i push transitions), A and A′ contain the same formulas of the form ©−jψ
(same j-call successor), ©ajψ ∈ A iff ψ ∈ A′ (propagation of j-abstract
formulas). Moreovoer, ©−iψ ∈ A′ iff ψ ∈ A (i-call formulas update), and if
B �= ∂ (i.e. the call is matched), then: topi ∈ A iff topi ∈ B and ¬topi ∈ A′,
A and B contain the same formulas of the form ©−iψ, and ©aiψ ∈ A iff
ψ ∈ B. Otherwise, i.e., B = ∂ (the call is not matched), topi ∈ A and
topi ∈ A′ (unmatched calls are all at top positions), and A does not contain
formulas of the form ©aiψ.

– Each pop transition (A,B,A′) of stack i ∈ [n] is such that: ret i ∈ A (pop
transitions are from returns); B �= ∂ (∂ cannot be popped out of any stack);
©ψ ∈ A iff ψ ∈ A′ (global formulas are propagated from A);
for j �= i: topj ∈ A iff topj ∈ A′ (topj status is preserved on i pop transitions),
A andA′ contain the same formulas of the form©−jψ (same j-call successor),
©ajψ ∈ A iff ψ ∈ A′ (propagation of j-abstract formulas);
if B �= γ⊥ (A is a matched return), then: topi ∈ B iff topi ∈ A′ (A′ gets the
topi status of its matching call),©aiψ ∈ B iff ψ ∈ A′ (i-abstract formulas are
propagated from matching call), and B and A′ contain the same formulas of
the form©−iψ (matching call and return have the same i-call successor);
if B = γ⊥ (A is an unmatched return), then: topi ∈ A and topi ∈ A′ (un-
matched returns are top),©aiψ ∈ A iff ψ ∈ A′ (i-abstract formulas are prop-
agated from A), and A and A′ do not contain formulas of the form©−iψ.

The fulfillment of formulas of the form ψ1Uψ2 and, only on the topi positions, of
formulas of the form ψ1Uaiψ2 is ensured with the addition of a Büchi condition.

A Temporal Logic for Multi-threaded Programs 235

In particular, for each formula of the form ψ1Uψ2 ∈ clϕ, we define an acceptance
set with all the atoms containing either ψ2 or ¬(ψ1Uψ2), and for each formula
of the form ψ1Uaiψ2 we define an acceptance set with all the atoms containing
topi along with either ψ2 or ¬(ψ1Uaiψ2).

For each i ∈ [n], a Büchi acceptance condition with all the atoms containing
topi is also needed if there are no formulas of the form ψ1Uaiψ2 in clϕ. This
ensures that each accepting run visits infinitely often topi-atoms, and thus by
the transition rules, each call that is declared matched (by pushing a B �= ∂ onto
a stack) is effectively matched in any accepting run.

Note that in this construction we actually use a generalized Büchi acceptance
condition, that is a set of Büchi acceptance conditions that have to be all fulfilled
in order to accept. Moving from a generalized Büchi acceptance condition withm
acceptance sets to a standard Büchi condition by using a modulo m+1 counter
is a well known technique and thus we omit further details on this.

The size of clϕ is linear in the size of ϕ, thus the number of states, stack
symbols and transitions of Mϕ is 2O(|ϕ|). The translation from generalized to
standard Büchi conditions increases the size only by a O(|ϕ|) factor (number of
until formulas in clϕ plus n). Therefore, we get:

Theorem 3. Given a MultiCaRet formula ϕ over n-nested words, it is possi-
ble to construct a Büchi n-Mpds Mϕ such that for each w: w |= ϕ iff 〈〈ρ, λϕ〉〉 =
w for some computation ρ of Mϕ. Moreover, the size of Mϕ is 2O(|ϕ|).

5 Büchi Mpds with Scope-Bounded Matching Relations

In this section, we show that emptiness of Büchi Mpds restricted to computa-
tions with scope-bounded matching relations is decidable in exponential time.

Scoped Runs. We restrict Mpds to runs where a symbol can be popped from a
stack i only if it has been pushed within one of the last k execution contexts of
this stack, where a context is a run such that all the pop and push transitions are
over the same stack. We formally define this restriction on the multiply nested
words and then export it to corresponding runs.

A multiply nested word w = ({σi}i∈N, {〈μi, Ci, Ri〉 | i ∈ [n]}) is k-scoped if
for each i, j ∈ N for which μh(i, j), h ∈ [n], holds then there are at most 2d− 3
positions x1, . . . , xd−1 ∈

⋃
h′ �=h(Ch′ ∪Rh′) and y1, . . . , yd−2 ∈ Ch ∪Rh such that

i < x1 < y1 < . . . < xd−2 < yd−2 < xd−1 < j and d ≤ k. A run ρ is k-scoped if
〈〈ρ〉〉 is k-scoped.

A context where the only active stack is the h-th is also called a h-context. For
a finite h-context from C0 to Cr, we write (q, w) �h (q′, w′) if C0 = 〈q, {wi}i∈[n]〉
with wh = w and Cr = 〈q′, {w′

i}i∈[n]〉 with w′
h = w′.

Decision Procedure. We reduce the emptiness problem for Büchi Mpds to the
same problem for standard Büchi automata.

Given M , we first define a PDS Mh, for h ∈ [n], obtained by ignoring all the
actions pushi and popi, for i �= h. Mh collects, in its states, pairs of states of

236 S. La Torre and M. Napoli

M , which are the beginning and the end of a context involving stack h, along
with a bit storing the information whether a state from F has been entered in
that context or not. The idea exploited here is similar to that in [12] where the
concept of thread-interface is used to summarize the executions of a thread in
consecutive rounds within a fixed-point algorithm to solve the scope-bounded
reachability problem for Mpds.

Fix M = (Q, q0, Γ ∪ {γ⊥}, Σ, λ, δint , {(δpushi , δpopi)}i∈[n]) be an n-Mpds, h ∈
[n] and F ⊆ Q .

Formally, the Pds Mh is (Q′, Q0, Γ,Σ, λ, δ
′int , (δ′push , δ′pop)) where:

– the set of states is Q′ =
⋃

m∈[k](Q×Q× {0, 1})m;

– the set of iniatial states is Q0 = {(q, q, 0)|q ∈ Q \ F} ∪ {(q, q, 1)|q ∈ F};
– the transition functions are as follows (set X be either a state of Q′, with

length m < k, or the empty word)
• (X(q, p, f), γ,X(q, p′, f ′)) ∈ δ′push if (p, γ, p′) ∈ δpushh , f ′ = 1 if p′ ∈ F ,
and f ′ = f , otherwise.
• (X(q, p, f), γ,X(q, p′, f ′)) ∈ δ′pop , if (p, γ, p′) ∈ δpoph , f ′ = 1 if p′ ∈ F ,
and f ′ = f , otherwise.
• (X(q, p, f), X(q, p′, f ′)) ∈ δ′int , if (p, p′) ∈ δint , f ′ = 1 if p′ ∈ F , and
f ′ = f , otherwise.
• (X,X(q, q, f)) ∈ δ′int (a jump), for every state q ∈ Q and f = 1 if q ∈ F ,
and f = 0, otherwise.

A triple (q, p, f) ∈ Q×Q×{0, 1} is called a summary. The PdsMh collects sum-
maries in its states: it starts from a state (q, q, f) and modifies the second and
the third component, following a run of M , then, by nondeterministic jumps, it
adds a new summary, forming lists of at most k summaries. To obtain longer,
possibly infinite, lists of summaries, we use a sequential composition which sim-
ply appends a list of summary after another list. Let Rh be the set of reachable
states of Mh and let Closure(Rh) contain the finite and infinite lists of sum-
maries obtained by sequential composition, starting from elements of Rh. The
the following lemma follows, using induction, from the definition of Mh.

Lemma 1. Let X = {(qi, pi, fi)}i∈N. If X ∈ Closure(Rh) then there exist h-
contexts ρi and words wi ∈ Γ ∗, for i ∈ N, such that:

1. w1 = ε and (qi, wi) �h (pi, wi+1),
2. fi = 1 if and only if a state from F occurs in ρi.

To obtain also a reverse implication of Lemma 1 for k-scoped runs, we show that
a list X of summaries can be associated to a k-scope bounded run ρ in such a
way that the summaries in X are associated to the h-contexts, and X is obtained
just by sequentially composing sequences, each having at most k summaries. The
idea is similar to that used in [12], by taking into account the non terminating
computations and the Büchi condition.

Lemma 2. Let ρ be a k-scoped run of M . There exist h-contexts {ρi}i∈N in ρ
such that, called qi and pi the first and the last states of ρi, {(qi, pi, fi)}i∈N ∈
Closure(Rh), where fi = 1 if and only if a state from F occurs in ρi.

A Temporal Logic for Multi-threaded Programs 237

Now, we define a Büchi automaton BM = (QB, {σ}, δB, QM
0 ,FB) which puts

together summaries to simulate a run of M . For this, it saves in its states
the current state of M , a reachable state Xh of Mh, for h ∈ [n], and a bit
for the acceptance condition. At each step, BM consumes a summary. When
the summaries of an Xh has been exhausted then it chooses another X ′

h in
the same set Rh. Thus the states of BM are (p,X1, · · · , Xn, f), where p ∈ Q,
Xh ∈ Rh and f ∈ {0, 1} and the initial states are (q,X1, · · · , Xn, f) such that
q ∈ Q0 and f = 1 if and only if q ∈ F . The transition function δB contains
((p,X1, · · · , Xn, f), σ, (p

′, X ′
1, · · · , X ′

n, f
′)) if there exists h ∈ [n] such that X ′

i =
Xi, for i �= h, Xh = (p, p′, fh)Y , f ′ = fh, and X

′
h = Y if Y �= ε and X ′

h ∈ Rh,
otherwise. Finally, the acceptance condition FB is {(p,X1, · · · , Xn, f) | f = 1}.

It is easy to see that BM accepts a word if and only if (M,F) accepts a k-
scoped computation. Moreover, the size of BM is exponential in the number of
the stacks and in the bound k. Thus, since the reachable states of a pushdown
system can be efficiently computed (e.g., [9]), we can state the theorem:

Theorem 4. The problem of deciding whether there exists a k-scope run of an
n-Mpds M satisfying a Büchi condition F is decidable in |M |O(nk) time.

6 Decidability Results for MultiCaRet

In this section, we show that the satisfiability and model-checking problems
for MultiCaRet become decidable by restricting the models to meaningful
subclasses of multiply nested words. Let us first show that these problems reduce
to the emptiness problem for Büchi Mpds.

Automata-theoretic approach to MultiCaRet model-checking. For i ∈ [2], let

Mi = (Qi, Q
0
i , Γi ∪ {γ⊥}, Σ, λi, δinti , {(δpushj

i , δ
popj

i)}j∈[n], Fi) be a n-Mpds. The
synchronized cross product M1 ⊗M2, is the n-Mpds M such that:
M = (Q,Q0, (Γ1 × Γ2) ∪ {γ⊥}, Σ, λ, δint , {(δpushj , δpopj)}j∈[n], F) where Q =

{(q1, q2) | λ1(q1) = λ2(q2)}, Q0 = Q∩(Q0
1×Q0

2), λ is such that λ(q1, q2) = λ1(q1),
the transition functions are such that: ((q1, q2), (q

′
1, q

′
2)) ∈ δint iff (qi, q

′
i) ∈ δinti

for i ∈ [2], and for j ∈ [n]: ((q1, q2), (γ1, γ2), (q
′
1, q

′
2)) ∈ δ

push
j iff (qi, γi, q

′
i) ∈ δ

pushj

i

for i ∈ [2], and ((q1, q2), (γ1, γ2), (q
′
1, q

′
2)) ∈ δ

pop
j iff (qi, γi, q

′
i) ∈ δ

popj

i for i ∈ [2]

(where we have identified (γ⊥, γ⊥) with γ⊥).
If one or both the Mpds are Büchi Mpds the above construction can be

adapted in the usual way to suit the Büchi condition(s). A salient property of
this construction is that the resultingMpds defines a language of multiply nested
words that is the intersection of the languages of the starting Mpds.

Lemma 3. For (Büchi) Mpds Mi with i ∈ [2], M = M1 ⊗M2 is a (Büchi)
Mpds and L(M) = L(M1) ∩ L(M2) holds.

In section 4, we have shown that given a formula ϕ over n-nested words, we can
construct a Büchi Mpds Mϕ that captures all the n-nested words that satisfy
ϕ. Thus, a given model checking instance formed by a Mpds M and a formula
ϕ, reduces to checking that L(M) ∩ L(M¬ϕ) is empty. Therefore, by the above
lemma and Theorem 3, we get:

238 S. La Torre and M. Napoli

Theorem 5. For a Mpds M and a MultiCaRet formula ϕ, M |= ϕ iff
L(M) ∩ L(M¬ϕ) = ∅.

6.1 Scope-Bounded Multiply Nested Words

Let us restrict to k-scoped multiply nested words. To capture the set of all
k-scoped multiply nested words satisfying a MultiCaRet formula, it suffices
to place the same limitation on the runs of the Büchi Mpds Mϕ from Section 4.
Therefore, following the automata-theoretic approach described above, by The-
orems 3, 4 and 5, we have:

Theorem 6. The MultiCaRet satisfiability and model-checking problems re-
stricted to k-scoped multiply nested works are Exptime-complete.

6.2 Multiply Nested Words with Ordered Matching Relations

We recall that in ordered Mpds a symbol can be popped out from a stack h
provided that all stacks of lower indices (from 1 through h − 1) are empty [8].
We define ordered multiply nested words by imposing the same restriction. A
multiply nested word ({σi}i∈N, {〈μi, Ci, Ri〉 | i ∈ [n]}) is ordered if for every
i, j ∈ N for which μh(i, j) holds for some h ∈ [n]: if there is a x < j such that
x ∈ Ch′ , h′ < h, then there is a y < j such that μh′(x, y) holds (all calls of
lower-index relations preceding j are already matched at j).

Checking the emptiness of Büchi ordered Mpds is known to be 2Etime-

complete [3,4], and can be solved in time |M |2O(n)

where |M | denotes the size of
the input Mpds [3]. Therefore, by Theorems 3 and 5, we have:

Theorem 7. The MultiCaRet satisfiability and model-checking problems re-
stricted to ordered multiply nested works are 2Etime-complete.

6.3 Multiply Nested Words of Bounded Tree-Width

The expressiveness of MultiCaRet does not go beyond first-order logic in-
terpreted over multiply nested words. We define FOμ as the first-order logic
over multiply nested words which has in its signature relations that capture the
matching relations. Namely, the logic contains the usual binary predicate < (the
ordering relation over integers) along with a binary predicate μi and unary pred-
icates Ci, Ri for i ∈ [n] such that (μi, Ci, Ri) define a matching relation. Also,
we use the unary predicates Pσ(x) meaning that x is labeled with symbol σ, and
fix a countable set of first-order variables x, y, The logic FOμ is defined as:

ϕ := Pσ(x)|x < y|μi(x, y)|¬ϕ|ϕ ∨ ϕ|∃xϕ (where i ∈ [n])
With similar constructions as those used in [1] to show that CaRet formulas
are FO definable, we can show the following theorem.

Theorem 8. Given a MultiCaRet formula ϕ it is possible to construct effec-
tively a sentence ψ of FOμ such that |ψ| = O(|ϕ|) and w |= ϕ if and only if w
satisfies ψ.

A Temporal Logic for Multi-threaded Programs 239

This result allows us to extend the decidability of MultiCaRet satisfiability
and model-checking to all the MSO-definable classes of multiply nested words of
bounded tree-width. In fact, for each class of MSO-definable graphs of bounded
tree width, the satisfiability of MSO sentences is decidable [13]. Thus, by Theo-
rem 8 we get:

Theorem 9. Restricting the models to any MSO-definable class of multiply
nested words, the satisfiability and model-checking problems of MultiCaRet

formulas are decidable.

Acknowledgments. We thank Gennaro Parlato for helpful discussions.

References

1. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. Log. Meth. Comp. Sci. 4(4) (2008)

2. Alur, R., Etessami, K., Madhusudan, P.: A Temporal Logic of Nested Calls and
Returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004)

3. Atig, M.F.: Global model checking of ordered multi-pushdown systems. In:
FSTTCS, pp. 216–227 (2010)

4. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of Multi-pushdown Automata Is
2ETIME-Complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257,
pp. 121–133. Springer, Heidelberg (2008)

5. Atig, M.F., Bouajjani, A., Narayan Kumar, K., Saivasan, P.: Linear-time model-
checking for multithreaded programs under scope-bounding. In: Mukund, M.,
Chakraborty, S. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 152–166. Springer,
Heidelberg (2012)

6. Bollig, B., Cyriac, A., Gastin, P., Zeitoun, M.: Temporal Logics for Concurrent
Recursive Programs: Satisfiability and Model Checking. In: Murlak, F., Sankowski,
P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 132–144. Springer, Heidelberg (2011)

7. Bozzelli, L., La Torre, S., Peron, A.: Verification of well-formed communicating
recursive state machines. Theor. Comput. Sci. 403(2-3), 382–405 (2008)

8. Breveglieri, L., Cherubini, A., Citrini, C., Crespi-Reghizzi, S.: Multi-push-down
languages and grammars. Int. J. Found. Comput. Sci. 7(3), 253–292 (1996)

9. Esparza, J., Schwoon, S.: A BDD-Based Model Checker for Recursive Programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–336.
Springer, Heidelberg (2001)

10. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS, pp. 161–170. IEEE Computer Society (2007)

11. La Torre, S., Napoli, M.: Reachability of Multistack Pushdown Systems with Scope-
Bounded Matching Relations. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011.
LNCS, vol. 6901, pp. 203–218. Springer, Heidelberg (2011)

12. La Torre, S., Parlato, G.: Scope-bounded multistack pushdown systems: Fixed-
point, sequentialization, and tree-width (2012),
http://users.ecs.soton.ac.uk/gp4/papers/scoped2012.pdf

13. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: POPL, pp.
283–294 (2011)

14. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer
Society (1977)

15. Qadeer, S., Rehof, J.: Context-Bounded Model Checking of Concurrent Software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

http://users.ecs.soton.ac.uk/gp4/papers/scoped2012.pdf

The Algorithmic Complexity

of k-Domatic Partition of Graphs�

Hongyu Liang

Institute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, China
lianghy08@mails.tsinghua.edu.cn

Abstract. Let G = (V,E) be a simple undirected graph, and k be a
positive integer. A k-dominating set of G is a set of vertices S ⊆ V sat-
isfying that every vertex in V \ S is adjacent to at least k vertices in S.
A k-domatic partition of G is a partition of V into k-dominating sets.
The k-domatic number of G is the maximum number of k-dominating
sets contained in a k-domatic partition of G. In this paper we study the
k-domatic number from both algorithmic complexity and graph theo-
retic points of view. We prove that it is NP-complete to decide whether
the k-domatic number of a bipartite graph is at least 3, and present a
polynomial time algorithm that approximates the k-domatic number of
a graph of order n within a factor of (1

k
+ o(1)) lnn, generalizing the

(1 + o(1)) lnn approximation for the 1-domatic number given in [5]. In
addition, we determine the exact values of the k-domatic number of some
particular classes of graphs.

1 Introduction

In this paper we consider only simple and undirected graphs, and we follow [3]
for notations and terminologies in graph theory. Let G = (V,E) be a simple and
undirected graph. For a vertex v ∈ V , let NG(v) denote the set of neighbors
of v, and degG(v) = |NG(v)| is the degree of v. When no ambiguity arises, we
sometimes drop the subscript G. Let δ(G) = minv∈V {deg(v)} be the minimum
degree of G. For an integer k ≥ 1, a k-coloring of G is a mapping c : V →
{1, 2, . . . , k} such that c(u) �= c(v) whenever {u, v} ∈ E. We say G is k-colorable
if G has a k-coloring.

Domination theory is a very important branch of graph theory which has
found applications in numerous areas; see [12,13] for a comprehensive treatment
and some detailed surveys on (earlier) results of domination in graphs. A set
of vertices S ⊆ V is called a dominating set of G if every vertex in V \ S has
at least one neighbor in S. The domination number of G is the minimum size
of a dominating set of G. A domatic partition of G is a partition of V into

� This work was supported in part by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, and the National Natural Science Founda-
tion of China Grant 61033001, 61061130540, 61073174.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 240–249, 2012.
c© IFIP International Federation for Information Processing 2012

The Algorithmic Complexity of k-Domatic Partition of Graphs 241

(disjoint) dominating sets of G. The domatic number of G, denoted by d(G),
is the maximum number of dominating sets in a domatic partition of G. The
concept of domatic number was introduced by Cockayne and Hedetniemi [2],
which has been proven very useful in various situations such as locating facilities
in a network [9], clusterhead rotation in sensor networks [17], prolonging the
lifetime and conserving energy of networks [14,18], and many others.

Let k ≥ 1 be a fixed integer. A k-dominating set of G is a set of vertices S ⊆ V
with the property that every vertex in V \S has at least k neighbors in S. Clearly
a 1-dominating set is just a dominating set. The notion of k-dominating set was
proposed by Fink and Jacobson [6,7], and has since then been extensively studied
for both its theoretical interest and its practical applications in fault-tolerant
domination in networks; see, e.g., [1,4,8,19,20] and the references therein. It is
known that deciding the size of the minimum k-dominating set of a graph is NP-
hard [21]. (In the literature, some researchers use the name k-dominating set to
refer to another variant of dominating set, namely the distance-k dominating set
[11,16].)

A k-domatic partition of G is a partition of V into (disjoint) k-dominating sets
of G. The k-domatic number of G, denoted by dk(G), is the maximum number
of k-dominating sets in a k-domatic partition of G. Thus d1(G) = d(G). The
concept of k-domatic number was first studied by Zelinka [22] under the name “k-
ply domatic number,” and was later rediscovered and studied under its current
name by Kämmerling and Volkmann [15]. This concept is useful for modeling
networks that need domatic partitions with higher degree of domination. As an
example, imagine that we wish to locate resources in a network to facilitate the
users (i.e., nodes). A user in the network can access resources only from itself
and his neighboring nodes. A user is surely happy if there is one resource at
his location, but if not, he would only be satisfied if he could access at least k
copies of resources from its neighbors, keeping the possibility of multiple choices
as a compensation of distance. Then the set of nodes with resources satisfying
all the users is exactly a k-dominating set of the network. Now suppose we wish
to distribute different types of resources (to enhance the quality of life of users)
with the natural constraint that at most one kind of resource can be placed at
each node. Then the maximum number of resource types that can be put in the
network is precisely the k-domatic number of its underlying graph.

Despite being a natural generalization of the domatic number whose combi-
natorial and algorithmic aspects have both been well understood, the k-domatic
number lacks an investigation from a complexity viewpoint, which motivates our
study.

In this paper, we explore the k-domatic number mainly from the algorithmic
complexity point of view, and obtain several results that fill the blank in this
line of research. In Section 2 we prove that for every k ≥ 1, it is NP-complete
to decide whether the k-domatic number of a given bipartite graph is at least 3.
This generalizes the NP-completeness result for the 1-domatic number [10]. We
then present in Section 3 a polynomial time algorithm that approximates the
k-domatic number of a given graph of order n within factor (1k +o(1)) lnn, which

242 H. Liang

generalizes the (1 + o(1)) lnn approximation for the domatic number given in
[5]. Finally, as a minor contribution, we determine in Section 4 the exact values
of the k-domatic number of some special classes of graphs.

2 Complexity of Computing the k-Domatic Number

In this section we show the hardness of computing the k-domatic number of a
graph. Our main theorem is as follows.

Theorem 1. For every fixed integer k ≥ 1, it is NP-complete to decide whether
the k-domatic number of a given graph is at least 3.

To establish Theorem 1 we introduce a new variant of the coloring problem,
which may have its own interest in other scenarios. Let k be a fixed positive
integer and H = (V,E) be a 2k-uniform hypergraph, i.e., a hypergraph in which
each edge contains exactly 2k vertices. A mapping c : V → {1, 2, 3} is called a
balanced 3-coloring of H if for every e ∈ E, there exist 1 ≤ i < j ≤ 3 such that
|c−1(i)∩e| = |c−1(j)∩e| = k; that is, every edge of H contains exactly k vertices
of color i and k vertices of color j (and no vertices of the color other than i and
j). Define the 2k-Uniform Hypergraph Balanced 3-Coloring Problem

as follows:
2k-Uniform Hypergraph Balanced 3-Coloring Problem (2kHB3C,

for short)
Instance: A 2k-uniform hypergraph H .
Question: Does H have a balanced 3-coloring?

Lemma 1. For every fixed integer k ≥ 1, 2kHB3C is NP-complete.

Proof. Let k be a fixed positive integer. The 2kHB3C problem is clearly in
NP , since we can verify in polynomial time whether a given mapping is a bal-
anced 3-coloring of H by exhaustively checking all its edges. We now present
a polynomial-time reduction from the Graph 3-Coloring problem (G3C for
short), which is a classical NP-complete problem [10], to 2kHB3C. An instance
of G3C consists of a graph G, and the goal is to decide whether G is 3-colorable.
Let G = (V,E) be a graph serving as the input to G3C. We will construct a
2k-uniform hypergraph H from G. Informally speaking, the hypergraph H can
be obtained as follows: For each edge e ∈ E, we associate it with a 2k-uniform
hypergraph He, where He has vertex set Xe ∪ Ye with |Xe| = |Ye| = 3k, and
contains all possible hyperedges that consist of exactly k vertices from Xe and
another k vertices from Ye. The number of such hyperedges is

(
3k
k

)
·
(
3k
k

)
< 26k,

which is a constant since k is a fixed integer. Let H be the union of all such
(disjoint) hypergraphs. Finally, for each e ∈ E, add to H a hyperedge which
consists of both vertices in e, the first k − 1 vertices in Xe, and the first k − 1
vertices in Ye. This finishes the construction of H . It is clear that H can be
constructed in polynomial time.

The Algorithmic Complexity of k-Domatic Partition of Graphs 243

We now give a rigorous definition of H . For every e ∈ E, let
– Xe = {xe,i | 1 ≤ i ≤ 3k} and Ye = {ye,i | 1 ≤ i ≤ 3k};
– E′

e = {X ∪ Y | X ⊆ Xe;Y ⊆ Ye; |X | = |Y | = k};
– e′ = e ∪ {xe,i, ye,i | 1 ≤ i ≤ k − 1}.

Let V ′ = V ∪
⋃

e∈E(Xe ∪ Ye), and E′ = {e′ | e ∈ E} ∪
⋃

e∈E E
′
e. Finally

let H = (V ′, E′). It is easy to verify that H is a 2k-uniform hypergraph with
|V ′| = |V |+ 6k|E| and |E′| = (1 +

(
3k
k

)
·
(
3k
k

)
)|E|.

We will prove that G is 3-colorable if and only if H has a balanced 3-coloring.
First consider the “only if” direction. Assume that G is 3-colorable and c :

V → {1, 2, 3} is a 3-coloring of G. Define a function c′ : V ′ → {1, 2, 3} as
follows. First let c′(v) = c(v) for all v ∈ V . For each edge e = {u, v} ∈ E,
suppose c(u) = a and c(v) = b where a, b ∈ {1, 2, 3} (note that a �= b). Then, let
c′(x) = a for all x ∈ Xe and c′(y) = b for all y ∈ Ye. We verify that the mapping
c′ defined above is a balanced 3-coloring of H . This can be seen as follows:

– For each hyperedge h = X ∪ Y with X ⊆ Xe and Y ⊆ Ye for some e ∈ E,
by our definition, h contains exactly k vertices of the same color with that
of one endpoint of e, and another k vertices of the same color with that of
the other endpoint of e. Since the two endpoints of e have different colors, h
satisfies the property of balanced 3-coloring.

– For each hyperedge e′ = e ∪ {xe,i, ye,i | 1 ≤ i ≤ k − 1} for some e, similar
to the previous case, h consists of precisely k vertices of one color and the
other k vertices of another color.

Therefore, c′ is a balanced 3-coloring of H .
We next consider the “if” direction. Suppose that c′ is a balanced 3-coloring of

H . Let e = {u, v} be an arbitrary edge in E. We claim that all the vertices in Xe

have the same color i for some i ∈ {1, 2, 3}, all those in Ye have the same color j
for some j ∈ {1, 2, 3}, and i �= j. This will imply that u and v have different colors
under c′, since otherwise the hyperedge e′ = e∪ {xe,i, ye,i | 1 ≤ i ≤ k− 1} is not
balanced. We now prove the above claim. As |Xe| = 3k, there exists i ∈ {1, 2, 3}
such that the number of vertices in Xe with color i is at least k; without loss
of generality we assume that c′(xe,1) = c′(xe,2) = . . . = c′(xe,k) = i. Since the
hyperedge {xe,1, xe,2, . . . , xe,k} ∪ Y exists for all Y ⊆ Ye with |Y | = k, we know
that in every size-k subset of Ye, all the vertices have the same color. Thus, all
vertices in Ye has the same color, say j, and obviously j �= i. Analogously, all
vertices in Xe has the same color i, proving the claim. According to our previous
analysis, the claim implies that c′(u) �= c′(v) for all {u, v} ∈ E. Therefore, the
mapping c : V → {1, 2, 3} defined by c(v) = c′(v) for all v ∈ V is a 3-coloring of
G, and hence G is 3-colorable.

This finishes the reduction from G3C to 2kHB3C, and thus concludes the
proof of Lemma 1.

We now proceed to prove Theorem 1.

Proof (of Theorem 1). Let k be a fixed positive integer. We reduce 2kHB3C to
the problem of deciding whether dk(G) ≥ 3 for a given graph G. Note that the

244 H. Liang

latter problem is clearly in NP . Let H = (V,E) be a 2k-uniform hypergraph
given as an input to the 2kHB3C problem. We construct a graph G = (V ′, E′)
as follows. Let V ′ = X ∪Y ∪Z, where X = {xe | e ∈ E}, Y = {yv | v ∈ V }, and
Z = {zi | 1 ≤ i ≤ 3k}. Let E′ = {{xe, yv} | v ∈ e ∈ E} ∪ {{yv, zi} | v ∈ V ; 1 ≤
i ≤ 3k} ∪ {{zi, zj} | 1 ≤ i < j ≤ 3k}. Thus, G[X ∪ Y] is the incidence graph
of H , G[Y ∪ Z] contains a complete bipartite subgraph with partition (Y, Z),
and G[Z] is a clique. It is clear that the construction of G can be finished in
polynomial time.

We shall show that H has a balanced 3-coloring if and only if dk(G) ≥ 3,
which will complete the reduction and prove the NP-completeness of the desired
problem.

First consider the “only if” direction. Assume thatH has a balanced 3-coloring
c : V → {1, 2, 3}. For each e ∈ E let Ce = {i | ∃ v ∈ e s.t. c(v) = i}; clearly
|Ce| = 2. We now design a partition (V ′

1 , V
′
2 , V

′
3) of V ′ as follows: For each i ∈

{1, 2, 3}, let V ′
i = {xe | i �∈ Ce} ∪ {yv | c(v) = i} ∪ {zj | (i − 1)k + 1 ≤ j ≤ ik}.

It is easy to see that this is indeed a partition of V ′. Furthermore, we will prove
that for each i ∈ {1, 2, 3}, V ′

i is a k-dominating set of G. Fix i ∈ {1, 2, 3}. Notice
that V ′ \V ′

i = {xe | i ∈ Ce} ∪ {yv | c(v) �= i}∪ {zj | j ∈ {1, . . . , 3k} \ {(i− 1)k+
1, . . . , ik}}. By our construction of G, every vertex in (Y ∪ Z) \ V ′

i is adjacent
to k vertices in V ′

i , which are z(i−1)k+1, . . . , zik. For each xe ∈ X \ V ′
i , we have

i ∈ Ce by our definition of V ′
i . Thus, there exists u ∈ e for which c(u) = i.

Because c is a balanced 3-coloring of H , there exist exactly k vertices in e that
have value i under c, which indicates that those k vertices are all included in V ′

i .
Therefore, xe is adjacent to at least k vertices in V ′

i . This proves that V ′
i , for

every i ∈ {1, 2, 3}, is a k-dominating set of G, and hence dk(G) ≥ 3, finishing
the proof of the “only if” direction of the reduction.

We now turn to the “if” direction. Assume that dk(G) ≥ 3 and (V ′
1 , V

′
2 , V

′
3)

is a k-domatic partition of G. Define a mapping c : V → {1, 2, 3} as follows:
For every v ∈ V , let c(v) = i where i is the unique integer satisfying that
yv ∈ V ′

i . We show that c is a balanced 3-coloring of H . Consider an arbitrary
edge e ∈ E, and assume without loss of generality that xe ∈ V ′

1 (and thus
xe �∈ V ′

2 ∪ V ′
3). By the definition of k-dominating sets, for each j ∈ {2, 3},

|NG(xe) ∩ V ′
j | ≥ k. As |NG(xe)| = |{yv | v ∈ e}| = 2k and V ′

2 ∩ V ′
3 = ∅, we

have |NG(xe) ∩ V ′
2 | = |NG(xe) ∩ V ′

3 | = k. Thus, c(yv) = 2 for exactly k vertices
v ∈ e, and c(yv) = 3 for the other k ones, showing the validity of the coloring on
edge e. Hence, c is indeed a balanced 3-coloring of H . This concludes the “if”
direction of the reduction.

The proof of Theorem 1 is thus completed.

We remark that the NP-completeness result holds even if the input graph is
bipartite. To see this, we modify the construction of G in the proof as fol-
lows: Add 3k vertices {z′i | 1 ≤ i ≤ 3k} to H , add an edge between every
possible pair (zi, z

′
j), and let H [Z] be an empty graph (instead of being a com-

plete graph as in the previous proof). Then it is easy to verify that G is a
bipartite graph. The remaining part of the proof goes through analogously. The
only modification is that when proving the “only if” direction of the reduction,

The Algorithmic Complexity of k-Domatic Partition of Graphs 245

we define the partition (V ′
1 , V

′
2 , V

′
3) as V ′

i = {xe | i �∈ Ce} ∪ {yv | c(v) = i} ∪
{zj, z′j | (i− 1)k + 1 ≤ j ≤ ik}. Therefore we obtain:

Corollary 1. Deciding whether the k-domatic number of a bipartite graph is at
least 3 is NP-complete for every fixed positive integer k.

The following corollary is immediate.

Corollary 2. For every fixed integer k ≥ 1, computing the k-domatic number
of a bipartite graph is NP-hard.

3 Approximation Algorithm for k-Domatic Number

Since computing the k-domatic number is NP-hard, we are interested in design-
ing approximation algorithms for it. In this section we present a logarithmic-
factor approximation algorithm for computing the k-domatic number of a graph,
generalizing the result of [5] for the 1-domatic number.

Theorem 2. For every fixed integer k ≥ 1, the k-domatic number of a given
graph of order n can be approximated within a factor of (1k + o(1)) lnn in poly-
nomial time.

Proof. Fix an integer k ≥ 1. Let G = (V,E) be a graph of order n ≥ N0, where
N0 is a sufficiently large but fixed integer (which may depend on k). (Note
that the k-domatic number of a graph of order n ≤ N0 can be computed in
constant time.) If δ(G) ≤ lnn + 3k ln lnn, due to Theorem 2.9 in [15], we have

dk(G) ≤ δ(G)
k + 1 ≤ (1k + o(1)) lnn. In this case, a trivial k-domatic partition

that consists of only V itself is already a (1k + o(1)) lnn approximate solution.
Therefore, we assume in what follows that δ(G) > lnn+ 3k ln lnn.

Let t = δ(G)/(lnn+ 3k ln lnn). For every vertex v ∈ V , assign a label l(v) ∈
{1, 2, . . . , t} to v uniformly at random; that is, l(v) = i with probability 1/t for
all i ∈ {1, 2, . . . , t}. Let Si, 1 ≤ i ≤ t, be the set of vertices that receive label i.
Evidently {S1, S2, . . . , St} is a partition of V . For v ∈ V and i ∈ {1, 2, . . . , t},
let E(v, i) denote the event that at most k − 1 neighbors of v have label i. If
there is no v ∈ V for which E(v, i) holds, then every vertex v ∈ V has at least
k neighbors in Si, and hence Si is a k-dominating set of G. For all v ∈ V and
i ∈ {1, 2, . . . , t}, we have

Pr[E(v, i)] =
k−1∑
j=0

(
deg(v)

j

)(
1

t

)j (
1− 1

t

)deg(v)−j

≤
k−1∑
j=0

(deg(v))j
(
1

t

)j (
1− 1

t

)deg(v)−j

=

(
1− 1

t

)deg(v)

·
k−1∑
j=0

(
deg(v)

t

(
1− 1

t

)−1
)j

,

246 H. Liang

where the first inequality follows from the fact that
(
n1

n2

)
≤ nn2

1 for two positive
integers n1 ≥ n2.

As deg(v)
t (1− 1

t)
−1 = deg(v)

t−1 ≥
deg(v)
δ(G) ≥ 1, we have

Pr[E(v, i)] ≤
(
1− 1

t

)deg(v)

·
k−1∑
j=0

(
deg(v)

t

(
1− 1

t

)−1
)k−1

=

(
1− 1

t

)deg(v)

· k ·
(
deg(v)

t

)k−1 (
1− 1

t

)−k+1

= k

(
1− 1

t

)deg(v)−k+1 (
deg(v)

t

)k−1

≤ k · exp
(
−deg(v)− k + 1

t
+ (k − 1) ln

(
deg(v)

t

))
(where we use 1 + x ≤ ex for all x ∈ R, and denote exp(m) := em).

Define a function f as f(x) = −x + (k − 1) lnx. Clearly f is non-increasing
on [X0,∞) for some sufficiently large but fixed X0 (depending on k only). As
deg(v)

t ≥ δ(G)
t = Ω(lnn), by choosing large enough n ≥ N0 we have f(deg(v)t) ≤

f(δ(G)
t), and thus

Pr[E(v, i)] ≤ k · exp
(
− δ(G) − k + 1

t
+ (k − 1) ln

(
δ(G)

t

))

= k · exp
(
− δ(G) − k + 1

δ(G)/(ln n+ 3k ln lnn)
+ (k − 1) ln

(
δ(G)

δ(G)/(ln n+ 3k ln lnn)

))

= k · exp (−(lnn+ 3k ln lnn)(1 −O(1/ lnn)) + (k − 1) ln (lnn+ 3k ln lnn))

(where we use δ(G) > lnn and k = O(1))

≤ exp (− lnn− 2k ln lnn+ o(ln lnn))

≤ exp (− lnn− k ln lnn)

= n−1(lnn)−k .

Call a pair (v, i) bad if the event E(v, i) happens. By linearity of expectation,
the expected number of bad pairs is∑

v∈V ;1≤i≤t

Pr[E(v, i)] ≤ nt · n−1(lnn)−k = t · o(1).

Recall that Si = {v ∈ V | l(v) = i} for each i ∈ {1, 2, . . . , t}. Notice that Si is a
k-dominating set of G if and only if there is no v ∈ V such that (v, i) is a bad pair.
Clearly a bad pair (v, i) can “prevent” at most one such set, namely Si, from
being a k-dominating set of G. Hence, the expected number of k-dominating sets
among {Si | i ∈ {1, 2, . . . , t}} is at least t − t · o(1) = (1 − o(1))t. By checking
the t sets S1, S2, . . . , St one by one, we can find all the k-dominating sets among
them. Add the vertices not covered by these sets to them arbitrarily. Then, we

The Algorithmic Complexity of k-Domatic Partition of Graphs 247

obtain a k-domatic partition of G of (expected) size (1 − o(1))t. This solution
has an approximation factor of

dk(G)

(1− o(1))t ≤
δ(G)
k + 1

(1− o(1))δ(G)/(lnn+ 3k ln lnn)
≤

(
1

k
+ o(1)

)
lnn .

Finally we show that this algorithm can be efficiently derandomized by the
method of conditional probabilities. Order the vertices in V arbitrarily, say
v1, v2, . . . , vn. We assign labels to the vertices according to this order, from v1 to
vn. Suppose we are dealing with vi, and the labels of v1, . . . , vi−1 have already
been fixed to be l1, . . . , li−1, respectively. We try all the possible labels 1, 2, . . . , t
one by one, and assign vi with the label li that minimizes the expected number
of bad pairs conditioned on that (∀1 ≤ s ≤ i) l(vs) = ls. (Recall that l(v) is the
label of v; here we regard it as a random variable.) This expected number can
be computed in polynomial time, because it is equal to∑

v∈V ;1≤j≤t

Pr[E(v, j) | (∀1 ≤ s ≤ i) l(vs) = ls],

where, denoting by rj the number of neighbors of vi that has already been given
label j, we have

Pr[E(v, j)] =

⎧
⎪⎨
⎪⎩

0, if rj ≥ k;
1, if rj < k and

∑t
q=1 rq = deg(v);

∑k−1−rj
j′=0

(deg(v)−∑t
q=1 rq

j′
) (

1
t

)j′ (
1− 1

t

)deg(v)−∑t
q=1 rq−j′

, otherwise.

Since k is fixed, we can compute every Pr[E(v, j)] in polynomial time, and there
are only |V | · t ≤ n2 of them.

By our choice of labels, after all labels have been determined, the number of
bad pairs does not exceed the expected number of bad pairs estimated before.
The remaining arguments go through analogously as before, and we can obtain
a solution of approximation factor (1k + o(1)) lnn. This completes the proof of
Theorem 2.

4 k-Domatic Number of Special Graphs

In this section we determine the exact values of the k-domatic number of some
special classes of graphs. By Theorem 2.9 in [15], dk(G) ≤ δ(G)

k + 1. As dk(G)
is a positive integer, we have dk(G) = 1 whenever k > δ(G). Therefore, when
considering dk(G) we only care those k for which 2 ≤ k ≤ δ(G). (The case k = 1
corresponds to the domatic number, which has been extensively studied in the
literature.)

For every integer n ≥ 2, let Fn denote the fan graph with vertex set V =
{v0, v1, v2, . . . , vn} and edge set E = {vivi+1 | 1 ≤ i ≤ n−1}∪{v0vi | 1 ≤ i ≤ n}.
Obviously δ(Fn) = 2.

248 H. Liang

Theorem 3. Let n ≥ 2 be an integer. Then,

d2(Fn) =

{
1 if n ∈ {2, 4};
2 otherwise.

Proof. We have d2(Fn) ≤ δ(Fn)/2 + 1 = 2. When n is odd, it can be verified
that V0 := {vi | 0 ≤ i ≤ n; i is even} and V1 := {vi | 0 ≤ i ≤ n; i is odd}
are both 2-dominating sets of Fn, and clearly (V0, V1) is a partition of V . Thus
d2(Fn) = 2 when n is odd. If n = 2 or 4, it can be checked exhaustively that
d2(Fn) = 1. Now consider the case where n is even and n ≥ 6. Let Z0 = {vi | 0 ≤
i ≤ n − 4; i is even} ∪ {vn−1}, and Z1 = V \ Z0. It is easy to see that for each
j ∈ {0, 1}, every vertex in Zj is adjacent to at least two vertices in Z1−j . Thus
Z0 and Z1 are both 2-dominating sets of G, indicating that d2(Fn) ≥ 2. Hence
d2(Fn) = 2, and the proof of Theorem 3 is complete.

For every integer n ≥ 3, let Wn denote the wheel graph with vertex set V =
{v0, v1, v2, . . . , vn} and edge set E = {vivi+1 | 1 ≤ i ≤ n−1}∪{vnv1}∪{v0vi | 1 ≤
i ≤ n}. Clearly δ(Wn) = 3.

Theorem 4. d2(Wn) = 2 for every integer n ≥ 3.

Proof. Let V0 = {vi | 0 ≤ i ≤ n; i is even} and V1 = {vi | 0 ≤ i ≤ n; i is odd}. It
is easy to verify that V0 and V1 are both 2-dominating sets of Wn (regardless of
the parity of n), and thus d2(Wn) ≥ 2. On the other hand, we have d2(Wn) ≤
�δ(Wn)/2�+ 1 = 2. Hence d2(Wn) = 2.

Theorem 5. d3(Wn) = 1 for every integer n ≥ 3.

Proof. First note that d3(Wn) ≤ �δ(Wn)/3�+ 1 = 2. Assume that d3(Wn) = 2
and (V0, V1) is a 3-domatic partition of G. Also assume without loss of generality
that v0 ∈ V0. If vi �∈ V1 for some 1 ≤ i ≤ n, then all the three neighbors of
vi must belong to V1, implying that v0 ∈ V1 which is a contradiction. Thus
V1 = {v1, v2, . . . , vn} and V0 = {v0}. But then V0 is not a 3-dominating set of
G. Therefore d3(Wn) = 2 cannot hold, and thus d3(Wn) = 1.

Acknowledgement. The author is grateful to the anonymous referees for their
helpful suggestions on improving the presentation of this paper.

References

1. Caro, Y., Roditty, Y.: A note on the k-domination number of a graph. Internat. J.
Math. Math. Sci. 13, 205–206 (1990)

2. Cockayne, E.J., Hedetniemi, S.T.: Towards a theory of domination in graphs. Net-
works 7, 247–261 (1977)

3. Diestel, R.: Graph Theory, 4th edn. Springer (2010)
4. Favaron, O., Hansberg, A., Volkmann, L.: On k-domination and minimum degree

in graphs. J. Graph Theory 57, 33–40 (2008)

The Algorithmic Complexity of k-Domatic Partition of Graphs 249

5. Feige, U., Halldórsson, M.M., Kortsarz, G., Srinivasan, A.: Approximating the
domatic number. SIAM J. Comput. 32(1), 172–195 (2002)

6. Fink, J.F., Jacobson, M.S.: n-domination in graphs. In: Graph Theory with Ap-
plications to Algorithms and Computer Science, pp. 282–300 (1985)

7. Fink, J.F., Jacobson, M.S.: On n-domination, n-dependence and forbidden sub-
graphs. In: Graph Theory with Applications to Algorithms and Computer Science,
pp. 301–311 (1985)

8. Fujisawa, J., Hansberg, A., Kubo, T., Saito, A., Sugita, M., Volkmann, L.: Inde-
pendence and 2-domination in bipartite graphs. Australas. J. Combin. 40, 265–268
(2008)

9. Fujita, S., Yamashita, M., Kameda, T.: A study on r-configurations – a resource
assignment problem on graphs. SIAM J. Discrete Math. 13, 227–254 (2000)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

11. Hansberg, A., Meierling, D., Volkmann, L.: Distance domination and distance ir-
redundance in graphs. Electron. J. Comb. 14 (2007)

12. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced
Topics. Marcel Dekker (1998)

13. Haynes, T.W., Hedetniemi, S.T.: ST, and P.J. Slater. Fundamentals of Domination
in Graphs. Marcel Dekker (1998)

14. Islam, K., Akl, S.G., Meijer, H.: Maximizing the lifetime of wireless sensor networks
through domatic partition. In: Proceedings of the 34th IEEE Conference on Local
Computer Networks, LCN (2009)

15. Kämmerling, K., Volkmann, L.: The k-domatic number of a graph. Czech. Math.
J. 59(2), 539–550 (2009)

16. Meir, A., Moon, J.W.: Relations between packing and covering number of a tree.
Pacific J. Math. 61, 225–233 (1975)

17. Misra, R., Mandal, C.: Efficient clusterhead rotation via domatic partition in self-
organizing sensor networks. Wireless Communications & Mobile Computing 9(8),
1040–1058 (2009)

18. Pemmaraju, S.V., Pirwani, I.A.: Energy conservation via domatic partitions. In:
Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Net-
working and Computing, MobiHoc (2006)

19. Pepper, R.: Implications of some observations about the k-domination number.
Congr. Numer. 206, 65–71 (2010)

20. Rautenbach, D., Volkmann, L.: New bounds on the k-domination number and the
k-tuple domination number. Appl. Math. Lett. 20, 98–102 (2007)

21. Telle, J.A.: Complexity of domination-type problems in graphs. Nord. J. Com-
put. 1(1), 157–171 (1994)

22. Zelinka, B.: On k-ply domatic numbers of graphs. Math. Slovaca 34(3), 313–318
(1984)

Unique Parallel Decomposition in Branching

and Weak Bisimulation Semantics

Bas Luttik

Eindhoven University of Technology

Abstract. We consider the property of unique parallel decomposition
modulo branching and weak bisimilarity. First, we show that totally
normed behaviours always have parallel decompositions, but that these
are not necessarily unique. Then, we establish that finite behaviours have
unique parallel decompositions. We derive the latter result from a general
theorem about unique decompositions in partial commutative monoids.

1 Introduction

A recurring question in process theory is to what extent the behaviours definable
in a certain process calculus admit a unique decomposition into indecomposable
parallel components. Milner and Moller [18] were the first to address the ques-
tion. They proved a unique parallel decomposition theorem for a simple process
calculus, which allows the specification of finite behaviour up to strong bisim-
ilarity and includes parallel composition in the form of pure interleaving with-
out interaction between the components. They also presented counterexamples
showing that unique parallel decomposition may fail in process calculi in which
it is possible to specify infinite behaviour, or in which certain coarser notions of
behavioural equivalence are used.

Moller, in [19], proved several more unique parallel decomposition results,
replacing interleaving parallel composition by CCS parallel composition, and
then also considering weak bisimilarity. These results were established with
subsequent refinements of an ingenious proof technique attributed to Milner.
Christensen, in [5], further refined the proof technique to make it work for the
normed behaviours recursively definable modulo strong bisimilarity, and for all
behaviours recursively definable modulo distributed bisimilarity.

With each successive refinement of Milner’s proof technique, the technical
details became more complicated, but the general idea of the proof remained the
same. In [15] we made an attempt to isolate the deep insights from the technical
details, by identifying a sufficient condition on partial commutative monoids that
facilitates an abstract version of Milner’s proof technique. To concisely present
the sufficient condition, we have put forward the notion of decomposition order ;
it is established in [15], by means of an abstract version of Milner’s technique,
that if a partial commutative monoid can be endowed with a decomposition
order, then it has unique decomposition.

Application of the general result of [15] in commutative monoids of behaviour
is often straightforward: a well-founded order naturally induced on behaviour by

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 250–264, 2012.
c© IFIP International Federation for Information Processing 2012

Unique Parallel Decomposition in Bisimulation Semantics 251

(a terminating fragment of) the transition relation typically satisfies the proper-
ties of a decomposition order. All the aforementioned unique parallel decomposi-
tion results can be directly obtained in this way, except Moller’s result that finite
behaviours modulo weak bisimilarity have unique decomposition. It turns out
that a decomposition order cannot straightforwardly be obtained from the tran-
sition relation if certain transitions are deemed unobservable by the behavioural
equivalence under consideration.

In this paper, we address the question of how to establish unique parallel
decomposition in settings with a notion of unobservable behaviour. Our main
contribution will be an adaptation of the general result in [15] to make it suitable
for establishing unique parallel decomposition also in settings with a notion of
unobservable behaviour. To illustrate the result, we shall apply it to establish
unique parallel decomposition for finite behaviour modulo branching or weak
bisimilarity. We shall also show, by means of a counterexample, that unique
parallel decomposition fails for infinite behaviours modulo branching and weak
bisimilarity, even if only a very limited form of infinite behaviour is considered
(totally normed behaviour definable in a process calculus with prefix iteration).

A positive answer to the unique parallel decomposition question seems to be
primarily of theoretical interest, as a tool for proving other theoretical properties
of interest about process calculi. For instance, Moller’s proofs in [20,21] that PA
and CCS cannot be finitely axiomatised without auxiliary operations, Hirshfeld
and Jerrum’s proof in [12] that bisimilarity is decidable for normed PA, and
the completeness proofs for the equational axiomatisations of PA and CCS with
auxiliary operations in [8] and [1], all rely on unique parallel decomposition.
There is an intimate relationship between unique parallel decomposition and of
cancellation with respect to parallel composition; the properties are in most cir-
cumstances equivalent. In [4], cancellation with respect parallel composition was
first proved and exploited to prove the completeness of an axiomatisation of dis-
tributed bisimilarity. Unique parallel decomposition could be of practical interest
too, e.g., to devise methods for finding the maximally parallel implementation
of a behaviour [6], or for improving verification methods [11].

This article is organised as follows. In Section 2 we introduce the process
calculus that we shall use to illustrate our theory of unique decomposition. There,
we also present counterexamples to the effect that infinite behaviours in general
may not have a decomposition, and totally normed behaviours may have more
than one decomposition. In Section 3 we recap the theory of decomposition
put forward in [15] and discuss why it is not readily applicable to establish
unique parallel decomposition for finite behaviours modulo branching and weak
bisimilarity. In Section 4 we adapt the theory of [15] to make it suitable for
proving unique parallel decomposition results in process calculi with a notion of
unobservability. We end the paper in Section 5 with a short conclusion.

This article is an extended abstract of [14], which includes additional examples
and detailed explanations, and more elaborate proofs.

252 B. Luttik

Table 1. The operational semantics

α.P
α−−→ P

P
α−−→ P ′

P +Q
α−−→ P ′

Q
α−−→Q′

P +Q
α−−→Q′

P
α−−→ P ′

P ‖ Q α−−→ P ′ ‖ Q
Q

α−−→Q′

P ‖ Q α−−→ P ‖ Q′ α∗P α−−→ α∗P

P
α−−→ P ′

α∗P α−−→ P ′

2 Processes Up to Branching and Weak Bisimilarity

We define a simple language of process expressions together with an operational
semantics, and notions of branching and weak bisimilarity. We shall then inves-
tigate to what extent process expressions modulo branching or weak bisimilarity
admit parallel decompositions. We shall present examples of process expressions
without a decomposition, and of totally normed process expressions with two
distinct decompositions.

Syntax. We fix a set A of actions, and declare a special action τ that we assume
is not in A. We denote by Aτ the set A∪ {τ}, and we let a range over A and α
overAτ . The set P of process expressions is generated by the following grammar:

P ::= 0 | α.P | P + P | P ‖ P | α∗P (α ∈ Aτ).

The language above is BCCS (the core of Milner’s CCS [16]) extended with
a construction ‖ to express interleaving parallelism and the prefix itera-
tion construction α∗ to specify a restricted form of infinite behaviour. We in-
clude only a very basic notion of parallel composition in our calculus, but note
that this is just to simplify the presentation. Our unique decomposition the-
ory extends straightforwardly to more intricate notions of parallel composition,
e.g., modelling some form of communication between components. To be able to
omit some parentheses when writing process expressions, we adopt the conven-
tions that α. and α∗ bind stronger, and that + binds weaker than all the other
operations.

Operational semantics and branching and weak bisimilarity. We define on P
binary relations α−−→ (α ∈ Aτ) by means of the operational rules in Table 1.
We shall henceforth write P −−� P ′ if there exist P0, . . . , Pn (n ≥ 0) such that

P = P0
τ−−→ · · · τ−−→ Pn = P ′. Furthermore, we shall write P

(α)−−→ P ′ if P α−−→ P ′

or α = τ and P = P ′.

Definition 1 (Branching bisimilarity [10]). A symmetric binary relation R
on P is a branching bisimulation if for all P,Q ∈ P such that P R Q and for
all α ∈ Aτ it holds that

if P
α−−→ P′ for some P′ ∈ P, then there exist Q′′, Q′ ∈ P such that

Q −−�Q′′ (α)−−→Q′ and P R Q′′ and P ′ R Q′.

Unique Parallel Decomposition in Bisimulation Semantics 253

We write P ↔b Q if there exists a branching bisimulation R such that P R Q.

The relation ↔b is an equivalence relation on P (this is not as trivial as one
might expect; for a proof see [3]). It is also compatible with the construction of
parallel composition in our syntax, which means that, for all P1, P2, Q1, Q2 ∈ P :

P1 ↔b Q1 and P2 ↔b Q2 implies P1 ‖ P2 ↔b Q1 ‖ Q2 . (1)

(The relation ↔b is also compatible with α., but not with + and α∗. In this
paper, we shall only rely on compatibility with ‖.)

Definition 2 (Weak bisimilarity [17]). A symmetric binary relation R on P
is a weak bisimulation if for all P,Q ∈ P such that P R Q and for all α ∈ Aτ

it holds that

if P
α−−→ P′ for some P′ ∈ P, then there exist Q′, Q′′, Q′′′ ∈ P such that

Q −−�Q′′ (α)−−→Q′′′ −−�Q′ and P ′ R Q′.

We write P ↔w Q if there exists a weak bisimulation R such that P R Q.

Like ↔b, the relation ↔w is an equivalence relation on P , and compatible with
parallel composition. Note that↔b⊆↔w; we shall often implicitly use this prop-
erty below.

A process expression is indecomposable if it is not behaviourally equivalent to
0 or a non-trivial parallel composition (a parallel composition is trivial if one
of its components is behaviourally equivalent to 0). We say that a process the-
ory has unique parallel decomposition if every process expression is behaviourally
equivalent to a unique (generalised) parallel composition of indecomposable pro-
cess expressions. Uniqueness means that the indecomposables of any two decom-
positions of a process expression are pairwise behaviourally equivalent up to a
permutation.

Milner and Moller in [18] already observed that there exist infinite behaviours
without a decomposition modulo strong bisimilarity; their example a∗0 also does
not have a decomposition modulo branching and weak bisimilarity. To exclude
such examples of infinite behaviours with decompositions, we need to confine our
attention to process expressions with terminating behaviour. (A formalisation of
aforementioned notions pertaining to unique decomposition is postponed until
the next section.)

For a ∈ A and process expressions P and Q we write P
a−−�Q whenever there

exist process expressions P′ and Q′ such that P−−�P′ a−−→Q′−−�Q. We say that
P is silent and write P

�

if there do not exist a ∈ A and Q such that P
a−−�Q.

Definition 3. A process expression P is totally normed if there exist a natural
number k ∈ N, process expressions P0, . . . , Pk ∈ P and actions a1, . . . , ak ∈ A
such that P = P0

a1−−� · · · ak−−� Pk and Pk

�

. The weak norm wn(P) of a totally
normed process expression P is defined by

wn(P) = min{k : ∃P0, . . . , Pk ∈ P . ∃a1, . . . , ak ∈ A. P = P0
a1−−� · · · ak−−�Pk

�

} .

254 B. Luttik

It is immediate from their definitions that both branching and weak bisimilar-
ity preserve weak norm: if two process expressions are branchingly or weakly
bisimilar, then they have equal weak norms. It is also easy to establish that a
parallel composition is weakly normed if, and only if, both parallel components
are weakly normed. In fact, weak norm is additive with respect to parallel com-
position: the weak norm of a parallel composition is the sum of the weak norms
of its parallel components. Note that a process expression with weak norm 0 is
behaviourally equivalent to 0.

With a straightforward induction on weak norm it can be established that
totally normed process expressions have a decomposition. But sometimes even
more than one, as is illustrated in the following example.

Example 4. Consider the process expressions P = a∗τ.b.0 and Q = b.0. It is
clear that P and Q are not branching bisimilar. Both P and Q have weak norm
1, and from this it immediately follows that they are both indecomposable. Note
that, according to the operational semantics, P ‖ P gives rise to the following
three transitions:

1. P ‖ P a−−→ P ‖ P;
2. P ‖ P τ−−→ P ‖ Q; and
3. P ‖ P τ−−→Q ‖ P.
Further note that P ‖ Q a−−→P ‖ Q and Q ‖ P a−−→Q ‖ P. (The complete transition
graph associated with P ‖ P by the operational semantics is shown in Figure 1.)
Using these facts it is straightforward to verify that the symmetric closure of the
binary relation

R = {(P ‖ P, P ‖ Q), (P ‖ P,Q ‖ P)}
∪ {(P ‖ Q,Q ‖ P), (P ‖ 0,0 ‖ P), (Q ‖ 0,0 ‖ Q)}

is a branching bisimulation, and hence P ‖ P ↔b P ‖ Q. It follows that P ‖ P
and P ‖ Q are distinct decompositions of the same process up to branching
bisimilarity.

Incidentally, the processes in the above counterexample also refute claims in [9] to
the effect that processes definable with a totally normed BPP specification have
a unique decomposition modulo branching bisimilarity and weak bisimilarity.

Apparently, more severe restrictions are needed.

Definition 5. Let k ∈ N; a process expression P is weakly bounded by k if
for all � ∈ N the existence of P1, . . . , P� ∈ P and a1, . . . , a� ∈ A such that
P

a1−−� · · · a�−−� P� implies that � ≤ k. We say that P is weakly bounded if P is
bounded by k for some k ∈ N.

Lemma 6. Let P and Q be process expressions such that P ↔w Q. Then P is
weakly bounded if, and only if, Q is weakly bounded.

In the remainder of this paper we shall establish that weakly bounded process
expressions have a unique parallel decomposition both modulo branching and
weak bisimilarity. We shall derive these results from a more general result about
unique decomposition in commutative monoids.

Unique Parallel Decomposition in Bisimulation Semantics 255

P ‖ P P ‖ Q P ‖ 0

Q ‖ P Q ‖ Q Q ‖ 0

0 ‖ P 0 ‖ Q 0 ‖ 0

a

a

a

a a

τ b

τ τ τ

τ b

b bb

τ b

Fig. 1. Transition graph associated with P ‖ P

3 Partial Commutative Monoids and Decomposition

In this section we recall the abstract algebraic notion of partial commutative
monoid, and formulate the property of unique decomposition. We shall see that
the process theories discussed in the previous section give rise to commutative
monoids of processes with parallel composition as binary operation. The notion
of unique decomposition associated with these commutative monoids coincides
with the notion of unique parallel decomposition as discussed.

Then, we shall recall the notion of decomposition order on partial commu-
tative monoids proposed in [15]. We shall investigate whether the notion of
decomposition order can be employed to prove unique parallel decomposition of
weakly bounded process expressions modulo branching and weak bisimilarity.

Definition 7. A (partial) commutative monoid is a set M with a distinguished
element e and a (partial) binary operation on M (for clarity in this definition
denoted by ·) such that for all x, y, z ∈M :

x · (y · z) 7 (x · y) · z (associativity);

x · y 7 y · x (commutativity);

x · e 7 e · x 7 x (identity).

The symbol · will be omitted if this is unlikely to cause confusion. Also, we shall
sometimes use other symbols (‖, +, . . .) to denote the binary operation of a
partial commutative monoid.

Remark 8. We adopt the convention that an expression designating an element
of a partial commutative monoid M is defined only if all its subexpressions are
defined. Furthermore, if t1 and t2 are expressions and R is a binary relation on
M (e.g., equality or a partial order), then t1Rt2 holds only if both t1 and t2 are

256 B. Luttik

defined and their values are related in R. For a more succinct formulation we
used in Definition 7 the symbol 7 introduced by Kleene [13]: if t1 and t2 are
expressions designating elements of M , then t1 7 t2 means that either t1 and t2
are both defined and have the same value, or t1 and t2 are both undefined.

We mention a key example of a commutative monoid that will serve to illustrate
the theory of decomposition that we present in this paper.

Example 9. Let X be any set. A (finite) multiset over X is a mapping m :
X → N such that m(x) > 0 for at most finitely many x ∈ X; the number
m(x) is called the multiplicity of x in m. The set of all multisets over X is
denoted by M(X). If m and n are multisets, then their sum m 5 n is obtained
by coordinatewise addition of multiplicities, i.e., (m 5 n)(x) = m(x) + n(x) for
all x ∈ X. The empty multiset � is the multiset that satisfies �(x) = 0 for all
x ∈ X. With these definitions,M(X) is a commutative monoid. If x1, . . . , xk is
a sequence of elements of X, then �x1, . . . , xk� denotes the multiset m such that
m(x) is the number of occurrences of x in x1, . . . , xk.

Process expressions modulo branching or weak bisimilarity also give rise to com-
mutative monoids. Recall that ↔b and ↔w are equivalence relations on the set
of process expressions. We denote the equivalence class of a process expression
P modulo ↔b or ↔w, respectively, by [P]b and [P]w. Then, we define

B = P/↔b = {[P]b : P ∈ P} and W = P/↔w = {[P]w : P ∈ P} .

In this paper, the similarities between the commutative monoids B and W will
be more important than the differences. It will often be necessary to define no-
tions for both commutative monoids, in a very similar way. For succinctness
of presentation, we allow ourselves a slight abus de language and most of the
time deliberately omit the subscripts b and w from our notation for equiva-
lence classes. Thus, we will be able to efficiently define notions and prove facts
simultaneously for B and W.

For example, since both ↔b and ↔w are compatible with ‖, we can define a
binary operation ‖ simultaneously on B and W simply by [P] ‖ [Q] = [P ‖ Q],
by which we then mean to define a binary operation ‖ on B and a binary relation
‖ on W, respectively, by [P]b ‖ [Q]b = [P ‖ Q]b and [P]w ‖ [Q]w = [P ‖ Q]w.
Henceforth, we leave it to the reader to specialise notions, and also statements
about these notions and their proofs, to B and W (or one of its submonoids to
be introduced below).

We agree to write just 0 for [0]. It is straightforward to establish that the
binary operation ‖ is commutative and associative (both on B and W), and
that 0 is the identity element for ‖.

Proposition 10. B and W are commutative monoids under ‖.

Unique Parallel Decomposition in Bisimulation Semantics 257

Note that, by Lemma 6, whenever an equivalence class [P] contains a weakly
bounded process expression, it consists entirely of weakly bounded process ex-
pressions. We define subsets Bfin ⊆ Btn ⊆ B and Wfin ⊆Wtn ⊆W by

Bfin = {[P]b : P ∈ P & P is weakly bounded} ;

Btn = {[P]b : P ∈ P & P is totally normed} ;

Wfin = {[P]w : P ∈ P & P is weakly bounded} ; and

Wtn = {[P]w : P ∈ P & P is totally normed} .

Corollary 11. The sets Bfin and Btn are commutative submonoids of B, and
the sets Wfin and Wtn are commutative submonoids of W.

Notation 12. Let x1, . . . , xk be a (possibly empty) sequence of elements of a
monoid M ; we define its generalised product x1 · · ·xk inductively as follows: (1)
if n = 0, then x1 · · ·xk 7 e, and (2) if n > 0, then x1 · · ·xk 7 (x1 · · ·xk−1)xk.

Occasionally, we shall write
∏k

i=1 xi instead of x1 · · ·xk. Furthermore, we write

xn for the k-fold composition of x, i.e., xk 7
∏k

i=1 xi with xi = x for all
1 ≤ i ≤ k.
An indecomposable element of a commutative monoid is an element that cannot
be written as a product of two elements that are both not the identity element
of the monoid.

Definition 13. An element p of a commutative monoid M is called indecom-
posable if p �= e and p = xy implies x = e or y = e.

Example 14. 1. The indecomposable elements ofM(X) are the singletonmul-
tisets, i.e., the multisets m for which it holds that

∑
x∈X m(x) = 1.

2. The indecomposable elements of Bfin, Btn, B, Wfin, Wtn, and W are the
equivalence classes of process expressions that are not behaviourally equiva-
lent to 0 or a non-trivial parallel composition.

We define a decomposition in a partial commutative monoid to be a finite multi-
set of indecomposable elements. Note that this gives the right notion of equiva-
lence on decompositions, for two finite multisets �x1, . . . , xk� and �y1, . . . , y�� are
the equal iff the sequence y1, . . . , y� can be obtained from the sequence x1, . . . , xk
by a permutation of its elements.

Definition 15. Let M be a partial commutative monoid. A decomposition in
M is a finite multiset �p1, . . . , pk� of indecomposable elements of M such that
p1 · · · pk is defined. The element p1 · · · pk in M will be called the composition
associated with the decomposition �p1, . . . , pk�, and, conversely, we say that
�p1, . . . , pk� is a decomposition of the element p1 · · · pk of M . Decompositions
d = �p1, . . . , pk� and d′ = �p′1, . . . , p

′
�� are equivalent in M (notation: d ≡ d′) if

they have the same compositions, i.e., if p1 · · · pk = p′1 · · · p′�. A decomposition d
in M is unique if d ≡ d′ implies d = d′ for all decompositions d′ in M . We say
that an element x of M has a unique decomposition if it has a decomposition and
this decomposition is unique. If every element of M has a unique decomposition,
then we say that M has unique decomposition.

258 B. Luttik

Example 16. Every finite multiset m over X has a unique decomposition in
M(X), which contains for every x ∈ X precisely m(x) copies of the singleton
multiset �x�.

The general notion of unique decomposition for commutative monoids, when
instantiated to one of the commutative monoids of processes considered in this
paper, indeed coincides with the notion of unique parallel decomposition as dis-
cussed in the preceding section. We have already seen that the commutative
monoids Btn, B, Wtn and W do not have unique decomposition. Our goal in
the remainder of this paper is to establish that the commutative monoids Bfin

and Wfin do have unique decomposition.
Preferably, we would like to have a general sufficient condition on partial

commutative monoids for unique decomposition that is easily seen to hold for
Bfin and Wfin, and hopefully also for other commutative monoids of processes.
We shall now first recall the sufficient criterion put forward in [15], which was
specifically designed for commutative monoids of processes. Then, we shall ex-
plain that it cannot directly be applied to conclude that Bfin and Wfin have
unique decomposition. In the next section, we shall subsequently modify the
condition, so that it becomes applicable to the commutative monoids at hand.

Definition 17. Let M be a partial commutative monoid; a partial order 	 on
M is a decomposition order if

(i) it is well-founded, i.e., every nonempty subset of M has a 	-minimal ele-
ment;

(ii) the identity element e of M is the least element of M with respect to 	,
i.e., e 	 x for all x in M ;

(iii) it is strictly compatible, i.e., for all x, y, z ∈M

if x ≺ y and yz is defined, then xz ≺ yz;

(iv) it is precompositional, i.e., for all x, y, z ∈M

x 	 yz implies x = y′z′ for some y′ 	 y and z′ 	 z; and

(v) it is Archimedean, i.e., for all x, y ∈M

xn 	 y for all n ∈ N implies that x = e.

In [15] it was proved that the existence of a decomposition order on a partial
commutative monoid is a necessary and sufficient condition for unique decompo-
sition. The advantage of establishing unique decomposition via a decomposition
order is that it circumvents first establishing cancellation, which in some cases
is hard without knowing that the partial commutative monoid has unique de-
composition. We refer to [15] for a more in-depth discussion.

In commutative monoids of processes, an obvious candidate decomposition
order is the order induced on the commutative monoid by the transition relation.
We define a binary relation −−→ on B and W by

[P]−−→ [P′] if there exist Q ∈ [P], Q′ ∈ [P′] and α ∈ Aτ such that Q
α−−→Q′ .

Unique Parallel Decomposition in Bisimulation Semantics 259

We shall denote the inverse of the reflexive-transitive closure of −−→ (both on B
and W) by 	, i.e., 	 = (−−→∗)−1.

Lemma 18. If P and Q are process expressions such that [Q] 	 [P], then there
exists Q′ ∈ [Q] such that P −−→∗ Q′.

The following lemma implies that every set of process expressions has minimal
elements with respect to the reflexive-transitive closure of the transition relation.
Caution: it holds true of our process calculus only thanks to the very limited
facility of defining infinite behaviour, by means of simple loops.

Lemma 19. If P0, . . . , Pi, . . . (i ∈ N) is an infinite sequence of process expres-
sions, and α0, . . . , αi, . . . (i ∈ N) is an infinite sequence of elements in Aτ such
that Pi

αi−−→Pi+1 for all i ∈ N, then there exists j ∈ N such that Pk = P� for all
k, � ≥ j.
Proposition 20. 	 is a well-founded precompositional partial order on each of
the commutative monoids B, Btn, Bfin, W, Wtn, and Wfin.

Note that if the iteration prefix in our process calculus is replaced by any of the
familiar more general forms of iteration or recursion, then 	 as defined above will
not be anti-symmetric, nor well-founded. Nevertheless, it is sometimes possible
to define an anti-symmetric and well-founded partial order on processes based on
the transition relation in a setting with a more general form of infinite behaviour,
at least for totally normed processes. (See, e.g., [15] for an example of an anti-
symmetric and well-founded order on normed processes definable in ACP with
recursion, which is based on the restriction of the transition relation.)

The ordering 	 defined on Btn, B, Wtn and W is not a decomposition order:
on B and W it does not satisfy conditions (ii), (iii) and (v) of Definition 17, and
on Btn and Wtn it does not satisfy condition (iii) of Definition 17. (The latter
is illustrated in Example 4.)

Proposition 21. 	 on Btn, Bfin, Wtn and Wfin is Archimedean and 0 is its
least element.

We should now still ask ourselves the question whether 	 on Bfin and Wfin is
strictly compatible. An important step towards proving the property for, e.g.,
Bfin would be to establish, for all weakly bounded process expressions P, Q
and R, the following implication: P

τ−−→ Q & P ‖ R ↔b Q ‖ R =⇒ P ↔b Q.
Example 4 illustrates that this implication does not hold for all totally normed
processes, suggesting that the implication is perhaps hard to establish from first
principles. In fact, all our attempts in this direction so far have failed. Note,
however, that establishing the implication would be straightforward if we could
use that ‖ is cancellative (i.e., P ‖ R ↔b Q ‖ R implies P ↔b Q), and this, in
turn, would be easy if we could use that Bfin has unique decomposition.

The difficulty of establishing strict compatibility is really with strictness; it is
straightforward to establish the following non-strict variant. Let M be a partial
commutative monoid; a partial order 	 onM is compatible if for all x, y, z ∈M :

if x 	 y and yz is defined, then xz 	 yz.

260 B. Luttik

Proposition 22. 	 on Btn, Bfin, Wtn, and Wfin is compatible.

A partial order on a partial commutative monoid that has all the properties of
a decomposition order except that it is compatible but not strictly compatible,
we shall henceforth call a weak decomposition order.

Definition 23. Let M be a partial commutative monoid; a partial order 	 on
M is a weak decomposition order if it is well-founded, has the identity element
e ∈M as least element, is compatible, precompositional and Archimedean.

The following corollary summarises Propositions 20, 21 and 22.

Corollary 24. 	 on Btn, Bfin, Wtn, and Wfin is a weak decomposition order.

In [15] it is proved that the existence of a decomposition order is a sufficient
condition for a partial commutative monoid to have unique decomposition. Note
that since 	 is a weak decomposition order on Btn and Wtn, and according to
Example 4 these commutative monoids do not have unique decomposition, the
existence of a weak decomposition order is not a sufficient condition for having
unique decomposition; it should be supplemented with additional requirements
to get a sufficient condition.

Strictness of compatibility —which is the only difference between the notion
of decomposition order of [15] and the notion of weak decomposition order put
forward here— is used both in the proof of existence of decompositions and
in the proof that decompositions are unique. We shall now first establish the
existence of decompositions in Btn, Bfin, Wtn, and Wfin separately. In the next
section, we shall discuss uniqueness of decompositions in Bfin and Wfin. We shall
propose a general subsidiary property that will allow us to establish uniqueness
of decompositions in commutative monoids with a weak decomposition order,
and establish that it holds in Bfin and Wfin.

Proposition 25. In the commutative monoids Btn, Bfin, Wtn, and Wfin every
element has a decomposition.

4 Uniqueness

The failure of 	 on Bfin and Wfin to be strictly compatible prevents us from
getting our unique decomposition results as an immediate consequence of the
result in [15]. Nevertheless, most of the ideas in the proof of uniqueness of de-
compositions in [15] can be adapted and reused in the context of commutative
monoids endowed with a weak decomposition order, albeit with the technical de-
tails more involved. There is one special case in the unique decomposition proof
that cannot be settled for commutative monoids with a weak decomposition or-
der in general; this special case can be settled with an additional requirement
on 	 that is satisfied both in Bfin and in Wfin.

For the remainder of this paper, let M be a partial commutative monoid in
which every element has a decomposition, and let 	 be a weak decomposition
order on M .

Unique Parallel Decomposition in Bisimulation Semantics 261

The decomposition extension of 	. The uniqueness proof in [15] considers a
minimal counterexample against unique decomposition, i.e., an element of the
commutative monoid with at least two distinct decompositions, say d1 and d2,
that is 	-minimal in the set of all such elements. Then, an important technique
in the proof is to select a particular indecomposable in one of the two decompo-
sitions and replace it by predecessors with respect to the decomposition order.
From minimality together with strict compatibility it is then concluded that the
resulting decomposition is unique, which plays a crucial role in subsequent argu-
ments towards a contradiction. To avoid the use of strict compatibility, we need
a more sophisticated notion of minimality for the considered counterexample.
The idea is to not just pick a 	-minimal element among the elements with two
or more decompositions; we also choose the presupposed pair of distinct decom-
positions (d1, d2) in such a way that it is minimal with respect to a well-founded
ordering induced by 	 on pairs of decompositions.

Let X be a set. If m and n are multisets over X , then we write m− n for the
multiset difference of m and n. We define the decomposition extension � of ≺ by
d � d′ if, and only if, there exist, for some k ≥ 1, a sequence of indecomposables
p1, . . . , pk ∈ M , a sequence x1, . . . , xk ∈ M , and a sequence of decompositions
d1, . . . , dk such that

(i) xi ≺ pi (1 ≤ i ≤ k);
(ii) each di is a decomposition of xi (1 ≤ i ≤ k); and
(iii) d = (d′ − �p1, . . . , pk�) 5 (d1 5 · · · 5 dk).

We write d
 d′ if d = d′ or d � d′. Note that if d
 d′, x is the composition of
d, and y is the composition of d′, then, by compatibility, x 	 y.

Lemma 26. The partial order
 on decompositions is well-founded.

In our uniqueness proof, we shall use the well-foundedness of both 	 and the
Cartesian order
× induced on pairs of decompositions by
. For two pairs of
decompositions (d1, d2) and (d′1, d

′
2), we write (d1, d2)
× (d′1, d

′
2) if d1
 d′1 and

d2
 d′2. A pair of decompositions (d1, d2) is said to be a counterexample against
unique decomposition if d1 and d2 are distinct but equivalent, i.e., if d1 ≡ d2, but
not d1 = d2. A counterexample (d1, d2) against unique decomposition is mini-
mal if it is both minimal with respect to 	 and minimal with respect to
×. If
unique decomposition would fail then there would exist a minimal counterexam-
ple. For the subset of processes with two or more decompositions is nonempty,
and therefore, by well-foundedness of 	, it has a 	-minimal element, say x.
Then, by well-foundedness of
× on pairs of decompositions, the nonempty set
of pairs of distinct decompositions with x as their composition has a minimal
element, say (d1, d2).

The general idea of the proof is that we derive a contradiction from the as-
sumption that there exists a minimal counterexample (d1, d2) against unique
decomposition. The decompositions d1 and d2 should be distinct, so the set
of indecomposables that occur more often in one of the decompositions than
in the other is nonempty. This set is clearly also finite, so it has 	-maximal

262 B. Luttik

elements. We declare p to be such a 	-maximal element, and assume, without
loss of generality, that p occurs more often in d1 than in d2. Then we have that

(A) d1(p) > d2(p); and
(B) d1(q) = d2(q) for all indecomposables q such that p ≺ q.

We shall distinguish two cases, based on how the difference between d1 and d2
manifests itself, and derive a contradiction in both cases:

1. d1(p) > d2(p) + 1 or d1(q) �= 0 for some indecomposable q distinct from p;
we refer to this case by saying that d1 and d2 are too far apart.

2. d1(p) = d2(p) + 1 and d1(q) = 0 for all q distinct from p; we refer to this
case by saying that d1 and d2 are too close together.

Case 1: d1 and d2 are too far apart. We argue that d1 has a predecessor d′ in
which p occurs more often than in any predecessor of d2, while, on the other
hand, the choice of a minimal counterexample implies that every predecessor of
d1 is also a predecessor of d2. The arguments leading to a contradiction in this
case are analogous to the arguments in the proof in [15]; the only important
difference is the use of the ordering
 instead of 	.
Case 2: d1 and d2 are too close together. In [15] it is proved, via a sophisti-
cated argument, that the composition of d′2 is a 	-predecessor of p. Hence, by
strict compatibility, the composition of d2 is an 	-predecessor of d1, which is
in contradiction with the assumption that the decompositions d1 and d2 are
equivalent.

That 	 is not strictly compatible, but just compatible, leaves the possibility that
d1 and d2 are equivalent even if the composition of d′2 is a predecessor of p. For
Bfin and Wfin this possibility can be ruled out by noting that the composition
of d′2 can be reached from p by τ -transitions, and proving that every transition
of p can be simulated by a transition of the composition of d′2. The following
notion formalises this reason in the abstract setting of commutative monoids
with a weak decomposition order.

Definition 27. Let M be a partial commutative monoid, and let 	 be a weak
decomposition order on M . We say that 	 satisfies power cancellation if for all
x, y ∈M , for every indecomposable p ∈M such that p �≺ x, y, and for all k ∈ N
it holds that pkx = pky, then x = y.

Suppose that 	 on M has power cancellation, let k = d2(p) and let x be the
composition of d′2. Then from d1 ≡ d2 it follows that pkp = pkx. Clearly, p �≺ p
and, since d′2 consists of indecomposables q such that p �≺ q, it follows that also
p �≺ x. Hence, since 	 has power cancellation, p = x, so d′2 = �p�. It follows
that d1 = d2, which contradicts that (d1, d2) is a counterexample against unique
decomposition.

Theorem 28. LetM be a commutative monoid with a weak decomposition order
that satisfies power cancellation. If every element ofM has a decomposition, then
M has unique decomposition.

Unique Parallel Decomposition in Bisimulation Semantics 263

In the previous section we have already established that in the commutative
monoids Bfin and Wfin every element has a decomposition and that 	 is a weak
decomposition order on Bfin and Wfin. To be able to conclude from Theorem 28
that Bfin and Wfin have unique decomposition, it remains to establish that 	
on these commutative monoids satisfies power cancellation.

Proposition 29. 	 on Bfin and Wfin satisfies power cancellation.

By Corollary 24 and Propositions 25 and 29, the commutative monoids Bfin

and Wfin are endowed with a weak decomposition order 	 satisfying power
cancellation, and, moreover, all elements of Bfin and Wfin have at least one
decomposition. Hence, by Theorem 28, we obtain the following corollary.

Corollary 30. Bfin and Wfin have unique decomposition.

5 Concluding Remarks

We have presented a general sufficient condition on partial commutative monoids
that implies the property of unique decomposition, and is applicable to commu-
tative monoids of behaviour incorporating a notion of unobservability. We have
illustrated the application of our condition in the context of a very simple pro-
cess calculus with an operation for pure interleaving as parallel composition. The
applicability is, however, not restricted to settings with this particular type of
parallel composition. In fact, it is to be expected that our condition, similarly
as in [15], can also be used to prove unique decomposition results in settings
with more complicated notions of parallel composition operator allowing, e.g.,
synchronisation between components. We leave for future investigations to what
extent our theory of unique decomposition can be applied to variants of π-
calculus; the report [7], in which unique parallel decomposition is established for
a fragment of Applied π-calculus, will serve as a starting point.

In [2], Balabonski and Haucourt address the problem of unique parallel decom-
position in the context of a concurrent programming language with a geometric
semantics. It is less clear whether our general theory of unique decomposition is
applicable there too; at least, the geometric semantics does not as naturally in-
duce a candidate decomposition order on processes as in a process calculus with a
transition system semantics. It would be interesting to compare the approaches.

References

1. Aceto, L., Fokkink, W.J., Ingólfsdóttir, A., Luttik, B.: A finite equational base for
CCS with left merge and communication merge. ACM Trans. Comput. Log. 10(1)
(2009)

2. Balabonski, T., Haucourt, E.: A Geometric Approach to the Problem of Unique
Decomposition of Processes. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010.
LNCS, vol. 6269, pp. 132–146. Springer, Heidelberg (2010)

3. Basten, T.: Branching bisimilarity is an equivalence indeed? Information Processing
Letters 58(3), 141–147 (1996)

264 B. Luttik

4. Castellani, I., Hennessy, M.: Distributed bisimulations. J. ACM 36(4), 887–911
(1989)

5. Christensen, S.: Decidability and Decomposition in Process Algebras. PhD thesis,
University of Edinburgh (1993)

6. Corradini, F., Gorrieri, R., Marchignoli, D.: Towards parallelization of concurrent
systems. RAIRO Inform. Théor. Appl. 32(4-6), 99–125 (1998)

7. Dreier, J., Ene, C., Lafourcade, P., Lakhnech, Y.: On unique decomposition of
processes in the applied π-calculus. Technical Report TR-2012-3, Verimag Research
Report (2011)

8. Fokkink, W.J., Luttik, S.P.: An ω-Complete Equational Specification of Inter-
leaving. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 729–743. Springer, Heidelberg (2000)

9. Fröschle, S., Lasota, S.: Normed processes, unique decomposition, and complexity
of bisimulation equivalences. ENTCS 239, 17–42 (2009)

10. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (1996)

11. Groote, J.F., Moller, F.: Verification of Parallel Systems Via Decomposition. In:
Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 62–76. Springer, Hei-
delberg (1992)

12. Hirshfeld, Y., Jerrum, M.: Bisimulation Equivalence is Decidable for Normed Pro-
cess Algebra. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP
1999. LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)

13. Kleene, S.C.: Introduction to Metamathematics. D. Van Nostrand Co., Inc., New
York (1952)

14. Luttik, B.: Unique parallel decomposition in branching and weak bisimulation se-
mantics. CoRR, abs/1205.2117 (2012)

15. Luttik, B., van Oostrom, V.: Decomposition orders—another generalisation of the
fundamental theorem of arithmetic. Theor. Comput. Sci. 335(2-3), 147–186 (2005)

16. Milner, R.: Communication and Concurrency. Prentice-Hall International (1989)
17. Milner, R.: Operational and algebraic semantics of concurrent processes. In: Hand-

book of Theoretical Computer Science, vol. B: Formal Models and Semantics (B),
pp. 1201–1242. The MIT Press (1990)

18. Milner, R., Moller, F.: Unique decomposition of processes. Theoret. Comput.
Sci. 107, 357–363 (1993)

19. Moller, F.: Axioms for Concurrency. PhD thesis, University of Edinburgh (1989)
20. Moller, F.: The Importance of the Left Merge Operator in Process Algebras. In:

Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 752–764. Springer, Heidelberg
(1990)

21. Moller, F.: The nonexistence of finite axiomatisations for CCS congruences. In:
Proceedings of LICS 1990, pp. 142–153. IEEE Computer Society (1990)

Modal Interface Automata

Gerald Lüttgen1 and Walter Vogler2

1 Software Technologies Group, University of Bamberg, 96045 Bamberg, Germany
gerald.luettgen@swt-bamberg.de

2 Institute for Computer Science, University of Augsburg, 86135 Augsburg, Germany
vogler@informatik.uni-augsburg.de

Abstract. De Alfaro and Henzinger’s Interface Automata (IA) and Ny-
man et al.’s recent combination IOMTS of IA and Larsen’s Modal Transi-
tion Systems (MTS) are established frameworks for specifying interfaces
of system components. However, neither IA nor IOMTS consider con-
junction that is needed in practice when a component satisfies multiple
interfaces, while Larsen’s MTS-conjunction is not closed. In addition,
IOMTS-parallel composition exhibits a compositionality defect.

This paper defines conjunction on IA and MTS and proves the oper-
ators to be ‘correct’, i.e., the greatest lower bounds wrt. IA- and resp.
MTS-refinement. As its main contribution, a novel interface theory called
Modal Interface Automata (MIA) is introduced: MIA is a rich subset of
IOMTS, is equipped with compositional parallel and conjunction oper-
ators, and allows a simpler embedding of IA than Nyman’s. Thus, it
fixes the shortcomings of related work, without restricting designers to
deterministic interfaces as Raclet et al.’s modal interface theory does.

1 Introduction

Interfaces play an important role when designing complex software and hard-
ware systems. Early interface theories that deal with types of data and operations
only, have recently been extended to also capture protocol aspects of component
interaction. One prominent example of such a rich interface theory is de Alfaro
and Henzinger’s Interface Automata (IA) [4, 5], which is based on labelled tran-
sition systems (LTS) but distinguishes a component’s input and output actions.
The theory comes with an asymmetric parallel composition operator, where a
component may wait on inputs but never on outputs. Thus, a component output
must be consumed immediately, or an error occurs. In case no potential system
environment may restrict the system components’ behaviour so that all errors
are avoided, the components are deemed to be incompatible.

Semantically, IA employs a refinement notion based on an alternating simu-
lation, such that a component satisfies an interface if (a) it implements all input
behaviour prescribed by the interface and (b) the interface permits all output
behaviour executed by the implementing component. Notably, this means that
a component that consumes all inputs but never produces any output satis-
fies any interface. To be able to mandate output-transitions, Larsen, Nyman
and Wasowski have built their interface theory on Modal Transition Systems

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 265–279, 2012.
c© IFIP International Federation for Information Processing 2012

266 G. Lüttgen and W. Vogler

(MTS) [7] rather than LTS, which enables one to distinguish between may- and
must-transitions and thus to express compulsory outputs. The resulting IOMTS
interface theory [8], into which IA can be embedded, is equipped with an IA-
style parallel composition and an MTS-style modal refinement. Unfortunately,
IOMTS-modal refinement has a compositionality defect wrt. parallel composi-
tion, i.e., it is not a precongruence for parallel composition; a related result in [8]
has already been shown incorrect by Raclet et al. in [12].

The present paper starts from the observation that the above interface theo-
ries are missing one important operator, namely conjunction on interfaces. Con-
junction is needed in practice since components are often designed to satisfy
multiple interfaces simultaneously, each of which specifies a particular aspect of
component interaction. We thus start off by recalling the IA-setting and defin-
ing a conjunction operator ∧ for IA; we prove that ∧ is indeed conjunction,
i.e., the greatest lower bound wrt. alternating simulation (cf. Sec. 2). Similarly,
we do so for a slight extension of MTS (a subset of Disjunctive MTS [10], cf.
Sec. 3), which paves us the way for our main contribution outlined below. Al-
though Larsen has studied conjunction for MTS, his operator does – in contrast
to ours – not preserve the MTS-property of syntactic consistency, i.e., a conjunc-
tion almost always has some required transitions (must-transitions) that are not
allowed (missing may-transitions). An additional difficulty when compared to
the IA-setting is that two MTS-interfaces may not have a common implemen-
tation; indeed, inconsistencies may arise when composing MTSs conjunctively.
We handle inconsistencies by adapting ideas from our prior work on conjunction
in a CSP-style process algebra [11] that uses, however, a very different parallel
operator and refinement preorder. Note also that our setting employs event-
based communication via handshake and thus differs significantly from the one
of shared-memory communication studied by Abadi and Lamport in their paper
on conjoining specifications [1].

Our paper’s main contribution is a novel interface theory, called Modal In-
terface Automata (MIA), which is essentially a rich subset of IOMTS that still
allows one to express output-must-transitions. It is equipped with an MTS-style
conjunction ∧ and an IOMTS-style parallel composition operator, as well as with
a slight adaptation of IOMTS-refinement. We show that (i) MIA-refinement is a
precongruence for both operators; (ii) ∧ is indeed conjunction for this preorder;
and (iii) IA can be embedded into MIA in a much cleaner, homomorphic fashion
than into IOMTS [8] (cf. Sec. 4). Thereby, we remedy the shortcomings of re-
lated work while, unlike the language-based modal interface theory of [12], still
permitting nondeterminism in interface specifications.

2 Conjunction for Interface Automata

Interface Automata (IA) were introduced by de Alfaro and Henzinger [4, 5] as a
reactive type theory that abstractly describes the communication behaviour of
software or hardware components in terms of their inputs and outputs. IAs are
labelled transition systems where visible actions are partitioned into inputs and

Modal Interface Automata 267

outputs. The idea is that interfaces interact with their environment according to
the following rules. An interface cannot block an incoming input in any state but,
if an input arrives unexpectedly, it is treated as a catastrophic system failure.
This means that, if a state does not enable an input, this is a requirement on the
environment not to produce this input. Vice versa, an interface guarantees not
to produce any unspecified outputs, which are in turn inputs to the environment.

This intuition is reflected in the specific refinement relation of alternating
simulation between IA and in the parallel composition on IA, which have been
defined in [5] and are recalled in this section. Most importantly, however, we
introduce and study a conjunction operator on IA, which is needed in practice
to reason about components that are expected to satisfy multiple interfaces.

Definition 1 (Interface Automata [5]). An Interface Automaton (IA) is a
tuple Q = (Q, I,O,−→), where

1. Q is a set of states,
2. I and O are disjoint input and output alphabets, respectively, not containing

the special (in contrast to [5] unique), silent action τ ,
3. −→⊆ Q× (I ∪O ∪ {τ})×Q is the transition relation.

The transition relation is required to be input-deterministic, i.e., a ∈ I, q a−→ q′

and q
a−→ q′′ implies q′ = q′′. In the remainder, we write q

a−→ if q
a−→ q′ for

some q′, as well as q � a−→ for its negation.

We let A stand for I ∪ O, let a (α) range over A (A ∪ {τ}), and introduce the

following weak transition relations: q
ε

=⇒ q′ if q(τ−→)∗q′, and q o
=⇒ q′ for o ∈ O

if ∃q′′. q ε
=⇒ q′′ o−→ q′; note that there are no τ -transitions after the o-transition.

Moreover, we define α̂ = ε if α = τ , and α̂ = α otherwise.

Definition 2 (Alternating Simulation [5]). Let P and Q be IAs with com-
mon input and output alphabets. Relation R ⊆ P ×Q is an alternating simula-
tion relation if for any (p, q) ∈ R:

(i) q
a−→ q′ and a ∈ I implies ∃p′. p a−→ p′ and (p′, q′) ∈ R,

(ii) p
α−→ p′ and α ∈ O ∪ {τ} implies ∃q′. q α̂

=⇒ q′ and (p′, q′) ∈ R.

We write p 0IA q and say that p IA-refines q if there exists an alternating
simulation relation R such that (p, q) ∈ R.

According to the basic idea of IA, if specification Q in state q allows some input a
delivered by the environment, then the related implementation state p of P must
allow this input immediately in order to avoid system failure. Conversely, if P
in state p produces output a to be consumed by the environment, this output
must be expected by the environment even if q

a
=⇒; this is because Q could have

moved unobservedly from state q to some q′ that enables a. Since inputs are not
treated in Def. 2 (ii), they are always allowed for p.

It is easy to see that IA-refinement 0IA is a preorder on IA. Given input and
output alphabets I and O, respectively, the IA BlackHoleI,O =df ({blackhole}, I,
O, {(blackhole, a, blackhole) | a ∈ I}) IA-refines any other IA over I and O.

268 G. Lüttgen and W. Vogler

Fig. 1. Example illustrating IA-conjunction

2.1 Conjunction on IA

Two IAs with common alphabets are always logically consistent in the sense that
they have a common implementation, e.g., the respective blackhole IA as noted
above. This makes the definition of conjunction on IA relatively straightforward.
Here and similarly later, we index a transition by the system’s name to make
clear from where it originates, in case this is not obvious from the context.

Definition 3 (Conjunction on IA). Let P = (P, I,O,−→P) and Q = (Q, I,
O,−→Q) be IAs with common input and output alphabets and disjoint state
sets P and Q. The conjunction P ∧Q is defined by ({p∧ q | p ∈ P, q ∈ Q} ∪P ∪
Q, I,O,−→), where −→ is the least set satisfying −→P⊆−→, −→Q⊆−→ and
the following operational rules:

(I1) p ∧ q a−→ p′ if p
a−→P p

′, q � a−→Q and a ∈ I
(I2) p ∧ q a−→ q′ if p � a−→P , q

a−→Q q
′ and a ∈ I

(I3) p ∧ q a−→ p′ ∧ q′ if p
a−→P p

′, q a−→Q q
′ and a ∈ I

(O) p ∧ q a−→ p′ ∧ q′ if p
a−→P p

′, q a−→Q q
′ and a ∈ O

(T1) p ∧ q τ−→ p′ ∧ q if p
τ−→P p

′

(T2) p ∧ q τ−→ p ∧ q′ if q
τ−→Q q

′

Intuitively, conjunction is the synchronous product over actions (cf. Rules (I3),
(O), (T1) and (T2)). Since inputs are always implicitly present, this also explains
Rules (I1) and (I2); for example, in Rule (I1), q does not impose any restrictions
on the behaviour after input a and is therefore dropped from the target state.
Moreover, the conjunction operator is commutative and associative. As an aside,
note that the rules with digit 2 in their names are the symmetric cases of the
respective rules with digit 1; this convention will hold true throughout this paper.
Fig. 1 applies the rules above to an illustrating example; here and in the following
figures, we write a? for an input a and a! for an output a.

Theorem 4 (∧ is And). Let P,Q,R be IAs with states p, q and r, respectively.
Then, r 0IA p and r 0IA q if and only if r 0IA p ∧ q.
Hence, ∧ gives the greatest lower-bound wrt. 0IA, i.e., an implementation sat-
isfies the conjunction of interfaces exactly if it satisfies each of them. This is a
desired property in system design where each interface describes one aspect of
the overall specification. The above theorem also implies compositional reason-
ing; from universal algebra one easily gets:

Corollary 5. For IAs P,Q,R with states p, q and r: p 0IA q =⇒ p∧r 0IA q∧r.

Modal Interface Automata 269

2.2 Parallel Composition on IA

We recall the parallel composition operator | on IA of [5], which is defined in
two stages: first a standard product ⊗ between two IAs is introduced, where
common actions are synchronized and hidden. Then, error states are identified,
and all states are pruned from which reaching an error state is unavoidable.

Definition 6 (Parallel Product on IA [5]). IAs P1, P2 are composable if
A1 ∩ A2 = (I1 ∩ O2) ∪ (O1 ∩ I2), i.e., each common action is input of one IA
and output of the other IA. For such IAs we define the product P1 ⊗ P2 =
(P1×P2, I, O,−→), where I = (I1 ∪ I2)\ (O1∪O2) and O = (O1 ∪O2)\ (I1∪ I2)
and where −→ is given by the following operational rules:

(Par1) (p1, p2)
α−→ (p′1, p2) if p1

α−→ p′1 and α /∈ A2

(Par2) (p1, p2)
α−→ (p1, p

′
2) if p2

α−→ p′2 and α /∈ A1

(Par3) (p1, p2)
τ−→ (p′1, p

′
2) if p1

a−→ p′1 and p2
a−→ p′2 for some a.

Note that, in case of synchronization and according to Rule (Par3), one only
gets internal τ -transitions.

Definition 7 (Parallel Composition on IA [5]). A state (p1, p2) of a parallel
product P1⊗P2 is an error state if there is some a ∈ A1∩A2 such that (a) a ∈ O1,

p1
a−→ and p2 � a−→, or (b) a ∈ O2, p2

a−→ and p1 � a−→.
A state of P1⊗P2 is incompatible if it may reach an error state autonomously,

i.e., only by output or internal actions that are, intuitively, locally controlled.
Formally, the set E ⊆ P1 × P2 of incompatible states is the least set such that
(p1, p2) ∈ E if (i) (p1, p2) is an error state or (ii) (p1, p2)

α−→ (p′1, p
′
2) for some

α ∈ O ∪ {τ} and (p′1, p
′
2) ∈ E.

The parallel composition P1|P2 of P1, P2 is obtained from P1⊗P2 by pruning,
i.e., removing all states in E and all transitions involving such states as source
or target. If (p1, p2) ∈ P1|P2, we write p1|p2 and call p1 and p2 compatible.

Parallel composition is well-defined since input-determinism is preserved.

Theorem 8 (Compositionality of IA-Parallel Composition [5]). Let P1,
P2 and Q1 be IAs with p1 ∈ P1, p2 ∈ P2, q1 ∈ Q1 and p1 0IA q1. Assume that Q1

and P2 are composable; then, (a) P1 and P2 are composable and (b) if q1 and p2
are compatible, then so are p1 and p2 and p1|p2 0IA q1|p2.
This result relies on the fact that IAs are input-deterministic. While the theorem
is already stated in [5], its proof is only sketched therein. Here, it is a simple
corollary of Thms. 23 in Sec. 4.2 and Thms. 25 and 26(b) in Sec. 4.3 below.

We conclude by presenting a small example of IA-parallel composition in
Fig. 2, which is adapted from [5]. The client does not accept its input retry.
Thus, if the environment of Client ⊗ TryOnce would produce nack, the system
would autonomously produce reset and run into a catastrophic error. To avoid
this, the environment of Client|TryOnce is required not to produce nack. This
view is called optimistic: there exists an environment in which Client and Try-
Once can cooperate without errors, and Client|TryOnce describes the necessary
requirements for such an environment. In the pessimistic view as advocated in [2],
Client and TryOnce are regarded as incompatible due to the potential error.

270 G. Lüttgen and W. Vogler

Fig. 2. Example illustrating IA-parallel composition, where IA TryOnce has inputs
{send, ack, nack} and outputs {trnsmt, ok, reset, retry}, while IA Client has in-
puts {ok, retry} and outputs {send}

3 Conjunction for Modal Transition Systems

Modal Transition Systems (MTS) were investigated by Larsen [7] as a specifi-
cation framework based on labelled transition systems but with two kinds of
transitions: must-transitions specify required behaviour, may-transitions spec-
ify allowed behavior, and absent transitions specify forbidden behaviour. Any
refinement of an MTS-specification must preserve required and forbidden be-
haviour and may turn allowed behaviour into required or forbidden behaviour.
Technically, this is achieved via an alternating-style simulation relation, called
modal refinement, where any must-transition of the specification must be sim-
ulated by an implementation, while any may-transition of the implementation
must be simulated by the specification.

Larsen [7] defined conjunction on MTS, but the resulting systems often vio-
late syntactic consistency and are hard to understand. To improve this, we allow
an a-must-transition to have several alternative target states, i.e., we work with
Disjunctive MTS (DMTS). Larsen and Xinxin also generalized Larsen’s con-
struction to DMTS [10], but again ignoring syntactic consistency. We will thus
define conjunction on a syntactically consistent subclass of DMTS, called dMTS,
but more generally in a setting with internal τ -actions as defined in [5, 8].

3.1 Disjunctive Modal Transition Systems

We extend standard MTS only as far as needed for defining conjunction, by
introducing disjunctive must-transitions that are disjunctive wrt. exit states only
(see Fig. 4). The following extension also has no τ -must-transitions since these
are not considered in the definition of the observational modal refinement of [8].

Definition 9 (disjunctive Modal Transition System). A disjunctive Modal
Transition System (dMTS) is a tuple Q = (Q,A,−→, ���), where

1. Q is a set of states,
2. A is an alphabet not containing the special, silent action τ ,

Modal Interface Automata 271

3. −→⊆ Q×A× (P(Q) \ ∅) is the must-transition relation,
4. ���⊆ Q× (A ∪ {τ})×Q is the may-transition relation.

We require syntactic consistency, i.e., q
a−→ Q′ implies ∀q′ ∈ Q′. q

a��� q′.
More generally, the must-transition relation in a standard DMTS [10] may be

a subset of Q × (P(A×Q) \ ∅). For notational convenience, we write q
a−→ q′

whenever q
a−→ {q′}; all must-transitions in standard MTS have this form.

Our refinement relation on dMTS abstracts from internal computation steps
in the same way as [8], i.e., by considering the following weak may-transitions

for α ∈ A ∪ {τ}: q ε������ q′ if q
τ���

∗
q′, and q

α������ q′ if ∃q′′. q
ε������ q′′

α��� q′.
Definition 10 (Observational Modal Refinement, see [8]). Let P,Q be
dMTSs with common alphabet. Relation R ⊆ P ×Q is an (observational) modal
refinement relation if for any (p, q) ∈ R:

(i) q
a−→ Q′ implies ∃P ′. p a−→ P ′ and ∀p′ ∈ P ′ ∃q′ ∈ Q′. (p′, q′) ∈ R,

(ii) p
α��� p′ implies ∃q′. q α̂������ q′ and (p′, q′) ∈ R.

We write p 0dMTS q and say that p dMTS-refines q if there exists an observa-
tional modal refinement relation R such that (p, q) ∈ R.

Except for disjunctiveness, dMTS-refinement is exactly defined as for MTS in [8],
i.e., the τ -must-transitions allowed in their variant of MTS are not treated in
Cond. (i) of observational modal refinement. Thus, they are treated as only
may-transitions and not included in our setting.

3.2 Conjunction on dMTS

Similarly to parallel composition for IA, conjunction will be defined in two stages.
State pairs can be logically inconsistent due to unsatisfiable must-transitions; in
the second stage, we remove such pairs incrementally.

Definition 11 (Conjunctive Product on dMTS). Let P = (P,A,−→P ,
���P) and Q = (Q,A,−→Q, ���Q) be dMTSs with common alphabet. The con-
junctive product P&Q =df (P × Q,A,−→, ���) is defined by its operational
transition rules as follows:

(Must1) (p, q)
a−→ {(p′, q′) | p′ ∈ P ′, q

a������Q q′} if p
a−→P P

′ and q
a������Q

(Must2) (p, q)
a−→ {(p′, q′) | p a������P p′, q′ ∈ Q′} if p

a������P and q
a−→Q Q

′

(May1) (p, q)
τ��� (p′, q) if p

τ������P p′
(May2) (p, q)

τ��� (p, q′) if q
τ������Q q′

(May3) (p, q)
α��� (p′, q′) if p

α������P p′ and q
α������Q q′

It might be surprising that a single transition in the product might stem from a
transition sequence in one of the components (cf. the first four items above) and
that the components can also synchronize on τ (cf. Rule (May3)). The neces-
sity of this is discussed below; we only note here that conjunction is inherently
different from parallel composition.

272 G. Lüttgen and W. Vogler

Fig. 3. Examples motivating the rules of Def. 11

Definition 12 (Conjunction on dMTS). Given a conjunctive product P&Q,
the set F ⊆ P × Q of (logically) inconsistent states is defined as the least set
satisfying the following rules:

(F1) p
a−→P , q �

a������Q implies (p, q) ∈ F
(F2) p � a������P , q

a−→Q implies (p, q) ∈ F
(F3) (p, q)

a−→ R′ and R′ ⊆ F implies (p, q) ∈ F

The conjunction P∧Q of dMTSs P,Q is obtained by deleting all states (p, q) ∈ F
from P&Q. This also removes any may- or must-transition exiting a deleted state
and any may-transition entering a deleted state; in addition, deleted states are
removed from targets of disjunctive must-transitions. We write p ∧ q for the
state (p, q) of P ∧ Q; these are the consistent states by construction, and p ∧ q
is only defined for such a state.

Regarding well-definedness, first observe that P&Q is a dMTS, where syntactic
consistency follows from Rule (May3). Now, P ∧Q is a dMTS, too: if R′ becomes

empty for some (p, q)
a−→ R′, then also (p, q) is deleted when constructing P ∧Q

from P&Q according to (F3).
Before we formally state that operator ∧ is indeed conjunction on dMTS,

we present several examples depicted in Fig. 3, which motivate the rules of
Def. 11. Note that, in this figure and the following figures, any (disjunctive)
must-transition drawn also represents implicitly the respective may-transition(s),
unless stated otherwise. In each example in Fig. 3, r is a common implementa-
tion of p and q (but not r′ in Ex. I), whence these must be logically consistent.

Thus, Ex. I explains Rule (Must1). If we only had
τ��� in the precondition of

Rule (May1), p ∧ q of Ex. II would just consist of a c-must- and an a-may-
transition; the only τ -transition would lead to a state in F due to b. This would
not allow the τ -transition of r, explaining Rule (May1). In Ex. III and with only
α��� in the preconditions of Rule (May3), p∧q would just have three τ -transitions

Modal Interface Automata 273

Fig. 4. Example illustrating dMTS-conjunction

to inconsistent states (due to b, c, respectively). This explains the weak transi-
tions for α �= τ in Rule (May3). According to Rules (May1) and (May2), p∧ q in
Ex. IV has four τ -transitions to states in F (due to d). With preconditions based

on at least one
τ��� instead of

τ������ in the τ -case of Rule (May3), there would be
three more τ -transitions to states in F (due to b or c). Thus, it is essential that
Rule (May3) also allows the synchronization of two weak τ -transitions, which in

this case gives p ∧ q τ��� p′ ∧ q′.
Fig. 4 shows a small example illustrating the treatment of disjunctive must-

transitions in the presence of inconsistency. In P&Q, the a-must-transition of Q
combines with the three a-transitions of P to a truly disjunctive must-transition
with a three-element target set. The inconsistency of state (4, 6) due to b prop-
agates back to state (3, 5). The inconsistent states are removed in P ∧Q.

Theorem 13 (∧ is And). Let P,Q,R be dMTSs. Then, (i) (∃r ∈ R. r 0dMTS p
and r 0dMTS q) if and only if p ∧ q is defined. Further, in case p ∧ q is defined:
(ii) r 0dMTS p and r 0dMTS q if and only if r 0dMTS p ∧ q.

This key theorem states in Item (ii) that conjunction behaves as it should, i.e.,
∧ on dMTSs is the greatest lower bound wrt. 0dMTS. Item (i) concerns the
intuition that two specifications p and q are logically inconsistent if they do
not have a common implementation; formally, p ∧ q is undefined in this case.
Alternatively, we could have added an explicit inconsistent element ff to our
setting, so that p ∧ q = ff. This element ff would be defined to be a refinement
of every p′ and equivalent to any (p′, q′) ∈ F of some P&Q. Additionally, ff ∧ p′
and p′ ∧ ff would be defined as ff, for any p′. The following corollary of Thm. 13
now follows from universal algebra, as above:

Corollary 14. dMTS-refinement is compositional wrt. conjunction.

Thus, we have succeeded in our ambition to define a syntactically consistent con-
junction for MTS, albeit for an MTS variant with disjunctive must-transitions.

Larsen [7] also defines a conjunction operator on MTS, but almost always the
result violates syntactic consistency. A simple example is shown in Fig. 5, where q
refines p in Larsen’s setting as well as in our dMTS-setting. Since Larsen’s p∧q is
not syntactically consistent, this p∧q and q are, contrary to the first impression,
equivalent. In our dMTS-setting P ∧Q is isomorphic to Q, which will also hold

274 G. Lüttgen and W. Vogler

Fig. 5. Example illustrating Larsen’s MTS-conjunction;
a��� drawn separately

Fig. 6. Example demonstrating the compositionality flaw of IOMTS

for our MIA-setting below (with action b read as output and where a could be
either an input or an output).

The above shortcoming has been avoided by Larsen et al. in [9] by limiting
conjunction to so-called independent specifications that make inconsistencies ob-
solete. This restriction also excludes the above example. Another MTS-inspired
theory including a conjunction operator has been introduced by Raclet et al. [12].
While their approach yields the desired p ∧ q as in our dMTS-setting, it is
language-based and thus deals with deterministic systems only.

4 Modal Interface Automata

An essential point of Larsen, Nyman and Wasowski’s seminal paper [8] is to
enrich IA with modalities to get a flexible specification framework where inputs
and outputs can be prescribed, allowed or prohibited. To do so, they consider
IOMTS, i.e., MTS where visible actions are partitioned into inputs and outputs,
and define parallel composition in IA-style.

Our example of Fig. 6 shows that their approach has a serious flaw, namely ob-
servational modal refinement is not a precongruence for the parallel composition
of [8]. In this example, the IOMTS P has input alphabet {a} and empty output
alphabet, while Q and Q′ have input alphabet {i} and output alphabet {a}.
Obviously, q′ 0dMTS q. When composing P and Q in parallel, p|q would reach
an error state after an i-must-transition in [8] since the potential output a of Q
is not expected by P . In contrast, p|q′ has an i-must- and i-may-transition not
allowed by P |Q, so that p|q′ �0dMTS p|q. This counterexample also holds for
(strong) modal refinement as defined in [8] and is particularly severe since all
systems are deterministic. The problem is that p|q forbids input i.

In [8], precongruence of parallel composition is not mentioned. Instead, a the-
orem relates the parallel composition of two IOMTSs to a different composition
on two refining implementations, where an implementation in [8] is an IOMTS
in which may- and must-transitions coincide. This theorem is incorrect as is
pointed out in [12] and repaired in the deterministic setting of that paper; the
repair is still not a precongruence result, but compares the results of two differ-
ent operators. However, a natural solution to the precongruence problem can be

Modal Interface Automata 275

adopted from the IA-framework [5] where inputs are always allowed implicitly.
Consequently, if an input is specified, it will always be a must.

In the remainder, we thus define and study a new specification framework,
called Modal Interface Automata (MIA), that takes the dMTS-setting for an
alphabet consisting of input and output actions, requires input-determinism, and
demands that every input-may-transition is also an input-must-transition. The
advantage over IA is that outputs can be prescribed via output-must-transitions,
which precludes trivial implementations like BlackHole discussed in Sec. 2.

Definition 15 (Modal Interface Automaton). A Modal Interface Automa-
ton (MIA) is a tuple Q = (Q, I,O,−→, ���), where (Q, I ∪ O,−→, ���) is a
dMTS with disjoint alphabets I and O for inputs and outputs and where for all

i ∈ I: (a) q i��� q′ and q i��� q′′ implies q′ = q′′; (b) q
i��� q′ implies q

i−→ q′.

Observe that syntactic consistency and input determinism imply that input-

must-transitions always have the form q
i−→ {q′}. Thus, only output-must-

transitions can be truly disjunctive.

Definition 16 (MIA-Refinement). Let P,Q be MIAs with common input
and output alphabets. RelationR ⊆ P×Q is an (observational) MIA-refinement
relation if for any (p, q) ∈ R:

(i) q
a−→ Q′ implies ∃P ′. p a−→ P ′ and ∀p′ ∈ P ′ ∃q′ ∈ Q′. (p′, q′) ∈ R,

(ii) p
α��� p′ with α ∈ O ∪ {τ} implies ∃q′. q α̂������ q′ and (p′, q′) ∈ R.

We write p 0MIA q and say that p MIA-refines q if there exists an observa-
tional MIA-refinement relation R such that (p, q) ∈ R. Moreover, we also write
p 10MIA q in case p 0MIA q and q 0MIA p (which is an equivalence weaker than
‘bisimulation’).

One can easily check that 0MIA is a preorder and the largest observational
MIA-refinement relation. Its definition coincides with dMTS-refinement except
that Cond. (ii) is restricted to outputs and the silent action τ . Thus, inputs are
always allowed implicitly and, in effect, treated just like in IA-refinement. Due
to the output-must-transitions in the MIA-setting, MIA-refinement can model,
e.g., STG-bisimilarity [13] for digital circuits.

4.1 Conjunction on MIA

Similar to conjunction on dMTS, we define conjunction on MIA by first con-
structing a conjunctive product and then eliminating all inconsistent states.

Definition 17 (Conjunctive Product on MIA). Let P = (P, I,O,−→P ,
���P) and Q = (Q, I,O,−→Q, ���Q) be MIAs with common input and output
alphabets and disjoint state sets P and Q. The conjunctive product P&Q =df

((P × Q) ∪ P ∪ Q, I,O,−→, ���) inherits the transitions of P and Q and has
additional transitions as follows, where i ∈ I, o ∈ O and α ∈ O ∪ {τ}:

276 G. Lüttgen and W. Vogler

(OMust1) (p, q)
o−→ {(p′, q′) | p′ ∈ P ′, q

o������Q q′} if p
o−→P P

′ and q
o������Q

(OMust2) (p, q)
o−→ {(p′, q′) | p o������P p′, q′ ∈ Q′} if p

o������P and q
o−→Q Q

′

(IMust1) (p, q)
i−→ p′ if p

i−→P p
′ and q � i−→Q

(IMust2) (p, q)
i−→ q′ if p � i−→P and q

i−→Q q
′

(IMust3) (p, q)
i−→ (p′, q′) if p

i−→P p
′ and q i−→Q q

′

(May1) (p, q)
τ��� (p′, q) if p

τ������P p′
(May2) (p, q)

τ��� (p, q′) if q
τ������Q q′

(May3) (p, q)
α��� (p, q′) if p

α������P p′ and q
α������Q q′

(Plus the may-rules corresponding to Rules (IMust1)–(IMust3) above.)

This product is defined analogously to IA-conjunction for inputs (plus the cor-
responding ‘may’ rules) and to the dMTS-product for outputs and τ . It thus
combines the effects shown in Fig. 1 (where all outputs are treated as may) and
Fig. 4 (where all actions are outputs).

Definition 18 (Conjunction on MIA). Given a conjunctive product P&Q,
the set F ⊆ P × Q of (logically) inconsistent states is defined as the least set
satisfying the following rules:

(F1) p
o−→P , q �

o������Q , o ∈ O implies (p, q) ∈ F
(F2) p � o������P , q

o−→Q, o ∈ O implies (p, q) ∈ F
(F3) (p, q)

a−→ R′ and R′ ⊆ F implies (p, q) ∈ F

The conjunction P ∧Q of MIAs P,Q with common input and output alphabets is
obtained by deleting all states (p, q) ∈ F from P&Q. We write p∧q for state (p, q)
of P ∧Q; all such states are defined – and consistent – by construction.

The conjunction P ∧ Q is a MIA and is thus well-defined. This can be seen by
a similar argument as we have used above in the context of dMTS-conjunction,
while input-determinism can be established by an argument similar to that in the
IA-setting. Note that, in contrast to the dMTS situation, Rules (F1) and (F2)
only apply to outputs. Fig. 4 is also an example for conjunction in the MIA-
setting if all actions are read as outputs.

Theorem 19 (∧ is And). Let P,Q,R be MIAs. We have (i) (∃r ∈ R. r 0MIA p
and r 0MIA q) if and only if p ∧ q is defined. Further, in case p ∧ q is defined:
(ii) r 0MIA p and r 0MIA q if and only if r 0MIA p ∧ q.

Corollary 20. MIA-refinement is compositional wrt. conjunction.

4.2 Parallel Composition on MIA

In analogy to the IA-setting [5], we provide a parallel operator on MIA. Here,
error states are identified, and all states are removed from which reaching an
error state is unavoidable in some implementation, as is done for IOMTS in [8].

Modal Interface Automata 277

Definition 21 (Parallel Product on MIA). MIAs P1, P2 are composable
if A1 ∩ A2 = (I1 ∩ O2) ∪ (O1 ∩ I2), as in IA. For such MIAs we define the
product P1 ⊗ P2 = (P1 × P2, I, O,−→, ���), where I = (I1 ∪ I2) \ (O1 ∪O2) and
O = (O1 ∪O2) \ (I1 ∪ I2) and where −→ and ��� are defined as follows:

(Must1) (p1, p2)
a−→ P ′

1 × {p2} if p1
a−→ P ′

1 and a /∈ A2

(Must2) (p1, p2)
a−→ {p1} × P ′

2 if p2
a−→ P ′

2 and a /∈ A1

(May1) (p1, p2)
α��� (p′1, p2) if p1

α��� p′1 and α /∈ A2

(May2) (p1, p2)
α��� (p1, p′2) if p2

α��� p′2 and α /∈ A1

(May3) (p1, p2)
τ��� (p′1, p′2) if p1

a��� p′1 and p2
a��� p′2 for some a.

Recall that there are no τ -must-transitions as they are irrelevant for refinement.

Definition 22 (Parallel Composition on MIA). Given a parallel product
P1 ⊗ P2, a state (p1, p2) is an error state if there is some a ∈ A1 ∩A2 such that

(a) a ∈ O1, p1
a��� and p2 � a−→, or (b) a ∈ O2, p2

a��� and p1 � a−→.
Again we define the set E ⊆ P1 × P2 of incompatible states as the least set

such that (p1, p2) ∈ E if (i) (p1, p2) is an error state or (ii) (p1, p2)
α��� (p′1, p′2)

for some α ∈ O ∪ {τ} and (p′1, p
′
2) ∈ E. The parallel composition P1|P2 of P1

and P2 is now obtained from P1 ⊗ P2 by pruning, as in IA.

Parallel products and parallel compositions are well-defined MIAs. Syntactic con-
sistency is preserved, as is input-determinism since input-transitions are directly
inherited from one of the composable systems. In addition, targets of disjunctive
must-transitions are never empty since all must-transitions that remain after
pruning are taken from the product without modification.

Observe that pruning is different from removing inconsistent states in con-
junction. For truly disjunctive transitions (p1, p2)

a−→ P ′ (i.e., a ∈ O) of the
product P1 ⊗ P2, the state (p1, p2) is removed if P ′ ∩ E �= ∅. Technically, this
follows from syntactic consistency and Cond. (ii) above. Intuitively, this is be-
cause P ′ has w.l.o.g. the form P ′

1 × {p2} in the product of P1 and P2, with
some (p′1, p

′
2) ∈ P ′ ∩ E; the implementor of P1 might choose to implement

p1
a−→ p′1 such that – when P1’s implementation is composed with P2’s – the

error state is reached. This cannot be reasonably prevented by altering the above
definition while preserving the precongruence property for parallel composition:

Theorem 23 (Compositionality of MIA-Parallel Composition). Let P1,
P2 and Q1 be MIAs with p1 ∈ P1, p2 ∈ P2, q1 ∈ Q1 and p1 0MIA q1. Assume
that Q1 and P2 are composable; then, (a) P1 and P2 are composable and (b) if q1
and p2 are compatible, then so are p1 and p2 and p1|p2 0MIA q1|p2.

This precongruence property of MIA-refinement would not hold if we would
do away with input-determinism in MIA. To see this, consider the example of
Fig. 7 for which p 0MIA q; however, p|r 0MIA q|r does not hold since q and r are
compatible while p and r are not. An analogue reasoning applies to IA, although
we do not know of a reference in the IA literature where this has been observed.

278 G. Lüttgen and W. Vogler

Fig. 7. Example illustrating the need of input-determinism for MIA

4.3 Embedding of IA into MIA

To conclude, we provide an embedding of IA into MIA in the line of [8]:

Definition 24 (IA-Embedding). Let P be an IA. The embedding [P]MIA of P

into MIA is defined as the MIA (P, I,O,−→, ���), where (i) p i−→ p′ if p i−→P p
′

and i ∈ I, and (ii) p
α��� p′ if p α−→P p

′ and α ∈ I ∪O ∪ {τ}.

This embedding is much simpler than the one of [8] since MIA more closely
resembles IA than IOMTS does. In particular, the following theorem is obvious:

Theorem 25 (IA-Embedding Respects Refinement). For IAs P,Q with
p ∈ P , q ∈ Q: p 0IA q in P and Q iff p 0MIA q in [P]MIA and [Q]MIA.

Our embedding respects operators | and ∧, unlike the one in [8]:

Theorem 26 (IA-Embedding is a Homomorphism). For IAs P,Q with
p ∈ P , q ∈ Q: (a) p ∧ q (in [P]MIA ∧ [Q]MIA) 10MIA p ∧ q (in [P ∧Q]MIA);
(b) p|q (in [P]MIA|[Q]MIA) 10MIA p|q (in [P |Q]MIA).

5 Conclusions and Future Work

We introduced Modal Interface Automata (MIA), an interface theory that is
more expressive than Interface Automata (IA) [5]: it allows one to mandate that
a specification’s refinement must implement some output, thus excluding trivial
implementations, e.g., one that accepts all inputs but never emits any output.
This was also the motivation behind IOMTS [8] that extends Modal Transition
Systems (MTS) [7] by inputs and outputs; however, the IOMTS-parallel operator
in the style of IA is not compositional. MIA is a subset of IOMTS, but it has a
different refinement relation that is a precongruence for parallel composition.

Most importantly and in contrast to IA and IOMTS, the MIA theory is
equipped with a conjunction operator for reasoning about components that sat-
isfy multiple interfaces simultaneously. Along the way, we also introduced con-
junction on IA and (a disjunctive extension of) MTS, and proved these operators
to be the desired greatest lower bounds and thus compositional. Compared to
the language-based modal interface theory of [12], our formalism supports nonde-
terministic specifications (wrt. outputs). Hence, MIA establishes a theoretically
clean and practical interface theory that fixes the shortcomings of related work.

Regarding future work, we plan to study the algorithmic complexity implied
by MIA-refinement [12], and MIA’s expressiveness in comparison to other theo-
ries via thoroughness [6]. On the practical side, we wish to adapt existing tool
support for interface theories, e.g., the MIO Workbench [3], to MIA.

Modal Interface Automata 279

References

[1] Abadi, M., Lamport, L.: Conjoining specifications. ACM TOPLAS 1(3), 507–534
(1995)

[2] Bauer, S., Hennicker, R., Wirsing, M.: Interface theories for concurrency and data.
Theoret. Comp. Sc. 412(28), 3101–3121 (2011)

[3] Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On Weak Modal Compati-
bility, Refinement, and the MIO Workbench. In: Esparza, J., Majumdar, R. (eds.)
TACAS 2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010)

[4] de Alfaro, L., Henzinger, T.A.: Interface automata. In: FSE, pp. 109–120. ACM
(2001)

[5] de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Engineering Theories
of Software-Intensive Systems. NATO Science Series, vol. 195. Springer (2005)

[6] Fecher, H., de Frutos-Escrig, D., Lüttgen, G., Schmidt, H.: On the Expressive-
ness of Refinement Settings. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS,
vol. 5961, pp. 276–291. Springer, Heidelberg (2010)

[7] Larsen, K.G.: Modal Specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

[8] Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

[9] Larsen, K.G., Steffen, B., Weise, C.: A Constraint Oriented Proof Methodology
Based on Modal Transition Systems. In: Brinksma, E., Steffen, B., Cleaveland,
W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 17–40.
Springer, Heidelberg (1995)

[10] Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of
contexts. J. Logic Comput. 1(6), 761–795 (1991)

[11] Lüttgen, G., Vogler, W.: Ready simulation for concurrency: It’s logical! Inform.
and Comput. 208, 845–867 (2010)

[12] Raclet, J., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
A modal interface theory for component-based design. Fund. Inform. 107, 1–32
(2011)

[13] Schäfer, M., Vogler, W.: Component refinement and CSC-solving for STG decom-
position. Theoret. Comp. Sc. 388(1-3), 243–266 (2007)

Proofs as Executions

Emmanuel Beffara1,� and Virgile Mogbil2,��

1 IML – FRE3529, CNRS – Université d’Aix-Marseille
2 LIPN – UMR7030, CNRS – Université Paris 13

Abstract. This paper proposes a new interpretation of the logical con-
tents of programs in the context of concurrent interaction, wherein proofs
correspond to valid executions of a processes. A type system based on
linear logic is used, in which a given process has many different types,
each typing corresponding to a particular way of interacting with its en-
vironment and cut elimination corresponds to executing the process in
a given interaction scenario. A completeness result is established, stat-
ing that every lock-avoiding execution of a process in some environment
corresponds to a particular typing. Besides traces, types contain precise
information about the flow of control between a process and its environ-
ment, and proofs are interpreted as composable schedulings of processes.
In this interpretation, logic appears as a way of making explicit the flow
of causality between interacting processes.

1 Introduction

The extension of the familiar Curry-Howard correspondence to interactive mod-
els of computation has been an active research topic for several decades. Several
systems were proposed based on linear logic [11], following the fundamental ob-
servation that it is a logic of interaction. Interpretations of proofs as processes,
first formalized by Abramsky [1], later refined by various people including the
first author [2], stressed that proof nets [12] and process calculi have significant
similarities in dynamics. At the same time, type systems for concurrency [24]
revealed to be equivalent to variants of linear logic [14,6]. These approaches suc-
cessfully stress the fact that concurrent calculi are very expressive and versatile
models of interactive behaviour, however they are not satisfactory yet as a proof-
theoretical account of concurrency, because they tend to impose determinism in
execution, effectively constraining processes to functional behaviour.

Several approaches to the question of non-determinism in proof theory have
been proposed using the additives of linear logic [16,17,21]. In a different style,
differential logic was recently developed by Ehrhard and Regnier [10] and its un-
typed proof formalism was shown expressive enough to represent the π-calculus
[9]. The present work proposes a different approach to the topic, by questioning
the “proofs-as-programs” paradigm. Proof theory wants cut elimination to be
confluent, because the meaning of proofs lies in their normal forms. On the other

� Supported by the French ANR project LOGOI, ANR-10-BLAN-0213.
�� Supported by the French ANR project COMPLICE, ANR-08-BLAN-0211-01.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 280–294, 2012.
� IFIP International Federation for Information Processing 2012

Proofs as Executions 281

hand, reduction in process calculi is execution: the meaning of a term is not its
final irreducible form but what happens to get there, as interaction with other
processes. Hence we propose to match proofs with executions rather than terms.
But this raises the new question of what is the logical meaning of an execution.
Here we must remember that cut elimination is a process of explicitation and
cut-free proofs are explicit, direct reasonings justifying some fact. In our case,
the fact is the interaction, which is a scheduling of a set of events in a system.
The justification, then, is the control flow through the system, specifying when
actions happen and when execution jumps from one process to another.

Technically, we illustrate this idea in the very simple setting of finitary CCS
with no choice operator, in order to focus on the novel ideas of our approach,
but ways to extend these techniques to a larger class of processes are sketched
in the perspectives. The corresponding logic is multiplicative linear logic, with
a family of modalities à la Hennessy-Milner [13] representing actions.

In our type system, multiplicatives represent causality and independence be-
tween parts of a run, using connectedness/acyclicity arguments to describe avoid-
ance of deadlocks. Modalities represent observable transitions, with explicit
scheduling constraints using the well-known stratifying effect of boxes in proof
nets. Axiom rules have an unusual interpretation: they are void of interactive
content (no forwarding or copycat behaviour), but they logically implement the
transfer of control flow between different parts of a running process.

Comparison to other work. This handling of control flow using the symmetries of
linear logic is reminiscent of the work of Mazurak and Zdancewicz [18] who use
linear negation as an explicit scheduling operation. Our work differs from theirs
and other works on typing for concurrency, in that we proceed “backwards”:
while Curry-Howard systems for concurrency embed logical systems into con-
current calculi, we embed executions of processes into a logical system.

The idea of matching proofs with executions is reminiscent of the proof search
approach to computation. Indeed, the relationship between logical linearity and
interaction has been explored for instance by Miller and Tiu [19,22] in sequent
calculus and by Bruscoli [5] in deep inference. Our approach has fundamentally
different bases: in these works, formulas are programs and proofs are reduction
sequences, while in our settings a formula is an interaction scenario and proofs
describe how a process can act according to this scenario, following its syntactic
structure. Moreover, internal dynamics in processes actually corresponds to cut-
elimination, which sets our work closer to proofs-as-programs than proof search.

Outline. The paper is organized as follows: Section 2 introduces a logic of
schedulings based on linear logic and illustrates our interpretation. Section 3
defines a simple fragment of CCS and a notion of determinisation, used to rep-
resent executions as terms. Section 4 presents the proof nets for the logic of
schedulings and its cut-elimination. Section 5 shows the typing of executions
and the associated subject reduction property, and Section 6 establishes the
completeness property that all lock-avoiding executions are typable. Appendices
with detailed proofs can be found on the online version [4].

282 E. Beffara and V. Mogbil

Table 1. Inference rules for MLL with action modalities (MLLa)

P 	 Γ,A,B

P 	 Γ,A`B
(`)

P 	 Γ,A Q 	 B,Δ

P |Q 	 Γ,A � B,Δ
(⊗) P 	 Γ,A Q 	 A⊥,Δ

P |Q 	 Γ,Δ
(cut)

1 	 A,A⊥ (ax)
P 	 Γ,A

a.P 	 Γ, 〈a〉A (act)
P 	 Γ a /∈ Γ

(νa)P 	 Γ
(new)

Derived rules:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

P : Γ,A 	 B

P : Γ 	 A B
(R)

P : Γ 	 A Q : Δ,B 	 C

P |Q : Γ,Δ,A B 	 C
(L)

P : Γ 	 A B Q : Δ 	 A

P |Q : Γ,Δ 	 B
(mp)

P : Γ,A 	 B

a.P : Γ, 〈ā〉A 	 B
(act)

– Rule (act) applies for names of both polarities.
– In rule (new), a �∈ Γ means that neither 〈a〉 nor 〈a〉 occurs in Γ .

2 A Logic of Schedulings

We first present the logic we use to describe interactions and schedulings. It
corresponds to the multiplicative fragment of linear logic [11], augmented with a
family of modalities that describe actions. Note that this section introduces the
logic in sequent calculus for simplicity, but the proper formalism for establishing
our results is that of proof nets, presented in section 4; this choice of presentation
is (hopefully) more pedagogical and has no technical consequences.

Definition 1 (MLLa). The formulas of MLLa are built by the grammar

A,B ::= α | α⊥ | A�B | A`B | 〈a〉A | 〈a〉A
where the α are literals and the a are CCS names. The negation A⊥ of a non-
literal formula A is defined by de Morgan duality as (A�B)⊥ = A⊥ `B⊥ and
(〈a〉A)⊥ = 〈a〉A⊥. A type (Γ,Δ . . .) is a finite multiset of formulas. Derivations
are built from the rules of table 1, where the left side of � is a CCS term up to
structural congruence (as of section 3).

Although it is formulated as a type system for processes, this logic should be
interpreted as a calculus for building schedulings. To explain this interpretation,
we adopt a few notations that stress the functional aspect of the system: P :
A1, . . . , An � B represents the judgement P � A⊥

1 , . . . , A
⊥
n , B and the binary

connective A B stands for A⊥`B. We easily get the derived rules of table 1:
(R) and (L) are respectively a reformulation of (`) and (⊗), and (mp) is
modus ponens for linear implication, obtained with (ax), (⊗) and (cut). The (ax)

and (cut) rules have natural two-sided counterparts. This is an intuitionistic or
implicative formulation, but we do need the full expressiveness of the MLLa for
the developments of the following sections.

A formula specifies a way for a process to interact with its environment and a
proof provides a way to justify this interaction. A judgement P : A1, . . . , An � B

Proofs as Executions 283

then denotes a function that combines n interactions of types Ai for independent
processes Qi into an interaction of type B of the process Q1 | · · · |Qn | P .

– A modality 〈a〉A means doing the action a and then acting according to A.
To lighten notations, we will represent successive modalities as a single one:
〈abc〉α means 〈a〉〈b〉〈c〉α. Note that the silent action τ is not represented in
types, since it is not part of the interactive behaviour of processes.

– Implication A B is an interaction that provides a behaviour B expecting
A from the environment, as made explicit by the rule (mp). The rule (R)

means that some context may actually be provided by the environment.
– A variable α is a behaviour not known from the considered term. An in-

teraction of type α means jumping to a continuation of type α, necessarily
provided by the context: indeed, since a scheduling of this type may not
provide any behaviour, it effectively gives control to some other process.

As we will formalize later on, the term P on the left side of a judgement is
guaranteed to be able to provide the behaviour computed by the proof, and this
behaviour will consume all the actions of P . Reciprocally, all the behaviours that
consume all actions of P correspond to some proof.

Let us illustrate this by examining the possible ways of typing a term like
a.b.1 | c.1. This term has three possible ways of interacting: each interleaving of
the sequence (a, b) with the sequence (c) is a valid trace. A simple interleaving
is the sequential execution of one part followed by the other, as (a, b, c). E.g.

1 : C � C (ax)

b.1 : C � 〈b〉C
(act)

a.b.1 : C � 〈ab〉C
(act)

1 : α � α (ax)

c.1 : α � 〈c〉α
(act)

a.b.1 | c.1 : α � 〈abc〉α
(cut)

with C = 〈c〉α.

The important point is the choice of the axiom on C: it stands for the fact the
a.b.1 finally hands control to c.1 for which we have type C.

The interleaving (a, c, b) is more subtle: now c.1 will have to get control from
a.b.1 after a and give back control to it after doing c. We can write this as

1 : α � α (ax)

b.1 : α � 〈b〉α
(act)

1 : C � C (ax)

b.1 : α, 〈b〉α C � C
(L)

a.b.1 : α, 〈b〉α C � 〈a〉C
(act)

a.b.1 : α � (〈b〉α C) 〈a〉C (R)

1 : B � B (ax)

c.1 : B � 〈c〉B
(act)

c.1 � B 〈c〉B (R)

a.b.1 | c.1 : α � 〈acb〉α
(mp)

with

{
B = 〈b〉α
C = 〈cb〉α

Again, the choice of the right types for the axioms is crucial because it depends
on the continuation in interaction. Indeed, we have three steps (a, c, b) and as
many types for continuations: 〈cb〉α, 〈b〉α and α.

The other crucial point is the introduction of a in front of b.1, as the succession
of rules (ax), (L), (act), (R). The conclusion type reads as “if using 〈b〉α the

284 E. Beffara and V. Mogbil

environment can do C, then, by combining with it, a.b.1 can do a then C”.
Operationally, a.b.1 starts by doing a, then jumps to C (the behaviour of the
environment), and at some point the environment will give control back from C
(that is the negative occurrence of C) and b.1 will then perform 〈b〉α. This part
is generic in C: we could use the same reasoning for any type C, including a type
variable γ. In a more concise way, (B γ) 〈a〉γ is an interruptible version
of the modality 〈a〉B. Similarly, the typing of c.1 is generic in B. We only need
to choose B and C appropriately for the (mp) rule, so that types unify properly.

Another aspect is when parallel composition is typed by a cut which means
that a synchronisation (send/receive) happens between the composed processes:

1 : ε � ε (ax)

e.1 : ε � 〈e〉ε
(act)

1 : α � α (ax)

ē.1 : 〈e〉α � α
(act)

d.ē.1 : 〈e〉α � 〈d〉α
(act)

1 : δ � δ (ax)

d̄.1 : 〈d〉δ � δ
(act)

d.ē.1 | d̄.1 : 〈e〉α � α
(cut)

e.1 | d.ē.1 | d̄.1 : α � α
(cut)

with

{
δ = α

ε = α

Here the conclusion type is a simple interaction with the environment. This term
has different proofs providing the same type, e.g. using a intermediate trace for
e.1|d.ē.1 instead of d.ē.1|d̄.1 as in the proof above. Such variants are irrelevant in
scheduling and will be removed by switching to proof nets in the next sections.

3 CCS Runs as Pairings

We consider processes of the standard language CCS [20]. The general language
is defined by the following grammar. Note that we use 1 for the inactive pro-
cess instead of the usual 0 because it is the neutral element of | which is a
multiplicative operation. Moreover, actions a are decorated by locations �:

P,Q ::= a�.P | ā�.P | 1 | (P |Q) | P +Q | ∗P | (νa)P

where a is taken from an infinite set N of names and � is taken from an infinite
set L of locations. Each location is used at most once in any term. The main
source of non-determinism is the fact that a given action name may occur several
times in a given term, and locations are used to name the different occurrences.

For the purpose of the present study, we actually restrict to the following
fragment. The reason for this will be explained in the following development.

Definition 2 (MCCS). Multiplicative CCS is the fragment of CCS using nei-
ther choice (+) nor replication (∗). Structural congruence is the smallest congru-
ence ≡ that makes parallel composition associative commutative and 1 neutral.

The set of locations occurring in P is written L(P). Given � ∈ L(P), the subject
of � is the name tagged by �, written subjP �. The polarity of � is that of the action
tagged by its subject, written polP �, element of {±1}. Intuitively, a negative
action ā represents the sending of a signal on a channel a, and a positive action
a represents the reception of such a signal.

Proofs as Executions 285

Definition 3 (execution). Execution is the relation over structural congruence
classes, labelled by partial involutions over L, defined by the rule

ā�.P | am.Q | R →{(�,m)}
ex P |Q |R

Let →ex∗ be the reflexive transitive closure of →ex, with the annotations defined
as P →∅

ex∗ P and if P →c
ex∗ Q→d

ex∗ R then P →c∪d
ex∗ R.

The annotation c in P →c
ex Q describes which occurrences interact in the exe-

cution step, we write P →ex Q if c is unimportant. Similarly, we keep locations
implicit when they do not matter. Remark that, for a given P and c, there is at
most one Q such that P →c

ex Q, since c describes the interaction completely.

Definition 4 (pairing). A pairing of a term P is a partial involution c over
L(P) such that for all � ∈ dom c, subj c(�) = subj � and pol c(�) = − pol �.

Let ∼c be the smallest equivalence that contains c. Let ≤P be the partial order
over L(P) such that � <P m for every subterm x�.Q of P with m ∈ L(Q). c is
consistent if dom c is downward closed for ≤P and ∼c<P∼c is acyclic.

Example 1. The total pairings of P = a1.c2 | b3.ā4 | b̄5.c̄6 | a7.b̄8 | b9 | ā0 are
c1 = {(9, 5), (1, 0), (2, 6), (3, 8), (4, 7)}, c2 = {(3, 5), (1, 4), (2, 6), (7, 0), (9, 8)},
c3 = {(1, 4), (3, 8), (7, 0), (9, 5), (2, 6)}, c4 = {(1, 0), (3, 5), (7, 4), (9, 8), (2, 6)}.
Only c1 is inconsistent as there is a cycle induced by {(3, 8), (4, 7)}. The maximal
consistent pairing included in c1 is {(9, 5), (1, 0), (2, 6)}.
Observe that pairings and consistency are preserved by structural congruence,
as a direct consequence of the fact that subjects, polarities and prefixing are
preserved by structural congruence.

Proposition 1. A pairing c of a term P is consistent if and only if there is a
term Q such that P →c

ex∗ Q.

Proof (sketch). In an execution P0 →c1
ex P1 →c2

ex · · · →cn
ex Pn, the ci are disjoint,

so their union is a pairing, and consistency is ensured by the fact that executions
respect prefixing. Conversely, write c = c1 5 · · · 5 cn with the ci atomic. By
definition, if c is consistent then ≤P induces a partial order over the domains of
the ci. Assume that the considered enumeration respects this order, then we can
prove by recurrence that there is an execution sequence P = P0 →c1

ex P1 · · · →cn
ex

Pn, since each ci joins two actions of Pi−1 that are minimal for ≤Pi−1 .

We easily get the following (for a proof see the appendix [4, B.1]).

Proposition 2. Let P be a term. Any two executions P →c
ex∗ Q and P →c

ex∗ R
with the same pairing are permutations of each other, and in this case Q ≡ R.
We will thus consider consistent pairings as the proper notion of execution for
CCS terms. Maximal consistent pairings represent executions of processes until
a state where no more execution is possible.

A useful tool in the study of pairings is the following notion of determinisation,
by which we can turn a pairing of a term into a term that has no other pairing.
In other words, determinisation is a way to represent a run of a term in the
language of MCCS itself.

286 E. Beffara and V. Mogbil

Definition 5 (deterministic term). A term P is deterministic if it has at
most one occurrence of each action.

The pairings of a deterministic term form a lattice, consistent pairings too, so
there is a unique maximal consistent pairing for any deterministic term.

The restriction operator (νa) serves two purposes: it limits the scope of a
name, and it makes it possible to have names local to each copy of a subterm
in the presence of replication; both these features are useless in the determin-
istic case, hence we leave it out on determinisation. We abide by Barendregt’s
convention that each bound channel is named distinctly from each other channel.

Definition 6 (determinisation). Assume an injective map δ : N × {±1} ×
L → N . Given a partial involution c, determinisation along c is the operator ∂c
which commutes with parallel composition such that ∂c ((νa)P) = ∂c (P) and

∂c
(
a�.P

)
= δ(a,+1, �)�.∂c (P) , ∂c

(
ā�.P

)
=

{
δ(a,+1, �)

�
.∂c (P) if � ∈ dom c,

δ(a,−1, �)�.∂c (P) otherwise.

By construction, ∂c (P) is deterministic, the pairings of ∂c (P) are the restrictions
of c, consistency preserved, so c is the unique maximal pairing of ∂c (P).

Example 2. For the term P and the pairings of example 1, we obtain the follow-
ing determinisations (with δ(a,+1, 7) = d and δ(b,+1, 9) = e):
c3 = {(1, 4), (3, 8), (7, 0), (9, 5), (2, 6)} induces ∂c3 (P) = a.c | b.ā | ē.c̄ | d.b̄ | e | d̄,
c4 = {(1, 0), (3, 5), (7, 4), (9, 8), (2, 6)} induces ∂c4 (P) = a.c | b.d̄ | b̄.c̄ | d.ē | e | ā.
If we extended our study to the whole of CCS, determinisations would still be
in MCCS, but the theory of pairings would have to be refined: external choice
requires a notion of conflict in the space of locations (as in event structures [23]),
replications requires the introduction of indices to distinguish copies.

4 Proof Nets for MLL with Action Modalities

Proofs in sequent calculus are well suited to inductive reasoning, however their
use in proof theory is uneasy because their rigid structure obscures many ar-
guments, like those below in particular. For this reason, we will turn to proof
nets, using the standard machinery of linear logic [12,7]. Modality rules are rep-
resented using boxes (like promotions in standard linear logic, but with different
typing rules). The only extra information we add to standard proof structures is
the location of each box, to reflect the use of locations in CCS terms in the se-
quel. For readers not familiar with the standard definitions for proof nets, these
are put in appendix [4, A.1]. We detail here specificities of MLLa.

Definition 7 (proof structure). A proof structure consists of an ordered for-
est of nodes labelled by formulas, denoted xA, with a set Ax of axiom links (pairs
of leaves), a set Cut of cuts (pairs of roots) and a set Box of modality boxes, la-
belled by action modalities, such that each box β has a unique location �(β). The
roots that are not part of a cut are called the conclusion nodes. The conclusion
type is the multiset of the labels of the conclusion nodes.

Proofs as Executions 287

Fig. 1. Representation of proof structures: axiom link, ` node, � node, boxes, cut

A modality box β is a set of nodes (the ports) associated to a proof structure
S whose conclusions are in bijection with the ports. If the modality of β is 〈a〉,
then the principal port is labelled 〈a〉A and matches a conclusion of S labelled
A, while auxiliary ports have the same label as their matching conclusion in S.

The graphical notation of proof structures is presented in figure 1. By defini-
tion there are arcs only to multiplicative nodes, moreover proof structures can be
drawn considering the top-bottom orientation of arcs, so we keep arc orientation
implicit by this convention. Arcs to a ` node are joint by a circle on the side of
this node. By construction, the conclusion labels suffice to deduce all labels, so
we keep most of this information implicit.

Definition 8 (proof net). A proof net is a proof structure built following
MLLa sequent calculus rules. An immediate subnet of a proof net π is an induced
subgraph of π that is itself a proof net. A subnet of π is either an immediate
subnet of π or (inductively) a subnet of a box of π.

Well known correctness criteria [7,12,8] apply to characterise proof nets among
proof structures by combinatorial means like acyclicity and connectedness, which
allows the definition of proof nets without any reference to sequent calculus. We
will not elaborate on this aspect because it is essentially independent from the
present work.

Definition 9 (cut elimination). Annotated cut elimination is the relation
→c

ce over proof structures, labelled by partial involutions c over L, that is the
reflexive transitive closure of the rules below (such that if π →c

ce π
′ →d

ce π
′′ then

π →c∪d
ce π′′). We have π →c

ce π
′ if π contains a cut κ = {x, y} either at top level

or inside a box and one of the following cases occurs:

– Multiplicative step and Axiom step: standard definition, with c = ∅.
– Modality step: If x and y are principal ports of two boxes β, β′, then c per-

mutes �(β) and �(β′) and π′ is obtained by replacing each box with its asso-
ciated proof structure.

– Commutation step: If x is the auxiliary port of a box β, then c = ∅, and the
cut and a subnet of π that contains y are moved inside β.

Our proof system enjoys a standard cut-elimination theorem using this definition:
if π →c

ce π
′ and π is a proof net, then π′ is a proof net with the same conclusion

(this is proved by standard arguments using correctness criteria, hence we will
not develop this point); if a proof π is irreducible by→ce, then it has no cut link
(this is an immediate case analysis). Note however that →ce is not confluent,
because of commutation steps.

288 E. Beffara and V. Mogbil

Definition 10 (head reduction). Head reduction is the annotated relation
→c

h over proof structures defined as the restriction of →c
ce that only applies at

top level and does not use the commutation step of cut elimination.

This particular strategy is relevant because it does not reduce inside boxes, that
is under prefixes, it only affects cuts in active position (from the point of view
of processes). However, this strategy does not eliminate all cuts in general.

In the analysis of proofs, the following notion of path will be useful. It describes
a way to traverse arcs and axioms/cuts in a proof structure while respecting the
logical meaning of formulas.

Definition 11 (path). A path in a proof structure S is an alternating path
in the underlying graph of S, such that alternations occur only at axioms, cuts
and boxes. Each move between ports x and y of a box β must be associated with
a path between the corresponding conclusions in β. We further require a typing
constraint: a path can only move up a left (resp. right) branch if has moved down
a left (resp. right) branch before, with a natural well-bracketing condition.

For instance, a path starting from an axiom with type α may move down the tree
of nodes, reach a cut, move up the other side of the cut, always in the branches
that contain α, reach an axiom, and so on.

5 Typing Executions of MCCS Terms

Proofs in MLLa will serve as a type system. Although this can be formulated in
usual sequent style (as in table 1), the natural notion rather relates proof nets
and structural congruence classes of terms.

Definition 12 (term assignment). Let S be a proof structure. The MCCS
term �S� assigned to π is the parallel composition of the �β� for each box β in
S. In turn, for a box β with location � and associated structure Sβ, the term �β�
is a�.�Sβ� if the principal port of β has modality 〈a〉 and ā�.�Sβ� if the principal
port of β has modality 〈a〉. A term P is said to have type Γ if there is a proof
net π of conclusion Γ such that �π� ≡ P . In this case we write π : P � Γ .
A proof net is a proof structure that is built using the rules of table 1, ignoring
the terms on the left of the � symbols. It is obvious that these terms do reflect
the definition of term assignment: A term P has type Γ if and only if there is a
type derivation with conclusion P � Γ using the rules of table 1.

We now establish the correspondence between cut elimination in a proof and
execution steps in the assigned terms. The first result justifies head reduction:

Proposition 3. Let π be a proof structure. For every head reduction π →c
h π

′

there is an execution �π� →c
ex∗ �π′�.

Proof (sketch). Axiom and multiplicative cut elimination steps do not affect the
assigned terms, besides their annotation is empty, so the result holds immediately
for them. When a modality step applies, it reduces a cut between boxes with
dual modalities (because of typing), hence the associated terms are ready to
interact; the reduct is easily seen to be the assigned term of the reduct proof.

Proofs as Executions 289

Example 3. Let π be the following proof net.

d̄ d ē eb c̄caāb̄

We have �π� = a.c | b.ā | ē.c̄ | d.b̄ | e | d̄. (It is ∂c3 (P) of previous examples).
As it is a deterministic term, we abusively identify locations with names. We
consider the head reduction sequence π →z

h π
′ (where π′ is an axiom link) for

z = {(d, d̄), (b, b̄), (a, ā), (e, ē), (c, c̄)}. We have �π� →z
ex∗ �π′� ≡ 1.

Subject reduction does not hold in general. Indeed, a given proof may hold
several occurrences of a given modality, corresponding to different occurrences
of an action in the term, and the structure of cuts may not match a given
execution step. This is not a defect, since we actually intend to type pairings
rather than processes: we do get subject reduction if we restrict to proofs that
describe deterministic terms.

Definition 13 (linear proof). A proof structure S is called linear if

– S contains at most one box for each modality,
– for each a, all occurrences of 〈a〉A in the labels in S have the same immediate

subformula A, and if 〈a〉A and 〈a〉B occur then A and B are dual,
– if S contains a box for both 〈a〉A and 〈a〉A⊥, then neither formula occurs in

the conclusion type of S.

The essence of the linearity condition is the first constraint. Intuitively, the
second and third constraints serve to guarantee that the property is preserved
by composition. Indeed, if a formula 〈a〉A occurs in the conclusion of a proof
π, then the proof may be cut against a proof that contains a modality box for
〈a〉A⊥, which breaks linearity if π already contains a box for some 〈a〉B. Note
that the fact of being a linear proof is preserved by cut elimination.

Theorem 1 (subject reduction). Let π be a linear proof of conclusion P � Γ .
For every execution P →c

ex∗ P ′ there is a linear proof π′ : P ′ � Γ .

Proof (sketch). An execution step �π� →(�,m)
ex P involves immediate subterms

a�.Q and ām.R for a ∈ N . Then π contains two top level boxes with respective

principal ports x〈a〉A and y〈a〉A
⊥
, for A ∈ MLLa. Since π is linear, x and y are

elimination boxes for each other, ending a path ρ (as of definition 11) whose
axioms contain modalities of x and y in their types. Let π′ be the rewriting of π
where such modalities are removed (boxes are replaced by their contents, axioms
on 〈a〉A by axioms on A). Clearly π′ is a linear proof of conclusion P ′ � Γ .

This theorem states that types are preserved by execution in deterministic terms.
However, the proof uses a rewriting of the typing proofs that does not correspond
to cut elimination in general. Indeed, consider the following example of typing,
call π the l.h.s.:

290 E. Beffara and V. Mogbil

b

a ā �→
b

Then the proof is linear, irreducible by head cut elimination, but the assigned
term �π� = ā | b̄ | a does execute into b̄. In π, this involves a cut on the axiom
inside the middle box. As done in theorem 1 the rewriting of π in a linear proof
π′ assigned to b̄ is the r.h.s..

We can get a precise correspondence between execution and head cut elimina-
tion by imposing an additional constraint on the shape of proofs. In the statement
below, an axiom is immediately contained in a box if it is an immediate subnet
of the structure associated with this box.

Definition 14 (regular proof). An axiom link immediately contained in a box
β is anchored if there is a path from one of its conclusions to an auxiliary port
of β and a path from its other conclusion to the principal port. A proof structure
π is regular if all its axioms are anchored and for every pair of boxes with dual
modalities, one of the boxes does not immediately contain any axiom.

Theorem 2 (strong subject reduction). Let π be a regular linear proof net.
For every execution �π� →c

ex∗ P there is a regular linear proof π′ such that
π →c

h π
′ and �π′� = P .

Proof (sketch). Consider an execution step �π� →(�,m)
ex P . As in the proof of

theorem 1, linearity implies that there are boxes at top level and a path ρ between

their principal ports x〈a〉A and y〈a〉A
⊥

for immediate subterms a�.Q and ām.R
of �π�. Since x is cut at top level, ρ traverses no box, otherwise linearity or
regularity would be contradicted. Then ρ is a multiplicative cut path whose cut
elimination →∅

h until x and y preserves �π� as well as regularity and linearity.

6 Anti-execution and Completeness

In this section we establish our correspondence theorem relating typings and
executions. To achieve this goal we first provide a kind of reciprocal statement
for subject reduction: if a term T can reduce into a typed term T ′, then we can
type T with a proof that reduces to the typing of T ′. Because we want logically
correct proof structures, this operation requires some care.

Example 4. Consider the term P := a.b̄ | b.c̄ | ā.c. We cannot type each thread
with a simple type like 〈a〉α, 〈b〉α⊥ and then introduce a cut for each interaction,
since we would get a cyclic proof structure, which is incorrect.

We now describe a general method for deducing a typing by “anti-execution” of
a proof. We stay at a partly informal level for clarity, all formal statements are
detailed in the appendix [4, B.3].

Proofs as Executions 291

Consider a generic execution step P | a.Q | ā.R →ex P | Q | R. Assume the
reduct is typed by some proof π. We want to put the parts of π that correspond
to Q and R into boxes, with a cut between them, while rewriting the proof to
avoid cycles. For this purpose, we proceed in four steps:

Selection consists in moving each box belonging to Q or R away from the main
proof, by means of an axiom/cut pair, so that Q and R are represented by
simple sets of boxes, cut with the main proof (which corresponds to P), with
no multiplicative connectives:

�→

Chaining consists in introducing an extra axiom/cut pair in the middle of each
cut between P and R, so that there are cuts only between P and Q or Q
and R, and not between P and R directly:

R′Q′P ′

�→
P Q R

Simplification consists in making sure that there is actually exactly one cut
between P and Q and one between Q and R, by multiplexing multiple cuts
through multiplicatives:

�→
Correctness criteria guarantee that we can always find two cuts for which
there is one connected component on one side, two on the other.

Boxing consists in putting Q and R into boxes, cut together, so that Q has one
auxiliary port to P and R has no auxiliary port:

�→

Following this method, we prove the following statement:

Proposition 4 (anti-execution). Let T1 →c
ex T2 be an execution step and let

π2 : T2 � Γ be a typing. There exists a typing π1 : T1 � Γ such that π1 →c
h π2.

Example 5. Consider the term of P of example 1. We consider the execution e =
(a, ā)(b, b̄)(c, c̄)(d, d̄)(e, ē) of the determinized term ∂c4 (P) = a.c |b.d̄ | b̄.c̄ |d.ē |e | ā
for the (total and consistent) pairing c4 = {(1, 0), (3, 5), (7, 4), (9, 8), (2, 6)}. A
typing synthesized by the construction of proposition 4 is the following.

292 E. Beffara and V. Mogbil

c̄

b̄

e
d

b

ēd̄ a āc

Lemma 1 (preserved regularity). In the construction of proposition 4, if π2
is regular, then so is π1. If π2 is linear and T2 is deterministic, then π1 is linear.

Proof (sketch). Let T2 = P | Q | R. If an axiom is introduced by anti-execution
rewrite steps, used in proposition 4 then: i) it is added to P by selection and
it will not be boxed, or ii) it is added to Q by chaining and becomes anchored
by simplification and boxing. No axiom is introduced on the side of R, Q only
contains chaining axioms, so regularity is satisfied for the new axioms. Besides,
regularity is not broken for axioms previously present in the proof.

Example 6. In the previous example 5, one can also start execution by (b, b̄)(a, ā)
as seen in the typing. All execution permutation of ∂c4 (P) in the pairing c4 is
allowed by the typing proof synthesized from the execution e.

We now summarize the previous results, about subject reduction and the reverse
operation, into a precise statement relating typings and execution.

Lemma 2 (initial typing). Every linear MCCS term where no name occurs
with both modalities is typable by a cut-free regular proof.

Proof. We simply build a proof of T � AT , BT with AT non-modal by induction
on T . For T = 1, use the axiom rule to get 1 � α⊥, α. For T = P | Q, deduce
T � AP `AQ, BP �BQ by the tensor rule. For T = a.P , deduce T � AP , 〈a〉BP

by the action rule, similarly for ā.P . The proof thus built is obviously regular
since every axiom is at top level or anchored, and there are no pairs of boxes
with dual modalities.

Theorem 3 (completeness). For every execution P →c
ex∗ Q there are typings

πP : P � Γ and πQ : Q � Γ such that πP →c
h πQ. Moreover, for every execution

sequence P →c1
ex P1 · · · →cn

ex Pn = Q with c1 ∪ · · · ∪ cn = c, there is a cut
elimination sequence πP →c1

h π1 · · · →cn
h πn = πQ, with �πi� = Pi for all i.

Proof. By definition, the term ∂c (Q) is linear and has no dual actions, so
by lemma 2 we can find a cut-free regular proof π′Q : ∂c (Q) � Γ . If we ap-
ply proposition 4 repeatedly to π′Q with the steps of the considered execution
∂c (P)→c

ex∗ ∂c (Q), we get a proof π′P : ∂c (P) � Γ that reduces to π′Q by a head
reduction sequence labelled c. Let πP and πQ be the relabellings of π′P and π′Q
by the inverse of ∂c, then we have πP : P � Γ , πQ : Q � Γ and πP →c

h πQ.
Every execution sequence of P with label c is an execution sequence of ∂c (P)

with the same label. By lemma 1, π′P enjoys strong subject reduction as of the-
orem 2, hence every run of ∂c (P) labelled by c corresponds to a head reduction
sequence in π′P labelled by c. By relabelling with ∂−1

c , every run of P labelled
by c corresponds to a head reduction sequence πP →c

h πQ.

In other words, every execution of a term can be exactly characterized up to
permutation by typing, in the sense that the execution sequences of the term
within the same pairing will be exactly the head reduction sequences of the

Proofs as Executions 293

associated typing proof. By combining determinisation (definition 6) and strong
subject reduction (theorem 2) we get that, conversely, each regular typing of a
term defines a set of executions stable by permutation.

7 Conclusion and Further Works

In this work we have developed, in the simple framework of multiplicative CCS,
a precise logical description of executions of processes. A key technical tool is
the use of pairings, by which we separate non-determinism in communication
from the multiplicity of equivalent schedulings; this technique extends well to
more expressive frameworks (full CCS, π-calculus, etc.). The logical interpre-
tation we propose moves beyond the traditional Curry-Howard for concurrency
by accepting non-deterministic terms, albeit with a change of interpretation in
the correspondence. Indeed, the logic we use is well studied and has a wide
range of existing tools (efficient correctness criteria, proof search, etc.) but its
interpretation in our paradigm of proof-as-executions is new.

Logical Expressiveness. The restriction to purely multiplicative objects, in MCCS
and MLL, lets us concentrate on the precise role of multiplicatives and axioms as
descriptions of how a process interacts with its environment but hides the com-
plexity inherent to the other defining features of concurrent systems like choice,
recursion, name passing, etc. It should be stressed that extending the calculus or
the logic are two different things. Extending the calculus enriches the set of pos-
sible executions, by introducing more subtle synchronization possibilities: choice
allows for conflict between actions, replication allows for arbitrarily large runs
with some uniformity, value passing allows for communication of ground values,
name passing allows the set of synchronizable pairs to evolve along execution.
After determinisation, all these features essentially disappear and deterministic
runs can still be formulated in MCCS. On the other hand, enriching the logic
leads to richer descriptions of the control flow in processes, for instance using a
first order language with predicates to describe properties of continuations.

Causality. A crucial feature of our work is the interpretation of axioms as a way
to transfer causality. This idea suggests new ways of analyzing causality in inter-
active systems, and the fact that the flow of causality is often as complicated as
the flow of information. Besides, a similar fact is illustrated by the expressiveness
of solos [15,3], where communication is used to carry all prefixing information
in processes. Our interpretation may provide a logical insight on this matter.

Cut Elimination. In the present work, as in proofs-as-programs formalisms, com-
position of processes is represented by the cut rule and execution corresponds to
a particular cut elimination strategy. An interesting direction for future work is
the study of the meaning of full cut-elimination, from the proofs-as-executions
point of view. The operationally relevant part is the elimination of dual actions,
which means executing all internal transitions in advance. This implies mak-
ing choices with respect to synchronisation. In other words, eliminating cuts
in a MLLa proof yields a more deterministic process that can still exhibit the
behaviour given by the considered type.

294 E. Beffara and V. Mogbil

References
1. Abramsky, S.: Proofs as processes. TCS 135(1), 5–9 (1994)
2. Beffara, E.: A concurrent model for linear logic. ENTCS 155, 147–168 (2006)
3. Beffara, E., Maurel, F.: Concurrent nets: a study of prefixing in process calculi.

TCS 356(3), 356–373 (2006)
4. Beffara, E., Mogbil, V.: Proofs as executions. Technical Report 00586459, HAL

(July 2012), http://hal.archives-ouvertes.fr/hal-00586459
5. Bruscoli, P.: A Purely Logical Account of Sequentiality in Proof Search. In: Stuckey,

P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 302–316. Springer, Heidelberg (2002)
6. Caires, L., Pfenning, F.: Session Types as Intuitionistic Linear Propositions. In:

Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010)

7. Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Math.
Logic 28(3), 181–203 (1989)

8. Jacobé de Naurois, P., Mogbil, V.: Correctness of linear logic proof structures is
NL-complete. TCS 412(20), 1941–1957 (2011)

9. Ehrhard, T., Laurent, O.: Interpreting a Finitary π-calculus in Differential Interac-
tion Nets. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703,
pp. 333–348. Springer, Heidelberg (2007)

10. Ehrhard, T., Regnier, L.: Differential interaction nets. TCS 364(2), 166–195 (2006)
11. Girard, J.-Y.: Linear logic. TCS 50(1), 1–102 (1987)
12. Girard, J.-Y.: Proof-nets: the parallel syntax for proof theory. Logic and Alge-

bra 180 (1996)
13. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.

Journal of the ACM 32(1), 137–161 (1985)
14. Honda, K., Laurent, O.: An exact correspondence between a typed π-calculus and

polarised proof-nets. TCS 411(22–24), 2223–2238 (2010)
15. Laneve, C., Victor, B.: Solos in Concert. In: Wiedermann, J., Van Emde Boas, P.,

Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 513–523. Springer, Heidelberg
(1999)

16. Mairson, H.G., Terui, K.: On the Computational Complexity of Cut-Elimination
in Linear Logic. In: Blundo, C., Laneve, C. (eds.) ICTCS 2003. LNCS, vol. 2841,
pp. 23–36. Springer, Heidelberg (2003)

17. Maurel, F.: Nondeterministic Light Logics and NP-Time. In: Hofmann, M.O. (ed.)
TLCA 2003. LNCS, vol. 2701, pp. 241–255. Springer, Heidelberg (2003)

18. Mazurak, K., Zdancewic, S.: Lolliproc: to concurrency from classical linear logic
via curry-howard and control. In: ICFP, pp. 39–50 (2010)

19. Miller, D.: The π-Calculus as a Theory in Linear Logic: Preliminary Results. In:
Lamma, E., Mello, P. (eds.) ELP 1992. LNCS, vol. 660, pp. 242–264. Springer,
Heidelberg (1993)

20. Milner, R.: Communication and concurrency. Prentice Hall (1989)
21. Mogbil, V.: Non-deterministic Boolean Proof Nets. In: van Eekelen, M., Shkar-

avska, O. (eds.) FOPARA 2009. LNCS, vol. 6324, pp. 131–145. Springer, Heidel-
berg (2010)

22. Tiu, A., Miller, D.: A proof search specification of the π-calculus. ENTCS 138(1),
79–101 (2005)

23. Winskel, G.: Event structures. In: Advances in Petri nets: Applications and Re-
lationships to Other Models of Concurrency, pp. 325–392. Springer, Heidelberg
(1987)

24. Yoshida, N., Berger, M., Honda, K.: Strong normalisation in the π-calculus. In:
LICS, pp. 311–322 (2001)

http://hal.archives-ouvertes.fr/hal-00586459

Efficient Algorithms
for the max k-vertex cover Problem�

Federico Della Croce1 and Vangelis Th. Paschos2,3

1 D.A.I., Politecnico di Torino, Italy
federico.dellacroce@polito.it

2 PSL Research University, Université Paris-Dauphine, LAMSADE, CNRS,
UMR 7243, France

paschos@lamsade.dauphine.fr
3 Institut Universitaire de France

Abstract. We first devise moderately exponential exact algorithms for
max k-vertex cover, with time-complexity exponential in n but with
polynomial space-complexity by developing a branch and reduce method
based upon the measure-and-conquer technique. We then prove that,
there exists an exact algorithm for max k-vertex cover with com-
plexity bounded above by the maximum among ck and γτ , for some
γ < 2, where τ is the cardinality of a minimum vertex cover of G (note
that max k-vertex cover /∈ FPT with respect to parameter k unless
FPT = W[1]), using polynomial space. We finally study approxima-
tion of max k-vertex cover by moderately exponential algorithms.
The general goal of the issue of moderately exponential approxima-
tion is to catch-up on polynomial inapproximability, by providing al-
gorithms achieving, with worst-case running times importantly smaller
than those needed for exact computation, approximation ratios unachiev-
able in polynomial time.

1 Introduction

In the max k-vertex cover problem a graph G(V, E) with |V | = n vertices
1, . . . , n and |E| edges (i, j) is given together with an integer value k < n. The
goal is to find a subset K ⊂ V with cardinality k, that is |K| = k, such that
the total number of edges covered by K is maximized. In its decision version,
max k-vertex cover can be defined as follows: “given G, k and �, does G
contain k vertices that cover at least � edges?”. max k-vertex cover is NP-
hard (it contains the minimum vertex cover problem as particular case), but it is
polynomially approximable within approximation ratio 3/4, while it cannot be
solved by a polynomial time approximation schema unless P = NP. The inter-
ested reader can be referred to [19,30] for more information about approximation
issues for this problem.
� Research supported by the French Agency for Research under the program TODO,

ANR-09-EMER-010 and by a Lagrange fellowship of the Fondazione CRT, Torino,
Italy.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 295–309, 2012.
c© IFIP International Federation for Information Processing 2012

296 F. Della Croce and V.T. Paschos

In the literature, we often find this problem under the name partial vertex
coverproblem. It ismainly studied fromaparameterized complexity point of view
(see [17] for information on fixed-parameter (in)tractability). A problem is fixed-
parameter tractablewith respect to a parameter t, if it canbe solved (to optimality)
with time-complexity O(f(t)p(n)) where f is a function that depends on the pa-
rameter t, and p is a polynomial on the size n of the instance. In what follows, when
dealing with fixed parameter tractability of max k-vertex cover, we shall use
notation max k-vertex cover(t) to denote that we speak about fixed parame-
ter tractability with respect to parameter t. Parameterized complexity issues for
max k-vertex cover are first studied in [3] where it is proved that partial ver-
tex cover is fixed-parameter tractable with respect to parameter �, next in [28]
where it is proved that it is W[1]-hard with respect to parameter k (another proof
of the same result can be found in [9]) and finally in [31] where the fixed-parameter
tractability results of [3] are further improved. Let us also quote the paper by [24],
where it is proved that in apex-minor-free graphs graphs, partial vertex cover
can be solved with complexity that is subexponential in k.

The seminal Courcelle’s Theorem [13] (see also [21,20] as well as [37] for a com-
prehensive study around this theorem) assures that decision problems defined
on graphs that are expressible in terms of monadic second-order logic formulæ
are fixed parameter tractable when the treewidth1 of the the input-graph G,
denoted by w, is used as parameter. Courcelle’s Theorem can be also extended
to a broad class of optimization problems [1]. As max k-vertex cover be-
longs to this class, it is fixed parameter tractable with respect to w. In most
of cases, “rough” application of this theorem, involves very large functions f(w)
(see definition of fixed-parameter tractability given above).

In [34], it is proved that given a nice tree decomposition, there exists a fixed-
parameter algorithm (based upon dynamic programming), with respect to param-
eter w that solves max k-vertex cover in time O(2wk(w2 +k) · |I|), where |I|
is the number of nodes of the nice tree decomposition and in exponential space.
In other words, max k-vertex cover(w) ∈ FPT, but the fixed-parameter
algorithm of [34] uses exponential space. Let us note that in any graph G, de-
noting by τ the size of a minimum vertex cover of G, it holds that w � τ . So,
max k-vertex cover(τ) ∈ FPT too, but through the use of exponential space
(recall that, as adopted above, max k-vertex cover(τ) denotes the max k-
vertex cover problem parameterized by the size τ of a minimum vertex cover.

Very frequently, a serious problem about fixed-parameter tractability with
respect to w is that it takes too much time to compute the “nice tree decomposi-
tion” that also derives the value of w. More precisely, this takes time O∗(1.7549n)

1 A tree decomposition of a graph G(V, E) is a pair (X, T) where T is a tree on
vertex set V (T) the vertices of which we call nodes and X = ({Xi : i ∈ V (T)})
is a collection of subsets of V such that: (i) ∪i∈V (T)Xi = V , (ii) for each edge
(v, w) ∈ E, there exist an i ∈ V (T) such that {v, w} ∈ Xi, and (iii) for each v ∈ V ,
the set of nodes {i : v ∈ Xi} forms a subtree of T . The width of a tree decomposition
({Xi : i ∈ V (T)}, T) equals maxi∈V (T){|Xi| − 1}. The treewidth of a graph G is the
minimum width over all tree decompositions of G.

Efficient Algorithms for the max k-vertex cover Problem 297

(notation O∗(·) ignores polynomial factors) by making use of exponential space
and time O∗(2.6151n) by making use of polynomial space [25]. Note that the
problem of deciding if the treewidth of a graph is at most w is fixed-parameter
tractable and takes time O(2O(w3)n) [33].

Dealing with solution of max k-vertex cover by exact algorithms with run-
ning times (exponential) functions of n, let us note that a trivial optimal algo-
rithm for max k-vertex cover takes time O∗(

(
n
k

)
) = O∗(nk), and polynomial

space, producing all the subsets of V of size k. This turns to a worst-case O∗(2n)
time (since

(
n
k

)
� 2n with equality for k = n

2). An improvement of this bound is
presented in [9], where an exact algorithm with complexity O∗(nω�k/3�+O(1)) was
proposed based upon a generalization of the O∗(nωt) algorithm of [35] for finding
a 3t-clique in a graph, where ω = 2.376. This induces a complexity O∗(n0.792k),
but exponential space is needed. As far as we know, no exact algorithm with
running time O∗(γn), for some γ < 2, is known for max k-vertex cover.

In this paper, we first devise an exact branch and reduce algorithm based
upon the measure-and-conquer paradigm by [22] (Section 2) requiring running
time O∗(2

Δ−1
Δ+1 n), where Δ denotes the maximum degree of G, and polynomial

space. The algorithm is then tailored to graphs with maximum degree 3 in-
ducing a running time O∗(1.3339n) (Section 4). In Section 3, we devise a fixed
parameter algorithm, with respect to parameter τ where, as mentioned above, τ
is the cardinality of a minimum vertex cover of G that works in time O∗(2τ)
and needs only polynomial space. By elaborating a bit more this result we then
show that the time-complexity of this algorithm is indeed either O∗(γτ) for some
γ < 2 or O∗(ck), for some c > 2. In other words, this algorithm either works
in time better than 2τ or it is fixed parameter with respect to the size k of
the desired cover. Finally, we show that the technique used for proving that
max k-vertex cover(τ) ∈ FPT, can be used to prove inclusion in the same
class of many other well-known combinatorial problems. A corollary of the in-
clusion of max k-vertex cover(τ) in FPT, is that max k-vertex cover in
bipartite graphs can be solved in time O∗(2n/2) 	 O∗(1.414n). Finally, in Sec-
tion 5, we address the question of approximating max k-vertex cover within
ratios “prohibited” for polynomial time algorithms, by algorithms running with
moderately exponential complexity. The general goal of this issue is to cope
with polynomial inapproximability, by developing algorithms achieving, with
worst-case running times significantly lower than those needed for exact com-
putation, approximation ratios unachievable in polynomial time. This approach
has already been considered for several other paradigmatic problems such as
minimum set cover [7,15], min coloring [2,6], max independent set and
min vertex cover [5], min bandwidth [16,26], . . . Similar issues arise in the
field of FPT algorithms, where approximation notions have been introduced, for
instance, in [10,18]. In this framework, we particularly quote [32] where it is
proved that, although not in FPT, max k-vertex cover(k) is approximable
by an FPT (with respect to k) approximation schema, where function f(k)
(in the time-complexity of this schema) is quite large, i.e., around something
like O∗(k2k2

).

298 F. Della Croce and V.T. Paschos

2 An O∗(2
Δ−1
Δ+1

n)-Time Polynomial Space Algorithm in
General Graphs

In what follows, we denote by αj the total number of vertices adjacent to j
that have been discarded in the previous levels of the search tree. We denote
by dj the degree of vertex j and by N(j) the set of vertices adjacent to j,
that is the neighborhood of j. Notice that, whenever a branch on a vertex j
occurs, for each l ∈ N(j), if j is selected then dl is decreased by one unit as
edge (j, l) is already covered by j. Alternatively, j is discarded: correspondingly dl

is not modified and αl is increased by one unit. We propose in this section a
branch and reduce approach based on the measure-and-conquer paradigm (see
for instance [22]). Consider a classical binary branching scheme on some vertex j
where j is either selected or discarded. Contrarily to the classical branch-and-
reduce paradigm where for each level of the search tree we define as fixed those
vertices that have already been selected or discarded, while we define as free
the other vertices, when using measure-and-conquer, we do not count in the
measure the fixed vertices, namely the vertices that have been either selected or
discarded at an earlier stage of the search tree and we count with a weight wh

the free vertices h. The vertex j to be selected is the one with largest coefficient
cj = dj − αj . Let cmax denote such a coefficient, hence cmax � Δ. Then, each
free vertex h is assigned a weight wh = w[i] with i = ci = dh−αh and we impose
w[0] � w[1] � w[2] � w[3] � . . . � w[cmax] = 1 that is the weights of the vertices
are strictly increasing in their cj coefficients.

We so get recurrences on the time T (p) required to solve instances of size p,
where the size of an instance is the sum of the weights of its vertices. Since
initially p = n, the overall running time is expressed as a function of n. This is
valid since when p = 0, there are only vertices with weight w[0] in the graph and,
in this case, the problem is immediately solved by selecting the k − γ vertices
with largest αj (if γ < k vertices have been selected so far). Correspondingly
free vertices j with no adjacent free vertices receive weight w[0] = 0.

We claim that max k-vertex cover can be solved with running time
O∗(2

Δ−1
Δ+1 n) by the following algorithm called MAXKVC:

Select j such that cj is maximum and branch according to the following
exhaustive cases:
1. if cj � 3, then branch on j and either select or discard j;
2. else, cj � 2 and MAXKVC is polynomially solvable.

Theorem 1. Algorithm MAXKVC solves max k-vertex cover with running
time O∗(2

Δ−1
Δ+1 n) using polynomial space.

Proof. To prove the above statement, we first show that the branch in step 1 can
be solved with complexity O∗(2

Δ−1
Δ+1 n) and then we show that step 2 is polyno-

mially solvable. Consider step 1. We always branch on the vertex j with largest
cj = cmax � Δ where cj � 3 and either we select or discard j. If we select j,
vertex j is fixed and cmax vertices (the neighbors of j) decrease their degree (and

Efficient Algorithms for the max k-vertex cover Problem 299

correspondingly their coefficient) by one unit. Similarly, if we discard j, vertex j
is fixed and cmax vertices (the neighbors of j) decrease their coefficient as their
degree remains unchanged but their α parameter is increased by one unit. Hence,
the recurrence becomes:

T (p) � 2T

⎛⎝p − w[cmax] −
∑

h∈N(j)

(
w[ch] − w[ch−1]

)⎞⎠
By constraining the weights to satisfy the inequality:

w[j] − w[j−1] � w[j−1] − w[j−2] ∀j = 2, . . . , cmax

the previous recurrence becomes in the worst-case:

T (p) � 2T
(
p − w[cmax] − cmax

(
w[cmax] − w[cmax−1]

))
As cmax � Δ, where the equality occurs when αj = 0, the above recurrence
becomes, in the worst-case, T (p) � 2T

(
p − w[Δ] − Δ

(
w[Δ] − w[Δ−1]

))
.

Summarizing, to handle graphs with maximum degree Δ, we need to guarantee
that the recurrences T (p) � 2T (p − w[i] − i(w[i] − w[i−1])), ∀i ∈ 3, . . . , Δ (as
cj � 3), and the constraints:

w[i] − w[i−1] � w[i−1] − w[i−2] ∀i = 2, . . . , Δ

0 = w[0] � w[1] � w[2] � w[3] � . . . � w[Δ−1] � w[Δ] = 1

are satisfied simultaneously. This corresponds to a non linear optimization prob-
lem of the form:

min α

α(w[i]+i(w[i]−w[i−1])) � 2 ∀i = 3, . . . , Δ (1)
w[i] − w[i−1] � w[i−1] − w[i−2] ∀i = 2, . . . , Δ (2)
0 = w[0] � w[1] � w[2] � w[3] � . . . � w[Δ−1] � w[Δ] = 1 (3)

We so get performances 1.4142n, for Δ = 3, 1.5157n, for Δ = 4, 1.5866n, for
Δ = 5, 1.6405n, for Δ = 6, 1.6817n, for Δ = 7, or 1.7143n, for Δ = 8.

Interestingly enough, for all these values of Δ, the complexity corresponds to
O∗(2

Δ−1
Δ+1 n). Indeed, this is not accidental. By setting:

w[i] =
(i − 1)(Δ + 1)
(i + 1)(Δ − 1)

∀i = 2, . . . , Δ (4)

w[1] =
1
2
w[2] (5)

w[0] = 0 (6)

we can see that constraints (2) and (3) are satisfied. To see that inequalities (2)
are satisfied, notice that:

w[3] − w[2] = w[2] − w[1] =
1
3
w[3]

w[2] − w[1] = w[1] − w[0] = w[1]

300 F. Della Croce and V.T. Paschos

For the general recursion with i � 4, we have to show that w[i] − w[i−1] �
w[i−1] − w[i−2], i.e., that w[i] − 2w[i−1] + w[i−2] � 0. This corresponds to:(

i − 1
i + 1

− 2
i − 2

i
+

i − 3
i − 1

)(
Δ + 1
Δ − 1

)
� 0

=⇒ i − 1
i + 1

− 2
i − 2

i
+

i − 3
i − 1

� 0

⇐⇒ i(i − 1)2 − 2(i − 2)
(
i2 − 1

)
+ i(i − 3)i + 1 � 0

⇐⇒ i3 − 2i2 + i − 2i3 + 4i2 + 2i − 4 + i3 − 2i2 − 3i = −4 � 0, ∀i

Also, to see that inequalities (3) are satisfied, notice that equations (4) imply:

w[Δ] = 1
w[i] > 0 ∀i = 2, . . . , Δ

w[i] > w[i−1] ∀i = 3, . . . , Δ

while equations (5) and (6) imply w[2] > w[1] > w[0] = 0.
Finally, notice that such values of w[j]s satisfy constraints (1) that now cor-

respond to Δ − 2 copies of the inequality α
Δ+1
Δ−1 � 2 where the minimum value

of α is obviously given by 2
Δ−1
Δ+1 n. Consequently, the overall complexity of step 1

is O∗(2
Δ−1
Δ+1 n).

We consider now step 2. For cj = cmax � 2, max k-vertex cover can be
seen as a maximum weighted k-vertex cover problem in an undirected graph G
where each vertex j has a weight αj and a degree dj = cj and the maximum
vertex degree is 2. But this problem has been shown to be solvable in O(n) time
by dynamic programming in [36]. �

3 max k-vertex cover and Fixed-Parameter
Tractability

Denote by (a − b − c), a branch of the search tree where vertices a and c are
selected and vertex b is discarded. Consider the vertex j with maximum degree Δ
and neighbors l1, . . . , lΔ. As j has maximum degree, we may assume that if there
exists an optimal solution of the problem where all neighbors of j are discarded,
then there exists at least one optimal solution where j is selected. Hence, a
branching scheme (called basic branching scheme) on j of type:[

l1,
(
l1 − l2

)
, . . . ,

(
l1 − l2 − . . . − lΔ−1 − lΔ

)
,
(
l1 − l2 − . . . − lΔ − j

)]
can be applied. Hence, the following easy but interesting result holds.

Proposition 1. The max k-vertex cover problem can be solved to optimality
in O∗(Δk).

Efficient Algorithms for the max k-vertex cover Problem 301

Proof. Consider vertex j with maximum degree Δ and neighbors l1, . . . , lΔ where
the basic branching scheme of type [l1, (l1 − l2), (l1 − l2 − l3), . . . , (l1 − l2 − . . .−
lΔ−1 − lΔ), (l1 − l2 − . . . − lΔ − j)] can be applied. Then, the last two branches
can be substituted by the branch (l1 − l2 − . . . − lΔ−1 − j) as, if all neighbors
of j but one are not selected, any solution including the last neighbor lΔ but not
including j is not better than the solution that selects j.

Now, one can see that the basic branching scheme generates Δ nodes. On the
other hand, we know that in each branch of the basic branching scheme at least
one vertex is selected. As, at most k nodes can be selected, the overall complexity
cannot be superior to O∗(Δk). �

Corollary 1. max k-vertex cover(k) in bounded degree graphs is in FPT.

Note that Corollary 1 can also be proved without reference to Proposition 1.
Indeed, in any graph of maximum degree Δ, denoting by � the value of an
optimal solution for max k-vertex cover, � � kΔ. Then, taking ito account
that max k-vertex cover(�) ∈ FPT, immediately derives Corollary 1.

Now, let V ′ ⊂ V be a minimum vertex cover of G and let τ be the size
of V ′ that is τ = |V ′|. Correspondingly, let I = V \ V ′ be a maximum indepen-
dent set of G and set α = |I|. Notice that V ′ can be computed, for instance,
in O∗(1.2738τ) time by means of the fixed-parameter algorithm of [12], and us-
ing polynomial space. Let us note that we can assume k � τ . Otherwise, the
optimal value � for max k-vertex cover would be equal to |E| and one could
compute a minimum vertex cover V ′ in G and then one could arbitrarily add
k − τ vertices without changing the value of the optimal solution.

Theorem 2. The following two assertions hold for max k-vertex cover:

1. there exists an O∗(2τ)-time algorithm that uses polynomial space;
2. there exists an algorithm running in time O∗(max{γτ , ck}), for two constants

γ < 2 and c > 4, and needing polynomial space.

Proof. For proving item 1, fix some minimum vertex cover V ′ of G and consider
some solution K for max k-vertex cover, i.e., some set of k vertices of G. Any
such set is distributed over V ′ and its associated independent set I = V \ V ′.
Fix now an optimal solution K∗ of max k-vertex cover and denote by S′ the
subset of V ′ that belongs to K∗ (S′ can be eventually the empty set) and by I ′

the part of K∗ belonging to I. In other words, the following hold:

K∗ = S′ ∪ I ′

S′ ⊆ V ′

I ′ ⊆ I = V \ V ′

Given S′ (assume |S′| = k′), it can be completed into K∗ in polynomial time.
Indeed, for each vertex i belonging to I we need simply to compute (in linear
time) the total number ei of edges (i, j) for all j ∈ V ′\S′. Then, I ′ is obtained by
selecting the k−k′ vertices of I with largest ei value. So, the following algorithm
can be used for max k-vertex cover:

302 F. Della Croce and V.T. Paschos

1. compute a minimum vertex cover V ′ (using the algorithm of [11]);
2. for every subset S′ ⊆ V ′ of cardinality at most k, take the k − |S′| vertices

of V \ V ′ with the largest degrees to V ′ \ S′; denote by I ′ this latter set;
3. return the best among the sets S′ ∪ I ′ so-computed (i.e., the set that covers

the maximum of edges).

Step 1 takes time O∗(1.2738τ), while step 2 has total running time O∗(
∑k

i=1

(
τ
i

)
)

that is at most O∗(2τ).
Note that, from item 1 of Theorem 2, it can be immediately derived that max

k-vertex cover can be solved to optimality in O∗(2
Δ−1

Δ n) time. Indeed if a
graph G has maximum degree Δ, then for the maximum independent set we
have α � n

Δ . Also, we can assume that G is not a clique on Δ + 1 vertices (note
that max k-vertex cover is polynomial in cliques). In this case, G can be
colored with Δ colors [8]. In such a coloring the cardinality of the largest color is
greater than n

Δ and, a fortiori, so is the cardinality of a maximum independent
set (since each color is an independent set). Consequently, τ � Δ−1

Δ n.
In what follows, we improve the analysis of item 1 and prove item 2 that

claims, informally, the instances of max k-vertex cover that are not fixed-
parameter tractable (with respect to k) are those solved with running time better
than O∗(2τ).

For this observe that the running time of the algorithm in the proof of item 1
is O∗(

∑k
i=1

(
τ
i

)
). As mentioned above, k can be assumed to be smaller than,

or equal to, τ . Consider some positive constant λ < 1/2. We distinguish the
following two cases: τ > k � λτ and k < λτ .

If τ > k � λτ , then τ � k/λ. As λ < 1/2, k/λ > 2k and, since i � k, we get
using Stirling’s formula:

k∑
i=1

(
τ

i

)
�

k∑
i=1

(
k/λ

i

)
� k

(
k/λ

k

)
∼ k

k
λ

k
λ

kk
(

k
λ − k

)(k
λ−k)

= k

⎛⎝ 1
λ

1
λ(

1
λ − 1

)(1
λ−1)

⎞⎠k

= O∗ (ck
)

(7)

for some constant c that depends on λ and it is fixed if λ is so.
If k < λτ , then, by the hypothesis on λ, 2k < τ and, since i � k, expres-

sion
∑k

i=1

(
τ
i

)
is bounded above by k

(
τ
k

)
. In all, using also Stirling’s formula the

following holds:
k∑

i=1

(
τ

i

)
� k

(
τ

k

)
� k

(
τ

λτ

)
∼ k

ττ

(λτ)(λτ)[(1 − λ)τ](1−λ)τ

= k

(
1

λλ(1 − λ)(1−λ)

)τ
λ<1/2

< O∗ (2τ) (8)

In other words, if k < λτ , then max k-vertex cover can be solved in time
at most O∗(γτ), for some γ that depends on λ and is always smaller than 2 for
λ < 1/2.

Efficient Algorithms for the max k-vertex cover Problem 303

Table 1. The values of c and γ for some values of λ

λ 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40 0.45 0.49
1

λ
1
λ

(1
λ
−1)(

1
λ

−1)
270.47 53.00 25.81 16.74 12.21 9.48 7.66 6.36 5.38 4.61 4.11

1
λλ(1−λ)1−λ 1.06 1.22 1.38 1.53 1.65 1.75 1.84 1.91 1.96 1.99 1.9996

Expressions (7) and (8) derive the claim and conclude the proof. In Table 1
the values of c and γ are given for some values of λ. �

Let us note that the technique of item 1 of Theorem 2, that consists of deter-
mining a decomposition of the input graph into a minimum vertex cover and a
maximum independent set and then of taking a subset S′ of a minimum vertex
cover V ′ of the input-graph and of completing it into an optimal solution can
be applied to several other well-known combinatorial NP-hard problems. We
sketch here some examples:

– in min 3-dominating set (dominating set in graphs of maximum degree 3),
the set S′ is completed in the following way:
• take all the vertices in I\ΓI(S′) (in order to dominate vertices in V ′\S′);
• if there remain vertices of V ′ \ S′ not dominated yet solve a min set

cover problem considering ΓI(S′) as the set-system of the latter prob-
lem and assuming that a vertex v ∈ ΓI(S′), seen as set, contains its
neighbors in V ′ \ S′ as elements; since ΓI(S′) is the neighborhood of S′,
the degrees of its vertices to V ′ \ S′ are bounded by 2, that induces a
polynomial min set cover problem ([27]);

– in min independent dominating set, S′ is completed by the set I\ΓI(S′),
where ΓI(S′) is the set of neighbors of S′ that belong to I;

– in existing dominating clique, min dominating clique (if any), max
dominating clique (if any) and max clique, S′ can eventually be com-
pleted by a single vertex of ΓI(S′).

Theorem 3. min independent dominating set, existing dominating cli-
que, min dominating clique, max dominating clique, max clique and
min 3-dominating set can be solved in time O∗(2τ) using polynomial space.

4 Tailoring Measure-and-Conquer to Graphs with
Maximum Degree 3

Let us note that, as it is proved in [23], for any ε > 0, there exists an integer nε

such that the pathwidth of every (sub)cubic graph of order n > nε is at most
(1/6 + ε)n. Based upon the fact that there exists for max k-vertex cover(w)
an O∗(2w)-time exponential space algorithm [34], and taking into account that in
(sub)cubic graphs w � (1/6+ε)n, the following corollary is immediately derived.

304 F. Della Croce and V.T. Paschos

Corollary 2. max k-vertex cover in graphs with maximum degree 3 can be
solved in time O∗(2n/6) = O∗(1.123n) using exponential space.

In this section we tailor the measure-and-conquer approach developed in Sec-
tion 2 to graphs with Δ = 3, in order to get an improved running-time algorithm
for this case needing polynomial space. The following remark holds.

Remark 1. The graph can be cubic just once. When branching on a vertex j
of maximum degree 3, we can always assume that it is adjacent to at least one
vertex h that has already been selected or discarded. That is, either dh � 2,
or αh � 1, that is ch � 2. Indeed, the situation where the graph is 3-regular
occurs at most once (even in case of disconnection). Thus, we make only one
“bad” branching (where every free vertex of maximum degree 3 is adjacent only
to free vertices of degree 3). Such a branching may increase the global running
time only by a constant factor.

Lemma 1. Any vertex i with di � 1 and αi = 0 can be discarded w.l.o.g.

Proof. If di = αi = 0, then i can be obviously discarded. If di = 1 and αi = 0,
then i is adjacent to another free vertex h. But then, if h is selected, i becomes
of degree 0 and can be discarded. Alternatively, h is discarded, but then any
solution with i but not h is dominated by that including h instead of i. �

Lemma 2. Any vertex i with αi � 2 and di = 3 can be selected w.l.o.g.

Proof. If αi = 3, then i can be obviously selected. If di = 3 and αi = 2, then i
is adjacent to another free vertex h. But then, if h is discarded, we have αi = 3
and i can be selected. Alternatively, h is selected, but then any solution with h
but not i is dominated by that including i instead of h. �

To solve max k-vertex cover on graphs with Δ = 3, consider the following
algorithm, called MAXKVC-3.

Select j such that cj is maximum and branch according to the following
exhaustive cases:
1. if cj = 3, assume, w.l.o.g., that j is adjacent to i, l, m free vertices

with ci � 2 (see in [14]) and ci � cl � cm, and branch on j according
to the following exhaustive subcases:
(a) ci = cl = cm = 1
(b) ci = cl = 1, cm = 2
(c) ci = cl = 1, cm = 3
(d) ci = 1, cl = cm = 2 with l, m adjacent
(e) ci = 1, cl = cm = 2 with l, m non adjacent
(f) ci = 1, cl = 2, cm = 3
(g) ci = cl = 2, cm = 3 with i, l adjacent
(h) ci = cl = 2, cm = 3 with i, l non adjacent
(i) ci = 2, cl = cm = 3

2. else cj � 2 and MAXKVC-3 is polynomially solvable.

Efficient Algorithms for the max k-vertex cover Problem 305

The following Theorem 4 holds in graphs with maximum degree 3 (due to space
constraints, the proof is omitted; it can be found in [14]).

Theorem 4. Algorithm MAXKVC-3 solves max k-vertex cover on graphs with
maximum degree 3 with running time O∗(1.3339n) and using polynomial space.

5 Approximating max k-vertex cover by Moderately
Exponential Algorithms

We now show how one can get approximation ratios non-achievable in polynomial
time using moderately exponential algorithms with worst-case running times
better than those required for an exact computation (see [4,5] for more about
this issue). Denote by opt(G) the cardinality of an optimal solution for max k-
vertex cover in G and by m(G), the cardinality of an approximate solution.
Our goal is to study the approximation ratio m(G)/ opt(G).

In what follows, we denote, as previously, by K∗ the optimal solution for
max k-vertex cover. Given a set K of vertices, we denote by C(K), the set of
edges covered by K (in other words, the value of a solution K for max k-vertex
cover is |C(K)|; also, according to our previous notation, opt(G) = |C(K∗)|).
We first prove the following easy lemma that will be used later.

Lemma 3. For any λ ∈ [0, 1], the subset H∗ of λk vertices of K∗ covering the
largest amount of edges covered by K∗, covers at least λ opt(G) edges.

Proof. Indeed, if the λk “best” vertices of K∗ cover less than λ opt(G) edges,
then any disjoint union of k/λ subsets of K∗, each of cardinality λk covers less
than opt(G) edges, a contradiction. �

Now, run the following algorithm, called APPROX in what follows:

1. fix some λ ∈ [0, 1] and optimally solve max λk-vertex cover in G (as
previously, let H∗ be the optimal solution built and C(H∗) be the edge-set
covered by H∗);

2. remove H∗ and C(H∗) from G and approximately solve max (1 − λ)k-
vertex cover in the surviving graph (by some approximation algorithm);
let K ′ be the obtained solution;

3. output K = H∗ ∪ K ′.

It is easy to see that if T (p, k) is the running time of an optimal algorithm
for max k-vertex cover, where p is some parameter of the input-graph G
(for instance, n, or τ), then the complexity of APPROX is T (p, λk). Furthermore,
APPROX requires polynomial space.

Theorem 5. If T (p, k) is the running time of an optimal algorithm for max k-
vertex cover, then, for any ε > 0, max k-vertex cover can be approximated
within ratio 1 − ε with worst-case running time T (p, (1 + 2

√
1 − 3ε)k/3) and

polynomial space.

306 F. Della Croce and V.T. Paschos

Proof. Denote by K∗ an optimal solution of max k-vertex cover in G, by G2

the induced subgraph G[V \H∗] of G, by opt(1−λ)(G2), the value of an optimal
for max (1 − λ)k-vertex cover in G2. Suppose that E′ edges are common
between C(H∗) and C(K∗). This means that C(K∗) \ E′ edges of C(K∗) are
in G2 and are exclusively covered by the vertex-set L∗ = K∗ \ H∗ that belongs
to G2. Set �∗ = |L∗| and note that �∗ � k and �∗ � (1 − λ)k.

According to Lemma 3, the (1 − λ)k “best” vertices of L∗ cover more than
(1 − λ)|C(K∗) \ E′| = (1 − λ)(opt(G) − |E′|) edges in G2 and these vertices
constitute a feasible solution for max (1 − λ)k-vertex cover in G2. Hence:

opt(1−λ) (G2) � (1 − λ) (opt(G) − |E′|) (9)

Taking into account (9), the fact that K ′ in step 2 of APPROX has been computed
by, say, a ρ-approximation algorithm and the fact that |E′| � |C(H∗)|, we get:

m(G) = C (H∗) + C (K ′) � C (H∗) + ρ(1 − λ)opt(1−λ) (G2)

� C (H∗) + ρ(1 − λ) (opt(G) − |E′|)C (H∗)
+ ρ(1 − λ) (opt(G) − C (H∗))

� (1 − ρ(1 − λ))C (H∗) + ρ(1 − λ) opt(G) (10)

Using once more Lemma 3, |C(H∗)| � λ opt(G), and combining it with (10), we
get:

m(G)
opt(G)

� ρ(1 − λ) + λ(1 − ρ(1 − λ)) (11)

Setting ρ = 3
4 in (11), in order to achieve an approximation ratio m(G)/ opt(G) =

1 − ε, for some ε > 0, we have to choose an λ satisfying λ = (1 + 2
√

1 − 3ε)/3,
that completes the proof of the theorem. �

Corollary 3. max k-vertex cover can be approximated within ratio 1−ε and
with running time:

min
{

O∗
(
n(1+2

√
1−3ε)(ωk)/9

)
, O∗

(
τ(

1 + 2
√

1 − 3ε
)
k/3

)}
and polynomial space.

For Corollary 3, just observe that the running-times claimed for the first two
entries are those needed to optimally solve max λk-vertex cover (the former
due to [9] and the latter due to item 1 of Theorem 2). Note that the second
term in the min expression in the corollary is an FPT approximation schema
(with respect to parameter τ). Observe also that for the cases where the time
needed for solving max k-vertex cover is given by the ck expression of item 1
of Theorem 2, this represents an improvement with respect to the FPT approx-
imation schema of [32]. Note finally that the result of Theorem 5 is indeed a
kind of reduction between moderately exponential (or parameterized) approx-
imation and exact (or parameterized) computation for max k-vertex cover

Efficient Algorithms for the max k-vertex cover Problem 307

in the sense that exact solution on some subinstance of the problem derives an
approximation for the whole instance.

Finally, let us close this section and the paper by some remarks on what kind
of results can be expected in the area of (sub)exponential approximation. All the
algorithms given in this section have exponential running time when we seek for
a constant approximation ratio (unachievable in polynomial time). On the other
hand, for several problems that are hard to approximate in polynomial time (like
max independent set, min coloring, . . .), subexponential time can be easily
reached for ratios depending on the input-size (thus tending to ∞, for minimiza-
tion problems, or to 0, for maximization problems). An interesting question is to
determine, for these problems, if it is possible to devise a constant approxima-
tion algorithm working in subexponential time. An easy argument shows that
this is not always the case. For instance, the existence of subexponential approx-
imation algorithms (within ratio better than 4/3) is quite improbable for min
coloring since it would imply that 3-coloring can be solved in subexponen-
tial time, contradicting so the “exponential time hypothesis” [29]. We conjecture
that this is true for any constant ratio for min coloring. Anyway, the possibil-
ity of devising subexponential approximation algorithms for NP-hard problems,
achieving ratios forbidden in polynomial time or of showing impossibility of such
algorithms is an interesting open question that deserves further investigation.

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12(2), 308–340 (1991)

2. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. Comput. 39(2), 546–563 (2009)

3. Bläser, M.: Computing small partial coverings. Inform. Process. Lett. 85(6), 327–
331 (2003)

4. Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient approximation by “low-
complexity” exponential algorithms. Cahier du LAMSADE 271, LAMSADE, Uni-
versité Paris-Dauphine (December 2007),
http://www.lamsade.dauphine.fr/cahiers/PDF/cahierLamsade271.pdf

5. Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient Approximation of Combina-
torial Problems by Moderately Exponential Algorithms. In: Dehne, F., Gavrilova,
M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 507–518.
Springer, Heidelberg (2009)

6. Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient approximation of min color-
ing by moderately exponential algorithms. Inform. Process. Lett. 109(16), 950–954
(2009)

7. Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient approximation of min set
cover by moderately exponential algorithms. Theoret. Comput. Sci. 410(21-23),
2184–2195 (2009)

8. Brooks, R.L.: On coloring the nodes of a network. Math. Proc. Cambridge Philos.
Soc. 37, 194–197 (1941)

9. Cai, L.: Parameter complexity of cardinality constrained optimization problems.
The Computer Journal 51, 102–121 (2008)

http://www.lamsade.dauphine.fr/cahiers/PDF/cahierLamsade271.pdf

308 F. Della Croce and V.T. Paschos

10. Cai, L., Huang, X.: Fixed-Parameter Approximation: Conceptual Framework and
Approximability Results. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC
2006. LNCS, vol. 4169, pp. 96–108. Springer, Heidelberg (2006)

11. Chen, J., Kanj, I., Jia, W.: Vertex cover: further observations and further improve-
ments. J. Algorithms 41, 280–301 (2001)

12. Chen, J., Kanj, I., Xia, G.: Improved upper bounds for vertex cover. Theoret.
Comput. Sci. 411(40-42), 3736–3756 (2010)

13. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Information and Computation 85, 12–75 (1990)

14. Croce, F.D., Paschos, V.T.: On the max k-vertex cover problem. Cahier du LAM-
SADE 307, LAMSADE, Université Paris-Dauphine (2011)

15. Cygan, M., Kowalik, L., Wykurz, M.: Exponential-time approximation of weighted
set cover. Inform. Process. Lett. 109(16), 957–961 (2009)

16. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theoret. Comput.
Sci. 411(40–42), 3701–3713 (2010)

17. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer
Science. Springer, New York (1999)

18. Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized Approximation Prob-
lems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169,
pp. 121–129. Springer, Heidelberg (2006)

19. Feige, U., Langberg, M.: Approximation algorithms for maximization problems
arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

20. Fellows, M.: Towards Fully Multivariate Algorithmics: Some New Results and
Directions in Parameter Ecology. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.)
IWOCA 2009. LNCS, vol. 5874, pp. 2–10. Springer, Heidelberg (2009)

21. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
Layout Problems Parameterized by Vertex Cover. In: Hong, S.-H., Nagamochi,
H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer,
Heidelberg (2008)

22. Fomin, F., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. Assoc. Comput. Mach. 56(5), 1–32 (2009)

23. Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inform.
Process. Lett. 97(5), 191–196 (2006)

24. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms
for partial cover problems. Inform. Process. Lett. 111(16), 814–818 (2011)

25. Fomin, F.V., Villanger, Y.: Treewidth Computation and Extremal Combinatorics.
In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 210–221. Springer,
Heidelberg (2008)

26. Fürer, M., Gaspers, S., Kasiviswanathan, S.P.: An Exponential Time 2-
Approximation Algorithm for Bandwidth. In: Chen, J., Fomin, F.V. (eds.) IWPEC
2009. LNCS, vol. 5917, pp. 173–184. Springer, Heidelberg (2009)

27. Garey, M.R., Johnson, D.S.: Computers and intractability. W. H. Freeman, San
Francisco (1979)

28. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized Complexity of Generalized
Vertex Cover Problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 36–48. Springer, Heidelberg (2005)

29. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. System Sci. 63(4), 512–530 (2001)

30. Jäger, G., Srivastav, A.: Improved approximation algorithms for maximum graph
partitioning problems. J. Comb. Optim. 10(2), 133–167 (2005)

Efficient Algorithms for the max k-vertex cover Problem 309

31. Kneis, J., Langer, A., Rossmanith, P.: Improved Upper Bounds for Partial Vertex
Cover. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG
2008. LNCS, vol. 5344, pp. 240–251. Springer, Heidelberg (2008)

32. Marx, D.: Parameterized complexity and approximation algorithms. The Computer
Journal 51(1), 60–78 (2008)

33. Marx, D.: Fixed parameter algorithms. Open lectures for PhD students in computer
science (January 2010)

34. Moser, H.: Exact algorithms for generalizations of vertex cover. Master’s the-
sis, Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena
(2005)

35. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Comment.
Math. Univ. Carolinae, 415–419 (1985)

36. Niedermeier, R., Rossmanith, P.: On efficient fixed-parameter algorithms for
weighted vertex cover. J. Algorithms 47(2), 63–77 (2003)

37. Praveen, M.: Logic, Courcelle’s theorem and application. IMPECS School on Pa-
rameterized and Exact Computation (December 2010)

A Model Theoretic Proof of Completeness

of an Axiomatization of Monadic Second-Order
Logic on Infinite Words

Colin Riba�

ENS de Lyon, Université de Lyon, LIP
colin.riba@ens-lyon.fr

http://perso.ens-lyon.fr/colin.riba/

Abstract. We discuss a complete axiomatization of Monadic Second-
Order Logic (MSO) on infinite words.By using model-theoretic methods,
we give an alternative proof of D. Siefkes’ result that a fragment with
full comprehension and induction of second-order Peano’s arithmetic is
complete w.r.t. the validity of MSO-formulas on infinite words. We rely
on Feferman-Vaught Theorems and the Ehrenfeucht-Fräıssé method for
Henkin models of MSO. Our main technical contribution is an infinitary
Feferman-Vaught Fusion of such models. We show it using Ramseyan
factorizations similar to those for standard infinite words.

1 Introduction

We discuss the completeness of an axiomatization of Monadic Second-Order
Logic (MSO) on infinite words. MSO on infinite words is known to be decidable
since the celebrated work of Büchi [2]. The usual route is to translate MSO-
formulas to finite state automata running on infinite words. Such automata
provide an established framework for the specification and verification of non-
terminating programs, while MSO is a yardstick language for expressing proper-
ties about them. We refer to e.g. [7,6,8] for comprehensive presentations of the
subject.

D. Siefkes has shown in [11] that a fragment of second-order Peano’s arithmetic
containing the comprehension axiom scheme and the induction axiom is complete
with respect to the standard model: every MSO-formula true on infinite words
is provable. The approach taken there was to formalize the translation of MSO-
formulas to Büchi automata. This requires to represent automata in the logic
and to formalize the correctness proof of the translation in the corresponding
deduction system.

In this paper, we give an alternative proof of Siefkes’ completeness result by
using model-theoretic tools. This leads to a more abstract proof which does not
require explicit manipulation of automata in the logic. To our knowledge, such
approaches to MSO have not been much explored compared to the great body
of work on automata and corresponding algebraic structures [6,8].

� UMR 5668 CNRS ENS Lyon UCBL INRIA.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 310–324, 2012.
c© IFIP International Federation for Information Processing 2012

A Model Theoretic Proof of Completeness of an Axiomatization of MSO 311

We follow the method of [5], where complete axiomatizations of variants
of MSO on finite trees are presented. Starting from Henkin completeness, we
show that all models of our axiomatization are equivalent w.r.t. the validity of
MSO-formulas. As in [5], we use Feferman-Vaught Theorems obtained by the
Ehrenfeucht-Fräıssé method [10].

In contrast with [10,7], works like [5] or the present one have to handle non-
standards models of second-order arithmetic. As far as Henkin completeness is
concerned, a model M of MSO can be seen as a structure with two domains:
a domainMι of individuals and a domain Mo ⊆ P(Mι) of sets of individuals
(called predicates in this paper). Besides non-standards individuals (whose order
type is very different from ω), the main difficulty is thatMo is in general strictly
contained in P(Mι): there might not be “enough” predicates.

A crucial observation due to K. Doets [3] makes apparent in (possibly non-
standard) models a structure similar to standard infinite words. Our main techni-
cal contribution is a kind of Feferman-Vaught Infinitary Fusion for such models.
Intuitively, it is a model-theoretic counterpart to a run of a Büchi automaton on
a standard infinite word. The point is to ensure that such a “run” always exists
as a predicate of a given model. For this, we use Ramseyan factorizations similar
to those of infinite words (see e.g. [8]).

The paper is organized as follows. In Section 2, we describe our formal system
for MSO, as well as the class of models we are interested in. These models are
motivated by usual results on Henkin completeness for second-order logic that
we briefly recall. We present in Section 3 the notions on the Ehrenfeucht-Fräıssé
method that we will need. We use it to prove a Feferman-Vaught Finite Sums
Lemma for linearly ordered structures with parameters, which is discussed in
Section 4. We then give the main argument for completeness in Section 5. It
relies on an infinitary version of the Finite Sums Lemma, that we call “Infinite
Fusion” and which is shown in Section 6.

A full version of this paper is available on the author’s web page
http://perso.ens-lyon.fr/colin.riba/papers/msofull.pdf.

2 A Deduction System for Monadic Second-Order Logic
on Infinite Words

2.1 Language

We consider a formulation of Monadic Second-Order Logic (MSO) based on
a two-sorted language: There is one sort ι intended to range over individuals
and one sort o intended to range over monadic (or one-place) predicates on
individuals. We assume given two countable sets Vι = {x, y, z, . . .} and Vo =
{X,Y, Z, . . .} of respectively individual and predicate variables. The formulas of
MSO are then defined by the following grammar:

φ, ψ ∈ Λ ::= Xx | x < y | ¬φ | φ ∨ ψ | ∃X φ | ∃xφ

The set FV(φ) of free (individual and predicate) variables of a formula φ is
defined as usual. A sentence (or closed formula) is a formula with no free variable,

http://perso.ens-lyon.fr/colin.riba/papers/msofull.pdf

312 C. Riba

i.e. a formula φ such that FV(φ) = ∅. Formulas are identified modulo renaming
of their bound variables. The capture-avoiding substitution of y for x in φ is
written φ[y/x].

Note that there is no primitive equality in Λ. This is discussed in Section 2.4.
The other logical connectives are defined as usual:

φ→ ψ := ¬φ ∨ ψ
φ ∧ ψ := ¬(¬φ ∨ ¬ψ)
φ←→ ψ := (φ→ ψ) ∧ (ψ → φ)

∀X φ := ¬∃X ¬φ
∀xφ := ¬∃x¬φ

2.2 Deduction for Second-Order Logic

We now discuss formal deduction for second-order logic. As usual, the rules for
second-order logic are those of the (two-sorted) classical predicate calculus to-
gether with the comprehension axiom scheme (see e.g. [9]). There are several
different formulations equivalent w.r.t. provability. The following Natural De-
duction system is a possible choice.

The deduction relation is writen Γ � φ, where Γ is a (possibly empty) finite
unordered list of (possibly not closed) formula, and φ is a (possibly not closed)
formula. It is inductively defined by the following rules.

– Rules for propositional logic:

Γ � φ ∨ ¬φ Γ, φ � φ
Γ � φ Γ � ¬φ

Γ � ψ

Γ � φ
Γ � φ ∨ ψ

Γ � ψ
Γ � φ ∨ ψ

Γ � φ ∨ ψ Γ, φ � ϕ Γ, ψ � ϕ
Γ � ϕ

– Rules for predicate logic (where X ,Y ∈ Vι or X ,Y ∈ Vo):

Γ � φ[Y/X]
Γ � ∃X φ

Γ � ∃X φ Γ, φ � ψ
Γ � ψ (X /∈ FV(Γ, ψ))

– Comprehension scheme (for all formula φ):

Γ � ∃X ∀x (Xx←→ φ)
(X /∈ FV(φ))

2.3 Models of Second-Order Logic

We discuss the class of structures (or models) we will use to interpret the lan-
guage of MSO presented in Section 2.1. These structures are motivated by known
results on Henkin completeness that we briefly recall.

A Model Theoretic Proof of Completeness of an Axiomatization of MSO 313

Structures, Assignments and Satisfiability. We consider (Henkin) structuresM
of the form (Mι,Mo, <M) whereMι is a non-empty set of individuals, Mo ⊆
P(Mι) is a non-empty set of predicates and <M is a binary relation onMι. We
callMι andMo respectively the individual and predicate domains ofM.

An M-assignment is a map ρ : (Vι ∪ Vo) → (Mι ∪Mo) which respects the
sorts, i.e. such that ρ(x) ∈ Mι and ρ(X) ∈ Mo if x ∈ Vι and X ∈ Vo. Given
x ∈ Vι and a ∈ Mι, we write ρ[a/x] for the assignment which maps x to a
and is equal to ρ everywhere else. The assignment ρ[A/X] (where X ∈ Vo and
A ∈ Mo) is defined similarly.

Given a structure M, an M-assignment ρ and a formula φ, we define the
satisfaction relationM, ρ |= φ by induction on φ as usual:

M, ρ |=Xx iff ρ(x) ∈ ρ(X)
M, ρ |=x < y iff ρ(x) <M ρ(y)
M, ρ |=¬φ iff M, ρ �|= φ
M, ρ |=φ ∨ ψ iff M, ρ |= φ orM, ρ |= ψ
M, ρ |=∃X φ iff there is some A ∈Mo such thatM, ρ[A/X] |= φ
M, ρ |=∃xφ iff there is some a ∈Mι such thatM, ρ[a/x] |= φ

We say that φ is valid in M (notation M |= φ) if M, ρ |= φ for every ρ. A set
of formulas Δ is valid inM (notationM |= Δ) ifM |= φ for every φ ∈ Δ.

It is sometimes convenient to consider formulas with a fixed assignment of
their free variables to some structure M. These formulas are called formulas
with parameters in M. We define them as pairs of a formula φ and a finite
partial M-assignment ν : (Vι ∪ Vo) ⇀ (Mι ∪Mo). The set of free variables of
the formula with parameters (φ, ν) is FV(φ, ν) := FV(φ)\dom(ν). We will often
write φ[ν(X)/X | X ∈ dom(ν)] for the formula with parameters (φ, ν).

The satisfaction of a formula with parameters (φ, ν) in a structure M and
assignment ρ (notation M, ρ |= (φ, ν)) is defined as the satisfaction of φ in M
and assignment ρ[ν(X)/X | X ∈ dom(ν)]. The corresponding validity relation
M |= (φ, ν) holds ifM, ρ |= (φ, ν) for every ρ.

Second-Order Henkin Structures. Deduction without the comprehension scheme
is correct in any structure M: if � φ is derivable without using the compre-
hension then φ is valid in M. The following notions are useful to handle the
comprehension scheme. A set of individuals A ∈ P(Mι) is definable if there is a
formula φ and anM-assignment ρ such that

A = {a ∈ Mι | M, ρ[a/x] |= φ}

Of course, all A ∈ Mo are definable. The converse is more interesting, sinceM
satisfies every instance of the comprehension scheme if and only if Mo is the
set of all definable A ∈ P(Mι). In this case, we callM a second-order (Henkin)
structure.

Remark 2.1. (i) We say that M is full if Mo = P(Mι). Full structures are
second-order.

314 C. Riba

(ii) Finite boolean combinations of definable predicates are definable. Hence,
the predicate domain of a second-order structure is closed under finite
boolean operations.

Henkin Completeness. Usual Henkin completeness holds for deduction w.r.t.
validity in all second-order Henkin structures (see e.g. [9]):

Theorem 2.2 (Henkin Completeness). Let Δ be a set of sentences and φ
be a sentence. Assume that for all second-order Henkin structureM, ifM |= Δ
thenM |= φ. Then there is a finite set Γ ⊆ Δ such that Γ � φ.

2.4 Equality

Monadic Second-Order Logic has a definable equality (see e.g. [9]):

(x
.
= y) := ∀X (Xx→ Xy)

Thanks to the comprehension scheme, it is an equivalence relation which more-
over satisfies Leibniz’s scheme:

� ∀x (x .= x) � ∀xy (x .= y → y
.
= x) � ∀xyz (x .= y → y

.
= z → x

.
= z)

� ∀xy (x .= y → φ[x/z]→ φ[y/z]) (for all formula φ)

Remark 2.3. Given a second-order structureM, we haveMι, ∅ ∈ Mo sinceMι

is definable by the formula (x
.
= x).

Second-Order Structures with Correct Equality. It is well-known that the equal-
ity

.
= may not be correct: Given a structureM, it is possible thatM |= (a

.
= b)

but a �= b, even if M is second-order (see e.g. [9]). We say that a structure M
has correct equality ifM |= (a

.
= b) implies a = b for all a, b ∈Mι.

Remark 2.4. (i) Full structures have correct equality.

(ii) Consider an arbitrary structureM with correct equality. Note that every
singleton {a} with a ∈ Mι is definable (by the formula with parameters
(x
.
= y, [a/x])). According to Remark 2.1.(ii), it follows that ifM is second-

order, thenMo contains all the finite subsets ofMι.
In particular, finite second-order structures with correct equality are full.

As far as Henkin completeness is concerned, it is always possible to assume
that a second-order structure has correct equality. We in fact have the following
strengthening of Henkin completeness (see e.g. [9]):

Corollary 2.5. Let Δ be a set of sentences and φ be a sentence. Assume that
for all second-order Henkin structure M with correct equality, if M |= Δ then
M |= φ. Then there is a finite set Γ ⊆ Δ such that Γ � φ.

A Model Theoretic Proof of Completeness of an Axiomatization of MSO 315

2.5 Axiomatization

The standard model is N := (N,P(N), <N), where <N is the usual order on
natural numbers. Recall that thanks to the celebrated result of Büchi [2], the
monadic theory of N (i.e. the set of sentences φ such that N |= φ) is decidable.

In this section, we describe a set MSOω of sentences which completely axiom-
atizes the monadic theory of N: for all sentence φ, if N |= φ then MSOω � φ.
The axiomatization we consider is an adaptation of that of [11] to the language
of MSO presented in Section 2.1. This is essentially a fragment of second-order
Peano’s arithmetic with full comprehension and induction.

For the completeness proof of MSOω, we shall also discuss variations on Ram-
sey’s theorem and the axiom of choice in Sections 5 and 6.

Definition 2.6 (MSOω). MSOω is the set of the following sentences:

– Linear Order axioms:

∀x¬(x < x) ∀xyz (x < y → y < z → x < z)

∀xy (x < y ∨ x .= y ∨ y < x)

– Unboundedness axiom:
∀x∃y (x < y)

– Induction axiom:

∀X [∀x (∀y (y < x→ Xy)→ Xx)→ ∀xXx]

– Predecessor axiom:

∀x (∃y(y < x)→ ∃y[y < x ∧ ¬∃z (y < z ∧ z < x)])

A formula φ is derivable in MSOω if MSOω � φ is derivable using the deduction
system of Section 2.2.

A second-order structure with correct equalityM is a model of MSOω ifM |=
MSOω.

In this paper, we give a model-theoretic proof of Siefkes’ completeness result:

Theorem 2.7 (Completeness of MSOω [11]). For all sentence φ, if N |= φ
then MSOω � φ.

Following the method of [5], our route to Theorem 2.7 is to use usual Henkin
completeness (as formulated in Corollary 2.5), and to show that all models of
MSOω are equivalent w.r.t. the validity of MSO-formulas. This is the main result
of the paper.

Theorem 2.8 (Main Theorem). Let M be a model of MSOω and φ be a
sentence. We have M |= φ if and only if N |= φ.

Theorem 2.8 is proved in Section 5. As [5], we rely on Feferman-Vaught Theorems
proved by the Ehrenfeucht-Fräıssé method.

We now discuss some aspects of the different axioms of MSOω. All structures
considered here are second-order and have correct equality.

316 C. Riba

Orders. We use the following defined formula:

x ≤ y := x < y ∨ x .= y

Hence, in a structure M with correct equality, given a, b ∈ Mι we have M |=
a ≤ b if and only if (a = b or a <M b).

A structureM is linearly ordered if is satisfies the Linear Order axioms. The
first two sentences say that <M is strict and transitive. Note that <M is thus
antisymmetric: if a <M b then b �<M a. The third sentence says that <M is
total. SinceM is assumed to have correct equality, it is equivalent to requiring
that for all a, b ∈Mι we have either a <M b or a = b or b <M a.

Induction. The induction axiom holds in the standard model N but is false for
instance in the full structure of real numbers.1

Assume thatM satisfies the induction axiom. The contrapositive of induction
says that each non-empty predicate A ∈Mo has minimal elements. If moreover
M is linearly ordered, then A has a unique least element.

Successors and Predecessors. IfM is linearly ordered and satisfies the induction
axiom, then every a ∈ Mι which is not maximal has a successor, i.e. there
is a unique least b >M a. However, a non minimal a ∈ Mι may not have a
predecessor, i.e. a greatest b <M a.2 The predecessor axiom ensures that every
non-minimal individual has a predecessor.

Unboundedness. The axiom of Unboundedness is a kind of infinity axiom. Given
a structureM, we say that U ∈ Mo is unbounded in M if for all a ∈ M there
is some b ∈ U such that a <M b. If <M is strict and transitive, then U must be
infinite. Note however that the converse does not hold, even for models of MSOω.

Remark 2.9 (Non-Standard Models of MSOω). A model M of MSOω can be
non-standard (i.e. non-isomorphic to the standard model N) for two reasons:
(i) because its predicate domainMo is different from P(Mι) or (ii) because its
individual domain is not isomorphic to N. Let us discuss these two points in view
of Theorem 2.8.

(i) It is well-known that ifM is full (i.e.Mo = P(Mι)), thenMι is isomorphic
to N (see e.g. [9]). Hence non-standard modelsM haveMo � P(Mι).

(ii) Thanks to the Löwenheim-Skolem Theorem (see e.g. [1]), we can always
assume that an MSOω-model M has a countable individual domain Mι.
However, the order structure ofM can be very different from that of N. For
instance, ifM is a non-standard model of second-order Peano’s arithmetic,
then it is also a model of MSOω. But M is also a non-standard model of
First-Order Peano’s Arithmetic, and it is well-known (see e.g. [1]) that its
order type is that of: N followed by Q copies of Z. In particular, segments
of the form [a, b) = {c ∈Mι | a ≤M c <M b} may be infinite.

1 The monadic theory of R is undecidable (see [7] for references).
2 Besides completeness w.r.t. N, recall that the monadic theory of the ordinal ω2 is
independent from ZFC (see [10]).

A Model Theoretic Proof of Completeness of an Axiomatization of MSO 317

3 The Ehrenfeucht-Fräıssé Method

We present the notions on the Ehrenfeucht-Fräıssé method that we will need.
They are mostly variations on those used in [5]. See [4] for a standard reference.

For the remaining of the paper, we fix enumerations of the individual and
predicate variables. Let Vι = {x1, . . . , xp, . . . } and Vo = {X1, . . . , Xq, . . . }. We
say that φ is a p-q-formula if FV(φ) ⊆ {x1, . . . , xp, X1, . . . , Xq}.

Unlike the rest of the paper, the results discussed in this section are insensitive
on whether we are dealing with Henkin structures, general models, or second-
order version thereof. For convenience, we will only consider Henkin structures
which are not necessarily second-order. In this context, two formulas φ and ψ
are logically equivalent if (φ←→ ψ) is valid in all such structures.

3.1 Logical Equivalence Up to Bounded Quantifier Depth

The first step is to classify formulas according to their quantifier-depth.

Definition 3.1 (Quantifier-Depth). The quantifier depth qd(φ) of a for-
mula φ is defined by induction on φ as follows:

qd(Xx) := 0
qd(x < y) := 0

qd(¬φ) := qd(φ)

qd(∃xφ) := qd(φ) + 1
qd(∃X φ) := qd(φ) + 1
qd(φ ∨ ψ) := max(qd(φ), qd(ψ))

We let Λp,q
n be the set of p-q-formulas of q.d. ≤ n and write Λn for Λ0,0

n .

A remarkable property of languages without function symbols, such as the lan-
guage of MSO, is the following standard observation (see e.g. [4]).

Lemma 3.2 (Finiteness Lemma). Up to logical equivalence, there are only
finitely many p-q-formulas of quantifier depth ≤ n.

Recall that logical equivalence is defined as validity of equivalence in all (possibly
non second-order) structures. Requiring instead validity of equivalence in all
second-order structures has no impact on finiteness: This amounts to add the
comprehension axiom scheme, and adding axioms can only reduce the number
of equivalence classes.

3.2 Structures with Parameters

A structure with parameters is a structureM together with a1, . . . , ap ∈ Mι and
A1, . . . , Aq ∈ Mo. We write a for a finite sequence of individuals of length |a|,
and similarly for A. If |a| = p and |A| = q then we say that (M, a, A) is a
p-q-structure.

If φ is a p-q-formula, we write (M, a, A) |= φ for M |= φ[a/x][A/X]. Two
p-q-structures (M, a, A) and (N , b, B) are n-equivalent (notation ≡p,q

n) if they
satisfy the same p-q-formulas of q.d. ≤ n. We write ≡n instead of ≡p,q

n when
p, q are clear from the context. The Finiteness Lemma allows to characterize the
n-equivalence class of a p-q-structure by a single p-q-formula:

318 C. Riba

Corollary 3.3. For all n ∈ N and all p-q-structure (M, a, A), there is a formula
φ ∈ Λp,q

n such that for all p-q-structure (N , b, B), we have (N , b, B) |= φ if and
only if (M, a, B) ≡n (N , b, B). Such a φ is an n-characteristic of (M, a, B).

Moreover, there is a finite set Φp,q
n ⊆ Λp,q

n of n-characteristics which contains
an n-characteristic of each p-q-structure.

3.3 Ehrenfeucht-Fräıssé Games

Ehrenfeucht-Fräıssé games are a convenient characterization of ≡n-equivalence
for languages satisfying the Finiteness Lemma. There are different possible for-
mulations for second-order logic. Our presentation is inspired from [5], which is
itself that of [4] adapted to non-full models.

Definition 3.4 (Ehrenfeucht-Fräıssé Games). Given structures (M, a, A),
(N , b, B) and n ∈ N, the Ehrenfeucht-Fräıssé Game EFn((M, a, A), (N , b, B)) is
an n-round game played between two players called “Spoiler” and “Duplicator”.

At each round, Spoiler plays first and chooses either an individual or a predi-
cate in one of the two structures. Duplicator then responds in the other structure
by choosing an individual if Spoiler chose an individual or a predicate if Spoiler
chose a predicate. After n rounds, Spoiler and Duplicator have build a finite
relation

{(a′1, b′1), . . . , (a′p, b′p), (A′
1, B

′
1), . . . , (A

′
q, B

′
q)}

with n = p+ q, a′ ∈ Mι, b
′ ∈ N ι, A

′ ∈Mo and B
′ ∈ N o. Then Duplicator wins

if and only if (M, aa′, AA
′
) ≡0 (N , bb′, BB′

).

Our presentation differs from [5,4] on the following point. In these works, Dupli-
cator wins if the finishing tuple is a finite partial isomorphism between the two
structures. In our case, equality is not a quantifier-free formula, and we take a
coarser wining condition based on ≡0-equivalence.

Ehrenfeucht-Fräıssé games characterize ≡n-equivalence:

Theorem 3.5. Given two structures (M, a, A) and (N , b, B) and n ∈ N, Dupli-
cator has a wining strategy in EFn((M, a, A), (N , b, B)) if and only if (M, a, A)
and (N , b, B) are ≡n-equivalent.

4 Finite Sums of Segments

We now discuss how to restrict structures into segments that can be concate-
nated. This will be done for second-order linearly ordered structures with
correct equality. The Ehrenfeucht-Fräıssé method gives simple proofs that con-
catenation of segments preserves ≡n-equivalence. This leads to a partial sum
operation on ≡n-classes. We follow well-known patterns of Feferman-Vaught
Theorems [10,7,5].

A Model Theoretic Proof of Completeness of an Axiomatization of MSO 319

4.1 Restrictions and Relativizations

Segments will be obtained from structures by restrictions and relativizations.
The restriction of a structure M to some non-empty predicate A ∈ Mo is the
structureM�A defined as expected: its individual domain isMι∩A, its predicate
domain is {B∩A | B ∈Mo} and its relation <M�A is the restriction of <M to A:
<M�A := <M ∩ (A× A). It is convenient to write the individual and predicate
domains ofM�A respectively asMι�A andMo�A.

Restrictions of Structures with Parameters. We shall also need the less usual
restriction of structures with parameters. Let p, q ∈ N. Consider a structure
M with individual parameters a = a1 . . . ap and predicate parameters A =
A1 . . . Aq. Let A ∈ Mo be non-empty and such that a1, . . . , ap ∈ A. We define
the restriction of (M, a, A) to A to be the structure:

(M, a, A)�A := (M�A, a1 . . . ap, (A1 ∩ A) . . . (Aq ∩A))

Relativization of Formulas. An analogous operation can be defined on formulas.
Let φ and ϕ be two formulas with no free variables in common, and let y be a
variable not appearing free in φ. The relativization of φ to ϕ[y], notation φ�ϕ[y],
is defined by induction on φ as follows:

φ�ϕ[y] := φ if φ is atomic
(φ ∨ ψ)�ϕ[y] := (φ�ϕ[y]) ∨ (ψ�ϕ[y])

(¬φ)�ϕ[y] := ¬(φ�ϕ[y])
(∃X φ)�ϕ[y] := ∃X (φ�ϕ[y]) if X /∈ FV(ϕ)
(∃xφ)�ϕ[y] := ∃x (ϕ[x/y] ∧ φ�ϕ[y]) if x /∈ FV(ϕ) ∪ {y}

If (φ, ν) is a formula with parameters in a structureM, and if A ∈Mo contains
all individual parameters of φ, then (φ, ν)�A is defined as ((φ�(Xx)[x]), ν[A/X])
where X, x /∈ FV(φ, ν).

The Transfer Property. We now check that restriction and relativization are
equivalent w.r.t. satisfaction. This in particular implies that restriction preserves
the comprehension scheme:M�A is second-order ifM is second-order.

Proposition 4.1 (Transfer). Let p, q ∈ N and (M, a, A) be a p-q-structure.
Let ϕ be a formula with parameters in M and whose free variables are disjoint
from {x1, . . . , xp, X1, . . . , Xq}. Given x0 /∈ {x1, . . . , xp}, let A ∈ Mo be non-
empty and such that (M, a, A) |= ∀x (Ax←→ ϕ[x/x0]). Assume that a ∈ A.

Let φ be a formula with FV(φ) ⊆ {x1, . . . , xp, X1, . . . , Xq}. Then we have
(M, a, A)�A |= φ if and only if (M, a, A) |= φ�ϕ[x0].

4.2 Finite Sums of Segments

A segment of a structureM is a predicate of the form

[a, b) := {c ∈ Mι | a ≤M c <M b} where a <M b

320 C. Riba

We write [−, b) for [a, b) if M is linearly ordered with least element a. Two
consecutive segments (M, a, A)�[a, b) and (M, b, A)�[b, c) can be concatenated
to (M, ab, A)�[a, c). Using the Ehrenfeucht-Fräıssé method, it is easy to show
that concatenation of segments preserves ≡n-equivalence.

Similar operations have already been defined for full models (see e.g. [10]) as
well as for Henkin models [5]. Our operation differs from [5] in the treatment
of predicate parameters: since we only need the concatenation of consecutive
segments which are restrictions of the same structure M, we can share the
predicate parameters in the two components. This simplifies both the statement
and the proof of the Lemma.

Lemma 4.2 (Finite Sums of Segments). Consider two second-order linearly
ordered structuresM and N , both with correct equality. Let n ∈ N.

If (M, a, A)�[t0, t1) ≡n (N , b, B)�[u0, u1)
and (M, a′, A)�[t1, t2) ≡n (N , b′, B)�[u1, u2)
then (M, aa′, A)�[t0, t2) ≡n (N , bb′, B)�[u0, u2).

5 Completeness of MSOω w.r.t. the Standard Model

In this section, we present a proof of Theorem 2.8. We use an infinitary version
of the Finite Sums Lemma which is discussed in Section 6.

We actually prove the following formulation of Theorem 2.8:

Theorem 5.1. Let M be a model of MSOω. For all n ∈ N we have M≡n N.

Doets’ Lemma. Our way to Theorem 5.1 starts from the simple but crucial
observation that bounded segments of models of MSOω are ≡n-equivalent to
finite linear orders. To our knowledge, this is due to K. Doets [3] for the Π1

1 -
case (first-order logic with universal prenex quantification on predicates). Recall
that a bounded segment of an arbitrary model of MSOω may not be finite (see
Remark 2.9).

In our context, a finite linear order is a structure of the form N�[m0,m1) with
m0 < m1 ∈ N. Note that if m1 −m0 = k1 − k0 (where m0 < m1 and k0 < k1),
then N�[m0,m1) ≡n N�[k0, k1) for all n ∈ N.

Lemma 5.2 (Doets’ Lemma). Let M be a model of MSOω and n ∈ N. For
all a <M b, there is a finite linear order L such that M�[a, b) ≡n L.

Ramseyan Factorizations. LetM be a model ofMSOω. In order to obtainM≡n

N from Doets’ Lemma 5.2, we would like to perform a kind of infinite sum of the
(M�[a, b))a<Mb. We rely on a weak form of Ramsey’s theorem which is similar
to the usual Ramseyan factorizations of infinite words discussed e.g. in [8].

Recall from Corollary 3.3 that ifM is a linearly ordered second-order structure
with correct equality, then for all n ∈ N and all a <M b, there is a φ ∈ Φ0,0

n

such thatM |= φ�[a, b). We say thatM has Ramseyan factorizations if there is

A Model Theoretic Proof of Completeness of an Axiomatization of MSO 321

φ ∈ Φ0,0
n and an unbounded U ∈ Mo which is homogeneous for φ. We actually

need a slightly stronger statement involving formulas with predicate parameters.
Given a structure M and a predicate U ∈ Mo, we let [U]

2 ⊆ Mι ×Mι be
the set of pairs (a, b) ∈ U × U such that a <M b.

Theorem 5.3 (Ramseyan Factorizations). LetM be a model of MSOω and
let n, q ∈ N. Given A1, . . . , Aq ∈ Mo and an unbounded U ∈ Mo, there is an

unbounded predicate V ⊆ U and a φ ∈ Φ0,q
n such that for all (a, b) ∈ [V]

2
we

have (M, , A) |= φ�[a, b).

Theorem 5.3 follows from Theorem I.1.c.3 of [11]. See also the full version of this
paper. Together with Doets’ Lemma, we obtain:

Corollary 5.4. LetM be a model of MSOω and n ∈ N. There is an unbounded
U ∈ Mo and a finite linear order L such that for all (a, b) ∈ [U]

2
we have

M�[a, b) ≡n L.

Infinite Fusion. Let M be a model of MSOω and n ∈ N. Using Corollary 5.4
and Doets’ Lemma 5.2 we arrive at the following point: There are unbounded
U ∈Mo and V ∈ P(N) together with u ∈ U and v ∈ V such that

M�[−, u) ≡n N�[−, v)

and for all (u0, u1) ∈ [U]2 and all (v0, v1) ∈ [V]2

M�[u0, u1) ≡n N�[v0, v1)

We can conclude that M ≡n N from these assumptions thanks to the Infinite
Fusion Lemma 6.2. We state and prove it in Section 6, and this will achieve the
proof of Theorem 5.1.

6 The Infinite Fusion Lemma

In this section, we state and prove the Infinite Fusion Lemma. Besides Ramseyan
factorizations (already discussed in Section 5), we shall also use a weak form of
the axiom of choice which is called Splicing in [11].

6.1 Splicing

We discuss the Splicing Theorem of [11] and one of its corollary that we actually
use in the Infinite Fusion Lemma.

LetM be a model of MSOω and U ∈ Mo. Individuals a, b ∈ Mι are consec-
utive in U if a, b ∈ U , a <M b and there is no c ∈ U such that a <M c <M b.

The Splicing Theorem is the following: Given a formula (∃Xφ) with predicate
parameters inM, if for all a, b consecutive in U we haveM |= ∃Xφ�[a, b), then
there is a predicate A ∈ Mo such that for all a, b consecutive in U we have
M |= φ[A/X]�[a, b). This is Theorem I.5.b.1 of [11].

322 C. Riba

For the Infinite Fusion Lemma, we shall use a variant of Splicing that we call
Idempotent Splicing. The main difference is that we need to obtain a predicate
A ∈ Mo which is correct for all (a, b) ∈ [U]

2
, and not just the consecutive ones.

On the other hand, we only need it for those ≡q
n-characteristics which moreover

define an idempotent coloring.

Proposition 6.1 (Idempotent Splicing). Let M be a model of MSOω and
let n, q ∈ N.

Given and A1, . . . , Aq ∈Mo, let φ ∈ Φ0,(q+1)
n and U ∈ Mo be such that

(i) (M, , A) |= ∃X φ[X/Xq+1]�[a, b) for all (a, b) ∈ [U]
2
, and

(ii) there is a second-order linearly ordered 0-(q + 1)-structure with correct
equality (N , , , BB) and b0 <N b1 <N b3 such that φ holds in
(N , , BB)�[b0, b2), (N , , BB)�[b0, b1) and (N , , BB)�[b1, b2).

Then there is a predicate A ∈ Mo such that for all (a, b) ∈ [U]
2
we have

(M, , AA) |= φ�[a, b).
In Proposition 6.1 above, condition (i) is actually the premise of the Splicing
Theorem. Condition (ii) intuitively says that φ defines an idempotent coloring.
We give more details on Splicing in the full version of the paper.

6.2 Infinite Fusion

As usual with the Ehrenfeucht-Fräıssé method, we perform an induction on the
quantifier depth of formulas. This to consider structures with parameters.

Lemma 6.2 (Infinite Fusion). LetM and N be models of MSOω. Let n ∈ N.
Let U ∈Mo and V ∈ N o be unbounded, and assume that their respective least

elements u and v are not the least elements of respectively Mι and N ι.
Let a ∈ Mι�[−, u), b ∈ N ι�[−, v) both of length p ∈ N and A ∈ Mo, B ∈ N o

both of length q ∈ N. Assume that

(M, a, A)�[−, u) ≡n (N , b, B)�[−, v)

and that for all (u0, u1) ∈ [U]
2
and all (v0, v1) ∈ [V]

2
we have

(M, , A)�[u0, u1) ≡n (N , , B)�[v0, v1)
Then (M, a, A) ≡n (N , b, B).
Using Lemma 6.2, we can achieve the proof of Theorem 5.1 as follows. Let M
be a model of MSOω and let n ∈ N. By Corollary 5.4 there is a finite linear
order L and an unbounded predicate U ∈ Mo such that M�[a, b) ≡n L for all

(a, b) ∈ [U]
2
. Since M is a second-order linearly ordered structure with correct

equality, we can moreover assume that the least element u of U is not the least
element ofM. By Doets’ Lemma 5.2, the segmentM[−, u) is ≡n-equivalent to
N�[−, v) for some v > 0. We thus obtain an unbounded set V ∈ P(N) with least
element v, and such thatM�[−, u) ≡n N�[−, v) andM�[u0, u1) ≡n N�[v0, v1) for
all (u0, u1) ∈ [U]2 and all (v0, v1) ∈ [V]2. We concludeM≡n N by Lemma 6.2.

The rest of this section is devoted to the proof of Lemma 6.2. We reason by
(external) induction on n ∈ N.

A Model Theoretic Proof of Completeness of an Axiomatization of MSO 323

Base Case (n = 0). We just have to show that (M, a, A) and (N , b, B) agree
on atomic formulas φ with individual variables in {x1, . . . , xp} and predicate
variables in {X1, . . . , Xq}. We only detail the case of xi < xj , that of Xixj being
similar.

Since ai, aj <M u, the formula (xi < xj) holds in (M, a, A) if and only
if it holds in (M, a, A)�[−, u). The same holds for N , and we are done since
(M, a, A)�[−, u) ≡0 (N , b, B)�[−, v).

Inductive Step. We now consider the inductive step: we show the property
for n+1 assuming it for n. Using Theorem 3.5, we consider the different possible
moves of Spoiler, and then build the answer of Duplicator.

Spoiler plays an individual, say a ∈ Mι. Since U is unbounded, there is u′ ∈ U
strictly greater than a. Also using the unboundedness of V , let v′ ∈ V be strictly
greater than v.

We have (M, a, A)�[−, u′) ≡n+1 (N , b, B)�[−, v′) thanks to the Finite Sums
Lemma 4.2 applied to the assumptions (M, a, A)�[−, u) ≡n+1 (N , b, B)�[−, v)
and (M, , A)�[u, u′) ≡n+1 (N , , B)�[v, v′). Now, by Theorem 3.5 there is some
b ∈ N ι�[−, v′) such that (M, aa, A)�[−, u′) ≡n (N , bb, B)�[−, v′). The predi-
cates U ′ := {s ∈ U | s ≥M u′} and V ′ := {t ∈ V | t ≥N v′} are both un-

bounded. For all (u0, u1) ∈ [U ′]2, (v0, v1) ∈ [V ′]2, we have (M, , A)�[u0, u1) ≡n

(N , , B)�[v0, v1). Moreover, sinceM and N are both linearly ordered and with
correct equality, u′ and v′ are the least elements of respectively U ′ and V ′. We
can thus conclude by induction hypothesis.

Spoiler plays a predicate, say A ∈ Mo. Since M has Ramseyan factorizations
(Theorem 5.3) we get an unbounded predicate U ′ ⊆ U and an n-characteristic

φ ∈ Φ0,q+1
n such that for all (u0, u1) ∈ [U ′]2 we have (M, , AA) |= φ�[u0, u1),

i.e. (M, , AA)�[u0, u1) |= φ thanks to the Transfer Property (Proposition 4.1).
Since U ′ is unbounded and since on the other hand M is a second-order lin-
early ordered structure with correct equality, we can assume that U ′ has a least
element u′.

We now claim that for all (v0, v1) ∈ [V]2 we have (N , , B) |= (∃X φ)�[v0, v1).

– Proof (of the claim). Fix (u0, u1) ∈ [U ′]2 ⊆ [U]
2
. For all (v0, v1) ∈ [V]

2
, since

by assumption (N , , B)�[v0, v1) ≡n+1 (M, , A)�[u0, u1), by Theorem 3.5 there
is some Bv0,v1 ∈ N o such that (N , , BBv0,v1)�[v0, v1) ≡n (M, , AA)�[u0, u1),
hence (N , BBv0,v1)�[v0, v1) |= φ. ��

By Proposition 6.1 (Idempotent Splicing), there is a predicate B ∈ N o such

that (N , , BB) |= φ�[v0, v1) for all (v0, v1) ∈ [V]2. Note that condition (ii) of
Proposition 6.1 is satisfied with (M, , AA) and any u′0 <M u′1 <M u′2 in the
unbounded predicate U ′.

We now build Duplicator’s response to A ∈ Mo. We have to take care of
the initial segment (M, , AA)�[−, u′). Using the unboundedness of V , let v′ ∈ V
be strictly greater than v. Reasoning as above, we get (M, a, A)�[−, u′) ≡n+1

324 C. Riba

(N , b, B)�[−, v′) using the Finite Sums Lemma 4.2. Let V ′ := {c ∈ V | v′ ≤N
c}. By Theorem 3.5, there is some B′ ∈ N o such that (N , , BB′)�[−, v′) ≡n

(M, , AA)�[−, u′). Since N is second-order, let B′′ := B′�[−, v′) ∪ B�[v′,−),
where [v′,−) := {c ∈ N ι | v′ ≤N c}. Now, (N , b, BB′′) (together with V ′)
satisfies the premise of the induction hypothesis and we are done.

7 Conclusion

We gave a model-theoretic proof of Siefkes’ completeness result for MSOω [11].
It is based on Ramsey’s Theorem for additive colorings, with constructions rem-
iniscent from algebraic approaches to ω-rational languages [8]. Further works
will begin by clarifying these relationships. An interesting question is the proof-
theoretic analysis of MSOω . The algebraic approach to parity conditions [8] can
be interesting in this perspective. An other direction is the completeness of MSO
on infinite trees, and the comparison with Walukiewicz’s completeness result for
the μ-calculus [12].

References

1. Boolos, G.S., Burgess, J.P., Jeffrey, R.C.: Computability and Logic, 5th edn. Cam-
bridge University Press (2007)

2. Büchi, J.R.: On a Decision Methond in Restricted Second-Order Arithmetic. In:
Nagel, E., et al. (eds.) Logic, Methodology and Philosophy of Science. Proc. 1960
Intern. Congr., pp. 1–11. Stanford Univ. Press (1962)

3. Doets, K.: Monadic Π1
1 -Theories of Π

1
1 -Properties. Notre Dame Journal of Formal

Logic 30(2), 224–240 (1989)
4. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer Monographs

in Mathematics. Springer (1999)
5. Gheerbrant, A., ten Cate, B.: Complete Axiomatizations of MSO, FO(TC1) and

FO(LFP1) on Finite Trees. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS,
vol. 5407, pp. 180–196. Springer, Heidelberg (2008)

6. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:
A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)

7. Gurevich, Y.: Monadic Second-Order Theories. In: Barwise, J., Feferman, S.
(eds.) Model-Theoretical Logics. Perspective in Mathematical Logic, pp. 479–506.
Springer (1985)

8. Perrin, D., Pin, J.-É.: Infinite Words: Automata, Semigroups, Logic and Games.
Pure and Applied Mathematics. Elsevier (2004)

9. Shapiro, S.: Foundations without Foundationalism: A Case for Second-Order Logic.
Oxford University Press (1991)

10. Shelah, S.: The Monadic Theory of Order. The Annals of Mathematics, Second
Series 102(3), 379–419 (1975)

11. Siefkes, D.: Decidable Theories I: Büchi’s Monadic Second Order Successor Arith-
metic. LNM, vol. 120. Springer (1970)

12. Walukiewicz, I.: Completeness of Kozen’s Axiomatisation of the Propositional μ-
Calculus. Information and Computation 157(1-2), 142–182 (2000)

Compositional Abstraction Techniques

for Probabilistic Automata�

Falak Sher and Joost-Pieter Katoen

Software Modeling and Verification Group, RWTH Aachen University, Germany

Abstract. We present aggressive abstraction techniques for probabilis-
tic automata (PA), a state-based model involving discrete probabilistic
and nondeterministic branching. Our abstractions yield abstract PA in
which transitions are typed “possible” or “required”—as in modal transi-
tion systems—and have constraint functions as target. The key idea is to
focus on identifying common combined-transitions from concrete states
and putting them as required ones in the abstract state. We prove the
correctness of our abstraction techniques, study their relationship, and
show that they are compositional w.r.t. parallel composition. We also
show the preservation of probabilistic and expected reachability proper-
ties for PA.

1 Introduction

Segala’s probabilistic automata [16] (PA) are important state-based models for
modeling complex systems that involve discrete probabilistic and nondetermin-
istic branching. PA generalize labelled transition systems (LTSs) [14] in that the
target of a transition is a probability distribution over the states rather than
just a single state. Nondeterminism occurs if several (possibly equally) labelled
transitions emanate from a given state. PA are compositional—a model of a com-
plex system can be obtained by modeling its components and putting them in
parallel, e.g., by synchronizing actions in a CSP-based manner. Thus, PA are an
adequate modeling formalism for asynchronously concurrent systems with dis-
crete probabilistic choice such as randomized distributed algorithms. They have
been used as semantic model for probabilistic process algebras and the PIOA
language.

This paper presents aggressive abstraction techniques for PA that aim at
applying abstraction in a component-based,i.e., compositional manner. Rather
than focusing on obtaining equivalent behaviour (as for bisimulation), we focus
on refinement, a pre-order relation between abstract and concrete models, that
assures every required transition of an abstract model is mimicked by a combined-
transition in the concrete model; and any transition of a concrete model needs
to be matched by an optional combined-transition in the abstraction. The kernel
of our refinement yields a notion of strong bisimulation for PA. It is shown to

� This research is supported by the EU FP7 MoVeS Project (Modeling, Verification
and Control of Complex Systems) and the German-Dutch bilateral project ROCKS.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 325–341, 2012.
c© IFIP International Federation for Information Processing 2012

326 F. Sher and J.-P. Katoen

be a pre-congruence w.r.t. parallel composition of abstract PA. This result is a
cornerstone for the remaining results in this paper as it facilitates compositional
abstraction.

As in [8,7], our abstraction techniques yield abstract PA in which action-
labelled transitions are typed either “possible” or“required” and have constraint
functions as targets representing sets of distributions as in constraint Markov
chains [5]. As in modal transition systems [9], this distinction is exploited to
consider abstract PA as specifications representing a set of concrete PA, its im-
plementations. The key idea of our abstraction techniques is to find out common
combined-transitions from concrete states and put them as required transitions
in the abstract state. We define two different notions of abstraction and prove
their correctness, i.e., show that the concrete models are indeed refinements of
the abstract models. Using the fact that our refinement is a pre-congruence for
parallel composition, this enables the compositional abstraction of PA.

For the formal analysis and verification of probabilistic systems two quan-
titative properties are of interest: probabilistic reachability (the probability of
reaching a set of goal states) and expected reachability (the expected number of
transitions before reaching a set of goal states). Due to the presence of nonde-
terminism in PA, it is not always possible to have one unique value for these
measures; instead, the maximum and the minimum values are obtained. As ev-
ery abstraction technique induces additional nondeterminism, the analysis of the
abstract PA gives lower and upper bounds on the maximum/minimum values
for the concrete model. In our abstraction techniques, the distinction of required
and possible transitions help achieving this goal of finding bounds on the maxi-
mum/minimum values as in [12]. It also helps finding how precise the abstraction
is; the better the abstraction is, the tighter the bounds will be. Had there been
just one type of transitions in abstract PA, there would have been only single
maximum/minimum value for each property. The contributions of the paper are
summarized as follows:

– a new notion of a transition relation, called multi transition, that is used in
defining a refinement relation among PA,

– a new notion of a refinement relation that is a pre-congruence w.r.t. parallel
composition,

– a novel compositional abstraction technique, based on common combined-
transitions from concrete states, that helps defining lower and upper bounds
on the maximum/minimum values of probabilistic and expected reachability
measures, and

– the preservation of probabilistic and expected reachability properties for PA.

Organization. Section 2 sets the ground for this paper and introduces Markov
chains, probabilistic automata and abstract PA. Sections 3 and 4 define a satis-
faction and a refinement relation respectively. Section 5 discusses two different
abstraction techniques whereas section 6 discusses reachability analysis of PA.
Section 7 considers parallel composition of abstract PA and presents our compo-
sitionality results. Section 8 concludes the paper and provides pointers for future

Compositional Abstraction Techniques for Probabilistic Automata 327

work. The complete paper with proofs of theorems can be found at http://www-
i2.informatik.rwth-aachen.de/i2/publications/.

2 Background

Sub-distributions. A function μ is a sub-distribution on a finite set S iff
μ : S → [0, 1] and

∑
s∈S μ(s) ≤ 1. Let supp(μ) = {s ∈ S | μ(s) > 0} denote

the support of μ, and the probability of a set S′ ⊆ S w.r.t. μ be given as
μ(S′) =

∑
s∈S′ μ(s). Let |μ| = μ(S) denote the size of the sub-distribution

μ. A sub-distribution is a (full) distribution iff |μ| = 1. Let Dist(S) denote
the set of distributions over S. For s ∈ S, let ιs ∈ Dist(S) denote the Dirac
distribution, i.e, ιs(s) = 1. For sub-distributions μ and μ′, the point-wise product
(μ · μ′) : S × S → [0, 1] is given as: (μ · μ′)(s, s′) = μ(s) · μ′(s′) for s, s′ ∈ S. A
sub-distribution μ′′ can be split into sub-distributions μ and μ′, say, represented
as μ′′ = μ ⊕ μ′, iff μ′′(s) = μ(s) + μ′(s) for s ∈ S. Since ⊕ is associative
and commutative, we use the notation

⊕
for finite sums. A sub-distribution is

sometimes represented as μ = �μ(s)·s | s ∈ supp(μ)�, where � and � differentiate
a set of probabilities from an ordinary set. For 0 ≤ c ≤ 1, c·μ denotes the sub-
distribution defined by: (c·μ)(s) = c · μ(s).
Constraint Functions. Let ϕ be an arithmetic expression on variables over S
denoting probabilities over S and let sat(ϕ), referred to as the satisfaction set of
ϕ, denote the set of distributions that satisfy ϕ. We call ϕ a constraint function
and let C (S) denote the set of constraint functions over S. For simplicity we
use ϕ and sat(ϕ) interchangeably. As every distribution is a constraint function,
thus Dist(S) ⊆ C (S). The satisfaction set of the product of two sub-constraint
functions ϕ and ϕ′ is denoted as sat(ϕ · ϕ′) = sat(ϕ) · sat(ϕ′) = {(μ · μ′) | μ ∈
sat(ϕ), μ′ ∈ sat(ϕ′)}.
Probability Measures and Spaces. Let Ω be a non-empty set and F ⊆ 2Ω.
F is a σ-field on Ω iff: (1) {} ∈ F (2) A ∈ F ⇒ Ω\A ∈ F (3)A1, A2, A3, ... ∈
F ⇒ A1 ∪A2 ∪A3 ∪ ... ∈ F . The elements of F are measurable sets and (Ω,F)
is a measurable space. A function Prob : F → [0, 1] is a probability measure
on (Ω,F) iff Prob(Ω) = 1 and if A1, A2, ... are disjoint elements in F , then
Prob(

⋃
iAi) =

∑
i Prob(Ai). (Ω,F , P rob) is called a measurable space. For any

A ⊆ F , there exists a unique smallest σ-field that contains A [2]; and given
that A satisfies certain conditions [2], a probability measure defined on A can be
uniquely extended to the σ-field generated from A.

We recap our basic models: Markov chains (MC), probabilistic automata
(PA) [15] and abstract probabilistic automata (APA) [8,7]; the first two will act
as implementations while the latter as specifications.

Markov Chain (MC). MC extend labelled transition systems (LTS) by anno-
tating transitions with probabilities (instead of actions) that indicate the likeli-
hood of their occurrences.

Definition 1. A Markov chain (MC) is a tuple L = (S,P, AP,V, s0) where:

328 F. Sher and J.-P. Katoen

– S is a non-empty, finite set of states with initial state s0,
– P : S × S → [0, 1] is a transition probability function,
– AP is a finite set of valuations, and
– V : S → 2AP is a state-labeling function.

The probability of going from state s to s′ is given by P(s, s′). We assume
that the number of transitions emanating from a state is finite. A path of a
MC represents an execution of the system it models. It is a non-empty, finite
or infinite sequence of states i.e. π = s0s1s2... such that P(si, si+1) > 0 for
i ≥ 0. For a finite path πfin, let |πfin| denote its length (number of transi-
tions) and last(πfin) its final state. Let π(i) denote state si of path π; and π

(i)

denote its prefix of length i i.e. π(0)...π(i). The probability that a finite path
πfin is executed is given as: P(πfin) = 1 if |πfin| = 0, otherwise P(πfin) =
P(πfin(0), πfin(1)) · ... · P(πfin(n − 1), πfin(n)), where |πfin| = n. Finally, let
Pathfin(s) and Path(s) denote all finite and infinite paths emanating from state
s respectively. In the rest of the paper, L = (S,P, AP,V, s0) is assumed to be a
MC.

Let a probability measure space (Paths(s),Fs, P robs) over the (infinite) paths
emanating from state s be defined as follows. Let the cylinder set for finite
path πfin ∈ Pathsfin(s) be cyl(πfin) = {π ∈ Paths(s) | πfin is a prefix of π}.
The probability of the cylinder set cyl(πfin) is defined to be that of πfin, i.e.
P(cyl(πfin)) = P(πfin). Let Cyl(s) = {cyl(πfin) | πfin ∈ Pathsfin(s)} be the
set of all cylinder sets defined on finite paths emanating from s; and let Fs be the
smallest σ-field on Paths(s) such that Cyl(s) ⊆ Fs. P can be uniquely extended
for Fs as Probs, thus, completing the definition of the probability measure space
(Paths(s),Fs, P robs). Based on this construction, we can now define two mea-
sures for every MC, probabilistic reachability and expected reachability, that form
the basis of probabilistic model checking [6,3].

Probabilistic reachability refers to the probability of eventually reaching a state
in L satisfying an element of T ⊆ 2AP starting from a given state s. Expected
reachability refers to the expected number of transitions before reaching a state
satisfying an element of T . Let Pathsfin(s, T) = {πfin ∈ Pathsfin(s) | ∃i :
V(π(i)) ∈ T ∧ ∀j < i : V(π(j)) /∈ T }. Formally,

Definition 2. For MC L, let s ∈ S and T ⊆ 2AP . Then, the reachability prob-
ability of a state satisfying an element in T from s is:

p(L, s, T) =
∑

πfin∈Pathsfin(s,T)

Probs(cyl(πfin))

and the expected reachability is: if p(L, s, T) < 1, then e(L, s, T) =∞; otherwise

e(L, s, T) =
∑

πfin∈Pathsfin(s,T)

|πfin| · Probs(cyl(πfin)).

Probabilistic Automata (PA). PA extend labelled transition systems (LTS)
by specifying the target of action-labelled transitions as distributions over states

Compositional Abstraction Techniques for Probabilistic Automata 329

instead of single states. Let U-Act be a countable universe of actions ranged over
by a, b, etc; and let Act(s) denote the set of enabled actions from state s.

s1

s3

FG

a

.2

.48

E

.32

s2

a

a
.6 .4

c

c

.5 .3

.2

a

Fig. 1. A PA

Definition 3. A Probabilistic automaton (PA)
is a
tuple M = (S,A,Δ,AP,V, s0) where:

– S is a non-empty, finite set of states with ini-
tial state s0,

– A ⊆ U-Act is a set of actions,
– Δ ⊆ S ×A×Dist(S) is a set of transitions,
– AP is a finite set of valuations, and
– V : S → 2AP is a state-labeling function.

We denote (s, a, μ) ∈ Δ by s
a→ μ and assume

that the number of transitions emanating from a
state is finite. As |Act(s)| ≥ 1 for a state s ∈ S, we
may have a non-deterministic choice among the enabled actions in s. Therefore,
a path in PA represents a particular resolution of non-determinism. Formally,

a path from s0 is given as: π = s0
a0,μ0−→ s1

a1,μ1−→ s2... where ai ∈ Act(si) and
μi(si+1) > 0 for all i ≥ 0.

A PA with |supp(μ)| = 1 for every transition s
a→ μ is an LTS. Similarly, a

Markov chain (MC) is a PA in which |Act(s)| = 1 for every state s ∈ S. In the
rest of the paper, M = (S,A,Δ,AP,V, s0) is assumed to be a PA.

Example 1. Consider the PA given in Fig. 1. Note that the target of the tran-
sitions s2

a→ �.4E, .6F �, s3
a→ �.2E, .3F, .5G� and s3

a→ �.32E, .48F, .2G� are
distributions over states instead of single states. The target of other transitions
are Dirac distributions.

To resolve a non-deterministic choice among enabled actions in a state s, a
scheduler (also known as policy, strategy or adversary) is used that makes its
decision based on the history of the execution up to that point. In this work, we
only consider deterministic memoryless schedulers that map a finite path πfin
to one pair in Act(last(πfin)) ×Dist(S). A scheduler κ is called memoryless iff
last(πfin) = last(π

′
fin)⇒ κ(πfin) = κ(π

′
fin) for any finite paths πfin and π′fin.

A path π under a memoryless scheduler κ is of the form π = s0
a0,μ0−→ s1

a1,μ1−→ s2...
where (ai, μi) = κ(si) for i ≥ 0. For s ∈ S and scheduler κ, let Pathsκfin(s)
and Pathsκ(s) denote the sets of finite and infinite paths emanating from s
under κ. The behaviour of a PA under a scheduler κ is a MC. For PA M and
scheduler κ, let Mκ be the induced MC. We can construct a measurable space
(Pathsκ(s0),Fκ, P robκ) over the (infinite) paths of PA under scheduler κ. To
reason about the probabilistic and expected reachability for PA, we consider
their minimum and maximum values under all schedulers κ.

Definition 4. For PAM , let T ⊆ 2AP and s ∈ S. The minimum and maximum
values of probabilistic and expected reachability to a state satisfying an element
in T from s are given as:

330 F. Sher and J.-P. Katoen

– pmin(M, s, T) = infκ p(M
κ, s, T) and pmax(M, s, T) = supκ p(M

κ, s, T),
– emin(M, s, T) = infκ e(M

κ, s, T) and emax(M, s, T) = supκ e(M
κ, s, T).

As proved in [4,1], there exist deterministic memoryless schedulers that opti-
mize the values of probabilistic and expected reachability; and these values can
be computed through value iteration [4,1,12] which gradually refines them to
the required values, or by linear programming.

Abstract PA (APA) [8,7]. Abstract PA act as specifications and aim to
represent a set of PA. They extend PA by categorizing transitions/valuations
into two types: required and possible ones. This distinction, adopted from modal
transition systems (MTS) [9], is standard for abstract models of labelled tran-
sition systems. In addition, the target of transitions are constraint functions
representing a set of distributions [5]. Altogether, this yields:

Definition 5. An abstract PA is a tuple N = (S,A,Δr , Δp, AP,Vr ,Vp, s0)
with S (possibly empty), A, AP and s0 as before, and:

– Δr ⊆ S ×A× C (S) is a set of required transitions,
– Δp ⊆ S ×A× C (S) is a set of possible transitions with Δr ⊆ Δp,
– Vr : S → 2AP maps a state to a set of required valuations, and
– Vp : S → 2AP maps a state to a set of possible valuations with Vr(s) ⊆

Vp(s) for s ∈ S.

s′1

F ′

E′

G′

ϕ′
x′ = (x′1 = .4 ∧ x′2 = .6) ∨ x′3 = 1

s′2
cr

ar

.3
.5

ap

x′2
x′3

x′1.2

ap

Fig. 2. An APA

When (s, a, ϕ) ∈ Δp, we write s
a→p ϕ; and similarly

when (s, a, μ) ∈ Δr, we write s
a→r ϕ. s

a→p ϕ basi-

cally represents a set of a-transitions s
a→p μ from s

with μ ∈ sat(ϕ). In figures, we subscript the actions of
required transitions by “r”, and those of possible tran-
sitions by “p”. Each state in an APA is labelled with
two sets of atomic propositions: required and possible
ones. The required set of atomic propositions is satis-
fied as a whole by a state in an implementation, where
a possible one may be satisfied and that too partially.
As the distinction between possible and required propositions is similar to that
for transitions, we will ignore propositions in examples. An APA with Δr = Δp,
Vr(s) = Vp(s) for s ∈ S, and |sat(ϕ)| = 1 for every required transition s→r ϕ
is a PA. Similarly, an APA in which for every s ∈ S, Vr(s) = Vp(s) and for

s
a→p ϕ, sat(ϕ) is a Dirac distribution, is an MTS [9]. PA and MTS are thus

proper sub-models of APA. In fact, PA will be used as implementations and APA
as specifications—finite representations of a possibly infinite set of PA. Later on
we will see that for the analysis of an APA, a finite set of its implementations
suffices. In the rest of the paper, N = (S,A,Δr, Δp, AP,Vr,Vp, s0) is assumed
to be an APA.

Example 2. Fig. 2 represents an APA. Note that state s′2 has one required tran-

sition, s′2
a→r �.2E′, .3F ′, .5G′� and two possible transitions, s′2

a→p ϕ
′
x′ with

sat(ϕ′
x′) = {�.4E′, .6F ′�, �G′�} and s′2

a→p �ιE′�.

Compositional Abstraction Techniques for Probabilistic Automata 331

For the sake of convenience, we introduce the following notations and definitions.
The notion of a combined transition, denoted

a→C , arises as a convex combination
of a set of transitions with the same label a ∈ A.

Definition 6 (Combined transition). For PA M , let s ∈ S and μ ∈ Dist(S).

We write s
a→C μ, if there is a finite indexed set {(ci, μi)}i∈I , ci ∈ R≥0 and

μi ∈ Dist(S), such that s
a→ μi for each i ∈ I,

∑
i∈I ci = 1, and μ =

⊕
i∈I ci ·μi.

For APA we define s
a→pC ϕ and μ

a→rC ϕ in a similar way for combined
possible and required transitions respectively. For a set of distributions B =
{μ1, μ2, ..., μn}, let BC = {μ | μ =

⊕n
i=1 ci · μi ∧

∑n
i ci = 1}. Similarly, we

have ϕC for a constraint function ϕ. Moreover, we write s
a

⇒p ϕ
′, called multi

a-transition from s, iff s
a→p ϕ1, s

a→p ϕ2,..., s
a→p ϕn and ϕ′ =

∨n
i=1 ϕi. It is

important to note that sat(
∨

s
a→pCϕ

ϕ) ⊆ sat(
∨

s
a→pϕ

ϕ)C . The multi-transitions

extend for PA by default.

Simulation/refinement [10] is a preorder on the state space requiring that when-
ever state u simulates state s, then u can mimic at least the stepwise behaviour
of s. This can be lifted to distributions over states as:

Definition 7 (Simulation). Let S be a finite, non-empty set of states, and let
μ, μ′ ∈ Dist(S). For R ⊆ S × S, μ is simulated by μ′ w.r.t. R, denoted μRμ′,
iff there exists a weight function Δ : S × S → [0, 1] such that for all u, v ∈ S:(1)
Δ(u, v) > 0⇒ uRv, (2)

∑
s∈S Δ(u, s) = μ(u) and (3)

∑
s∈S Δ(s, v) = μ′(v).

3 Satisfaction

A satisfaction relation formally relates a PA, i.e., an implementation, with an
APA, i.e., a specification.

Definition 8 (Satisfaction). Let PA M and APA N ′ have identical sets of
actions A and atomic propositions AP . A relation R ⊆ S × S′ is a satisfaction
relation if for every sRs′:

1. s′
a
⇒r ϕ

′ implies s
a
⇒ ϕ and for every μ′ ∈ sat(ϕ′), there exists μ ∈ sat(ϕ)C

such that μRμ′.

2. s
a
⇒ ϕ implies s′

a
⇒p ϕ

′ with ϕRϕ′C ,
3. V′

r(s
′) ⊆ V(s) and V(s) ⊆ V′

p(s
′).

Here, ϕRϕ′C iff for every μ ∈ sat(ϕ), there exists μ′ ∈ sat(ϕ′)C with μRμ′.
PA M satisfies or implements APA N ′, denoted M |= N ′, iff there exists a
satisfaction relation relating s0 and s′0. The set of implementations of N ′ is
given as �N ′� = {M |M |= N ′}.

Intuitively, if a state s satisfies a state s′, then (1) whenever s′ performs a required
multi a-transition to a constraint function ϕ′, then s can perform a multi a-
transition to a constraint function ϕ such that every distribution in sat(ϕ′) is

332 F. Sher and J.-P. Katoen

satisfied by some distribution in sat(ϕ)C ; (2) whenever s performs a multi a-
transition to a constraint function ϕ, this can be mimicked by s′ by possibly
moving to a constraint function ϕ′ such that every μ ∈ sat(ϕ) satisfies one
distribution in sat(ϕ′)C ; and (3) s should at least satisfy all required valuations
of s′ and its all valuations should be derived from that of s′.

Example 3. The PA M in Fig. 1 is an implementation of the AMA N in
Fig. 2 as R = {(s1, s′1), (s2, s′2), (s3, s′2), (G,G′), (E,E′), (F, F ′)} is a satisfaction
relation. Let us check whether (s2, s

′
2) fulfils the conditions of Def. 8. For the re-

quired a-transition from s′2 to �.2E′, .3F ′, .5G′�, there is a corresponding multi a-
transition from s2 to a constraint function with satisfaction set {�.4E, .6F �, ιG},
and �.2E, .3F, .5G� is a convex combination of distributions in {�.4E, .6F �, ιG}.
As �.2E, .3F, .5G� satisfies �.2E′, .3F ′, .5G′� (�.2E, .3F, .5G�R�.2E′, .3F ′, .5G′�),
condition (1) is fulfilled. For the a-transitions from s2 to ιG and �.4E, .6F �, there
are corresponding a-transitions from s′2 to ιG′ and �.4E′, .6F ′� respectively. Thus,
condition (2) is also fulfilled.

Now let us check how the pair (s3, s
′
2) fulfils condition (2). Note that there

is no simple or combined a-transition from s′2 that satisfies a-transition from
s3 to �.32E, .48F, .2G�. However, if we consider a multi a-transition from s′2 to
{�.4E, .6F �, ιE , ιG}, we get �.32E′, .48F ′, .2G′�, a convex combination of distribu-
tions in {�.4E, .6F �, ιE , ιG}, that satisfies �.32E, .48F, .2G�. Had we just simple
transitions in Definition 8, state s3 would not have been an implementation of
state s′2. (Recall that valuations are not considered in our examples.)

4 Refinement

In this section, we discuss refinement that is used to compare APA. Intuitively,
a refinement relation compares two APA w.r.t. their sets of implementations. If
APA N refines APA N ′, then we aim at �N� ⊆ �N ′�. Refinement takes a similar
view as satisfaction.

Definition 9 (Refinement). Let APA N and N ′ have identical sets of actions
A and atomic propositions AP . A relation R ⊆ S × S′ is a refinement relation
if for every sRs′:

1. s′
a

⇒r ϕ
′ implies s

a

⇒r ϕ and for every μ′ ∈ sat(ϕ′), there exists μ ∈ sat(ϕ)C

such that μRμ′.

2. s
a

⇒p ϕ implies s′
a

⇒p ϕ
′ with ϕRϕ′C ,

3. V′
r(s

′) ⊆ V(s) and V(s) ⊆ V′
p(s

′).

Let 8 be the largest refinement relation. N refines N ′, denoted N 8 N ′, iff there
exists a refinement relation relating s0 and s′0.

The above definition is a simple generalization of that of satisfaction. Condition
(1) is similar with that of Def. 8 except that the multi a-transition from s now

Compositional Abstraction Techniques for Probabilistic Automata 333

must be a required transition. Condition (2) adds that for every possible multi
a-transition from s, there should be a corresponding possible multi a-transition
from s′. The similar addition is found in condition (3). Evidently, a satisfaction
relation is a special case of a refinement relation.

Definition 10 (Bisimulation). ∼=8 ∩ 8−1.

Let us recall the definitions of Segala’s strong probabilistic simulation and bisim-
ulation [15,13] and see how Segala’s bisimulation is related to ∼.

Definition 11. Let PA M and M ′ have identical sets of actions A. A relation
R ⊆ S × S′ is a strong simulation relation if for every sRs′:

s
a→ μ implies s′ a→ μ′ with μRμ′.

M is simulated by M ′, denoted M 0 M ′, iff there exists a simulation relation
relating s0 and s′0.

A relation R ⊆ S × S′ is a strong bisimulation relation if for every sRs′:

s
a→ μ implies s′ a→ μ′ with μRμ′ and s′ a→ μ′ implies s

a→ μ with μ′Rμ.

M is strongly bisimilar to M ′, denoted N 7 M ′, iff there exists a strong bisim-
ulation relation relating s0 and s′0.

Lemma 1. ∼ coincides with 7 for any PA.

Proposition 1. For PA M ,M ′ and APA N , N ′:

– N 8 N ′ implies �N� ⊆ �N ′�.
– M ∼M ′ implies for every N , M |= N iff M ′ |= N .

5 Abstraction

This section explains two techniques of abstracting an APA that mimics all
behaviours of the concrete one. Intuitively, the state space S of APA N is par-
titioned and each partition is represented by a single state in the abstract APA
N ′. Formally, let abstraction function α : S → S′ be a surjection and its inverse
a concretization function γ : S′ → 2S . That is, α(s) is an abstract state of s
whereas γ(s′) is the set of concrete states abstracted by s′. These notions can be
lifted to distributions in a simple way: an abstract distribution α(μ) of μ is given
as α(μ)(s′) = μ(γ(s′)). α and γ are lifted to sets of states or sets of distributions
in a point-wise manner. Thus, ϕ′ = α(ϕ) iff sat(ϕ′) = α(sat(ϕ)).

In the sequel, we assume w.l.o.g. that for APA N , the abstraction function
α : S → S′ induces the APA N ′ = α(N) with the same set of actions A and
atomic propositions AP .

Definition 12. (Strong abstraction (SA)) For APA N , the abstraction func-
tion α : S → S′ induces the APA N ′ = α(N) where for all s′ ∈ S′:

1. for every a ∈ A and ϕ′ ∈ C (S′),
(a) s′ a→r ϕ

′ iff ∀s ∈ γ(s′), ϕ ∈ C (S): s
a→r ϕ and ϕ′ = α(ϕ),

334 F. Sher and J.-P. Katoen

s2

E

.2

G F

.2

s1

N

s3
.3

cr

ar

ar
.8

cr

s5
.2

ar.2
ar

.6

s4

.5

ar

.4
.6

ar

.5 .5

s′1

N1

s′2

cr

G′

(x′
1 = .5 ∧ x′

3 = .5) ∨ (x′
2 = .4 ∧ x′

3 = .6)

(x′
1 = .8 ∧ x′

2 = .2) ∨ (x′
3 = 1) ∨ (x′

1 = 1)∨
ϕ′

x′ = (x′
1 = .2 ∧ x′

2 = .2 ∧ x′
3 = .6)∨

F ′ E′

ap

x′
3

x′
2

x′
1

Fig. 3. N1 = α(N)

(b) s′ a→p ϕ
′ iff ∃s ∈ γ(s′), ϕ ∈ C (S): s

a→p ϕ, and ϕ
′ =

∨
u∈γ(s′):u a→pϕ

α(ϕ).

2. V′
r(s

′) = Vr(s) for s ∈ γ(s′), and V′
p(s

′) =
⋃

s∈γ(s′)
Vp(s).

(1a) Intuitively, if each state in γ(s′) has a required a-transition, then s′ also has
a required a-transition and vice versa. Moreover, the abstract behaviour of each
concrete transition should be the same as that of the transition from s′. (1b) s′

has a possible a-transition iff at least one state in γ(s′) has a possible a-transition.
The accumulative abstract behaviour of all concrete possible transitions is the
same as that of the a-transition from s′. (2) The set of required valuations of
s′ should be the same as that of each concrete state s ∈ γ(s′), whereas its set
of possible valuations is the union of the sets of possible valuations of concrete
states.

Example 4. For N1 = α(N) (see Fig. 3), γ(s′1) = {s1}, γ(s′2) = {s2, s3, s4, s5},
γ(E′) = {E}, γ(F ′) = {F} and γ(G′) = {G}. Note that the abstract behaviour
of both required c-transitions from s1 is the same, and is represented by one
required c-transition from s′1. The required a-transitions from s2, s3, s4 and s5
behave differently; this is mimicked by the possible a-transition from s′2.

Consider two states s1 and s2 with two required transitions from each: s1
a→r μ1,

s1
a→r ν1 and s2

a→r μ2, s2
a→r ν2. Let α(μ1) �= α(ν1) �= α(μ2) �= α(ν2). It means

there is no required a-transition from the abstract state α(s1) = α(s2). Let ϕ1 =
{μ1, ν1}C and ϕ2 = {μ2, ν2}C such that α(ϕ1)∩α(ϕ2) �= ∅. Then it is possible to
have a required a-transition from the abstract state with ϕ′ = α(ϕ1) ∩ α(ϕ2) as
the target constraint function. As an example, observe that there are combined
a-transitions from s3 and s4 (Fig. 3) that have common target distributions
e.g. �.2E, .2F, .6G�. We therefore adapt SA by exploiting these common target
distributions of (only) combined required transitions as:

Definition 13. (Common-distribution Abstraction (CDA)) For APA N ,
the abstraction function αc : S → S′ induces the APA N ′ = αc(N) where for all
s′ ∈ S′:

Compositional Abstraction Techniques for Probabilistic Automata 335

s′2

E′

.2

G′

ϕ′
x′ = (x′

1 = .5 ∧ x′
3 = .5) ∨ (x′

2 = .4 ∧ x′
3 = .6)

F ′

∨(x′
1 = .8 ∧ x′

2 = .2) ∨ (x′
3 = 1))

.2

s′1

N2

s′3

.8

cr

ar

ar

.381

cr

s′5

.2

ar.095

.6

.524

ap

x′
1

x′
2

x′
3

Fig. 4. N2 = αc(N)

1. for every a ∈ A and ϕ′ ∈ C (S′),
(a) s′a→rϕ

′ iff ∀s ∈ γc(s′), ϕ∈C (S): s
a→r ϕand ϕ

′=
∧

u∈γc(s′):u
a

⇒rϕ
αc(ϕ)

C ,

(b) s′ a→p ϕ
′ iff ∃s ∈ γc(s′), ϕ ∈ C (S): s

a→p ϕ and ϕ′ =
∨

u∈γc(s′):u
a→pϕ

αc(ϕ)

2. V′
r(s

′) = Vr(s) for s ∈ γc(s′), and V′
p(s

′) =
⋃

s∈γc(s′)
Vp(s).

(1a) Like in SA, if each state in γc(s
′) has a required a-transition, then s′ has a

required a-transition and vice versa. However, the common target distributions
(after abstraction) among all the combined required a-transitions from the con-
crete states should be the target of the required a-transition from s′. (1b) and
(2) are the same as in SA.

Example 5. Let N2 = αc(N) as in Fig. 4 with γc(s
′
1) = {s1}, γc(s′2) = {s2},

γc(s
′
3) = {s3, s4}, γc(s′5) = {s5}, γc(E′) = {E}, γc(F ′) = {F} and γc(G′) = {G}.

The common behaviour of combined a-transitions from s3 and s4 is given by the
required a-transition from the abstract state s′3. The possible a-transition from
s′3 represents all a-transitions from s3 and s4.

The following results show that the above notions of abstraction yield APA
and preserve refinement. Finally, we show that our notions of abstraction are
comparable w.r.t. refinement.

Lemma 2. For APA N , α(N) and αc(N) are APA.

Theorem 1. For APA N , N 8 α(N) and N 8 αc(N).

Lemma 3. For APA N and s ∈ S, if α(s) = αc(s) then N 8 αc(N) 8 α(N).

6 Reachability

In order to analyse the behaviour of APA, we need to resolve three different
types of nondeterminism. The first one is due to possible transitions/valuations

336 F. Sher and J.-P. Katoen

that may either be present or absent in an implementation. The second type of
nondeterminism is the same as in PA, i.e., the nondeterministic choice among the
enabled actions from each state. Like for PA, deterministic schedulers are used for
APA to choose among the enabled actions. The third source of nondeterminism
is the target constraint function of a transition; one of the distributions in the
satisfaction set of the constraint function is nondeterministically chosen. As the
satisfaction set of a constraint function may be infinite (and even uncountable),
we approximate it by a finite set. We consider the approximation of polynomial
constraint functions as they are closed under composition [8].

For i ∈ N+, let Θi and Φi be linear constraint functions in variables over
S. Let ϕι = {ιs | s ∈ S} be a linear constraint function characterizing Dirac
distributions over S, and ϕμ be a linear constraint function characterizing only
one distribution, i.e., μ.

Consider a polynomial constraint function φ representing a set of distributions
over S; therefore, it at least contains a linear constraint

∑
s∈S xs = 1 which

implies that φC ⊆ ϕC
ι . We can now deduce a series of linear constraint functions

ϕ0 = ϕι, ϕ1 = ϕ0 ∧Θ1, ϕ2 = ϕ1 ∧Θ2 and so on such that φC ⊆ ϕC
i+1 ⊆ ϕC

i for
all i ≥ 0 and φC = limi→∞ ϕC

i . Every ϕi in the above series over-approximates
φ, i.e., every μ in φC also exists in ϕC

i .
Now we under-approximate φ by a linear constraint function. Let μ ∈ φ such

that ϕμ = μ is a linear constraint function. As in the above case there exists a
series of constraint functions ϕ0 = ϕμ, ϕ1 = ϕ0 ∨ Φ1, ϕ2 = ϕ1 ∨ Φ2 and so on
such that φC ⊇ ϕC

i+1 ⊇ ϕC
i for all i ≥ 0 and φC = limi→∞ ϕC

i . Every ϕi in the
above series under-approximates φ, i.e., every μ in ϕC

i also exists in φC .

Definition 14. A constraint-approximating function ς : C (S) → C (S) over-
approximates a polynomial constraint function by a linear one iff for polynomial
constraint functions φ, φ1, φ2 ∈ C (S):

– ς(φ) is a linear constraint function and φC ⊆ ς(φ)C , and
– φC1 ⊆ φC2 ⇒ ς(φ1)

C ⊆ ς(φ2)C .

The inverse function ς−1 under-approximates a polynomial constraint function
by a linear one, i.e., φC ⊇ ς−1(φ)C and φC1 ⊇ φC2 ⇒ ς−1(φ1)

C ⊇ ς−1(φ2)
C .

Example 6. Consider a polynomial constraint function φ = (x2 + y2 + z2 ≤
r2 ∧x+ y+ z = 1) representing a set of distributions by a shaded-circular region
of radius r within each triangle of Fig. 5 and 6. Let ς1 and ς2 be the constraint-
approximating functions such that ς1(φ) represents the region enclosed among
the lines l1, l2, l3 and the sides of the left triangle in Fig. 5; and ς2(φ) represents
the region among the lines l1, . . . , l12 in the right triangle. Let ς−1

2 (φ) represent
the region among the lines l1, . . . l6 in Fig. 6. It is clear that ς2(φ) is an over-
approximation and ς−1

2 (φ) is an under-approximation of φ, i.e., ς−1
2 (φ) ⊆ φ ⊆

ς2(φ). Moreover, ς2(φ) gives a better over-approximation of φ than ς1(φ), i.e.,
φ ⊆ ς2(φ) ⊆ ς1(φ).

Compositional Abstraction Techniques for Probabilistic Automata 337

y

z

x

l1

l2

l3

;
(000)

;
(010)

;

(100)

;
(001)

r

y

z

x

l1l2

l3

l4

l5

l6

l7
l8

l9

l10

l11

l12

;
(000)

;
(010)

;

(100)

;
(001)

r

Fig. 5. An example polynomial constraint function (left) and a linear over-
approximation (right)

;
(000)

;
(010)

;

(100)

;
(001)

y

z

x
;
(000)

l1

l2

l3
l4

l5

l6

;
(000)

;
(010)

;

(100)

;
(001)

r

Fig. 6. Linear under-approximation of a
polynomial constraint function

It implies that an APA with poly-
nomial constraint functions can be
further abstracted by over/under-
approximating its constraint func-
tions with linear ones. The following
definition lifts ς from constraint func-
tions to APA.

Definition 15. For APA N with
polynomial constraints, the constraint-
approximating function ς : C (S) →
C (S) induces the APA N ′ = ς(N)
with the same set of states S, actions
A, atomic propositions AP and state-
labeling functions, where for all s ∈ S,

1. s
a→r ς

−1(φ) ∈ Δ′
r iff s

a

⇒r φ ∈
Δr,

2. s
a→p ς(φ) ∈ Δ′

p iff s
a
⇒p φ ∈ Δp.

(1) As by Definition 14 ς−1(φ) ⊆ φ, this implies that the set of required a-

transitions s
a→r ς

−1(φ) from state s in N ′ is a subset of that of from s in N . (2)
However, in the case of possible transitions from s, it is the other way around
as φ ⊆ ς(φ). This leads to the follow lemma:

Lemma 4. For APA N , N 8 ς(N).

The satisfaction set of a linear constraint function may be infinite, but this can
be simplified by just considering its extreme distributions.

338 F. Sher and J.-P. Katoen

Definition 16. The set of extreme distributions of a linear constraint function
ϕ, denoted ϕextr, is the smallest finite subset of ϕ such that ϕC

extr = ϕC .

The concept of extreme distributions is explained in [11] for interval constraints
that can easily be extended for linear constraints. Thus, an APA with linear
constraints can be simplified by just considering the extreme distributions of
its constraint functions. Let Nextr represents an APA in which every transition
s

a→p ϕ is replaced with concrete transitions s
a→p μ where μ ∈ sat(ϕextr). In

the following we assume that every APA N with linear constraints is simplified,
i.e., N = Nextr.

Extreme Refinements. Now we consider two refinements of APA N ; one in
which every possible transition/valuation is converted into a required one and
the other in which they are all removed. Let N↑ and N↓ be the refinements of
APA N with Δ↑

r = Δp and V↑
r(s) = Vp(s); and Δ

↓
p = Δr and V↓

p(s) = Vr(s)

for s ∈ S respectively. N↑ and N↓ are called extreme refinements of N .

Consistency. Note that as there do not exist possible transitions/valuations in
APA N↓, we may have some state, say s, in N↓ with V↓

p(s) = ∅. Such states are

called inconsistent. Formally, a state s in N↓ is inconsistent if either V↓
p(s) = ∅

or s
a
⇒r ϕ implies either sat(ϕ) = ∅ or there exists a distribution in sat(ϕ) that

assigns a positive mass to at least one state s′ with V↓
p(s

′) = ∅. We call such
a distribution inconsistent. As discussed in [8], such inconsistent states can be
iteratively removed from the system by a pruning operator β. This process is
repeated until there are no more inconsistent states in the system. If the resulting
system contains at least one state, we say that it is consistent; otherwise it is
inconsistent. (Further details about pruning can be found in [8].)[1ex]

The following lemma tells how Segala’s strong probabilistic simulation and
bisimulation [15,13] relate implementations of APA N to ς(N)↑ and ς(N)↓.

Lemma 5. For APAN and for each PAM ∈ �N�,M 0 ς(N)↑ and ς(N)↓ 0M .

As the whole behaviour of each implementation M of APA N is derived from
N (conditions (2) and (3) of Definition 8), this implies that M 0 ς(N)↑. As
every implementation M of N depicts at least the required behaviour of N
(condition (1) of Definition 8), this implies that ς(N)↓ 0 ς(N↓) 0 M . Note
that ς(N)↓ �= ς(N↓). This is because every required transition is also a possible
transition and ς over approximates every possible transition in ς(N↓).

Moreover, extreme refinements of APA N , and abstractions α(N) and αc(N)
are related by Definition 11 as:

Lemma 6. For APA N , ς(α(N))↑ 7 ς(αc(N))↑, ς(N)↓ 0 ς(α(N))↑ and
ς(α(N))↓ 0 ς(αc(N))↓ 0 ς(N)↓.

The proof of ς(α(N))↑ 7 ς(αc(N))↑ follows from the fact that the set of possible
transitions of α(N) and αc(N) are the same. As N 8 α(N), this leads to ς(N)↓ 0
ς(α(N))↑. Moreover, the proof of ς(α(N))↓ 0 ς(αc(N))↓ 0 ς(N)↓ follows from
the fact that N 8 αc(N) 8 α(N), i.e., the whole required behaviour of α(N) is
present in αc(N) and subsequently in N .

Compositional Abstraction Techniques for Probabilistic Automata 339

Based on the above lemma we, as a main theorem of this paper, give lower and
upper bounds for maximum/minimum reachability/expected reachability values
for PA. In our case as we assume that every PA has only one initial state s0,
therefore, for simplicity we can write s0 = α(s0) = αc(s0).

Theorem 2. For PA M and x ∈ {e, p}, let T ⊆ 2AP , and M1 = ς(α(M))↑,
M2 = ς(α(M))↓ and M3 = ς(αc(M))↓ be PA. Then,

– xmax(M2, s0, T) ≤ xmax(M3, s0, T) ≤ xmax(M, s0, T) ≤ xmax(M1, s0, T),
– xmin(M1, s0, T) ≤ xmin(M, s0, T) ≤ xmin(M3, s0, T) ≤ xmin(M2, s0, T).

The proof of the above theorem is based on the fact that M2 0 M3 0 M 0
M1. The bounds given in the above theorem are dependent on the constraint-
approximating function ς . The better the ς is, the tighter the bounds will be.

7 Parallel Composition

We define a composition operation that allows to combine two APA. It is defined
in a TCSP-like manner, i.e., it is parametrized by a set of actions that need to be
performed simultaneously by both APA; other actions can occur autonomously.
The following definition is just an extension of the parallel composition definition
of APA in [8] with multi transitions.

Definition 17. (Parallel composition) For APA N and N ′, the parallel com-
position w.r.t. synchronization set Ā ⊆ (A∩A′) is given as: N‖ĀN ′ = (S×S′, A∪
A′, Δ̃r, Δ̃p, AP ∪AP ′, Ṽr, Ṽp, (s0, s

′
0)), where for all a ∈ A∪A′, (s, s′) ∈ S×S′

and ϕ̃ ∈ C (S × S′):

1. (s, s′)
a

⇒r ϕ̃ iff one of the following holds:

(a) a ∈ Ā, s
a

⇒r ϕ, s
′ a

⇒r ϕ
′ and ϕ̃ = ϕ · ϕ′, or

(b) a ∈ A, s
a

⇒r ϕ and ϕ̃ = ϕ · ιs′ , or
(c) a ∈ A′, s′

a
⇒r ϕ

′ and ϕ̃ = ιs · ϕ′.

2. (s, s′)
a

⇒p ϕ̃ iff one of the following holds:

(a) a ∈ Ā, s
a

⇒p ϕ, s
′ a

⇒p ϕ
′ and ϕ̃ = ϕ · ϕ′, or

(b) a ∈ A, s
a
⇒p ϕ and ϕ̃ = ϕ · ιs′ , or

(c) a ∈ A′, s′
a

⇒p ϕ
′ and ϕ̃ = ιs · ϕ′.

3. Ṽr((s, s
′)) = Vr(s) ∪V′

r(s
′) and Ṽp((s, s

′)) = Vp(s) ∪V′
p(s

′).

In (1a) both s and s′ synchronize and perform required multi a-transitions,
whereas in (1b) and (1c) they behave independently. Condition (2) considers
possible multi transitions from s and s′.

Theorem 3. For any set Ā, 8 is a pre-congruence w.r.t. ||Ā.

340 F. Sher and J.-P. Katoen

The composite APA is exponentially larger in size as compared to the composing
ones. This problem could be avoided by applying abstraction prior to composi-
tion. The following result shows that the resulting APA is the same as we get by
first applying the composition operator to individual APA and then abstracting
the monolithic one.

Theorem 4. For APA N1 and N2, synchronization set Ā and abstraction func-
tions α1, α2 of the same type: α1(N1) ||Ā α2(N2) = (α1×α2)(N1||ĀN2) up to
isomorphism, where α1×α2 is defined as (α1×α2)((s, s

′)) = (α1(s), α2(s
′)).

8 Conclusion

This paper presented novel compositional abstraction techniques for probabilistic
automata (PA) as well as a new refinement relation which is pre-congruence w.r.t.
parallel composition. The key idea is to find out common combined-transitions
from a set of concrete states and put them as required transitions in the abstract
state. Moreover, for the analysis and verification of PA, reachability and expected
reachability properties are also discussed. We expect the layered composition
operator, defined in [17] for PA, can be extended for APA. Future work includes
the application of this technique to practical case studies and the development
of a counterexample-guided abstraction-refinement framework.

References

1. de Alfaro, L.: Computing Minimum and Maximum Reachability Times in Prob-
abilistic Systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS,
vol. 1664, pp. 66–81. Springer, Heidelberg (1999)

2. Ash, R.B., Doléans-Dade, C.A.: Probabilty & Measure Theory, 2nd edn. Academic
Press (2000)

3. Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time
logic with fairness. Distributed Computing 11, 125–155 (1998)

4. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems.
Mathematics of Operations Research 16, 580–595 (1991)

5. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.:
Constraint Markov chains. Theor. Comput. Sci. 412, 4373–4404 (2011)

6. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, Stanford, CA, USA (1998)

7. Delahaye, B., Katoen, J.-P., Larsen, K., Legay, A., Pedersen, M., Sher, F., Wa-
sowski, A.: New results on abstract probabilistic automata. In: 2011 11th Interna-
tional Conference on Application of Concurrency to System Design (ACSD), pp.
118–127. IEEE CS Press (2011)

8. Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F.,
W ↪asowski, A.: Abstract Probabilistic Automata. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 324–339. Springer, Heidelberg (2011)

9. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal Transition Systems: A Founda-
tion for Three-Valued Program Analysis. In: Sands, D. (ed.) ESOP 2001. LNCS,
vol. 2028, pp. 155–169. Springer, Heidelberg (2001)

Compositional Abstraction Techniques for Probabilistic Automata 341

10. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: Logic in Computer Science, pp. 266–277. IEEE CS Press (1991)

11. Katoen, J.-P., Klink, D., Neuhäußer, M.R.: Compositional Abstraction for Stochas-
tic Systems. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS,
vol. 5813, pp. 195–211. Springer, Heidelberg (2009)

12. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods
in System Design 36, 246–280 (2010)

13. Lynch, N.A., Segala, R., Vaandrager, F.W.: Observing branching structure through
probabilistic contexts. SIAM J. Comput. 37, 977–1013 (2007)

14. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)
15. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-

tems. PhD thesis, Massachusetts Institute of Technology (1995)
16. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes.

Nordic J. of Computing 2, 250–273 (1995)
17. Swaminathan, M., Katoen, J.-P., Olderog, E.-R.: Layered reasoning for randomized

distributed algorithms. Formal Aspects of Computing (to appear, 2012)

Broadcast Abstraction in a Stochastic Calculus
for Mobile Networks�

Lei Song and Jens Chr. Godskesen

IT University of Copenhagen, Denmark

Abstract. We introduce a continuous time stochastic broadcast calculus for mo-
bile and wireless networks. The mobility between nodes in a network is mod-
eled by a stochastic mobility function which allows to change part of a network
topology depending on an exponentially distributed delay and a network topology
constraint. We allow continuous time stochastic behavior of processes running at
network nodes, e.g. in order to be able to model randomized protocols. The in-
troduction of group broadcast and an operator to help avoid flooding allows us to
define a novel notion of broadcast abstraction. Finally, we define a weak bisim-
ulation congruence and apply our theory on a leader election protocol.

1 Introduction

Mobile and wireless networks have become an important part of our life, for instance
they have been applied to areas like wireless local area networks, mobile ad-hoc net-
works, sensor networks, and cellular networks for mobile telephony. Broadcast calculi
for this kind of networks have been studied considerably for the last five years, e.g. in
[1–5]. A common characteristic for all those calculi is that they deal with mobility and
connectivity between nodes abstractly, i.e. a node can move arbitrarily and cause arbi-
trary change of the network topology, and either a node is connected or disconnected to
another node, so none of the calculi address the problem of unreliable links.

In a recent paper [6] we introduced the feature of letting a communication link be-
tween two nodes not just be in either ‘connected’ or ‘disconnected’ in that we allowed
a decoration of connection links with a probability. The meaning being that messages
broadcasted along a connection decorated with a probability ρ will be received by that
probability. Intuitively this reflects that connection links in wireless networks may not
always be reliable. We also enforced restricted mobility by means of a probabilistic mo-
bility function saying that a given node with a certain probability may move and thereby
change the probability of the connection to another node. The models we obtain are dis-
crete and each network in our calculus in [6] gives rise to a probabilistic automata [7]. A
major contribution of this paper is a generalization of the notion of a mobility function.
In [6] a mobility function returns the change (the new probability) of just a single con-
nection between two nodes, in this paper we let a mobility function be able to change
a number of connections at the same time, i.e. we recognize that mobility of a single
node may not just influence the connection to a single neighbor, instead a mobility step

� The research presented in this paper has been supported by MT-LAB, a VKR Center of Excel-
lence for the Modeling of Information Technology.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 342–356, 2012.
c© IFIP International Federation for Information Processing 2012

Broadcast Abstraction in a Stochastic Calculus for Mobile Networks 343

may change a larger part of the network topology. Moreover, the new kind of mobility
functions introduced in this paper makes use of network topology constraints. For in-
stance we may specify that the probability for the node l being connected to m must be
the same as k being connected to m, i.e. ρl	−→m = ρk 	−→m. Intuitively this may represent
that k and l are always within the same distance from m. Another example could be to
require that the likelihood one of k and l receiving a broadcast message from m is suffi-
ciently high, we may for instance specify ρl	−→m + ρk 	−→m ≥ 0.9, intuitively meaning that
m is always sufficiently close to at least one of k and l. We demonstrate the usefulness
of topology constraints in Section 5.

Another contribution of this paper is the introduction of stochastically timed behav-
ior for models for mobile and wireless networks, our contribution follows the tradition
of having rates for exponential probability distributions, known from say continuous
time Markov processes, as part of our calculus. A major motivation for this contribu-
tion is that we would like to more realistically being able to model mobility of nodes as
time dependent stochastic phenomenon, this is obtained by letting a stochastic mobility
function return no longer a discrete probability as in [6] but a rate for an exponential
probability distribution. Formally we will write mf (C,C′, φ) = λ where C is the current
(partial) network configuration, C′ is the new configuration reached by a mobility step,
φ is the network topology constraint the transition from C to C′ depends on, and the
transition occurs with a delay exponentially distributed by λ. Intuitively the rate signi-
fies how fast the network topology will change, i.e. the higher rate the more likely it
is that the topology will change fast. Another reason for introducing continuous time
stochastic behavior is that many protocols for mobile and wireless networks make use
of time dependent randomized back-off techniques. In order to be able to model such
protocols we introduce, in the style of Interactive Markov Chains [8], a prefix construct
λ for processes such that we may write e.g. A = p + λ · A meaning that A may behave
as p or it may after some delay exponentially distributed by λ back off and iterate its
behavior. This back-off style encoding is utilized in our model of a leader election pro-
tocol for mobile and wireless networks defined in Section 5. By the introduction of the
continuous time stochastic behavior it turns out that the semantics of our calculus is a
combination of discrete and continuous time probability, non-determinism, and concur-
rency and thus gives rise to a Markov Automaton (MA) [9]. In [10] a related stochastic
restricted broadcast process theory is introduced to model and analyze mobile ad hoc
network protocols. Their stochastic model is in PEPA style [11] where the duration of
each action is exponentially distributed. After resolving non-determinism a continuous-
time Markov chain is derived for each network. Differently our stochastic model is in
Interactive Markov Chain [8] style where the rate is used to specify the delay rather
than the duration of each action.

A third contribution is that we allow for two novel operators as part of our calculus.
To the best of our knowledge these two operators have not before been considered in
calculi for mobile and wireless systems. In many broadcast protocols it is quite common
for a node to broadcast messages just to a limited number of nodes and hence not to all
nodes in the network; to accommodate this feature we introduce a group broadcast
prefix in our calculus denoted by 〈x � L〉 where x is the message to be broadcasted and
L is the set of intended receivers of x. The other new operator is a kind of a low level

344 L. Song and J.C. Godskesen

protocol that is often used in many wireless broadcast protocols, it is meant to deal with
the problem of flooding. Flooding occurs when the same message is broadcasted over
and over again in the execution of a protocol, but where it is sufficient to have received
and dealt with the message just once. Flooding may e.g. occur in a protocol if a node is
naively supposed to forward all requests for being part of a protocol, a node receiving
similar requests for participating in the same execution of the protocol from multiple
neighbors will then forward each of these requests to its neighbors although forwarding
just one of these identical requests would ideally be sufficient. The operator is defined
by introducing a memory M for each node, formally we write �p�Ml for a node with the
processes p running a location l and with memory M. Intuitively the semantics is that
whenever the node receives a broadcast message x it is first checked whether x belongs
to M, if it does x is discarded and p will remain unchanged, otherwise x is added to
M and p is updated accordingly. In this short version of our theory flooding avoidance
input is the only broadcast input dealt with.

A fourth and major contribution is that we introduce a novel notion of broadcast
abstraction. We abstract from the sender of a broadcast message since two broadcast
messages should not be distinguished if they can deliver the same message to the same
destinations with the same probability, despite that they may originate at different loca-
tions. Due to the introduction of group broadcast we can move even further such that one
broadcast message can be simulated by several broadcast messages in a row. Intuitively,
if a broadcast message α can deliver x to nodes at locations l and k with probability ρ1

and ρ2 respectively, and if we have two broadcast messages β1 and β2 such that β1 can
only deliver x to l with probability ρ1 and β2 can only deliver x to k with probability ρ2,
then β1 and β2 together can simulate α. In general we need to assume that the destina-
tions of β1 and β2 are disjoint, since otherwise nodes at joint locations may receive x
twice with positive probability which will never happen by performing α. The memory
M plays a role here, if a node has received x, it will simply ignore it and stay unchanged
whenever it receives x again, thus in this case the destinations of β1 and β2 may not nec-
essarily be disjoint. For instance, if α can only deliver x to location l with probability
ρ, and β1 and β2 can only deliver x to l with probability ρ1 and ρ2 respectively, then
β1 and β2 in sequence can simulate α provided that 1 − (1 − ρ1) · (1 − ρ2) = ρ, where
(1 − ρ1) · (1 − ρ2) equals the probability of x failing to reach l after both β1 and β2.

In summary, the main contribution of this paper is a continuous time stochastic
broadcast calculus for wireless networks with a stochastic mobility function depending
on topology constraints where group broadcast and flooding avoidance are integrated
operators. As illustrated above the two operators facilitate abstraction of broadcast mes-
sages where several messages may be simulated by one. The paper is organized as fol-
lows: the syntax of the calculus is presented in the next section and in Section 3 we give
a labeled transition system semantics of our calculus. In Section 4 a weak bisimulation
is defined. We apply our calculus on a leader election protocol [12] in Section 5. Finally
we end by a conclusion.

2 The Calculus

We presuppose a countable set N of names, ranged over by x, y, z and a countable
set L of location names, ranged over by k, l,m, and n. Accordingly K, L,M, and N are

Broadcast Abstraction in a Stochastic Calculus for Mobile Networks 345

used to range over finite subsets of L. We also write l directly for a singleton set {l}. In
addition, we also suppose a finite set of probabilities ℘ including 0 and 1 ranged over
by ρ, ρ′, ρ1 We define a location connectivity set, ranged over by L,K . . ., as a finite
set {(ρ, l) | l ∈ L, ρ ∈ ℘}. We use l(L) = {l | (ρ, l) ∈ L} to denote all the locations in L.

Let P denote the set of the processes which is ranged over by p, q, r . . ., and defined
by the following grammar:

p, q ::= 0 | Act · p | p + q | [x = y]p, q | νxp | A where Act ::= λ | 〈x � L∗〉 | (x)

where 0 is the deadlock process. Act · p means that p is prefixed by Act and will behave
as p after Act being performed. Specially, λ · p means that p is guarded by a delay
which is exponentially distributed with rate λ ∈ Q+.1 Let 〈x�L∗〉 and (x) denote (group)
broadcast and reception respectively where L∗ is either L orL. We usually write 〈x�L〉
as 〈x〉 for simplicity. If L∗ = L, then 〈x�L〉 denotes a group broadcast which can deliver
the message x only to nodes at locations in L. p + q denotes nondeterministic choices
between p and q. [x = y]p, q is a conditional choice, it will evolve into p if x = y,
otherwise it evolves into q. νxp means that x is bounded in p. A ∈ A is a process

constant where A is a set of process identifiers. By defining A
def
= p, A will behave in

the same way as p. The set of networksN is defined by:

E, F ::= 0 | �p�Ml | {L 	−→ l} | νxE | E ‖ F

where node �p�Ml is a process p at location l with memory M which is used to keep
track of all the messages having been received. The parameter M is often omitted if
it is not important for the discussion. νxE and E ‖ F are restriction and parallel com-
position respectively which have the standard meaning; {L 	−→ l} denotes connectivity
information, i.e. if (ρ, k) ∈ L, the node at location k is connected to l and can receive
messages from l with probability ρ. Let CN be the set of connectivity networks which
only contain connectivity information, that is, C,C′ ::= 0 | {L 	−→ l} | C ‖ C′.

A network distribution is a function E : N → [0, 1] satisfying |E| = ∑E∈N E(E) ≤ 1.
Let ND denote the set of distributions overN , ranged over by E, F,G The support
of E, Supp(E) = {E | E(E) > 0}, is the set of networks in E with positive probability.
Sometimes we also write {(ρi : Ei) | E(Ei) = ρi} to denote E. If E(E) = 1, then E is the
Dirac distribution δE . Given a real number a, a·E is the distribution such that (a·E)(E) =
a ·E(E) for each E ∈ Supp(E) if a · |E| ≤ 1. Moreover E = E1+E2 whenever for each E,
E(E) = E1(E) + E2(E). Parallel composition of network distributions E ‖ F is defined
as a distribution such that (E ‖ F)(E ‖ F) = E(E) · F(F). Given an equivalence relation
R on networks, E R F iff E(S) = F(S) for each S ∈ N/R where E(S) =

∑
E∈S E(E).

A substitution {y/x} can be applied to a process, network, or network distribution.
When applied to a network distribution, it means applying the substitution to each net-
work in the support of the distribution. The set of free and bound names in E, denoted by
fn(E) and bn(E) respectively, are defined as expected except that fn(�p�Ml) = fn(p)∪M.
Structural congruence of processes and networks, ≡, is the least equivalence relation
and congruence closed by α-conversion and the rules in Table 1, which can be ex-
tended to distributions as usual. Let loc(E) denote the set of locations located in a

1 Q+ is the set of all the positive rational numbers.

346 L. Song and J.C. Godskesen

Table 1. Structural congruence of processes and networks

p + 0 ≡ p p + q ≡ q + p νxνyp ≡ νyνxp (p + q) + r ≡ p + (q + r)
E ‖ 0 ≡ E νxνyE ≡ νyνxE {∅ 	−→ l} ≡ 0 �νxp�Ml ≡ νx�p�Ml , x � M

E ‖ F ≡ F ‖ E (E ‖ F) ‖ G ≡ E ‖ (F ‖ G) νxE ‖ F ≡ νx(E ‖ F), x � fn(F)
�p�Ml ≡ �q�Ml , p ≡ q {L1 	−→ k} ‖ {L2 	−→ k} ≡ {L1 ∪ L2 	−→ k}, l(L1) ∩ l(L2) = ∅

network, i.e. loc(0) = ∅, loc(�p�l) = {l}, loc({L 	−→ l}) = ∅, loc(νxE) = l(E), and
loc(E ‖ F) = l(E) ∪ l(F). Differently, l(E) is used to denote all the location names
appearing in E including those in connectivity information. The definition of l(E) coin-
cides with loc(E) except that l({L 	−→ l}) = l(L) ∪ {l}.

We use ρk 	−→l(E) to denote the connection probability from k to l in E. When the
requested probability does not occur in E the result is θk 	−→l which denotes an unknown
probability, i.e. ρk 	−→l(E) = ρ if E ≡ {{(ρ, k)} 	−→ l} ‖ E′ for some E′, otherwise
ρk 	−→l(E) = θk 	−→l. We generalize network distributions to contain unknown probabili-
ties. In the following let �1, �2 ::= ρ | θk 	−→l | (1 − θk 	−→l) | �1 · �2 be the generalized
probability which may contain unknown values. The set of generalized network distri-
bution, GND, is defined inductively as follows: i) μ ∈ GND if μ ∈ ND; ii) μ ∈ GND
if there exists � and μ1, μ2 ∈ GND such that μ = � · μ1 + (1 − �) · μ2.Without causing
any confusion, we also use μ, μ′, μ1, . . . to range over GND. For a generalized network
distribution μ, we may substitute unknown probabilities in μ with known probabilities.
In order to do so, we introduce the operator ◦ such that μ ◦Dl(E) is a distribution equal
to μ except that an unknown probability θk 	−→l in μ has been replaced with the probabil-
ity ρ if (ρ, k) ∈ Dl(E). Formally, (μ ◦Dl(E))(F) = (μ(F)) ◦Dl(E) for each F ∈ Supp(μ)
where ◦ is overloaded to deal with generalized probabilities such that i) � ◦ Dl(E) = ρ
if � = ρ; ii) θk 	−→l ◦ Dl(E) = ρ and (1 − θk 	−→l) ◦ Dl(E) = 1 − ρ if (k, ρ) ∈ Dl(E); iii)
(�1 · �2) ◦ Dl(E) = (�1 ◦ Dl(E)) · (�2 ◦ Dl(E)).

As mentioned in the introduction we make use of network topology constraints in
order to restrict the mobility of nodes. We define the syntax of topology constraints Φ,
ranged over by φ, as follows: φ ::= ρk 	−→l = ρ | φ ∧ φ | φ ∨ φ where ρk 	−→l refers to the
variable connection probability from k to l, ρ ∈ ℘, and φ evaluates to true and false in
the obvious way. The above syntax is simple but expressive. For example we can define
constraints such as ρl	−→k ≥ 0.8 and ρl	−→m+ρl	−→n = 1 as follows where �� ∈ {<, >,≤,≥}:
1. ρl	−→k �� ρ = ∨

ρ′∈℘∧ρ′��ρ ρl	−→k = ρ
′,

2. ρl	−→m + ρl	−→n �� ρ = ∨
ρ1,ρ2∈℘∧ρ1+ρ2��ρ

(ρl	−→m = ρ1 ∧ ρl	−→n = ρ2).

Given a topology constraint φ, define operator E[φ] to evaluate φ under a network E by
E[φ1 �� φ2] = E[φ1] �� E[φ2] with �� ∈ {∧,∨}, E[ρl	−→k = ρ] = true if ρl	−→k(E) = ρ,
otherwise E[ρl	−→k = ρ] = false, and boolean operators are evaluated as usual.

Topology constraints together with connectivity networks is the source for defin-
ing continuous time stochastic mobility. A stochastic mobility function (SMF) mf :
CN × CN × Φ → Q+ is a partial function where mf (C,C′, φ) returns the mobility rate
from C to C′ given the topology constraint φ. We assume mf (C,C, true) = 0 if the con-
nectivity network C is static, i.e. it cannot evolve into other networks. For simplicity

Broadcast Abstraction in a Stochastic Calculus for Mobile Networks 347

Table 2. Labeled Transition System of Processes

λ · p λ
� p

(MAR)
〈x � L∗〉 · p 〈x�L∗〉−−−−−→ p

(PRE)
p
αp
� p′

p + q
αp
� p′

(SUM)
p
αp
� p′ x = y

[x = y]p, q
αp
� p′

(IF)

(x) · p (y)−−→ p{y/x}
(INP)

p
αp
� p′ x � fn(αp)

νxp
αp
� νxp′

(RES)
q
αp
� q′ x � y

[x = y]p, q
αp
� q′

(ELSE)

q ≡ p
αp
� p′ ≡ q′

q
αp
� q′

(STR)
p
αp
� p′ A

def
= p

A
αp
� p′

(CON)
p
〈x�L∗〉−−−−−→ p′ y � fn(νxp)

νxp
νy〈y�L∗〉−−−−−−−→ p′{y/x}

(bOPEN)

we let mf (C,C′, φ) = ⊥ denote that the mobility rule from C to C′ under condition φ
is undefined. An SMF is valid if for each C,C′ such that mf (C,C′, φ) � ⊥ for some
φ, then ρk 	−→l(C) = θk 	−→l iff ρk 	−→l(C′) = θk 	−→l for all k and l. Intuitively, the condition
guarantees that when a mobility step from C to C′ happens, it only changes the proba-
bility of connectivities in C, we can neither obtain information about connectivities not
in C, nor lose connectivities in C. For instance let C = {{(0.5,m), (0.9, n)} 	−→ l} and
C′ = {{(0.8,m)} 	−→ l}, a mobility rule from C to C′ is not valid since the connectivity
information of ρn	−→l is lost in C′, similarly a mobility rule from C′ to C is not valid
either. In the following we will only consider valid SMFs, and we assume that there is
a given mf throughout the paper.

Since we have infinitely many connectivity networks, it is not reasonable to always
define mobility rules for all of them. Instead we allow an mf to be defined for just
finitely many pairs C and C′ and topology constraints φ. We call those rules explicit
mobility rules. A connection probability ρl	−→k has an explicit mobility rule if there
exists mf (C,C′, φ) � ⊥ with ρl	−→k(C) � θl	−→k. For any connection probability ρl	−→k

with no explicit mobility rule we assume it has the implicit mobility rule mf ({{(0, l)} 	−→
k}, {{(0, l)} 	−→ k}, true) = 0, that is l is not and will never be connected to k. The default
implicit mobility can be changed without affecting our theory.

The structural congruence closed set of well-formed networks Nmf under a given
SMF mf is inductively defined as follows:

1. 0 ∈ Nmf , �p�Ml ∈ Nmf , and νxE ∈ Nmf if E ∈ Nmf ,
2. E ‖ F ∈ Nmf if E, F ∈ Nmf with loc(E) ∩ loc(F) = ∅ and there does not exist

l, k ∈ L such that ρl	−→k(E) � θl	−→k and ρl	−→k(F) � θl	−→k,
3. C ∈ Nmf if there exists C′ and φ such that mf (C,C′, φ) � ⊥.

Clause 1 is trivial. Clause 2 means that locations are unique and that connectivity in-
formation for a single connection can only appear once, while clause 3 (together with
clause 2) requires that the connectivity network part of a network can be divided into
subnetworks for each of which mobility must be defined by the given mf .

348 L. Song and J.C. Godskesen

3 Labeled Transition System

We useAp to denote the actions of processes, defined as follows:

αp ::= νx̃〈x � L∗〉 | (x) | λ,
where νx̃〈x�L∗〉 denotes broadcasting the message x to nodes at locations in L∗. When-
ever x is bounded x̃ = {x}, otherwise x̃ = ∅. The (x) means that the process can re-
ceive a (group) broadcast message. λ denotes a Markovian action with specified rate.
The semantics of processes is given in Table 2 where all the rules are standard, and
� = (−→ ∪�) with� denoting Markovian transitions.

We useA to denote the actions of networks defined as follows:

α ::= νx̃〈x � L∗,L〉@l | (x@L∗,L) � l | λ | φ : λ | τ.
Different from process actions, for the actions of networks connectivity information is
attached to any broadcast and reception action. Action νx̃〈x � L∗,L〉@l denotes that
the node at location l can broadcast the message x to the node at location k ∈ L∗ with
probability ρ if (ρ, k) ∈ L. Accordingly (x@L∗,L) � l means that the node at location
k ∈ L∗ can receive the message x from location l with probability ρ if (ρ, k) ∈ L. The
φ : λ is a novel action named condition guarded Markovian action. This action is used
to model topology constrained mobility where mobility is triggered only when certain
conditions are satisfied. The τ and λ are standard.

The semantics of networks is given in Table 3 with� (as in Table 2) being the union
of� and −→. For readability we also write δE directly as E. The behavior of a node is
determined by the process in it, but the actions of a node may be enriched with con-
nectivity information as well as the source and destination respectively if the action is
either a broadcast or a reception action. Rule (nREC1) says that when a process in a
node located at a location can perform a reception, then the node can also perform a re-
ception action, similarly for (nBRD) which deals with broadcast actions. In (nBRD) we
remove l from L∗ since a node cannot receive messages broadcasted from itself. Note in
(nBRD) and (nREC1) there is no connectivity information, so the corresponding con-
nectivity sets in the labels are empty, and furthermore in (nREC1) the node at location
l is able to receive a message from location k with unknown probability denoted by
θl	−→k, this is the only rule where unknown probability is added. Two parallel networks
E and F communicate by broadcast as shown by (nSYN) where one network can per-
form a broadcast action while the other one can perform a reception action, similarly
in (nREC2) we let two networks in parallel can perform a reception action simultane-
ously. As shown in both (nSYN) and (nREC2), we require that the destinations of the
broadcast and reception actions of the two participants coincide.

Rules (nBRD), (nREC1), (nREC2), and (nSYN) deal with group broadcast when
L∗ = L. Different from broadcast where the broadcast messages can be received by
any node in any location, group broadcast has specified destinations, nodes at locations
which are not in the set of the destinations will simply ignore the messages and stay
unchanged, this is taken care of by rule (nIGN). As explained in the introduction we
introduce a low level protocol taking care of flooding assuming that a message can only
be received by a node at most once. The parameter M at a node is used to keep track

Broadcast Abstraction in a Stochastic Calculus for Mobile Networks 349

of the messages already received, so only if the coming message is not already in M, it
will be dealt with, otherwise it will be simply ignored as explained in rules (nREC1) and
(nIGN). On the other hand, if process p at location l cannot perform a reception, it will
simply ignore all the coming messages, and stay unchanged as illustrated by (nIGN).

In (nSYN) E and F may obtain new connectivity information L and K from each
other and update the unknown probabilities that might appear in distributions E and
F via the operator ◦, similarly for (nREC2). In (nSYN) K is the union of the set of
locations in F, loc(F), and the set of locations inKwhich are not connected to l,Z(K) =
{k | (0, k) ∈ K}. We remove K from the resulting action where L \ K = {(ρ, k) ∈
L | k � K}. It makes sense to remove Z(K) from the destination set of the broadcast
action since nodes at locationsZ(K) will for sure not receive messages from l. Also we
remove locations loc(F) since all the nodes at locations loc(F) in F after the transition
will receive the broadcast message.

If an action is not broadcast or reception, networks can execute in parallel without
synchronization, this gives the rule (nPAR). Network {K 	−→ l} only contains connec-
tivity information about l, it can reveal its connectivity information by performing a
(group) reception which is shown by (nCONN); it can also, in order to synchronize
on broadcast from locations not being l, perform a (group) reception whose source
location is different from l with empty connectivity information as illustrated by the
rule (nLOS). A broadcast with empty destination has no impact to the outside of the
emitting network, therefore it should be seen as an internal action τ which is shown
by (nLOC). Due to (nSYN) and (nREC2), (nLOC) can only happen at top level. Rule
(nMOB) allows a connectivity network to evolve into another according to the mobility
rule defined by the given mf carrying out a condition guarded Markovian action φ : λ.
By (nTRU) if φ is evaluated to true, then φ : λ will become a Markovian transition λ.
Note in (nREC1) and (nIGN), we require that l � k which means that a process at loca-
tion l cannot receive messages broadcasted from the same location. The rules (nOPEN),
(nRES), (nMAR), and (nSTR) are standard.

In our calculus we allow continuous delay, probabilistic choice, and non-deterministic
choice, as result each network corresponds to a Markov Automaton [9] which is the in-
tegration of probabilistic automata [7] with interactive Markov chains [8]. As usual we
assume networks to be free of divergence with probability 1, see e.g. [7], in order to
avoid an unrealistic situation where infinitely many actions can happen in finite time.

For instance network E
def
= �A�l ‖ �λ · 0�k with A

def
= 〈x〉 · A is not free of divergence,

since E can perform broadcast from l for infinitely many times, and thus blocks the
Markovian transition at k for ever.

4 Weak Bisimulation

In this section we provide a weak bisimulation congruence for our calculus. We say

that a network E is stable, written E ↓, if E
τ
� and E

〈x�L∗ ,L〉@l
� . Note that broadcasts are

considered to be immediate and take no time, since they are non-blocking and will be
triggered immediately. Accordingly, a network distribution E is stable, written E ↓, iff
E ↓ for each E ∈ Supp(E).

350 L. Song and J.C. Godskesen

Table 3. Labeled Transition System of Networks

p
(x)−−→ p′ (l ∈ L∗ ∧ x � M ∧ k � l)

�p�Ml
(x@L∗ ,∅)�k−−−−−−−−→ {(θl	−→k : �p′�M∪{x}l), (1 − θl	−→k : �p�Ml)}

(nREC1)

E
νỹ〈y�L∗ ,L〉@l−−−−−−−−−−→ E F

(y@L∗ ,K)�l−−−−−−−−→ F ỹ ∩ fn(F) = ∅ K = loc(F) ∪ Z(K)

E ‖ F
νỹ〈y�(L∗\K),(L∪K)\K〉@l−−−−−−−−−−−−−−−−−−→ (E ◦ D(F)) ‖ (F ◦ D(E))

(nSYN)

E
〈x�L∗ ,L〉@l−−−−−−−−→ E y � fn(νxE)

νxE
νy〈y�L∗ ,L〉@l−−−−−−−−−−→ E{y/x}

(nOPEN) E
(x@L∗ ,L)�l−−−−−−−−→ E F

(x@L∗ ,K)�l−−−−−−−−→ F
E ‖ F

(x@L∗ ,L∪K)�l−−−−−−−−−−→ (E ◦ D(F)) ‖ (F ◦ D(E))
(nREC2)

p
λ
� p′

�p�Ml
λ
� �p′�Ml

(nMAR)
p
νx̃〈x�L∗〉−−−−−−→ p′

�p�Ml
νx̃〈x�(L∗\l),∅〉@l−−−−−−−−−−−−→ �p′�Ml

(nBRD)
E
φ:λ−−→ E E[φ] = true

E
λ
� E

(nTRU)

F ≡ E
α
� E ≡ F

F
α
� F

(nSTR)
E
α
� E α ∈ {λ, φ : λ}

E ‖ F
α
� E ‖ F

(nPAR)
E
νỹ〈x�∅,L〉@l−−−−−−−−−→ E

E
τ−→ E

(nLOC)

E
α
� E x � fn(α)

νxE
α
� νxE

(nRES)
mf (C,C′, φ) = λ

C
φ:λ−−→ C′

(nMOB)
k � l ∧ (l � L∗ ∨ x ∈ M ∨ p

(x)
�)

�p�Ml
(x@L∗ ,∅)�k−−−−−−−−→ �p�Ml

(nIGN)

l � k

{K 	−→ k} (x@L∗ ,∅)�l−−−−−−−−→ {K 	−→ k}
(nLOS)

{K 	−→ l} (x@L∗ ,K)�l−−−−−−−−→ {K 	−→ l}
(nCONN)

In order to evaluate the exit rate of a network we, similar with [8], define the function
γ : Nmf × 2Nmf 	→ Q+ which returns the exit rate from a given network to a set of
networks via Markovian transitions. The formal definition is as follows where {||} denotes

multiset: γ(E, S) =
∑{|λ · E(S) | E

λ
� E|}. Due to a race condition [8, 11] among

Markovian transitions they will compete in order to be executed first, this gives us the

following natural transitions. Let E
λ−→ E if E ↓ where λ = γ(E,Nmf) and E(F) = γ(E,{F})λ

for all F. Refer to the following example for an illustration of race condition.

Example 1. Let E = �λ1·p+λ2 ·q�l. It is easy to see that E has two Markovian transitions

according to Table 2 and 3: E
λ1
� �p�l and E

λ2
� �q�l. The exit rate of E is equal to

λ = λ1 + λ2, and moreover the two Markovian transitions will compete to be executed
first. Due to the race condition, the first transition will be executed with probability λ1

λ
,

while the second one will be executed with probability λ2
λ

, i.e. E
λ−→ { λ1

λ
: �p�l, λ2

λ
: �q�l}.

We use E
α
==⇒ E to denote that a distribution E is reached through a sequence of steps

which are internal except one being equal to α. Formally
α
==⇒ is the least relation such

that, E
α
==⇒ E iff

1. α = τ and E = δE , or

2. there exists a step E
β−→ E′ such that E =

∑
E′∈Supp(E′) E

′(E′) · EE′ , where E′
τ
==⇒ EE′

if β = α, otherwise E′
α
==⇒ EE′ and β = τ.

Broadcast Abstraction in a Stochastic Calculus for Mobile Networks 351

As in [7] we also define the combined transition
α
=⇒c such that: E

α
=⇒c E iff there exists

{E α
==⇒ Ei}1≤i≤n and {wi}1≤i≤n with

∑
1≤i≤n wi = 1 and

∑
1≤i≤n wi · Ei = E.

As an abstraction we disregard the emitter of a broadcast message and allow to equate
νx̃〈x � L∗,L〉@l and νx̃〈x � L∗,L〉@k indicating that in a wireless broadcast setting the
sender of a message is not important, that is only the message (and the probability by
which it is received), since the receiver of a message may not precisely know whom is
the actual emitter of the message. To further enforce what we in the Introduction called
broadcast abstraction we will also allow that a broadcast can be simulated by several
broadcast messages. In order to do so we define the combination of two broadcast ac-
tions such that

νx̃〈x � L1,L1〉@l1 ⊗ νx̃〈x � L2,L2〉@l2 = νx̃〈x � L,L〉@l

where L = L1 ∪ L2, l is any location name, and L = M1 ∪M2 with

M1 = {(ρ, k) ∈ L1 | k ∈ L1 \ L2} ∪ {(ρ, k) ∈ L2 | k ∈ L2 \ L1},

M2 = {(1 − (1 − ρ1) · (1 − ρ2), k) | k ∈ L1 ∩ L2 ∧ (ρ1, k) ∈ L1 ∧ (ρ2, k) ∈ L2}.
Intuitively, the resulting combination of two actions has the same effects as the orig-
inal two. There are three cases to consider. If a location k is only in L1, then the
probability for location k receiving the broadcast message x will not be changed by
νx̃〈x � L2,L2〉@l2, similarly for locations only in L2. For a location k appearing in both
L1 and L2, the probability for k not receiving x is equal to (1−ρ1) · (1−ρ2) if (ρ1, k) ∈ L1

and (ρ2, k) ∈ L2, as a result the probability for a node at location k receiving x is equal
to 1 − (1 − ρ1) · (1 − ρ2). Obviously, ⊗ is associative and commutative. We extend the

broadcast transitions in the following way: E
〈x�L∗ ,L〉@l
========⇒ E iff E

α1
==⇒ α2
==⇒ . . . αn

==⇒ E with
〈x � L∗,L〉@l = (⊗

1≤i≤n
αi).

According to Table 3 there might occur unknown probabilities during the evolu-
tion of networks. Intuitively, to compare two network distributions where unknown
probabilities may occur, we consider all the possibilities for substitution of those un-
known probabilities by concrete probabilities i.e. two networks are equivalent if they
behave equivalently in all possible substitution contexts. In order to do so, we in-
troduce operator • such that E • C denotes a network behaving like E but obtain-
ing new information from C, that is, E • 0 = E, E • (C ‖ C′) = (E • C) • C′,
and E • ({{(ρ, k)} ∪ L 	−→ l}) = E • ({L 	−→ l}) if ρk 	−→l(E) � θk 	−→l, otherwise
E • ({{(ρ, k)} ∪ L 	−→ l}) = (E ‖ {{(ρ, k)} 	−→ l}) • ({L 	−→ l}). Intuitively • is used
to supply a network E with auxiliary connection probabilities, information about con-
nections which probability are already known in E will simply be ignored.

In the definition of our bisimulation we make use of the following finite sets of
connectivity networks: CNL = {C ∈ CN | ∀l, k ∈ L.ρk 	−→l(C) � θk 	−→l}. Intuitively, CNL

contains all the connectivity networks such that the probability of ρk 	−→l is known for
all l, k ∈ L. Below follows the definition of weak bisimulation of networks where we
use CE,F,k to range over CN (l(E)∪l(F)∪{k}) , and we let αk range over all actions including
λ except the reception actions from locations l where l � k.

352 L. Song and J.C. Godskesen

Definition 1. An equivalence relation R ⊆ Nmf ×Nmf is a weak bisimulation iff E R F

implies that for each k and CE,F,k , whenever E•CE,F,k
αk−−→ E, there exists F•CE,F,k

αk
=⇒c F

such that E R F. Let E and F be weak bisimilar, written as E ≈mf F, if there exists a
weak bisimulation R such that E R F.

The cases when αk is τ or λ are standard. When αk = (x@L,L) � k, any received
message must be matched by receiving the same message with the same probabilities
from the same sender. Observe that the source of the message cannot appear in loc(E)
due to the semantics in Table 3, as a consequence one may prove that E ≈mf F implies
loc(E) = loc(F).

Example 2. Given a mf such that l and k can always connect to all locations except m
with the same probability, and all locations can always connect to l and k with the same
probability. Then �(x) · 〈x〉�l ‖ �0�k ‖ �0�m ≈mf �(x) · 〈x〉�k ‖ �0�l ‖ �0�m but since
l and k can receive messages from the node at location m with different probabilities
�(x) · 〈x〉�l ‖ �0�k �mf �(x) · 〈x〉�k ‖ �0�l.
When a network is not stable, then all the Markovian transitions are blocked, and cannot
affect the behavior of the network. This is related to the maximal progress assumption
which is a quite common in time (discrete and continuous) process algebra [8, 13, 14].

Example 3. Consider two networks:E = �〈x � L〉 · p + λ · q�l and F = �〈x � L〉 · p�l,
since E is not stable due to E

〈x�L,∅〉@l−−−−−−−→, therefore the Markovian transition E
λ−→ can be

omitted, obviously E ≈mf F.

When αk = νx̃〈x � L∗,L〉@l any broadcast message x must be matched by a broadcast
action containing the same x, and x must be received at the same locations with the
same probability, but the emitter need not be the same.

Example 4. Given a mf where l is disconnected from k forever, then �〈x�l〉�k ≈mf �0�k.
If ρl	−→k is not always 0 then �〈x � l〉�k �mf �0�k, but if reception at the node at l has no
effect then e.g. �〈x � l〉�k ‖ �0�l ≈mf �0�k ‖ �0�l.
Additionally when αk = νx̃〈x�L∗,L〉@l, we also allow that a broadcast can be simulated
by a series of broadcasts whose combination is equivalent to the original broadcast. This
relies on the assumption that each message can only be received by a node at most once.

Example 5. Given a mf such that location l can receive messages from location k with
probability either 1 or 0. Then �〈x � l〉 · 〈x � l〉�k ‖ �p�Ml ≈mf �〈x � l〉�k ‖ �p�Ml for
any p. The reason is that after the process at location k receives the message x, it will
remember it, and if it receives the same message for the second time, it will simply
ignore it and stay unchanged.

In all cases in Definition 1 we use CE,F,k to eliminate all the possible unknown proba-
bilities during the evolution of both E and F. Observe that unknown probabilities can
only appear in derivatives on networks in case of broadcast and reception actions. The
reason to include k is because k might be any location not appearing in either E or
F, thus when E or F performs a reception from k, an unknown probability θl	−→k with

Broadcast Abstraction in a Stochastic Calculus for Mobile Networks 353

l ∈ l(E) ∪ l(F) may arise. Such an unknown probability may be eliminated by apply-
ing any CE,F,k . When performing broadcasts the only possible unknown probability in
a derivative from E and F is of the form θm 	−→n with m, n ∈ l(E) ∪ l(F), thus it can also
be removed by applying any CE,F,k .

Example 6. Suppose a mf such that ρm 	−→n is always equal to 0.5 and two networks:
E = {{(0.5,m)} 	−→ n} and F = 0. Without applying a CE,F,k , we will conclude that

E �mf F since E
(x@L∗ ,{(0.5,m)})�n−−−−−−−−−−−−−→ δE which cannot be simulated by F. This is against

our intuition since we know that ρm 	−→n is always equal to 0.5, thus F should be able
to exploit this fact from the given mf . By applying any CE,F,k it is easy to check that
E ≈mf F.

The following theorem shows that the weak bisimulation is a congruence.

Theorem 1. ≈mf is a congruence.

The definition of our bisimulation depends on a given SMF mf , the more restricted the
mf the more bisimilar networks we can obtain. For instance, if we consider the extreme
case where all the nodes are disconnected from each other all the time, that is, they
cannot influence each other’s behaviors, we then have �p�l ≈mf �q�l for any p, q.

5 A Leader Election Protocol

We illustrate the application of our calculus by modeling an adaption of the leader elec-
tion protocol in [12]. Before giving the model we first explain how this protocol works.
It is assumed that each node has a unique ID i. A node may regularly initiate an election
of a new leader; it will start the process of building a spanning tree by broadcasting a
message Election to its neighbors and then wait for acknowledgement messages, Ack,
from its children in the tree. An Ack message will contain the information about the
node with the highest ID the child has found. When a node j receives an Election from
another node i, it will set i as its parent and then propagate Election to its neighbors and
then wait for the acknowledgements Ack from its children. In a state waiting for Ack
messages a node keeps track of the highest ID received before it times out after a cer-
tain time limit. When timing out a node (not being the root of the spanning tree) reports
the highest ID found to its parent via an Ack message and enters a state where it waits
to be informed about the new leader found. When the initiator of the run of the proto-
col times out waiting for Ack messages it broadcasts the new leader, i.e. the node with
the highest ID found, to its neighbors via the message Leader. Notice that due to node
mobility a child may disconnect from its parent before it sends the acknowledgement,
the time out in this case prevents the parent getting stuck waiting for the acknowledge-
ment forever. Similarly for a node waiting for announcements of a new leader, it will
either receive the announcement in time, or it will time out and announce the node with
highest ID it has found so far as the new leader.

The state of a node is represented by Node(i, l,m, p) where i is the ID, l is the ID of
its leader, m is the maximum ID known in a protocol run, and p is the ID of its parent.

To model this protocol we define three types of messages (names) where I is a finite
set of all the possible ID numbers: {E i | i ∈ I} is the set of Election messages, {A m |

354 L. Song and J.C. Godskesen

Model 1. The model of the leader election protocol

Node(i, l,m, p) = λinit · 〈E i � I〉 · Init(i, l,m, p)
+
∑

x�i(E x) · 〈E i � I〉 · waitAck(i, l,m, x)
Init(i, l,m, p) =

∑
x�i(A x) · ([x > m]Init(i, l, x, p), Init(i, l,m, p))

+ λexp · 〈L m � I〉 · Node(i,m,m, p)
waitAck(i, l,m, p) =

∑
x�i(A x) · ([x > m]waitAck(i, l, x, p),waitAck(i, l,m, p))

+ λexp · 〈A m � p〉 · waitLeader(i, l,m, p)
waitLeader(i, l,m, p) =

∑
x�i(L x) · Node(i, x,m, p)

+ λpar · 〈L m � I〉 · Node(i,m,m, p)

m ∈ I} is the set of Ack messages, and {L l | l ∈ I} is the set of Leader messages which
announces the elected leader. In [12] the messages in a given election are all assigned
a unique index used to distinguish the protocol run from other runs. For simplicity we
omit these details in the model of the protocol in this paper.

To make the model more compact we extend the match operator in the following
way: [x > m]p, q denotes that the process will evolve into p if x > m, otherwise it will
evolve into q, this operator can be defined using the standard operators in a straightfor-
ward way. The operator

∑
x�i(E x) means that the input only accepts Election messages

not from i, and ignores all the other messages, the operator can easily be encoded by
a sequence of conditional operators prefixed by (x). We introduce similar operators for
accepting just one type of protocol messages. The model of the protocol is given in
Model 1 where λinit and λexp denote the rate of initializing a new run of the protocol and
the rate of timeout from waiting for the acknowledgements from children respectively.
If a node is not involved in any election, it will be at state Node. The node with ID i can
initialize an election by broadcasting the message E i to its neighbors, and evolve into
Init. When the neighbor nodes receive the message E i, they will join the election and
evolve into waitAck after forwarding the Election message to their neighbors. While
at Init or waitAck, a node will wait for the acknowledgements from its neighbors. In
order not to get stuck and wait for the acknowledgements forever, we let each node stop
waiting with rate λexp. When the node at Init stops waiting for the acknowledgements,
it will announce m, the maximal ID found so far, as the new leader. Differently, when
timing out nodes at waitAck will send an acknowledgement together with the parameter
m to their parents, and then evolve into waitLeader waiting for the announcement of the
new leader. It may happen that a node will timeout when waiting for the announcement
from its parent while at waitLeader, in this case it will simply announce m as its leader
and terminate the election. Each node at waitLeader will timeout with a certain delay
by rate λpar.

Next we will show how to define mobility rules for our example. For simplicity we
assume that there are four locations in the network: l, k,m, and n where all the nodes
are stationary except the node at l. Suppose that nodes at location k and l are always
disconnected, thus the move of node at l will not affect the value of ρk 	−→l and ρl	−→k.
There are two possible positions Pos1 and Pos2 for the node at location l such that when
in Pos1 it will be closer to the node at location m than the node at location n i.e. ρm 	−→l >
ρn	−→l while in Pos2 we have ρm 	−→l < ρn	−→l. When the node at location l is at Pos1, it
will move to Pos2 with rate 2, while in Pos2 it will move to Pos1 with rate 5. Moreover

Broadcast Abstraction in a Stochastic Calculus for Mobile Networks 355

Model 2. An simplified model of the leader election protocol

Node′(i) = λinit · 〈E i � I〉 · Init′(i) + (E x) · 〈E i � I〉 · waitAck′(i)
Init′(i) = λexp · 〈L i � I〉 · Node′(i)
waitAck′(i) = λexp · waitLeader′(i)
waitLeader′(i) = (L x) · Node′(i) + λpar · 〈L i � I〉 · Node′(i)

no matter how the node at location l moves, we guarantee that ρm 	−→l+ρn	−→l = 1 as long
as ρm 	−→n = 1 and ρn	−→m = 1. Since ρm 	−→l and ρn	−→l may both change when l moves,
their mobility rules should be defined together in our SMF. Suppose that ρm 	−→l = 0.8
and ρn	−→l = 0.2 when the node at location l moves to Pos1, and ρm 	−→l = 0.3 and
ρn	−→l = 0.7 when it is at Pos2. By letting mf (C1,C2, φ) = 2 and mf (C2,C1, φ) = 5
we complete the definition of the mobility rules with C1 = {{(0.8,m), (0.2, n)} 	−→ l},
C2 = {{(0.3,m), (0.7, n)} 	−→ l}, and φ = (ρm 	−→n = 1 ∧ ρn	−→m = 1). Note that more
complicated rules can be defined, for instance when the condition φ does not hold i.e.
m and n are not close enough, we can let the ρm 	−→l and ρn	−→l evolve into other values
such that ρm 	−→l + ρn	−→l � 1. For simplicity we will omit the details.

It is not hard to see that in this example we use group broadcast often between nodes
internally in the network, as a result we can abstract from the concrete execution of the
model. Suppose we only care whether each node in a network has a leader or not, then
the model can be simplified as Model 2 where the node which initializes the election
always chooses itself as the new leader.

In Model 2, the acknowledgement messages 〈A i�I〉 can be abstracted totally, and we
can establish that: ‖

i∈I
�Node′(i)�i ≈mf ‖

i∈I
�Node(i, l,m, p)�i. Intuitively, this equivalence

holds because all the group broadcasts will become internal. In Model 2 the group
broadcasts dealing with acknowledgements used to find the node with the highest ID
are abstracted away, since we do not care about the specific ID of the leader. Essentially
in Model 2 the node which initializes the election simply commutes between two states
depending on whether it has a valid leader or not, while the nodes participating in an
election simply commutes between three states depending on whether they have a valid
leader, are part of an election waiting for acknowledgements from children, or are part
of an election waiting for the announcement of the leader.

6 Conclusion

In this paper we have introduced a novel continuous time stochastic broadcast calcu-
lus for mobile and wireless broadcasting networks, which is able to model stochastic
phenomena in mobile networks, like e.g. random back off protocols. We also allow for
simultaneous mobility of several nodes due to a stochastic mobility model, and the mo-
bility of nodes may be limited due to network constraints. Also, in order to minimize
the state space of our models we have introduced an operator to avoid flooding in net-
works, and we allow for group broadcast, these two operators facilitate a novel notion of
abstraction of broadcast messages where several broadcast messages may be simulated
by just one broadcast message or simply be abstracted and become an internal message.

356 L. Song and J.C. Godskesen

A weak bisimulation congruence ≈mf is defined and applied on the example of a leader
election protocol for wireless networks.

References

1. Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks. Theor.
Comput. Sci. 367, 203–227 (2006)

2. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A Process Calculus for Mobile Ad Hoc Net-
works. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 296–
314. Springer, Heidelberg (2008)

3. Merro, M.: An observational theory for mobile ad hoc networks. Electron. Notes Theor.
Comput. Sci. 173, 275–293 (2007)

4. Ghassemi, F., Fokkink, W., Movaghar, A.: Restricted broadcast process theory. In: Proceed-
ings of the 2008 Sixth IEEE International Conference on Software Engineering and Formal
Methods, pp. 345–354. IEEE Computer Society (2008)

5. Godskesen, J.C.: A Calculus for Mobile Ad Hoc Networks. In: Murphy, A.L., Dell’Acqua, P.
(eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Heidelberg (2007)

6. Song, L., Godskesen, J.C.: Probabilistic Mobility Models for Mobile and Wireless Networks.
In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 86–100. Springer,
Heidelberg (2010)

7. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic J. of
Computing 2, 250–273 (1995)

8. Hermanns, H.: Interactive Markov chains: and the quest for quantified quality. Springer,
Heidelberg (2002)

9. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In:
Proceedings of the 2010 25th Annual IEEE Symposium on Logic in Computer Science,
LICS 2010, pp. 342–351. IEEE Computer Society (2010)

10. Ghassemi, F., Talebi, M., Movaghar, A., Fokkink, W.: Stochastic Restricted Broadcast Pro-
cess Theory. In: Thomas, N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 72–86. Springer, Hei-
delberg (2011)

11. Hillston, J.: A compositional approach to performance modelling. Cambridge University
Press, New York (1996)

12. Vasudevan, S., Kurose, J., Towsley, D.: Design and analysis of a leader election algorithm
for mobile ad hoc networks. In: Proceedings of the 12th IEEE International Conference on
Network Protocols, pp. 350–360. IEEE Computer Society (2004)

13. Nicollin, X., Sifakis, J.: An Overview and Synthesis on Timed Process Algebras. In: Larsen,
K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 376–398. Springer, Heidelberg (1992)

14. Yi, W.: CCS + Time = An Interleaving Model for Real Time Systems. In: Leach Albert,
J., Monien, B., Rodrı́guez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 217–228.
Springer, Heidelberg (1991)

An Intersection Type System

for Deterministic Pushdown Automata

Takeshi Tsukada1 and Naoki Kobayashi2

1 Tohoku University
2 University of Tokyo

Abstract. We propose a generic method for deciding the language inclu-
sion problem between context-free languages and deterministic context-
free languages. Our method extends a given decision procedure for a
subclass to another decision procedure for a more general subclass called
a refinement of the former. To decide L0 ⊆ L1, we take two additional
arguments: a language L2 of which L1 is a refinement, and a proof of
L0 ⊆ L2. Our technique then refines the proof of L0 ⊆ L2 to a proof
or a refutation of L0 ⊆ L1. Although the refinement procedure may
not terminate in general, we give a sufficient condition for the termina-
tion. We employ a type-based approach to formalize the idea, inspired
from Kobayashi’s intersection type system for model-checking recursion
schemes. To demonstrate the usefulness, we apply this method to obtain
simpler proofs of the previous results of Minamide and Tozawa on the
inclusion between context-free languages and regular hedge languages,
and of Greibach and Friedman on the inclusion between context-free
languages and superdeterministic languages.

1 Introduction

The language inclusion problem, which asks whether L0 ⊆ L1 for languages L0
and L1, is a fundamental problem in the field of formal language theory. We
are interested in its decidability, mainly motivated by applications to program
verification [1,7,12]. We consider the case that L0 and L1 range over context-
free languages. It is well known that the inclusion L0 ⊆ L1 is undecidable for
context-free languages L0 and L1. For some subclasses of context-free languages,
however, the inclusion is decidable [3].

In the present paper, we propose a generic method for deciding the inclusion
problem. Our method extends a decision procedure for a subclass of context-
free languages to another decision procedure for a more general subclass. For
example, consider the languages consisting of open and close tags, like XML
documents. It is known to be decidable whether a given context-free language
is included in the Dyck language, which is the set of all words consisting of
correctly nested tags. Using our method, we can extend this result to obtain a
new proof of the decidability of inclusion between context-free languages and
regular hedge languages [12].

Our method can be outlined as follows. Suppose that a decision procedure
is given, which takes a language L0 and decides whether L0 ⊆ L2 for a fixed

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 357–371, 2012.
c© IFIP International Federation for Information Processing 2012

358 T. Tsukada and N. Kobayashi

language L2 (in the example above, the language of all correctly nested tags).
We assume that the procedure returns a “proof” of L0 ⊆ L2 if it is the case. By
using this procedure, our method provides a way of deciding whether L0 ⊆ L1,
where L1 is a subset of L2, called a refinement [19] of L2 (in the above example,
a regular hedge language). To decide L0 ⊆ L1, we first decide whether L0 ⊆ L2,
using the decision procedure. If L0 � L2, we conclude L0 � L1. If L0 ⊆ L2,
the procedure returns a “proof” of it, and we decide the inclusion L0 ⊆ L1 by
refining the “proof” of L0 ⊆ L2.

To formalize the idea, we employ a type-based approach inspired by
Kobayashi’s intersection type system [7] for the model checking of higher-order
recursion schemes. For each deterministic context-free language Li, we develop
a type system characterizing context-free grammars G such that LG ⊆ Li, i.e.,
a type system Ti such that G is typable in Ti if and only if LG ⊆ Li. Then, the
inclusion problem LG ⊆ Li is reduced to the typability of G in Ti. We check it
by (i) first checking whether G is typable in a “simpler” type system T2, and (ii)
if G is typable in T1, enumerating “refinements” of the type derivation of T2 � G
and checking whether there exists a type derivation for G in T1 among them.
(We will substantiate the meaning of “simpler type system” and “refinements”
in later sections.)

We demonstrate the usefulness of the method by giving simpler proofs of two
previous decidability results: (1) The result of Minamide and Tozawa [12] on
the inclusion between context-free languages and regular hedge languages; (2)
The result of Greibach and Friedman [5] on the inclusion between context-free
languages and superdeterministic languages, which is, to our knowledge, one of
the strongest results about the inclusion problems.

The rest of the paper is organized as follows. In Section 2, we define some
notions and notations about context-free grammars and pushdown automata. In
Section 3, we construct an intersection type system characterizing the inclusion
problem. In Section 4, we develop a procedure which refines a type derivation and
we give a sufficient condition for the termination of the procedure. In Section 5,
we apply our method to prove some decidability results. In Section 6, we discuss
the related work and we conclude in Section 7. Omitted proofs can be found in
the full version, available from the authors’ web pages.

2 Preliminaries

Context-Free Grammars. We present context-free grammars for words in the
form of (a special case of) context-free tree grammars generating monadic trees
(i.e., trees of the form a1(a2(. . . (an($)) . . .))). The definition is consistent with
the standard definition of the context-free grammars.

We use a special letter $, which can occur only at the end of a word, and dis-
tinguish between two kinds of words: those that end with $, called terminating
words, and those that end with a normal letter, called normal words (or simply,
words). A sort κ is o describing terminating words, or o→ o describing normal
words. A normal word w can be considered as a function that takes a termi-
nating word w′$ and returns the terminating word ww′$; that is why we assign

An Intersection Type System for Deterministic Pushdown Automata 359

a function sort to normal words. A context-free grammar (CFG, for short) is a
quadruple G = (N , Σ,R, S), where:
1. N is a finite set of symbols called non-terminals. They have the sort o→ o.

Non-terminals are ranged over by F .
2. Σ is a finite set of symbols called terminals. We use metavariables a and b

for terminals. They also have the sort o→ o.
3. R is a set of rewriting rules of the form F x→ t, where x is a variable of the

sort o and t is a term of the form α1(α2(. . . (αn(x)) . . .)) with αi ∈ Σ ∪ N .
There can be more than one rule for the same non-terminal.

4. S is a distinguished non-terminal, called the initial symbol.

We use t and s as metavariables of terms and α as a metavariable ranging over
Σ ∪ N . The rewriting relation ⇒R is defined by:

F s⇒R t[s/x] if (F x→ t) ∈ R α t⇒R α t′ if t⇒R t′

Here t[s/x] is the term obtained by substituting s for x in t. We write ⇒∗
R for

the reflexive and transitive closure of ⇒R. We often omit R if it is clear from
the context. For a given non-terminal F , we define the language generated by F
as LG(F) = {a1a2 . . . an ∈ Σ∗ | F $ ⇒∗ a1(a2(. . . (an($)) . . .))}. The language
generated by G, written LG , is LG(S).

Example 1. For a given alphabet Σ, we define the set of open tags Σ́ = {á | a ∈
Σ} and close tags Σ̀ = {à | a ∈ Σ}. Let G0 = ({S, Fa, Fb}, Σ́0∪ Σ̀0,R, S), where
Σ0 = {a,b} and R = {S x → x, S x → á(Fa(x)), S x → Fb(b̀(x)), Fa x →
S(à(x)), Fb x → b́(S(x))}. The language LG consists of words of the form
á1á2 . . . ánàn . . . à1, where ai ∈ {a,b} for all 1 ≤ i ≤ n.

The rules of this CFG can be written in the standard notation as:

S → ε | áFa | Fb b̀, Fa → S à, Fb → b́S,

where ε denotes the empty word. ��

Pushdown Automaton. A pushdown automaton (PDA, for short) is a quadruple
M = (Q,Σ, Γ, δ), where (1) Q is a finite set of states ; (2) Σ is an alphabet;
(3) Γ is a finite set of stack symbols (we use metavariables A and B for stack
symbols), and (4) δ ⊆ Q × Γ × (Σ ∪ {ε})×Q× Γ ∗ is a transition relation. We

use Ã and B̃ to denote (possibly empty) sequences of stack symbols. For q ∈ Q,
A ∈ Γ and a ∈ Σ ∪ {ε}, we define δ(q, A, a) = {(q′, Ã′) | (q, A, a, q′, Ã′) ∈ δ}. A
pushdown automaton is deterministic if for any q ∈ Q, A ∈ Γ and a ∈ Σ, the
set δ(q, A, a) ∪ δ(q, A, ε) has exactly one element. In the rest of the paper, we
consider only deterministic pushdown automata.

We call an element of Q × Γ ∗ a configuration. If (q, A, a, q′, Ã′) ∈ δ (here

a ∈ Σ ∪ {ε}), we write (q, B̃A) �a
M (q′, B̃Ã′). We say a configuration c is in

reading mode if c has no ε-transition, i.e., there is no configuration c′ such that
c �ε

M c′. For configurations c and c′ in reading mode and a ∈ Σ, we write c �aM c′

if

c �a
M d1 �ε

M d2 �ε
M · · · �ε

M dn �ε
M c′ �ε

M .

360 T. Tsukada and N. Kobayashi

For w = a1a2 . . . an ∈ Σ∗, we write c �wM c′ if c �a1

M d1 �a2

M d2 �a3

M · · · �
an

M c′.
For a given configuration c in reading mode and a given set F of configurations

in reading mode, we define LM (c,F) = {w ∈ Σ∗ | ∃c′ ∈ F . c �wM c′}. Here c
indicates the initial configuration and F the set of accepting configurations.

Example 2. Recall Σ0 and G0 defined in Example 1. We define A2 = 〈{q}, Σ́0 ∪
Σ̀0, {�}, δA2〉, where δA2 = {(q, �, á, q, ��), (q, �, à, q, ε) | a ∈ Σ0}. The automaton
A2 counts and records the difference between the numbers of open tags and
close tags, ignoring their labels. Let L = LA2((q, �), {(q, �)}). Then L is the

set of all balanced tags, e.g., áb̀ ∈ L but áàb̀b́ /∈ L. It is obvious that LG0 ⊆
LA2((q, �), {(q, �)}).

We define a different PDA A1 = 〈{q1, q2}, Σ́0 ∪ Σ̀0, Σ ∪ {⊥}, δA1〉, where
δA1 = {(q1, A, á, q1, Aa) | A ∈ Σ0∪{⊥}, a ∈ Σ0}∪{(q1, a, à, q2, ε), (q2, a, à, q2, ε) |
a ∈ Σ0}. In addition to counting the difference of open tags and close tags, A1

records labels of open tags on its stack, and checks if end tags are already read,
by using its state. Let L′ = LA1((q1,⊥), {(q1,⊥), (q2,⊥)}). Then L′ is the set of
all words of the form á1á2 . . . ánàn . . . à2à1, where ai ∈ Σ0. Thus LG0 = L′. ��

3 Type System

We construct a type system TM for each PDA M which characterizes the CFGs
generating languages accepted by M . In the rest of this section, we fix a PDA
M and discuss the definition and properties of the type system TM .

The syntax of types is defined by: τ ::= c |
∧
Θ → c, where c ranges over

configurations ofM in reading mode and Θ is a (possibly infinite) set of configu-
rations in reading mode. We often abbreviate

∧
{d} → c as d→ c. We say a type

c has the sort o (written as c :: o) and a type
∧
Θ → c has the sort o→ o (written

as
∧
Θ → c :: o → o). Intuitively, the type c is for terminating words accepted

from c (by ignoring $ at the end). Interpretations of → and
∧

are standard:
d → c describes functions from d to c and c1

∧
c2 describes terminating words

accepted from the both of c1 and c2. Thus a normal word w = a1 . . . an, which
can be considered as a function λx. a1(a2(. . . (an(x)) . . .)), has a type d → c if
c �a1a2...an

M d.
A type environment is a (possible infinite) set of bindings of the form x : τ

or F : τ . We allow multiple bindings for the same variable (or the same non-
terminal), as in {x : τ1, x : τ2}. We often omit curly brackets, and simply write
x1 :τ1, . . . , xn :τn for {x1 :τ1, . . . , xn :τn}. We abbreviate {x :c | c ∈ Θ} as x :

∧
Θ.

We define Δ(x) = {τ | x : τ ∈ Δ}. A type environment Δ is well-formed if it
respects the sort, i.e., x : τ ∈ Δ implies τ :: o and F : τ ∈ Δ implies τ :: o → o.
We assume that all type environments appearing in the sequel are well-formed.

The typing rules are listed as follows.

x : τ ∈ Δ
Δ �M x : τ

F : τ ∈ Δ
Δ �M F : τ

Δ �M t1 :
∧
Θ→ c

Δ �M t2 : d (for all d ∈ Θ)
Δ �M t1 t2 : c

c �aM c′

Δ �M a : c′ → c

An Intersection Type System for Deterministic Pushdown Automata 361

These are standard rules for intersection type systems except for the last rule for
constants, which is inspired by Kobayashi’s type system [7]. Types of constants
depend on the transition rule of the automaton, as explained below. Assume
c �aM c′. Then for any (normal) word w accepted from c′, aw is accepted from
c. By using type-based notations, for any (terminated) word w($) : c′, we have
a(w($)) : c. Thus a can be considered as a function of type c′ → c.

We say that a type environment Δ is an invariant of the rules R, written
Δ �M R, if Δ,x :

∧
Θ �M t : c holds for all F :

∧
Θ → c ∈ Δ and F x→ t ∈ R.

We write Δ �M (R, S) :
∧
Θ → c if Δ �M R and Δ, $:

∧
Θ �M S$: c (in the

type system, $ is treated as a variable).

Theorem 1. Let G = (N , Σ,R, S) be a CFG, M be a PDA, c be a configuration
of M and F be a set of configurations of M . Then LG(S) ⊆ LM (c,F) if and
only if Δ �M (R, S) :

∧
F → c for some type environment Δ.

Proof. The “if” direction follows from the facts that typing is preserved by
reductions of S$, and that $:

∧
F �M w$: c implies w ∈ LM (c,F). For the other

direction, let Δ = {F :
∧
Θ → d | LG(F) ⊆ LM (d,Θ)}. ��

By Theorem 1, the pair of the initial configuration c and the set F of accepting
configurations can be identified with the type

∧
F → c. We call the type ι =∧

F → c the initial type and write LM (ι) for LM (c,F). When Δ �M (R, S) : τ ,
the environment Δ is called a witness of �M (R, S) : τ .

We introduce a partial order on witnesses and show the existence of the min-
imum witness.

Definition 1. The refinement ordering 0 is the smallest partial order that sat-
isfies: (1) Θ1 0 Θ2 if Θ1 ⊆ Θ2, (2) (

∧
Θ1 → c1) 0 (

∧
Θ2 → c2) if c1 = c2 and

Θ1 0 Θ2, and (3) Δ1 0 Δ2 if Δ1(x) 0 Δ2(x) for every x. ��

Lemma 1. Let G = (N , Σ,R, S) be a CFG, M be a PDA and ι be its initial
type. Assume that LG(S) ⊆ LM (ι). Then the set of witnesses of �M (R, S) : ι,
i.e., {Δ | Δ �M (R, S) : ι}, has the minimum element with respect to 0.

Proof. Let ι =
∧
Θ→ c. For a non-terminal F , we define pre(F) = {w | S$⇒∗

R
wFv$}. Let Δ0 = {F :

∧
Θ′ → c′ | ∃w ∈ pre(F). c �wM c′ and Θ′ = {d′ | ∃u ∈

LG(F). c′ �uM d′}}. Then Δ0 �M (R, S) : ι and Δ0 is minimum: See the full
version for more details. ��

Example 3. Let G0 be the CFG defined in Example 1, A2 be the PDA defined
in Example 2 and ι2 = (q, �) → (q, �). Since LG0 ⊆ LA2(ι2), by Theorem 1,
there is Δ such that Δ �A2 (R, S) : ι2. The minimum witnesses is given by

{S : (q, Ã)→ (q, Ã), Fa : (q, Ã)→ (q, Ã�), Fb : (q, Ã�)→ (q, Ã) | Ã ∈ {�}+}, where
{�}+ is the set of non-empty sequences of �. ��

Note that a minimum type environment may be infinite as in Example 3. In the
rest of this section, we develop a way to finitely describe (some of) infinite type
environments.

362 T. Tsukada and N. Kobayashi

An important property of pushdown automata is that only the top of the stack
affects its transition. Especially, we can add any stack symbols to the bottom,
preserving the transition. For example, letA1 be the automaton defined in Exam-
ple 2 and w = áàb̀. Then we have a transition (q1,bbb) �wA1

(q2,bb). By adding
⊥aa to the bottom of the stack, we obtain (q1,⊥aabbb) �wA1

(q2,⊥aabb).
More generally, for any sequence Ã of stack symbols, we have (q1, Ãbbb) �wA1

(q2, Ãbb). This does not depend on the choice of w, i.e., for any w such that

(q1,bbb) �wA1
(q2,bb), we have (q1, Ãbbb) �wA1

(q2, Ãbb).
We will formally state this fact in terms of intersection types (see Lemma 2).

Definition 2. For a given (possible empty) sequence B̃ of stack symbols and a

given configuration (q, Ã), we define the stack extension (q, Ã) ⇑ B̃ as (q, B̃Ã).

We define (Θ ⇑ B̃) = {c ⇑ B̃ | c ∈ Θ} for the set of configurations, (
∧
Θ → c) ⇑

B̃ =
∧
(Θ ⇑ B̃)→ (c ⇑ B̃) for the type, Δ ⇑ B̃ = {x : (τ ⇑ B̃) | x : τ ∈ Δ} for the

type environment and (Δ � t : τ) ⇑ B̃ = (Δ ⇑ B̃) � t : (τ ⇑ B̃) for the judgement.

We define Δ⇑ = ∪B̃(Δ ⇑ B̃). ��

Lemma 2. If Δ �M t : τ , then for any B̃, we have (Δ �M t : τ) ⇑ B̃.

Proof. Easy induction on Δ �M t : τ . ��

We write Δ �⇑M R, read “Δ is an invariant of R up-to stack extensions”, if for
every F :

∧
Θ → c ∈ Δ and F x → t ∈ R, we have (Δ⇑), x :

∧
Θ �M t : c. Note

that while F :
∧
Θ → c is chosen from Δ, the environment to type the body of

F is Δ⇑. The judgement Δ �⇑M (R, S) :
∧
Θ → c is defined as Δ �⇑M R and

(Δ⇑), $:
∧
Θ �M S$: c.

By using this up-to technique, we can sometimes (but not always) finitely
describe a witness type environment as shown in the example below.

Example 4. Recall Example 3. We haveΔ �⇑A2
(R, S):ι2, whereΔ = {S :(q, �)→

(q, �), Fa : (q, �)→ (q, ��), Fb : (q, ��)→ (q, �)}. Note that Δ is a finite set. ��

This up-to technique is sound in the sense that if a CFG is typable up-to stack
expansions, then it is typable without using the up-to technique.

Theorem 2. Δ �⇑M (R, S) : ι implies (Δ⇑) �M (R, S) : ι.

Proof. We should show that (Δ⇑) �M R and (Δ⇑), $:
∧
Θ �M S$: c, where

ι =
∧
Θ → c. The latter comes from the assumption. To show the former, assume

F :τ ∈ (Δ⇑) and F x→ t ∈ R. Then we have F :σ ∈ Δ and τ = (σ ⇑ Ã) for some

σ and Ã. Let σ =
∧
Ξ → d. Then τ =

∧
(Ξ ⇑ Ã) → (d ⇑ Ã). We should show

that (Δ⇑), (x :
∧
Ξ ⇑ Ã) �M t :(d ⇑ Ã). By the assumption, (Δ⇑), x :

∧
Ξ �M t :d.

By the previous lemma, we have ((Δ⇑) ⇑ Ã), (x:
∧
Ξ ⇑ Ã) �M t:(d ⇑ Ã). Because

((Δ⇑) ⇑ Ã) ⊆ (Δ⇑)⇑ = Δ⇑, we conclude (Δ⇑), (x :
∧
Ξ ⇑ Ã) �M t : (d ⇑ Ã). ��

An Intersection Type System for Deterministic Pushdown Automata 363

4 Refining Witnesses

It is in general difficult (in fact undecidable) to check whether a given CFG G
is typable in TM1 for a given PDA M1, so that we first consider a simpler PDA
M2 and check whether G is typable in TM2 . If we choose M2 so that (i) we have
a witness of typability of G in TM2 and (ii) M1 is a refinement of M2, then G
is typable in TM1 if and only if there is a witness that is a refinement of the
witness in TM2 (Section 4.1). Moreover, if a witness in TM2 is finite, then the
set of its refinements is a finite set. Thus, we can decide the typability in TM1

by exhaustively searching a witness from the (finite) set of refinements of the
witness in TM2 (Section 4.2).

4.1 Refinements of Automata

We first define the notion of refinements of automata. As we will see below, if
M1 is a refinement of M2, then M2 is a good over-approximation of M1.

Definition 3 (Refinement of Automata). Let M1 = 〈Q1, Σ, Γ1, δ1〉 and
M2 = 〈Q2, Σ, Γ2, δ2〉 be pushdown automata. A homomorphism f :M1 →M2 is a

pair of mappings fQ :Q1 → Q2 and f
Γ :Γ1 → Γ2 such that for any (q, A, a, q

′, B̃) ∈
δ1, (fQ(q), fΓ (A), a, fQ(q′), fΓ (B̃)) ∈ δ2, where fΓ (B1B2 . . . Bn)
= fΓ (B1)f

Γ (B2) . . . f
Γ (Bn). We often omit superscripts Q and Γ , and simply

write f(q) and f(Ã). ��

The homomorphism f :M1 → M2 can be naturally extended to mappings on
configurations, types, type environments and judgements, e.g., the mapping on
configurations is defined by f((q, Ã)) = (fQ(q), fΓ (Ã)).

When there is a homomorphism f :M1 →M2, we sayM2 is an approximation
of M1 and M1 is a refinement of M2. A type τ1 in TM1 is a refinement of τ2 in
TM2 if f(τ1) 0 τ2. Refinements of type environments are defined similarly. We
can always find a homomorphism f :M1 →M2 if it exists, since both of Q1 → Q2

and Γ1 → Γ2 are finite. We write f : (M1, ι1) → (M2, ι2) if f :M1 → M2 and
f(ι1) = ι2. The next lemma justifies to say that M2 is an (over-)approximation
of M1.

Lemma 3. If f : (M1, ι1)→ (M2, ι2), then LM1(ι1) ⊆ LM2(ι2). ��

Example 5. Let A1 and A2 be automata defined in Example 2. Then A1 is a
refinement of A2 by a homomorphism (hQ, hΓ) : A1 → A2 given by hQ(q1) =
hQ(q2) = q and h

Γ (a) = hΓ (b) = hΓ (⊥) = �. ��

In the following, we fix two pushdown automata (with their initial types) (M1, ι1)
and (M2, ι2) and a homomorphism f : (M1, ι1) → (M2, ι2) between them. For
readability, we write T1 instead of TM1 , L1 instead of LM1 and so on.

Validity of type judgements and minimality of a witness are preserved by f .

Theorem 3. Let G = (N , Σ,R, S) be a CFG, M1 and M2 be PDAs, ι1 and ι2
be their initial types and f : (M1, ι1)→ (M2, ι2) be a homomorphism.

364 T. Tsukada and N. Kobayashi

1. If Δ �M1 (R, F) : ι1, then f(Δ) �M2 (R, F) : ι2.
2. If Δ is the minimum witness of �M1 (R, F) : ι1, then f(Δ) is the minimum

witness of �M2 (R, F) : ι2.

Proof. It is easy to prove that Δ �M1 t : τ implies f(Δ) �M2 t :f(τ) by induction
on t. The first part of the claim is an easy consequence of this proposition. The
second part is clear from the construction of the minimum witness in the proof
of Lemma 1. ��

A witness Δ2 in T2 ensures the existence of a “smaller” witness in T1.

Theorem 4. Let G = (N , Σ,R, S) be a CFG, M1 and M2 be PDAs, ι1 and ι2
be their initial types and f : (M1, ι1) → (M2, ι2) be a homomorphism. Assume

that Δ2 �⇑M2
(R, S) : ι2. If Δ1 �⇑M1

(R, S) : ι1, then there exists Δ′
1 such that

Δ′
1 �

⇑
M1

(R, S) : ι1 and f(Δ′
1) 0 Δ2.

Proof. Here, we give a proof sketch. Since Δ1 �⇑M1
(R, S) : ι1, there is the min-

imum witness type environment by Lemma 1. Let Δ0
1 be the minimum witness

of �M1 (R, S) : ι1. Note that f(Δ0
1) 0 Δ

⇑
2 by Theorem 3.

We shorten the types in Δ0
1, appropriately. We define (q, A1A2 . . . Am) ⇓ n =

(q, An+1 . . . Am) if m > n (and undefined otherwise). This operation is extended

to types by (
∧
Θ → c) ⇓ n =

∧
{d ⇓ n | d ∈ Θ} → (c ⇓ n). Let (F, τ01 , τ2, Ã2)

be a quadruple such that F : τ01 ∈ Δ0
1, F : τ2 ∈ Δ2 and f(τ01) 0 (τ2 ⇑ Ã2). The

corresponding type binding F : τ ′1 of the quadruple is defined by τ ′1 = τ01 ⇓ n,
where n is the length of Ã2. Let Δ

′
1 be the set of all such bindings F :τ ′1. Then Δ

′
1

satisfies the above conditions: See the full version for a more detailed proof. ��

4.2 Procedure and Sufficient Condition for Termination

Recall the overall picture of our method to understand the role of the procedure
developed here. The final goal is to decide whether G is typable in T1. To solve the
problem, we first check whether G is typable in T2, and if so, use the derivation for
T2 and Theorem 4 to check whether G is typable in T1. The procedure developed
here takes care of this last step.

Before describing the procedure, we define the notion of finiteness. We say
that any base type q is finite and a type

∧
Θ → c is finite if Θ is a finite set.

A type environment Δ is finite if Δ is a finite set and for every type binding
x : τ ∈ Δ, τ is finite.

Figure 1 shows the procedure that refines a finite witness in T2 to one in T1.
Here for a given grammar G and its rewriting relation R, the function H on type
environments in T1 is defined by

H(Δ1) = {F :
∧
Θ → c ∈ Δ1 | ∀(F x→ t) ∈ R. Δ1, x :

∧
Θ �⇑M1

t : c}.

The procedure takes five arguments: a grammar G, two PDAs with the initial
types (M1, ι1) and (M2, ι2), a homomorphism f : (M1, ι1)→ (M2, ι2) and a finite

An Intersection Type System for Deterministic Pushdown Automata 365

Refine(G, (M1, ι1), (M2, ι2), f,Δ2).

1. Let n := 0 and Δ0
1 := {F : τ1 | ∃τ2. F : τ2 ∈ Δ2 and f(τ1) � τ2}.

2. Compute a fixed-point Δ1 of H starting from Δ0
1 as follows:

(a) Let Δn+1
1 := H(Δn

1).
(b) If Δn

1 = Δn+1
1 , then Δn

1 is a fixed-point of H.
(c) Otherwise, let n := n+ 1 and goto (a).

3. Check whether S :ι1 ∈ Δ1. If so, return Δ1. Otherwise, return untypable.

Fig. 1. The procedure to refine a witness

type environmentΔ2 in T2 such thatΔ2 �⇑M2
(R, S):ι2. The finiteness of the type

environment ensures the termination of the procedure. The procedure returns a
witness if it exists, and otherwise returns untypable.

Example 6. Let G0 be the CFG defined in Example 1, A1 and A2 be PDAs
defined in Example 2, Δ′ be the finite witness of �A2 (R, S) : ιA2 defined in
Example 4, f : A1 → A2 be the homomorphism defined in Example 5 and
ιA1 = (q1,⊥) ∧ (q2,⊥) → (q1,⊥). We compute a witness of �A1 (R, S) : ιA1 by
our procedure Refine.

The starting point Δ0
1 for computing a fixed-point of H is the set of all re-

finements of type bindings in Δ′. For example, Δ0
1(S) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∧
∅ → (q1, a),

∧
∅ → (q1,b),

∧
∅ → (q1,⊥)∧

∅ → (q2, a),
∧
∅ → (q2,b),

∧
∅ → (q2,⊥)

(q1, a) → (q1, a), (q1, a) → (q1,b), (q1, a) → (q1,⊥)
(q1, a) → (q2, a), (q1, a) → (q2,b), (q1, a) → (q2,⊥)
(q1,b) → (q1, a), (q1,b)→ (q1,b), (q1,b)→ (q1,⊥)

...
(q1, a) ∧ (q1,b)→ (q1, a), · · ·
(q1, a) ∧ (q1,b) ∧ (q2, a)→ (q1,b), · · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
since Δ′(S) = {(q, �)→ (q, �)}. The type τ = (q1, a)→ (q2, ab) does not belong
to Δ0

1(S), since f(τ) = (q, �)→ (q, ��) �0 (q, �)→ (q, �). The set Δ0
1(S) contains

26 × 6 elements, because there are 6 refinements of (q, �). Similarly, Δ0
1(Fa)

contains 26 × 18 elements and Δ0
1(Fb) contains 2

18 × 6 elements.
Then we filter out wrong type bindings such as S :

∧
∅ → (q1,b) ∈ Δ0

1 by
iteratively applying H. For example, S :

∧
∅ → (q1,b) /∈ H(Δ0

1) because S x →
x ∈ R and Δ0

1, x :
∧
∅ �A1 x : (q1,b).

Be repeated applications of H, we obtain the following fixed-point:

Δ1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S :

∧({
(q1, B), (q2, B)

}
∪Θ1

)
→ (q1, B) B ∈ {a,b,⊥}

Fa :
∧({

(q2, B)
}

∪Θ1

)
→ (q1, Ba) f(Θ1) ⊆ {(q, �)}

Fb :
∧({

(q1, Bb), (q2, Bb)
}
∪Θ2

)
→ (q1, B) f(Θ2) ⊆ {(q, ��)}

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
Δ1 is an invariant of R and contains S : ιA1 . So Δ1 is a witness and returned by
Refine. ��

366 T. Tsukada and N. Kobayashi

We show the correctness and termination of Refine.

Lemma 4. Let M1 be a PDA. Given a finite environment Δ1, a term t and a
finite type τ , whether Δ1 �⇑M1

t : τ is decidable.

Proof. Induction on the structure of t. ��

Lemma 5. Let (M1, ι1) and (M2, ι2) be PDAs with the initial symbols, f :
(M1, ι1)→ (M2, ι2) be a homomorphism and Δ2 be a finite type environment in
T2. Then the type environment Δ0

1 defined in Fig. 1 is finite.

Proof. We first show that the following two propositions hold for any finite type
τ2 by induction on τ2: (i) for any type τ1 in T1, f(τ1) 0 τ2 implies finiteness of
τ1 and (ii) the set {τ1 | f(τ1) 0 τ2} is a finite set. Since there are finitely many
type bindings in Δ2, propositions (i) and (ii) imply finiteness of Δ0

1. ��

Theorem 5. Let G = (N , Σ,R, S) be a CFG, (M1, ι1) and (M2, ι2) be PDAs
with the initial types, f : (M1, ι1) → (M2, ι2) be a homomorphism and Δ2 be a

finite witness of �⇑M2
(R, S) : ι2. Then Refine(G, (M1, ι2), (M2, ι2), f,Δ2) always

terminates, and returns a witness of �⇑M1
(R, S) : ι1 if and only if it exists.

Proof. First, we show the termination of the step 2 in Figure 1. It is easy to
show that Δn

1 is a finite type environment by induction on n (for the base case,
we use Lemma 5). Thus Lemma 4 implies that we can compute H(Δn

1). Since H
is decreasing with respect to the set inclusion ordering, i.e., H(Δ1) ⊆ Δ1 for any
environment Δ1, and Δ

0
1 is a finite set, the fixed-point iteration must terminate.

So the procedure Refine terminates.
Let Δ′

1 be a witness of �⇑M1
(R, S) : ι1. Theorem 4 ensures that we can assume

without loss of generality that f(Δ′
1) 0 Δ2. Thus Δ

′
1 ⊆ Δ0

1 because Δ0
1 is the

set of all refinement type bindings. By induction on n, we have Δ′
1 = Hn(Δ′

1) ⊆
Hn(Δ0

1) = Δ
n
1 , since Δ

′
1 is a fixed-point of H and H is monotonic. So S : ι1 ∈ Δn

1

for any n, especially S : ι1 ∈ Δ1. ��

5 Applications: Some Decidability Results

5.1 Balanced Parenthesis and Regular Hedge Languages

Let Σ be an alphabet. We define a PDA B = ({q}, Σ́ ∪ Σ̀, Σ ∪ {⊥}, δ), where
δ = {(q, A, á, q, Aa) | A ∈ Σ ∪ {⊥}, a ∈ Σ} ∪ {(q, a, à, q, ε) | a ∈ Σ} with the
initial type ιB = (q,⊥)→ (q,⊥). Then LB(ιB) is the set of all balanced tags. For

example, áb́1b̀1b́2b̀2à ∈ LB(ιB) and b́1b̀2 /∈ LB(ιB), where a, b1, b2 ∈ Σ. It is known
that, for a given CFG G, whether LG ⊆ LB is decidable. Moreover, if LG ⊆ LB,
we can construct a finite type environment Δ such that Δ �⇑B (R, S) : ιB.

Assume that (M, ι) is a refinement of (B, ιB), i.e., there is f : (M, ι)→ (B, ιB).
Then we can decide LG ⊆ LM in the following way. First, we decide whether
LG ⊆ LB. If not, then LG � LM by Lemma 3. If LG ⊆ LB, we construct a finite
witness Δ and call Refine(G, (M, ι), (B, ιB), f,Δ).

This argument leads to the following decidability result.

An Intersection Type System for Deterministic Pushdown Automata 367

Theorem 6. Let G be a CFG and M be a refinement of B. Then LG ⊆ LM (ι)
is decidable. ��

We have the following theorem for the class of refinements of B.

Theorem 7. A language is accepted by a refinement of B if and only if it is a
regular hedge language [14].

Proof. It is easy to prove using an algebraic representation of a regular hedge
language, called binoid [12,18]. ��

The above argument therefore gives a new definition of the class of regular hedge
languages and a new decidability proof of the inclusion problem between CFLs
and regular hedge languages.

5.2 Counting Automata and Superdeterministic Languages

We define the class of PDAs named C-machines.

Definition 4. A PDA (M, ιM) with the initial type is called a C-machine if its
stack alphabet is singleton and ιM is finite. ��

A configuration of a C-machine is expressed by a pair (q, n) of a state q and a
natural number n representing the length of the stack sequence. We define the
stack extension ⇑ m for C-machines by (q, n) ⇑ m = (q, n+m) and (

∧
Θ → c) ⇑

m =
∧
{d ⇑ m | d ∈ Θ} → (c ⇑ m).

Theorem 8. For a given CFG G and C-machine (M, ιM), whether LG ⊆ LM (ιM)
is decidable. Moreover, when LG ⊆ LM (ιM), we can construct a finite type en-

vironment Δ such that Δ �⇑M (R, S) : ιM .

Proof. We give a proof sketch: See the full version for more detail. For simplicity,
we assume that ιM = cE → cS . Let cE = (qE , nE) and cS = (qS , nS). Let N
be a finite-state automaton obtained by removing the counter of M , i.e., q �aN p
if and only if (q, n) �aM (p,m) for some n and m. Roughly speaking, N is an
“approximation” of M . So we can “refine” a witness in TN to a witness in TM .
Since N is finite-state, we can decide whether LG ⊆ LN (qE → qS). If not, then
LG � LM (ιM). Assume LG ⊆ LN (qE → qS) and let ΔN be the minimum witness
of �N (R, S) : qE → qS (here TN is the type system whose base types are states
of N , instead of configurations).

For a given type binding F :
∧
{q1, . . . , qm} → q ∈ ΔN , we construct a cor-

responding type binding in TM . Since ΔN is minimum, from the construction
of the minimum witness (see the proof of Lemma 1), we have w ∈ pre(F)(=
{v | ∃u. S$ ⇒∗ vFu$}) and wi ∈ LG(F) (1 ≤ i ≤ m) such that qS �wN q and
q �wi

N qi for all i (a different choice of w and wi gives a different upper-bound
of witnesses). We define n and ni by (qE , nE) �wM (q, n) and (q, n) �wi

M (qi, ni).
Then the corresponding type binding is F :

∧
{(q1, n1), . . . , (qm, nm)} → (q, n).

368 T. Tsukada and N. Kobayashi

Let Δ′
M be the type environment collecting such type bindings. We define

ΔM = {F : τ | ∃σ, k. F : σ ∈ Δ′
M and τ ⇑ k = σ}. Then ΔM gives an upper-

bound in the sense that if a witness of �⇑M (R, S) : ιM exists, then a witness
included by ΔM exists. ��

Similarly to the argument in the previous subsection, Theorem 8 leads to the
following decidability result.

Theorem 9. For a given context-free grammar G and a pushdown automaton
M which is a refinement of a C-machine N , whether LG ⊆ LM is decidable. ��

The class of refinements of C-machines is closely related to the class of superde-
terministic pushdown automata proposed by Greibach and Friedman [5].

Definition 5 (Superdeterministic PDAs [5]). A pushdown automaton M is
of delay d if for any series of one-step transitions by ε, its length is less than or
equal to d, i.e., if c0 �ε

M c1 �ε
M · · · �ε

M cn then n ≤ d. A pushdown automaton
M(ι) is superdeterministic if it satisfies the following properties: (1) M is of

delay d for some finite number d, (2) if (q, Ã1) �wM (p1, B̃1) and (q, Ã2) �wM
(p2, B̃2), then p1 = p2 and |B̃1| − |Ã1| = |B̃2| − |Ã2|, here |Ã| is the length of
A, and (3) ι is finite. A language L is superdeterministic if L = LM for some
superdeterministic pushdown automaton M . ��

The class of refinements of C-machines and of superdeterministic PDAs are in-
comparable as classes of PDAs. However, they are equally expressive in the sense
that the class of languages accepted by refinements of C-machines is equivalent
to the one accepted by superdeterministic PDAs.

Theorem 10. A language is superdeterministic if and only if it is accepted by
a refinement of a C-machine.

Proof. We give a proof sketch. We first prove the right-to-left direction. A state
q of C-machine C has a ε-loop if there is a sequence of ε-transitions starting
from and ending with q, i.e., (q, n) �ε

C · · · �ε
C (q,m) for some n and m. By

removing states which have ε-loops, we can construct an equivalent C-machine
that is of finite delay. Similarly, we can assume without loss of generality that any
refinement of a C-machine is of finite delay. Consider condition (2) in Definition 5.
The condition on the stack length must be satisfied by all refinements of C-
machines, but the condition on the state may not in general. However we can
always construct another refinement that satisfies the condition by moving the
refined state information to the stack top, i.e., instead of refining a configuration
of the C machine (q, n) to (q′, A1 . . . An), refining it to (q, 〈A1, q1〉 . . . 〈An, q

′〉).
So for all refinements of C-machines, we can construct another refinement which
is superdeterministic and accepts the same language.

For the other direction, letM be a superdeterministic PDA and d be its delay.
Note that for any configuration (q, B̃Ad+1 . . . A1), only d + 1 stack symbols at

the top (i.e., Ad+1 . . . A1) affect a transition (q, B̃Ã) �aM (q′, B̃C̃). So we can
construct another superdeterministic PDA M ′, whose transition coincides with

An Intersection Type System for Deterministic Pushdown Automata 369

the transition of M and is normalized as follows:

(q, B̃Ã) �a
M ′ (〈q, a〉, B̃Ã)
�ε

M ′ (〈q, a, A1〉, B̃Ad+1 . . . A2)

...

�ε
M ′ (〈q, a, Ã〉, B̃)
�ε

M ′ (q′, B̃C̃).

In the first stage of the transition, M ′ records a on its state, pops its stack
d times and records them on the state. Then the state is a triple of the form
〈q, a, Ã〉. In the last stage, M ′ computes q′ and C̃ from its state 〈q, a, Ã〉. See
the full version for more details about the construction of M ′.

Let #(·) be a mapping which forgets stack symbols such as

#((〈q, a, An . . . A1〉, Bm . . . B1)) = (〈q, a, n〉,m).

The mapping #(·) and the transition relation δ of M induces a transition rela-
tion #(δ) of some C-machine, which is an approximation of M . Condition (2) in
Definition 5 ensures that #(δ) is deterministic. ��

The decidability of the inclusion problem between context-free languages and
superdeterministic languages has been proved by Greibach and Friedman [5].
The proof of Theorem 9 with Theorem 10 is an alternative and arguably simpler
proof of the result.

6 Related Work

There have been a number of studies on the inclusion problems for subclasses of
context-free languages (see [3] for a survey).

One of the strongest decidability results is about the inclusion between context-
free languages and superdeterministic languages, proved by Greibach and Fried-
man [5]. Nguyen and Ogawa [15] gave a new proof by simplifying the technique
used in [5]. Greibach and Friedman [5] reduced the problem to the emptiness
problem for a pushdown automaton and Nguyen and Ogawa [15] gave simpler
construction of a pushdown automaton.

Minamide and Tozawa [12] have proposed an algorithm for inclusion between
context-free languages and regular hedge languages, motivated by the validation
of dynamically generated HTML documents. As demonstrated in Section 5.1, our
method gives an alternative algorithm for the same problem, although our algo-
rithm may not be as efficient as Minamide and Tozawa’s. Møller and Schwarz [13]
have developed an algorithm to validate a context-free grammar against SGML
DTDs, dealing with tag omissions and exceptions. It is not clear whether our
method can provide a similar result.

The subclass of the context-free languages named visibly pushdown lan-
guages [1,2] has many good properties such as boolean closure and decidability

370 T. Tsukada and N. Kobayashi

of the emptiness problem in polynomial time. Some researchers have extended
the class preserving such properties. Caucal [4] has introduced a notion of syn-
chronized pushdown automata and Nowotka and Srba [16] have proposed height-
deterministic pushdown automata. The refinement of a counter machine is similar
to those notions. Since the class of visibly pushdown automata can be defined as
the class of refinements of a certain automaton, our notion of refinements may
give an extension of them.

Recently, type-based approaches to model-checking, verification and language
inclusion problems have been extensively studied [7,8,9,11,19,20]. Kobayashi and
Ong [7,9] have proposed a type system for recursion schemes that is equivalent to
the modal μ-calculus model-checking of recursion schemes (the decidability of the
model-checking problem has been proved by Ong [17]). These type systems have
been applied to verification of higher-order programs [7,11,10], and practically
effective typability checkers have been developed [6,8]. The present work extends
type systems to deal with infinite state systems, namely deterministic pushdown
automata. Types are now configurations of pushdown automata, rather than
states of automata, which are finite a priori.

In our previous work [20], we gave a type-based proof for the inclusion problem
between context-free languages and superdeterministic languages. But the proof
is specific to superdeterministic languages, and difficult to generalize.

7 Conclusion and Future Work

We have proposed an intersection type system characterizing the inclusion by a
deterministic context-free language, and given a sufficient condition of decidabil-
ity of its typability. Future work includes extensions in two directions, extending
grammars and automata. A naive extension to higher-order recursion schemes
fails to establish the counterpart of Theorem 4. That is because the up-to tech-
nique used in this paper is too crude to deal with them. To extend automata is
easier than grammars. For example, we can develop a framework for higher-order
pushdown automata. So what we should do is to find a language accepted by a
higher-order pushdown automaton which has decidable inclusion problem and a
practical use.

Acknowledgement. The authors would like to thank the anonymous review-
ers for their valuable comments. This work is partially supported by Kakenhi
23220001 and 22·3842.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) STOC,
pp. 202–211. ACM (2004)

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 1–43
(2009)

An Intersection Type System for Deterministic Pushdown Automata 371

3. Asveld, P.R.J., Nijholt, A.: The inclusion problem for some subclasses of context-
free languages. Theor. Comput. Sci. 230(1-2), 247–256 (2000)

4. Caucal, D.: Synchronization of Pushdown Automata. In: Ibarra, O.H., Dang, Z.
(eds.) DLT 2006. LNCS, vol. 4036, pp. 120–132. Springer, Heidelberg (2006)

5. Greibach, S.A., Friedman, E.P.: Superdeterministic PDAs: A subcase with a de-
cidable inclusion problem. J. ACM 27(4), 675–700 (1980)

6. Kobayashi, N.: Model-checking higher-order functions. In: Porto, A., López-
Fraguas, F.J. (eds.) PPDP, pp. 25–36. ACM (2009)

7. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: Shao, Z., Pierce, B.C. (eds.) POPL, pp. 416–428. ACM (2009)

8. Kobayashi, N.: A Practical Linear Time Algorithm for Trivial Automata Model
Checking of Higher-Order Recursion Schemes. In: Hofmann, M. (ed.) FOSSACS
2011. LNCS, vol. 6604, pp. 260–274. Springer, Heidelberg (2011)

9. Kobayashi, N., Ong, C.H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: LICS, pp. 179–188. IEEE
Computer Society (2009)

10. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Hall, M.W., Padua, D.A. (eds.) PLDI, pp. 222–233. ACM
(2011)

11. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. In: Hermenegildo, M.V.,
Palsberg, J. (eds.) POPL, pp. 495–508. ACM (2010)

12. Minamide, Y., Tozawa, A.: XML Validation for Context-Free Grammars. In:
Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 357–373. Springer, Heidel-
berg (2006)

13. Møller, A., Schwarz, M.: HTML Validation of Context-Free Languages. In: Hof-
mann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 426–440. Springer, Heidel-
berg (2011)

14. Murata, M.: Hedge automata: a formal model for XML schemata (1999),
http://www.xml.gr.jp/relax/hedge_nice.html

15. Nguyen, V.T., Ogawa, M.: Alternate stacking technique revisited: Inclusion prob-
lem of superdeterministic pushdown automata. IPSJ Transactions on Program-
ming 1(1), 36–46 (2008)

16. Nowotka, D., Srba, J.: Height-Deterministic Pushdown Automata. In: Kučera, L.,
Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 125–134. Springer, Heidelberg
(2007)

17. Ong, C.H.L.: On model-checking trees generated by higher-order recursion schemes.
In: LICS, pp. 81–90. IEEE Computer Society (2006)

18. Pair, C., Quéré, A.: Définition et etude des bilangages réguliers. Information and
Control 13(6), 565–593 (1968)

19. Tsukada, T., Kobayashi, N.: Untyped Recursion Schemes and Infinite Intersection
Types. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 343–357. Springer,
Heidelberg (2010)

20. Tsukada, T., Kobayashi, N.: A type-theoretic proof of the decidability of the
language containment between context-free languages and superdeterministic lan-
guages. IPSJ Transactions on Programming 4(2), 31–47 (2011) (in Japanese)

http://www.xml.gr.jp/relax/hedge_nice.html

An Output-Based Semantics of Λμ
with Explicit Substitution in the π-Calculus

Extended Abstract

Steffen van Bakel and Maria Grazia Vigliotti

Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, UK
{s.vanbakel,maria.vigliotti}@imperial.ac.uk

Abstract. We study the Λμ-calculus, extended with explicit substitution, and
define a compositional output-based translation into a variant of the π-calculus
with pairing. We show that this translation preserves single-step explicit head
reduction with respect to contextual equivalence. We use this result to show op-
erational soundness for head reduction, adequacy, and operational completeness.
Using a notion of implicative type-context assignment for the π-calculus, we also
show that assignable types are preserved by the translation. We finish by showing
that termination is preserved.

1 Introduction

Over the last two decades, the π-calculus [24] and its dialects have proven to give an
interesting and expressive model of computation. Encodings of variants of the pure λ-
calculus [14, 11] started with [24], which quickly led to more thorough investigations
in [29, 31, 10] and also in the direction of object oriented calculi [21, 31].

For these encodings, over the years strong properties have been shown like sound-
ness, completeness, termination, and full abstraction. The strength of these results has
encouraged the investigation of encodings into the π-calculus of calculi that have their
foundation in classical logic, as done in, for example, [22, 8, 15]. From these papers it
might seem that the encoding of such calculi comes at a great price; for example, to
encode typed λμ [25], [22] needs to consider a version of the π-calculus that is not
only strongly typed, but, moreover, allows reduction under guard and under replication;
[8] shows preservation of reduction in X [9] only with respect to 0c, the contextual
ordering; [15] defines a non-compositional encoding of λμμ̃ [17] that strongly depends
on recursion, and does not regard the logical aspect at all.

In this paper, we will show that it is possible to define a intuitive, natural, logical
encoding of λμ into the pure π-calculus that satisfies all the good properties. Although
one could justifiably argue that calculi likeX and λμμ̃ are more expressive and, through
their direct link to Gentzen’s LK [18], more elegantly deal with negation and classical
logic, they are also both symmetric in nature, which makes an accurate treatment in the
π-calculus more intricate, as can be observed in [8, 15]. Moreover, as argued in [6, 5,
7], only for λμ is it possible to define a filter semantics, which seems to strengthen the
case for that calculus even more.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 372–387, 2012.
c© IFIP International Federation for Information Processing 2012

An Output-Based Semantics of Λμ with Explicit Substitution 373

Reduction in λμ is confluent and non-symmetric; in fact, the main reduction rule
(and the only cause for non-termination, for example) is the β-reduction rule of the
λ-calculus. In addition to that rule, λμ has structural rules, where elimination takes
place for a type that is not the type of the term itself, but rather for one that appears
in one of the alternative conclusions of the shape α:A, where the Greek variable is the
name given to a sub-term. For the naming feature, λμ adds [α]M to the syntax which
expresses that α serves as a pointer to the term M, and pairs this with a notion of μ-
abstraction μα.M, which is used to redirect operands (terms) to those called α. It is this
naming feature, together with the structural rules, that make λμ difficult to reason over;
this is reflected in [20] and [9], where the encoding of λμ into λμμ̃ andX , respectively,
does not respect normal reduction. In contrast, through our translation we will show that
it is possible to give a process semantics for λμ that very clearly shows that the context
switch μα.[β]M is, essentially, just a variant of application.

For the construction of our translation, we will start with that defined in [10], that
interprets terms under output rather than under input, by giving a name to the anony-
mous output of λ-terms; we will combine this with the inherent naming mechanism of
λμ. To accurately define the notion of reduction that is modelled by our translation, we
will define untyped Λμx, a version with explicit substitution [1, 12] of the Λμ-calculus
[19], itself a variant of λμ, together with a notion of explicit head reduction1, where re-
duction is also allowed under abstraction. We will define a new compositional semantic
translation of Λμx into the π-calculus, and show that it fully respects each individual
explicit head reduction step.

Perhaps surprisingly, we do not need to extend the kind of process calculus at all
to accomodate our translation, but can build that directly on the standard π-calculus;
in particular, the naming and μ-binding features of λμ are dealt with by the naming
feature of the translation, and renaming, respectively. The only noteworthy change is
that, when representing application MN, the communication needs to be replicated;
the translation of application and structural substitution is almost identical.

The advantage of considering explicit substitution rather than the standard implicit
substitution as considered in [31] has been strongly argued in [10]. That paper showed
that communication in the π-calculus has a fine semantic level of granularity that ‘faith-
fully mimics’ explicit substitution, and not the implicit one; we stress this point again
with the results presented in this paper.

2 The Λμ Calculus

The λμ-calculus is a proof-term syntax for classical logic, expressed in Natural Deduc-
tion, defined as an extension of the Curry type assignment system for the λ-calculus;
we focus on de Groote’s Λμ, a variant that splits the naming from the μ-binding. We
will define in particular Λμx, a variant of Λμ with explicit substitution à la λx [12],
and show our results for Λμx; since Λμx implements Λμ-reduction, this implies that
we also show some of our results for normal reduction (with implicit substitution).

1 Called spine reduction in [10], and head spine-reduction in [32]; we prefer to use the termi-
nology head reduction from [33].

374 S. van Bakel and M.G. Vigliotti

Definition 1 (Syntax of Λμ). The Λμ-terms we consider are defined over the set of
term variables represented by Roman characters, and names, or context variables, rep-
resented by Greek characters, through the grammar:

M, N ::= x | λx.M | MN | μα.M | [β]M
variable abstraction application context abstraction naming

The notion of free and bound names is defined as can be expected, taking both λ and
μ as binders, and we assume Barendregt’s convention.

Simple type assignment for Λμ is defined as follows:

Definition 2 (Types, Contexts, and Typing). 1. Types are defined by:

A, B ::= ϕ | ⊥ | A→B (A �= ⊥)
where ϕ is a basic type of which there are infinitely many.

2. A context of inputs Γ is a mapping from term variables to types, denoted as a finite
set of statements x:A, such that the subjects of the statements (x) are distinct. We
write Γ1, Γ2 for the compatible union of Γ1 and Γ2 (if x:A1 ∈ Γ1 and x:A2 ∈ Γ2,
then A1 = A2), and write Γ, x:A for Γ, {x:A}.

3. Contexts of outputs Δ, and the notions Δ1, Δ2 and α:A, Δ are defined similarly.
4. Type assignment for Λμ is defined by the following natural deduction system.

(Ax) : Γ, x:A � x : A | Δ (μ) :
Γ � M :⊥ | α:A, Δ

Γ � μα.M : A | Δ
(⊥) :

Γ � M : A | β:A, Δ

Γ � [β]M :⊥ | β:A, Δ

(→I) :
Γ, x:A � M : B | Δ

Γ � λx.M : A→B | Δ
(→E) :

Γ � M : A→B | Δ Γ � N : A | Δ

Γ � MN : B | Δ

In Λμ, reduction of terms is expressed via implicit substitution; as usual, M[N/x]
stands for the substitution of all occurrences of x in M by N, and M[N·γ/α], the
structural substitution, stands for the term obtained from M in which every sub-term of
the form [α]M′ is replaced by [γ](M′N).

We have the following rules of computation in λμ:

Definition 3 (Λμ reduction). Λμ has two computational rules:

logical (β) : (λx.M)N → M[N/x]
structural (μ) : (μα.M)N → μγ.M[N·γ/α] γ fresh

as well as the simplification rules:

renaming : μα.[β]μγ.M → μα.M[β/γ]
erasing : μα.[α]M → M if α does not occur in M.

(which are added mainly to simplify the presentation of results), and the contextual
rules. We use→βμ for this reduction, and→∗βμ for its reflexive and transitive closure.

[26] has shown that typeable terms are strongly normalisable. It also defines extensional
rules, that we do not consider here: the model we present through our translation is
not extensional, and we can therefore not show that those rules are preserved by the
translation. That this notion of reduction is confluent was shown in [28].

An Output-Based Semantics of Λμ with Explicit Substitution 375

3 The Synchronous π-Calculus with Pairing

The notion of π-calculus that we consider in this paper is similar to the one used also
in [2], and is different from other systems studied in the literature [21] in that it adds
pairing, and uses a let-construct to deal with inputs of pairs of names that get distributed.

As already argued in [10], the main reason for the addition of pairing [2] lies in
preservation of (implicate, or functional) type assignment; therefore data is introduced
as a structure over names, such that not only names but also pairs of names can be sent.

Definition 4 (Processes). Channel names and data are defined by:

a, b, c, d, x, y, z names p ::= a | a,b data

Notice that pairing is not recursive. Processes are defined by:

P , Q ::= 0 | P |Q | ! P | (νa)P | a(x).P | a〈p〉. P | let x,y = p in P

A context C[·] is a process with a hole []; we call a (x) and a〈p〉 guards, and call P in
a(x). P and a〈p〉. P a process under guard.

We abbreviate a(x). let y,z = x in P by a(y,z). P , as well as (νm) (νn)P by (νmn)P ,
and write a〈p〉 for a〈p〉. 0 , and a〈c,d〉.P for a〈 c,d 〉. P . Notice that let x,y = a in P

(where a is not a variable) is stuck.

Definition 5 (Congruence). The structural congruence is the smallest equivalence re-
lation closed under contexts defined by the following rules:

P | 0 ≡ P

P | Q ≡ Q | P
!P ≡ P | !P

!P ≡ !P | ! P

(P | Q) | R ≡ P | (Q | R)
(νn)0 ≡ 0

(νm) (νn)P ≡ (νn) (νm)P

(νn) (P | Q) ≡ P | (νn)Q if n �∈ fn(P)
let x,y = a,b in P ≡ P [a/x, b/y]

As usual, we will consider processes modulo congruence and modulo α-convergence:
this implies that we will not deal explicitly with the process let x,y = a,b in P , but
rather with P [a/x, b/y]. We write a b for the forwarder [31] a(x). b〈x〉.

Computation in the π-calculus with pairing is expressed via the exchange of data.

Definition 6 (Reduction). The reduction relation over the processes of the π-calculus
is defined by the following (elementary) rules:

a〈p〉. P | a(x).Q →π P | Q [p/x]
P →π P ′ ⇒ (νn)P →π (νn)P ′

P →π P ′ ⇒ P | Q →π P ′ | Q
P ≡ Q & Q →π Q ′ & Q ′ ≡ P ′ ⇒ P →π P ′

As usual, we write→+
π for the transitive closure of→π, and→∗π for its reflexive and

transitive closure; we write→π (a) if we want to point out that a synchronisation took
place over channel a, and write→π (=α) if we want to point out that α-conversion has
taken place during the synchronisation.

Notice that a〈b,c〉 | a(x, y).Q →π Q [b/x, c/y] .

376 S. van Bakel and M.G. Vigliotti

Definition 7. 1. We write P ↓ n and say that P outputs on n (or P exhibits an output
barb on n) if P ≡ (νb1) . . . bm(n〈p〉 | Q) for some Q , where n �= b1 . . . bm.

2. We write P ⇓ n (P may output on n) if there exists Q such that P →∗π Q and Q ↓ n.
3. We write P ∼C Q (P and Q are contextually equivalent) if, for all C[·], and for all

n, C[P]⇓ n if and only if C[Q]⇓ n.
4. We write ∼G (called garbage collection) when we ignore a process because it is

contextually equivalent to 0; notice that ∼G ⊂ ∼C.

The following is a well-known result.

Proposition 8. Let P , Q not contain a, then

(νa) (a〈b〉. P | a(x). Q) ∼C P | Q [b/x]
(νa) (!a〈b〉. P | a(x). Q) ∼C,∼G Q [b/x]

The π-calculus is equipped with a rich type theory [31], from the basic type system
for counting the arity of channels [27] to sophisticated linear types in [22]. The notion
of type assignment we use here is the one first defined in [8] and differs from systems
presented in the past in that types do not contain channel information, and in that it ex-
presses implication, i.e. has functional types and describes the ‘input-output interface’
of a process.

Definition 9 (Context assignment for π [8]). Functional type assignment for the π-
calculus is defined by the following sequent system:

(0) :
0 : Γ � Δ

(!) :
P : Γ � Δ

! P : Γ � Δ

(ν) :
P : Γ, a:A � a:A, Δ

(νa)P : Γ � Δ

(|) :
P : Γ � Δ Q : Γ � Δ

P |Q : Γ � Δ

(W) :
P : Γ � Δ

(Γ′ ⊇ Γ, Δ′ ⊇ Δ)
P : Γ′ � Δ′

(in) :
P : Γ, x:A � x:A, Δ

a(x).P : Γ, a:A � Δ

(out) :
P : Γ, b:A � b:A, Δ

(a �= b)
a〈b〉. P : Γ, b:A � a:A, b:A, Δ

(pair-out) :
P : Γ, b:A � c:B, Δ

(b �∈ Δ; a, c �∈ Γ)
a〈b,c〉.P : Γ, b:A � a:A→B, c:B, Δ

(let) :
P : Γ, y:B � x:A, Δ

(y, z �∈ Δ; x �∈ Γ)
let x,y = z in P : Γ, z:A→B � Δ

We adjust the system for the type constant ⊥ by allowing that only in right-hand con-
texts. We write P : Γ �π Δ if there exists a derivation using these rules that has this
expression in the conclusion.

We should perhaps stress that it is not known if this system has a relation with logic.
The following rule is derivable:

(pair-in) :
P : Γ, y:B �π x:A, Δ

(y, a �∈ Δ, x �∈ Γ)
a(x,y). P : Γ, a:A→B �π Δ

The soundness result is stated as:

Theorem 10 (Witness reduction [8]). If P : Γ �π Δ and P →π Q , then Q : Γ �π Δ.

An Output-Based Semantics of Λμ with Explicit Substitution 377

4 Context and Background of This Paper

In the past, there have been several investigations of encoding from the λ-calculus [11]
into the π-calculus [24, 29]. Research in this direction started by Milner’s encoding
·M · of λ-terms [24]; Milner’s encoding is input based and the translation of closed

λ-terms respects large-step lazy reduction →L [3] to normal form up to substitution.
Standard operational soundness result hold for this translation, and full abstraction has
been shown by in [29] for an (input-based, as Milner’s) encodingH · 〈·〉, of the lazy
λ-calculus into the higher-order π-calculus (where in synchronisation not names are
sent, but processes).

In [10], we presented a logical, output-based translation · S · that interprets abstrac-
tion λx.M not using input, but via an asynchronous output which leaves the translation
of the body M free to reduce. That translation is defined as:

x S a =
Δ x(w). a〈w〉

λx.M S a =
Δ (νxb) (M H b | a〈x,b〉)

MN S a =
Δ (νc) (M H c | c(v,d). (! N H v | d a))

M〈x := N〉 S a =
Δ (νx) (M H a | ! N H x)

For this translation, [10] showed (using ↑ to denote non-termination)

1. M ↑ ⇒ M S a ↑, and M→xH N ⇒ M S a→∗π∼C N H a.
2. Γ � M : A ⇒ M S a : Γ �π a:A.

As argued in [10], to show the above result, which formulates a direct step-by-step
relation between β-reduction and the synchronisation in the π-calculus, it is necessary
to make the substitution explicit. This is a direct result of the fact that, in the π-calculus,
λ’s implicit substitution gets ‘implemented’ one variable at the time, rather than all in
one fell swoop. Since we aim to show a similar result for Λμ, we will therefore define
a notion of explicit substitution. Although termination is not studied in that paper, it
is easily achieved through restricting the notion of reduction in the π-calculus by not
allowing reduction to take place inside processes whose output cannot be received, or
by placing a guard on the replication as we do in this paper.

A natural extension of this line of research is to see if the π-calculus can be used
to interpret more complex calculi as well, as for example calculi that relate not to intu-
itionistic logic, but to classical logic, as λμ, λμμ̃, or X . There are, to date, a number
of papers on this topic. In [22] an interpretation of Call-by-Value λμ is defined that is
based on Milner’s. The authors consider typed processes only, and use a much more
liberal notion of reduction on processes by allowing reduction under guards, making
the resulting calculus very different from the original π-calculus. Types for processes
prescribe usage of names

In [8] an interpretation into π of the sequent calculus X is defined that enjoys the
Curry-Howard isomorphism for Gentzen’s LK [18], which is shown to respect reduc-
tion. However, this result is only partial, as it is formulated as “if P →X Q, then
P c1 Q ”, allowing P to have more observable behaviour than Q . Although in

[8] it is reasoned that this is natural in the context of non-confluent, symmetric sequent
calculi, and is shown that the interpretation preserves types, it is a weaker result than
could perhaps be expected.

378 S. van Bakel and M.G. Vigliotti

An encoding of λμμ̃ is studied in [15]; the interpretation defined there strongly de-
pends on recursion, is not compositional, and preserves only outermost reduction; no
relation with types is shown.

5 Λμ with Explicit Substitution

One of the main achievements of [10] is that it establishes a strong link between reduc-
tion in the π-calculus and step-by-step explicit substitution for the λ-calculus, by for-
mulating a result not only with respect to explicit head reduction and the spine encoding
defined there, but also for Milner’s encoding with respect to explicit lazy reduction.

In view of this, we decided to study a variant of Λμ with explicit substitution as well,
and present here Λμx. Explicit substitution treats substitution as a first-class operator,
both for the logical and the structural substitution, and describes all the necessary steps
to effectuate both.

Definition 11 (Λμx). 1. The syntax of the explicit Λμ calculus, Λμx, is defined by:

M, N ::= x | λx.M | MN | M 〈x := N〉 | μα.M | [β]M | M 〈α := N·γ〉
We call a term pure if it does not contain explicit substitution.

2. The reduction relation→x on terms in Λμx is defined as the compatible closure of
the rules (we only show the important ones):
(a) Main reduction rules:

(λx.M)N → M 〈x := N〉 N pure
(μα.M)N → μγ.M 〈α := N·γ〉 N pure
μβ.[β]M → M if β �∈ fn(M)

μβ.[δ]μγ.M → μβ.M[δ/γ]

(b) Term substitution rules, like
x 〈x := N〉 → N

M 〈x := N〉 → M x �∈ fv (M)

(c) Structural rules, like
([α]M) 〈α := N·γ〉 → [γ](M 〈α := N·γ〉)N
([β]M) 〈α := N·γ〉 → [β](M 〈α := N·γ〉) α �= β

M 〈α := N·γ〉 → M α �∈ fn(M)

(d) Contextual rules, like

M→ N ⇒

⎧⎪⎪⎨⎪⎪⎩
ML → NL
LM → LN
M 〈x := L〉 → N 〈x := L〉
L 〈α := M·γ〉 → L 〈α := N·γ〉

3. We define →:= as the notion of reduction where the main reduction rules are not
used, and =x as the smallest equivalence relation generated by→x.

Notice that this is a system different from that of [4], where a version with explicit
substitution is defined for a variant of λμ that uses de Bruijn indices [13].

Explicit substitution describes explicitly the process of executing a βμ-reduction,
i.e. expresses syntactically the details of the computation as a succession of atomic
steps (like in a first-order rewriting system), where the implicit substitution of each βμ-
reduction step is split up into reduction steps. Thereby the following is straightforward:

An Output-Based Semantics of Λμ with Explicit Substitution 379

Proposition 12 (Λμx implements Λμ-reduction). 1. M→βμ N ⇒ M→∗x N.
2. M ∈Λμ & M→x N ⇒ ∃ L ∈Λμ [N →∗:= L].

The notion of type assignment on Λμx is a natural extension of the system for the
Λμ-calculus of Def. 2 by adding rules (T-cut) and (C-cut).

Definition 13. Using the notion of type assignment in Def. 2, type assignment for Λμx
is defined by adding:

(T-cut) :
Γ, x:A � M : B | Δ Γ � N : A | Δ

Γ � M 〈x := N〉 : B | Δ

(C-cut) :
Γ � M : C | α:A→B, γ:B, Δ Γ � N : A | γ:B, Δ

Γ � M 〈α := N·γ〉 : C | Δ

We write Γ �μx M : A for judgements derivable in this system.

We also consider the notion of head reduction;

Definition 14. 1. We define head reduction→H as a restriction of→βμ by removing
the contextual rule M→ N ⇒ LM → LN .

2. The Λμ and Λμx head-normal forms are defined through the grammar:

H ::= xM1· · ·Mn (n ≥ 0) | λx.H | [α]H
| μα.H (H �= [α]H ′ & α �∈ H ′, H �= [β]γ.H ′)

3. The head variable of M, hv(M), and head name hn (M) are defined as expected.

The following is straightforward:

Proposition 15 (→H implements Λμ’s head reduction). If M→∗βμ N with N in head-
normal form, then there exists L in→H-normal form such that M→∗H L, and L→∗βμ N,
and none of these last steps are reductions in→H.

Notice that λ f .(λx. f (xx))(λx. f (xx)) →H λ f . f ((λx. f (xx))(λx. f (xx))) and this
last term is in head-normal form, and in→H-normal form.

In the context of head reduction, we can economise further on how substitution is
executed, and perform only those replacements of variables by terms that are essential
for the continuation of reduction. We will therefore limit substitution to allow it to only
replace the head variable or name of a term. We will show that this is exactly the kind
of reduction that the π-calculus naturally encodes.

Definition 16 (Explicit head reduction cf. [10]). We define explicit head reduction
→xH on Λμx as→x, but for:

1. To avoid looping unnecessarily, application of all term substitution (resp. struc-
tural) rules on M 〈x := N〉 (resp. M 〈α := N·γ〉) is only allowed if hv(M) = x
(resp. hn (M) = α); the only exception are the garbage collection rules, i.e. when
x �∈ fv (M) (α �∈ fn(M)).

380 S. van Bakel and M.G. Vigliotti

2. We change two cases:
(PQ) 〈x := N〉 → (P 〈x := N〉 Q) 〈x := N〉 (x = hv(P))
(PQ) 〈α := N·γ〉 → (P 〈α := N·γ〉 Q) 〈α := N·γ〉 (α = hn (P))

3. We add two substitution rules:
M 〈x := N〉 〈y := L〉 → M 〈y := L〉 〈x := N〉 〈y := L〉 (y = hv(M))

M 〈α := N·γ〉 〈β := L·δ〉 → M 〈β := L·δ〉 〈α := N·γ〉 〈β := L·δ〉 (α = hn (P))

4. We remove the contextual rules:

M→ N ⇒

⎧⎨⎩
LM → LN
L 〈x := M〉 → L 〈x := N〉
L 〈α := M·γ〉 → L 〈α := N·γ〉

Notice that, for example, in case 2, the first of the two clauses postpones the substitution
〈x := N〉 on Q until such time that an occurrence of the variable x in Q becomes the
head-variable. It is straightforward to show that this notion of reduction is confluent;
remember that in M 〈x := N〉 and M 〈α := N·γ〉, N is a pure term.

The following proposition states the relation between explicit head reduction, head
reduction, and explicit reduction.

Proposition 17. 1. If M→∗H N, then there exists L such that M→∗xH L and N →∗:= L.
2. If M →∗H N and N is in→H-normal form, then there exists L such that M →∗xH L

and N →∗x L.
3. If M→∗xH N with M∈Λμ and N is in→xH-normal form, then there exists L∈Λμ

such that N →:= L, and L is in Λμ head-normal form.

This result gives that we can show our main results for Λμx for reductions that reduce
to head-normal form, that are naturally defined as follows:

Definition 18 (cf. [23]). The normal forms with respect to→xH are defined through:

N ::= xM1· · ·Mn (n ≥ 0) | λx.N | [α]N
| μα.N (N �= [α]N ′ & α �∈ N ′, N �= [β]γ.N ′)
| N 〈x := M〉 (hv(N) �= x)
| N 〈α := M·γ〉 (hn (N) �= α)

Notice that, for example, under head reduction, any term of the shape (λx.P)Q in one
of the Mi in xM1· · ·Mn is not considered a redex.

6 A Logical Translation of Λμx to π

We will now define our logical, output-based translation · · of the Λμx-calculus into
the π-calculus. The main idea behind the translation, as in [10], is to give a name to the
anonymous output of terms; it combines this with the inherent naming mechanism of
Λμ. In the definition below, for readability, we use the symbol • as a channel name to
represent an output that cannot be received from.

Definition 19 (Logical translation of Λμx terms). The translation of Λμx terms into
the π-calculus is defined in Fig. 1.

An Output-Based Semantics of Λμ with Explicit Substitution 381

x a =
Δ x(u). ! u a

λx.M a =
Δ (νxb) (M b | a〈x, b〉)

MN a =
Δ (νc) (M c | ! c(v,d). (v :=N | ! d a))

M 〈x := N〉 a =
Δ (νx) (M a | x :=N)

x := N =
Δ ! (νw) (x〈w〉. N w)

μγ.M a =
Δ (ν•) ((M •)[a/γ])

[β]M a =
Δ M β

M 〈β := N·γ〉 a =
Δ (νβ) (M a | β := N·γ)

α := N·γ =
Δ ! α(v, d). (v :=N | ! d γ)

Fig. 1. The logical translation

We would like to stress that. although inspired by logic, our translation does not de-
pend on types at all; in fact, we can treat untypeable terms as well, and can show that
(λx.xx)(λx.xx) a (perhaps the prototype of a non-typeable term) runs to itself (this

already holds for · H · of [10]).
Notice that, as is the case for Milner’s translation and in contrast to the interpre-

tation of [10], a guard is placed on the replicated terms. This is not only done with
an eye on proving preservation of termination, but more importantly, to make sure
that (νx) (x :=N) ∼C 0 : since a term can have named sub-terms, the translation
will generate output not only for the term itself, but also for those named terms, so
(νx) (x := N) can have observable behaviour, in contrast to [10], where this process
is equivalent to 0 .

We could have avoided the implicit renaming in the case for μ-abstraction and de-
fined μγ.M a = (ν•γ) (M • | ! γ a), which is operationally (contextually) the
same as (ν•) ((M •)[a/γ]), but then we could not show that terms in head-normal
form are translated to processes in normal form (Lem. 24). There is a strong relation
between this encoding and the abstract machine defined in [16], but for the fact that that
only represents lazy reduction.

Notice that μγ.[β]M a =
Δ (ν•) ((M β)[a/γ]), so had we considered to just en-

code λμ, we could have defined

μγ.[β]M a =
Δ (ν•) ((M β)[a/γ]) = M[a/γ] β

so λμ’s binding-and-naming has no representation in π.
Moreover, notice the similarity between

MN a = (νc) (M c | !c(v,d). (v :=N | ! d a))
M 〈β := N·γ〉 a = (νβ) (M a | ! β(v,d). (v :=N | ! d γ))

The first communicates N via the output channel c of M, whereas the second com-
municates with all the sub-terms that have β as its output name2. This very elegantly
expresses exactly what the structural substitution does: it ‘connects’ arguments with
the correct position in a term; it also allows us to write (νc) (M c | c := N·a) for
MN a. This stresses that the π-calculus constitutes a very powerful abstract machine

indeed: although the notion of structural reduction in λμ is very different from normal

2 A similar observation can be made for the encoding of λμ in X ; see [9].

382 S. van Bakel and M.G. Vigliotti

β-reduction, no special measures had to be taken in order to be able to express it; the
component of our encoding that deals with pure λ-terms is almost exactly that of [10]
(ignoring for the moment that substitution is modelled using a guard, which affects also
the interpretation of variables), but for the use of replication in the case for application.
In fact, the distributive character of structural substitution is dealt with entirely by con-
gruence; see also Ex. 23. As standard in the literature [30], we say that a name a occurs
in the output subject position of a process P if P⇓ a.

Lemma 20. 1. Assume that a is only used for output R , Q . Then:
(νa) (!a(x). P | Q | R) ∼C (νa) (!a(x). P | Q) | (νb) (!b(x). P | R [b/a])

2. Assume that a is only used for input in R , Q . Then:
(νa) (!a〈p〉. P | Q | R) ∼C (νa) (!a〈p〉. P | Q) | (νb) (!b〈p〉. P | R [b/a])

3. (νa) (P a | ! a(p). Q) ∼C (νa) ((νb) (P b | ! b(p). Q) | ! a(p). Q)

To underline the significance of our results, notice that the translation is not trivial,
since λy.y and λyz.y are interpreted by, respectively, the processes (νyb) (y(u). !u b |
a〈y,b〉) and (νyb) ((νzb) (y(u). !u b | b〈z,b〉) | a〈y,b〉), that differ under∼C.

It is straightforward to show that typeability is preserved:

Theorem 21 (Type preservation). If Γ �μx M : A | Δ, then M a : Γ �π a:A, Δ.

PROOF. By induction on the structure of derivations in �μx; we only show one case:

(C-cut) Then M = P〈α := Q·γ〉 and we have both Γ �μx P : C | α:A→B, Δ
and Γ �μx Q : A | γ:B, Δ for some B. By induction, there exist D1 :: P a : Γ �π
a:C, α:A→B, Δ and, since a is fresh, D2 :: Q w : Γ �π w:B, Δ, and we can
construct

D1

P a : Γ � a:B→A, Δ

D2

Q w : Γ � w:B, Δ
(out)

b〈w〉. Q w : Γ � b:B, w:B, Δ
(ν)

(νw)(b〈w〉. Q w) : Γ � b:B, Δ
(!)

! (νw)(b〈w〉. Q w) : Γ � b:B, Δ

(0)
0 : w:A � w:A

(out)
γ〈w〉 : w:A � γ:A, w:A

(in)
d γ : d:A � γ:A

(!)
!d γ : d:A � γ:A

(|)
b :=Q | !d γ : Γ, d:A � γ:A, b:B, Δ

(pair-in)
α(b,d). (b :=Q | !d γ) : Γ, α:B→A � γ:A, Δ

(!)
!α(b,d). (b :=Q | ! d γ) : Γ, α:B→A � γ:A, Δ

(|)
P a | ! α(b,d). (b :=Q | ! d γ) : Γ, α:B→A � γ:A, Δ

(ν)
(να) (P a | α := Q·γ) : Γ � γ:A, Δ

and (να) (P a | α := Q·γ) = P〈α := Q·γ〉 a .

We will now show that our translation fully respects the explicit reduction→x, modulo
contextual equivalence, using renaming of output and garbage collection. Renaming is
defined and justified via the following lemma.

Lemma 22 (Renaming lemma). 1. (νa) (!a e | M a) ∼C M[e/a] e.
2. (νa) (!a e | M b) ∼C M[e/a] b.

We will use ∼R if we want to emphasise that two processes are equivalent just using
renaming and write →∼ ∗π for the relation→∗π ∪ ∼G ∪ ∼R.

An Output-Based Semantics of Λμ with Explicit Substitution 383

(λx.x)(μα.[α](λq.q)(μβ.[α]λy.y)) a =
Δ

(νc) ((νxb) (x b | c〈x,b〉) | ! c(v,d). (v :=μα.[α](λq.q)(μβ.[α]λy.y) | ! d a)) → (c)
(νxb) (x b | x :=μα.[α](λq.q)(μβ.[α]λy.y) | ! b a) | (νc) (! c(v, d). · · ·) ≡,=Δ ,∼G

(νxb) (x(u). !u b | ! (νw) (x〈w〉. μα.[α](λq.q)(μβ.[α]λy.y) w) | ! b a) → (x)
(νwb) (! w b | μα.[α](λq.q)(μβ.[α]λy.y) w | ! b a) | (νx) (! (νw) (x〈w〉. · · ·)) =Δ ,∼G ,=α

(ναb) (! α b | (ν•) ([α](λq.q)(μβ.[α]λy.y) •) | !b a) =
Δ ,≡

(ναb) (! α b | (νc) ((νqb1) (q b1 | c〈q,b1〉) |
! c(v,d). (v :=μβ.[α]λy.y | ! d α)) | ! b a) → (c),∼G,=Δ

(ναb) (! α b | (νqb1) (q(u). ! u b1 |
! (νw) (q〈w〉. μβ.[α]λy.y w) | ! b1 α) | ! b a) → (q),∼G,=Δ ,≡

(ναb) (! α b | λy.y α | ! b a) =
Δ ,∼R ,∼G (νyb) (y b | a〈y,b〉)

Fig. 2. The translation of a term with double output

Using this lemma, we can show the following:

Example 23. The translation of a β-redex reduces as:

(λx.P)Q a =
Δ

(νc) ((νxb) (P b | c〈x,b〉) | !c(v,d). (v :=Q | ! d a)) →π (c)
(νbx) (P b | ! b a | x := Q) | (νc) (!c(v,d). (v :=Q | !d a)) ∼G

(νbx) (P b | ! b a | x := Q) ∼R (22)
(νx) (P a | x :=Q) =

Δ P〈x := Q〉 a

This implies that β-reduction is implemented in π by at least one π-reduction.
On the other hand, μ-reduction consists of a reorganisation of the structure of a term

by changing its applicative structure. Since application is essentially modelled through
parallel composition, this implies that the translation of a μ-redex is essentially dealt
with by congruence and renaming. For example,

(μβ.[β]P)Q a =
Δ

(νc) ((ν•) ((P β)[c/β]) | ! c(v,d). (v :=Q | ! d a)) ∼C (=α)
(νβ) (P β | ! β(v,d). (v :=Q | !d a))

We can show, using Lem. 20, this last process is contextually equivalent to

(νγ) ((νβ) (P γ | ! β(v,d). (v :=Q | !d a)) | !γ(v,d). (v :=Q | !d a))
=
Δ P〈β := Q·a〉Q a

(notice that we have separated out the outside name of the term P, being β, which we
renamed to γ; this leaves two context substitutions, one dealing with the occurrences of
β inside P, and one with γ3).

Translations of terms in→xH-normal form are in normal form as well.

Lemma 24. N is a→xH-nf implies N a is irreducible.

To illustrate the expressiveness of our translation, we give some examples:

3 This corresponds to the behaviour of rule (†imp-outs) in X .

384 S. van Bakel and M.G. Vigliotti

Example 25. 1. In Fig. 2 we run (λx.x)(μα.[α](λq.q)(μβ.[α]λy.y)) a,
as an example of a term that generates two outputs over α, and highlights the need
for the repeated use of replication.

2. PQR a =
Δ ,≡ (νcc′) (P c′ | !c′(v,d). (v :=Q | ! d c) |

!c(v,d). (v :=R | !d a))
so components of applications are placed in parallel under the translation. Similarly,

M〈α := N·β〉〈γ := L·δ〉 a = (νγα) (M a | α := N·β | γ := L·δ)

so repeated structural substitutions are also placed in parallel under the translation
and can be applied independently.

7 Soundness, Completeness, and Termination

As in [24, 31], we can now show a reduction preservation result for explicit head re-
duction for Λμx, by showing that · · preserves →xH up to →∼ ∗π . Since reduction in
interpreted terms takes place over hidden channels exclusively, by Lem. 8, →∼ ∗π ⊆∼C,
so we could have shown the following result using ∼C as well, but the current formula-
tion is more expressive; notice that we do not require the terms to be closed.

Theorem 26 (Soundness). M→xH N ⇒ M a →∼ ∗π N a.

PROOF. We show only the interesting cases.

x 〈x := N〉 → N : x〈x := N〉 a =
Δ

(νx) (x a | x :=N) ≡
(νx) (x(u). !u a | (νw) (x〈w〉. N w) | x :=N) →π (x)
(νw) (!w a | N w) | (νx) (x :=N) ∼R,∼G N a

(PQ) 〈x := N〉 → (P 〈x := N〉Q) 〈x := N〉, x = hv(P) : (PQ)〈x := N〉 a =
Δ

(νx) ((νc) (P c | ! c := Q·a) | x :=N) ∼C (20)
(νx) ((νc) ((νx) (P c | x :=N) | ! c := Q·a) | x :=N) =

Δ

(νx) ((νc) (P 〈x := N〉 c | ! c := Q·a) | x :=N) =
Δ ,≡

(νx) (P 〈x := N〉Q a | x :=N) =
Δ

(P 〈x := N〉Q)〈x := N〉 a

(μβ.M)N → μγ.M 〈β := N·γ〉, γ fresh : (μβ.M)N a =
Δ

(νc) ((ν•) ((M •)[c/β]) | !c(v,d). (v :=N | !d a)) =α

(νβ) ((ν•) (M •) | ! β(v,d). (v :=N | ! d a)) ≡,=
(ν•) (((νβ) (M • | ! β(v,d). (v :=N | ! d γ)))[a/γ]) =

Δ

μγ.M〈β := N·γ〉 a

([α]M) 〈α := N·γ〉 → [γ](M 〈α := N·γ〉)N : ([α]M)〈α := N·γ〉 =
Δ

(να) (M α | ! α(v,d). (v :=N | ! d γ)) ∼C (20)
(νc) ((να) (M c | ! α(v,d). (v :=N | ! d γ)) |

!c(v,d). (v :=N | !d γ)) =
Δ

(νc) (M 〈α := N·γ〉 c | ! c(v,d). (v :=N | ! d γ)) =
Δ

[γ]M〈α := N·γ〉N

An Output-Based Semantics of Λμ with Explicit Substitution 385

The main soundness result is formulated as:

Theorem 27 (Operational Soundness for→xH). 1.M→∗xH N ⇒ M a →∼ ∗π N a.
2. M ↑xH ⇒ M a ↑π.

Since →∼ ∗π ⊆ ∼C, which is symmetric, Thm. 27 gives that · · preserves =xH up to
∼C.

Corollary 28 (Adequacy). M =xH N ⇒ M a ∼C N a.

This result states that our encoding gives, in fact, a semantics for the explicit head re-
duction for Λμ. As for a full abstraction result, note that we cannot show the reverse of
Cor. 28, since different unsolvable terms like (λx.xx)(λx.xx) and (λw.www)(λw.www)
are not equivalent under =xH, but are contextually equivalent under · · , i.e. have the
same observable behaviour, as is illustrated by the fact that their translations never ex-
hibit an output.

We can also show operational completeness for→xH.

Theorem 29 (Operational completeness for→xH). If M a →π P then there exists
N such that P →∼ ∗π N a, and M→xH N.

This in turn can be used to show:

Lemma 30. 1. Let M be a term in Λμx. If M a→∗π N a then M→∗xH N.
2. Let M ∈Λμ, i.e. a (pure) Λμ-term. If M a→π P then there exists N ∈Λμx and

L ∈Λμ such that P ∼C N a, and M→∗xH N and N →∗:= L.

We can show the following termination results:

Theorem 31 (Termination). 1. If M →∗xH N, with N in explicit head-normal from,
then M a ↓π.

2. If M→∗βμ N, with N in head-normal from, then M a ↓π.

3. Let M ∈ Λμ. If M a ↓π then there exists N ∈ Λμx and L in →λμ-head normal
form such that M a ∼C N a, and M→∗xH N and N →∗:= L.

Notice that, in the first case, the normal form of M a need not be N a; a similar
observation can be made with respect to Milner’s encoding. Notice also that this result
is stronger than the formulation of the termination result for Milner’s encoding in [31],
since it models reduction to head-normal form, not just normal form. However, since
terms that have a normal form have a head-normal form as well, Thm. 31 immediately
leads to:

Corollary 32. If M ↓βμ, then M a ↓π.

8 Conclusions

We have defined an output based, logic inspired translation of untyped Λμ with explicit
substitution into the π-calculus and shown that it respects step-by-step head-reduction,

386 S. van Bakel and M.G. Vigliotti

assignable types, head-conversion, and termination. We conjecture that we can show
the results shown above also for head reduction with implicit substitution; for this we
would need to show that, if M→∗:= N, then M a ∼C N a. It seems that the approach
via Levy-Longo trees is more suitable for that.

There are many alternatives to the approach we have chosen to follow here; espe-
cially our choice for contextual equivalence (inspired by λ-calculus semantics) could
be replaced by branching semantics, or a bisimulation-like equivalence. The natural
question is then, which of our properties would be affected? Would branching and non-
branching equivalences to coincide, maybe by exploiting some confluence properties?

We leave these issues for future work.

References

1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit Substitutions. JFP 1(4), 375–416
(1991)

2. Abadi, M., Gordon, A.: A Calculus for Cryptographic Protocols: The Spi Calculus. In: CCS
1997, pp. 36–47 (1997)

3. Abramsky, S.: The lazy lambda calculus. Research topics in functional programming, pp.
65–116. Addison-Wesley (1990)

4. Audebaud, P.: Explicit Substitutions for the Λμ Calculus. RR 94-26, ÉNS de Lyon (1994)
5. van Bakel, S.: Completeness and Partial Soundness Results for Intersection & Union Typing

for λ̄μμ̃. Annals of Pure and Applied Logic 161, 1400–1430 (2010)
6. van Bakel, S.: Completeness and Soundness results for X with Intersection and Union

Types. Fundamenta Informaticae (to appear, 2012)
7. van Bakel, S., Barbanera, F., de’Liguoro, U.: A Filter Model for the λμ-Calculus. In: Ong,

L. (ed.) TLCA 2011. LNCS, vol. 6690, pp. 213–228. Springer, Heidelberg (2011)
8. van Bakel, S., Cardelli, L., Vigliotti, M.G.: From X to π; Representing the Classical Se-

quent Calculus in the π-calculus. In: CL&C 2008 (2008)
9. van Bakel, S., Lescanne, P.: Computation with Classical Sequents. MSCS 18, 555–609

(2008)
10. van Bakel, S., Vigliotti, M.G.: A Logical Interpretation of the λ-Calculus into the π-

Calculus, Preserving Spine Reduction and Types. In: Bravetti, M., Zavattaro, G. (eds.)
CONCUR 2009. LNCS, vol. 5710, pp. 84–98. Springer, Heidelberg (2009)

11. Barendregt, H.: The Lambda Calculus: its Syntax and Semantics. North-Holland (1984)
12. Bloo, R., Rose, K.H.: Preservation of Strong Normalisation in Named Lambda Calculi with

Explicit Substitution and Garbage Collection. In: CSN 1995, pp. 62–72 (1995)
13. de Bruijn, N.G.: Lambda Calculus Notation with Nameless Dummies: A Tool for

Automatic Formula Manipulation, with Application to the Church-Rosser Theorem.
Ind. Math. 34, 381–392 (1972)

14. Church, A.: A Note on the Entscheidungsproblem. JSL 1(1), 40–41 (1936)
15. Cimini, M., Sacerdoti Coen, C., Sangiorgi, D.: λ̄μμ̃ calculus, π-calculus, and abstract ma-

chines. In: EXPRESS 2009 (2009)
16. Crolard, T.: A confluent lambda-calculus with a catch/throw mechanism. JFP 9(6), 625–647

(1999)
17. Curien, P.-L., Herbelin, H.: The Duality of Computation. In: ICFP 2000, pp. 233–243. ACM

(2000)
18. Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Collected

Papers of Gerhard Gentzen, p. 68. North Holland (1935, 1969)

An Output-Based Semantics of Λμ with Explicit Substitution 387

19. de Groote, P.: On the Relation Between the λμ-Calculus and the Syntactic Theory of Se-
quential Control. In: Pfenning, F. (ed.) LPAR 1994. LNCS, vol. 822, pp. 31–43. Springer,
Heidelberg (1994)

20. Herbelin, H.: C’est maintenant qu’on calcule: au cœur de la dualité. Mémoire d’habilitation,
Université Paris 11 (2005)

21. Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Communication. In: Amer-
ica, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)

22. Honda, K., Yoshida, N., Berger, M.: Control in the π-Calculus. In: CW 2004 (2004)
23. Lassen, S.B.: Head Normal Form Bisimulation for Pairs and the λμ-Calculus. In: LICS

2006, pp. 297–306 (2006)
24. Milner, R.: Functions as processes. MSCS 2(2), 269–310 (1992)
25. Parigot, M.: An Algorithmic Interpretation of Classical Natural Deduction. In: Voronkov,

A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)
26. Parigot, M.: Strong Normalization for Second Order Classical Natural Deduction. In: LICS

1993, pp. 39–46 (1993)
27. Pierce, B.C., Sangiorgi, D.: Typing and Subtyping for Mobile Processes. MSCS 6(5), 409–

453 (1996)
28. Py, W.: Confluence en λμ-calcul. Phd thesis, Univ. Savoie (1998)
29. Sangiorgi, D.: Expressing Mobility in Process Algebra: First Order and Higher Order

Paradigms. PhD thesis, Univ. Edinburgh (1992)
30. Sangiorgi, D.: Lazy functions and mobile processes. RR 2515, INRIA, Sophia-Antipolis,

France (1995)
31. Sangiorgi, D., Walker, D.: The Pi-Calculus. Cambridge University Press (2001)
32. Sestoft, P.: Demonstrating Lambda Calculus Reduction. In: Mogensen, T.Æ., Schmidt,

D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 420–
435. Springer, Heidelberg (2002)

33. Wadsworth, C.P.: The relation between computational and denotational properties for
Scott’s D∞-models of the lambda-calculus. SIAM JoC 5, 488–521 (1976)

Erratum: Probabilistic Inference
and Monadic Second Order Logic

Marijke Hans L. Bodlaender

P.O. Box 80.089, Department of Computing Sciences, Utrecht University,
The Netherlands

h.l.bodlaender@uu.nl

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 43–56, 2012.
© IFIP International Federation for Information Processing 2012

DOI 10.1007/978-3-642-33475-7_27

The name of the author of the paper starting on page 43 of this volume has been
printed incorrectly. It should read: Hans L. Bodlaender

The original online version for this chapter can be found at
http://dx.doi.org/10.1007/978-3-642-33475-7_4

Erratum: Cinderella versus the Wicked Stepmother

Marijke Hans L. Bodlaender1, Cor A.J. Hurkens2, Vincent J.J. Kusters2,
Frank Staals2, Gerhard J. Woeginger2, and Hans Zantema2

1 Dept. of Information and Computing Sciences, Universiteit Utrecht, Netherlands

2 Dept. of Mathematics and Computer Science, TU Eindhoven, Netherlands

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 57–71, 2012.
© IFIP International Federation for Information Processing 2012

DOI 10.1007/978-3-642-33475-7_28

The name of the first author of the paper starting on page 57 of this volume has been
printed incorrectly. It should read: Marijke H.L. Bodlaender

The original online version for this chapter can be found at
http://dx.doi.org/10.1007/978-3-642-33475-7_5

Author Index

Ancona, Davide 10

Beffara, Emmanuel 280
Bensch, Suna 28
Bodlaender, Marijke Hans L. 43,E1 5, 7,E2
Boreale, Michele 72
Brengos, Tomasz 87

Carayol, Arnaud 104

Della Croce, Federico 295
Deng, Yuxin 119

Ésik, Zoltán 104

Feng, Yuan 119

Gadducci, Fabio 134
Godskesen, Jens Chr. 342

Holzer, Markus 28
Hurkens, Cor A.J. 57,E2

Jančar, Petr 149
Jirásková, Galina 164, 179

Karandikar, Prateek 149
Katoen, Joost-Pieter 325
Kobayashi, Naoki 357
Küfner, Philipp 209
Kurz, Alexander 193
Kusters, Vincent J.J. 57,E2
Kutrib, Martin 28

Lagorio, Giovanni 10
La Torre, Salvatore 225
Liang, Hongyu 240

Lüttgen, Gerald 265
Luttik, Bas 250

Malcher, Andreas 28
Masopust, Tomáš 164
Mogbil, Virgile 280
Monreale, Giacoma Valentina 134
Montanari, Ugo 134

Nagy, Benedek 179
Napoli, Margherita 225
Nestmann, Uwe 209

Paolini, Michela 72
Paschos, Vangelis Th. 295

Riba, Colin 310
Rickmann, Christina 209

Schnoebelen, Philippe 149
Sher, Falak 325
Song, Lei 342
Staals, Frank 57,E2
Suzuki, Tomoyuki 193

Tsukada, Takeshi 357
Tuosto, Emilio 193

van Bakel, Steffen 372
Vigliotti, Maria Grazia 372
Vogler, Walter 265

Wiedermann, Jǐŕı 1
Woeginger, Gerhard J. 57, E2

Zantema, Hans 57,E2

	Title
	Preface
	Organization
	Table of Contents
	Computability and Non-computability Issuesin Amorphous Computing
	Introduction
	Universality in Amorphous Computing Systems
	Flying Amorphous Computer
	Nanomachines

	What Is the Simplest Universal Computational Model?
	The Problematic Simulation of Amorphous Systems by Turing Machines
	Conclusions
	References

	Static Single Information Formfor Abstract Compilation
	Introduction
	Type Analysis with SSA and SSI
	Language Definition
	Abstract Compilation
	Conclusion
	References

	Input-Driven Stack Automata
	Introduction
	Preliminaries and Definitions
	Computational Capacity
	References

	Probabilistic Inferenceand Monadic Second Order Logic
	Introduction
	Preliminaries
	Probabilistic Networks and the Inference Problem
	A Mixed Hypergraph Model
	Monadic Second Order Logic
	Treewidth, Terminal Hypergraphs, and Parse Trees
	Regular Properties and Finite State Tree Automata

	Main Results
	Extensions
	Non-binary Variables
	Conditional Probabilities
	Different Types of Edges
	Different Models

	Conclusions
	References

	Cinderella versus the Wicked Stepmother
	Introduction
	Preliminaries, Notations, and Conventions
	Above the Half-Diagonal
	The Proof of Theorem 2
	The Proof of Theorem 3.(i) and (ii)
	The Proof of Theorem 3.(iii)

	The Proof of Theorem 4
	Below the Half-Diagonal
	Final Remarks
	References

	Worst- and Average-Case Privacy Breaches in Randomization Mechanisms
	Introduction
	Preliminaries
	Basic Terminology
	Bayesian Hypothesis Testing, Min-entropy, Leakage
	Asymptotic Behavior

	Semantic Security of Randomization Mechanisms
	The Worst-Case Scenario
	The Average-Case Scenario

	Worst-Case Security vs. Differential Privacy
	Asymptotic Security
	Worst-Case Scenario
	Average-Case Scenario

	Utility
	Conclusion and Further Work
	References

	Weak Bisimulations for Coalgebrasover Ordered Functors
	Introduction
	Basic Notions and Properties
	Coalgebraic Operators and Saturators
	Two Approaches to Defining Weak Bisimulation
	Weak Coinduction Principle
	Summary and Future Work
	References

	A Context-Free Linear Orderingwith an Undecidable First-Order Theory
	Introduction
	Linear Orderings
	First-Order Logic
	First-Order Interpretations
	Structures Associated with Words and Languages
	Lexicographic Ordering and Countable Words Associated with a Language
	Tree of Language

	Main Undecidability Result
	Corollaries of Theorem 1
	Discussion
	References

	Open Bisimulation for Quantum Processes
	Introduction
	A Probabilistic Model
	Quantum CCS
	An Extensional Equivalence
	Open Bisimulations
	A Useful Proof Technique
	Modal Characterisation

	Examples
	Conclusion and Related Work
	References

	A Modular LTS for Open Reactive Systems
	Introduction
	Some Background on 2-Categories
	A New LTS for Open Reactive Systems
	On G-Luxes
	From Open G-Reactive Systems to Tile Systems
	Conclusions and Further Works
	References

	Unidirectional Channel Systems Can Be Tested
	Introduction
	Unidirectional Channel Systems
	Testing Channels and the Undecidability of Reachability
	Simulating Queue Automata
	Restricted Sets of Tests

	Simulating UCST[Z,N] by Using Sender’s Emptiness Tests Only
	Reducing UCST[Z,N] to UCST[Z1,N1]
	Reducing UCST[Z1,N1] to UCST[Z1]

	Reachability for UCST[Zl11] via Post’s Embedding Problem
	Reducing UCST[Z1] to UCST[Zl11]
	Some Undecidable Problems for UCST[Z,N]
	Conclusion
	References

	On Properties and State Complexityof Deterministic State-Partition Automata
	Introduction
	Preliminaries and Definitions
	Minimal State-Partition Automata
	Closure Properties
	State-Partition Complexity
	Conclusions and Discussion
	References

	On Union-Free and Deterministic Union-FreeLanguages
	Introduction
	Preliminaries
	On Parikh Images of Union-Free Languages
	Representation of Deterministic Union-Free Languages
	Finite Union of Deterministic Union-Free Languages
	Conclusions
	References

	A Characterisation of Languages on Infinite Alphabetswith Nominal Regular Expressions
	Introduction
	Motivating Examples: Languages on Infinite Alphabets
	Nominal Regular Expressions with Permutations
	Preliminaries
	From p-NREs to Languages on Infinite Alphabets

	Automata with Fresh-Name Generations and Permutations
	A Kleene Theorem
	From p-NREs to fp-Automata
	From fp-Automata to p-NREs

	Conclusion
	References

	Formal Verification of Distributed Algorithms
	Introduction
	Modeling the Algorithm
	Pseudo Code for State Machines
	State Machines in Isabelle

	Requirement Specification
	Proof Techniques
	More Case Studies
	Conclusion
	References

	A Temporal Logic for Multi-threaded Programs
	Introduction
	A Temporal Logic over Multi-nested Words
	 MultiCaRet Model-Checking
	Büchi Mpds for MultiCaRet Formulas
	Büchi Mpds with Scope-Bounded Matching Relations
	Decidability Results for MultiCaRet
	Scope-Bounded Multiply Nested Words
	Multiply Nested Words with Ordered Matching Relations
	Multiply Nested Words of Bounded Tree-Width

	References

	The Algorithmic Complexityof k-Domatic Partition of Graphs
	Introduction
	Complexity of Computing the k-Domatic Number
	Approximation Algorithm for k-Domatic Number
	k-Domatic Number of Special Graphs
	References

	Unique Parallel Decomposition in Branchingand Weak Bisimulation Semantics
	Unique Parallel Decomposition in Branching and Weak Bisimulation Semantics
	Introduction
	Processes Up to Branching and Weak Bisimilarity
	Partial Commutative Monoids and Decomposition
	Uniqueness
	Concluding Remarks
	References

	Modal Interface Automata
	Introduction
	Conjunction for Interface Automata
	Conjunction on IA
	Parallel Composition on IA

	Conjunction for Modal Transition Systems
	Disjunctive Modal Transition Systems
	Conjunction on dMTS

	Modal Interface Automata
	Conjunction on MIA
	Parallel Composition on MIA
	Embedding of IA into MIA

	Conclusions and Future Work
	References

	Proofs as Executions
	Introduction
	A Logic of Schedulings
	CCS Runs as Pairings
	Proof Nets for MLL with Action Modalities
	Typing Executions of MCCS Terms
	Anti-execution and Completeness
	Conclusion and Further Works
	References

	Efficient Algorithmsfor the max k-vertex cover Problem
	Introduction
	An O*(2-1+1n)-Time Polynomial Space Algorithm in General Graphs
	max k-vertex cover and Fixed-Parameter Tractability
	Tailoring Measure-and-Conquer to Graphs with Maximum Degree 3
	Approximating max k-vertex cover by Moderately Exponential Algorithms
	References

	A Model Theoretic Proof of Completenessof an Axiomatization of Monadic Second-Order Logic on Infinite Words
	Introduction
	A Deduction System for Monadic Second-Order Logic on Infinite Words
	Language
	Deduction for Second-Order Logic
	Models of Second-Order Logic
	Equality
	Axiomatization

	The Ehrenfeucht-Fraïssé Method
	Logical Equivalence Up to Bounded Quantifier Depth
	Structures with Parameters
	Ehrenfeucht-Fraïssé Games

	Finite Sums of Segments
	Restrictions and Relativizations
	Finite Sums of Segments

	Completeness of MSO w.r.t. the Standard Model
	The Infinite Fusion Lemma
	Splicing
	Infinite Fusion

	Conclusion
	References

	Compositional Abstraction Techniquesfor Probabilistic Automata
	Introduction
	Background
	Satisfaction
	Refinement
	Abstraction
	Reachability
	Parallel Composition
	Conclusion
	References

	Broadcast Abstraction in a Stochastic Calculusfor Mobile Networks
	Introduction
	The Calculus
	Labeled Transition System
	Weak Bisimulation
	A Leader Election Protocol
	Conclusion
	References

	An Intersection Type Systemfor Deterministic Pushdown Automata
	Introduction
	Preliminaries
	Type System
	Refining Witnesses
	Refinements of Automata
	Procedure and Sufficient Condition for Termination

	Applications: Some Decidability Results
	Balanced Parenthesis and Regular Hedge Languages
	Counting Automata and Superdeterministic Languages

	Related Work
	Conclusion and Future Work
	References

	An Output-Based Semantics of Λμwith Explicit Substitution in the π-Calculus
	Introduction
	TheΛμ Calculus
	The Synchronous π-Calculus with Pairing
	Context and Background of This Paper
	Λμ with Explicit Substitution
	A Logical Translation of Λμx to π
	Soundness, Completeness, and Termination
	Conclusions
	References

	Errata
	Probabilistic Inferenceand Monadic Second Order Logic
	Cinderella versus the Wicked Stepmother

	Author Index

