

Lecture Notes in Artificial Intelligence 7523

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Peter A. Flach Tijl De Bie
Nello Cristianini (Eds.)

Machine Learning and
Knowledge Discovery
in Databases

European Conference, ECML PKDD 2012
Bristol, UK, September 24-28, 2012
Proceedings, Part I

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Peter A. Flach
Tijl De Bie
Nello Cristianini
University of Bristol
Intelligent Systems Laboratory
Merchant Venturers Building
Woodland Road
Bristol BS8 1UB, UK
E-mails:
peter.flach@bristol.ac.uk
tijl.debie@bristol.ac.uk
nello.cristianini@bristol.ac.uk

© Cover illustration by www.zedphoto.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33459-7 e-ISBN 978-3-642-33460-3
DOI 10.1007/978-3-642-33460-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012946760

CR Subject Classification (1998):
I.2.6, H.2.8, I.5.2, G.2.2, G.3, I.2.4, I.2.7, H.3.4-5, I.2.9, F.2.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These proceedings contain the technical papers presented at the 2012 European
Conference on Machine Learning and Principles and Practice of Knowledge Dis-
covery in Databases (ECML-PKDD 2012), held in Bristol, UK, during the week
of 24–28 September 2012. ECML-PKDD is a highly successful and selective in-
ternational conference series, which was first organised in its present form in 2001
in Freiburg, Germany, when it joined together the hitherto separate ECML and
PKDD conferences. Since then, the two strands of machine learning and data
mining have been increasingly integrated in the joint conference, and today it is
well-known as the only top-tier international conference that exploits the synergy
between these two exciting fields. It is therefore particularly pleasing that the
achieved level of synergy is evident from the list of topics in which the research
track papers are categorised in these pages: Association Rules and Frequent Pat-
terns; Bayesian Learning and Graphical Models; Classification; Dimensionality
Reduction, Feature Selection and Extraction; Distance-Based Methods and Ker-
nels; Ensemble Methods; Graph and Tree Mining; Large-Scale, Distributed and
Parallel Mining and Learning; Multi-relational Mining and Learning; Multi-task
Learning; Natural Language Processing; Online Learning and Data Streams;
Privacy and Security; Rankings and Recommendations; Reinforcement Learn-
ing and Planning; Rule Mining and Subgroup Discovery; Semi-supervised and
Transductive Learning; Sensor Data; Sequence and String Mining; Social Net-
work Mining; Spatial and Geographical Data Mining; Statistical Methods and
Evaluation; Time Series and Temporal Data Mining; and Transfer Learning.

The format of the 2012 conference follows the tried-and-tested format of pre-
vious instalments, with workshops and tutorials on Monday and Friday; research
papers in parallel tracks on Tuesday, Wednesday and Thursday; and plenary
keynote talks on each of the five conference days. The proceedings start with
abstracts and bios of our five eminent invited speakers: Pieter Abbeel, Luc De
Raedt, Douglas Eck, Daniel Keim and Padhraic Smyth. The bulk of the proceed-
ings is then taken up by 105 research papers. These were carefully selected from
443 submitted papers (acceptance rate 23.7%) on the basis of reviews by 275
Programme Committee members and 36 Area Chairs, assisted by 161 additional
reviewers. In acknowledgment of their essential contribution to the success of the
conference you will find their names on the following pages.

The final sections of the proceedings are devoted to Demo and Nectar papers.
Ten system demonstration papers were selected from 19 submissions to the Demo
track by a small committee chaired by Bettina Berendt and Myra Spiliopoulou.
The Nectar track is new this year and features significant machine learning and
data mining results published or disseminated no earlier than 2010 at different
conferences or in journals. One goal of this track is to offer conference atten-
dees the opportunity to learn about results published in other communities but
related to machine learning or data mining (or both). Submissions compactly

VI Preface

presenting well-founded results which appeared in a series of publications that
advanced a single novel influential idea or vision were also welcomed. A ded-
icated committee chaired by Gemma Garriga and Thomas Gärtner selected 4
Nectar papers from 14 submissions. Our sincere thanks to everyone involved for
these valuable additions to the conference.

Elements of the conference not directly represented in the proceedings in-
clude 11 workshops (Mining Ubiquitous and Social Environments; New Frontiers
in Mining Complex Patterns; The Silver Lining – Learning from Unexpected
Results; Instant Interactive Data Mining; Learning and Discovery in Symbolic
Systems Biology; Sentiment Discovery from Affective Data; Active Learning in
Real-world Applications; Mining and Exploiting Interpretable Local Patterns;
Community Mining and People Recommenders; Collective Learning and Infer-
ence on Structured Data: and the Discovery Challenge workshop), as well as 8
tutorials (Understanding and Managing Cascades on Large Graphs; Advanced
Topics in Data Stream Mining; Mining Deep Web Repositories; PAC-Bayesian
Analysis in Supervised, Unsupervised, and Reinforcement Learning; Random
Projections for Machine Learning and Data Mining; Decomposing Binary Ma-
trices; Advanced Topics in Ensemble Learning; and Probabilistic Modeling of
Ranking). Many thanks to the workshop organisers and tutorial presenters, as
well as the Workshop Chairs Arno Knobbe and Carlos Soares and the Tutorial
Chairs Alessandro Moschitti and Siegfried Nijssen for putting together this ex-
citing programme. We would also like to draw attention to the programme of
presentations by representatives from industry put together by Industry Track
Chairs Cédric Archambeau and David Barber, consisting of a series of talks cen-
tred around Big Data as well as a programme of ‘Startup Stories’ sponsored by
the PASCAL2 Network of Excellence.

Finally, it is our pleasure to announce the winners of the best paper awards, as
selected by a small committee chaired by the Awards Chair Johannes Fürnkranz.
The paper ‘Active Evaluation of Ranking Functions based on Graded Relevance’
by Christoph Sawade, Steffen Bickel, Timo von Oertzen, Tobias Scheffer and Niels
Landwehr wins the best machine learning paper award sponsored by the Machine
Learning journal. The paper ‘Socioscope: Spatio-Temporal Signal Recovery from
Social Media’ by Jun-Ming Xu, Aniruddha Bhargava, Robert Nowak and Xiao-
jin Zhu receives the best data mining paper award sponsored by Data Mining
and Knowledge Discovery. Our congratulations to the authors of both papers
and in particular to their student main authors. We also continue the tradition
started at ECML-PKDD 2011 in Athens of selecting a most influential paper pub-
lished at the conference 10 years ago. Following a poll organised by the Awards
Chair among selected participants the most influential paper presented at ECML-
PKDD 2002 in Helsinki is ‘Mining All Non-derivable Frequent Itemsets’ by Toon
Calders and Bart Goethals. We look forward to finding out which paper from
these proceedings will be deemed to have been most influential in 2022!

July 2012 Peter Flach
Tijl De Bie

Nello Cristianini

Organisation

ECML-PKDD 2012 was organised by the Departments of Computer Science
and Engineering Mathematics of the University of Bristol, UK. We gratefully
acknowledge the financial support of our academic sponsors (the University of
Bristol (the aforementioned Departments as well as the Faculty of Engineer-
ing), the PASCAL2 Network of Excellence and the EternalS FP7 Coordination
Action), our business sponsors (Winton Capital Management, Hewlett-Packard
Research Labs Bristol, Rapid-I, Cambridge University Press, Google, KNIME,
IBM UK and Microsoft Research) and our award sponsors (the journals of Ma-
chine Learning and Data Mining and Knowledge Discovery).

General and Programme Chairs

Peter Flach University of Bristol, UK
Tijl De Bie University of Bristol, UK
Nello Cristianini University of Bristol, UK

Local Organisers

Oliver Ray University of Bristol, UK
Tilo Burghardt University of Bristol, UK
Nanlin Jin University of Bristol, UK
Yizhao Ni University of Bristol, UK
Simon Price University of Bristol, UK

Workshop Chairs

Arno Knobbe Universiteit Leiden, The Netherlands
Carlos Soares Universidade do Porto, Portugal

Tutorial Chairs

Alessandro Moschitti University of Trento, Italy
Siegfried Nijssen Katholieke Universiteit Leuven, Belgium

Demo Track Chairs

Bettina Berendt Katholieke Universiteit Leuven, Belgium
Myra Spiliopoulou University of Magdeburg, Germany

VIII Organisation

Nectar Track Chairs

Gemma C. Garriga INRIA Lille, France
Thomas Gärtner University of Bonn & Fraunhofer, Germany

Industry Track Chairs

Cédric Archambeau Xerox Research Centre Europe, France
David Barber University College London, UK

Awards Chair

Johannes Fürnkranz TU Darmstadt, Germany

Sponsorship Chairs

Toon Calders Eindhoven University, The Netherlands
Trevor Martin University of Bristol, UK

Publicity Chair

Grigorios Tsoumakas Aristotle University of Thessaloniki, Greece

Proceedings Chairs

Ilias Flaounas University of Bristol, UK
Tim Kovacs University of Bristol, UK

Webmaster

Thomas Lansdall-Welfare University of Bristol, UK

Discovery Challenge Organisers

Ion Androutsopoulos Athens University of Economics and Business,
Greece

Thierry Artieres Laboratoire d’Informatique de Paris 6, France
Patrick Gallinari Laboratoire d’Informatique de Paris 6, France
Eric Gaussier Laboratoire d’Informatique de Grenoble, France
Aris Kosmopoulos NCRS “Demokritos” & Athens University of

Economics and Business, Greece
George Paliouras NCRS “Demokritos”, Greece
Ioannis Partalas Laboratoire d’Informatique de Grenoble, France

Organisation IX

ECML-PKDD Steering Committee

Fosca Giannotti, chair Università di Pisa, Italy
Francesco Bonchi Yahoo! Research Barcelona, Spain
Wray Buntine NICTA Canberra, Australia
Dimitrios Gunopulos University of Athens, Greece
Donato Malerba Università degli Studi di Bari, Italy
Dunja Mladenić Jožef Stefan Institute, Slovenia
John Shawe-Taylor University College London, UK
Michèle Sebag Laboratoire de Recherche en Informatique, France
Michalis Vazirgiannis Athens University of Economics and Business,

Greece

Area Chairs
Annalisa Appice Università degli Studi di Bari, Italy
Roberto J. Bayardo Google, USA
Tanya Berger-Wolf University of Illinois, USA
Hendrik Blockeel Katholieke Universiteit Leuven, Belgium
Francesco Bonchi Yahoo! Research Barcelona, Spain
Carla E. Brodley Tuft University, USA
Carlotta Domeniconi George Mason University, USA
Tina Eliassi-Rad Rutgers University, USA
Charles Elkan University of California San Diego, USA
Tapio Elomaa Tampere University of Technology, Finland
Wei Fan IBM T.J.Watson Research, USA
Paolo Frasconi Università degli Studi di Firenze, Italy
João Gama University of Porto, Portugal
Gemma C. Garriga INRIA Lille Nord Europe, France
Claudio Gentile Università dell’Insubria, Italy
Aristides Gionis Yahoo! Research Barcelona, Spain
Geoff Holmes University of Waikato, New Zealand
Eyke Hüllermeier Philipps-Universität Marburg, Germany
George Karypis University of Minnesota, USA
Kristian Kersting University of Bonn, Germany
Joost Kok University of Leiden, the Netherlands
James Kwok Hong Kong University of Science and Technology,

China
Bing Liu University of Illinois, USA
Marie-Francine Moens Katholieke Universiteit Leuven, Belgium
Alessandro Moschitti University of Trento, Italy
Mahesan Niranjan University of Southampton, UK
Dino Pedreschi Università di Pisa, Italy
Jian Pei Simon Fraser University, Canada
Bernhard Pfahringer University of Waikato, New Zealand
Teemu Roos University of Helsinki, Finland
Arno Siebes University of Utrecht, the Netherlands
Myra Spiliopoulou University of Magdeburg, Germany

X Organisation

Hannu Toivonen University of Helsinki, Finland
Luis Torgo University of Porto, Portugal
Jean-Philippe Vert Mines ParisTech & Curie Institute, France
Stefan Wrobel University of Bonn & Fraunhofer, Germany

Programme Committee

Naoki Abe
Nitin Agarwal
Fabio Aiolli
Florence d’Alche-Buc
Aris Anagnostopoulos
Gennady Andrienko
Ana Paula Appel
Marta Arias
Ira Assent
Martin Atzmueller
Bart Baesens
José Balcázar
Elena Baralis
Shai Ben David
Bettina Berendt
Michele Berlingerio
Michael W. Berry
Michael R. Berthold
Albert Bifet
Misha Bilenko
Mustafa Bilgic
Paolo Boldi
Mario Boley
Christian Borgelt
Henrik Boström
Stephane Boucheron
Remco R. Bouckaert
Anne-Laure Boulesteix
Jean-Francois Boulicaut
Marc Boullé
Pavel Brazdil
Ulf Brefeld
Sebastien Bubeck
Wray Buntine
Tiberio Caetano
Deng Cai
Toon Calders
Colin Campbell

Stephane Canu
Olivier Cappé
Xavier Carreras
Andre Carvalho
Alexandra Carvalho
Michelangelo Ceci
Tania Cerquitelli
Hong Cheng
Weiwei Cheng
Jesús Cid-Sueiro
Frans Coenen
Fabrizio Costa
James Cussens
Alfredo Cuzzocrea
Jesse Davis
Krzysztof Dembczyński
Janez Demšar
Christian Desrosiers
Tom Diethe
Kurt Driessens
Chris Drummond
Pierre Dupont
Saso Dzeroski
Floriana Esposito
A. Fazel Famili
Nicola Fanizzi
Tom Fawcett
Ad Feelders
Xiaoli Z. Fern
Cèsar Ferri
Daan Fierens
Patrik Floréen
George Forman
Blaž Fortuna
Elisa Fromont
Johannes Fürnkranz
Mohamed Gaber
Thomas Gärtner

Brian Gallagher
Patrick Gallinari
Eric Gaussier
Ricard Gavaldà
Peter Geibel
Pierre Geurts
Mohammad Ghavamzadeh
Fosca Giannotti
Rémi Gilleron
Christophe G.

Giraud-Carrier
Aris Gkoulalas-Divanis
Bart Goethals
Marco Gori
Henrik Grosskreutz
Steve R. Gunn
Stephan Günnemann
Dimitrios Gunopulos
Jiawei Han
Edwin Hancock
Mohammad Hasan
Mark Herbster
José Hernández-Orallo
Colin de la Higuera
Alexander Hinneburg
Frank Hoeppner
Jaakko Hollmén
Tamas Horvath
Andreas Hotho
Minqing Hu
Ming Hua
Ramon Huerta
Georgiana Ifrim
Nathalie Japkowicz
Matti Järvisalo
Alexandros Kalousis
Hilbert Kappen
Hillol Kargupta

Organisation XI

Panagiotis Karras
Hisashi Kashima
Samuel Kaski
Latifur Khan
Marius Kloft
Mikko Koivisto
Tamara G. Kolda
Petri Kontkanen
Walter A. Kosters
Samory Kpotufe
Stefan Kramer
Shonali Krishnaswamy
Nicolas Lachiche
Nada Lavrač
Matthijs Van Leeuwen
Jiuyong Li
Tao Li
Xiaoli Li
Jefrey Lijffijt
Aristidis Likas
Charles Ling
Marco Lippi
Francesca A. Lisi
Xiaohui Liu
Corrado Loglisci
Daniel Lowd
Sofus A. Macskassy
Donato Malerba
Giuseppe Manco
Dragos D Margineantu
Stan Matwin
Dimitrios Mavroeidis
Michael May
Mike Mayo
Thorsten Meinl
Prem Melville
Ernestina Menasalvas
Aditya Menon
Rosa Meo
Pauli Miettinen
Dunja Mladenić
Katharina J. Morik
Klaus-Robert Muller
Emmanuel Müller
Ricardo Ñanculef

Olfa Nasraoui
Sriraam Natarajan
Jennifer Neville
Yizhao Ni
Siegfried Nijssen
Keith Noto
Andreas Nürnberger
Guillaume Obozinski
Francesco Orabona
Salvatore Orlando
Gerhard Paaß
Tapio Pahikkala
George Paliouras
Spiros Papadimitriou
Panagiotis Papapetrou
Emilio

Parrado-Hernandez
Srinivasan Parthasarathy
Andrea Passerini
Mykola Pechenizkiy
Marcello Pelillo
Jaakko Peltonen
Pedro Pereira Rodrigues
Fernando Perez-Cruz
Gregory

Piatetsky-Shapiro
Enric Plaza
Massimiliano Pontil
Ronaldo C. Prati
Kai Puolamäki
Chedy Räıssi
Alain Rakotomamonjy
Liva Ralaivola
Naren Ramakrishnan
Jan Ramon
Huzefa Rangwala
Balaraman Ravindran
Patricia Riddle
Fabrizio Riguzzi
Fabio Roli
Lorenzo Rosasco
Volker Roth
Juho Rousu
Céline Rouveirol
Cynthia Rudin

Ulrich Rueckert
Stefan Rüping
Maytal Saar-Tsechansky
Lorenza Saitta
Scott Sanner
Vı́tor Santos Costa
Raul Santos-Rodriguez
Tobias Scheffer
Lars Schmidt-Thieme
Dale Schuurmans
Michèle Sebag
Thomas Seidl
Ricardo Silva
Andrzej Skowron
Kevin Small
Carlos Soares
Richard Socher
Maarten van Someren
Mauro Sozio
Alessandro Sperduti
Masashi Sugiyama
Jimeng Sun
Johan Suykens
Einoshin Suzuki
Sandor Szedmak
Prasad Tadepalli
Andrea Tagarelli
Pang-Ning Tan
Lei Tang
Nikolaj Tatti
Evimaria Terzi
Ivan Titov
Ljupčo Todorovski
Hanghang Tong
Volker Tresp
Konstantin Tretyakov
Ivor W. Tsang
Panayiotis Tsaparas
Grigorios Tsoumakas
Koji Tsuda
Alan Tucker
Antti Ukkonen
Joaquin Vanschoren
Michalis Vazirgiannis
Shankar Vembu

XII Organisation

Herna L. Viktor
Fabio Vitale
Christel Vrain
Jilles Vreeken
Willem Waegeman
Jianyong Wang
Hongning Wang
Liwei Wang
Wei Wang
Gerhard Widmer

Hui Xiong
Zhao Xu
Jieping Ye
Mi-Yen Yeh
Philip Yu
Gerson Zaverucha
Filip Železný
Dell Zhang
Kai Zhang
Lei Zhang

Min-Ling Zhang
Mark Zhang
Ying Zhao
Zheng Zhao
Zhi-Hua Zhou
Arthur Zimek
Indre Zliobaite
Jean-Daniel Zucker
Blaž Zupan

Demo Track Programme Committee

Omar Alonso
Steve Beitzel
Paul Bennett
Michael Berthold
Albert Bifet
Francesco Bonchi
Christian Borgelt
Jaakko Hollmén

Arvind Hulgeri
Ralf Klinkenberg
Michael Mampaey
Michael May
Gabor Melli
Gerard de Melo
Rosa Meo
Themis Palpanas

Mykola Pechenizkiy
Peter van der Putten
Daniela Stojanova
Grigorios Tsoumakas
Karsten Winkler
Michael Witbrock

Nectar Track Programme Committee

Jason Baldridge
Xavier Carreras
Pádraig Cunningham
Marc Deisenroth
Kurt Driessens
Mohammad Ghavamzadeh
Aristides Gionis

David R. Hardoon
Kristian Kersting
Roni Khardon
Christina Leslie
David Page
Liva Ralaivola
Steffen Rendle

Burr Settles
Ivan Titov
Gyorgy Turan
Jean-Philippe Vert
Zhao Xu

Additional Reviewers

Artur Abdullin
Ildefons Magrans

de Abril
Claudia d’Amato
Haitham B. Ammar
Fabrizio Angiulli
Josh Attenberg
Mohamad Azar
Luca Baldassarre
Martin Becker
Jaafar Ben-Abdallah

Battista Biggio
Sam Blasiak
Brigitte Boden
Janez Brank
Forrest Briggs
Giulia Bruno
Samuel Rota Bulò
Luca Cagliero
Rui Camacho
Hong Cao
Loic Cerf

Wing Kwan Chan
Anveshi Charuvaka
Silvia Chiusano
Michele Coscia
Dominik Dahlem
Xuan-Hong Dang
Hongbo Deng
Nicola Di Mauro
Luca Didaci
Huyen T. Do
Gauthier Doquire

Organisation XIII

Nikolaos Engonopoulos
Chaosheng Fan
Kai Fan
Wei Feng
Carlos Ferreira
Raphael Fonteneau
Benôıt Frénay
Sergej Fries
David Fuhry
Fabio Fumarola
Victor Gabillon
Esther Galbrun
Shenghua Gao
Aurélien Garivier
Konstantinos Georgatzis
Christos Giatsidis
Tatiana Gossen
Quanquan Gu
Francesco Gullo
Manish Gupta
Basheer Hawwash
Jingrui He
Todd Hester
Xin Huang
Yi Huang
Dino Ienco
Roberto Interdonato
Baptiste Jeudy
Lili Jiang
Xueyan Jiang
Michael Kamp
Emilie Kaufmann
Fabian Keller
Ryan Kiros
Julia Kiseleva
Hannes Korte
Aris Kosmopoulos
Petra Kralj Novak
Philipp Kranen
Hardy Kremer
Anastasia Krithara
Denis Krompass
Aggeliki Lazaridou
Florian Lemmerich
Patrick Lessman

Guy Lever
Lin Liu
Grigorios Loukides
Cécile Low-Kam
Thomas Low
Frangiskos Malliaros
Fernando

Martinez-Plumed
Ida Mele
João Mendes Moreira
Glauber Marcius

Menezes
Barbora Micenková
Pasquale Minervini
Joseph Modayil
Anna Monreale
Tetsuro Morimura
James Neufeld
Minh Nhut Nguyen
Maximilian Nickel
Inna Novalija
Christopher Oßner
Aline Marins Paes
Joni Pajarinen
Luca Pappalardo
Eric Paquet
Daniel Paurat
Yuanli Pei
Ruggero G. Pensa
Claudia Perlich
Sergios Petridis
Anja Pilz
Gianvito Pio
Cristiano Grijo Pitangui
Marthinus Christoffel

du Plessis
Vid Podpečan
Chiara Pulice
Miao Qiao
M. Jose

Ramirez-Quintana
Zeehasham Rasheed
Irene Rodriguez Lujan
Bernardino

Romera-Paredes

Giulio Rossetti
Natali Ruchansky
Patricia Iglesias Sánchez
Tanwishta Saha
Esin Saka
Antonio Bella Sanjuán
Jan Schlüter
Chun-Wei Seah
Wei Shen
Marcin Skowron
Eleftherios

Spyromitros-Xioufis
Tadej Stajner
Daniela Stojanova
Hongyu Su
Yizhou Sun
Akiko Takeda
Frank W. Takes
Jafar Tanha
Claudio Taranto
Sep Thijssen
Stamatina Thomaidou
Daniel Trabold
Mitja Trampus
Roberto Trasarti
Erik Tromp
Yuta Tsuboi
Duygu Ucar
Michal Valko
Ugo Vespier
Silvia Villa
Yana Volkovich
Byron C. Wallace
Jun Wang
Xiaodan Wang
Pascal Welke
Makoto Yamada
Xintian Yang
Jihang Ye
Eric Yeh
Guoxian Yu
Yaoliang Yu
Elias Zavitsanos
Wei Zhang
Tingting Zhao

Table of Contents – Part I

Invited Talks

Machine Learning for Robotics . 1
Pieter Abbeel

Declarative Modeling for Machine Learning and Data Mining 2
Luc De Raedt

Machine Learning Methods for Music Discovery
and Recommendation . 4

Douglas Eck

Solving Problems with Visual Analytics: Challenges and Applications . . . 5
Daniel Keim

Analyzing Text and Social Network Data with Probabilistic Models 7
Padhraic Smyth

Association Rules and Frequent Patterns

Discovering Descriptive Tile Trees: By Mining Optimal Geometric
Subtiles . 9

Nikolaj Tatti and Jilles Vreeken

Efficient Discovery of Association Rules and Frequent Itemsets
through Sampling with Tight Performance Guarantees 25

Matteo Riondato and Eli Upfal

Smoothing Categorical Data . 42
Arno Siebes and René Kersten

Bayesian Learning and Graphical Models

An Experimental Comparison of Hybrid Algorithms for Bayesian
Network Structure Learning . 58

Maxime Gasse, Alex Aussem, and Haytham Elghazel

Bayesian Network Classifiers with Reduced Precision Parameters 74
Sebastian Tschiatschek, Peter Reinprecht, Manfred Mücke, and
Franz Pernkopf

Combining Subjective Probabilities and Data in Training Markov Logic
Networks . 90

Tivadar Pápai, Shalini Ghosh, and Henry Kautz

XVI Table of Contents – Part I

Score-Based Bayesian Skill Learning . 106
Shengbo Guo, Scott Sanner, Thore Graepel, and Wray Buntine

Classification

A Note on Extending Generalization Bounds for Binary Large-Margin
Classifiers to Multiple Classes . 122

Ürün Dogan, Tobias Glasmachers, and Christian Igel

Extension of the Rocchio Classification Method to Multi-modal
Categorization of Documents in Social Media . 130

Amin Mantrach and Jean-Michel Renders

Label-Noise Robust Logistic Regression and Its Applications 143
Jakramate Bootkrajang and Ata Kabán

Sentiment Classification with Supervised Sequence Embedding 159
Dmitriy Bespalov, Yanjun Qi, Bing Bai, and Ali Shokoufandeh

The Bitvector Machine: A Fast and Robust Machine Learning
Algorithm for Non-linear Problems . 175

Stefan Edelkamp and Martin Stommel

Dimensionality Reduction, Feature Selection and
Extraction

Embedding Monte Carlo Search of Features in Tree-Based Ensemble
Methods . 191

Francis Maes, Pierre Geurts, and Louis Wehenkel

Hypergraph Spectra for Semi-supervised Feature Selection 207
Zhihong Zhang, Edwin R. Hancock, and Xiao Bai

Learning Neighborhoods for Metric Learning . 223
Jun Wang, Adam Woznica, and Alexandros Kalousis

Massively Parallel Feature Selection: An Approach Based on Variance
Preservation . 237

Zheng Zhao, James Cox, David Duling, and Warren Sarle

PCA, Eigenvector Localization and Clustering for Side-Channel Attacks
on Cryptographic Hardware Devices . 253

Dimitrios Mavroeidis, Lejla Batina, Twan van Laarhoven, and
Elena Marchiori

Table of Contents – Part I XVII

Distance-Based Methods and Kernels

Classifying Stem Cell Differentiation Images by Information Distance . . . 269
Xianglilan Zhang, Hongnan Wang, Tony J. Collins,
Zhigang Luo, and Ming Li

Distance Metric Learning Revisited . 283
Qiong Cao, Yiming Ying, and Peng Li

Geodesic Analysis on the Gaussian RKHS Hypersphere 299
Nicolas Courty, Thomas Burger, and Pierre-François Marteau

Ensemble Methods

Boosting Nearest Neighbors for the Efficient Estimation of Posteriors . . . 314
Roberto D’Ambrosio, Richard Nock, Wafa Bel Haj Ali,
Frank Nielsen, and Michel Barlaud

Diversity Regularized Ensemble Pruning . 330
Nan Li, Yang Yu, and Zhi-Hua Zhou

Ensembles on Random Patches . 346
Gilles Louppe and Pierre Geurts

Graph and Tree Mining

An Efficiently Computable Support Measure for Frequent Subgraph
Pattern Mining . 362

Yuyi Wang and Jan Ramon

Efficient Graph Kernels by Randomization . 378
Marion Neumann, Novi Patricia, Roman Garnett, and
Kristian Kersting

Graph Mining for Object Tracking in Videos . 394
Fabien Diot, Elisa Fromont, Baptiste Jeudy,
Emmanuel Marilly, and Olivier Martinot

Hypergraph Learning with Hyperedge Expansion . 410
Li Pu and Boi Faltings

Nearly Exact Mining of Frequent Trees in Large Networks 426
Ashraf M. Kibriya and Jan Ramon

Reachability Analysis and Modeling of Dynamic Event Networks 442
Kathy Macropol and Ambuj Singh

XVIII Table of Contents – Part I

Large-Scale, Distributed and Parallel Mining and
Learning

CC-MR – Finding Connected Components in Huge Graphs
with MapReduce . 458

Thomas Seidl, Brigitte Boden, and Sergej Fries

Fast Near Neighbor Search in High-Dimensional Binary Data 474
Anshumali Shrivastava and Ping Li

Fully Sparse Topic Models . 490
Khoat Than and Tu Bao Ho

Learning Compact Class Codes for Fast Inference in Large Multi Class
Classification . 506

M. Cissé, T. Artières, and Patrick Gallinari

ParCube: Sparse Parallelizable Tensor Decompositions 521
Evangelos E. Papalexakis, Christos Faloutsos, and
Nicholas D. Sidiropoulos

Stochastic Coordinate Descent Methods for Regularized Smooth
and Nonsmooth Losses . 537

Qing Tao, Kang Kong, Dejun Chu, and Gaowei Wu

Sublinear Algorithms for Penalized Logistic Regression in Massive
Datasets . 553

Haoruo Peng, Zhengyu Wang, Edward Y. Chang,
Shuchang Zhou, and Zhihua Zhang

Multi-Relational Mining and Learning

Author Name Disambiguation Using a New Categorical Distribution
Similarity . 569

Shaohua Li, Gao Cong, and Chunyan Miao

Lifted Online Training of Relational Models with Stochastic Gradient
Methods . 585

Babak Ahmadi, Kristian Kersting, and Sriraam Natarajan

Scalable Relation Prediction Exploiting Both Intrarelational Correlation
and Contextual Information . 601

Xueyan Jiang, Volker Tresp, Yi Huang, Maximilian Nickel, and
Hans-Peter Kriegel

Relational Differential Prediction . 617
Houssam Nassif, Vı́tor Santos Costa, Elizabeth S. Burnside, and
David Page

Table of Contents – Part I XIX

Multi-Task Learning

Efficient Training of Graph-Regularized Multitask SVMs 633
Christian Widmer, Marius Kloft, Nico Görnitz, and Gunnar Rätsch

Geometry Preserving Multi-task Metric Learning . 648
Peipei Yang, Kaizhu Huang, and Cheng-Lin Liu

Learning and Inference in Probabilistic Classifier Chains with Beam
Search . 665

Abhishek Kumar, Shankar Vembu, Aditya Krishna Menon, and
Charles Elkan

Learning Multiple Tasks with Boosted Decision Trees 681
Jean Baptiste Faddoul, Boris Chidlovskii, Rémi Gilleron, and
Fabien Torre

Multi-Task Boosting by Exploiting Task Relationships 697
Yu Zhang and Dit-Yan Yeung

Sparse Gaussian Processes for Multi-task Learning 711
Yuyang Wang and Roni Khardon

Natural Language Processing

Collective Information Extraction with Context-Specific
Consistencies . 728

Peter Kluegl, Martin Toepfer, Florian Lemmerich,
Andreas Hotho, and Frank Puppe

Supervised Learning of Semantic Relatedness . 744
Ran El-Yaniv and David Yanay

Unsupervised Bayesian Part of Speech Inference with Particle Gibbs 760
Gregory Dubbin and Phil Blunsom

WikiSent: Weakly Supervised Sentiment Analysis through Extractive
Summarization with Wikipedia . 774

Subhabrata Mukherjee and Pushpak Bhattacharyya

Online Learning and Data Streams

Adaptive Two-View Online Learning for Math Topic Classification 794
Tam T. Nguyen, Kuiyu Chang, and Siu Cheung Hui

BDUOL: Double Updating Online Learning on a Fixed Budget 810
Peilin Zhao and Steven C.H. Hoi

XX Table of Contents – Part I

Handling Time Changing Data with Adaptive Very Fast Decision
Rules . 827

Petr Kosina and João Gama

Improved Counter Based Algorithms for Frequent Pairs Mining
in Transactional Data Streams . 843

Konstantin Kutzkov

Mirror Descent for Metric Learning: A Unified Approach 859
Gautam Kunapuli and Jude Shavlik

Author Index . 875

Table of Contents – Part II

Privacy and Security

AUDIO : An Integrity Auditing Framework of
Outlier-Mining-as-a-Service Systems . 1

Ruilin Liu, Hui (Wendy) Wang, Anna Monreale, Dino Pedreschi,
Fosca Giannotti, and Wenge Guo

Differentially Private Projected Histograms: Construction and Use
for Prediction . 19

Staal A. Vinterbo

Fairness-Aware Classifier with Prejudice Remover Regularizer 35
Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma

Rankings and Recommendations

A Live Comparison of Methods for Personalized Article
Recommendation at Forbes.com . 51

Evan Kirshenbaum, George Forman, and Michael Dugan

Fast ALS-Based Tensor Factorization for Context-Aware
Recommendation from Implicit Feedback . 67

Balázs Hidasi and Domonkos Tikk

Probability Estimation for Multi-class Classification Based on Label
Ranking . 83

Weiwei Cheng and Eyke Hüllermeier

Reinforcement Learning and Planning

Adaptive Planning for Markov Decision Processes with Uncertain
Transition Models via Incremental Feature Dependency Discovery 99

N. Kemal Ure, Alborz Geramifard, Girish Chowdhary, and
Jonathan P. How

APRIL: Active Preference Learning-Based Reinforcement Learning 116
Riad Akrour, Marc Schoenauer, and Michèle Sebag

Autonomous Data-Driven Decision-Making in Smart Electricity
Markets . 132

Markus Peters, Wolfgang Ketter, Maytal Saar-Tsechansky, and
John Collins

XXII Table of Contents – Part II

Bayesian Nonparametric Inverse Reinforcement Learning 148
Bernard Michini and Jonathan P. How

Bootstrapping Monte Carlo Tree Search with an Imperfect Heuristic 164
Truong-Huy Dinh Nguyen, Wee-Sun Lee, and Tze-Yun Leong

Fast Reinforcement Learning with Large Action Sets Using
Error-Correcting Output Codes for MDP Factorization 180

Gabriel Dulac-Arnold, Ludovic Denoyer, Philippe Preux, and
Patrick Gallinari

Learning Policies for Battery Usage Optimization in Electric Vehicles . . . 195
Stefano Ermon, Yexiang Xue, Carla Gomes, and Bart Selman

Policy Iteration Based on a Larned Transition Model 211
Vivek Ramavajjala and Charles Elkan

Structured Apprenticeship Learning . 227
Abdeslam Boularias, Oliver Krömer, and Jan Peters

Rule Mining and Subgroup Discovery

A Bayesian Approach for Classification Rule Mining in Quantitative
Databases . 243

Dominique Gay and Marc Boullé

A Bayesian Scoring Technique for Mining Predictive and Non-Spurious
Rules . 260

Iyad Batal, Gregory Cooper, and Milos Hauskrecht

Generic Pattern Trees for Exhaustive Exceptional Model Mining 277
Florian Lemmerich, Martin Becker, and Martin Atzmueller

Semi-Supervised and Transductive Learning

Bidirectional Semi-supervised Learning with Graphs 293
Tomoharu Iwata and Kevin Duh

Coupled Bayesian Sets Algorithm for Semi-supervised Learning
and Information Extraction . 307

Saurabh Verma and Estevam R. Hruschka Jr.

Graph-Based Transduction with Confidence . 323
Matan Orbach and Koby Crammer

Maximum Consistency Preferential Random Walks 339
Deguang Kong and Chris Ding

Table of Contents – Part II XXIII

Semi-supervised Multi-label Classification: A Simultaneous
Large-Margin, Subspace Learning Approach . 355

Yuhong Guo and Dale Schuurmans

Sensor Data

MDL-Based Analysis of Time Series at Multiple Time-Scales 371
Ugo Vespier, Arno Knobbe, Siegfried Nijssen, and
Joaquin Vanschoren

Separable Approximate Optimization of Support Vector Machines
for Distributed Sensing . 387

Sangkyun Lee, Marco Stolpe, and Katharina Morik

Unsupervised Inference of Auditory Attention from Biosensors 403
Melih Kandemir, Arto Klami, Akos Vetek, and Samuel Kaski

Sequence and String Mining

A Family of Feed-Forward Models for Protein Sequence Classification . . . 419
Sam Blasiak, Huzefa Rangwala, and Kathryn B. Laskey

General Algorithms for Mining Closed Flexible Patterns under Various
Equivalence Relations . 435

Tomohiro I, Yuki Enokuma, Hideo Bannai, and Masayuki Takeda

Size Matters: Finding the Most Informative Set of Window Lengths 451
Jefrey Lijffijt, Panagiotis Papapetrou, and Kai Puolamäki

Social Network Mining

Discovering Links among Social Networks . 467
Francesco Buccafurri, Gianluca Lax, Antonino Nocera, and
Domenico Ursino

Efficient Bi-objective Team Formation in Social Networks 483
Mehdi Kargar, Aijun An, and Morteza Zihayat

Feature-Enhanced Probabilistic Models for Diffusion Network
Inference . 499

Liaoruo Wang, Stefano Ermon, and John E. Hopcroft

Influence Spread in Large-Scale Social Networks – A Belief Propagation
Approach . 515

Huy Nguyen and Rong Zheng

XXIV Table of Contents – Part II

Location Affiliation Networks: Bonding Social and Spatial
Information . 531

Konstantinos Pelechrinis and Prashant Krishnamurthy

On Approximation of Real-World Influence Spread 548
Yu Yang, Enhong Chen, Qi Liu, Biao Xiang, Tong Xu, and
Shafqat Ali Shad

Opinion Formation by Voter Model with Temporal Decay Dynamics 565
Masahiro Kimura, Kazumi Saito, Kouzou Ohara, and Hiroshi Motoda

Viral Marketing for Product Cross-Sell through Social Networks 581
Ramasuri Narayanam and Amit A. Nanavati

Which Topic Will You Follow? . 597
Deqing Yang, Yanghua Xiao, Bo Xu, Hanghang Tong,
Wei Wang, and Sheng Huang

Spatial and Geographical Data Mining

Inferring Geographic Coincidence in Ephemeral Social Networks 613
Honglei Zhuang, Alvin Chin, Sen Wu, Wei Wang, Xia Wang, and
Jie Tang

Pedestrian Quantity Estimation with Trajectory Patterns 629
Thomas Liebig, Zhao Xu, Michael May, and Stefan Wrobel

Socioscope: Spatio-temporal Signal Recovery from Social Media 644
Jun-Ming Xu, Aniruddha Bhargava, Robert Nowak, and Xiaojin Zhu

Statistical Methods and Evaluation

A Framework for Evaluating the Smoothness of Data-Mining Results . . . 660
Gaurav Misra, Behzad Golshan, and Evimaria Terzi

Active Evaluation of Ranking Functions Based on Graded Relevance . . . 676
Christoph Sawade, Steffen Bickel, Timo von Oertzen,
Tobias Scheffer, and Niels Landwehr

Time Series and Temporal Data Mining

Community Trend Outlier Detection Using Soft Temporal Pattern
Mining . 692

Manish Gupta, Jing Gao, Yizhou Sun, and Jiawei Han

Data Structures for Detecting Rare Variations in Time Series 709
Caio Valentim, Eduardo S. Laber, and David Sotelo

Table of Contents – Part II XXV

Invariant Time-Series Classification . 725
Josif Grabocka, Alexandros Nanopoulos, and Lars Schmidt-Thieme

Learning Bi-clustered Vector Autoregressive Models 741
Tzu-Kuo Huang and Jeff Schneider

Transfer Learning

Discriminative Factor Alignment across Heterogeneous Feature Space . . . 757
Fangwei Hu, Tianqi Chen, Nathan N. Liu, Qiang Yang, and Yong Yu

Learning to Perceive Two-Dimensional Displays Using Probabilistic
Grammars . 773

Nan Li, William W. Cohen, and Kenneth R. Koedinger

Transfer Spectral Clustering . 789
Wenhao Jiang and Fu-lai Chung

System Demonstrations Track

An Aspect-Lexicon Creation and Evaluation Tool for Sentiment
Analysis Researchers . 804

Mus’ab Husaini, Ahmet Koçyiğit, Dilek Tapucu,
Berrin Yanikoglu, and Yücel Saygın

Association Rule Mining Following the Web Search Paradigm 808
Radek Škrabal, Milan Šim̊unek, Stanislav Voj́ı̌r, Andrej Hazucha,
Tomáš Marek, David Chudán, and Tomáš Kliegr

ASV Monitor: Creating Comparability of Machine Learning Methods
for Content Analysis . 812

Andreas Niekler, Patrick Jähnichen, and Gerhard Heyer

ClowdFlows: A Cloud Based Scientific Workflow Platform 816
Janez Kranjc, Vid Podpečan, and Nada Lavrač

Extracting Trajectories through an Efficient and Unifying
Spatio-temporal Pattern Mining System . 820

Phan Nhat Hai, Dino Ienco, Pascal Poncelet, and
Maguelonne Teisseire

Knowledge Discovery through Symbolic Regression
with HeuristicLab . 824

Gabriel Kronberger, Stefan Wagner, Michael Kommenda,
Andreas Beham, Andreas Scheibenpflug, and Michael Affenzeller

XXVI Table of Contents – Part II

OutRules : A Framework for Outlier Descriptions in Multiple Context
Spaces . 828

Emmanuel Müller, Fabian Keller, Sebastian Blanc, and
Klemens Böhm

Scientific Workflow Management with ADAMS . 833
Peter Reutemann and Joaquin Vanschoren

TopicExplorer: Exploring Document Collections with Topic Models 838
Alexander Hinneburg, Rico Preiss, and René Schröder

VIKAMINE – Open-Source: Subgroup Discovery, Pattern Mining,
and Analytics . 842

Martin Atzmueller and Florian Lemmerich

Nectar Track

Learning Submodular Functions . 846
Maria-Florina Balcan and Nicholas J.A. Harvey

Matrix Factorization as Search . 850
Kristian Kersting, Christian Bauckhage, Christian Thurau, and
Mirwaes Wahabzada

Metal Binding in Proteins: Machine Learning Complements X-Ray
Absorption Spectroscopy . 854

Marco Lippi, Andrea Passerini, Marco Punta, and Paolo Frasconi

Modelling Input Varying Correlations between Multiple Responses 858
Andrew Gordon Wilson and Zoubin Ghahramani

Author Index . 863

Machine Learning for Robotics

Pieter Abbeel

University of California, Berkeley, USA
pabbeel@cs.berkeley.edu

http://www.cs.berkeley.edu/˜pabbeel/

Abstract. Robots are typically far less capable in autonomous mode than in tele-
operated mode. The few exceptions tend to stem from long days (and more often
weeks, or even years) of expert engineering for a specific robot and its operating
environment. Current control methodology is quite slow and labor intensive. I be-
lieve advances in machine learning have the potential to revolutionize robotics. In
this talk, I will present new machine learning techniques we have developed that
are tailored to robotics. I will describe in depth “Apprenticeship learning”, a new
approach to high-performance robot control based on learning for control from
ensembles of expert human demonstrations. Our initial work in apprenticeship
learning has enabled the most advanced helicopter aerobatics to-date, including
maneuvers such as chaos, tic-tocs, and auto-rotation landings which only excep-
tional expert human pilots can fly. Our most recent work in apprenticeship learn-
ing is providing traction on learning to perform challenging robotic manipulation
tasks, such as knot-tying. I will also briefly highlight three other machine learn-
ing for robotics developments: Inverse reinforcement learning and its application
to quadruped locomotion, Safe exploration in reinforcement learning which en-
ables robots to learn on their own, and Learning for perception with application
to robotic laundry.

Bio

Pieter Abbeel received a BS/MS in Electrical Engineering from KU Leuven (Belgium)
and received his Ph.D. degree in Computer Science from Stanford University in 2008.
He joined the faculty at UC Berkeley in Fall 2008, with an appointment in the Depart-
ment of Electrical Engineering and Computer Sciences. He has won various awards,
including best paper awards at ICML and ICRA, the Sloan Fellowship, the Air Force
Office of Scientific Research Young Investigator Program (AFOSR-YIP) award, the
Okawa Foundation award, the 2011s TR35, and the IEEE Robotics and Automation
Society (RAS) Early Career Award. He has developed apprenticeship learning algo-
rithms which have enabled advanced helicopter aerobatics, including maneuvers such
as tic-tocs, chaos and auto-rotation, which only exceptional human pilots can perform.
His group has also enabled the first end-to-end completion of reliably picking up a
crumpled laundry article and folding it. His work has been featured in many popular
press outlets, including BBC, New York Times, MIT Technology Review, Discovery
Channel, SmartPlanet and Wired. His current research focuses on robotics and machine
learning with a particular focus on challenges in personal robotics, surgical robotics and
connectomics.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.cs.berkeley.edu/~pabbeel/

Declarative Modeling for Machine Learning
and Data Mining

Luc De Raedt

University of Leuven, Belgium
luc.deraedt@cs.kuleuven.be

http://people.cs.kuleuven.be/˜luc.deraedt/

Abstract. Despite the popularity of machine learning and data mining today, it
remains challenging to develop applications and software that incorporates ma-
chine learning or data mining techniques. This is because machine learning and
data mining have focussed on developing high-performance algorithms for solv-
ing particular tasks rather than on developing general principles and techniques.
I propose to alleviate these problems by applying the constraint programming
methodology to machine learning and data mining and to specify machine learn-
ing and data mining problems as constraint satisfaction and optimization prob-
lems. What is essential is that the user be provided with a way to declaratively
specify what the machine learning or data mining problem is rather than hav-
ing to outline how that solution needs to be computed. This corresponds to a
model + solver-based approach to machine learning and data mining, in which
the user specifies the problem in a high level modeling language and the sys-
tem automatically transforms such models into a format that can be used by
a solver to efficiently generate a solution. This should be much easier for the
user than having to implement or adapt an algorithm that computes a particu-
lar solution to a specific problem. Throughout the talk, I shall use illustrations
from our work on constraint programming for itemset mining and probabilistic
programming.

Bio

Luc De Raedt is a full professor (of research) at the University of Leuven (KU Leu-
ven) in the Department of Computer Science and a former chair of Machine Learning
at the Albert-Ludwigs-University in Freiburg. Luc De Raedt has been working in the
areas of artificial intelligence and computer science, especially on computational logic,
machine learning and data mining, probabilistic reasoning and constraint programming
and their applications in bio- and chemoinformatics, vision and robotics, natural lan-
guage processing, and engineering. His work has typically crossed boundaries between
different research areas, often working towards an integration of their principles. He is
well-known for his early work on inductive logic programming (combining logic with
learning). Since 2000, he has been working towards a further integration of logical and
relational learning with probabilistic reasoning (statistical relational learning and prob-
abilistic programming) and on inductive querying in databases. During the last three

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 2–3, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://people.cs.kuleuven.be/~luc.deraedt/

Declarative Modeling for Machine Learning and Data Mining 3

years he has been fascinated by the possibility of combining constraint programming
principles with data mining and machine learning. He is currently coordinating a Euro-
pean IST FET project in this area (ICON Inductive Constraint Programming) and is the
program chair of the 20th European Conference on Artificial Intelligence (Montpellier,
2012). He was a program co-chair of ICML 2005 and ECML/PKDD 2001.

Machine Learning Methods for Music Discovery
and Recommendation

Douglas Eck

Google Research
douglas.eck@gmail.com
research.google.com/

Abstract. In this talk I will relate current work at Google in music recommenda-
tion to the challenge of automatic music annotation (“autotagging”). I will spend
most of the talk looking at (a) signal processing and sparse coding strategies for
pulling relevant structure from audio, and (b) training multi-class ranking mod-
els in order to build good music similarity spaces. Although I will describe some
technical aspects of autotagging and ranking via embedding, the main goal of the
talk is to foster a better understanding of the real-world challenges we face in
helping users find music they’ll love. To this end I will play a number of audio
demos illustrating what we can (and cannot) hope to achieve by working with
audio.

Bio

Douglas Eck is a research scientist at Google in Mountain View, California. His current
focus is on machine learning models and user interfaces for music discovery and recom-
mendation. This involves not only algorithm development but also user studies and data
analyses to better understand what listeners want from a music service. Before coming
to Google, Douglas was an associate professor in Computer Science at University of
Montreal where he worked in related areas such as meter and beat induction, automatic
tagging of music tracks and expressive timing and dynamics in music performance.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, p. 4, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

research.google.com/

Solving Problems with Visual Analytics:
Challenges and Applications

Daniel Keim

University of Konstanz
Daniel.Keim@uni-konstanz.de

www.informatik.uni-konstanz.de/arbeitsgruppen/infovis/
mitglieder/prof-dr-daniel-keim/

Abstract. Never before in history data is generated and collected at such high
volumes as it is today. As the volumes of data available to business people, sci-
entists, and the public increase, their effective use becomes more challenging.
Keeping up to date with the flood of data, using standard tools for data analysis
and exploration, is fraught with difficulty. The field of visual analytics seeks to
provide people with better and more effective ways to explore and understand
large datasets, while also enabling them to act upon their findings immediately.
Visual analytics integrates the analytic capabilities of the computer and the per-
ceptual and intellectual abilities of the human analyst, allowing novel discoveries
and empowering individuals to take control of the analytical process. Visual an-
alytics enables unexpected insights, which may lead to beneficial and profitable
innovation. The talk presents the challenges of visual analytics and exemplifies
them with several application examples, which illustrate the exiting potential of
current visual analysis techniques but also their limitations.

Bio

Daniel A. Keim is full professor and head of the Information Visualization and Data
Analysis Research Group at the University of Konstanz, Germany. He has been ac-
tively involved in information visualization and data analysis research for about 20
years and developed a number of novel visual analysis techniques for very large data
sets with applications to a wide range of application areas including financial analysis,
network analysis, geo-spatial analysis, as well as text and multimedia analysis. His re-
search resulted in two recent books “Solving problems with Visual Analytics” and “In-
teractive Data Visualization” which he both co-authored. Dr. Keim has been program
co-chair of the IEEE InfoVis and IEEE VAST symposia as well as the SIGKDD confer-
ence, and he is or was member of the IEEE InfoVis, IEEE VAST, and EuroVis steering
committees. He is an associate editor of Palgrave’s Information Visualization Journal
(since 2001) and has been an associate editor of the IEEE Transactions on Visualization
and Computer Graphics (1999–2004), the IEEE Transactions on Knowledge and Data
Engineering (2002–2007), and the Knowledge and Information System Journal
(2006–2011). He is coordinator of the German Strategic Research Initiative (SPP) on

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 5–6, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

6 D. Keim

Scalable Visual Analytics and he was the scientific coordinator of the EU Coordination
Action on Visual Analytics called VisMaster. Dr. Keim got his Ph.D. and habilitation
degrees in computer science from the University of Munich. Before joining the Univer-
sity of Konstanz, Dr. Keim was associate professor at the University of Halle, Germany
and Technology Consultant at AT&T Shannon Research Labs, NJ, USA.

Analyzing Text and Social Network Data
with Probabilistic Models

Padhraic Smyth

University of California, Irvine, USA
smyth@ics.uci.edu

http://www.ics.uci.edu/˜smyth/

Abstract. Exploring and understanding large text and social network data sets is
of increasing interest across multiple fields, in computer science, social science,
history, medicine, and more. This talk will present an overview of recent work
using probabilistic latent variable models to analyze such data. Latent variable
models have a long tradition in data analysis and typically hypothesize the exis-
tence of simple unobserved phenomena to explain relatively complex observed
data. In the past decade there has been substantial work on extending the scope
of these approaches from relatively small simple data sets to much more complex
text and network data. We will discuss the basic concepts behind these develop-
ments, reviewing key ideas, recent advances, and open issues. In addition we will
highlight common ideas that lie beneath the surface of different approaches in-
cluding links (for example) to work in matrix factorization. The concluding part
of the talk will focus more specifically on recent work with temporal social net-
works, specifically data in the form of time-stamped events between nodes (such
as emails exchanged among individuals over time).

Bio

Padhraic Smyth is a Professor at the University of California, Irvine, in the Department
of Computer Science with a joint appointment in Statistics, and is also Director of the
Center for Machine Learning and Intelligent Systems at UC Irvine. His research inter-
ests include machine learning, data mining, pattern recognition, and applied statistics
and he has published over 150 papers on these topics. He was a recipient of best paper
awards at the 2002 and 1997 ACM SIGKDD Conferences, received the ACM SIGKDD
Innovation Award in 2009, and was named a AAAI Fellow in 2010. He is co-author
of Modeling the Internet and the Web: Probabilistic Methods and Algorithms (with
Pierre Baldi and Paolo Frasconi in 2003), and co-author of Principles of Data Min-
ing, MIT Press (with David Hand and Heikki Mannila in 2001). Padhraic has served in
editorial and advisory positions for journals such as the Journal of Machine Learning
Research, the Journal of the American Statistical Association, and the IEEE Transac-
tions on Knowledge and Data Engineering. While at UC Irvine he has received research
funding from agencies such as NSF, NIH, IARPA, NASA, and DOE, and from compa-
nies such as Google, IBM, Yahoo!, Experian, and Microsoft. In addition to his academic
research he is also active in industry consulting, working with companies such as eBay,
Yahoo!, Microsoft, Oracle, Nokia, and AT&T, as well as serving as scientific advisor to

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 7–8, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.ics.uci.edu/~smyth/

8 P. Smyth

local startups in Orange County. He also served as an academic advisor to Netflix for
the Netflix prize competition from 2006 to 2009. Padhraic received a first class honors
degree in Electronic Engineering from National University of Ireland (Galway) in 1984,
and the MSEE and PhD degrees (in 1985 and 1988 respectively) in Electrical Engineer-
ing from the California Institute of Technology. From 1988 to 1996 he was a Technical
Group Leader at the Jet Propulsion Laboratory, Pasadena, and has been on the faculty
at UC Irvine since 1996.

Discovering Descriptive Tile Trees

By Mining Optimal Geometric Subtiles

Nikolaj Tatti and Jilles Vreeken

Advanced Database Research and Modeling
Universiteit Antwerpen

{nikolaj.tatti,jilles.vreeken}@ua.ac.be

Abstract. When analysing binary data, the ease at which one can
interpret results is very important. Many existing methods, however, dis-
cover either models that are difficult to read, or return so many results
interpretation becomes impossible. Here, we study a fully automated ap-
proach for mining easily interpretable models for binary data. We model
data hierarchically with noisy tiles—rectangles with significantly differ-
ent density than their parent tile. To identify good trees, we employ the
Minimum Description Length principle.

We propose Stijl, a greedy any-time algorithm for mining good tile
trees from binary data. Iteratively, it finds the locally optimal addi-
tion to the current tree, allowing overlap with tiles of the same par-
ent. A major result of this paper is that we find the optimal tile in only
Θ(NM min(N,M)) time. Stijl can either be employed as a top-k miner,
or by MDL we can identify the tree that describes the data best.

Experiments show we find succinct models that accurately summarise
the data, and, by their hierarchical property are easily interpretable.

1 Introduction

When exploratively analysing a large binary dataset, being able to easily inter-
pret the results is of utmost importance. Many data analysis methods, however,
have trouble meeting this requirement. With frequent pattern mining, for exam-
ple, we typically find overly many and highly redundant results, hindering inter-
pretation [10]. Pattern set mining [2, 5, 21] tackles these problems, and instead
provides small and high-quality sets of patterns. However, as these methods gen-
erally exploit complex statistical dependencies between patterns, the resulting
models are often difficult to fully comprehend.

When analysing 0–1 data, the encompassing question is ‘how are the 1s dis-
tributed?’. In this paper, we focus on the underlying questions of ‘where are the
ones?’ and ‘where are the zeroes?’. To answer these questions in an easily in-
terpretable manner, we propose to model the data hierarchically, by identifying
trees of tiles, i.e. sub-matrices that are surprisingly dense or sparse compared
to their parent tile. As an example, consider Figure 1, in which we show a toy
example of a hierarchical tiling, and the corresponding tile tree. As the figure
shows, tiles model parts of the data, and subtiles provide refinements over their

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 9–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

10 N. Tatti and J. Vreeken

4

1

2

6

5

3

(a) Hierarchical tiling

6

3

1 2

5

4

(b) Tile tree

Fig. 1. Toy example of a tiled database, and the corresponding tile tree structure

parents. Next, as an example on real data, consider Figure 2, in which we show
the tiling our algorithm discovered on paleontological data. Very easily read, us-
ing only 14 tiles, the tiling shows which regions of the data are relatively dense
(dark), as well as where relatively few 1s are found (light).

Clearly, we aim to mine descriptions that are succinct, non-redundant, and
neither overly complex nor simplistic. We therefore formalise the problem in
terms of the Minimum Description Length (MDL) principle [9], by which we can
automatically identify the model that best describes the data, without having
to set any parameters. For mining good models, we introduce Stijl, a heuristic
any-time algorithm that iteratively greedily finds the optimal subtile and adds
it to the current tiling. A major result of this paper is that we show that we can
find such optimal subtiles in only Θ(NM min(N,M)), as opposed to Θ(N2M2)
when done naively [8].

We are not the first to study the problem of hierarchical tiling. The problem
was first introduced by Gionis et al. [8], whom proposed a randomised approach
as an alternative to the naive approach. Our FindTile procedure, on the other
hand, is deterministic and identifies optimal subtiles. Moreover, our MDL for-
malisation requires no scaling parameters, making the method parameter-free.

These differences aside, both methods assume an order on the rows and
columns of the data; as for such data, a subtile can be straightforwardly defined
by a ‘from’ and ‘to’ selection query. As such, we exploit that the data is ordered,
as this allows us to generate more easily understandable and easily visually rep-
resentable models for the data. Although many datasets naturally exhibit such

Fig. 2. Tiling of the Paleo dataset. See Fig. 4(b) for a cleaned version without 1s

Discovering Descriptive Tile Trees 11

order, e.g. spatially and/or temporally, not all data does. For unordered data,
e.g. through spectral ordering, good orders can be discovered [6, 8, 19].

Experimentation on our method shows we discover easily interpretable models
that describe the data very well. Stijl mines trees that summarise the data
succinctly, with non-redundant tile trees that consist of relatively few tiles.

The paper is organised as follows. Section 2 discusses preliminaries. Section 3
gives the Stijl algorithm for mining tile trees, and Section 4 details mining opti-
mal subtiles. We discuss related work in Section 5, and experiment in Section 6.
We round up with discussion and conclusions. Due to lack of space, we give the
proofs for Propositions 1–2 in the Appendix.1

2 Encoding Data with Tile Trees

We begin by giving the basic definitions we use throughout the paper, after
which we discuss how we can measure the quality of a hierarchical tile set.

Notation. A binary dataset D is a binary matrix of size N -by-M consisting of
N rows, binary vectors of size M . We denote (i, j)th entry of D by D(i, j). We
assume that both rows and columns have an order and, for simplicity, we assume
that the indexing corresponds to the orders.

A geometric tile X = (a, b)×(c, d), where 1 ≤ a ≤ b ≤ N and 1 ≤ c ≤ d ≤ M ,
identifies a consecutive submatrix of D. In contrast, for combinatorial tiles, the
rows and columns are not required to be consecutive. In this paper, we focus
on geometric tiles. We say that X1 = (a1, b1) × (c1, d1) is a subtile of X2 =
(a2, b2) × (c2, d2) if X1 is completely covered by X2, that is, a2 ≤ a1, b1 ≤ b2,
c2 ≤ c1, and d1 ≤ d2. We will write (i, j) ∈ X if a ≤ i ≤ b and c ≤ j ≤ d.

A tile tree T is a tree of tiles such that each child of a tile X ∈ T is a subtile
of X . We will denote the children of X by children(X). In our setting, the order
of the children matters, so we assume that children(X) is a list of tiles and not
a set. We also assume that the root tile always covers the whole data. Given a
tile tree T , a tile X ∈ T and a subtile Y of X , we will write T + X → Y to
denote a tile tree obtained by adding Y as a last child of X .

Our next step is to define which data entries are covered by which tile. Since
we allow child tiles to overlap, the definition is involved—although intuition is
simple: the first most-specific tile that can encode a cell, encodes its value, and
all other tiles ignore it. More formally, given a tile tree T , consider a post-order,
that is, an order where the child tiles appear before their parents and such that
if children(X) = (Y1, . . . , YL), then Yi is appears before Yi+1. Let X ∈ T . We
define tid(X ; T) to be the position of X in the post-order. When T is clear from
the context we will simply write tid(X). An example of the post-order is given
in Figure 1(b). Using this order we can define which entries belong to which tile.
We define

area(X ; T) = {(i, j) ∈ X | there is no Y with (i, j) ∈ Y, tid(Y) < tid(X)} ,
1 http://adrem.ua.ac.be/stijl/

http://adrem.ua.ac.be/stijl/

12 N. Tatti and J. Vreeken

that is, entries are assigned to the cells first-come first-serve, see Figure 1(a) as
an example. Among these entries, we define the number of 1s and 0s as

p(X ; T , D) = |{(i, j) ∈ area(X ; T) | D(i, j) = 1}| and

n(X ; T , D) = |{(i, j) ∈ area(X ; T) | D(i, j) = 0}| .

Let us denote by |T | the number of tiles in a tree T , i.e. |T | = |{X ∈ T }|, and
denote by T0 the most simple tile tree consisting of only a root tile.

MDL for Tile Trees. Our main goal is to find tile trees that summarise the
data well; they should be succinct yet highly informative on where the 1s on
the data are. We can formalise this intuition through the Minimum Description
Length (MDL) principle [9], a practical version of Kolmogorov Complexity [13].
Both embrace the slogan Induction by Compression. The MDL principle can be
roughly described as follows: Given a dataset D and a set of models X for D,
the best model X ∈ X is the one that minimises L(X) + L(D | X) in which
L(X) is the length, in bits, of the description of the model X , and L(D | X) is
the length, in bits, of the data as described using X .

This is called two-part MDL, or crude MDL. This stands opposed to refined
MDL, where model and data are encoded together [9]. We use two-part MDL
because we are specifically interested in the model: the tile tree T ∗ that yields
the minimal description length. Further, although refined MDL has stronger
theoretical foundations, it cannot be computed except for some special cases [9].
Before we can use MDL to identify good models, we will have to define how to
encode a database given a tile tree, as well as how to encode a tile tree.

We encode the values of area(X ; T) using prefix codes. The length of an
optimal prefix code is given by Shannon entropy, i.e. − logP (·), where P (·) is
the probability of a value [4]. We have the optimal encoded length for all entries
area(X ; T) of a tile X in a tile tree T as

L(D | X, T) = L(p(X ; T , D) , n(X ; T , D)) ,

where L(p, n) = −p log p
p+n − n log n

p+n is the scaled entropy.
In order to compare fairly between models, MDL requires the encoding to be

lossless. Hence, besides the data, we also have to encode the tile tree itself.
We encode tile trees node per node, in reverse order, and add extra bits

between the tiles to indicate the tree structure. We use a bit of value 1 to
indicate that the next tile is a child of the current tile, and 0 to indicate that
we have processed all child tiles of the current tile. For example, the tree given
in Figure 1(b) is encoded, with <tile i> indicating an encoded tile, as

<tile 6>1<tile 5>1<tile 4>001<tile 3>1<tile 2>01<tile 1>000 .

To encode an individual tile, we proceed as follows. Let X be a non-root tile
and let Z = (a, b) × (c, d) be the direct parent tile of X . As we know that
X is a subtile of Z, we know the end points for defining the area of X fall
within those of Z. As such, to encode the 4 end points of X we need only
4 log(b − a+ 1) + 4 log(d− c+ 1) bits.

Discovering Descriptive Tile Trees 13

We also know that number of 1s in X are bounded by the area of Z, (b− a+
1)(d− c+1), and hence we can encode the number of 1s in X in log(b− a+1)+
log(d − c + 1) bits. Note that although we can encode the number of 1s more
efficiently by using the geometry of X instead of Z, this would introduce a bias
to small tiles.

Next, to calculate the encoded size of a tile, we need to take the two bits for
encoding the tree structure of X into account. As describe above, one bit is used
to indicate that X has no more children and the other to indicate that X is a
child of Z. Putting this together, the encoded length of a non-root tile X is

L(X | T) = 1 + 1 + 5 log(b− a+ 1) + 5 log(d− c+ 1) .

Let us now assume that X is the root tile. Since we require that a root tile covers
the whole data, we need to encode the dimensions of the data set, the number of
1s in X , and following 1 bit to indicate that all tiles have been processed. Unlike
for the other tiles in the tree, we have no upper bound for the dimensions of
X , and therefore would have to use a so-called Universal Code [9] to encode the
dimensions—after which we could subsequently encode the number of 1s in X
in logN + logM bits. However, as the lengths of these codes are constant over
all models for D, and we can safely ignore them when selecting between models.
For simplicity, for a root tile X we therefore define L(X | T) = 0.

As such, we have for the total encoded size of a database D and a tile tree T

L(D, T) =
∑
X∈T

L(X | T) + L(D | X, T) ,

by which we now have a formal MDL score for tile trees.

3 Mining Good Tile Trees

Now that we have defined how to encode data with a tile tree, our next step is
to find the best tile tree, i.e. the tile tree minimising the total encoded length.
That is, we want to solve the following problem.

Problem 1 (Minimal Tile Tree). Given a binary dataset D, find a tile tree T
such that the total encoded size, L(D, T), is minimised.

As simply as it is stated, this minimisation problem is rather difficult to solve.
Besides that the search space of all possible tile trees is rather vast, the total
encoded size L(D, T) does not exhibit trivial structure that we can exploit for
fast search, e.g. (weak) monotonicity. Hence, we resort to heuristics.

For finding an approximate solution to the Minimal Tile Tree problem, we
propose the Stijl algorithm.2 We give the pseudo-code as Algorithm 1. We
iteratively find that subtile Y of a tile X ∈ T by which the total encoded size is
minimised. We therefore refer to Y as the optimal subtile of X . After identifying

2 Named after the art movement De Stijl, to which art our models show resemblance.

14 N. Tatti and J. Vreeken

Algorithm 1: Stijl(D, T , X)

input : dataset D, current tile tree T , parent tile X
output : updated tile tree T

1 Y ← subtile of X minimising L(D, T +X → Y);
2 while L(D, T +X → Y) < L(D, T) do
3 T ← Stijl(D, T +X → Y, Y);
4 Y ← subtile of X minimising L(D, T +X → Y);

5 return T ;

the optimal subtile, Stijl adds Y into the tile tree, and continues inductively
until no improvement can be made.

Alternative to this approach, we can also approximate the optimal k-tile tree.
To do so, we adapt the algorithm to find the subtile Y over all parent tiles X ∈ T
that minimises the score—as opposed to our standard depth-first strategy. Note
that by the observation above, for the k at which the score is minimised, both
strategies find the same tree.

By employing a greedy heuristic, we have reduced the problem of finding the
optimal tile tree into a problem of finding the optimal subtile.

Problem 2 (Minimal Subtile). Given a binary dataset D, a tile tree T , and a tile
X ∈ T , find a tile Y such that Y is a subtile of X , and T +X → Y is minimised.

The main part of this paper details how to find an optimal subtile, a procedure
we subsequently use in Stijl.

4 Finding the Optimal Tile

In this section we focus on finding the optimal subtile. Naively, we solve this by
simply testing every possible subtile, requiring Θ(N2M2) tests, where N and M
are the number of rows and columns in the parent tile, respectively [8].

In this section, we present an algorithm that can find the optimal subtile in
Θ(N2M). In order to do that, we will break the problem into two subproblems.
The first problem is that for two fixed integers c ≤ d, we need to find two integers
a ≤ b such that the tile (a, b) × (c, d) is optimal. Once we have solved this, we
can proceed to find the optimal tile by finding the optimal (c, d).

We begin by giving an easier formulation of the function we want to optimise.
In order to do so, note that adding a subtile Y to X changes only area(T ;X),
and does not influence (the encoded length of) other tiles in the tree. Hence,
we expect to be able to express the difference in total encoded length between
T +X → Y and T in simple terms. In fact, we have the following theorem.

Proposition 1. Let T be a tile tree. Let X ∈ T be a tile and let Y be a subtile of
X. Define T ′ = T +X → Y and have u = p(Y ; T ′), v = n(Y ; T ′), o = p(X ; T),
and z = n(X ; T). Then

L(D, T ′)− L(D, T) = L(u, v) + L(o− u, z − v)− L(o, z) + L(Y | T ′) .

Discovering Descriptive Tile Trees 15

In order to find the optimal subtile it is enough to create an algorithm for finding
an optimal subtile more dense than its parent tile. To see this, note that we can
find the optimal tile by first finding the optimal dense tile, and then find the
optimal sparse tile by applying the same algorithm on the 0–1 inverse of the
data. Once we have both the optimal optimal dense and optimal sparse tiles, we
can choose the overall optimal subtile by MDL.

Let X = (s, e)× (x, y) be a tile, and T a tile tree with X ∈ T . Assume that
we are given indices c and d. Our goal in this section is to find those indices a
and b such that Y = (a, b)× (c, d) is an optimal subtile of X .

Define two vectors, p for positives and n for negatives, each of length e −
s + 1, that contain the number of 1s and 0s respectively, within the ith row of
X , pi = |{(i+ s− 1, w) ∈ area(X) | c ≤ w ≤ d,D(i+ s− 1, w) = 1}|, and ni =
|{(i + s− 1, w) ∈ area(X) | c ≤ w ≤ d,D(i+ s− 1, w) = 0}|.

This allows us to define cnt(a, b; p) =
∑b

i=a pi (and similarly for n). Let
u = cnt(a, b; p) and v = cnt(a, b;n). It follows that p(Y ; T +X → Y) = u and
n(Y ; T +X → Y) = v, where Y = (a, b)× (c, d); those are the entries of X now
to be encoded by Y . Let us define cost(a, b; p, n, o, z) = L(u, v)+L(o− u, z − v).
We will write cost(a, b), when p, n, o, z are known from the context. Proposition 1
states that minimising L(D, T ′) is equivalent to minimising cost(a, b).

Further, let us define fr(a, b; p, n) = cnt(a, b; p) /(cnt(a, b; p) + cnt(a, b;n)) to
be the frequency of 1s within Y . Proposition 1 then allows us to formulate the
optimisation problem as follows.

Problem 3 (Minimal Border Points). Let p and n be two integer vectors of the
same length, m. Let o and z be two integers such that cnt(1,m; p) ≤ o and
cnt(1,m;n) ≤ z. Find 1 ≤ a ≤ b ≤ n such that fr (a, b; p, n) > o/(o+ z) and that
cost(a, b) is minimised.

The rest of the section is devoted to solving this optimisation problem. Naively
we could test every pair (a, b), which however requires quadratic time. Our ap-
proach is to ignore a large portion of suboptimal pairs, such that our search
becomes linear.

To this end, let p and n be two vectors, and let 1 ≤ b ≤ |p| be an integer.
We say that a ≤ b is a head border of b if there are no integers i and j such
that 1 ≤ i < a ≤ j ≤ b and fr(i, a− 1) ≥ fr (a, b). Similarly, we say that b ≥ a
is a tail border of a if there are no indices a ≤ i ≤ b < j ≤ |p| such that
fr(i, b) ≤ fr(b+ 1, j). We denote the list of all head borders by bh(b, p, n) and
the list of all tail borders by bt(a, p, n).

Given a head border a of b, we say that a is a head candidate if there are no
indices 1 ≤ i < a ≤ j ≤ b such that fr(i, a− 1) ≥ fr(j, b). Similarly, we say that
b ∈ bt(a) is a tail candidate of a if there are no indices a ≤ i ≤ b < j ≤ |p|
such that fr(a, i) ≤ fr(b+ 1, j). We denote the list of all head candidates by
ch(b, p, n) and the list of all tail candidates by ct(a, p, n).

To avoid clutter, we do not write p and n wherever clear from context.
As an example, consider Figure 3(a). Since fr(a2, a3 − 1) > fr(a3, a4 − 1), it

follows that a3 /∈ bh(a4 − 1). Note that a4 ∈ bh(a6 − 1) but a4 /∈ ch(a6 − 1)
since fr (a2, a4 − 1) > fr(a5, a6 − 1).

16 N. Tatti and J. Vreeken

a1 a2 a3 a4 a5 a6

fr
eq

u
en

cy

(a)

c d

b

a′

i

a

(b)

Fig. 3. Example of how FindTile considers head candidates. (a) a3 is no head border
for a4−1, as fr(a2, a3 − 1) > fr(a3, a4 − 1). Although a head border for a6−1, a4 is not
a head candidate for a6 − 1, as fr(a3, a4 − 1) > fr(a5, a6 − 1). (b) Proposition 2 states
that we can ignore i as head candidate for a tile to j, as by fr(u′, i− 1) > fr(i, u− 1)
we know fr(u′, j − 1) > fr(i, j − 1).

We are now ready to state the main result of this section: in order to find the
optimal tile we need to only study head and tail candidates.

Proposition 2. Let p and n be two vectors and let o and z be two integers. Let
i ≤ j be two indices such that fr (i, j) > o/(o + z). Then there are a ≤ b such
that cost(a, b) ≤ cost(i, j), a ∈ ch(b) and b ∈ ct(a).

Proposition 2 is illustrated in Figure 3(b). Since fr(a, i− 1) ≥ fr(i, a′), we know
that i /∈ ch(b). Proposition 2 implies that we can safely ignore (i, b) and consider
instead (a′, b) or (a, b).

Proposition 2 states that we need to only study candidates, a subset of borders.
Fortunately, there exists an efficient algorithm to construct a border list bh(b+ 1)
given the existing list bh(b) [3]. The approach relies on several lemmata.

Let (a1, . . . , aK) = bh(b). We claim that bh(b+ 1) ⊆ (a1, . . . , aK , b+ 1).

Lemma 1. If a ≤ b and a /∈ bh(b), then a /∈ bh(b + 1).

Proof. By definition there are i and j such that 1 ≤ i < a ≤ j ≤ b such that
fr(i, a− 1) ≥ fr(a, j). These indices are valid for b+ 1, hence a /∈ bh(b+ 1). ��

Hence, in order to construct bh(b+ 1), we only need to delete entries from
(a1, . . . , aK , b+ 1). Let us define a head frequency hfr (b) = maxi≤b fr (i, b) and a
tail frequency tfr(a) = maxa≥i fr(a, i). The following two lemmata say that the
last entry in bh(b+ 1) has to be the smallest index j such that fr (j, b) = hfr(b),
and that the borders of b+ 1 smaller than j are all included in bh(b).

Lemma 2. Let j be the smallest index s.t. fr (j, b) = hfr (b). Then j = max bh(b).
Let j be the largest index s.t. fr(a, j) = tfr(a). Then j = min bt(a).

Proof. First note that j ∈ bh(b). Let i be an index j < i ≤ b. We have fr(i, b) ≤
fr(j, b) which implies that fr(j, i− 1) ≥ fr(i, b). This implies that i /∈ bh(b). The
case for bt(a) is similar. ��

Discovering Descriptive Tile Trees 17

Algorithm 2: Scan(p, n, o, z)

input : integer vectors p and n, number of 1s (0s) in the parent tile, o (z)
output : an interval t solving Problem 3

1 best ←∞; t← (0, 0); B ← C ← ∅;
2 foreach b = 1, . . . , |p| do
3 push b to the front of B;
4 push b to the front of C;
5 while |B| > 1 and fr(B1, b; p, n) ≤ fr(B2, B1 − 1; p, n) do
6 if B1 = C1 then remove C1;
7 remove B1;

8 while |C| > 1 and fr(C2, C1 − 1; p, n) ≥ tfr(b+ 1) do
9 c← cost(C1, b);

10 if c < best then t← (C1, b); best ← c;
11 remove C1;

12 c← cost(C1, b);
13 if c < best then t← (C1, b); best ← c;

14 return t;

Lemma 3. Let a ∈ bh(b). Let k be the smallest index such that fr (k, b+ 1) =
hfr (b+ 1). If a < k, then a ∈ bh(b+ 1).

Proof. Assume that a /∈ bh(b+ 1), that is, there are i and j such that 1 ≤ i < a ≤
j ≤ b + 1 such that fr(i, a− 1) ≥ fr(a, j). We must have j = b + 1. Otherwise
a /∈ bh(b). Note that fr (a, b+ 1) < fr(k, b+ 1), which implies fr (a, k − 1) <
fr(a, b+ 1). Since k − 1 ≤ b, we have a /∈ bh(b), which is a contradiction. ��

These lemmata give us a simple approach. Start from (a1, . . . , aK , b+ 1) and
delete entries until you find index k such that fr(k, b+ 1) is maximal. We will
see later in Proposition 3 that we can easily check the maximality.

Unfortunately, as demonstrated in [3] there can be Θ(b2/3) entries in bh(b).
Hence, checking every pair will not quite yield a linear algorithm. In order to
achieve linearity, we use two additional bounds. Consider Figure 3(a). We have
bh(a5 − 1) = (a1, a2, a4). First, since tfr(a5) = fr (a5, a6 − 1) > fr(a1, a2 − 1),
we have a5 − 1 /∈ ct(a1). Consequently, we do not need to check the pair
(a1, a5−1). Secondly, we know that for any k ≥ a5 we have fr(a5, k) ≤ tfr(a5) ≤
fr(a3, a4 − 1). Hence, a4 /∈ ch(k) and we can ignore a4 after we have checked
(a4, a5 − 1). We can now put these ideas together in a single algorithm, given as
Algorithm 2, and which we will refer to as the Scan algorithm.

Proposition 2 stated that it is enough to consider intervals where then end
points are each other candidates. The next proposition shows that Scan actually
tests all such pairs. Consequently, we are guaranteed to find the optimal solution.

Proposition 3. Let p and n be count vectors and let o and z be two integers.
Scan(p, n, o, z) tests every pair (a, b) where a ∈ ch(b) and b ∈ ct(a).

To show this, we first need the following lemma.

18 N. Tatti and J. Vreeken

Lemma 4. Let (a1, . . . , aL) = bh(b). Then fr(ak−1, ak − 1) < fr(ak, ak+1 − 1).

Proof. Assume that fr(ak−1, ak − 1) ≥ fr(ak, ak+1 − 1). Then ak /∈ bh(b). ��

By which we can proceed with the proof for Proposition 3.

Proof. Let us first prove that B at bth step is equal to bh(b). We prove this using
induction. The case b = 1 is trivial and assume that the result hold for b − 1.
Let (a1, . . . , aL) = bh(b− 1). Lemma 1 implies that bh(b) ⊆ (a1, . . . , aL, b).

Assume that fr(b, b) > fr(aL, i− 1) = hfr(b− 1). By definition, b ∈ bh(b).
Lemma 2 implies that b is the smallest index k for which fr (k, b) = hfr(b).
Lemma 3 now states that bh(b) = (a1, . . . , aL, b) which is exactly what we get
since the while loop on Line 5 is not executed.

Assume that fr (b, b) ≤ fr (aL, i− 1). Then b /∈ bh(b) and indeed it is deleted
in the first run of the while loop (Line 5). Let ak ∈ bh(b) be the first entry in B
after the while loop has finished. Let al ∈ bh(b) be the smallest index for which
fr(al, b) = hfr (b). We claim that k = l. If l > k, then fr(al, b) ≤ fr (al−1, al − 1)
which implies that fr (al, b) ≤ fr(al−1, b) which is a contradiction. Assume that
l < k. By definition of k, we have fr(ak−1, ak − 1) < fr (ak, b). Lemma 4 implies
that fr(al, ak − 1) ≤ fr (ak−1, ak − 1). Hence, fr(al, b) < fr (ak, b), which is a con-
tradiction. Consequently, k = l. Lemma 3 now states that bh(b) = (a1, . . . , ak)
which is exactly what we have.

Now that we have proved that B at bth step is equal to bh(b). Let us consider
the list C. Let a ∈ B \ C. This means that a was deleted during some previ-
ous round, say k < i, and that there is j such that fr (j, a− 1) ≥ tfr(k + 1) ≥
fr(k + 1, b). Hence a is not a head candidate of b. Consequently, all head candi-
dates of b are included in C at bth step.

Not all entries of C are tested during the bth step. Assume that we have
completed bth step and Ck is not tested (k > 1). Since C is a subset of the border
list, Lemma 4 implies that fr (Ck, Ck−1 − 1) ≤ fr(C2, C1 − 1) < tfr(b+ 1). There
is j such that tfr(b+ 1) = fr (b+ 1, j). This implies that b is not a tail candidate
for Ck, which completes the proof. ��

Let us finish this section by demonstrating the linear execution time Θ(|p|) of
Scan. To this end, note that we have three while-loops in the algorithm: two
inner and one outer. During each iteration of the first inner loop we delete
an entry from B, a unique number between 1 and |p|. Consequently, the total
number of times we execute the first inner loop is |p|, at maximum. Similarly,
for the second inner loop. The outer loop is executed |p| times. Next, note that
there are two non-trivial subroutines in the algorithm. First, on Lines 6 and
9, we need to compute frequencies. This can be done in constant time by, e.g.
precomputing cj =

∑j
i=1 pi, and then using the identity cnt(i, j; p) = cj − ci−1.

Secondly, on Line 9, we need to compute tfr(b). We can precompute this in linear
time by using the algorithm given in [3], which involves computing tail borders
(equivalent to computing B in Scan) and applying Lemma 2. This shows that
the total execution time for the algorithm is Θ(|p|).

Discovering Descriptive Tile Trees 19

Algorithm 3: FindTile(X, T , D)

input : parent tile X = (s, e)× (x, y), current tile tree T , dataset D
output : B, a tile optimizing T +X → B, see Problem 2

1 o← p(X; T); z ← n(X; T); B ← X;
2 foreach c and d such that x ≤ c ≤ d ≤ y do
3 update p and n;
4 (a, b)← Scan(p, n, o, z);
5 Y ← (a+ s− 1, b+ s− 1) × (c, d);
6 if L(T +X → Y,D) < L(T +X → B,D) then B ← Y ;
7 (a, b)← Scan(n, p, z, o);
8 Y ← (a+ s− 1, b+ s− 1) × (c, d);
9 if L(T +X → Y,D) < L(T +X → B,D) then B ← Y ;

10 return B;

Now that we have a linear algorithm for discovering an optimal tile given a
fixed set of columns, we need an algorithm for discovering the columns them-
selves. We employ a simple quadratic enumeration given in Algorithm 3. Note
that Scan assumes that the optimal tile is more dense than the background tile,
we have to call Scan twice, once normally to find the optimal dense subtile, and
once with ones and zeroes reversed to find the optimal sparse subtile.

The computational complexity of FindTile is Θ(N2M) where N is the
number of columns and M is the number of rows in the parent tile. How-
ever, if M is smaller than N , we can transpose the parent tile and obtain a
Θ(NM min(N,M)) execution time.

5 Related Work

Frequent itemset mining [1] is perhaps the most well-known example of pattern
mining. Here, however, we are not just interested in the itemsets, but also ex-
plicitly want to know which rows they cover. Moreover, we are not interested in
finding all tiles, but aim to find tilings that describe the data well.

Mining sets of patterns that describe a dataset is an actively studied topic [2,
20,21]. Related in that it employs MDL, is the Krimp algorithm [21], which pro-
posed the use of MDL to identify pattern sets. Geerts et al. discuss mining large
tiles of only 1s [7]. Different from these approaches, our models are hierarchical,
and do allow for noise within tiles.

Kontonasios and De Bie discuss ranking a candidate collection of tiles, em-
ploying a maximum entropy model of the data to measure the interestingness of a
tile [5,12]. Boolean matrix factorisation [15] can be regarded as a tile mining. The
goal is to find a set of Boolean factors such that the Boolean product thereof
(essentially tiles of only 1s) approximates the dataset with little error. Simi-
larly, bi-clustering can be regarded as a form of tiling, as it partitions the rows
and columns of a dataset into rectangles [18]. Compared to these approaches,

20 N. Tatti and J. Vreeken

a major difference is that we focus on easily inspectable hierarchical models,
allowing nested refinements within tiles.

Most closely related to Stijl is the approach by Gionis et al. [8], who proposed
mining hierarchies of tiles, and gave a randomised heuristic for finding good
subtiles. We improve over this approach by formally defining the problem in
terms of MDL, employing a richer modelling language in the sense that it allows
tiles with the same parent to overlap, introducing a deterministic iterative any-
time algorithm, that given a tile tree efficiently finds the optimal subtile. Since
the approach by Gionis et al. [8] does not use MDL as a stopping criterion, it
is not possible to compare both methods directly. In principle, it is possible to
adopt their search strategy to our score. A fair comparison between the two
search strategies, however, is not trivial since the randomised search depends on
a parameter, namely the number of restarts. This parameter acts as a trade-off
between the expected performance and execution time. Choosing this parameter
is difficult since there are no known bounds for the expected performance.

Our approach for discovering optimal subtiles is greatly inspired by the work
of Calders et al. [3] in which the goal was to compute the head frequency, hfr (i),
given a stream of binary vectors.

As Stijl is an iterative any-time algorithm, and hence iterative data mining
approaches are related. The key idea of these approaches is to iteratively find the
result providing the most novel information about the data with respect to what
we already know [5, 11, 14]. Here, we focus on hierarchical tiles, and efficiently
find the locally optimal addition.

6 Experiments

In this section we empirically evaluate our approach. We implemented our al-
gorithms in C++, and provide the source code, along with the synthetic data
generator.3 All experiments were executed single-threaded on Linux machines
with Intel Xeon X5650 processors (2.66GHz) and 12 GB of memory.

We use the shorthand notation L% to denote the compressed size ofD with the

tile tree T as discovered by Stijl relative to the most simple tree T0, L(D,T)
L(D,T0)

%,

wherever D and T are clear from context.
We do not compare to the naive strategy of finding optimal subtiles as

Θ(N2M2) execution time is impractical even for very small datasets.

Datasets. We evaluate our measure on one synthetic, and four publicly avail-
able real world datasets. The 240-by-240 synthetic dataset Composition was
generated to the likeness of the famous Mondrian painting ‘Composition II in
Red, Blue, and Yellow’, where we use different frequencies of 1s for each of the
colours. Abstracts contains the abstracts of papers accepted at ICDM up to 2007,
for which we take the words with a frequency of at least 0.02 after stemming
and removing stop words [5]. The DNA amplification data contains DNA copy
number amplifications. Such copies are known to activate oncogenes and are

3 http://adrem.ua.ac.be/stijl/

http://adrem.ua.ac.be/stijl/

Discovering Descriptive Tile Trees 21

Table 1. Results of Stijl on five datasets. Shown are, per dataset, number of rows
and columns, overall density, and for resp. without and with overlap, the relative com-
pression L% (lower is better), number of discovered tiles, and wall-clock runtime.

Disjoint Overlap

Dataset N M %1s L% |T | time L% |T | time

Composition 240 240 23.2 81.72 8 57s 81.58 7 1m23s

Abstracts 859 541 6.6 89.59 14 16m03s 89.54 14 27m54s
DNA Amp. 4 590 391 1.5 61.91 466 334m 61.61 446 625m
Mammals 2 183 121 20.5 54.69 55 1m37s 54.62 50 3m06s
Paleo 501 139 5.1 80.23 14 39s 79.07 13 1m22s

the hallmarks of nearly all advanced tumours [17]. The Mammals presence data
consists of presence records of European mammals4 within geographical areas
of 50× 50 kilometers [16]. Finally, Paleo contains information on fossil records5

found at specific palaeontological sites in Europe [6].
We give the basic properties of these datasets in Table 1. To obtain good

orders for the real world datasets, we applied SVD, that is, we ordered items
and transactions based on first left and right eigenvectors.

Synthetic Data. As a sanity check, we first investigate whether Stijl can re-
construct the model for the Composition data. We ran experiments for both
the disjoint and the overlapping tile settings. With the latter setup we perfectly
capture the underlying model in only 7 tiles. We show the data and discovered
model as Figure 4(a); each of the rectangles in the painting are represented cor-
rectly by a tile, including the crossing vertical and horizontal bars. When we
require disjoint tiles, the fit of the model is equally good, however the model
requires one additional tile to model the crossing bars.

Quantitative Analysis. Next, we consider quantitative results on the real
datasets. We run Stijl both for disjoint and overlapping tiles. Table 1 gives
the relative compressed size L%, the number of tiles in the returned tile trees,
and the wall-clock time it took to find these models.

These results show Stijl finds trees that summarise the data well. The relative
compressed sizes tell the data is described succinctly, while the tile trees remain
small enough to be considered by hand; even for DNA, by the hierarchical nature
of the model, the user can quickly read and understand the model.

For Mammals we see that whereas the baseline model T0 requires 193 315 bits,
the Stijl model with overlapping tiles only requires 105 589 bits. Note that, as
the total compressed size essentially is the log-likelihood of the model and the
data, a gain of a single bit corresponds to a twice as likely model.

In all experiments, allowing overlap results in better models. Not only do they
give more succinct data descriptions, the discovered tile trees are also simpler,

4 Available for research purposes: http://www.european-mammals.org
5 NOW public release 030717 available from [6].

http://www.european-mammals.org

22 N. Tatti and J. Vreeken

(a) Composition

(b) Paleo (transposed)

Fig. 4. Results of Stijl on (a) Composition and (b) Paleo, with (top) the disjoint
hierarchical tiling, and (bottom) the tiling allowing overlap within the same parent tile.
For Paleo we do not show individual 1s. Darker tiles correspond to higher frequency.

requiring fewer tiles to do capture the structure of the data. By allowing over-
lap, the search space is expanded, and hence more computation is required: on
average, in our experiments, twice as much.

On these datasets, the current Stijl implementation requires from seconds
up to a few hours of runtime. By its iterative any-time nature, users, however,
can already start to explore models while in the background further refinements
are calculated.

Qualitative Analysis. Next, we investigate the discovered models in more
detail. To this end, we first use the Paleo data as by its modest size it is easily
visually representable. In Figure 4(b) we show the result of Stijl on this data,
with the top figure the result of allowing only disjoint tiles, and in the bottom
figure when allowing overlap. Darker toned tiles correspond to more dense areas
of the data. For clarity, we here do not show the individual 1s (as we did in
Fig. 2, which corresponds to the bottom plot of Fig. 4(b)).

The first thing we note, is that the two results are quite alike. The model with
overlap, however, is a bit simpler and ‘cleaner’: the relatively dense areas are of
the data are easier to spot for this model, than for the disjoint one. Second, it
uses the hierarchical property as intended: in the top right corner, for instance,
we see a dense, dark-grey tile within a lighter tinted square, within a very sparse
tile. While for reasons of space we can only show these examples, these are
observations that hold in general—by which it may come at no surprise that by
allowing overlap we obtain better MDL scores.

Next, we inspect the results on Abstracts. This sparse dataset has no natural
order by itself, and when we apply SVD to order it, we find most of the 1s
are located in the top-left corner of the data. When we apply Stijl, we see
it correctly reconstructs this structure. Due to lack of space, however, we do
not give the visual representation. Instead, we investigate the most dense tile,
which covers the top-left corner. We find that it includes frequent words that are

Discovering Descriptive Tile Trees 23

often used in conjunction in data mining abstracts, including propose, efficient,
method, mine, and algorithm. Note that, by design, Stijl gives a high level
view of the data; that is, it tells you where the ones are, not necessarily their
associations. Extending it to recognise structure within tiles is future work.

7 Discussion

The experiments show Stijl discovers succinct tile trees that summarise the
data well. Importantly, the discovered tile trees consist of only few tiles, and are
even easier inspected by the hierarchical property of our models.

The complexity of Stijl is much lower than that of the naive locally opti-
mal approach; as with Θ(NM min(N,M)) its complexity is only squared in the
smallest dimension of the data. However, for datasets with both many rows and
columns, runtimes may be non-trivial. Stijl, however, does allow ample oppor-
tunity for optimisation. FindTile, for instance, can be trivially run in parallel
per parent tile, as well as over a and b.

As there is no such thing as a free lunch, we have to note that MDL is no
magic wand. In the end, constructing an encoding involves choices—choices one
can make in a principled manner (fewer bits is better), but choices nevertheless.
Here, our choices were bounded by ensuring optimality of FindTile. As such,
we currently ignore globally optimal encoding solutions, such as achievable by
maximum entropy modelling [5]. Although we could so obtain globally optimality
of the encoding, the effects of adding a tile become highly unpredictable, which
would break the locally optimal search of FindTile.

We assume the rows and columns of the data to be ordered. That is, in the
terminology of [8], we are interested in geometric tiles. Although [6, 8] showed
good geometric tilings can be found on spectrally ordered data, it would make
for engaging research to investigate whether we can find good orderings on the
fly, that is while we are tiling, ordering the data such that we optimise our score.

8 Conclusion

We discussed finding good hierarchical tile-based models for binary data. We
formalised the problem in terms of MDL, and introduced the Stijl algorithm for
greedily approximating the score on binary data with ordered rows and columns.
For unordered data, spectral techniques can be used to find good orders [8]. We
gave the FindTile procedure for which we proved it finds the locally optimal
tile in Θ(NM min(N,M)).

Experiments showed Stijl discovers high-quality tile trees, providing succinct
description of binary data. Importantly, by their hierarchical shape and small
size, these models are easily interpreted and analysed by hand.

Future work includes optimising the encoded cost by mining tiles and orders at
the same time, as opposed to using ordering techniques oblivious to the target.

24 N. Tatti and J. Vreeken

Acknowledgements. Nikolaj Tatti and Jilles Vreeken are supported by Post-
Doctoral Fellowships of the Research Foundation – Flanders (fwo).

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB,
pp. 487–499 (1994)

2. Bringmann, B., Zimmermann, A.: The chosen few: On identifying valuable pat-
terns. In: ICDM, pp. 63–72 (2007)

3. Calders, T., Dexters, N., Goethals, B.: Mining frequent itemsets in a stream. In:
ICDM, pp. 83–92. IEEE (2007)

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience,
New York (2006)

5. De Bie, T.: Maximum entropy models and subjective interestingness: an application
to tiles in binary databases. Data Min. Knowl. Disc. 23(3), 407–446 (2011)

6. Fortelius, M., Gionis, A., Jernvall, J., Mannila, H.: Spectral ordering and
biochronology of european fossil mammals. Paleobiology 32(2), 206–214 (2006)

7. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling Databases. In: Suzuki, E., Arikawa,
S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 278–289. Springer, Heidelberg (2004)

8. Gionis, A., Mannila, H., Seppänen, J.K.: Geometric and Combinatorial Tiles in 0–1
Data. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD
2004. LNCS (LNAI), vol. 3202, pp. 173–184. Springer, Heidelberg (2004)

9. Grünwald, P.: The Minimum Description Length Principle. MIT Press (2007)
10. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: Current status and

future directions. Data Min. Knowl. Disc. 15 (2007)
11. Hanhijärvi, S., Ojala, M., Vuokko, N., Puolamäki, K., Tatti, N., Mannila, H.: Tell

me something I don’t know: randomization strategies for iterative data mining. In:
KDD, pp. 379–388. ACM (2009)

12. Kontonasios, K.-N., De Bie, T.: An information-theoretic approach to finding noisy
tiles in binary databases. In: SDM, pp. 153–164. SIAM (2010)

13. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applica-
tions. Springer (1993)

14. Mampaey, M., Tatti, N., Vreeken, J.: Tell me what I need to know: Succinctly
summarizing data with itemsets. In: KDD, pp. 573–581. ACM (2011)

15. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis
problem. IEEE TKDE 20(10), 1348–1362 (2008)

16. Mitchell-Jones, A., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P.H.,
Spitzenberger, F., Stubbe, M., Thissen, J., Vohralik, V., Zima, J.: The Atlas of
European Mammals. Academic Press (1999)

17. Myllykangas, S., Himberg, J., Böhling, T., Nagy, B., Hollmén, J., Knuutila, S.:
DNA copy number amplification profiling of human neoplasms. Oncogene 25(55),
7324–7332 (2006)

18. Pensa, R.G., Robardet, C., Boulicaut, J.-F.: A Bi-clustering Framework for Categor-
ical Data. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.)
PKDD 2005. LNCS (LNAI), vol. 3721, pp. 643–650. Springer, Heidelberg (2005)

19. Tatti, N.: Are your items in order? In: SDM 2011, pp. 414–425. SIAM (2011)
20. Tatti, N., Heikinheimo, H.: Decomposable Families of Itemsets. In: Daelemans,

W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI),
vol. 5212, pp. 472–487. Springer, Heidelberg (2008)

21. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: Mining itemsets that compress.
Data Min. Knowl. Disc. 23(1), 169–214 (2011)

Efficient Discovery of Association Rules and Frequent
Itemsets through Sampling with Tight Performance

Guarantees�

Matteo Riondato and Eli Upfal

Department of Computer Science, Brown University, Providence, RI, USA
{matteo,eli}@cs.brown.edu

Abstract. The tasks of extracting (top-K) Frequent Itemsets (FI’s) and Associa-
tion Rules (AR’s) are fundamental primitives in data mining and database appli-
cations. Exact algorithms for these problems exist and are widely used, but their
running time is hindered by the need of scanning the entire dataset, possibly mul-
tiple times. High quality approximations of FI’s and AR’s are sufficient for most
practical uses, and a number of recent works explored the application of sam-
pling for fast discovery of approximate solutions to the problems. However, these
works do not provide satisfactory performance guarantees on the quality of the
approximation, due to the difficulty of bounding the probability of under- or over-
sampling any one of an unknown number of frequent itemsets. In this work we
circumvent this issue by applying the statistical concept of Vapnik-Chervonenkis
(VC) dimension to develop a novel technique for providing tight bounds on the
sample size that guarantees approximation within user-specified parameters. Our
technique applies both to absolute and to relative approximations of (top-K) FI’s
and AR’s. The resulting sample size is linearly dependent on the VC-dimension
of a range space associated with the dataset to be mined. The main theoretical
contribution of this work is a characterization of the VC-dimension of this range
space and a proof that it is upper bounded by an easy-to-compute characteris-
tic quantity of the dataset which we call d-index, namely the maximum integer
d such that the dataset contains at least d transactions of length at least d. We
show that this bound is strict for a large class of datasets. The resulting sam-
ple size for an absolute (resp. relative) (ε, δ)-approximation of the collection of
FI’s isO(1

ε2
(d+log 1

δ
)) (resp.O(2+ε

ε2(2−ε)θ
(d log 2+ε

(2−ε)θ
+log 1

δ
))) transactions,

which is a significant improvement over previous known results. We present an
extensive experimental evaluation of our technique on real and artificial datasets,
demonstrating the practicality of our methods, and showing that they achieve even
higher quality approximations than what is guaranteed by the analysis.

1 Introduction

Discovery of frequent itemsets and association rules is a fundamental computational
primitive with application in data mining (market basket analysis), databases (histogram
construction), networking (heavy hitters) and more [15, Sect. 5]. Depending on the par-
ticular application, one is interested in finding all itemsets with frequency greater or

� Work was supported in part by NSF award IIS-0905553.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 25–41, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

26 M. Riondato and E. Upfal

equal to a user defined threshold (FIs), identifying the K most frequent itemsets (top-
K), or computing all association rules (ARs) with user defined minimum support and
confidence level. Exact solutions to these problems require scanning the entire dataset,
possibly multiple times. For large datasets that do not fit in main memory, this can
be prohibitively expensive. Furthermore, such extensive computation is often unnec-
essary, since high quality approximation are sufficient for most practical applications.
Indeed, a number of recent papers [4, 6, 7, 9, 10, 12, 13, 17–22, 25, 27–30, 32, 33, 36–
41] explored the application of sampling for approximate solutions to these problems.
However, the efficiency and practicality of the sampling approach depends on a tight
relation between the size of the sample and the quality of the resulting approximation.
Previous works do not provide satisfactory solutions to this problem.

The technical difficulty in analyzing any sampling technique for frequent itemsets
discovery problems is that a-priori any subset of items can be among the most frequent
ones, and the number of subsets is exponential in the number of distinct items appearing
in the dataset. A standard analysis begins with a bound on the probability that a given
itemset is either over or under represented in the sample. Such bound is easy to obtain
using a Chernoff-like bound or the Central Limit theorem. The difficulty is in combin-
ing the bounds for individual itemsets into a global bound that holds simultaneously for
all the itemsets. A simple application of the union bound vastly overestimates the error
probability because of the large number of possible itemsets, a large fraction of which
may not be present in the dataset and therefore should not be considered. More sophis-
ticated techniques, developed in recent works [6, 12, 29], give better bounds only in
limited cases. A loose bound on the required sample size for achieving the user defined
performance guarantees, decreases the gain obtained from the use of sampling.

In this work we circumvent this problem through a novel application of the Vapnik-
Chervonenkis (VC) dimension concept, a fundamental tool in statistical learning theory.
Roughly speaking, the VC-dimension of a collection of indicator functions (a range
space) is a measure of its complexity or expressiveness (see Sect. 2.2 for formal defini-
tions). A major result [35] relates the VC-dimension of a range space to the sufficient
size for a random sample to simultaneously approximate all the indicator functions
within predefined parameters. The main obstacle in applying the VC-dimension theory
to particular computation problems is computing the VC-dimension of the range spaces
associated with these problems.

We apply the VC-dimension theory to frequent itemsets problems by viewing the
presence of an itemset in a transaction as the outcome of an indicator function associ-
ated with the itemset. The major theoretical contributions of our work are a complete
caractherization of the VC-dimension of the range space associated with a dataset, and
a tight bound to this quantity. We prove that the VC-dimension is upper bounded by an
easy-to-compute characteristic quantity of the dataset which we call d-index, namely,
the maximum integer d such that the dataset contains at least d transactions of length at
least d. We show that this bound is tight by demonstrating a large class of datasets with
a VC-dimension that matches the bound.

The VC-dimension approach provides a unified tool for analyzing the various fre-
quent itemsets and association rules problems (i.e., the market basket analysis tasks).
We use it to prove tight bounds on the required sample size for extracting FI’s with a

Efficient Discovery of Association Rules and Frequent Itemsets through Sampling 27

minimum frequency threshold, for mining the top-K FI’s, and for computing the col-
lection of AR’s with minimum frequency and confidence thresholds. Furthermore, we
compute bounds for both absolute and relative approximations (see Sec 2.1 for defi-
nitions). We show that high quality approximations can be obtained by mining a very
small random sample of the dataset. For example, the required sample size for an ab-
solute (ε, δ)-approximation of the collection of FI’s is O(1

ε2 (d + log 1
δ)) transactions,

which is a significant improvement over previous known results, as it is smaller and,
more importantly, less dependent on parameters such as the minimum frequency thresh-
old and the dataset size. Similar results are proven for the top-K FI’s and AR’s tasks.

We present an extensive experimental evaluation of our method using real and artifi-
cial datasets, to assess the practicality of our approach. The experimental results show
that indeed our method achieves, and even exceeds, the analytically proven guarantees
for the quality of the approximations.

1.1 Previous Work

Agrawal et al. [1] introduced the problem of mining association rules in the basket
data model, formalizing a fundamental task of information extraction in large datasets.
Almost any known algorithm for the problem starts by solving a FI’s problem and
then generate the association rules implied by these frequent itemsets. Agrawal and
Srikant [2] presented Apriori, the most well-known algorithm for mining FI’s, and Fast-
GenRules for computing association rules from a set of itemsets. Various ideas for im-
proving the efficiency of FI’s and AR’s algorithms have been studied, and we refer the
reader to the survey by Ceglar and Roddick [5] for a good presentation of recent con-
tributions. However, the running times of all known algorithms heavily depend on the
size of the dataset.

Mannila et al. [27] first suggested the idea that sampling can be used to efficiently
obtain the collection of FI’s, presenting some empirical results to validate the intuition.
Toivonen [33] presents an algorithm that, by mining a random sample of the dataset,
builds a candidate set of frequent itemsets which contains all the frequent itemsets with
a probability that depends on the sample size. There are no guarantees that that all item-
sets in the candidate set are frequent, but the set of candidates can be used to efficiently
identify the set of frequent itemsets with at most two passes over the entire dataset. The
work also suggests a bound on the sample size sufficient to ensure that the frequencies
of itemsets in the sample are close to their real one. The analysis uses Chernoff bounds
and the union bound. The major drawback of this sample size is that it depends linearly
on the number of individual items appearing in the dataset.

Zaki et al. [39] show that static sampling is an efficient way to mine a dataset, but
choosing the sample size using Chernoff bounds is too conservative, in the sense that
it is possible to obtain the same accuracy and confidence in the approximate results at
smaller sizes than what the theoretical analysis suggested.

Other works tried to improve the bound to the sample size by using different tech-
niques from statistic and probability theory like the central limit theorem [19, 22, 40]
or hybrid Chernoff bounds [41].

Since theoretically-derived bounds to the sample size where too loose to be useful, a
corpus of works applied progressive sampling to extract FI’s [4, 7, 9, 10, 12, 17, 18, 20,

28 M. Riondato and E. Upfal

21, 25, 28, 38]. Progressive sampling algorithms work by selecting a random sample
and then trimming or enriching it by removing or adding new sampled transactions ac-
cording to a heuristic or a self-similarity measure that is fast to evaluate, until a suitable
stopping condition is satisfied. The major downside of this approach is that it offers no
guarantees on the quality of the obtained results.

Another approach to estimating the required sample size is presented in [13]. The
authors give an algorithm that studies the distribution of frequencies of the itemsets
and uses this information to fix a sample size for mining frequent itemsets, but without
offering any theoretical guarantee.

A recent work by Chakaravarthy et al. [6] gives the first analytical bound on a sample
size that is linear in the length of the longest transaction, rather than in the number of
items in the dataset. This work is also the first to present an algorithm that uses a random
sample of the dataset to mine approximated solutions to the AR’s problem with quality
guarantees. No experimental evaluation of their methods is presented, and they do not
address the top-K FI’s problem. Our approach gives better bounds for the problems
studied in [6] and applies to related problems such as the discovery of top-K FI’s and
absolute approximations.

Extracting the collection of top-K frequent itemsets is a more difficult task since the
corresponding minimum frequency threshold is not known in advance [11, 14]. Some
works solved the problem by looking at closed top-K frequent itemsets, a concise repre-
sentation of the collection [30, 37], but they suffers from the same scalability problems
as the algorithms for exactly mining FI’s with a fixed minimum frequency threshold.

Previous works that used sampling to approximation the collection of top-K FI’s [29,
32] used progressive sampling. Both works provide (similar) theoretical guarantees on
the quality of the approximation. What is more interesting to us, both works present a
theoretical upper bound to the sample size needed to compute such an approximation.
The size depended linearly on the number of items. In contrast, our results give a sample
size that only in the worst case is linear in the number of items but can be (and is, in
practical cases) much less than that, depending on the dataset, a flexibility not provided
by previous contributions. Sampling is used by Vasudevan and Vojonović [36] to extract
an approximation of the top-K frequent individual items from a sequence of items,
which contains no item whose actual frequency is less than fK−ε for a fixed 0 < ε < 1,
where fK is the actual frequency of the K-th most frequent item. They derive a sample
size sufficient to achieve this result, but they assume the knowledge of fK , which is
rarely the case. An empirical sequential method can be used to estimate the right sample
size. Moreover, the results cannot be directly extended to the mining of top-K frequent
item(set)s from datasets of transactions with length greater than one.

1.2 Our Contributions

By applying tools from statistical learning theory, we develop a general technique
for bounding the sample size required for generating high quality approximations to
frequent itemsets and association rules tasks. Table 1 compares our technique to the
best previously known results for the various problems (see Sect. 2.1 for definitions).
Our bounds, which are linear in the VC-dimension associated with the dataset, are
consistently smaller and less dependent on other parameters of the problem than

Efficient Discovery of Association Rules and Frequent Itemsets through Sampling 29

Table 1. Required sample sizes (as number of transactions) as a function of the VC-dimension d,
the maximum transaction size Δ, the number of items |I|, the accuracy ε, the failure probability
δ, the minimum frequency θ, and the minimum confidence γ. Note that d ≤ Δ ≤ |I|.

Task Approx. This work Best previous work

FI’s
absolute 4c

ε2

(
d+ log 1

δ

)
O

(
1
ε2

(
|I| + log 1

δ

))
[19, 22, 33, 40]

relative 4(2+ε)c

ε2(2−ε)θ

(
d log 2+ε

θ(2−ε)
+ log 1

δ

)
24

ε2(1−ε)θ

(
Δ+ 5 + log 4

(1−ε)θδ

)
[6]

top-K
absolute 16c

ε2

(
d+ log 1

δ

)
O

(
1
ε2

(
|I|+ log 1

δ

))
[29, 32]

relative 4(2+ε)c
ε2(2−ε)θ

(
d log 2+ε

θ(2−ε)
+ log 1

δ

)
not available

AR’s
absolute O

(
(1+ε)

ε2(1−ε)θ

(
d log 1+ε

θ(1−ε)
+ log 1

δ

))
not available

relative 16c(4+ε)

ε2(4−ε)θ

(
d log 4+ε

θ(4−ε)
+ log 1

δ

)
48

ε2(1−ε)θ

(
Δ+ 5 + log 4

(1−ε)θδ

)
[6]

previous results. An extensive experimental evaluation demonstrates the advantage of
our technique in practice.

To the best of our knowledge, our work is the first to provide a caractherization
and an explicit bound for the VC-dimension of the range space associated to a dataset
and to apply the result to the extraction of FI’s and AR’s from random sample of the
dataset. We believe that this connection with statistical learning theory can be furtherly
exploited in other data mining problems.

We also believe that our approach can be applied not just to mining collections of
frequent itemsets and association rules, which can be massive, but also to the mining of
small collections of itemsets/association rules that describe the dataset with the minimal
number of itemsets/association rules possible, as presented in [26].

Outline. In Sect. 2 we formally define the problem and our goals, and introduce defini-
tions and lemmas used in the analysis. The main part of the analysis with derivation of a
strict bound to the VC-dimension of association rules is presented in Sect. 3, while our
algorithms and sample sizes for mining FI’s, top-K FI’s, and association rules through
sampling are in Sect. 4. Section 5 contains an extensive experimental evaluation of our
techniques. Due to space constraints, the proofs of our theorems and lemmas are not
presented in this paper. We refer the interested reader to the full version [31].

2 Preliminaries

2.1 Datasets, Itemsets, and Association Rules

A dataset D is a collection of transactions, where each transaction τ is a subset of
a ground set I. There can be multiple identical transactions in D. Members of I are
called items and members of 2I are called itemsets. Let |τ | denote the number of items
in transaction τ . Given an itemset A ∈ 2I , let TD(A) denote the set of transactions in
D that contain A. The support of A, σD(A) = |TD(A)|, is the number of transaction
in D that contains A, and the frequency of A, fD(A) = |TD(A)|

|D| , is the fraction of
transactions in D that contain A.

30 M. Riondato and E. Upfal

Definition 1. Given a minimum frequency threshold θ, 0 < θ ≤ 1, the FI’s mining
task with respect to θ is finding all itemsets with frequency ≥ θ, i.e., the set

FI(D, I, θ) = {(A, fD(A)) : A ∈ 2I and fD(A) ≥ θ}.

To define the collection of top-K FI’s, we assume a fixed canonical ordering of the
itemsets in 2I by decreasing frequency in D, with ties broken arbitrarily, and label the
itemsets A1, A2, . . . , Am according to this ordering. For a given K , with 1 ≤ K ≤ m,
we denote with f

(K)
D the frequency fD(AK) of the K-th most frequent itemset AK ,

and define the set of top-K FI’s (with their respective frequencies) as

TOPK(D, I,K) = FI(D, I, f (K)
D).

One of the main uses of frequent itemsets is in the discovery of association rules.

Definition 2. An association rule W is an expression “A ⇒ B” where A and B are
itemsets such that A ∩ B = ∅. The support σD(W) (resp. frequency fD(W)) of the
association rule W is the support (resp. frequency) of the itemset A∪B. The confidence
cD(W) of W is the ratio fD(A∪B)

fD(A) of the frequency of A ∪B to the frequency of A.

Intuitively, an association rule “A ⇒ B” expresses, throught its support and confidence,
how likely it is for the itemset B to appear in the same transactions as itemset A, so that
when A is found in a transaction it is then possible to infer that B will be present in the
same transaction with a probability equal to the confidence of the association rule.

Definition 3. Given a dataset D with transactions built on a ground set I, and given a
minimum frequency threshold θ and a minimum confidence threshold γ, the AR’s task
with respect to θ and γ consist in finding the set

AR(D, I, θ, γ) = {(W, fD(W), cD(W)) | Assoc. Rule W, fD(W) ≥ θ, cD(W) ≥ γ}.

Often, with an abuse of the notation, we will say that an itemset A (resp. an association
rule W) is in FI(D, I, θ) or in TOPK(D, I,K) (resp. in AR(D, I, θ, γ)) and denote
this fact with A ∈ FI(D, I, θ) or A ∈ TOPK(D, I,K) (resp. W ∈ AR(D, I, θ, γ)),
meaning that there is a pair (A, f) ∈ FI(D, I, θ) or (A, f) ∈ TOPK(D, I,K) (resp. a
triplet (W, fw, cw) ∈ AR(D, I, θ, γ)).

In this work we are interested in extracting absolute and relative approximations of
the sets FI(D, I, θ), TOPK(D, I,K) and AR(D, I, θ, γ).

Definition 4. Given a parameter εabs (resp. εrel), an absolute εabs-close approximation
(resp. a relative εrel-close approximation) of FI(D, I, θ) is a set C = {(A, fA) : A ∈
2I , fA ∈ [0, 1]} of pairs (A, fA) where fA approximates fD(A). C is such that:

1. C contains all itemsets appearing in FI(D, I, θ);
2. C contains no itemset A with frequency fD(A) < θ − εabs (resp. fD(A) < (1 −

εrel)θ);
3. For every pair (A, fA) ∈ C, it holds |fD(A) − fA| ≤ εabs (resp. |fD(A) − fA| ≤

εrelfD(A)).

Efficient Discovery of Association Rules and Frequent Itemsets through Sampling 31

This definition extends easily to the case of top-K frequent itemsets mining using the

equivalence TOPK(D, I,K) = FI
(
D, I, f (K)

D

)
: an absolute (resp. relative) ε-close

approximation to FI
(
D, I, f (K)

D

)
is an absolute (resp. relative) ε-close approximation

to TOPK(D, I,K).
For the case of association rules, we have the following definition.

Definition 5. Given a parameter εabs (resp. εrel), an absolute εabs-close approximation
(resp. a relative εrel-close approximation) of AR(D, I, θ, γ) is a set

C = {(W, fW , cW) : association rule W, fW ∈ [0, 1], cW ∈ [0, 1]}

of triplets (W, fW , cW) where fW and cW approximate fD(W) and cD(W) respec-
tively. C is such that:

1. C contains all association rules appearing in AR(D, I, θ, γ);
2. C contains no association rule W with frequency fD(W) < θ−εabs (resp. fD(W)

< (1− εrel)θ);
3. For every triplet (W, fW , cW) ∈ C, it holds |fD(W)−fW | ≤ εabs (resp. |fD(W)−

fW | ≤ εrelθ).
4. C contains no association rule W with confidence cD(W) < γ − εabs (resp.

cD(W) < (1− εrel)γ);
5. For every triplet (W, fW , cW) ∈ C, it holds |cD(W)−cW | ≤ εabs (resp. |cD(W)−

cW | ≤ εrelcD(W)).

Note that the definition of relative ε-close approximation to FI(D, I, θ) (resp. to AR
(D, I, θ, γ)) is more stringent than the definition of ε-close solution to frequent itemset
mining (resp. association rule mining) in [6, Sect. 3]. Specifically, we require an ap-
proximation of the frequencies (and confidences) in addition to the approximation of
the collection of itemsets or association rules (property 3 in Def. 4 and properties 3 and
5 in Def. 5).

2.2 VC-Dimension

The Vapnik-Chernovenkis (VC) Dimension of a space of points is a measure of the
complexity or expressiveness of a family of indicator functions (or equivalently a family
of subsets) defined on that space [35]. A finite bound on the VC-dimension of a structure
implies a bound on the number of random samples required for approximately learning
that structure. We outline here some basic definitions and results and refer the reader to
the works of Alon and Spencer [3, Sect. 14.4], Chazelle [8, Chap. 4], and Vapnik [34]
for more details on VC-dimension.

VC-dimension is defined on range spaces:

Definition 6. A range space is a pair (X,R) where X is a (finite or infinite) set and R
is a (finite or infinite) family of subsets of X . The members of X are called points and
those of R are called ranges.

To define the VC-dimension of a range space we consider the projection of the ranges
into a set of points:

32 M. Riondato and E. Upfal

Definition 7. Let (X,R) be a range space and A ⊂ X . The projection of R on A is
defined as PR(A) = {r ∩ A : r ∈ R}.

The definition of shattered set will be heavily used in our proofs:

Definition 8. Let (X,R) be a range space and A ⊂ X . If PR(A) = 2A, then A is said
to be shattered by R.

The VC-dimension of a range space is the cardinality of the largest set shattered by the
space:

Definition 9. Let S = (X,R) be a range space. The Vapnik-Chervonenkis dimension
(or VC-dimension) of S, denoted as VC(S) is the maximum cardinality of a shattered
subset of X . If there are arbitrary large shattered subsets, then VC(S) = ∞.

The main application of VC-dimension in statistics and learning theory is its relation
to the size of the sample needed to approximate learning the ranges, in the following
sense.

Definition 10. Let (X,R) be a range space and let A be a finite subset of X .

1. For 0 < ε < 1, a subset B ⊂ A is an ε-approximation for A if ∀r ∈ R, we have∣∣∣∣ |A ∩ r|
|A| − |B ∩ r|

|B|

∣∣∣∣ ≤ ε. (1)

2. For 0 < p, ε < 1, a subset B ⊂ A is a relative (p, ε)-approximation for A if for

any range r ∈ R such that |A∩r|
|A| ≥ p we have

∣∣∣ |A∩r|
|A| − |B∩r|

|B|

∣∣∣ ≤ ε |A∩r|
|A| and for

any range r ∈ R such that |A∩r|
|A| < p we have |B∩r|

|B| ≤ (1 + ε)p.

An ε-approximation (resp. a relative (p, ε)-approximation) can be constructed by ran-
dom sampling points of the point space [16, Thm. 2.12 (resp. 2.11)].

Theorem 1. There is an absolute positive constant c (resp. c′) such that if (X,R) is a
range-space of VC-dimension at most d, A ⊂ X is a finite subset and 0 < ε, δ < 1
(resp. and 0 < p < 1), then a random subset B ⊂ A of cardinality m, where

m ≥ min

{
|A|, c

ε2

(
d+ log

1

δ

)}
, (2)

(resp. m ≥ min
{
|A|, c′

ε2p

(
d log 1

p + log 1
δ

)}
) is an ε-approximation (resp. a relative

(p, ε)-approximation) for A with probability at least 1− δ.

Note that throughout the work we assume the sample to be drawn with replacement if
m < |A| (othewise the sample is exactly the set A). Löffler and Phillips [24] showed
experimentally that the absolute constant c is approximately 0.5. It is also interesting to
note that an ε-approximation of size O(d

ε2 log
d
ε) can be built deterministically in time

O(d3d(1
ε2 log

d
ε)

d|X |) [8].

Efficient Discovery of Association Rules and Frequent Itemsets through Sampling 33

3 The Dataset’s Range Space and Its VC-Dimension

We define one range space that is used in the derivation of the sample sizes needed to
approximate the solutions to the tasks of market basket analysis.

Definition 11. Let D be a dataset of transactions that are subsets of a ground set I. We
define S = (X,R) to be a range space associated with D such that:

1. X = D is the set of transactions in the dataset.
2. R = {TD(W) | W ⊆ I} is a family of sets of transactions such that for each

itemset W ⊆ I, the set TD(W) = {τ ∈ D |W ⊆ τ} of all transactions containing
W is an element of R.

Theorem 2. Let D be a dataset and let S = (X,R) be the associated range space. Let
d ∈ N. Then VC(S) ≥ d if and only if there exists a set A ⊆ D of d transactions from
D such that for each subset B ⊆ A of A, there exists an itemset IB such that 1) all
transactions in B contain IB and 2) no transaction ρ ∈ A \ B contains IB .

Corollary 1. Let D be a dataset and S = (D, R) be the corresponding range space.
Then, the VC-Dimension VC(S) of S, is the maximum integer d such that there is a set
A ⊆ D of d transactions from D such that for each subset B ⊆ A of A, there exists an
itemset IB such that 1) all transactions in B contain IB and 2) no transaction ρ ∈ A\B
contains IB .

Computing the exact VC-dimension of a dataset is extremely expensive from a compu-
tational point of view. This does not come as a suprise, as it is known that computing the
VC-dimension of a range space (X,R) can take time O(|R||X |log |R|) [23, Thm. 4.1].
It is instead possible to give an upper bound to the VC-dimension of a dataset, and a
procedure to efficiently compute the bound.

Definition 12. Let D be a dataset. The d-index of a dataset is defined as the maximum
integer d such that D contains at least d transactions of length at least d.

A note of folklore: if the dataset represents the scientific publications of a given scien-
tist, with transactions corresponding to articles and items in a transaction corresponding
to the citations received by the paper, then the d-index of the dataset corresponds to the
h-index of the scientist.

The d-index d of a dataset D can be computed in one scan of the dataset and with
total memoryO(d). The scan starts with d∗ = 1 and it stores the length of the first trans-
action. At any given step the procedure stores d∗, the current estimate of d, computed
as the maximum d′ such that the the scan up to this step found at least d′ transactions
with length at least d′, and keeps a list of the sizes of the transactions longer than d′

found so far. There can be no more than d′ such transactions. As the scan proceeds, the
procedure updates d∗ and the list of transactions sizes greater than d∗.

The d-index is an upper bound to the VC-dimension of a dataset.

Theorem 3. Let D be a dataset with d-index d. Then the range space S = (X,R)
corresponding to D has VC-dimension at most d.

34 M. Riondato and E. Upfal

This bound is strict, i.e., there are indeed datasets with VC-dimension exactly d, as
formalized by the following Theorem.

Theorem 4. There exists a dataset D with d-index d and such the corresponding range
space has VC-dimension exactly d.

The datasets built in the proof of Thm. 4 are extremely artificial. Our experiments sug-
gest that the VC-dimension of real datasets is usually much smaller than the upper
bound presented in Thm. 3.

4 Mining (top-K) Frequent Itemsets and Association Rules

We apply the VC-dimension results to constructing efficient sampling algorithms with
performance guarantees for approximating the collections of FI’s, top-K FI’s and AR’s.

4.1 Mining Frequent Itemsets

We construct bounds for the sample size needed to obtain relative/absolute ε-close ap-
proximations to the collection of FI’s. The algorithms to compute the approximations
use a standard exact FI’s mining algorithm on the sample, with an appropriately ad-
justed minimum frequency threshold, as formalized in the following lemma.

Lemma 1. Let D be a dataset with transactions built on a ground set I, and let d be
the d-index of D. Let 0 < ε, δ < 1. Let S be a random sample of D with size |S| =
min{|D|, 4c

ε2

(
d+ log 1

δ

)
}, for some constant c. Then FI(S, I, θ − ε

2) is an absolute
ε-close approximation to FI(D, I, θ) with probability at least 1− δ.

One very interesting consequence of this result is that we do not need to know the
minimum frequency threshold θ in advance to build the sample: the properties of the
ε-approximation allow to use the same sample for any threshold and for different thresh-
olds, i.e., the sample does not need to be rebuilt if we want to mine it with a threshold θ
first and with another threshold θ′ later.

It is important to note that the VC-dimension of a dataset, and therefore the sample
size from (2) needed to probabilistically obtain an ε-approximation, is independent from
the size (number of transactions) in D and also of the size of FI(S, I, θ). It only depends
on the quantity d, which is always less or equal to the length of the longest transaction
in the dataset, which in turn is less or equal to the number of different items |I|.

To obtain a relative ε-close approximation, we need to add a dependency on θ as
shown in the following Lemma.

Lemma 2. Let D, d, ε, and δ as in Lemma 1. Let S be a random sample of D with size

|S| = min{|D|, 4(2+ε)c
ε2θ(2−ε)

(
d log 2+ε

θ(2−ε) + log 1
δ

)
}, for some constant c. Then FI(S, I,

(1 − ε
2)θ) is a relative ε-close approximation to FI(D, I, θ) with probability at least

1− δ.

Efficient Discovery of Association Rules and Frequent Itemsets through Sampling 35

4.2 Mining Top-K Frequent Itemsets

Given the equivalence TOPK(D, I,K) = FI(D, I, f (K)
D), we could use the above FI’s

sampling algorithms if we had a good approximation of f (K)
D , the threshold frequency

of the top-K FI’s.
For the absolute ε-close approximation we first execute a standard top-K FI’s mining

algorithm on the sample to estimate f (K)
D and then run a standard FI’s mining algorithm

on the same sample using a minimum frequency threshold depending on our estimate
of f (K)

S . Lemma 3 formalizes this intuition.

Lemma 3. Let D, d, ε, and δ be as in Lemma 1. Let K be a positive integer. Let S be
a random sample of D with size |S| = min{|D|, 16cε2

(
d+ log 1

δ

)
}, for some constant c,

then FI(S, I, f (K)
S − ε

2) is an absolute ε-close approximation to TOPK(D, I,K) with
probability at least 1− δ.

Note that as in the case of the sample size required for an absolute ε-close approxima-
tion to FI(D, I, θ), we do not need to know K in advance to compute the sample size
for obtaining an absolute ε-close approximation to TOPK(D, I,K).

Two different samples are needed for computing a relative ε-close approximation to
TOPK(D, I,K), the first one to compute a lower bound to f

(K)
D , the second to extract

the approximation. Details for this case are presented in Lemma 4.

Lemma 4. Let D, d, ε, and δ be as in Lemma 1. Let K be a positive integer. Let δ1, δ2
be two reals such that (1 − δ1)(1 − δ2) ≥ (1 − δ). Let S1 be a random sample of

D with some size |S1| = φc
ε2

(
d+ log 1

δ1

)
for some φ > 2

√
2/ε and some constant

c. If f (K)
S1

≥ 2
√
2

εφ , then let p = 2−ε
2+εθ and let S2 be a random sample of D of size

min{|D|, 4c
ε2p (d log

1
p + log 1

δ)} for some constant c. Then FI(S2, I, (1− ε/2)(f
(K)
S1

−
ε/

√
2φ)) is a relative ε-close approximation to TOPK(D, I,K) with probability at

least 1− δ.

4.3 Mining Association Rules

Our final theoretical contribution concerns the discovery of relative/absolute approxi-
mations to AR(D, I, θ, η) from a sample. Lemma 5 builds on a result from [6, Sect. 5]
and covers the relative case, while Lemma 6 deals with the absolute one.

Lemma 5. Let 0 < δ, ε, θ, γ < 1, φ = max{3, 2 − ε + 2
√
1− ε}, η = ε

φ , and

p = 1−η
1+η θ. Let D be a dataset with d-index d. Let S be a random sample of D of size

min{|D|, c
η2p (d log

1
p + log 1

δ)} for some constant c. Then AR(S, I, (1− η)θ, 1−η
1+ηγ) is

a relative ε-close approximation to AR(D, I, θ, γ) with probability at least 1− δ.

Lemma 6. Let D, d, θ, γ, ε, and δ be as in Lemma 5 and let εrel = ε
max{θ,γ} .

Fix φ = max{3, 2 − εrel + 2
√
1− εrel}, η = εrel

φ , and p = 1−η
1+η θ. Let S be a

random sample of D of size min{|D|, c
η2p (d log

1
p + log 1

δ)} for some constant c. Then

AR(S, I, (1 − η)θ, 1−η
1+ηγ) is an absolute ε-close approximation to AR(D, I, θ, γ).

36 M. Riondato and E. Upfal

Note that the sample size needed for absolute ε-close approximations to AR(D, I, θ, γ)
depends on θ and γ, which was not the case for absolute ε-close approximations to
FI(D, I, θ) and TOPK(D, I,K).

5 Experimental Evaluation

In this section we present an extensive experimental evaluation of our methods to ex-
tract approximations of FI(D, I, θ), TOPK(D, I,K), and AR(D, I, θ, γ). Due to space
constraints, we focus on a subset of the results.

Our first goal is to evaluate the quality of the approximations obtained using our
methods, by comparing the experimental results to the analytical bounds. We also eval-
uate how strict the bounds are by testing whether the same quality of results can be
achieved at sample sizes smaller than those suggested by the theoretical analysis. We
then show that our methods can significantly speed-up the mining process, fulfilling the
motivating promises of the use of sampling in the market basket analysis tasks. Lastly,
we compare the sample sizes from our results to the best previous work [6].

We tested our methods on both real and artificial datasets. The real datasets come
from the FIMI’04 repository (http://fimi.ua.ac.be/data/). Since most of
them have a moderately small size, we replicated their transactions a number of times,
with the only effect of increasing the size of the dataset but no change in the distri-
bution of the frequencies of the itemsets. The artificial datasets were built such that
their corresponding range spaces have VC-dimension equal to the maximum transac-
tion length d, which is the maximum possible as shown in Thm. 3. To create these
datasets, we followed the proof of Thm. 4 and used the generator included in ARtool
(http://www.cs.umb.edu/~laur/ARtool/), which is similar to the one pre-
sented in [2]. We used the the FP-Growth and Apriori implementations in ARtool to
extract frequent itemsets and association rules. In all our experiments we fixed δ = 0.1.
In the experiments involving absolute (resp. relative) ε-close approximations we set
ε = 0.01 (resp. ε = 0.05). The constant c was fixed to 0.5 as suggested by [24]. For
each dataset we selected a range of minimum frequency thresholds and a set of values
for K when extracting the top-K frequent itemsets. For association rules discovery we
set the minimum confidence threshold γ ∈ {0.5, 0.75, 0.9}. For each dataset and each
combination of parameters we created random samples with size as suggested by our
theorems and with smaller sizes to evaluate the strictness of the bounds. We measured,
for each set of parameters, the absolute frequency error and the absolute confidence
error, defined as the error |fD(X) − fS(X)| (resp. |cD(Y) − cS(Y)|) for an itemset
X (resp. an association rule Y) in the approximate collection extracted from sample
S. When dealing with the problem of extracting relative ε-close approximations, we
defined the relative frequency error to be the absolute frequency error divided by the
real frequency of the itemset and analogously for the relative confidence error (divid-
ing by the real confidence). In the figures we plot the maximum and the average for
these quantities, taken over all itemsets or association rules in the output collection. In
order to limit the influence of a single sample, we computed and plot in the figures the
maximum (resp. the average) of these quantities in three runs of our methods on three
different samples for each size.

http://fimi.ua.ac.be/data/
http://www.cs.umb.edu/~laur/ARtool/

Efficient Discovery of Association Rules and Frequent Itemsets through Sampling 37

(a) Absolute Frequency Error (b) Relative Frequency Error

Fig. 1. Absolute / Relative ε-close Approximation to FI(D, I, θ)

The first important result of our experiments is that, for all problems, for every com-
bination of parameters and every run, the collection of itemsets or of association rules
obtained using our methods always satisfied the requirements to be an absolute or rel-
ative ε-close approximation to the real collection. Thus in practice our methods in-
deed achieve or exceed the theoretical guarantees for approximations of the collections
FI(D, I, θ), TOPK(D, I, θ), and AR(D, I, θ, γ).

Evaluating the strictness of the bounds to the sample size was the second goal of
our experiments. In Figure 1a we show the behaviour of the maximum frequency error
as function of the sample size in the itemsets obtained from samples using the method
presented in Lemma 1 (i.e., we are looking for an absolute ε-close approximation to
FI(D, I, θ)). The rightmost plotted point corresponds to the sample size suggested by
the theoretical analysis. We are showing the results for the dataset BMS-POS repli-
cated 40 times (d-index d = 134), mined with θ = 0.02. It is clear from the picture
that the guaranteed error bounds are achieved even at sample sizes smaller than what
suggested by the analysis and that the error at the sample size derived from the theory
(rightmost plotted point for each line) is one to two orders of magnitude smaller than
the maximum tolerable error ε = 0.01. This fact seems to suggest that there is still
room for improvement in the bounds to the sample size needed to achieve an absolute
ε-close approximation to FI(D, I, θ). In Fig. 1b we report similar results for the prob-
lem of computing a relative ε-close approximation to FI(D, I, θ) for an artificial dataset
whose range space has VC-dimension d equal to the length of the longest transaction in
the dataset, in this case 33. The dataset contained 100 million transactions. The sample
size, suggested by Lemma 2, was computed using θ = 0.01, ε = 0.05, and δ = 0.1. The
conclusions we can draw from the results for the behaviour of the relative frequency er-
ror are similar to those we got for the absolute case. For the case of absolute and relative
ε-close approximation to TOPK(D, I,K), we observed similar results, which we do
not report here because of space constraints.

The results of the experiments to evaluate our method to extract a relative ε-close
approximation to AR(D, I, θ, γ) are presented in Fig. 2a and 2b. The same observations
as before hold for the relative frequency error, while it is interesting to note that the
relative confidence error is even smaller than the frequency error, most possibly because
the confidence of an association rule is the ratio between the frequencies of two itemsets
that appear in the same transactions and their sample frequencies will therefore have
similar errors that cancel out when the ratio is computed. Similar conclusions can be
made for the absolute ε-close case (not reported due to space constraints).

38 M. Riondato and E. Upfal

(a) Relative Frequency Error (b) Relative Confidence Error

Fig. 2. Relative ε-close approximation to AR(D, I, θ, γ)

The major motivating intuition for the use of sampling in market basket analysis
tasks is that mining a sample of the dataset is faster than mining the entire dataset. Nev-
ertheless, the mining time does not only depend on the number of transactions, but also
on the number of frequent itemsets. Given that our methods suggest to mine the sample
at a lowered minimum frequency threshold, this may cause an increase in running time
that would make our method not useful in practice, because there may be many more
frequent itemsets than at the original frequency threshold. We performed a number of
experiments to evaluate whether this was the case and present the results in Fig. 3.
We mined the artificial dataset introduced before for different values of θ, and created
samples of size sufficient to obtain a relative ε-close approximation to FI(D, I, θ), for
ε = 0.05 and δ = 0.1. Figure 3 shows the time needed to mine the large dataset and the
time needed to create and mine the samples. It is possible to appreciate that, even con-
sidering the sampling time, the speed up achieved by our method is relevant, proving
the usefulness of sampling.

Comparing our results to previous work we note that the bounds generated by our
technique are always linear in the VC-dimension d associated with the dataset. As re-
ported in Table 1, the best previous work [6] presented bounds that are linear in the max-
imum transaction size Δ for two of the six problems studied here. Figures 4a and 4b
shows a comparison of the actual sample sizes for relative ε-close approximations to
FI(D, I, θ) for as function of θ and ε. To compute the points for these figures, we set
Δ = d = 50, corresponding to the worst possible case for our method, i.e., when the
VC-dimension of the range space associated to the dataset is exactly equal to the maxi-
mum transaction length. We also fixed δ = 0.05 (the two methods behave equally as δ
changes). For Fig. 4a, we fixed ε = 0.05, while for Fig. 4b we fixed θ = 0.05. From the

Fig. 3. Runtime Comparison. The sample line includes the sampling time.

Efficient Discovery of Association Rules and Frequent Itemsets through Sampling 39

(a) Sample size as function of θ (b) Sample size as function of ε

Fig. 4. Sample sizes for relative ε-close approximations to FI(D, I, θ)

Table 2. Values for maximum transaction length Δ and d-index d for real datasets

accidents BMS-POS BMS-Webview-1 kosarak mushroom pumsb* retail webdocs

Δ 51 164 267 2497 23 63 76 71472
d 46 81 57 443 23 59 58 2452

Figures we can appreciate that both bounds have similar, but not equal, dependencies
on θ and ε. More precisely the bound presented in this work is less dependent on ε and
only slightly more dependent on θ. It also evident that the sample sizes suggested by
the bound presented in this work are always much smaller than those presented in [6]
(the vertical axis has logarithmic scale). In this comparison we used Δ = d, but almost
all real datasets we encountered have d � Δ as shown in Table 2 which would result
in a larger gap between the sample sizes provided by the two methods.

References

[1] Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in
large databases. SIGMOD Rec. 22, 207–216 (1993)

[2] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:
VLDB 1994 (1994)

[3] Alon, N., Spencer, J.H.: The Probabilistic Method, 3rd edn. Wiley (2008)
[4] Brönnimann, H., Chen, B., Dash, M., Haas, P., Scheuermann, P.: Efficient data reduction

with ease. In: KDD 2003 (2003)
[5] Ceglar, A., Roddick, J.F.: Association mining. ACM Comput. Surv. 38(5) (2006)
[6] Chakaravarthy, V.T., Pandit, V., Sabharwal, Y.: Analysis of sampling techniques for associ-

ation rule mining. In: ICDT 2009 (2009)
[7] Chandra, B., Bhaskar, S.: A new approach for generating efficient sample from market

basket data. Expert Sys. with Appl. 38(3), 1321–1325 (2011)
[8] Chazelle, B.: The discrepancy method: randomness and complexity, Cambridge (2000)
[9] Chen, B., Haas, P., Scheuermann, P.: A new two-phase sampling based algorithm for dis-

covering association rules. In: KDD 2002 (2002)
[10] Chen, C., Horng, S.-J., Huang, C.-P.: Locality sensitive hashing for sampling-based algo-

rithms in association rule mining. Expert Sys. with Appl. 38(10), 12388–12397 (2011)
[11] Cheung, Y.-L., Fu, A.W.-C.: Mining frequent itemsets without support threshold: With and

without item constraints. IEEE Trans. on Knowl. and Data Eng. 16, 1052–1069 (2004)

40 M. Riondato and E. Upfal

[12] Chuang, K.-T., Chen, M.-S., Yang, W.-C.: Progressive Sampling for Association Rules
Based on Sampling Error Estimation. In: Adv. in Knowl. Disc. and Data Mining. Springer,
Heidelberg (2005)

[13] Chuang, K.-T., Huang, J.-L., Chen, M.-S.: Power-law relationship and self-similarity in the
itemset support distribution: analysis and applications. The VLDB Journal 17(5) (2008)

[14] Fu, A.W.-C., Kwong, R.W.-W., Tang, J.: Mining N -most Interesting Itemsets. In: Ohsuga,
S., Raś, Z.W. (eds.) ISMIS 2000. LNCS (LNAI), vol. 1932, pp. 59–67. Springer, Heidelberg
(2000)

[15] Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future
directions. Data Min. Knowl. Discov. 15, 55–86 (2007)

[16] Har-Peled, S., Sharir, M.: Relative (p, ε)-approximations in geometry. Discr. & Comput.
Geometry 45(3), 462–496 (2011)

[17] Hu, X., Yu, H.: The Research of Sampling for Mining Frequent Itemsets. In: Wang, G.-Y.,
Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 496–
501. Springer, Heidelberg (2006)

[18] Hwang, W., Kim, D.: Improved association rule mining by modified trimming. In: CIT 2006
(2006)

[19] Jia, C., Lu, R.: Sampling Ensembles for Frequent Patterns. In: Wang, L., Jin, Y. (eds.) FSKD
2005. LNCS (LNAI), vol. 3613, pp. 1197–1206. Springer, Heidelberg (2005)

[20] Jia, C.-Y., Gao, X.-P.: Multi-scaling sampling: An adaptive sampling method for discover-
ing approximate association rules. J. of Comp. Sci. and Tech. 20, 309–318 (2005)

[21] John, G.H., Langley, P.: Static versus dynamic sampling for data mining. In: KDD 1996
(1996)

[22] Li, Y., Gopalan, R.: Effective Sampling for Mining Association Rules. In: Webb, G.I., Yu,
X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 391–401. Springer, Heidelberg (2004)

[23] Linial, N., Mansour, Y., Rivest, R.L.: Results on learnability and the Vapnik-Chervonenkis
dimension. Information and Computation 1, 33–49 (1991)

[24] Löffler, M., Phillips, J.M.: Shape Fitting on Point Sets with Probability Distributions. In:
Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 313–324. Springer, Heidelberg
(2009)

[25] Mahafzah, B.A., Al-Badarneh, A.F., Zakaria, M.Z.: A new sampling technique for associa-
tion rule mining. J. of Information Science 3, 358–376 (2009)

[26] Mampaey, M., Tatti, N., Vreeken, J.: Tell me what i need to know: succinctly summarizing
data with itemsets. In: KDD 2011 (2011)

[27] Mannila, H., Toivonen, H., Verkamo, I.: Efficient algorithms for discovering association
rules. In: KDD 1994 (1994)

[28] Parthasarathy, S.: Efficient progressive sampling for association rules. In: ICDM 2002
(2002)

[29] Pietracaprina, A., Riondato, M., Upfal, E., Vandin, F.: Mining top-K frequent itemsets
through progressive sampling. Data Min. Knowl. Discov. 21, 310–326 (2010)

[30] Pietracaprina, A., Vandin, F.: Efficient Incremental Mining of Top-K Frequent Closed Item-
sets. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp.
275–280. Springer, Heidelberg (2007)

[31] Riondato, M., Upfal, E.: Efficient discovery of association rules and frequent itemsets
through sampling with tight performance guarantees. CoRR abs/1111.6937 (2011)

[32] Scheffer, T., Wrobel, S.: Finding the most interesting patterns in a database quickly by using
sequential sampling. J. Mach. Learn. Res. 3, 833–862 (2002)

[33] Toivonen, H.: Sampling large databases for association rules. In: VLDB 1996 (1996)
[34] Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag (1999)
[35] Vapnik, V.N., Chervonenkis, A.J.: On the uniform convergence of relative frequencies of

events to their probabilities. Theory of Prob. and its Appl. 16(2), 264–280 (1971)

Efficient Discovery of Association Rules and Frequent Itemsets through Sampling 41

[36] Vasudevan, D., Vojonović, M.: Ranking through random sampling. MSR-TR-2009-8 8, Mi-
crosoft Research (2009)

[37] Wang, J., Han, J., Lu, Y., Tzvetkov, P.: TFP: An efficient algorithm for mining top-k frequent
closed itemsets. IEEE Trans. on Knowl. and Data Eng. 17, 652–664 (2005)

[38] Wang, S., Dash, M., Chia, L.-T.: Efficient Sampling: Application to Image Data. In: Ho,
T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 452–463.
Springer, Heidelberg (2005)

[39] Zaki, M., Parthasarathy, S., Li, W., Ogihara, M.: Evaluation of sampling for data mining of
association rules. In: RIDE 1997 (1997)

[40] Zhang, C., Zhang, S., Webb, G.I.: Identifying approximate itemsets of interest in large
databases. Applied Intelligence 18, 91–104 (2003)

[41] Zhao, Y., Zhang, C., Zhang, S.: Efficient frequent itemsets mining by sampling. In: AMT
2006 (2006)

Smoothing Categorical Data

Arno Siebes and René Kersten

Universiteit Utrecht, The Netherlands
arno@cs.uu.nl, renegaa@hotmail.com

Abstract. Global models of a dataset reflect not only the large scale
structure of the data distribution, they also reflect small(er) scale struc-
ture. Hence, if one wants to see the large scale structure, one should
somehow subtract this smaller scale structure from the model.

While for some kinds of model – such as boosted classifiers – it is
easy to see the “important” components, for many kind of models this
is far harder, if at all possible. In such cases one might try an implicit
approach: simplify the data distribution without changing the large scale
structure. That is, one might first smooth the local structure out of the
dataset. Then induce a new model from this smoothed dataset. This new
model should now reflect the large scale structure of the original dataset.
In this paper we propose such a smoothing for categorical data and for
one particular type of models, viz., code tables.

By experiments we show that our approach preserves the large scale
structure of a dataset well. That is, the smoothed dataset is simpler while
the original and smoothed datasets share the same large scale structure.

1 Introduction

Most often data has structure across multiple scales. It is relatively easy to see
fine-grained structure, e.g., through pattern mining. The lower the ”support” of
a pattern the more detailed structure it conveys. Since the large scale structure
of data is convoluted with small scale structure it is, unfortunately, less easy to
see its large scale structure. Simply focussing on ”high support” patterns might
miss large scale structure; we will show examples of this later.

Global models of the data, on the other hand, attempt to capture all, relevant,
aspects of the data distribution. This often encompasses both global structure
as well as local structure. If the type of model used is additive, such as a boosted
classifier [5], the large scale structure may be approximated by disregarding small
weight components. For non-additive types of models, syntactic operations that
reveal the large scale structure are far less obvious.

This is unfortunate, since this large scale structure conveys important insight
both in the data distribution and in the model. Hence, the problem we research
in this paper: how to get insight in the large scale structure of a dataset?

If manipulating the model is difficult, manipulating the data might be easier.
That is, smoothing the local structure – as described by the model – from the data
while retaining the global structure – as described by the model. Inducing a new

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 42–57, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Smoothing Categorical Data 43

model from the smoothed dataset should then reveal the large scale structure of
the data distribution as described by the original model. This is our approach.

Note that we should consistently write “structure of the data as described by
the model”, as we did above, but we simplify this to “structure of the data”.

Smoothing is a well-known statistical technique [14] mostly for numerical data
and to a lesser extend for ordered data. In this paper we focus on categorical
data, for which as far as we are aware, no previous smoothing methods exist.
Succinctly, our goal is to smooth out local structure from standard categorical
data tables, while preserving large scale structure.

The structure of a categorical dataset is given by item sets [1]; in the context
of categorical data, an item is defined as an attribute-value pair. The large scale
structure is mostly – but not exclusively, as noted above – given by more frequent
item sets. The small scale structure is given by less frequent item sets.

Informally, two equally sized datasets are indistinguishable if the support of
all item sets is the same on both datasets. In the same vein, two equally sized
datasets are similar if the support of most item sets is more or less the same on
the two datasets. Again informally, we say that two equally sized datasets have
the same large scale structure if they are similar as far as frequent item sets are
concerned. This is made precise in Section 3.

To smooth the data while retaining the large scale structure, we need to use
a model. For it is this model that describes the large scale structure we want to
preserve. Hence, the way to smooth depends on the type of model. In this paper
we focus on one particular class of models that consists of itemsets, viz. code
tables as introduced in [11].

A code table consists of item sets associated with codes and can be used to
encode a database; see Section 2. What is important here is that a code table im-
plicitly encodes a probability distribution on all possible tuples in the database.
By replacing less likely tuples with more likely tuples, the small scale structure
is smoothed from the dataset while the large scale structure is maintained. That
is, the support of most frequent item sets is not changed too much by these
replacements; see Section 3.

Note that the reason why we don’t simply use the set of all frequent item
sets to do the smoothing is not only that this set is far too large. It also doesn’t
imply a straight forward distribution on all possible tuples; if only because of
the interdependencies between the supports of different item sets.

In Figure 1 the effect of this smoothing is illustrated on the mammals dataset.
This dataset consists of presence/absence records of European mammals1 within
geographical areas of 50x50 kilometres. In the left map, we depict the occurrence of
the “item set” {European Hare, European Polecat, European Mole, Wild Boar},
with dark blue dots. The other dots denote the occurrence of variants of this set;
variants that differ in one mammal. No dot means that neither the item set, nor
any of these variants occur in that place.

1 The full version of the mammal dataset is available for research purposes upon request
from the Societas Europaea Mammalogica. http://www.european-mammals.org

http://www.european-mammals.org

44 A. Siebes and R. Kersten

Fig. 1. The smoothed mammals dataset depicted on the right is far more homogeneous
than the original mammals dataset depicted on the left

The right map shows the effect of smoothing. The map looks far more ho-
mogeneous: the Balkans changed from a variety of colours to almost uniformly
dark blue. This does not happen in England and Sweden, but not because the
map of the latter two looks more homogeneous than the map of the Balkans.
Rather, this happens because the total set of mammals that occur in the Balkans
resemble the set of mammals that occur in the rest of mainland Europe far more
than the sets of mammals that occur in England and south Sweden do.

2 Preliminaries

2.1 Data and Patterns

We assume that the dataset is a standard rectangular table, well known from
relational databases.That is we have a finite set of attributes A = {A1, . . . , Am}.
Moreover, we assume that each attribute Ai has a finite, categorical, domain
Domi. A tuple t over A is an element of Dom =

∏m
i=1 Domi. A database D over

A is a bag of tuples over A.
Since our work is rooted in item set mining [1], we will also use the terminology

from that area. This means firstly that we will talk about transactions rather
than tuples. Secondly we have a set of items I = {I1, . . . In}. Each item Ij
corresponds to an attribute-value pair (Ai, v

k
i), where vki ∈ Domi. Note that

this implies that all transactions have the same number of items.
A transaction t supports an item I = (Ai, v

k
i) iff t.Ai = vki . As usual, the

support of an item set J ⊂ I in D, denoted by supD(J), is defined as the
number of transactions in D that support all items in J . Given a user defined
threshold for support, denoted by min-sup or θ, an item set J is called fre-
quent on D iff supD(J) ≥ θ. All frequent item sets can be found relatively
efficiently [1].

Smoothing Categorical Data 45

2.2 Introducing Krimp

The key idea of the Krimp algorithm is the code table. A code table is a two-
column table that has item sets on the left-hand side and a code for each item
set on its right-hand side. The item sets in the code table are ordered descending
on 1) item set length, 2) support size and 3) lexicographically. The actual codes
on the right-hand side are of no importance but their lengths are. To explain
how these lengths are computed, the coding algorithm needs to be introduced.

A transaction t is encoded by Krimp by searching for the first item set I in
the code table for which I ⊆ t. The code for I becomes part of the encoding of
t. If t \ I �= ∅, the algorithm continues to encode t \ I. Since it is insisted that
each code table contains at least all singleton item sets, this algorithm gives a
unique encoding to each (possible) transaction over I. The set of item sets used
to encode a transaction is called its cover.

The length of the code of an item in a code table CT depends on the database
we want to compress; the more often a code is used, the shorter it should be. To
compute this code length, we encode each transaction in the database D. The
usage of an item set I ∈ CT , denoted by usage(I) is the number of transactions
t ∈ D which have I in their cover. That is, usage(I) = |{t ∈ D | I ∈ cover(t)}|.

For an I ∈ CT , the probability that I is used to encode an arbitrary t ∈ D,
is simply the fraction of its usage, i.e.,

P (I | D) =
usage(I)∑

J∈CT usage(J)

For optimal compression of D, the higher P (I), the shorter its code should be.
Given that a prefix code is necessary for unambiguous decoding, the well-known
optimal Shannon code [4] is used. We now have the length of an item set I
encoded with CT defined as L(I | CT) = − log(P (I | D)).

The length of the encoding of a transaction is now simply the sum of the code
lengths of the item sets in its cover:

L(t | CT) =
∑

I∈cover(t,CT)

L(I | CT)

The size of the encoded database is the sum of the sizes of the encoded transac-
tions:

L(D | CT) =
∑
t∈D

L(t | CT) = −
∑
I∈CT

usage(I) log

(
usage(I)∑

J∈CT usage(J)

)
To find the best code table for a dataset, the Minimum Description Length
(MDL) principle [6] is used. Which can be roughly described as follows.

Given a set of models H, the best model H ∈ H is the one that minimises
L(H) + L(D | H), in which L(H) is the length, in bits, of the description of H ,
and L(D | H) is the length, in bits, of D encoded with H . One can paraphrase
this by: the smaller L(H) + L(D|H), the better H models D.

46 A. Siebes and R. Kersten

To apply MDL to code tables, we still need to define the size of a code table,
as we previously did in [11]. We only count those item sets that have a non-zero
usage. The size of the right-hand side column is obvious; it is the sum of all
the different code lengths. For the size of the left-hand side column, note that
the simplest valid code table consists only of the singleton item sets. This is the
standard encoding (ST), which we use to compute the size of the item sets in
the left-hand side column. Hence, the size of code table CT is given by:

L(CT | D) =
∑

I∈CT :usage(I) �=0

L(I | ST) + L(I | CT)

An optimal code table is a code table which minimises:

L(D,CT) = L(CT | D) + L(D | CT)

Finally, L(D) = L(D,CT) for an optimal code table CT for D.
Unfortunately, computing an optimal code table is intractable [11], hence

we introduced the heuristic algorithm Krimp. Krimp starts with a valid code
table (only the collection of singletons) and a sorted list of candidates (frequent
item sets). These candidates are assumed to be sorted descending on 1) support
size, 2) item set length and 3) lexicographically. Each candidate item set is
considered by inserting it at the right position in CT and calculating the new
total compressed size. A candidate is only kept in the code table iff the resulting
total size is smaller than it was before adding the candidate. If it is kept, all
other elements of CT are reconsidered to see if they still positively contribute
to compression; see [11].

3 The Problem

As stated in the Introduction, our goal is to make the large scale structure of a
data distribution more visible by smoothing out small(er) scale structure. The
formalisation of that goal rests on four considerations.

Consideration 1: A code table models the structure in the data by a very
small subset of all (frequent) item sets, chosen because together they compress
the database well. The usages of these item sets say something about their
importance with respect to large scale structure, but not everything. High usage
clearly means large scale structure, but low usage does not necessarily mean
small scale structure. The reason for this is the order of the code table which is
used to compute covers. In other words, to “see” the large scale structure of the
dataset, it is not enough to simply focus on item sets with a high usage. We’ll
return to this observation later in this paper when we discuss our experiments.

Consideration 2: We claim that the structure of a categorical dataset is given
by the support of all item sets; independent from the type of model used. The
motivation for this claim is based on two observations.

The first is that if two equally sized datasets D1 and D2 over I have the same
support for all item sets over I, they are row permutations of each other. That is,

Smoothing Categorical Data 47

there exists a permutation π of the rows such that π(D1) = D2. This is obvious
from the fact that the transactions in D1 and D2 are item sets themselves.

The second observation is that D1 and D2 will be indistinguishable by any
type of statistical analysis [2]. For, all such analysis boils down to comput-
ing aggregates computed on subtables of a dataset. Given that these subtables
correspond to item sets, equal support means equal results of the analysis.

Consideration 3: Statistical computations are, in general, robust. That is,
small changes in the input yield small changes in the output. One reason for
this is that two samples from the same distribution will invariably be subtly
different; to be useful, statistical analysis should “smooth out” such differences.

In other words, if D1 and D2 have almost the same support for all item sets,
statistical analysis will mostly imply that D1 and D2 are indistinguishable. For
our purposes we can be even more tolerant, for we are willing – indeed aiming –
to lose some (local) structure. That is, we are satisfied if for most item sets the
support is almost the same. We can loosely formalise this by requiring that the
support of a random item set is almost the same on both data sets.

Consideration 4: There are two weak points in this formulation. Firstly, that
it is a statement about all item sets. Surely, if it is large scale structure we are
interested in, item sets with (very) low support are unimportant. Secondly, what
is almost the same?

Fortunately, these two weak points can be resolved in one step. The fact
that we are not interested in low support item sets simply means that we are
interested in frequent item sets. That is, item sets whose support is at least θ. If
structure that is described by item sets with a support smaller than θ is deemed
not interesting, we should also not worry too much about differences in support
smaller than θ.

3.1 Formalising the Problem

Given all the previous, we have the following definition.

Definition 1. Let D1 and D2 be two datasets over I and let ε, δ ∈ R≥0. D2 is
(ε, δ)-similar to D1 if for a random item set I with supD1(I) ≥ δ

P (|supD1(I)− supD2(I)| ≥ δ) ≤ ε

If D2 is to be a smoothed version of D1, then we want it to be (ε, δ)-similar to
D1 for some ε, δ ∈ R≥0. But we also want D2 to be simpler than D1, i.e., we
want D2 to have a simpler code table than D1.

In our MDL approach, it is easy to formalise what it means that D1 is simpler
than D2. If D1 and D2 have the same size (the same number of transactions and,
thus, the same number of items) and L(D2) < L(D1), then D2 is simpler than
D1. The reason is that, in this case, D2 has less local structure that D1. Local
structure next to global structure makes a dataset harder to compress. Hence,
we have the following definition.

48 A. Siebes and R. Kersten

Definition 2. Let D1 and D2 be two equal sized (categorical) datasets over I.
D2 is simpler than D1 iff

L(D2) < L(D1)

That a dataset D2 which is both simpler than D1 in this sense and (ε, δ)-similar
to D1, also has a simpler code table than D1 is something only experiments can
show.

Data Smoothing Problem

Let D be a dataset over I and let ε, δ ∈ R≥0. Moreover, let D(ε,δ)
D be the set

of all datasets over I that have the same number of transactions as D and are
(ε, δ)-similar to D. Find a D′ ∈ D(ε,δ)

D that minimises L(D′).

4 Introducing Smooth

Given that both the set of datasets with the same number of transactions as D
and the set of code tables are finite, our problem is clearly decidable. However,
given that finding an optimal code table for a dataset is already intractable [11],
our current problem is also intractable. Hence we have to resort to heuristics.

For this heuristic we use an observation first made in [8]: a code table CT
on a database D implicitly defines a probability distribution on the set of all
possible tuples in the domain Dom of D. Let t be such an arbitrary tuple, then
we can compress it with CT :

L(t | CT) =
∑

I∈cover(t)

L(I | CT) =
∑

I∈cover(t)

− log(P (I | D))

= − log

⎛⎝ ∏
I∈cover(t)

P (I | D)

⎞⎠ = − log(P (t | D))
def
= − log(P (t | CT))

The one but last equation rests on the Naive Bayes like assumption that the
item sets in a cover are independent. They are not(!), but in previous work
this distribution has shown to characterise the data distribution on D very well
[8,13]. Hence, we decided to use it here as well.

The main idea of the Smooth algorithm is to replace less likely tuples in
D with more likely tuples, both according to this probability distribution. This
strategy is based on the following observation: if D is changed into D′ by re-
placing one t ∈ D by a t′ ∈ Dom such that L(t′ | CT) < L(t | CT), then
L(D′, CT) < L(D,CT). That is D′ is simpler than D, according to CT .

However, if we replace an arbitrary t ∈ D by an equally arbitrary t′ ∈ Dom
which compresses better, there is no guarantee that D′ will be (ε, δ)-similar to D
for the given parameters ε and δ. Drastic changes could influence the support of
many (frequent) item sets drastically, effectively disturbing the data distribution
captured by the code table, not only on small scales, but also on large scales. To
maintain the large scale balance we take two precautions:

Smoothing Categorical Data 49

Algorithm 1. Smooth(D,CT, ε, δ)

D′ := D
F := frequent item sets, min-sup is δ
while D′ is (ε, δ)-similar to D for F do

choose t ∈ D′ according to Psel(t | CT)
choose t′ ∈ V ar(t) according to Pvar(t

′ | CT)
D′ := (D′ \ {t}) ∪ {t′}

end while
return D′

– In one step we only consider modifications with edit distance one. That is,
only one attribute-value is changed in one tuple. This set of variants of t is
denoted by V ar(t).

– Both the selection of tuples to modify and their modification is random,
where the choice is guided by the code table.
• For the tuple selection, the probability of selecting t ∈ D, denoted by
Psel(t | CT), is defined by

Psel(t | CT) =
(P (t | CT))−1∑

t′∈D(P (t | CT))−1

• The probability of selecting an alternative t′ ∈ V ar(t), denoted by
Pvar(t

′), is defined by

Pvar(t
′ | CT) =

P (t′ | CT)∑
t′′∈V ar(t) P (t′′ | CT)

We choose the tuple to replace at random using Psel for two reasons. First,
because in this way we “disturb” the data distribution as little as possible.
Second, if we only attempt to replace tuples with a large encoded size, we more
easily get stuck at a local optimum. We use Pvar to select a variant at random,
again because this disturbs the original data distribution as little as possible.

Neither of these two precautions guarantees that D′ will be (ε, δ)-similar to D.
They only heighten the probability that one replacement will result in a (ε, δ)-
similar dataset. If we would let this replacement scheme run long enough, the
resulting database would in most cases not be (ε, δ)-similar to D. For example, if
t ∈ D is unique in having the shortest encoded length, the replacement scheme,
if left to run unbounded, would converge on a dataset that only contains copies
of t. Therefore Smooth also checks whether D′ is still (ε, δ)-similar to D.

Smooth is listed in algorithm 1. Apart from a dataset D and parameters ε
and δ, it also takes a code table CT as input.

5 Experiments

In this section we report on two sets of experiments. The first set of experiments,
on some well-known UCI datasets2 (transformed using [3]), shows that Smooth

2 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/

50 A. Siebes and R. Kersten

achieves its goal. That is, it results in simpler datasets and, more importantly,
simpler models that are still good models of the original dataset.

While these experiments shed some light on how Smooth achieves these goals,
the second set of experiments is especially designed to do that. We take an
artificial dataset which we corrupt by noise, and by examining how Smooth

alters the noisy dataset we gain a deeper understanding of its doing.
In all experiments, we use Krimp to approximate the optimal code table for

dataset D and use that as input for Smooth.

5.1 UCI Data

For all experiments on the UCI datasets Iris, Pageblocks, Pima, Wine, Led7,
and TicTacToe we used ε = 0.01 and a minimal support, and thus δ, of 5. The
experiments were also performed with δ = 1 and δ = 10, but given that the
results are very similar we do not report on them here. For all experiments -
except for the classification experiments - we report the averages of 50 repeats.

Table 1. Compressed sizes for ε = 0.01, averaged
over 50 repeats; standard deviation < 2%

Dataset L(D, CT) L(D’, CT’) L(D’, CT)
Iris 1685 1500 1572
Pageblocks 11404 10883 11031
Pima 9331 8652 8864
Wine 11038 10090 9980
Led7 30867 30664 30085
TicTacToe 29004 28575 27956

The results in Table 1 show
that D′ is indeed simpler than
D. In all cases L(D′, CT ′)
is significantly smaller than
L(D,CT), Moreover, CT is still
a good code table for D′, which
can be seen from the fact that
L(D′, CT ′) < L(D′, CT) <
L(D,CT).

Table 2 shows how many
changes Smooth made to the
original dataset before ε̂ (the

measured value for ε) exceeded 0.01 for the first time. Also, it shows the value of
ε̂ at that time. Only few changes lead to the simpler datasets shown in Table 1.

Table 2. The number of changes made and
ε̂ when it first exceeded 0.01, averaged over
50 repeats

Dataset # changes ε̂
Iris 9.7 ± 1.1 0.014 ± 0.002
Pageblocks 81.2 ± 13.7 0.016 ± 0.005
Pima 34.8 ± 5.0 0.014 ± 0.003
Wine 162.9 ± 17.7 0.011 ± 0.001
Led7 52.8 ± 7.0 0.012 ± 0.001
TicTacToe 279.0 ± 23.8 0.011 ± 0.000

The effects of these changes is
shown in Table 3. In that table we
compare the number of non-singleton
patterns in the code tables, the length
of these patterns, and the percentage
of the datasets covered by these pat-
terns. In all cases, the number of non-
singleton item sets in CT ′ is smaller
than the number of of non-singleton
item sets in CT . At the same time,
the average size of these patterns goes
up. That is, the code table has become
simpler. The database has also become
simpler, as the number of unique rows goes down. The joint effect of these two
simplifications can be seen in the last two columns: the percentage of items in

Smoothing Categorical Data 51

Table 3. Comparing the number of non-singleton patterns in the code tables, the length
of these patterns, the number of unique rows in the data sets, and the percentage of
the datasets covered by these patterns; averaged over 50 repeats

of patterns avg pattern length unique rows % of covered items
Dataset CT CT’ CT CT’ D D’ CT on D CT’ on D’

Iris 14 13.3 ± 0.6 3.4 3.7 ± 0.1 42 35.6 ± 0.9 91 95
Pageblocks 43 32.1 ± 1.4 8.3 10.3 ± 0.2 72 50.5 ± 2.4 100 100
Pima 56 48.9 ± 2.2 4.9 5.7 ± 0.2 170 157.7 ± 2.1 96 97
Wine 60 53.8 ± 3.0 3.5 3.8 ± 0.2 177 176.9 ± 0.2 67 72
Led7 153 148.3 ± 5.8 6.6 6.9 ± 0.1 326 298.8 ± 4.2 98 99
TicTacToe 159 155.0 ± 6.7 4.0 4.1 ± 0.1 958 905.2 ± 6.3 90 91

the database that is covered by non-singleton item sets from the code table goes
up, although not by very much.

Both the compression results in Table 1 and the measured ε value for δ = 5
in Table 2 indicate that D′ has a data distribution very similar to D. For an
independent verification of this claim we also performed classification experi-
ments with these code tables. The basic set-up is the same as in [8], with 25-fold
cross-validation. Each class-database was individually smoothed with Smooth

(ε = 0.01); the test data was, of course, not smoothed. The results are in Table 4.
The first observation is that for PageBlocks, Pima, Led7, and TicTacToe,

the classification results of the simplified code table are on par with those of the
original code table. Moreover, for all but Pima, these results are way above the
baseline scores (assign the tuple to the largest class). The somewhat disappoint-
ing result on Pima is caused by the fact that it has small classes that are too
small to learn well using MDL.

Table 4. Classification accuracy on independent
original data, 25-fold cross-validation.

Classification accuracy
Dataset Baseline CT CT’
Iris 33.3 94.7 ± 9.3 90.0 ± 15.2
Pageblocks 69.8 92.5 ± 1.5 92.3 ± 1.4
Pima 65.1 69.5 ± 6.9 69.5 ± 9.1
Wine 39.3 91.6 ± 12.0 79.9 ± 21.0
Led7 11.0 73.8 ± 3.5 74.1 ± 3.2
TicTacToe 65.3 87.8 ± 7.3 80.4 ± 8.4

The second observation is
that the degradation in classifi-
cation performance is far larger
for Iris and Wine. Again this is
caused by dataset size, both Iris
and Wine are small datasets.
Moreover, even the degraded
scores are way above baseline.

Note that these results by no
means imply that Smooth in-
duces a state-of-the-art classi-
fier. Rather, the results recon-
firm that Smooth yields characteristic code tables of the original dataset, i.e.,
structure is preserved.

A classification scheme based on code tables might be biased towards Smooth.
After all, one of the design goals of Smooth was not to change code tables too
much. To verify that the original data distribution is not changed too much,
we also performed these classification experiments with some well-known algo-
rithms as implemented in Weka [7]. The set-up is the same as with the Smooth

52 A. Siebes and R. Kersten

Table 5. Classification accuracy before and after smoothing. In all cases, ε = 0.01,
δ ∈ {1, 5, 10}, and ‘orig’ denotes the original (non-smoothed) dataset

Dataset - δ C4.5 Ripper LR NB SVM

Iris-orig 92.67 ± 9.66 92.67 ± 9.66 90.00 ± 13.05 94.00 ± 7.98 92.00 ± 10.80
Iris-1 92.67 ± 9.66 94.00 ± 9.66 92.00 ± 9.84 94.67 ± 6.89 92.00 ± 10.80
Iris-5 98.00 ± 6.32 98.00 ± 6.32 96.00 ± 6.44 94.67 ± 6.89 94.67 ± 7.57

Iris-10 95.33 ± 7.06 95.33 ± 7.06 94.67 ± 6.13 94.67 ± 6.13 94.67 ± 6.13

Led7-orig 75.19 ± 2.90 72.09 ± 3.82 75.63 ± 3.31 75.59 ± 2.81 75.91 ± 2.94
Led7-1 75.16 ± 2.83 71.88 ± 3.14 75.63 ± 3.32 75.50 ± 2.90 75.91 ± 2.96
Led7-5 75.28 ± 4.07 72.31 ± 3.56 75.59 ± 3.92 75.47 ± 3.83 75.75 ± 4.01

Led7-10 74.94 ± 3.66 72.78 ± 4.06 74.78 ± 4.11 75.28 ± 4.05 75.38 ± 4.11

Pageblocks-orig 92.64 ± 1.42 92.57 ± 1.36 92.75 ± 1.49 92.68 ± 1.45 91.91 ± 1.67
Pageblocks-1 92.66 ± 1.40 92.51 ± 1.32 92.75 ± 1.43 92.66 ± 1.47 91.91 ± 1.68
Pageblocks-5 92.64 ± 2.14 92.51 ± 2.17 92.69 ± 2.14 92.60 ± 2.14 91.80 ± 2.30

Pageblocks-10 92.68 ± 1.58 92.57 ± 1.64 92.60 ± 1.65 92.66 ± 1.66 91.82 ± 1.60

Pima-orig 74.58 ± 3.76 73.29 ± 5.14 72.52 ± 4.85 74.32 ± 4.70 73.55 ± 5.82
Pima-1 74.58 ± 3.76 73.81 ± 4.69 72.39 ± 4.93 74.19 ± 4.66 73.68 ± 5.79
Pima-5 74.32 ± 6.00 74.06 ± 6.42 72.77 ± 6.97 74.32 ± 6.68 73.68 ± 6.22

Pima-10 74.84 ± 7.57 74.06 ± 6.81 73.55 ± 8.43 74.58 ± 7.17 73.16 ± 7.32

TicTacToe-orig 85.21 ± 3.92 97.92 ± 1.96 98.02 ± 2.11 70.21 ± 4.23 87.71 ± 4.39
TicTacToe-1 85.00 ± 6.04 97.92 ± 1.70 98.12 ± 1.61 70.21 ± 4.00 87.08 ± 3.78
TicTacToe-5 84.17 ± 3.64 98.33 ± 1.22 97.50 ± 1.32 70.94 ± 3.31 84.90 ± 4.34

TicTacToe-10 81.15 ± 3.91 97.08 ± 2.29 96.88 ± 1.90 71.04 ± 3.50 82.92 ± 3.71

Wine-orig 90.56 ± 6.44 88.89 ± 6.93 92.78 ± 6.95 95.00 ± 4.86 87.78 ± 5.74
Wine-1 85.56 ± 9.15 87.22 ± 5.89 93.89 ± 8.47 95.00 ± 4.86 91.11 ± 5.97
Wine-5 86.11 ± 5.40 88.89 ± 11.11 91.11 ± 7.94 93.89 ± 4.10 88.33 ± 7.15

Wine-10 82.22 ± 9.37 84.44 ± 8.61 91.67 ± 6.00 93.89 ± 8.05 87.78 ± 10.08

based classification, that is we did 25-fold cross-validation, running Smooth on
each train set, while, again, the test set was not smoothed. Table 5 shows the
results for C4.5, Ripper, Logistic Regression, Naive Bayes, and Support Vector
Machines, each with their default settings in Weka.

The important observation is that the accuracy doesn’t change significantly
when the dataset is smoothed. Whether δ is set to 1, 5, or 10, the difference in
accuracy is not significantly different from the baseline; where the baseline is the
accuracy of the algorithm on the original (non-smoothed) dataset. This is true
for the rule-based classifiers C4.5 and Ripper, for the instance-based classifier
NB, for the traditional statistical classifier Logistic Regression, and for the SVM
classifier. None of these classifiers detects a significant difference between the
original data distribution and the smoothed data distribution.

There is one notable exception to this observation: C4.5 on Wine. There we
see a notable, significant, drop in accuracy. While inspecting the resulting trees,
we noticed serious overfitting. Using the default settings only takes you so far.

A natural question with these results is: do the other classifiers also become
simpler on the smoothed datasets? While this was not a design goal for Smooth -
after all, it is a model-driven approach - we inspected this for the Ripper results.

Smoothing Categorical Data 53

The average number of rules goes down while the average length of the rules
goes up slightly. This is very similar to the changes we encountered earlier for
the code table elements, which also became fewer and longer.

5.2 Artificial Data

The results of the previous subsection already show some of Smooth’s effects,
but even more insight can be gained when we know the ideal result beforehand.

For this, we created an artificial dataset as follows. We generated 50 unique
tuples randomly (over 7 attributes, each with a domain from 4 to 18 values).
Each of these 50 tuples was duplicated between 10 and 30 times randomly, such
that the end result was a dataset with 1000 tuples. This is the Clean dataset. We
then ran Krimp on Clean (with min-sup=1), and the result was - unsurprisingly
- a code table with 50 item sets, one for each unique tuple in Clean.

For the experiments, we randomly replace items in the dataset with others (of
course, while still adhering to the attributes’ domains). The items to be replaced
are chosen uniformly. We vary the amount of error to investigate the smoothing
capability of Smooth in comparison to the amount of noise in the data.

0

0.05

0.1

0.15

0.2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

DE(db, db+error)

DE(db, clean(db, epsilon = 0.01))

DE(db, clean(db, epsilon = 0.1))

Fig. 2. The x-axis depicts the number of er-
rors made on Clean, the y-axis gives ε̂, i.e, the
probability of an error larger than δ

Note that we do not perform this
experiment to show that Smooth

is good at removing noise. After
all, data points that are consid-
ered noise in one setting may be
considered perfectly valid data in
another setting. However, in our
artificial setting noise and local
structure happen to coincide and
we know exactly what the noise is.
Hence, we here use Smooth as a
noise remover, because it allows us
to investigate how it removes local
structure.

With this proviso, Smooth is
run to try to “clean up” the data.
The parameters are: δ = 1, and
ε = 0.01 and 0.1 respectively. The
algorithm is automatically stopped

after 1000 iterations, because for low amounts of error added, epsilon can never
even attain 0.01; for larger amounts of noise it can, of course. Performance is
measured by comparing the noisy and smoothed datasets to the original Clean
dataset in three different ways.

The first measure is simply the measured epsilon, i.e. ε̂, for δ = 1. This to
make sure we can see the ‘noise’ being added and subsequently removed. The
obtained measurements are graphed in Figure 2. Results are depicted for three
more or less noisy datasets, the first being the noisy dataset itself. Obviously,
this has consistently the highest ε̂. The other two datasets are smoothed versions

54 A. Siebes and R. Kersten

46

47

48

49

50

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

db+error, minsup=1

db+error, minsup=5

db+error, minsup=10

clean(db, epsilon = 0.01)

clean(db, epsilon = 0.1)

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

db+error, minsup=1

db+error, minsup=5

db+error, minsup=10

clean(db, epsilon = 0.01)

clean(db, epsilon = 0.1)

Fig. 3. In the figure on the left |CT ′∩CT | is graphed for various datasets. In the figure
on the right |CT ′ − CT | is graphed for the same datasets. In both, the x-axis depicts
the number of errors made on Clean.

of the noisy dataset, with ε set to 0.01 resp. 0.1. Note that the ε parameter is
set with regard to the noisy dataset and thus determines how far Smooth can
go away from the noisy dataset. The two graphs show that Smooth uses this
extra wriggle-room to get closer to the Clean dataset: the graph for ε = 0.1 is
consistently better than the graph for ε = 0.01.

Note, however, that the algorithm is not able to drop ε̂ on the cleaned dataset
to 0, even if ε̂ between the clean and the cluttered dataset is less than the ε
parameter. This is because there is always a chance that the algorithm will
select and adjust a row with no noise on it. However, the difference between
the low chance of adjusting a clean row in a bad way and the high chance of
adjusting a noisy row in a good way ensures that ε̂ will still drop significantly;
in Figure 2 the error is halved!

In Figure 3 the other two measures are graphed, both versus the number of
errors on Clean across different datasets. The left figure depicts the number of
the original patterns left (50 is ideal). This is the part of the original structure
that can still be seen in CT ′ and we denote this by |CT ′ ∩CT |. The right figure
depicts the number of wrongfully added patterns in CT ′. These patterns are
present in CT ′ but not in CT ; they clutter up the code table and therefore
obscure the true structure in the data. We denote this measure by |CT ′ − CT |.

Firstly note that adding more noise to the data will cause more of the good
patterns to be ‘broken up’ into smaller patterns. Therefore |CT ′ ∩ CT | drops
and |CT ′ − CT | rises. Secondly note that increasing the minimal support, i.e,
δ, will filter those smaller patterns out. These patterns are simply not frequent
enough and thus they cannot end-up in the code table. But for this reason, we
also cannot recover the patterns in the Clean dataset that were lost, as can be
seen in the left figure. As in Figure 2, ε = 0.1 outperforms ε = 0.01 for both
measures and for the same reason: Smooth needs some leeway to remove the
unwanted, local structure.

Smoothing Categorical Data 55

6 Discussion

The reason to introduce the Smooth algorithm was to smooth the local structure
from the data while retaining the global structure, such that a simpler, but still
characteristic, code table could be mined from this smoothed dataset. The results
from the previous section show that that goal has been reached.

Firstly, both the code table and the database get simpler when Smooth is
applied. This is, e.g., clear from Table 3. The new code table has fewer, larger,
item sets and the dataset has fewer unique tuples. Moreover, the new code table
describes the structure of the new database better for a larger number of items is
covered by non-singleton item sets. This latter fact is also witnessed by Table 1,
as CT ′ compresses D′ better than CT compresses D.

Secondly, D′ - and thus CT ′ - retains important structure from D. This is,
again, witnessed by Table 1: CT compressesD′ better than D. Moreover, Table 2
shows that Smooth achieves these goals for a modest epsilon, implying that D
and D′ are almost indistinguishable. Further witness that D and CT ′ retain
the important structure in D and CT is given by Table 4 and Table 5. Both
show that training on D and D′ leads to classifiers statistically indistinguishable
on an independent test from D, for a wide variety of classification algorithms!
Moreover, Table 4 shows that CT ′ retains the important structure in D, for CT ′

is almost as good as CT in classifying tuples from the original distribution D.
Finally, Smooth achieves these results by removing local structure. Figure 2

shows this very well. For a dataset with 10% noise, Smooth with ε = 0.1 (mea-
sured against the noisy dataset) achieves ε̂ = 0.1 with regard to the Clean
dataset. The number of errors with regard to the Clean dataset is halved!

An even stronger witness for the claim that large scale structure is retained
while local structure is removed is given by Figure 3. These two graphs show
firstly that Smooth not only retains global structure, it even recovers structure
that is present in the original dataset, but not visible in the corrupted dataset.
Secondly, these graphs show that local structure is indeed removed, as the num-
ber of wrongfully added patterns goes down.

So, Smooth achieves its results very well. The reader might, however, wonder
if these results couldn’t be achieved easier. One easier way is to simply mine with
a larger minimal support, after all the large scale structure is mostly given by
(very) frequent item sets. Unfortunately, this doesn’t work. Figure 3 shows that
a higher minimal support means that fewer original patterns are recovered; we
may miss large scale structure that is obfuscated by local structure.

If concentrating on (very) frequent item sets doesn’t work, a second simpler
strategy might seem to concentrate on item sets with a high usage. That is,
simply smooth out the low usage patterns from the code table by modifying
only tuples with a large code size. In fact, this strategy suffers from the same
problem as the first alternative; Figure 3 shows that original large scale structure
may be obfuscated by low usage item sets.

Note that the latter observations also illustrate the importance of the problem
solved in this paper: if we do not smooth the data, there may be large scale
structure in the data that is simply not apparent from the code table.

56 A. Siebes and R. Kersten

7 Related Work

Data smoothing is a research area with a rich history in areas such as statistics
and image processing, but also in e.g. signal processing where it is known as
filtering. Giving an overview of this vast field is far outside the scope of this
paper. A good introductory book from the viewpoint of Statistics is [14].

Smoothing usually refers to continues operations. If the data is real valued,
smoothing is often performed by convoluting the data with some distribution.
Even if the data is discrete (but still numerical), convolution is often the weapon
of choice. For ordered categorical data, a Poisson regression model with log-
likelihood may be used [12]. We are not aware of any papers that address general
categorical data and/or take an approach similar to ours. The big difference is
that convolution – and regression – always involve all data, where there may be
many transactions in a dataset that Smooth doesn’t even touch.

Within the field of pattern mining, our approach is related to fault tolerant
patterns [9]. Roughly speaking, these are patterns which with some small mod-
ifications to the data would get a larger support. We do discover such patterns,
that is what the modifications that Smooth makes to the database imply. There
is, however, a large difference in aim. Fault tolerant pattern miners want to find
all fault tolerant patterns. We want to discover the global structure of the data
and discover some fault tolerant patterns as a by product.

In our own research, our paper on missing data [13] is related to this paper.
In there we design three algorithms that complete a database with missing data.
Like Smooth, these algorithms use a probability distribution on variants. There
is one major difference, though. With missing data, one knows exactly where
the problem is. Thus, the imputation algorithms introduced in [13] do not have
to select ”which tuples to modify where” and can run until convergence. In the
current case, unfortunately, we do not know where the problem is. Only by slowly
massaging the data do we discover its, sometimes hidden, large scale structure.

Related in goal, but not algorithmically is our introduction of a structure
function in [10]. In that paper we introduce a series of models that capture ever
finer details of the data distribution. The first model looks at a very coarse
scale, while the final model looks at a very fine scale. The major difference with
Smooth is that in [10] the dataset is not changed. This means that the structure
function approach will not uncover structure which is hidden by noise. That is,
while Smooth is – to a certain level – able to reconstruct the original dataset
from a corrupted variant, the structure function of [10] is not able to do that.

8 Conclusions

The observation that triggered the research reported on in this paper is that it
is often hard to understand the large scale structure of the data from a model.
The approach we take is that we smooth the local structure from the dataset –
guided by the model – while retaining the large scale structure. A model induced
from this smoothed dataset reflects the large scale structure of the original data.

Smoothing Categorical Data 57

While smoothing is a well known for numerical and ordered data, this paper
introduces a smoothing algorithm, called Smooth, for categorical data.

Smooth uses code tables such as, e.g., generated by Krimp to smooth the
data. It smoothes the data by gradually modifying tuples in the database. While
smoothing it ensures that the large scale structure is maintained, i.e., that the
support of most frequent item sets remains the same. At the same time it ensures
that the data set becomes simpler, i.e., that it compresses better.

The experiments show that Smooth works well. Both the smoothed data set
and its code table are simpler than the originals. Moreover, both datasets give
more or less the same support to most item sets. Hence, both datasets have
more or less the same structure. This is further corroborated by the fact that
the original dataset and the smoothed dataset lead to equally good classifiers for
an independent test set of the original(!) dataset. This observation was shown
to hold for a large variety of classification algorithms.

Finally, experiments on artificial data, for which we know the ideal outcome,
show that Smooth does what it is supposed to do. The large scale structure
is retained while local structure is removed. Even if the large scale structure is
hidden by local structure it may be recovered by Smooth.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery
of association rules. In: Advances in Knowledge Discovery and Data Mining, pp.
307–328. AAAI (1996)

2. Agresti, A.: Categorical Data Analysis, 2nd edn. Wiley (2002)
3. Coenen, F.: The LUCS-KDD discretised/normalised (C)ARM data library (2003)
4. Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. Wiley (2006)
5. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences 55(1),
119–139 (1997)

6. Grünwald, P.D.: Minimum description length tutorial. In: Grünwald, P., Myung,
I. (eds.) Advances in Minimum Description Length. MIT Press (2005)

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: Weka
data mining software: An update. SIGKDD Explorations 11 (2009)

8. van Leeuwen, M., Vreeken, J., Siebes, A.: Compression Picks Item Sets That Mat-
ter. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS
(LNAI), vol. 4213, pp. 585–592. Springer, Heidelberg (2006)

9. Pei, J., Tung, A.K.H., Han, J.: Fault tolerant pattern mining: Problems and chal-
lenges. In: DMKD (2001)

10. Siebes, A., Kersten, R.: A structure function for transaction data. In: Proc. SIAM
Conf. on Data Mining (2011)

11. Siebes, A., Vreeken, J., van Leeuwen, M.: Item sets that compress. In: Proc. SIAM
Conf. Data Mining, pp. 393–404 (2006)

12. Simonoff, J.S.: Three sides of smoothing: Categorical data smoothing, nonpara-
metric regression, and density estimation. International Statistical Reviews /Revue
Internationale de Statistique 66(2), 137–156 (1998)

13. Vreeken, J., Siebes, A.: Filling in the blanks - krimp minimization for missing data.
In: Proceedings of the IEEE International Conference on Data Mining (2008)

14. Wand, M., Jones, M.: Kernel Smoothing. Chapman & Hall (1994)

An Experimental Comparison of Hybrid

Algorithms for Bayesian Network
Structure Learning

Maxime Gasse, Alex Aussem, and Haytham Elghazel

Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205, F-69622, France

Abstract. We present a novel hybrid algorithm for Bayesian network
structure learning, called Hybrid HPC (H2PC). It first reconstructs the
skeleton of a Bayesian network and then performs a Bayesian-scoring
greedy hill-climbing search to orient the edges. It is based on a subrou-
tine called HPC, that combines ideas from incremental and divide-and-
conquer constraint-based methods to learn the parents and children of a
target variable. We conduct an experimental comparison of H2PC against
Max-Min Hill-Climbing (MMHC), which is currently the most powerful
state-of-the-art algorithm for Bayesian network structure learning, on
several benchmarks with various data sizes. Our extensive experiments
show that H2PC outperforms MMHC both in terms of goodness of fit
to new data and in terms of the quality of the network structure itself,
which is closer to the true dependence structure of the data. The source
code (in R) of H2PC as well as all data sets used for the empirical tests
are publicly available.

1 Introduction

A Bayesian network (BN) is a probabilistic model formed by a structure and
parameters. The structure of a BN is a directed acyclic graph (DAG), whilst
its parameters are conditional probability distributions associated with the vari-
ables in the model. The graph of a BN itself is an independence map, which is
very useful for many applications, including feature selection [2,18,24] and in-
ferring causal relationships from observational data [11,2,4,5,8,6]. The problem
of finding the DAG that encodes the conditional independencies present in the
data attracted a great deal of interest over the last years [23,26,27,15,22,36,21].

Ideally the DAG should coincide with the dependence structure of the global
distribution, or it should at least identify a distribution as close as possible to
the correct one in the probability space. This step, called structure learning, is
similar in approaches and terminology to model selection procedures for classical
statistical models. Basically, constraint-based (CB) learning methods systemat-
ically check the data for conditional independence relationships and use them as
constraints to construct a partially oriented graph representative of a BN equiv-
alence class, whilst search-and-score (SS) methods make use of a goodness-of-fit

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 58–73, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Experimental Comparison of Hybrid Algorithms 59

score function for evaluating graphical structures with regard to the data set.
Hybrid methods attempt to get the best of both worlds: they learn a skeleton
with a CB approach and constrain on the DAGs considered during the SS phase.
There are many excellent treatments of BNs which survey the learning methods
(see [16] for instance).

Both CB and SS approaches have advantages and disadvantages. CB ap-
proaches are relatively quick, deterministic, and have a well defined stopping
criterion; however, they rely on an arbitrary significance level to test for in-
dependence, and they can be unstable in the sense that an error early on in
the search can have a cascading effect that causes many errors to be present
in the final graph. SS approaches have the advantage of being able to flexi-
bly incorporate users’ background knowledge in the form of prior probabilities
over the structures and are also capable of dealing with incomplete records in
the database (e.g. EM technique). Although SS methods are favored in practice
when dealing with small dimensional data sets, they are slow to converge and the
computational complexity often prevents us from finding optimal BN structures
[22]. With currently available exact algorithms [14,29] and a decomposable score
like BDeu, the computational complexity remains exponential, and therefore,
such algorithms are intractable for BNs with more than around 30 vertices on
current workstations [15]. For larger sets of variables, the computational burden
becomes prohibitive. With this in mind, the ability to restrict the search locally
around the target variable is a key advantage of CB methods over SS methods.
They are able to construct a local graph around the target node without having
to construct the whole BN first, hence their scalability [18,24,23,35,20].

With a view to balancing the computation cost with the desired accuracy of
the estimates, several hybrid methods have been proposed recently. Tsamardi-
nos et al. [35] proposed the Min-Max Hill Climbing (MMHC) algorithm and con-
ducted one of the most extensive empirical comparison performed in recent years
showing that MMHC was the fastest and the most accurate method in terms
of structural error based on the structural hamming distance. More specifically,
MMHC outperformed both in terms of time efficiency and quality of recon-
struction the PC [30], the Sparse Candidate [12], the Three Phase Dependency
Analysis [9], the Optimal Reinsertion [17], the Greedy Equivalence Search [10],
and the Greedy Hill-Climbing Search on a variety of networks, sample sizes,
and parameter values. Although MMHC is rather heuristic by nature (it returns
a local optimum of the score function), MMHC is currently considered as the
most powerful state-of-the-art algorithm for BN structure learning capable of
dealing with thousands of nodes in reasonable time. With a view to enhance its
performance on small dimensional data sets, Perrier et al. [22] proposed recently
a hybrid algorithm that can learn an optimal BN (i.e., it converges to the true
model in the sample limit) when an undirected graph is given as a structural
constraint. They defined this undirected graph as a super-structure (i.e., every
DAG considered in the SS phase is compelled to be a subgraph of the super-
structure). This algorithm can learn optimal BNs containing up to 50 vertices
when the average degree of the super-structure is around two, that is, a sparse

60 M. Gasse, A. Aussem, and H. Elghazel

structural constraint is assumed. To extend its feasibility to BN with a few hun-
dred of vertices and an average degree up to four, [15] proposed to divide the
super-structure into several clusters and perform an optimal search on each of
them in order to scale up to larger networks. Despite interesting improvements
in terms of score and structural hamming distance on several benchmark BNs,
they report running times about 103 times longer than MMHC on average, which
is still prohibitive in our view.

Therefore, there is great deal of interest in hybrid methods capable of improv-
ing the structural accuracy of both CB and SS methods on graphs containing
up to thousands of vertices. However, they make the strong assumption that the
skeleton (also called super-structure) contains at least the edges of the true net-
work and as small as possible extra edges. While controlling the false discovery
rate (i.e., false extra edges) in BN learning has attracted some attention recently
[3,20,34], to our knowledge, there is no work on controlling actively the rate of
false-negative errors (i.e., false missing edges).

In this study, we compare MMHC with a another hybrid algorithm for BN
structure learning, called Hybrid HPC (H2PC). H2PC and MMHC share exactly
the same SS procedure to allow for fair comparisons; the only difference lies in
the procedure for learning the skeleton (i.e., the undirected graph given as a
structural constraint to the SS search). While MMHC is based on Max-Min
Parents and Children (MMPC) to learn the parents and children of a variable,
H2PC is based on a subroutine called Hybrid Parents and Children (HPC),
that combines ideas from incremental and divide-and-conquer CB methods. The
ability of HPC and MMPC [35] to infer the parents and children set of candidate
nodes was assessed in [23] through several empirical experiments. In this work, we
conduct an experimental comparison of H2PC against Max-Min Hill-Climbing
(MMHC) on several benchmarks and various data sizes.

2 Preliminaries

Formally, a BN is a tuple < G, P >, where G =< U,E > is a directed acyclic
graph (DAG) whose nodes represent the variables in the domain U, and whose
edges represent direct probabilistic dependencies between them. P denotes the
joint probability distribution on U. The BN structure encodes a set of condi-
tional independence assumptions: that each nodeXi is conditionally independent
of all of its non descendants in G given its parents PaG

i . These independence
assumptions, in turn, imply many other conditional independence statements,
which can be extracted from the network using a simple graphical criterion called
d-separation [19].

We denote by X ⊥P Y |Z the conditional independence between X and Y
given the set of variables Z where P is the underlying probability distribution.
Note that an exhaustive search of Z such that X ⊥P Y |Z is a combinatorial
problem and can be intractable for high dimension data sets. We use X ⊥G Y |Z
to denote the assertion that X is d-separated from Y given Z in G. We denote by
dSep(X,Y), a set that d-separates X from Y . If < G, P > is a BN, X ⊥P Y |Z

An Experimental Comparison of Hybrid Algorithms 61

if X ⊥G Y |Z. The converse does not necessarily hold. We say that < G, P >
satisfies the faithfulness condition if the d-separations in G identify all and only
the conditional independencies in P , i.e., X ⊥P Y |Z if and only if X ⊥G Y |Z.
We denote by PCG

X , the set of parents and children of X in G, and by SPG
X ,

the set of spouses of X in G, i.e., the variables that have common children with
X . These sets are unique for all G, such that < G, P > satisfies the faithfulness
condition and so we will drop the superscript G.

3 Constraint-Based Structure Learning

The induction of local or global BN structures is handled by CB methods through
the identification of local neighborhoods (i.e., PCX), hence their scalability to
very high dimensional data sets. CB methods systematically check the data for
conditional independence relationships in order to infer a target’s neighborhood.
Typically, the algorithms run either a G2 or a χ2 independence test when the
data set is discrete and a Fisher’s Z test when it is continuous in order to decide
on dependence or independence, that is, upon the rejection or acceptance of
the null hypothesis of conditional independence. Since we are limiting ourselves
to discrete data, both the global and the local distributions are assumed to
be multinomial, and the latter are represented as conditional probability tables.
Conditional independence tests and network scores for discrete data are functions
of these conditional probability tables through the observed frequencies {nijk; i =
1, . . . , R; j = 1, . . . , C; k = 1, . . . , L} for the random variables X and Y and all
the configurations of the levels of the conditioning variables Z. We use ni+k as
shorthand for the marginal

∑
j nijk and similarly for ni+k, n++k and n+++ = n.

We use a classic conditional independence test based on the mutual information.
The mutual information is an information-theoretic distance measure defined as

MI(X,Y |Z) =
R∑
i=1

C∑
j=1

L∑
k=1

nijk

n
log

nijkn++k

ni+kn+jk

It is proportional to the log-likelihood ratio test G2 (they differ by a 2n fac-
tor, where n is the sample size). The asymptotic null distribution is χ2 with
(R − 1)(C − 1)L degrees of freedom. For a detailed analysis of their properties
we refer the reader to [1]. The main limitation of this test is the rate of conver-
gence to its limiting distribution, which is particularly problematic when dealing
with small samples and sparse contingency tables. The decision of accepting or
rejecting the null hypothesis depends implicitly upon the degree of freedom which
increases exponentially with the number of variables in the conditional set. Sev-
eral heuristic solutions have emerged in the literature [30,23,35,33] to overcome
some shortcomings of the asymptotic tests. In this study we use the two following
heuristics that are used in MMHC. First, we do not perform MI(X,Y |Z) and
assume independence if there are not enough samples to achieve large enough
power. We require that the average sample per count is above a user defined
parameter, equal to 5, as in [35]. This heuristic is called the power rule. Second,

62 M. Gasse, A. Aussem, and H. Elghazel

we consider as structural zero either case n+jk or ni+k = 0. For example, if
n+jk = 0, we consider y as a structurally forbidden value for Y when Z = z and
we reduce R by 1 (as if we had one column less in the contingency table where
Z = z). This is known as the degrees of freedom adjustment heuristic.

4 The Hybrid Parents and Children Algorithm (HPC)

In this section, we present a brief overview of HPC. For further details, the
reader is directed to [24,23] as well as references therein. HPC (Algorithm 1)
can be viewed as an ensemble method for combining many weak PC learners in
an attempt to produce a stronger PC learner. HPC is based on three subrou-
tines: Data-Efficient Parents and Children Superset (DE-PCS), Data-Efficient
Spouses Superset (DE-SPS), and Interleaved Incremental Association Parents
and Children (Inter-IAPC), a weak PC learner based on Inter-IAMB [32] that
requires little computation. HPC may be thought of as a way to compensate for
the large number of false negatives, at the output of the weak PC learner, by
performing extra computations. It receives a target node T, a data set D and
a set of variables U as input and returns an estimation of PCT . It is hybrid
in that it combines the benefits of incremental and divide-and-conquer meth-
ods. The procedure starts by extracting a superset PCST of PCT (line 1) and
a superset SPST of SPT (line 2) with a severe restriction on the maximum
conditioning size (Z <= 2) in order to significantly increase the reliability of
the tests. A first candidate PC set is then obtained by running the weak PC
learner on PCST ∪ SPST (line 3). The key idea is the decentralized search at
lines 4-8 that includes, in the candidate PC set, all variables in the superset
PCST \ PCT that have T in their vicinity. Note that, in theory, X is in the
output of Inter-IAPC(Y) if and only if Y is in the output of Inter-IAPC(X).
However, in practice, this may not always be true, particularly when working
in high-dimensional domains. By loosening the criteria by which two nodes are
said adjacent, the effective restrictions on the size of the neighborhood are now
far less severe. The decentralized search has significant impact on the accuracy
of HPC. It enables the algorithm to handle large neighborhoods while still being
correct under faithfulness condition.

Inter-IAPC is a fast incremental method that receives a data set D and a tar-
get node T as its input and promptly returns a rough estimation of PCT , hence
the term “weak” PC learner. The subroutines DE-PCS and DE-SPS (omitted for
brevity) search a superset of PCT and SPT respectively with a severe restriction
on the maximum conditioning size (|Z| <= 1 in DE-PCS and |Z| <= 3 in DE-
SPS) in order to significantly increase the reliability of the tests. The variable
filtering has two advantages : i) it allows HPC to scale to hundreds of thousands
of variables by restricting the search to a subset of relevant variables, and ii)
it eliminates many (almost) deterministic relationships that produce many false
negative errors in the output of the algorithm. Again, the reader is encouraged
to consult the papers by [24,23] for gaining more insight on these procedures.

An Experimental Comparison of Hybrid Algorithms 63

Algorithm 1. HPC

Require: T : target; D: data set; U: the set of variables
Ensure: PCT : Parents and Children of T

1: [PCST ,dSep]← DE-PCS(T,D)
2: SPST ← DE-SPS(T,D,PCST ,dSep)
3: PCT ← Inter-IAPC(T,D, (T ∪PCST ∪ SPST))
4: for all X ∈ PCST \PCT do
5: if T ∈ Inter-IAPC(X,D, (T ∪PCST ∪ SPST)) then
6: PCT ← PCT ∪X
7: end if
8: end for

Algorithm 2. Inter-IAPC

Require: T : target; D : data set; U: set of variables;
Ensure: PCT : Parents and children of T ;

1: MBT ← ∅
2: repeat
3: * Add true positives to MBT

4: Y ← argmaxX∈(U\MBT \T)dep(T,X|MBT)
5: if T �⊥ Y |MBT then
6: MBT ←MBT ∪ Y
7: end if

* Remove false positives from MBT

8: for all X ∈MBT do
9: if T ⊥ X|(MBT \X) then
10: MBT ←MBT \X
11: end if
12: end for
13: until MBT has not changed

* Remove spouses of T from MBT

14: PCT ←MBT

15: for all X ∈MBT do
16: if ∃Z ⊆ (MBT \X) such that T ⊥ X | Z then
17: PCT ← PCT \X
18: end if
19: end for

64 M. Gasse, A. Aussem, and H. Elghazel

Algorithm 3. Hybrid HPC

Require: D: data set; U: the set of variables
Ensure: A DAG G on the variables U

1: for all pair of nodes X,Y ∈ U do
2: Add X in PCY and Add Y in PCX if X ∈ HPC(Y) and Y ∈ HPC(X)
3: end for
4: Starting from an empty graph, perform greedy hill-climbing with operators add-

edge, delete-edge, reverse-edge. Only try operator add-edge X → Y if Y ∈ PCX

5 Hybrid HPC (H2PC)

In this section, we discuss the SS phase. The following discussion draws strongly
on [35] as the SS phase in Hybrid HPC andMMHC are exactly the same. The idea
of constraining the search to improve time-efficiency first appeared in the Sparse
Candidate algorithm [12]. It results in efficiency improvements over the (uncon-
strained) greedy search. All recent hybrid algorithms build on this idea, but em-
ploy a sound algorithm for identifying the candidate parent sets. The Hybrid HPC
first identifies the parents and children set of each variable, then performs a greedy
hill-climbing search in the space of BN. The search begins with an empty graph.
The edge addition, deletion, or direction reversal that leads to the largest increase
in score (the BDeu score was used) is taken and the search continues in a similar
fashion recursively. The important difference from standard greedy search is that
the search is constrained to only consider adding an edge if it was discovered by
HPC in the first phase.We extend the greedy searchwith a TABU list [12]. The list
keeps the last 100 structures explored. Instead of applying the best local change,
the best local change that results in a structure not on the list is performed in an at-
tempt to escape local maxima. When 15 changes occur without an increase in the
maximum score ever encountered during search, the algorithm terminates. The
overall best scoring structure is then returned. Clearly, the more false positives
the heuristic allows to enter candidate PC set, the more computational burden is
imposed in the SS phase.

6 Experimental Validation

In this section, we conduct an experimental comparison of H2PC against MMHC
on several benchmarks with various data sizes. All the data sets used for the em-
pirical experiments are sampled from eight well-known BNs that have been pre-
viously used as benchmarks for BN learning algorithms (see Table 1 for details).
We do not claim that those data sets resemble real-world problems, however,
they make it possible to compare the outputs of the algorithms with the known
structure. All BN benchmarks (structure and probability tables) were down-
loaded from the bnlearn repository1 [26]. Six sample sizes have been considered:

1 http://www.bnlearn.com/bnrepository

http://www.bnlearn.com/bnrepository

An Experimental Comparison of Hybrid Algorithms 65

Table 1. Description of the BN benchmarks used in the experiments

network # of vars # of edges
max. degree

domain range
min/med/max

in/out PC set size

child 20 25 2/7 2-6 1/2/8
insurance 27 52 3/7 2-5 1/3/9
mildew 35 46 3/3 3-100 1/2/5
alarm 37 46 4/5 2-4 1/2/6

hailfinder 56 66 4/16 2-11 1/1.5/17
munin1 186 273 3/15 2-21 1/3/15
pigs 441 592 2/39 3-3 1/2/41
link 724 1125 3/14 2-4 0/2/17

50, 100, 200, 500, 1500 and 5000. All experiments are repeated 10 times for each
sample size and each BN. We investigate the behavior of both algorithms using
the same parametric tests as a reference. H2PC was implemented in R [31] and
integrated into the bnlearn R package developed by [26]. The source code of
H2PC as well as all data sets used for the empirical tests are publicly available
2. The threshold considered for the type I error of the test is 0.05. Our exper-
iments were carried out on PC with Intel(R) Core(TM) i5-2520M CPU @2,50
GHz 4Go RAM running under Windows 7 32 bits.

We first investigate the quality of the skeleton returned by H2PC during the
CB phase. To this end, we measure the false positive edge ratio, the precision
(i.e., the number of true positive edges in the output divided by the number of
edges in the output), the recall (i.e., the number of true positive edges divided
the true number of edges) and a combination of precision and recall defined
as

√
(1− precision)2 + (1− recall)2, to measure the Euclidean distance from

perfect precision and recall, as proposed in [18]. Second, to assess the quality of
the final DAG output at the end of the SS phase, we report the five performance
indicators [27] described below:

– the posterior density of the network for the data it was learned from, as a
measure of goodness of fit. It is known as the Bayesian Dirichlet equivalent
score (BDeu) from [13,7] and has a single parameter, the equivalent sample
size, which can be thought of as the size of an imaginary sample supporting
the prior distribution. The equivalent sample size was set to 10 as suggested
in [16];

– the BIC score [25] of the network for the data it was learned from, again as
a measure of goodness of fit;

– the posterior density of the network for a new data set, as a measure of how
well the network generalizes to new data;

– the BIC score of the network for a new data set, again as a measure of how
well the network generalizes to new data;

2 http://www710.univ-lyon1.fr/\simaaussem/Software.html

http://www710.univ-lyon1.fr/$\sim $aaussem/Software.html

66 M. Gasse, A. Aussem, and H. Elghazel

50 10
0

20
0

50
0

15
00

50
00

0.5

1.0

1.5

2.0

2.5

sample size

in
cr

ea
se

 fa
ct

or

Recall
(higher is better)

50 10
0

20
0

50
0

15
00

50
00

0.7

0.8

0.9

1.0

1.1

1.2

sample size
in

cr
ea

se
 fa

ct
or

Precision
(higher is better)

50 10
0

20
0

50
0

15
00

50
00

0.0

0.2

0.4

0.6

0.8

1.0

sample size

in
cr

ea
se

 fa
ct

or

Euclidian distance
(lower is better)

50 10
0

20
0

50
0

15
00

50
00

0

5

10

15

20

25

sample size

in
cr

ea
se

 fa
ct

or

Number of statistical tests

0

10
00

20
00

30
00

40
00

50
00

0.0

0.2

0.4

0.6

0.8

sample size

ra
te

Fales negative rate
(lower is better)

HPC
MMPC

0

10
00

20
00

30
00

40
00

50
00

0.0000

0.0005

0.0010

0.0015

0.0020

sample size

ra
te

False positive rate
(lower is better)

HPC
MMPC

Fig. 1. Quality of the skeleton obtained with HPC over that obtained with MMPC
before the SS phase. Results are averaged over the 8 benchmarks.

An Experimental Comparison of Hybrid Algorithms 67

– the Structural Hamming Distance (SHD) between the learned and the true
structure of the network, as a measure of the quality of the learned depen-
dence structure. The SHD between two PDAGs is defined as the number of
the following operators required to make the PDAGs match: add or delete
an undirected edge, and add, remove, or reverse the orientation of an edge.

For each data set sampled from the true probability distribution of the bench-
mark, we first learn a network structure with the H2PC and MMHC and then
we compute the relevant performance indicators for each pair of network struc-
tures. The data set used to assess how well the network generalizes to new data is
generated again from the true probability structure of the benchmark networks
and contains 5000 observations.

Notice that using the BDeu score as a metric of reconstruction quality has the
following two problems. First, the score corresponds to the a posteriori proba-
bility of a network only under certain conditions (e.g., a Dirichlet distribution
of the hyper parameters); it is unknown to what degree these assumptions hold
in distributions encountered in practice. Second, the score is highly sensitive to
the equivalent sample size (set to 10 in our experiments) and depends on the
network priors used. Since, typically, the same arbitrary value of this parameter
is used both during learning and for scoring the learned network, the metric
favors algorithms that use the BDeu score for learning. In fact, the BDeu score
does not rely on the structure of the original, gold standard network at all; in-
stead it employs several assumptions to score the networks. For those reasons,
in addition to the score we also report the BIC score and the SHD metric.

In Figure 1, we report the quality of the skeleton obtained with HPC over that
obtained with MMPC (before the SS phase) as a function of the sample size. Re-
sults for each benchmark are not shown here in detail due to space restrictions.
For sake of conciseness, the performance values are averaged over the 8 bench-
marks depicted in Table 1. The increase factor for a given performance indicator
is expressed as the ratio of the performance value obtained with HPC over that
obtained with MMPC (the gold standard). Note that for some indicators, an
increase is actually not an improvement but is worse (e.g., false positive rate,
Euclidean distance). For clarity, we mention explicitly on the subplots whether
an increase factor > 1 should be interpreted as an improvement or not. Regard-
ing the quality of the superstructure, the advantages of HPC against MMPC are
noticeable. As observed, HPC consistently increases the recall and reduces the
rate of false negative edges. As expected this benefit comes at a little expense
in terms of false positive edges. HPC also improves the Euclidean distance from
perfect precision and recall on all benchmarks, while increasing the number of
independence tests and thus the running time in the CB phase (see number
of statistical tests). It is worth noting that HPC is capable of maintaining the
mean false positive edge increase (with respect to MMPC) under 2 · 10−3 while
reducing by 30% the Euclidean distance in the range 500-5000 samples. These
results are very much in line with other experiments presented in [23,36].

In Figure 2, we report the quality of the final DAG obtained with H2PC over
that obtained with MMHC (after the SS phase) as a function of the sample size.

68 M. Gasse, A. Aussem, and H. Elghazel

50 10
0

20
0

50
0

15
00

50
00

0.70

0.75

0.80

0.85

0.90

0.95

1.00

sample size

in
cr

ea
se

 fa
ct

or

BDeu on train data
(lower is better)

50 10
0

20
0

50
0

15
00

50
00

0.70

0.75

0.80

0.85

0.90

0.95

1.00

sample size
in

cr
ea

se
 fa

ct
or

BIC on train data
(lower is better)

50 10
0

20
0

50
0

15
00

50
00

0.70

0.75

0.80

0.85

0.90

0.95

1.00

sample size

in
cr

ea
se

 fa
ct

or

BDeu on test data
(lower is better)

50 10
0

20
0

50
0

15
00

50
00

0.70

0.75

0.80

0.85

0.90

0.95

1.00

sample size

in
cr

ea
se

 fa
ct

or
BIC on test data
(lower is better)

50 10
0

20
0

50
0

15
00

50
00

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sample size

in
cr

ea
se

 fa
ct

or

Strustural Hamming Distance
(lower is better)

50 10
0

20
0

50
0

15
00

50
00

1

2

3

4

5

6

sample size

in
cr

ea
se

 fa
ct

or

Number of scores

Fig. 2. Quality of the final DAG obtained with H2PC over that obtained with MMHC
(after the SS phase). Results are averaged over the 8 benchmarks.

An Experimental Comparison of Hybrid Algorithms 69

Regarding BDeu and BIC on both training and test data, the improvements
are noteworthy. The results in terms of goodness of fit to training data and
new data using H2PC clearly dominate those obtained using MMHC, whatever
the sample size considered, hence its ability to generalize better. Regarding the
quality of the network structure itself (i.e., how close is the DAG to the true
dependence structure of the data), this is pretty much a dead heat between the
2 algorithms on small sample sizes (i.e., 50 and 100), however we found H2PC
to perform significantly better on larger sample sizes. The SHD increase factor
decays rapidly (lower is better) as the sample size increases. As far as the overall
running time performance is concerned, we see from Table 2 that both methods
have a tendency to work comparatively well for small sample sizes (i.e., less than
200). The total running time with H2PC with 5000 samples is 8 times slower on
average than that of MMHC. Overall, it appears that the running time increase
factor grows somewhat linearly with the sample size. Nonetheless, it is worth
mentioning that our implementation of MMHC in the bnlearn package employs
several heuristics to speed up learning that are not yet implemented in H2PC.
This leads to some loss of efficiency compared to MMHC due to redundant
calculations. Notice that the optimization of the HPC code is currently being
undertaken to allow for fair comparisons with MMHC.

Overall, H2PC compares favorably to MMHC. It has consistently lower gen-
eralization error on all data sets. Large values of the recall do not cause much
rise in precision while maintaining the total running time under control. This
experiment indicates that MMPC should be best suited in terms of performance
when coupled to an optimal SS BN learning method discussed in [22,15].

Table 2. Total running time increase factor (H2PC/MMHC)

Network
Sample Size

50 100 200 500 1500 5000

child 1.13 ±0.1 1.28 ±0.2 1.54 ±0.2 2.38 ±0.2 2.65 ±0.2 3.08 ±0.4
insurance 1.21 ±0.2 1.35 ±0.2 2.03 ±0.1 3.83 ±0.2 5.55 ±0.4 7.38 ±0.6
mildew 0.71 ±0.2 1.05 ±0.2 1.10 ±0.1 1.23 ±0.1 1.63 ±0.1 3.19 ±0.3
alarm 1.17 ±0.1 1.39 ±0.1 1.86 ±0.1 2.28 ±0.1 2.93 ±0.3 3.41 ±0.4
hailfinder 1.09 ±0.1 1.30 ±0.1 1.61 ±0.1 2.17 ±0.1 2.82 ±0.2 3.35 ±0.3
munin1 1.09 ±0.0 1.29 ±0.1 1.36 ±0.1 2.01 ±0.1 4.28 ±0.2 12.88 ±0.7
pigs 1.41 ±0.1 1.41 ±0.1 4.65 ±0.2 5.32 ±0.2 6.51 ±0.2 9.70 ±0.3
link 1.57 ±0.0 2.13 ±0.1 2.86 ±0.1 6.07 ±0.2 11.07 ±1.1 23.35 ±0.9
all 1.17 ±0.3 1.40 ±0.3 2.13 ±1.1 3.16 ±1.6 4.68 ±2.9 8.29 ±6.7

7 Discussion

Our prime conclusion is that H2PC is a promising approach to constructing
BN structures. The performances of HPC raises interesting possibilities in the
context of hybrid methods. It emphasizes that concentrating on higher recall

70 M. Gasse, A. Aussem, and H. Elghazel

values while keeping the false positive rate as low as possible pays off in terms
of goodness of fit and structure accuracy.

The focus of our study was on the efficiency of the heuristics the learning
algorithms are based on, i.e., the maximization algorithms used in score-based
algorithms combined with the techniques for learning the dependence structure
associated with each node in CB algorithms. The influence of the other com-
ponents of the overall learning strategy, such as the conditional independence
tests (and the associated type I error threshold) or the network scores (and the
associated parameters, such as the equivalent sample size), was not investigated.

The conclusions of our studies should be applicable to the shrinkage test that
is more robust to small sample sizes, and to the permutation mutual informa-
tion test for large samples. Tsamardinos et al. [33] recently showed that the
use of exact tests based on (semi-parametric) permutation procedures lead to
more robust structural learning, while being only 10-20 times slower than the
asymptotic tests for small sample sizes. Similarly, Scutari [28] investigated the
behavior of permutation conditional independence tests and tests based the per-
mutation Pearson’s χ2 test, the permutation mutual information test, and the
shrinkage test based on the estimator for the mutual information. Based on a sin-
gle BN benchmark, they showed that permutation tests result in better network
structures than the corresponding parametric tests in terms of goodness of fit.
However, the output graphs are often not as close to the true network structure
as the ones learned with the corresponding parametric tests. Shrinkage tests, on
the other hand, outperform both parametric and permutation tests in the quality
of the network structure itself, which is closer to the true dependence structure
but do not fit the data as well as the networks learned with the corresponding
maximum likelihood tests. So, there is no clear picture as to which test should
be employed on a given data set. This is still an open question.

As noted by [22], it is possible to reduce the complexity of an optimal search of
an exponential factor by using a structural constraint such as a super-structure
on condition that this super-structure is sound (i.e., includes the true graph as
a subgraph). Under this assumption, the accuracy of the resulting graph may
greatly improve according. Consequently, more attention should be paid to learn-
ing sound superstructures rather than true skeleton from data as both speed and
accuracy should be expected with more sophisticated SS search strategies than
the greedy HC used in our study. Although sound super-structures are easier to
learn for high values of type I error, such values produce denser structures with
many extra edges, thereby resulting in high computational overheads. There-
fore, relaxing the type I error of the tests is not a solution. [15] show that a
small change in the type I error in MMPC yields a dramatical increase of the
computational burden involved in their hybrid procedure, with almost no gain
in accuracy. The key is to keep the false positive rate small while controlling the
false missing rate.

Finally, it is worth mentioning that neither MMPC nor HPC were optimized
in this work to learn global superstructures as both MMPC and HPC are run
independently on each node without keeping track of the dependencies found

An Experimental Comparison of Hybrid Algorithms 71

previously. This leads to some loss of efficiency due to redundant calculations.
The reason is that they were initially designed to infer a local network around
a target node. An optimized version of HPC for super-structure discovery was
developed in [36]. The optimizations were done in order to get a global method
and to lower the computational cost of HPC, while maintaining its performance.
These optimizations include the use of a cache to store the (in)dependencies and
the use of a global structure. This optimizations reduce the computational cost
of HPC by 30% on average according to the authors.

8 Conclusion

We discussed a hybrid algorithm for BN structure learning called Hybrid HPC
(H2PC). Our extensive experiments show that H2PC outperforms MMHC in
terms of goodness of fit to training data and new data as well, hence its ability
to generalize better, with little overhead in terms of of running time over MMHC.
The optimization of the HPC code is currently being undertaken. Regarding the
quality of the network structure itself (i.e., how close is the DAG to the true
dependence structure of the data), we found H2PC to outperform MMHC by
a significant margin. More importantly, our experimental results show a clear
benefit in terms of edge recall without sacrificing the number of extra edges,
which is crucial for the soundness of the super-structure used during the second
stage of hybrid methods like the ones proposed in [22,15]. Though not discussed
here, a topic of considerable interest would be to ascertain which independence
test is most suited to the data at hand. This needs further substantiation through
more experiments and analysis.

Acknowledgments. The authors thank Marco Scutari for sharing his bnlearn
package in R. The experiments reported here were performed on computers
funded by a French Institute for Complex Systems (IXXI) grant.

References

1. Agresti, A.: Categorical Data Analysis, 2nd edn. Wiley (2002)
2. Aliferis, C.F., Statnikov, A.R., Tsamardinos, I., Mani, S., Koutsoukos, X.D.: Local

causal and markov blanket induction for causal discovery and feature selection
for classification part i: Algorithms and empirical evaluation. Journal of Machine
Learning Research 11, 171–234 (2010)

3. Armen, A.P., Tsamardinos, I.: A unified approach to estimation and control of
the false discovery rate in bayesian network skeleton identification. In: European
Symposium on Artificial Neural Networks, ESANN 2011 (2011)

4. Aussem, A., Rodrigues de Morais, S., Corbex, M.: Analysis of nasopharyngeal car-
cinoma risk factors with bayesian networks. Artificial Intelligence in Medicine 54(1)
(2012)

5. Aussem, A., Tchernof, A., Rodrigues de Morais, S., Rome, S.: Analysis of lifestyle
and metabolic predictors of visceral obesity with bayesian networks. BMC Bioin-
formatics 11, 487 (2010)

72 M. Gasse, A. Aussem, and H. Elghazel

6. Brown, L.E., Tsamardinos, I.: A strategy for making predictions under manipula-
tion. In: JMLR: Workshop and Conference Proceedings, vol. 3, pp. 35–52 (2008)

7. Buntine, W.: Theory refinement on Bayesian networks. In: Proceedings of the 7th
Conference on Uncertainty in Artificial Intelligence, San Mateo, CA, USA, pp.
52–60. Morgan Kaufmann Publishers (July 1991)

8. Cawley, G.: Causal and non-causal feature selection for ridge regression. In: JMLR:
Workshop and Conference Proceedings vol. 3 (2008)

9. Cheng, J., Greiner, R., Kelly, J., Bell, D.A., Liu, W.: Learning Bayesian networks
from data: An information-theory based approach. Artif. Intell. 137(1-2), 43–90
(2002)

10. Chickering, D.M.: Optimal structure identification with greedy search. Journal of
Machine Learning Research 3, 507–554 (2002)

11. Ellis, B., Wong, W.H.: Learning causal bayesian network structures from experi-
mental data. Journal of the American Statistical Association 103, 778–789 (2008)

12. Friedman, N.L., Nachman, I., Peér, D.: Learning bayesian network structure from
massive datasets: the“sparse candidate” algorithm. In: Laskey, K.B., Prade, H.
(eds.) Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence,
pp. 21–30. Morgan Kaufmann Publishers (1999)

13. Heckerman, D., Geiger, D., Chickering, D.M.: Learning bayesian networks: The
combination of knowledge and statistical data. Machine Learning 20(3), 197–243
(1995)

14. Koivisto, M., Sood, K.: Exact bayesian structure discovery in bayesian networks.
Journal of Machine Learning Research 5, 549–573 (2004)

15. Kojima, K., Perrier, E., Imoto, S., Miyano, S.: Optimal search on clustered struc-
tural constraint for learning bayesian network structure. Journal of Machine Learn-
ing Research 11, 285–310 (2010)

16. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

17. Moore, A., Wong, W.-K.: Optimal reinsertion: A new search operator for accel-
erated and more accurate Bayesian network structure learning. In: Fawcett, T.,
Mishra, N. (eds.) Proceedings of the 20th International Conference on Machine
Learning, ICML 2003 (August 2003)

18. Peña, J.M., Nilsson, R., Björkegren, J., Tegnér, J.: Towards scalable and data ef-
ficient learning of Markov boundaries. International Journal of Approximate Rea-
soning 45(2), 211–232 (2007)

19. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1988)

20. Peña, J.M.: Learning Gaussian Graphical Models of Gene Networks with False
Discovery Rate Control. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS,
vol. 4973, pp. 165–176. Springer, Heidelberg (2008)

21. Peña, J.: Finding consensus bayesian network structures. Journal of Artificial In-
telligence Research 42, 661–687 (2012)

22. Perrier, E., Imoto, S., Miyano, S.: Finding optimal bayesian network given a super-
structure. Journal of Machine Learning Research 9, 2251–2286 (2008)

23. de Morais, S.R., Aussem, A.: An Efficient and Scalable Algorithm for Local
Bayesian Network Structure Discovery. In: Balcázar, J.L., Bonchi, F., Gionis, A.,
Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 164–179.
Springer, Heidelberg (2010)

24. Rodrigues de Morais, S., Aussem, A.: A novel Markov boundary based feature
subset selection algorithm. Neurocomputing 73, 578–584 (2010)

An Experimental Comparison of Hybrid Algorithms 73

25. Schwarz, G.E.: Estimating the dimension of a model. Journal of Biomedical Infor-
matics 6(2), 461–464 (1978)

26. Scutari, M.: Learning bayesian networks with the bnlearn R package. Journal of
Statistical Software 35(3), 1–22 (2010)

27. Scutari, M., Brogini, A.: Bayesian network structure learning with permutation
tests. To appear in Communications in Statistics Theory and Methods (2012)

28. Scutari, M.: Measures of Variability for Graphical Models. PhD thesis, School in
Statistical Sciences, University of Padova (2011)

29. Silander, T., Myllymaki, P.: Simple approach for finding the globally optimal
Bayesian network structure. In: Proceedings of the 22nd Conference on Uncer-
tainty in Artificial Intelligence (UAI 2006), pp. 445–452 (2006)

30. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn.
The MIT Press (2000)

31. R Development Core Team. R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2010)

32. Tsamardinos, I., Aliferis, C.F., Statnikov, A.R.: Algorithms for large scale Markov
blanket discovery. In: Florida Artificial Intelligence Research Society Conference
FLAIRS 2003, pp. 376–381 (2003)

33. Tsamardinos, I., Borboudakis, G.: Permutation Testing Improves Bayesian Net-
work Learning. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML
PKDD 2010, Part III. LNCS, vol. 6323, pp. 322–337. Springer, Heidelberg (2010)

34. Tsamardinos, I., Brown, L.E.: Bounding the false discovery rate in local Bayesian
network learning. In: Proceedings AAAI National Conference on AI AAAI 2008,
pp. 1100–1105 (2008)

35. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian
network structure learning algorithm. Machine Learning 65(1), 31–78 (2006)

36. Villanueva, E., Maciel, C.D.: Optimized algorithm for learning bayesian network
superstructures. In: Proceedings of the 2012 International Conference on Pattern
Recognition Applications and Methods, ICPRAM 2012 (2012)

Bayesian Network Classifiers with Reduced

Precision Parameters

Sebastian Tschiatschek1, Peter Reinprecht1,
Manfred Mücke2,3, and Franz Pernkopf1

1 Signal Processing and Speech Communication Laboratory
Graz University of Technology, Graz, Austria

2 University of Vienna, Research Group
Theory and Applications of Algorithms, Vienna, Austria

3 Sustainable Computing Research, Austria
http://www.spsc.tugraz.at

Abstract. Bayesian network classifiers (BNCs) are probabilistic classi-
fiers showing good performance in many applications. They consist of
a directed acyclic graph and a set of conditional probabilities associ-
ated with the nodes of the graph. These conditional probabilities are
also referred to as parameters of the BNCs. According to common belief,
these classifiers are insensitive to deviations of the conditional probabil-
ities under certain conditions. The first condition is that these proba-
bilities are not too extreme, i.e. not too close to 0 or 1. The second is
that the posterior over the classes is significantly different. In this pa-
per, we investigate the effect of precision reduction of the parameters
on the classification performance of BNCs. The probabilities are either
determined generatively or discriminatively. Discriminative probabilities
are typically more extreme. However, our results indicate that BNCs
with discriminatively optimized parameters are almost as robust to pre-
cision reduction as BNCs with generatively optimized parameters. Fur-
thermore, even large precision reduction does not decrease classification
performance significantly. Our results allow the implementation of BNCs
with less computational complexity. This supports application in embed-
ded systems using floating-point numbers with small bit-width. Reduced
bit-widths further enable to represent BNCs in the integer domain while
maintaining the classification performance.

Keywords: Bayesian Network Classifiers, Custom-precision Analysis,
Discriminative Classifiers.

1 Introduction

Pattern recognition is about identifying patterns in input data and assigning
labels to this data. Examples of pattern recognition are regression and classifica-
tion. A classifier has to be learned from a set of training samples by identifying
discriminative properties such that new unlabeled samples can be correctly clas-
sified. Many approaches and algorithms for this purpose exists. Some of the most

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 74–89, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.spsc.tugraz.at

Bayesian Network Classifiers with Reduced Precision Parameters 75

competitive approaches are support vector machines [16], neural networks [7] and
Bayesian network classifiers (BNCs) [5].

BNCs are probabilistic classifiers that assume a joint probability distribution
over the input data and the class labels. They classify new input data as the
maximum a-posteriori estimate of the class given this data using the assumed
probability distribution. The probability distribution is represented by a Bayesian
network (BN). BNs consist of a directed acyclic graph, i.e. the structure, and a set
of local conditional probability densities, i.e. the parameters. The classification
performance of a BNC is determined by the assumed probability distribution.
Finding probability distributions that result in good classifiers is addressed by
the tasks of structure [1,5,8,14] and parameter learning [6,8,12,15,16]. Structure
learning is not considered in this paper and we assume fixed graph structures.
In detail, we consider BNCs with naive Bayes (NB) structures, cf. Figure 1, and
tree augmented network structures (TAN) [5].

Parameter learning in BNCs resorts to identifying a probability distribution
over the input data and the class labels. This distribution must be compatible
with the assumed structure of the BNC. For learning these distributions, we use
the maximum likelihood (ML), the maximum conditional likelihood (MCL), and
the maximum margin (MM) objectives.

C

X1 X2 X3 . . . XL

Fig. 1. Naive Bayes structure

The process of parameter learning and classification is typically performed
on a computer using high numerical precision, i.e. double-precision floating-
point calculations. However, this high precision causes large storage require-
ments, cf. Table 1. Additionally, the necessary calculations depend on complex
computer architectures to be performed efficiently. In contrast to up-to-date
computers this requirements are often not met by embedded systems, low en-
ergy computers or integrated solutions that need to optimize the used hardware
resources. To aid complexity reduction we investigate the performance of BNCs
with reduced precision probability parameters. Especially, we are interested in
comparing the robustness of generatively (ML) and discriminatively (MCL, MM)
optimized probability distributions with respect to precision reduction of their
parameters using various BN structures.

Some of our findings can be related to results from sensitivity analysis of
BNs [3, 4]. Amongst others, the framework of sensitivity analysis describes the

76 S. Tschiatschek et al.

Table 1. Number of probability parameters (# parameters) and the storage require-
ments (storage) for these parameters in BNCs with different graph structures (for
different datasets). Each parameter is assumed to be stored in double-precision floating-
point format, i.e. 64 bits are required for each parameter. Details on the structures and
datasets are provided in Section 5.

data structure # parameters storage [kB]

USPS
NB 8650 67.6

TAN-CR 20840 162.8

MNIST
NB 6720 52.5

TAN-CR 39980 312.3

TIMIT (4 classes) NB 1320 10.3

TIMIT (6 classes) NB 1998 15.6

dependency of inference queries to variations in the local conditional probabil-
ity parameters. The precision reduction of the probability parameters resorts to
such variations and can, therefore, be interpreted in this framework. However,
the focus in this paper is different. We are particularly interested in analyzing the
classification performance of BNCs when reducing the bit-width of all parame-
ters simultaneously. Additionally, we are interested in comparing the robustness
of the classification of BNCs with generatively and discrimatively optimized pa-
rameters with respect to this precision reduction. As the local conditional proba-
bility parameters of discriminatively optimized BNCs tend to be more extreme,
we suspected classification rates of these classifiers to depend stronger on the
used precision than the classification rates of BNCs with generatively optimized
parameters. Nevertheless, our results demonstrate that this is not true.

Our main findings are:

– The number of extreme conditional probability values, i.e. probabilities close
to 0 or 1, in BNCs with discrimatively optimized parameters is larger than
in BNCs with generatively optimized parameters, cf. Section 5.1. Using re-
sults from sensitivity analysis, this suggests that BNCs with discrimatively
optimized parameters might be more susceptible to precision reduction than
BNCs with generatively optimized parameters. Nevertheless, we observed
in experiments that BNCs with both types of parameters can achieve good
classification performance using reduced precision floating-point parameters.
In fact, the classification performance is close to BNCs with parameters rep-
resented in full double-precision floating-point format, cf. Section 5.2.

– The reduction of the precision allows for mapping the classification process
of BNCs to the integer domain, cf. Section 4. Thereby, exact computation
in that domain, reduced computational complexity and implementation on
simple embedded hardware is supported. In fact, some of the considered
BNCs can perform classification using integer arithmetic without significant
reduction of performance.

Bayesian Network Classifiers with Reduced Precision Parameters 77

The outline of this paper is as follows: In Section 2 we provide a motivating
example demonstrating that there is large potential in reducing the precision of
the parameters of BNCs. Afterwards, we introduce probabilistic classification,
BNCs, and the sensitivity of BNs to changes of their parameters in Section 3.
An approach for mapping the parameters of BNCs to the integer domain is
presented in Section 4 and various experiments are provided in Section 5. Finally,
we conclude the paper in Section 6 and provide a perspective on future work.

2 Motivating Example

In this section we provide an example demonstrating that the parameters of BNs
employed for classification do not require high precision. They can be approx-
imated coarsely without reducing the classification rate significantly. In some
cases, only a few bits for representing each probability parameter of a BNC are
necessary to achieve classification rates close to optimal.

The probability parameters of BNCs, these classifiers are introduced in detail
in Section 3, are typical stored in double-precision floating-point format [10,
11]. We use logarithmic probability parameters w = log(θ), with 0 ≤ θ ≤ 1,
represented as

w = (−1)s

(
1 +

52∑
k=1

bk2−k

)
2(

∑10
l=0 el2l−1023), (1)

where s ∈ {0, 1}, bk ∈ {0, 1} for all k, and el ∈ {0, 1} for all l. The term

– (−1)s is the sign,

– (1 +
∑52

i=1 b
k2−k) is the mantissa, and

– (
∑10

l=0 e
l2l − 1023) is the exponent

of w, respectively. In total 64 bits are used to represent each log-parameter.
Processing these parameters on desktop computers does not impose any prob-
lems. However, this large bit-width of the parameters can be a limiting fac-
tor in embedded systems or applications optimized for low run-times or low
energy-consumption.

The range of the parameters using double-precision floating-point format is
about ±10300 and by far larger than required; The distribution of the log-
parameters of a BNC with maximum likelihood parameters for handwritten
digit data (USPS data, details are provided in Section 5) is shown in Figure 2(a).
Additionally, the distribution of the values of the exponent is shown in
Figure 2(b). All the log-parameters are negative and their range is [−7; 0]. The
range of the exponent of the logarithmic parameters is [−10; 2].

The required bit-width to store the logarithmic parameters in a floating-point
format, cf. Equation (1), can be reduced in three aspects:

1. Sign bit. Every probability θ satisfies 0 ≤ θ ≤ 1. Therefore, its logarithm
is in the range −∞ ≤ w ≤ 0. Consequently, the sign bit can be removed
without any change in the represented parameters.

78 S. Tschiatschek et al.

value

fr
eq

u
en

cy
co
u
n
t

-6 -4 -2 0
0

1000

2000

3000

(a) logarithmic probabilities

value

fr
eq

u
en

cy
co
u
n
t

-9 -7 -5 -3 -1 1
0

1000

2000

3000

(b) exponent of logarithmic conditional
probabilities in double-precision

Fig. 2. Histograms of (a) the log-parameters, and (b) the exponents of the log-
parameters of a BNC for handwritten digit data with ML parameters assuming NB
structure.

2. Bit-width of the mantissa. We varied the bit-width of the mantissa of
the log-parameters while keeping the exponent unchanged. As a result, we
observed that this does not influence the classification rate significantly when
using ML parameters, cf. Figure 3(a). When using 4 or more bits to represent
the mantissa, the performance is almost the same as when using the full
double-precision floating-point format, i.e. 53 bits for the mantissa.

3. Bit-width of the exponent. Changing the bit-width of the exponent has
the largest impact on the classification performance. A change of the expo-
nent of a parameter results in a change of the scale of this parameter. The
classification rates resulting from reducing the bit-width of the exponent are
shown in Figure 3(b). Note that we reduced the bit-width starting with the
most significant bit (MSB). Only a few bits are necessary for classification
rates on par with the rates achieved using full double-precision floating-point
parameters.

Based on this motivating example demonstrating the potential of precision re-
duction we can even map BNCs to the integer domain, cf. Section 4. Further
experimental results are shown in Section 5.

3 Background

3.1 Probabilistic Classification

Probabilistic classifiers are embedded in the framework of probability theory.
One assumes a random variable (RV) C denoting the class and RVs X1, . . . , XL

representing the attributes/features of the classifier. These RVs are related by
a joint probability distribution P∗(C,X), where X = [X1, . . . , XL] is a random
vector consisting of X1, . . . , XL. In typical settings, this joint distribution is un-
known and a limited number of samples drawn from true distribution P∗(C,X),

Bayesian Network Classifiers with Reduced Precision Parameters 79

mantissa bit-width

cl
a
ss
ifi
ca
ti
o
n
ra
te

0 20 40

86

88

90

(a) varying mantissa bit-width, using
full bit-width for exponent

exponent bit-width

cl
a
ss
ifi
ca
ti
o
n
ra
te

0 5 10

40

60

80

(b) varying exponent bit-width, using full
bit-width for mantissa

Fig. 3. Classification rate over varying bit-width of (a) the mantissa, and (b) the
exponent, for handwritten digit data, NB structure, and log ML parameters. The clas-
sification rates using full double-precision logarithmic parameters are indicated by the
horizontal dotted lines.

i.e. a training set D, is available. This set D consists of N i.i.d. labeled sam-
ples, i.e. D = {(c(n),x(n))|1 ≤ n ≤ N}, where c(n) denotes the instantiation of
the RV C and x(n) the instantiation of X in the nth training sample. The aim
is to induce good classifiers provided the training set, i.e. classifiers with low
generalization error. Formally, a classifiers h is a mapping

h : sp(X) → sp(C), (2)

x �→ h(x),

where sp(X) denotes the set of all assignments of X and sp(C) is the set of
classes. The generalization error of this classifier is

Err(h) := EP∗(C,X) [1{C �= h(X)}] , (3)

where 1{A} denotes the indicator function and EP∗(C,X) [·] is the expectation
operator with respect to the distribution P∗(C,X). The indicator function 1{A}
equals one if statement A is true and zero otherwise. Typically, the generalization
error can not be evaluated because P∗(C,X) is unknown but is rather estimated
using cross-validation [2].

BNCs with generatively optimized parameters are based on the idea of ap-
proximating P∗(C,X) by a distribution PB(C,X) and using the induced classifier
hPB(C,X), given as

hPB(C,X) : sp(X) → sp(C), (4)

x �→ argmax
c∈C

PB(C = c|X = x),

for classification. In this way, each instantiation x of X is classified as the max-
imum a-posteriori (MAP) estimate of C given x under PB(C,X). BNCs with

80 S. Tschiatschek et al.

discriminatively optimized parameters do not approximate P∗(C,X) but rather
determine PB(C,X) such that good classification performance is achieved. Dis-
criminative learning of BNCs is advantageous in cases where the assumed model
distribution PB(C,X) can not approximate P∗(C,X) well, for example because
of a too limited BN structure. Several approaches for optimizing PB(C,X) are
discussed in the next section after introducing the concept of Bayesian networks
in more detail.

3.2 Bayesian Networks and Learning Bayesian Network Classifiers

Bayesian Networks (BNs) [8,12] are used to represent joint probability distribu-
tions in a compact and intuitive way. A BN B = (G,PG) consists of a directed
acyclic graph G = (V,E), where V = {X0, . . . , XL} is the set of nodes and E the
set of edges of the graph, and a set of local conditional probability distributions
PG = {P(X0|Pa(X0)), . . . ,P(XL|Pa(XL))}. The terms Pa(X0), . . . , Pa(XL) de-
note the set of parents of X0, . . . , XL in G, respectively. We abbreviate the con-
ditional probability P (Xi = j|Pa(Xi) = h) as θij|h and the corresponding log-

arithmic probability as wi
j|h = log(θij|h). Each node of the graph corresponds

to an RV and the edges of the graph determine dependencies between these
RVs. Throughout this paper, we denote X0 as C, i.e. X0 represents the class,
and assume that C has no parents in G, i.e. Pa(C) = ∅. A BN induces a joint
probability PB(C,X1, . . . , XL) by multiplying the local conditional distributions
together, i.e.

PB(C,X1, . . . , XL) = P(C)
L∏

i=1

P(Xi|Pa(Xi)). (5)

BNs for classification can be optimized in two ways: firstly, one can select the
graph structure G, and secondly, one can learn the conditional probabilities PG .
Selecting the graph structure is known as structure learning and selecting PG is
known as parameter learning. The structures considered throughout this paper
are fairly simple. In detail, we used naive Bayes structures, cf. Figure 1, and tree
augmented network structures (TAN) [5].

For learning the parameters PG of a BN two paradigms exist, namely gener-
ative parameter learning and discriminative parameter learning:

– In generative parameter learning one aims at identifying parameters repre-
senting the generative process that results in the data of the training set.
An example of this paradigm is maximum likelihood (ML) learning. Its ob-
jective is maximization of the likelihood of the data given the parameters.
Formally, ML parameters PML

G are learned as

PML
G = argmax

PG

N∏
n=1

PB(c(n),x(n)), (6)

where PB(C,X) is the joint distribution in (5) induced by the BN (G,PG).

Bayesian Network Classifiers with Reduced Precision Parameters 81

– In discriminative learning one aims at identifying parameters leading to good
classification performance on new samples from P∗(C,X). Several objectives
for this purpose are known in the literature. Throughout this paper, we
consider the maximum conditional likelihood (MCL) [15] objective and the
maximum margin (MM) [6, 13] objective.
MCL parameters PMCL

G are obtained as

PMCL
G = argmax

PG

N∏
n=1

PB(c(n)|x(n)), (7)

where again PB(C,X) is the joint distribution induced by the BN (G,PG)
and PB(C|X) denotes the conditional distribution of C given X determined
from PB(C,X) as PB(C,X) = PB(C|X) · PB(X). Thus, MCL parameters
maximize the conditional probability of the class instantiations given the
instantiations of the attributes.
MM parameters PMM

G are found as

PMM
G = argmax

PG

N∏
n=1

min
(
γ, d(n)

)
, (8)

where d(n) is the margin of the nth sample given as

d(n) =
PB(c(n)|x(n))

maxc �=c(n) PB(c|x(n))
, (9)

and γ > 1 is a parameter controlling the margin. In this way, the margin
measures the ratio of the likelihood of the nth sample belonging to the correct
class c(n) to belonging to the strongest competing class. The nth sample is
correctly classified if d(n) > 1 and vice versa.

3.3 Sensitivity of Bayesian Networks

The sensitivity of a BN B = (G,PG) describes the change in a query with re-
spect to changes in the local conditional probabilities in PG . For example, a
query is the calculation of a posterior probability of the form PB(Xq|Xe), with
Xq,Xe ⊆ {C,X1, . . . , XL} and Xq ∩Xe = ∅. Several results on estimating and
bounding this sensitivity exist in the literature, cf. for example [3, 17]. The re-
sults therein essentially state that the sensitivity of BNs depends mainly on
probability parameters being close to 0 or 1 and queries being close to uniform.

In this context, consider the following theorem:

Theorem 1 (from [3]). Let Xi be a binary RV in a BN B = (G,PG), then∣∣∣∣∣∂PB(Xi|Xe)

∂τXi|Pa(Xi)

∣∣∣∣∣ ≤ PB(Xi|Xe) · (1− PB(Xi|Xe))

PB(Xi|Pa(Xi)) · (1− PB(Xi|Pa(Xi))
, (10)

82 S. Tschiatschek et al.

where τXi|Pa(Xi) is a meta-parameter such that PB(Xi = 0|Pa(Xi)) = τXi|Pa(Xi)

and PB(Xi = 1|Pa(Xi)) = 1− τXi|Pa(Xi).

The theorem states that the magnitude of the partial derivative of PB(Xi|Xe)
with respect to τXi|Pa(Xi) is bounded above. The bound depends on the query

under the current parameters PB(Xi|Xe) and on the conditional probabilities
PB(Xi|Pa(Xi)). The partial derivative is large whenever PB(Xi|Xe) is close to
uniform and whenever PB(Xi = 0|Pa(Xi)) is close to 0 or 1. In classification the
query of interest is the probability of the class variable given the features, i.e.
PB(Xi|Xe) = PB(C|X). Discriminative objectives for parameter learning in BNs
aim at good class separation, i.e. PB(C|X) or 1 − PB(C|X) is typically large.
However, also the parameters tend to be extreme, i.e. PB(Xi|Pa(Xi)) is close
to 0 or 1 (some empirical results supporting this are shown in Section 5.1). We
expect the bound to be large for discriminatively optimized parameters, as the
denominator in the above theorem scales the bound inversely proportional [3].
Hence, either the bound is loose or the partial derivative is actually large re-
sulting in high sensitivity to parameter deviations. This could be the tripping
hazard for BNCs with discriminatively optimized parameters. However, exper-
imental observations in Section 5.2 show a robust classification behavior using
discriminatively optimized small bit-width parameters.

The above Theorem only describes the sensitivity with respect to a single
parameter. There are some extensions of sensitivity analysis describing the sen-
sitivity of queries with respect to changes of many parameters [4]. However, to
the best of the authors knowledge, these do not extend to changes of all param-
eters, which is the focus of this paper. Furthermore, in classification we are not
directly interested in the sensitivity of certain queries. The focus is rather on
the maximum of a set of queries, i.e. the sensitivity of the MAP classification.
Further analytical analysis is intended for future work.

4 BNCs in the Integer Domain

In this section we present how to cast classification using BNCs to the integer
domain. This is possible when using reduced precision log-parameters for the
BNCs. Without reduced precision, the mapping can not be achieved consider-
ing the large range of numbers representable by double-precision floating-point
numbers.

Remember, a BNC given by the BN B = (G,PG) assigns an instantiation x of
the attributes to class

c = arg max
c′∈sp(C)

PB(c′,x) (11)

= arg max
c′∈sp(C)

P(C = c′)
L∏

i=1

P(Xi = x(Xi)|Pa(Xi) = x(Pa(Xi))), (12)

Bayesian Network Classifiers with Reduced Precision Parameters 83

where x(Xk) denotes the entry in x corresponding to Xk. This classification rule
can be equivalently stated in the logarithmic domain, i.e. x is assigned to class

c = arg max
c′∈sp(C)

[
log P(C = c′) +

L∑
i=1

log P(Xi = x(Xi)|Pa(Xi) = x(Pa(Xi)))

]
. (13)

As shown in Sections 2 and 5 the logarithmic probabilities in the above equation
can often be represented using only a few bits without reducing the classification
rate significantly. In many cases, 2 bits for the mantissa and 4 bits for the
exponent are sufficient to achieve good classification rates. Using these 6 bits,
the logarithmic probability wi

j|h = log θij|h is given as

wi
j|h = −(1 + bi,1j|h · 2−1 + bi,2j|h · 2−2) · 2

(∑3
k=0 ei,k

j|h·2
k−7

)
. (14)

Hence,

c = arg max
c′∈sp(C)

[
w0

c′ +

L∑
i=1

wi
x(Xi)|x(Pa(Xi))

]
(15)

= arg min
c′∈sp(C)

[
−w0

c′ −
L∑

i=1

wi
x(Xi)|x(Pa(Xi))

]
(16)

= arg min
c′∈sp(C)

[
(1 + b0,1c′ · 2

−1 + b0,2c′ · 2
−2) · 2

(∑3
k=0 e

i,k

c′ ·2k−7
)
+ (17)

L∑
i=1

(1 + bi,1x(Xi)|x(Pa(Xi))
2−1 + bi,2x(Xi)|x(Pa(Xi))

2−2) · 2
(∑3

k=0 e
i,k
x(Xi)|x(Pa(Xi))

2k−7
)]
.

Multiplying (17) by the constant 29 does not change the classification. Hence,
classification can be performed by

c =arg min
c′∈sp(C)

[
(4 + b0,1c′ · 2 + b0,2c′) · 2

(∑3
k=0 e

i,k

c′ ·2k
)
+ (18)

L∑
i=1

(4 + bi,1x(Xi)|x(Pa(Xi))
· 2 + bi,2x(Xi)|x(Pa(Xi))

) · 2
(∑3

k=0 e
i,k
x(Xi)|x(Pa(Xi))

·2k
)]

which resorts to integer computations only. Furthermore, no floating-point round-
ing errors of any kind are introduced during computation when working purely
in the integer domain. Integer arithmetic is sufficient for implementation.

5 Experiments

In this section we present classification experiments using reduced precision log
probability parameters of BNCs. Throughout this section we consider the fol-
lowing three datasets:

84 S. Tschiatschek et al.

– TIMIT-4/6 Data. This dataset is extracted from the TIMIT speech corpus
using the dialect speaking region 4. It consists of 320 utterances from 16
male and 16 female speakers. Speech frames are classified into either four
or six classes using 110134 and 121629 samples, respectively. Each sample is
represented by 20 mel-frequency cepstral coefficients (MFCCs) and wavelet-
based features [13]. We perform classification experiments on data of both
genders (Ma+Fe).

– USPS Data. This dataset contains 11000 uniformly distributed handwrit-
ten digit images from zip codes of mail envelopes. Each digit is represented
as a 16× 16 grayscale image, where each pixel is considered as feature.

– MNIST Data [9]. This dataset contains 70000 samples of handwritten
digits. The digits represented by gray-level images were down-sampled by a
factor of two resulting in a resolution of 16× 16 pixels, i.e. 196 features.

Some of the experiments are performed using different BN structures. In detail,
we considered the naive Bayes (NB) structure, the generative TAN-CMI struc-
ture [5] and the discriminative TAN-OMI-CR and TAN-CR structures [14]. The
discriminative structures are determined by search-and-score heuristics using the
classification rate (CR) as score.

5.1 Number of Extreme Parameter Values in BNCs

We determined BNCs with ML, MCL and MM parameters. For calculating the
MCL and MM parameters we used the conjugate gradient based approaches
proposed in [13]. However, we did not use the proposed early-stopping heuristic
for determining the number of conjugate gradient iterations but rather performed
up to 200 iterations (or until there was no further increase in the objective). We
then counted the number of conditional probability parameters with a maximal
distance of ε to the extreme values 0 and 1, i.e. the count is given as

Mε =
∑
i,j,h

1{(1− θjj|h) < ε}+
∑
i,j,h

1{θjj|h < ε}. (19)

The results for USPS and MNIST data are shown in Tables 2(a) and 2(b),
respectively. The number of extreme parameter values in BNCs with MCL pa-
rameters is larger than in BNCs with MM parameters, and the number of ex-
treme parameter values in BNCs with MM parameters is larger than in BNCs
with ML parameters. This suggests that classification using MCL parameters
is more sensitive to parameter deviations than classification with MM parame-
ters, and classification using MM parameters is more sensitive to deviations than
classification with ML parameters.

5.2 Reduced Precision Classification Performance

We evaluated the classification performance of BNCs with ML, MCL and MM
parameters on the USPS, MNIST and TIMIT data. Results are shown in

Bayesian Network Classifiers with Reduced Precision Parameters 85

Table 2. Number of probability parameters θij|h close to the extreme values 0 and 1.
Additionally, the total number of parameters (# par.) and classification rates (CR) on
the test set using parameters in full double-precision floating-point format on (a) USPS
data and (b) MNIST data are shown.

(a) USPS

M0.05 M0.01 CR

structure # par. ML MCL MM ML MCL MM ML MCL MM

NB 8650 1478 4143 1837 364 2134 446 87.10 93.93 95.00

TAN-CMI 33040 12418 14712 13002 8271 9371 8428 91.90 95.70 95.37

TAN-OMI-CR 25380 6677 8167 7441 3486 3937 3624 92.40 95.73 95.40

TAN-CR 20840 5405 7344 6519 2666 3503 3009 92.57 95.97 95.87

(b) MNIST

M0.05 M0.01 CR

structure # par. ML MCL MM ML MCL MM ML MCL MM

NB 6720 3252 3289 3170 1784 1513 1520 83.73 92.00 91.97

TAN-CMI 38350 15772 25327 16790 8603 18647 9448 91.28 92.91 94.21

TAN-OMI-CR 44600 22488 29159 24048 13615 20419 15147 92.01 93.59 94.60

TAN-CR 39980 19557 25733 23308 11794 17702 16020 92.58 93.72 95.02

Figures 4, 5, and 6, respectively. Classification rates using full double-precision
floating-point parameters are indicated by the dotted lines. The classification
performance resulting from BNCs with reduced precision ML, MCL, and MM
parameters are shown by the solid lines. Reduced precision parameters were de-
termined by firstly learning parameters in double-precision, and secondly reduc-
ing the precision of these parameters. Even when using only 4 bits to represent
the exponent and 1 bit to represent the mantissa, the classification rates are
close to full-precision performance on USPS data. On MNIST and TIMIT data
the results are similar when 4 and 2 bits are used to represent the mantissa,
respectively.

Furthermore, we evaluated the classification performance of BNCs with re-
duced precision parameters using a varying size of the training set. The training
sets were obtained by selecting the desired number of samples randomly from
all available samples. The remaining samples were used as test set. For every
sample size, 5 different training/test splits were evaluated. Results on USPS
data are shown in Figure 7. Classification performance using reduced precision
parameters is close to optimal for all sample sizes.

86 S. Tschiatschek et al.

MM

MCL

ML

bit-width of exponent

cl
a
ss
ifi
ca
ti
o
n
ra
te

2 4 6 8 10

86

88

90

92

94

96

98

(a) NB

MM

MCL

ML

bit-width of exponent

cl
a
ss
ifi
ca
ti
o
n
ra
te

2 4 6 8 10

86

88

90

92

94

96

98

(b) TAN-CMI

MM

MCL

ML

bit-width of exponent

cl
a
ss
ifi
ca
ti
o
n
ra
te

2 4 6 8 10

86

88

90

92

94

96

98

(c) TAN-OMI-CR

MM MCL

ML

bit-width of exponent

cl
a
ss
ifi
ca
ti
o
n
ra
te

2 4 6 8 10

86

88

90

92

94

96

98

(d) TAN-CR

Fig. 4. Classification rates of BNCs with (a) NB, (b) TAN-CMI, (c) TAN-OMI-CR,
and (d) TAN-CR structures using reduced precision ML, MCL, and MM parameters
on USPS data. The bit-width of the mantissa was fixed to 1 bit and the bit-width of
the exponent was varied. The classification rates for full double-precision floating-point
parameters are indicated by the horizontal dotted lines. Error bars indicate the 95 %
confidence intervals of the mean classification rate over 5 different training/test splits.

Bayesian Network Classifiers with Reduced Precision Parameters 87

MM

MCL

ML

bit-width of exponent

cl
a
ss
ifi
ca
ti
o
n
ra
te

2 4 6 8 10
80

85

90

95

Fig. 5. Classification rates of BNCs with NB structure using reduced precision ML,
MCL, and MM parameters on MNIST data. The bit-width of the mantissa was fixed
to 4 bits and the bit-width of the exponent was varied. The classification rate for full
double-precision floating-point parameters is indicated by the horizontal dotted lines.
Error bars indicate the 95 % confidence intervals of the mean classification rate over 5
different training/test splits.

MM

MCL

ML

bit-width of exponent

cl
a
ss
ifi
ca
ti
o
n
ra
te

2 4 6 8 10
85

90

95

(a) 4 classes

MM

MCL

ML

bit-width of exponent

cl
a
ss
ifi
ca
ti
o
n
ra
te

2 4 6 8 10
75

80

85

90

(b) 6 classes

Fig. 6. Classification rates of BNCs with NB structure using ML, MCL, and MM
parameters with reduced precision on TIMIT data with (a) 4 classes and (b) 6 classes.
The bit-width of the mantissa was fixed to 2 bits and the bit-width of the exponent
was varied. The classification rates for full double-precision floating-point parameters
are indicated by the horizontal dotted lines. Error bars indicate the 95 % confidence
intervals of the mean classification rate over 5 different training/test splits.

88 S. Tschiatschek et al.

MM

ML

sample size

cl
a
ss
ifi
ca
ti
o
n
ra
te

102 103 104
60

70

80

90

100

(a) 3 bit exponent bit-width

MM

ML

sample size

cl
a
ss
ifi
ca
ti
o
n
ra
te

102 103 104
60

70

80

90

100

(b) 5 bit exponent bit-width

Fig. 7. Classification rates of BNCs with NB structures using reduced precision ML
and MM parameters on USPS data. The parameters were learned from training sets
with varying sizes. The bit-width of the mantissa was fixed to 1 bit. The bit-width of
the exponent is 3 bits in (a) and 5 bits in (b). The classification rates for full double-
precision floating-point parameters using the same training data are indicated by the
dashed lines. Error bars indicate the 95 % confidence intervals of the mean classification
rate over 5 different training/test splits.

6 Conclusion and Further Work

In this paper, we presented classification results of BNCs when reducing the
precision of the probability parameters. Contrary to the authors’ expectation,
even discriminatively optimized BNCs are robust to distortions in the param-
eters resulting from the bit-width reduction. About 6 to 10 bits are necessary
to represent each probability parameter while maintaining classification rates
close to full-precision performance. This allows either to implement BNCs with
reduced precision floating point arithmetic or to cast the classification to the
integer domain. In both cases, computational and run-time benefits arise when
implementing BNCs on embedded systems or low-power computers.

Future work aims to address the following issues:

1. Analytical determination of the minimum bit-width of the probability pa-
rameters of BNCs such that classification rates are close to full-precision
performance. Results from sensitivity analysis are to be used. The analysis
will be performed for different datasets and classifier structures.

2. Implementation of BNCs in the integer domain and measuring the compu-
tational complexity reduction.

Acknowledgments. This work was supported by the Austrian Science Fund
(project numbers P22488-N23, S10608-N13 and S10610-N13).

Bayesian Network Classifiers with Reduced Precision Parameters 89

References

1. Acid, S., Campos, L.M., Castellano, J.G.: Learning Bayesian network classifiers:
Searching in a space of partially directed acyclic graphs. Machine Learning 59,
213–235 (2005)

2. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer (2007)

3. Chan, H., Darwiche, A.: When do numbers really matter? Artificial Intelligence
Research 17(1), 265–287 (2002)

4. Chan, H., Darwiche, A.: Sensitivity analysis in Bayesian networks: From single
to multiple parameters. In: Uncertainty in Artificial Intelligence (UAI), pp. 67–75
(2004)

5. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine
Learning, 131–163 (1997)

6. Guo, Y., Wilkinson, D., Schuurmans, D.: Maximum margin Bayesian networks. In:
Uncertainty in Artificial Intelligence (UAI), pp. 233–242 (2005)

7. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, Upper
Saddle River (1998)

8. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

10. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser Boston (2010)

11. Overton, M.L.: Numerical computing with IEEE floating point arithmetic - includ-
ing one theorem, one rule of thumb, and one hundred and one exercices. Society
for Industrial and Applied Mathematics (SIAM) (2001)

12. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

13. Pernkopf, F., Wohlmayr, M., Tschiatschek, S.: Maximum margin Bayesian net-
work classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 34(3), 521–531 (2012)

14. Pernkopf, F., Bilmes, J.A.: Efficient heuristics for discriminative structure learning
of Bayesian network classifiers. Journal of Machine Learning Research (JMLR) 11,
2323–2360 (2010)

15. Roos, T., Wettig, H., Grünwald, P., Myllymäki, P., Tirri, H.: On discriminative
Bayesian network classifiers and logistic regression. Machine Learning 59(3), 267–
296 (2005)

16. Vapnik, V.N.: Statistical Learning Theory. Wiley (1998)
17. Wang, H.: Using sensitivity analysis for selective parameter update in Bayesian

network learning. In: Association for the Advancement of Artificial Intelligence,
AAAI (2002)

Combining Subjective Probabilities and Data

in Training Markov Logic Networks

Tivadar Pápai1, Shalini Ghosh2, and Henry Kautz1

1 Department of Computer Science,University of Rochester, Rochester, NY
{papai,kautz}@cs.rochester.edu

2 Computer Science Laboratory, SRI International, Menlo Park, CA
shalini@csl.sri.com

Abstract. Markov logic is a rich language that allows one to specify
a knowledge base as a set of weighted first-order logic formulas, and to
define a probability distribution over truth assignments to ground atoms
using this knowledge base. Usually, the weight of a formula cannot be
related to the probability of the formula without taking into account the
weights of the other formulas. In general, this is not an issue, since the
weights are learned from training data. However, in many domains (e.g.
healthcare, dependable systems, etc.), only little or no training data may
be available, but one has access to a domain expert whose knowledge is
available in the form of subjective probabilities. Within the framework
of Bayesian statistics, we present a formalism for using a domain ex-
pert’s knowledge for weight learning. Our approach defines priors that
are different from and more general than previously used Gaussian priors
over weights. We show how one can learn weights in an MLN by com-
bining subjective probabilities and training data, without requiring that
the domain expert provides consistent knowledge. Additionally, we also
provide a formalism for capturing conditional subjective probabilities,
which are often easier to obtain and more reliable than non-conditional
probabilities. We demonstrate the effectiveness of our approach by ex-
tensive experiments in a domain that models failure dependencies in a
cyber-physical system. Moreover, we demonstrate the advantages of us-
ing our proposed prior over that of using non-zero mean Gaussian priors
in a commonly cited social network MLN testbed.

1 Introduction

Markov logic [1], a language widely used for relational learning, represents knowl-
edge by a set of weighted first-order logic formulas. However, except for Markov
Logic Networks (MLNs) with special structure, the weights cannot be interpreted
as probabilities or simple functions of probabilities. The probability of a partic-
ular weighted formula can only be computed by taking into account all of the
weights in all of the formulas in the full grounding of the MLN. When weights
are learned from training data without any prior knowledge, the non-informative
nature of individual weights is not problematic. However, in many domains, one
may have little or no training data, but instead have access to a domain expert’s

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 90–105, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Combining Subjective Probabilities and Data in Training MLNs 91

subjective probabilities and subjective conditional probabilities. For example, in
the healthcare domain, one might have little data about certain rare diseases,
but a doctor may have a subjective notion of what percentage of a rare dis-
ease occurs among her patients. Another domain we consider in our experiments
models fault-tolerant systems. There may be a paucity of failure data, but an
engineer could supply subjective conditional probabilities such as, “If the failure
probabilities of the individual components of a system are of the order of 10−3,
then the overall system failure probability is of the order of 10−4”. In this paper,
we provide a formal account of how such domain knowledge can be incorporated
into an MLN. Our approach applies to arbitrary MLNs, and in particular, is not
restricted to the known special cases of MLNs whose structure corresponds to
Bayesian Networks or chordal graphs (which are discussed in more detail below).
We describe two approaches for encoding domain knowledge as priors : the first
requires the expert’s knowledge to be a consistent set of non-conditional proba-
bilities, while the second, more general, approach allows inconsistent knowledge
and conditional probabilities, but has a non-convex optimization subproblem.

We also demonstrate that earlier approaches to incorporating knowledge by
defining non-zero mean Gaussian priors over the weights of a MLN (e.g., as im-
plemented in Alchemy [2]) can only be justified in MLNs with special structure,
and even then they have certain disadvantages compared to our approach.

The rest of the paper is organized as follows: Sec. 2 covers the mathematical
background; Sec. 3 shows the connection between the expected values of fea-
tures of MLNs and the subjective probabilities provided by an expert; Sec. 4
discusses the disadvantages of using Gaussian priors on the weights of an MLN;
Secs. 5 and 6 define the two different type of priors we investigate; Sec. 7 de-
scribes our experiments; and Secs. 8 and 9 discuss related work, summarize our
results, and lay out our planned future work.

2 Background

2.1 Markov Logic Network

Markov logic [1] is a knowledge representation language that uses weighted
formulas in first-order logic to compactly encode probability distributions over
relational domains. A Markov logic network is a set of weighted first-order logic
formulas and a finite set of constants C = {c1, c2, . . . , c|C|} which together de-
fine a Markov network ML,C which contains a binary node for each possible
grounding of each predicate (ground atom) and a binary valued feature for each
grounding of each first-order logic formula. In each truth assignment to the
ground atoms, the value of a node is 1 if the corresponding ground predicate is
true, and 0 otherwise. Similarly, the value of a feature is 1 if the corresponding
ground formula is true, and 0 otherwise. In this paper we assume function-free
clauses and Herbrand interpretations. The probability of a truth assignment
(world) x to the ground atoms in an MLN is defined as:

Pr(X = x|w) = exp(
∑

iwini(x))

Z(w)
, (1)

92 T. Pápai, S. Ghosh, and H. Kautz

where ni(x) is the number of true groundings of the i-th formula, wi is the
weight of the i-th formula and Z is the normalization factor. We sometimes refer
to ground atoms as (random) variables, but these are not to be confused with
the quantified variables (ranging over C) that appear in first-order formulas.

2.2 Exponential Families of Probability Distributions

The probability distributions defined by Markov Logic Networks belong to the
exponential families of distributions [3], since (1) can be rewritten in a more
general form:

Pr(X = x) = exp (〈θ, f(x)〉 −A(θ)) , (2)

where θi are the natural parameters of the distribution, fi are the features, and
A(θ) is responsible for the normalization. As one can tell by comparing (1) and
(2), θ corresponds to w, fi to ni and A(θ) = logZ(w). The probability (likeli-
hood) of training data D = {x1, . . . , xN} is (with the usual i.i.d. assumption):

Pr(D) = exp

(〈
θ,

N∑
d=1

f(xd)

〉
−N ·A(θ)

)
, (3)

As we can see, (3) depends upon the data only through
∑N

d=1 f(xd) (a sufficient

statistic of the data set D). Let f(D) =
∑N

d=1 f(xd) and f(D) = 1
N

∑N
d=1 f(xd).

θ is usually set to maximize (3) for the given training data.
In (2) the distribution is parameterized by its natural parameters (θ). How-

ever, it can also be parameterized by its mean parameters, where the means are
defined as the expected values of the features:

μi =
∑
x

fi(x)Pr(X = x) = E [fi] . (4)

There is a many-to-one mapping from θ to μ. We use θF (x) and μF (x) to denote
the component of the vectors corresponding to the feature representing the true
groundings of formula F (x), and in general follow this convention for vectors
of parameters. We will use the notation μ(θ) when we want to emphasize the
dependence of μ on θ. Since either of μ or θ completely determine the distri-
bution, we have the choice of defining a prior either over μ or θ to represent
the knowledge of the expert. The prior we will define over θ restricts the kind
of subjective probabilities the expert provides, but will result in a convex opti-
mization problem, thereby making the approach computationally attractive. On
the other hand, the prior we will define over μ is less restrictive, allowing both
conditional and inconsistent probabilistic constraints, at the worst-case cost of
requiring the solution of a non-convex optimization problem. However, we will
also discuss special cases when the optimization problem can be solved by simple
gradient descent, or at least guarantees can be given for the quality of the result
found at any point where the gradient becomes zero.

Combining Subjective Probabilities and Data in Training MLNs 93

3 Relationship between Subjective Probabilities and the
Parameters of the Exponential Family

We consider the case where a domain expert provides subjective probabilities for
some or all of the formulas in an MLN. For example, if F (x) is a formula where x
is a vector of (implicitly) universally-quantified variables, the expert can estimate
how likely it is that a randomly chosen grounding of F (x) is true. The expert
may also provide subjective conditional probabilities over ground formulas. For
example, if F1(x1) and F2(x2) are formulas, then for chosen groundings c1 and c2,
where c2 contains constants only from c1, the expert may estimate the probability
that if F1(c1) is true then F1(c1) ∧ F2(c2) will be true as well. We will denote
the former statistic by SPr(F (x)) and the latter by SPr(F2(c2)|F1(c1)). For
example, SPr (Cancer(c)|Smokes(c)) = 0.4 means that if the chosen individual c
smokes, (s)he has lung cancer as well with probability 0.4 according to the expert.
Similarly, SPr (Smokes(X)) = 0.01 states the percentage of the population that
smokes in the opinion of the expert. If the MLN happens to be symmetric in
the sense that for any bindings of x1 and x2 to constant vectors c1 and c2,
SPr(F2(c2)|F1(c1)) is constant, we allow the notation SPr(F2(x2)|F1(x1)) where
x2 only contains variables from x1. W.l.o.g. we henceforth assume that x1 = x2
in any subjective probabilities.1

Let g(F (x)) denote the total number of groundings of formula F (x) and let
μF (x) =

μF (x)

g(F (x)) . Given the definition of SPr(F2(x)|F1(x)) and SPr(F (x)), an

initial idea would be to take μF (x), μF2(x)∧F1(x), and μF1(x), and try to sat-

isfy μF (x) = SPr(F (x)) and SPr(F2(x)|F1(x)) =
μF2(x)∧F1(x)

μF1(x))
for every given

subjective (conditional) probability, in absence of training data. In many cases,
however, it is impossible to match the subjective probabilities of the expert.
For example, consider the case where according to the expert SPr(P (x)) = 0.5
and SPr(P (x) ∨ Q(x)) = 0.4. It is easy to see that in this situation no vector θ
would provide a normalized μ that would match both subjective probabilities.
We will call a set S of subjective (conditional) probabilities inconsistent in an
MLN M that has all the formulas occuring in S if there does not exist any θ

such that μF (x)(θ) = SPr(F (x)) and
μF2(x)∧F1(x)(θ)

μF1(x)(θ)
= SPr(F2(x)|F1(x)) for every

SPr(F (x)), SPr(F2(x)|F1(x)) ∈ S. It can be proven that S is inconsistent in M
if and only if there is not any distribution that would satisfy all the probabilistic
constraints in S.

1 Fisseler [4] explains in more details why conditional probability constraints must be
dealt with at the ground level in Markov Logic-like relational probabilistic logics in
order to match our definition for conditional probability. Thimm et. al [5] provide
several different semantics for defining first-order conditional probabilities in prob-
abilistic logics. The symmetric case described above corresponds to what they call
aggregating semantics. It is beyond the scope of our paper to examine all the ways in
which first-order conditional probabilities could be defined. For the sake of simplicity
in rest of the paper we assume that subjective conditional probabilities are either
defined at the ground level or are symmetric (i.e., use aggregating semantics).

94 T. Pápai, S. Ghosh, and H. Kautz

We will call a set of subjective (conditional) probabilities fully specified if for
every subjective conditional probability SPr(F2(x)|F1(x)), a value for SPr(F1(x))
is provided by the expert as well. In the case of fully specified subjective proba-
bilities, we can replace a constaint involving SPr(F2(x)|F1(x)) by the constraints
μF1(x) = SPr(F1(x)) and μF2(x)∧F1(x) = SPr(F2(x) ∧ F1(x)).

In Sec. 5, we define a prior over θ assuming that the domain expert pro-
vides a consistent and fully specified set of subjective probabilities. This is a
realistic assumption if the expert’s subjective probabilities are not literally sub-
jective, but have foundations in the statistics of real world data (e.g. 20% of
US adults smoke). In Sec. 6, we allow inconsistent subjective conditional and
non-conditional probabilities, with the tradeoff of possibly requiring greater
computational effort.

4 Gaussian Priors and Chordal Graphs

Before describing our proposed solution for incorporating an expert’s knowl-
edge into an MLN, we discuss the idea of using non-zero mean Gaussian (or
Laplace) priors to represent preference for subjective probability values [6]. We
will demonstrate that using log-odds or log-probabilities as means of Gaussian
(or Laplace) priors can be used under special circumstances. However, the stan-
dard deviation of each Gaussian needs to be scaled based on the associated
probability of the formula, and rewriting an arbitrary MLN to put it into the
required form may cause an exponential increase in size. Our examples require
only the propositional subset of Markov Logic.

The Alchemy Tutorial [2] describes how one can convert a Bayesian Network
into a propositional Markov Logic knowledge base. In the conversion, each entry
in the conditional or non-conditional probability table for a node generates a
clause whose weight is the negative log of the probability. In the problem at
hand, however, we begin with an MLN, not a Bayesian Network.

Chordal graphs are the subset of undirected graphical models which corre-
spond to both directed and undirected graphical models. We show that the
problem of representing consistent expert knowledge in an MLN whose underly-
ing Markov Random Field is chordal can be solved efficiently. Suppose we have
a propositional knowledge base to which the corresponding ground MRF is a
chordal graph G. It follows that the probability model P (represented by the
ground Markov Network) is decomposable [7,8], i.e., the joint probability of its
random variables can be represented as the product of the joint probabilities of
the variables in the individual cliques divided by the product of the joint prob-
abilities of random variables in certain intersections of certain pairs of cliques.
More precisely, let C1, . . . , Cn be the sets of variables belonging to each maximal
clique ordered by a maximum cardinality ordering, and let Cj(i) be the unique
predecessor of Ci in a join tree corresponding to G. Then the joint probability

can be expressed as, Pr(∪Ci = x) =
∏

i Pr(Ci=ci)∏
iPr(Ci∩Cj(i)=ci∩cj(i))

. For a clique C with

variables X1, . . . , Xn we will call a set SC of conjunctions a cover of C if Sc con-
tains all the possible 2n different conjunctions over X1, . . . , Xn. To be able to

Combining Subjective Probabilities and Data in Training MLNs 95

use the log probabilities, we require that the formulas present in the knowledge
base contain exactly the conjunctions that cover every Ci clique and Ci ∩ Cj(i)

intersection of cliques.
Assume now that there is a domain expert who specifies consistent probabil-

ities for all the formulas in the knowledge base. Let T be a truth assignment to
all the variables in the MLN. Let tC=T be a conjunction corresponding to the
truth assignment in clique C (or intersection of cliques) that agrees with T , and
let ptC=T denote its probability (this probability can be unknown, i.e., needed to
be learned or specified by the expert). In this setting, the probability of a truth
assignment T to all the variables can be written as:

Pr(T) =

∏
i ptCi=T∏

i ptCi∩Cj(i)=T

= exp(
∑
i

ln ptCi=T −
∑
i

ln ptCi∩Cj(i)=T) (5)

= exp

(∑
i

∑
T ′∈TCi

ln ptCi=T ′ ftC=T ′ (T)

−
∑
i

∑
T ′∈TCi∩Cj(i)

ln ptCi∩Cj(i)=T ′ ftCi∩Cj(i)=T ′ (T)

)
,

where TC is the set of all truth assignments over the variables in clique C and
ftC=T ′ corresponds to the feature which represents the conjunction belonging to
tC=T ′ , i.e., 1 if the conjunction is true, otherwise it is false. It is easy to see that
the last line in (5) corresponds to a Markov Logic representation and that for
every truth assignment T the MLN gives back the correct probability, with no
normalization needed. Thus, chordal MLNs have the advantage that one can use
log-probabilities as priors on the weights. However, MLNs are not, in general,
chordal, and modifying an MLN to make it chordal — i.e. adding formulas that
triangulate the underlying graph — can increase its size exponentially [9].

A second disadvantage of the approach just described is that Gaussian (or
Laplace) priors on the natural parameters do not translate to Gaussian (or
Laplace) priors in the mean parameter space — that is, in the space of prob-
abilities as opposed to weights. Intuitively, one would want to use the variance
of the prior to control how close the parameter is to the subjective probability
after training. However, distance in the θ space does not linearly transform to
a distance in the μ space. E.g, consider having one formula F (x). A change of
its weight from 0 to 1 would change its probability from 0.5 to ≈ 0.73, while
a change from 1000 to 1001 would practically not change its probability. At a
minimum, we would need to scale the standard deviations of the Gaussian pri-
ors according to the mean parameter of the distribution. This distinction is not
present in (3).

Moreover, in many cases the expert can only know the (subjective) prob-
abilities of a subset of formulas. Even if this subset of the formulas spans a
chordal MLN satisfying the conditions to use log-probabilities, we still can-
not use log-probabilities as weights if with the rest of the formulas altogether
we do not have a chordal MLN. To illustrate this problem, consider the case

96 T. Pápai, S. Ghosh, and H. Kautz

when we have N + 1 ground atoms p, q1, . . . , qN in the domain and the ex-
pert knows exactly the probability of p being true, or equivalently provides the

value of o = SPr(p)
1−SPr(p) . Further assume we also have formulas p ∨ qi in our

knowledge base for every i = 1, .., N , and learn the weights of these formulas
from a training data set for which we know μp = SPr(p) holds. If we use a
strong non-zero mean Gaussian prior over the weight of p centered around log o,
i.e., we fix the weight of p during the weight learning, then if wi is the weight
needed for p∨ qi to match the empirical feature count from the data, we will get
Pr(p)

1−Pr(p) =
SPr(p)

∑
q1,...,qN

∏N
i=1 exp(wi)

(1−SPr(p))
∑

q1,...,qN

∏N
i=1 I[qi] exp(wi)

= o
∏N

i=1
2 exp(wi)
exp(wi)+1 , where I[qi] is

the feature corresponding to p∨ qi with the substitution p = false, i.e., I[qi] = 1
if qi is true, otherwise 0. (We do not have a feature in the numerator, since p∨qi
is always true when p = true.) It is easy to see that as we increase N our wrong
choice of prior can cause an arbitrarily large deviation in the learned marginal
of p from the correct one (consider the case when μp is close to 0, so using the
expert’s probability we set e.g., wp = −100 while μp∨qi is close to 1, and e.g.
after the weight learning we have wi = 200 for every i). We will demonstrate
this downside of the prior further in Sec. 7 with experiments.

5 Defining a Prior on the Natural Parameters

In this section we consider the case when the expert gives us a fully specified
set of consistent subjective probabilities, and show that we can avoid the dis-
advantages of Gaussian priors defined on the natural parameters. Exponential
families of probability distributions have the advantageous property of easily
defined conjugate priors [10,11] —

Pr(θ|β, α) ∝ exp (〈θ, αβ〉 − αA(θ)) (6)

— and these priors have an intuitive meaning. β can be related to f(D) and α
to N if we compare (6) to (3). β takes the role of the average empirical feature
count, while α is going to be the pseudo-count. However, if β is not in the set of
consistent mean parameters, then (6) is not going to form a distribution (i.e., it
is an improper prior).

Let θF (x), βF (x), and αF (x) denote the components of the vectors which cor-
respond to the feature fF (x). We can capture consistent subjective probabilities
by setting βF (x) = SPr(F (x))g(F (x)). This intuitively makes sense, because the
knowledge of the expert will be represented as pseudo-data, where α describes
the confidence of the expert in his subjective probabilities, and β represent the
sufficient statistic belonging to the pseudo-data. The posterior becomes:

Pr(θ|D, β, α) ∝ exp
(〈
θ,
(
αβ +Nf(D)

)〉
− (α+N)A(θ)

)
. (7)

The gradient of the logarithm of the posterior w.r.t. θ becomes:

∂ log Pr(θ|D, β, α)

∂θ
= αβ +Nf(D)− (α+N)Eθ[f] . (8)

Combining Subjective Probabilities and Data in Training MLNs 97

This shows that the probability of the data and subjective probabilities of the
expert are measured on the same scale; thus, we do not have to make adjustments
for the subjective probabilities depending on their values, in contrast to the case
for Gaussian priors.

The posterior is a log-concave function, which can be verified by taking the
derivative of (8) w.r.t. θ. Thus, we are guaranteed to find a global maximum of
(8) by using a gradient ascent.

This formulation assumes that the subjective probabilities of the expert and
the data are coming from domains with the same size, which is not a realistic
assumption in statistical relational learning. For example, a doctor can base his
estimates on thousands of previously seen patients, while the training data can
contain only the data for a small control group. We can allow the domain size
to vary by using a distinct A for the data and for the expert in (6), (7), and (8)
which would result in the computation of E[f] w.r.t. two different domain size
of MLN but with the same knowledge base. This approach can be generalized to
allow the different training examples to come from different sized domains, and
to incorporate the knowledge of different experts. Although these modifications
are straightforward, the effect of weak transfer [12] may change the meaning of
subjective probabilities in different domains. For the sake of simplicity in the
rest of the paper we will only consider the base case, i.e., where the training
data and the expert’s knowledge come from the same domains.

In summary: the approach just described allows us to incorporate consistent
prior knowledge by defining a prior over the natural parameters, avoids the
problems of Gaussian priors (i.e. requiring a chordal structure and difficulty in
defining the variance), and requires (only) solving a convex optimization prob-
lem. However, inconsistent subjective probabilities are difficult to handle in this
approach. Furthermore, the expert is required to specify a subjective probabil-
ity for every formula. A possible approach that could solve both issues would
be to try to define a distribution (a hyper-prior) over the parameters (hyper-
parameters) of the prior distribution. However, then for any reasonable choice
of hyper-prior we would have the problem of dealing with a normalization factor
in (6) that depends on the value of the hyper-parameters. Instead of going this
route, in the next section we will define a prior over the mean parameters.

6 Defining Prior on the Mean Parameters

As we pointed out in the last section, defining a prior on θ only works when
the subjective probabilities are consistent and the conditional probabilities are
fully specified. To overcome these limitations, we soften the constraints by in-
troducing a prior on the set of consistent μ values. Let Π(μ) be the prior on μ.

Let Pr(D|θ) =
∏N

i=1 Pr(xi|θ) be the probability of the i.i.d. training data given
θ or μ. The posterior Pr(D|μ) is proportional to Pr(D, μ), hence it is sufficient
to maximize Pr(D, μ). The log-probability of the data with the prior can be
written as:

L(D, μ(θ)) = lnPr(D|μ) + lnΠ(μ) . (9)

98 T. Pápai, S. Ghosh, and H. Kautz

We are looking for the weight vector (θ) that maximizes L(D, μ(θ)). The gradient
of L w.r.t. θ is:

∂L

∂θ
=

∂ ln Pr(D|θ)
∂θ

+
∂ lnΠ(μ)

∂μ

∂μ

∂θ
=

∑
i

(f(di)− μ) +Σθ
∂ lnΠ(μ)

∂μ
, (10)

where we use the fact that ∂μ(θ)
∂θ = Σθ, the covariance matrix of f w.r.t. the dis-

tribution defined by θ. The concaveness of (9) depends on the choice of lnΠ(μ);
in general, lnΠ(μ) may be non-concave. Nonetheless, with a careful choice of
Π(μ) there are cases when finding a global optimum of L can be reduced to a
convex-optimization problem, or at least a solution with quality guarantees can
be found by a gradient ascent algorithm.

6.1 Choosing the Prior

Our goal is that when no training data is available, we would like μF (x) to
be as close to SPr(F (x)) as possible. Similarly, for conditional probabilities we

want to match
μF2(x)∧F1(x)

μF1(x))
to SPr(F2(x)|F1(x)). A prior that can capture this

goal is, e.g., a truncated Gaussian distribution over μF (x),
μF2(x)∧F1(x)

μF1(x))
centered

around SPr(F (x)) and SPr(F2(x)|F1(x)), respectively. We have to truncate the
Gaussian since μ is constrained to be between 0 and 1; moreover, the distri-
bution has to be defined over consistent μ values. Since μF1(x)) can get close
to 0, for numerical stability it is more beneficial to try to match μF2(x)∧F1(x) to
μF1(x)SPr(F2(x)|F1(x)). The distribution over μ is just a linear transformation of

the truncated Gaussian distribution over μ (since the Jacobian ∂μ
∂μ is constant),

resulting in:

Pr(μ) ∝ exp

⎛⎝−
∑
F (x)

αF (x)

(
μF (x) − SPr (F (x))

)2

− (11)

∑
F2(x)|F1(x)

αF2(x)|F1(x)

(
μF2(x)∧F1(x) −μF1(x)SPr (F2(x)|F1(x))

)2
)

In (11), the different α values correspond to the confidence of the expert in
his different subjective probabilities, e.g. α = 0 tells that the expert has no
information about the subjective (conditional) probability of that feature.

6.2 Cases Solvable by Gradient Ascent

As we mentioned before, there are special cases when we end up with a convex
optimization problem or can give guarantees about the quality of the solution
of a gradient ascent algorithm. An example for the former is when there is no
training data available, the subjective probabilities are consistent, and there are
no subjective conditional probabilities given, since then Π(μ) takes its maximum
when the exponent in (11) is 0. Consequently, we can just find the point where

Combining Subjective Probabilities and Data in Training MLNs 99

∀F (x) : μF (x) − SPr (F (x)) = 0 using regular gradient ascent (without the
presence of Σθ in (10)). (This is exactly equivalent to using the prior over θ
defined in (6) where the same αF (x) is used for every formula.)

Another important case is when we do not have a convex-optimization prob-
lem, but can still guarantee that all the points where the gradient is 0 are located
close to a global optimum, uses a Gaussian prior for Π(μ). More precisely:

Proposition 1. The gradient ascent algorithm always converges to a stationary
point θ, where μ(θ) is guaranteed to fall within an ε(N) radius of f̂(D) if ∀i :
0 < f̂i(D) < 1, where f̂F (x)(D) =

fF (x)(D)

g(F (x)) , N is the amount of training data and

ε(N) is a strictly monotonically decreasing function of N and limN→∞ ε(N) = 0.

Proof. (Sketch) We start with showing that for all the θ’s where this gradient is

0, it is true that μ(θ) has to be within ε(N) radius of f̂(D). Σθ is a covariance
matrix of bounded valued random variables, hence the entries in Σθ are bounded
as well. Also, both SPr(F (x))− μF (x) and μF2(x)∧F1(x) − μF1(x)SPr(F2(x)|F1(x)

are bounded; consequently, the vector g(θ) = Σθ
∂ lnΠ(μ)

∂μ is bounded, and there
is a bound that does not depend on N or θ. Let the components of vector
b be the tightest bounds on the absolute values of the components of g, i.e.,
bi = supθ{|gi(θ)|}. Let g′(θ) = f(D) − Nμ(θ) = N(f(D) − μ(θ)). In (10) the
gradient can only be 0 if g′ + g = 0. A necessary condition for this |g′i(θ)| ≤ bi
for every 1 ≤ i ≤ n, equivalently |f i(D) − μi(θ)| ≤ bi

N , i.e., |f̂i(D) − μi(θ)| ≤
bi

gi(x)N
= ε(N). Furthermore, the normalized gradient is directed towards the

sphere centered around f̂(D) with radius ε(N). This completes the proof.

Since f(D) is the value to which μ would converge in absence of subjective
probabilities, this result ensures that with sufficient training data μ converges
to the same value it would converge to without having the prior, which is a
desideratum for any prior. This results always holds as long as the gradient of
lnΠ(μ) is bounded. The analogue of Proposition 1 holds, when we increase the
domain size, instead of the number of training data sets. (I.e., if the expert bases
his statistics on seeing a population of 1000 people, the weight of his knowledge
becomes negligible when we have a training data set with, e.g., 1000000 people.)

Thus, despite that L can have more than one local optimum, a gradient ascent
algorithm will serve as a basis for our optimization algorithm. We will empirically
demonstrate that even when the conditions of the (approximation) guarantee do
not hold, we can still be better off incorporating subjective probabilities rather
than solely relying on the available data.

7 Experiments

Our implementation is an extension to the Probabilistic Consistency Engine
(PCE) [13], an open source MLN inference tool that has been used effectively
in different problem domains [13,14]. We used stochastic gradient ascent with a
monotonically decreasing learning rate to find a point where the gradient is 0,

100 T. Pápai, S. Ghosh, and H. Kautz

and added a regularizer so that in the guaranteed convex cases we would always
end up with a unique solution. We also experimented with taking random steps
occasionally to avoid becoming stuck in a local optimum and to increase our
chance of reaching the global optimum. To compare the quality of the weight
vectors that our weight learning algorithm visited, we would need to evaluate
the log-posteriors at the visited points. However, since computing the real log-
posteriors in (9) is costly, we use the combination of the pseudo log-likelihood of
the data along with the log-probability of the prior for the comparison, to select
the best weights. In our experiments, we always ended up using weight vectors
where the gradient ascent algorithm with decreasing learning rate stopped, thus,
simple gradient ascent provided satisfactory results in our examples. Note that,
this can be due to the fact that some random noise is always present in the sam-
pling algorithm, depending on how many samples we are using to approximate
μ in (10) which helped get out from the local optima.

The goal of our experiments is to demonstrate the benefits of our model
and show the advantages of using our proposed prior compared to the one
currently available in Alchemy, namely Gaussian non-zero mean priors. In our
first batch of experiments, we used an MLN that models the failure depen-
dencies in a cyber-physical system, the Cabin Air Compressor (CAC)[15]. The
CAC is an electromechanical subsystem in an Aircraft Environmental Con-
trol Systems (ECS), which is used to deliver fresh air to the cabin and pro-
vide pressurization. The MLN models a voting-3-CAC architecture, where three
CAC subsystems are connected in a voting configuration, such that the over-
all system fails only if at least two out of the three CAC subsystems fail. A
high load is put on a CAC if one or more of the other two CACs fail, and
putting high load on a CAC increases its probability of failure. The MLN mod-
els the failure probability of the overall system, given the failure probabilities
of each subsystem, and taking into account the effects of high load interac-
tions. The voting-3-CAC MLN we used in our experiment had 4 hard and 4
soft clauses. We abbreviate predicates failCac, failSystem, failCacHighLoad
with C, S and H respectively. The hard and soft clauses we had in our KB are in
Table 1. We resorted to the use of synthetic data, because in the real world system
the probability of system failure is so low that acquiring real world data set that
could capture the underlying distribution would require a lot of time. We hand-
tuned the weights for the soft clauses to get a realistic model. We generated 10

Table 1. Hard clauses and soft clauses with their weights

Hard Clauses

∀c, d, e, s : C(c) ∧ C(d) ∧ C(e) ∧ (c �= d) ∧ (d �= e) ∧ (c �= e) ⊃ S(s)
∀c, d, e, s : C(c) ∧ C(d) ∧ ¬C(e) ∧ (c �= d) ∧ (d �= e) ∧ (c �= e) ⊃ S(s)

∀c, d, e, s : C(c) ∧ ¬C(d) ∧ ¬C(e) ∧H(d) ∧H(e) ∧ (c �= d) ∧ (d �= e) ∧ (c �= e) ⊃ S(s)
∀c, d, e, s : C(c) ∧ ¬C(d) ∧ ¬C(e) ∧H(d) ∧ ¬H(e) ∧ (c �= d) ∧ (d �= e) ∧ (c �= e) ⊃ S(s)

Soft Clauses

-1.03594 ∀c, d : failCac(c) ∧ ¬failCac(d) ∧ c �=d
-0.9857 ∀c, d : failCacHighload(d) ∧ failCac(c) ∧ ¬failCac(d) ∧ c �= d
-0.491191 ∀c : failCac(c)
-1.01143 ∀s : failSystem(s)

Combining Subjective Probabilities and Data in Training MLNs 101

synthetic training data sets each with 10, 20, 50, 100, 200, 500, 1000 and 10000
samples by collecting samples from the MLN using MC-SAT [16], and then se-
lected only a subset of the samples in order to increase the independence between
them. The normalized expected feature counts μ varied between 0.01 to 0.3 for
the soft clauses. We added a random value from {−δμ,+δμ} to every normalized
feature count to represent the uncertainty of the expert in his beliefs. We varied
δ = 0.0, 0.1, 0.2, 0.3 in our 4 different noise models (noiseless, noisy 1-3). In our
experiments we set 3 subjective probabilities and 1 subjective conditional proba-
bility according to these sampled values (cases noisy1,noisy2 and noisy3 in Fig-
ure 1). Also, we used subjective probabilities computed from μ for the noiseless
case. We computed the KL-divergencesDKL(P‖Q) between every learned distri-
bution Q and the real distribution P , and averaged them for the 10 different sam-
ple sets. In the noiseless case, we used the log-posterior with the gradient specified
in (8) (fully specified set of subjective probabilities). In the noisy cases, we used
gradient ascent according to the gradient in (10) using the prior in (11).We set the
weight of our prior to match approximately 100 samples from the training data.
As we see from the figure, the KL-divergence is relatively high without using our
prior for 10 samples, and around 500 samples starts converging to the same values
in all cases. This can be explained by the fact that for certain formulas, μ has low
values – so consequently for a few samples the formulas corresponding to the low
expected average feature counts are unlikely to be satisfied in any of the generated
samples. TheKL-divergence is finite in these cases due to the use of a regularizer,
which prevents the weights from becoming infinite. Arguably other measures (e.g.
L1-norm) could be used instead ofKL-divergence. However, in case of a fault tol-
erant system, one has to consider the associated penalty when a system is claimed
to be fail-safe, but in reality has a non-zero probability for failure – L1 distance
measure would not capture this.

In summary, when small amount of training data is used, it is beneficial to
train the MLN using the subjective probabilities of a domain expert, even if he
is not completely confident in his subjective probabilities.

10
1

10
2

10
3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Amount of training data

K
L−

di
ve

rg
en

ce

data only

noiseless

noisy1

noisy2

noisy3

Fig. 1. The averaged KL-divergences measured from the true distribution for the 4
noise models

102 T. Pápai, S. Ghosh, and H. Kautz

Table 2. Knowledge bases for the different experiments

Formula No. Formula

1 ∀x : Smokes(x)

2 ∀x : Smokes(x) ∧ Cancer(x)
3 ∀x : Smokes(x) ∧ ¬Cancer(x)
4 ∀x : ¬Smokes(x) ∧ Cancer(x)
5 ∀x : ¬Smokes(x) ∧ ¬Cancer(x)
6 ∀x, y : Friends(x, y) ∧ Smokes(x) ⊃ Smokes(y)
7 ∀x, y : Relatives(x, y) ∧ Cancer(x) ⊃ Cancer(y)

In our second set of experiments, we used a modified version of the “smoking”
social network example MLN from the Alchemy Tutorial to analyze the problems
of using log-probabilities as weights. We created two different knowledge bases
A and B for our experiments. Both knowledge bases used the formulas from
Table 2; knowledge base A used 1-5 while B from 1-7. For each knowledge base
we ran two sets of experiments, one with using our prior in the mean parameter
space, and one with using Gaussians in the natural parameter space centered
around the logarithm of the value of the appropriate (conditional) probabilities.
The goal of the experiments were to use a strong prior (with small variance and
high α, respectively for the non-zero mean Gaussian over the weights and our
truncated Gaussian prior,) forcing the formulas 1−5 which only appear in KB A
to have log-probability weight/subjective probability to be equal to the values
provided by the expert. About the probabilities of formulas 6−7 the expert had
no information, hence their weights could vary freely in both cases during the
weight learning. We had 8 people in the domain. We considered 3 sets of weights
and generated 100 samples from the distribution represented by the MLN that
had all the formulas in the table. We again created our training data sets by
using samples from MC-SAT. We computed the feature counts from the samples
and, after normalizing them, we set the (log) probabilities and conditional prob-
abilities of the appropriate formulas in Table 2. In the experiments which used
KB A, both priors performed similarly. However, using log-probability weights
for formulas 1-5 in KB B proved to be a bad estimate – this is because after
weight learning, the formulas 6-7 had non-zero weights, thereby changing the
probabilities of formulas 1-5 whose weights were fixed using the desired values.
Because the domain was too large to compute the KL-divergence, we measured
the L1-distance between the normalized value of the expected feature counts
(probabilities) we get for formulas 1-5, while using the same priors in KB A
and B. The normalized feature counts of formulas 1-7 in the 3 experiments and
the measured L1-distances are in Tables 3 and 4. These experiments confirmed
that using log-probability weights as means of Gaussian priors can decrease the
quality of the learned distribution, even if the expert has access to the true prob-
ability values for a subset of the formulas, and motivates the use of our proposed
prior.

Combining Subjective Probabilities and Data in Training MLNs 103

Table 3. The probabilities of the formulas in the different experiments

Exp.no. Probabilities of Formulas

1 2 3 4 5 6 7

1 0.6058375 0.4609375 0.144825 0.00741250000002 0.38695 0.803438 0.973437

2 0.7480875 0.711075 0.0367375 0.0083125 0.2441 0.862812 0.963750

3 0.68445 0.6442875 0.0404375 0.0749499999999 0.2404625 0.839688 0.943125

Table 4. The L1 distances between the normalized expected feature counts and the
empirical feature counts, using the two different priors

Experiment L1 distance

our proposed prior log-probability weights

1 < 0.05 0.524025

2 < 0.05 0.2613875

3 < 0.05 0.2862375

8 Related Work

How the knowledge of an expert can be represented as parameter constraints
for Bayesian Networks is discussed in [17,18]. Although their formalisms can in-
corporate complex knowledge, it is still restricted to Bayesian networks. Prior
probability distributions within the framework of Bayesian statistics in Markov
Random Fields have been used successfully in many domains, such as computer
vision [19,20]. For exponential families other methods have been proposed to
incorporate information based on expectations of features e.g. in [21] or mea-
surements in [22], but their models are not tailored to MLNs and e.g., do not
allow directly constraining the ratio of expectations of features which is needed
to capture conditional probabilities of formulas. The closest relevant research on
representing knowledge given as (conditional) probabilities of formulas in MLNs
is the work described in [4]. There, the language of Markov logic is extended by
probabilistic constraints, which can either be probabilities of universally quan-
tified formulas or conditional probabilities of propositional formulas. However,
their framework only handles consistent constraints and does not allow com-
bining the prior knowledge with training data. Eliciting probabilities from ex-
pert opinion has been used in research in other areas. For example, [23] shows
how to extend de Finettis betting-odds method for considering subjective beliefs
regarding ambiguous events.

9 Conclusion

In this paper, we presented a mathematical framework for incorporating subjec-
tive probabilities into a Markov Logic Network within the framework of Bayesian
statistics. We discussed the benefits and limitations of defining the prior over the
natural parameters (weights) versus the mean parameters (probabilities) of the
MLN, and demonstrated that earlier approaches based on Gaussian priors over
the natural parameters were inadequate. Our framework allows knowledge about

104 T. Pápai, S. Ghosh, and H. Kautz

conditional subjective probabilities to be incorporated as well as non-conditional
probabilities, and can extended to priors where subjective probabilities come
from multiple experts. When we are provided with a fully specified and consis-
tent set of subjective probabilities, defining the prior on the natural parameters
results in a convex-optimization problem, which is an advantage in terms of com-
putational effort. It is often the case, however, that domain expert subjective
probabilities are not consistent. We showed how to make use of possibly incon-
sistent subjective probabilities by defining a prior over the mean parameters.
This approach allows for more flexibility, but at possibly greater computational
cost for learning, because the optimization problem may be non-convex. How-
ever, we provided conditions under which the optimization problem may still be
well-approximated by simple gradient ascent. In future work, we plan on inves-
tigating specific real-world applications where it is important to combine expert
knowledge with data, such as medical expert systems, and where the expert can
give constraints different from what we discussed in this paper. Although, we
only defined our priors in the context of Markov logic, most of our results can
be generalized for exponential families in a straightforward way.

Acknowledgments. This material is based upon work supported by the
DARPA Machine Reading Program under Air Force Research Laboratory
(AFRL) prime contract no. FA8750-09-C-0181, and by ARO grant W911NF-08-
1-0242, ONR grant N00014-11-10417, Intel STCPC and NSF grant IIS-1012017.
Any opinions, findings, and conclusion or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the view of
DARPA, the Air Force Research Laboratory (AFRL), ARO, ONR, Intel, NSF
or the US government. We would like to thank Hung Bui, Tuyen Ngoc Huynh
for their helpful discussions during the problem formulation, Natarajan Shankar,
Sam Owre for their help with PCE and valuable feedback, and Patrick Lincoln,
David Israel for their support and insights.

References

1. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intel-
ligence. In: Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers (2009)

2. Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Wang, J.,
Nath, A., Domingos, P.: The Alchemy system for statistical relational AI. Technical
report, Department of Computer Science and Engineering, University of Washing-
ton (2010)

3. Geiger, D., Meek, C.: Graphical models and exponential families. In: Proceedings
of Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 156–165.
Morgan Kaufmann, Madison (August 1998)

4. Fisseler, J.: Toward markov logic with conditional probabilities. In: FLAIRS Con-
ference, pp. 643–648 (2008)

5. Thimm, M., Kern-Isberner, G., Fisseler, J.: Relational Probabilistic Conditional
Reasoning at Maximum Entropy. In: Liu, W. (ed.) ECSQARU 2011. LNCS,
vol. 6717, pp. 447–458. Springer, Heidelberg (2011)

Combining Subjective Probabilities and Data in Training MLNs 105

6. Poon, H., Domingos, P.: Joint unsupervised coreference resolution with markov
logic. In: EMNLP, ACL, pp. 650–659 (2008)

7. Pearl, J.: Probabilistic reasoning in intelligent systems - networks of plausible infer-
ence. Morgan Kaufmann series in representation and reasoning. Morgan Kaufmann
(1989)

8. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

9. Chung, F.R.K., Mumford, D.: Chordal completions of planar graphs. J. Comb.
Theory, Ser. B 62(1), 96–106 (1994)

10. Raiffa, H., Schlaifer, R.: Applied statistical decision theory [by] Howard Raiffa and
Robert Schlaifer. In: Division of Research, Division of Research, Graduate School
of Business Adminitration, Harvard University, Boston (1961)

11. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics), 1st edn. Springer (2007)

12. Jain, D., Barthels, A., Beetz, M.: Adaptive Markov Logic Networks: Learning Sta-
tistical Relational Models with Dynamic Parameters. In: 19th European Confer-
ence on Artificial Intelligence (ECAI), pp. 937–942 (2010)

13. Ghosh, S., Shankar, N., Owre, S.: Machine reading using markov logic networks for
collective probabilistic inference. In: Proceedings of ECML-CoLISD 2011 (2011)

14. Ghosh, S., Shankar, N., Owre, S., David, S., Swan, G., Lincoln, P.: Markov logic
networks in health informatics. In: Proceedings of ICML-MLGC 2011 (2011)

15. Denker, G., Briesemeister, L., Elenius, D., Ghosh, S., Mason, I., Tiwari, A., Bhatt,
D., Hailu, H., Madl, G., Nikbin, S., Varadarajan, S., Bauer, G., Steiner, W., Kout-
soukos, X., Levendovsky, T.: Probabilistic, compositional, multi-dimension model-
based verification (promise)

16. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and de-
terministic dependencies. In: AAAI (2006)

17. Niculescu, R.S., Mitchell, T.M., Rao, R.B.: Bayesian network learning with param-
eter constraints. Journal of Machine Learning Research 7, 1357–1383 (2006)

18. Campos, C.P., Tong, Y., Ji, Q.: Constrained Maximum Likelihood Learning of
Bayesian Networks for Facial Action Recognition. In: Forsyth, D., Torr, P., Zis-
serman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 168–181. Springer,
Heidelberg (2008)

19. Geman, S., Geman, D.: Readings in computer vision: issues, problems, principles,
and paradigms, pp. 564–584. Morgan Kaufmann Publishers Inc., San Francisco
(1987)

20. Li, S.Z.: A markov random field model for object matching under contextual con-
straints. In: Proceedings of IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, pp. 866–869 (1994)

21. Druck, G., Mann, G., McCallum, A.: Learning from labeled features using gener-
alized expectation criteria. In: Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR
2008, pp. 595–602. ACM, New York (2008)

22. Liang, P., Jordan, M.I., Klein, D.: Learning from measurements in exponential
families. In: Proceedings of the 26th Annual International Conference on Machine
Learning, ICML 2009, pp. 641–648. ACM, New York (2009)

23. Diecidue, E., Wakker, P., Zeelenberg, M.: Eliciting decision weights by adapting de
finetti’s betting-odds method to prospect theory. Open Access publications from
Tilburg University urn:nbn:nl:ui:12-225938, Tilburg University (2007)

Score-Based Bayesian Skill Learning

Shengbo Guo1, Scott Sanner2, Thore Graepel3, and Wray Buntine2

1 Xerox Research Centre Europe
2 NICTA and the Australian National University

3 Microsoft Research Cambridge

Abstract. We extend the Bayesian skill rating system of TrueSkill to
accommodate score-based match outcomes. TrueSkill has proven to be
a very effective algorithm for matchmaking — the process of pairing
competitors based on similar skill-level — in competitive online gam-
ing. However, for the case of two teams/players, TrueSkill only learns
from win, lose, or draw outcomes and cannot use additional match out-
come information such as scores. To address this deficiency, we propose
novel Bayesian graphical models as extensions of TrueSkill that (1) model
player’s offence and defence skills separately and (2) model how these of-
fence and defence skills interact to generate score-based match outcomes.
We derive efficient (approximate) Bayesian inference methods for infer-
ring latent skills in these new models and evaluate them on three real
data sets including Halo 2 XBox Live matches. Empirical evaluations
demonstrate that the new score-based models (a) provide more accu-
rate win/loss probability estimates than TrueSkill when training data
is limited, (b) provide competitive and often better win/loss classifica-
tion performance than TrueSkill, and (c) provide reasonable score out-
come predictions with an appropriate choice of likelihood — prediction
for which TrueSkill was not designed, but which can be useful in many
applications.

Keywords: variational inference, matchmaking, graphical models.

1 Introduction

In online gaming, it is important to pair players or teams of players so as to
optimise their gaming experience. Game players often expect competitors with
comparable skills for the most enjoyable experience; match experience can be
compromised if one side consistently outperforms the other. Matchmaking at-
tempts to pair players such that match results are close to being even or a draw.
Hence, a prerequisite for good matchmaking is the ability to predict future match
results correctly from historical match outcomes — a task that is often cast in
terms of latent skill learning.

TrueSkill [5] is a state-of-the-art Bayesian skill learning system: it has been
deployed in the Microsoft Xbox 360 online gaming system for both matchmaking
and player ranking. For the case of two teams/players, TrueSkill, like Elo [4],
is restricted to learn skills from match outcomes in terms of win, lose, or draw

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 106–121, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Score-Based Bayesian Skill Learning 107

(WLD). While we conjecture that TrueSkill discards potentially valuable skill
information carried by score-based outcomes, there are at least two arguments
in favour of TrueSkill’s WLD-based skill learning approach:

– WLD-based systems can be applied to any game whose outcome space is
WLD, no matter what the underlying scoring system is.

– In many games, the objective is not to win by the highest score differential,
but rather simply to win. In this case, it can be said that TrueSkill’s skill
modeling and learning from WLD outcomes aligns well with the players’
underlying objective.

On the other hand, we note that discarding score results ignores two important
sources of information:

– High (or low) scoredifferentials canprovide insight into relative teamstrengths.
– Two dimensional score outcomes (i.e., a score for each side) provide a direct

basis for inferring separate offense and defense strengths for each team, hence
permitting finer-grained modeling of performance against future opponents.

In this work, we augment the TrueSkill model of WLD skill learning to learn
from score-based outcomes. We explore single skill models as well as separate
offense/defense skill models made possible via score-based modeling. We also
investigate both Gaussian and Poisson score likelihood models, deriving a novel
variational update for approximate Bayesian inference in the latter case. We
evaluate these novel Bayesian score-based skill-learning models in comparison to
TrueSkill (for WLD outcomes) on three datasets: 14 years of match outcomes
for the UK Premier League, 11 years of match outcomes for the Australian
Football (Rugby) League (AFL), and three days covering 6,000+ online match
outcomes in the Halo 2 XBox video game. Empirical evaluations demonstrate
that the new score-based models (a) provide more accurate win/loss probability
estimates than TrueSkill (in terms of information gain) with limited amounts
of training data, (b) provide competitive and often better win/loss classifica-
tion performance than TrueSkill (in terms of area under the curve), and (c)
provide reasonably accurate score predictions with an appropriate likelihood —
prediction for which TrueSkill was not designed but important in cases such as
tournaments that rank (or break ties) by points, professional sports betting and
bookmaking, and game-play strategy decisions that are dependent on final score
projections.

2 Skill Learning Using TrueSkill

Since our score-based Bayesian skill learning contributions build on TrueSkill [5],
we begin with a review of the TrueSkill Bayesian skill-learning graphical model
for two single-player teams. We note that TrueSkill itself allows for matches
involving more than two teams and learning team members’ individual perfor-
mances, but these extensions are not needed for the application domains consid-
ered in the paper.

108 S. Guo et al.

Suppose there are n teams available for pairwise matches in a game. Let
M = {i, j} specify the two teams participating in a match and define the outcome
o ∈ {team-i-win, team-j-win, draw}. TrueSkill models the probability p(o|l,M) of
o given the skill level vector l ∈ Rn of the teams in M , and estimates posterior
distributions of skill levels according to Bayes’ rule

p(l|o,M) ∝ p(o|l,M)p(l), (1)

where a factorising Gaussian prior is assumed:

p(l) :=

n∏
i=1

N (li;μi, σ
2
i). (2)

To model the likelihood p(o|l,M), each team i is assumed to exhibit a stochastic
performance variable pi ∼ N (pi; li, β

2) in the game 1. From this we can model
the performance differential d as an indicator function p(d|p,M) = δ(d = pi−pj)
and finally the probability of each outcome o given this differential d:

p(o|d) =

⎧⎪⎨⎪⎩
o = team-i-win : I[d > ε]

o = team-j-win : I[d < −ε]
o = draw : I[|d| ≤ ε],

(3)

where I[·] is an indicator function. Then the likelihood p(o|l,M) in (1) can be
written as

p(o|l,M) =

∫
· · ·

∫
Rn

∫ +∞

−∞
p(o|d)p(d|p,M)

n∏
i=1

p(pi|li) dpdd.

The entire TrueSkill model relevant to M is shown in the factor graph of Figure 1
with P (o|d) given for the case of o = team-i-win. TrueSkill uses message passing
to infer the posterior distribution in (1) — note that the posterior over li and
lj will be updated according to the match outcome while the posterior over lk
(k /∈ {i, j}) will remain unchanged from the prior. An optimal message passing
schedule in the TrueSkill factor graph (Figure 1) is provided in the caption; the
message along arrow 2 is a step function that leads to intractability for exact
inference and thus TrueSkill uses message approximation via moment matching.

TrueSkill is an efficient and principled Bayesian skill learning system. However,
due to its design goals, it discards score information and does not take into
account associated domain knowledge such as offence/defence skill components.
Next, we propose extensions of the TrueSkill factor graph and (approximate)
inference algorithms for score-based Bayesian skill learning, which address these
limitations.

1 Note that we sometimes abuse notations on the use of p, pi and p. p is a probability
measure; pi and p represent performance variables. The meaning of them is clear
from the context.

Score-Based Bayesian Skill Learning 109

Fig. 1. TrueSkill factor graph for a match between two single-player teams with team
i winning. There are three types of variables: li for the skills of all players, pi for the
performances of all players and d the performance difference. The first row of factors
encode the (product) prior; the product of the remaining factors characterizes the
likelihood for the game outcome team i winning team j. The arrows show the optimal
message passing schedule: (1) messages pass along gray arrows from top to bottom, (2)
the marginal over d is updated via message 1 followed by message 2 (which requires
moment matching), (3) messages pass from bottom to top along black arrows.

3 Score-Based Bayesian Skill Models

In this section, we introduce three graphical models as extensions for the TrueSkill
factor graph (Figure 1) to incorporate score-based outcomes in skill learning. Our
first two graphical models are motivated by modeling score-based outcomes as
generated by separate offence and defence skills for each team. The first genera-
tive score model uses a Poisson, which is natural model when scores are viewed
as counts of scoring events. The second generative model uses a simpler Gaussian
model. Our third model is a simplified version of the Gaussian model, which like
TrueSkill, only models a single skill per team (not separate offence/defence skills)
and places a Gaussian likelihood on the score difference, which may be positive or
negative. Next we formulate each model in detail.

3.1 Offence and Defence Skill Models

In a match between two teams i and j producing respective scores si ∈ Z and
sj ∈ Z for each team, it is natural to think of si as resulting from i’s offence
skill oi ∈ R and j’s defence skill dj ∈ R (as expressed in any given match) and
likewise for j’s score as a result of j’s offence skill oj ∈ R and i’s defence skill
di ∈ R. This is contrasted with the univariate skill estimates of team i’s skill li
and team j’s skill lj used in TrueSkill, which lump together offence and defence
skills for each team.

Given scores si and sj for teams i and j, we model the generation of scores
from skills using a conditional probability p(si, sj |oi, oj , di, dj). We assume that

110 S. Guo et al.

team i’s score si depends only on oi and dj and likewise that team j’s score sj
depends only on oj and di:

p(si, sj |oi, oj , di, dj) = p(si|oi, dj)p(sj|oj , di). (4)

Like TrueSkill, we assume that the joint marginal over skill priors independently
factorises:

p(oi, oj , di, dj) = p(oi)p(dj)p(oj)p(di). (5)

Given an observation of scores si for team i and sj for team j, the problem is
to update the posterior distributions over participating teams’ offence and de-
fence skills. According to Bayes rule and the previous assumptions, the posterior
distribution over (oi, oj , di, dj) is given by

p(oi, di, oj , dj |si, sj) ∝ p(si, sj |oi, di, oj , dj)p(oi, di, oj , dj)
∝ [p(si|oi, dj)p(oi)p(dj)] [p(sj |oj , di)p(oj)p(di)]. (6)

Here we observe that estimating p(oi, di, oj , dj |si, sj) factorises into the two in-
dependent inference problems:

p(oi, dj |si) ∝ p(si|oi, dj)p(oi)p(dj), and (7)

p(oj , di|sj) ∝ p(sj |oj , di)p(oj)p(di). (8)

All models considered in this paper (including TrueSkill) assume Gaussian priors
on team i’s offence and defence skills, i.e., p(oi) := N (oi;μoi, σ

2
oi) and p(di) :=

N (di;μdi, σ
2
di). Our objective then is to estimate the means and variances for the

posterior distributions of p(oi, dj |si) and p(oj , di|sj). So far, the onlymissing pieces
in this skill posterior update are the likelihoods p(si|oi, dj) and p(sj |oj , di) that
specify how team i and j’s offence and defence skills probabilistically generate ob-
served scores. For this we discuss two possible models in the following subsections.

Poisson Offence/Defence Skill Model. Following TrueSkill, we model the
generation of match outcomes (in our case, team scores) based on stochas-
tic offence and defence performances that account for day-to-day performance
fluctuations. Formally, we assume that team i exhibits offence performance
poi := N (poi; oi, β

2
o) and defence performance pdi := N (pdi; di, β

2
d). With these

performances, we model team i’s score si as generated from the following process:
team i’s offence performance poi promotes the scoring rate while the defence per-
formance pdj inhibits this scoring rate, the difference poi−pdj being the effective
scoring rate of the offence against the defence.

Finally, we model the score by si ∼ Poisson(λ), where a requirement of a
positive rate λ for the Poisson distribution requires the use of λ = exp(poi−pdj)
since poi−pdj may be negative.2 Likewise, one can model sj by applying the same

2 This exponentiation of poi − pdj may seem to be made only to ensure model cor-
rectness, but we show experimentally that it has the benefit of allowing the Poisson
model to accurately predict scores in high-scoring games even when team skills are
very close (and hence poi − pdj ≈ 0).

Score-Based Bayesian Skill Learning 111

strategy when given λ = exp(poj − pdi). We represent the resulting Poisson-OD
model in Figure 2(P) where the joint posterior is

p(oi, dj , poi, pdj |si) ∝ p(si|poi, pdj)p(poi|oi)p(pdj|dj)p(oi)p(dj),
p(oj , di, poj, pdi|sj) ∝ p(sj |poj , pdi)p(poj|oj)p(pdi|di)p(oj)p(di).

We are only interested in the posterior distributions of oi, dj and oj , di given si
and sj , respectively. Thus, we integrate out the latent performance variables to
obtain the desired posteriors

p(oi, dj |si) =
∫ +∞

−∞

∫ +∞

−∞
p(oi, dj , poi, pdj |si)dpoidpdj ,

p(oj , di|sj) =
∫ +∞

−∞

∫ +∞

−∞
p(oj , di, poj, pdi|sj)dpojdpdi.

Like TrueSkill, we use Bayesian updating to update beliefs in the skill levels of
both teams in a pairwise match based on the score outcome, thus leading to an
online learning scheme. Posterior distributions are approximated to be Gaussian
and used as the priors in order to learn each team’s skill for the next match.
Approximate belief updates via variational Bayesian inference in this model will
be covered in Section 4.2.

Gaussian Offence/Defence Skill Model. An alternative to the previous
Poisson model is to model si ∈ R and assume it is generated as si ∼ N (μ, γ2),
where μ = poi − pdj . One can similarly model sj by applying the same strat-
egy when given μ = poj − pdi. We note that unlike the Poisson model, μ can
be negative here so we need not exponentiate it. While this allows us to di-
rectly model match outcomes that allow negative team scores (c.f., Halo2 as
discussed in Section 5.1), it is problematic for other match outcomes that only
allow non-negative team scores. One workaround would be to introduce a trun-
cated Gaussian model to avoid the problem of assigning non-zero probability to
negative scores, but we avoid this complication in exchange for the simple and
exact updates offered by a purely Gaussian model.

We show the resulting Gaussian-OD model in Figure 2(N), which differs from
our proposed Poisson model only in modeling the observed score si (sj) for team
i (j) given the univariate performance difference variable x (y). In this model, all
messages passed during inference are Gaussian, allowing for efficient and exact
belief updates.

3.2 Gaussian Score Difference (SD) Model

Again assuming si ∈ R and sj ∈ R, algebra for the performance means in
Figure 2(N) gives:

si = poi − pdj , sj = poj − pdi. (9)

This implies

si − sj = (poi − pdj)− (poj − pdi)
= (poi + pdi)︸ ︷︷ ︸

pli

− (poj + pdj)︸ ︷︷ ︸
plj

, (10)

112 S. Guo et al.

Fig. 2. The Poisson-OD (P) and Gaussian-OD (N) variants of TrueSkill factor graph
for skill update of two teams based on the match score outcome (Left: modeling si;
Right: modeling sj). Note that the Poisson-OD and Gaussian-OD graphical models
are merged due to limited space. Note also that the score observation factors use the
Poisson distribution for the Poisson-OD model and the normal distribution for the
Gaussian-OD model. The shaded variables are the observed ones. For each team i, it
is characterized by offence skill oi (the offence skill of team i) and defence skill di (the
defence skill of team i). Given sj for team j, the posterior distributions over (oi, dj)
are inferred via message passing.

Fig. 3. Gaussian-SD model for skill learning from score differences. Both team i and
team j are characterized by skill level li and lj , respectively. The shaded variable s
(s = si− sj) denotes the score difference between si and sj . Bayesian inference for the
posterior skill level distributions has a closed-form solution.

Score-Based Bayesian Skill Learning 113

which is like modeling the score difference with performance expressions pli and
plj of respective univariate skill levels, li and lj . Motivated by (9), we propose a
score difference (SD) Gaussianmodel that uses a likelihoodmodel for the observed
difference s := si − sj specified as s ∼ N (pli − plj , γ

2) as shown in Figure 3.

4 Skill and Win Probability Inference

We infer skill distributions in all proposed models via online Bayesian updating.
While exact inference in the purely Gaussian models can be achieved by solving
linear systems, Bayesian updating provides an efficient (also exact) incremental
learning alternative. Equations for Bayesian updates and win probability infer-
ence are model-dependent and presented below.

4.1 Inference in TrueSkill

Bayesian Update: The Bayesian update equations in the TrueSkill model (Fig-
ure 1) are presented in [5].

Win Probability: Given skill levels of team i and j, li ∼ N (li;μi, σ
2
i) and

lj ∼ N (lj ;μj , σ
2
j), we first compute the distribution over performance difference

variable d, and get d ∼ N (d;μd, σ
2
d) with μd = μi − μj and σ2

d = σ2
i + σ2

j + 2β2.
The winning probability of team i is given by the probability p(d > 0) defined as

p(d > 0) = 1− Φ
(
−μd

σd

)
, (11)

where Φ(·) is the normal CDF.

4.2 Inference in Poisson-OD Model

Bayesian Update: Some of the update equations in the Poisson-OD model
(Figure 2(P)) have been presented in [5], with the exception of the marginal
distribution over x and the message passing from the Poisson factor to x. Given
a prior Gaussian distribution over x, N (x;μ, σ2), we next demonstrate how to
update the belief on x when observing team i’s score si.

By the sum-product algorithm [7], the marginal distribution of x is given by
a product of messages

p(x|si) = mδ→x(x)msi→x(x). (12)

To avoid cluttered notation, let us usem1(x) to representmδ→x(x) = N (x;μ, σ2),
i.e., the message passing from the factor δ(·) to x, and m2(x) for msi→x(x) =
Poisson(si; exp(x)), i.e., the message passing from the Poisson factor to x (c.f.,
messages labeled 1 and 2 in Figure 2(P)). Due to the multiplication ofm1(x) and
m2(x), the exact marginal distribution of p(x|si) is not Gaussian, which makes
exact inference intractable. To maintain a compact representation of offence and
defence skills, one can approximate p(x|si) within a variational Bayes framework

114 S. Guo et al.

by choosing a Gaussian distribution q(x)∗ : N (x;μnew, σ
2
new) that minimizes the

KL divergence between p(x|si) and q(x), i.e.,

q(x)∗ = argmin
q(x)

KL [q(x)||p(x|si)] . (13)

We derive a fixed-point approach for optimizing q(x) [12] and describe this
approach below.

Minimizer q(x) for KL(q(x)||p(x|si)): We first expand the KL-divergence into
its definition:

KL(q(x)||p(x|si)) =
∫
q(x) log

(
q(x)

p(x|si)

)
dx

= − log
√

2πeσ2
new − Ex∼q(x) log (p(x|si)) , (14)

where p(x|si) is the posterior probability of x when observing the score si. Since
q(x) is Gaussian and the posterior has convenient Gaussian parts, manipulation
of this yields an equation for μnew and σ2

new that can be solved using an iterative
fixed-point approach:

Lemma 1. Values for μnew and σ2
new minimizing KL (q(x)||p(x|si)) satisfy

μnew = σ2 (si − eκ) + μ,

σ2
new =

σ2

1 + σ2eκ
, (15)

where

κ = log

(
μ+ siσ

2 − 1− κ+
√

(κ− μ− siσ2 − 1)2 + 2σ2

2σ2

)
. (16)

Proof. The second term in (14) is evaluated using Bayes Theorem, p(x|si) =
p(si|x)p(x)/p(si). The term in log p(si) can be dropped because it is constant
with respect to μnew and σ2

new. The term Ex∼q(x)[log p(si|x)] is found by expand-
ing the Poisson distribution and noting Ex∼p(x)[exp(x)] = exp(μ + σ2/2) (see
the Supplemental material3 for derivation). Thus it becomes

siμnew − exp(μnew + σ2
new/2) − log(si!) . (17)

The term Ex∼q(x)[log p(x)] according to the derivation in the Supplemental ma-
terial becomes

−1

2
log(2πσ2)− 1

2σ2

(
σ2
new + μ2

new − 2μμnew + μ2) . (18)

3 Available at http://users.cecs.anu.edu.au/~sguo/sbsl ecml2012 final

supple.pdf

http://users.cecs.anu.edu.au/~sguo/sbsl_ecml2012_final_supple.pdf
http://users.cecs.anu.edu.au/~sguo/sbsl_ecml2012_final_supple.pdf

Score-Based Bayesian Skill Learning 115

Plugging (17) and (18) into (14) gives

argmin
q(x)

KL (q(x)||p(x|si)) ≡ argmin
q(x)
− log

√
2πeσ2

new−(
siμnew − exp(μnew + σ2

new/2) − log(si!)︸ ︷︷ ︸
Ex∼q(x)(log p(si|x))

−1

2
log(2πσ2)− 1

2σ2

(
σ2
new + μ2

new − 2μμnew + μ2)︸ ︷︷ ︸
Ex∼q(x)(log p(x))

)
.

Tofind theminimizer q(x),we calculate the partial derivatives ofKL(q(x)||p(x|si))
w.r.t. μnew and σnew , and set them to zero, leading to

μnew = σ2

(
si − exp

(
μnew +

σ2
new

2

))
+ μ,

σ2
new =

σ2

1 + σ2 exp(μnew +
σ2
new
2

)
.

Summing the first plus half the second of these equations, and defining κ =
μnew + σ2

new/2 yields the equation for κ of

κ = μ+ σ2(si − exp(κ)) +
σ2

2(1 + σ2 exp(κ))
, (19)

and one gets (15) in terms of κ.
We convert (19) by solving for exp(κ) as it appears on the right-hand side.

This yields a quadratic equation, and we take the positive solution since exp(κ)
must be non-negative (see the Supplemental material). The result gives us (16).

We can use (16) as a fixed-point rewrite rule. For a given μ and σ2 together
with an initial value of κ, one iterates (16) until convergence. Empirically, this
happens within 2-3 iterations. With convergence, we substitute the fixed-point
solution into (15) to get the optimal mean and variance for q(x)∗.

Win Probability: Suppose we are given the offence and defence skills for team
i and j, we can estimate the distributions over performance difference variables
of x and y (c.f., Figure 2), and compute the Poisson parameters for si and sj
by using λi = exp(x) and λj = exp(y). To compute the winning probability of
team i, i.e., p(si > sj), we first construct a new variable s = si − sj , the differ-
ence variable between two Poisson distributions, which proves to be a Skellam
distribution in [10]. Thus, we can compute the win probability of P (s > 0) of
team i, according to the probability mass function for the Skellam distribution

P (s = k;λi, λj) = e−(λi+λj)

(
λi

λj

)k/2

I|k|
(
2
√
λiλj

)
,

where Ik(z) is the modified Bessel function of the first kind given in [1]. We
approximated P (s > 0, λi, λj) with

∑n
k=1 P (s = k;λi, λj) using n = 100 since

P (s = k;λi, λj) ≈ 0 for all of our experiments when k > 100.

116 S. Guo et al.

4.3 Inference in Gaussian-OD Model

Bayesian update: In the Gaussian-OD model (Figure 2(N)), all messages are
Gaussian so one can compute the belief update in closed-form as follows

πoi =
1

σ2
oi

+
1

β2
1 + β2

2 + γ2 + σ2
dj

, τoi =
μoi

σ2
oi

+
si + μdj

β2
1 + β2

2 + γ2 + σ2
dj

,

πdj =
1

σ2
dj

+
1

β2
1 + β2

2 + γ2 + σ2
oi

, τdj =
μdj

σ2
dj

+
μoi − si

β2
1 + β2

2 + γ2 + σ2
oi

, (20)

where μoi and σoi are the mean and standard deviation of the prior offence skill
distribution of team i, πoi(πdj) =

1
σ2
post

and τoi(τdj) =
μpost

σ2
post

are the precision and

precision-adjusted mean for the posterior offence (defence) skill distribution of
team i (j). Likewise, one can derive the update equations for team j’s offence
skill oj and team i’s defence skill di.

Win Probability: To compute the probability of team i winning vs team j,
we first use message passing to estimate the normally distributed distributions
for score variables si and sj , and then compute the probability that si − sj > 0,
i.e., team i’s score is larger than team j’s. Given si ∼ N (si;μsi, σ

2
si) and sj ∼

N (sj ;μsj , σ
2
sj), we can compute the winning probability of team i by

p(s > 0) = 1− Φ

(
−(μsi − μsj)

σ2
si + σ2

sj

)
. (21)

4.4 Inference in Gaussian-SD Model

Bayesian Update: In the Gaussian-SD model (Figure 3), all messages are
Gaussian so we can again derive the update for the single team skills li and lj
in closed-form as follows:

πli =
1

σ2
li

+
1

β2
1 + β2

2 + γ2 + σ2
lj

, τli =
μli

σ2
li

+
(si − sj) + μlj

β2
1 + β2

2 + γ2 + σ2
lj

, (22)

πlj =
1

σ2
lj

+
1

β2
1 + β2

2 + γ2 + σ2
li

, τlj =
μlj

σ2
lj

+
μli − (si − sj)

β2
1 + β2

2 + γ2 + σ2
li

, (23)

where μli (μlj) and σli (σlj) are the mean and standard deviation of team i’s
(team j’s) prior skill distribution, πli (πlj) and τli (τlj) are the precision and
precision adjusted mean for team i’s (team j’s) posterior skill distribution.

Win Probability: To estimate the winning probability of team i for a match
with team j, one can first use message passing to estimate the normally dis-
tributed score difference variable s, and then compute the winning probability
of team i by

p(s > 0) = 1− Φ
(

li − lj
σ2
i + σ2

j + 2β2

)
, (24)

where li and σi are the mean and standard deviation for team i’s skill level, and
β the standard deviation of the performance variable.

Score-Based Bayesian Skill Learning 117

5 Empirical Evaluation

5.1 Data Sets

Experimental evaluations are conducted on three data sets: Halo 2 XBox Live
matches, Australian Football (Rugby) League (AFL)and UK Premier League
(UK-PL)4. The Halo 2 data consists of a set of match outcomes comprising 6227
games for 1672 players. We note there are negative scores for this data, so we
add the absolute value of the minimal score to all scores to use the data with all
proposed models.

The training and testing settings are described as follows. For Halo 2 5, the
last 10% of matches are used for testing, and we use different proportions of the
first 90% of data for training. There are 8 proportions used for training, ranging
from 10% to 80% with an increment of 10%, and 90% is not used for training due
to cross validation. To cross validate, we sample the data and run the learning
20 times at each proportion level to get standard error bars. Note that there
are some players in the testing games who are not involved in any training data
sets, particularly when small proportion of training data set is selected (e.g., the
first 10 percent games); we remove these games in the testing set when reporting
performances for all models.

For both UK-PL and AFL datasets, cross validation is performed by training
and testing for each year separately (14 years for UK-PL, and 11 years for AFL).
For these two datasets, we test the last 20% percent of matches in each year,
with the training data increasing incrementally from 10% to 80% of the initial
matches.

5.2 Evaluation Criteria

Information Gain. The first criterion we use to evaluate different approaches
is information gain, which is proposed in the Probabilistic Footy Tipping Com-
petition6: if a predictor assigns probability p to team i winning, then the score
(in “bits”) gained is 1 + log2(p) if team i wins, 1 + log2(1 − p) if team i loses,
1+(1/2) log2(p(1−p)) if draw happens. In Section 4, we showed how to compute
the win probability p for each model.

Win/No-Win Prediction Accuracy. While information gain provides a sense
of how well the models fit the data, it is also interesting to see how accurate
the models were at predicting match outcomes in terms of win/no-win (e.g.,
loss/draw). To compare classification performance of each model, we report the
win/not winning prediction accuracy in terms of area under the curve (AUC)
for the games with a win or loss outcome.

4 http://www.football-data.co.uk/englandm.php
5 Credit for the use of the Halo 2 Beta Data set is given to Microsoft Research Ltd.
and Bungie.

6 Refer to http://www.csse.monash.edu.au/~footy/

http://www.football-data.co.uk/englandm.php
http://www.csse.monash.edu.au/~footy/

118 S. Guo et al.

ScorePredictionError. We evaluate the score prediction accuracy for Poisson-
OD and Gaussian-OD models for each team in terms of the mean absolute error
(MAE). Note that we must omit the Gaussian-SD model since it can only predict
score differences rather than scores.

5.3 Results

Experimental results are reported according to the parameter configurations
shown in Table 1. All results are presented in Figure 4 and discussed below.

Table 1. Parameter settings. Priors on offence/defence skills: N (μ0, σ
2
0) with μ0 = 25

and σ0 = 25/3. Performance variance: β, βo, βd.

Model Parameter (ε, γ empirically estimated)

TrueSkill β = σ0/2, ε: draw probability
Poisson-OD βo = βd = σ0/2
Gaussian-OD βo = βd = σ0/2, γ: score variance
Gaussian-SD β = σ0/2, γ: score difference variance

Information Gain. For relatively small amounts of training data (10% –
30%), the Gaussian models (OD and SD) statistically significantly outperform
TrueSkill and Poisson-OD in terms of win/loss probability accuracy. On all data
sets except AFL, the Gaussian models perform comparably to TrueSkill for larger
amounts of training data. Gaussian-OD statistically significantly outperforms
Gaussian-SD for Halo 2, indicating that separate offence/defence modeling helps.

Win/No-Win Prediction Accuracy. In terms of win/no-win prediction ac-
curacy, the Gaussian-OD model generally provides the best average AUC, fol-
lowed by Gaussian-SD, then TrueSkill (with the exception of cases for Halo 2 with
more than 40% training data where TrueSkill performs best), then Poisson-oD.
Again, we see that the separate offence/defence skill modeling of Gaussian-OD
gives it a performance edge over the combined skill model of Gaussian-SD.

Score Prediction Errors. As shown in the third column in Figure 4, Gaussian-
OD predicts more accurate scores on the UK-PL and Halo datasets, while
Poisson-OD is more accurate for the AFL dataset. This can be explained by
a simple skill analysis — the learned skills on the UK-PL dataset tend to show
a larger variance (for all models), whereas the learned skills on the AFL dataset
show little variance (for all models except Gaussian-SD). Thus, the use of an ex-
ponentiated scoring rate in the Poisson-OD model would seem to amplify these
small performance differences in learned AFL skills to make more accurate score
predictions on AFL data. This amplification appears to hurt the Poisson-OD
model on the lower-scoring UK-PL and Halo dataset (the mean score for the
AFL data is 95.4 vs 42.7 and 1.3 respectively for the Halo 2 and UK-PL data).

Score-Based Bayesian Skill Learning 119

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−3

−2.5

−2

−1.5

−1

−0.5

0

UK−PL

Proportion of data used for training

A
ve

ra
ge

 in
fo

rm
at

io
n

ga
in

Poisson−OD
Gaussian−OD
TrueSkill
Gaussian−SD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.55

0.6

0.65

0.7
UK−PL

Proportion of data used for training

A
U

C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

1

1.5

2

2.5
UK−PL

Proportion of data used for training

M
A

E
 o

f
sc

or
es

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Halo

Proportion of data used for training

A
ve

ra
ge

 in
fo

rm
at

io
n

ga
in

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.55

0.6

0.65
Halo

Proportion of data used for training

A
U

C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20
Halo

Proportion of data used for training

M
A

E
 o

f
sc

or
es

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
AFL

Proportion of data used for training

A
ve

ra
ge

 in
fo

rm
at

io
n

ga
in

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.55

0.6

0.65

0.7

0.75

0.8
AFL

Proportion of data used for training

A
U

C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
20

30

40

50

60

70

80

90

100
AFL

Proportion of data used for training

M
A

E
 o

f
sc

or
es

Fig. 4. Results on the UK-PL, Halo, and AFL datasets evaluated using information
gain (left column), win/loss prediction accuracy in term of the area of the curve (AUC)
(middle column), and score prediction error (right column). Error bars indicate 95%
confidence intervals.

6 Related Work

Skill Rating dates at least as far back as the Elo system [4], the idea of which
is to model the probability of the possible game outcome as a function of the
two players’ skill levels. Players’ skill levels are updated after each game in a way
such that the observed game outcome becomes more likely and the summation
of players’ ratings remains unchanged.

The Elo system cannot handle the case when three or more teams participate
in one match, a disadvantage addressed by TrueSkill [5]. Further extensions of
TrueSkill incorporate time-dependent skill modeling for historical data [3].

In [2], the authors model and learn the correlation between all players’ skills
when updating skill beliefs, and develop a method called “EP-Correlated”, con-
trasted with the independent assumption on players’ skills (EP-Independent).
Empirically, EP-Correlated outperforms EP-Independent on professional tennis

120 S. Guo et al.

match results; this suggests modeling correlations in extensions of the score-
based learning presented here.

These skill learning methods all share a common feature that they are re-
stricted to model WLD only and have to discard meaningful information carried
with scores. While we proposed score-based extensions of TrueSkill in this work;
it remains to incorporate other extensions motivated by this related work.

Score Modeling has been studied since the 1950s [15] [16] [11] [14] [13]; one of
the most popular score models is the Poisson model, first presented in [15], and
this work continues to the present [13]. Other commonly used score models are
based on normal distributions [11]. However, it appears that most score-based
models do not distinguish offence and defence skills of each team and the results
here indicate that such separate offence/defence skill models can perform better
than univariate models with limited data.

7 Conclusion

We proposed novel score-based, online Bayesian skill learning extensions of
TrueSkill that modeled (1) player’s offence and defence skills separately and
(2) how these offence and defence skills interact to generate scores. Overall these
new models — and Gaussian-OD (using a separate offence/defence skill model)
in particular — show an often improved ability to model winning probability
and win/loss prediction accuracy over TrueSkill, especially when the amount
of training data is limited. This indicates that there is indeed useful informa-
tion in score-based outcomes that is ignored by TrueSkill and that separate of-
fence/defence skill modeling does help (c.f. the performance of Gaussian-OD vs.
Gaussian-SD). Furthermore, these new models allow the prediction of scores (un-
like TrueSkill), with the Poisson-OD model and its variational Bayesian update
derived in Section 4.2 performing best on the high-scoring AFL data. Altogether,
these results suggest the potential advantages of score-based Bayesian skill learn-
ing over state-of-the-art WLD-based skill learning approaches like TrueSkill.

Future research could combine the proposed models with related work that
models home field advantage, time-dependent skills, multi-team games, and cor-
related skills to utilise score-based outcomes.

Acknowledgments. We thank Guillaume Bouchard and Onno Zoeter for in-
teresting discussions, and we also thank the anonymous reviwers for their con-
structive comments, which help to improve the paper. NICTA is funded by
the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council
through the ICT Centre of Excellence program.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, With For-
mulas, Graphs, and Mathematical Tables. Dover Publications, New York (1974)

Score-Based Bayesian Skill Learning 121

2. Birlutiu, A., Heskes, T.: Expectation Propagation for Rating Players in Sports
Competitions. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S.,
Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 374–
381. Springer, Heidelberg (2007)

3. Dangauthier, P., Herbrich, R., Minka, T., Graepel, T.: Trueskill through time:
Revisiting the history of chess. In: NIPS, pp. 337–344. MIT Press, Cambridge
(2008)

4. Elo, A.E.: The rating of chess players: past and present. Arco Publishing, New
York (1978)

5. Herbrich, R., Minka, T., Graepel, T.: TrueskillTM : A Bayesian skill rating system.
In: NIPS, pp. 569–576 (2006)

6. Karlis, D., Ntzoufras, I.: Bayesian modelling of football outcomes: using the skel-
lam’s distribution for the goal difference. IMA Journal of Management Mathemat-
ics 20(2), 133–145 (2009)

7. Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)

8. Minka, T.: Expectation propagation for approximate bayesian inference. In: UAI,
pp. 362–369. Morgan Kaufmann (2001)

9. Moroney, M.J.: Facts from figures, 3rd edn. Penguin Press Science (1956)
10. Skellam, J.G.: The frequency distribution of the difference between two Poisson

variates belonging to different populations. Journal of the Royal Statistical Society:
Series A 109(3), 296 (1946)

11. Glickman, M.E., Stern, H.S.: A state-space model for football league scores. Journal
of the American Statistical Association 93(441), 25–35 (1998)

12. Beal, M.J., Ghahramani, Z.: The Variational Bayesian EM Algorithm for Incom-
plete Data: with Application to Scoring Graphical Model Structures. In: Proceed-
ings of the Seventh Valencia International Meeting, pp. 453–464 (2002)

13. Karlis, D., Ntzoufras, I.: Bayesian modelling of football outcomes: using the Skel-
lam’s distribution for the goal difference. IMA Journal of Management Mathemat-
ics 20(2), 133–145 (2009)

14. Karlis, D., Ntzoufras, I.: Analysis of Sports Data by Using Bivariate Poisson Mod-
els. Journal of the Royal Statistical Society: Series D 52(3), 381–393 (2003)

15. Moroney, M.J.: Facts from figures, 3rd edn. Penguin Press Science (1956)
16. Dixon, M.J., Coles, S.G.: Modelling Association Football Scores and Inefficiencies

in the Football Betting Market. Journal of the Royal Statistical Society: Series
C 46(2), 265–280 (1997)

A Note on Extending Generalization Bounds

for Binary Large-Margin Classifiers
to Multiple Classes

Ürün Dogan1, Tobias Glasmachers2, and Christian Igel3

1 Institut für Mathematik, Universität Potsdam, Germany
doganudb@math.uni-potsdam.de

2 Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany
tobias.glasmachers@ini.ruhr-uni-bochum.de

3 Department of Computer Science, University of Copenhagen, Denmark
igel@diku.dk

Abstract. A generic way to extend generalization bounds for binary
large-margin classifiers to large-margin multi-category classifiers is pre-
sented. The simple proceeding leads to surprisingly tight bounds showing
the same Õ(d2) scaling in the number d of classes as state-of-the-art re-
sults. The approach is exemplified by extending a textbook bound based
on Rademacher complexity, which leads to a multi-class bound depend-
ing on the sum of the margin violations of the classifier.

1 Introduction

The generalization performance of binary (two-class) large-margin classifiers is
well analysed (e.g., [1–8]). The theory of generalization bounds for multi-class
support vector machines (multi-class SVMs) follows the route already paved by
the analysis of the binary case, for instance, in the work of Guermeur [9, 10].

In this note, we link the analysis of binary and multi-class large margin clas-
sifiers explicitly. A straightforward technique to generalize bounds for binary
learning machines to the multi-class case is presented, which is based on a simple
union bound argument. The next section introduces the classification framework
and extensions of large-margin separation to multiple classes. Section 3 proves
our main result showing how to derive bounds for multi-category classification
based on bounds for the binary case. In Section 4 we apply the proposed method
to a textbook result based on Rademacher complexity. The newly derived bound
is discussed with respect to different multi-class SVM formulations.

2 Large-Margin Multi-category Classification

We consider learning a hypothesis h : X → Y from training data

S =
(
(x1, y1), . . . , (x�, y�)

)
∈
(
X × Y

)�
,

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 122–129, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Note on Extending Generalization Bounds 123

where X and Y are the input and label space, respectively. We restrict our
considerations to the standard case of a finite label space (however, there exist
extensions of multi-class SVMs to infinite label spaces, e.g., [11]). We denote the
cardinality |Y | by d ∈ N. Without loss of generality we assume Y = {1, . . . , d}
in the sequel. We presume all data points (xn, yn) to be sampled i.i.d. from a
fixed distribution P on X × Y . Then the goal of learning is to map the training
data to a hypothesis h with as low as possible risk (generalization error)

R(h) =

∫
X×Y

1(h(x) �=y) dP (x, y) . (1)

Here, the 0-1 loss is encoded by the indicator function 1(h(x) �=y) of the set
{(x, y) ∈ X × Y |h(x) �= y}.

All machines considered in this study construct hypotheses of the form

x �→ argmax
c∈Y

[
〈wc, φ(x)〉 + bc

]
, (2)

where φ : X → H is a feature map into an inner product spaceH, w1, . . . , wd ∈ H
are class-wise weight vectors, and b1, . . . , bd ∈ R are class-wise bias/offset values.
The most important case is that of a feature map defined by a positive definite
kernel function k : X × X → R with the property k(x, x′) = 〈φ(x), φ(x′)〉.
For instance, we can set φ(x) = k(x, ·), in which case H is the corresponding
reproducing kernel Hilbert space [12]. We presume that the argmax operator in
equation (2) returns a single class index (ties may, e.g., be broken at random).
We define the vector-valued function f : X → Rd by f = (f1, . . . , fd) with
fc = 〈wc, φ(·)〉 + bc for c ∈ {1, . . . , d}. Then h(x) = argmaxc∈Y fc(x) and, to
ease the notation, we define R(f) to be equal to the corresponding R(h).

For a binary classifier based on thresholding a real-valued function f : X → R
at zero we define the hinge loss Lhinge(f(x), y) = max{0, 1− y · f(x)}, a convex
surrogate for the 0-1 loss used in equation (1). The expression y · f(x) is the
(functional) margin of the training pattern (x, y). The hinge loss measures the
extent to which a pattern fails to meet a target margin of one. There are different
ways to extend this loss to multiple classes. Large-margin classification based on
the decision function (2) can be interpreted as highlighting differences between
components fc(x). This is because the difference fc(x)−fe(x) indicates whether
class c is preferred over class e in decision making. Accordingly, two canonical
extensions of the hinge loss to the multi-class case f : X → Rd are the sum loss

Lsum(f(x), y) =
∑

c∈Y \{y}

[
Lhinge

(
1

2

(
fy(x)− fc(x)

)
, 1

)]

and the maximum loss

Lmax(f(x), y) = max
c∈Y \{y}

[
Lhinge

(
1

2

(
fy(x)− fc(x)

)
, 1

)]
.

124 Ü. Dogan, T. Glasmachers, and C. Igel

These losses are arranged so that in the binary case d = 2 they reduce to the
hinge loss. We denote the corresponding risks by

Rtype(f) =

∫
X×Y

Ltype(f(x), y) dP (x, y)

and the empirical risk for a sample S =
(
(x1, y1), . . . , (x�, y�)

)
by

Rtype
S (f) =

1

�

�∑
i=1

Ltype(f(xi), yi) ,

where the superscript “type” is generic for “hinge”, “sum”, or “max”.

3 Extending Bounds to Multi-category Classification

Our analysis relies on the basic insight that there are d − 1 distinct possible
mistakes per example (x, y), namely preferring class c ∈ Y \ {y} over the true
class y. Each of these mistakes corresponds to one binary problem (having a
decision function with weight vector wy − wc) indicating the specific mistake.
One of these mistakes is sufficient for wrong classification, and no “binary”
mistake at all implies correct classification. Then, a union bound over all mistakes
gives the multi-class generalization result based on established bounds for binary
classifiers. Assume that we have a bound of the following generic form:

Assumption 1. With probability 1− δ over randomly drawn training sets S of
size � the risk R(fbin) of a binary classifier derived from a function fbin ∈ Fbin

is bounded by

R(fbin) ≤ Bbin
(
�,Rhinge

S (fbin), C(Fbin), δ
)

,

where Fbin is a space of functions X → R. The function C measures the com-
plexity of the function class Fbin in a possibly data-dependent manner (i.e., it
may implicitly depend on properties of the training data, typically in terms of
the kernel Gram matrix).

Then we have:

Theorem 1. Under Assumption 1, with probability 1− δ over randomly drawn

training sets S ∈
(
X × {1, . . . , d}

)�
, the risk R(f) of a multi-class classifier

derived from the function f = (f1, . . . , fd) : X → Rd, f ∈ F, using the decision
rule (2) is bounded by

R(f) ≤
∑

1≤c<e≤d

(
�(c,e)

�
+

1√
�

√
log(d(d− 1))− log δ

2

)

· Bbin

(
�(c,e),Rhinge

S(c,e)

(
1

2
(fc − fe)

)
, C(F(c,e)),

δ

d(d− 1)

)
, (3)

A Note on Extending Generalization Bounds 125

where S(c,e) =
{
(x, y) ∈ S

∣∣ y ∈ {c, e}
}
is the training set restricted to examples

of classes c and e, �(c,e) =
∣∣S(c,e)

∣∣ denotes its cardinality, and the pairwise binary
function classes are defined as

F(c,e) =

{
1

2
(fc − fe)

∣∣∣∣ f = (f1, . . . , fd) ∈ F

}
.

Proof. Following the line of arguments above, the general case of d-category
classification with f = (f1, . . . , fd) ∈ F can be reduced to the binary case via
the inequality

R(f) ≤
∑

1≤c<e≤d

[P (y = c) + P (y = e)] · R
(
1

2
(fc − fe)

)

≤
∑

1≤c<e≤d

R
(
1

2
(fc − fe)

)
,

where R
(
1
2 (fc − fe)

)
refers to the risk of 1

2 (fc−fe) solving the binary classifica-
tion problem of separating class c from class e. Comparing the left to the right
term of the above inequality for the risk gives the immediate result

R(f) ≤
∑

1≤c<e≤d

Bbin

(
�(c,e),Rhinge

S(c,e)

(
1

2
(fc − fe)

)
, C

(
F(c,e)

)
,

2δ

d(d− 1)

)
,

where we have split the probability δ over the samples into d(d − 1)/2 equal
chunks. This is conservative, since pairs of classes are highly dependent.

This bound can be refined by taking class-wise probabilities into account. By
applying the Hoeffding bound we derive that P (y = c) + P (y = e) is upper
bounded by

�(c,e)

�
+

1√
�

√
log(d(d− 1))− log δ

2

with a probability of 1− δ′/2 with δ′ = 2δ/(d(d− 1)). That is, this bound holds
simultaneously for all d(d−1)/2 pairs of classes with a probability of 1−δ/2. ��

The pairwise complexity terms C(F(c,e)) can be replaced with the complexity
measure

C(F) = max
1≤c<e≤d

C
(
F(c,e)

)
for Rd-valued functions. Depending on the structure of the underlying binary
bound Bbin the sum over all pairs of classes can be further collapsed into a
factor of d(d− 1)/2, for instance by taking the maximum over the summands.

126 Ü. Dogan, T. Glasmachers, and C. Igel

4 Example: A Bound Based on Rademacher Complexity

Theorem 1 can be used to obtain a variety of generalization bounds when com-
bined with the wealth of results for binary machines that can be brought in a form
of Assumption 1. This section will consider an textbook generalization bound
derived for binary SVMs and measuring function class flexibility by Rademacher
complexity. The result will then be discussed w.r.t. two multi-class extensions
of SVMs. Such a comparison can be performed with different goals in mind.
On the one hand, a unifying analysis covering many different multi-class SVM
types is desirable. On the other hand, one would like to see differences in the
performance guarantees for different machines that may indicate superiority of
one machine over another. We attempt to highlight such differences. This is in
contrast to other studies such as the influential work in [9], where the goal was
unification and, therefore, to make differences between machines invisible.

4.1 Extending a Binary Bound Based on Rademacher Complexity

We begin by stating the result for binary machines, in which the Rademacher
complexity of real-valued functions is bounded based on the kernel Gram matrix
K of the data:

Theorem 2. Fix ρ > 0 and let Fbin be the class of functions in a kernel-defined
feature space with norm at most 1/ρ. Let S be a training set of size �, and fix
δ ∈ (0, 1). Then with probability of at least 1− δ over samples of size � we have
for fbin ∈ Fbin

R(fbin) ≤ Bbin = Rhinge
S (fbin) +

4

�ρ

√
tr(K) + 3

√
log(2/δ)

2�
,

where K is the kernel Gram matrix of the training set.

This result can be derived following the proof of Theorem 4.17 by [3]. Application
of inequality (3) yields the following generalization bound:

Corollary 1. Let S ∈
(
X×{1, . . . , d}

)�
be a training set. Fix ρ > 0, and let Fρ

be the class of Rd-valued functions in a kernel-defined feature space with semi-
norm at most 1/ρ w.r.t. the semi-norm ‖f‖ = max

{
1
2‖fc−fe‖

∥∥ 1 ≤ c < e ≤ d
}
.

With probability 1− δ over randomly drawn training sets S ∈
(
X ×{1, . . . , d}

)�
,

the risk R(f) of a multi-class classifier using the decision rule (2) is bounded by

R(f) ≤
∑

1≤c<e≤d

(
�(c,e)

�
+

1√
�

√
log(d(d− 1))− log δ

2

)

·
[
Rhinge

S(c,e)

(
1

2
(fc − fe)

)
+

4

�(c,e)ρ

√
tr(K(c,e)) + 3

√
log(2d(d− 1)/δ)

2�(c,e)

]
,

where K(c,e) denotes the �(c,e) × �(c,e) kernel matrix restricted to examples of
classes c and e.

A Note on Extending Generalization Bounds 127

With tr(K(c,e)) ≤ tr(K) this bound reads in (not fully simplified) Õ-notation

R(f) ∈ Õ

(
d(d − 1)

2

(
4

ρ · � ·
√
tr(K) +Rsum

S (f)

))
, (4)

with the same separation of complexity and empirical risk terms as in the binary
bound.1

4.2 Sum vs. Maximum of Margin Violations

There is no canonical extension of the binary SVM [13, 14] to multiple classes.
Several slightly different formulations have been proposed, most of which reduce
to the standard binary SVM if d = 2.

The all-in-one methods proposed independently Weston and Watkins [15],
Vapnik ([1], Section 10.10), and by Bredensteiner and Bennett [16] turned out
to be equivalent, up to rescaling of the decision functions and the regularization
parameter C > 0. The method is defined by the optimization problem

min
1

2

d∑
c=1

〈wc, wc〉+ C · Rsum
S (f) .

An alternative multi-class SVM was proposed by Crammer and Singer [17]. It
also takes all class relations into account simultaneously and solves a single
optimization problem, however, penalizing the maximal margin violation instead
of the sum:

min
1

2

d∑
c=1

〈wc, wc〉+ C · Rmax
S (f)

Are there theoretical arguments to prefer one formulation over the other? In
[18], the empirical risk of multi-class SVMs is upper bounded in terms of the
empirical maximum risk Rmax. This is an almost trivial result, because the hinge
loss (and therefore the maximum loss) is, per construction, an upper bound on
the 0-1-loss. Based on this bound it has been argued that the SVM proposed by
Crammer and Singer has advantages compared to the formulation by Weston
and Watkins because it leads to lower values in the bounds.

We do not find this argument convincing. The empirical error is only a weak
predictor of the generalization error, and measuring these errors with differ-
ent loss functions is a meaningless comparison. The question which hypothe-
sis has lower 0-1-risk cannot be decided on this basis, but only by comparing
generalization bounds.

When looking at the bound newly derived above we find that it depends on
the sum-loss term Rsum

S (f). Thus, one may argue that it is a natural strategy
to minimize this quantity directly instead of the max-loss.

1 The Õ (soft O) notation ignores logarithmic factors, not only constant factors. That
is, f(�) ∈ Õ(g(�)) iff f(�) ∈ O(g(�) logκ g(�)) for some κ.

128 Ü. Dogan, T. Glasmachers, and C. Igel

In general, comparing different machines by means of generalization bounds
can be misleading for a number of reasons. The most important is that we are
only dealing with upper bounds on the performance, and a better performance
guarantee does give a guarantee for better performance.

5 Discussion

The proposed way to extend generalization bounds for binary large-margin clas-
sifiers to large-margin multi-category classifiers is very simple, compared to tak-
ing all pairwise interactions between classes into account at once, and it has a
number of advantageous properties. It is versatile and generic in the sense that
it is applicable to basically every binary margin-based bound. Compared to the
underlying bounds we pay the price of considering the worst case over d(d−1)/2
pairs of classes. However, also the state-of-the-art results obtained in [9] exhibit
the same Õ(d2) scaling in the number of classes. In any case this term does not
affect the asymptotic tightness of the bounds w.r.t. the number of samples. The
same argument, put the other way round, implies that the asymptotic tightness
of a bound for binary classification carries over one-to-one to the multi-class
case. This implies that binary and multi-class learning have the same sample
complexity.

It is straightforward to extend our result to loss functions based on general
confusion matrices. Future work may include applying the proposed procedure
to more sophisticated bounds for binary classifiers.

Acknowledgements. Christian Igel gratefully acknowledges support from the
European Commission through project AKMI (PCIG10-GA-2011-303655).

References

1. Vapnik, V.: Statistical Learning Theory. John Wiley and Sons (1998)
2. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-

ularization, Optimization, and Beyond. MIT Press (2002)
3. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge

University Press (2004)
4. Boucheron, S., Bousquet, O., Lugosi, G.: Theory of classification: A survey of some

recent advances. ESAIM: Probability and Statistics 9, 323–375 (2005)
5. Bartlett, P.L., Jordan, M.I., McAuliffe, J.D.: Convexity, classification, and risk

bounds. Journal of the American Statistical Association 101, 138–156 (2006)
6. Wu, Q., Ying, Y., Zhou, D.X.: Multi-kernel regularized classifiers. Journal of Com-

plexity 23, 108–134 (2007)
7. Steinwart, I., Scovel, C.: Fast rates for support vector machines using Gaussian

kernels. The Annals of Statistics 35, 575–607 (2007)
8. Steinwart, I.: Oracle inequalities for svms that are based on random entropy num-

bers. Journal of Complexity 25, 437–454 (2009)
9. Guermeur, Y.: VC theory for large margin multi-category classifiers. Journal of

Machine Learning Research 8, 2551–2594 (2007)

A Note on Extending Generalization Bounds 129

10. Guermeur, Y.: Sample complexity of classifiers taking values in R
Q, Application to

multi-class SVMs. Communications in Statistics: Theory and Methods 39, 543–557
(2010)

11. Bordes, A., Usunier, N., Bottou, L.: Sequence Labelling SVMs Trained in One
Pass. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part
I. LNCS (LNAI), vol. 5211, pp. 146–161. Springer, Heidelberg (2008)

12. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Math-
ematical Society 68, 337–404 (1950)

13. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal mar-
gin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory (COLT 1992), pp. 144–152. ACM (1992)

14. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297
(1995)

15. Weston, J., Watkins, C.: Support vector machines for multi-class pattern recogni-
tion. In: Verleysen, M. (ed.) Proceedings of the Seventh European Symposium On
Artificial Neural Networks (ESANN), pp. 219–224. d-side Publications, Belgium
(1999)

16. Bredensteiner, E.J., Bennett, K.P.: Multicategory classification by support vector
machines. Computational Optimization and Applications 12, 53–79 (1999)

17. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research 2, 265–292 (2002)

18. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research 6, 1453–1484 (2005)

Extension of the Rocchio Classification Method

to Multi-modal Categorization of Documents
in Social Media

Amin Mantrach and Jean-Michel Renders

Yahoo! Research Barcelona�, Xerox Research Centre Europe
amantrac@yahoo-inc.com, jean-michel.renders@xrce.xerox.com

Abstract. Most of the approaches in multi-view categorization use early
fusion, late fusion or co-training strategies. We propose here a novel
classification method that is able to efficiently capture the interactions
across the different modes. This method is a multi-modal extension of the
Rocchio classification algorithm – very popular in the Information Re-
trieval community. The extension consists of simultaneously maintaining
different “centroid” representations for each class, in particular “cross-
media” centroids that correspond to pairs of modes. To classify new data
points, different scores are derived from similarity measures between the
new data point and these different centroids; a global classification score
is finally obtained by suitably aggregating the individual scores. This
method outperforms the multi-view logistic regression approach (using
either the early fusion or the late fusion strategies) on a social media
corpus - namely the ENRON email collection - on two very different
categorization tasks (folder classification and recipient prediction).

1 Introduction

Multi-modal (or multi-view1) learning has been intensively studied since a long
period. It relates to the problem of learning from multiple set of features. As
suggested by [1], the multi-modal learning takes its justification from the fact
that a high consensus of two independent hypotheses results in a low gener-
alization error. These last years, several new methods have been proposed for
the semi-supervised and the unsupervised settings (for semi-supervised multi-
view learning, see the survey in [2]). However, few has been done in the fully
supervised setting.

Actually, as pointed out by [3], in a fully supervised setting, multi-modal
learning usually performs worse than learning on the union of all modes. In this
setting, the standard approaches are the early fusion (EF) method and the late
fusion (LF) method. The former consists of directly learning from a common

� This work has been done when the author was with Xerox Research Centre Europe.
1 The multi-view learning has different designations in the literature depending on the
communities and the time period. In this paper, “views” and “modes” are considered
as synonyms referring to the same concept.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 130–142, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Extension of the Rocchio Classification Method 131

global view which is made from the union of all mono-views while the latter
proposes to combine the decisions of different single-view based classifiers. On
the one hand, the principle of the EF strategy is to directly learn the combi-
nation of all the features that minimizes a loss function. The drawback of this
approach is to combine artificially different data sources (with possibly different
semantics), hence increasing the dimension of the feature space, which could re-
sult in a higher variance of the generalization error. On the other hand, the goal
of LF strategy is to obtain a consensus among independent specialized classi-
fiers leading to a lower generalization error. The drawback of this approach lies
in its inability to detect interactions; in other words, it miss the opportunity
to capture correlations between different views which may also lead to a lower
generalization error and a better understanding of the underlying data.

In this work, we propose a novel multi-modal (MM) framework that tries to
exploit the best of the two strategies, while avoiding their drawbacks. It offers
the EF ’s advantage of capturing interactions across the different modes while,
in the meantime, owning the LF ’s advantage of learning a weighted combination
of the input scores in order to, first, detect a high consensus among the hypothe-
ses and, second, have a better understanding of interactions between views. To
achieve this goal, we propose to extend the standard “Rocchio” classification
algorithm (see [4]) to the multi-modal case by computing “cross-modal” scores
that measure the interaction between pairs of modes. In a nutshell, the “Rocchio”
classification algorithm builds prototypes (centroids) for each class and classifies
a new instance by linearly combining the similarity of this instance with the class
prototypes. In the same vein, we propose in this work to extend the notion of
(mono-modal) class prototype by defining for each class: (1) one (mono-modal)
centroid per mode (which corresponds to the prototypes defined in the standard
“Rocchio” classification algorithm) and (2) two “cross-modal” centroids per pair
of modes. While simple centroids aim at focusing on the mono-modal aspects
of the data, “cross-modal” centroids bias one mode by using the other one and
hence take into account the multi-modal aspects of the data. When classifying a
new input, it is compared with these different centroids (mono- and cross-modal)
using a similarity function (for instance, the cosine or any similarity measure of
information retrieval). These similarity scores form then the inputs of a linearly
weighted LF process.

This novel MM framework is benchmarked on a social media corpus – namely
the ENRON corporate email data set – on two different tasks: a foldering task
and a recipient proposal task. For the foldering task, we consider the seven
mailboxes selected by [5]. These mailboxes have been intensively benchmarked
due to their public availability. Our framework is compared to EF and LF which
constitute the state-of-the art for these tasks on this data set (see for instance
the recent work of [6]). For the recipient proposal task, we evaluate the proposed
framework on three mailboxes among the ones having the largest amount of
messages.

We show that, thanks to the introduced cross-modal scores, our MM frame-
work outperforms the state-of-the-art on this public data set for both tasks.

132 A. Mantrach and J.-M. Renders

To summarize, the main contributions of this paper are the following:

– It introduces a new competitive framework which can be used for classifica-
tion in case of multi-modal inputs.

– It proposes to compute cross-modal centroids which reflect the multi-modal
aspects of the data.

– It shows on various mailboxes of the ENRON data set that the proposed
method outperforms established methods, i.e. the EF and the LF, on folder-
ing and recipient proposal tasks.

2 Problem Statement

More concretely, the multi-modal classification problem may be formalized as
follows: We have at our disposal a collection of Nd data instances represented by

M different data matrices X(m) of size Nd × N
(m)
f , where N

(m)
f is the number

of features associated with the mode m ∈ M (the set of modes {1, ...,M}).
The vector x

(m)
d• denotes the row d of X(m) and x

(m)
i,j denotes the entry (i, j) of

the same matrix. X is the matrix obtained by concatenating the different X(m)

matrices in an ascending mode order, i.e. X = [X(1)X(2)...X(|M|)]. The vector

x
(•)
d• denotes the row d of this matrix.
For learning, we have a set of labeled multi-modal data instances L =

{x(•)
d• , yd}, d ∈ [1, Nd], yd ∈ C,x(•)

d• ∈ X . C is the set of the different labels:
{c1, ..., c|C|} and X the set of multi-modal data instances.

We want to design a model Mc ∈ M (the set of multi-modal models) for
each class c ∈ C and a multi-modal classification function F : X × M →
R. The predicted class of an unlabeled multi-modal point x

(•)
u• will be ŷ =

argmaxcF (x
(•)
u• ,Mc).

One way to solve the problem consists of learning the classification models
Mc’s directly in the feature space which consists of the union of all modes. In
this case, we are using an early fusion (EF) approach. However, as suggested
by [7], in order to achieve good performance, each mode should be normalized
separately before combination. This is mostly to make features comparable with
respect to the range of values across the different modes and features.

Another standard approach consists of learning separately the different clas-
sification models Mm

c ’s for each mode m. After learning, the decision function
consists of a linear combination of the different scores obtained on each mode m.

ŷ = argmaxc
∑
m

αm
c F (x

(m)
u• ,Mm

c) (1)

The weights αm
c attributed to the different modes for each class are generally

tuned on a independent validation set. This method is called late fusion (LF)
as opposed to early fusion. Note that most of the proposed and widely used
learning to rank systems are based on the linear combination of features [8, 9].

The advantage of the early fusion lies in its ability to capture relations be-
tween features across different modes. Furthermore, it avoids the supplementary

Extension of the Rocchio Classification Method 133

task of tuning hyper-parameters needed in the case of a late fusion approach.
However, the early fusion suffers from combining artificially into one vector space
multiple sources having different semantics. Furthermore, the level of sparsity
may change across modes. Indeed, for instance, image features are dense, while
bag-of-words document vectors are sparse and social-media participant vectors
are binary sparse vectors. Another drawback of the early fusion method is to in-
crease drastically the dimension of the feature space which results in increasing
the variance of the generalization error. Hence, the late fusion strategy which
consists of combining different expert models results generally in a lower vari-
ance. Its drawback is its inability to capture any possible combination of features
across different modalities that may result in a better prediction.

In the remainder, we introduce a new framework which takes a decision based
on a linear combination of multiple experts and therefore is LF -based. However,
while the standard LF does not take into account the interactions across the
multiple modes, this framework proposes to exploit the multi-modal aspects of
the data. The proposed classification procedure, inspired by the trans-media
relevance feedback in information retrieval [10], consists of the following steps:
(1) off-line modeling of each class with a representative centroid per mode m
obtained after aggregating all the mode m portion of the data instances, (2) off-
line modeling of each class with two representative centroids per pair of modes
(i.e. (m)[m′] and (m′)[m]) obtained after aggregating the mode m portion of the
nearest neighbors computed through the mode m′ portion of the data instances,
(3) defining similarity scores between unlabeled data points and the different
centroids, (4) late (linear) fusion of the obtained scores in order to get a global
membership score for each class and (5) applying a simple argmax function on
global scores computed for each class in order to predict the class ŷ.

3 Multi-modal Classes Modeling

Mono-modal Modeling. The off-line training phase consists of learning one model
Mc for each class c. We propose to build a multi-modal centroid vector for each
class c which summarizes the subset Lc of all the labeled data instances L which
have class c as label. In other words, Lc = {x(•)

d• , c}, is the set of all data instances
that belongs to class c. Each centroid is made by aggregating all data instances
d of Lc.

C(m)(c) =
⊕
d∈Lc

x
(m)
d•
wd

(2)

⊕
is an aggregation operator which may be an average, a max, a min. wd is a

weighting factor which counts the number of classes the document d belongs to.
Concretely, the intuition is that in a multi-label setting, as for instance in the
recipient proposal task (see Section 5.2), a multi-labeled document is less repre-
sentative of the classes it belongs to than a mono-labeled document considered
as more specific to the class.

134 A. Mantrach and J.-M. Renders

Cross-modal Modeling. So far, the centroids are mono-modal and can only cap-
ture the modality in which they are defined. Therefore, following our main goal to
capture interactions across modes, we define “cross-centroids”. A cross-centroid
in modem is made by aggregating them-mode portion of different nearest neigh-

bors observations x
(m)
d′• . The nearest-neighbors are chosen in L according to a

specific mode m′ resulting in the cross-centroid C(m)[m′](c). Notice that, m and
m′ may be equal re-enforcing then the mono-modality aspect of the centroid.
More formally, a cross-centroid is computed as follows:

C(m)[m′](c) =
⊕

d′∈NN(x
(m′)
d•),d∈Lc

x
(m)
d′• w(x

(m′)
d• ,x

(m′)
d′•) (3)

where NN(x(m
′)) is the “nearest neighbors” function returning the set of nearest

neighbors of x in the mode m′ and using any traditional similarity measure of

information retrieval, the function w(x
(m′)
d• ,x

(m′)
d′•) gives a weight proportional to

the (mono-modal) similarity between both elements.

4 Multi-modal Late Fusion

To assess the affinity of an unlabeled observation to a specific class c, we com-
pute its global similarity with the different centroids (i.e. mono modal and cross-

modal) representing each class. The multi-modal unlabeled input, x
(•)
u• , is com-

pared mode by mode with the different centroids. Then, a global membership
score is deduced from a linear combination of each mode contribution. The global
score is thus computed as follows:

RSV (c,x
(•)
u•) =

∑
m

αc,m sim(C(m),x
(m)
u•)

+
∑
m

∑
m′

βc,m,m′ sim(C(m)[m′],x
(m)
u•) (4)

where αc,m and βc,m,m′ are positive weights summing up to 1. The “sim” function
may be any traditional similarity measure used in information retrieval. The
first part of Equation 4 denotes the simple sum of the similarities of each mode.
This part does not cover any interaction across the modes. The last part of
the equation aims at capturing the interactions across the different modes by
computing the similarity with cross-modal centroids. In the remainder, we will
show empirically that computing these cross-modal similarities lead to better
performance for multi-modal categorization tasks. As with late fusion, the hyper-
parameters can be learned in order to maximize a specific utility function (by
cross-validation), for example: precision@1 or NDCG@10.

Extension of the Rocchio Classification Method 135

5 Experiments and Discussions

5.1 The ENRON Data Set

The introduced multi-modal (MM) framework is validated on the ENRON
dataset. This dataset consists of a set of vectors and matrices that represent the
whole ENRON corpus [see, e.g., 11], after linguistic preprocessing and metadata
extraction. The linguistic preprocessing consists of removing some particular
artefacts of the collection (for instance some recurrent footers, that have noth-
ing to do with the original collection but indicate how the data were extracted),
removing headers for emails (From/To/. . . fields), removing numerals and strings
formed with non-alphanumeric characters, lowercasing all characters, removing
stopwords as well as words occurring only once in the collection. There are two
types of documents: documents are either (parent) emails or attachments (an
attachment could be a spreadsheet, a power-point presentation, . . . ; the conver-
sion to standard plain text is already given by the data provider). The ENRON

collection contains 685,592 documents (455,449 are parent emails, 230,143 are
attachments) extracted from 151 different mailboxes. We decided to process the
attachments simply by merging their textual content with the content of the
parent email, so that we have to deal only with parent emails. For parent emails,
we have not only the content information, but also metadata. The metadata
consist of:

– the custodian (i.e. the person who owns the mailbox from which this email
is extracted);

– the location (i.e. the folder decomposition of each mailbox owner);
– the date or timestamp;
– the Subject field (preprocessed in the same way as standard content text);
– the From field;
– the To field ;
– the CC field.

After preprocessing, we summarize the data by two views for each data point:
the textual view and the social view. The textual view consists of a bag-of-word
representation of the aggregation of the “Body” vector, the “Attachment” vector
and “Subject” vector. The social view is a vector in the bag-of-participants space
which is the aggregation of the “From” vector, the “To” vector and the “Cc”
vector.

For the foldering task, among the 151 available mailboxes, we consider 7
mailboxes having a sufficient amount of folders selected in [5]. Furthermore,
we removed folders which are not specific to the considered mailbox but which
have been automatically generated by an email client software. For instance, the
folders “All documents”, “Calendar”, “Sent mail”, “Deleted Items”, “Inbox”,
“Sent Items”, “Unread Mail”, “Contacts” and “Drafts” have been discarded
from the evaluation. Statistics on the seven selected folders are reported in Table
1. For the recipient proposal task, we report results for three mailboxes among
the five having the largest amount of emails in the collection, namely: Vince J.
Kaminski, Jeff Dasovich and Tana Jone’s mailboxes.

136 A. Mantrach and J.-M. Renders

Table 1. Folders distribution among of the preprocessed mailboxes used for the
foldering task

Mailbox #Folders Total #em Min #em. Max #em. Aver # em/Folder

Beck 60 258 1 27 4.30
Farmer 27 1689 1 528 62.56

Kaminski 32 842 1 120 26.31
Kitchen 51 4162 1 784 81.61
Lokay 14 1837 1 915 131.21
Sanders 20 411 2 181 20.55
Williams 21 2043 1 1076 97.29

5.2 Benchmark Protocol

The proposed model is tested on two different mail management tasks: (1) email
foldering whose goal is to retrieve the correct folder in which an email should go
using all its information (i.e. textual content and social metadata), (2) recipient
proposal whose goal is to automatically propose recipient candidates for a new
written message based only on the textual part of the email. It is important
to note that the temporal aspect plays here a big role. Indeed, it would be
generally easier to predict the recipient of new emails based on recent posts
than on old ones. This comes from the fact that generally emails are part of a
global discussion thread. In case of foldering, users may create folders, delete or
move emails after an amount of time, for instance to the “Trash” folder to free
memory on the server. We could introduce the temporal aspect in our model
when building centroids by weighting the contribution of each message using
the timestamp meta data. However, in order to compare more fairly with state-
of-the-art LR and ER fusion methods we decide to not include the temporal
information directly into the model. Instead, we decide to make training-test
splits which reflect the sequential aspect of the data such that the compared
methods are tested on more recent emails than those used during the training
phase. Hence, we assume that the emails of the collection are sorted by increasing
order of their timestamp.

For the foldering task, we consider training sets composed by 50% of the
mailbox. After learning, the goal is to predict the folder of the next 10% emails
in the temporal sequence. For example, when considering a training set made
from the first 50% of the collection (i.e. in terms of timestamp), the test set then
consists of the emails in the interval 50%-60%. By time-shifting the training and
the test sets by 10%, we may consider training on the emails going from 10% to
60% and test on the next 10%, and so on. So that, finally, we define 5 possible
training and test sets. The different methods require some hyper-parameters to
be set. For this purpose, during each training phase, hyper-parameters are tuned
internally by dividing the 50% training set into 40% internal-training and 10%
internal-test. For the recipient proposal task, we consider training sets and test
sets made each by 10% of the mailbox. By time-shifting by 10% the training-test
sets we define 9 different splits. The first two splits are used as validation set for

Extension of the Rocchio Classification Method 137

Table 2. Table presenting the results for a foldering task averaged on 5 chronological
ordered training-test pairs for the Beck’s, Farmer’s, Kaminski’s and Kitchen’s mail-
boxes. The state-of-the art methods late fusion (LF) and early fusion (EF) are com-
pared with the proposed multi-modal framework. The reported performance measure
for this mono-label classification task are the Recall@1,@5, @10, the NDCG@10 and
the NDCG. The hyper-parameters of each algorithm has been tuned on an independent
validation set.

Alg. R@1 R@3 R@5 R@10 NDCG@10 NDCG
Beck’s mailbox

MM 0.55 +/- 0.15 0.68 +/- 0.12 0.71 +/- 0.08 0.77 +/- 0.11 0.66 +/- 0.11 0.68 +/- 0.10
LF 0.42 +/- 0.1 0.57 +/- 0.06 0.62 +/- 0.06 0.70 +/- 0.04 0.56 +/- 0.06 0.60 +/- 0.06
EF 0.46 +/- 0.14 0.63 +/- 0.15 0.65 +/- 0.11 0.69 +/- 0.09 0.59 +/- 0.12 0.63 +/- 0.10

Farmer’s mailbox
MM 0.68 +/- 0.11 0.82 +/- 0.09 0.87 +/- 0.08 0.89 +/- 0.07 0.79 +/- 0.08 0.81 +/- 0.08
LF 0.65 +/- 0.14 0.79 +/- 0.13 0.81 +/- 0.12 0.86+/- 0.09 0.76 +/- 0.12 0.78 +/- 0.11
EF 0.68 +/- 0.13 0.77 +/- 0.12 0.81 +/- 0.11 0/85 +/- 0.08 0.76 +/- 0.11 0.78 +/- 0.10

Kaminski’s mailbox
MM 0.54 +/- 0.20 0.68 +/- 0.21 0.73 +/- 0.16 0.82 +/- 0.18 0.67 +/- 0.19 0.70 +/-0.18
LF 0.44 +/- 0.19 0.61 +/- 0.25 0.67 +/- 0.22 0.77 +/- 0.17 0/60 +/- 0.19 0.63 +/- 0.19
EF 0.51 +/- 0.22 0.61 +/- 0.21 0.67 +/- 0.23 0.78 +/- 0.21 0.63 +/- 0.21 0.66 +/- 0.20

Kitchen’s mailbox
MM 0.42 +/- 0.13 0.65 +/- 0.07 0.77 +/- 0.07 0.87 +/- 0.08 0.63 +/- 0.09 0.65 +/- 0.08
LF 0.41 +/- 0.12 0.65 +/- 0.16 0.75 +/- 0.13 0.81 +/- 0.14 0.61 +/- 0.13 0.64 +/- 0.12
EF 0.44 +/- 0.12 0.64 +/- 0.12 0.74 +/- 0.10 0.83 +/- 0.10 0.63 +/- 0.11 0.66 +/- 0/09

tuning the hyper-parameters of the different methods. The remaining splits are
used for assessing the performance of the different algorithms.

5.3 Classification Models and Tuning

The benchmarked classification models are (1) the MM model proposed in this
paper, the (2) EF model and the (3) LF model. For the EF and LF fusion
models we use a one-vs-rest logistic regression classifier with a l2-norm regu-
larization. This provides, after normalization, the posterior probability of each
class given a test data point. As previously said, the regularization parameter is
internally tuned during training for the foldering task, or tuned on an indepen-
dent validation set for the recipient proposal task. For the LF strategy, the best
convex combination (i.e. achieving the best performance in terms of NDCG@10
on a independent data set) of the mono-modal classifiers is kept for the test.

For the MM model, a set of parameters has to be learned for each class
corresponding to the weights given to each centroid by the model. The class
parameters are learned using a logistic regression where a positive target (+1)
is associated to data points that belongs to the class and negative target (0) for
unlabeled points. For classes with less than 30 data points, we use an uniform
convex combination of the weights.

Note that the number of nearest-neighbors used for computing “cross-modal”
centroids has been set to 10. The results obtained on 5, 20 and 30 nearest-
neighbors lead to the same observations.

138 A. Mantrach and J.-M. Renders

Table 3. Table presenting the results for a foldering task averaged on 5 chronological
ordered training-test pairs for the Lokay’s, Sanders’s and Williams’s mailboxes. The
state-of-the art methods late fusion (LF) and early fusion (EF) are compared with the
proposed multi-modal framework. The reported performance measure for this mono-
label classification task are the Recall@1,@5, @10, the NDCG@10 and the NDCG. The
hyper-parameters of each algorithm has been tuned on an independent validation set.

Alg. R@1 R@3 R@5 R@10 NDCG@10 NDCG
Lokay’s mailbox

MM 0.80 +/- 0.04 0.92 +/- 0.05 0.95 +/- 0.04 0.96 +/- 0.04 0.89 +/- 0.04 0.89 +/- 0.04
LF 0.77 +/- 0.04 0.90 +/- 0.05 0.94 +/- 0.04 0.96 +/- 0.04 0.87 +/- 0.04 0.87 +/- 0.04
EF 0.81 +/- 0.05 0.91 +/- 0.06 0.95 +/- 0.05 0.96 +/- 0.04 0.89 +/- 0.05 0.89 +/- 0.05

Sanders’s mailbox
MM 0.82 +/- 0.12 0.86 +/- 0.13 0.88 +/- 0.10 0.92 +/- 0.12 0.86 +/- 0.12 0.87 +/- 0.11
LF 0.70 +/- 0.13 0.84 +/- 0.13 0.86 +/- 0.13 0.90 +/- 0.15 0.80 +/- 0.13 0.82 +/- 0.12
EF 0.78 +/- 0.14 0.82 +/- 0.14 0.86 +/- 0.16 0.89 +/- 0.15 0.83 +/- 0.14 0.84 +/- 0.13

Williams’s mailbox
MM 0.68 +/- 0.34 0.80 +/- 0.38 0.81 +/- 0.38 0.81 +/- 0.36 0.76 +/- 0.36 0.77 +/- 0.33
LF 0.74 +/- 0.37 0.80 +/- 0.39 0.81 +/- 0.38 0.81 +/- 0.38 0.78 +/- 0.38 0.79 +/- 0.35
EF 0.74 +/- 0.37 0.80 +/- 0.38 0.81 +/- 0.38 0.78 +/- 0.37 0.78 +/- 0.37 0.79 +/- 0.34

5.4 Results and Discussion

Foldering Task: The obtained results for the MM, EF and LF are reported
in Table 2 and Table 3. The retrieval measure performance are the recall at
rank 1 (R@1), the recall at rank 3 (R@3), the recall at rank 5 (R@5) and the
recall at rank 10 (R@10), knowing that, for each data point, there is only one
relevant folder. We measure also the normalized discounted cumulative gain,
limited to rank 10 (NDCG@10) and on the whole set of folders (NDCG). The
reported scores are the results averaged over the 5 sequential training-test pairs.
Clearly, for 4 of the 7 mailboxes (namely: Beck, Farmer, Kaminski and Sanders)
the proposed MM framework outperforms the EF and the LF strategies. The
scores in bold mean that the performances are significantly better (verified by
a signed test with a p-value < 0.05). Moreover, the EF and LF methods never
outperforms the MM approach on all the measures simultaneously. Although the
LF is generally the preferred approach for a foldering task on this data set (see,
e.g. [6]), we observe in our tests that EF is always better or equivalent for all the
performance measures than LF. Hence, we argue that often EF is not correctly
used. Indeed, it is important to normalize independently each view before fusion
due to the semantic difference that may exist between the views. The results
reported on William’s mailbox have a large variance. This is because, at the
second time step, new folders have been created by the user for which no emails
or a few were present in the training. In the real world, this realistic case often
happen, therefore designing sequential training-test splits is critical in order to
fairly assess the performance of the system.

Recipient Proposal. The results are reported for three different mailboxes in Ta-
ble 4. The recipient proposal task is a multi-label classification task for which
the performance are measured using the macroF1 (maF1), the mean average
precision (MAP) and the NDCG. For the MM framework, we also report the

Extension of the Rocchio Classification Method 139

Table 4. Averaged performance measures on 7 different time slots of size 10 % (i.e.
training size of 10 %) for Kaminski’s, Dasovich’s and Jone’s mailboxes on a recipient
proposal task. The state-of-the art methods late fusion (LF) and early fusion (EF)
are compared with the proposed multi-modal framework. The reported performance
measure for this multi-label classification task are the maF1, the MAP and the NDCG.
The hyper-parameters of each algorithm has been tuned on an independent validation
set.

Model maF1 MAP NDCG

Kaminski’s mailbox

C(text) 0.16 +/- 0.03 0.24 +/- 0.05 0.40 +/- 0.07

C(text)[text] 0.38 +/- 0.06 0.44 +/- 0.09 0.55 +/- 0.11

C(text)[participant] 0.11 +/- 0.02 0.13 +/- 0.03 0.24 +/- 0.04

C(participant) 0.04 +/- 0.01 0.11 +/- 0.01 0.26 +/- 0.04

C(participant)[participant] 0.11 +/- 0.01 0.21 +/- 0.02 0.37 +/- 0.04

C(participant)[text] 0.02 +/- 0.01 0.04 +/- 0.01 0.15 +/- 0.02

αC(text) + (1− α)C(participant) 0.18 +/- 0.03 0.26 +/- 0.05 0.42 +/- 0.07
EF 0.29 +/- 0.16 0.34 +/- 0.18 0.45 +/- 0.19
LF 0.30 +/- 0.16 0.35 +/- 0.18 0.46 +/- 0.19
RSV 0.40 +/- 0.05 0.46 +/- 0.08 0.57 +/- 0.11

Dasovich’s mailbox

C(text) 0.61 +/- 0.14 0.25 +/- 0.06 0.46 +/- 0.04

C(text)[text] 0.66 +/- 0.14 0.28 +/- 0.06 0.48 +/- 0.07

C(text)[participant] 0.57 +/- 0.14 0.25 +/- 0.03 0.47 +/- 0.02

C(participant) 0.62 +/- 0.08 0.30 +/- 0.04 0.49 +/- 0.03

C(participant)[participant] 0.74 +/- 0.15 0.38 +/- 0.04 0.54 +/- 0.04

C(participant)[text] 0.78 +/- 0.09 0.37 +/- 0.04 0.49 +/- 0.03

αC(text) + (1− α)C(participant) 0.67 +/- 0.12 0.31 +/- 0.04 0.50 +/- 0.04
EF 0.36 +/- 0.06 0.41 +/- 0.06 0.52 +/- 0.06
LF 0.37 +/- 0.06 0.41 +/- 0.06 0.52 +/- 0.06
RSV 0.79 +/- 0.07 0.40+/- 0.08 0.55+/- 0.06

Jone’s mailbox

C(text) 0.86 +/- 0.06 0.41 +/- 0.07 0.55 +/- 0.05

C(text)[text] 0.90 +/- 0.05 0.45 +/- 0.06 0.56 +/- 0.05

C(text)[participant] 0.83 +/- 0.07 0.39 +/- 0.06 0.54 +/- 0.04

C(participant) 0.80 +/- 0.05 0.40 +/- 0.07 0.55 +/- 0.05

C(participant)[participant] 0.86 +/- 0.07 0.47 +/- 0.06 0.60 +/- 0.04

C(participant)[text] 0.79 +/- 0.04 0.38 +/- 0.06 0.54 +/- 0.05

αC(text) + (1− α)C(participant) 0.86 +/- 0.04 0.41 +/- 0.06 0.55 +/- 0.04
EF 0.46 +/- 0.12 0.50 +/- 0.09 0.59 +/- 0.06
LF 0.46 +/- 0.12 0.12 +/- 0.09 0.59 +/- 0.06
RSV 0.91 +/- 0.04 0.50 +/- 0.06 0.60 +/- 0.05

140 A. Mantrach and J.-M. Renders

results obtained individually by each centroid. Moreover, in addition of report-
ing the results obtained by the EF and LF baselines, we also report the results
obtained by the MM-baseline which consists of using only a combination of the
mono-modal centroids.(in other words, the combination of the textual centroid
and the social centroid : αC(text) + (1 − α)C(participant)). On the three tested
mailboxes, the proposed MM framework outperforms the EF and the LF and
the simple combination of the textual and the social centroids. The scores in
bold mean that the performances are significantly better (verified by a signed
test with a p-value < 0.05). Notice that, on the Kaminski’s mailbox, textual cen-
troids obtained a better score than the social centroids, while on the Dasovitch’s
mailbox social centroids obtained a better score than the textual centroids.

6 Related Work

In a fully supervised setting, as pointed out in [3], multi-view learning usually
performs worse than learning on the union of all views. Hence, a few has been
done in this field. For instance, [12] proposed a method that combines a two stage
learning (KCCA followed by SVM) into a single optimization termed “SVM-
2K”. Others have considered working on a graph representation of the data. For
instance, [13] exploited hyperlinks between web pages in order to improve tra-
ditional classification tasks using only the content. [14] studied the composition
of kernels in order to improve the performance of a soft-margin support vector
machine classifier. [15, 16] used both local text in a document as well as the
distribution of the estimated classes of other documents in its neighborhood,
to refine the class distribution of the document being classified. Their frame-
work has been tested for the semi-supervised and fully-supervised classification
as well. More recently, [17] proposes to learn the weights of a namely ”supervised
random walk” using both the information from the network structure and the
attribute data.

In this paper we introduce an extension of the classical Rocchio classification
algorithm also known as the nearest centroid or nearest prototype classifier (see
[18]) to the multi-modal case. An extension of this algorithm using kernel-based
similarities has been introduced in [19]. A probabilistic variant of the Rocchio
classifier has been proposed in [20].

7 Conclusions

In this work, we introduced a novel and simple algorithm in order to deal with
multi-modal fully supervised classification. To this purpose, we extended the
traditional Rocchio classification algorithm by defining mono-modal and multi-
modal centroids. The introduced framework has the advantage of searching for
a high consensus among views using scores reflecting the interactions between
the different existing modes. We showed on two different tasks – a foldering
task and recipient prediction task – that the proposed multi-modal framework
outperforms state-of-the-art approaches: the early fusion and the late fusion. As

Extension of the Rocchio Classification Method 141

further research, we would like to investigate multi-view learning with latent
spaces and interactions between latent variables.

References

[1] Abney, S.P.: Bootstrapping. In: Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pp. 360–367 (2002)

[2] Zhu, X.: Semi-supervised learning literature survey. Technical report (2008)

[3] Ruping, S., Scheffer, T.: Learning with multiple views proposal for an icml work-
shop. In: Proceedings of the ICML 2005 Workshop on Learning With Multiple
Views, Bonn, Germany, August 11, pp. 1–7 (2005)

[4] Manning, C., Raghavan, P., Schutze, H.: Introduction to information retrieval.
Cambridge University Press (2008)

[5] Bekkerman, R., McCallum, A., Huang, G.: Automatic categorization of email
into folders: Benchmark experiments on enron and sri corpora. Technical report,
University of Massachusetts (2004)

[6] Tam, T., Ferreira, A., Lourenço, A.: Automatic Foldering of Email Messages:A
Combination Approach. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cam-
bazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS,
vol. 7224, pp. 232–243. Springer, Heidelberg (2012)

[7] Liu, T., Xu, J., Qin, T., Xiong, W., Li, H.: Letor: Benchmark dataset for research
on learning to rank for information retrieval. In: Proceedings of SIGIR 2007 Work-
shop on Learning to Rank for Information Retrieval, pp. 3–10 (2007)

[8] Xu, J., Li, H.: Adarank: a boosting algorithm for information retrieval. In: Pro-
ceedings of the 30th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 391–398. ACM (2007)

[9] Yue, Y., Finley, T., Radlinski, F., Joachims, T.: A support vector method for
optimizing average precision. In: ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR), pp. 271–278 (2007)

[10] Clinchant, S., Renders, J.-M., Csurka, G.: Trans-Media Pseudo-Relevance Feed-
back Methods in Multimedia Retrieval. In: Peters, C., Jijkoun, V., Mandl, T.,
Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007.
LNCS, vol. 5152, pp. 569–576. Springer, Heidelberg (2008)

[11] Klimt, B., Yang, Y.: The Enron Corpus: A New Dataset for Email Classification
Research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004)

[12] Farquhar, J.D.R., Hardoon, D.R., Meng, H., Shawe-Taylor, J., Szedmák, S.: Two
view learning: Svm-2k, theory and practice. In: Proceedings of Advances in Neural
Information Processing Systems, pp. 355–362 (2005)

[13] Slattery, S., Mitchell, T.: Discovering test set regularities in relational domains.
In: Proceedings of the 7th International Conference on Machine Learning (ICML
2000), pp. 895–902 (2000)

[14] Joachims, T., Cristianini, N., Shawe-Taylor, J.: Composite kernels for hypertext
categorisation. In: Proceedings of the International Conference on Machine Learn-
ing (ICML 2001), pp. 250–257 (2001)

[15] Chakrabarti, S., Dom, B., Indyk, P.: Enhanced hypertext categorization using
hyperlinks. In: Proceedings of the 1998 ACM SIGMOD International Conference
on Management of Data, pp. 307–318 (1998)

142 A. Mantrach and J.-M. Renders

[16] Oh, H., Myaeng, S., Lee, M.: A practical hypertext catergorization method using
links and incrementally available class information. In: Proceedings of the 23rd
International ACM Conference on Research and Development in Information Re-
trieval (SIGIR 2000), pp. 264–271. ACM (2000)

[17] Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommend-
ing links in social networks. In: Proceedings of the Forth International Conference
on Web Search and Web Data Mining, WSDM 2011, Hong Kong, China, pp.
635–644 (2011)

[18] Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Diagnosis of multiple can-
cer types by shrunken centroids of gene expression. Proceedings of the National
Academy of Sciences 99(10) 99(10), 6567 (2002)

[19] Scholkopf, B., Smola, A.: Learning with kernels. The MIT Press (2002)
[20] Joachims, T.: A probabilistic analysis of the rocchio algorithm with tfidf for text

categorization. In: Proceedings of International Conference on Machine Learning
(ICML 1997), pp. 143–151 (1997)

Label-Noise Robust Logistic Regression

and Its Applications

Jakramate Bootkrajang and Ata Kabán

School of Computer Science, The University of Birmingham,
Birmingham, B15 2TT, UK

{J.Bootkrajang,A.Kaban}@cs.bham.ac.uk

Abstract. The classical problem of learning a classifier relies on a set
of labelled examples, without ever questioning the correctness of the
provided label assignments. However, there is an increasing realisation
that labelling errors are not uncommon in real situations. In this pa-
per we consider a label-noise robust version of the logistic regression
and multinomial logistic regression classifiers and develop the following
contributions: (i) We derive efficient multiplicative updates to estimate
the label flipping probabilities, and we give a proof of convergence for
our algorithm. (ii) We develop a novel sparsity-promoting regularisa-
tion approach which allows us to tackle challenging high dimensional
noisy settings. (iii) Finally, we throughly evaluate the performance of
our approach in synthetic experiments and we demonstrate several real
applications including gene expression analysis, class topology discovery
and learning from crowdsourcing data.

1 Introduction

In the context of supervised learning, a classification rule is to be derived from a
set of labelled examples. Regardless of the learning approach used, the induction
of the classification rule crucially relies on the given class labels. Unfortunately,
there is no guarantee that the class labels are all correct. The presence of class
label noise inherent in training samples has been reported to deteriorate the
performance of the existing classifiers in a broad range of classification problems
[12,25,21]. Remarkably, examples of mislabelling have been reported even in
biomedical sciences where the number of instances is only of the order of tens
[1,15,26]. There is an increasing research literature that aims to address the
issues related to learning from samples with noisy class label assignments. The
seemingly straightforward approach is by means of data preprocessing where
any suspect samples are removed or relabelled [3,2,9]. However, these approaches
hold the risk of removing useful data too, especially when the number of training
examples is limited.

In this paper, we take a model based approach and consider a label-noise
robust logistic regression and multinomial logistic regression. There are already
several works employing latent variable models of this kind, especially in the
field of epidemiology, econometrics and computer-aided diagnosis (see [20,7,23]

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 143–158, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

144 J. Bootkrajang and A. Kabán

and references therein), and more recently for learning from crowds [23]. Our
approach develops these ideas further while it differs in certain respects. [20]
studied label-noise robust logistic regression with known label flipping probabil-
ities but they reckon problems when these probabilities are unknown. In turn, we
try to learn the classifier jointly with estimating the label flipping probabilities.
The robust model discussed in [7] is also structurally similar to ours although
they provided no algorithmic solution to learning the model. In contrast, one of
our novel contributions in this paper is to develop an efficient learning algorithm
together with a proof of its convergence. The recent work in [23] focuses on
learning from multiple noisy labels and demonstrate that multiple sets of noisy
labels increases performance. In contrast, our goal is to learn with a single set
of noisy labels – which is considerably harder. In addition, we develop a novel
sparsity-promoting regularisation approach which allows us to tackle challenging
high dimensional noisy settings.

2 Label-Noise Robust Logistic Regression

We now describe the label-noise robust logistic regression (rLR) model. We will
use the term ‘robust’ to differentiate this from traditional logistic regression
(LR). Consider a set of training data D = {(x1, ỹ1), . . . , (xN , ỹN)}, where xn ∈
Rm and ỹn ∈ {0, 1}, where ỹn denotes the observed (possibly noisy) label of xn.
In the classical scenario for binary classification, the log likelihood is defined as:

N∑
n=1

ỹn log p(ỹ = 1|xn,w) + (1− ỹn) log p(ỹ = 0|xn,w). (1)

where w is the weight vector orthogonal to the decision boundary and it deter-
mines the orientation of the separating plane. If all the labels were presumed
to be correct, we would have p(ỹ = 1|xn,w) = σ(wTxn) = 1

1+e(−wT xn)
and

whenever this is above 0.5 we would decide that xn belongs to class 1.
However, when label noise is present, making predictions in this way is no

longer valid. Instead we will introduce a latent variable y, to represent the true
label, and we model p(ỹ = k|xn,w) as the following:

p(ỹ = k|xn,w) =

1∑
j=0

p(ỹ = k|y = j)p(y = j|xn,w)
def
= Sk

n (2)

where k ∈ {0, 1}. Therefore, instead of Eq.(1), we define the log likelihood of our
model as the following:

L(w) =

N∑
n=1

ỹn logS
1
n + (1− ỹn) logS

0
n (3)

In Eq.(2), p(ỹ = k|y = j)
def
= γjk represents the probability that the label

has flipped from the true label j into the observed label k. These parameters

Label-Noise Robust Logistic Regression and Its Applications 145

form a transition table that we will refer to as the ‘gamma matrix’ from now
on. Now, to classify a novel data point xq, we predict that ŷq = 1 whenever
p(y = 1|xq,w) = σ(wTxq) =

1

1+e(−wT xq)
returns a value greater than 0.5, and

ŷq = 0 otherwise.

2.1 Parameter Estimation with Multiplicative Updates

Learning the rLR requires us to estimate the weight vector w as well as the
label-flipping probabilities γjk. To optimise the weight vector, we can use any
nonlinear optimiser. Here we decided to employ conjugate gradients because of
its well known computational efficiency, which basically performs the Newton
update step along the direction u = g − uoldβ, where g = ∇wL(w) is the
gradient:

g =
N∑

n=1

[(
ỹn(γ11 − γ01)

S1
n

+
(1− ỹn)(γ10 − γ00)

S0
n

)
σ(wTxn)(1− σ(wTxn)) · xn

]
(4)

One may verify that setting γ01 and γ10 to 0 and γ00, γ11 to 1, after some
algebra, Eq.(4) will reduce to the well-known gradient expression of classical
logistic regression. The parameter β that works best in practice can be obtained

from the Hestenes-Stiefel formula, β = gT (g−gold)
(uold)T (g−gold)

. Then, the update equation

for w is simply the following:

wnew = wold − gTu

uTHu
u, (5)

where H is the Hessian matrix.
To obtain the updates for the label-flipping probabilities, we introduce La-

grange multipliers to ensure that γ00 + γ01 = 1 and γ10 + γ11 = 1. Conveniently,
after some algebra, the stationary equations yield the following multiplicative
update equations:

γ00 =
γ00

∑N
n=1

[
(1−ỹn)

S0
n

(1− σ(wTxn))
]

γ00
∑N

n=1

[
(1−ỹn)

S0
n

(1− σ(wTxn))
]
+ γ01

∑N
n=1

[
ỹn
S1
n
(1− σ(wTxn))

] (6)

γ11 =
γ11

∑N
n=1

[
ỹn
S1
n
σ(wTxn)

]
γ10

∑N
n=1

[
(1−ỹn)

S0
n

σ(wTxn)
]
+ γ11

∑N
n=1

[
ỹn
S1
n
σ(wTxn)

] (7)

Our rLR training algorithm is then to alternate between updating each parame-
ter in turn, until convergence. It is worth noting that the objective we are trying
to optimise is non-convex. Hence, the result will inevitably depend on the initial-
isation of those parameters, and we will return to this point in the experimental
section. However, convergence to a local optimum is guaranteed, as we shall see
shortly.

146 J. Bootkrajang and A. Kabán

2.2 Multiclass Label-Noise Robust Logistic Regression

It is both useful and straightforward to generalise the two-class rLR of the pre-
vious section to multiclass problems. We again introduce the true class label y
as a latent variable and write:

p(ỹ = k|xn,wk) =

K−1∑
j=0

p(ỹ = k|y = j) · p(y = j|xn,wj)
def
= Sk

n (8)

where p(y = k|xn,wk) is modelled using a softmax function, e(w
T
k xn)∑K−1

l=0 e(w
T
l

xn)
, and

wk is the weight vector corresponding to class k. The maximum likelihood (ML)
estimate of wk is obtained by maximising the data log-likelihood,

L(w) =
N∑

n=1

K−1∑
k=0

δ(ỹn = k) logSk
n (9)

where δ(ỹn = k) is the Kronecker delta function that gives the value 1 when its
argument is true and the value 0 otherwise. The optimisation is again accom-
plished using the conjugate gradient method where the gradient becomes:

g =

N∑
n=1

K−1∑
k=0

δ(ỹn = k)

Sk
n

×
e(w

T
c xn)xn

(∑K−1
j=0 (γck − γjk) · e(w

T
j xn)

)
(∑K−1

l=0 e(w
T
l xn)

)2 (10)

Further, the estimates of γjk in the gamma matrix again can be obtained by
efficient multiplicative update equations:

γjk =
1

C
× γjk

N∑
n=1

δ(ỹn = k)

Sk
n

· e(w
T
j xn)∑K−1

l=0 e(w
T
l xn)

, (11)

where the constant term C equals
∑K−1

k=0 γjk
∑N

n=1
δ(ỹn=k)

Sk
n

× e
(wT

j xn)

∑K−1
l=0 e(w

T
l

xn)
.

To classify a new point, we decide ŷq = argmaxk
e(w

T
k xq)∑K−1

l=0 e(w
T
l

xq)
.

3 Convergence of the Algorithm

We shall now prove that the learning algorithms proposed in the previous sec-
tions, for both rLR and rmLR, converge. The idea of the proof is to show that
the objective function being optimised, Eq.(9) is nondecreasing under any of our
parameter updates. Indeed, the maximisation w.r.t. the weight vector w by the
conjugate gradient method (CG) enjoys the known property of CG to provide
monotonically improving estimation of the target [8], which guarantees that an
objective function being maximised is nondecreasing. Now, it remains to prove
that our multiplicative updates for γjk are also guaranteed to be nondecreasing.
To do this, we use the notion of an auxiliary function, in a similar spirit to the
proofs in [14].

Label-Noise Robust Logistic Regression and Its Applications 147

Definition 1. G(h, h′) is an auxiliary function for F (h) if

G(h, h′) ≤ F (h), G(h, h) = F (h) (12)

are satisfied.

The definition is useful because of the following lemma.

Lemma 1. [14] If G is an auxiliary function, then F is nondecreasing under
the update

hi+1 = argmax
h

G(h, hi) (13)

Proof. F (hi+1) ≥ G(hi+i, hi) ≥ G(hi, hi) = F (hi)

We will show that by defining an appropriate auxiliary function to the objective
function Eq. (9), regarded as a function of Γ , the update equations Eq.(11) for
γjk are guaranteed to converge to a local optimum.

Lemma 2. Define

G(Γ, Γ̃) =

N∑
n=1

K−1∑
k=0

δ(ỹn = k)

K−1∑
j=0

γ̃jkp(y = j|xn,w)∑K−1
l=0 γ̃lkp(y = l|xn,w)

×(
log γ̃jkp(y = j|xn,w)− log

γ̃jkp(y = j|xn,w)∑K−1
l=0 γ̃lkp(y = l|xn,w)

)
(14)

This is an auxiliary function for

L(Γ) =

N∑
n=1

K−1∑
k=0

δ(ỹn = k) log

K−1∑
j=0

γjkp(y = j|xn,w) (15)

Proof. For G(Γ, Γ̃) to be an auxiliary function it needs to satisfy the aforemen-
tioned conditions. It is straightforward to verify that G(Γ, Γ) = L(Γ). To show
that G(Γ i+1, Γ i) ≤ L(Γ i+1), we observe that:

log
K−1∑
j=0

γjkp(y = j|xn,w) ≥
K−1∑
j=0

αjk log

(
γjkp(y = j|xn,w)

αjk

)
, (16)

by Jensen’s inequality and due to the convexity of the log function. This inequal-
ity is valid for all non-negative αjk that sum to one. Setting

αjk =
γ̃jkp(y = j|xn,w)∑K−1
l=0 γ̃lkp(y = l|xn,w)

, (17)

we see that our objective function L(Γ) is always greater than or equal to the
auxiliary function (14).

148 J. Bootkrajang and A. Kabán

Lemma 3. The multiplicative update rule of the label flipping probability γjk
given in Eq. (11) is guaranteed to converge.

Proof. The maximum of G(Γ, Γ̃) with respect to γjk is found by setting the
derivative to zero:

dG(Γ, Γ i)

dγjk
=

N∑
n=1

δ(ỹn = k)
αjk

γjk
− λ = 0, (18)

Using the fact that
∑

j γjk = 1, we obtain the value of the Lagrange multiplier
λ. Putting it back into Eq. (18) we arrive at:

γjk =
1

C
× γ̃jk

N∑
n=1

δ(ỹn = k) · p(y = j|xn,w)∑K−1
l=0 γ̃lkp(y = l|xn,w)

, (19)

where C equals
∑K−1

k=0 γ̃jk
∑N

n=1 δ(ỹn = k) p(y=j|xn,w)∑K−1
l=0 γ̃lkp(y=l|xn,w)

. Writing out pos-

terior probability p(y = j|xn,w) as a softmax function and noting that by defini-

tion
∑K−1

l=0 γ̃lkp(y = l|xn,w) equals Sk
n, Eq. (19) then takes the same form as the

update rule in Eq. (11). Since G(Γ, Γ̃) is an auxiliary function, it is guaranteed
that the value of L is nondecreasing under this update.

Theorem 1. By alternating between the updates of the weight vector w while the
matrix Γ is held fixed, and the updates of the elements of Γ while w is fixed, the
objective function of rmLR is nondecreasing and is thus guaranteed to converge.

Proof. The proof follows directly from the fact that optimising w using CG
is monotonically nondecreasing and from Lemma 3, that optimising Γ is also
nondecreasing. Consequently, the objective function being optimised is mono-
tonically increasing under alternating these iterations.

Finally, note that as rmLR is a direct generalisation of rLR, the proof also covers
the case of rLR.

3.1 Comparison with EM Based Optimisation

The algorithm developed in [23] in the context of multiple sets of noisy labels
could also be instantiated for our problem, as an alternative to the above ap-
proach. The method in [23] proposes an EM algorithm where the true labels are
the hidden variables. Instead, we had these hidden variable integrated out when
optimising the parameters. It is hence interesting to see how they compare.

Similar to [23], let yn be the hidden true labels, and denote Pn = p(yn =
1|x,w, ỹn) the posterior of these. Then, the expected complete log likelihood
(so-called Q-function) can then be written as:

Q(w, Γ) =

N∑
n=1

Pn log(γ ỹn

11 γ
1−ỹn

10 σ(wTxn))+(1−Pn) log(γ
ỹn

01 γ
1−ỹn

00 (1−σ(wTxn)))

(20)

Label-Noise Robust Logistic Regression and Its Applications 149

– The E-step involves optimising Pn based on given data and current estimated
of γjk:

Pn =
γ ỹn

11 γ
1−ỹn

10 σ(wTxn)

γ ỹn

11 γ
1−ỹn

10 σ(wTxn) + γ ỹn

01 γ
1−ỹn

00 (1− σ(wTxn))
(21)

– The M-step then re-estimate the value of γjk using Pn from the E-step. For
example γ11 can be update using:

γ11 = p(ỹn = 1|yn = 1) =

∑N
n=1 Pnỹn∑N
n=1 Pn

(22)

Now, observe that substituting the r.h.s. of Pn into the M-step equations, we
recover our multiplicative form of updates – with one subtle but important
difference: In the EM approach Pn is computed with old values of the parameters
(from the previous iteration). Instead, our multiplicative updates use the latest
fresh values of all the parameters they depend on. This implies that our algorithm
has a better chance to converge in fewer iterations, and in addition it saves the
storage cost of the posteriors Pn during the iterations. Worth noting also that Pn

can be useful for interpretation— however we can compute this after convergence
using the final values of the parameters.

4 Sparse Extension via a Bayesian-Regularised
Generalised Lasso

In many real world problems, especially in biomedical domains, we are faced
with high dimensional data with more features than observations, while only a
subset of the features is relevant to the target. Sparsity-inducing regularisation
approaches have been effective in such cases [19,24,4]. In this section we show
that our model can be extended to support such regularised estimation. Akin to
generalised Lasso [24], we will employ L1-regularisation terms on each component
of w. We should mention that other approaches such as Automatic Relevance
Determination based on t-prior [19] could also be used in a similar manner.

Our regularised objective is now the following:

max
w

N∑
n=1

log p(ỹn|xn,w)−
m∑
i=1

αi|wi| (23)

where m is the number of features and αi are Lagrange multipliers that balance
between fitting the data well and having small parameter values. Eq.(23) is not
differentiable at the origin. To counter this, here we adopt a very simple, yet
effective smooth approximation originally proposed in [16] for Lq-regularisation.
This is to approximate |wi| ≈ (w2

i + γ)1/2, and we have set γ = 10−8 in the
reported experiments.

Now, the regularisation parameters αi need to be determined. The common
approach would be to use cross-validation — however, this would need to make
use of the labels of the validation sets, which have no guarantee of being correct

150 J. Bootkrajang and A. Kabán

in our problem setting. We turn to a Bayesian regularisation approach where
αi is eliminated from the model by marginalisation. Bayesian regularisation was
found comparable in performance to cross-validation [5], and in particular it was
also demonstrated to be effective for L1-regularised logistic regression [4].

Our version will be different from the one in [4] mainly because the latter is
tied to their specific implementation in that αi = α for all i for which wi �= 0,
and a Jeffreys hyperprior is posited only on these non-zero components. This
requires an estimate of the number of non-zeros. Instead, we will simply posit
independent Jeffreys priors on each αi and let the ones that are not supported
by the data die out naturally.

We begin by considering a Bayesian interpretation of the problem in Eq.(23).
That is, the posterior distribution of w, conditional on α, can be written as

p(w|D,α) ∝ p(D|w)p(w|α). (24)

Now the first term on the r.h.s is the data likelihood, while the second term cor-
responds to our regularisation term. If we take logarithm of the whole expression,
we have: log p(w|D,α) = log p(D|w) + log p(w|α) + const.

Thus, the regularisation term in Eq.(23) is just the negative logarithm of
the conditional prior distribution, conditioned on α, up to an additive con-
stant. The conditional prior p(w|α) is then given by a product of independent

Laplace distributions with parameters α: p(w|α) =
∏m

i=1 p(wi|αi) =
∏m

i=1 αi

2m exp

(−
∑m

i=1 αi|wi|) ≈
∏m

i=1 αi

2m exp
(
−
∑m

i=1 αi(w
2
i + γ)1/2

)
. Now, we want to elimi-

nate its dependency on α by marginalisation, i.e. to have the marginal prior as
the following:

p(w) =

∫
p(w|α)p(α)dα (25)

For this, we posit Jeffrey’s priors, p(αi) ∝ 1
αi
, on each αi. This is the non-

informative improper limit of a Gamma prior, and it has the advantage that it
is parameter-free. Substituting this and p(wi|αi) and performing the integral in
Eq. (25),

∫∞
0

1
αi

αi

2 exp(−αi(w
2
i + γ)1/2)dαi =

1
2(w2

i+γ)1/2
,we obtain the following

marginal prior:

p(w) =
1

2

m∏
i=1

1

(w2
i + γ)1/2

, (26)

which implies that negative log of the marginal prior − log p(w) =
∑m

i=1 log(
(w2

i + γ)1/2
)
+ const. Now, replacing the regularisation term that appears in

Eq.(23) by the above marginal prior, and taking derivative with respect to the
model parameters wi again as we did before, now we have:

∂L(w)

∂wi
=

∂

∂wi

N∑
n=1

[
ỹ log(S1

n) + (1 − ỹ) log(S0
n)
]
+

1

(w2
i + γ)1/2

∂

∂wi

(
m∑
i=1

log((w2
i + γ)1/2)

)

(27)

Label-Noise Robust Logistic Regression and Its Applications 151

From this, we read off the estimates of the regularisation parameters as:

αi =
1

(w2
i + γ)1/2

(28)

The optimisation of the log-likelihood is then to alternate between optimising w
along with updating αi according to Eq.(28) until convergence in reached, and of
course, we alternate this with the fixed point update equations of the label flip-
ping probabilities given in the previous sections. Generalising the sparse regression
procedure described in this section to multi-class settings is straightforward.

5 Experimental Validation and Applications

5.1 Simulated Label Noise

Before presenting real applications where no ground truth is available for an
objective validation, we first assess our algorithm on real world data sets us-
ing artificial class label noise. We used three standard data sets from the UCI
repository: Boston, Liver (binary) and Iris (multiclass). Since it has been shown
theoretically that symmetric label noise is relatively harmless, for example see
[18], here only asymmetric label noise of various levels was artificially injected
for the purpose of systematic testing. In addition, we will compare our result
to two existing methods: (i) Depuration [2], which is a non-parametric method
based on nearest neighbours, previously proposed for the same problem of deal-
ing with label-noise in classification; and (ii) Support Vector Machines (SVM),
which has the well-known margin and slack-variable mechanism built in, and
which may provide some robustness. The reason to compare with SVM is to
find out to what extent class label noise could be considered to be a normal
part of any classification problem — and conversely, to what extent it actually
needs the special treatment that we developed in the previous sections. Code
that reproduces the results of our experiments is available on request.

It should be noted that when applying Depuration and SVM, we again face
with the problem of model selection. A general approach to model selection is
a standard cross validation technique. Although this works well in a traditional
setting where all class labels are correct, it is no longer applicable here. This
problem was also reported in [13], However, the solution they resort to is simply
to assume that there is a trusted validation set available. This may be unrealistic
in many real situations, and especially so in small-sample problems as in [26].

Figure 1 summarises our results on three classification data sets. It is clear
that both rLR and rmLR outperform each algorithm on each of the data sets
tested. Depuration (denoted as ‘Dep’ in the figure) tends to perform well in a very
high level of noise (i.e. 50% upwards) while at the lower range, its performance is
slightly worse. The comparative results with SVM also demonstrate convincingly
that class label noise does need special attention and it is naive to consider label
noise as a normal part of classification problems. We see that our algorithm
developed explicitly for this problem does indeed achieve improved classification
performance overall.

152 J. Bootkrajang and A. Kabán

0 20 40 60 80

20

30

40

50

Noise Level (%)

G
e

n
e

ra
lis

a
tio

n
 E

rr
o

r (
%

)

SVM
Dep
mLR
rmLR
LR
rLR

(a) Boston (Binary)

0 20 40 60 80

40

50

Noise Level (%)

G
e

n
e

ra
lis

a
tio

n
 E

rr
o

r (
%

)

SVM
Dep
mLR
rmLR
LR
rLR

(b) Liver (Binary)

0 20 40 60 80

10

20

30

Noise Level (%)

G
e

n
e

ra
lis

a
tio

n
 E

rr
o

r (
%

)

Dep
mLR
rmLR

(c) Iris (Multiclass)

Fig. 1. Classification errors on real world data sets when the labels are artificially
flipped asymmetrically

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
u

e
 P

o
sit

iv
e

 R
a

te

LR
rLR

(a) Boston (Binary)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
u

e
 P

o
sit

iv
e

 R
a

te

LR
rLR

(b) Liver (Binary)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
u

e
 P

o
sit

iv
e

 R
a

te

mLR
rmLR

(c) Iris (Multiclass)

Fig. 2. ROC curves. Labels are asymmetrically flipped at 30% noise.

Next, we assess our methods’ ability to detect the instances that were wrongly
labelled. There are two types of possible errors: (i) a false positive is when a
point is believed to be mislabelled when in fact it is labelled correctly; and
(ii) a false negative is when a point is believed to be labelled correctly when
in fact its label is incorrect. A good way to summarise both, while also using
the probabilistic output given by the sigmoid or the softmax functions, may be
obtained by constructing the Receiver Operating Characteristic (ROC) curves.
Figure 2 shows the ROC curves for all real world data sets tested, at a asymmetric
noise level of 30%. Superimposed for reference we also plotted the ROC curves
that correspond to the traditional classifier that believes that all points have the
correct labels. The gap between the two curves is well apparent in all four cases
tested, and it quantifies the gain obtained by our modelling approach in each
setting. The area under the ROC curve signifies the probability that a randomly
drawn and mislabelled example would be flagged by our method. For the sake
of clarity of the graph, the results from Depuration and SVM were not included
here as we have already seen that they are inferior to rLR and rmLR. We now
turn to demonstrating real applications in several domains.

5.2 Application to Finding Mislabelled Gene Arrays in Colon
Cancer Data

So far we presented controlled experiments where the label-noise was artifi-
cially created. It is now most interesting to demonstrate the effectiveness of our

Label-Noise Robust Logistic Regression and Its Applications 153

approach on a data set whose labels are genuinely inaccurate. In this section we
take the Colon Cancer data set [1]. This contains expression levels of 2000 genes
from 40 tumour and 22 normal colon tissues, and there is some evidence in the
biological literature that label noise may be present [6,15,11,21,26].

We split the data into 52 training points and 10 test points. In order to
get a more reliable accuracy figure, we have excluded from the test set all of
the instances which are suspected to be wrong based on the existing evidence.
Instead, these instances will be placed in the training set in all the training-
testing splits that we consider. We note that the number of instances affected by
label noise is unequal for the two classes: approximately 20% of normal tissues
were labelled as tumour while 10% of tumour tissues were labelled as normal.
The nature of mislabelling corresponds to a slightly asymmetric flipping scenario
that we have previously discussed. Hence the label noise will likely perturb the
learning of traditional classifiers.

For illustrative purpose, we evaluate predictive performance on the test set
averaged over 1000 training-testing splits and observe that rLR significantly
outperform its traditional competitors and achieves an impressive accuracy with
the error rate of 2.08 ± 0.055, while the performance of LR (3.66 ± 0.064) and
SVM (4.08 ± 0.063) lag behind. We should note, these results are not directly
comparable to other studies where the mislabelled points have not been excluded
from the test set.

More importantly, biologists are interested in understanding the nature of
data rather than classification accuracy figures. Here we demonstrate the use of
algorithm for detecting the wrongly labelled instances. This is particularly useful
in scientific applications, where a sample detected as potentially mislabelled
could then be handed over to the domain expert for confirmation or further
study. In Table 1 we compare the results of previous attempts at this problem
with rLR.

The penultimate line gives the frequency rates of mislabelling detections com-
puted from 20 independent runs on the whole data set, with independent random
initialisation, and using

∑K−1
j=0,j �=ỹn

p(y = j|xn,w) thresholded at 0.5 each time.
Since the objective function that we optimise is non-convex, as mentioned pre-
viously, our greedy iterative algorithm finds one of its local optima at each run,
and hence different runs can come up with different detections depending on the
initialisation. A frequency rate of 1 means that the probability that the true la-
bel differs from the observed one for that point was estimated to be higher than
0.5 in all of the 20 repeated runs. A value of 0.15 means that it was estimated
to be higher than 0.5 in 3 out of the 20 runs.

We observe that rLR can identify up to 8 distinct mislabelled points, and these
cover all except one of the union of all previously identified mislabellings, and do
not detect any other point outside this union. We also note that this total of 8
points were not identified at any single run of our algorithm either. This suggests
that in this case having several local optima is not necessarily a bad thing for
the application, as it allows us to have different views at the problem which
may be more comprehensive than a simplified single view. The last row provides

154 J. Bootkrajang and A. Kabán

Table 1. Identifying mislabelled points from the Colon Cancer data set. The first row
is the ‘gold standard’ with biological evidence. The last two rows present our results
(see text for explanations). The rest are the results from previous studies.

Source Suspects identified Extra samples
identified

Alon et al. [1] T2 T30 T33 T36 T37 N8 N12 N34 N36
Furey et al. [6] ◦ ◦ ◦ ◦ ◦ ◦
Li et al. [15] ◦ ◦ ◦ ◦ ◦
Kadota et al. [11] ◦ ◦ ◦ ◦ ◦ T6,N2
Malossini et al. [21] ◦ ◦ ◦ ◦ ◦ ◦ ◦ T8,N2,N28,N29

reg-rLR by frequency 0.15 1.00 1.00 1.00 0 0.25 0.1 1.00 1.00
reg-rLR degree of belief 0 0.70 0.66 0.76 0 0.54 0.54 0.59 0.60

the degree of belief, ie. the actual probabilities from
∑K−1

j=0,j �=ỹn
p(y = j|xn,w),

without any thresholding, for the single best run out of the 20 independent
trials, selected by the best minimum of the objective function being minimised
by our algorithm. Seven points, namely T30,T33,T36,N8,N12,N34 and N36 were
detected in this best run. The probabilities that we see here mean the confidence
of each of these detections. Relating these back to the previous row of the table,
the frequency rates, we see that those samples that were identified with a higher
degree of belief (T33, T36, N34 and N36) also have a higher frequency of being
detected.

5.3 Application to Structure Discovery: Inferring a Class-Topology
in Multi-class Problems

The next experiment demonstrates a different use of our label-noise robust clas-
sifier, namely to infer the internal topological structure of the data classes. For
many real-world classification tasks the labelling process is somewhat subjective
as there is no clear-cut boundary between the classes. For example, in the case
of classifying text messages according to topic, some instances could be assigned
to more than one category. Thus, interpreting the gamma matrix as the adja-
cency matrix of a directed graph could reveal the internal structure of the data
set under study. To demonstrate this idea, we employed rmLR on Newsgroups1

data set. The corpus was subject to tokenisation, stop words removal, and Porter
stemming to remove the word endings prior to cosine normalisation.

Figure 3 shows the graph derived from the gamma matrix as obtained from 10
Newsgroups. Each node corresponds to a topic class while the length of an edge
connecting two nodes represents the strength of relationship between them. The
direction of arrows then correspond to the label flipping directions. It can be
seen from this graph that ‘atheism’ and ‘religion’ are related topics by looking
at the distance between the two as well as the bi-directional flipping relation,

1 Originally the Newsgroups corpus comprises 20 classes of postings, We use the subset
of 10 classes from [10], with term frequency count based encoding.

Label-Noise Robust Logistic Regression and Its Applications 155

alt.atheism

misc.forsale

sci.crypt

sci.electronics

sci.med

sci.space

talk.politics.guns

talk.politics.mideast

talk.politics.misc

talk.religion.misc

Fig. 3. Adjacency graph of the ten topics on the Newsgroups data set

which indeed agrees with our commonsense. Similar observation can also be made
between the ‘electronics’ and ‘for-sale’ postings. Further, the graph also visually
suggests various sub-groupings: for example, all classes related to politics are
clustered nearer to each other.

5.4 Application to Learning from Crowds: Learning to Classify
Images Using Cheaply Obtained Labelled Data

It is well reckoned that careful labelling of large amounts of data by human
experts is extremely tiresome. Suppose we were to train a classifier to distinguish
an image of ‘bike’ from other type of images. The standard machine learning
approach is to collect training images and manually label each of them — rather
labourious. Here, we suggest that we could reduce human expert intervention
and obtain the training data cheaply using annotated data from search engines.
By searching for images using keyword ‘bike’ we obtain a set of images that are
loosely categorised into ‘bike’ class, and similarly ‘not bike’ class by using its
negation. This allows us to acquire a large number of training data quickly and
cheaply. The problem is of course that the annotations returned by the search
engine are somewhat unreliable. This is where rLR comes into play. Here we
collected 520 images using the keyword ‘bike’ and 520 images using the keyword
‘not bike’ that we call theWebSearch2 dataset. We also manually label all images:
a ‘bike’ image is one that contains a bike as its main object and we make no
distinction between a bicycle and a motorbike, everything else is labelled as ‘not
bike’. This reveals 83 flips from ‘bike’ to ‘not bike’ images and 100 flips from
‘not bike’ to ‘bike’ category. The manually labelled set is only used for testing
purposes. The images are passed through a series of preprocessing including

2 Collected using Google image search engine: available upon request.

156 J. Bootkrajang and A. Kabán

Agreed: Bike Agreed: ¬Bike Agreed: ¬Bike P: ¬Bike, L: bike Agreed: ¬Bike

P: ¬Bike, L: bike P: ¬Bike, L: bike P: ¬Bike, L: bike P: ¬Bike, L: bike Agreed: ¬Bike

Agreed: ¬Bike Agreed: Bike P: ¬Bike, L: bike Agreed: ¬Bike Agreed: ¬Bike

Agreed: Bike Agreed: Bike Agreed: ¬Bike Agreed: Bike Agreed: Bike

P: ¬Bike, L: bike Agreed: Bike Agreed: ¬Bike Agreed: Bike Agreed: Bike

Agreed: Bike Agreed: Bike P: ¬Bike, L: bike Agreed: Bike Agreed: ¬Bike

Fig. 4. Bike search result. P is the prediction from the classifier while L is the given
label from search engine. Boxed instances are the ones that P and L don’t agree while
dotted boxes are false alarms.

extracting meaningful visual vocabulary using SIFT [17] and extracting texture
information using LBP [22], which are ultimately transformed into a 10038-
dimensional vector representation.

In Figure 4 we show examples of detecting mislabelled images. The top 30
test images sorted by their posterior probabilities are shown. We see that out
of a total of 8 suspicious detections made (boxed), only 2 were false alarms
(denoted by dotted box in the figure). Comparatively, the traditional LR model
produced 4 false alarms (not shown). To give statistical figures, we then tested
these two classifiers that were both trained on 90% of whole dataset using the
cheap noisy labels from the search engine, and tested on the ramaining 10%,
against the manual labels. We performed 100 independent bootstrap repetitions
of this experiment. The average generalisation errors and standard errors were
15.67% ± 0.04 for rLR and 18.09% ± 0.04 for standard LR. The improvement
of rLR over LR is statistically significant, as tested at the 5% level using a
Wilcoxon Rank Sum test. This suggests that there is high potential for learning
from unreliable data from the Internet using the label-noise robust algorithm
proposed.

Label-Noise Robust Logistic Regression and Its Applications 157

6 Conclusions

We proposed an efficient algorithm for learning a label-robust logistic regression
algorithm for both two-class (rLR) and multiclass (rmLR) classification prob-
lems, and we proved its local convergence. We also developed a Bayesian sparse
regularised extension for these methods which bypasses the need to perform cross
validation for model selection and is hence label-robust in its model selection pro-
cedure as well. We demonstrated the working and the advantages of our approach
in both controlled synthetic settings and in real applications. In particular, we
have seen an application in the biomedical domain, where our method can be
used to flag suspicious labels for further follow-up study. We have also seen that
the label-flipping probabilities provide an interpretable holistic graphical view
of data sets by unearthing the topology that underlies the data classes. Finally,
the model can be used to facilitate the task of annotating training examples
since it is now possible to learn the classifier from sloppily labelled but cheaply
obtained data from crowds. Extending this approach to non-linear classifiers is
the subject of our future work.

References

1. Alon, U., Barkai, N., Notterman, D.A., Gishdagger, K., Ybarradagger, S.,
Mackdagger, D., Levine, A.J.: Broad patterns of gene expression revealed by clus-
tering analysis of tumor and normal colon tissues probed by oligonucleotide arrays.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica 96(12), 6745–6750 (1999)

2. Barandela, R., Gasca, E.: Decontamination of Training Samples for Supervised
Pattern Recognition Methods. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M. (eds.)
SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 621–630. Springer, Heidelberg
(2000)

3. Brodley, C.E., Friedl, M.A.: Identifying mislabeled training data. Journal of Arti-
ficial Intelligence Research 11, 131–167 (1999)

4. Cawley, G.C., Talbot, N.L.C.: Gene selection in cancer classification using sparse
logistic regression with bayesian regularization. Bioinformatics/Computer Appli-
cations in The Biosciences 22, 2348–2355 (2006)

5. Cawley, G.C., Talbot, N.L.C.: Preventing over-fitting during model selection via
bayesian regularisation of the hyper-parameters. J. Mach. Learn. Res. 8, 841–861
(2007)

6. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler,
D.: Support vector machine classification and validation of cancer tissue samples
using microarray expression data. Bioinformatics, 906–914 (2000)

7. Hausman, J.A., Abrevaya, J., Scott-Morton, F.M.: Misclassification of the depen-
dent variable in a discrete-response setting. Journal of Econometrics 87(2), 239–269
(1998)

8. Hestenes, M.R., Stiefel, E.: Methods of Conjugate Gradients for Solving Linear
Systems. Journal of Research of the National Bureau of Standards 49(6), 409–436
(1952)

9. Jiang, Y., Zhou, Z.-H.: Editing Training Data for kNN Classifiers with Neural
Network Ensemble. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS,
vol. 3173, pp. 356–361. Springer, Heidelberg (2004)

158 J. Bootkrajang and A. Kabán

10. Kabán, A., Tiňo, P., Girolami, M.: A General Framework for a Principled Hier-
archical Visualization of Multivariate Data. In: Yin, H., Allinson, N.M., Freeman,
R., Keane, J.A., Hubbard, S. (eds.) IDEAL 2002. LNCS, vol. 2412, pp. 518–523.
Springer, Heidelberg (2002)

11. Kadota, K., Tominaga, D., Akiyama, Y., Takahashi, K.: Detecting outlying sam-
ples in microarray data: A critical assessment of the effect of outliers on sample
classification. Chem. Bio. Informatics Journal 3(1), 30–45 (2003)

12. Krishnan, T., Nandy, S.C.: Efficiency of discriminant analysis when initial samples
are classified stochastically. Pattern Recognition 23(5), 529–537 (1990)

13. Lawrence, N.D., Schölkopf, B.: Estimating a kernel fisher discriminant in the pres-
ence of label noise. In: Proceedings of the 18th International Conference on Machine
Learning, pp. 306–313. Morgan Kaufmann (2001)

14. Lee, D.D., Seung, H.S.: Algorithms for Non-negative Matrix Factorization. In:
Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information
Processing Systems, vol. 13, pp. 556–562. MIT Press (2001)

15. Li, L., Darden, T.A., Weingberg, C.R., Levine, A.J., Pedersen, L.G.: Gene assess-
ment and sample classification for gene expression data using a genetic algorithm
/ k-nearest neighbor method. In: Combinatorial Chemistry and High Throughput
Screening, pp. 727–739 (2001)

16. Liu, Z., Jiang, F., Tian, G., Wang, S., Sato, F., Meltzer, S.J., Tan, M.: Sparse logis-
tic regression with lp penalty for biomarker identification. Statistical Applications
in Genetics and Molecular Biology 6(1), 6 (2007)

17. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings
of the International Conference on Computer Vision, ICCV 1999, vol. 2, pp. 1150–
1157. IEEE Computer Society, Washington, DC (1999)

18. Lugosi, G.: Learning with an unreliable teacher. Pattern Recogn. 25, 79–87 (1992)
19. Mackay, D.J.C.: Probable networks and plausible predictions - a review of practical

Bayesian methods for supervised neural networks. Network: Computation in Neural
Systems 6, 469–505 (1995)

20. Magder, L.S., Hughes, J.P.: Logistic regression when the outcome is measured with
uncertainty. American Journal of Epidemiology 146(2), 195–203 (1997)

21. Malossini, A., Blanzieri, E., Ng, R.T.: Detecting potential labeling errors in mi-
croarrays by data perturbation. Bioinformatics 22(17), 2114–2121 (2006)

22. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Transactions on
Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

23. Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L., Moy, L.:
Learning from crowds. Journal of Machine Learning Research 11, 1297–1322 (2010)

24. Roth, V.: The generalized lasso. IEEE Transactions on Neural Networks 15, 16–28
(2004)

25. Yasui, Y., Pepe, M., Hsu, L., Adam, B.L., Feng, Z.: Partially supervised learning
using an emboosting algorithm. Biometrics 60(1), 199–206 (2004)

26. Zhang, C., Wu, C., Blanzieri, E., Zhou, Y., Wang, Y., Du, W., Liang, Y.: Methods
for labeling error detection in microarrays based on the effect of data perturbation
on the regression model. Bioinformatics 25, 2708–2714 (2009)

Sentiment Classification with Supervised Sequence
Embedding

Dmitriy Bespalov1, Yanjun Qi2, Bing Bai2, and Ali Shokoufandeh1

1 Drexel University,
Philadelphia, PA USA
2 NEC Labs America,

Princeton, NJ USA

Abstract. In this paper, we introduce a novel approach for modeling n-grams
in a latent space learned from supervised signals. The proposed procedure uses
only unigram features to model short phrases (n-grams) in the latent space. The
phrases are then combined to form document-level latent representation for a
given text, where position of an n-gram in the document is used to compute cor-
responding combining weight. The resulting two-stage supervised embedding is
then coupled with a classifier to form an end-to-end system that we apply to the
large-scale sentiment classification task. The proposed model does not require
feature selection to retain effective features during pre-processing, and its param-
eter space grows linearly with size of n-gram. We present comparative evalua-
tions of this method using two large-scale datasets for sentiment classification
in online reviews (Amazon and TripAdvisor). The proposed method outperforms
standard baselines that rely on bag-of-words representation populated with n-
gram features.

Keywords: Sentiment Classification, Large-Scale Text Mining, Supervised
Feature Learning, Supervised Embedding.

1 Introduction

In this paper, we consider the problem of sentiment classification (SC) which is defined
as identifying and extracting subjective information from natural language text. Due to
the widespread use of electronic media and the explosion of online social-oriented con-
tent such as user reviews, sentiment classification [1], has received significant attention
in recent years. This task aims to rate polarity of a given text accurately towards a label,
predicting whether the expressed opinion in the text is positive, negative, or neutral.

SC task can be viewed as an instance of text categorization (TC) task. Notable va-
rieties of TC include single-label, multi-label [2] or taxonomic hierarchy of labels [3].
Both generative approaches [4–6] and discriminative supervised methods have been
applied to TC, and a few semi-supervised attempts [7] as well. Among discriminative
models, support vector machines (SVM) are known for their superior performance in
TC, and SC task [8, 9] in particular. Previous works on the discriminative TC com-
monly rely on the so-called bag-of-words (BoW) representation that maps variable
length text into a fixed-dimensional vector, parameterized by a finite vocabulary. The

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 159–174, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

160 D. Bespalov et al.

“bag-of-unigrams” is the most common form of BoW representation utilizing a dic-
tionary of basic words as its vocabulary. Essentially BoW model treats a document as
an unordered collection of word-features, and utilizes the frequency distribution of the
words as the primary evidence for TC.

There has been increasing evidence that short phrases are more effective than single
words (unigrams) for the SC task. For example, the term good often appears in posi-
tive online reviews, but “not very good” is less likely to appear in positive comments.
When using bag-of-unigrams representation, the proximity of “not”, “good” and “very”
in the text is ignored. A proposed remedy is to extend the bag-of-unigrams model by
incorporating n-grams (a contiguous sequence of n words) 1 as features in the vector
space representation of the text [10], i.e. so called “bag-of-n-grams” (BoN). However,
extending the model to incorporate n-grams (for n >= 3) will adversely effect the
complexity of parameter space, since the dimensionality of a BoN vector grows expo-
nentially as a function of n. For instance, extending an English word vocabulary D of
size |D| = 10, 000 by including the bigrams (n = 2) and trigrams (n = 3) will add
up to |D|2 = 108 and |D|3 = 1012 additional free parameters, respectively. Feature
selection (FS) techniques [11] are popular methods for dealing with the complexity of
bag-of-n-grams model. The basic idea of FS is to retain a small subset of features, based
on a certain scoring function (statistics), that are suitable for the SC task. Popular FS
methods used in classifying text include Information Gain (IG), Chi-Square Test (CHI),
Mutual Information (MI), Optimal Orthogonal Centroid feature selection (OCFS) [11].
More recently, Jing et al. [12] introduced a generalized framework for popular FS tech-
niques. However, effectiveness of FS methods is often dataset-dependent. Thus, choos-
ing an appropriate FS technique requires empirical validation. Furthermore, estimating
optimal hyper-parameters for each FS method considered will require additional cross-
validation.

Our work is motivated by the idea of utilizing short phrases as features for large-scale
sentiment classification. However, in contrast to BoN model, we propose a different ap-
proach to modeling short phrases for SC task. The proposed method projects n-grams
into a latent lower-dimensional space using only unigram features and avoids FS pre-
processing. To be more specific, the embedding of an n-gram is a combination of the
embedding of its composing words. The procedure estimates an embedding of a uni-
gram feature for every position in the n-gram window. In this way, the parameter space
of our model grows only linearly with n. The embedding of the whole document is
a union of such n-gram embeddings, re-weighted based on their positions in the text.
This is consistent with the hypothesis that spatial occurrence of a phrase can influence
overall sentiment of an article. The parameters of our method are jointly optimized in an
online learning setting through the stochastic gradient descent method [13]. The empir-
ical evaluations demonstrate the proposed model outperforming state-of-art FS method
for the SC task.

To summarize, the proposed system performs feature selection in a latent space,
promoting phrases that are effective for the SC task. Section 3.3 provides interesting
anecdotal evidence to support this claim. We evaluate the performance of the pro-
posed method along with standard baselines on two sentiment classification datasets

1 We will use “n-gram” and “phrase” interchangeably.

Sentiment Classification with Supervised Sequence Embedding 161

(Amazon2, TripAdvisor3). Our empirical evidence demonstrates that the proposed
framework outperforms baseline methods.

2 Supervised Sequence Embedding

In this section we will present an overview of the proposed deep neural network model
that 1) represents all sliding n-gram windows in a lower-dimensional latent space; 2)
obtains document representation in the latent space, defined as a weighted sum of latent
n-grams, where weights are learned from positions of phrases in the document; and 3)
estimates a classifier in the document-level latent space, biased towards the prescribed
classification task.

Before presenting the proposed “deep” neural network model, an overview of the
notations is in order. Let D denote the underlying word (unigram) dictionary and S
denote the set of all finite length sequences of words from D. We use Γ = Γ (n) ⊂ S
to denote the vocabulary of n-grams in a text corpus. An input text x ∈ S of length
N is an ordered sequence x = (w1, . . . , wN), with wi ∈ D. We denote an n-gram
from x, with n < N , starting at its j-th position as γj = (wj , wj+1, . . . , wj+n−1).
We denote vectors or matrices with boldface font (e.g., G or b), and use cursive for
scalar variables and functions (e.g., M or h(·)). We use |.| to denote the cardinality
of a set. Operator × denotes vector or matrix multiplication, while · will be used to
emphasize the multiplication of scalar variables. Let Y = {1, ..., C} denote a set of
class labels. X ⊂ S denotes a collection of labeled documents (training set), where
X = {(xi, yi)i=1,...,L|xi ∈ X & yi ∈ Y} and |X | = L.

Our model is an alternative to the classification with BoW representation. For text
x = (w1 · · · wN), the BoW model uses a unigrams dictionary to produce a |D|-
dimensional vector ẽx for x:

ẽx =
1

N

N∑
i=1

ewi , (1)

Here ewi , also known as “selector”, is the canonical basis vector

ewi = (0, . . . , 0, 1
at index wi

, . . . , 0)� (2)

with a single non-zero entry at wi-th position. It is a common practice to replace the
sole non-zero entry of ewi with the inverse document frequency of word wi. As a result,
the vector ẽx in (1) takes the form of TF-IDF weighting.

The BoN extension includes n-grams as additional features [14]. By using all unique
phrases of at most n words from Γ as features, we obtain a |Γ |-dimensional representa-
tion of x. That is, BoN maps x to |Γ |-dimensional representation, with |Γ | = O(|D|n).
Due to its exploding number of features, BoN normally relies on feature selection meth-
ods to control the number of parameters. Differently, our method models n-grams in the
latent space while recognizing only n·|D| unique features and avoiding feature selection
pre-processing.

2 http://times.cs.uiuc.edu/˜wang296/Data/TripAdvisor.tar.gz
3 http://www.cs.jhu.edu/∼mdredze/datasets/sentiment/unprocessed.
tar.gz

http://times.cs.uiuc.edu/~wang296/Data/TripAdvisor.tar.gz
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/unprocessed.tar.gz
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/unprocessed.tar.gz

162 D. Bespalov et al.

Fig. 1. Sentiment Classification using Supervised Sequence Embedding. We consider two varia-
tions of the method based on the procedure to compute combining weights qj .

We refer to the first two stages of the proposed system as the “Supervised Sequence
Embedding” (SSE). Figure 1 provides an illustration of the SC system. The first pro-
jection step that computes latent embedding of all n-grams in an article is presented
in Section 2.1. The second projection that combines latent n-grams to compute article-
level embedding is presented in Section 2.2. Section 2.3 presents the third step of the
SC system that computes a document-level classifier in the latent space. Our framework
is best described using a multi-layer projection as shown in Figure 1.

2.1 Latent n-Gram Embedding

We formally define the projection step for latent phrase embedding. The formation of
n-grams is carried through a sliding window of length n. As illustrated in Figure 1,
setting n = 3, the first n-gram is (w1, w2, w3), second n-gram (w2, w3, w4), etc. Given
a phrase of n adjacent words, we first represent it using n word selectors. Specifically,
given γj = (wj , wj+1, . . . , wj+n−1), define

êγj = [e�
wj
, e�

wj+1
, . . . , e�

wj+n−1
]�, (3)

Sentiment Classification with Supervised Sequence Embedding 163

where the notation [·] denotes the concatenation of single word selectors into an n · |D|-
dimensional vector for each n-gram γj . The embedding of the γj is then defined as:

pγj = G× êγj , (4)

where G ∈ RM×n·|D| is the projection matrix which maps êγj into a latent space with
dimension M . It is important to note that M is a hyperparameter, while parameters of
G are estimated during the learning process using backpropagation.

Since each n-gram is encoded as a sparse vector with n non-zeros in êγj , we can
treat (4) as an operation decoupling the embedding parameters for word wi based on its
position with the n-gram γj . Matrix G maintains n latent embedding vectors for every
word wi ∈ D depending on its position inside the n-gram. That means one embedding
for each possible position within the n-gram for wi.

2.2 Latent Document Embedding

We use the n-gram embedding to form a vector representation for a text document. The
number of phrases in each document is variable depending on its length N . We need a
function to compress the information from these n-grams into a fixed length document
embedding vector. While there are many possibilities for the combining function, the
mean(·) function has been verified by our previous work in [15] to provide a good
summarization of a document in the latent space. In this work, we also propose to use a
weighted sum function and to learn the weights for each γj ∈ x, based on its position
in the text. These weights are used to combine latent embedding of γj into a document-
level representation. Specifically, we define latent embedding of document x in the
latent space as:

φ(x) ≡ dx =
N∑
j=1

qj × h(pγj), (5)

where dx ∈ RM , x = (w1, . . . , wN), and h(·) = tanh(·)4. We model the weight of
every γj using the following mixture model. Let γj ∈ x, |x| = N and j indicate the
position of an n-gram in x, and define the weight associated with γj as:

qj =
1

Q

K∑
k=1

sigmoid

(
ak ·

j

N
+ bk

)
, (6)

where ak, bk are parameters to be learned, Q =
∑N

j=1 qj , K specifies the number
of mixture quantities, and sigmoid(·) is a non-linear transfer function. In the rest of
this manuscript, we refer to the model with uniform weights qj = 1

N (i.e., combining
function is mean(·)) as SSE, while SSE-W is used to denote the model with spatial
re-weighting defined in (6). In spatial re-weighting in SSE-W model, it attempts to
capture longer “trends” within each document. In this, our work is similar to the work of
Lebanon et al. [16]. The authors propose a novel semi-parametric generative model for
an unsupervised embedding of documents as smooth curves in R|D|, while preserving
spatial information for phrases within a document.

4 The non-linear function tanh(·) converts the unbounded range of the input into [−1, 1].

164 D. Bespalov et al.

2.3 Classifier

In our evaluations we use Multinomial Logistic Regression (MLR) to carry out SC.
Given the document embedding dx, and C candidate classes, βi represents the coeffi-
cient weights for the i-th candidate class. Furthermore, the predicted class label can be
calculated as follows:

g(x) = argmax
i∈{1..C}

exp(β�
i × dx)

1 +
∑

k∈{1..C} exp(β
�
k × dx)

(7)

This classifier can be trained by minimizing the loss function:

L(X) = −
∑

i∈{1..|X |}
log

exp(β�
yi

× dxi)

1 +
∑

j∈{1..C} exp(β
�
j × dxi)

(8)

This latter loss is called “negative log likelihood” in literature.
The proposed supervised embedding method is implemented as a perceptron net-

work composed of four activation layers as shown in Figure 1. We take advantage of
the backpropagation process to train this layered network and use stochastic gradient
descent (SGD) method for estimating the parameters [13]. For a training set X , instead
of calculating true gradient of the objective with all training samples, SGD computes
the gradient with a randomly chosen training sample and updates all parameters ac-
cordingly. SGD optimization method is scalable and proven to rival the performance of
batch-mode gradient descent methods when dealing with large-scale datasets [17].

2.4 Related Methods

The proposed SSE embedding has its roots in a previous model known as “Lookup Ta-
ble Convolution” (LTC) [15, 18]. LTC constructs a low-dimensional latent embedding
for all γj ∈ x by first projecting each word into a latent space, followed by a second
projection step to obtain the latent embedding of each n-gram. Specifically, each word
wj ∈ D is embedded into the m-dimensional feature space using a word lookup table:

LTE(wj) = E× ewj = Ewj , (9)

where the j-th column of the matrix E ∈ Rm×|D| denotes the embedding vector of the
word wj . Given an n-gram γj , the word lookup table applies the same operation to each
word inside the n-gram sliding window, producing the vector zγj = [E�

wj
,E�

wj+1
, . . . ,

E�
wj+n−1

]�, with [·] denoting the concatenation of single word embedding into an n·m-
dimensional vector. The latent embedding for γj is then defined as

p̃γj = F× zγj = F× [E�
wj
,E�

wj+1
, . . . ,E�

wj+n−1
]�, (10)

where projection matrix F ∈ RM×n·m maps zγj into the M -dimensional latent space.
This two-step embedding procedure encodes each n-gram in a latent space without the
explicit construction of all n-grams. Collobert and Weston [18] empirically validated
LTC on six Natural Language Processing (NLP) tasks. Our previous work [15] adopted
LTC for sentiment classification.

Sentiment Classification with Supervised Sequence Embedding 165

We emphasize the difference between this work and [15]. First, instead of modeling
a lookup table layer followed by a convolutional layer as done in LTC, SSE models
the parameters of the latent n-gram embedding directly using matrix G in (4). Second,
the SSE-W model uses spatial re-weighting of n-grams, while uniform weights (i.e.,
mean(·) combining function) are used in LTC (and SSE). This improves the perfor-
mance in many cases as our experimental evaluations in Section 3 suggest. In addition,
the experimental results suggest the SSE model achieves higher SC accuracy, compared
to the LTC method described by (9) and (10). Furthermore, training an LTC model us-
ing backpropagation requires many vector multiplications to calculate gradients ∂L/∂E
and ∂L/∂F due to the multiplicative coupling of E and F. In contrast, in training SSE
models, these computations are largely avoided.

In general, performing dimensionality reduction in the original high-dimensional
feature space is a common practice for various classification methods. Popular unsu-
pervised latent embedding methods on text documents includes Latent Semantic Index-
ing (LSI) [19], or its probabilistic extensions, probabilistic LSI (pLSI) [20], and Latent
Dirichlet Allocation (LDA) [21]. However, biasing parameters of the embedding towards
specific classification task has not received much attention until recently, such as LTC
from [18] and the work of learning to rank with joint word-image embedding in [22].

Our work is also related to the “Deep learning” architecture which has received in-
creasing attention in recent years. Deep architectures have been used to learn com-
plicated functions in natural language processing and computational vision [23]. Each
layer in the architecture encodes features at different levels of abstraction, defined as a
composition of features computed at the previous layer. Glorot et al. [24] utilize a deep
learning model to extract the representation of each text review in an unsupervised fash-
ion using stacked Denoising Auto-encoders. With the learned high-level feature repre-
sentation the authors claim to achieve state-of-the-art performance for domain adaption
tasks on sentiment classification data. Socher et al. [25] use recursive neural networks
to perform simultaneous parsing and classification of both text and image data. In addi-
tion, multi-layered neural networks are successfully used for learning language models
that estimate conditional probability distribution for word sequences [26, 27].

Another relevant domain to our work is the “string kernel” framework. String kernels
and their extensions have been very popular discriminative choices for the protein clas-
sification problem, where sequences of amino acids are represented as strings [28, 29].
These kernels map a variable length string into a low-dimensional dense feature space
using BoW strategy. Similar approaches have also been applied to text categorization
before: see e.g., [30]. A critical component in the string kernel research is the imple-
mentation of inexact matching between short sequence segments. These approaches
give rise to a family of mismatch kernels [28]. Similarly, the SSE method allows for
inexact phrase matching that takes place in the latent space.

3 Experiments

We evaluate the performance of the proposed SSE method on SC task with binary and
multi-class setting. For binary classification setting, we only consider positive (1 and 2
stars) or negative (4 and 5 stars) sentiment in the reviews. For multi-class setting we use

166 D. Bespalov et al.

four available labels (1,2,4 and 5 stars) to evaluate text classification on Amazon and
TripAdvisor datasets. In addition, since TripAdvisor contains neutral reviews, we also
consider a SC task with five category labels for this dataset.

Amazon dataset contains customer reviews of 25 various categories of goods in-
cluding apparel, automotive, baby, DVDs, electronics, magazines, and tools and hard-
ware. TripAdvisor dataset contains customer reviews for various hotels across the globe.
While TripAdvisor corpus provides rating scores for various aspects (e.g., rooms, lo-
cation, cleanliness), we only consider overall ratings for this dataset. These are con-
sidered some of the largest sentiment classification datasets currently available. For
Amazon we use 257,900 samples for training and 110,562 samples for testing, while
55,306 and 10,078 samples from TripAdvisor were used for training and testing, re-
spectively. The development sets contain 10,000 and 5,000 samples for Amazon and
TripAdvisor, respectively. In this work, we report classification results obtained using
train-development-test splits for Amazon and TripAdvisor datasets. These dataset splits
are available for download from our website5. It is important to note that the empirical
evidence reported in this work are not directly comparable to the results we reported
in [15], as we use different splits for Amazon and TripAdvisor datasets. However, to
be fair, we make available online the SA results for the proposed SSE method, bench-
marked on the split used in our previous publication [15].

Amazon and TripAdvisor datasets contain user-generated reviews where an overall
sentiment for each review is quantified with an integer 1 through 5 (a.k.a the 5-star Lik-
ert scale). A sentiment score of 1 star corresponds to the lowest (negative) sentiment,
while the score of 5 stars corresponds to the highest (positive) sentiment. TripAdvisor
dataset contains neutral reviews (rated with 3-stars), while neutral reviews were omit-
ted during the construction of Amazon dataset by their authors. For both datasets, a
balanced version of the data splits (i.e., training / testing / development) is created that
contain equal number of positive (4 and 5 stars) and negative (1 and 2 stars) reviews.

Table 1 provides the number of unique phrases for n ∈ {1, 2, 3, 5} found in the
training sets. Clearly, when n ≥ 2 , a feature selection technique is necessary, not
only to improve the classification accuracy but also to keep the optimization tractable.
For both datasets, we follow the method used in [31] to limit the vocabulary size by
retaining n-grams with the highest mutual information (MI) shared by the binary labels
(positive or negative). For the Amazon dataset, we use training split to select 25,000
grams per category, then concatenate the phrases to form the vocabulary used in the
experiments. For TripAdvisor dataset, we also use an MI-based procedure to limit the
vocabulary size to 500,000 n-grams computed for the entire training corpus.

For one of the baseline methods we use a linear SVM classifier, which is trained
on BoN document representation. We obtain BoN representation with TF-IDF and n ∈
{1, 2, 3, 5}. We restrict our evaluation to the linear kernel because of the corpus size and
the number of features used in describing each document. Prior research showed linear
SVM achieving state-of-art performance on SC tasks (see e.g., [8] or [9]). In addition,
we use a linear perceptron classifier trained on BoN as another baseline. We believe the
latter choice is relevant, since the main objective of this work is to test the merit of the
proposed SSE against the BoW model populated with n-grams.

5 http://mst.cs.drexel.edu/datasets/ECML2012

http://mst.cs.drexel.edu/datasets/ECML2012

Sentiment Classification with Supervised Sequence Embedding 167

Table 1. Unique phrase counts |Γ| for each dataset. Numbers are in thousands.

n-gram size Amazon TripAdvisor RCV1 23k RCV1 380k

n = 1 448 158 124 262
n = 2 6,446 1,175 2,400 6,364
n = 3 23,400 5,172 9,535 30,377
n = 5 78,864 21,741 35,118 262,586

We use SVM and Prc to denote the SVM and linear perceptron classifiers, respec-
tively. The BoN representation will be denoted with BoW-ng, while |Γ| denotes the
number of unique phrases (in thousands) for the training sets. We use LTC for refer-
ring to the Lookup Temporal Convolution method presented in [15]. We denote the
proposed SSE method with mean(·) used for combining function as SSE. SSE method
with spatial re-weighting of n-grams defined in (6) is identified as SSE-W. The rest
of this section is organized as follows. We provide important implementation details in
Section 3.1. Sentiment classification results are discussed in Section 3.2. Section 3.3
provides anecdotal evidence that selecting phrases with highest prediction responses
from a trained SSE model can be used for “sentiment summarization”. We also provide
an illustration of the estimated spatial weights for trained SSE-W model. In addition
we demonstrate that SSE-W can be augmented with an alternative combining function
qj that captures strength of sentiment in text, but not polarity. Finally, in Section 3.4
we present topic categorization results on Reuters dataset [32] to demonstrate that SSE
model is applicable to text categorization tasks other than SC.

3.1 Implementation Details

In our implementation we used the following formulation of TF-IDF. For every n-gram
γj ∈ x where document x ∈ X , the weight for γj was calculated using the formula:

tfidf(γj ,x,X) = 1
|x| · tf(γj ,x) · idf(γj ,X), where idf(γj ,X) = log |X |

|{xi∈X :γj∈xi}| ,

and tf(γj ,x) returns the number of times term γj appears in x.
We used the LIBLINEAR6 SVM toolkit. For each SC task, the penalty parameter

C was set using grid search with C = {2−8, 2−7, . . . , 210, 211}, performed on the
development set. Then the reported classification error was computed on the testing set
with the optimal penalty parameter found. Perceptron-based methods (LTC, SSE, SSE-
W and Prc BoW) were implemented using the Torch57 machine learning library. A
development set was used to select the best model during the training of all perceptron
classifiers. During the training procedure the model was evaluated at regular intervals
on the entire development set, and the best performing model was retained. After the
training was completed, this model was used to compute the classification error rate for
the testing set, which is the number reported in all of our experiments below.

The perceptron classifiers were trained with a fixed learning rate 0.05. The dimen-
sionality of the latent space for all perceptron-based methods was set to M = 50 in all

6 http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
7 http://torch5.sourceforge.net/

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://torch5.sourceforge.net/

168 D. Bespalov et al.

Table 2. Macro-average classification error rate for SVM with BoN, where n ∈ {1, 2, 3, 5}.
Macro-average error rate is calculated as mean of per-label classification error rates. 2 · � denote
binary classification setting, while 4 · � and 5 · � identify multi-class setting with four and five
categories, respectively. The numbers marked with † (or ‡) are statistically significantly better
than SVM BoW-1g with p < 0.0001 (or p < 0.01).

Method
Amazon TripAdvisor

2 · � 4 · � 2 · � 4 · � 5 · �
SVM BoW-1g 10.68 35.78 8.97 35.41 46.41
SVM BoW-2g 6.60† 28.26† 7.60‡ 33.68‡ 44.68‡

SVM BoW-3g 6.39† 27.98† 7.46‡ 33.50‡ 45.12
SVM BoW-5g 6.48† 28.02† 7.53‡ 33.45‡ 46.41

the experiments. We set these parameters according to our prior experience in design-
ing perceptron-based classification systems, and did not subject them to the empirical
selection in this work. We selected the length of the latent phrase for SSE and SSE-W
methods (i.e., size of n-gram) after evaluating SVM classification performance with
BoN and n ∈ {1, 2, 3, 5}. These results are presented in Table 2. We selected n = 5
when modeling latent phrases in SSE and SSE-W methods. Finally, we fixed K = 3
in (6), which was motivated by our assumption that phrases appearing in the beginning
or at the end of each text are the most effective at predicting text labels. The results
presented in Section 3.3 support this hypothesis.

3.2 Classification Results

Table 3 presents SC results using macro-average error rate, defined as mean of per-
label classification error rates. For completeness of presentation, we also provide micro-
average classification error rates in Table 4, computed over all test samples regardless

(a) SSE-W with spatial weights (6) (b) SSE-W with weights qj = Ĝ× êγj

Fig. 2. (a) Illustration of spatial weights in SSE-W model trained on the Amazon dataset. The
values of the spatial weights were computed for a “synthetic” text with 25 words. The weights are
scaled into range [0, 1] for illustration purposes. (b) Select 5-grams and their combining weights.
The weights are computed using the model qj = Ĝ× êγj trained on Amazon dataset with binary
classification setting.

Sentiment Classification with Supervised Sequence Embedding 169

of their labels. It is worth noting that splits for Amazon and TripAdvisor are balanced
in terms of binary sentiment polarity, thus binary classification error rates in Table 4
match the macro-average results from Table 3. In the five experiments conducted SSE-
W method outperforms the SVM baseline. However, only in the multi-class setting
SSE-W method results in statistically significant improvement over SSE model, with
p < 0.0001 for Amazon and p < 0.01 for TripAdvisor datasets. In case of binary
classification on Amazon, improvement of SSE-W over SSE is only statistically sig-
nificant with p < 0.4. These results suggest that spatial re-weighting of phrases only
becomes relevant when predicting sentiment on the Likert scale with multiple labels.
Also, when predicting binary sentiment, the presence of certain phrases, regardless of
their positions within the text, is sufficient for the task.

Table 3. Macro-average classification error rate. Macro-average error rate is calculated as mean
of per-label classification error rates. 2 · � denote binary classification setting, while 4 · � and 5 · �
identify multi-class setting with four and five categories, respectively. The numbers marked with
† (or ‡) are statistically significantly better than SVM BoW-3g with p < 0.0001 (or p < 0.01).

Method
Amazon TripAdvisor

2 · � 4 · � 2 · � 4 · � 5 · �
SVM BoW-3g 6.39 27.98 7.46 33.50 45.12
Prc BoW-3g 6.55 26.45† 7.54 34.73 43.58

SSE 5.69† 25.30† 6.90 34.22 42.88‡

SSE-W 5.63† 24.61† 7.01 32.25 40.54†

LTC 7.05 - 8.49 - -

3.3 Illustrative Examples

We now present several illustrative examples obtained using SSE and SSE-W models
trained on the sentiment datasets with multi-class 4 ·� setting. Table 5 shows three non-
overlapping 5-grams with highest weights obtained from selected TripAdvisor reviews.
The weight for each phrase γj is set using max

i∈{1...C}
β�
i × φ(γj), where φ(γj) denotes

latent embedding of γj . The trained SSE model for TripAdvisor is used to compute
embedding of each phrase γj separately.

Table 4. Micro-average classification error rate. Micro-average error rate, computed over all test
samples, regardless of their labels is reported. The numbers marked with † (or ‡) are statistically
significantly better than SVM BoW-3g with p < 0.0001 (or p < 0.01).

Method
Amazon TripAdvisor

2 · � 4 · � 2 · � 4 · � 5 · �
SVM BoW-3g 6.39 23.45 7.46 32.00 43.07
Prc BoW-3g 6.55 23.00‡ 7.54 33.94 43.05

SSE 5.69† 22.40† 6.90 33.90 42.21
SSE-W 5.63† 22.05† 7.01 31.41 40.76‡

170 D. Bespalov et al.

We also present sample illustration of spatial weights obtained from the SSE-W
model trained on the Amazon dataset with binary classification setting. The values of
the spatial weights were computed for a “synthetic” text with 25 words. The weights
are scaled into range [0, 1] for illustration purposes. Please refer to Figure 2a for the il-
lustration. We note the obtained weights have a straightforward interpretation – phrases
or sentences that appear in the beginning or at the end of each review are more likely to
express strong sentiment that defines the polarity of the review.

In addition to spatial information, weights qj in (6) can be computed with other
models. For example, latent projection layer from (4) can be used to compute weights
qj directly from the sequence features. In this case, another projection Ĝ is estimated,
where Ĝ ∈ R1×n·|D| and qj = Ĝ × êγj . To illustrate our point, we use the SSE
model trained on the binary Amazon dataset to initialize the modified SSE-W model.
The modified SSE-W model is then trained on the Amazon dataset, while keeping the
projection parameters G unchanged. We then use weights qj = Ĝ × êγj to sort all
5-grams from the Amazon’s testing set. Figure 2b lists several top-scoring 5-grams that
we have selected from the sorted list of the 5-grams that contained words “good” and
“book”. We note that this model captures only sentiment strength and the obtained list
contains phrases that carry both positive and negative sentiment. The estimated weights
qj , presented in Figure 2b, support this argument. For example, one can argue that “is
an extremely good book” carries stronger (positive) sentiment than “book is a good
choice”, which in turn has stronger sentiment than “a good book just because”.

Table 5. Summarization for select TripAdvisor reviews, obtained as the top three non-overlapping
5-grams. The trained TripAdvisor SSE model with multi-class 4 · � setting is used to calculate
phrase weights.

Review Text Rating 5-gram Weight

disappointing choice this is one of the worst large hotels i have ever

visited . the suite i had was filthy , and the food from room service
was barely edible (the caesar salad was dangerously inedible) .
there is no wifi . two lamps do not work . feels like a decrepit ocean
liner . despite the view and the location , i would avoid this place at
all cost .

�
is one of the worst 34.1

avoid this place at all 31.3
was barely edible (the 28.6

noisy air conditioning on NUMBERnd floor ! ! we stayed one

night in the sand villa , in a room on the NUMBERnd floor
overlooking the pool . the room was comfortable . there was a loud
rumbling noise , seemingly from something like a big central air
conditioner , that continued all night . it was about as loud as a plane
during flight - - certainly not , but not pleasant either . the staff was
pleasant and helpful , but because of the noise i would not stay
there again .

��
staff was pleasant and helpful 30.6

noisy air conditioning on 22.1
would not stay there again 20.6

very nice experience the frenchmen is a very nice place to stay . the

rooms were decorated nicely and the courtyard with the jacuzzi and
pool were beautiful . above all , the staff was probably the
friendliest i ’ ve ever encountered . very outgoing and pleasant . the
only bad thing i could say about it is that the rooms were just a
little small , but for a single person or a close couple , it was fine .

� � ��
the only bad thing i 17.3

jacuzzi and pool were beautiful 16.7
is a very nice place 16.3

stylish and great staff i stayed at the hotel globus in may

NUMBER as a single female traveller . the room was small but very
stylish and spotless . the staff were all fantastic and very friendly .
good breakfast and excellent location for the railway station and
easy reach of all florence ’ s attractions . i ’ m going back to florence
in december and will be staying there again .

� � � � �
the staff were all fantastic 26.8

stylish and great staff i 22.1
good breakfast and excellent location 20.6

Sentiment Classification with Supervised Sequence Embedding 171

3.4 Topic Categorization

In addition to SC task we consider topic categorization using Reuters dataset (RCV1)8.
The original Reuters Corpus (RCV1) contains train-test split of 23,149 and 781,265
documents, respectively. The documents in the RCV1 corpus are categorized with 103
topics. The main focus of our research is the development of text classification methods
that can efficiently handle large-scale data. Thus, we also create a new split for RCV1
with 380,000 training samples. Following the procedure of Lewis et al. [32] we select
documents with IDs between 2,286 and 383,792 for training in the new split. We de-
note the split with the original (smaller) training set with RCV1 23k, while the split
with larger training set is denoted by RCV1 380k. To obtain a development set for both
splits of RCV1, we randomly sample 10,000 documents from the corresponding testing
sets. We restrict our evaluations to the four topics with the largest number of positive
examples in the entire Reuters Corpus: CCAT (ALL Corporate-Industrial) GCAT (All
Government and Social), MCAT (ALL Securities and Commodities Trading and Mar-
kets) and C15 (Corporate and Industrial Performance). For RCV1 dataset we limit the
vocabulary size to the 500,000 most frequent n-grams selected using training set only.

Table 6. Macro-average classification error rate for RCV1 dataset. Macro-average error rate is
calculated as mean of per-label classification error rates. The numbers marked with † (or ‡) are
statistically significantly better than SVM BoW-2g with p < 0.0001 (or p < 0.01).

Method
RCV1 23k RCV1 380k

CCAT GCAT MCAT C15 CCAT GCAT MCAT C15

SVM BoW-2g 5.82 5.42 5.60 7.62 4.07 4.47 3.95 4.93
SSE 5.74 4.79† 4.41† 6.21† 4.29 3.81† 3.42† 5.76

SSE-W 5.71‡ 4.70† 4.45† 5.50† 4.15 3.81† 3.47† 4.28†

Table 6 presents text categorization results for RCV1 dataset. SSE-W method out-
performs the SVM baseline in all but one experiment. In addition, SSE-W does not
improve classification over the SSE model for the MCAT topic, and the classification
improvements are rather small for the CCAT and GCAT topics. On the other hand, the
improvement of SSE-W over the SSE method is statistically significant with p < 0.0001
in the case of C15 topic. We speculate these results can be attributed to the nature of
the topics considered. Indeed, MCAT, CCAT and GCAT are high-level topics in RCV1,
with each assigned to news articles that describe broad range of concepts. Furthermore,
C15 identifies articles only related to corporate and industrial performance, thus allow-
ing SSE-W model to identify the spatial distribution of the effective phrases, that C15
articles exhibit.

4 Conclusions and Future Work

This work presents a supervised method (SSE) for the latent embedding of n-grams.
The experimental results show improved text classification performance over the

8 We use raw text features, instead of stemmed words as used in the original RCV1 publication.

172 D. Bespalov et al.

baseline classifiers trained on BoN models. In addition, the proposed extension to the
model (SSE-W) incorporates the relative position of the phrases when forming latent
representation of a document. SSE-W model improves sentiment classification accu-
racy over SSE model that uses uniform weights (qj = 1

N).
We limit our empirical evaluation in this work to document-level text classification,

focusing on sentiment analysis problem. We believe the SSE model can also be applied
to sequence classification in general, where a sequence is an ordered list of events that
can be described using a finite set of features. In the future work, we plan to investigate
the merit of the proposed system for various sequence classification tasks. For example,
the task of classifying protein sequences [33] or query log sequences to identify human
users [34]. In addition, we plan to consider applying the framework to other modalities
where BoW representation is used. For instance, object recognition in images is another
promising direction of our future work.

References

1. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in Infor-
mation Retrieval 2(1-2), 1–135 (2008)

2. Zhu, S., Ji, X., Xu, W., Gong, Y.: Multi-labelled classification using maximum entropy
method. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SIGIR 2005, pp. 274–281. ACM, New
York (2005)

3. Sun, A., Lim, E.P.: Hierarchical text classification and evaluation. In: Proceedings of the 2001
IEEE International Conference on Data Mining, ICDM 2001, pp. 521–528. IEEE Computer
Society, Washington, DC (2001)

4. McCallum, A., Nigam, K.: A comparison of event models for naive bayes text classification.
In: AAAI 1998 Workshop on Learning for Text Categorization, vol. 752, pp. 41–48 (1998)

5. Nigam, K.: Using maximum entropy for text classification. In: IJCAI 1999 Workshop on
Machine Learning for Information Filtering, pp. 61–67 (1999)

6. Yi, K., Beheshti, J.: A hidden markov model-based text classification of medical documents.
J. Inf. Sci. 35, 67–81 (2009)

7. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and
unlabeled documents using em. Mach. Learn. 39, 103–134 (2000)

8. Mirowski, P., Ranzato, M., LeCun, Y.: Dynamic auto-encoders for semantic indexing. In:
Proceedings of the NIPS 2010 Workshop on Deep Learning (2010)

9. Paltoglou, G., Thelwall, M.: A study of information retrieval weighting schemes for senti-
ment analysis. In: Proceedings of the 48th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2010, pp. 1386–1395. Association for Computational Linguistics,
USA (2010)

10. Cavnar, W., Trenkle, J.: N-gram-based text categorization. Ann. Arbor. MI 48113(2), 161–
175 (1994)

11. Yan, J., Liu, N., Zhang, B., Yan, S., Chen, Z., Cheng, Q., Fan, W., Ma, W.Y.: Ocfs: optimal
orthogonal centroid feature selection for text categorization. In: Proceedings of the 28th An-
nual International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2005, pp. 122–129. ACM, New York (2005)

Sentiment Classification with Supervised Sequence Embedding 173

12. Jing, H., Wang, B., Yang, Y., Xu, Y.: A General Framework of Feature Selection for Text
Categorization. In: Perner, P. (ed.) MLDM 2009. LNCS, vol. 5632, pp. 647–662. Springer,
Heidelberg (2009)

13. Bottou, L.: Stochastic Learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) Ma-
chine Learning 2003. LNCS (LNAI), vol. 3176, pp. 146–168. Springer, Heidelberg (2004)

14. Robertson, S., Zaragoza, H.: The probabilistic relevance framework: Bm25 and beyond.
Found. Trends Inf. Retr. 3, 333–389 (2009)

15. Bespalov, D., Bai, B., Qi, Y., Shokoufandeh, A.: Sentiment classification based on supervised
latent n-gram analysis. In: ACM Conference on Information and Knowledge Management,
CIKM (2011)

16. Lebanon, G., Mao, Y., Dillon, J.: The locally weighted bag of words framework for document
representation. J. Mach. Learn. Res. 8, 2405–2441 (2007)

17. Bottou, L.E., Cun, Y.L.: Large scale online learning. In: NIPS 2003. MIT Press (2004)
18. Collobert, R., Weston, J.: A unified architecture for natural language processing: Deep neural

networks with multitask learning. In: International Conference on Machine Learning, ICML
(2008)

19. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by
latent semantic analysis. Journal of The American Society for Information Science 41(6),
391–407 (1990)

20. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual In-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 50–57. ACM Press, New York (1999)

21. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. The Journal of Machine Learning
Research 3, 993–1022 (2003)

22. Weston, J., Bengio, S., Usunier, N.: Large scale image annotation: learning to rank with joint
word-image embeddings. Machine learning 81(1), 21–35 (2010)

23. Bengio, Y.: Learning Deep Architectures for AI. Now Publishers Inc., Hanover (2009)
24. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classifica-

tion: A deep learning approach. In: Proceedings of the 28th International Conference on
Machine Learning (ICML 2011). Omnipress, Bellevue (June 2011)

25. Socher, R., Lin, C.C.Y., Ng, A., Manning, C.: Parsing natural scenes and natural language
with recursive neural networks. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th
International Conference on Machine Learning (ICML 2011), pp. 129–136. ACM, New York
(June 2011)

26. Bengio, Y., Ducharme, R., Vincent, P., Operationnelle, D.D.E.R.: A neural probabilistic lan-
guage model. Journal of Machine Learning Research 3, 1137–1155 (2000)

27. Morin, F.: Hierarchical probabilistic neural network language model. In: AISTATS 2005, pp.
246–252 (2005)

28. Leslie, C.S., Eskin, E., Weston, J., Noble, W.S.: Mismatch string kernels for SVM protein
classification. In: NIPS, pp. 1417–1424 (2002)

29. Weston, J., Leslie, C., Ie, E., Zhou, D., Elisseeff, A., Noble, W.S.: Semi-supervised protein
classification using cluster kernels. Bioinformatics 21(15), 3241–3247 (2005)

30. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification
using string kernels. J. Mach. Learn. Res. 2, 419–444 (2002)

31. Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boomboxes and blenders: Do-
main adaptation for sentiment classification. In: ACL, pp. 187–205 (2007)

174 D. Bespalov et al.

32. Lewis, D.D., Yang, Y., Rose, T.G., Li, F., Dietterich, G., Li, F.: Rcv1: A new benchmark
collection for text categorization research. Journal of Machine Learning Research 5, 361–
397 (2004)

33. Deshpande, M., Karypis, G.: Evaluation of Techniques for Classifying Biological Sequences.
In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 417–
431. Springer, Heidelberg (2002)

34. Duskin, O., Feitelson, D.G.: Distinguishing humans from robots in web search logs: prelim-
inary results using query rates and intervals. In: Proceedings of the 2009 Workshop on Web
Search Click Data. WSCD 2009, pp. 15–19. ACM, New York (2009)

The Bitvector Machine: A Fast and Robust

Machine Learning Algorithm for Non-linear
Problems

Stefan Edelkamp and Martin Stommel

Research Group Artificial Intelligence, Universität Bremen
Am Fallturm 1, 28359 Bremen, Germany

{edelkamp,mstommel}@tzi.de

Abstract. In this paper we present and evaluate a simple but effec-
tive machine learning algorithm that we call Bitvector Machine: Feature
vectors are partitioned along component-wise quantiles and converted
into bitvectors that are learned. It is shown that the method is efficient
in both training and classification. The effectiveness of the method is
analysed theoretically for best and worst-case scenarios. Experiments on
high-dimensional synthetic and real world data show a huge speed boost
compared to Support Vector Machines with RBF kernel. By tabulating
kernel functions, computing medians in linear-time, and exploiting mod-
ern processor technology for advanced bitvector operations, we achieve a
speed-up of 32 for classification and 48 for kernel evaluation compared to
the popular LIBSVM. Although the method does not generally outper-
form a SVM with RBF kernel it achieves a high classification accuracy
and has qualitative advantages over the linear classifier.

Keywords: classification, support vector machine, time/accuracy trade-
off.

1 Introduction

Due to the flexibility of kernel functions, statistical machine learning with Sup-
port Vector Machines, SVMs for short [1], is one of the most successful ap-
proaches for classification applications [2].

The number of support vectors learned affects training and classification
speed. Bordes et al. ([3]) assume that not all training samples are equally relevant
for the resulting model. Their LASVM1 implementation achieves a significant
speedup during training by using an online approach, where the margin is de-
termined from a small subset of the input data. Important modeling decisions
can be reached even without taking into account the class label of a data point.

The measurement of the model accuracy also affects the training speed.
Joachims’ [4] SVMLIGHT2 implementation achieves a significant speed-up in

1 http://leon.bottou.org/projects/lasvm
2 http://svmlight.joachims.org/

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 175–190, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://leon.bottou.org/projects/lasvm
http://svmlight.joachims.org/

176 S. Edelkamp and M. Stommel

the estimation of the leave-one-out error by evaluating the Lagrange multipliers
and slack variables of a trained model. This saves the retraining of the model
for every sample left out. Tsang et al. [5] propose a radical simplification of the
model by approximating the convex hull of the training data by an enclosing ball
in the high-dimensional feature space. The allowed error of the approximation is
a parameter of the algorithm. The method works iteratively to find the centre of
the ball. The idea of using a reduced set of support and also non-support vectors
to define the decision border has also been used in previous approaches [6,7].
Influences stem for example from approximate k-nearest neighbours [8] or com-
putational geometry [7].

There are also fast SVM implementations with linear kernels that exceed
the library used in this paper (LIBSVM3) by far, e.g. LIBLINEAR4 and Leon
Bottou’s stochastic gradient descent SVM5. However, for complex data where
single classes comprise multiple distant sub-clusters, non-linear kernels achieve a
higher accuracy. Chang et al. [9] achieve a speed-up of a second order polynomial
classifier by using optimisation techniques usually reserved for linear kernels.
Zhang et al. [10] compute a low rank linear approximation of the kernel matrix
of a non-linear kernel and evaluate it by a linear SVM.

The dimensionality of the input data affects the speed of the classification as
well, but it also often causes a numerical instability known as the curse of dimen-
sionality. It is described [11] as a general unreliability of distance computations
for data sets where minimum and maximum distances approximate with rising
dimensionality. The effect can be reduced by choosing a smaller norm than the
Euclidian [12], but taking high roots is numerically difficult, too.

In the application of machine learning algorithms to image and video data, a
binary discretisation of the popular SIFT (Scale Invariant Feature Transforma-
tion [13]) feature vector does not suffer from this effect [14], whereas the original
SIFT representation does. Although a feature binarisation is a dramatic simpli-
fication of the input data, it has been observed for SIFT and SURF (Speeded
Up Robust Features [15]) descriptors that the matching accuracy does not de-
crease significantly [16]. In some cases the relative error rates even decreased.
Moreover, the length of the descriptors is reduced by a factor of 8 for SIFT (128
dimensions, usually implemented as single bytes) and by a factor of 32 for SURF
(64 dimensions, usually implementated by 4 byte floating point values). These
advantages are highly relevant for robotics applications as SURF or SIFT are
called at a high frequency in Simultaneous Localisation and Mapping (SLAM)6.

In this paper, we study the findings on feature binarisation in a more general
setting. A brief summary of SVMs allows us to introduce the method under the

3 http://www.csie.ntu.edu.tw/~cjlin/libsvm
4 http://www.csie.ntu.edu.tw/~cjlin/liblinear
5 http://leon.bottou.org/projects/sgd (this algorithm has been ported by us to
the GPU for an even faster evaluation time)

6 http://openslam.org

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://leon.bottou.org/projects/sgd
http://openslam.org

The Bitvector Machine 177

notion of a Bitvector Machine7. We discuss conditions under which the binarisa-
tion of a feature vector is appropriate. We observe that the Hamming distances
between binarised input vectors are discrete and limited. This allows a number
of important code optimisations for kernel evaluation, most notably the use of
look-up tables and native processor instructions. In contrast to previous work [16]
where no dedicated CPU instructions are used, we can therefore quantify the main
advantage of the method: the speed in the kernel evaluation. For transforming the
input data from floating point to binary strings we exploit that medians can be
computed efficiently. By replacing the medians by q-quantiles, we generalise the
Bitvector Machine to a Multi-Bitvector Machine. The method allows for a wider
range of possible time-accuracy trade-offs and avoids some worst-case behaviours
of the single-bit binarisation. In the empirical part of the paper we evaluate the
(single-bit) approach in three different experimental settings. The first and second
ones comprise artificial data (a Mixed Gaussian Distribution). The third one deals
with real-world data from a face recognition application. As a result we achieve a
several fold speed-up in the classification with only a small loss in accuracy com-
pared to LIBSVM. As far as pure kernel computations are concerned, the method
also accelerates training, although this is not deepened in the paper.

2 Support Vector Machines

Raw data presented to a supervised statistical machine learning algorithm [17]
can be arbitrarily complex and is often mapped to a set of numerical values,
called the feature vector. The classification problem deals with the prediction of
the label l of previously unknown feature vectors x ∈ Rd that constitute the test
data. During training, a partitioning of the feature space Rd is learned, where
each partition is assigned a label l from a small set L based on a set of training
samples (x1, l1), . . . , (xk, lk) ∈ Rd × L with known labels. The challenge is to
approximate the unknown distribution without overfitting the training data.

Support Vector Machines. [1], SVMs for short, achieve this task by learning
coefficients for a kernel mapping to a high-dimensional space, where a linear
class border is spanned up by a number of support vectors that outline the
data. We keep the presentation brief as there are text books on SVMs and
related kernel methods [2,18]. Theoretically, it should be sufficient to determine
the class border by just three support vectors. However, it is not known in
advance if any of the known kernels realises a suitable mapping. The use of
generic kernels instead leads to a much larger number of support vectors (which
critically influence classification time). In the worst case finding a separating
hyperplane takes quadratic time in the number of data points.

The classification rule for a two-class non-linear classification function φ is

f(x) = sign

(
s∑

i=1

βi(φ(xi) · φ(x)) + b

)
, (1)

7 The termmachine links to the fact that the classifier realises a mathematical function,
sometimes referred to as a machine.

178 S. Edelkamp and M. Stommel

where xi is the ith of s ≤ k support vectors, βi is a coefficient that includes class
label and Lagrange multiplier from the optimisation, and b is some additional
translation constant. Assuming a kernel function K(u,v) = φ(u) · φ(v) we get

f(x) = sign

(
s∑

i=1

βi ·K(xi,x) + b

)
, (2)

which does not refer directly to φ, known as the kernel trick.
SVM training is a convex optimisation problem which scales with the training

set size rather than the feature space dimension. While this is usually considered
to be a desired quality, in large scale problems it may cause training to be
impractical and classification to be time consuming.

The corpus of SVM applications is large and encompasses many areas of com-
puter science [2]. As kernel functions can be complex, the application of SVMs
is large and kernels can be designed to cover simple regression to neural network
approaches [19] and time series [20]. However, linear kernels K(u,v) = u · v + g
or Gaussian (RBF) kernelsK(u,v) = exp(−γ ‖u− v‖2), γ ∈ R are the ones that
are most commonly used. In the second case, a SVM is a function that itself de-
fines a Mixed Gaussian Distribution [21] and is related to Radial Basis Networks
and Neuronal Nets with one hidden layer. Since the optimisation objective is high
accuracy instead of a low number of support vectors, a Mixed Gaussian input will
be usually modeled by multiple centres per Gaussian in the SVM.

The running time for classifying one vector is O(sde), where e is the time
to evaluate the exponential. Practical SVM implementations might assume the
input data to be normalised to avoid numerical difficulties.

3 Bitvector Machine

A Bitvector Machine, BVM for short, is an SVM with a binarisation (Boolean
discretisation) of the input: All vectors xi ∈ Rd, 1 ≤ i ≤ k, used in the training
phase and all vectors evaluated in the test phase are mapped to {0, 1}d. The
labels remain unchanged. The results are then fed into a SVM.

The median of k totally ordered elements is the element in the �k/2 -th po-
sition after sorting. Median selection can be performed in linear time [22]. Let
x̄ = (x̄1, x̄2, . . . , x̄d)� ∈ Rd be the component-wise median of the input vector,
i.e. x̄j is the median of the j-th vector components of x1, . . . ,xk.

The BVM maps (training and test) vectors x ∈ Rd to binary strings z =
(z1, z2, . . . , zd)� ∈ {0, 1}d as follows: For each j, 1 ≤ j ≤ d, we have zj = 0 if
and only if xj < x̄j . Otherwise zj is set to 1.

Theorem 1 (Time Complexity Single-Bit Binarisation). The binarisa-
tion of all xi ∈ Rd, 1 ≤ i ≤ k, takes time Θ(kd).

Proof. Computing all component-wise medians of vectors xi ∈ Rd, 1 ≤ i ≤ k,
i.e. x̄, requires O(kd) time. Thresholding all vectors xi ∈ Rd component-wise
with x̄ can be executed in time O(kd). Considering the input size of the data,
the time O(kd) is optimal.

The Bitvector Machine 179

By using q quantiles instead of the medians (where q = 2) we can create more
detailed feature representations of longer word length. Quantiles represent a
subdivision of the domain of a random variable into q consecutive partitions of
equal cumulative density 1/q. The respective thresholds can be read from the
cumulative distribution function or by recursively computing medians (if q is a
power of 2). The assignment of a random value to its η-th, 1 ≤ η ≤ q, quantile
can be done in log-time by arranging the thresholds in a balanced binary tree.
The representation of the index η of a quantile requires m = !lg q" bits.

AMulti-Bitvector Machine, MBVM for short, maps (training and test) vectors
x ∈ Rd to binary strings z = (z1, z2, . . . , zmd)� ∈ {0, 1}md, m = !lg q". In order
to binarise a d-dimensional feature vector, we compute quantiles of fixed q inde-
pendently for every dimension. The binary feature vector is the concatenation
of all d quantile indices η, the resulting length is thus md bits. Computing all
component-wise quantiles of vectors xi ∈ Rd, 1 ≤ i ≤ k, requires O(mkd) time,
as computing the list of all quantiles of a k element set takes time O(mk) (see
Ex. 9.3-6, p. 223 in [23]). As q < k and, subsequently, m < !lg k" this approach
is still faster than sorting with its time complexity of Ω(k lg k).

Corollary 1 (Time Complexity Multi-Bit Binarisation). The multi-bit
binarisation of all xi ∈ Rd, 1 ≤ i ≤ k, using q-quantiles takes time O(mkd),
with m = !lg q".

Instead of reducing the dimension as done in related work, e.g. on random pro-
jections [24], we enlarge it. The motivation is that the increase in dimensionality
is compensated by the speed-up by the lower bit-rate.

The computation of median (quantile) based binary representation corre-
sponds to a partitioning and re-labeling of the feature space. If we were to split
the data iteratively, we would build a kd-tree in O(n lg n) time [25], for which
rectangular range queries take O(

√
n+ k) and membership queries take O(lg n)

time [26]. In contrast, in the BVM the median splits are chosen independently
of each other, one in each vector component. The binarisation therefore defines
a partitioning of the feature space into regions, where all separating hyperplanes
intersect in one point. Geometrically, it can be interpreted as moving the origin
of the Cartesian coordinate system to x̄ and representing each resulting orthant
by a bitvector {0, 1}d that indicates the position relative to the iso-oriented hy-
perplanes. The bitvectors correspond to nodes in a d dimensional hypercube (an
edge in the hypercube has Hamming Distance 1).

Let ψ be the mapping that performs the binarisation. We have

f(x) = sign

(
t∑

i=1

δi ·K(ψ(xi), ψ(x)) + g

)
. (3)

Due to a different training, the number of support vectors t, weights δ and
bias g might be different from the original values (s, β, b in Eq. 2). Moreover, as
K(ψ(u), ψ(v)) = φ(ψ(u)) · φ(ψ(v)), we see that we are actually dealing with a
different kernel that transforms data via φ ◦ ψ from Rd first into the Boolean
space {0, 1}d before lifting it into higher dimensions.

180 S. Edelkamp and M. Stommel

Because of the symmetry property, distance metrics based on an element
by element comparison (like Euclidean or Hamming distance) in {0, 1}d yield
only d+ 1 different values. All possible results of the kernel K(ψ(xi), ψ(x)) can
therefore be precomputed.

For the Gaussian kernel K(ψ(u), ψ(v)) = exp(−γ ‖ψ(u)− ψ(v)‖2) the term
‖ψ(u)−ψ(v)‖2 can only yield d+1 different values. For the Euclidean norm they
range from 0 to d and equal the Hamming distance of the kernel arguments. By
applying the parameter γ and the exponential to these values, the whole kernel
can be precomputed and stored in a table. This avoids the repeated time consum-
ing computation of the exponential during classification. The Hamming distance
can be computed by applying the population count instruction (counting the
number of bits set) to the bitwise XOR disjunction of the arguments.

Precomputing kernels reduces training and classification time. Because train-
ing is done only once, we focus on the latter.

Theorem 2 (Time Complexity Single-Bit Classification). Assuming d to
be O(w) for the computer word width w and native population count, the running
time for classifying one bitvector is O(t + d), where t is the number of support
vectors.

If population count is not native on the word level, then the classification of
one vector has the complexity O(d+ t lg∗ d), where lg∗ d is the iterated logarithm,
i.e. the height of the shortest tower of powers 22

...

that equals or exceeds d.

Proof. Computing the binarisation ψ(x) of the test vector x takes time O(d).
The population count and XOR to be executed on the word level to compute
the Hamming Distance run in O(1). Given that the kernel is tabulated, we
require only lookups to the kernel table, so that multiplication with a constant
and addition have to be executed t times to evaluate the classification formula∑t

i=1 δi ·K(ψ(xi), ψ(x)).
For larger values of d population count can be done in O(lg∗ d) by iterating

the HAKMEM algorithm8.

The second part of the theorem assumes large word width w and is mainly of
theoretical interest.

Assuming that the binary representation of the bitvectors due to computing
the quantiles still fits into a computer word width w, for an MBVM computing
the binarisation of the test vector x takes time O(md). Hence, the running time
for classification generalizes to O(t + md) with m being the dual logarithm of
the number of quantiles considered.

Corollary 2 (Time Complexity Multi-Bit Classification). Assuming d to
be O(w) for the computer word width w and native population count, the running
time for classifying one bitvector is O(t+md), where t is the number of support
vectors.

If population count is not native on the word level, then the classification of
one vector has the complexity O(md+ t lg∗(md)).

8 David Eppstein, http://11011110.livejournal.com/38861.html

http://11011110.livejournal.com/38861.html

The Bitvector Machine 181

The entropy for one split along the median is certainly maximal as long as
class labels are not taken into account. But even for simplified Mixed Gaussian
Distributions (2D, shifted mean, same deviation but same amplitude) entropies
can only be approximated [27].

The number of regions distinguishable by the BVM rises exponentially with di-
mensionality. For dimensionality dwe have 2d possible regions. Aswe split the data
component-wise, the BVM corresponds to a static decision tree that has depth d
and that is independent of the number of elements. An explicit construction of such
a tree, however, is not required. In contrast to SVMs, the binarisation automati-
cally normalises the input data to the unit hypercube.

Because the BVM is trained the same way as a SVM, we can still use cross-
validation or leave-one-out-validation to estimate the classification error.

4 Case Studies

One question is if and when the binary kernel is better than a linear one. If we
assign each vector {0, 1}n with even population count with class 1 and each vec-
tor {0, 1}n with odd population count with class 2, then we generalise the XOR
problem to higher dimension (the minimal Hamming distance of two elements
class in one class is two). This is clearly not linearly separable, but the BVM
can find a perfect classification.

This clearly is a best-case scenario, but we can argue that linearly non-
separable but binary separable examples are common in practice. One reason
for this is that many classes underly the principles of differentiation and com-
position. Let us assume for example a set of images of noses, either taken from
a left angle or from a frontal perspective. Although left noses are visually and
numerically similar to each other, they differ strongly from frontal noses and
occupy a separate region in feature space. The combined class nose, however,
is activated by features from both differentiations. The dispersed placement of
multiple clusters of sub-classes in feature space can easily create non-linearly sep-
arable situations, especially in multi-class problems. Moreover, real-world data
often comes from independent or principle component analyses. As a result, fea-
ture distributions for different sub-classes tend to be aligned with the coordinate
axes.

One worst-case scenario for the BVM in two dimensions is a checker-board
layout of two classes because after two orthogonal cuts all fields of the checker-
board that fall into the same quadrant are represented by the same bitvector
and with it the same class. For this theoretical setting, the SVM calls for several
support vectors and likely an overfitting of the data. If the number of Gaussian
kernels is small and the dimension is high, the BVM has good chances to find
a discriminative partitioning. As a result, feature binarisation preserves high
selectivity and lifts the curse of dimensionality.

However, if we were to use a MBVM with as many quantiles as the checker-
board size, the worst-case behavior would be avoided and we would encounter a
best-case scenario with accurate class boundaries.

182 S. Edelkamp and M. Stommel

Even though entire orthants collapse to single data points on the hypercube,
the Gaussian weighting of the binary vectors still preserves at least some geo-
metrical meaning. The weights for a specific class are propagated nonlinearly
from one orthant to another via shared hyperedges. For shared hyperedges the
Hamming distance of the associated bitvectors is one.

5 Experiments

We performed the experiments on one core of a desktop computer (model Intel
Core i7 920 CPU 2.67 GHz) running Ubuntu 10.10 (Linux kernel 2.6.32-23-
generic) with 24 GB main memory. With such memory capacity, there was no
need to use virtual memory. We compiled all programs using GNU C++ compiler
(gcc version 4.3 with option -O3 and -mpopcnt).

For the implementation of the BVM we have extended LIBSVM to support
bitvector manipulation based on a precomputed kernel and native population
counting. LIBSVM is chosen because it is well known, widely used, and easily
extendible. It uses a one-versus-one strategy for multi-class problems.

The use of SVM implementations aiming at higher training speed [3,4] would
not provide a deeper insight because our method aims at testing speed. The
BVM is also not in contradiction to approximative methods working on reduced
sets [5,6,7,8]. It would therefore be possible to combine a fast binary vector rep-
resentation with a small approximated set of support vectors in order to achieve
an even higher speed-up. However, in favour of the clarity of the presentation
we refrain from such combined approaches.

We evaluate the BVM in two synthetic and one natural scenarios.

5.1 Artificial Data

To validate our ideas experimentally, we produced training and test data for two
and five-class problems in a random process with defined statistical properties.
For each class we realised a sampling of a Mixture of Gaussians. The mean
μi, i = 1, 2, . . . of each multivariate Gaussian

pi(x) =
1

(2π)
d
2 |Σ| 12

exp

(
−1

2
(x− μi)

�Σ−1(x− μi)

)
(4)

is placed in the unit hypercube. The bandwidth is set globally in the main
diagonal of the covariance matrix Σ for all Gaussians. The number of Gaussians
is set individually for every experiment.

The maximum likelihood estimate (Bayes) of the Mixed Gaussian distribution
is used as the ground truth to which an SVM and the proposed method are
compared. Linear kernels are used to detect linearly separable situations.

The difficulty of the created problems is controlled by adjusting the band-
width of the Gaussians for a specific accuracy of the maximum likelihood
estimator. If we keep the number of Gaussians fixed and increase the dimension-
ality, we have to increase the bandwidth, too. Otherwise the overlap between the

The Bitvector Machine 183

Gaussians decreases and the difficulty of the problem changes. The bandwidth
of the kernel is therefore a parameter of the experimental setting. It exhibits
a strong influence on the resulting estimate. We therefore set it manually, al-
though Silverman indicates a dependency of the bandwidth on the root of the
dimensionality [28].

First Scenario. As a parameter of the synthetic experiment, we choose the band-
width to provide accuracy values to be in the range [0.8, 0.85]. For determining
the classification accuracy (on the training and test sets) we conducted two ex-
periments, one for a two-class problem and one for a five-class problem both
with rising dimension (dimensionalities 2, 4, 8, . . . , 256). The two-class problem
is modeled by three Gaussians per class at uniformly distributed random posi-
tions in the unit cube. With 5 Gaussians per class, the five-class problem is more
complex. Each Gaussian is sampled 70 times. The data set is randomised and
split into equally sized training and test sets. The parameters C (a weighting of
the slack variables in the optimised function) and γ of both the BVM and the
RBF kernel of LIBSVM are optimised in a grid search using the Python scripts
provided by LIBSVM. For the Gaussian kernel and the BVM the training set is
further subdivided in order to perform a five-fold cross validation for parameter
selection.

The plots in Fig. 1 show that the BVM solves the problem surprisingly well,
given the limitation that the BVM does not represent any gradual or continuous
feature values.

For smaller dimensions and the two-class problem, all methods lead to very
similar results with a small advantage for the SVM with Gaussian kernel. The
results of the BVM are comparable to those of the linear classifier, with chang-
ing winners. For the five-class problem, the results are clearer. Training and test
results are closer for smaller dimensionalities and the BVM achieves results be-
tween the SVM with Gaussian and linear kernel, although closer to the linear
one. The recognition rate of the BVM has a maximum at 32 dimensions. It seems
that lower dimensions limit the capacity to represent information.

For more than 32 dimensions, the accuracy drops significantly for all methods.
The pronounced divergence between the training and test results of the linear
classifier indicates heavy overfitting. The Gaussian kernel does not show this
overfitting but the bad results indicate a clear failure, too. Although the cross-
validation on subsamples of the training set leads to better estimates of the final
recognition rate, it cannot compensate for missing information.

In summary the accuracy of all classifiers is limited, so our experiment may
be overly complex. Even the linear kernel might be competitive if additional
application constraints are taken into account. It must also be said that the
difficult class borders in this Gaussian mixture do not have much in common with
data sets from pattern recognition tasks: In such applications, the feature vector
often represents the similarity of a query object to a set of prototypes, where each
similarity is stored in one dimension. Consequently, the class border would not
normally cross a coordinate axis multiple times. The effect is even reinforced by
the common use of coordinate transforms such as principle component analysis.

184 S. Edelkamp and M. Stommel

Fig. 1. First scenario: Accuracy for the SVM (RBF and linear kernel) and the BVM

In matters of CPU time we see a drastic decrease in computation time for the
BVM. Figure 2 shows that we obtain a huge speed-up that additionally increases
with the dimension of the problem. The maximum increase of performance was
a factor of 32 for the two class problem in 128 dimensions. The increase in CPU
time at d = 256 for the BVM can be explained by the increased word length.
Here all word level operations have to be executed four times on a 64 bit ma-
chine. For bigger dimensions, computer architecture and compiler must be taken
stronger into account. We have not measured the time for the preprocessing step.

The Bitvector Machine 185

Fig. 2. CPU time measured for the classification of the data sets in the first scenario.
The original real valued data is classified by an SVM with Gaussian kernel. The binary
data refers to the BVM.

However, it seems obvious to us that a loop over d dimensions in the binarisa-
tion of a feature descriptor is uncomparably faster than the computation of dot
products to thousands of d-dimensional support vectors in the classification of
one descriptor.

The Second Scenario represents the above-mentioned high-dimensional XOR
problem but with noisy data. To this end, we centre the Gaussians of our Gaus-
sian Mixture at the corners of the unit hypercube and assign class labels to
the Gaussians as described above. The bandwidth is adjusted so that the Bayes
classifier achieves an accuracy of 90%–92% using the known distribution.

Figure 3 shows the results of the proposed method and the SVM using the
RBF and linear kernel. The Gaussian Mixture consists of four planar XOR prob-
lems placed at random sides of the unit hypercube of dimensionality 8, 16, . . . ,
256). A planar XOR problem consists of four Gaussians at the corners of a
square with diagonally different class labels. Each Gaussian is sampled 70 times.
The best results can be seen for the SVM using the RBF kernel. The output of
the BVM follows the SVM at a lower level. The linear classifier fails completely
because it cannot represent the non-linear class borders.

Figure 4 shows the results for an 8-dimensional XOR arrangement of varying
sparseness. For this distribution, Gaussians are randomly placed in a certain
percentage of all corners and sampled 100 times each. For a sparse filling of
10%, the distribution still seems linearly separable. However, with increasing
density the linear classifier quickly approaches random, whereas the BVM im-
proves gradually and finally outperforms the SVM with RBF kernel (corner fill
factor ≥ 0.5).

This good result shows that the interpretation of the BVM as a simplified ap-
proximation of the SVM depends on the understanding of the data (and studying
the data is always a good start). If it is not known how the data corresponds

186 S. Edelkamp and M. Stommel

Fig. 3. Second scenario: Accuracy for a two class problem including four planar xor
problems

to the described case scenarious, then the BVM must be considered as a non-
parametric, simplified method and the results can be inferior to the SVM. If it
is known that the data corresponds to a good case scenario, then we use the
BVM as a model based method that benefits from our prior knowledge about
the data.

5.2 Real World Data

The Third Scenario is a Computer Vision task, where SIFT descriptors [13] are
classified into 16 classes (15 classes representing different parts of a face plus one
background class). Additionally to the original SIFT method, we also tested a
variation that takes into account that faces are shown in an upright orientation
in most images. Without going into detail, we can say that the original SIFT
method is rotationally invariant, i.e. different rotated versions of the image re-
sult in approximately the same feature vector. Our variation in contrast (marked
as ’absolutely oriented’ in Tab. 1) is selective to orientation, so different rotated
versions of the same visual pattern can be distinguished. In both cases the bi-
narised feature vectors have 128 bits, so they can be compactly stored in two
64-bit words.

We evaluate the effectiveness of population counting on the machine and study
the speed-ups obtained for sole kernel evaluations (Table 2) and whole vector clas-
sifications (Table 3). We compare the LIBSVM implementation with the BVM in
two settings, one with a precomputed 16-bit population count lookup-table (216

entries), one with the native population count (__builtin_popcountll).We run
three examples for each setting to show that the variance in the running times is

The Bitvector Machine 187

Fig. 4. Accuracy for a non-linear, 8-dimensional class arrangement of increasing
complexity

small. The table documents a speed-up factor of 48 in the 116 million kernel com-
parisons and an improvement by a factor of 17 for the entire classification process.
Further speed-ups might be achieved by using a one-versus-all strategy for multi-
class problems instead of the one-versus-one strategy implemented in LIBSVM.

The difference in CPU time between the sole kernel computation and the
whole classification indicates a strong influence of the code analysis and gener-
ation of the compiler, since the number of kernel computations has been equal
in both experiments, and the optimisation flags too.

Table 1 shows for different SIFT variations and different class distributions
that despite the high speed-up the accuracy of the BVM is on average (from the
cross validation) close to that of the SVM. The remaining gap seems statistically
significant when comparing the results of the training and test sets. However, it
becomes lower with increasing sample size. In comparison to the linear classifier,
the BVM is clearly better. For the larger data sets, the BVM is closer to the

Table 1. Accuracy [%] for SIFT data sets of different size and class distribution. There
are 15 foreground classes and one background class. The samples are randomised and
split into equally sized training and test sets.

Feature vector SIFT SIFT, absolutely oriented

Foreground samples per class 20 20 125 250
Background samples 2000 2000 1125 2250

Classifier Training Test Training Test Training Test Training Test

LibSVM, RBF 73.4 74.0 79.9 79.1 84.7 85.6 86.8 87.9
BVM, RBF 67.2 67.3 74.0 75.0 82.4 83.2 84.2 85.1
LibSVM, linear 99.1 60.7 97.7 70.5 94.6 77.4 90.9 79.6

188 S. Edelkamp and M. Stommel

Table 2. Evaluation time [s] for 116 072 232 kernel computations. The first column
gives the result for LIBSVM using the Gaussian kernel. The second column gives the
results for the BVM, where a look-up-table for 16-bit wide sub-words of the feature
vector is used for the computation of the population count. In the last column, the
native 64-bit population count CPU instruction is used.

No LIBSVM BVM, 16-bit-popcnt BVM, 64-bit popcnt

1 48.36 2.16 1.00
2 48.27 2.16 1.00
3 48.59 2.14 1.01

Table 3. Time [s] for classifying 16 788 vectors in 16 classes, 6914 support vectors

Kernel computation using all support vectors
No LIBSVM BVM, 16-bit popcnt BVM, 64-bit popcnt

1 39.44 4.01 2.84
2 39.45 4.01 2.81
3 39.71 4.00 2.71

only support vectors with β �= 0

1 3.46 2.27
2 3.45 2.28
3 3.46 2.28

Gaussian SVM than the linear one. The good results match findings in [16] where
the classification accuracy (measured in error rates) has been shown to behave
well for other Computer Vision Tasks, too.

6 Conclusion

We proposed a machine learning algorithm whose advantages result from a dra-
matic simplification of the input data. Discretisation certainly has limits in the
accuracy of class distributions that are not iso-oriented. We argue, however,
that iso-oriented classes with non-linearly separable sub-classes occur in many
pattern recognition tasks.

The rising number of positive results in discretising feature vectors into bitvec-
tors prior to the learning process shows that the effectiveness and efficiency of
the binarisation in the BVM is an exciting phenomenon. Especially for a growing
number of dimensions, where we lack a visual interpretation and where unex-
pected results like the curse of dimensionality have been measured, research
might have concentrated on aspects that do not discriminate well. Even though
binarisation reduces the information in the input considerably our experiments
show that the results are often of acceptable quality, sometimes even better than
the original unabstracted input.

Our experiments on synthetic and real data show that the accuracy of the
BVM approximates (and in special cases exceeds) the accuracy of a SVM with
RBF kernel better than a linear classifier, but is up to 48 times faster in the

The Bitvector Machine 189

kernel computation and up to 32 times faster in classification. These results
confirm our theoretical proof of the efficiency of classification and binarisation.
Compared to a linear classifier, the accuracy of the BVM is usually higher or
equal. Furthermore, the BVM has the ability to model non-linearly separable
problems where the linear classifier fails. Together with an improved empirical
basis we provided insights that increase the understanding of when and why the
approach works well, especially for large feature vectors. The BVM therefore
allows for a welcome new trade-off between accuracy and running time for non-
linear problems. The use of q-quantiles with q > 2 in the MBVM can improve
the accuracy by the cost of time performance. Hence, the approach is expected
to be applicable to problems that are not iso-oriented.

References

1. Vapnik, V.N., Chervonenkis, A.Y.: Theory of Pattern Recognition. Nauka, USSR
(1974) (in Russian)

2. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press (2000)

3. Bordes, A., Ertekin, S., Weston, J., Bottou, L.: Fast Kernel Classifiers with Online
and Active Learning. Journal of Machine Learning Research 6, 1579–1619 (2005)

4. Joachims, T.: Learning to Classify Text using Support Vector Machines. Kluwer
(2002)

5. Tsang, I., Kocsor, A., Kwok, J.T.: Simpler core vector machines with enclosing
balls. In: Ghahramani, Z. (ed.) 24th International Conference on Machine Learning
(ICML), pp. 911–918. ACM, New York (2007)

6. Burges, C.J.C.: Simplified Support Vector Decision Rules. In: Proceedings of the
Thirteenth International Conference on Machine Learning (ICML), pp. 71–77. Mor-
gan Kaufmann (1996)

7. DeCoste, D.: Anytime Interval-Valued Outputs for Kernel Machines: Fast Sup-
port Vector Machine Classification via Distance Geometry. In: Proceedings of the
International Conference on Machine Learning (ICML), pp. 99–106 (2002)

8. Decoste, D., Mazzoni, D.: Fast query-optimized kernel machine classification via
incremental approximate nearest support vectors. In: International Conference on
Machine Learning (ICML), pp. 115–122 (2003)

9. Chang, Y.W., Hsieh, C.J., Chang, K.W., Ringgaard, M., Lin, C.J.: Training and
Testing Low-degree Polynomial Data Mappings via Linear SVM. Journal of Ma-
chine Learning Research 11, 1471–1490 (2010)

10. Zhang, K., Lan, L., Wang, Z., Moerchen, F.: Scaling up Kernel SVM on Limited
Resources: A Low-rank Linearization Approach. In: International Conference on
Artificial Intelligence and Statistics, AISTATS (2012)

11. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When Is Nearest Neighbor
Meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
217–235. Springer, Heidelberg (1998)

12. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the Surprising Behavior of Dis-
tance Metrics in High Dimensional Space. In: Van den Bussche, J., Vianu, V. (eds.)
ICDT 2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2000)

13. Lowe, D.G.: Object Recognition from Local Scale-Invariant Features. In: Interna-
tional Converence on Computer Vision (ICCV), pp. 1150–1157 (1999)

190 S. Edelkamp and M. Stommel

14. Stommel, M., Herzog, O.: Binarising SIFT-Descriptors to Reduce the Curse of
Dimensionality in Histogram-Based Object Recognition. In: Śl ¸ezak, D., Pal, S.K.,
Kang, B.-H., Gu, J., Kuroda, H., Kim, T.-h. (eds.) SIP 2009. CCIS, vol. 61, pp.
320–327. Springer, Heidelberg (2009)

15. Bay, H., Ess, A., Tuytelaars, T., Gool, L.J.V.: Speeded-Up Robust Features
(SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)

16. Stommel, M., Langer, M., Herzog, O., Kuhnert, K.D.: A Fast, Robust and Low Bit-
Rate Representation for SIFT and SURF Features. In: Proc. IEEE International
Symposium on Safety, Security, and Rescue Robotics, pp. 278–283 (2011)

17. Summa, M.G., Bottou, L., Goldfarb, B., Murtagh, F., Pardoux, C., Touati, M.
(eds.): Statistical Learning and Data Science. CRC Computer Science & Data
Analysis. Chapman & Hall (2011)

18. Schoelkopf, S.: Learning with Kernels. MIT Press (2001)
19. Schneegaß, D., Schäfer, A.M., Martinetz, T.: The Intrinsic Recurrent Support Vec-

tor Machine. In: European Symposium on Artificial Neural Networks (ESANN),
pp. 325–330 (2007)

20. Gudmundsson, S., Runarsson, T.P., Sigurdsson, S.: Support vector machines and
dynamic time warping for time series. In: International Joint Conference on Neural
Networks (IJCNN), pp. 2772–2776 (2008)

21. Permuter, H., Francos, J., Jermyn, I.H.: A study of Gaussian mixture models
of colour and texture features for image classification and segmentation. Pattern
Recognition 39(4), 695–706 (2006)

22. Blum, M., Floyd, R., Pratt, V., Rivest, R., Tarjan, R.: Time bounds for selection.
J. Comput. System Sci. 7, 448–461 (1973)

23. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press (2009)

24. Voloshynovskiy, S., Koval, O., Beekhof, F., Pun, T.: Random projections based
item authentication. In: Proceedings of SPIE Photonics West, Electronic Imaging
/ Media Forensics and Security, vol. 7254 (2009)

25. Bentley, J.L.: Multidimensional Binary Search Trees Used for Associative Search-
ing. Commun. ACM 18(9), 509–517 (1975)

26. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry
Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

27. Michalowicz, J.V., Nichols, J.M., Bucholtz, F.: Calculation of Differential Entropy
for a Mixed Gaussian Distribution. Entropy 10(5), 200–206 (2008)

28. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman
and Hall, London (1986)

Embedding Monte Carlo Search of Features

in Tree-Based Ensemble Methods

Francis Maes, Pierre Geurts, and Louis Wehenkel

University of Liège
Dept. of Electrical Engineering and Computer Science
Institut Montefiore, B28, B-4000, Liège - Belgium

Abstract. Feature generation is the problem of automatically const-
ructing good features for a given target learning problem. While most
feature generation algorithms belong either to the filter or to the wrapper
approach, this paper focuses on embedded feature generation. We propose
a general scheme to embed feature generation in a wide range of tree-
based learning algorithms, including single decision trees, random forests
and tree boosting. It is based on the formalization of feature construction
as a sequential decision making problem addressed by a tractable Monte
Carlo search algorithm coupled with node splitting. This leads to fast
algorithms that are applicable to large-scale problems. We empirically
analyze the performances of these tree-based learners combined or not
with the feature generation capability on several standard datasets.

Keywords: Embedded Feature Generation, Monte Carlo Search,
Decision Trees, Random Forests, Tree Boosting.

1 Introduction

It is often admitted that the successful application of supervised learning depends
at least as much on the features chosen to describe the inputs of objects than
on the adopted learning algorithm. In addition to improving the accuracy of
the resulting models, a proper choice of features can also lead to more compact
models which often gain in interpretability. In practice, feature engineering - the
process of identifying a good set of features for a given learning task - is usually
performed manually based on problem expertise, which makes it more an art
than a science. In order to remedy this situation, a number of algorithms for
automatic feature generation have been proposed since the nineties (see [15,19]
for examples of early work on this topic).

Most proposed approaches for automatic feature generation1 take the form of a
preprocessing: before doing actual learning, some kind of search is performed in a
space of candidate features in order to construct a (typically small) set of features
that are expected to help learning better models. Proposed approaches for this
preprocessing can be classified in two categories: filters and wrappers [6]. In the

1 This task is also known as automatic feature discovery, construction, or extraction.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 191–206, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

192 F. Maes, P. Geurts, and L. Wehenkel

former case, the search for good features is performed on the basis of general
statistics, logical or information content criteria (see [8] for example), while the
latter case directly relies on the performance of the target learning algorithm
to guide search through the feature space. Examples of wrappers include the
work of [16] based on wrapping the kNN learning algorithm or the work of [10]
where the wrapped learning algorithm is a C4.5 decision tree. More recently
the authors of [18] proposed an algorithm for joint feature construction and
feature selection, wrapping either C4.5, kNN or a Bayesian classifier. Some form
of genetic programming is used in most of these works, in which individuals
are typically feature sets represented as a forest composed of n trees, each tree
describing one particular feature.

Feature generation is closely related to feature selection and, while feature
selection methods may also be classified as filters or wrappers, the last decade
has seen an increasing interest for so-called embedded feature selection meth-
ods. In these latter methods, the feature selection task is embedded within the
learning algorithm formulation, for example through the use of a L1-norm based
regularization term added to an average loss term to yield the learning objec-
tive function [13]. Embedded methods may offer some advantages over filters and
wrappers, including much better scaling properties and better theoretical under-
standing. Surprisingly however, embedded methods have received little attention
in the field of feature generation. To our best knowledge, the few embedded fea-
ture generation methods proposed so far are built around single decision tree
induction. As an example, it is proposed in [5] to invoke a genetic programming
algorithm to find the best splitting feature at each node during decision tree in-
duction. In this case, feature generation is not seen anymore as a preprocessing
step, but is instead tightly integrated within the learning process.

In this paper, we propose a general scheme to embed in a flexible way feature
generation in a wide range of tree-based supervised learning algorithms includ-
ing single decision trees, random forests and common forms of tree boosting.
We emphasize our analysis on the two latter types of algorithms, since numer-
ous studies show that they clearly outperform single decision trees in terms of
classification accuracy [2].

Both random forests and tree boosting rely on some form of vote over a set of
predictors and they are often the most effective when the individual predictors
are only of moderate quality: boosting is based on the combination of many
weak classifiers and random forests rely on randomization to reduce the correla-
tion of ensemble terms. As a consequence, it may be unnecessary and possibly
counterproductive to invest a huge computational budget in the search over the
feature space in the context of these methods. Therefore, instead of using compu-
tationally complex genetic programming algorithms, we propose to use a Monte
Carlo search algorithm which budget may be controlled so as to both weakly
and efficiently explore the feature space at each tree-node when constructing
model terms in random forests or in tree boosting. Our approach thus leads to
a fast integrated learning and feature generation procedure that scales well to
large scale problems and adapts well to the properties of tree-based ensemble

Embedding Monte Carlo Search of Features 193

methods, while it works also with single trees. We show empirically that embed-
ding this feature search into single trees, random forests and tree boosting yields
significant improvements over these algorithms in their basic forms.

The rest of this paper is organized as follows. Section 2 introduces notations
and formulates the learning problem we address. Section 3 motivates the main
principles of our approach for embedded feature generation. Section 4 formalizes
feature generation as a sequential decision making problem and describes Monte
Carlo search algorithms to explore the feature space both efficiently and with
controlled strength. Section 5 presents an empirical evaluation of our algorithms
using several tree-based learning algorithms and Section 6 concludes.

2 Problem Formulation

We consider supervised learning where, given a dataset S = {(x(i), y(i))}i∈[1,N]

of samples (x, y) ∈ X × Y i.i.d. from a distribution DX ,Y , the aim is to infer a
classifier h ∈ H to minimize the expected risk: E(x,y)∼DX,Y{Δ(h(x), y)}. Clas-
sically in supervised learning, the input objects x are vectors of numerical or
categorical features that can directly be exploited by the learning algorithm.
This assumes that feature engineering has already been done when formulating
the learning problem. In our context, the aim is to integrate feature generation
within the learning process and we thus make no strong assumptions on the
nature of X . An input object x ∈ X is an n-tuple of properties x = (x1, . . . , xn),
where each xi belongs to the space Xi that can either be continuous, discrete or
structured. Properties can for example be raw signals such as images or struc-
tured data such as trees and graphs. Classical categorical or numerical data also
naturally fit in this framework.

In order to bring the capacity of feature generation to the learning algorithm,
we expect the user to provide a set of constructor functions, as proposed in [11].
These functions can be mathematical, logical and/or domain-specific and serve
as the basis for feature generation. Formally, a constructor function of arity a
is a triplet (I,O, F) where I is the input domain (X1 × · · · × Xk), O is the
output domain and F is a function F : I → O. As an example, addition of two
scalars has arity k = 2 and is defined as (I,O, F) = (�×�,�, F (x, y) = x+y).
Constructor functions can either be applied to the input properties xi or to the
results of other constructor functions. This naturally leads to tree-structured
features as illustrated by Figure 1. Note that this way of generating features is
rather general and enables to encode complex processing pipelines [14].

3 A General Scheme for Embedding Feature Generation

Most previous automatic feature generation algorithms are preprocessings that
aim at constructing a mapping φ : X → Z that extracts a set of relevant
features adapted to the targeted learning algorithm (e.g. typically, we have
Z ⊂ �

d). Learning is then performed on the basis of the modified data set
{φ(x(i)), y(i)}i∈[1,N] and classifying a new input x ∈ X aims at computing

194 F. Maes, P. Geurts, and L. Wehenkel

Fig. 1. Examples of constructed features for three different domains: booleans,
real-valued attributes and images

h(φ(x)) ∈ Y. This paper proposes a scheme to do both feature generation and
learning in an integrated way, so as to solve the following problem: given the
dataset whose inputs are general properties, and a set of constructor functions,
infer a classifier h : X → Y to minimize the expected risk.

Random forests, boosted stumps and boosted decision trees are among the
top-performing and most widely used supervised learning methods nowadays [2].
These algorithms all rely on decision trees, which involve splitting the dataset
recursively by testing one variable at a time. At this level, instead of testing the
raw input variables of the problem, our approach consists in splitting the local
dataset on the basis of locally constructed features, along the ideas of [5].

Table 1 summarizes the characteristics of the splitting procedure of well-
known tree-based supervised learning algorithms2. In single decision trees and
random forests, splits are constructed by searching the threshold optimizing
the information gain for each candidate variable and by selecting the variable
with maximal information gain. Random forests [1] are forests constructed us-
ing bagging and random subspaces : when building a node, only a subset of the
(non-constant) attributes are considered as candidates for making the split. In
addition to random subspaces, extremely randomized trees [7] introduce random-
ization by selecting splitting thresholds randomly, which often leads to improved
models. In the two boosting methods, the splitting criterion depends on both
the selected samples D and on their current weight W [17].

Our approach which is detailed in Section 4 consists in testing a small and
randomized part of the feature space to weakly optimize the split scores of Table
1, during each node creation. Note that, except single decision trees, all these
learning algorithms are ensemble approaches that rely on some form of majority
vote to perform predictions. We believe that in this context, performing only a
weak optimization over the feature space makes sense for various reasons:

2 Note that while we only consider numerical attributes for the sake of simplicity, the
ideas developed in this paper also apply to other types of attributes.

Embedding Monte Carlo Search of Features 195

Table 1. Tree-based learning algorithms with associated splitting procedures

Method Abbr. Split score Optimizer

Single decision Tree ST maxt∈Xi InfoGain(S, xi ≤ t) Exhaustive
Random Forest RF maxt∈Xi InfoGain(S, xi ≤ t) Subset

Extremely randomized Trees ET InfoGain(S, xi ≤ t) where t ∼ UXi Subset
Boosted Stumps BS maxt∈Xi Edge(S,W,xi ≤ t) Exhaustive

Boosted decision Trees BT maxt∈Xi Edge(S,W,xi ≤ t) Exhaustive

– With all ensemble models, learning typically involves making several thou-
sands of splits. So, even if only, say, 1% of a feature subspace is looked at
each node, the whole subspace may still be visited multiple times during
the entire learning procedure, and each of its elements may have multiple
chances to be selected.

– Random forests and extremely randomized trees already rely on random
subspaces to introduce randomization, which was shown to lead to improved
generalization accuracy. Hence, exploring weakly the feature space is a nat-
ural extension of these algorithms that should conserve their advantages.

– With boosting, it is well known that the stronger the base learner is, the
higher the chances of overfitting are. When embedding automatic feature
generation into boosting, this problem is particularly relevant since the fea-
ture space may be highly expressive. Weak exploration of the feature space
is a way to ensure that, even with very expressive candidate features, the
base learner remains weak, hence reducing the risk of overfitting.

In the context of ensemble models, we therefore suggest that it may be unnec-
essary or even counter-productive to use computationally intensive optimization
algorithms (e.g. genetic programming, or sophisticated heuristic search) as tradi-
tionally done in automatic feature generation. To explore this idea, the following
section proposes fast randomized feature generation algorithms invoked locally
during tree growing and in Section 5 we study them empirically.

4 Feature Generation Algorithms

We define first the feature grammar, then their generation as a sequential
decision-making problem, and finally address this problem by Monte Carlo
search.

4.1 Feature Grammar Using Reverse Polish Notation

Reverse polish notation (RPN) is a representation of expressions wherein every
operator follows all of its operands. For instance, the RPN representation of
the feature c × (a + b), where a, b and c are input properties and + and ×
are constructor functions, is the sequence of symbols [c, a, b,+,×]. This way of
representing expressions is also known as postfix notation and is parenthesis-free

196 F. Maes, P. Geurts, and L. Wehenkel

Algorithm 1. RPN evaluation

Require: f ∈ AD: a feature of size D
Require: x ∈ X : input properties

stack ← ∅
for d = 1 to D do

if αd is an input property then
Push the value of αd onto the stack

else
Let k be the arity of constructor αd

if |stack| < k then
syntax error

else
Pop the top k values from the stack,
apply αd to these operands and push the result onto the stack

end if
end if

end for
if |stack| �= 1 then

syntax error
else

return top(stack)
end if

as long as operator arities are fixed, which makes it simpler to manipulate than
its counterparts, prefix notation and infix notation.

Let A be the set of symbols composed of input properties and constructor
functions. A feature f is a finite sequence of symbols of A: f = [α1, . . . , αD] ∈ A∗.
The size of a feature f is its number D of symbols. The evaluation of an RPN
sequence relies on a stack and is depicted in Algorithm 1. This evaluation fails
either if the stack does not contain enough operands when a constructor function
is used or if the stack contains more than one single element at the end of the
process. Feature [a,×] leads to the first kind of error: the function × of arity 2 is
applied with a single operand. Feature [a, a, a] leads to the second kind of error:
evaluation finishes with three different elements on the stack. Features avoiding
both kinds of errors are syntactically correct and are denoted f ∈ F ⊂ A∗.

4.2 Feature Generation as a Sequential Decision-Making Problem

We rely on RPN to formalize feature generation as a sequential decision-making
problem. Thanks to this formalization, feature generation can be considered as
a “one-player game” and solved using Monte Carlo search algorithms. In our
approach, we expect the user to provide D, the maximal constructed feature
size, i.e. the length of the longest features which will be considered as candidates.
Given D, our sequential decision-making problem is defined as follows:

– State space: a state s is an RPN subsequence: s = [α1, . . . , αd] ∈ A∗ with
d ≤ D. The initial state is the empty sequence s0 = ∅.

Embedding Monte Carlo Search of Features 197

Table 2. Set of valid actions depending on the current state. Symbols are classified
into Input properties, Unary function constructors and B inary function constructors.
|stack| denotes the size of the current stack and d the length of the current RPN
sequence. If the stack does not contain at least one element (resp. two elements), the
unary functions (resp. binary functions) are excluded. When approaching the horizon
D, input properties are excluded, or binary functions are forced to avoid finishing with
too many elements on the stack.

State Valid actions

|stack| = 0 I
|stack| = 1 & d �= D − 1 I,U,⊥
|stack| = 1 & d = D − 1 U,⊥
|stack| ∈ [2, D − d[I,U,B
|stack| = D − d U,B
|stack| = D − d+ 1 B

– Action space: the action space is A ∪ {⊥}, where ⊥ is a special symbol
to denote the end of a sequence. Given state s, we only consider a subset
AD

s ⊂ A of valid actions to avoid the two syntax errors described earlier and
to respect the constructor function typing constraints. Table 2 illustrates
the set of valid actions AD

s ⊂ A in a simple case containing only unary and
binary constructor functions that all operate on the same domain (e.g. only
functions operating on real numbers). The following pre-processing can be
used to compute the sets As in the general case. First, generate a tree of
all the possible states of the stack for depths d = 0, 1, . . . , D. The state of
the stack is composed of a vector of variable domains; it does not depend on
any particular input x ∈ X . Then, prune this tree by removing recursively
all nodes leading to no valid RPN sequences. Given a particular state s,
identify the corresponding state of the stack in this pruned tree and build
As accordingly.

– Transition function: if the action ⊥ is selected, we enter a final state
defining feature f = s. Otherwise, the selected symbol is appended to the
current RPN subsequence s.

– Reward: it is obtained when entering a final state and corresponds to the
score computed by the target learning algorithm (see Table 1).

4.3 Monte Carlo Search for Feature Generation

Monte Carlo search algorithms for making optimal decisions are receiving an
increasing interest in various fields of artificial intelligence [4], essentially due
to their ability to combine the precision of tree search with the generality of
random simulations. As a first step towards studying the application of these
techniques to the problem of embedded feature generation, we focus here on
three very simple Monte Carlo strategies: random, step and look-ahead.

These strategies are depicted in Algorithm 2. We denote by K the budget
allowed to the search algorithm, i.e. the number of different features it can

198 F. Maes, P. Geurts, and L. Wehenkel

Algorithm 2. Random, step and look-ahead feature generation algorithms

Require: budget K
Require: maximal feature size D

function randomSimulation(state s)
while s is not a final state do

a ∼ UAD
s

� Sample valid action randomly
s← s :: a � Append symbol to s

end while
return s

end function

function stepSimulation(state s)
r∗ ← −∞; f∗ ← ∅; d← 1
while s is not a final state do

f ← randomSimulation(s) � Fill with random simulation
if score(f) > r∗ then f∗ ← f ; r∗ ← score(f) end if
s← s :: f∗[d] � Append the d-th symbol of the best constructed feature
d← d+ 1

end while
return f∗

end function

function lookAheadSimulation(state s)
r∗ ← −∞; f∗ ← ∅; d← 1
while s is not a final state do

for each a ∈ AD
s do

f ← randomSimulation(s :: a) � Fill with random simulation
if score(f) > r∗ then f∗ ← f ; r∗ ← score(f) end if

end for
s← s :: f∗[d] � Append the d-th symbol of the best constructed feature
d← d+ 1

end while
return f∗

end function

r∗ ← −∞; f∗ ← ∅
while num evaluated features < K do

f ← {random|step|lookAhead}Simulation(∅)
if score(f) > r∗ then f∗ ← f ; r∗ ← score(f) end if

end while
return f∗

evaluate before to answer. The random strategy randomly generates K features,
computes the score of each of these features and returns the best one. The two
other algorithms start with an empty feature s = ∅ and proceed iteratively. At
iteration d, the step strategy completes the current subsequence randomly and
evaluates the corresponding feature. It then selects its next symbol as the d-
th symbol of the currently best found feature f∗. Strategy look-ahead proceeds
similarly, but makes more random simulations: one simulation per candidate

Embedding Monte Carlo Search of Features 199

Fig. 2. Illustration of three steps of Algorithm 2 with the look-ahead strategy. Boxes
denote states, curved edges denote random simulations and rounded boxes denote final
states, i.e. constructed and evaluated features. Double-circled boxes denote the symbols
of the best discovered feature so-far that are selected by the algorithm. Note that at
the second step, the best discovered feature is still [a, a,+, b,×], hence the selected
symbol is a.

successor symbol. This strategy corresponds to the level 1 nested Monte Carlo
search algorithm [3]. Whatever the search strategy, our top-level algorithms work
by repeatedly running the random, step or look-ahead strategy until K different
features have been evaluated, i.e. search is stopped as soon as the split score
function has been called K times. It then returns the best found feature.

Figure 2 illustrates three steps of our feature generation algorithm using the
look-ahead strategy in a simple case with two input properties a and b and two
constructor functions + and ×.

5 Experimental Results

We validate our approach by embedding feature generation into five well-known
classification algorithms: single trees, random forests, extremely randomized
trees, boosted stumps and boosted trees. We focus on a set of 12 standard
classification datasets, study the effect of the parameters D and K and compare
algorithms embedding feature generation with their classical counter-parts.

5.1 Datasets and Methods

We use the same set of 12 multi-class classification datasets as the authors of [7].
These well-known and publicy available datasets cover a wide range of conditions

200 F. Maes, P. Geurts, and L. Wehenkel

in terms of number of candidate attributes, presence of noise, non-linearity, ob-
servation redundancy and irrelevant variables. We also use the same train/test
splits and the same evaluation protocol as [7]: for each dataset and each algo-
rithm, we measure the test classification error averaged over 50 train/test splits
for the smaller datasets and 10 train/test splits for the larger datasets.

We embed feature generation into the following algorithms. Single trees (ST)
are classical decision trees without pruning. Random forests (RF) [1] and ex-
tremely randomized trees (ET) [7] are well-known ensemble methods. Boosted
stumps (BS) and boosted decision trees (BT) rely on the AdaBoost.MH algo-
rithm for multi-class classification [17]. For the ST, RF and ET methods, we
use the information gain normalized in the same way as [7]. As in [9], when
splitting nodes into boosted decision trees, we do not maximize information
gain but rather directly maximize the edge, the objective of the weak learner in
AdaBoost.MH.

Although our formalism enables to deal with input properties and constructor
functions of different types, we focus here on a simpler case: all input proper-
ties are numerical attributes and we construct features by using only the four
mathematical operations +,×,−, /. Applying our approach to more complex
situations is left for future work.

5.2 Impact of Parameters K and D

Our first series of experiments aims at studying the impact of the optimization
budget K and the maximal feature size D on the performance of single trees,
extremely randomized trees and boosted stumps. To study the impact of K, we
choose a constant value D = 5, which for example enables to construct features
such as a + b × c and vary K from 0.1n to 100n. We then set K to a constant
value (either K = 100n for single trees or K = 10n for the other methods) and
vary the maximal feature length D from 1 to 15.

Single Trees. Figure 3 reports the results for single trees. The baseline corre-
sponds to classical decision trees learned on the original variables of the prob-
lem. First, we observe that feature generation does not systematically lead to
improved decision trees, which was already observed in previous work on feature
generation. Second, we observe that scores continuously get better when the
optimization budget K is increased. This is in agreement with the traditional
approach to feature generation involving computationally intensive search al-
gorithms such as genetic programming. Since there is a single chance to build
a good-performing tree (there is no ensemble effect), as much computational
power as possible should be dedicated to feature search. There is no clear ten-
dency concerning the parameter D, although we see that D = 5 seems to be a
reasonable default value. The look-ahead strategy slightly outperforms the two
other search strategies, although the overall difference is rather small.

Extremely Randomized Trees. Figure 4 displays the results for ensembles of 100
extremely randomized trees. Our approaches are compared against traditional

Embedding Monte Carlo Search of Features 201

10
-1

10
0

10
1

10
2

15

20

25

30

35

40
c
la

s
s
if
ic

a
ti

o
n
 e

rr
o
r

vowel

10
-1

10
0

10
1

10
2

2
4
6
8

10
12
14
16
18
20

segment

10
-1

10
0

10
1

10
2

8

9

10

11

12

13

14

15
spambase

Baseline

Random

Step

Look-ahead

10
-1

10
0

10
1

10
2

K / n

14.0

14.5

15.0

15.5

16.0

16.5

17.0

c
la

s
s
if
ic

a
ti

o
n
 e

rr
o
r

satellite

10
-1

10
0

10
1

10
2

K / n

2

4

6

8

10

12

14
pendigits

10
-1

10
0

10
1

10
2

K / n

12
14
16
18
20
22
24
26
28
30

dig44

(a) Impact of parameter K with D = 5

2 4 6 8 10 12 14
17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5

c
la

s
s
if
ic

a
ti

o
n
 e

rr
o
r

vowel

2 4 6 8 10 12 14
3.0

3.2

3.4

3.6

3.8

4.0
segment

2 4 6 8 10 12 14

8

9

10

11

12

13

14

15
spambase

Baseline

Random

Step

Look-ahead

2 4 6 8 10 12 14
D

13.8

14.0

14.2

14.4

14.6

14.8

15.0

15.2

c
la

s
s
if
ic

a
ti

o
n
 e

rr
o
r

satellite

2 4 6 8 10 12 14
D

2.8

3.0

3.2

3.4

3.6

3.8

4.0
pendigits

2 4 6 8 10 12 14
D

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0
dig44

(b) Impact of parameter D with K = 100n

Fig. 3. Single trees

extremely randomized trees with parameter K tuned to give the best test scores.
As previously, feature generation enables to obtain significantly improved mod-
els on only a part of the datasets. On the four first datasets, the best scores are
obtained for values of K ranging from 0.1n to 10n. As discussed in Section 3,
extremely randomized trees (and random forests) rely on random subspaces to
introduce randomization, which has been shown to lead to more robust ensem-
ble models. We observe that, when extending these algorithms with automatic
feature generation, it is still interesting to use random subspaces, i.e. to ex-
plore a very small portion of the whole feature space at each node split. This
phenomenon is particularly clear on the vowel dataset, for which we observe
that investing too much computational power into feature search is counter-
productive. On the three last datasets, our approach seems to work the best
for small generated features of size D = 3. Again, there is very little difference
between the three search strategies.

202 F. Maes, P. Geurts, and L. Wehenkel

10
-1

10
0

10
1

10
2

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8
c
la

s
s
if
ic

a
ti

o
n
 e

rr
o
r

vowel

10
-1

10
0

10
1

10
2

1.0

1.5

2.0

2.5

3.0

3.5
segment

10
-1

10
0

10
1

10
2

4.0

4.5

5.0

5.5

6.0

6.5

7.0
spambase

Baseline

Random

Step

Look-ahead

10
-1

10
0

10
1

10
2

K / n

7.8

8.0

8.2

8.4

8.6

8.8

9.0

9.2

c
la

s
s
if
ic

a
ti

o
n
 e

rr
o
r

satellite

10
-1

10
0

10
1

10
2

K / n

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
pendigits

10
-1

10
0

10
1

10
2

K / n

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5
dig44

(a) Impact of parameter K with D = 5

2 4 6 8 10 12 14
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

c
la

s
s
if
ic

a
ti

o
n
 e

rr
o
r

vowel

2 4 6 8 10 12 14
1.36

1.38

1.40

1.42

1.44

1.46

1.48

1.50

1.52
segment

2 4 6 8 10 12 14
4.0

4.5

5.0

5.5

6.0

6.5

7.0
spambase

Baseline

Random

Step

Look-ahead

2 4 6 8 10 12 14
D

7.7

7.8

7.9

8.0

8.1

8.2

8.3

8.4

c
la

s
s
if
ic

a
ti

o
n
 e

rr
o
r

satellite

2 4 6 8 10 12 14
D

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

pendigits

2 4 6 8 10 12 14
D

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6
dig44

(b) Impact of parameter D with K = 10n

Fig. 4. Extremely randomized trees

Boosted Stumps. Figure 5 presents the results for ensembles of 1000 boosted
stumps. We now observe that models with feature generation strongly outper-
form classical boosted stumps on all datasets. We believe that this is mainly
explained by the fact that the baseline model is not able to exploit multi-variate
correlations, whereas our extended version can exploit multiple variables together
thanks to generated features. The most impressive in these results is that, even
with very small computational budgets K = 0.1n that correspond to testing one
or a few features at each iteration, feature generation still yields significantly
improved models. Furthermore, we observe that increasing K beyond 10n only
brings slight or no improvements on the error. In these cases, there is thus no
need to invest a huge amount of computational power in feature search to benefit
from feature generation. We also observe that the method is here rather robust
w.r.t. the choice of parameter D and again that differences between the three
search strategies are small.

Embedding Monte Carlo Search of Features 203

10
-1

10
0

10
1

10
2

2

4

6

8

10

12

14

16

18
c
la

s
s
if
ic

a
ti

o
n
 e

rr
o
r

vowel

10
-1

10
0

10
1

10
2

1.4

1.6

1.8

2.0

2.2

2.4

2.6
segment

10
-1

10
0

10
1

10
2

4.8

5.0

5.2

5.4

5.6
spambase

Baseline

Random

Step

Look-ahead

10
-1

10
0

10
1

10
2

K / n

8.5

9.0

9.5

10.0

10.5

11.0

11.5

c
la

s
s
if
ic

a
ti

o
n
 e

rr
o
r

satellite

10
-1

10
0

10
1

10
2

K / n

0.0

0.5

1.0

1.5

2.0

2.5

3.0
pendigits

10
-1

10
0

10
1

10
2

K / n

3

4

5

6

7

8

9
dig44

(a) Impact of parameter K with D = 5

2 4 6 8 10 12 14
2

4

6

8

10

12

14

16

18

c
la

s
s
if
ic

a
ti

o
n
 e

rr
o
r

vowel

2 4 6 8 10 12 14
1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6
segment

2 4 6 8 10 12 14
4.5

5.0

5.5

6.0

6.5
spambase

Baseline

Random

Step

Look-ahead

2 4 6 8 10 12 14
D

8.5

9.0

9.5

10.0

10.5

11.0

11.5

c
la

s
s
if
ic

a
ti

o
n
 e

rr
o
r

satellite

2 4 6 8 10 12 14
D

0.0

0.5

1.0

1.5

2.0

2.5

3.0
pendigits

2 4 6 8 10 12 14
D

3

4

5

6

7

8

9
dig44

(b) Impact of parameter D with K = 10n

Fig. 5. Boosted stumps

5.3 Overall Comparison of Methods

The results of embedding feature generation with our three search strategies
into our five supervised learning algorithms are given in Table 3 for all our
12 datasets. For all methods, we use default settings for hyper-parameters: the
maximal feature size is set to D = 5 in all cases, the feature search budget
is set to K = 100n for single trees and K = 10n for ensemble models. The
baseline random forests are constructed with KRF =

√
n tested attributes per

constructed splits. For extremely randomized trees, we consider the same two
default setups as in [7]: KET =

√
n and KET = n.

We observe that embedding the Monte Carlo feature generation improves over
the baselines about two times out of three, and on the average all methods are
significantly improved thanks to the feature generation. Among the variants we

204 F. Maes, P. Geurts, and L. Wehenkel

Table 3. Comparison of all methods with and without embedded feature generation.
The scores (error rates in %) of methods embedding feature generation are shown in
bold whenever they outperform those of the corresponding baseline(s). The best scores
for each dataset are underlined.

Wave Two Ring Vehicle Vowel Segment Spam Satellite Pen Dig44 Letter Isolet mean
form norm norm base digits

Single Tree, K = 100n, D = 5
Baseline 29.2 21.6 16.6 20.9 20.2 3.21 8.02 14.3 3.81 14.9 14.9 25.8 16.12
Random 25.9 15.6 17.5 21.9 18.4 3.38 9.01 14.8 3.11 12.3 15.2 25.6 15.23
Step 26.0 15.3 17.3 21.9 18.9 3.58 8.73 14.5 3.10 12.5 15.6 24.7 15.17

Look-ahead 25.3 15.3 18.1 21.7 18.9 3.06 8.64 14.0 2.99 12.0 14.9 22.0 14.74
Random Forests, 1000 trees, K = 10n, D = 5

KRF =
√
n 17.1 4.08 6.03 23.5 3.27 1.94 4.57 8.46 0.969 5.27 4.62 7.78 7.30

Random 15.6 2.89 2.92 20.3 3.43 1.72 4.71 8.46 0.606 4.12 3.74 7.56 6.34
Step 15.6 2.87 2.78 20.1 3.35 1.71 4.62 8.45 0.606 4.05 3.75 7.63 6.29

Look-ahead 15.7 2.92 2.93 20.1 3.54 1.69 4.68 8.46 0.615 4.02 3.81 7.46 6.33
Extra Trees, 1000 trees, K = 10n, D = 5

KET =
√
n 16.1 3.08 2.88 24.0 1.51 1.85 4.31 8.33 0.652 4.25 3.53 6.75 6.43

KET = n 17.4 4.74 5.23 22.0 1.92 1.42 4.31 7.99 0.626 4.59 4.01 7.85 6.85
Random 15.8 2.77 2.44 20.4 1.58 1.41 4.56 7.85 0.555 4.29 3.23 6.98 5.99
Step 15.7 2.72 2.29 20.4 1.58 1.43 4.57 7.85 0.578 4.36 3.24 7.00 5.98

Look-ahead 15.8 2.78 2.38 20.5 1.62 1.45 4.44 7.89 0.589 4.31 3.21 6.96 5.99
Stump Boosting, 1000 iterations, K = 10n, D = 5

Baseline 19.6 4.88 9.94 20.0 17.3 2.53 5.51 11.1 2.76 8.49 17.9 8.52 10.72
Random 17.0 3.18 5.08 18.3 3.37 1.53 4.78 9.08 0.432 3.90 6.36 6.40 6.62
Step 17.1 3.16 5.07 18.1 3.41 1.55 4.96 9.06 0.429 3.96 6.43 6.50 6.64

Look-ahead 17.0 3.14 5.09 17.9 3.43 1.58 4.88 8.87 0.483 3.86 6.27 6.24 6.56
Tree Boosting, 1000 iterations, Depth 3, K = 10n, D = 5

Baseline 17.1 3.72 8.84 19.7 2.44 1.09 4.97 8.09 0.472 3.56 4.34 5.72 6.67
Random 15.6 2.89 3.67 18.2 2.00 1.32 4.66 7.92 0.375 2.96 3.38 5.51 5.71
Step 15.6 2.89 3.61 18.4 2.08 1.32 4.62 7.74 0.349 2.97 3.30 5.51 5.71

Look-ahead 15.6 2.90 3.65 18.6 2.18 1.31 4.52 7.77 0.397 2.87 3.28 5.40 5.71
Tree Boosting, 1000 iterations, Depth 5, K = 10n, D = 5

Baseline 16.6 3.66 6.82 21.2 1.90 1.23 4.85 7.55 0.460 3.27 3.53 5.91 6.41
Random 15.4 2.84 3.10 20.0 1.98 1.36 4.60 7.74 0.403 2.99 3.00 6.21 5.80
Step 15.4 2.82 3.05 19.7 2.00 1.42 4.52 7.76 0.397 3.00 3.00 6.26 5.78

Look-ahead 15.4 2.85 3.05 19.7 1.90 1.39 4.53 7.90 0.392 2.99 2.95 6.14 5.76

tested, the overall best scores are obtained when embedding feature generation
in boosted decision trees of depth 3. The strongest improvement is however ob-
served for boosted stumps, where we believe that there is a combined bias and
variance reduction effect obtained thanks to the randomized feature construc-
tion. The net result is that, on the average, combining stump boosting with
feature generation becomes competitive with baseline boosted trees of depth
3 or 5. Finally, while the ensemble methods are well improved when using a
rather small budget for the search of features (K= 10n), standard trees may be
improved by using a quite larger search budget (K= 100n).

6 Conclusion

Automatic feature generation approaches are usually classified into filters and
wrappers. This paper emphasizes a third category: embedded feature generation.
We have proposed a general scheme to embed feature generation into tree-based
learning algorithms and have discussed the particularities of feature generation

Embedding Monte Carlo Search of Features 205

in the context of ensemble methods. In this latter context, we argued that it
could be unnecessary or even counter-productive to invest a too large amount
of computational power into feature search and therefore proposed three simple
Monte Carlo search approaches to at the same time weakly and efficiently ex-
plore the feature space, the number of trials allowing to control search strength.
Our empirical investigations confirmed this analysis and showed also that the
embedding of feature generation allows to improve the accuracy over a wide
range of methods and datasets, the strongest improvements being found in the
context of boosting, where Monte Carlo feature generation allows to both reduce
bias (in the context of stumps) and variance (in the context of all versions).

For future research, we suggest to revisit in the light of our findings the earlier
work on oblique decision trees (see e.g. [12]), which may also be viewed as a kind
of embedded feature generation. On the other hand, while we focused in this
paper on accuracy improvement, we believe that embedded feature generation
should also be studied in terms of its effects on model complexity (e.g. in terms of
the speed of convergence of the ensemble methods) and on interpretability (e.g.
in terms of the capability to detect variable interactions of interest). Another
line of research would be to see how to port the embedded feature generation
towards L1-based regularization of generalized additive models, by building on
the parallels of these approaches with boosting.

The formalism presented in this paper is very general in that it enables to
formulate embedded feature generation on top of all kinds of raw data structures,
including functional signals such as audio and images, and graph structured or
relational data more and more frequently found in current application domains
(e.g. ranging from bio-informatics to web-mining or automatic game playing).
While our experiments focused on constructing features based on raw vectors
of simple numerical features, we believe that embedded feature generation has
even greater potentials to learn with such complex real-world data structures.

Acknowledgements. This paper presents research results of the European
excellence network PASCAL2 and of the Belgian Network BIOMAGNET, funded
by the Interuniversity Attraction Poles Programme, initiated by the Belgian
State, Science Policy Office. The scientific responsibility rests with the authors.

References

1. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
2. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning

algorithms. In: ICML 2006, pp. 161–168. ACM, New York (2006)
3. Cazenave, T.: Nested monte-carlo search. In: Proceedings of the 21st International

Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 456–461 (2009)
4. Chaslot, G., Bakkes, S., Szita, I., Spronck, P.: Monte-carlo tree search: A new

framework for game ai. In: Darken, C., Mateas, M. (eds.) Proceedings of the Fourth
Artificial Intelligence and Interactive Digital Entertainment Conference (2008)

5. Ekárt, A., Márkus, A.: Using genetic programming and decision trees for generat-
ing structural descriptions of four bar mechanisms. Artif. Intell. Eng. Des. Anal.
Manuf. 17(3), 205–220 (2003)

206 F. Maes, P. Geurts, and L. Wehenkel

6. Espejo, P.G., Ventura, S., Herrera, F.: A survey on the application of genetic pro-
gramming to classification. Trans. Sys. Man Cyber. Part C 40(2), 121–144 (2010)

7. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learn-
ing 36(1), 3–42 (2006)

8. Guo, H., Jack, L.B., Nandi, A.K.: Feature generation using genetic programming
with application to fault classification. IEEE Transactions on Systems, Man, and
Cybernetics, Part B 35(1), 89–99 (2005)

9. Kégl, B., Busa-Fekete, R.: Boosting products of base classifiers. In: Proceedings of
the 26th Annual International Conference on Machine Learning, ICML 2009, pp.
497–504. ACM, New York (2009)

10. Krzysztof, K.: Genetic programming-based construction of features for machine
learning and knowledge discovery tasks. Genetic Programming and Evolvable Ma-
chines 3(4), 329–343 (2002)

11. Markovitch, S., Rosenstein, D.: Feature generation using general constructor func-
tions. Machine Learning 49, 59–98 (2002)

12. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision
trrees. Journal of Artificial Intelligence Research 2, 1–32 (1994)

13. Ng, A.Y.: Feature selection, L1 vs. L2 regularization, and rotational invariance. In:
Proceedings of the Twenty-First International Conference on Machine Learning,
ICML 2004. ACM, New York (2004)

14. Pachet, F., Roy, P.: Analytical features: a knowledge-based approach to audio
feature generation. EURASIP J. Audio Speech Music Process., 1–23 (2009)

15. Pagallo, G., Haussler, D.: Boolean feature discovery in empirical learning. Machine
Learning 5(1), 71–99 (1990)

16. Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A.: Genetic programming
for improved data mining: application to the biochemistry of protein interactions.
In: Proceedings of the First Annual Conference on Genetic Programming, GECCO
1996, pp. 375–380. MIT Press, Cambridge (1996)

17. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. Machine Learning 37(3), 297–336 (1999)

18. Smith, M.G., Bull, L.: Genetic programming with a genetic algorithm for feature
construction and selection. Genetic Programming and Evolvable Machines 6(3),
265–281 (2005)

19. Yang, D.-S., Rendell, L., Blix, G.: A scheme for feature construction and a com-
parison of empirical methods. In: Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence, pp. 699–704. Morgan Kaufmann (1991)

Hypergraph Spectra for Semi-supervised Feature

Selection

Zhihong Zhang1, Edwin R. Hancock1,�, and Xiao Bai2

1 Department of Computer Science,
University of York, UK

2 School of Computer Science and Engineering
Beihang University, China

Abstract. In many data analysis tasks, one is often confronted with
the problem of selecting features from very high dimensional data. Most
existing feature selection methods focus on ranking individual features
based on a utility criterion, and select the optimal feature set in a greedy
manner. However, the feature combinations found in this way do not give
optimal classification performance, since they neglect the correlations
among features. While the labeled data required by supervised feature
selection can be scarce, there is usually no shortage of unlabeled data. In
this paper, we propose a novel hypergraph based semi-supervised feature
selection algorithm to select relevant features using both labeled and un-
labeled data. There are two main contributions in this paper. The first is
that by incorporating multidimensional interaction information (MII) for
higher order similarities measure, we establish a novel hypergraph frame-
work which is used for characterizing the multiple relationships within
a set of samples. Thus, the structural information latent in the data
can be more effectively modeled. Secondly, we derive a hypergraph sub-
space learning view of feature selection which casting the feature discrim-
inant analysis into a regression framework that considers the correlations
among features. As a result, we can evaluate joint feature combinations,
rather than being confined to consider them individually. Experimental
results demonstrate the effectiveness of our feature selection method on
a number of standard face data-sets.

Keywords: Hypergraph representation, Semi-supervised subspace
learning.

1 Introduction

In order to render the analysis of high-dimensional data tractable, it is crucial
to identify a smaller subset of features that are informative for classification and
clustering. Dimensionality reduction aims to reduce the number of variables un-
der consideration, and the process can be divided into feature extraction and
feature selection. Feature extraction usually projects the features onto a low-
dimensional and distinct feature space, e.g., Locally Linear Embedding (LLE)

� Edwin Hancock is supported by a Royal Society Wolfson Research Merit Award.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 207–222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

208 Z. Zhang, E.R. Hancock, and X. Bai

[1], kernel PCA [2], Locality preserving Projection (LPP) [3], Neighborhood
Preserving Embedding (NPE) [4] and Laplacian eigenmap [5]. Unlike feature
extraction, feature selection identifies the optimal feature subset in the original
feature space. By maintaining the original features, feature selection improves
the interpretability of the data, which is preferred in many real world applica-
tions, such as face recognition [28]. Feature selection algorithms can be roughly
classified into three groups, namely a) supervised feature selection, b) unsuper-
vised feature selection and c) semi-supervised feature selection.

Supervised feature selection algorithms usually evaluate the importance of fea-
tures using the correlation between the features and the class label. An important
line of research in this area is the use of methods based on mutual information.
For example, Battiti [6] has developed the Mutual Information-Based Feature
Selection (MIFS) criterion, where the features are selected in a greedy manner.
Given a set of existing selected features S, at each step it locates the feature
xi that maximizes the relevance to the class i.e. I(xi;C). The selection is reg-
ulated by a proportional term βI(xi;S) that measures the overlap information
between the candidate feature and the existing features. The parameter β may
significantly affect the features selected, and its control remains an open prob-
lem. Peng et al. [7] on the other hand, use the so-called Maximum-Relevance
Minimum-Redundancy criterion (MRMR), which is equivalent to MIFS with
β = 1

n−1 .
Supervised spectral feature selection algorithms provide powerful alternatives

to those discussed above. Examples include the Fisher score [8], the trace ratio
[9] and ReliefF [10]. Given d features, and a similarity matrix S for the samples,
the idea underpinning spectral feature selection algorithms is to identify features
that align well with the leading eigenvectors of S. The leading eigenvectors of S
contain information of concerning the structure of the sample distribution and
group similar samples into compact clusters. Consequently, features that align
closely to the eigenvctors will better preserve sample similarity [11].

While the labeled data required by supervised feature selection can be scarce,
there is usually no shortage of unlabeled data. Hence, there are obvious at-
tractions in developing unsupervised feature selection algorithms which can uti-
lize this data. The typical examples in unsupervised learning are graph-based
spectral learning algorithms. Examples include the Laplacian score [12], SPEC
[11], Multi-Cluster Feature Selection (MCFS) [22] and Unsupervised Discrimina-
tive Feature Selection (UDFS) [23]. A frequently used criterion in unsupervised
graph-based spectral learning is to select the features which best preserve the
structure of the data similarity or a manifold structure derived from the entire
feature set. For example, the Laplacian score [12] uses a nearest neighbor graph
to model the local geometric structure of the data, using the pairwise similarities
between features calculated using the heat kernel. In this framework, the features
are evaluated individually and are selected one by one. Another unsupervised
spectral feature selection algorithm is SPEC [11], which is an extension of the
Laplacian score aimed at making it more robust to noise. The method selects

Hypergraph Spectra for Semi-supervised Feature Selection 209

the features that are most consistent with the graph structure. Note that SPEC
also evaluates features independently.

However, there are some drawbacks with the above graph-based spectral learn-
ing methods when they are used to deal with computer vision problems. One
of these is that they evaluate features individually and hence cannot handle re-
dundant features. Redundant features increase the dimensionality unnecessarily,
and degrade learning performance when faced with a shortage of data. It is also
shown empirically that removing redundant features can result in significant
performance improvement. Another problem is that their graph representations
are very sensitive to the topological structure and lack sufficient robustness in
real-world learning tasks. This is because in real world problems the objects and
their features tend to exhibit multiple relationships rather than simple pairwise
ones. This factor will considerably compromise the performance of learning ap-
proaches. For example, consider the problem of grouping images of five different
persons based on identity, each of which is imaged in the same pose, but under
different lighting conditions. See Fig. 1 for an illustration. Recent studies on
illumination have shown that images of the same objects may look drastically
different under different lighting conditions while different objects may appear
similar under different illumination conditions [24]. Furthermore, it is well known
that the set of images of a Lambertian surface under arbitrary lighting (without
shadowing) lies on a 3-D liner subspace in the image space [13]. As any three
images span a 3-D subspace, one needs to consider at least four images at a time
to define a measure of similarity. Therefore, suitable for graph construction and
similarity measure are needed.

Fig. 1. Shown above are images of five persons under varying illumination conditions

A natural way of remedying the information loss described above is to repre-
sent the data set as a hypergraph instead of a graph. Hypergraph representations
allow vertices to be multiply connected by hyperedges. They can hence be both
accurate and complete in describing feature relations and structures. Due to their
effectiveness in representing multiple relationships, in this paper, we propose a
hypergraph based semi-supervised feature selection method which can be used to
classify face images under varying illumination conditions. This method jointly
evaluates the utility for sets of features rather than individual features. There are
three novel ingredients. The first is that by incorporating hypergraph represen-
tation into feature selection, we can be more effective capture the higher order
relations among samples. Secondly, inspired from the recent works on mutual

210 Z. Zhang, E.R. Hancock, and X. Bai

information [26], [27], we determine the weight of a hyperedge using an infor-
mation measure referred to as multidimensional interaction information (MII)
which precisely preserves the higher order relations captured by the hypergraph.
The advantage of MII is that it is sensitive to the relations between sample
combinations, and as a result can be used to seek third or even higher order
dependencies among the relevant samples. Thus, the structural information la-
tent in the data can be more effectively modeled. Finally, we describe a new
semi-supervised feature selection strategy through hypergraph subspace learn-
ing, which casts the feature discriminant analysis into a regression framework
that considers the correlations among features. As a result, we can evaluate joint
feature combinations, rather than being confined to consider them individually,
thus it is able to handle feature redundancy.

2 Hypergraph Construction

In this section, we establish a novel hypergraph framework which is used for
characterizing the multiple relationships within a set of samples. To this end,
we commence by introducing a new method for measuring higher order sim-
ilarities among samples based on information theory. According to Shannon’s
study, the uncertainty of a random variable X can be measured by the entropy
H(X). For two random variables X and Y , the conditional entropy H(Y |X)
measures the remaining uncertainty about Y when X is known. The mutual
information I(X ;Y) of X and Y quantifies the information gain about Y pro-
vided by X . The relationship between H(Y), H(Y |X) and I(X ;Y) is I(X ;Y) =
H(Y)−H(Y |X). As defined by Shannon, the initial uncertainty for X isH(X) =
−
∑

x∈Y P (x) logP (x), where P (x) is the prior probability density function over
x ∈ X . The remaining uncertainty for Y if X is known is defined by the con-
ditional entropy H(Y |X) = −

∫
x
p(x){

∑
y∈Y p(y|x) log p(y|x)}dx, where p(y|x)

denotes the posterior probability for y ∈ Y given x ∈ X . After observing x, the
amount of additional information gain is given by the mutual information

I(X ;Y) =
∑
y∈Y

∫
x

p(y, x)log
p(y, x)

p(y)p(x)
dx . (1)

The mutual information (1) quantifies the information which is shared by X
and Y . When the I(X ;Y) is large, it implies that x and y are closely related.
Otherwise, when I(X ;Y) is equal to 0, it means that two variables are totally
unrelated. Analogically, the conditional mutual information of X and Y given
Z, denoted as I(X ;Y |Z) = H(X |Z) − H(X |Y, Z), represents the quantity of
information shared by X and Y when Z is known. The conditioning on a third
random variable may either increase or decrease the original mutual informa-
tion. In this context, the Interaction Information I(X ;Y ;Z) is defined as the
difference between the conditional mutual information and the simple mutual
information, i.e.

I(X ;Y ;Z) = I(X ;Y |Z)− I(X ;Y) . (2)

Hypergraph Spectra for Semi-supervised Feature Selection 211

The interaction information I(X ;Y ;Z) measures the influence of the variable Z
on the amount of information shared between variables X and Y . Its value can
be positive, negative, or zero. Zero valued Interaction Information I(X ;Y ;Z)
implies that the relation between X and Y entirely depends on Z. A positive
value of I(X ;Y ;Z) implies that X and Y are independent of each other them-
selves, but are correlated with each other when combined with Z. A negative
value of I(X ;Y ;Z) indicates that Z can account for or explain the correlation
between X and Y . The generalization of Interaction Information to K variables
is defined recursively as follow

I({X1, · · · , XK}) = I({X2, · · · , XK}|X1)− I({X2, · · · , XK}) . (3)

Based on the higher order similarity measure, we establish a hypergraph frame-
work for characterizing a set of high dimensional samples. A hypergraph is de-
fined as a triplet H = (V,E,w). Here V denotes the vertex set, E denotes the
hyperedge set in which each hyperedge e ∈ E represents a subset of V , and w is
a weight function which assigns a real value w(e) to each hyperedge e ∈ E. We
only consider K-uniform hypergraphs (i.e. those for which the hyperedges have
identical cardinality K) in our work. Given a set of high dimensional samples
X = [x1, · · ·xN]T where xi ∈ Rd, we establish a K-uniform hypergraph, with
each hypergraph vertex representing an individual sample and each hyperedge
representing the Kth order relations among a K-tuple of participating samples.
A K-uniform hypergraph can be represented in terms of Kth order matrix, i.e.
a tensor W of order K, whose element Wi1,···,iK is the hyperedge weight associ-
ated with the K-tuple of participating vertices {vi1 , · · · , viK}. In our work, the
hyperedge weight associating with {xi1 , xi2 , · · · , xiK } is computed as follows

Wi1,···,iK = K
I(xi1 , xi2 , · · · , xiK)

H(xi1) +H(xi2) + · · ·H(xiK)
. (4)

It is clear that Wi1,···,iK is a normalized version of Kth order Interaction Infor-
mation. The greater the value of Wi1,···,iK is, the more relevant the K samples
are. On the other hand, if Wi1,···,iK = 0, the K samples are totally unrelated.

3 Hypergraph Representation

Unlike matrix eigen-decomposition, there has not yet been a widely accepted
method for spanning a rationale eigen-space for a tensor [30]. Therefore, it is
hard to directly embed a hypergraph into a feature space spanned by its tensor
representation through eigen-decomposition. In our work, we consider the trans-
formation of a K-uniform hypergraph into a graph. Accordingly, the associated
hypergraph tensor W is transformed to a graph adjacency matrix A, and the
higher order information exhibited in the original hypergraph can be encoded in
an embedding space spanned by the related matrix representation. In this sce-
nario, one straightforward way for the transformation is marginalization which

212 Z. Zhang, E.R. Hancock, and X. Bai

computes the arithmetical average over all the hyperedge weights Wi1,···,iK−2,i,j

associated with the edge weight Ai,j

Ãi,j =

|V |∑
i1=1

· · ·
|V |∑

iK−2=1

Wi1,···,iK−2,i,j (5)

The edge weight Ãi,j for edge ij is generated by a uniformly weighted sum of
hyperedge weights Wi1,···,iK−2,i,j . However,the form appearing in (5) behaves as
a low pass filter, and thus results in information loss through marginalization.

To make the process of marginalization more comprehensive, we use marginal-
ization to constrain the sum of edge weights and then estimate their values
through solving an over-constrained system of linear equations. Our idea is mo-
tivated by the so called clique average introduced in the higher order clustering
literature [15]. We characterize the relationships between A and W as follows

Wi1,···,iK =
∑

{i,j}⊆{i1,···,iK}
Ai,j (6)

There are
(|V |

2

)
variables and

(|V |
K

)
equations in the system of equations described

in (5). When K > 2, the linear system (5) is over-determined and cannot be
solved analytically. We thus approximate the solution to (5) by minimizing the
least squares error

Â = argmax
A

∑
i1,···,iK

⎛⎝ ∑
{i,j}⊆{i1,···,iK}

Ai,j −Wi1,···,iK

⎞⎠2

(7)

In practical computation, we normalize the compatibility tensor W by using
the extended Sinkhorn normalization scheme [31], and constrain the element of
A to be in the interval [0, 1] to avoid unexpected infinities. Effective iterative
numerical methods are used to compute the approximated solutions [32].

The adjacency matrix A computed through (7) is one effective representation
for a K-uniform hypergraph, because it naturally avoids the operation of arith-
metic average and thus to a certain degree overcomes the low pass information
loss arising in (5). Furthermore, the D is the diagonal matrix with its ith diag-
onal element being Aii =

∑
j Aij . In this context, a hypergraph can be easily

embedded into a feature space spanned by a semi-supervised subspace learning,
which will be explained in detail in the next Section.

4 Feature Selection through Semi-supervised Subspace
Learning

In this section, we formulate the procedure of semi-supervised feature selection
on a basis of hypergraph subspace learning. Feature selection can be seen as a
special subspace learning task, where the projection matrix is constrained to be
selection matrix.

Hypergraph Spectra for Semi-supervised Feature Selection 213

4.1 Hypergraph Semi-supervised Subspace Learning

One goal of hypergraph subspace learning is to represent the high dimensional
data X ∈ RN×d by a low dimensional representation Y ∈ RN×C (C � d) in
the low dimensional feature space such that the structural characteristics of the
high dimensional data are well preserved or are more “obvious”. Here we use
the representations X = [x1, · · ·xN]T and Y = [y1, · · · , yk, · · · , yC], where yk is
a N -dimensional vector and its N elements represent the N samples x1, · · ·xN
separately in the kth dimension of the low dimensional feature space. Based on
the hypergraph transformation described in Section 3, the semi-supervised hy-
pergraph subspace learning can be easily conducted as the following two steps,
a) label propagation, b) label regression:

Label Propagation: First, we obtain the soft labels of unlabeled data us-
ing a new label propagation method [25], in which an additional class la-
beled C + 1 is introduced to accommodate the outliers data. Give a data
set X = {x1, · · · , xl, · · · , xN} ⊂ Rd and the first l data are labeled and the
subsequent u = N − l data are unlabeled. Define the initial label matrix
L = [(l1)

T , (l2)
T , · · · , (lN)T] ∈ RN×(C+1), for the labeled data, Lij = 1 if xi is la-

beled as li = j and Lij = 0 otherwise. For the unlabeled data, Lij = 1 if j = C+1
and Lij = 0 otherwise. Denote a stochastic matrix P = D−1A, to assign labels
to the unlabeled data, an iteration function F(t+1) = αPF(t)+(1−α)L is com-
puted on the nodes of graph until convergence so as to satisfy two constraints,
where α is a parameter in (0, 1). During each iteration, each point receives in-
formation from its neighbors (first term), and also retains its initial information
(second term). F = [FT

1 , . . . ,F
T
N]T ∈ RN×(C+1) is the predicted soft label ma-

trix, where Fij reflects the posterior probability of data point xi belonging to
class j [29]. When j = C + 1, Fi,C+1 represents the probability of xi belonging
to outlier. The iteration process will converge to the fixed point

F = lim
t→∞

F(t) = (1 − α)(I− αP)−1L . (8)

Using this iterative label propagation scheme, the outlier in data can be detected
and the label for each unlabeled point is assigned to the class from which it has
received the most information during the iteration process.

Label Regression: After we obtain the soft label Fi for each data xi, i.e., the
probability Fij of xi belonging to class j, we can learn the subspace for data
using the soft labels. Assuming the low-dimensional data can be obtained from
the linear projection Y = XW, where W ∈ Rd×C is the projection vector, a
regression function can be defined as

argmin
W,b

γ‖W‖2 +
N∑
i=1

C∑
j=1

Fij‖WTxi + b− tj‖2 , (9)

where the bias term b ∈ RC×1, tj = [0, . . . , 0, 1, 0, · · · , 0]T is the class indicator
vector for the j-th class and γ is the regularization parameter. It can be easily

214 Z. Zhang, E.R. Hancock, and X. Bai

verified that for larger values of Fi,C+1, which indicates xi is belonging to the
outlier, then the values of Fi,j (1 ≤ i ≤ C) should be smaller to reduce the
effect of the outlier data point xi in the regression model according to Equation
(9). Differentiating the matrix form in Equation (9) w.r.t W and b, we have the
solution to the regression problem is

W = (XLsX T + γI)−1XCsFC , (10)

where I denotes an identity matrix with proper size, Ls = S− 1
1TNS1N

S1N1TNS,

Sii =
∑C

j=1 Fij , FC ∈ RN×C is formed by the first C columns of F, Cs =

I− 1
1TNS1N

S1N1TN and 1N ∈ RN×1.

4.2 Robust Feature Selection Based on �1-Norms

The hypergraph subspace learning procedure can be viewed as feature extraction,
and can be expressed as Y = XW where W ∈ Rd×C is a column-full-rank
projection matrix. However, unlike feature extraction, feature selection attempts
to select the optimal feature subset in the original feature space. Therefore,
for the task of feature selection, the projection matrix W = [w1, . . . wC] can
be constrained to be a selection matrix Φ = [Φ1, . . . ΦC] which contains the
combination coefficients for different features in approximatingY = [y1, . . . , yC].
That is, given the kth column of Y, i.e yk, we aim to find a subset of features,
such that their linear span is close to yk. This idea can be formulated as the
minimization problem

Φ̂ = argmin
Φ

C∑
k=1

‖yk −XΦk‖2 . (11)

where Φ = [Φ1, · · · , Φk, · · · , ΦC] and Φk is a d dimensional vector that contains
the combination coefficients required to compute for different features in ap-
proximating yk. However, feature selection requires to locate a optimal subset of
features that are close to yk. This is a combinatorial problem which is NP-hard.
Thus we approximate the problem in (11) subject to the constraint

|Φk| ≤ γ (12)

where |Φk| is the �1-norm and |Φk| =
∑d

j=1 |Φj,k|. When applied in regression,
the �1-norm constraint is equivalent to applying a Laplace prior [18] on Φk.
This tends to force some entries in Φk to be zero, resulting in a sparse solution.
Therefore, the representationY is generated by using only a small set of selected
features in X.

In order to efficiently solve the optimization problem in Equations (11) and
(12), we use the Least Angle Regression (LARs) algorithm [20]. Instead of setting
the parameter γ, LARs allow us to control the sparseness of Φk. This is done
by specifying the cardinality of the number of nonzero subset of Φk, which is
particularly convenient for feature selection.

Hypergraph Spectra for Semi-supervised Feature Selection 215

We consider selecting m features from the d feature candidates. For a dataset
containing C clusters, we can compute C selection vectors {Φk}Ck=1 ∈ Rd. The
cardinality of each Φk is m and each entry in Φk corresponds to a feature. Here,
we use the following computationally effective method for selecting exactly m
features based on the C selection vectors. For every feature j, we define the HG
score for the feature as

HGscore(j) = max
k

|Φj,k| . (13)

where Φj,k is the jth element of vector Φk. We then sort the features in descend-
ing order according to their HG scores, and then select the top m features.

5 Feature Evaluation Indices

Our proposed semi-supervised feature selection method utilizes hypergraph
based label regression and the Least Angle Regression (LARs) algorithm for
semi-supervised feature selection. It involves applying label regression to embed
the data into a new space and then uses LARs to select features that align well
to the embedded data resulting from label regression. In order to examine the
performance of our proposed method (referred to as the HG+Semi), we need
to assess the data transformation obtained and its useful information content
it. In view of this, we would like to measure the performance of our proposed
algorithm using three different indices, namely, (1) data transformation, (2)
classification accuracy and (3) redundancy rate. Assume F is the set of
selected features, the redundancy rate can be defined as:

RED(F) =
1

m(m− 1)

∑
fi,fj∈F,i>j

ρi,j . (14)

where ρi,j returns the Pearson correlation score between two features fi and fj .
The measurement assesses the averaged correlation among all feature pairs, and
a large value indicates that many selected features are strongly correlated, and
thus redundancy is expected to exist in F.

6 Experiments and Comparisons

Data sets: The data sets used to test the performance of our proposed algo-
rithm are publicly available face-recognition benchmarks. Table. 1 summarizes
the coverage and properties of the three data-sets. The original images were nor-
malized (in scale and orientation) such that the two eyes were aligned at the
same position. Then, the facial areas were cropped to give images for match-
ing. In Fig. 2, we show the closely cropped images and these all contain facial
structure. In our experiments, we only examine the performance of our proposed
method with 50% data labeled.

216 Z. Zhang, E.R. Hancock, and X. Bai

Table 1. Summary of benchmark data sets

Data-set Examples Features Classes

ORL 400 1024 40

CMU PIE 1428 1024 68

AR 130 2400 10

(a) ORL dataset

(b) CMU PIE dataset

(c) AR dataset

Fig. 2. The sample cropped face images form three face datasets

The ORL dataset contains 40 distinct individuals with ten images per person.
The images are taken at different time instances, and include variations in facial
expression and facial detail (glasses/no glasses). All images are resized to 32x32
pixels.

The CMU PIE dataset is a multiview face dataset, consisting of 41,368 images
of 68 people. The views cover a wide range of poses from profile to frontal views,
varying illumination and expression. In this experiment, we fixed the pose and
expression. Thus, for each person, we have 21 images obtained under different
lighting conditions. All images are resized to 32x32 pixels.

The AR dataset contains over 4000 face images from 126 people (70 men and
56 women). A subset of 10 subjects and 13 images per subject are selected in
our experiments and the images are resized to 60×40 pixels. All the images are
frontal view faces with different facial expressions, illumination conditions, and
occlusions (sunglasses and scarf).

Data Transformation: we compare the data transformation performance of
our proposed method using label regression with alternative methods, including
kernel PCA [2], the Laplacian eigenmap [5] and LPP [3]. In order to visualize
the results, we have used five randomly selected subjects from each dataset, and
these are shown in Fig. 3, Fig. 4 and Fig. 5. In each figure, we have shown
the projections onto the leading two most significant eigenmodes from different

Hypergraph Spectra for Semi-supervised Feature Selection 217

(a) Hypergraph Regression (b) kernel PCA

(c) Laplacian eigenmaps (d) LPP

Fig. 3. Distribution of samples of five subjects in ORL dataset

spectral embedding methods, ordered according to their eigenvalues. This pro-
vides a low-dimensional representation for the images. From the above figures, it
is clear that our hyypergraph based label regression method demonstrates much
more clear cluster structure than that by traditional spectral clustering method.
This implies that the hypergraph representation is both more appropriate and
more complete in describing feature relations and structures.

Table 2. The best result of all methods and their corresponding size of selected feature
subset on the three face datasets

Dataset MRMR FS LS SPEC UDFS HG+Semi

ORL 83.5%(95) 80%(99) 65.25%(99) 64.5%(95) 76.5%(99) 93%(88)

PIE 99.15%(99) 99.17%(100) 71.43%(99) 89.64%(100) 96%(98) 99.19%(58)

AR 88.15%(509) 87.69%(548) 60.77%(591) 86.15%(598) 82.31%(562)95.38%(427)

Classification Accuracy: In order to explore the discriminative capabilities of
the information captured by our method, we use the selected features for further
classification. We compare the classification results from our proposed method
HG+Semi with five representative feature selection algorithms. For unsupervised

218 Z. Zhang, E.R. Hancock, and X. Bai

(a) Hypergraph Regression (b) kernel PCA

(c) Laplacian eigenmaps (d) LPP

Fig. 4. Distribution of samples of five subjects in CMU PIE dataset

learning, three alternative feature selection algorithms are selected as baselines.
These methods are the Laplacian score (referred to as LS) [12], SPEC [11] and
UDFS [23]. We also compare our results with two state-of-the-art supervised
feature selection methods, namely a) the Fisher score (referred to as FS) [9] and
b) the MRMR algorithm [7]. We use 5-fold cross-validation for the SVM classifier
on the feature subsets obtained by the feature selection algorithms to verify their
classification performance. Here we use the linear SVM with LIBSVM [21].

The classification accuracies obtained with different feature subsets are shown
in Fig. 6. From the figure, it is clear that our proposed method HG+Semi is, by
and large, superior to the alternative feature selection methods. Specifically, it
selects both a smaller and better performing (in terms of classification accuracy)
set of discriminative features on the three face data sets. Moreover, HG+Semi
rapidly converges, with typically around 30 features (see Fig. 6(a)-(b)). Each of
the alternative unsupervised methods, usually require more than 100 features
to achieve a comparable result. There are two reasons for this improvement in
performance. First, the hypergraph representation is effective in capturing the
high-order relations among samples rather than approximating them in terms of
pairwise interactions which can lead to a substantial loss of information. Thus
the structural information latent in the data can be effectively preserved. Second,
the LARs algorithm is applied to select features that align well to the embedded

Hypergraph Spectra for Semi-supervised Feature Selection 219

(a) Hypergraph Regression (b) kernel PCA

(c) Laplacian eigenmaps (d) LPP

Fig. 5. Distribution of samples of five subjects in AR dataset

data resulting from label regression. As a result the optimal feature combinations
can be located so as to remove redundant features.

Compared with the two state-of-art supervised feature selection algorithms,
our proposed semi-supervised method (HG+Semi) outperforms the MRMR al-
gorithm and FS in all cases. On the CMU PIE dataset (see Fig. 6(b)), even
though MRMR and FS can give good classification performance when more
than 100 features are selected, HG+Semi achieves a comparable result with a
much smaller number of features, i.e., less than 20 features. This implies that our
proposed method is able to locate both the optimal size of the feature subset
and perform accurate classification of the samples based on just a few of the
most important features.

The best result for each method together with the corresponding size of the
selected feature subset are shown in Table. 2. In the table, the classification
accuracy is shown first and the optimal number of features selected is reported
in brackets. Overall, HG+Semi achieves the highest degree of dimensionality
reduction, i.e. it selects a smaller feature subset compared with those obtained
by the alternative methods. For example, in the ORL data set, the best result
obtained by the alternative feature selection methods is 83.5% with the MRMR
algorithm and 95 features. However, our proposed method (HG+Semi) gives a
better accuracy of 93% when only 88 features are used. The results further verify
that our feature selection method can guarantee the optimal size of the feature
subset, as it not only achieves a higher degree of dimensionality reduction but it

220 Z. Zhang, E.R. Hancock, and X. Bai

(a) ORL dataset (b) CMU PIE dataset (c) AR dataset

Fig. 6. Accuracy rate vs. the number of selected features on three face datasets

also gives better discriminability. We also observe that the UDFS algorithm gives
a better result than the alternative unsupervised methods (i.e. the Laplacian
score and the SPEC). The reason for this is that unlike traditional methods
which treat each feature individually and which hence are suboptimal, the UDFS
method directly optimizes the score over the entire selected feature subset. As a
result, a better feature subset can be obtained.

Table 3. Averaged Redundancy rate of Subsets Selected Using Different Algorithms

Dataset MRMR FS LS SPEC UDFS HG+Semi

ORL 1.47 1.72 1.68 1.65 1.62 1.38

PIE 0.51 0.53 0.67 0.66 0.63 0.45

AR 0.56 0.68 0.76 0.70 0.72 0.55

Redundancy Rate: Table. 3 shows a comparison of results from our proposed
method to the alternative feature selection methods using the top n features,
where n is the number of training data. We chose n, since when the number of
selected features is larger than n, any feature can be expressed by a linear com-
bination of the remaining ones, which will introduce unnecessary redundancy in
the evaluation stage. In the table, the boldfaced values are the lowest redundancy
rates. The subset obtained by our proposed scheme has the least redundancy.
This further verifies that our propose algorithm is able to remove redundant
features.

The accuracy rate (Table. 2) and redundancy rate (Table. 3) together indi-
cate that HG+Semi both gives the least redundancy, and results in the highest
accuracy. They also underline the necessity of removing redundant features for
improving learning performance. It should also be observed that the MRMR
algorithm also produces low redundancy rates. However, it does not perform as
well in terms of classification accuracy. This can be explained by the observation
that in MRMR, feature contributions to the classification process are considered
individually by evaluating the correlation between each feature and the class
label. However, the class label may be jointly determined by a set of features.
This interaction among features is not considered by MRMR.

Hypergraph Spectra for Semi-supervised Feature Selection 221

7 Conclusion

In this paper, we have presented an semi-supervised feature selection method
based on hypergraph subspace learning. The proposed feature selection method
offers two major advantages. The first is that by incorporating MII for higher
order similarities measure, we establish a novel hypergraph framework which is
used for characterizing the multiple relationships within a set of samples. Thus,
the structural information latent in the data can be more effectively modeled.
Secondly, we derive a hypergraph subspace learning view of semi-supervised
feature selection which casting the feature discriminant analysis into a regression
framework that considers the correlations among features. As a result, we can
evaluate joint feature combinations, rather than being confined to consider them
individually. These properties enable our method to be able to handle feature
redundancy effectively.

References

1. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear em-
bedding. In: Proc. Syst. (1993)

2. Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel
eigenvalue problem. In: Neural Computation, pp. 1299–1319 (1998)

3. He, X., Niyogi, P.: Locality preserving projections. Advances in Neural Information
Processing Systems (2004)

4. He, X., Cai, D., Yan, S., Zhang, H.J.: Neighborhood preserving embedding. In:
Tenth IEEE International Conference on Computer Vision, pp. 1208–1213 (2005)

5. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: Advances in Neural Information Processing Systems, pp. 585–
592 (2002)

6. Battiti, R.: Using mutual information for selecting features in supervised neural
net learning. IEEE Transactions on Neural Networks, 537–550 (2002)

7. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Cri-
teria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 1226–1238 (2005)

8. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley, New York (2001)

9. Nie, F., Xiang, S., Jia, Y., Zhang, C., Yan, S.: Trace ratio criterion for feature
selection. In: Proceedings of the 23rd National Conference on Artificial Intelligence,
pp. 671–676 (2008)

10. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF
and RReliefF. In: Machine Learning, pp. 23–69 (2003)

11. Zhao, Z., Liu, H.: Spectral feature selection for supervised and unsupervised learn-
ing. In: Proceedings of the 24th International Conference on Machine Learning,
pp. 1151–1157 (2007)

12. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances in
Neural Information Processing Systems (2005)

13. Belhumeur, P.N., Kriegman, D.J.: What is the set of images of an object under
all possible illumination conditions? International Journal of Computer Vision,
245–260 (1998)

222 Z. Zhang, E.R. Hancock, and X. Bai

14. Agarwal, S., Branson, K., Belongie, S.: Higher order learning with graphs. In:
Proceedings of the 23rd International Conference on Machine Learning, pp. 17–24
(2006)

15. Agarwal, S., Lim, J., Zelnik-Manor, L., Perona, P., Kriegman, D., Belongie, S.:
Beyond pairwise clustering. In: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 838–845 (2005)

16. Chung, F.: The Laplacian of a hypergraph. AMS DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pp. 21–36 (1993)

17. Li, W.C.W., Solé, P.: Spectra of regular graphs and hypergraphs and orthogonal
polynomials. European Journal of Combinatorics, 461–477 (1996)

18. Seeger, M.W.: Bayesian inference and optimal design for the sparse linear model.
The Journal of Machine Learning Research, 759–813 (2008)

19. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. In:
Machine Learning, pp. 243–272 (2008)

20. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. In: The
Annals of Statistics, pp. 407–499 (2004)

21. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001)
22. Cai, D., Zhang, C., He, X.: Unsupervised feature selection for multi-cluster data.

In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 333–342 (2010)

23. Yang, Y., Shen, H.T., Ma, Z., Huang, Z., Zhou, X.: L21-norm regularized discrim-
inative feature selection for unsupervised learning. In: International Joint Confer-
ences on Artificial Intelligence, pp. 1589–1594 (2011)

24. Jacobs, D.W., Belhumeur, P.N., Basri, R.: Comparing images under variable illu-
mination. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 610–617 (1998)

25. Nie, F., Xiang, S., Liu, Y., Zhang, C.: A general graph-based semi-supervised
learning with novel class discovery. In: Neural Computing & Applications, pp.
549–555 (2010)

26. Zhang, Z., Hancock, E.R.: Feature selection for gender classification. In: 5th Iberian
Conference on Pattern Recognition and Image Analysis, pp. 76–83 (2011)

27. Zhang, Z., Hancock, E.R.: Hypergraph based Information-theoretic Feature Selec-
tion. Pattern Recognition Letters (2012)

28. Yang, A.Y., Wright, J., Ma, Y., Sastry, S.S.: Feature selection in face recognition:
A sparse representation perspective. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2007)

29. Nie, F., Xu, D., Li, X., Xiang, S.: Semi-supervised dimensionality reduction and
classification through virtual label regression. IEEE Transactions on Systems, Man,
and Cybernetics, 1–11 (2011)

30. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review,
455–500 (2009)

31. Shashua, A., Zass, R., Hazan, T.: Multi-way Clustering Using Super-Symmetric
Non-negative Tensor Factorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.)
ECCV 2006. LNCS, vol. 3954, pp. 595–608. Springer, Heidelberg (2006)

32. Björck, A.: Numberical methods for least squares problems. In: Proc. SIAM (1996)

Learning Neighborhoods for Metric Learning

Jun Wang, Adam Woznica, and Alexandros Kalousis

AI Lab, Department of Computer Science, University of Geneva, Switzerland
Department of Business Informatics, University of Applied Sciences,

Western Switzerland
{jun.wang,adam.woznica}@unige.ch,

alexandros.kalousis@hesge.ch

Abstract. Metric learning methods have been shown to perform well
on different learning tasks. Many of them rely on target neighborhood
relationships that are computed in the original feature space and remain
fixed throughout learning. As a result, the learned metric reflects the
original neighborhood relations. We propose a novel formulation of the
metric learning problem in which, in addition to the metric, the target
neighborhood relations are also learned in a two-step iterative approach.
The new formulation can be seen as a generalization of many existing
metric learning methods. The formulation includes a target neighbor as-
signment rule that assigns different numbers of neighbors to instances
according to their quality; ‘high quality’ instances get more neighbors.
We experiment with two of its instantiations that correspond to the met-
ric learning algorithms LMNN and MCML and compare it to other met-
ric learning methods on a number of datasets. The experimental results
show state-of-the-art performance and provide evidence that learning the
neighborhood relations does improve predictive performance.

Keywords: Metric Learning, Neighborhood Learning.

1 Introduction

The choice of the appropriate distance metric plays an important role in distance-
based algorithms such as k-NN and k-Means clustering. The Euclidean metric
is often the metric of choice, however, it may easily decrease the performance
of these algorithms since it relies on the simple assumption that all features are
equally informative. Metric learning is an effective way to overcome this limita-
tion by learning the importance of difference features exploiting prior knowledge
that comes in different forms. The most well studied metric learning paradigm
is that of learning the Mahalanobis metric with a steadily expanding literature
over the last years [19,13,3,2,10,18,9,5,16].

Metric learning for classification relies on two interrelated concepts, similarity
and dissimilarity constraints, and the target neighborhood. The latter defines for
any given instance the instances that should be its neighbors and it is specified
using similarity and dissimilarity constraints. In the absence of any other prior
knowledge the similarity and dissimilarity constraints are derived from the class

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 223–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

224 J. Wang, A. Woznica, and A. Kalousis

labels; instances of the same class should be similar and instances of different
classes should be dissimilar.

The target neighborhood can be constructed in a global or local manner. With
a global target neighborhood all constraints over all instance pairs are active;
all instances of the same class should be similar and all instances from different
classes should be dissimilar [19,3]. These admittedly hard to achieve constraints
can be relaxed with the incorporation of slack variables [13,2,10,9]. With a local
target neighborhood the satisfiability of the constraints is examined within a lo-
cal neighborhood [4,17,10,18]. For any given instance we only need to ensure that
we satisfy the constraints that involve that instance and instances from its local
neighborhood. The resulting problem is considerably less constrained than what
we get with the global approach and easier to solve. However, the appropriate
definition of the local target neighborhood becomes now a critical component
of the metric learning algorithm since it determines which constraints will be
considered in the learning process. [18] defines the local target neighborhood of
an instance as its k, same-class, nearest neighbors, under the Euclidean metric
in the original space. Goldberger et al. [4] initialize the target neighborhood for
each instance to all same-class instances. The local neighborhood is encoded as
a soft-max function of a linear projection matrix and changes as a result of the
metric learning. With the exception of [4], all other approaches whether global or
local establish a target neighborhood prior to learning and keep it fixed through-
out the learning process. Thus the metric that will be learned from these fixed
neighborhood relations is constrained by them and will be a reflection of them.
However, these relations are not necessarily optimal with respect to the learning
problem that one is addressing.

In this paper we propose a novel formulation of the metric learning problem
that includes in the learning process the learning of the local target neighbor-
hood relations. The formulation is based on the fact that many metric learning
algorithms can be seen as directly maximizing the sum of some quality mea-
sure of the target neighbor relationships under an explicit parametrization of
the target neighborhoods. We cast the process of learning the neighborhood as
a linear programming problem with a totally unimodular constraint matrix [14].
An integer 0-1 solution of the target neighbor relationship is guaranteed by the
totally unimodular constraint matrix. The number of the target neighbors does
not need to be fixed, the formulation allows the assignment of a different number
of target neighbors for each learning instance according to the instance’s quality.
We propose a two-step iterative optimization algorithm that learns the target
neighborhood relationships and the distance metric. The proposed neighborhood
learning method can be coupled with standard metric learning methods to learn
the distance metric, as long as these can be cast as instances of our formulation.

We experiment with two instantiations of our approach where the Large Mar-
gin Nearest Neighbor (LMNN) [18] and Maximally Collapsing Metric Learning
(MCML) [3] algorithms are used to learn the metric; we dub the respective in-
stantiations LN-LMNN and LN-MCML. We performed a series of experiments
on a number of classification problems in order to determine whether learning

Learning Neighborhoods for Metric Learning 225

the neighborhood relations improves over only learning the distance metric. The
experimental results show that this is indeed the case. In addition, we also com-
pared our method with other state-of-the-art metric learning methods and show
that it improves over the current state-of-the-art performance.

The paper is organized as follows. In section 2, we discuss in more detail the
related work. In Section 3 we present the optimization problem of the Learn-
ing Neighborhoods for Metric Learning algorithm (LNML) and in Section 4 we
discuss the properties of LNML. In Section 5 we instantiate our neighborhood
learning method on LMNN and MCML. In Section 6 we present the experimental
results and we finally conclude with Section 7.

2 Related Work

The early work of Xing et al., [19], learns a Mahalanobis distance metric for
clustering that tries to minimize the sum of pairwise distances between similar
instances while keeping the sum of dissimilar instance distances greater than a
threshold. The similar and dissimilar pairs are determined on the basis of prior
knowledge. Globerson & Roweis, [3] introduced the Maximally Collapsing Met-
ric Learning (MCML). MCML uses a stochastic nearest neighbor selection rule
which selects the nearest neighbor xj of an instance xi under some probabil-
ity distribution. It casts the metric learning problem as an optimization prob-
lem that tries to minimize the distance between two probability distributions,
an ideal one and a data dependent one. In the ideal distribution the selection
probability is always one for instances of the same class and zero for instances
of different class, defining in that manner the similarity and dissimilarity con-
straints under the global target neighborhood approach. In the data dependent
distribution the selection probability is given by a soft max function of a Maha-
lanobis distance metric, parametrized by the matrixM to be learned. In a similar
spirit Davis et al., [2], introduced Information-Theoretic Metric Learning. ITML
learns a Mahalanobis metric for classification with similarities and dissimilarities
constraints that follow the global target neighborhood approach. In ITML all
same-class instance pairs should have a distance smaller than some threshold and
all different-class instance pairs should have a distance larger than some thresh-
old. In addition the objective function of ITML seeks to minimize the distance
between the learned metric matrix and a prior metric matrix, modelling like that
prior knowledge about the metric if such is available. The optimization problem
is cast as a distance of distributions subject to the pairwise constraints and
finally expressed as a Bregman optimization problem (minimizing the LogDet
divergence). In order to be able to find a feasible solution they introduce slack
variables in the similarity and dissimilarity constraints.

The so far discussed metric learning methods follow the global target neigh-
borhood approach in which all instances of the same class should be similar
under the learned metric, and all pairs of instances from different classes dissim-
ilar. This is a rather hard constraint and assumes that there is a linear projection
of the original feature space that results in unimodal class conditional distribu-
tions. Goldberger et al., [4], proposed the NCA metric learning method which

226 J. Wang, A. Woznica, and A. Kalousis

uses the same stochastic nearest neighbor selection rule under the same data-
dependent probability distribution as MCML. NCA seeks to minimize the soft
error under its stochastic nearest neighbor selection rule. It uses only similarity
constraints and the original target neighborhood of an instance is the set of all
same-class instances. After metric learning some, but not necessarily all, same
class instances will end up having high probability of been selecting as nearest
neighbors of a given instance, thus having a small distance, while the others will
be pushed further away. NCA thus learns the local target neighborhood as a
part of the optimization. Nevertheless it is prone to overfitting, [20], and does
not scale to large datasets. The large margin nearest neighbor method (LMNN)
described in [17,18] learns a distance metric which directly minimizes the dis-
tances of each instance to its local target neighbors while keeping a large margin
between them and different class instances. The target neighbors have to be
specified prior to metric learning and in the absence of prior knowledge these
are the k same class nearest neighbors for each instance.

3 Learning Target Neighborhoods for Metric Learning

Given a set of training instances {(x1, y1), (x2, y2) , . . . , (xn, yn)} where xi ∈ Rd

and the class labels yi ∈ {1, 2, . . . , c}, the Mahalanobis distance between two
instances xi and xj is defined as:

DM(xi,xj) = (xi − xj)
TM(xi − xj) (1)

where M is a Positive Semi-Definite (PSD) matrix (M $ 0) that we will learn.
We can reformulate many of the existing metric learning methods, such

as [19,13,3,10,18], by explicitly parametrizing the target neighborhood relations
as follows:

min
M,Ξ

∑
ij,i�=j,yi=yj

Pij · Fij(M,Ξ) (2)

s.t. constraints of the original problem

The matrix P,Pij ∈ {0, 1}, describes the target neighbor relationships which
are established prior to metric learning and are not altered in these methods.
Pij = 1, if xj is the target neighbor of xi, otherwise, Pij = 0. Note that the
parameters Pii and Pij : yi �= yj are set to zero, since an instance xi cannot be
a target neighbor of itself and the target neighbor relationship is constrained to
same-class instances. This is why we have i �= j, yi = yj in the sum, however, for
simplicity we will drop it from the following equations. Fij(M,Ξ) is the term of
the objective function of the metric learning methods that relates to the target
neighbor relationship Pij , M is the Mahalanobis metric that we want to learn,
and Ξ is a set of other parameters in the original metric learning problems, e.g.
slack variables. Regularization terms on the M and Ξ parameters can also be
added into Problem 2 [13,10].

The Fij(M,Ξ) term can be seen as the ’quality’ of the target neighbor rela-
tionship Pij under the distance metric M; a low value indicates a high quality

Learning Neighborhoods for Metric Learning 227

neighbor relationship Pij . The different metric learning methods learn the M
matrix that optimizes the sum of the quality terms based on the a priori estab-
lished target neighbor relationships; however, there is no reason to believe that
these target relationships are the most appropriate for learning.

To overcome the constraints imposed by the fixed target neighbors we propose
the Learning the Neighborhood for Metric Learning method (LNML) in which,
in addition to the metric matrix M, we also learn the target neighborhood
matrix P. LNML has as objective function the one given in Problem 2 which
we now optimize also over the target neighborhood matrix P. We add some new
constraints in Problem 2 which control for the size of the target neighborhoods.
The new optimization problem is the following:

min
M,Ξ,P

∑
ij

Pij · Fij(M, Ξ) (3)

s.t.
∑
i,j

Pij = Kav ∗ n

Kmax ≥
∑
j

Pi,j ≥ Kmin

1 ≥ Pij ≥ 0

constraints of the original problem

Kmin and Kmax are the minimum and maximum numbers of target neighbors
that an instance can have. Thus the second constraint controls the number of
target neighbor that xi instance can have. Kav is the average number of target
neighbor per instance. It holds by construction that Kmax ≥ Kav ≥ Kmin.
We should note here that we relax the target neighborhood matrix so that its
elements Pij take values in [0, 1] (third constraint). However, we will show later
that a solution Pij ∈ {0, 1} is obtained, given some natural constraints on the
Kmin, Kmax and Kav parameters.

3.1 Target Neighbor Assignment Rule

Unlike other metric learning methods, e.g. LMNN, in which the number of target
neighbors is fixed, LNML can assign a different number of target neighbors for
each instance. As we saw the first constraint in Problem 3 sets the average
number of target neighbors per instance to Kav, while the second constraint
limits the number of target neighbors for each instance betweenKmin andKmax.
The above optimization problem implements a target neighbor assignment rule
which assigns more target neighbors to instances that have high quality target
neighbor relations. We do so in order to avoid overfitting since most often the
’good’ quality instances defined by metric learning algorithms [3,18] are instances
in dense areas with low classification error. As a result the geometry of the dense
areas of the different classes will be emphasized. How much emphasis we give
on good quality instances depends on the actual values of Kmin and Kmax. In
the limit one can set the value of Kmin to zero; nevertheless the risk with such

228 J. Wang, A. Woznica, and A. Kalousis

a strategy is to focus heavily on dense and easy to learn regions of the data and
ignore important boundary instances that are useful for learning.

4 Optimization

4.1 Properties of the Optimization Problem

We will now show that we get integer solutions for the P matrix by solving a
linear programming problem and analyze the properties of Problem 3.

Lemma 1. Given M,Ξ, and Kmax ≥ Kav ≥ Kmin then Pij ∈ {0, 1}, if Kmin,
Kmax and Kav are integers.

Proof. Given M and Ξ, Fij(M,Ξ) becomes a constant. We denote by p the
vectorization of the target neighborhood matrix P which excludes the diagonal
elements and Pij : yi �= yj, and by f the respective vectorized version of the Fij

terms. Then we rewrite Problem 3 as:

min
p

pT f

s.t. (Kmax, · · · ,Kmax︸ ︷︷ ︸
n

,Kav ∗ n)T ≥ Ap ≥

(Kmin, · · · ,Kmin︸ ︷︷ ︸
n

,Kav ∗ n)T

1 ≥ pi ≥ 0 (4)

The first and second constraints of Problem 3 are reformulated as the first con-
straint in Problem 4. A is a (n+1)× (

∑
cl
n2
cl
−n) constraint matrix, where ncl

is the number of instances in class cl

A =

⎡⎢⎢⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 1
1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎦
where 1 (0) is the vector of ones (zeros). Its elements depends on the its position
in the matrix A. In its ith column, all 1 (0) vectors have ni − 1 elements, where
ni is the number of instances of class cj with cj = ypi . According to the sufficient
condition for total unimodularity (Theorem 7.3 in [14]) the constraint matrix A
is a totally unimodular matrix. Thus, the constraint matrix B = [I,−I,A,−A]T

in the following equivalent problem also is a totally unimodular matrix (pp.268
in [12]).

Learning Neighborhoods for Metric Learning 229

min
p

pT f

s.t. Bp ≤ e

e = (1, · · · , 1︸ ︷︷ ︸∑
cl

n2
cl
−n

, 0, · · · , 0︸ ︷︷ ︸∑
cl

n2
cl
−n

,Kmax, · · · ,Kmax︸ ︷︷ ︸
n

,

Kav ∗ n,−Kmin, · · · ,−Kmin︸ ︷︷ ︸
n

,−Kav ∗ n)T (5)

Since e is an integer vector, provided Kmin, Kmax, and Kav, are integers, and
the constraint matrix B is totally unimodular, the above linear programming
problem will only have integer solutions (Theorem 19.1a in [12]). Therefore, for
the solution p it will hold that pi ∈ {0, 1} and consequently Pij ∈ {0, 1}.

Although the constraints to control the size of the target neighborhood are con-
vex, the objective function in Problem 3 is not jointly convex in P and (M,Ξ).
However, as shown in Lemma 1, the binary solution of P can be obtained by a
simple linear program if we fix (M,Ξ). Thus, Problem 3 is individually convex
in P and (M,Ξ), if the original metric learning method is convex; this condition
holds for all the methods that can be coupled with our neighborhood learning
method [19,13,3,10,18].

4.2 Optimization Algorithm

Based on Lemma 1 and the individual convexity property we propose a gen-
eral and easy to implement iterative algorithm to solve Problem 3. The details
are given in Algorithm 1. At the first step of the kth iteration we learn the
binary target neighborhood matrix P(k) under a fixed metric matrix M(k−1)

and Ξ(k−1), learned in the k− 1th iteration, by solving the linear programming
problem described in Lemma 1. At the second step of the iteration we learn the
metric matrix M(k) and Ξ(k) with the target neighborhood matrix P(k) using as
the initial metric matrix the M(k−1). The second step is simply the application
of a standard metric learning algorithm in which we set the target neighborhood
matrix to the learned P(k) and the initial metric matrix to M(k−1). The conver-
gence of proposed algorithm is guaranteed if the original metric learning problem
is convex [1]. In our experiment, it most often converges in 5-10 iterations.

5 Instantiating LNML

In this section we will show how we instantiate our neighborhood learn-
ing method with two standard metric learning methods, LMNN and MCML,
other possible instantiations include the metric learning methods presented
in [19,13,10].

230 J. Wang, A. Woznica, and A. Kalousis

Algorithm 1. LNML

Input: X, Y, M0,Ξ0, Kmin, Kmax and Kav

Output: M
repeat

P(k)=LearningNeighborhood(X,Y,M(k−1),Ξ(k−1)) by solving Problem 4
(M(k),Ξ(k))=MetricLearning(M(k−1),P(k))
k := k + 1

until convergence

5.1 Learning the Neighborhood for LMNN

The optimization problem of LMNN is given by:

min
M,ξ

∑
ij

Pij{(1− μ)DM(xi,xj) + μ
∑
l

(1−Yil)ξijl} (6)

s.t. DM(xi,xl)−DM(xi,xj) ≥ 1− ξijl

ξijl > 0

M $ 0

where the matrix Y,Yij ∈ {0, 1}, indicates whether the class labels yi and yj
are the same (Yij = 1) or different (Yij = 0). The objective is to minimize the
sum of the distances of all instances to their target neighbors while allowing for
some errors, this trade off is controlled by the μ parameter. This is a convex
optimization problem that has been shown to have good generalization ability
and can be applied to large datasets. The original problem formulation corre-
sponds to a fixed parametrization of P where its non-zero values are given by
the k nearest neighbors of the same class.

Coupling the neighborhood learning framework with the LMNN metric learn-
ing method results in the following optimization problem:

min
M,P,ξ

∑
ij

Pij · Fij(M, ξ) (7)

= min
M,P,ξ

∑
ij

Pij{(1− μ)DM(xi,xj) + μ
∑
l

(1 −Yil)ξijl}

s.t. Kmax ≥
∑
j

Pi,j ≥ Kmin∑
i,j

Pij = Kav ∗ n

1 ≥ Pij ≥ 0

DM(xi,xl)−DM(xi,xj) ≥ 1− ξijl

ξijl > 0

M $ 0

Learning Neighborhoods for Metric Learning 231

We will call this coupling of LNML and LMNN LN-LMNN. The target neighbor
assignment rule of LN-LMNN assigns more target neighbors to instances that
have small distances from their target neighbors and low hinge loss.

5.2 Learning the Neighborhood for MCML

MCML relies on a data dependent stochastic probability that an instance xj is
selected as the nearest neighbor of an instance xi; this probability is given by:

pM(j|i) = e−DM(xi,xj)

Zi
=

e−DM(xi,xj)∑
k �=i e

−DM(xi,xk)
, i �= j (8)

MCML learns the Mahalanobis metric that minimizes the KL divergence dis-
tance between this probability distribution and the ideal probability distribution
p0 given by:

p0(j|i) =
Pij∑
k Pik

, p0(i|i) = 0 (9)

where Pij = 1, if instance xj is the target neighbor of instance xi, otherwise,
Pij = 0. The optimization problem of MCML is given by:

min
M

∑
i

KL[p0(j|i)|pM(j|i)] (10)

= min
M

∑
i,j

Pij
(DM(xi,xj) + logZi)∑

k Pik

s.t. M $ 0

Like LMNN, this is also a convex optimization problem. In the original problem
formulation the ideal distribution is defined based on class labels, i.e. Pij = 1,
if instances xi and xj share the same class label, otherwise, Pij = 0.

The neighborhood learning method cannot learn directly the target neighbor-
hood for MCML, since the objective function of the latter cannot be rewritten
in the form of the objective function in Problem 3, due to the denominator∑

k Pik. However, if we fix the size of the neighborhood to
∑

k Pi,k = Kav =
Kmin = Kmax the two methods can be coupled and the resulting optimization
is given by:

min
M,P

∑
ij

Pij · Fij(M) (11)

= min
M,P

∑
i,j

Pij
(DM(xi,xj) + logZi)

Kav

s.t.
∑
j

Pi,j = Kav

M $ 0

232 J. Wang, A. Woznica, and A. Kalousis

We will dub this coupling of LNML and MCML as LN-MCML. The original
MCML method follows the global approach in establishing the neighborhood,
with LN-MCML we get a local approach in which the neighborhoods are of fixed
size Kav for every instance.

6 Experiments

With the experiments we wish to investigate a number of issues. First, we want
to examine whether learning the target neighborhood relations in the metric
learning process can improve predictive performance over the baseline approach
of metric learning with an apriori established target neighborhood. Second, we
want to acquire an initial understanding of how the parameters Kmin and Kmax

relate to the predictive performance. To this end, we will examine the pre-
dictive performance of LN-LMNN with two fold inner Cross Validation (CV)
to select the appropriate values of Kmin and Kmax, method which we will
denote by LN-LMNN(CV), and that of LN-LMNN, with a default setting of
Kmin = Kmax = Kav. Finally, we want to see how the method that we propose
compares to other state of the art metric learning methods, namely NCA and
ITML. We include as an additional baseline in our experiments the performance
of the Euclidean metric (EucMetric). We experimented with twelve different
datasets: seven from the UCI machine learning repository, Sonar, Ionosphere,
Iris, Balance, Wine, Letter, Isolet; four text mining datasets, Function, Alt,
Disease and Structure, which were constructed from biological corpora [7]; and
MNIST [8], a handwritten digit recognition problem. A more detailed description
of the datasets is given in Table 1.

Since LMNN is computationally expensive for datasets with large number
of features we applied principal component analysis (PCA) to retain a limited
number of principal components, following [18]. The datasets to which this was
done were the four text mining datasets, Isolet and MNIST. For the two latter
173 and 164 principal components were respectively retained that explain 95% of
the total variance. For the text mining datasets more than 1300 principal com-
ponents should be retained to explain 95% of the total variance. Considering the
running time constraints, we kept the 300 most important principal components
which explained 52.45%, 47.57%, 44.30% and 48.16% of the total variance for
respectively Alt, Disease, Function and Structure. We could experiment with
NCA and MCML on full tranining datasets only with datasets with a small
number of instances due to their computational complexity. For completeness
we experimented with NCA on large datasets by undersampling the training
instances, i.e. the learning process only involved 10% of full training instances
which was the maximum number we could experiment for each dataset. We
also applied ITML on both versions of the larger datasets, i.e. with PCA-based
dimensionality reduction and the original ones.

For ITML, we randomly generate for each dataset the default 20c2 constraints
which are bounded repectively by the 5th and 95th percentiles of the distribution
of all available pairwise distances for similar and dissimilar pairs. The slack

Learning Neighborhoods for Metric Learning 233

Table 1. Datasets

Datasets Description # Sample# Feature# Class# Retained PCA Components% Explained Variance

Sonar 208 60 2 NA NA
Ionosphere 351 34 2 NA NA
Wine 178 13 3 NA NA
Iris 150 4 3 NA NA
Balance 625 4 3 NA NA

Letter character recognition 20000 16 26 NA NA
Function sentence classification 3907 2708 2 300 44.30%
Alt sentence classification 4157 2112 2 300 52.45%
Disease sentence classification 3273 2376 2 300 47.57%
Structure sentence classification 3584 2368 2 300 48.16%
Isolet spoken character recognition 7797 619 26 173 95%
MNIST handwritten digit recognition 70000 784 26 164 95%

variable γ is chosen form {10i}4i=−4 using two-fold CV. The default identity
matrix is employed as the regularization matrix. For the different instantiations
of the LNML method we took care to have the same parameter settings for the
encapsulated metric learning method and the respective baseline metric learning.
For LN-LMNN, LN-LMNN(CV) and LMNN the regularization parameter μ that
controls the trade-off between the distance minimization component and the
hinge loss component was set to 0.5 (the default value of LMNN). For LMNN
the default number of target neighbors was used (three). For LN-LMNN, we set
Kmin = Kmax = Kav = 3, similar to LMNN. To explore the effect of a flexible
neighborhood, the values of the Kmin and Kmax parameters in LN-LMNN(CV)
were selected from the sets {1, 4, 3} and {2, 5, 3} respectively, whileKav was fixed
to three. Similarly for LN-MCML we also set Kav = 3. The distance metrics for
all methods are initialized to the Euclidean metric. As the classification algorithm
we used 1-Nearest Neighbor.

We used 10-fold cross validation for all datasets to estimate classification
accuracy, with the exception of Isolet and MNIST for which the default train
and test split was used. The statistical significance of the differences were tested
with McNemar’s test and the p-value was set to 0.05. In order to get a better
understanding of the relative performance of the different algorithms for a given
dataset we used a ranking schema in which an algorithmA was assigned one point
if it was found to have a significantly better accuracy than another algorithm B,
0.5 points if the two algorithms did not have a significantly different performance,
and zero points if A was found to be significantly worse than B. The rank of an
algorithm for a given dataset is simply the sum of the points over the different
pairwise comparisons. When comparing N algorithms in a single dataset the
highest possible score is N − 1 while if there is no significant difference each
algorithm will get (N − 1)/2 points.

6.1 Results

The results are presented in Table 2. Examining whether learning also the neigh-
borhood improves the predictive performance compared to plain metric learning,
we see that in the case of LN-MCML, and for the five small datasets for which
we have results, learning the neighborhood results in a statistically significant

234 J. Wang, A. Woznica, and A. Kalousis

deterioration of the accuracy in one out of the five datasets (balance), while
for the remaining four the differences were not statistically significant. If we
now examine LN-LMNN(CV), LN-LMNN and LMNN we see that here learn-
ing the neighborhood does bring a statistically significant improvement. More
precisely, LN-LMNN(CV) and LN-LMNN improve over LMNN respectively in
six (two small and four large) and four (two small and two large) out of the
12 datasets. Moreove, by comparing LN-LMNN(CV) and LN-LMNN, we see
that learning a flexible neighborhood with LN-LMNN(CV) improves significantly
the performance over LN-LMNN on two datasets. The low performance of LN-
MCML on the balance dataset was intriguing; in order to take a closer look
we tried to determine automatically the appropriate target neighborhood size,
Kav, by selecting it on the basis of five-fold inner cross validation from the set
Kav = {3, 5, 7, 10, 20, 30}. The results showed that the default value of Kav was
too small for the given dataset, with the average selected size of the target neigh-
borhood at 29. As a result of the automatic tunning of the target neighborhood
size the predictive performance of LN-MCML jumped at an accuracy of 93.92%
which represented a significant improvement over the baseline MCML for the
balance dataset. For the remaining datasets it turned out that the choice of
Kav = 3 was a good default choice. In any case, determining the appropriate
size of the target neighborhood and how that affects the predictive performance
is an issue that we wish to investigate further. In terms of the total score that
the different methods obtain the LN-LMNN(CV) achieves the best in both the

Table 2. Accuracy results. The superscripts +−= next to the LN-XXXX accuracy
indicate the result of the McNemar’s statistical test result of its comparison to the
accuracy of XXXX and denote respectively a significant win, loss or no difference
for LN-XXXX. Similarly, the superscripts +−= next to the LN-LMNN(CV) accuracy
indicate the result of its comparison to the accuracies of LMNN and LN-LMNN. The
bold entries for each dataset have no significant difference from the best accuracy
for that dataset. The number in the parenthesis indicates the score of the respective
algorithm for the given dataset based on the pairwise comparisons.

(a) Small datasets

Datasets MCML LN-MCML LMNN LN-LMNN LN-LMNN(CV) EucMetric NCA ITML

Sonar 82.69(3.5) 84.62(3.5)= 81.25(3.5) 81.25(3.5)= 83.17(3.5)== 80.77(3.5) 81.73(3.5) 82.69(3.5)
Ionosphere 88.03 (3.0) 88.89(3.5)= 89.17(3.5) 87.75 (3.0)= 92.02(5.5)=+ 86.32 (3.0) 88.60(3.5) 87.75 (3.0)
Wine 91.57 (3.0) 96.07(4.0)= 94.38 (3.0) 97.75(5.5)+ 97.75(5.5)+= 76.97 (0.0) 91.57 (3.0) 94.94(4.0)
Iris 98.00(4.5) 96.00(3.5)= 96.00(3.5) 94.00 (3.0)= 94.00 (3.0)== 96.00(3.5) 96.00(3.5) 96.00(3.5)
Balance 91.20 (5.0) 78.08 (1.0)− 78.56 (1.0) 89.12 (4.5)+ 89.28 (4.5)+= 78.72 (1.0) 96.32(7.0) 87.84 (4.0)

Total Score 19.0 15.5 14.5 19.5 22.0 11.0 20.5 18.0

(b) Large datasets
Datasets PCA+LMNN PCA+LN-LMNN PCA+LN-LMNN(CV) EucMetric PCA+EucMetric PCA+NCA ITML PCA+ITML

Letter 96.86 (5.0) 97.71(6.5)+ 97.64(6.5)+= 96.02 (0.5) 96.02 (0.5) 96.48 (3.0) 96.39 (3.0) 96.39 (3.0)
Function 76.30 (2.5) 76.73 (2.5)= 78.91(6.0)++ 78.73(6.0) 76.48 (2.5) 72.36 (0.0) 78.73(6.0) 76.45 (2.5)
Alt 83.98 (5.0) 84.92(6.5)+ 85.37(6.5)+= 68.51 (0.5) 71.33 (2.0) 78.54 (4.0) 68.49 (0.5) 72.53 (3.0)
Disease 80.23(4.0) 80.14(4.0)= 80.66(4.0)== 80.60(4.0) 80.23(4.0) 73.59 (0.0) 80.60(4.0) 80.14(4.0)
Structure 77.87 (4.5) 78.83(6.0)= 79.37(6.5)+= 75.82 (1.5) 77.00 (4.0) 71.93 (0.0) 75.79 (1.5) 77.06 (4.0)
Isolet 95.96(6.0) 95.06(6.0)= 95.06(6.0)== 88.58 (1.5) 88.33 (1.5) 85.63(0.0) 92.05 (3.5) 91.08 (3.5)
MNIST 97.66(6.0) 97.66(6.0)= 97.73(6.0)== 96.91 (2.0) 96.97 (2.0) 96.58 (1.5) 96.93 (1.5) 97.09 (3.0)

Total Score 33 37.5 41.5 16 16.5 8.5 20 23

Learning Neighborhoods for Metric Learning 235

small and large datasets. It is followed closely by NCA in the small datasets and
by LN-LMNN in the large datasets.

7 Conclusion and Future Work

We presented LNML, a general Learning Neighborhood method for Metric
Learning algorithms which couples the metric learning process with the pro-
cess of establishing the appropriate target neighborhood for each instance, i.e.
discovering for each instance which same class instances should be its neighbors.
With the exception of NCA, which cannot be applied on datasets with many
instances, all other metric learning methods whether they establish a global or
a local target neighborhood do that prior to the metric learning and keep the
target neighborhood fixed throughout the learning process. The metric that is
learned as a result of the fixed neighborhoods simply reflects these original rela-
tions which are not necessarily optimal with respect to the classification problem
that one is trying to solve. LNML lifts these constraints by learning the target
neighborhood. We demonstrated it with two metric learning methods, LMNN
and MCML. The experimental results show that learning the neighborhood can
indeed improve the predictive performance.

The target neighborhood matrix P is strongly related to the similarity graphs
which are often used in semi-supervised learning [6], spectral clustering [15] and
manifold learning [11]. Most often the similarity graphs in these methods are
constructed in the original space, which nevertheless can be quite different from
true manifold on which the data lies. These methods could also profit if one is
able to learn the similarity graph instead of basing it on some prior structure.

Acknowledgments. This work was funded by the Swiss NSF (Grant 200021-
122283/1). The support of the European Commission through EU projects De-
bugIT (FP7-217139) and e-LICO (FP7-231519) is also gratefully acknowledged.

References

1. Bezdek, J.C., Hathaway, R.J.: Some Notes on Alternating Optimization. In: Pal,
N.R., Sugeno, M. (eds.) AFSS 2002. LNCS (LNAI), vol. 2275, pp. 288–300.
Springer, Heidelberg (2002)

2. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric
learning. In: Proceedings of the 24th International Conference on Machine Learn-
ing. ACM, New York (2007)

3. Globerson, A., Roweis, S.: Metric learning by collapsing classes. In: Advances in
Neural Information Processing Systems, vol. 18, MIT Press (2006)

4. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood compo-
nents analysis. In: Advances in Neural Information Processing Systems, vol. 17,
MIT Press (2005)

5. Guillaumin, M., Verbeek, J., Schmid, C.: Is that you? Metric learning approaches
for face identification. In: Proceedings of 12th International Conference on Com-
puter Vision, pp. 498–505 (2009)

236 J. Wang, A. Woznica, and A. Kalousis

6. Jebara, T., Wang, J., Chang, S.-F.: Graph construction and b-matching for semi-
supervised learning. In: Proceedings of the 26th Annual International Conference
on Machine Learning, pp. 441–448. ACM, New York (2009)

7. Kalousis, A., Prados, J., Hilario, M.: Stability of feature selection algorithms: a
study on high-dimensional spaces. Knowledge and Information Systems 12(1), 95–
116 (2007)

8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86, 2278–2324 (1998)

9. Lu, Z., Jain, P., Dhillon, I.S.: Geometry-aware metric learning. In: Proceedings of
the 26th Annual International Conference on Machine Learning. ACM Press, New
York (2009)

10. Nguyen, N., Guo, Y.: Metric Learning: A Support Vector Approach. In: Daelemans,
W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI),
vol. 5212, pp. 125–136. Springer, Heidelberg (2008)

11. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embed-
ding. Science 22, 2323–2326 (2000)

12. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons Inc.
(1998)

13. Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons.
In: Advances in Neural Information Processing Systems 16: Proceedings of the
2003 Conference, p. 41. MIT Press (2004)

14. Sierksma, G.: Linear and integer programming: theory and practice. CRC (2002)
15. von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17,

395–416 (2007)
16. Wang, J., Do, H., Woznica, A., Kalousis, A.: Metric learning with multiple kernels.

In: Advances in Neural Information Processing Systems. MIT Press (2011)
17. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin near-

est neighbor classification. In: Advances in Neural Information Processing Systems,
vol. 18, MIT Press (2006)

18. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. The Journal of Machine Learning Research 10, 207–244
(2009)

19. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning with ap-
plication to clustering with side-information. In: Advances in Neural Information
Processing Systems. MIT Press (2003)

20. Yang, Z., Laaksonen, J.: Regularized Neighborhood Component Analysis. In:
Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 253–262.
Springer, Heidelberg (2007)

Massively Parallel Feature Selection:

An Approach Based on Variance Preservation

Zheng Zhao, James Cox, David Duling, and Warren Sarle

SAS Institute Inc. 600 Research Drive, Cary, NC 27513, USA

Abstract. Advances in computer technologies have enabled corpora-
tions to accumulate data at an unprecedented speed. Large-scale business
data might contain billions of observations and thousands of features,
which easily brings their scale to the level of terabytes. Most traditional
feature selection algorithms are designed for a centralized computing
architecture. Their usability significantly deteriorates when data size ex-
ceeds hundreds of gigabytes. High-performance distributed computing
frameworks and protocols, such as the Message Passing Interface (MPI)
and MapReduce, have been proposed to facilitate software development
on grid infrastructures, enabling analysts to process large-scale problems
efficiently. This paper presents a novel large-scale feature selection algo-
rithm that is based on variance analysis. The algorithm selects features
by evaluating their abilities to explain data variance. It supports both
supervised and unsupervised feature selection and can be readily imple-
mented in most distributed computing environments. The algorithm was
developed as a SAS High-Performance Analytics procedure, which can
read data in distributed form and perform parallel feature selection in
both symmetric multiprocessing mode and massively parallel processing
mode. Experimental results demonstrated the superior performance of
the proposed method for large scale feature selection.

Keywords: Feature selection, parallel processing, big-data.

1 Introduction

Feature selection is an effective technique for dimensionality reduction and rel-
evance detection [1]. It improves the performance of learning models in terms
of their accuracy, efficiency, and model interpretability [2]. As an indispensable
component for successful data mining applications, feature selection has been
used in a variety of fields, including text mining, image processing, and genetic
analysis, to name a few. Continual advances in computer-based technologies have
enabled corporations and organizations to collect data at an increasingly fast
pace. Business and scientific data from many fields, such as finance, genomics,
and physics, are often measured in terabytes (1012 bytes). The enormous prolif-
eration of large-scale data sets brings new challenges to data mining techniques
and requires novel approaches to address the big-data problem [3] in feature
selection. Scalability is critical for large-scale data mining. Unfortunately, most

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 237–252, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

238 Z. Zhao et al.

existing feature selection algorithms do not scale well, and their efficiency sig-
nificantly deteriorates or even becomes inapplicable, when the data size reaches
hundreds of gigabytes (109 bytes). Efficient distributed programming protocols
and frameworks, such as the Message Passing Interface (MPI) [4] and MapRe-
duce [5], are proposed to facilitate programming on high-performance distributed
computing infrastructures to handle very large-scale problems.

This paper presents a novel distributed parallel algorithm for handling large-
scale problems in feature selection. The algorithm can select a subset of features
that best explain (preserve) the variance contained in the data. According to
how data variance is defined, the algorithm can perform either unsupervised
or supervised feature selection. And for the supervised case, the algorithm also
supports both regression and classification. Redundant features increase data di-
mensionality unnecessarily and worsen the learning performance [6, 7]. The pro-
posed algorithm selects features by evaluating feature subsets and can therefore
handle redundant features effectively. For parallel feature selection, the compu-
tation of the proposed algorithm is fully optimized and parallelized based on
data partitioning. The algorithm is implemented as a SAS High-Performance
Analytics procedure1, which can read data in a distributed form and perform
parallel feature selection in both symmetric multiprocessing (SMP) mode via
multithreading and massively parallel processing (MPP) mode via MPI.

A few approaches have been proposed for parallel feature selection. In [8, 9,
10, 11], parallel processing is used to speed up feature selection by evaluating
multiple features or feature subsets simultaneously. Since all these algorithms
require each parallel processing unit to access the whole data, they do not scale
well when the sample size is huge. To handle large scale problems, an algorithm
needs to rely on data partitioning to ensure its scalability [12]. In [13], a parallel
feature selection algorithm is proposed for logistic regression. The algorithm is
implemented under the MapReduce framework and can evaluate features using
a criterion obtained by approximating the objective function of the logistic re-
gression model. After selecting each new feature, the algorithm needs to retrain
its model, which is an iterative process. In contrast, the proposed algorithm
solves a problem with a closed form solution in each step and therefore might be
more efficient. To the best knowledge of the authors, all existing parallel feature
selection algorithms are for supervised learning, while the proposed algorithm
supports both supervised and unsupervised feature selection.

The contributions of this paper are: (1) The proposed algorithm provides a
unified approach for both unsupervised and supervised feature selection. For
supervised feature selection, it also supports both regression and classification.
(2) The proposed algorithm can effectively handle redundant features in feature
selection. (3) The algorithm is fully optimized and parallelized based on data
partitioning, which ensures its scalability for handling large-scale problems. To
the best knowledge of the authors, this is the first distributed parallel algorithm
for unsupervised feature selection.

1 A SAS procedure is a c-based routine for statistical analysis in the SAS system.

Massively Parallel Feature Selection 239

2 Maximum Variance Preservation for Feature Selection

This section presents a multivariate formulation for feature selection based on
maximum variance preservation. It first shows how to use the formulation to
perform unsupervised feature selection, then extends it to support supervised
feature selection for both regression and classification.

2.1 Unsupervised Feature Selection

When label information is unavailable, feature selection becomes challenging. To
address this issue, researchers propose various criteria for unsupervised feature
selection. For example, in [14], the performance of a clustering algorithm is used
to evaluate the utility of a feature subset; in [15, 16], each feature’s ability to
preserve locality is evaluated and used to select features; and in [17] an entropy-
based criterion is proposed and used for feature selection. This paper proposes
a multivariate formulation for feature evaluation in a distributed computing
environment. The criterion is based on maximum variance preservation, which
promotes the selection of the features that can best preserve data variance.

Assume that k features need to be selected. Let X � IRn�m be a data set
that contains n samples, x1, . . ., xn, and m features, f1, . . ., fm. In this work, it
is assumed that all features have been centralized to have zero mean, 1�f � 0,
where 1 is a column vector with all its elements being 1. LetX � �X1,X2�, where
X1 � IRn�k contains the k selected features and X2 � IRn��m�k� contains the
remaining ones. The proposed maximum variance preservation criterion selects
features by minimizing the following expression:

argmin
X1

Trace
�
X�

2

�
I�X1

�
X�

1 X1

��1
X�

1

�
X2

�
(1)

Let X1 � UΣV� be the singular value decomposition of X1, and let U �
�UR,UN �, where UR contains the left singular vectors that correspond to the
nonzero singular values andUN contains the left singular vectors that correspond

to the zero singular values. It can be verified that I � X1

�
X�

1 X1

��1
X�

1 �
UNUN

�, therefore the following equation holds:

Trace
�
X�

2

�
I�X1

�
X�

1 X1

��1
X�

1

�
X2

�
� Trace

��
U�

NX2

�� �
U�

NX2

��
(2)

The columns ofUN span the null space ofXT
1 . Since each row ofX�

1 corresponds
to a feature in X1, U

�
NX2 effectively projects the features inX2 to the null space

of the features in X1. Therefore, Expression (1) measures the variance that
resides in the null space of X�

1 , which is the variance that cannot be explained
by the features in X1. And minimizing it leads to the selection of the features
that can jointly explain the maximum amount of the data variance.

2.2 Supervised Feature Selection

When label information is available, Expression (1) can be extended to support
feature selection in both regression and classification (categorization) settings.

240 Z. Zhao et al.

The Regression Case. In a regression setting, all responses are numerical.
Let Y � IRn�t be the response matrix that contains t response vectors, and X1

and X2 are defined as before. Assume that k features need to be selected. In a
regression setting, feature selection can be achieved by minimizing:

argmin
X1

Trace
�
Y�

�
I�X1

�
X�

1 X1

��1
X�

1

�
Y
�

(3)

where
�
I�X1

�
X�

1 X1

��1
X�

1

� 1
2 � UN projects Y to the null space of X�

1 .

Expression (3) measures the response variance that resides in the null space of
X�

1 , which is the variance of Y that cannot be explained by the features in X1.
Clearly, minimizing the expression leads to selecting the features that can jointly
explain the maximum amount of response variance.

The Classification Case. In a classification setting, one categorical response
is specified. Let the response vector be y with C different values, �1, . . . , C�. A
response matrix Y � IRn�C can be created using the following equation:

Yi,j �

����
���

	

1

nj
�
�
nj

n

�
, yi � j

�
�
nj

n
, yi 	 j

(4)

where nj is the number of instances in class j, and yi � j denotes that the ith
instance belongs to the jth class. ThisY is first used in [18] for least square linear
discriminant analysis. Applying it in Expression (3) enables feature selection in
a classification setting, which leads to selecting the features that maximize the
discriminant criterion of linear discriminant analysis (LDA).

Theorem 1. Assume that features have been centralized to have zero mean and
that the response matrix Y is defined by Equation (4). Minimizing Expression (3)
is equivalent to maximizing the discriminant criterion of LDA,

maxTrace
�
S�1
t Sb

�
(5)

where St and Sb are the total and the between-class scatter matrices on X1.

Proof. Let Y be defined in Equation (4), and all features have zero mean. The
theorem can be proved by verifying the following equations:

1

n
X�X � St � 1

n

n�
i�1

�xi � c� �xi � c�� (6)

X�YY�X � Sb � 1

n

C�
j�1

nj �cj � c� �cj � c�� (7)

In the preceding equations, c is the mean of the whole data. Since features have
been centralized to have zero mean, in the preceding equations c � 0. xi is the
ith instance, and cj is the mean of the instances that belong to class j.

Massively Parallel Feature Selection 241

The discriminant criterion of LDA measures the separability of the instances
from different classes. For example, Expression (5) achieves a large value when
instances from the same class are close, while instances from different classes are
far away from each other. When Equation (4) is applied in Expression (3) for
feature selection, the features that maximize the separability of the instances
from different classes are selected. This is a desirable property for classifiers.

3 The Computation

Given m features, finding the k features minimizing Expressions (1) and (3)
is a combinatorial optimization problem, which is NP-hard (nondeterministic
polynomial-time hard). The sequential forward selection (SFS) strategy2 is an
efficient way of generating a suboptimal solution for the problem [1]. This sec-
tion derives closed form solutions for the problem based on sequential forward
selection, which significantly improves its efficiency. It also presents algorithms
for computing the solutions in a distributed parallel computing environment.

3.1 Closed Form Solutions Based on SFS

Solution for Unsupervised Feature Selection. Assume that q features have
been selected. Let X1 contain the q selected features, and let X2 contain the
remaining ones. In the q
 1 step, a feature f is selected by

argmin
f

Trace

X̂�

2

I� X̂1

�
X̂�

1 X̂1

��1

X̂�
1

�
X̂2

�
(8)

where X̂1 contains f and the q selected features, and X̂2 contains the remaining

ones. Let UN �
�
I�X1

�
X�

1 X1

��1
X�

1

� 1
2

, the following theorem applies:

Theorem 2. Solving the problem specified in Expression (8) is equivalent to
maximizing the following expression:

argmax
f

���X�
2

�
I�X1

�
X�

1 X1

��1
X�

1

�
f
���2
2�����I�X1

�
X�

1 X1

��1
X�

1

� 1
2

f

����
2

2

(9)

Proof. The theorem can be proved by applying block matrix inversion on X̂�
1 X̂1.�

X̂�
1 X̂1

��1

�

A�1 � 1

w
A�1bb�A�1 � 1

w
A�1b

� 1
w
b�A�1 1

w

�
(10)

where A � X�
1 X1, b � X�

1 f , c � f�f , and w � c� b�A�1b. The details of the
proof is omitted due to space limit.

2 To select k features, the sequential forward selection (SFS) strategy applies k steps
of greedy search and selects one feature in each step.

242 Z. Zhao et al.

Assuming that all features have zero mean,
���X�

2

�
I�X1

�
X�

1 X1

��1
X�

1

�
f
���2
2

in Equation (9) is the summation of the squares of the covariance between the
feature f and all the unselected features (columns of X2) in the null space of

X�
1 . And

�����I�X1

�
X�

1 X1

��1
X�

1

� 1
2

f

����
2

2

is the square of the variance of the

feature f in the null space of X�
1 , which is used for normalization. Essentially,

Expression (9) measures how well the feature f can explain the variance that
cannot be explained by the q selected features. Compared to Expression (8),
Expression (9) singles out the computations that are common for evaluating
different features. This makes it possible to compute them only once in each
step and therefore improves the efficiency for solving the problem.

Let m be the number of all features, n the number of samples, and k the
number of features to be selected. Also assume that m � k. It is easy to verify
that in a traditional centralized computing environment, the time complexity
for selecting k features by solving Expression (9) is:

O
�
m2
�
n
 k2

��
(11)

In the preceding expression, m2n corresponds to the complexity for computing
the covariance matrix. And m2k2 corresponds to selecting k features out of m.

Solution for Supervised Feature Selection. The following theorem enables
efficient feature selection with Expression (3):

Theorem 3. When the problem specified in Expression (3) is solved by sequen-
tial forward selection, in each step the selected feature f must maximize:

argmax
f

���Y�
�
I�X1

�
X�

1 X1

��1
X�

1

�
f
���2
2�����I�X1

�
X�

1 X1

��1
X�

1

� 1
2

f

����
2

2

(12)

Proof. It can be proved in the same way as Theorem 2.

Let C be the number of columns in Y. The time complexity of selecting k
features using Expression (12) is

O
�
mk
�
n
 k2

��
(13)

To obtain Expression (13), it is assumed that m � k � C.

3.2 Parallel Computation through MPP and SMP

The operations for computing Expression (9) and (12) need to be carefully or-
dered, optimized, and parallelized to ensure efficiency and scalability.

Massively Parallel Feature Selection 243

Massive Parallel Processing (MPP). The master-worker/slave architecture
based on MPI [4] is used to support massive parallel processing. In this archi-
tecture, given p
 1 parallel processing units, one unit is used as the master for
control, and the remaining p units is used as workers for computation. In the
implementation, all expensive operations for computing feature relevance are
properly decomposed, so that they can be computed in parallel based on data
partitioning. Assume that a data set has n instances and m features. p homoge-
nous computers (the workers) are available. A data partitioning technique evenly
distributes instances to the workers, so that each worker obtain n

p instances for

computation. It is shown in [20] that any operation fitting the Statistical Query
model3 can be computed in parallel based on data partitioning. Studies also
showed that when data size is large enough, parallelization based on data par-
titioning can result in linear speedup as computing resources increase [20, 12].
Algorithms 1 and 2 contain the implementation details for distributed parallel
feature selection based on MPI. The validness of the computation can be verified
by decomposing operations into various summation forms over instances. The
details about the verification is not presented due to space limit.

Symmetric Multiprocessing (SMP). Solving the problems specified in Ex-
pression (9) and (12) involves a series of matrix-vector operations. These oper-
ations are packed together and rewritten in the matrix-matrix operation form.
This effectively simplifies programming and allows developers to use a highly
optimized threaded BLAS library to speed up computation on the workers
through multi-threading. As an example, in unsupervised feature selection, let

tir,j � f�ir,jX1

�
X�

1 X1

��1
X�

1 fir,j , where fir,j is the j-th feature on the r-th

worker. �tir,1 , . . . , tir,m
p
� can be computed as, �tir,1 , . . . , tir,m

p
� � 1� �Br

�
Er�,

where
�

denotes element-wise matrix multiplication. Let Xr � �fir,1 , . . . , fir,m
p
�

and A � X�
1 X1, it can be verified that Br � X�

1 Xr, and Er � A�1Br.

3.3 The Implementations

Algorithm 1 and 2 contain the pseudocode for unsupervised and supervised
feature selection respectively. Both algorithms assume that the data have been
properly partitioned and distributed to p worker nodes. In the algorithms,

�
and

�
denote element-wise matrix multiplication and division, respectively.

For unsupervised feature selection, the covariance among features is used re-
peatedly in the evaluation process. Therefore, it is more efficient to compute the
whole covariance matrix C before feature selection. In Algorithm 1, Line 2 to
Line 5 compute feature scores to select the first feature. Since no feature has

been selected, Expression (9) can be simplified to
�X�fi�

2
2

f�i fi
� �ci�22

ci,i
, where ci is the

ith column of C, and Ci,i is the ith diagonal element. In Line 2, vr contains the

3 An operation fits the Statistical Query model if it can be decomposed and written
in summation forms over the instances.

244 Z. Zhao et al.

Input: X1, . . . ,Xp, � IR
n
p
�m

; k
Output: L, a list of k selected features

1 Compute covariance matrix C � IRm�m, and distribute the rth section of

the covariance matrix, Cr � IR
m�m

p , on the rth worker, r � 1, . . . , p ;
2 Compute local feature scores on each worker

sr � 1�
�
Cr

�
Cr

�
, sr � sr

�
vr; vr �

�
Cir,1,ir,1 , . . . , Cir,m

p
,ir,m

p

�
(14)

3 Workers send sr to the master via MPI Gather;
4 On the master, select i � argmax �si � si � �s1, . . . , sp��;
5 Initialization, L � �Fi	, l � 1;
6 while l
 k do
7 The master sends L to all workers via MPI Bcast;

8 The worker that contains ci, the ith column of C, sends ci to all other
workers via MPI Bcast;
/* ------------------simultaneously------------------- */

9 Workers construct A�1 � IRl�l, Br � IRl�tr , Dr � IR�m�l��tr ,

vr � IRtr�1, C2,1 � IR�m�l��l;
10 Workers compute local feature scores

Er � A�1Br, Hr � C2,1Er, Gr � Dr �Hr, (15)

gr � 1�
�
Gr

�
Gr

�
,wr � vr � 1�

�
Br

�
Er

�
, sr � gr

�
wr (16)

Workers send sr to the master via MPI Gather;
/* --- */

11 Master selects i � argmax �si � si � �s1, . . . , sp��, L � L� �Fi	, l ��;

12 end

Algorithm 1. Distributed parallel unsupervised feature selection.

diagonal elements of C that corresponds to the variance of the features on the
rth worker. The vector sr contains the scores of the features on the rth worker.
After a feature Fi has been selected, each worker updates A�1, Br, Dr, vr, and
C2,1 in Line 9 using Cr and ci. Let L contain the index of selected features, Lr

contain the index of unselected features on the rth worker, and Lu contain the
index of all unselected features. A � X�

1 X1 � CL�L, Br � X�
1 Xr � CL�Lr ,

Dr � X�
2 Xr � CLu�Lr , C2,1 � X�

2 X1, and vr contains the variance of the uns-
elected features on the rth worker. The scores of the features on the rth worker
is computed in Line 10. Assume that the A�1 in Line 9 can be computed by
applying rank-one update, and a tree-based mechanism is used to implement
MPI_Bcast and MPI_Reduce. The total time complexity of Algorithm 1 is

CPU

	
m2
�
n
 k2

�
p

m2 log p

�

NET

�
m2 log p

�
(17)

In the preceding expressions, CPU �� and NET �� denote the time used for
computation and for network communication, respectively.

Massively Parallel Feature Selection 245

Input: X1, . . . ,Xp � IR
n
p�m, Y1, . . . ,Yp � IR

n
p�C , k

Output: L, a list of k selected features
1 On each worker, compute Er � IRC�m, vr � IR1�m:

Er � Y�
r Xr, vr � 1�

�
Xr

�
Xr

�
; (18)

2 Send Er and vr to the master via MPI Reduce with MPI SUM option:

E �
p�

r�1

Er, v �
p�

r�1

vr; (19)

3 On the master, compute feature scores

s � 1�
�
E
�

E
�
, s � s

�
v; (20)

4 On the master, select i � argmax �si � si � s� ;
5 Initialization, L � �Fi�, l � 1;
6 while l � k do
7 The master sends L to all workers via MPI Bcast;

/* ---------------simultaneously---------------- */

8 Workers compute cir � X�
r f

i
r, c

i
r � IRm�1;

9 Workers send cir to the master via MPI Reduce with MPI SUM option

ci �
p�

r�1

cir, ci � IRm�1 (21)

/* --- */

10 On the master, construct A�1 � IRl�l, CY,1 � IRC�l,

C1,2 � IRl��m�l�, CY,2 � IRC��m�l�, v2 � IR1��m�l�;
11 On the master, compute

B � A�1C1,2, H � CY,1B, G � CY,2 �H; (22)

g � 1�
�
G
�

G
�
, w � v2 � 1�

�
C1,2

�
B
�
, s � g

�
w; (23)

12 Master selects i � argmax �si � si � s�, L � L� �Fi�, l

;

13 end

Algorithm 2. Distributed parallel supervised feature selection.

For supervised feature selection, only a small portion of the covariance ma-
trix is needed for feature evaluation. Therefore, the covariance matrix is not
computed before feature selection. In Algorithm 2, Line 1 to Line 3 compute
feature scores to select the first feature. Since no feature has been selected, Ex-

pression (12) simplifies to
�X�f�22
f�f . In Line 10, A � X�

1 X1, CY,1 � Y�X1,
CY,2 � Y�X2, C1,2 � X�

1 X2, and v2 contains the variance of the unselected
features. As both A�1 and B can be obtained by incrementally updating their
previous versions, the complexity for selecting k features using Algorithm 2 is

246 Z. Zhao et al.

CPU

mk

n

p

 k2

��

NET �m �C
 k� log p� (24)

In the preceding expression, C is the number of columns in Y.
Expression (17) and (24) suggest that when the number of instances is large

and the network is fast enough, Algorithms 1 and 2 can speed up feature selection
linearly as the number of parallel processing units increases.

4 Connections to Existing Methods

In an unsupervised setting, principal component analysis (PCA) [19] also re-
duces dimensionality by preserving data variance. The key difference between
PCA and the proposed method is that PCA generates a small set of new fea-
tures (feature extraction) by linearly combining the original features, while the
proposed method selects a small set of the original features (feature selection).
The features returned by the proposed method are the original ones. This is very
important in applications where retaining the original features is useful for model
exploration or interpretation (for example, genetic analysis and text mining).

In a regression setting, let f be a feature vector, it can be shown that

f�
�
I�X1

�
X�

1 X1

��1
X�

1

�
Y � f� �Y �X1W1� (25)

where W1 �
�
X�

1 X1

��1
X�

1 Y is the solution of a least squares regression. Let
R be the residual, R � Y �X1W1. Expression (12) can be simplified to:

argmax
f

��f�R��2
2�����I�X1

�
X�

1 X1

��1
X�

1

� 1
2

f

����
2

2

(26)

Therefore, in each step the proposed method selects the feature that has the
largest normalized correlation with the current residual. This shows that in a re-
gression setting the proposed method forms a special type of stepwise regression
with Expression (12) as the selection criterion.

When used in a classification setting, the proposed method selects features
with the discriminant criterion of LDA. LDA also reduces dimensionality. As for
PCA, the key difference is that LDA generates a small set of new features, while
the proposed method selects a small set of the original features.

5 Experimental Study

The proposed method was implemented as the HPREDUCE procedure based on
SAS High-Performance Analytics foundation. This section evaluates its perfor-
mance for both supervised and unsupervised feature selection. In the experiment,

Massively Parallel Feature Selection 247

12 representative feature selection algorithms are used for comparison. For un-
supervised feature selection, six algorithms are selected as baselines: Laplacian
score [15], SPEC-1 and SPEC-3 [16], trace-ratio [21], HSIC [22], and SPFS [23].
For supervised feature selection, in the classification setting, seven algorithms are
compared: ReliefF [24], Fisher Score [25], trace-ratio, HSIC, mRMR [7], AROM-
SVM [26], and SPFS. In the regression setting, LARS [27], and LASSO [28] are
compared. Among the 12 algorithms, AROM-SVM, mRMR, SPFS, LARS and
LASSO can handle redundant features.

Table 1. Summary of the benchmark data sets

Data Set Features Instances Classes Data Set Features Instances Classes

RELATH 4,322 1,427 2 ORL 10,000 100 10
PCMAC 3,289 1,943 2 CRIME 147 2,215 -
AR 2,400 130 10 SLICELOC 386 53,500 -
PIE 2,400 210 10 s25mf5k 5,000 25,000,000 -
PIX 10,000 100 10 u10mf5k 5,000 10,000,000 -

Ten benchmark data sets are used in the experiment. Four are face image
data: AR4, PIE5, PIX6, and ORL7 (images from 10 persons are used). Two are
text data extracted from the 20-newsgroups data8: RELATH (BASEBALL vs.
HOCKEY) and PCMAC (PC vs. MAC). Two are UCI data: CRIME (Com-
munities and Crime Unnormalized) and SLICELOC (relative location of CT
slices on axial axis)9. And two are large-scale data sets for performance tests.
The u10mf5k data set contains 5,000 features and 10 million instances, which is
used for testing unsupervised feature selection. The s25mf5k data set contains
5,000 features, 1 response, and 25 million instances, which is used for testing
supervised feature selection. Each data set has 100 continuous variables sampled
from uniform distribution. And the remains are binary variables sampled from
Bernoulli distribution. Details on the ten data sets can be found in Table 1. The
first six data sets are used to test unsupervised feature selection and supervised
feature selection for classification. The seventh and the eighth data sets are used
to test feature selection for regression. And the last two are used to evaluate the
HPREDUCE procedure in a distributed computing environment.

Assume that L is the set of selected features and that XL is the data that
contain only features in L. For the classification setting, algorithms are compared
on (1) classification accuracy and (2) redundancy rate which is defined as:

RED �L� � 1

m�m� 1�
�

Fi,Fj�L,i	j

ρi,j (27)

4 http://rvl1.ecn.purdue.edu/�leix/aleix face DB.html
5 http://peipa.essex.ac.uk/ipa/pix/faces/manchester/
6 http://www.ri.cmu.edu/projects/project 418.html
7 http://www.uk.research.att.com/facedatabase.html
8 http://people.csail.mit.edu/jrennie/20Newsgroups/
9 http://archive.ics.uci.edu/ml/index.html

248 Z. Zhao et al.

where ρi,j returns the correlation between feature Fi and feature Fj . Equa-
tion (27) assesses the average correlation among all feature pairs. A large value
indicates that features in L are strongly correlated and thus redundant features
might exist. In the regression setting, algorithms are compared on (1) rooted
mean square error (RMSE) and (2) redundancy rate. For unsupervised feature
selection, algorithms are compared on: (1) redundancy rate and (2) percentage
of the total variance explained by features in L,

PCTV AR �L� �
Trace

�
X�XL

�
X�

LXL

��1
X�

LX
�

Trace �X�X� (28)

For each data set, half of the instances are randomly sampled for training and
the remaining are used for test. The process is repeated 20 times, which results
in 20 different partitions of the data set. Each feature selection algorithm is
used to select 5, 10, . . . , 100 features on each partition. The obtained 20 feature
subsets are then evaluated using a criterion C. By doing this, a score matrix
S � IR20�20 is generated for each algorithm, where each row of S corresponds
to a data partition and each column corresponds to a size of the feature subset.

The average score of C is obtained by s � 1�S1
20�20 . To calculate classification

accuracy, linear support vector machine (SVM) is used. The parameters of SVM
and all feature selection algorithms are tuned via 5 fold cross-validation on the

training data. Let s � 1�S
20 . The elements of s corresponds to the average score

achieved when different numbers of features are selected. The paired Student’s t
test is applied to compare the s achieved by different algorithms to s
, the best
s measured by 1�s. And the threshold for rejecting the null hypothesis is set to
0.05. Rejecting the null hypothesis means that s and s
 are significantly different,
and suggests that the performance of the algorithm is consistently different to
the best algorithm when different numbers of selected features.

5.1 Study of Unsupervised Cases

Percentage of Explained Variance: Table 2 presents the average percentage
of the data variance explained by the features selected by different algorithms.
The result shows that compared with the baselines, the HPREDUCE procedure
achieved the best performance on all six data sets. This is to be expected, since
the HPREDUCE procedure is designed to preserve data variance. The result
demonstrates the strong capability of the proposed algorithm for preserving
variance in feature selection. It also suggests that using Expression (9) with
sequential forward search is effective for minimizing Expression (1).

Redundancy Rate: Table 3 presents the average redundancy rate results. It
shows that SPFS and the HPREDUCE procedure achieved much better results
than the others. This is to be expected, since they are designed to handle redun-
dant features, while the others are not.

Massively Parallel Feature Selection 249

Table 2. Unsupervised feature selection: explained variance with p-val

Algorithm PCMAC RELATH PIX PIE AR ORL AVE Best

Laplacian 0.13 (.00) 0.10 (.00) 0.57 (.00) 0.76 (.00) 0.55 (.00) 0.45 (.00) 0.427 0
SPEC-1 0.13 (.00) 0.10 (.00) 0.57 (.00) 0.75 (.00) 0.56 (.00) 0.45 (.00) 0.427 0
SPEC-3 0.21 (.00) 0.18 (.00) 0.61 (.00) 0.78 (.00) 0.58 (.00) 0.52 (.00) 0.481 0
Trace-ratio 0.44 (.00) 0.45 (.00) 0.57 (.00) 0.75 (.00) 0.56 (.00) 0.45 (.00) 0.537 0
HSIC 0.42 (.00) 0.44 (.00) 0.62 (.00) 0.75 (.00) 0.55 (.00) 0.45 (.00) 0.538 0
SPFS 0.45 (.00) 0.47 (.01) 0.74 (.01) 0.86 (.00) 0.72 (.01) 0.60 (.01) 0.639 0
HPREDUCE 0.60 (1.0) 0.54 (1.0) 0.97 (1.0) 0.97 (1.0) 0.96 (1.0) 0.97 (1.0) 0.835 6

Table 3. Unsupervised feature selection: redundancy rate with p-val

Algorithm PCMAC RELATH PIX PIE AR ORL AVE Best

Laplacian 0.70 (.00) 0.78 (.00) 0.90 (.00) 0.85 (.00) 0.82 (.00) 0.85 (.00) 0.817 0
SPEC-1 0.71 (.00) 0.78 (.00) 0.90 (.00) 0.87 (.00) 0.80 (.00) 0.85 (.00) 0.818 0
SPEC-3 0.84 (.00) 0.93 (.00) 0.89 (.00) 0.81 (.00) 0.78 (.00) 0.73 (.00) 0.829 0
Trace-ratio 0.20 (.00) 0.27 (.00) 0.90 (.00) 0.87 (.00) 0.80 (.00) 0.85 (.00) 0.649 0
HSIC 0.17 (.00) 0.25 (.00) 0.90 (.00) 0.84 (.00) 0.80 (.00) 0.85 (.00) 0.633 0
SPFS 0.08 (.00) 0.11 (.00) 0.36 (.00) 0.31 (1.0) 0.24 (1.0) 0.26 (.05) 0.227 3
HPREDUCE 0.02 (1.0) 0.02 (1.0) 0.22 (1.0) 0.34 (.01) 0.27 (.01) 0.22 (1.0) 0.181 4

5.2 Study of Supervised Cases

Classification, Accuracy: Table 4 presents the average accuracy achieved by
SVM using the features selected by algorithms. The HPREDUCE procedure
achieved the best results on five data sets, which is followed by SPFS (three
data sets) and Arom-SVM (two data sets). According to the average accuracy,
the HPREDUCE procedure also performed the best (0.880), followed by SPFS
(0.869) and HSIC (0.813). This result demonstrates the good performance of the
HPREDUCE procedure in the classification setting.

Table 4. Supervised feature selection for classification: accuracy with p-val

Algorithm PCMAC RELATH PIX PIE AR ORL AVE Best

ReliefF 0.70 (.00) 0.66 (.00) 0.92 (.00) 0.92 (.00) 0.76 (.00) 0.78 (.00) 0.789 0
Fisher Score 0.86 (1.0) 0.73 (.00) 0.92 (.00) 0.90 (.01) 0.72 (.00) 0.73 (.00) 0.810 1
Trace-ratio 0.86 (1.0) 0.73 (.00) 0.92 (.00) 0.90 (.01) 0.72 (.00) 0.73 (.00) 0.810 1
HSIC 0.85 (.14) 0.75 (.00) 0.92 (.00) 0.90 (.01) 0.72 (.00) 0.74 (.00) 0.813 1
mRMR 0.84 (.00) 0.79 (.81) 0.85 (.00) 0.92 (.02) 0.64 (.00) 0.68 (.00) 0.787 1
Arom-SVM 0.85 (.14) 0.75 (.00) 0.80 (.00) 0.90 (.09) 0.55 (.00) 0.71 (.00) 0.761 2
SPFS 0.85 (.32) 0.78 (.02) 0.95 (.02) 0.94 (.14) 0.80 (.13) 0.89 (.00) 0.869 3
HPREDUCE 0.84 (.00) 0.80 (1.0) 0.96 (1.0) 0.95 (1.0) 0.81 (1.0) 0.92 (1.0) 0.880 5

Classification, Redundancy Rate: The average redundancy rate achieved
by algorithms are presented in Table 5. Among the eight algorithms in the ta-
ble, mRMR, Arom-SVM, SPFS, and the HPREDUCE procedure are designed
to handle redundant features. In the experiment, on average these algorithms
achieved redundancy rates at the level of 0.2. In contrast, the other four algo-
rithms had much higher redundancy rates. The result shows that the HPRE-
DUCE procedure is effective in handling redundant features for classification.

250 Z. Zhao et al.

Table 5. Supervised feature selection for classification: redundancy rate with p-val

Algorithm PCMAC RELATH PIX PIE AR ORL AVE Best

ReliefF 0.10 (.00) 0.09 (.00) 0.78 (.00) 0.38 (.00) 0.76 (.00) 0.89 (.00) 0.501 0
Fisher Score 0.07 (.00) 0.15 (.00) 0.83 (.00) 0.40 (.00) 0.67 (.00) 0.77 (.00) 0.481 0
Trace-ratio 0.07 (.00) 0.15 (.00) 0.83 (.00) 0.40 (.00) 0.67 (.00) 0.77 (.00) 0.481 0
HSIC 0.13 (.00) 0.10 (.00) 0.83 (.00) 0.40 (.00) 0.67 (.00) 0.77 (.00) 0.483 0
mRMR 0.04 (1.0) 0.04 (.00) 0.33 (.00) 0.26 (.46) 0.25 (1.0) 0.25 (1.0) 0.194 4
Arom-SVM 0.05 (.00) 0.07 (.00) 0.26 (1.0) 0.29 (.02) 0.25 (.22) 0.25 (.35) 0.196 3
SPFS 0.11 (.00) 0.07 (.00) 0.45 (.00) 0.25 (1.0) 0.31 (.03) 0.36 (.00) 0.260 1
HPREDUCE 0.05 (.00) 0.03 (1.0) 0.32 (.00) 0.31 (.00) 0.31 (.00) 0.27 (.00) 0.214 1

Regression: In the regression setting, the HPREDUCE procedure is compared
to LARS and LASSO. The RMSE and redundancy rate results are presented in
Tables 6, respectively. The results suggest that in terms of RMSE and redun-
dancy rate, the performance of the three algorithms are largely comparable on
the benchmark data sets. Compared to LARS and LASSO, the HPREDUCE
procedure is a general method for both supervised and unsupervised feature
selection, while LARS and LASSO are for supervised regression only.

Table 6. Supervised feature selection for regression, RMSE (col 2- col 4), the lower
the better; redundancy rate (col 5 - col 7) with p-val

DATA LARS LASSO HPREDUCE LARS LASSO HPREDUCE

CRIME 3.6e-7 (.00) 3.6e-7 (.00) 3.3e-7 (1.0) 0.31 (1.0) 0.31 (1.0) 0.32 (.00)
SLICELOC 2.8e-3 (.04) 2.8e-3 (.04) 2.6e-3 (1.0) 0.17 (.00) 0.17 (.00) 0.14 (1.0)
Average 1.38e-3 1.38e-3 1.32e-3 0.241 0.241 0.233
Best 0 0 2 1 1 1

5.3 Study of Scalability

To evaluate the scalability of the HPREDUCE procedure, it was tested in a dis-
tributed computing environment. The cluster has 32 nodes, and each node has
two Intel Xeon CPUs, 16 GB memory, and two 186GB disk drives. In the exper-
iment, different numbers of workers are used for selecting 200 features from the
input data. Compared with the unsupervised case, supervised feature selection
with the HPREDUCE procedure has a lower time complexity. Therefore, for su-
pervised feature selection the maximum number of nodes is set to 20, while for
unsupervised feature selection, this number is increased to 30. Multiple threads
are used on each node for matrix computation.

The running time and the speedup information for both supervised and unsu-
pervised feature selection is presented in Figure 1. It shows that the HPREDUCE
procedure generally performs faster when more computing resource is available.
For example, when only one worker node is used for computation in the unsu-
pervised case, the HPREDUCE procedure finishes in 1,670.98 seconds. When
30 worker nodes are used, it finishes in just 83.69 seconds. In general, for both
supervised and unsupervised feature selection, the speedup of the HPREDUCE
procedure is linear. For the supervised case, the speedup ratio (slope of the line)
of the HPREDUCE procedure is close to 1, which is quite good. And for the
unsupervised case, the speedup ratio is about 0.66. The unsupervised case has

Massively Parallel Feature Selection 251

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Unsupervised, speedup

0

300

600

900

1,200

1,500

1,800

0 5 10 15 20 25 30

Unsupervised, runtime

0

4

8

12

16

20

0 4 8 12 16 20

Supervised, speedup

0

40

80

120

160

200

0 4 8 12 16 20

Supervised, runtime

Fig. 1. Runtime and speedup in the unsupervised and the supervised settings with
different number of workers for feature selection

a lower speedup ratio because it involves more network communication between
the master and the workers in the feature selection process. It can also be ob-
served from the s25mf5k data set that when more than 15 nodes are used for
supervised feature selection, the speedup ratio of the HPREDUCE procedure de-
creases. For a fixed size problem, when too many nodes are used, the warm-up
and the communication costs start to offset the increase of computing resources.
The results clearly demonstrate the scalability of the proposed algorithm.

6 Conclusions

This paper presents a distributed parallel feature selection algorithm based on
maximum variance preservation. The proposed algorithm forms a unified ap-
proach for feature selection. By defining the preserving target in different ways,
the algorithm can achieve both supervised and unsupervised feature selection.
And for supervised feature selection, it also supports both regression and clas-
sification. The algorithm performs feature selection by evaluating feature sets
and can therefore handle redundant features. The computation of the algorithm
is also optimized and parallelized to support both MPP an SMP. As illustrated
by an extensive experimental study, the proposed algorithm can effectively re-
move redundant features and achieve superior performance for both supervised
and unsupervised feature selection. The study also shows that given a large-
scale data set, the proposed algorithm can significantly improve the efficiency
of feature selection through distributed parallel computing. Our ongoing work
will extend the HPREDUCE procedure to also support semi-supervised feature
selection and sparse feature extraction, such as sparse PCA and sparse LDA.

Acknowledgments. The authors would like to thank An Shu, Anne Baxter,
Russell Albright, and the anonymous reviewers for their valuable suggestions to
improve this paper.

References

[1] Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining.
Kluwer Academic Publishers, Boston (1998)

252 Z. Zhao et al.

[2] Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of Machine Learning Research 3, 1157–1182 (2003)

[3] Zaki, M.J., Ho, C.T. (eds.): Large-scale parallel data mining. Springer (2000)
[4] Snir, M., et al.: MPI: The Complete Reference. MIT Press, Cambridge (1995)
[5] Dean, J., Ghemawat, S.: System and method for efficient large-scale data process-

ing, United States Patent 7650331 (2010)
[6] Hall, M.: Correlation-Based Feature Selection for Machine Learning. PhD thesis,

University of Waikato, Dept. of Computer Science (1999)
[7] Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene

expression data. In: Proceedings of the CSB, pp. 523–529 (2003)
[8] Felix, G.L., et al.: Solving feature subset selection problem by a parallel scatter

search. European Journal of Operational Research 169(2), 477–489 (2006)
[9] Melab, N., et al.: Grid computing for parallel bioinspired algorithms. Journal of

Parallel and Distributed Computing 66(8), 1052–1061 (2006)
[10] Garcia, D.J., et al.: A parallel feature selection algorithm from random subsets.

In: Proceedings of the International Workshop on Parallel Data Mining (2006)
[11] Guillén, A., Sorjamaa, A., Miche, Y., Lendasse, A., Rojas, I.: Efficient Parallel

Feature Selection for Steganography Problems. In: Cabestany, J., Sandoval, F.,
Prieto, A., Corchado, J.M. (eds.) IWANN 2009, Part I. LNCS, vol. 5517, pp.
1224–1231. Springer, Heidelberg (2009)

[12] Kent, P., Schabenberger, O.: SAS high performance computing: The future is not
what it used to be (2011),
http://www.monash.com/uploads/SAS_HPA_2011-Longer.pdf

[13] Singh, S., et al.: Parallel large scale feature selection for logistic regression. In:
Proc. of SDM (2009)

[14] Dy, J.G., Brodley, C.E.: Feature selection for unsupervised learn. Journal of Ma-
chine Learning Research 5, 845–889 (2004)

[15] He, X., et al.: Laplacian score for feature selection. In: Proc. of NIPS (2005)
[16] Zhao, Z., Liu, H.: Spectral feature selection for supervised and unsupervised learn-

ing. In: Proceedings of ICML (2007)
[17] Dash, M., et al.: Feature selection for clustering, a filter solution. In: Proceedings

of ICDM (2002)
[18] Ye, J.: Least squares linear discriminant analysis. In: Proceedings of ICML (2007)
[19] Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer (2002)
[20] Chu, C.T., et al.: Map-reduce for machine learning on multicore. In: Proceedings

of NIPS (2007)
[21] Nie, F., et al.: Trace ratio criterion for feature selection. In: Proc. of AAAI (2008)
[22] Song, L., et al.: Supervised feature selection via dependence estimation. In: Pro-

ceedings of ICML (2007)
[23] Zhao, Z., Wang, L., Liu, H., Ye, J.: On similarity preserving feature selection.

IEEE Transactions on Knowledge and Data Engineering 99, 198–206 (2011)
[24] Sikonja, M.R., Kononenko, I.: Theoretical and empirical analysis of Relief and

ReliefF. Machine Learning 53, 23–69 (2003)
[25] Duda, R., et al.: Pattern Classification, 2nd edn. John Wiley & Sons (2001)
[26] Weston, J., et al.: Use of the zero norm with linear models and kernel methods.

Journal of Machine Learning Research 3, 1439–1461 (2003)
[27] Efron, B., et al.: Least angle regression. Annals of Statistics 32, 407–449 (2004)
[28] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society, Series B 58(1), 267–288 (1994)

http://www.monash.com/uploads/SAS_HPA_2011-Longer.pdf

PCA, Eigenvector Localization and Clustering
for Side-Channel Attacks on Cryptographic Hardware

Devices

Dimitrios Mavroeidis, Lejla Batina, Twan van Laarhoven, and Elena Marchiori

Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands

Abstract. Spectral methods, ranging from traditional Principal Components
Analysis to modern Laplacian matrix factorization, have proven to be a valu-
able tool for a wide range of diverse data mining applications. Commonly these
methods are stated as optimization problems and employ the extremal (maximal
or minimal) eigenvectors of a certain input matrix for deriving the appropriate
statistical inferences. Interestingly, recent studies have questioned this “modus
operandi” and revealed that useful information may also be present within low-
order eigenvectors whose mass is concentrated (localized) in a small part of
their indexes. An application context where localized low-order eigenvectors have
been successfully employed is “Differential Power Analysis” (DPA). DPA is
a well studied side-channel attack on cryptographic hardware devices (such as
smart cards) that employs statistical analysis of the device’s power consumption
in order to retrieve the secret key of the cryptographic algorithm. In this work we
propose a data mining (clustering) formulation of the DPA process and also pro-
vide a theoretical model that justifies and explains the utility of low-order eigen-
vectors. In our data mining formulation, we consider that the key-relevant infor-
mation is modelled as a “low-signal” pattern that is embedded in a “high-noise”
dataset. In this respect our results generalize beyond DPA and are applicable to
analogous low-signal, hidden pattern problems. The experimental results using
power trace measurements from a programmable smart card, verify our approach
empirically.

1 Introduction

Spectral Clustering [17] is a popular data mining paradigm that is currently considered
both as an effective practical tool for data analysis and also an active area of research.
The common characteristic of Spectral Clustering methods is that they employ the spec-
trum (eigenvectors and eigenvalues) of certain input matrices as a central component for
deriving the required data inferences. For instance, Spectral Clustering for Normalized
Cut optimization [17] employs the (extremal) eigenvectors of the normalized Lapla-
cian matrix for deriving the data clustering structure. Due to their common association
with Trace optimization problems, most spectral methods employ extremal (maximal
or minimal) eigenvectors for drawing the necessary inferences.

Recent studies have illustrated that low-order (not extremal) eigenvectors may also
be useful for detecting interesting structures within data. More precisely, in [8,7] it was
demonstrated that low-order eigenvectors that are localized (i.e. contain a large number

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 253–268, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

254 D. Mavroeidis et al.

of zero or near-zero entries), can be effectively used for detecting small, local and well
connected clusters. In a global sense these clusters may be difficult to detect since they
are small and do not correspond to a clustering objective optimum. Interestingly, the
concept of eigenvector (or more generally eigenfunction) localization is well known in
several scientific applications such as Quantum Mechanics, DNA data and astronomy
(see [8,7,18] and references therein).

Low-order, localized eigenvectors have been successfully employed in the context of
Differential Power Analysis (DPA) [16,5]. DPA is a side-channel attack which involves
statistical analysis of a cryptographic device’s power consumption. Cryptographic algo-
rithms are nowadays typically implemented in software or hardware on (small) physical
devices that interact with and are influenced by their environments. These devices pro-
vide unintended output channels, called side channels. In general, these types of infor-
mation leakages may be linked either to the types of operations that the cryptographic
algorithm is performing, or to the data, i.e., the keys being processed. This makes them
a very powerful tool for trying to extract the secret key. Using DPA, an adversary can
obtain secret keys by analyzing power consumption measurements from multiple cryp-
tographic operations performed by a vulnerable smart card or other device.

In this work we propose a novel data mining (clustering) formulation of the DPA
process and also introduce a theoretical model that illustrates the utility and seman-
tics of low-order eigenvectors. In our data mining formulation, we consider that the
key-relevant information is modelled as a “low-signal” pattern that is embedded in a
”high-noise” dataset. The essential property that allows for the detection of these low-
signal patterns, is that they depend on a very small number of features. The embedding
of such patterns in a high-noise dataset will result in the localization of the relevant
eigenvectors thus making these patterns detectable, even though they are “buried” in
the middle or lower part of the matrix’s spectrum. In this respect our results generalize
beyond DPA and are applicable to analogous low-signal/hidden pattern problems. Con-
sequently, we employ Inverse Participation Ration (IPR) measure that can effectively
select the appropriate low-order eigenvectors even in cases where standard countermea-
sures, that aim in hiding the key-relevant patterns from the device’s power consumption,
are employed.

2 Differential Power Analysis and Clustering

2.1 Differential Power Analysis (DPA)

Small embedded devices such as smart cards and mobile phones have become om-
nipresent in our lives as they are used daily in financial transactions, access control,
mobile payments, etc. Hence, the security of such devices relies on the security proto-
cols that are founded on standard cryptographic algorithms and in particular on their
implementations. The weaknesses of cryptographic implementations are typically ex-
plored via side-channel information, e.g. power consumption of a device, which can be
monitored and statistically analyzed to retrieve cryptographic secret keys of the device.

Side-channel attacks are the main security threat for smart cards since the first aca-
demic publications by Kocher et al. [14,15]. Different sources of side-channel data, such
as electromagnetic emanation [21,12], timing [14], sound, and temperature have been

PCA, Eigenvector Localization and Clustering 255

-4

-3

-2

-1

0

1

2

0 2000 4000 6000 8000 10000 12000 14000 16000

D
o

M

Time

Fig. 1. Difference between the cluster centroids (y-axis) for the correct key of 1DES wo ctrmsr
dataset described in Section 6

used for successful side-channel attacks (for a general overview see e.g. [19]). Nowa-
days, every device used for the applications of embedded security e.g. a smart card,
an RFID tag, a mobile phone is considered to be a suitable target for the side-channel
attackers to recover the secret key in indirect way. Successful attacks were performed
on some (still) widely used commercial devices with security functionalities such as the
KeeLoq-based remote keyless entry systems, the contactless Mifare DESFire card and
the most recent attack on Atmel CryptoMemory cards [2].

In the late 90’s Kocher et al. showed that, by measuring the power consumption
of a smart card, one can retrieve information about the secret keys inside a tamper-
proof device. The main observation is that the device’s power consumption depends
on the data being processed. This makes power traces correlated to certain intermedi-
ate variables, which, when directly depending on some key bits and some known data
e.g. plaintext, allow for key recovery by simply using basic statistical tools such as
the Distance of Means (DoM) test. This original approach is called Differential Power
Analysis (DPA) [15]. The details of the DoM test can be found in [15], but as a general
description, DoM considers a grouping (clustering) of the collected power traces for
each candidate key and then selects the correct key (best clustering) when a clear peak
is observed in the difference between the cluster centroids. DoM distinguisher is illus-
trated in Figure 1, where (in the y axis) the difference between the cluster centroids for
the correct key is presented (we used 1DES wo ctrmsr dataset described in Section 6).
The x axis contains the features (which is time in our application context, since power
traces are collected over discrete time intervals).

Other known distinguishers include Pearson correlation coefficient (Correlation
Power Analysis (CPA) [6]), Spearman’s rank correlation [3], Mutual Information Anal-
ysis (MIA) [13] etc. Ideas from unsupervised learning were used for a distinguisher
based on cluster analysis, so called Differential Cluster Analysis (DCA) [4]. CPA is
still considered the first choice of the attacker, especially in the cases where power con-
sumption is linearly dependent on Hamming weight (or distance) of the data. Although
Pearson correlation solely tests for equidistance of cluster centroids, i.e. linearity, this
limitation is proven to be not so restrictive in most of the devices used today [3].

256 D. Mavroeidis et al.

Table 1. Analogies between DPA and Clustering

DPA with DoM distinguisher Clustering
Possible Subkeys Each subkey corresponds to a clusterings of Power Traces (in two groups)
DoM measure Difference between cluster centroids
Correct Key≡ Peak in DoM Best clustering ≡ Largest absolute value distance

between centroids in just one or for a small number
of features

2.2 DPA as Clustering

The acute reader may have already observed certain analogies between DoM based
DPA (i.e. DPA with the Distance of Means distinguisher) and clustering. The analogy
is based on the fact that the DoM distinguisher defines a clustering (in two groups) of
the set of power traces for each possible key and consequently determines the secret key
using a quality measure that is based on the difference between the two cluster centroids.
More precisely, the secret key (equiv. best clustering) is determined by the largest peak
in the difference between the cluster centroids, i.e. the largest absolute value distance
(between the cluster centroids) in a small number of features. The analogies between
DPA (with DoM distinguisher) and clustering are summarized in Table 1.

Up to this point, the clustering perspective of DoM based DPA is simply a “termi-
nology rephrase” and the novel algorithmic insights that it provides may not be directly
evident. As we will analyze lateron in detail, the power of the clustering formulation of
DPA can be exploited in the cases where noise prevents DoM from identifying the cor-
rect key. The possible failures of DoM can be attributed to input data noise or to the use
of countermeasure techniques that aim in hiding the key-relevant information from the
power consumption. In the presence of high noise levels (that can be possibly due to the
use of countermeasures), the input data must be appropriately pre-processed/analyzed
such that the DoM distinguisher identifies the correct key. This can be achieved if we
appropriately identify the structure of the signal that we wish to preserve in the data and
the structure of the noise that we wish to remove.

Based on the clustering perspective of DPA we can define the following noise/signal
formulation:
Signal→Clustering structures that “depend” on few features
Noise→Clustering structures that “depend” on many features

Intuitively the term “depend on few features” attempts to capture the fact that the DoM
distinguisher uses the peak of the absolute value difference between the two cluster
centroids in a small subset of the available features. Formally the term “depend on few
features” is defined in Section 3.3 and it is taken to mean that the clustering objective
does not change if we remove many features.

Using the clustering perspective of DPA and the afore noise/signal formulation we
can state that the goal of a successful data mining algorithm in this application context
is to identify the clustering structures that “depend” on few features, or analogously
to remove the clustering structures that “depend” on many features. Naturally, due to

PCA, Eigenvector Localization and Clustering 257

noise or data-structure reasons, there may exist other clusterings that “depend” on a
small number of features but are not relevant to the correct key. However, as the empir-
ical results verify in Section 6 the effective identification of these clustering structures
(even at the potential cost of including non key-relevant clusterings) can enhance the
effectiveness of the DoM method.

Having illustrated the clustering perspective of DPA and its potential utility for iden-
tifying the correct key, we will move on to illustrate the relevance of low-order localized
eigenvectors of PCA for identifying the low-level signal within the data i.e. the relevant
clustering structures that “depend” on a small number of features.

3 PCA, Localization and Clustering

3.1 PCA and Clustering

PCA is a very popular data preprocessing technique that is commonly understood as a
data-reduction/approximation method. In principle, PCA maximizes the data variance
in the reduced space and works by projecting the data matrix to the principal compo-
nents (dominant eigenvectors) of the feature-covariance matrix. The intimate connec-
tions between PCA and clustering (often referred to as projected clustering, or subspace
clustering), have been studied by several authors (such as [10], [20]).

In order to clarify the connections between PCA and clustering we briefly illustrate
the results of [10]. Let X denote an input matrix that is n×m, where n is the number of
instances (power traces in our context) and m is the number of features (time scale in our
context) and let also Xf c denote the feature centered data matrix (i.e. from each column
of X the mean value is subtracted). If we consider the Singular Value of Xf c =UΣV T it
is easy to verify the following:

– The sample Covariance matrix can be written as: Cov = 1
n−1 XT

f cXf c.
– The right singular vectors of Xf c (columns of matrix V) are also the eigenvectors of

matrix Cov.
– The singular values σi of Xf c are equal to σi =

√
λi(n− 1) where λi denotes the ith

eigenvalue of the sample covariance matrix Cov.

The main result of [10] states that the dominant left singular vector u1 of Xf c can be
regarded as a “continuous” clustering solution to the K = 2-means clustering problem
(i.e. the elements of u1 can be regarded as continuous approximations to the discrete
cluster assignments of the instances). The connection to PCA projections becomes evi-
dent if we write u1 as a projection of the input matrix Xf c to the dominant eigenvector
of the sample Covariance matrix: u1 = Xf cv1/σ1 = Xf cv1/

√
(n− 1)λ1, where v1 is the

dominant right singular vector and σ1 and λ1 are as defined in the afore enumeration.
One can obtain a discrete cluster solution using various discretization strategies of u1.
A simple discretization approach is to assign all instances i with u1(i) > mean(u1) to
cluster A and the rest to cluster A. As it is rigorously analysed in [10] this simple process
can be regarded as a continuous approximation solution to the (K = 2)-means objective
function. Analogous results are also obtained for K > 2.

The results of [10] regarding the relationships between PCA and (K = 2)-means can
be summarized in the following two lemmas:

258 D. Mavroeidis et al.

Lemma 1 (Continuous Clustering Solution, equation 5, Theorem 2.2 in [10]). A
continuous clustering solution of the (K = 2)-means clustering problem can be derived
by the dominant left singular vector of the feature-centered input matrix Xf c.

Lemma 2 (Quality of the Continuous Clustering Solution, equation 6, Theorem
2.2 in [10]). The quality of the continuous clustering solution is estimated (in a lower
bound sense) by the dominant singular value of the feature-centered input matrix Xf c.

Analogously to the afore lemmas, we can consider that the rest (low-order) left singular
vectors of the feature-centered input matrix Xf c provide us with approximate cluster-
ings of lower quality (with respect to the K-means objective), since they correspond to
smaller singular values.

As we have analyzed in the previous section, in DoM based DPA we are interested in
finding the 2-way clustering structure of the power traces that corresponds to the secret
key. The relevance of PCA is not immediately evident since the dominant eigenvec-
tor(s) of PCA correspond to clustering structures that optimize the K-means clustering
objective. This objective employs equally all the features and is not relevant to the crite-
rion that is used for identifying the secret key. In the subsequent sections, the relevance
of low-order PCA eigenvectors will be illustrated. These eigenvectors will correspond
to low-quality (or at least non-optimal) clustering structures (according to the K-means
objective) but will have certain properties (localization in a small number of features)
that are crucial for identifying the secret key of the cryptographic device.

3.2 Eigenvector Localization

The key property that will allow us to detect the key-relevant clustering structures is
localization. The term “eigenvector localization” is used to refer to cases where the
majority of the mass of an eigenvector is located in a small number of entries (i.e. most
of the eigenvector entries are zero and near-zero). This phenomenon has been observed
in several diverse application areas such as DNA single-nucleotide polymorphism data,
spectral and hyperspectral data in astronomy (see [8],[7],[18] and references therein).
Eigenvector localization is commonly measured using the Inverse Participation Ratio
[8],[7] that is defined as:

IPR(v) =
m

∑
i=1

v(i)4 (1)

Where v is the eigenvector (of length m) whose localization we want to measure. It
should also be noted that this definition assumes that the eigenvectors are normalized

(i.e.
m
∑

i=1
v(i)2 = 1). The higher the value of IPR the more localized the eigenvector is.

It can be observed that IPR is related to the fourth moment in statistics and can effec-
tively measure the level of concentration of the eigenvector values. For example if the
values of an eigenvector are equally scattered in all its indexes, i.e. v=(1√

m ,
1√
m , ...,

1√
m)

then the IPR will be IPR(v) = 1/m. While, in the extreme case where there is only one
non-zero entry, i.e. v = (0, ..,1, ...,0) the IPR value will be IPR(v) = 1. Naturally, lo-
calization can be quantified with various other measures, such as the simple sum of

PCA, Eigenvector Localization and Clustering 259

absolute values. However, in the context of this work we focus solely on the IPR mea-
sure since it is consistent with the relevant work and also works effectively in practice
(as observed in experiments Section 6). A deeper study on the different potential mea-
sures for quantifying eigenvector localization constitutes an interesting topic for further
work.

3.3 Localized Principal Eigenvectors and Clustering Structures That Depend
on Few Features

In Section 3.1 we have illustrated the relevance of PCA and its dominant eigenvectors
for obtaining (continuous) approximate clusterings that optimize the K-means objec-
tive. We will now move on and show that the projection of a (feature centered) data
matrix to a low-order localized eigenvector corresponds to a (continuous) clustering
solution that has lower quality (with respect to the K-means objective) and “depends”
only on a small number of features.

Intuitively, the term “depends on a small number of features” means that the quality
of the clustering does not change if we remove the features where the eigenvector is
localized. This is formally shown in the following proposition:

Proposition 1. Let Xf c be an n×m matrix (n=# instances, m=# features). If σl , ul and
vl are the lth singular value and vectors of Xf c with vl(i) = 0 for all i ∈ A ⊂ {1, ...,m},
then σl ,ul and vl will also be singular value and vectors of Xf s = Xf cdiag(u) where
u(i) = 0 for all i ∈ A, u(i) = 1 for all i ∈ A and diag(u) denotes a diagonal matrix with
vector u in its diagonal.

Proof. In our proof we will initially show that vl is an eigenvector of XT
f sXf s and that ul

is an eigenvector of Xf sXT
f s.

We have that XT
f sXf svl = diag(u)XT

f cXf cdiag(u)vl . Now since vl(i) = 0 and u(i) = 0
for the same i, we have that diag(u)vl = vl . Thus we can write:
diag(u)XT

f cXf cdiag(u)vl = diag(u)XT
f cXf cvl . Now since vl is a right singular vector of

Xf c we can derive that:
diag(u)XT

f cXf cvl = diag(u)XT
f c(σlul) = σldiag(u)XT

f cul = σ2
l diag(u)vl = σ2

l vl

Above, we have shown that vl is an eigenvector of XT
f sXf s with corresponding eigen-

value σ2
l and thus vl is also a right singular vector of Xf s with corresponding singular

value σl .
Now for ul we can write Xf sXT

f sul =Xf cdiag(u)diag(u)T XT
f cul =Xf cdiag(u)(σlvl)=

σlXf cdiag(u)vl = σlXf cvl = σ2
l ul

Above, we have shown that ul is an eigenvector of Xf sXT
f s with corresponding eigen-

value σ2
l and thus ul is also a left singular vector of Xf s with corresponding singular

value σl .
Since ul and vl correspond to the same singular value they will effectively be a sin-

gular vector pair of Xf s with singular value σl . QED

Informally the afore proposition can be summarized, using the same notation, as
follows:

260 D. Mavroeidis et al.

– Let Xf c be an input matrix with a localized low-order right singular vector vl (recall
that this is also an eigenvector of the feature-covariance matrix).

– The corresponding clustering solution will be ul , the lth left singular vector of Xf c

or equivalently, the projection of the input data matrix to vl .
– The (continuous) quality of this clustering solution will be equal to the lth singular

value of Xf c.
– If we apply feature selection and remove the features where vl is localized (in the

Proposition this matrix is denoted as Xf s = Xf cdiag(u)), then the matrix Xf s will
have σl , ul and vl as signular values and vectors.

– This effectively means, that the quality σl of the (continuous) clustering ul is the
same for both Xf c (original input matrix) and Xf s (matrix after feature selection).

The analysis presented in this Section should have clarified the utility of localized eigen-
vectors of a feature covariance matrix for identifying clusters that “depend on few fea-
tures”. However, one question that still remains is Why (and when) should we expect
these localized eigenvectors to appear in the spectrum of a Covariance matrix. This is
a valid and important question since an n×m matrix can at most have min(n,m) sin-
gular vectors. These can be much less than the number of possible clusterings of the n
instances.

4 Why (and when) Are the Eigenvectors of PCA Localized

We should initially state that our motivation to study localized eigenvectors in the con-
text of DPA was based on [5] where it was demonstrated that low-order localized eigen-
vectors do appear in the spectrum of the Covariance matrix and also carry important
information related to the secret key used by the cryptographic device. Based on these
findings we will study in this section a simple model that can explain the appearance of
these useful, cluster related localized eigenvectors.

Our model considers a high noise “unstructured” matrix and a low-signal rank-1 up-
date that “inserts” the relevant clustering to the unstructured data matrix. The terms
“high-noise” vs. “low-signal” are employed to stress that the singular values of the “un-
structured matrix” are larger than the singular value of the rank-1 update. This eventu-
ally means that these cluster structures would be “buried” in the low-order spectrum of
the resulting data matrix and would not be detectable using a standard spectral cluster-
ing technique.

In mathematical terms our model can be stated as:

Xinput = Xunstruct + γuclv
T
cl (2)

Where Xinput and Xunstruct are (instance×variable) matrices (n×m), ucl is an n×1 vector
that contains the instance (power trace) clustering structure1, vcl is the localized m× 1
vector with ||vcl ||2 = 1 that contains only a small number of non-zero indexes (i.e. it
is localized) and γ is the “power” of the signal that is small as compared to the largest

1 ucl(i) =
√

n2/nn1 if i belongs to cluster A1 and ucl(i) =−
√

n1/nn2 if i belongs to cluster A2.
n1 and n2 are the cluster sizes of A1 and A2 respectively and n = n1 +n2 is the total number of
instances.

PCA, Eigenvector Localization and Clustering 261

eigenvalues of Xunstruct . Based on this model, we will inspect whether the localized right
singular vectors of Xinput can be effectively used for detecting the “hidden” clustering
structure ucl that depends on a small number of features.

It can be observed that the spectrum of Xinput will be determined by the correlation
of ucl to the left singular vectors of Xunstruct and also by the correlations of vcl to the
right singular vectors of Xunstruct . In our simulations, we will consider that the structures
ucl and vcl are not already present in the unstructured data matrix. This is achieved by
considering that the left and right singular vectors of Xunstruct are random orthogonal
matrices (Haar distribution) [22,9], thus the vectors ucl and vcl will exhibit a (uniformly)
random correlation with the singular vectors of Xunstruct . Moreover, in order to simulate
the Xunstruct matrix, we employ the actual singular values that were observed in the
dataset 1DES RandomDelays, which is described in the Experiments Section 6.

Based on the above, we define Xunstruct as follows:

Xunstruct =UunΣV T
un

where Uun and V T
un are uniform random orthogonal matrices [22,9] and Σ contains the

singular values of dataset 1DES RandomDelays.
Based on this definition of Xunstruct we have experimented with the two parameters

of the model, the γ parameter and the number of features that determine the cluster
structure (i.e. the number of zeros in vcl). The simulations illustrate that when the size of
γ is “sufficiently large” and also when the cluster structure depends on “sufficiently few”
features, we can effectively use the IPR measure for detecting the hidden clustering
structure. The terms “sufficiently large” and “sufficiently few” are explored within the
experiments2.

In Figure 2(a) we have fixed the level of localization (i.e. number of zeros in the in vcl

of formula 2), and we have used multiple γ values, while in Figure 2(b) we have fixed
γ and have varied the localization of the hidden clustering structure. More precisely, in
Figure 2(a) we have fixed vcl at 10 Features, and the initial value for the γ parameter was
taken to be equal to the maximum singular value of Xunstruct divided by 2. Consecutively,
in each run we have divided γ by 2, i.e. in the 8th run we set γ to be equal to the maximum
singular value of Xunstruct divided by 28.

In Figure 2(b), we have fixed the γ value to be equal to the maximum singular value
of Xunstruct divided by 27 and we have taken the initial number of non-zero element in
vcl to be 60. Consecutively, in each run we have set the number of features as multiples
of 60, i.e. in the 5th run the number of features (non-zero elements) in vcl are taken to
be 5 ·60.

In both Figures 2(a),2(b), in order to detect the hidden clustering structure, we have
executed the following procedure:

– We compute the SVD of Xinput =UinputΣinputV T
input = Xunstruct + γuclvT

cl

2 In order to facilitate the reproduction of empirical results, the relevant model simulation code
is available at the website of the correspondence author: http://sites.google.com/
site/mavroeid/

http://sites.google.com/site/mavroeid/
http://sites.google.com/site/mavroeid/

262 D. Mavroeidis et al.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

C
w

H
C

Gamma

Top IPR vs. Gamma

(a) IPR vs. Gamma

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

C
w

H
C

#Features

Top IPR vs. #Features

(b) IPR vs. # Features

Fig. 2. Effectiveness of top IPR vector for detecting hidden clustering structure

0

200

400

600

800

1000

0 2 4 6 8 10 12 14 16

T
o

p
 I

P
R

 p
o

s
.

Gamma

Top IPR pos. vs. Gamma

(a) Position of top IPR vs. Gamma

0

200

400

600

800

1000

0 2 4 6 8 10 12 14 16

T
o

p
 I

P
R

 p
o

s
.

#Features

Top IPR pos. vs. #Feat.

(b) Position of top IPR vs. # Features

Fig. 3. Position of top IPR vector

– We compute the IPR of the right singular vectors (columns of Vinput)
– We select the left singular vector that corresponds to the top IPR right singular

vector and measure its correlation with the hidden clustering structure using the
inner product. (CwHC measure, x axis in Figure 2)

The afore procedure is repeated 10 times and Figure 2 reports the resulting boxplots.
Interestingly, Figure 2 illustrates that even when we insert a very low-signal clustering
structure (i.e. when γ is 27 times smaller than the maximum singular value of Xunstruct),
that is localized with less than 10% of the available features, IPR can effectively detect
the hidden clustering structure.

Figure 3 illustrates the positions (ordered according to singular values) of the top IPR
vectors that are used for finding the hidden clustering structure in Figure 2.
Again boxplots are presented based on the 10 simulations of Xinput .

PCA, Eigenvector Localization and Clustering 263

5 Related Work

To the extent of our knowledge, low-order localized eigenvectors of graph adjacency
and Laplacian matrices have received little attention within the data mining community
([8,7] and references therein). As compared to these approaches the main distinctive
characteristic of our work is that it focuses on an (instance×feature) input matrix and
interprets localized low-order eigenvectors as clusterings that depend on a small number
of features.

Recently, there were a few works showing the potential of PCA for side-channel
analysis [1,5]. The impact of low-order eigenvectors in attacking smart card platforms
was demonstrated in experiments but the theoretical reasoning on the effectiveness of
the new method was lacking [5]. Our work fills in this gap in proving that the previous
study was not an isolated and random experiment but there is indeed a lot of potential in
exploring similar techniques that are already known for machine learning researchers.

6 Experiments

6.1 Data Description

To perform side-channel analysis some hardware equipment is required, being part of a
measurement set-up. A typical set-up for measurements includes a smart card (on which
the target algorithm is implemented), a smart card reader, an oscilloscope for the acqui-
sition of power traces and a PC for the analysis and key recovery. All our experiments
are performed using a programmable card from Atmel (ATMega163+24C256). The
card contains an Atmel 8-bit AVR RISC-based microcontroller that combines 16KB of
programmable flash memory, 1KB SRAM and 512B EEPROM. Single and Triple DES
implementations that we considered were all software implementations, with or without
countermeasures. An implementation of triple DES consists of three DES algorithms
where the new key is 112 bits long because the first and last DES have the same key.

The first datasets called 1DES wo ctrmsr and 3DES wo ctrmsr are single DES and
triple-DES implementations without countermeasures. However, cryptographic algo-
rithms are in practice often implemented with one or more countermeasures rendering
side-channel analysis. The countermeasures are commonly divided into two groups:
masking or hiding [19]. Masking countermeasures are based on masking data or the
key (or both) by adding a random value to the input that is created to make the in-
termediate variables data- and key-independent complicating in this way DPA sub-
stantially. Hiding countermeasures aim at making a side-channel e.g. power consump-
tions unrelated to the data processed for example by burying the signal into noise. For
the measurements of simple DES with countermeasures we employed random delays
(1DES RandomDelays), which introduces random wait states during execution of the
algorithm. In this way the effect of misaligned traces is obtained.

We have also employed data masking countermeasures 3DES DataMasking for
triple DES, so the inputs are masked with a random value and unmasked at the end
to get the correct output.

As our experiments use DES and triple DES, we give some details of the algorithms
next. The Data Encryption Algorithm (DES) was invented in the 70’s by IBM and used

264 D. Mavroeidis et al.

Table 2. Datasets used in experiments. In order to facilitate the reproduction of
empirical results, all datasets are available at the website of the correspondence author:
http://sites.google.com/site/mavroeid/

1DES wo ctrmsr DES without countermeasures
1DES RandomDelays DES with random delays countermeasure
3DES wo ctrmsr 3DES without countermeasures
3DES DataMasking 3DES with data masking countermeasure

as the main encryption standard for more than two decades. Due to the short key, DES
is nowadays mainly used as a part of the triple DES algorithm (3DES), but nevertheless
attacking DES remains the first step in the side-channel analysis of 3DES.

DES uses a 64-bit key and it operates on 64-bit blocks of plaintext as input and
returns blocks of 64 bits as output (called ciphertext) after 16 rounds. Each round has
several operation, but the most important one is the non-linear function f that contains
8 substitution boxes (S1, . . . ,S8), so-called S-boxes. The S-boxes have a 6-bit input, and
a 4-bit output derived by a table look-up. The most important property for side-channel
analysis is that the 6-bit inputs, and hence also 4-bit outputs of S-boxes, depend only
on plaintexts and 6 bits of the key. In other words, knowing plaintexts and making
a hypothesis on the 6-bit subkeys, we can monitor only one S-box to learn the right
hypothesis on the subkey (out of 26 possibilities). By monitoring, we mean computing
the S-box outputs and a function of the inputs, hereafter called the selection function as
in [15] (for known plaintexts and a key guess) and correlating the values to the power
consumption measured during this computation. The reasoning behind lies in the simple
fact that power consumed by a device depends on the data being processed.

The procedure for the data acquisition and the key recovery, consists of several steps
explained below. We use the example of DES to list the steps.

– Denote the selection function by f (x,k) where k is typically a small part of the key
(here 6 bits). For a large number (say n) of randomly generated plaintexts, we can
compute the value of f for each 6 bits of a subkey. At the same time we collect
power measurements of the device while performing the algorithm.

– Each power trace contains the values at m time points i.e. samples. Hence, we
can create a matrix A of size nxm that contains the power traces corresponding to
different plaintexts.

– Next step is to calculate the hypothetical values of f for every possible subkey k.
In the case of DES there are 64 different subkeys for each S-box. As the selection
function we simply choose one bit of the S-box output e.g. MSB (or LSB) so the
function f (x,k) can be either 0 or 1. Based on this value we sort all power traces
into two sets, say S0 and S1. Note that this will result in a power-trace clustering for
each possible subkey.

– We apply distance of means (DoM) test to the S0 and S1 partition plotting each
so-called differential traces that is computed as:

d = S1 − S0.

PCA, Eigenvector Localization and Clustering 265

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

C
o

rr
e
c
t

K
e
y
 p

o
s
.

#Eigenvectors

Correct Key pos. vs. #Eigenvectors

Based on Eig. Ranking

Based on IPR Ranking

DoM in full Data

(a) 1DES wo ctrmsr 1:16000

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

C
o

rr
e

c
t

K
e

y
 p

o
s

.

#Eigenvectors

Correct Key pos. vs. #Eigenvectors

Based on Eig. Ranking

Based on IPR Ranking

DoM in full Data

(b) 1DES RandomDelays
1:16000

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

C
o

rr
e

c
t

K
e

y
 p

o
s

.

#Eigenvectors

Correct Key pos. vs. #Eigenvectors

Based on Eig. Ranking

Based on IPR Ranking

DoM in full Data

(c) 1DES RandomDelays
1:15000

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

C
o

rr
e

c
t

K
e

y
 p

o
s

.

#Eigenvectors

Correct Key pos. vs. #Eigenvectors

Based on Eig. Ranking

Based on IPR Ranking

DoM in full Data

(d) 1DES RandomDelays
1:12000

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

C
o

rr
e

c
t

K
e

y
 p

o
s

.

#Eigenvectors

Correct Key pos. vs. #Eigenvectors

Based on Eig. Ranking

Based on IPR Ranking

DoM in full Data

(e) 1DES RandomDelays
1:8000

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

C
o

rr
e

c
t

K
e

y
 p

o
s

.

#Eigenvectors

Correct Key pos. vs. #Eigenvectors

Based on Eig. Ranking

Based on IPR Ranking

DoM in full Data

(f) 1DES RandomDelays
3000:5000

Fig. 4. Correct Key Position based on DoM method for single-DES

Out of 64 differential traces we select the one with the highest peaks at certain time
sample as the correct key.

6.2 Empirical Results

In order to evaluate the effectiveness of IPR and localized eigenvectors for retrieving
the correct key, we adopt the following procedure:

– We compute the SVD of the centered input n × m (power trace × time) matrix
Xf c =UΣV T .

– We compute the IPR of the right singular vectors (i.e. the columns of V).
– We compute projections based on PCA and IPR. I.e. We compute Pr(PCA)(k) =

Xf cV1:kV T
1:k and Pr(IPR)(k) = Xf cVIPR(1:k)V

T
IPR(1:k), where V1:k contains the dominant

right singular vectors (that correspond to the largest singular values), while VIPR(1:k)
contains the top IPR singular vectors.

– We compare the results obtained by the DoM measure in the full data, in Pr(PCA)
and Pr(IPR). I.e. for each input matrix we compute the DoM measure and we rank
the keys according to the largest observed peak. Since we know for these datasets
the correct key, we can observe whether the IPR or PCA preprocessing improves
the position of the correct key.

In Figure 4 we evaluate the effectiveness of IPR in single-DES datasets
(1DES wo ctrmsr, 1DES RandomDelays). The y-axis of Figure 4 reports the position
of the correct key, based on the full dataset and also using PCA and IPR preprocessing.

266 D. Mavroeidis et al.

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

C
o

rr
e
c
t

K
e
y
 p

o
s
.

#Eigenvectors

Correct Key pos. vs. #Eigenvectors

Based on Eig. Ranking

Based on IPR Ranking

DoM in full Data

(a) 3DES wo ctrmsr 1:16000

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

C
o

rr
e

c
t

K
e

y
 p

o
s

.

#Eigenvectors

Correct Key pos. vs. #Eigenvectors

Based on Eig. Ranking

Based on IPR Ranking

DoM in full Data

(b) 3DES wo ctrmsr 1:12000

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

C
o

rr
e

c
t

K
e

y
 p

o
s

.

#Eigenvectors

Correct Key pos. vs. #Eigenvectors

Based on Eig. Ranking

Based on IPR Ranking

DoM in full Data

(c) 3DES wo ctrmsr
2900:84000

Fig. 5. Correct Key Position based on DoM method for 3DES wo ctrmsr

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

C
o

rr
e

c
t

K
e
y
 p

o
s
.

#Eigenvectors

Correct Key pos. vs. #Eigenvectors

Based on Eig. Ranking

Based on IPR Ranking

DoM in full Data

(a) 3DES DataMasking
1:16000

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

C
o

rr
e

c
t

K
e

y
 p

o
s

.

#Eigenvectors

Correct Key pos. vs. #Eigenvectors

Based on Eig. Ranking

Based on IPR Ranking

DoM in full Data

(b) 3DES DataMasking
1:15000

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

C
o

rr
e
c
t

K
e
y
 p

o
s
.

#Eigenvectors

Correct Key pos. vs. #Eigenvectors

Based on Eig. Ranking

Based on IPR Ranking

DoM in full Data

(c) 3DES DataMasking
1:12000

Fig. 6. Correct Key Position based on DoM method for 3DES DataMasking

The optimal result is to obtain a position=1 for the correct key. Moreover, knowing
that the largest peak in these datasets (at the aligned data) occurs around time 4900 (in
accordance to DPA terminology, these are called interesting points), we have investi-
gated the effect of IPR and PCA as we zoom to time 4900 (the original time scale is
1-16000).

In the single-DES dataset without countermeasures 1DES wo ctrmsr (Figure 4(a)),
the full-data matrix already retrieves the correct key in top-position. Moreover, we can
observe that PCA and IPR preprocessing converge rather quickly to position=1 with
PCA achieving a faster convergence while IPR being more effective when a very small
number of eigenvectors are used.

In the single-DES dataset with random delays 1DES RandomDelays (Figures 4(b),
4(c),4(d),4(e),4(f) for different time-intervals), the full-data matrix fails to retrieve the
correct key and in most cases (with the exception of the 1-16000 time interval) ranks it
very low. On the other hand IPR is very effective in the majority of experiments with the
notable exception of the 1-16000 time interval. More precisely, we can observe that the
performance of IPR dramatically improves as we zoom to time 4900 (interest-point).
Notably, when we focus on the 3000-5000 time scale IPR consistently retrieves the
correct key in top positions.

In the triple-DES dataset without countermeasures DES wo ctrmsr (Figures 5(a),
5(b),5(c)), the full-data matrix places the correct key in the 10th position.We can again

PCA, Eigenvector Localization and Clustering 267

observe that the IPR ranking requires an adequate zoom into the interest-point for ef-
fectively identifying the correct key. A similar behaviour is also observed in triple-DES
with Data Masking.

7 Discussion

In this work we have presented a thorough theoretical framework that illustrates the
relevance of low-order localized eigenvectors in the application context of DPA. In our
analysis, we have considered that the key-relevant information is modelled as a “low-
signal”, localized pattern that is embedded in a ”high-noise” dataset. In this respect
our results generalize beyond DPA and are applicable to analogous low-signal/hidden
pattern problems.

Based on the empirical results one can identify two interesting further work topics
that can potentially enhance the practical effectiveness of our framework. The first is
related to the automatic determination of the appropriate number of eigenvectors that
are needed in order to optimize the position of the correct key. The successful tackling
of this issue requires further statistical analysis of the IPR measure in order to be able
to identify statistically significant localized eigenvectors and not simple noise artifacts.

The second issue is related to the determination of the appropriate time-interval that
maximizes the effectiveness of IPR and localization. As discussed above, to maximize
the effect of IPR, we rely on the ability of “zooming” into the traces i.e. we assume the
points with maximal leakage (also sometimes called interesting points) being known to
some accuracy. This is a standard assumption for DPA, and there are several methods
proposed in the relevant literature. For example, an attacker can simply apply the corre-
lation with input data analysis [11]. Similarly, one can use template attacks [1] to learn
more about the points of interest. It constitutes an interesting issue for further work to
explore the required tightness of the time-interval that can guarantee the effectiveness
of IPR and localization.

References

1. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template Attacks in Princi-
pal Subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1–14.
Springer, Heidelberg (2006)

2. Balasch, J., Gierlichs, B., Verdult, R., Batina, L., Verbauwhede, I.: Power Analysis of Atmel
CryptoMemory – Recovering Keys from Secure EEPROMs. In: Dunkelman, O. (ed.) CT-
RSA 2012. LNCS, vol. 7178, pp. 19–34. Springer, Heidelberg (2012)

3. Batina, L., Gierlichs, B., Lemke-Rust, K.: Comparative Evaluation of Rank Correlation
Based DPA on an AES Prototype Chip. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T.
(eds.) ISC 2008. LNCS, vol. 5222, pp. 341–354. Springer, Heidelberg (2008)

4. Batina, L., Gierlichs, B., Lemke-Rust, K.: Differential Cluster Analysis. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 112–127. Springer, Heidelberg (2009)

5. Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting More from PCA: First Results
of Using Principal Component Analysis for Extensive Power Analysis. In: Dunkelman, O.
(ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383–397. Springer, Heidelberg (2012)

268 D. Mavroeidis et al.

6. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg
(2004)

7. Cucuringu, M., Blondel, V.D., Van Dooren, P.: Extracting spatial information from networks
with low-order eigenvectors. CoRR, abs/1111.0920 (2011)

8. Cucuringu, M., Mahoney, M.W.: Localization on low-order eigenvectors of data matrices.
CoRR, abs/1109.1355 (2011)

9. Diaconis, P., Shahshahani, M.: The subgroup algorithm for generating uniform random vari-
ables. Probability in the Engineering and Informational Sciences 1(01) (1987)

10. Ding, C.H.Q., He, X.: K-means clustering via principal component analysis. In: ICML (2004)
11. Fahn, P.N., Pearson, P.K.: IPA: A New Class of Power Attacks. In: Koç, Ç.K., Paar, C. (eds.)

CHES 1999. LNCS, vol. 1717, pp. 173–186. Springer, Heidelberg (1999)
12. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç,

Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer,
Heidelberg (2001)

13. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

14. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer,
Heidelberg (1996)

15. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

16. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

17. Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4) (2007)
18. Mahoney, M.W.: Randomized algorithms for matrices and data. Foundations and Trends in

Machine Learning 3(2), 123–224 (2011)
19. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart

Cards. In: Advances in Information Security. Springer-Verlag New York, Inc., USA (2007)
20. Meinicke, P., Ritter, H.: Local pca learning with resolution-dependent mixtures of gaussians.

In: Ninth International Conference on Artificial Neural Networks, ICANN 1999. (Conf. Publ.
No. 470), vol. 1, pp. 497–502 (1999)

21. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Counter-
Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, p.
200. Springer, Heidelberg (2001)

22. Stewart, G.W.: The efficient generation of random orthogonal matrices with an application
to condition estimators. SIAM Journal on Numerical Analysis 17(3), 403–409 (1980)

Classifying Stem Cell Differentiation Images
by Information Distance

Xianglilan Zhang�, Hongnan Wang, Tony J. Collins,
Zhigang Luo, and Ming Li��

School of Computer, National University of Defense Technology,
Changsha, Hunan 410072, China

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

Stem Cell and Cancer Research Institute, Mcmaster University,
Hamilton, Ontario L8S 4K1, Canada

{x322zhang,mli}@uwaterloo.ca,
WangHongnan1979@yahoo.com,

tjc@mcmaster.ca,
zgluo@nudt.edu.cn

Abstract. The ability of stem cells holds great potential for drug discovery and
cell replacement therapy. To realize this potential, effective high content screen-
ing for drug candidates is required. Analysis of images from high content screen-
ing typically requires DNA staining to identify cell nuclei to do cell segmentation
before feature extraction and classification. However, DNA staining has negative
effects on cell growth, and segmentation algorithms err when compound treat-
ments cause nuclear or cell swelling/shrinkage. In this paper, we introduced a
novel Information Distance Classification (IDC) method, requiring no segmen-
tation or feature extraction; hence no DNA staining is needed. In classifying
480 candidate compounds that may be used to stimulate stem cell differentia-
tion, the proposed IDC method was demonstrated to achieve a 3% higher F1

score than conventional analysis. As far as we know, this is the first work to apply
information distance in high content screening.

Keywords: information distance, stem cell differentiation image classification,
compound classification.

1 Introduction

Stem cells are characterized by their ability to transform, by a process referred to as
differentiation, from a primitive pluripotent state into diverse specialized mature cell
types, and to self-renew to produce more pluripotent stem cells [1]. Various tissues,
such as muscles and nerves, are grown and transformed from stem cells. In current
stem cell research, compounds that will induce this differentiation are being sought

� Xianglilan Zhang is currently a visiting Ph.D. student at David R. Cheriton School of
Computer Science of University of Waterloo (from October 2010 to October 2012).

�� Ming Li is the corresponding author.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 269–282, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

270 X. Zhang et al.

often through high content screening. High content screening, whereby thousands of
compounds are tested for the effect on cells, is a key approach to the identification and
development of chemical-based therapeutics that serve as tools for replacement therapy
and as novel drugs for the treatment of degenerative diseases.

(a) High Control Compound (b) Low Control Compound

Fig. 1. Cluster illustration. Each image represents a different type of cluster. Fig. 1 (a) shows the
cell situation after a high control compound is added; Fig. 1 (b) shows the cell situation after
a low control compound is added. Theoretically, the cells treated by a high control compound
should become larger in size and decrease more in number than cells treated by a low control
compound.

Primary high content screening is time-consuming and expensive, and secondary as-
says to validate the primary screening are also generally complex. This is especially
true for stem cell biology where expansion of undifferentiated cells is technically more
challenging. Thus, efficient and accurate computer-assisted compound classification is
critical for efficient secondary biological compound identification. Our goal is to an-
alyze images of human embryonic stem cells expressing a green fluorescent protein
(GFP)-based pluripotency reporter and thus to identify those compounds that induce
the cells to differentiate. Upon differentiation with a known differentiation treatment
(BMP4; high control), the cells show reduced GFP fluorescence intensity, are reduced
in numbers, and appear larger. As shown in Fig. 1, a high control compound means a
known active compound that can cause stem cell differentiation; a low control com-
pound is a known inactive compound that does not induce stem cell differentiation. If a
compound tested is classified with the high control cluster, it can be treated as an active
compound; if it is classified with the low control cluster, it can be treated as an inactive
compound. Through stem cell differentiation image classification, we can label the pre-
sumed active compounds, thus decreasing the number of active compound candidates.
Activity can be confirmed with a dose-effect experiment. The more accurately and

Classifying Stem Cell Differentiation Images by Information Distance 271

efficiently active compounds are labeled, the cheaper and faster the biological verifi-
cation step will be.

In the above assay, compounds are typically classified based on the GFP level in
cells. In the classical approaches [3] (i.e., conventional univariate analysis and multi-
variate analysis), a DNA stain is added to label cell nuclei. Nuclear segmentation algo-
rithms are then fine-tuned to identify individual nuclei, which are presumed to represent
individual cells. These nuclei are then used as foci to identify and segment the cytoplas-
mic area. Most of the DNA stains are cytotoxic or at least cytostatic, and have a negative
impact on cell growth. Moreover, the need to set constraints on the segmentation algo-
rithms, such as maximum/minimum size, means segmentation errors when compound
treatments cause nuclear or cell swelling/shrinkage.

Therefore, we introduce a novel method, the Information Distance Classification
(IDC) method, to classify compounds, whereby we analyze the similarity of stem cell
differentiation images from each well containing one unique compound. Unlike tradi-
tional methods, ours does not involve segmentation, and thus does not require DNA
staining. The method depends on information distance, based on Kolmogorov com-
plexity [4], first introduced by [5], and has been applied to many different areas, from
image processing to weather broadcasting, to software engineering, and to bioinformat-
ics [6–27]. This method skips the feature-extraction step in practice. Therefore, it does
not need manual intervention, as required in conventional analysis, to define the cell
count and brightness for compound classification. Using our IDC method, we achieve
results comparable to those of conventional analysis. To the best of our knowledge, our
paper is the first to utilize information distance for a novel application in high content
screening.

2 Information Distance

The classification of stem cell differentiation images essentially depends on determining
whether the cells in an image are “similar” to those acquired from high or low control
compounds. Conventional methods involving segmentation to acquire cell information
for extracting features is just one way to measure image similarity. We want to find a
general and optimal approach for measuring the similarity between two cell images.

In the early 1990s, in [5], the authors studied the energy cost of conversion between
two strings, x and y. John von Neumann hypothesized that performing 1 bit of informa-
tion processing costs 1KBT of energy, where KB is the Boltzmann’s constant and T is
the room temperature. In the 1960s, observing that reversible computations can be done
for free, Rolf Landauer revised von Neumann’s proposal to hold only for irreversible
computations. Starting from this von Neuman-Landauer principle, [5] proposed using
the minimum number of bits needed to convert between x and y to define their distance.
Formally, with respect to a universal Turing machine U , the cost of conversion between
x and y is defined as:

E(x, y) = min{|p| : U(x, p) = y, U(y, p) = x} (1)

It is clear that E(x, y) ≤ K(x|y) + K(y|x). In [5] the following optimal result was
obtained, up to an additive factor of O(log(|x|+ |y|)):

272 X. Zhang et al.

Theorem 1. E(x, y) = max{K(x|y),K(y|x)}.

Here K(x|y) is the Kolmogorov complexity [4] of a binary string x condition to another
binary string y, K(x|y), which is informally defined to be the length of the shortest
program that outputs x with input y. We refer the readers to [4] for further details of
Kolmogorov complexity and its rich applications in computer science and many other
disciplines.

This complexity has enabled us to define the information distance between two se-
quences x and y as:

Dmax(x, y) = max{K(x|y),K(y|x)}. (2)

This distance is shown to satisfy the basic distance requirements such as positivity,
symmetricity, and triangle inequality. Furthermore,Dmax is “universal” in the following
sense. A distance D is admissible if∑

y

2−D(x,y) ≤ 1. (3)

Dmax(x, y) satisfies the above requirement because of Kraft’s Inequality (with the
prefix-free version of Kolmogorov complexity). It was proved in [5] that for any ad-
missible computable distance D, there is a constant c, for all x, y:

Dmax(x, y) ≤ D(x, y) + c. (4)

Thus, if any such distance D discovers some similarity between x and y, so will Dmax.
Therefore, Dmax is universal.

According to this theory, given two images x and y, the ultimate distance between
them is Dmax(x, y). That is, if there is another way of finding whether x and y are
similar, then Dmax finds it too. The only problem is that K(x|y) is known to be uncom-
putable. Nevertheless, for practical applications, universal compression algorithms can
be used to approximate K(x|y):

Dmax(x, y) = max{C(x|y), C(y|x)}. (5)

where C is a compression algorithm.
This approach was first introduced by [20] to measure the information distance

between two genomes. Many other applications in various different fields have been
found. Recently, it was used in [8] and [21] to measure the similarity of images, and
both studies obtained promising results.

3 Materials

In this section, we describe the image data acquisition process. Images from the OCRiT
v1O4 primary screening of the NIH clinical compound collection were used to develop
the stem cell differentiation analysis. As shown in Fig. 2, this collection equated to six
library plates run in triplicate to become 18 assay plates. Each plate had 96 wells in

Classifying Stem Cell Differentiation Images by Information Distance 273

Fig. 2. Assay workflow. Single library plate contained three assay plates. Each plate had control
treatments in its end columns. The images of each plate were captured and then stored in a single
folder with a unique ID number.

total, and each well contained a different compound at 10μM concentration. Eight high
and eight low control compounds were alternated in the columns at either end of the
plates. Here, high control means known active, and low control means known inactive.
Thus, each plate had 80 compounds tested.

Human stem cells expressing GFP pluripotency reporters were added to each well
to show the cytoplasm of cells. At the end of the experiment, the DNA stain, Hoechst,
was added to visualize the cell nuclei. Two fluorescent images (GFP and Hoechst) were
acquired for nine fields per well. Since each compound was sampled three times, this
totaled 27 images per compound.

It should be noted that, because IDC analysis does not require segmentation, only
the GFP images were analyzed. Using IDC would have removed the need for any pre-
acquisition sample processing apart from a media wash to remove the autofluorescent
growth medium.

274 X. Zhang et al.

4 Information Distance Classification Method

Here, we propose our IDC method to describe the process of compound classification.
It is important to note that scattering GFPs over the cell culture wells causes uneven

illumination and a “speckle” effect outside of the cells. To remove these illumination
inconsistencies and noises in images, we change Eq. 5 to the following:

Dmax(x, y) = min{max{C(x|y), C(y|x)},max{C(f(x)|f(y)), C(f(y)|f(x))}}.
(6)

where

f(I) =
I −min(I)

max(I) −min(I)

min
I

{
∫∫
Ω

√
I2x + I2ydxdy +

1

2

∫∫
Ω

(I − I0)
2dxdy}

I is the denoising result of the total variation method [28]. Ω is an image domain. Ix and
Iy are the first-order partial derivatives of image I with respect to x and y directions. I0
is the original image.

Generally speaking, this method contains seven steps:

1. Use function f in Eq. 6 to do image preprocessing.
2. Use MPEG encoder to compress original and transformed images.
3. Use information distance to measure the distance between any pair of images.
4. Do information distance statistics on the high/low control images that represent

high/low control compounds.
5. Calculate the average information distance between any image of the compound

tested and the control images.
6. Classify the images.
7. Classify the compounds based on the image classification results.

Steps 2 to 7 of our method are described in greater detail in the following subsections.

4.1 Image Compression

MPEG is a state-of-the-art video compressor. It is appropriate for different applications
because it supports spatial and temporal redundancy reduction resolution [30], is widely
available, and has also highly optimized implementations [8]. According to our applica-
tion, we need to find morphologically similar cells rather than identical ones. As MPEG
is a lossy compressor and considering its advantages, we utilize MPEG encoder as our
compressor. Using the MPEG encoder, we can set an image pixel search range accord-
ing to cells’ average size, which guarantees isolating a single cell from other cells in
an image and acquire the cell’s information of shape, size, brightness, etc. Thus, the
information of two cell images is accurately compressed.

To measure the similarity of two images, the MPEG encoder creates a synthetic
“video” of the two images. In this video, the first image is treated as a reference (R)
frame, and the second image as a predicted (P) frame. Therefore, the MPEG encoder

Classifying Stem Cell Differentiation Images by Information Distance 275

can provide a total combined compressed size of the pair of images. If we use two im-
ages that are the same as input, this algorithm returns the compressed size of a single
image; if we use two different images as input, the MPEG encoder will give the “be-
tween frames” (two images’ inter-frame compression) compressed size plus the single
frame (the first image’s intra-frame compression) size. Several parameters must be set
on the MPEG encoder. Taking [8] as a reference, a logarithmic P frame search algo-
rithm is used for speed and consistency, the original images for intra-picture reference
frames are used for the encoding step; and a bidirectional (B) frame quantization factor
is ignored because no bidirectional frames are used in our method. Since the image size
is 512*512 pixels, the integer search radius is set to 255. Because the average cell size
is about 17 pixels, the quantization scales for R and P frames are set to 17 to maintain
image compressibility and quality.

4.2 Image Information Distance Calculation

According to Eq. 6, our IDC method then uses the MPEG compressed image file
size to compute the image information distance. Since the MPEG encoder returns the
combined compressed size of a pair of images and the first image, the total combined
compressed size of the pair of images must be represented by the compressed size of
the two different images minus the size of the first image.

4.3 Control Images Statistics

Our IDC method uses control images from the wells of control treatments, as our train-
ing set. The whole batch of images has two known clusters, one labeled high control
and one low control. It is assumed that the high/low control cluster contains n images
indexed from 1 to n, and x and y are any two images within the same cluster. This
method computes the mean value (μ) and standard deviation (σ) of the high/low control
cluster, based on the information distance between any x and y.

4.4 Average Image Information Distance between Any Image and Control
Images

The information distance between any image and any control image is calculated for
image classification. The “any” image is indexed by x; HC means high control im-
ages, and LC means low control images. First, all the information distances between
x and any control image (HC(ij) or LC(ij), (j ∈ [1, n])) are calculated. To avoid the
impact of extreme values, a geometric mean is chosen to represent the average value
of information distances in this step. The average information distance between image
x and all the high control(HC) images or low control(LC) images is represented by
geomean(ID(x,HC)) or geomean(ID(x, LC)). The geomean(ID(x,HC)) means
the geometric mean of the information distance sequence ID(x,HC), and
geomean(ID(x, LC)) means the sequence ID(x,HC) where

ID(x,HC) = ID(x,HC(i1)), ID(x,HC(i2)), . . . , ID(x,HC(in))

ID(x, LC) = ID(x, LC(i1)), ID(x, LC(i2)), . . . , ID(x, LC(in))
(7)

276 X. Zhang et al.

4.5 Image Classification

After the 4.3 Control Images Statistics step, there are two sets of mean values and stan-
dard deviations. One is μHH and σHH , which represent the mean value and standard
variation of distance between any pair of high control images. The other is μLL and
σLL, which show the mean value and variation of distance between any pair of low
control images. Algorithm 1 classifies image x to either the high control or the low con-
trol cluster, according the values of geomean(ID(x,HC)), geomean(ID(x, LC)),
μHH , σHH , μLL, σLL. As shown in Fig. 3, the distribution of distances between any
two high/low control images is very similar to Gaussian distribution. Therefore, we use
Gaussian distribution to model the distance distribution. If the average compressed size
of image x and high control images is more similar to that of any two high control
images, then image x will be classified as high control, and vice versa.

Algorithm 1. Image Classification

Require: geomean(ID(x,HC)),geomean(ID(x,LC)), mpegSize(x,x)
1: X ← mpegSize(x,x)
2: XH ← geomean(ID(x,HC))
3: XL← geomean(ID(x,LC))
4: XHNorm← (XH − μHH)/σHH

5: XLNorm← (XL− μLL)/σLL

6: if XHNorm � XLNorm then
7: x belongs to High Control
8: else
9: x belongs to Low Control

10: end if
11: return the cluster which x belongs to

It may be asked why no between-classes measurements are computed. Since our
purpose is to classify test images into either high control or low control classes, we do
not consider the distance between the two. That is, there is no need to compute σHL

and μHL.

4.6 Compound Classification

Each compound is classified based on the information distances between its images. It is
assumed that there are m high control compounds.Numi is the number of labeled high
control images contained in the ith high control compound. Numtested is the number
of labeled high control images contained in a compound tested. Compounds tested are
classified into active if the Numtested is larger than min

i
Numi .

All active compounds are identified after the above seven steps. Our method treats
images as input, and gives the classification result directly. Based on an developed
image similarity measure, our method utilizes the MPEG encoder with a fixed set of
encoder-parameters to analyze GFP (cytoplasm) images and does not need Hoechst (nu-
cleus) images. Therefore it avoids cytotoxic DNA staining, segmentation, and feature
extraction steps.

Classifying Stem Cell Differentiation Images by Information Distance 277

Fig. 3. Control image information distance distribution. They are the high and low control image
information distance distributions of assay plate 2 of library plate 2. HtoH represents the informa-
tion distance between any two high control images; and LtoL represents the information distance
between any two low control images.

5 Results

In this section, we evaluate the effectiveness of the proposed framework for compound
classification, using F1 score as our performance measure. It is defined as in Eq. 8:

F 1 =
2 ∗ TP

2 ∗ TP + FP + FN
(8)

where
TP : the number of true positive compounds;

FP : the number of false positive compounds;

FN : the number of false negative compounds.

We started by comparing the images of high and low control compounds. For short, we
call these images high and low control images, respectively. Fig. 4 shows the informa-
tion distance distribution of all six plates’ high and low control images. The information
distances between any pair of low control images were significantly larger than those
between any pair of high control images.

Then we applied our IDC method to all images of the six plates’ compounds. Using
our method, six compounds in plate 1, five compounds in plate 2, six compounds in
plate 3, three compounds in plate 4, seven compounds in plate 5, and six compounds in
plate 6 were recognized as active compounds. All of the other compounds were treated

278 X. Zhang et al.

as inactive compounds. Fig. 5 indicates image samples taken randomly from both the
active compounds (a) and inactive compounds (b). We referred to [29], and used an es-
tablished commercial high content screening image analysis software – Acapella from
PerkinElmer company [31] – to do the conventional analysis. Both methods in total
identified 34 compounds as active; the other 446 compounds were inactive.

Those compounds flagged as active by either type of analysis were validated by fur-
ther biological verification experiments. A full concentration (10 point dose) response
curve for each compound was tested in 30 wells (10 concentrations in triplicate), and
activity was considered “true” if the EC50 of the compound was less than 10μM. For
the chosen compounds tested, the biological verification experiments follow the same
process as the primary screening. Since the primary screening needs one week to cul-
ture cells, the verification experiments need another week, and the same monetary cost
is involved as in the primary screening to test each chosen compound.

Table 1. Biological verification results on the conventional analysis and the IDC method

(a) Conventional Analysis Statistics

Biological Experiment
Conventional TruePositive = 29 FalsePositive= 5

Analysis FalseNegative = 3 TrueNegative= 9

(b) IDC Statistics

Biological Experiment
Information TruePositive = 29 FalsePositive= 3

Distance FalseNegative = 3 TrueNegative= 11

Due to the high related costs, the biological verification experiments did not test all
compounds but focused mainly on those flagged as active by one or more computer-
assisted methods to confirm whether those identified as positives were true positives. A
few other biological verification experiments were run on compounds that were flagged
as negatives to confirm whether they were true negatives.

In practice, the biological verification experiment picked 46 compounds from the
total 480. These 46 compounds contain the total 34 active ones identified by the con-
ventional analysis or the IDC method, or both. Table 2 shows the active compound iden-
tification results of the biological verification experiment, the conventional analysis and
the IDC method. Table 1 shows the biological verification results for the conventional
analysis and the IDC method using the 46 chosen compounds.

The F1 scores of the conventional analysis and the IDC method are 0.88 and 0.91,
respectively. Our IDC method achieves a 3% higher F1 score than conventional analysis.

It may be perceived that the biological verification experiment may be biased, be-
cause it chose only 46 compounds that had already been shown to contain the 34 active
compounds identified by union of the above two methods. However, this bias will not
impact the comparison result, because it will only change those two negative values.
While the absolute values of sensitivity and specificity will be changed as the total
number of compounds confirmed is increased, the relative order of the sensitivity and
specificity values of the two methods will not be changed.

Classifying Stem Cell Differentiation Images by Information Distance 279

Fig. 4. The distribution of information distances between any pair of control images. The hollow
circles represent the information distances between any pair of low control images, and the plus
signs represent the information distances between any pair of high control images. The number
of each subfigure index shows the ID number of the library plate, and the letter of that index
represents one of the three different assay plates of a single library plate.

280 X. Zhang et al.

(a) Active Compound Sample (b) Inactive Compound Sample

Fig. 5. Image samples taken randomly from active compounds (a) and inactive compounds (b).
Fig. 5(a) is from well E11 of plate 1, which was identified as a “true” active compound; Fig. 5(b)
is from well E07 of plate 2, which was identified as a “true” inactive compound.

Table 2. Active compounds identification results of the biological verification experiment, the
conventional analysis and the IDC method. This table shows the raw data of Table 1 in our paper.
The checkmark indicates that the compound in the well is “active”, while the backslash indicates
that the compound in the well is “inactive”.

No. Plate No. Well No. BIO CON IDC
1 1 A06 \ � �
2 1 E03 \ \ \
3 1 E07 � \ \
4 1 E08 \ � �
5 1 E11 � � �
6 1 F10 � � �
7 1 G07 � � �
8 1 G10 � � �
9 1 H08 � \ \
10 2 A06 � � �
11 2 A07 � � �
12 2 A09 � � �
13 2 B09 \ \ \
14 2 D06 � � �
15 2 E07 \ � \
16 2 F07 \ � \
17 2 H08 � � �
18 3 A04 � � �
19 3 A10 � � �
20 3 D02 \ \ \
21 3 D07 � � �
22 3 G02 � \ \
23 3 G07 � � �

No. Plate No. Well No. BIO CON IDC
24 3 H02 \ \ \
25 3 H06 � � �
26 3 H09 \ \ \
27 3 F04 \ \ \
28 4 B04 � � �
29 4 C04 \ \ \
30 4 D09 \ \ \
31 4 E05 � � �
32 4 F04 � � �
33 5 B03 \ � �
34 5 B04 � � �
35 5 C11 � � �
36 5 D06 \ \ \
37 5 E02 � � �
38 5 F07 � � �
39 5 H09 � � �
40 5 H10 � � �
41 6 A02 � � �
42 6 A03 � � �
43 6 B02 � � �
44 6 B03 � � �
45 6 G03 � � �
46 6 G04 � � �

Classifying Stem Cell Differentiation Images by Information Distance 281

6 Conclusion

Our methodology is based on information distance theory, and directly analyzes only
cytoplasm images, with no need for DNA staining and image segmentation. Therefore,
it avoids staining’s cytotoxic/cytostatic problems and segmentation errors, and allows
kinetic studies. Since it compresses images directly, there is no need to extract any
features. In particular, it does not require a human intervention step, as is required in
the conventional analysis, to obtain image information such as cell count and brightness.

Compared with the conventional analysis method, the IDC method achieves a higher
F1 score. It is simpler to use, and acquires better results.

Acknowledgements. This work was funded by the Chinese Scholarship Council and
was supported (in part) by an Ontario Ministry of Economic Development and Innova-
tion (MEDI) grant.

References

1. Jaenisch, R., Young, R.: Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear
Reprogramming. Cell 132, 567–582 (2008)

2. Ding, S., Wu, T.Y.H., Brinker, A., Peters, E.C., Hur, W., Gray, N.S., Schultz, P.G.: Synthetic
small molecules that control stem cell fate. PNAS 100, 7632–7637 (2003)

3. Ljosa, V., Carpenter, A.E.: Introduction to the Quantitative Analysis of Two-Dimensional
Fluorescence Microscopy Images for Cell-Based Screening. Plos Computational Biology 5,
1–10 (2009)

4. Li, M., Vitanyi, P.: An introduction to Komogorov complexity and its applications. Springer,
New York (1997)

5. Bennett, C.H., Gacs, P., Li, M., Vitanyi, P., Zurek, W.: Information Distance. IEEE Trans.
Inform. Theory 44, 1407–1423 (1993)

6. Arbuchle, T., Balaban, A., Peters, D.K., Lawford, M.: Software documents: comparison
and measurement. In: Proceeding 18th International Conference on Software Engineering
& Knowledge Engineering, Boston, USA, pp. 740–748 (2007)

7. Anë, C., Sanderson, M.J.: Missing the Forest for the Trees: Phylogenetic Compression and
Its Implications for Inferring Complex Evolutionary Histories. J. Sys. Biol. 54, 146–157
(2005)

8. Campana, B.J.L., Keogh, E.J.: A Compression-Based Distance Measure for Texture. J. Sta-
tistical Analysis and Data Mining 3, 381–398 (2010)

9. Cerra, D., Mallet, A., Gueguen, L., Datcu, M.: Algorithmic Information Theory-Based Anal-
ysis of Earth Observation Images: An Assessment. J. IEEE Geoscience and Remote Sensing
Letters 7, 8–12 (2010)

10. Chen, X., Francia, B., Li, M., Mckinnon, B., Seker, A.: Shared information and program
plagiarism detection. IEEE Trans. Info. Theory 50, 1545–1550 (2004)

11. Cilibrasi, R., Vitänyi, P.M.B., de Wolf, R.: Algorithmic clustring of music based on string
compression. J. Comput. Music 28, 49–67 (2004)

12. Cilibrasi, R., Vitänyi, P.M.B.: Clustering by compression. IEEE Trans. Knowledge & Data
Engineering 19, 370–383 (2007)

13. Cohen, A.R., Bjornsson, C.S., Temple, S., Banker, G., Roysam, B.: Automatic Summariza-
tion of Changes in Biological Image Sequences Using Algorithmic Information Theory.
IEEE Trans. Pattern Analysis & Machine Intelligence 31, 1386–1403 (2009)

282 X. Zhang et al.

14. Cuturi, M., Vert, J.P.: The context-tree kernel for strings. Neural Networks 18, 1111–1123
(2005)

15. Benedetto, D., Caglioti, E., Loreto, V.: Language trees and zipping. Phys. Rev. Lett. 88,
48702 (2002)

16. Kocsor, A., Kertesz, F.A., Kajan, L., Pongor, S.: Application of compression-based distance
measures to protein sequence classification: a methodology study. Bioinformatics 22, 407–
412 (2006)

17. Kirk, S.R., Jenkins, S.: Information theory-based software metrics and obfuscation. J. Sys-
tems and Software 72, 179–186 (2004)

18. Krasnogor, N., Pelta, D.A.: Measuring the similarity of protein structures by means of the
universal similarity metric. Bioinformatics 20, 1015–1021 (2004)

19. Kraskov, A., Stögbauer, H., Andrzejak, R.G., Grassberger, P.: Hierarchical clustering using
mutual information. Europhys. Lett. 70, 278–284 (2005)

20. Li, M., Badger, J.H., Chen, X., Kwong, S., Kearney, P., Zhang, H.Y.: An information-based
sequence distance and its application to whole mitochondrial genome phylogeny. Bioinfor-
matics 17, 149–154 (2001)

21. Nikvand, N., Wang, Z.: Generic Image Similarity Based on Kolmogorov Complexity. In:
17th IEEE International Conference on Image Processing, pp. 309–312. IEEE Press, Hong
Kong (2010)

22. Otu, H.H., Sayood, K.: A new sequence distance measure for phy6logenetic tree construc-
tion. Bioinformatics 19, 2122–2130 (2003)

23. Pao, H.K., Case, J.: Computing entropy for ortholog detection. In: International Conference
on Computational Intelligence, Istanbul, Turkey, pp. 89–92 (2004)

24. Parry, D.: Use of Kolmogorov distance identification of web page authorship, topic and do-
main. In: Workshop on Open Source Web Information Retrieval (2005)

25. Perkiö, J., Hyvärinen, A.: Modelling Image Complexity by Independent Component Anal-
ysis, with Application to Content-Based Image Retrieval. In: Alippi, C., Polycarpou, M.,
Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part II. LNCS, vol. 5769, pp. 704–714.
Springer, Heidelberg (2009)

26. Santos, C.C., Bernardes, J., Vitänyi, P.M.B., Antunes, L.: Clustering fetal heart rate tracings
by compression. In: Proceeding 19th IEEE Internation Symposium Computer-Based Medi-
cal Systems, Salt Lake City, pp. 22–23 (2006)

27. Zhang, X., Hao, Y., Zhu, X.Y., Li, M.: Information Distance from a Question to an Answer.
In: KDD, San Jose, pp. 12–15 (2007)

28. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removel algorithms.
Physica D 60, 259–268 (1992)

29. Panchal, R.G., Kota, K.P., Spurgers, K.B., Ruthel, G., Tran, J.P., Boltz, R.C., Bavari, S.:
Development of High-Content Imaging Assays for Lethal Viral Pathogens. J. Biomol.
Screen 15, 755–765 (2010)

30. Gall, D.L.: Mpeg: a video compression standard for multimedia application. Commun.
ACM 34, 46–58 (1991)

31. http://www.perkinelmer.com/pages/020/cellularimaging/
products/acapella.xhtml

http://www.perkinelmer.com/pages/020/cellularimaging/products/acapella.xhtml
http://www.perkinelmer.com/pages/020/cellularimaging/products/acapella.xhtml

Distance Metric Learning Revisited

Qiong Cao1, Yiming Ying1, and Peng Li2

1 College of Engineering, Mathematics and Physical Sciences,
University of Exeter, Harrison Building, Exeter, EX4 4QF, UK

{qc218,y.ying}@exeter.ac.uk
2 Department of Engineering Mathematics,
University of Bristol, Bristol, BS8 1UB, UK

lipeng@ieee.org

Abstract. The success of many machine learning algorithms (e.g. the
nearest neighborhood classification and k-means clustering) depends on
the representation of the data as elements in a metric space. Learning an
appropriate distance metric from data is usually superior to the default
Euclidean distance. In this paper, we revisit the original model proposed
by Xing et al. [25] and propose a general formulation of learning a Maha-
lanobis distance from data. We prove that this novel formulation is equiv-
alent to a convex optimization problem over the spectrahedron. Then, a
gradient-based optimization algorithm is proposed to obtain the optimal
solution which only needs the computation of the largest eigenvalue of a
matrix per iteration. Finally, experiments on various UCI datasets and
a benchmark face verification dataset called Labeled Faces in the Wild
(LFW) demonstrate that the proposed method compares competitively
to those state-of-the-art methods.

Keywords: Metric learning, convex optimization, Frank-Wolfe algorithm,
face verification.

1 Introduction

Many machine learning algorithms critically depend on the quality of the chosen
distance metric. For instance, k-nearest neighbor classification needs the iden-
tification of nearest neighbors and k-means clustering depends on the distance
measurements for clustering. The default distance is the Euclidean distance,
which, however, does not reflect the given data representation. Recent advances
in metric learning [1,2,4,6,19,20,22,23,25,27] make it possible to learn an effective
distance metric which is more suitable for a given learning problem. These meth-
ods have demonstrated the successful applications of metric learning to various
real-world problems including information retrieval and face verification.

Given some partial information of constraints, the goal of metric learning is to
learn a distance metric which reports small distances for similar examples and
large distances for dissimilar examples. The partial information can be presented
in the form of constraints such as similarity or dissimilarity between a pair of
examples. These constraints can be collected either from the label information

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 283–298, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

284 Q. Cao, Y. Ying, and P. Li

in supervised classification or the side information in semi-supervised clustering
such as must-links and cannot-links. Most of metric learning methods focus on
learning a Mahalanobis metric defined by dM (xi, xj) =

√
(xi − xj)�M(xi − xj)

where M is a positive semi-definite (p.s.d.) matrix. Many metric learning meth-
ods for learning Mahalanobis distances are therefore formulated as semi-definite
programs [21].

Depending on the generation of constraints information, metric learning can
be supervised or unsupervised. Unsupervised metric learning is closely related
to dimension reduction. To see this, observe that any positive semi-definite M
can be rewritten as A�A, and hence, dM (xi, xj) =

√
(xi − xj)�M(xi − xj) =

‖A(xi −xj)‖. This simple observation implies that learning an appropriate M is
equivalent to learning an appropriate projection map A. From this perspective,
dimension reduction methods (e.g. [3,16,17]) can be regarded as unsupervised
metric learning. In supervised metric learning, the available labels can be used
to create the information of constraints. Supervised metric learning can be fur-
ther divided into two categories: the global method and the local method. The
global methods learn the distance metric which satisfies all the pairwise con-
straints simultaneously. The original model proposed by Xing et al. [25] is a
global method which used all the similar pairs (same labels) and dissimilar pairs
(distinct labels). Local methods only use local pairwise constraints which usu-
ally outperform the global ones as observed in many previous studies. This is
particularly reasonable in the case of learning a metric for the kNN classifiers
since kNN classifiers are influenced mostly by the data items that are close to
the test/query examples. Since we are mainly concerned with metric learning
for kNN classifier, the pairwise constraints are generated locally, that is, the
similar/dissimilar pairs are k-nearest neighbors. The details can be found in the
experimental section.

In this paper, we revisit the original model proposed by Xing et al. [25],
where the authors proposed to learn a metric by maximizing the distance be-
tween dissimilar samples whilst keeping the distance between similar points
upper-bounded. However, the projection gradient method employed there usu-
ally takes a large number of iterations to become convergent, and also it needs
the full eigen-decomposition per iteration. The first contribution of this paper is
to extend the methods in [25,28] and propose a general formulation for metric
learning. We prove the convexity of this general formulation and illustrate it
with various examples. Our second contribution is to show, by exploring its spe-
cial structures, that the proposed formulation is further equivalent to a convex
optimization over the spectrahedron. This equivalent formulation enables us to
directly employ the Frank-Wolfe algorithm [5] to obtain the optimal solution. In
contrast to the algorithm in [25], our proposed algorithm only needs to compute
the largest eigenvalue of a matrix per iteration and is guaranteed to converge
with a time complexity O(1/t) where t is the iteration number.

The paper is organized as follows. The next section presents the proposed
model and proves its convexity. Section 3 establishes its equivalent formulation
from which an efficient algorithm is proposed. In Section 4, we review and discuss

Distance Metric Learning Revisited 285

some related work on metric learning. Section 5 reports experimental results on
UCI datasets and a benchmark face verification dataset called Labeled Faces in
the Wild (LFW). The last section concludes the paper.

2 Convex Metric Learning Model

We begin by introducing some useful notations. For any n ∈ N, denote Nn =
{1, 2, . . . , n}. The space of symmetric d × d matrices is denoted by Sd and Sd+
denotes the cone of positive semi-definite matrices. For any X,Y ∈ Rd×n, the
inner product in Sd is denoted by 〈X,Y 〉 := Tr(X�Y) where Tr(·) is the trace
of a matrix.

For simplicity, we focus on learning a distance metric for kNN classification,
although the proposed methods below can easily be adapted to metric learning
for k-means clustering. Now we denote the training data by z := {(xi, yi) : i ∈
Nn} with input xi = (x1i , x

2
i , . . . , x

d
i) ∈ Rd, class label yi (not necessary binary).

Later on, we use the convention Xij = (xi − xj)(xi − xj)
� and let S index the

similarity pairs, D index the dissimilarity pairs. For instance, τ = (i, j) ∈ S
means that (xi, xj) is a similar pair and rewrite Xij as Xτ . One can follow the
mechanism in [22] to extract local information of similarity or dissimilarity for
kNN classification; see the experimental section for more details.

Given a set of similar samples and a set of dissimilar samples, we aim to find
a good distance matrix M such that the distance between the dissimilar pair
is large while keeping the distance between the similar pairs small. There are
many formulations to achieve this goal. In particular, the following formulation
was proposed in [25]:

maxM∈Sd+

∑
(i,j)∈D dM (xi, xj)

s.t.
∑

(i,j)∈S [dM (xi, xj)]
2 ≤ 1.

(1)

An iterative projection method was employed to solve the above problem. How-
ever, the algorithm generally takes a long time to converge and it needs the
computation of the full eigen-decomposition of a matrix per iteration.

In this paper, we propose a more general formulation:

maxM∈Sd+

[∑
(i,j)∈D[dM (xi, xj)]

2p/D
] 1

p

s.t.
∑

(i,j)∈S [dM (xi, xj)]
2 ≤ 1,

(2)

where p ∈ (−∞,∞) and D is the number of dissimilarity pairs. We refer to the
above formulation as DMLp . The above formulation is well defined even for
the limiting case p = 0 as discussed in the examples below.

– p = 1/2: In this case, problem (2) can be written as

maxM∈Sd+

[∑
(i,j)∈D dM (xi, xj)/D

]2
s.t.

∑
(i,j)∈S [dM (xi, xj)]

2 ≤ 1,
(3)

which is equivalent to formulation (1) proposed in [25].

286 Q. Cao, Y. Ying, and P. Li

– p → −∞: Observe, for any positive sequence {αi > 0 : i ∈ Nn}, that

lim
p→−∞

(∑
i∈Nn

api /n
) 1

p = min
i∈Nn

ai.

Hence, in the limiting case p → −∞, problem (2) is reduced to the metric
learning model called DML-eig [28]:

maxM∈Sd+
min(i,j)∈D [dM (xi, xj)]

2

s.t.
∑

(i,j)∈S [dM (xi, xj)]
2 ≤ 1.

(4)

– p → 0: Note, for any sequence {αi > 0 : i ∈ Nn}, that

lim
p→0

[∑
i∈Nn

api /n
] 1

p =
n∏

i=1

α
1
n
i .

Hence, in the limiting case p → 0, problem (2) becomes

maxM∈Sd+

∏
(i,j)∈D [dM (xi, xj)]

2
D

s.t.
∑

(i,j)∈S [dM (xi, xj)]
2 ≤ 1,

where D is the number of dissimilar pairs in the set D.

The following theorem investigates the convexity/concavity of the objective func-
tion in problem (2).

Theorem 1. Let function L : Sd+ → R be the objective function of DMLp, i.e.,

for any M ∈ Sd+, L(M) =
[∑

(i,j)∈D〈Xij ,M〉p/D
] 1

p for p �= 0, and L(M) =∏
(i,j)∈D [dM (xi, xj)]

2
D for p = 0. Then, we have that L(·) is concave for p < 1

and otherwise convex.

Proof. First we prove the concavity of L(·) when p < 1 and p �= 0. It suffices
to prove, for any n ∈ N and for any {a = (a1, a2, . . . , an) : ai > 0, i ∈ Nn},
that function (

∑
j∈Nn

apj)
1/p is concave w.r.t. variable a. To this end, let f be

a function defined, for any x > 0 and y > 0, by f(x, y) = −x1−pyp/p. We can
easily prove that f is jointly convex w.r.t. (x, y), since its Hessian matrix

(1− p)

(
x−p−1yp −x−pyp−1

−x−pyp−1 x1−pyp−2

)
∈ Sd+.

Consequently, for any i ∈ Nn, −x1−papi /p is jointly convex, which implies that its
summation

∑
i∈Nn

−x1−papi /p = −x1−p(
∑

i∈Nn
api)/p is jointly convex. Hence,

the function defined by E(x, a) = (1− p)x/p− x1−p(
∑

i∈Nn
api)/p is also jointly

convex w.r.t. (x, a). Clearly,

− (
∑
j∈Nn

apj)
1/p = min{E(x, a) : x ≥ 0}. (5)

Distance Metric Learning Revisited 287

Recalling that the partial minimum of a jointly convex function is convex [9,
Sec.IV.2.4], we obtain the concavity of (

∑
j∈Nn

apj)
1/p when p < 1 and p �= 0.

The concavity of L for p = 0 follows from the fact that the limit function of a
sequence of concave functions is concave.

The convexity of L for p ≥ 1 can be proved similarly by observing that
E(x, a) is jointly concave if p ≥ 1. Consequently, equation (5) should be replaced
by (

∑
j∈Nn

apj)
1/p = min{−E(x, a) : x ≥ 0}. This completes the proof of the

theorem.

We conclude this section with two remarks. Firstly, we exclude the extreme case
p = 1 since, in this case, the optimal solution of DMLp will be always a rank-one
matrix (i.e. the data is projected to the line), as argued in [25]. Secondly, when
p ∈ (1,∞), by Theorem 1 we know that formulation (2) is indeed a problem of
maximizing a convex function, which is a challenging task to get a global solution.
In this paper we will only consider the case p ∈ (−∞, 1) which guarantees that
formulation (2) is a convex optimization problem.

3 Equivalent Formulation and Optimization

We turn our attention to an equivalent formulation of problem (2), which is
critical to designing its efficient algorithms. For notational simplicity, denote the
spectrahedron by P = {M ∈ Sd+ : Tr(M) = 1} and let XS =

∑
(i,j)∈S Xij . Then,

DMLp (i.e. formulation (2)) can be rewritten as the following problem:

maxM∈Sd+

[∑
τ∈D〈Xτ ,M〉p/D

] 1
p

s.t. 〈XS + δId,M〉 ≤ 1.
(6)

Without loss of generality, we assume thatXS is invertible throughout the paper.
This can be achieved by adding a small ridge term, i.e. XS ←− XS + δ Id where
Id is the identity matrix and δ > 0 is a small ridge constant. In this case, we can
apply the Cholesky decomposition to get that XS = LL�, where L is a lower
triangular matrix with strictly positive diagonal entries.

Equipped with the above preparations, we are now ready to show that problem
(2) is equivalent to an optimization problem over the spectrahedron P = {M ∈
Sd+ : Tr(M) = 1}. Similar ideas have been used in [28].

Theorem 2. For any τ = (i, j) ∈ D, let X̃τ = L−1(xi − xj)(L
−1(xi − xj))

�.
Then, problem (2) is equivalent to

max
S∈P

[∑
τ∈D

〈X̃τ , S〉p
] 1

p , (7)

Proof. Let M∗ be an optimal solution of problem (2) and M̃∗ = M∗
〈XS ,M∗〉 .

Then, 〈XS , M̃
∗〉 = 1 and

[∑
τ∈D

〈Xτ ,M̃
∗〉p

D

] 1
p =

[∑
τ∈D

〈Xτ ,M
∗〉p

D

] 1
p /〈XS ,M

∗〉 ≥

288 Q. Cao, Y. Ying, and P. Li

Table 1. Pseudo-code of the Frank-Wolfe algorithm to solve DMLp where f denotes
the objective function of formulation (7)

Input:
· parameter p ∈ (−∞, 1)
· tolerance value tol (e.g. 10−5)
· step sizes {αt = 2/(t + 1) : t ∈ N}

Initialization: S1 ∈ Sd
+ with Tr(S1) = 1

for t = 1, 2, 3, . . . do

· Zt = argmax
{
〈Z,∇f(St)〉 : Z ∈ Sd

+, Tr(Z) = 1
}
i.e. Zt = vv�

where v is the maximal eigenvector of matrix ∇f(St)
· St+1 = (1− αt)St + αtZt

· if |f(St+1)− f(St)| < tol then break

Output: d× d matrix St ∈ Sd
+

[∑
τ∈D

〈Xτ ,M
∗〉p

D

] 1
p since 〈XS ,M

∗〉 ≤ 1. This implies that M̃∗ is also an optimal
solution. Consequently, problem (2) is equivalent to, up to a scaling constant,

maxM∈Sd+

[∑
(i,j)∈D〈Xτ ,M〉p/D

] 1
p

s.t. 〈XS ,M〉 = 1.
(8)

Recall that XS = LL� by Cholesky decomposition. Now the desired equivalence
between (2) and (7) follows from changing variable S = L�ML in (8). This
completes the proof of the theorem.

By Theorem 2, the original metric learning problem (2) is reduced to a max-
imization problem on the spectrahedron. Therefore, we can apply the Frank-
Wolfe (FW) algorithm [5,8] to obtain the optimal solution: the pseudo-code of
the algorithm is given in Table 1 where f denotes the objective function of formu-
lation (7). We conclude this section with a final remark. The objective function[∑

τ∈D〈X̃τ , S〉p
] 1

p in formulation (7) is not smooth since p can be negative. In
order to avoid the numerical instability, we can add a small positive number

inside so that it becomes a smooth function, i.e.
[∑

τ∈D(〈X̃τ , S〉)p
] 1

p is replaced

by
[∑

τ∈D(〈X̃τ , S〉 + ε)p
] 1

p where ε is a small positive number (e.g. ε = 10−8).
If the objective function has a Lipschitz-continuous gradient, then, by choosing
αt =

2
t+1 , the FW algorithm is guaranteed to converge with a time complexity

O(1/t). One can refer to [8,27] for a detailed proof.

4 Related Work

In recent years, distance metric learning has received a lot of attention in machine
learning, see e.g. [1,2,4,6,15,19,20,22,25,27] and the references therein. It will be
a difficult task to give a comprehensive review on related work. Below we only

Distance Metric Learning Revisited 289

briefly discuss some methods which are closely related to our work. We refer the
readers to [26] for more related work on metric learning.

Xing et al. [25] presented metric-learning formulation (1) for k-means cluster-
ing. The method aims to maximize the distances between dissimilar samples sub-
ject to the constraint that distances between similar samples are upper-bounded.
Ying et al. [28] proposed to maximize the minimal distance between dissimilar
pairs while maintaining an upper bound for the distances between similar pairs.
The proposed method (4) was shown to be equivalent to an eigenvalue opti-
mization, which was solved by the Frank-Wolfe algorithm after smoothing the
objective function. Our method DMLp is mainly motivated by the above two
methods and provides a more general framework by recovering [25,28] as special
cases. In contrast to the alternating projection method [25], we show that DMLp

is reduced to a convex optimization problem over the spectrahedron. This new
optimization formulation enables the direct application of the Frank-Wolfe algo-
rithm which only needs the computation of the largest eigenvector of a matrix
per iteration.

Weinberger et al. [22] developed the method called LMNN to learn a Maha-
lanobis distance metric in kNN classification settings. LMNN, as one of the state-
of-the-art metric learning methods, aims to enforce k-nearest neighbors always
belonging to the same class while examples from different classes being separated
by a large margin. LMNN is a local method as it only used triplets from k-nearest
neighbors. Similar to LMNN, our method focuses on similar pairs and dissimilar
pairs generated from k-nearest neighbors. Davis et al. [4] proposed an informa-
tion theoretic approach (ITML) to learning a Mahalanobis distance function by
minimizing the Kullbach-Leibler divergence between two multivariate Gaussians
subject to pairwise constraints.

Shen et al. [19] recently employed the exponential loss for metric learning
named as BoostMetric and a boosting-based algorithm was developed. The ra-
tionale behind this algorithm is that each p.s.d. matrix can be decomposed into a
linear positive combination of trace-one and rank-one matrices. This algorithm
is very similar to the Frank-Wolfe algorithm employed for DMLp since both
of them iteratively find a linear combination of rank-one matrices to approxi-
mate the desired solution. However, the method is a general column-generation
algorithm and its convergence rate is not clear. The Frank-Wolfe algorithm
for DMLp is theoretically guaranteed to have a convergence rate O(1/t) and
it is relatively easy to be implemented by using just a few lines of MATLAB
codes.

Guillaumin et al. [7] presented a metric learning model based on a logistic
regression loss function called LDML. The method aims to learn robust dis-
tance measures for face identification using a logistic discriminant. In order to
reduce the computational time, the authors proposed to remove the positive
semi-definiteness constraint on the distance matrix. This would only lead to a
sub-optimal solution.

290 Q. Cao, Y. Ying, and P. Li

Table 2. Description of datasets used in the experiments: n and d respectively denote
the number of samples and attributes (feature elements) of the data; T is the number
of triplets and D is the number of dissimilar pairs

Data No. n d class T D

Balance 1 625 4 3 3951 1317
Breast-Cancer 2 569 30 2 3591 1197

Diabetes 3 768 8 2 4842 1614
Image 4 2310 19 2 14553 4851
Iris 5 150 4 3 954 315

Waveform 6 5000 21 3 31509 10503
Wine 7 178 13 3 1134 378

5 Experiments

In this section, we compare the empirical performance of our proposed method
DMLp with six other methods: the method proposed in [25] denoted by Xing,
LMNN [22], ITML [4], BoostMetric [19], DML-eig [28] and the baseline algorithm
using the standard Euclidean distance denoted by Euclidean. The model param-
eters in ITML, LMNN, BoostMetric and DMLp are tuned via three-fold cross
validation. In addition, the maximum iteration number for DMLp is 1000 and
the algorithm is terminated when the relative change of the objective function
value is less than 10−5.

We first run the experiments on UCI datasets to compare the kNN classifica-
tion performance (k = 3) of different metric learning methods, where the kNN
classifier is constructed using the Mahalanobis distance learned by metric learn-
ing methods. Then, we investigate the application of our method to the problem
of face verification. In particular, we evaluate our new metric learning method
using a large scale face database called Labeled Faces in the Wild (LFW) [10].
The LFW dataset is very challenging and difficult due to face variations in scale,
pose, lighting, background, expression, hairstyle, and glasses, as the faces are de-
tected in images in the wild, taken from Yahoo! News. Recently it has become
a benchmark to test new face verification algorithms [10,24,7,18].

5.1 Convergence and Generalization on UCI Datasets

To investigate the convergence and generalization of DMLp , we run experiments
on seven UCI datasets: i.e. 1) Balance; 2) Breast-Cancer; 3) Diabetes; 4) Image
segmentation; 5) Iris; 6) Waveform; 7) Wine. The statistics of the datasets are
summarized in Table 2. All the experimental results are obtained by averaging
over 10 runs and, for each run, the data is randomly split into 70% for training
and 30% for testing. To generate relative constraints and pairwise constraints, we
adopt a similar mechanism in [22]. More specifically, for each training point xi,
k nearest neighbors that have the same labels as yi (targets) as well as k nearest
neighbors that have different labels from yi (imposers) are found. According

Distance Metric Learning Revisited 291

to xi and its corresponding targets and imposers, we then construct the set of
similar pairs S, the set of dissimilar pairs D and the set of relative constraints
in the form of triplets denoted by T required by LMNN and BoostMetric. As
mentioned above, the original formulation in [25] used all pairwise constraints.
For fairness of comparison, all methods including Xing used the same set of
similar/dissimilar pairs generated locally as above.

Firstly, we study the convergence of algorithm DMLp with varying values of
p. In Figure 1, we plot the objective function value of DMLp versus the number
of iteration on Balance (subfigure (a)); Iris (subfigure (b)); Diabetes (subfigure
(c)); and Image (subfigure (d)). We can see from Figure 1 that the algorithm
converges quickly. The smaller the value of p is and the more iterations algorithm
DMLp needs.

Secondly, we investigate the performance of DMLp against different values of
p. Figure 2 depicts the test error of DMLp versus the value of p on Balance (sub-
figure (a)); Iris (subfigure (b)); Diabetes (subfigure (c)); and Image (subfigure
(d)). We can observe from Figure 2 that the test error varies on different values
of p and the best performance of DMLp is superior to those of DML-eig [28] and
Xing [25] which are the special cases of DMLp with p → −∞ and p = 1/2 respec-
tively. This observation validates the value of the general formulation DMLp and
suggests the importance of choosing an appropriate value of p. In the following
experiments, we will tune the value of p by three cross-validation.

Finally, we study the generalization performance of kNN classifiers where
the distance metric to measure nearest neighbors is learned by metric learning
methods. To this end, we compare DMLp with other metric learning methods
including Xing [25], LMNN [22,23], ITML [4] and BoostMetric [19] as mentioned
above. Figure 3 depicts the performance of different methods. It shows that al-
most all metric learning methods improve kNN classification using Euclidean
distance on most datasets. Our proposed method DMLp delivers competitive
performance with other state-of-the-art algorithms such as ITML, LMNN and
BoostMetric. Indeed, DMLp outperforms other methods on 4 out of 7 datasets
and shows competitive performance against the best one on the rest 3 datasets.
From Figure 3, it is reasonable to see that the test errors of DML1/2 are consis-
tent with those of Xing since they are essentially the same model implemented
by different algorithms. The only exception is the performance on Waveform
dataset: the test error of Xing is much worse than DML1/2. The reason could
be that the alternating projection method proposed in [25] does not converge
in a reasonable time due to the relatively large number of samples in Waveform
dataset.

5.2 Application to Face Verification

The task of face verification is to determine whether two face images are from
the same identity or not. Metric learning provides a very natural solution by
comparing the image pairs based on the metric learnt from the face data. In this
experiment, we investigate the performance of DMLp on the LFW dataset [10]
– a benchmark dataset for face verification. It contains a total of 13233 labeled

292 Q. Cao, Y. Ying, and P. Li

0 10 20 30 40 50 60 70 80 90 100 110
0

0.5

1

1.5

2

2.5
x 10

−3

p=−0.5

p=−1

p=−2

p=−8

p=−32

iterations

o
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

(a)

0 10 20 30 40 50 60 70 80 90 100 110
0

0.01

0.02

0.03

0.04

0.05

0.06

p=−0.5

p=−1

p=−2
p=−8

p=−32

iterations

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

(b)

0 10 20 30 40 50 60 70 80 90 100 110
0

1

2

3

4

5

6

7

8
x 10

−4

p=−0.5

p=−1

p=−2

p=−8

p=−32

iterations

o
b
je

c
ti
v
e
 f
u
n
c
it
o
n
 v

a
lu

e

(c)

0 10 20 30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

p=−0.5

p=−1

p=−2

p=−8
p=−32

iterations

o
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

(d)

Fig. 1. Evolution of the objective function value of DMLp versus the number of
iteration with varying p on Balance (a), Iris (b), Diabetes (c) and Image (d)

face images of 5749 people, 1680 of them appear in more than two images.
There are two separate settings for forming training data: image-restricted and
image-unrestricted setting. In the image-restricted paradigm, only the informa-
tion whether a pair of images belongs to the same person (same class) is available
and no information of actual names (class labels) in the pair of images is given.
In the unrestricted setting, all available data including the identity of the people
in the image is known. In this paper, we mainly consider the image-restricted
setting.

The images we used are in gray scale and aligned in two ways. One is
“funneled” [10] and the other is “aligned” using a commercial face alignment
software [14]. We investigated several facial descriptors (features extracted from
face images): 1) raw pixel data by concatenating the intensity value of each pixel
in the image denoted by Intensity; 2) Local Binary Patterns (LBP) [13]; 3) Three-
Patch Local Binary Patterns (TPLBP) [24]. For a fair comparison with [7], we

Distance Metric Learning Revisited 293

−256 −64 −16 −4 0 0.0078 0.313 0.125 0.5 0.75
5

10

15

20

25

value of p

te
s
t
e
r
r
o
r
 (

%
)

DMLp

DML−eig

Xing

(a)

−256 −64 −16 −4 0 0.078 0.0313 0.125 0.5 0.75
2.5

3

3.5

4

4.5

5

5.5

6

6.5

value of p

te
s
t
e
r
r
o
r
 (

%
)

DMLp

DML−eig

Xing

(b)

−256 −64 −16 −4 0 0.0078 0.0313 0.125 0.5 0.75
26.5

27

27.5

28

28.5

29

29.5

30

value of p

te
s
t
e
r
r
o
r
 (

%
)

DMLp

DML−eig

Xing

(c)

−256 −64 −16 −4 0 0.0078 0.313 0.125 0.5 0.75
2

4

6

8

10

12

14

16

value of p

te
s
t
e
r
r
o
r
 (

%
)

DMLp

DML−eig

Xing

(d)

Fig. 2. Test error (%) of DMLp versus different values of p on Balance (a), Iris (b),
Diabetes (c) and Image (d). Red circled line is the result of DMLp across different
values of p (log-scaled); blue dashed line is the result of DML-eig and black dashed line
represents the result of Xing.

also used SIFT descriptors 1computed at the fixed facial key-points (e.g., corners
of eyes and nose). Since the original dimensionality of the features is quite high
(from 3456 to 12000), we reduced the dimension using principal component anal-
ysis (PCA). These descriptors were tested with both their original values and
the square root of them [24,7].

In the image-restricted protocol, only pairwise constraints are given. LMNN
and BoostMetric are not applicable to this setting since they require relative
constraints in the form of triplets. Hence, we only compared our DMLp method
with ITML [4] and LDML [7]. The performance of our method is measured
by the 10-fold cross-validation test. In each repeat, nine folds containing 2700
similar pairs of images and 2700 dissimilar pairs of images are used to learn

1 http://lear.inrialpes.fr/people/guillaumin/data.php

http://lear.inrialpes.fr/people/guillaumin/data.php

294 Q. Cao, Y. Ying, and P. Li

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

Data Set

A
ve

ra
ge

 E
rr

or
 R

at
e

(%
)

Euclidean
Xing
DML

1/2

LMNN
ITML
BoostMetric
DML

p

Fig. 3. Average test error (%) of DMLp against other methods

a metric and the remaining fold containing 600 image pairs is used to evalu-
ate the performance of the metric learning method using accurate verification
rate.

Firstly, we investigate the performance of DMLp on the SIFT descriptor by
varying the dimension of principal components. Figure 4 depicts the verifica-
tion accuracy versus the dimension of PCA. We can see that, compared to the
ITML and LDML algorithms, our DMLp method using only SIFT descriptor
delivers relatively stable performance as the PCA dimension varies. In partic-
ular, the performance of DMLp becomes stable after the dimension of PCA
reaches around 100 and it consistently outperforms ITML across different PCA
dimensions. We also observed similar results for other descriptors. Hence, for sim-
plicity we set the PCA dimension to be 100 for the SIFT descriptor and other
descriptors. According to [7], the best performances of LDML and ITML on
the SIFT descriptor are 77.50% and 76.20% respectively. The best performance
of DMLp reaches around 80% which outperforms ITML and LDML. We also
note that the performance of ITML we got here is consistent with that reported
in [7].

Secondly, we test the performance of our method using different descriptors
and their combinations. Table 3 summarizes the results. In Table 3, the notation
“Above combined” means that we combine the distance scores from the above
listed (six) descriptors in the table using a linear Support Vector Machine (SVM),
following the procedure in [7]. “All combined” means that all eight distance
scores are combined. We observe that combining 4 descriptors (Intensity, SIFT,
LBP and TFLBP) and their square-root ones yields 86.07% which outperforms

Distance Metric Learning Revisited 295

20 40 60 80 100 120 140 160
0.7

0.72

0.74

0.76

0.78

0.8

0.82

Dimension of principal components

V
e

r
if
ic

a
ti
o

n
 r

a
te

DML
p

ITML

LDML

Fig. 4. Average verification rate of DMLp , ITML, and LDML on LFW by vary-
ing PCA dimension using the SIFT descriptor. The result of LDML is copied from
Guillaumin et al. [7]: the best performance of LDML and ITML on the SIFT
descriptor are respectively 77.50% and 76.20%.

Table 3. Performance of DMLp on LFW database with different descriptors (average
verification accuracy and standard error). “DMLp SQRT” means DMLp uses the square
root of the descriptor. “Intensity” means the raw pixel data by concatenating the
intensity value of each pixel in the image. For all feature descriptors, the dimension is
reduced to 100 using PCA. See more details in the text.

DMLp DMLp SQRT

SIFT 0.8015 ± 0.0055 0.8028 ± 0.0059

LBP 0.7972 ± 0.0062 0.8005 ± 0.0081

TPLBP 0.7790 ± 0.0058 0.7822 ± 0.0061

Above combined 0.8572 ± 0.0055

Intensity 0.7335 ± 0.0054 0.7348 ± 0.0051

All combined 0.8607 ± 0.0058

85.65% of DML-eig [28]. As mentioned above, DML-eig can be regarded as a
limiting case of DMLp as p → −∞. This observation also validates the value
of the general formulation DMLp . From Table 3, we can see that, although
the individual performance of Intensity is inferior to those of other descriptors,
combining it with other descriptors slightly increases the overall performance
from 85.72% to 86.07%.

Finally, we summarize the performance of DMLp and other state-of-the-art
methods in Table 4 and plot the ROC curve of our method compared to other

296 Q. Cao, Y. Ying, and P. Li

Table 4. Comparison of DMLp with other state-of-the-art methods in the restricted
configuration (mean verification rate and standard error of the mean of 10-fold cross
validation test) based on combination of different types of descriptors

Method Accuracy

High-Throughput Brain-Inspired Features, aligned [18] 0.8813 ± 0.0058

LDML + Combined, funneled [7] 0.7927 ± 0.0060

DML-eig + Combined [28] 0.8565 ± 0.0056

DMLp + Combined (this work) 0.8607 ± 0.0058

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

High−Throughput Brain−Inspired Features
DML

p
+combined

DML−eig combined, aligned & funneled
DML

p
+ SIFT,funneled

LDML, funneled
ITML+SIFT,funneled

Fig. 5. ROC curves of DMLp and other state-of-the-art methods on LFW dataset

published results in Figure 5. We observe from Table 4 that our method DMLp

outperforms LDML [7] and slightly improves the result of DML-eig [28]. The
best performance on the restricted setting to date is 88.13% [18]. Note that
the results compared here are system to system where metric learning is only
one part of the system. We should also point out the result in [18] was not
achieved by metric learning method. Instead, it performs sophisticated large
scale feature search which used multiple complimentary representations derived
through training set augmentation, alternative face comparison functions, and
feature set searches with a varying number of model layers. We believe that the
performance of DMLp may be further improved by exploring different types of
descriptors such as those used in [18].

Distance Metric Learning Revisited 297

6 Conclusion

In this paper we extended and developed the metric learning models proposed in
[25,28]. In particular, we proposed a general and unified framework which recov-
ers the models in [25,28] as special cases. This novel framework was shown to be
equivalent to a semi-definite program over the spectrahedron. This equivalence
is important since it enables us to directly apply the Frank-Wolfe algorithm (e.g.
[5,8]) to obtain the optimal solution. Experiments on UCI datasets validate the
effectiveness of our proposed method and algorithm. In addition, the proposed
method performs well on the Labeled Faces in the Wild (LFW) dataset in the
task of face verification.

We now discuss some possible future work. It would be interesting to inves-
tigate the kernelised version of DMLp using similar ideas from [11,15]. Metric
learning can be also regarded as a dimension reduction method. However, in its
application to face verification, a common approach is to use PCA to reduce
the dimensionality of the original descriptor. This triggers a natural question for
future work on how to design effective metric learning methods to directly deal
with the original descriptors of the images.

Acknowledgements. This work is supported by the EPSRC under grant
EP/J001384/1. The corresponding author is Yiming Ying.

References

1. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning a mahalanobis metric
from equivalence constraints. Journal of Machine Learning Research 6, 937–965
(2005)

2. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively
with application to face verification. In: CVPR (2005)

3. Cox, T., Cox, M.: Multidimensional scaling. Chapman and Hall, London (1994)

4. Davis, J., Kulis, B., Jain, P., Sra, S., Dhillon, I.: Information-theoretic metric learn-
ing. In: ICML (2007)

5. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Research
Logistics Quaterly 3, 149–154 (1956)

6. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood compo-
nent analysis. In: NIPS (2004)

7. Guillaumin, M., Verbeek, J., Schmid, C.: Is that you? Metric learning approaches
for face identification. In: ICCV (2009)

8. Hazan, E.: Sparse Approximate Solutions to Semidefinite Programs. In: Laber,
E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957,
pp. 306–316. Springer, Heidelberg (2008)

9. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press
(1991)

10. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled Faces in the Wild:
A database for studying face recognition in unconstrained environments. University
of Massachusetts, Amherst, Technical Report 07-49 (2007)

298 Q. Cao, Y. Ying, and P. Li

11. Jain, P., Kulis, B., Dhillon, I.S.: Inductive regularized learning of kernel functions.
In: NIPS (2010)

12. Jin, R., Wang, S., Zhou, Y.: Regularized distance metric learning: theory and
algorithm. In: NIPS (2009)

13. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Transactions on
Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

14. Taigman, Y., Wolf, L., Hassner, T.: Multiple one-shots for utilizing class label
information. In: The British Machine Vision Conference (2009)

15. Tsang, I.W., Kwok, J.T.: Distance Metric Learning with Kernels. In: Kaynak,
O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS,
vol. 2714. Springer, Heidelberg (2003)

16. Tenenbaum, J., de Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

17. Roweis, S.T., Lawrance, K.S.: Nonlinear dimensionality reduction by locally linear
embedding. Science 290, 2323–2326 (2000)

18. Pinto, N., Cox, D.: Beyond simple features: a large-scale feature search approach
to unconstrained face recognition. In: International Conference on Automatic Face
and Gesture Recognition (2011)

19. Shen, C., Kim, J., Wang, L., Hengel, A.: Positive semidefinite metric learning with
boosting. In: NIPS (2009)

20. Torresani, L., Lee, K.: Large margin component analysis. In: NIPS (2007)
21. Vandenbergheand, L., Boyd, S.: Semidefinite programming. SIAM Review 38(1),

49–95 (1996)
22. Weinberger, K.Q., Blitzer, J., Saul, L.: Distance metric learning for large margin

nearest neighbour classification. In: NIPS (2006)
23. Weinberger, K.Q., Saul, L.K.: Fast solvers and efficient implementations for dis-

tance metric learning. In: ICML (2008)
24. Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. In:

Workshop on Faces Real-Life Images at ECCV (2008)
25. Xing, E., Ng, A., Jordan, M., Russell, S.: Distance metric learning with application

to clustering with side information. In: NIPS (2002)
26. Yang, L., Jin, R.: Distance metric learning: A comprehensive survey. Technical re-

port, Department of Computer Science and Engineering, Michigan State University
(2007)

27. Ying, Y., Huang, K., Campbell, C.: Sparse metric learning via smooth optimization.
In: NIPS (2009)

28. Ying, Y., Li, P.: Distance metric learning with eigenvalue optimization. Journal of
Machine Learning Research 13, 1–26 (2012)

Geodesic Analysis on the Gaussian RKHS
Hypersphere

Nicolas Courty1,3, Thomas Burger2, and Pierre-François Marteau1

1 IRISA, Université de Bretagne Sud, Vannes, France
2 iRTSV (FR3425) / BGE (U1038), CNRS/CEA/UJF/INSERM, Grenoble, France

3 Institute of Automation, Chinese Academy of Science, Beijing, China

Abstract. Using kernels to embed non linear data into high dimen-
sional spaces where linear analysis is possible has become utterly classi-
cal. In the case of the Gaussian kernel however, data are distributed on
a hypersphere in the corresponding Reproducing Kernel Hilbert Space
(RKHS). Inspired by previous works in non-linear statistics, this article
investigates the use of dedicated tools to take into account this particu-
lar geometry. Within this geometrical interpretation of the kernel theory,
Riemannian distances are preferred over Euclidean distances. It is shown
that this amounts to consider a new kernel and its corresponding RKHS.
Experiments on real publicly available datasets show the possible bene-
fits of the method on clustering tasks, notably through the definition of
a new variant of kernel k-means on the hypersphere. Classification prob-
lems are also considered in a classwise setting. In both cases, the results
show improvements over standard techniques.

1 Introduction

Most of the well known methods using the kernel trick [1,2] postulate that since
the data are embedded in a Kernel Reproducing Hilbert Space (RKHS) with high
dimensionality, non-linear data description is likely to become linear. As such,
most of the classical linear methods can be applied with benefits. However, in
the RKHS associated to numerous kernels (including the Gaussian kernel, on
which this work is focused), all vectors have a unitary norm: the dataset lies on
a hypersphere [3]. Hence, should this particular geometry be explicitly exploited
by using non linear statistical tools in the RKHS? This work is a step in this
direction. We notably show on two different applications (classification and clus-
tering) that this idea can yield enhanced results over some real world datasets.
The key idea is to consider a geodesic distance on the hypersphere rather than
the Euclidean one to perform the data analysis. The geodesic distance corre-
sponds to the total length of the shortest path over the hypersphere between
two points, and it can be computed readily using trigonometric operators (Fig-
ure 1). Interestingly enough, this leads us to the definition of a new kernel: It
appears that the geodesic distances in the original RKHS are equivalent to the
Euclidean distances in a new RKHS. Thus, when data are embedded in this
latter, it is indeed really justified to use linear methods. Our construction can

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 299–313, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

300 N. Courty, T. Burger, and P.-F. Marteau

φ(xi)

Intrinsic mean

Extrinsic mean

Linear
path Geodesic path

S
p−1

Fig. 1. Whatever the distribution of X, φ(X) lies within sphere quadrant. We propose
to consider geodesic distance between elements of φ(X) rather than the Euclidean
one. The Karcher (intrinsic) mean of φ(X) is represented as a red point, whereas the
extrinsic mean is depicted in green. Note the latter is inside the hypersphere, whereas
the Karcher mean lies on it.

be related to the work of Lafferty and Lebanon [4], who define a family of ker-
nels based on diffusion operators over a Riemannian manifold. In our case, the
geometric structure of the manifold is directly used to give a closed-form kernel
expression instead of using a Fischer information metric.

The article is organized as follows: In Section 2, we set notations, and we
provide background materials on geodesic distances and Riemannian manifolds.
In Section 3 we adapt the classical tools of geodesic analysis to the Gaussian
RKHS: To overcome the main drawback of kernelized space (the coordinates of
the vectors are unknown), we find a transformation of the Gram matrix induced
by the Gaussian kernel which takes into account geodesic distances. Next, in
Section 4, we derive from the Gaussian kernel and from its modified Gram matrix
a new data-dependent kernel. At this point, we remark that this derivation does
not stand only for the Gaussian kernel, but for numerous other Radial Basis
Function (RBF) kernels, leading to a whole family of data-dependent kernels.
These latter are proved to be interesting on real datasets in Section 5: First,
a clustering task is achieved by considering a k-means algorithm with geodesic
distances on the Gaussian hypersphere. Second, we compare our new kernel to
the Gaussian one in a classification task.

2 Geodesic Analysis on the Hypersphere

This section introduces the basis of a geodesic analysis on the hypersphere in the
RKHS induced by the Gaussian Kernel. After stating the problem, basic facts
about Riemannian geometry are presented and the notion of geodesic analysis
is introduced.

Geodesic Analysis on the Gaussian RKHS Hypersphere 301

2.1 Problem Statement

Let X = {x1, . . . , xp}(xi∈Rn) be a set of p separated training samples described
with n variables, and living in a space isomorphic to Rn and referred to as the
input space. It is endowed with the Euclidean inner product denoted 〈., .〉Rn in
the following. Let k(., .) be a symmetric form measuring the similarity among
pairs of X , also called kernel. Let H be the associated RKHS, or feature space,
also equipped with a dedicated inner product noted 〈., .〉H, such that for any
pair (xi, xj) ∈ X2, we have:

〈φ(xi), φ(xj)〉H = k(xi, xj) (1)

where φ(.) is an implicit mapping from Rn onto H. We use the shorthand no-
tation φ(X) for the set {φ(x1), . . . , φ(xp)}(φ(xi)∈H). K is the Gram matrix of
φ(X), and as such Kij = k(xi, xj). We use the generic notation x for any vector
of Rn. Similarly, any vector of H is noted φ(x) (if its pre-image is assumed to
be x) or simply y (if there is no assumption on its pre-image).

A kernel of particular interest in this work is the Gaussian kernel, defined as:

k(xi, xj) = exp

(
−||xi − xj ||2

2σ2

)
(2)

with the variance parameter σ2 ∈ R∗
+. Remark that: (1) the norm of any

φ(xi) ∈ H is the unity, i.e. 〈φ(xi), φ(xi)〉H = 1, (2) the Gaussian RKHS is
of infinite dimension. As a consequence, whatever X , φ(X) spans a subspace of
dimension exactly p, and as such φ(X) lies on the unit hypersphere Sp−1 ⊂ H.
Moreover, as the inner product of two unit vectors corresponds to the cosine of
their angle, and as ∀(xi, xj), k(xi, xj) ∈ [0, 1], whatever X , φ(X) lies in a re-
striction R of Sp−1 which is embedded in a sphere quadrant (its maximum angle
is smaller than or equal to π/2, such as illustrated on Figure 1). Naturally, as
k(xi, xj) varies according to the value of the σ parameter, the surface of R varies
accordingly: When σ increases, k(xi, xj) increases, (i.e. the cosine between xi
and xj increases), and thus the surface of R decreases. Conversely, when σ → 0,
R tends to a sphere quadrant.

2.2 Analysis on Riemannian Manifolds

A Riemannian manifold M in a vector space V with inner product 〈., .〉V is a real
differentiable manifold such that the tangent space Tx∗ associated to each vector
x∗ is endowed with an inner product 〈., .〉Tx∗ . In this work, 〈., .〉Tx∗ reduces to
〈., .〉V on Tx∗ , so for simplicity we assimilate 〈., .〉Tx∗ to 〈., .〉V .

Classically data analysis is performed in V = Rn and not in M, as in the
former it is rather natural to formalize the intuitive geometric notions (distance,
mean, variance, direction, etc.) which are necessary to characterize the dataset.
On the other hand, the statistical analysis of a dataset within M requires the
non-trivial generalization of these notions to the setting of Riemmanian geom-
etry. One of the first statistical analysis tool designed for Riemannian manifold

302 N. Courty, T. Burger, and P.-F. Marteau

is the Principal Geodesic Analysis (or PGA), the goal of which is to find a set of
directions, called geodesic directions or principal geodesics, that best encode the
statistical variability of the data. PGA was first introduced by Fletcher et al. [5],
and received since then numerous addenda [6,7], which are beyond the scope of
this work. Here, we only focus on the tools of Riemannian geometry which are
involved in the definition of PGA. The crucial observation of Fletcher is that a
first order approximation of the distances among the samples of the dataset can
be obtained if one projects the dataset in Tμ, the tangent space at μ, the Karcher
mean of the dataset. We recall that the Karcher mean [8] μ ∈ M differs from
the traditional mean x ∈ V (also called the extrinsic mean): It is the point of
M which minimizes the sum of squared geodesic distances to every input data.
As such, it constitutes an intrinsic mean (see Figure 1 for an illustration). We
have:

μ = argmin
x∈M

p∑
i=1

dgeod(xi, x)
2. (3)

This approximation of the geodesic distances in M by the Euclidean distances in
Tμ seems particularly appealing, and it has been shown [9] that for a sphere the
induced error is rather low. However, as this manifold lies in V = H (instead of
Rn), the tractability of this approximation addresses several questions: First, how
to define geodesic distances on the manifold embedding φ(X), and compute the
associated Karcher mean μ of φ(X)? Second, how to characterize Tμ and project
φ(X) onto Tμ? These two questions are addressed in two dedicated subsections
of the next section.

3 Data Analysis over the Hypersphere in the Gaussian
RKHS

Let us consider the unit hypersphere Sp−1 ∈ H, the surface of which is the
Riemannian manifold which embeds φ(X).

3.1 Geodesic Distance and Karcher Mean

The Riemannian distance (or the geodesic distance) between φ(xi) and φ(xj)
on Sp−1 corresponds to the length of the portion of the great circle embedding
φ(xi) and φ(xj). It is simply given by:

dgeod(φ(xi), φ(xj)) = arccos(〈φ(xi), φ(xj)〉H). (4)

Then Equation (3) reads:

μ = argmin
y∈H

p∑
i=1

arccos(〈φ(xi), y〉H)2. (5)

The Karcher mean of X exists and is uniquely defined as long as X belongs to
a Riemannian ball of radius π/4 [8,10] which is the case since two points can be

Geodesic Analysis on the Gaussian RKHS Hypersphere 303

at maximum distant from π/2. Usually, non-linear optimization methods can be
used to compute this mean. However, finding the coordinates for μ is impossible,
since we do not have access to the coordinates of φ(X). Instead, we turn on the
search of the pre-image x̃ ∈ Rn of μ ∈ H (such that μ = φ(x̃)). It is the solution
of the following (non-linear) minimization problem:

x̃ = argmin
x∈Rn

p∑
i=1

arccos(〈φ(xi), φ(x)〉H)2, (6)

= argmin
x∈Rn

p∑
i=1

arccos(k(xi, x))
2. (7)

To operate this minimization, let us consider

f : Rn → R

x �→
p∑

i=1

arccos(k(xi, x))
2

and compute its gradient:

∇f(x) =

p∑
i=1

∂

∂x
arccos(k(xi, x))

2, (8)

=
2

σ2

p∑
i=1

arccos(k(xi, x))k(xi, x)√
1− k(xi, x)2

(xi − x).

Setting this derivative to zero leads to a fixed point algorithm similar to the sem-
inal work on pre-image computation proposed by Mika et al. [11]. This algorithm
amounts to refining in several iterations a solution x̃t such that:

x̃t+1 =

∑
i αt(i)xi∑
i αt(i)

, (9)

with
αt(i) =

arccos(k(xi, x))k(xi, x̃
t)√

1− k(xi, x̃t)2

However, as stated in [11], this approach is prone to find local minima and its
output is strongly dependent on the choice of the initial guess. Therefore, we
propose a simple greedy algorithm (Alg. 1), which simply consists in repeating
p times the previous optimization by setting the initial guess as the different
inputs xi (this latter is then omitted in the sum of equation 9). The estima-
tion of the Karcher’s mean pre-image is achieved using Algorithm 1 with an
O(k.n2) complexity, where k is the number of iteration and n the number of
samples. In practice k is small, namely less than 10 for the tested datasets
when an RBF kernel is used. However, a possible drawback of this approach
is that it only provides an approximation for the Karcher mean, since the true

304 N. Courty, T. Burger, and P.-F. Marteau

Algorithm 1. Pre-image of the Karcher mean on the sphere in the RKHS
ε← small value, x̃← mean(X)
for i = 1 to p do
xt=0
i ← xi

repeat
update x̃t+1

i using equation 9 with x̃ti
until ||x̃t+1

i − x̃ti||2 < ε
if f(x̃t+1

i) < f(x̃) then
x̃← x̃t+1

i

end if
end for
Output x̃

one may not have an exact pre-image in the input space. Thus, it may be in-
teresting to consider other approaches to find the pre-image of the Karcher
mean, e.g. distance based [12] or local isomorphism [13]. Nevertheless, their di-
rect application is impossible since the Karcher mean is only defined through
a minimization procedure without a closed-form solution. Fig. 2 illustrates the
result of Alg. 1 to compute the pre-image of the Karcher mean on two toy
datasets (points randomly sampled over a square and a spiral in 2 dimensions).

Fig. 2. Illustration of Karcher mean on two datasets: The dataset is represented by
red points. The blue point is the data mean in input space, The green point is the pre-
image of the Karcher mean after mapping onto the RKHS (the grayscale represents
the function f values as described in Equation 8).

Geodesic Analysis on the Gaussian RKHS Hypersphere 305

3.2 Projection on the Tangent Space

In the particular case of hypersperical manifolds, the mapping of any point onto
a tangent space (this mapping is usually referred to as the logarithmic map), and
the reverse mapping (the exponential map) are easy to define: The logarithmic
map at location μ which projects any point φ(xi) ∈ R ⊂ Sp−1 onto Tμ has the
following form:

Logμ : R \ μ → Tμ (10)

y �→ θ

sin(θ)
(y − cos(θ) · μ)

where θ is the angle between μ and y i.e. θ = arccos(〈μ, y〉H). When θ = 0,
it is natural to consider that y = μ. Conversely, the exponential map1, which
projects a vector y of Tμ onto Sp−1, is defined as:

Expμ : Tμ → Sp−1 (11)

y �→ sin(θ)

θ
· y + cos(θ) · μ

where θ is given by θ = arccos
(

〈y,μ〉
||y||

)
= ||y||.

When using the kernel notation, and for φ(xi) �= μ Equation 10 reads:

Logφ(x̃)(φ(xi)) =
arccos(k(xi, x̃))√

1− k(xi, x̃)2
(φ(xi)− k(xi, x̃)φ(x̃)). (12)

So far, the exact computation of this projection cannot be conducted, as φ remains
unknown. However, it is possible to derive the Gram matrix of Logφ(x̃)(φ(X)):

Kx̃
ij = 〈Logφ(x̃)(φ(xi)),Logφ(x̃)(φ(xj))〉H,

=
arccos(k(xi, x̃)) arccos(k(xj , x̃))√

1− k(xi, x̃)2
√
1− k(xj , x̃)2

.

(φ(xi)− k(xi, x̃)φ(x̃))
T (φ(xj)− k(xj , x̃)φ(x̃)). (13)

Noting that:

(φ(xi)− k(xi, x̃)φ(x̃))
T (φ(xj)− k(xj , x̃)φ(x̃))

= φ(xi)
Tφ(xj)− φ(x̃)Tφ(xj)k(xi, x̃)− φ(xi)

Tφ(x̃)k(xj , x̃) + k(xi, x̃)k(xj , x̃)

= k(xi, xj)− 2k(xi, x̃)k(xj , x̃) + k(xi, x̃)k(xj , x̃)

= k(xi, xj)− k(xi, x̃)k(xj , x̃), (14)

we finally have a simple form for the entries of Kx̃:

Kx̃
ij =

arccos(k(xi, x̃)) arccos(k(xj , x̃))√
1− k(xi, x̃)2

√
1− k(xj , x̃)2

· (k(xi, xj)− k(xi, x̃)k(xj , x̃)). (15)

Finally, it is possible to consider the geodesic distances in H, by simply replacing
the Gram matrix K associated to the kernel k(., .) by another Gram matrix Kx̃.
1 It is important to note that points on R are presented as vectors from the center of

the hypersphere, while points on Tμ are presented as vectors from μ.

306 N. Courty, T. Burger, and P.-F. Marteau

4 A New Kernel Accounting for Geodesics in
Hyperspherical RKHS

4.1 The Gaussian Case

However, it is possible to interpret Kx̃ directly as the Gram matrix derived from
a new kernel kx̃ such that:

kx̃(xi, xj) =
arccos(k(xi, x̃)) arccos(k(xj , x̃))√

1− k(xi, x̃)2
√
1− k(xj , x̃)2

·(k(xi, xj)− k(xi, x̃)k(xj , x̃)).

with the assumption that if xi = x̃ (resp. xj), then kx̃(xi, xj) = arccosk(xi, xj).
In such a perspective, we first need to establish the following result:

Proposition 1. kx̃ is a kernel.

Proof:
First, let us prove that

k1 : Rn × Rn → R

xi, xj �→ k(xi, xj)− k(xi, x̃)k(xj , x̃)

is a kernel. To do so, let us simply consider

Φ : Rn → H
x �→ φ(x) − k(x, x̃)φ(x̃)

and remark that, obviously,

k2 : Rn × Rn → R

xi, xj �→ Φ(xi)
TΦ(xj)

is a kernel, as k2 corresponds to the Euclidean inner product in an another
RKHS, onto which Φ maps. As it appears in Equation 14 that k1(xi, xj) =
k2(xi, xj), k1 is also a kernel.

Second, remark that kx̃(xi, xj) can be re-written as the following conformal
transformation g(xi)k1(xi, xj)g(xj) with:

g : Rn → R

x �= x̃ �→ arccos(k(x, x̃))√
1− k(x, x̃)2

x̃ �→ 1

which shows [3,14] that kx̃ is a kernel and concludes the proof. �
Finally, we can consider a new vector space Hx̃ with Euclidean inner product
noted 〈., .〉Hx̃ such that for any pair xi, xj ∈ X2, we have:

〈φx̃(xi), φ
x̃(xj)〉Hx̃ = kx̃(xi, xj)

Geodesic Analysis on the Gaussian RKHS Hypersphere 307

with φx̃ being the mapping from Rn onto Hx̃. Then, the non-Euclidean distance
in Rn derived from kx̃ can be interpreted in two different ways: First, as the
geodesic distances among φ(X) on the Gaussian RKHS, and according to a
particular reference point x̃; Second, as the Euclidean distances among φx̃(X) on
a new parametric RKHS Hx̃ (with a data-dependent parameter x̃ corresponding
to the pre-image of the Karcher mean of φ(X)).

4.2 The General Case

Now, let us remark that these results stand not only for the Gaussian RKHS, on
which our work is based, but also for any kernel which maps the dataset onto a
hypersphere, and such as the angle between any pair of vectors is smaller than
or equal to π/2.

This is notably the case for any "normalized" RBF kernel. Let us recall that
a RBF kernel is of the form k(xi, xj) = h(d(xi, xj)) where d is a metric on Rn

and where h is a function from R onto R+. By "normalized", we mean that

– h(0) = 1 (so that the vectors are of unit length in the RKHS, leading to a
hyperspherical manifold)

– h(x) ∈ [0, 1] ∀x ∈ R (so that the dataset remains in a sphere quadrant)

5 Experiments

In this section, we assess the interest of geodesic analysis on hypersperical man-
ifolds thanks to several experiments. First, we evaluate during a clustering task,
the well-grounded of the use of geodesic distances and of the pre-image of Karcher
mean. Then, during a second task involving supervised classification, we eval-
uate their interest through the kernel trick, as we compare our new kernel kx̃,
presented in Section 4.1, to the classical Gaussian kernel k. In both tests, we use
a series of UCI datasets [15].

5.1 Hyperspherical Kernel Clustering

In this experiment, we propose to modify the kernel k-means procedure: First,
the centroids of the clusters are computed as the pre-image of Karcher mean of
each class, instead of the extrinsic mean. Second, the Euclidean distances are
replaced by geodesic distances on the hypersphere of the Gaussian RKHS. Let
us note that the distances are always computed between a centroid mi and a
sample xj (i.e. between a pre-image in Rn and a vector in Rn). Hence, even if
this algorithm (see Algorithm 2) corresponds to a k-means in Hx̃, there is no
need to use the kernel trick with our new kernel: The geodesic distance simply
reads dgeod(xj ,mi) = arccos(k(xj ,mi)).

We compare this algorithm, that we call hyperspherical clustering to the
classical k-means algorithm, its kernelized version [16] and to the spectral clus-
tering algorithm described in [17]. From a qualitative point of view, let us remark

308 N. Courty, T. Burger, and P.-F. Marteau

Algorithm 2. Hyperspherical clustering
Input: dataset X, number of clusters k
Output: k clusters
for i = 1 to k do

Randomly initialize the mi centroid of cluster i
end for
repeat

for j = 1 to p do
for i = 1 to k do

Compute dgeod(xj, mi) = arccos(k(xj ,mi))
end for
cj = argmini dgeod(xj ,mi)

end for
Assign to mi the Karcher mean of the set

{x
 ∈ X/ c
 = i}
until no more changes in the partitioning

that while the k-means does not requires the tuning of any parameter, the three
other algorithms require the setting of σ to the proper value. Moreover, the tra-
ditional k-means and our version in Hx̃ exhibit comparable complexities. They
both are very light from a computational point of view with respect to the spec-
tral clustering algorithm, as this latter requires the computation of the spectrum
of a p× p matrix, which is O(p3)-complex.

The results are presented in Figure 3 for various values of σ, and in Table 1
where the best accuracy rates over the σ’s are given. For all evaluations, the
experiments are repeated 20 times to limit the effect of the random initializa-
tion, and only the mean accuracy and variance over the repetitions is displayed.
Apart from Ionosphere and Glass, on which we are slightly less efficient than
respectively the spectral clustering and the kernel k-means algorithms, our al-
gorithm appears to be the most accurate in peak performance. As suggested by
Figure 3, the performances of Hyperspectral clustering is also rather stable over
a range of sigma values. Of course these preliminary results call for a broader
comparison with more data and other clustering approaches.

5.2 Classification

The main restriction of the new kernel kx̃ is that it relies on a data-dependent
parameter, x̃. As the pre-image of the Karcher mean, x̃ can be understood as
a representative of the dataset X . Thus, if X is separated into several classes,
there is little chances that x̃ fits as a good representative of all the classes (it may
fall between several classes). Hence, we think kx̃ is more adapted to generative
(class-wise) algorithms, in which a dedicated Karcher mean is computed for each
class.

As a consequence, we do not use kx̃ with the state-of-the-art SVM [1], as it
is a discriminative algorithm for which the computation of the Karcher mean is
likely to be unadapted. Instead, we consider the PerTurbo algorithm [18], which

Geodesic Analysis on the Gaussian RKHS Hypersphere 309

Fig. 3. Accuracy rates on the clustering task for different values of σ (on a logarithmic
scale), and for the following algorithms: k-means, spectral clustering, kernel k-means
and hypserspherical clustering

appears to provide similar performances while being generative. Nevertheless,
let us note that our kernel would be adapted to one-class SVM for multi-class
classification problems, such as in [19].

PerTurbo is a classification algorithm inspired from recent advances in com-
puter graphics: Each class is characterized as a manifold in the input space (in a
manner similar to the cloud of points giving birth to the 3D surface of a virtual
object) thanks to an approximation of the Laplace-Beltrami operator [20,21].
As this approximation happens to be the Gaussian kernel, its perturbation mea-
sure (when a test sample is added to the manifold) can be re-interpreted in the

310 N. Courty, T. Burger, and P.-F. Marteau

Table 1. Performances for the best σ. The last column indicates if our method out-
performs the others.

Datasets k-means kernel
k-means

spectral
clustering

Hyperspherical
clustering Best ?

Iris 65.1 (0.5) 66.7 (0.0) 84.9 (3.6) 89.1(0.3)
√

Ecoli 50.0 (2.4) 62.6 (4.9) 54.1 (5.9) 65.5(8.7)
√

Ionosphere 69.1 (6.5) 64.1 (1.4) 72.7(2.5) 71.2 (0.0) •
glass 35.6 (2.9) 54.3(0.9) 49.7 (1.9) 52.9 (1.6) •
vote 59.1 (0.0) 53.4 (0.0) 84.7 (7.3) 89.4(0.21)

√

wine 65.6 (2.5) 67.4 (0.0) 66.8 (1.4) 70.2(4.8)
√

kernel machine learning setting. Moreover, the perturbation measure appears
to correspond to the reconstruction error in Kernel-PCA. Hence, in a nutshell,
PerTurbo can be interpreted as the following algorithm: (1) For each class, learn
a set of eigenfunctions thanks to Kernel-PCA; (2) project any test sample onto
the subspace associated to each class; (3) classify the test sample into the class
for which the distance between the projection into the corresponding subspace
and the sample is the smallest. Thus, PerTurbo can be related to some particular
cases of subspace classifiers [22] in kernelized space.

This interpretation of PerTurbo in the kernel machines setting allows to use
other kernels than the Gaussian one, whereas this latter is the only one which is
proved to approximate the Laplace-Beltrami operator. Hence, we compare the
result of PerTurbo with (1) the Gaussian kernel, (2) our new kernel. In addition,
in order to remain comparable with more classical results of the state of the art,
we also compare the results with C-SVM (using the R package kernlab [23]) using
Gaussian kernel only. For the three algorithms, the experimental conditions are
identical: the training set is made of 50% of the dataset randomly picked up, the
process is repeated 30 times and the mean accuracy and its standard deviation
are considered. The optimal value for the σ parameter is found with a logarith-
mic grid-search. For SVM, we did not use a grid-search for the C parameter, in
order to make sure that the three algorithms have the same number of degrees of
freedom which are fixed through a grid-search. Hence, following [3], we automat-
ically tune C such that it is 10 times the number of training samples involved.
In a multiclass setting, we consider the average number of training samples per
class, i.e.: C = (Total number of training samples × 5)/Number of labels. Al-
though this rule is very efficient, it only provides nearly optimal results, which
may explain why on some datasets, there are little differences with the state-
of-the-art accuracy. On the other hand, if one wants to fully optimize the value
of C so that the regularization of the separating hyperplane is completely con-
trolled, it is also possible to introduce an additional regularization parameter for
PerTurbo and to tune it similarly to C [18]. The results are given in Table 2.
The performances of PerTurbo are slightly lower than the SVM. However, this
is advantageously balanced on more than half of the datasets by the use of a
kernel accounting for geodesic distances. As a consequence, it appears that the

Geodesic Analysis on the Gaussian RKHS Hypersphere 311

Table 2. Description of performances for classification. Mean classification accuracy
rates for Perturbo with Gaussian Kernel with Euclidean (second column) and with
geodesic distances (third column). The last column indicates whether the geodesic
distance leads to some improvements over the Euclidean distance. Results with SVM
are also given for references. The value between parenthesis is the standard deviation.

Datasets SVM PerTurbo
(Euclidean)

PerTurbo
(geodesic) Better

Ionosphere 94.0 (1.1) 92.5 (0.9) 94.2 (1.2)
√

Blood 76.2 (1.8) 76.9 (1.2) 77.5 (1.8)
√

Parkinsons 91.0 (2.5) 95.3 (3.3) 94.9 (1.0) ≈
Iris 96.4 (1.6) 96.3 (1.4) 96.8 (1.0) ≈

Haberman 74.6 (2.4) 75.2 (4.2) 73.7 (0.7) •
Glasses 66.0 (3.9) 62.1 (0.9) 68.8 (3.0)

√

Wines 97.2 (1.5) 84.7 (2.2) 96.8 (1.0)
√

Diabetes 76.9 (1.3) 75.0 (1.8) 73.1 (1.9) •
Australian 86.5 (1.2) 86.2 (1.0) 84.5 (1.6) •
German 75.5 (1.5) 70.5 (1.8) 72.0 (1.5)

√

use of such a kernel on generative classifiers may enhance the results up to the
performances of SVM. On a more qualitative point of view, it is interesting to
recall that when σ increases, the portion of the sphere embedding φ(X) reduces,
so that both (1) the error due to the approximation of the geodesic distance
on the tangent space, and (2) the difference between the geodesic distance and
the Euclidean one, decrease. As a consequence, the difference of performances
between the two kernels should vanish for very high values of σ, and the well-
grounded of the use of geodesic distance (in spite of the approximation in the
tangent space) appears when it induces better performances than the Gaussian
Kernel for small values of σ. These two phenomena are displayed in Figure 4
(for the Blood dataset).

6 Conclusion and Discussion

This work is motivated by a new idea: Some kernels have the interesting property
to map the data onto a portion of the unit hypersphere, and on such a Rieman-
nian manifold, non-linear data description techniques may be more adapted than
linear ones. Thus, we first show how to adapt tools from Riemannian geometry
(geodesic distances, Karcher mean) to RKHS, and we establish on clustering
experiments that this path of study is worthwhile, notably through a new adap-
tation of the k-means algorithm on the hypersphere. Moreover, we prove that
considering first order approximation of geodesic distances in the tangent space
of the manifold is equivalent to use another kernel derived from the original one:
when using this new kernel which directly embeds the geometry of the hyper-
sphere, it is natural to consider linear separability method. This is also assessed
by experiments on classification tasks.

312 N. Courty, T. Burger, and P.-F. Marteau

Fig. 4. Classification accuracy as a function of σ obtained on the Blood dataset. For
large values of σ, accuracies of the two experimented kernels converge.

Although the proposed kernel that relies on the Karcher’s mean is indeed data
dependent, recent applications [19,24] seem to demonstrate that data dependent
kernels may outperform data independent ones, provided that sufficient training
data are available. This opens promising perspectives in multi-kernels learning,
including the boosting of one-class SVM classifiers to address multi-class prob-
lems. This constitutes the most probable follow-up of this work.

Acknowledgments. The authors would like to thank the reviewers for their
useful comments and remarks that helped in improving this paper. This work
was supported by a Chinese Academy of Sciences visiting professorship for senior
international scientists grant.

References

1. Cortes, C., Vapnik, V.: Support vector machine. Machine Learning 20(3), 273–297
(1995)

2. Schölkopf, B., Smola, A., Müller, K.R.: Kernel Principal Component Analysis. In:
Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS,
vol. 1327, pp. 583–588. Springer, Heidelberg (1997)

3. Schölkopf, B., Smola, A.J.: Learning with kernels: Support vector machines, regu-
larization, optimization, and beyond. The MIT Press (2002)

4. Lafferty, J., Lebanon, G.: Diffusion kernels on statistical manifolds. Journal of
Machine Learning Research 6, 129–163 (2005)

5. Fletcher, T., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study
of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

6. Said, S., Courty, N., LeBihan, N., Sangwine, S.J.: Exact principal geodesic analysis
for data on so(3). In: Proceedings of EUSIPCO 2007, Poznan, Poland (2007)

Geodesic Analysis on the Gaussian RKHS Hypersphere 313

7. Sommer, S., Lauze, F., Nielsen, M.: The differential of the exponential map, jacobi
fields and exact principal geodesic analysis. CoRR, abs/1008.1902 (2010)

8. Karcher, H.: Riemannian center of mass and mollifier smoothing. Communications
on Pure and Applied Mathematics 30(5), 509–541 (1977)

9. Sommer, S., Lauze, F., Hauberg, S., Nielsen, M.: Manifold Valued Statistics, Exact
Principal Geodesic Analysis and the Effect of Linear Approximations. In: Dani-
ilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316,
pp. 43–56. Springer, Heidelberg (2010)

10. Kendall, W.S.: Convexity and the hemisphere. Journal of the London Mathematical
Society 2(3), 567 (1991)

11. Mika, S., Schölkopf, B., Smola, A.J., Müller, K.R., Scholz, M., Rätsch, G.: Kernel
pca and de-noising in feature spaces. In: Advances in Neural Information Processing
Systems, pp. 536–542. MIT Press (1999)

12. Kwok, J., Tsang, I.: The pre-image problem in kernel methods. IEEE Trans. on
Neural Networks 15(6), 1517–1525 (2004)

13. Huang, D., Tian, Y., De la Torre, F.: Local isomorphism to solve the pre-image
problem in kernel methods. In: CVPR 2011, pp. 2761–2768 (2011)

14. Amari, S.I., Wu, S.: Improving support vector machine classifiers by modifying
kernel functions. Neural Networks 12(6), 783–789 (1999)

15. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
16. Dhillon, I., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized

cuts. In: KDD, pp. 551–556 (2004)
17. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algo-

rithm. Advances in Neural Information Processing Systems 2, 849–856 (2002)
18. Courty, N., Burger, T., Laurent, J.: PerTurbo: A New Classification Algo-

rithm Based on the Spectrum Perturbations of the Laplace-Beltrami Operator. In:
Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD
2011, Part I. LNCS, vol. 6911, pp. 359–374. Springer, Heidelberg (2011)

19. Chi-Yuan, Y., Zhi-Ying, L., Shie-Jue, L.: Boosting one-class support vector ma-
chines for multi-class classification. Applied Artificial Intelligence 23(4), 297–315
(2009)

20. Coifman, R.R., Lafon, S.: Diffusion maps. Applied and Computational Harmonic
Analysis 21(1), 5–30 (2006)

21. Öztireli, C., Alexa, M., Gross, M.: Spectral sampling of manifolds. ACM Transac-
tion on Graphics, Siggraph Asia (December 2010)

22. Cevikalp, H., Larlus, D., Neamtu, M., Triggs, B., Jurie, F.: Manifold based lo-
cal classifiers: Linear and nonlinear approaches. Journal of Signal Processing Sys-
tems 61(1), 61–73 (2010)

23. Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A.: kernlab-an s4 package for kernel
methods in r (2004)

24. Gong, Y., Lazebnik, S.: Comparing data-dependent and data-independent embed-
dings for classification and ranking of internet images. In: CVPR, pp. 2633–2640.
IEEE (2011)

Boosting Nearest Neighbors for the Efficient

Estimation of Posteriors

Roberto D’Ambrosio1,3, Richard Nock2, Wafa Bel Haj Ali3, Frank Nielsen4,
and Michel Barlaud3,5

1 University Campus Bio-Medico of Rome, Rome, Italy
r.dambrosio@unicampus.it

2 CEREGMIA - Université Antilles-Guyane, Martinique, France
rnock@martinique.univ-ag.fr

3 CNRS - U. Nice, France
{belhajal,barlaud}@i3s.unice.fr

4 Sony Computer Science Laboratories, Inc., Tokyo, Japan
Frank.Nielsen@acm.org

5 Institut Universitaire de France

Abstract. It is an admitted fact that mainstream boosting algorithms
like AdaBoost do not perform well to estimate class conditional probabil-
ities. In this paper, we analyze, in the light of this problem, a recent algo-
rithm, unn, which leverages nearest neighbors while minimizing a convex
loss. Our contribution is threefold. First, we show that there exists a sub-
class of surrogate losses, elsewhere called balanced, whose minimization
brings simple and statistically efficient estimators for Bayes posteriors.
Second, we show explicit convergence rates towards these estimators for
unn, for any such surrogate loss, under a Weak Learning Assumption
which parallels that of classical boosting results. Third and last, we pro-
vide experiments and comparisons on synthetic and real datasets, in-
cluding the challenging SUN computer vision database. Results clearly
display that boosting nearest neighbors may provide highly accurate esti-
mators, sometimes more than a hundred times more accurate than those
of other contenders like support vector machines.

1 Introduction

Boosting refers to the iterative combination of classifiers which produces a clas-
sifier with reduced true risk (with high probability), while the base classifiers
may be weakly accurate [1]. The final, strong classifier h, satisfies im(h) ⊆ R.
Such an output carries out two levels of information. The simplest one is the
sign of the output. This discrete value is sufficient to classify an unknown ob-
servation x: h(x) predicts that x belongs to a class of interest iff it is positive.
The most popular boosting results typically rely on this sole information [1–3]
(and many others). The second level is the real value itself, which carries out as
additional information a magnitude which can be interpreted as a “confidence”
in the classification. This continuous information may be fit into a link function

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 314–329, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Boosting Nearest Neighbors for the Efficient Estimation of Posteriors 315

f : R → [0, 1] to estimate conditional class probabilities, thus lifting the scope
of boosting to that of Bayes decision rule [4]:

P̂r[y = 1|x] = f(h(x)) . (1)

To date, estimating posteriors with boosting has not met the same success as
predicting (discrete) labels. It is widely believed that boosting and conditional
class probability estimation are, up to a large extent, in conflict with each other,
as boosting iteratively improves classification at the price of progressively over-
fitting posteriors [4, 5]. Experimentally, limiting overfitting is usually obtained
by tuning the algorithms towards early stopping [6]. Very recently, a new algo-
rithm was proposed to leverage the famed nearest neighbor (nn) rules [7, 8]. This
algorithm, unn, fits real-valued coefficients for examples in order to minimize a
surrogate risk [2, 9]. These leveraging coefficients are used to balance the votes
in the final k-nn rule. It is proven that, as the number of iterations T → ∞,
unn achieves the global optimum of the surrogate risk at hand for a wide class
of surrogates called strictly convex surrogates [2, 10]. An explicit convergence
rate is obtained for the specific case of the exponential loss, under a so-called
“weak index assumption” [8], generalized in [7]. Our contribution is threefold.
First, we show that there exists a subclass of surrogate losses, elsewhere called
balanced, whose minimization brings simple and efficient estimators for Bayes
posteriors (1). Second, we show explicit convergence rates for unn for any such
surrogate loss under a Weak Learning Assumption which parallels that of clas-
sical boosting results [3]. Third and last, we provide experiments on simulated
and real domains, displaying that boosting nearest neighbors brings very good
results from the conditional class probabilities estimation standpoint, without
the overfitting problem of classical boosting approaches. A serious challenger to
the popular logistic estimator for posteriors estimation also emerges. We end up
with the conclusion that learning posteriors with boosting nearest neighbors ben-
efits from two advantages. First, the weak classifiers being simple examples, they
naturally limit the risk of overfitting compared to more complex weak learners.
Second, we end up learning posteriors using a natural, fixed topology of data,
and not an ad hoc topology relying on an induced classifier.

The remaining of the paper is structured as follows: the next Section presents
definitions, followed by a Section on convex losses and the estimation of pos-
teriors. Then, a Section presents algorithms and results on boosting nearest
neighbors. The two last Sections present experiments with discussions, and
conclude.

2 Definitions

2.1 Estimation

Our setting is that of multiclass multilabel classification (See e.g. [3]). We have
access to an input set of m examples, also called prototypes, S

.
= {(xi,yi), i =

1, 2, ...,m}. Vector yi ∈ {−1, 1}C encodes class memberships, assuming yic = 1

316 R. D’Ambrosio et al.

means that observation xi belongs to class c. S is sampled i.i.d. according to an
unknown distribution D. Given an observation x ∈ O, we wish to estimate the
conditional class probabilities for each class c, also called (estimated) posteriors:

p̂c(x)
.
= P̂r[yc = 1|x] . (2)

We note pc(x)
.
= PrD[yc = 1|x] the corresponding Bayes (true) posteriors.

2.2 Surrogates, Losses and Risks

Perhaps the simplest road towards computing these estimators consists in first
crafting C separate classification problems, each of which leads to estimators for
one class (2). Normalizing estimators to 1 over the C classes yields the values in
(2). Each of these C problems is a one-versus-all classification task, say for class
c, with corresponding sample S(c) = {(xi, yic), i = 1, 2, ...,m}. For each of these
problems, we learn from S a classifier h : O → R out of which we may accurately
compute (2), typically with p̂c(x) = f(h(x)) for some relevant function f . More
sophisticated approaches exist that reduce the number of classifiers by folding
classes in observation variables [3, 4]. Each of them equivalently learn on a sample
of Ω(mC) examples, and it is an easy task to craft from their output a set of C
classifiers that fit into the framework we consider.

There exists a convenient approach to carry out this path as a whole, for each
class c = 1, 2, ..., C: learn h by minimizing a surrogate risk over S [2, 9, 10]. A
surrogate risk has general expression:

εψS (h, c)
.
=

1

m

m∑
i=1

ψ(yich(x)) , (3)

for some function ψ that we call a surrogate loss. Quantity yich(x) ∈ R is called
the edge of classifier h on example (xi,yi) for class c. The surrogate risk is an
estimator of the true surrogate risk computed over D:

εψD(h, c)
.
= ED[ψ(yich(x))] . (4)

Any surrogate loss relevant to classification [9] has to meet sign(hopt(x
∗)) =

sign(2PrD[yc = 1|x = x∗] − 1), where hopt minimizes ED[ψ(ych(x))|x = x�].
Hence, the sign of the optimal classifier hopt is as accurate to predict class
membership as Bayes decision rule. This Fisher consistency requirement for ψ
is called classification calibration [9]. We focus in this paper on the subclass of
classification calibrated surrogates that are strictly convex and differentiable.

Definition 1. [2] A strictly convex loss is a strictly convex function ψ dif-
ferentiable on int(dom(ψ)) satisfying (i) im(ψ) ⊆ R+, (ii) dom(ψ) symmetric
around 0, (iii) ∇ψ(0) < 0.

Definition 1 is extremely general: should we have removed conditions (i) and (ii),
Theorem 6 in [9] brings that it would have encompassed the intersection between

Boosting Nearest Neighbors for the Efficient Estimation of Posteriors 317

strictly convex differentiable functions and classification calibrated functions.
Conditions (i) and (ii) are mainly conveniences for classification: in particular,
it is not hard to see that modulo scaling by a positive constant, the surrogate
risk (3) is an upperbound of the empirical risk for any strictly convex loss.
Minimizing the surrogate risk amounts thus to minimize the empirical risk up to
some extent. We define the Legendre conjugate of any strictly convex loss ψ as
ψ�(x)

.
= x∇−1

ψ (x)−ψ(∇−1
ψ (x)). There exists a particular subset of strictly convex

losses of independent interest [2]. A function φ : [0, 1] → R+ is called permissible
iff it is differentiable on (0, 1), strictly concave and symmetric around x = 1/2
[2, 11]. We adopt the notation φ = −φ [2].

Definition 2. [2] Given some permissible φ, we let ψφ denote the balanced
convex loss with signature φ as:

ψφ(x)
.
=

φ
�
(−x) − φ(0)

φ (1/2)− φ(0)
. (5)

Balanced convex losses have an important rationale: up to differentiability con-
straints, they match the set of symmetric lower-bounded losses defining proper
scoring rules [2], that is, basically, the set of losses that fit to classification prob-
lems without class-dependent misclassification costs. Table 1 provides examples
of surrogate losses, most of which are strictly convex surrogates, some of which
are balanced convex surrogates. We have derived Amari’s α-loss from Amari’s
famed α divergences [12] (proof omitted). The linear Hinge loss is not a balanced
convex loss, yet it figures the limit behavior of balanced convex losses [2]. Remark
that all signatures φ are well-known in the domain of decision-tree induction :
from the top-most to the bottom-most, one may recognize Gini criterion, the
entropy (two expressions), Matsushita’s criterion and the empirical risk [10, 11].

2.3 One Dimensional Exponential Families and Posteriors
Estimation

A (regular) one dimensional exponential family [12] is a set of probability density
functions whose elements admit the following canonical form:

p[x|θ] .
= exp (xθ − ψ(θ)) p0(x) , (6)

where p0(x) normalizes the density, ψ is a strictly convex differentiable function
that we call the signature of the family, and θ is the density’s natural parame-
ter. It was shown in [2] that the efficient minimization of any balanced convex
surrogate risk — i.e. a surrogate risk with a balanced convex loss — amounts to
a maximum likelihood estimation θ̂ = H(x) at some x for an exponential family
whose signature depends solely on the permissible function φ. [2] suggest to use
the corresponding expected parameter of the exponential family as the posterior:

P̂r[y = 1|x] = P̂rφ[y = 1|x;H]
.
= ∇−1

φ
(H(x)) ∈ [0, 1] . (7)

∇−1

φ
plays the role of the link function (1). The quality of such an estimator

shall be addressed in the following Section.

318 R. D’Ambrosio et al.

Table 1. Examples of surrogates ψ (Throughout the paper, we let ln denote the base-
e logarithm, and logz(x)

.
= ln(x)/ ln(z) denote the base-z logarithm). From top to

bottom, the losses are known as: squared loss, (normalized) logistic loss, binary logistic
loss, Matsushita loss [2, 10], linear Hinge loss, exponential loss, Amari’s α-loss, for
α ∈ (−1, 1) [2]. Strictly convex losses are A, B, C, D, F, G. Balanced convex losses
are A, B, C, D (E corresponds to a limit behavior of balanced convex losses [2]). For
each ψ, we give the corresponding estimators p̂c(x) (Theorem 1 and Eqs (9, 11) below:
replace x by hopt(x)), and if they are balanced convex losses, the corresponding concave
signature φ (See text for details).

ψ p̂c(x) φ
A (1− x)2 1

2
(1 + x) x(1− x)

B log2(1 + exp(−x)) [1 + exp(−x)]−1 −x lnx
−(1− x) ln(1− x)

C log2(1 + 2−x)
[
1 + 2−x

]−1 −x log2 x−(1− x) log2(1 − x)

D −x+
√
1 + x2 1

2

(
1 + x√

1+x2

) √
x(1− x)

E 1
2
x(sign(x)− 1)

{
1 if x > 0

0 if x < 0
2min{x, 1− x}

F exp(−x) [1 + exp(−2x)]−1 N/A

G
(
1 + 1−α2

4
x
)− 1+α

1−α

[
1 +

(
4−(1−α2)x

4+(1−α2)x

) 2
1−α

]−1

N/A

3 Strictly Convex Losses and the Efficient Estimation
of Posteriors

There is a rationale to use (7) as the posterior: the duality between natural
and expectation parameters of exponential families, via Legendre duality [2, 9],
and the fact that the domain of the expectation parameter of one dimensional
exponential families whose signature is (minus) a permissible function is the
interval [0, 1] [2]. We improve below this rationale, with the proof that Bayes
posteriors satisfy (7) for the classifier which is the population minimizer of (7).

Theorem 1. Suppose ψ strictly convex differentiable. The true surrogate risk
ED[ψ(yich(x))] is minimized at the unique hopt(x) satisfying:

∇ψ(−hopt(x))

∇ψ(hopt(x))
=

pc(x)

1− pc(x)
. (8)

Furthermore, is ψ is a balanced convex loss, then the population minimizer hopt

of ED[ψφ(yich(x))] satisfies:

pc(x) = ∇−1

φ
(hopt(x)) , (9)

for which

ED[ψφ(yichopt(x))] =
φ(pc(x))− φ(0)

φ(1/2)− φ(0)
. (10)

Boosting Nearest Neighbors for the Efficient Estimation of Posteriors 319

(Proof omitted) Table 1 provides examples of expressions for pc(x) as in (9). Eq.
(8) in Theorem (1) brings that we may compute an estimator p̂c(x) as:

p̂c(x) =
∇ψ(−h(x))

∇ψ(h(x)) +∇ψ(−h(x))
. (11)

This simple expression is folklore, at least for the logistic and exponential losses
[4, 6]. The essential contribution of Theorem 1 relies on bringing a strong ra-
tionale to the use of (7), as the estimators converge to Bayes posteriors in the
infinite sample case. Let us give some finite sample properties for the estimation
(7). We show that the sample-wise estimators of (9) are efficient estimators of
(9); this is not a surprise, but comes from properties of exponential families [13].
What is perhaps more surprising is that the corresponding aggregation of clas-
sifiers is not a linear combination of all estimating classifiers, but a generalized
∇−1

φ
-mean.

Theorem 2. Suppose we sample n datasets S
(c)
j , j = 1, 2, ..., n. Denote ĥopt,j the

population minimizer for E
S
(c)
j

[ψφ(yich(x))]. Then each p̂c,j(x)
.
= ∇−1

φ
(ĥopt,j(x))

is the only efficient estimator for pc(x). The corresponding classifier ĥopt aggre-

gating all ĥopt,j, is: ĥopt(x)
.
= ∇φ

(
1
nx

∑
j:(x,.)∈S

(c)
j

∇−1

φ
(ĥopt,j(x))

)
, ∀x ∈ ∪jSj,

where 1 ≤ nx ≤ n is the number of subsets containing x.

(Proof omitted)

4 Leveraging and boosting Nearest Neighbors

The nearest neighbor rule belongs to the oldest, simplest and most widely studied
classification algorithms [14, 15]. We denote by NNk(x) the set of the k-nearest
neighbors (with integer constant k > 0) of an example (x,y) in set S with respect
to a non-negative real-valued “distance” function. This function is defined on
domain O and measures how much two observations differ from each other. This
dissimilarity function thus may not necessarily satisfy the triangle inequality of
metrics. For the sake of readability, we let j ∼k x denote the assertion that
example (xj ,yj) belongs to NNk(x). We shall abbreviate j ∼k xi by j ∼k i. To
classify an observation x ∈ O, the k-nn rule H over S computes the sum of class
vectors of its nearest neighbors, that is: H(x) =

∑
j∼kx

1 ◦ yj , where ◦ is the
Hadamard product. H predicts that x belongs to each class whose corresponding
coordinate in the final vector is positive. A leveraged k-nn rule is a generalization
of this to:

H(x) =
∑
j∼kx

αj ◦ yj , (14)

where αj ∈ RC is a leveraging vector for the classes in yj . Leveraging approaches
to nearest neighbors are not new [16, 17], yet to the best of our knowledge no

320 R. D’Ambrosio et al.

Algorithm 1. Algorithm Universal Nearest Neighbors, unn(S, ψ, k)

Input: S = {(xi,yi), i = 1, 2, ...,m, xi ∈ O, yi ∈ {−1, 1}C}, ψ strictly convex loss
(Definition 1), k ∈ N∗;

Let αj ← 0,∀j = 1, 2, ...,m;
for c = 1, 2, ...,C do

Let w ← −∇ψ(0)1;
for t = 1, 2, ..., T do

[I.0] Let j ← Wic(S,w);
[I.1] Let δj ∈ R solution of:

∑
i:j∼ki

yicyjc∇ψ

(
δjyicyjc +∇−1

ψ (−wi)
)
= 0 ; (12)

[I.2] ∀i : j ∼k i, let

wi ← −∇ψ

(
δjyicyjc +∇−1

ψ (−wi)
)

, (13)

[I.3] Let αjc ← αjc + δj ;

Output: H(x)
.
=
∑

j∼kx αj ◦ yj

convergence results or rates were known, at least until the algorithm unn [7, 8].
Algorithm 1 gives a simplified version of the unn algorithm of [7, 8] which learns
a leveraged k-nn. Oracle Wic(S,w) is the analogous for nn of the classical
weak learners for boosting: it takes learning sample S and weights w over S, and
returns the index of some example in S which is to be leveraged. [8] prove that for
any strictly convex loss ψ, unn converges to the global optimum of the surrogate
risk at hand. However, they prove boosting-compliant convergence rates only for
the exponential loss. For all other strictly convex losses, there is no insight on
the rates with which unn may converge towards the optimum of the surrogate
risk at hand. We now provide such explicit convergence rates under the following
Weak Learning Assumption:

WLA: There exist some ϑ > 0, > 0 such that, given any k ∈ N∗, c = 1, 2, ..., C
and any distribution w over S, the weak index chooser oracle Wic returns
an index j such that the following two statements hold:
(i) Prw[j ∼k i] ≥ ;
(ii) Prw[yjc �= yic|j ∼k i] ≤ 1/2 − ϑ or Prw[yjc �= yic|j ∼k i] ≥ 1/2 + ϑ.

Requirement (i) is a weak coverage requirement, which “encourages” Wic to
choose indexes in dense regions of S. Before studying the boosting abilities of
unn, we focus again on surrogate risks. So far, the surrogate risk (3) has been
evaluated with respect to a single class. In a multiclass multilabel setting, we
may compute the total surrogate risk over all classes as:

εψS (H)
.
=

1

C

C∑
c=1

εψS (hc, c) , (15)

where H is the set of all C classifiers h1, h2, ..., hC that have been trained to
minimize each εψS (., c), c = 1, 2, ..., C. We split classifiers just for convenience

Boosting Nearest Neighbors for the Efficient Estimation of Posteriors 321

in the analysis: if one trains a single classifier H : O × {1, 2, ..., C} → R like
for example [3], then we define hc to be H in which the second input coordi-
nate is fixed to be c. Minimizing the total surrogate risk is not only efficient to
estimate posteriors (Section 3): it is also useful to reduce the error in label pre-
diction, as the total surrogate risk is an upperbound for the Hamming risk [3]:

εHS (H)
.
= (1/(mC))

∑C
c=1

∑m
i=1 I[yichc(xi) < 0], where I[.] denotes the indicator

variable. It is indeed not hard to check that for any strictly convex surrogate loss
ψ, we have εHS (H) ≤ (1/ψ(0))× εψS (H). We are left with the following question
about unn:

“are there sufficient conditions on the surrogate loss ψ that guarantee, under the
sole WLA, a convergence rate towards the optimum of (15) with unn ?”

We give a positive answer to this question when the surrogate loss meets the
following smoothness requirement.

Definition 3. [18] ψ is said to be ω strongly smooth iff there exists some ω > 0
such that, for all x, x′ ∈ int(dom(ψ)), Dψ(x

′‖x) ≤ ω
2 (x

′ − x)2, where

Dψ(x
′‖x) .

= ψ(x′)− ψ(x)− (x′ − x)∇ψ(x) (16)

denotes the Bregman divergence with generator ψ [2].

Denote nj
.
= |{i : j ∼k i}| the number of examples in S of which (xj ,yj) is a

nearest neighbor, and n∗
.
= maxj nj . Denote also Hopt the leveraged k-nn which

minimizes εψS (H); it corresponds to the set of classifiers ĥopt of Section 3 that
would minimize (3) over each class. We are now ready to state our main result

(remark that εψS (Hopt) ≤ ψ(0)).

Theorem 3. Suppose (WLA) holds and choose as ψ is any ω strongly smooth,

strictly convex loss. Then for any fixed τ ∈ [εψS (Hopt), ψ(0)], unn has fit a lever-

aged k-nn classifier H satisfying εψS (H) ≤ τ provided the number of boosting
iterations T in the inner loop satisfies:

T ≥ (ψ(0)− τ)ωmn∗
2ϑ2 2

. (17)

Proof sketch: To fit unn to the notations of (15), we let hc represent the

leveraged k-nn in which each αj is restricted to αjc. We first analyze εψS (hc, c)
for some fixed c in the outer loop of Algorithm 1, after all αjc have been computed
in the inner loop. We adopt the following notations in this proof: we plug in the

weight notation the iteration t and class c, so that w
(c)
ti denotes the weight of

example xi at the beginning of the “for c” loop of Algorithm 1.
ψ is ω strongly smooth is equivalent to ψ̃ being strongly convex with parameter

ω−1 [18], that is,

ψ̃(w)− 1

2ω
w2 is convex, (18)

322 R. D’Ambrosio et al.

where we use notation ψ̃(x)
.
= ψ�(−x). Any convex function h satisfies h(w′) ≥

h(w)+∇h(w)(w
′−w). We apply this inequality taking as h the function in (18).

We obtain, ∀t = 1, 2, ..., T, ∀i = 1, 2, ...,m, ∀c = 1, 2, ..., C:

Dψ̃

(
w

(c)
(t+1)i||w

(c)
ti

)
≥ 1

2ω

(
w

(c)
(t+1)i − w

(c)
ti

)2

. (19)

On the other hand, Cauchy-Schwartz inequality and (12) yield:

∀j ∈ S,
∑

i:j∼ki

(
r
(c)
ij

)2 ∑
i:j∼ki

(w
(c)
(t+1)i − w

(c)
ti)2 ≥

⎛⎝ ∑
i:j∼ki

r
(c)
ij w

(c)
ti

⎞⎠2

. (20)

Lemma 1. Under the WLA, index j returned by Wic at iteration t satisfies∣∣∣∑i:j∼ki
w

(c)
ti r

(c)
ij

∣∣∣ ≥ 2ϑ .

(proof omitted) Letting e(t) ∈ {1, 2, ...,m} denote the index of the example
returned at iteration t by Wic in Algorithm 1, and using (19), (20), Lemma 1 in
this order, we arrive after few derivations (skipped because of the lack of space):

1

m

m∑
i=1

Dψ̃

(
w

(c)
(t+1)i||w

(c)
ti

)
≥ 1

2ωm

∑
i:e(t)∼ki

(
w

(c)
(t+1)i − w

(c)
ti

)2

≥ 2ϑ2�2

ωmne(t)
≥ 2ϑ2�2

ωmn∗
.

Summing these inequalities for t = 1, 2, ..., T yields:

T∑
t=1

1

m

m∑
i=1

Dψ̃

(
w

(c)
(t+1)i||w

(c)
ti

)
≥ 2Tϑ2 2

ωmn∗
. (21)

Now, unn meets the following property ([8], A.2):

εψS (h(t+1)c, c)− εψS (htc, c) = − 1

m

m∑
i=1

Dψ̃

(
w

(c)
(t+1)i||w

(c)
ti

)
, (22)

where h(t+1)c denotes hc after the t
th iteration in the inner loop of Algorithm 1.

We unravel (22), using the fact that all α are initialized to the null vector, and
obtain that at the end of the inner loop, hc satisfies:

εψS (hc, c) = ψ(0)−
T∑

t=1

1

m

m∑
i=1

Dψ̃

(
w

(c)
(t+1)i||w

(c)
ti

)
≤ ψ(0)− 2Tϑ2 2

ωmn∗
, (23)

from (21). There remains to compute the minimal value of T for which the right
hand side of (23) becomes no greater than some user-fixed τ ∈ [0, 1] to obtain

that εψS (hc, c) ≤ τ . The aggregation of the bounds for each c = 1, 2, ..., C in

εψS (H) is immediate as it is an average of εψS (hc, c) over all classes. Hence, this

minimal value of T , used for each c = 1, 2, ..., C, also yields εψS (H) ≤ τ . This
ends the proof of Theorem 3.

Boosting Nearest Neighbors for the Efficient Estimation of Posteriors 323

Table 2. Computation of δjc and the weight update rule of our implementation of
unn, for the strictly convex losses of Table 1. unn leverages example j for class c, and
the weight update is that of example i (See text for details and notations).

δjc, see (26) g : wi ← g(wi)
A 2Wjc − 1 wi − 2δjcyicyjc

B ln
Wjc

1−Wjc

wi
wi ln 2+(1−wi ln 2)×exp(δjcyicyjc)

C log2
Wjc

1−Wjc

wi

wi+(1−wi)×2
δjcyicyjc

D
2Wjc−1

2
√

Wjc(1−Wjc)
1− 1−wi+

√
wi(2−wi)δjcyicyjc√

1+δ2
jc

wi(2−wi)+2(1−wi)
√

wi(2−wi)δjcyicyjc

E N/A N/A

F 1
2
ln

Wjc

1−Wjc
exp(−δjcyicyjc)

G 4
1−α2

(
(Wjc)

2
1−α −(1−Wjc)

2
1−α

(Wjc)
2

1−α +(1−Wjc)
2

1−α

)
4

1−α2 ×
(

1−α2

4
δjcyicyjc +

(
1+α
2
√

wi

)1−α
)− 2

1−α

Section 3 has underlined the importance of balanced convex losses in obtaining
simple efficient estimators for conditional class probabilities. Coupled with The-
orem 3, we now show that unn may be a fast approach to obtain such estimators.

Corollary 1. Consider any permissible φ that has been scaled without loss of
generality so that φ(1/2) = 1, φ(0) = φ(1) = 0. Then for the corresponding
balanced convex loss ψ = ψφ and under the WLA, picking

T >
mn∗

2ϑ2 2 minx∈(0,1)

∣∣∣∂2φ
∂x2

∣∣∣ (24)

in the inner loop of unn, for each c = 1, 2, ..., C, guarantees to yield an optimal
leveraged k-nn H, satisfying εψS (H) = εψS (Hopt). This leveraged k-nn yields effi-
cient estimators for conditional class probabilities, for each class, by computing:

p̂c(x) = ∇−1

φ
(hc(x)) . (25)

(Proof omitted) For the most popular permissible functions (Table 1), quan-

tity minx∈(0,1)

∣∣∣∂2φ
∂x2

∣∣∣ does not take too small value: its values are respectively 8,

4/ ln 2, 4 for the permissible functions corresponding to the squared loss, logis-
tic loss, Matsushita loss. Hence, in these cases, the bound for T in (24) is not
significantly affected by this term.

5 Experiments

5.1 Computing Leveraging Coefficients and Weights Update

Fix for short S
(c)
jb

.
= {i : j ∼k i ∧ yic = byjc} for b ∈ {+,−}. (12) may be sim-

plified as
∑

i∈S
(c)
j+

∇ψ

(
δ +∇−1

ψ (−wi)
)
=

∑
i∈S

(c)
j−

∇ψ

(
−δ +∇−1

ψ (−wi)
)
. There

324 R. D’Ambrosio et al.

−4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−2

−1

0

1

2

−2

−1

0

1

2

0

.2

.4

.6

.8

1

−2

−1

0

1

2

−2

−1

0

1

2

−1

0

1

2

3

−2

−1

0

1

2

−2−1.5−1−0.500.511 52

0

0.2

0.4

0.6

0.8

1

−2

−1

0

1

2
−2

−1

0

1

2

0.5

0

0.5

1

1.5

S unn(exp) unn(Mat)

Fig. 1. From left to right: example of simulated dataset with σ = 1.1; the estimated
posterior for class 1 obtained by unn(exp); the corresponding gridwise kl divergence
for class 1; the estimated posterior for class 1 obtained by unn(Mat); the corresponding
gridwise kl divergence for class 1 (see (28) and text for details).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

1

2

3

4

5

6

σ

S
ym

m
et

ric
 K

ul
lb

ac
k

Le
ib

le
r

D
iv

er
ge

nc
e

UNN(exp)

UNN(log)

UNN(mat)

SVM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

σ

Je
ns

en
 −

 S
ha

nn
on

 D
iv

er
ge

nc
e

UNN(exp)
UNN(log)
UNN(mat)
SVM

Fig. 2. Average Symmetric kl-divergence (left) and JensenShannon divergence (right)
as a function of σ on simulated datasets, for unn(exp), unn(log), unn(Mat) (left,
k = 10) and SVM .

is no closed form solution to this equation in the general case. While it can
be simply approximated with dichotomic search, it buys significant computa-
tion time, as this approximation has to be performed for each couple (c, t). We
tested a much faster alternative which produces results that are in general ex-
perimentally quite competitive, consisting in solving instead:

∑
i∈S

(c)
j+

wi∇ψ (δ) =∑
i∈S

(c)
j−

wi∇ψ (−δ). We get equivalently that δ satisfies:

∇ψ(−δ)

∇ψ(δ)
=

Wjc

1−Wjc
, (26)

with Wjc
.
= (

∑
i∈S

(c)
j+

wi)/(
∑

i∈S
(c)
j+

wi +
∑

i∈S
(c)
j−

wi). Remark the similarity with

(8). Table 2 gives the corresponding expressions for δ and the weight updates.

5.2 General Experimental Settings

We have tested three flavors of unn: with the exponential loss (F in Table 1),
the logistic loss (B in Table 1) and Matsushita’s loss (D in Table 1). All three

Boosting Nearest Neighbors for the Efficient Estimation of Posteriors 325

a respectively referred to as unn(exp), unn(log) and unn(Mat). It is the first
time this last flavor is tested, even from the classification standpoint. We chose
support vector machines (SVM) as the contender against which to compare unn:
SVM are large margin classifiers with convenient methods to obtain estimators
for the posteriors [19]. For all these algorithms, we compute the estimation of
posteriors as follows: we use (11) for unn(exp), (25) for unn(log) and unn(Mat).
For SVM, we use the method of [19], which, given a SVM f for class c, forms
the posterior:

p̂c(x)
.
=

1

1 + exp(af(x) + b)
, (27)

where a and b are estimated by maximizing the log-likelihood of the training
sample with a five-fold cross validation. On synthetic datasets SVM performs
equally using both linear and radial basis function kernel. Therefore, in the
following we indicate with SVM the linear Support Vector Machine. We use
three metrics to evaluate the algorithms: Two computed to evaluate performance
on synthetic data and one to evaluate performance on real datasets. On simulated
data, we compute first Kullback-Leibler (kl) divergences between the true and
estimated posterior and after their mean obtaining the Symmetric Kullback-
Leibler divergences:

DKL(p̂‖p) .
=
∑

c Pr[c]
∫
Pr[x]p̂c(x) ln

p̂c(x)
pc(x)

dμ , DKL(p‖p̂) .
=

∑
c Pr[c]

∫
Pr[x] pc(x) ln

pc(x)
p̂c(x)

dμ

(28)

SymmDKL
.
=

1

2
(DKL(p̂‖p) +DKL(p‖p̂)) (29)

and also we compute JensenShannon (js) divergence:

DJS
.
=

1

2
(DKL(p̂‖q) +DKL(p‖q)) (30)

where q is the average of the two distribution. Our estimate, SymmD̂KL and
D̂JS rely on a simple fine-grained grid approximation of the integral over the
subsets of O of sufficient mass according to μ. On real data, we compute a couple
of metrics. First, we compute the F-measure of the classifiers (the harmonic
average of precision and recall), based on thresholding the probabilistic output
and deciding that x belong to class c iff p̂c(x) ≥ κ, for varying κ ∈ (1/2, 1).
Second, we compute the rejection rate, that is, the proportion of observations
for which p̂c(x) < κ. Either we plot couples of curves for the F-measure and
rejection rates, or we summarize both metrics by their average values as κ ranges
through (1/2, 1), which amounts to compute the area under the corresponding
curves.

5.3 Results on Simulated Data

We evaluated the goodness-of-fit of the estimates on simulated datasets with
the following experiments. We crafted a general domain consisting of C = 3

326 R. D’Ambrosio et al.

Table 3. Average results over simulated data, for unn(exp), unn(log), unn(Mat) with
four different values of k, and for support vector machines with linear (SVM)

k unn(exp) unn(log) unn(Mat) SVM

SymmD̂KL

10 0.599 1.029 0.848

3.533
20 0.372 0.760 0.687
30 0.293 0.610 0.646
40 0.254 0.534 0.632

D̂JS

10 0.067 0.113 0.0562

0.256
20 0.045 0.086 0.045
30 0.036 0.072 0.043
40 0.032 0.065 0.043

F-measure

10 90.32 89.59 90.58

91.02
20 90.62 89.53 90.81
30 90.70 89.26 90.84
40 90.72 88.82 90.88

equiprobable classes, each of which follows a Gaussian N(μ, σI), for σ ∈ [0.1, 1.1]
with steps of 0.005, and μ remains the same. For each value of σ, we compute
the average over ten simulations, each of which consists of 1500 training exam-
ples and 4500 testing examples. We get overall several thousands datasets, on
which all algorithms are tested. Figure 1 presents an example of such datasets,
along with results obtained by unn(exp) and unn(Mat) from the standpoints
of the posterior estimates and kl-divergence on the same class. The estimators
are rather good, with the largest mismatches (kl-divergence) located near the
frontiers of classes. Also, unn(Mat) tends to outperform unn(exp).

Figure 2 synthesizes the results from the kl and js divergence standpoints.
Two clear conclusions can be drawn from these results. First, unn is the clear
winner over SVM for the posteriors estimation task. The results of each flavor of
unn is indeed better than those of SVM by orders of magnitude. This is all the
more important as the kernels we used are the theoretical kernels of choice given
the way we have simulated data. The second conclusion is that unn(Mat) is
the best of all flavors of unn, a fact also confirmed by the synthetic results of
Table 3. Its behavior (Figure 2) is also monotonous: it is predictable that it
increases with the degree of overlap between classes, that is, with σ. From the
classification standpoint, the average F-measure metrics display a very slight
advantage to SVM.

The most important conclusion that can be drawn from the simulated data
is shown in Figure 3: as the number of boosting iterations T increase, unn does
not overfit posteriors in general. The only hitch — not statistically significant
— is the case σ > 0.7 for unn(Mat), but the differences are of very small order
compared to the standard deviations of the kl-divergence.

5.4 Results on the SUN Database Domains

We have crafted, out of the challenging SUN computer vision database [20], three
datasets, consisting in taking all pictures from the first ten (SUN 10), twenty
(SUN 20) or thirty (SUN 30) classes. We have compared unn(exp), unn(log),
unn(Mat) and SVM on each dataset, by computing the average values, over

Boosting Nearest Neighbors for the Efficient Estimation of Posteriors 327

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

σ

S
ym

m
et

ric
 K

ul
lb

ac
k

Le
ib

le
r

D
iv

er
ge

nc
e

2m
5m
10m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

0.5

1

1.5

2

2.5

3

σ

S
ym

m
et

ric
 K

ul
lb

ac
k

Le
ib

le
r

D
iv

er
ge

nc
e

2m
5m
10m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

0.5

1

1.5

2

2.5

3

3.5

4

σ

S
ym

m
et

ric
 K

ul
lb

ac
k

Le
ib

le
r

D
iv

er
ge

nc
e

2m
5m
10m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

0.02

0.04

0.06

0.08

0.1

0.12

σ

Je
ns

en
 S

ha
nn

on
 d

iv
er

ge
nc

e

2m
5m
10m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

σ

Je
ns

en
 S

ha
nn

on
 d

iv
er

ge
nc

e

2m
5m
10m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

0.02

0.04

0.06

0.08

0.1

0.12

σ

Je
ns

en
 S

ha
nn

on
 d

iv
er

ge
nc

e

2m
5m
10m

Fig. 3. Average symmetric kl-divergence (top) and JensenShannon divergence (bot-
tom) as a function of σ on simulated datasets, for unn(exp) (left), unn(log) (center),
unn(Mat) (right), when the number of boosting iterations T varies in {2m, 5m, 10m}.
The color code in the same on each plot.

Table 4. Area under the (F)-measure (in percentage) and (R)ejection rate on the SUN
databases. For each database, the best F and R are written in bold faces.

unn(exp) unn(log) unn(Mat) SVMl
F R F R F R F R

SUN 10 89.91 21.35 84.46 5.18 72.47 3.39 87.99 22.32
SUN 20 82.82 36.64 72.34 8.51 55.46 2.51 74.60 33.25
SUN 30 73.39 49.92 61.02 14.99 40.83 5.99 62.81 39.95

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Probability Threshold

F
−

m
ea

su
re

UNN(exp)

UNN(log)

UNN(Mat)

SVM linear

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Probability Threshold

F
−

m
ea

su
re

UNN(exp)

UNN(log)

UNN(Mat)

SVM linear

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability Threshold

F
−

m
ea

su
re

SVM linear

UNN(Mat)

UNN(exp)

UNN(log)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability Threshold

R
ej

ec
tio

n
R

at
e

UNN(log)

UNN(exp)

UNN(Mat)

SVM linear

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability Threshold

R
ej

ec
tio

n
R

at
e

UNN(exp)

UNN(log)

UNN(Mat)

SVM linear

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability Threshold

R
ej

ec
tio

n
R

at
e

UNN(Mat)

SVM linear

UNN(exp)

UNN(log)

Fig. 4. F-measure (top row) and rejection rates (bottom row) on the SUN domains,
with C = 10 (left), C = 20 (center) and C = 30 (right, see Table 3 for notations)

328 R. D’Ambrosio et al.

the threshold κ, of the F-measure and the rejection rate. Table 4 summarizes
the results obtained. This table somehow confirms that classification and pos-
terior estimation may be conflicting goals when it comes to boosting [4, 5], as
unn(Mat) achieves very poor results compared to the other algorithms. Fur-
thermore, unn(exp) appears to the clear winner over all algorithms for this
classification task. These results have to be appreciated in the light of the re-
jection rates: in comparison with the other algorithms, unn(Mat) rejects a very
small proportion of the examples, this indicating a high recall for the algorithm.
Figure 4 completes the picture by detailing F-measure and rejection rates plots.
The F-measure plots clearly display the better performances of unn(exp) com-
pared to the other algorithms, and the fact that unn(Mat) displays very stable
performances. The rejection rates plots show that unn(Mat) indeed rejects a
very small proportion of examples, even for large values of κ.

6 Conclusion

Boosting algorithms are remarkably simple and efficient from the classification
standpoint, and are being used in a rapidly increasing number of domains and
problems [6]. In some sense, it would be too bad that such successes be impeded
when it comes to posterior estimation [5]. Experimental results display that this
estimation is possible, but it necessitates a very fine tuning of the algorithms [6].
The point of our paper is that estimating class conditional probabilities may
be possible, without such tedious tunings, and sometimes even without overfit-
ting, if we boost topological approaches to learning like nearest neighbors [8];
such approaches offer very promising results in the field of computer vision [7].
There is a simple explanation to this fact. For any classifier, the conditional
class probability estimation for some x in (7) is be the same as for any other
observation in the vicinity of x, where the “vicinity” is to be understood from
the classifier standpoint. When boosting decision trees, the vicinity of x corre-
sponds to observations classified by the same leaf as x. As the number of leaves
of the tree increases, the vicinity gets narrowed, which weakens the estimation
in (7) and thus overfits the corresponding estimated density. Ultimately, linear
combinations of such trees, such as those performed in AdaBoost, make such a
fine-grained approximation of the local topology of data that the estimators get
irreparably confined to the borders of the interval [0, 1] [5]. Nearest neighbors do
not have such a drawback, as the set of k-nearest neighbors in S of some obser-
vation x spans a region of O which does not change throughout the iterations.
Furthermore, nearest neighbor rules exploit a topology of data which, under reg-
ularity conditions about the true posteriors, also carries out information about
these posteriors. For these reasons, nearest neighbors might be a key entry for a
reliable estimation of posteriors with boosting.

Acknowledgments. R. Nock acknowledges a visiting grant from Institut Uni-
versitaire de France / Université de Nice.

Boosting Nearest Neighbors for the Efficient Estimation of Posteriors 329

References

1. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: a new
explanation for the effectiveness of voting methods. Annals of Statistics 26, 1651–
1686 (1998)

2. Nock, R., Nielsen, F.: On the efficient minimization of classification-calibrated
surrogates. In: NIPS*21, pp. 1201–1208 (2008)

3. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. Machine Learning Journal 37, 297–336 (1999)

4. Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic Regression: a Statistical
View of Boosting. Annals of Statistics 28, 337–374 (2000)

5. Buja, A., Mease, D., Wyner, A.-J.: Comment: Boosting algorithms: regularization,
prediction and model fitting. Statistical Science 22, 506–512 (2007)

6. Bühlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and
model fitting. Statistical Science 22, 477–505 (2007)

7. Nock, R., Piro, P., Nielsen, F., Bel Haj Ali, W., Barlaud, M.: Boosting k-NN
for categorization of natural scenes. International Journal of Computer Vision (to
appear, 2012)

8. Piro, P., Nock, R., Nielsen, F., Barlaud, M.: Leveraging k-NN for generic classifi-
cation boosting. Neurocomputing 80, 3–9 (2012)

9. Bartlett, P., Jordan, M., McAuliffe, J.D.: Convexity, classification, and risk bounds.
Journal of the Am. Stat. Assoc. 101, 138–156 (2006)

10. Nock, R., Nielsen, F.: Bregman divergences and surrogates for learning. IEEE
Trans. on Pattern Analysis and Machine Intelligence 31(11), 2048–2059 (2009)

11. Kearns, M.J., Mansour, Y.: On the boosting ability of top-down decision tree
learning algorithms. Journal of Comp. Syst. Sci. 58, 109–128 (1999)

12. Amari, S.-I., Nagaoka, H.: Methods of Information Geometry. Oxford University
Press (2000)

13. Müller-Funk, U., Pukelsheim, F., Witting, H.: On the attainment of the Cramér-
Rao bound in Lr-differentiable families of distributions. Annals of Statistics, 1742–
1748 (1989)

14. Cover, T.-M., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. on
Information Theory 13, 21–27 (1967)

15. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition.
Springer (1996)

16. Sebban, M., Nock, R., Lallich, S.: Boosting Neighborhood-Based Classifiers. In:
Proc. of the 18th International Conference on Machine Learning, pp. 505–512.
Morgan Kaufmann (2001)

17. Sebban, M., Nock, R., Lallich, S.: Stopping criterion for boosting-based data re-
duction techniques: from binary to multiclass problems. J. of Mach. Learn. Res. 3,
863–885 (2003)

18. Kakade, S., Shalev-Shwartz, S., Tewari, A.: Applications of strong convexity–
strong smoothness duality to learning with matrices. Technical Report CoRR
abs/0910.0610, Computing Res. Repository (2009)

19. Platt, J.-C.: Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp.
61–74. MIT Press (1999)

20. Xiao, J., Hays, J., Ehringer, K.-A., Oliva, A., Torralba, A.: SUN database: Large-
scale scene recognition from abbey to zoo. In: Proc. of IEEE International Confer-
ence on Computer Vision and Pattern Recognition, pp. 3485–3492 (2010)

Diversity Regularized Ensemble Pruning

Nan Li1,2, Yang Yu1, and Zhi-Hua Zhou1

1 National Key Laboratory for Novel Software Technology
Nanjing University, Nanjing 210046, China

2 School of Mathematical Sciences, Soochow University, Suzhou 215006, China
{lin,yuy,zhouzh}@lamda.nju.edu.cn

Abstract. Diversity among individual classifiers is recognized to play a
key role in ensemble, however, few theoretical properties are known for
classification. In this paper, by focusing on the popular ensemble prun-
ing setting (i.e., combining classifier by voting and measuring diversity
in pairwise manner), we present a theoretical study on the effect of di-
versity on the generalization performance of voting in the PAC-learning
framework. It is disclosed that the diversity is closely-related to the hy-
pothesis space complexity, and encouraging diversity can be regarded to
apply regularization on ensemble methods. Guided by this analysis, we
apply explicit diversity regularization to ensemble pruning, and propose
the Diversity Regularized Ensemble Pruning (DREP) method. Experi-
mental results show the effectiveness of DREP.

Keywords: diversity, ensemble pruning, diversity regularization.

1 Introduction

Ensemble methods [33], which train multiple classifiers for one single task, are
among the state-of-the-art machine learning approaches. It is widely accepted
that ensemble methods usually achieve better generalization performance than
single classifiers, and they have achieved great successes in a large variety of
real-word applications.

Generally speaking, an ensemble is built in two steps: first multiple classifiers
are trained for one task, and then these classifiers are combined together to get
a better performance in some manners like voting. Given multiple trained indi-
vidual classifiers, instead of combining all of them, there are many studies tring
to select a subset from them to comprise the ensemble [28]. In the literature,
the task of reducing ensemble sizes is called as ensemble pruning [19], selective
ensemble [35], ensemble selection [6] or ensemble thinning [1]. Currently, we do
not distinguish between them and use ensemble pruning for simplicity. By pro-
ducing ensembles of smaller sizes, ensemble pruning has the apparent advantage
of improving storage and computational efficiency for predictions. Furthermore,
both theoretical and empirical studies have shown that ensemble pruning can
also improve the generalization performance of ensemble [35,6,32,20], that is, the
pruned ensemble can achieve better performance than the complete ensemble.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 330–345, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Diversity Regularized Ensemble Pruning 331

In the ensemble pruning literature, greedy pruning methods which search the
space of possible classifier subsets by taking greedy local search have drawn
much attention [24,20], it is because compared with methods that directly select
optimal or near-optimal classifier subsets, they are able to achieve comparative
performance and robustness at much smaller computational costs. There are
two salient parameters in greedy pruning methods: the direction for searching
the space (i.e., forward and backward) and the criterion for evaluating available
actions at each search step. Since it is shown that the direction does not signifi-
cantly affect the performance [24], much attention has been paid on the design of
the evaluation criterion. As diversity among individual classifiers is widely rec-
ognized to be key to the success of an ensemble, many evaluation criteria have
been developed to select diverse individual classifiers, mainly by smart heuris-
tics [1,23,20,24]. In practice, although positive correlation has been demonstrated
between diversity and accuracy of ensemble [9,16,11], few theoretical prosperities
of ensemble diversity is known. Moreover, the usefulness of exploiting diversity
measures in building stronger ensemble was doubted in [15,27].

In this paper, concentrating on a popular setting of ensemble pruning where
the individual classifiers are combined by voting and the diversity is measured in
the pairwise manner, we present a theoretical analysis on the effect of diversity on
the generalization performance of voting based on the probably approximately
correct learning (PAC-learning) framework [29]. To our best knowledge, this
is the first PAC-style analysis on diversity’s effect on voting. We show that
encouraging larger diversity leads to smaller hypothesis space complexity and
thus better generalization performance, which implies that controlling diversity
can be regarded to apply regularization on ensemble methods. Then, guided by
the theoretical analysis, we propose the DREP method which is a greedy forward
ensemble pruning method with explicit diversity regularization. Experimental
results show the effectiveness of the DREP method.

The remainder of the paper is organized as follows. Section 2 gives a brief
review on ensemble selection and ensemble diversity. Section 3 presents our the-
oretical study on the role of diversity in voting. Based on the theoretical results,
Section 4 proposes the DREP method, followed by Section 5 which reports on
the experimental results. Finally, the paper is concluded in Section 6.

2 Related Work

With the goal of improving storage and computational efficiency as well as gener-
alization performance, ensemble pruning deals with the problem of reducing en-
semble sizes. The first work on this topic was possibly done by Margineantu and
Dietterich [19], which tried to prune AdaBoost, but later Tamon and Xiang [26]
showed that the boosting pruning problem is intractable even to approximate.
Instead of pruning ensembles generated by sequential methods, Zhou et al. [35]
and Caruana et al. [6] respectively studied on pruning ensembles generated by
parallel methods such as Bagging [3] and parallel heterogeneous ensembles con-
sisting of different types of individual classifiers, and it was shown that better

332 N. Li, Y. Yu, and Z.-H. Zhou

performance can be obtained at smaller ensemble sizes. Ever since, most ensem-
ble pruning studies were devoted to parallel ensemble methods.

Given a set of trained classifiers, selecting the sub-ensemble with the best
generalization performance is difficult mainly due to two reasons: First, it is
not easy to estimate the generalization performance of a sub-ensemble; second,
finding the optimal subset is a combinatorial search problem with exponential
computational complexity, thus it is unfeasible to compute the exact solution
by exhaustive search and approximate search is needed. In the past decade, a
number of methods have been proposed to overcome this difficulty [28], which can
be roughly classified into two groups based on their employed search methods.
The first group of methods use global search to directly select the optimal or
near-optimal classifier subset. In the literature, many techniques have been used,
such as genetic algorithm [35], semi-definite programming [31], clustering [12,17],
sparse optimization with sparsity-inducing prior [7] or �1-norm constraint [18],
etc. In practice, this kind of methods can achieve good performance, but their
computational costs are usually quite large.

The second group of ensemble pruning methods is based on greedy local search
of the space of all possible ensemble subsets [20,24]. According to the search di-
rection, this group of methods can be further divided into greedy forward pruning
methods which start with empty set and iteratively add the classifier optimizing
certain criterion, and greedy backward methods that start with the complete
ensemble and iteratively eliminate classifiers. It has been shown that greedy
pruning methods are able to achieve comparative performance and robustness
with global search methods but at much smaller computational costs [20,13].
Moreover, based on extensive experiments, Partalas et al. [24] suggested to use
the greedy forward methods because both directions achieve similar performance
but the forward direction produces smaller ensemble sizes. Then, the study of
greedy pruning methods was mainly devoted to the criterion that is used for
evaluating available actions at each local search step. Since the diversity within
an ensemble is widely recognized to be important to its success, many criteria
have been proposed to select diverse individual classifiers, such as Kappa [19,1],
complementarity [21,20], orientation [22,20], margin distance [21,20], FES [23],
etc. It is easy to see that most of these criteria are based on smart heuristics.

In practice, the importance of diversity was first discovered from error analysis
for regression [14], and then extended to classification. For classification, it has
been observed from empirical studies like [9] that there exists positive correlation
between diversity and accuracy of ensemble. Also, some theoretical studies have
shown that encouraging diversity is beneficial. For example, Kuncheva et al. [16]
found that negative dependence between individual classifiers is beneficial to the
accuracy of an ensemble, Fumera and Roli [11] found that the performance of en-
semble depends on the performance of individual classifiers and their correlation.
Based on current results, we can see that it is no problem to reach that encour-
aging diversity is beneficial to the performance of ensemble, but it is hard to tell
the theoretical properties of diversity in ensemble. In the famous margin expla-
nation of voting [25], the diversity is totally not considered in the framework.

Diversity Regularized Ensemble Pruning 333

Also, some doubts have been raised on the usefulness of exploiting diversity mea-
sures in building stronger ensembles [15,27]. Therefore, understanding ensemble
diversity remains an important issue in ensemble learning and further investiga-
tions are needed. Recently, by defining diversity and ensemble combination rule
in the parameter space, our previous work [30] showed that diversity control can
play a role of regularization as in statistical learning methods, which, however,
relies on linear classifiers and average combination and thus cannot be applied
to other kind of classifiers and voting combination. In this work, we consider the
popular ensemble pruning setting, i.e., the diversity is measured in the output
space which leaves the specification of classifiers unimportant, and the individual
classifiers are combined by voting.

3 Diversity and Generalization Performance of Voting

In ensemble pruning, voting is one of the most widely used methods to combine
individual classifiers. In this section, we give a theoretical study on the effect of
diversity on the generalization performance of voting.

3.1 Basics and Diversity Measure

Consider binary classification, given a set of n trained classifiersH = {hi(x)}ni=1,
where each classifier hi : X �→ {−1,+1} is a mapping from the feature space
X to the class label set {−1,+1}, the voting rule defines a decision function by
taking an average of classifiers in H as

f(x;H) =
1

n

∑n

i=1
hi(x) , (1)

and it predicts the class label of x as sign[f(x;H)]. Obviously, it makes wrong
prediction on example (x, y) only if yf(x;H) ≤ 0, and yf(x;H) is called the
margin of f at (x, y).

Let D is the underlying distribution over X ×{−1,+1}, and S = {(xi, yi)}mi=1

is a set of examples randomly sampled from D, the generalization error (denoted
as errg(f)) and the empirical error with margin θ on S (denoted as errθS(f))
are respectively defined as

errg(f) = P(x,y)∼D[yf(x) ≤ 0] and errθS(f) =
1

m

∑m

i=1
I[yif(xi) ≤ θ] , (2)

where I[z] is the indicator function which takes 1 if z is true, and 0 otherwise.

Although there is no generally accepted formal definition of diversity in the
literature [5,34], popular diversity measures are usually formalized based on
pairwise difference between every pair of individual classifiers [15], such as Q-
statistics, correlation coefficient, disagreement measure and κ-statistics. In this
work, we also measure diversity based on pairwise difference, and the definition
is given as follows.

334 N. Li, Y. Yu, and Z.-H. Zhou

Definition 1. Given a set of m examples S = {(xi, yi)}mi=1, the diversity of
classifier set H = {hi(x)}ni=1 on S is defined as

div(H) = 1− 1∑
1≤i�=j≤n 1

∑
1≤i�=j≤n

diff(hi, hj) , (3)

where diff(·, ·) measures the pairwise difference between two classifiers as

diff(hi, hj) =
1

m

∑m

k=1
hi(xk)hj(xk) . (4)

It is obvious that the difference diff(hi, hj) falls into the interval [−1, 1], and
diff(hi, hj) equals to 1 (or −1) only if two classifiers hi and hj always make the
same (or opposite) predictions on the data sample S, and the smaller diff(hi, hj),
the larger difference between hi and hj . Consequently, since the diversity is based
on the average of pairwise differences, we can see that the larger div(H) the larger
the diversity of the classifier set H .

It is easy to find that this diversity measure is closely-related with the dis-
agreement measure [15]. Moreover, different from [30] which defines the diversity
in the parameter space of classifiers, here this diversity measure is defined in the
output space, thus can cover various kinds of individual classifiers.

3.2 Theoretical Results

Our analysis is based on the PAC-learning framework [29], which is one of the
most widely used framework for analyzing learning algorithms. Before giving the
main results, we first introduce some necessary background.

In learning theory, it is known that the generalization error of a learning al-
gorithm can be bounded by its empirical error and the complexity of feasible
hypothesis space [29,2]. Since the hypothesis space is uncountable for many learn-
ing methods, the hypothesis space complexity is often described by a quantity
called covering number, which is defined as below.

Definition 2. Let B be a metric space with metric ρ. Given a set of m examples
S = {xi}mi=1 and a function space F , characterize every f ∈ F with a vector
vS(f) = [f(x1), . . . , f(xm)]� ∈ Bm. The covering number in p-norm Np(F , ε, S)
is the minimum number l of vectors u1, . . . ,ul ∈ Bm such that, for all f ∈ F
there exists j ∈ {1, . . . , l},

‖ρ(vS(f),uj)‖p =
(∑m

i=1
ρ(f(xi), uj,i)

p
)1/p

≤ m1/pε ,

and Np(F , ε,m) = supS:|S|=m Np(F , ε, S).

Currently, we show how the ensemble diversity affects the generalization perfor-
mance of voting. In particular, our study mainly focuses on the effect of diversity
on the hypothesis space complexity of voting. Before presenting the main result,
we give the following lemma.

Diversity Regularized Ensemble Pruning 335

Lemma 1. Given a set of classifiers H = {hi(x)}ni=1 and a set of examples
S = {(xi, yi)}mi=1, denote f = [f(x1;H), . . . , f(xm;H)]� be the output of the
decision function f ’s outputs on S. On data set S, if div(H) ≥ q, then it follows

‖f‖1 ≤ m
√
1/n+ (1− 1/n)(1− q) .

Proof. By basic algebra, we have

‖f‖22 =
∑m

i=1

(
1

n

∑n

t=1
ht(xi)

)2

=
∑m

i=1

(
1

n
+

1

n2

∑
1≤j �=k≤n

hj(xi)hk(xi)

)
= m (1/n+ (1 − div(H))(1 − 1/n)) ≥ 0 .

We can find the quantity 1/n+ (1 − q)(1 − 1/n) is always non-negative. Then,
based on the inequality ‖f‖1 ≤

√
m‖f‖2, we can obtain the result directly. ��

Theorem 1. Let F denote the function space such that for every f ∈ F , there
exist a set of n classifiers H = {hi(x)}ni=1 satisfying f(x) = 1

n

∑n
i=1 hi(x) and

div(H) ≥ q for any i.i.d. sample S of size m, then for any ε, it holds

log2N∞(F , ε,m) ≤ 36(1 + lnn)

ε2
log2

(
2m�4

√
1/n+ (1− 1/n)(1− q)/ε + 2� + 1

)
.

Proof. This proof follows similar strategy with Theorem 4 and 5 in [31], here
we give the main sketch and focus on the difference. If ε ≥ 1, the result follows
trivially, so it is assumed ε ≤ 1 subsequently. First, the interval [−1−ε/2, 1+ε/2]
is divided into n = !4/ε+ 2" sub-intervals, each of size no larger than ε/2, and
θj be the boundaries of the sub-intervals so that θj − θj−1 ≤ ε/2 for all j. Let
jl(i) denote the maximum index of θj such that f(xi) − θjl(i) ≥ ε/2 and jr(i)
the maximum index of θj such that f(xi)− θjr(i) ≤ −ε/2. Let

hi = [h1(xi), . . . , hT (xi)]
�, h′

i = [hi,−θjl(i)]
� and h′′

i = [−hi, θjr(i)]
�.

Then, based on similar steps in [31], the covering number N∞(F , ε, S) is no more
than the number of possible values of the vector β, which is defined as

β = gp

(∑m

i=1
aih

′
i +

∑m

i=1
bih

′′
i

)
, (5)

where gp(u) is a component-wise function mapping each component ui of u to
p · sign(ui)|ui|p−1 with p ≥ 2, and ai’s and bi’s are non-negative integers under
the constraint ∑m

i=1
(ai + bi) ≤ 36(1 + lnn)/ε2 . (6)

It is easy to find that there is an one-to-one mapping between h′
i and h′′

i , so
the number of possible values of h′

i and h′′
i equals to that of h′

i. Let f =
[f(x1), . . . , f(xm)]� be f ’s outputs on S, based on Lemma 1, we can obtain
that ‖f‖1 ≤ m

√
1/n+ (1 − 1/n)(1− q). Then, based on the definition of θjl(i),

we can find that the number of possible values of h′
i is no more than

m
⌈
4
√
1/n+ (1− 1/n)(1− q)/ε+ 2

⌉
.

336 N. Li, Y. Yu, and Z.-H. Zhou

Consequently, from (5) and (6) we can find that the number of possible values
of (β, z) is upper-bounded by(

2m!4
√
1/n+ (1 − 1/n)(1− q)/ε+ 2"+ 1

)36(1+lnn)/ε2

,

which completes the proof. ��
Furthermore, based on Theorem 1 we can obtain the relationship between di-
versity and generalization performance of voting, which is given as follows.

Corollary 1. Under the assumptions of Theorem 1, with probability at least
1− δ, for any θ > 0, every function f ∈ F satisfies the following bound

errg(f) ≤ errθS(f) +
C√
m

(
lnn ln

(
m
√
1/n+ (1− 1/n)(1− q)

)
θ2

+ ln
1

δ

)1/2

,

where C is a constant.

Proof. Based on Bartlett’s Lemma 4 in [2], we can obtain

errg(f) ≤ errθS(f) +

√
2

m

(
lnN∞(F , ε/2, 2m) + ln

2

δ

)
. (7)

By applying Theorem 1 on (7), we can obtain the result. ��
Above results show that, when other factors are fixed, encouraging high diversity
among individual classifiers (i.e., large value of q in Theorem 1 and Corollary
1) will make the hypothesis space complexity of voting small, and thus better
generalization performance can be expected.

3.3 Remarks and Discussions

It can be observed from above theoretical analysis that the diversity is directly
related to the hypothesis space complexity of voting, and then affects its general-
ization performance. From the view of statistical learning, controlling ensemble
diversity has a direct impact on the size of hypothesis space of voting, indicating
that it plays a role similar with regularization as in popular statistical learning
methods. In other words, it implies that encouraging diversity can be regarded to
apply regularization on ensemble methods. Also, this result show that encour-
aging diversity is beneficial but not straightforwardly related to the ensemble
accuracy, which coincides with previous study in [16].

To our best knowledge, this work provides the first PAC-style analysis on the
role of diversity in voting. The margin explanation of voting presented in [25] is
also in the PAC-learning framework, but it is obvious that our work is signifi-
cantly different because diversity is considered explicitly. The hypothesis space
complexity of voting becomes small when the diversity increases, but it is sim-
ply characterized by the VC-dimension of individual classifier in [25]. Intuitively,
due to the diversity, some parts of the hypothesis space of voting are infeasible,
excluding these parts leads to tighter bounds, while assuming the hypothesis
space compact makes the bounds looser.

Diversity Regularized Ensemble Pruning 337

4 Diversity Regularized Ensemble Pruning

In this section, we apply above theoretical analysis to ensemble pruning, and
propose the Diversity Regularized Ensemble Pruning (DREP) method, which is
a greedy forward ensemble pruning method.

The main difference between DREP and existing greedy pruning methods lies
in the criterion for evaluating available actions at each step. In the previous
section, it is shown in Corollary 1 that the generalization performance of an
ensemble depends on its empirical error and diversity, so it is natural to design
the evaluation criterion accordingly. However, it is easy to see that in the bound
the diversity has complicated operations with factors including the sample size
m, number of classifier n, η and θ, etc. Then for a given problem, it will be
difficult to specify the tradeoff between empirical error and diversity. Hence, a
tradeoff parameter is involved in the proposed method.

Moreover, it is easy to see from (3) that when we want to evaluate the diver-
sity of a new ensemble which is obtained by adding one individual classifier, it
is needed to compute the pairwise difference between the new added classifier
and all the existing classifiers. As a consequence, at each step, if there are many
candidate individual classifiers, directly evaluating diversity based on the defi-
nition will be of high computational complexity. To avoid this issue, we use a
more efficient way based on the following proposition.

Propsition 1. Given a classifier h′(x) and a classifier set H = {hi(x)}ni=1, let
H ′ = H ∪ {h′(x)}, the diversity of H ′ on S = {(xi, yi)}mi=1 is

div(H ′) =
2

n+ 1
+

n− 1

n+ 1
div(H)− 2

n+ 1
diff(h′, H) (8)

where div(H) is the diversity of H on S and diff(h′, H) measures the difference
between new classifier h′(x) and H as

diff(h′, H) =
1

m

∑m

i=1
h′(xi)f(xi;H) . (9)

and f(x;H) is the decision function of H defined in (1).

Proof. Based on the definitions in (3) and (4), it is not hard to obtain

div(H ′) = 1− 1

n(n+ 1)

(∑
1≤i�=j≤n

diff(hi, hj) + 2
∑n

i=1
diff(h′, hi)

)
= 1− 1

n(n+ 1)

(
n(n− 1)(1− div(H)) +

2

m

∑m

i=1

(
h′(xi)

∑n

k=1
hk(xi)

))
=

2

n+ 1
+

n− 1

n+ 1
div(H)− 2

m(n+ 1)

∑m

i=1
h′(xi)f(x;H) ,

which leads to the result directly. ��

338 N. Li, Y. Yu, and Z.-H. Zhou

Algorithm 1. The DREP method

Input: ensemble to be pruned H = {hi(x)}ni=1, validation data set S =
{(xi, yi)}mi=1 and tradeoff parameter ρ ∈ (0, 1)

Output: pruned ensemble H∗

1: initialize H∗ ← ∅
2: h(x)← the classifier in H with the lowest error on S
3: H∗ ← {h(x)} and H ← H \ {h(x)}
4: repeat
5: for each h′(x) in H do
6: compute dh′ ← diff(h′,H∗) based on (9)
7: end for
8: sort classifiers h′(x)′s in H in the ascending order of dh′ ’s
9: Γ ← the first �ρ · |H |� classifiers in the sorted list
10: h(x)← the classifier in Γ which most reduces the error of H∗ on S
11: H∗ ← {h(x)} and H ← H \ {h(x)}
12: until the error of H∗ on S cannot be reduced

It can be found that at each step of greedy forward pruning, div(H) is a constant
and div(H ′) is a monotonically decreasing function of diff(h′, H). Thus, at each
step, the task of estimating diversity div(H ′) can be substituted by computing
the difference diff(h′, H). The candidate classifier h′ that can achieve smaller
diff(h′, H) will lead to larger diversity div(H ′). Obviously, in such a manner,
we only need to compute the difference between the candidate classifier and
the decision function of existing sub-ensemble rather than each of its members,
which reduces the computational cost heavily comparing with the computation
of diversity from scratch.

The pseudocode of the DREP method is presented in Algorithm 1. Specifically,
it has three inputs: the ensemble H to be pruned, the validate data set S which
is used to estimate empirical error and diversity and the tradeoff parameter
ρ. Starting with the classifier with lowest error on validation set (lines 2-3),
the DREP method iteratively selects classifier based on both empirical error
and diversity. Concretely, at each step it first sorts the candidate classifiers in
the ascending order of their differences with current sub-ensemble (lines 5-8),
and then from the front part of sorted list it selects the classifier which can
most reduce the empirical error on the validate data set. It can be found from
Proposition 1 that the front classifiers will lead to large ensemble diversity. Also,
among the front classifiers the one which reduces the empirical error most will
be selected, thus it can be expected that the obtained ensemble will have both
large diversity and small empirical error. These two criteria are balanced by the
parameter ρ, i.e., the fraction of classifiers that are considered when minimizing
empirical error. Obviously, a large value of ρ means that more emphasis on the
empirical error, while a small ρ pays more attention on the diversity.

Diversity Regularized Ensemble Pruning 339

5 Empirical Studies

In this section, we perform experiments to evaluate the proposed DREP method,
also to validate the theoretical results.

5.1 Settings

In experiments, we use twenty binary classification data sets from the UCI repos-
itory [10], amongst which four data sets are generated from multi-class data sets,
that is, letter* classifies ‘u’ against ‘v’ on letter; optdigits classifies ‘01234’ against
‘56789’ on optdigits; satimage* classifies labels ‘1’ and ‘2’ against those with ‘5’
and ‘7’ on satimage; and vehicle* classifies ‘bus’ and ‘opel’ against ‘van’ and
‘saab’ on vehicle. Since these data sets are widely used benchmarks, we omit
their summary information for clarity here.

The DREP method and several comparative methods are evaluated in a series
of experiments. Specifically, each experiment is performed on one data set, and
mainly involves the following steps:

1. Randomly split the data set into three parts: 1/3 as training set, 1/3 as
validation set and the rest as test set;

2. Using Bagging [3] to build an ensemble of 100 CART decision trees [4] on
the training set;

3. Prune the obtained ensemble by using ensemble pruning methods, whose
parameters are determined on the validation set;

4. Evaluate the performance of pruned ensemble on the test set, also record
the size of the pruned ensemble.

On each data set, each experiment is run for thirty times. At each time, the sizes
of pruned ensemble and its error rates on test set are recorded, and finally the
averaged results with standard deviation over multiple runs are reported.

In experiments, the comparative methods include two benchmark methods:

– Bagging [3]: it is the full ensemble of all the 100 CART trees;
– Best Individual (BI): it selects the individual classifier which has the best

performance on the validation set.

Moreover, the following greedy forward ensemble pruning methods are imple-
mented and compared:

– Reduce-Error (RE) [19,6]: it starts with the classifier with lowest error, and
then greedily selects the classifier that reduces error most;

– Kappa [19,1]: it starts with the pair of classifiers with lowest κ-statistics,
and then iteratively adds the classifier with lowest κ-statistics with respect
to current sub-ensemble;

– Complementarity (CP) [21,20]: this method starts with the classifier with
lowest error, it incorporates at each iteration the one which is most comple-
mentary to the sub-ensemble;

340 N. Li, Y. Yu, and Z.-H. Zhou

Table 1. Error rates (mean±std.) achieved by comparative methods. On each data
set an entry is marked with bullet ‘•’ (or circle ‘◦’) if it is significantly better (or
worse) than unpruned Bagging based on paired t-test at the significance level 0.1; the
win/tie/loss counts are summarized in the last row.

Data set Bagging BI RE Kappa CP MD DREP

australian .134±.019 .148±.023◦ .133±.015 .138±.017 .130±.014 .133±.016 .129±.016

breast-cancer .278±.043 .293±.051 .275±.035 .280±.033 .288±.031 .311±.052◦ .265±.024•
breast-w .040±.010 .050±.012◦ .034±.009• .041±.011 .036±.009• .035±.008 .034±.008•
diabetes .239±.023 .256±.023◦ .236±.022 .249±.020◦ .240±.020 .243±.020 .234±.017

germen .247±.016 .292±.021◦ .248±.021 .254±.022 .250±.017 .247±.019 .248±.015

haberman .261±.026 .270±.030◦ .257±.025 .258±.034 .267±.029 .283±.037◦ .252±.021

heart-statlog .204±.039 .226±.041 .194±.034 .203±.035 .188±.034• .195±.033 .183±.027•
hepatitis .165±.030 .206±.049◦ .164±.037 .183±.029◦ .162±.031 .170±.036 .159±.027

ionosphere .088±.024 .106±.034◦ .069±.018• .089±.030 .070±.019• .079±.024 .066±.017•
kr-vs-kp .014±.005 .013±.005 .009±.002• .017±.005 .012±.004• .015±.004 .008±.002•
letter* .047±.009 .075±.013◦ .039±.008• .047±.008 .039±.008• .044±.008 .035±.007•
liver-dis .313±.030 .362±.041◦ .312±.032 .327±.039 .313±.035 .323±.038 .311±.029

optdigits* .046±.005 .109±.008◦ .041±.004• .045±.005 .040±.004• .044±.005 .040±.003•
satimage* .032±.004 .051±.007◦ .031±.004 .033±.005 .030±.004• .032±.004 .029±.004•
sick .016±.003 .017±.004 .015±.003 .017±.003 .015±.003 .016±.003 .014±.002•
sonar .245±.050 .285±.036◦ .235±.044 .245±.051 .216±.038• .233±.044 .230±.030•
spambase .071±.005 .094±.007◦ .066±.005• .070±.004 .066±.004• .069±.005• .066±.004•
tic-tac-toe .060±.018 .101±.021◦ .039±.008• .082±.026◦ .043±.010• .078±.022◦ .038±.007•
vehicle* .207±.020 .235±.029◦ .207±.021 .214±.023 .204±.019 .215±.025 .203±.019

vote .038±.011 .043±.014 .035±.011 .041±.016 .035±.013 .037±.011 .033±.007•
win/tie/loss – 0/5/15 7/13/0 0/17/3 10/10/0 1/16/3 13/7/0

– Margin Distance (MD) [21,20]: at each iteration, this method incorporates
into the ensemble tho classifier that reduces the distance from the margin
vector to the objective point in the first quadrant the most.

It is easy to find that RE and Kappa consider only empirical error and diversity
respectively, while CP, MD and DREP take both of them into account. For each
ensemble pruning method, we will stop and return the sub-ensemble if its error
rate on validation set cannot be reduced. In the experiments, the κ-statistics,
complementarity measure, margin distance are estimated on the validation set,
and the parameter ρ of DREP is selected in {0.2, 0.25, . . . , 0.5} on validation set.

All the experiments are run on a PC with 2GB memory.

5.2 Results

The error rates achieved by comparative methods are shown in Table 1. On each
data set, paired t-test at significance level 0.1 is performed to compare perfor-
mance of BI and ensemble pruning methods with that of Bagging. In Table 1, an
entry is marked with bullet ‘•’ (or circle ‘◦’) if it is significantly better (or worse)
than Bagging, and the win/tie/loss counts are summarized in the last row. From
the results, it is shown that BI which selects the best performed individual loses
at 15 out of 20 data sets against Bagging, this coincides with the fact that en-
semble usually achieves better performance than a single classifier. Meanwhile,
the performance of ensemble pruning methods is much better. Specifically, RE,

Diversity Regularized Ensemble Pruning 341

1 2 3 4 5

DREP

RE

CP

Kappa

MD

1.30

2.50

2.55

3.90

4.75

Fig. 1. The result of the Freidman test for comparing the performance of five ensem-
ble pruning methods on 20 data sets. The dots indicate the average ranks, the bars
indicate the critical difference with the Bonferroni-Dunn test at significance level 0.1,
and compared methods having non-overlapped bars are significantly different.

CP and DREP respectively achieve 7, 10 and 13 wins but no losses compared
with Bagging, while Kappa and MD respectively make 17 and 16 ties and only
3 losses. At the same time, from Table 2 it can be seen that the ensemble sizes
are reduced from 100 to about 20. Hence, the purpose of ensemble pruning (that
is, reduce ensemble size whilst keeping or improving performance) is reached;
also amongst comparative ensemble pruning methods, it appears that DREP
method performs quite well (it achieves the best win/tie/loss counts and the
smallest average ensemble size).

To better compare the performance of greedy ensemble pruning methods,
we perform Freidman test [8], which is a non-parametric statistical significance
test for comparing multiple classifiers on multiple data sets. Roughly speak-
ing, the Freidman test is based on the ranks of compared methods on multiple
data sets, and it is performed in conjunction with the Bonferroni-Dunn test
at certain significance level. Here, we employ it to compare the five greedy en-
semble pruning methods used in our experiments, and the result is shown in
Fig. 1. Amongst the five pruning methods, the DREP method gets the highest
average rank (1.30), followed by RE (2.50) and CP (2.55), while the average
ranks of MD and CP are 3.90 and 4.75 respectively. Since the critical differ-
ence with the two-tailed Bonferroni-Dunn test for 5 classifiers on 20 data sets
is 2.241

√
(5 · 6)/(6 · 20) ≈ 1.121, we can find that the performance of DREP is

significantly better than other methods (in Fig. 1 the bar of DREP is not over-
lapping with either of other methods). It is easy to understand that the perfor-
mance of DREP is better than that of RE and Kappa, because RE and Kappa
only consider the empirical risk and the diversity respectively while DREP take
both of them into account. Also, RE performs significantly better than Kappa,
which may imply that empirical error play a more important role in the trade-
off. This coincides with our theoretical results, because diversity plays a role
of regularization which is used to prevent overfitting, and only considering reg-
ularization usually does not help to improve the generalization performance.
Furthermore, it can be seen that DREP performs better than CP and MD, this
can be explained that DREP explicitly tradeoffs empirical error and diversity
regularization, while CP and MD implicitly consider the tradeoff at a fixed level
and can be easily affected by noises.

342 N. Li, Y. Yu, and Z.-H. Zhou

Table 2. Ensemble sizes (mean±std.) of the pruned ensemble. On each data set, the
entry achieving the smallest ensemble size is bolded, and the averaged sizes over all
data sets are given in the last row.

Data set RE Kappa CP MD DREP

australian 15.4±3.5 18.7±5.5 18.0±4.1 19.9±6.4 18.3±4.2

breast-cancer 18.4±3.8 22.0±9.2 18.1±5.1 24.1±10.0 18.1±4.5

breast-w 17.5±4.3 15.5±3.9 20.1±6.3 23.1±8.5 17.1±4.3

diabetes 23.5±5.8 26.7±11.4 21.9±6.4 29.0±10.1 17.6±4.7

germen 21.5±5.9 25.9±8.6 20.5±5.9 28.5±10.3 17.1±3.9

haberman 16.7±4.8 15.7±5.0 21.3±6.7 22.8±8.5 18.0±4.4

heart-statlog 18.9±4.1 22.9±8.1 21.9±5.8 23.5±7.8 17.2±4.4

hepatitis 14.4±2.6 12.7±3.3 17.7±5.3 18.9±5.9 17.7±4.6

ionosphere 15.6±2.6 21.8±9.0 19.5±5.8 23.8±7.7 17.5±4.6

kr-vs-kp 16.1±3.7 22.2±10.0 23.1±5.8 21.5±6.6 17.7±4.1

letter* 22.9±4.6 25.0±7.6 22.0±5.2 27.8±9.2 24.7±4.5

liver-dis 22.7±5.7 23.6±10.9 21.5±5.6 25.5±9.3 18.5±4.6

optdigits* 31.9±6.6 37.4±10.8 28.1±5.0 37.7±10.7 25.1±4.8

satimage* 25.1±5.5 32.5±9.6 23.3±5.8 30.9±9.0 24.8±4.7

sick 15.8±3.2 22.7±10.9 20.9±4.7 22.8±9.0 17.7±4.4

sonar 20.1±5.0 22.1±9.8 21.1±5.9 24.9±9.5 18.7±4.9

spambase 25.3±6.8 27.5±8.6 24.3±7.0 28.4±8.3 18.1±4.7

tic-tac-toe 24.2±4.4 36.4±17.1 24.1±5.9 38.3±16.4 18.9±4.3

vehicle* 22.0±5.3 25.7±8.5 22.3±7.1 25.2±9.4 24.9±4.9

vote 12.8±1.6 15.9±5.7 16.6±5.3 18.8±6.0 18.3±4.3

average 20.0 23.6 21.3 25.8 19.3

Table 2 presents the sizes of pruned ensembles, which shows that all the
greedy pruning methods heavily reduce the ensemble sizes. Moreover, it can be
seen that DREP achieves the smallest sizes on 10 data sets, also the smallest
average ensemble size.

Furthermore, Fig. 2 plots the test error curves of Bagging and compared en-
semble pruning methods on heart-statlog and letter*. In detail, for Bagging the
individual classifiers are aggregated in random order, and for ensemble pruning
methods the greedy selection process will not be stopped until all the individ-
uals are included, that is, the individual classifiers are aggregated in an order
specified by the pruning methods. At each ensemble size the error is estimated
on the test data, and the final results are obtained by averaging results of thirty
runs, and they are plotted against ensemble sizes in Fig. 2. It can be seen that
as ensemble size increases, the test error of Bagging decreases and converges,
but the test errors of greedy ensemble pruning methods decrease much faster
and are lower than Bagging, which indicates that better performance can be
achieved at smaller ensemble sizes by using greedy ensemble pruning methods.
By comparing the curves of DREP and other pruning methods, we can find that
the test error of DREP decrease faster than other methods, even faster than
RE which selects individual classifiers based on empirical error on the validation
data set. This is not hard to understand because RE may overfit the validation
data, while the diversity regularization used by DREP tends to help it achieve
better performance.

Diversity Regularized Ensemble Pruning 343

0 20 40 60 80 100
0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25
 heart−statlog

Size

E
rr

or
Bagging
RE
Kappa
CP
MD
DREP

0 20 40 60 80 100

0.04

0.045

0.05

0.055

0.06
 letter*

Size

E
rr

or

Bagging
RE
Kappa
CP
MD
DREP

(a) (b)

Fig. 2. Averaged test errors curves of Bagging and compared ensemble pruning meth-
ods on (a) heart-statlog and (b) letter*, where horizontal axis and vertical axis corre-
spond to ensemble size and test error respectively. For ensemble pruning methods, we
do not stop the greedy selection process until all the individual classifiers are included.

In summary, we can see that with the help of diversity regularization, DREP
is able to achieve significantly better generalization performance with smaller
ensemble size than the compared methods.

6 Conclusion and Future Work

In ensemble learning, understanding diversity is one of the most important fun-
damental issues. This work focuses on the most popular setting of ensemble
pruning, where the individual classifiers are combined by voting and the di-
versity is measured in the pairwise manner. In the PAC-learning framework, it
presents a theoretical analysis on the role of diversity in voting, which is, to our
best knowledge, the first PAC-style analysis on the effect of diversity in voting.
It discloses that by enforcing large diversity, the hypothesis space complexity of
voting can be reduced, and then better generalization performance can be ex-
pected. In the view of statistical learning, this implies that encouraging diversity
can be regarded to apply regularization on ensemble methods. This may intro-
duce a novel perspective of diversity in ensemble learning. Guided by this result,
a greedy ensemble pruning method called DREP is proposed to explicitly exploit
diversity regularization. Experimental results show that with the help of diver-
sity regularization, DREP is able to achieve significantly better generalization
performance with smaller ensemble size than the compared methods.

The current work applies diversity regularization on greedy ensemble pruning,
it will be an interesting future work to develop ensemble learning methods which
explicitly exploits diversity regularization. Recently it has been found that the
ensemble diversity exists at multiple orders of correlation [5,34], thus it is also
of great interest to study whether the theoretical results on diversity still hold
in that case.

344 N. Li, Y. Yu, and Z.-H. Zhou

Acknowledgements. The authors want to thank anonymous reviewers for help-
ful comments. This research was supported by the NSFC (61021062, 60903103)
and the 973 Program (2010CB327903).

References

1. Banfield, R., Hall, L., Bowyer, K., Kegelmeyer, W.: Ensemble diversity measures
and their application to thinning. Information Fusion 6(1), 49–62 (2005)

2. Bartlett, P.: The sample complexity of pattern classification with neural networks:
The size of the weights is more important than the size of the network. IEEE
Transactions on Neural Networks 44(2), 525–536 (1998)

3. Breiman, L.: Bagging predictors. Machine Learning 24(3), 123–140 (1996)

4. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth and Brooks, Monterey (1984)

5. Brown, G.: An Information Theoretic Perspective on Multiple Classifier Systems.
In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp.
344–353. Springer, Heidelberg (2009)

6. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from
libraries of models. In: Proceedings of the 21st International Conference on Machine
Learning, pp. 18–25 (2004)

7. Chen, H., Tiňo, P., Yao, X.: Predictive ensemble pruning by expectation propa-
gation. IEEE Transactions on Knowledge and Data Engineering 21(7), 999–1013
(2009)

8. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006)

9. Dietterich, T.: An experimental comparison of three methods for constructing en-
sembles of decision trees: Bagging, boosting, and randomization. Machine Learn-
ing 40(2), 139–157 (2000)

10. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

11. Fumera, G., Roli, F.: A theoretical and experimental analysis of linear combiners
for multiple classifier systems. IEEE Transactions on Pattern Analysis and Machine
Intelligence 27(6), 942–956 (2005)

12. Giacinto, G., Roli, F., Fumera, G.: Design of effective multiple classifier systems
by clustering of classifiers. In: Proceedings of the 15th International Conference on
Pattern Recognition, Barcelona, Spain, pp. 160–163 (2000)

13. Hernández-Lobato, D., Mart́ınez-Muñoz, G., Suárez, A.: Empirical analysis and
evaluation of approximate techniques for pruning regression bagging ensembles.
Neurocomputing 74(12-13), 2250–2264 (2011)

14. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active
learning. In: Advances in Neural Information Processing Systems, Denver, CO,
vol. 7, pp. 231–238 (1994)

15. Kuncheva, L., Whitaker, C.: Measures of diversity in classifier ensembles and their
relationship with the ensemble accuracy. Machine Learning 51(2), 181–207 (2003)

16. Kuncheva, L., Whitaker, C., Shipp, C., Duin, R.: Limits on the majority vote
accuracy in classifier fusion. Pattern Analysis & Applications 6(1), 22–31 (2003)

17. Lazarevic, A., Obradovic, Z.: Effective pruning of neural network classifier ensem-
bles. In: Proceedings of the IEEE/INNS International Joint Conference on Neural
Networks, Washington, DC, pp. 796–801 (2001)

Diversity Regularized Ensemble Pruning 345

18. Li, N., Zhou, Z.-H.: Selective Ensemble under Regularization Framework. In:
Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp.
293–303. Springer, Heidelberg (2009)

19. Margineantu, D., Dietterich, T.: Pruning adaptive boosting. In: Proceedings of the
14th International Conference on Machine Learning, Nashville, TN, pp. 211–218
(1997)

20. Mart́ınez-Muñoz, G., Hernández-Lobato, D., Suárez, A.: An analysis of ensemble
pruning techniques based on ordered aggregation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 31(2), 245–259 (2009)

21. Mart́ınez-Muñoz, G., Suárez, A.: Aggregation ordering in bagging. In: Proceeding
of the IASTED International Conference on Artificial Intelligence and Applications,
Innsbruck, Austria, pp. 258–263 (2004)

22. Mart́ınez-Muñoz, G., Suárez, A.: Pruning in ordered bagging ensembles. In: Pro-
ceedings of the 23rd International Conference on Machine Learning, Pittsburgh,
PA, pp. 609–616 (2006)

23. Partalas, I., Tsoumakas, G., Vlahavas, I.: Focused ensemble selection: A diversity-
based method for greedy ensemble selection. In: Proceedings of 18th European
Conference on Artificial Intelligence, Patras, Greece, pp. 117–121 (2008)

24. Partalas, I., Tsoumakas, G., Vlahavas, I.: A study on greedy algorithms for en-
semble pruning. Technical Report TR-LPIS-360-12, Department of Informatics,
Aristotle University of Thessaloniki, Greece (2012)

25. Schapire, R., Freund, Y., Bartlett, P., Lee, W.: Boosting the margin: A new ex-
planation for the effectiveness of voting methods. The Annals of Statistics 26(5),
1651–1686 (1998)

26. Tamon, C., Xiang, J.: On the Boosting Pruning Problem. In: Lopez de Mantaras,
R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 404–412. Springer,
Heidelberg (2000)

27. Tang, E.K., Suganthan, P., Yao, X.: An analysis of diversity measures. Machine
Learning 65(1), 247–271 (2006)

28. Tsoumakas, G., Partalas, I., Vlahavas, I.: An Ensemble Pruning Primer. In: Okun,
O., Valentini, G. (eds.) Applications of Supervised and Unsupervised Ensemble
Methods. SCI, vol. 245, pp. 1–13. Springer, Heidelberg (2009)

29. Valiant, L.: A theory of the learnable. Communications of the ACM 27, 1134–1142
(1984)

30. Yu, Y., Li, Y.-F., Zhou, Z.-H.: Diversity regularized machine. In: Proceedings of
the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Spain,
pp. 1603–1608 (2011)

31. Zhang, T.: Covering number bounds of certain regularized linear function classes.
Journal of Machine Learning Research 2, 527–550 (2002)

32. Zhang, Y., Burer, S., Street, W.: Ensemble pruning via semi-definite programming.
Journal of Machine Learning Research 7, 1315–1338 (2006)

33. Zhou, Z.-H.: Ensemble Methods: Foundations and Algorithms. Chapman &
Hall/CRC, Boca Raton, FL (2012)

34. Zhou, Z.-H., Li, N.: Multi-information Ensemble Diversity. In: El Gayar, N., Kittler,
J., Roli, F. (eds.) MCS 2010. LNCS, vol. 5997, pp. 134–144. Springer, Heidelberg
(2010)

35. Zhou, Z.-H., Wu, J., Tang, W.: Ensembling neural networks: Many could be better
than all. Artificial Intelligence 137(1-2), 239–263 (2002)

Ensembles on Random Patches

Gilles Louppe and Pierre Geurts

Dept. of EE & CS, & GIGA-R
University of Liège, Belgium

Abstract. In this paper, we consider supervised learning under the as-
sumption that the available memory is small compared to the dataset
size. This general framework is relevant in the context of big data, dis-
tributed databases and embedded systems. We investigate a very simple,
yet effective, ensemble framework that builds each individual model of
the ensemble from a random patch of data obtained by drawing ran-
dom subsets of both instances and features from the whole dataset. We
carry out an extensive and systematic evaluation of this method on 29
datasets, using decision tree-based estimators. With respect to popular
ensemble methods, these experiments show that the proposed method
provides on par performance in terms of accuracy while simultaneously
lowering the memory needs, and attains significantly better performance
when memory is severely constrained.

1 Motivation

Within the past few years, big data has become a popular trend among many
scientific fields. In life sciences, computer vision, Internet search or finance, to
cite a few, quantities of data have grown so large that it is increasingly difficult
to process, analyze or visualize. In many cases, single computers are no longer
fit for big data and distributed environments need to be considered to handle it.
Although research is very active in this area, machine learning is no exception
to this new paradigm. Much still needs to be done and methods and algorithms
have to be reinvented to take this constraint into account.

In this context, we consider supervised learning problems for which the dataset
is so large that it cannot be loaded into memory. In [1], Breiman proposed the
Pasting method to tackle this problem by learning an ensemble of estimators
individually built on random subsets of the training examples, hence alleviating
the memory requirements since the base estimators would be built on only small
parts of the whole dataset. Earlier, Ho proposed in [2] to learn an ensemble of
estimators individually built on random subspaces (i.e., on random subsets of
the features). While the first motivation of the Random Subspace method was
to increase the diversity within the estimators of the ensemble, it can actually
also be seen as way to reduce the memory requirements of building individual
models. In this work, we propose to combine and leverage both approaches at
the same time: learn an ensemble of estimators on random patches, i.e., on ran-
dom subsets of the samples and of the features. Through an extensive empirical

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 346–361, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Ensembles on Random Patches 347

study, we show that this approach (1) improves or preserves comparable accu-
racy with respect to other ensemble approaches which build base estimators on
the whole dataset while (2) drastically lowering the memory requirements and
hence allowing an equivalent reduction of the global computing time.

The rest of this paper is organized as follows. Section 2 describes and then
compares the Random Patches method with popular ensemble algorithms. In
Section 3, we investigate experimentally the performance of the method on an
extensive list of datasets and then draw some first conclusions. We then study
in Section 4 the benefits of our algorithm under memory constraints and show
that, in that context, it appears to be significantly better than other ensemble
methods. We conclude and discuss future work directions in Section 5.

2 Random Patches

In this section, we formally describe our method, briefly introduce standard
base estimators that have been considered in this work, and then discuss how
our algorithm relates with popular ensemble methods.

2.1 Description

The Random Patches algorithm proposed in this work (further referred to as
RP) is a wrapper ensemble method that can be described in the following terms.
Let R(ps, pf , D) be the set of all random patches of size psNs×pfNf than can be
drawn from the dataset D, where Ns (resp. Nf) is the number of samples in D
(resp. the number of features in D) and where ps ∈ [0, 1] (resp. pf) is an hyper-
parameter that controls the number of samples in a patch (resp. the number of
features). That is, R(ps, pf , D) is the set of all possible subsets containing psNs

samples (among Ns) with pfNf features (among Nf). The method then works
as follows:

1. Draw a patch r ∼ U(R(ps, pf , D)) uniformly at random.
2. Build an estimator on the selected patch r.
3. Repeat 1-2 for a preassigned number T of estimators.
4. Aggregate the predictions by voting (in case of classifiers) or averaging (in

case of regressors) the predictions of the T estimators.

2.2 Tree-Based Methods

While the RP algorithm can exploit any kind of base estimators, we consider in
this work only tree-based estimators.We first describe standard classification and
regression trees and ensemble methods and then the two specific base learners
we have considered in our experiments.

Classification and Regression Trees. A standard classification/regression
tree [3] is an input-output model represented by a tree. Internal nodes of the
tree are labeled with a (usually binary) test based on one input feature. Leaves
are labeled with a value of the output (discrete or continuous). The predicted

348 G. Louppe and P. Geurts

output for a new instance is determined as the output associated to the leaf
reached by the instance when it is propagated through the tree. A decision
tree is built using a recursive procedure which identifies at each node the test
that leads to a split of the node sample into two subsamples that are as pure
as possible in terms of their output values, as measured by a so-called score
measure. The construction of the tree then stops when some stopping criterion
is met.

Ensemble of Randomized Trees. Single decision trees typically suffer from
high variance, which makes them not competitive in terms of accuracy. A very
efficient and simple way to address this flaw is to use them in the context of
randomization-based ensemble methods. Specifically, the core principle is to in-
troduce random perturbations into the learning procedure in order to produce
several different decision trees from a single learning set. For example, in Bag-
ging [4], trees are built on randomly drawn bootstrap copies of the original data,
hence producing different decision trees. In Random Forests [5] (RF), Bagging
is extended and combined with a randomization of the input features that are
used when considering candidates to split internal nodes. In particular, instead
of looking for the best split among all features, the algorithm selects, at each
node, a random subset of K features and then determines the best test over
these features only. In Extremely Randomized Trees [6] (ET), randomization
goes even one step further: discretization threholds are also drawn at random
and the best test is chosen among the K randomly drawn cut-points. Unlike in
RF though, the trees in ET are not built on bootstrap copies of the input data.

Base Estimators. We consider and evaluate two base estimators within the
RP algorithm: standard classification trees and (single) extremely randomized
trees. Unless otherwise stated, trees are unpruned and grown using Gini entropy
as the main scoring criterion for node splitting. The parameter K of extremely
randomized trees within RP is set to its maximum value K = pfNf (i.e., corre-
sponding to no further random selection of features).

2.3 Related Work

The first benefit of RP is that it generalizes both the PastingRvotes (P)method [1]
(and its extensions [7,8]) and the Random Subspace (RS) algorithm [2]. Both are
indeed merely particular cases of RP: setting ps = 1.0 yields RS while setting
pf = 1.0 yields P. As such, it is expected that when both hyper-parameters ps
and pf are tuned, RP should be at least as good as the best of the two methods,
provided there is no overfitting associated with this tuning.

When the base estimators are standard decision trees (resp. extremely ran-
domized trees with K = pfNf), interesting parallels can also be drawn between
RP and the RF algorithm (resp. ET). For ps = 1.0, the value of pfNf is indeed
nearly equivalent to the number K of features randomly considered when split-
ting a node. A major difference remains though. In RP, the subset of features
is selected globally once and for all, prior to the construction of the tree. By

Ensembles on Random Patches 349

contrast, in RF (resp. in ET) subsets of features are drawn locally at each node.
Clearly, the former approach already appears to be more attractive when dealing
with large databases. Non-selected features indeed do not need to be considered
at all, hence lowering the memory requirements for building a single tree. An-
other interesting parallel can be made when bootstrap samples are used like in
RF: it nearly amounts to set ps = 0.632, i.e. the average proportion of unique
samples in a bootstrap sample. Differences are that in a bootstrap sample, the
number of unique training samples varies from one to another (while it would
be fixed to 0.632Ns in RP), and that samples are not all equally weighted.

In addition, RP also closely relates to the SubBag algorithm [9] which com-
bines Bagging and RS for constructing ensembles. Using Ns bootstrapped sam-
ples (i.e., nearly equivalent to ps = 0.632) and setting pf = 0.75, Panov et al
showed that SubBag has comparable performance to that of RF. An added ad-
vantage of SubBag, and hence of RP, is that it is applicable to any base estimator
without the need to randomize the latter.

3 On Accuracy

Our validation of the RP algorithm is carried out in two steps. In this section,
we first investigate how RP compares with other popular tree-based ensemble
methods in terms of accuracy. In the next section, we then focus on its memory
requirements for achieving optimal accuracy and its capability to handle strong
memory constraints, again in comparison with other ensemble methods.

Considering accuracy only, our main objective is to investigate whether the
additional degrees of freedom brought by ps and pf significantly improve, or
degrade, the performance of RP. Additionally, our goal is also to see whether
sampling features once globally, instead of locally at each node, impairs perfor-
mance, as this is the main difference between RP and state-of-the-art methods
such as RF or ET.

3.1 Protocol

We compare our method with P and RS, as well as with RF and ET. For RP,
P and RS, two variants have been considered, one using standard decision trees
(suffixed below with ’-DT’) as base estimators, and the other using extremely
randomized trees (suffixed below with ’-ET’) as base estimators. Overall, 8 meth-
ods are compared: RP-DT, RP-ET, P-DT, P-ET, RS-DT, RS-ET, RF and ET.

We evaluate the accuracy of the methods on an extensive list of both artifi-
cial and real classification problems. For each dataset, three random partitions
were drawn: the first and larger (50% of the original dataset) to be used as the
training set, the second (25%) as validation set and the third (25%) as test set.
For all methods, the hyper-parameters ps and pf were tuned on the validation
set with a grid-search procedure, using the grid {0.01, 0.1, ..., 0.9, 1.0} for both
ps and pf . All other hyper-parameters were set to default values. In RF and
ET, the number K of features randomly selected at each node was tuned us-
ing the grid pfNf . For all ensembles, 250 fully developed trees were generated

350 G. Louppe and P. Geurts

and the generalization accuracy was estimated on the test set. Unless otherwise
mentioned, for all methods and for all datasets, that procedure was repeated 50
times, using the same 50 random partitions between all methods, and all scores
reported below are averages over those 50 runs. All algorithms and experiments
have been implemented in Python, using Scikit-Learn [10] as base framework.

3.2 Small Datasets

Before diving into heavily computational experiments, we first wanted to validate
our approach on small to medium datasets. To that end, experiments were carried
out on a sample1 of 16 well-known and publicly available datasets (see Table 1)
from the UCI machine learning repository [11]. Overall, these datasets cover a
wide range of conditions, with the sample sizes ranging from 208 to 20000 and
the number of features varying from 6 to 168. Detailed average performances of
the 8 methods for all 16 datasets using the protocol described above are reported
in Table 1 of the supplementary materials2. Below, we analyze general trends by
performing various statistical tests.

Following recommendations in [12], we first performed a Friedman test that
rejected the hypothesis that all algorithms are equivalent at a significance level
α = 0.05. We then proceeded with a post-hoc Nemenyi test for a pairwise com-
parison of the average ranks of all 8 methods. According to this test, the per-
formance of two classifiers is significantly different (at α = 0.05) if their average
ranks differ by at least the critical difference CD = 2.6249 (See [12] for further
details). The diagram of Figure 1 summarizes these comparisons. The top line
in the diagram is the axis along which the average rank Rm of each method m is
plotted, from the highest ranks (worst methods) on the left to the lowest ranks
(best methods) on the right. Groups of methods that are not statistically differ-
ent from each other are connected. The critical difference CD is shown above the
graph. To further support these rank comparisons, we also compare the 50 accu-
racy values obtained over each dataset split for each pair of methods by using a
paired t-test (with α = 0.01). The results of these comparisons are summarized
in Table 2 in terms of “Win-Draw-Loss” statuses of all pairs of methods; the
three values at the intersection of row i and column j of this table respectively
indicate on how many datasets method i is significantly better/not significantly
different/significantly worse than method j.

Since all methods are variants of ensembles of decision trees, average accura-
cies are not strikingly different from one method to another (see Table 1 of the
supplementary materials). Yet, significant trends appear when looking at Figure
1 and Table 2. First, all ET-based methods are ranked before DT-based meth-
ods, including the popular Random Forest algorithm. Overall, the original ET
algorithm is ranked first (RET = 2.125), then come RS-ET and RP-ET at close
positions (RRS−ET = 2.8125 and RRP−ET = 2.9375) while P-ET is a bit behind
(RP−ET = 3.75). According to Figure 1, only ET is ranked significantly higher
than all DT-based method but looking at Table 2, the worse ET-based variant

1 These datasets were chosen a priori and independently of the results obtained.
2 http://www.montefiore.ulg.ac.be/~glouppe/pdf/ecml12-suppl.pdf

http://www.montefiore.ulg.ac.be/~glouppe/pdf/ecml12-suppl.pdf

Ensembles on Random Patches 351

Table 1. Small datasets

Dataset Ns Nf

diabetes 768 8
dig44 18000 16
ionosphere 351 34
pendigits 10992 16
letter 20000 16
liver 345 6
musk2 6598 168
ring-norm 10000 20
satellite 6435 36
segment 2310 19
sonar 208 60
spambase 4601 57
two-norm 9999 20
vehicle 1692 18
vowel 990 10
waveform 5000 21

CD

8 7 6 5 4 3 2 1

ET

RS-ET

RP-ET

P-ET

P-DT

RS-DT

RF

RP-DT

Fig. 1. Average ranks of all methods

Table 2. Pairwise t-test comparisons

RF ET P-DT P-ET RS-DT RS-ET RP-DT RP-ET
RF — 1/2/13 12/4/0 1/7/8 4/7/5 2/2/12 1/10/5 0/4/12
ET 13/2/1 — 14/1/1 10/5/1 13/3/0 4/11/1 12/2/2 5/10/1
P-DT 0/4/12 1/1/14 — 0/4/12 2/3/11 2/1/13 0/4/12 0/4/12
P-ET 8/7/1 1/5/10 12/4/0 — 9/6/1 2/6/8 9/6/1 0/11/5
RS-DT 5/7/4 0/3/13 11/3/2 1/6/9 — 0/2/14 1/11/4 0/4/12
RS-ET 12/2/2 1/11/4 13/1/2 8/6/2 14/2/0 — 11/4/1 1/13/2
RP-DT 5/10/1 2/2/12 12/4/0 1/6/9 4/11/1 1/4/11 — 0/6/10
RP-ET 12/4/0 1/10/5 12/4/0 5/11/0 12/4/0 2/13/1 10/6/0 —

(P-ET) is still 9 times significantly better (w.r.t. the 50 runs over each set) and
only 1 times significantly worse than the best DT-based variant (RP-DT). The
separation between these two families of algorithm thus appears quite significant.
This observation clearly suggests that using random split thresholds, instead of
optimized ones like in decision trees, pays off in terms of generalization.

Among ET-based methods, RP-ET is better than P-ET but it is superseded
by ET and RS-ET in terms of average rank. Since RS-ET is a particular case of
RP-ET, this suggests that we are slightly overfitting when tuning the additional
parameter ps. And indeed RP-ET is better ranked than RS-ET in average on
the validation set (results not shown). Table 2 however indicates otherwise and
makes RP-ET appear as slightly better than RS-ET (2/13/1). Regarding ET
over RP-ET, the better performance of the former (5/10/1) is probably due to
the fact that in ET subsets of features are redrawn locally at each node when
building trees and not once and for all prior to their construction. This gives less
chances to generate improper trees because of a bad initial choice of features
and thus leads to a lower bias and a better accuracy.

Among DT-based methods, RP-DT now comes first (mean rank of 5.3125),
then RF (RRF = 5.875), RS-DT (RRS−DT = 6.125) and then P-DT in last
(RP−DT = 7.0625). RP is only significantly worse than another DT-based vari-
ant on 1 dataset. The extra-randomization brought by the random choices of
both samples and features seems to be beneficial with decision trees that do
not benefit from the randomization of discretization thresholds. The fact that
RF samples features locally does not appear here anymore as an advantage over
RP (RF is significantly worse on 5 problems and better on only one), probably

352 G. Louppe and P. Geurts

Table 3. Large datasets

Dataset Ns Nf

cifar10* 60000 3072
mnist3vs8 13966 784
mnist4vs9 13782 784
mnist* 70000 784
isolet 7797 617
arcene 900 10000
breast2 295 24496
madelon 4400 500
marti0 500 1024
reged0 500 999
secom 1567 591
tis 13375 927
sido0* 12678 4932

CD

8 7 6 5 4 3 2 1

RS-ET

ET

RS-DT

RP-ET

P-DT

RF

P-ET

RP-DT

Fig. 2. Average ranks of all methods

Table 4. Pairwise t-test comparisons

RF ET P-DT P-ET RS-DT RS-ET RP-DT RP-ET
RF — 1/5/7 8/3/2 2/6/5 0/6/7 0/5/8 0/6/7 0/6/7
ET 7/5/1 — 9/2/2 7/6/0 3/7/3 0/9/4 5/6/2 1/11/1
P-DT 2/3/8 2/2/9 — 1/5/7 0/3/10 0/3/10 1/3/9 0/4/9
P-ET 5/6/2 0/6/7 7/5/1 — 0/6/7 0/5/8 2/5/6 1/5/7
RS-DT 7/6/0 3/7/3 10/3/0 7/6/0 — 1/8/4 2/11/0 1/10/2
RS-ET 8/5/0 4/9/0 10/3/0 8/5/0 4/8/1 — 4/8/1 0/13/0
RP-DT 7/6/0 2/6/5 9/3/1 6/5/2 0/11/2 1/8/4 — 1/9/3
RP-ET 7/6/0 1/11/1 9/4/0 7/5/1 2/10/1 0/13/0 3/9/1 —

because the decrease of bias that it provides does not exceed the increase of
variance with respect to global feature selection.

3.3 Larger Datasets

While the former experiments revealed promising results, it is fair to ask whether
the conclusions that have been drawn would hold on and generalize to larger
problems, for example when dealing with a few relevant features buried into
hundreds or thousands of not important features (e.g., in genomic data), or
when dealing with many correlated features (e.g., in images). To investigate this
question, a second bench of experiments was carried out on 13 larger datasets (see
Table 3). All but madelon are real data. In terms of dimensions, these datasets
are far bigger, ranging from a few hundreds of samples and thousands of features,
to thousands of samples but hundreds of features. As such, the complexity of the
problems is expected to be greater. We adopted the exact same protocol as for
smaller datasets. However, to lower computing times, for datasets marked with ∗,
the methods were run using 100 trees instead of 250 and the minimum number of
samples required in an internal node was set to 10 in order to control complexity.
Detailed results are provided in Table 2 of the supplementary materials and
are summarized in Figure 2 and Table 4, respectively in terms of average rank
(the critical difference at α = 0.05 is now 2.9120) and Win/Draw/Loss statuses
obtained with paired t-tests. A Friedman test (at α = 0.05) still indicates that
some methods are significantly different from the others.

As it may be observed from Figure 2, the average ranks of the methods are
closer to each other than in the previous experiments, now ranging from 2.38
to 6.61, while they were previously ranging from 2.12 to 7. Methods are more

Ensembles on Random Patches 353

connected by critical difference bars. This suggests that overall they behave more
similarly to each other than before. General trends are nevertheless comparable
to what we observed earlier. ET-based methods still seem to be the front-runners.
From Figure 2, RS-ET, ET and RP-ET are in the top 4, while P-DT, RF and
RP-DT remain in the second half of the ranking. Surprisingly however, RS-
DT now comes right after RS-ET and ET and just before RP-ET whereas it
ranked penultimate on the smaller datasets. Table 4 however suggests that RS-
DT performs actually a little worse against RP-ET (1/10/2). All in all, it thus
still seems beneficial to randomize split thresholds on the larger datasets.

Comparing ET-based variants, ET is no longer the best method on average,
but RS-ET is (with 4/9/0 for RS-ET versus ET). This suggests than on larger
datasets, picking features globally at random prior to the construction of the
trees is as good, or even beat picking them locally at each node. Due to the
quantitatively larger number of samples in a patch, and also to the larger num-
ber of redundant features expected in some large datasets (e.g., in cifar10 or
mnist), it is indeed less likely to build improper trees with strong biases. As
a result, variance can be further decreased by sampling globally. In support of
this claim, on a few problems such as arcene, breast2, or madelon that
contain many irrelevant features, ET remains the best method. In that case, it
is indeed more likely to sample globally improper random patches, and hence
to build improper trees. The average rank of RP-ET suggests that it performs
worse than RS-ET and thus that there is some potential overfitting when tuning
ps in addition to pf . This difference is however not confirmed in Table 4 where
the accuracies of these two methods are shown to be never significantly different
(0/13/0). RP-ET is also on a perfect par with ET (1/11/1). Among DT-based
variants, RP-DT, which was the best performer on small datasets, is still ranked
above RF and P-DT, but it is now ranked below RS-DT with a win/draw/loss
of 0/11/2. This is again due to some overfitting.

While less conclusive than before, the results on larger datasets are consistent
with what we observed earlier. In particular, they indicate that the Random
Patches method (with ET) remains competitive with the best performers.

3.4 Conclusions

Overall, this extensive experimental study reveals many interesting results. The
first and foremost result is that ensembles of randomized trees nearly always
beat ensembles of standard decision trees. As off-the-shelf methods, we advocate
that ensembles of such trees should be preferred to ensembles of decision trees.
In particular, these results show that the well-known Random Forest algorithm
does not compete with the best performers. Far more important to our concern
though, this study validates our RP approach. Building ensembles (of ET) on
random patches of data is competitive in terms of accuracy. Overall, there is no
strong statistical evidence that the method performs less well, but there is also no
conclusive evidence that it significantly improves performance. Yet, results show
that RP is often as good as the very best methods. Regarding the shape of the
random patches, the strategy behind Pasting (i.e., ps free and pf = 1.0) proved

354 G. Louppe and P. Geurts

to be (very) ineffective on many datasets while the Random Subspace algorithm
(i.e., ps = 1.0 and pf free) always ranked among the very best performers. On
average, RS indeed came in second on the small datasets and in first on the larger
datasets, which tends to indicate that sampling features is crucial in terms of
accuracy. As for patches of freely adjustable size (i.e., using RP), they showed
to be slightly sensitive to overfitting but proved to remain closely competitive
with the very best methods. In addition, these results also suggest that sampling
features globally, once and for all, prior to the construction of a (randomized)
decision tree, does not actually impair performance. For instance, RS-ET or
RP-ET are indeed not strongly worse, nor better, than ET, in which candidates
features are re-sampled locally at each node.

4 On Memory

Section 3 reveals that building an ensemble of base estimators on random patches,
instead of the whole data, is a competitive strategy. In the context of big data,
that is when the size of the dataset is far bigger than the available memory, this
suggests that using random parts of the data of the appropriate size to build
each base estimator would likely result in an ensemble which is actually as good
as if the whole data could have been loaded and used.

Formally, we assume a general framework where the number of data units
that can be loaded at once into memory is constrained to be lower than a given
threshold Mmax. Not considering on-line algorithms within the scope of this
study, Mmax can hence be viewed as the total units of data allowed to be used to
build a single base estimator. In the context of our sampling methods, the amount
of memory required for a patch is given by (psNs)(pfNf) and thus constraining
memory by Mmax is equivalent to constraining the relative patch size pspf to be
lower than M ′

max = Mmax/(NsNf). While simplistic3, this framework has the
advantage of clearly addressing one of the main difficulties behind big data, that
is the lack of fast memory. Yet, it is also relevant in other contexts, for example
when data is costly to access (e.g., on remote locations) or when algorithms are
run on embedded systems with strong memory constraints.

In Section 4.1, we first study the effects of ps and pf on the accuracy of the
resulting ensemble and show that it is problem and base estimator dependent.
Second, we show that the memory requirements, i.e., the relative size pspf of the
random patches, can often be drastically reduced without significantly degrading
the performance of the ensemble (Section 4.2). Third, because the sensitivity of
the ensemble to ps and pf is problem and base estimator specific, we show that
under very strong memory constraints adjusting both parameters at the same
time, as RP does, is no longer merely as good but actually significantly better
than other ensemble methods (Section 4.3).

3 e.g., the quantity of memory used by the estimator itself is not taken into account.

Ensembles on Random Patches 355

4.1 Sensitivity to ps and pf

Let us first consider and analyze the sets {(ps, pf , AccD(ps, pf))|∀ps, pf} for var-
ious problems, where AccD(ps, pf) is the average test accuracy of an ensemble
built on random patches of size pspf (using the same protocol as previously) on
the dataset D.

As Figure 3 illustrates for six datasets, the surfaces defined by these sets
vary significantly from one problem to another. We observed four main trends.
In Figures 3a, and 3b (resp. 3c), accuracy increases with ps (resp. pf) while
adjusting pf (resp. ps) has no or limited impact. In Figure 3d, the best strategy
is to increase both ps and pf . Finally, in Figures 3e and 3f, the surface features
plateaus, which means that beyond some threshold, increasing ps or pf does
not yield any significant improvement. Interestingly, in most of the cases, the
optimum corresponds to a value pspf much smaller than 1.

The choice of the base estimators does not have a strong impact on the aspect
of the curves (compare the 1st and 3rd rows of sub-figures in Figure 3 with those
in the 2nd and 4th rows). The only difference is the decrease of the accuracy
of RP-DT when ps and pf grow towards 1.0. Indeed, since the only source of
randomization in RP-DT is patch selection, it yields in this case ensembles of
identical trees and therefore amounts to build a single tree on the whole dataset.
By contrast, because of the extra-randomization of the split thresholds in ET,
there is typically no drop of accuracy for RP-ET when ps and pf grow to 1.0.

Overall, this analysis suggests that not only the best pair pspf depends on the
problem, but also that the sensitivity of the ensemble to changes to the size of
a random patch is both problem and base estimator specific. As a result, these
observations advocate for a method that could favor ps, pf or both, and do so
appropriately given the base estimator.

4.2 Memory Reduction, without Significant Loss

We proceed to study in this section the actual size of the random patches when
the values of ps and pf are tuned using an independent validation set. Our re-
sults are summarized in Figure 4a. Each ellipse corresponds to one of the 29
datasets of our benchmark, whose center is located at (ps, pf) (i.e., the average
parameter values over the 50 runs) and whose semi-axes correspond to the stan-
dard deviations of ps and pf . Any point in the plot corresponds to a pair (ps, pf)
and thus to a relative consumption M ′ = pspf of memory. To ease readability,
level curves are plotted for M ′ = 0.01, 0.1, ..., 0.9. In the right part of the fig-
ure, the histogram counts the number of datasets such that ps · pf falls in the
corresponding level set.

Figure 4a corroborates our previous discussion. On some datasets, it is better
to favor ps while on some other increasing pf is a better strategy. The various
sizes of the ellipses also confirm that the sensitivity to variations of ps and pf
is indeed problem-specific. The figure also clearly highlights the fact that, even
under no memory constraint, the optimal patches rarely consume the whole
memory. A majority of ellipses indeed lie below the level set M ′ = 0.5 and only
a couple of them are above M ′ = 0.75. With respect to ET or RF for which the

356 G. Louppe and P. Geurts

(a) arcene (RP-ET) (b) cifar10 (RP-ET) (c) tis (RP-ET)

(a) arcene (RP-DT) (b) cifar10 (RP-DT) (c) tis (RP-DT)

(d) madelon (RP-ET) (e) isolet (RP-ET) (f) mnist3vs8 (RP-ET)

(d) madelon (RP-DT) (e) isolet (RP-DT) (f) mnist3vs8 (RP-DT)

Fig. 3. Learning surfaces

base estimators are all built on the whole dataset, this means that ensembles of
patches are not only as competitive but also less memory greedy. In addition, the
figure also points out the difference between RP-ET and RP-DT as discussed in
the previous section. To ensure diversity, RP-DT is constrained to use smaller
patches than RP-ET, hence explaining why the ellipses in red are on average
below those in blue. While RP-DT proved to be a bit less competitive in terms
of accuracy, this indicates on the other hand that RP-DT may actually be more
interesting from a memory consumption point of view.

In Section 4.1, we observed plateaus or very gentle slopes around the opti-
mal pair (ps, pf). From a memory point of view, this suggests that the random

Ensembles on Random Patches 357

(a) Original patches (b) Reduced patches

Fig. 4. Optimal sizes of the random patches on our benchmark

patches are likely to be reducible without actually degrading the accuracy of the
resulting ensemble. Put otherwise, our interest is to find the smallest size pspf
such that the accuracy of the resulting ensemble is not significantly worse than
an ensemble built without such constraint. To that end, we study the extent at
which the constraint pspf < M ′

max can be strengthened without any significant
drop in accuracy. If M ′

max can be reduced significantly then it would indeed
mean that even when only small parts of the data are actually used to build
single base estimators, competitive performance can still be achieved.

Figure 4b summarizes our results. For all datasets,M ′
max was set to the lowest

value such that it cannot be statistically detected that the average accuracy of
the resulting ensemble is different from the average accuracy of an ensemble built
with no memory constraint (at α = 0.05). With regard to Figure 4a, the shift of
most ellipses to lower memory level sets confirm our first intuition. In many cases,
the size of the random patches can indeed be reduced, often drastically, without
significant decrease of accuracy. For more than half of the datasets, memory
can indeed be decreased to M ′ = 0.1 or M ′ = 0.2. In other words, building
trees on small parts of the data (i.e., 10% or 20% of the original dataset) is,
for more than half of the datasets, enough to reach competitive accuracy. Also,
the sensitivity to ps and pf is now even more patent. Some ensembles use very
few samples (ps < 0.1) but with many features, while other uses many samples
with few features (pf < 0.1). Again, from a memory point of view, RP-DT
appears to be more interesting than RP-ET. The memory reduction is larger,
as the histogram indicates. Optimized splits in the decision trees may indeed
lead to a better exploitation of the data, hence to a potentially larger reduction
of memory. In conclusion, while not detecting significant differences in accuracy
does not allow to conclude that the performances are truly similar, these figures
at least illustrate that memory requirements can be drastically reduced without
apparent loss in accuracy.

358 G. Louppe and P. Geurts

4.3 Memory Reduction, with Loss

The previous section has shown that the memory consumption can be reduced
up to some threshold M ′

max with no significant loss in accuracy. In this section
we now look at the accuracy of the resulting ensemble when M ′

max is further
decreased. We argue that with severe constraints, and because datasets have all
a different sensitivity, it is even more crucial to better exploit data and thus to
find the right trade-off between both ps and pf , as only RP can.

To illustrate our point, Figure 5 compares for 6 representative datasets the
accuracy of the methods with respect to the memory constraint pspf < M ′

max.
A plain line indicates that the generalization error of the best resulting ensemble
under memory constraint M ′

max is significantly (at α = 0.05) worse on the test
sets than when there is no constraint (i.e., M ′

max = 1). A dotted line indicates
that on average, on the test set, the ensemble is not significantly less accurate.

As the figure shows, when M ′
max is low, RP-based ensembles often achieve the

best accuracy. Only on arcene (Figure 5a), RS seems to be a better strategy,
suggesting some overfitting in setting ps in RP. On all 5 other example datasets,
RP is equivalent or better than RS and P for low values ofM ′

max, with the largest
gaps appearing on isolet (Figure 5e) and mnist3vs8 (Figure 5f). As already
observed in the previous section, although RP-DT is not the best strategy when
memory is unconstrained, its curve dominates the curve of RP-ET for small
values of M ′

max in Figures 5b, 5c, and 5d. Because split thresholds are not
randomized in RP-DT, this method is more resistant than RP-ET to the strong
randomization induced by a very low M ′

max threshold.
For comparison, Figure 5 also features the learning curves of both ET and

RF (with K optimized on the validation set), in which the trees have all been
built on the same training sample of M ′

maxNs instances, with all features.
These results are representative of the use of a straightforward sub-sampling
of the instances to handle the memory constraint. On all datasets, this set-
ting yields very poor performance when M ′

max is low. Building base estimators
on re-sampled random patches thus brings a clear advantage to RP, RS and
P and hence confirms the conclusions of Basilico et al who showed in [8] that
using more data indeed produces more accurate models than learning from a
single subsample. This latter experiment furthermore shows that the good per-
formances of RP cannot be trivially attributed to the fact that our datasets
contain so many instances that only processing a subsample of them would be
enough. On most problems, the slopes of the learning curves of RF and ET
indeed suggest that convergence has not yet been reached on these datasets.
Yet, important improvement are gained by sub-sampling random patches. Over-
all, these results thus indicate that building an ensemble on random patches
is not only a good strategy when data is abundant and redundant but also
that it works even for scarce datasets with limited information regarding the
problem.

Ensembles on Random Patches 359

(a) arcene (b) cifar10

(c) tis (d) madelon

(e) isolet (f) mnist3vs8

Fig. 5. Accuracy under memory constraint

360 G. Louppe and P. Geurts

4.4 Conclusion

We have shown in this section that the memory requirements of sampling-based
ensembles are intrinsically low. Better, we have shown that they can often be
drastically decreased without significant loss in accuracy. When the size of the
dataset is far bigger than the available memory, we have also demonstrated that
sampling data along both samples and features, as RP does, not only competes
with other ensemble algorithms but also significantly improves the accuracy of
the resulting ensemble. It also brings a significant improvement over a straight-
forward sub-sampling of the instances.

5 Conclusions and Future Work

The main contribution of this paper is to explore a new framework for supervised
learning in the context of very strong memory constraints or, equivalently, very
large datasets. To address such problems, we proposed the Random Patches en-
semble method that builds each individual model of the ensemble from a random
patch of the dataset obtained by drawing random subsets of both samples and
features from the whole dataset. Through extensive experiments with tree-based
estimators, we have shown that this strategy works as well as other popular
randomization schemes in terms of accuracy (Section 3), at the same time re-
duces very significantly the memory requirements to build each individual model
(Section 4.2), and, given its flexibility, attains significantly better accuracy than
other methods when memory is severely constrained (Section 4.3). Since all mod-
els are built independently of each other, the approach is furthermore trivial to
parallelize. All in all, we believe that the paradigm of our method highlights a
very promising direction of research to address supervised learning on big data.

There remain several open questions and limitations to our approach that we
would like to address in the future. First, this study motivates our interest in
experimenting with truly large-scale problems (of giga-scale and higher). Since
RP already appears advantageous for small to medium datasets, the potential
benefits on very large-scale data indeed look very promising.

Second, the conclusions drawn in sections 3 and 4 are all based on the optimal
values of the parameters ps and pf tuned through an exhaustive grid search
on the validation set. Our analyses did not account for the memory and time
required for tuning these two parameters. In practice, hyper-parameter tuning
can not be avoided as we have shown that the optimal trade-off between pf
and ps was problem dependent. It would therefore be interesting to design an
efficient strategy to automatically find and adjust the values of ps and pf , taking
into account the global memory constraint. Our simplistic framework also only
accounts for the memory required to store the training set in memory and not
for the total memory required to actually build the ensemble.

We have only explored uniform sampling of patches of fixed size in our exper-
iments. In the context of the Pasting approach, Breiman proposed an iterative
instance weighting scheme that proved to be more efficient than uniform sam-
pling [1]. It would be interesting to extend this approach when sampling both

Ensembles on Random Patches 361

instances and features. Yet, parallelization would not be trivial anymore, al-
though probably still possible in the line of the work in [7].

Finally, our analysis of RP is mostly empirical. In the future, we would like
to strengthen these results with a more theoretical analysis. A starting point
could be the work in [13] that studies a scheme similar to the Pasting method
applied to linear models trained through parallel stochastic gradient descent. The
extension of this work to non parametric tree-based estimators does not appear
trivial however, since these latter are not well characterized theoretically.

Acknowledgements.The authors would like to thank Raphaël Marée and the review-

ers for their helpful feedback. GL and PG are respectively research fellow and research

associate of the FNRS, Belgium. This work is supported by PASCAL2 and the IUAP

DYSCO, initiated by the Belgian State, Science Policy Office.

References

1. Breiman, L.: Pasting small votes for classification in large databases and on-line.
Machine Learning 36(1), 85–103 (1999)

2. Ho, T.: The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

3. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regres-
sion trees (1984)

4. Breiman, L.: Bagging predictors. Machine learning 24(2), 123–140 (1996)
5. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
6. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learn-

ing 63(1), 3–42 (2006)
7. Chawla, N.V., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: Learning ensembles

from bites: A scalable and accurate approach. J. Mach. Learn. Res. 5, 421–451
(2004)

8. Basilico, J., Munson, M., Kolda, T., Dixon, K., Kegelmeyer, W.: Comet: A recipe
for learning and using large ensembles on massive data. In: IEEE 11th International
Conference on Data Mining (ICDM), pp. 41–50. IEEE (2011)

9. Panov, P., Džeroski, S.: Combining Bagging and Random Subspaces to Create
Better Ensembles. In: Berthold, M., Shawe-Taylor, J., Lavrač, N. (eds.) IDA 2007.
LNCS, vol. 4723, pp. 118–129. Springer, Heidelberg (2007)

10. Pedregosa, F., et al.: Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011)

11. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
12. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. The Jour-

nal of Machine Learning Research 7, 1–30 (2006)
13. Zinkevich, M., Weimer, M., Smola, A., Li, L.: Parallelized stochastic gradient de-

scent. In: Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R., Culotta, A.
(eds.) Advances in Neural Information Processing Systems, vol. 23, pp. 2595–2603
(2010)

An Efficiently Computable Support Measure

for Frequent Subgraph Pattern Mining

Yuyi Wang and Jan Ramon

Department of Computer Science
Katholieke Universiteit Leuven, Heverlee 3001, Belgium

{yuyi.wang,jan.ramon}@cs.kuleuven.be

Abstract. Graph support measures are functions measuring how fre-
quently a given subgraph pattern occurs in a given database graph. An
important class of support measures relies on overlap graphs. A major
advantage of the overlap graph based approaches is that they combine
anti-monotonicity with counting occurrences of a pattern which are in-
dependent according to certain criteria. However, existing overlap graph
based support measures are expensive to compute.

In this paper, we propose a new support measure which is based on a
new notion of independence. We show that our measure is the solution to
a linear program which is usually sparse, and using interior point meth-
ods can be computed efficiently. We show experimentally that for large
networks, in contrast to earlier overlap graph based proposals, pattern
mining based on our support measure is feasible.

Keywords: Graph mining, frequent subgraph pattern mining, support
measure, frequency counting, overlap graph, linear program.

1 Introduction

Graph mining is a subfield of structured data mining. An important task is
frequent subgraph pattern mining, which concerns the problem of finding sub-
graph patterns that occur frequently in a collection of graphs or in a single large
graph. In this paper, we consider the single-graph setting, and we will call the
large graph containing all data the database graph. Referring to many applica-
tions, such as social networks, the Internet, chemical and biological interaction
networks, traffic networks and citation networks, the database graph is also often
called the network.

In order to define a frequent pattern mining problem precisely, a support
measure (also called frequency measure) is needed. In the problem setting where
patterns are mined in a set of transactions (e.g., itemset mining [1]), a simple
support measure is to count the number of transactions in which the pattern
occurs. However, in the context of a single large graph, the issue is less straight-
forward and several articles have considered this issue [2,4,5,6].

An important drawback of the strategy to just use the number of occurrences
of a pattern (either embeddings or images) as its support is that it is not anti-
monotonic, i.e., the support of a pattern may be larger than the support of

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 362–377, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Efficiently Computable Support Measure 363

one of its subpatterns. The anti-monotonicity of the support measure (or more
generally interestingness measure) plays a very important role in the design
of a pattern miner, as it allows for pruning the search space [7]. Nevertheless,
anti-monotonicity alone is not enough. For example, a support measure just
returning a constant is anti-monotonic, but not informative. From a statistical
point of view, the value of a set of examples increases if these examples are more
independent. Calders et al. [6] proposed to use the situation where occurrences
of a subgraph pattern are independent (i.e., they do not overlap according to
some notion of overlap) as a reference. In particular, the notion of a normalized
graph support measure was defined: a support measure is normalized if for every
pattern which has only non-overlapping occurrences in a database graph, its
support in that database graph equals the number of occurrences.

An important class of support measures relies on overlap graphs. The vertices
in an overlap graph represent occurrences of a given pattern, and two vertices
are adjacent iff the corresponding occurrences overlap in the database graph
(according to some notion of overlap, such as sharing a vertex or an edge).
An overlap graph therefore summarizes how many times a pattern occurs in
the database graph, and how independent these occurrences are. An overlap
graph based support measure (OGSM) takes an overlap graph of a pattern in
a database graph as its input, and outputs the support of that pattern in that
database graph. Vanetik et al. [2] proposed the MIS measure, the size of the
maximum independent set of the overlap graph. This is intuitively appealing
since it measures how often we observed a pattern occurring independently. Un-
fortunately, computing the MIS of an overlap graph is NP-hard [8], and remains
so even for bounded degree graphs. Moreover, it has been shown that MIS can-
not be approximated even within a factor of n1−o(1) in polynomial time unless
P=NP [9], where n is the order of the overlap graph. Calders et al. [6] proposed
the Lovász theta function ϑ (see e.g., [10,11]), which is computable in time poly-
nomial in the order of the overlap graph using semidefinite programming (SDP).
A straightforward application of a general purpose SDP solver yields a running
time of O(n6.5) [17]. An SDP primal-dual algorithm for approximating ϑ with a
multiplicative error of (1+ ε) was proposed [12], and the running time of this al-
gorithm is O(ε−2n5 logn). Iyrngar et al. [15] considered subgradient methods for
approximating ϑ, which run in time O(ε−2 log3(ε−1)n4 logn) in the worst case.
Unfortunately, even these approximative methods are still computationally too
expensive for our purposes.

In this paper, we propose a new support measure s that is based on bound-
ing the value of all occurrences of a pattern that share a particular part of
the database graph, and s can be computed efficiently using a linear program
(LP). The measure s is not a traditional OGSM, because its output does not
depend only on the overlap graph considered in earlier papers. We introduce
the notion overlap hypergraph, and s is an overlap hypergraph based support
measure (OHSM). We prove that s is anti-monotonic and normalized. Further-
more, we show that all normalized anti-monotonic OHSMs are bounded. Our
empirical analysis shows that this idea yields the first support measure which is

364 Y. Wang and J. Ramon

both overlap based (and hence appealing from a statistical point of view) and
computationally feasible.

The remainder of this paper is structured as follows. In the next section,
we briefly review some basic notation from graph theory and formalize support
measures, overlap graphs and overlap hypergraphs. In Section 3, we introduce
the new measure s and model it as an LP. We prove that s is normalized and
anti-monotonic in Section 4. The property that all normalized anti-monotonic
OHSMs are bounded is shown in Section 5. Section 6 points out a phase transi-
tion phenomenon between frequent and infrequent patterns. Section 7 presents
experimental results. Section 8 concludes the paper with an overview of our
contributions.

2 Preliminaries

2.1 Graph Theory

We recall basic graph theoretic notions used in this paper. For more background
in this area, see also [13].

Graphs. A graph G is an ordered pair (V,E), where V is a set of vertices
and E is either a set of edges E ⊆ {{u, v} | u, v ∈ V, u �= v} or a set of arcs
E ⊆ {(u, v) | u, v ∈ V, u �= v}. In the former (latter) case, we call the graph
undirected (directed). Vertices are adjacent if there is an edge (arc) between
them. For an edge e = {u, v} (arc e = (u, v)), u and v are incident with e.

A labeled graph is a quadruple G = (V,E,Σ, λ), with (V,E) a graph, Σ a
non-empty finite set of labels, and λ a function assigning labels in Σ to the
vertices or edges (or arcs), or both. For simplicity, by labeled graph, we will
mean vertex-labeled graph unless explicitly pointed out.

We will use the notation V (G), E(G) and λG to refer to the set of vertices,
the set of edges (or arcs) and the labeling function of a graph G, respectively. g
is said to be a subgraph of G if V (g) ⊆ V (G), E(g) ⊆ E(G) and for all v ∈ V (g)
that λg(v) = λG(v), and write g ⊆ G.

We denote G the class of all graphs, and G↔ (G→), the restriction to undirected
(directed) graphs, while Gλ (G•) denotes the restriction to labeled (unlabeled)
graphs. One can combine notations, e.g., G→

• for the class of directed, unlabeled
graphs.

An independent set I of G ∈ G is a subset of V (G) such that no pair of distinct
vertices of I is adjacent in G. A clique Q of G ∈ G is a subset of V (G) such that
for all distinct vertices v, w ∈ Q, u and v are adjacent in G. A clique partition
Π = {s1, s2, · · · , sk} of G ∈ G is a partition of V (G) such that every set s in Π
is a clique.

Morphisms. The following concepts defined in terms of G→
λ are also valid

for undirected and/or unlabeled graphs by dropping the direction of the edges
and/or the labels of the vertices.

An Efficiently Computable Support Measure 365

a

b a

P

b

a a

c b

D1

b

a c

a b

D2

Fig. 1. Homomorphism and isomorphism. A homo-image (but not iso-image) of P is
highlighted in D1, and an iso-image of P is highlighted in D2.

A homomorphism ψ from G ∈ G→
λ to G′ ∈ G→

λ is a mapping from V (G) to
V (G′) such that for all v ∈ V (G) : λG(v) = λG′(ψ(v)) and for all (u, v) ∈ E(G) :
(ψ(u), ψ(v)) ∈ E(G′). We call ψ vertex-surjective if ∀v′ ∈ V (G′) : ∃v ∈ V (G) :
ψ(v) = v′, and call it edge-surjective if ∀(u′, v′) ∈ E(G′) : ∃(u, v) ∈ E(G) :
ψ(u) = u′ and ψ(v) = v′. A homomorphism is surjective if it is both vertex- and
edge-surjective.

An isomorphism from G ∈ G→
λ to G′ ∈ G→

λ is a bijective homomorphism ψ
from G to G′. In this case, we say that G is isomorphic to G′ and write G ∼= G′.
We use G ⊆ G′ to denote that G ∼= g, for some subgraph g of G′. This is
equivalent to saying that there exists a subgraph isomorphism from G to G′.

An iso-image (homo-image) g of P ∈ G→
λ in D ∈ G→

λ is a subgraph g ⊆ D
for which there exists an isomorphism (surjective homomorphism) ψ from P to
g. We call g the iso-image (homo-image) through ψ. An individual isomorphism
(homomorphism) ψ from P to g is called an iso-embedding (homo-embedding)
of P in D. See Fig. 1 for an example.

In this paper, we only consider iso-images, although the measure s can be
generalized for other matching operators such as homomorphism. We use the
term image instead of iso-image afterwards, and denote with Img(D,P) the set
of all images of P in D. Suppose g ∈ Img(D, p) and g′ ∈ Img(D,P), if g is a
subgraph of g′, we call g a subimage of g′ and g′ a superimage of g.

Hypergraphs. A hypergraph is an ordered pair (V,E), where V is a set of
vertices and E is a set of hyperedges E ⊆ 2V . We denote H the class of all
hypergraphs. As in the case of graphs, for H ∈ H, V (H) denotes the set of
vertices and E(H) denotes the set of hyperedges. To every hypergraph H which
has n vertices and m hyperedges, we associate an n×m incidence matrix MH =
(mij) where mij = 1 if vi ∈ ej and mij = 0 otherwise.

2.2 Support Measures

We review the concepts and properties of support measures and overlap graphs,
and introduce the new concept of overlap hypergraphs.

366 Y. Wang and J. Ramon

Definition 1. A support measure is a function f : G×G �→ R that maps (D,P)
to a non-negative number f(D,P), where P is called the pattern, D the database
graph and f(D,P) the support of P in D.

For efficiency reasons, most graph miners generate patterns from smaller patterns
to larger ones [14]. Such a method requires the support measure to be anti-
monotonic.

Definition 2. A support measure f is anti-monotonic if for all p, P,D in G :
p ⊆ P ⇒ f(D,P) ≤ f(D, p).

As explained in the introduction, anti-monotonicity alone is not enough. It is
also desirable that the support measure accounts for the independence of the
occurrences of the patterns. We can define overlap in different ways [6]. Popular
definitions are vertex-overlap, i.e., two images g1 and g2 overlap if V (g1)∩V (g2) �=
∅, and edge-overlap, i.e., two images g1 and g2 overlap if E(g1) ∩ E(g2) �= ∅.
Edge-overlap implies vertex-overlap. In this paper, by overlap, we will mean
vertex-overlap, although our results are also valid in the edge-overlap setting.

Definition 3. A support measure f is normalized if for all P,D in G : f(D,P)
= |Img(D,P)| when there do not exist two distinct images g1 and g2 in Img(D,P)
satisfying V (g1) ∩ V (g2) �= ∅.

Overlap Graphs. The notion of overlap graph plays an important role in the
design and computation of anti-monotonic measures. Given a pattern P and a
database graph D, the overlap graph of P in D is a graph GD

P ∈ G↔
• . Every

vertex of GD
P is an image of P in D, that is, V (GD

P) = Img(D,P). Two vertices
u and v are adjacent in GD

P if they overlap.
Vanetik et al. [3] define the induced support measure f(GD

P) = f(D,P), which
we call an overlap graph based support measure (OGSM). They proposed the
first normalized anti-monotonic OGSM, the size of the maximum independent
set (MIS) [2]. Later, Calders et al. [6] proposed two normalized anti-monotonic
OGSMs, the size of a minimum clique partition (MCP) and the Lovász theta
value (ϑ). As mentioned in the introduction, these existing OGSMs are very
expensive to compute.

Overlap Hypergraphs. As we are using vertex-overlap, each vertex v in a
database graph D determines a clique in the overlap graph GD

P in which P is a
pattern. That is, suppose v is a vertex inD, then Imgv(D,P) = {g ∈ Img(D,P) |
v ∈ V (g)} build a clique in GD

P since the images overlap at the vertex v.
We define the overlap hypergraph of P in D, denoted HD

P as the hypergraph
whose vertices are the images Img(D,P), and for each vertex v ∈ V (D) a hy-
peredge ev ∈ E(HD

P) such that ev = {g ∈ V (HD
P) | v ∈ V (g)}. The hyperedges

represent cliques in GD
P .

In an overlap hypergraph HD
P , we say that a hyperedge e is dominated by

another hyperedge e′ if e ⊂ e′, and a hyperedge e is dominating if it is not

An Efficiently Computable Support Measure 367

a

b

c

P

a

b

c

b

a a

c

D

GD
P

HD
P

Fig. 2. Overlap graph and overlap hypergraph. Given a pattern P , a database graph D,
the overlap graph GD

P and the overlap hypergraph HD
P are shown on the right. In the

overlap hypergraph, the (dominating) hyperedges are determined by the highlighted
vertices in the database graph, and a dominated hyperedge is given in a dashed ellipse.

dominated by any other hyperedge. For any D and P , we define the reduced
overlap hypergraph H̃D

P to be the hypergraph for which V (H̃D
P) = V (HD

P) and
E(H̃D

P) is the set of all dominating hyperedges of HD
P . In the sequel we only refer

to H̃D
P . We will abuse terminology and simply call H̃D

P the overlap hypergraph.
See Fig. 2 for an example.

We henceforth refer to the induced support measure, which we denote by
f(H̃D

P), instead of referring to f(D,P). Such induced support measures are
called overlap hypergraph based support measures (OHSM). We call OHSMs
and OGSMs overlap based support measures.

3 A New Normalized Anti-monotonic Measure

We introduce a new normalized anti-monotonic OHSM, which we denote s. It
satisfies the desirable properties of being anti-monotic and normalized, and can
be computed efficiently.

The MIS measure is a normalized anti-monotonic OGSM. Note that given an
overlap hypergraph H̃D

P , we are able to derive the corresponding overlap graph
GD

P by replacing every hyperedge with a clique. Therefore, we can rephrase the
definition of the MIS measure using overlap hypergraphs. Suppose H̃D

P is an
overlap hypergraph:

MIS(H̃D
P) = max |{I ⊆ V (H̃D

P) | ∀e ∈ E(H̃D
P) : |e ∩ I| ≤ 1}| (1)

The MIS measure requires that a vertex of an overlap (hyper)graph is either
in the independent set I or not. Our new measure s is a relaxation of the MIS
measure by allowing counting vertices of an overlap hypergraph partially.

Let H̃D
P be an overlap hypergraph. We start by assigning to each vertex v of

H̃D
P a variable xv. We then consider vectors x ∈ RV (H̃D

P) of variables where for
every v ∈ V (H̃D

P), xv denotes the variable (component of x) corresponding to v.
x is feasible iff it satisfies

(i) ∀v ∈ V (H̃D
P) : 0 ≤ xv

(ii) ∀e ∈ E(H̃D
P) :

∑
v∈e xv ≤ 1.

368 Y. Wang and J. Ramon

We denote the feasible region (the set of all feasible x ∈ RV (H̃D
P)) with R(H̃D

P).
It is a convex polytope. The measure s is defined by

s(H̃D
P) = max

x∈R(H̃D
P)

∑
v∈V (H̃D

P)

xv (2)

Clearly, s is the solution to a linear program.
We will call an element x ∈ R(H̃D

P) which makes
∑

v∈V (H̃D
P) xv maximal a

solution to the LP of s.
There are very effective methods for solving LPs, including the simplex method

which is efficient in practice though its complexity is exponential, and the more
recent interior-point methods [16]. The interior-point method solves an LP in
O(n2m) time, where n (here min{|V (H̃D

P)|, |E(H̃D
P)|}) is the number of vari-

ables, and m (here |V (H̃D
P)| + |E(H̃D

P)|) is the number of constraints. Usually,
patterns are not large, so the LPs for computing s are sparse. Almost all LP
solvers perform significantly better for sparse LPs.

4 Conditions for Anti-monotonicity

Vanetik et al. [3] gave necessary and sufficient conditions for anti-monotonicity of
for OGSMs on labeled graph using edge-overlap. This result was generalized in [6]
to any OGSM on labeled or unlabeled, directed or undirected graphs using edge
overlap or vertex overlap and isomorphism, homomorphism or homeomorphism.
Our conditions for anti-monotonicity are based on the overlap hypergraphs. Our
main result is that an OHSM is anti-monotonic if and only if it is non-decreasing
under certain operations on the overlap hypergraph.

We begin by defining three operations on any overlap hypergraph, which we
will then use in our conditions for anti-monotonicity. These operations are differ-
ent from those used in [3,6], but play a similar role. As mentioned in these earlier
papers, the motivation for these operations is that it is often easier to show that
an OHSM satisfies the conditions of the theorem (being non-decreasing under
the three operation), than to show anti-monotonicity of a measure directly.

For H ∈ H, we define:

– Vertex Addition: A new vertex v is added to every existing hyperedge:
V A(H, v) = (V (H) ∪ {v}, {e ∪ {v} | e ∈ E(H)}).

– Subset Contraction: Let K ⊆ V (H) be a set of vertices of the hypergraph
such that ∃e ∈ E(H) : K ⊆ e. Then, the subset contraction operation
contracts K into a single vertex k, which remains in only those hyperedges
that are supersets of K. Formally, SC(H,K, k) = (V (H)−K∪{k}, E1∪E2)
where E1 = {e − K ∪ {k} | e ∈ E(H) and K ⊆ e} and E2 = {e − K | e ∈
E(H) and K � e}).

– Hyperedge Split: This operation splits a size k hyperedge into k hyperedges
of size (k − 1) each: HS(H, e) = (V (H), E(H) − {e} ∪ {e − {v} | v ∈ e}),
where e ∈ E(H).

An Efficiently Computable Support Measure 369

For example, suppose H0 is a hypergraph, V (H0) = {v1, v2, v3, v4}, and E(H0)
contains two hyperedges {v1, v2, v3} and {v1, v4}. Let H1 = V A(H0, v5), then
V (H1) = {v1, v2, v3, v4, v5} and E(H1) contains hyperedges {v1, v2, v3, v5} and
{v1, v4, v5}. Let H2 = SC(H1, {v1, v3}, v6), then V (H2) = {v2, v4, v5, v6} and
E(H2) contains hyperedges {v2, v5, v6} and {v4, v5}. Let H3 = HS(H2, {v2,
v5, v6}), then V (H3) = V (H2) and E(H2) contains four hyperedges {v2, v5},{v2,
v6}, {v5, v6} and {v4, v5}.

4.1 Sufficient Condition

We give a sufficient condition for support measure anti-monotonicity in terms of
the three operations on the overlap hypergraph that we have defined.

Theorem 1. Let f ′ : G × G → R be a support measure, and f : H → R with
f ′(D,P) = f(H̃D

P)) be the induced OHSM. If f is non-decreasing under VA, SC
and HS, then f ′ is an anti-monotonic support measure.

Proof. Suppose D is a database graph, and p and P are two patterns such that
p is a subgraph of P . We prove that H̃D

p can be obtained from H̃D
P by applying

only the operations VA, SC and HS. It follows then that f ′(D,P) = f(H̃D
P) ≤

f(H̃D
p) = f ′(D, p) for any D, P and p, proving the theorem.

Let < be an arbitrary order defined on V (H̃D
p). We define for v ∈ V (H̃D

p) the

set Πv = {u ∈ V (H̃D
P) | v (u and ∀w < v : w �(u}. Here, remember that the

vertices of H̃D
p are images of p and hence v (u refers to a subgraph isomorphism

relationship between v and u.
The Πv are pairwise disjoint and ∪v∈V (H̃D

p)Πv = V (H̃D
P). We point out that

there may exist vertices v for which Πv = ∅. We divide V (H̃D
p) into two sets

V0 = {v | Πv = ∅} and V1 = {v | Πv �= ∅}.
Let H be a hypergraph initially equal to H̃D

P . We will perform operations VA,
SC and HS on H , until finally it is equal to H̃D

p .
First, H is modified by a sequence of VA operations. For each v ∈ V0, we do

H := V A(H, v). Now, ∀e ∈ E : V0 ⊆ e.
Then, for each v ∈ V1, we perform H := SC(H,Πv, v). The operations are

valid because for v ∈ V1 each vertex u ∈ Πv stands for a superimage of the
same v, i.e., v (u and hence ∃e ∈ E(H) : Πv ⊆ e. It is easy to verify that now
V (H̃D

p) = V (H) holds.

Consider a hyperedge e′x ∈ E(H̃D
p) which is determined by x ∈ V (D), i.e.,

e′x = {v ∈ V (H̃D
p) | x ∈ V (v)}. We know that e′x ∩ V0 is a subset of any

e ∈ E(H). E(H̃D
P) has a dominating hyperedge e′′x determined by x, i.e., e′′x =

{v ∈ V (H̃D
P) | x ∈ V (v)} (or has another hyperedge e′′y which is a superset of

the dominated hyperedge e′′x). We have e′x ⊆ e′′x (or e′′y). Thus, ∀v ∈ e′x∩V1 :
Πv ⊆ e′′x (or e′′y). Therefore, there must be a hyperedge e ∈ E(H) such that

e′x ⊆ e. This property shows that every hyperedge in E(H̃D
p) either exists in

E(H) or can be obtained later on by performing a sequence of HS on H . ��
Theorem 2. s(D,P) = s(H̃D

P) is a normalized anti-monotonic support mea-
sure.

370 Y. Wang and J. Ramon

Proof. First, we prove s is normalized. If the pattern P only has non-overlapping
images in the database graph D, every hyperedge in E(H̃D

P) contains only one
vertex, then setting xv = 1 for every v ∈ V (H̃D

P) is a feasible assignment and
is clearly maximal. That is, s equals the number of non-overlapping images.
Therefore, s is normalized.

Then, we prove s is anti-monotonic using Theorem 4.1. Suppose H is an
overlap hypergraph and x∗ is a solution to the LP of s(H). Let H1 be the
overlap hypergraph V A(H, v), and let xu = x∗u for all vertices u �= v and xv = 0.
x is a feasible solution for the LP of s(H1), so s(H1) ≥

∑
v xv = s(H). Let H2 be

the overlap hypergraph SC(H,K, k), and let xu = x∗u for all vertices u �= k and
xk =

∑
v∈K x∗v. x is a feasible for the LP of s(H2), so s(H2) ≥

∑
v xv = s(H).

Let H3 be the overlap hypergraph HS(H, e). x∗ is also a feasible for the LP of
s(H3), so s(H3) ≥ s(H). ��

4.2 Necessary Condition

We show that the above sufficient condition for anti-monotonicity is also neces-
sary.

Theorem 3. Let f ′ : G × G → R be a support measure, and f : H → R with
f ′(D,P) = f(H̃D

P)) be the induced OHSM. If f ′ is anti-monotonic, then f is
non-decreasing under VA, SC and HS.

Proof (sketch). Let HP be any hypergraph and Hp a hypergraph obtained by
performing VA, SC or HS on HP . We show that there exists a database graph
D and patterns P and p such that H̃D

P = HP and H̃D
p = Hp. Then, there

follows f(HP) = f ′(D,P) ≤ f ′(D, p) = f(Hp) which proves the theorem. For
convenience, we show the theorem only for D,P, p ∈ G↔

λ , but the proof can be
generalized.

In Figure 3, we give the patterns P and p (p ⊆ P), and list different types of
overlap. The numbers of vertices with label a or b in P and p are not fixed, and
we can assume that P and p have enough such vertices. We construct database
graphs by combining the patterns using these different types of overlap. We name
the different types O1, O2, O3 and O4. In Figure 3, only two patterns overlap
for each type, but during the construction of database graphs, it is allowed that
more than two patterns overlap at the same vertex.

If H̃D
p = V A(H̃D

P , v), then we can construct the database graph using O1 and

O2. O1 is used to determine all the hyperedges in E(H̃D
P). O2 is used to introduce

a new vertex and make the new vertex exist in every hyperedge in E(H̃D
p).

If H̃D
p = SC(H̃D

P ,K, k), then we can construct the database graph using O1,
O3 and O4. O3 is used to build the subset K. O4 is used to determine the
hyperedges e ∈ E(H̃D

P) which satisfy e∩K �= ∅ and K � e. For any hyperedge e

determined by O4, there is a hyperedge e′ ∈ E(H̃D
p) determined by O1 such that

e′ = e − K. Besides, O1 also determines all hyperedges e ∈ H̃D
P which satisfy

K ⊆ e or e ∩K = ∅.

An Efficiently Computable Support Measure 371

c

aa · · ·

P

c

b b
· · ·

c

b b
· · ·
p

c

aa · · ·

c

b b

O1

· · ·

c

aa · · ·

c

b
· · ·

c

aa · · ·

c

b b

O2

· · ·

c

b
· · ·

c

aa · · ·

c

b b

O3

· · ·

c

aa · · ·

c

aa · · ·

c

b b

O4

· · ·

c

a· · ·

c

b b
· · ·

Fig. 3. Patterns and different types of overlap. The highlighted parts show the ways
two patterns overlap.

If H̃D
p = HS(H̃D

P , e), then we can construct the database graph using O1

and O4. O4 is used to build the hyperedge e. O1 determines the hyperedges
{e− {v} | vn ∈ e} ∈ E(H̃D

p) and all other hyperedges. ��

5 Bounding Theorem

In [6], the authors showed an interesting result that all normalized anti-monoto-
nic OGSMs are bounded (between the maximum independent set size (MIS)
and the minimum clique partition size (MCP)). Similarly, we prove that all
normalized anti-monotonic OHSMs are also bounded. We first introduce another
OHSM on H ∈ H, the size of a minimum set cover of H :

MSC(H) = min |{S ⊆ E(H) |
⋃
e∈S

e = V (H)}| (3)

It is not difficult to verify that MSC is normalized and anti-monotonic. To com-
pute MSC is an NP-hard problem. The maximum independent set size (Eq. (1))
and minimum vertex cover (Eq. (3)) are the minimal and the maximal possible
normalized anti-monotonic OHSMs.

Theorem 4. For every normalized anti-monotonic OHSM f , and every H ∈ H,
it holds that: MIS(H) ≤ f(H) ≤ MSC(H).

372 Y. Wang and J. Ramon

Proof. We use Theorem 3 to show the minimality of MIS and the maximality of
MCP, respectively.

Let H be a hypergraph, and let I = {v1, v2, · · · , vk} be a maximum indepen-
dent set of H . Starting from the hypergraph HI = ({v1, v2, · · · , vk}, {{v1}, {v2},
· · · , {vk}}), we can get H by adding vertices V (H) − I using VA first and
then spliting hyperedges by a sequence of HS. Since f is normalized, it is anti-
monotonic and therefore f cannot decrease after each step, and f(HI) = k. As
such, f(H) is larger than or equal to k = MIS(H).

On the other hand, let {e1, e2, · · · , ek} be a minimum set cover for H and let
Hsc = SC(. . . SC(SC(H, e1, ve1), e2, ve2) · · · , ek, vek). Hsc only has the hyper-
edges with exact one vertex in each of them. Because f is anti-monotonic, f is
not decreasing under SC and thus f(H) ≤ f(SC(H, e1)) ≤ · · · ≤ f(Hsc) = k.

��

6 The Phase Transition from Frequent to Infrequent

Large real-world networks are known to satisfy properties similar to random
graphs. A well-known property is that properties which can be expressed in first
order logic are satisfied by either almost all graphs or almost no graphs (0-1 law,
see [21]). For random graphs, one can observe (see also our experiments below)
that for a given pattern P , it is either very easy to embed the pattern in the
network, or very difficult. This leads to another 0-1 property: the frequency of
many patterns is either very low or very high (for our s measure, nearly equal to
the network size). Consider e.g. a social network and the pattern “X is a friend
of Y and Y is a friend of Z”. Since most people have at least two friends, such
pattern will match about everywhere. This holds more generally for many tree
and path patterns. In fact, most such patterns are overly general and not very
interesting.

In the context of overlap-graph based support measures, these overly general
patterns also pose a computational problem: since they match about everywhere,
the corresponding overlap graph is very large. Therefore, for these less interesting
overly general patterns, our prototype implementation just records that they
are very frequent but doesn’t attempt to compute their frequency exactly by
constructing the overlap graph explicitely. We hence distinct three categories
of patterns: the infrequent patterns, the moderately frequent patterns, and the
very frequent patterns (for which the frequency will not be computed exactly).

7 Experiments

This section provides experimental results, illustrating the practical potential of
our new measure s.

7.1 Experimental Setup

For our experiments, we are interested in answering the following experimental
questions:

An Efficiently Computable Support Measure 373

Q1 How does the computational cost of the s measure compare to other existing
overlap based support measures, e.g., Lovász ϑ value?

Q2 How does the cost of computing the s measure compare to the cost of listing
the embeddings?

Q3 Is it feasible to mine all s-frequent patterns of size up to 6 in moderately
sized networks?

Q4 What can we learn about the phase transition between frequent and infre-
quent and the randomness of the DBLP dataset?

7.2 Results

All experiments are run on an Intel Core i7-2600 CPU (3.4Gz) with 8Gb RAM.
We use the algorithm VF2 (implemented in C++) to find embeddings of

patterns in networks [19]. We use Matlab 2012a and SeduMi 1.21 to solve the
LPs for the s measure and the SDPs for the Lovász ϑ value. The desired accuracy
of all LPs and SDPs is 10−4.

Lovász ϑ Function. In the first experiment, we generate hypergraphs ran-
domly, and convert them into graphs by replacing the hyperedges with cliques.
The hypergraphs are used to compute s measures, while the graphs are used to
compute the Lovász ϑ measure. The hypergraphs have 20, 40, . . . , 200 vertices
and 20, 40, . . . , 100 hyperedges. With probability 0.05, a vertex of the hyper-
graphs appears in a hyperedge.

Fig. 4 shows the time cost to compute the smeasure and the Lovász ϑ measure
for these graphs. θm and sm means there are m hyperedges.

Fig. 4. Time consumed to compute θ and s

374 Y. Wang and J. Ramon

Real-WorldData. Weuse twoDBLPco-authorship networks (DBLP0305 show-
ing co-authorships from 2003 to 2005 andDBLP0507 showing co-authorships from
2005 to 2007) [18]. If an author i co-authored a paper with author j, the networks
contain an undirected edge {i, j}.The vertices are unlabeled, whereas the edges are
labeled with an integer indicating the year the edge first appeared in. The network
dblp0305 has 109944 vertices, 228461 edges and 3 different labels. The network
dblp0507 has 135516 vertices, 290363 edges and 3 different labels. In this experi-
ment, we choose 1.5% as the frequency threshold.

For each network, we start from patterns of level 1, the single vertices. A
pattern which has i − 1 edges is a candidate in level i (i ≥ 2) if none of its
subpatterns is infrequent and at least one of its subpatterns in level i − 1 is
frequent (others may have too many embeddings). If a pattern has more than
5.106 embeddings, we don’t compute s but can easily show that the pattern is
frequent. We call such a pattern very frequent.

Table 1 gives the results of the experiments that mine frequent patterns up
to level 6 in the DBLP networks. Tmap is the average time per pattern to find
embeddings using VF2, and Ts is the average time to compute s. Both are in
seconds.

Synthetic Data. We generate scale-free networks of different sizes [20]. They
have 102, 103, . . . , 106 vertices which are labeled by 4 different labels, and all
of them have the same average degree 10. We will call them 10X networks,
where X = 2, 3, 4, 5, 6. In this experiment, all tree patterns are very frequent.
Therefore, we only report statistics for the non-tree patterns. We choose the
frequency threshold 0.1%.

Tables (2)-(4) give the results of the experiments that mining frequent non-
tree patterns up to level 6 (except the network which has 106 vertices) in the

Table 1. Frequent pattern mining in DBLP0305 and DBLP0507. Lev. = level (pattern
size), Cand. = # candidate patterns, Comp. = # patterns for which s was computed,
Freq. = # frequent patterns

Lev. Cand. Comp. Freq. Tmap Ts Cand. Comp. Freq. Tmap Ts

1 1 1 1 0.452 0.000251 1 1 1 0.711 0.000303

2 3 3 3 10.783 2.041 3 3 3 11.225 2.743

3 6 6 6 24.166 8.022 6 6 6 37.152 22.245

4 34 28 19 92.035 41.557 34 28 22 73.531 77.161

5 95 25 8 634.099 42.234 118 54 25 814.156 138.145

6 56 13 7 817.789 91.018 179 35 12 1530.608 430.637

Table 2. Frequent non-tree pattern mining in the 102 network

Level Candidates Computed Frequent Tmap Ts

4 20 20 16 0.014 0.383

5 191 191 182 0.015 0.388

6 2083 2083 2033 0.018 0.394

An Efficiently Computable Support Measure 375

Table 3. Frequent non-tree pattern mining in the 103 and 104 network

Lev. Cand. Comp. Freq. Tmap Ts Cand. Comp. Freq. Tmap Ts

4 20 20 20 0.018 0.383 20 20 20 0.085 0.393

5 215 215 215 0.031 0.431 215 215 215 0.277 0.406

6 2430 2430 2422 0.128 0.481 2430 2430 2349 3.141 1.877

Table 4. Frequent non-tree pattern mining in the 105 and 106 networks

Lev. Cand. Comp. Freq. Tmap Ts Cand. Comp. Freq. Tmap Ts

4 20 20 5 2.906 0.301 20 20 0 216.196 0.428

5 99 99 9 12.435 0.673 55 55 12 1565.134 0.996

6 758 742 648 354.194 24.408 - - - - -

scale-free networks. Levels 1 to 3 only contain tree patterns, so we do not list
them in the tables.

7.3 Discussion

Based on the results presented above, we can answer the experimental questions
as follows:

Q1 One can see from Table 4 that, for all the randomly generated (hyper)graphs,
s can be computed in a very short period of time (< 0.01 seconds), while
the time consumed to compute ϑ grows fast when the number of vertices
increases. Clearly, for larger (hyper)graphs on which s measure can be com-
puted efficientlly, it is extremely difficult to compute the ϑ value in a reason-
able time period by solving the corresponding SDP using existing methods.
Therefore, s outperforms ϑ value in terms of efficiency.

Q2 On the real-world data, the time needed to compute embeddings is signif-
icantly larger than the time needed to compute s. For the larger synthetic
datasets and the larger patterns the difference is even several orders of mag-
nitude.

Q3 We can see that using VF2 and the s measure, frequent patterns of level
up to 6 can be mined in a reasonable amount of time. In contrast to earlier
approaches using the MIS or ϑ measures, here the bottleneck is clearly the
pattern matching part of the algorithm. If this part can be improved, it can
be expected that larger patterns can be mined in larger networks.

Q4 For the synthetic data, we found that the frequency of cyclic (non-tree) pat-
terns was rather low, we needed a frequency threshold of 0.1% to mine them.
One can conclude that while in standard random graph models nodes choose
their neighbors randomly, in real-world data the connections of candidate
neighbors have an important influence.

8 Conclusions

In this paper, we studied the problem of measuring how frequently a given
pattern occurs in a given database graph. We have proposed a new overlap based

376 Y. Wang and J. Ramon

support measure s. In contrast to existing overlap based support measures, it can
be computed efficiently. We have shown that it is anti-monotonic and normalized.
The experimental results demonstrate that it is a practical overlap based measure
and it is effective to prune the search space.

Compared to non-overlap based measures, e.g., the min-image support mea-
sure [4], the s measure has statistical advantages. For example, consider the em-
beddings: 〈1, 11〉, 〈2, 11〉, 〈3, 11〉, 〈4, 11〉, 〈5, 11〉, 〈6, 12〉, 〈6, 13〉, 〈6, 14〉, 〈6, 15〉 and
〈6, 16〉. Then min-image returns 6 while s returns 2. The latter equals the number
of independent embeddings. Therefore, from a statistical point of view, for count-
ing the number of independent observations of some phenomenon s is preferable.

This aim to measure only independent occurrences is shared with the MIS
measure [3]. MIS is NP-hard while s is an efficiently computable relaxation. MIS
returns an integer and is more strict in the sense that it never accounts for
overlapping occurrences, while s also partially counts observations not explained
by vertices of already counted embeddings. E.g. consider the embeddings 〈a, b, c〉,
〈a, d, e〉 and 〈f, b, e〉. The MIS is 1. However, even though each of the vertices
a, b and e could have ’caused’ two embeddings, no vertex is involved in all
three embeddings. Therefore, s partially counts the third embedding, in this
case resulting in the value 1.5.

Our proposed measure is flexible, in the sense that it is possible for a user
to plug in his own definition of overlap. Investigating this in more detail is one
possible line of future research. Our proposal makes measuring the frequency of
a pattern in a more sound statistical way tractable. There are however other
challenges related to pattern mining in networks. The major one in our experi-
ments was the pattern matching. However, we anticipate that here too we can
get a long way in making things tractable. In particular we intend to integrate
our approach with recent results concerning efficient pattern matching operators
based on arithmetic circuits [22].

Acknowledgements. This work was supported by ERC Starting Grant 240186
“MiGraNT: Mining Graphs and Networks: a Theory-based appraoch”.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proceedings of SIGMOD 1993, pp. 207–216 (1993)

2. Vanetik, N., Gudes, E., Shimony, S.E.: Computing frequent graph patterns from
semistructured data. In: Proceeding of ICDM 2002, pp. 458–465 (2002)

3. Vanetik, N., Shimony, S.E., Gudes, E.: Support measures for graph data. Data
Min. Knowl. Discov. 13(2), 243–260 (2006)

4. Bringmann, B., Nijssen, S.: What Is Frequent in a Single Graph? In: Washio, T.,
Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012,
pp. 858–863. Springer, Heidelberg (2008)

5. Fiedler, M., Borgelt, C.: Support Computation for Mining Frequent Subgraphs in
a Single Graph. In: Proceedings of MLG 2007 (2007)

An Efficiently Computable Support Measure 377

6. Calders, T., Ramon, J., Dyck, D.V.: All normalized anti-monotonic overlap graph
measures are bounded. Data Min. Knowl. Discov. 23(3), 503–548 (2011)

7. Kuramochi, M., Karypis, G.: Finding frequent patterns in a large sparse graph.
Data Min. Knowl. Discov. 11(3), 243–271 (2005)

8. Garey, M.R., Johnson, D.S.: Computers and intractibility, a guide to the theory of
NP-Completeness. W. H. Freeman and Company (1979)

9. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique
is almost NP-Complete. In: FOCS, pp. 2–12. IEEE Computer Society (1991)

10. Lovász, L.: On the Shannon capacity of a graph. IEEE Transactions on Information
Theory 25(1), 1–7 (1979)

11. Knuth, D.E.: The sandwich theorem. Electr. J. Comb. 1, 1–48 (1994)
12. Chan, T., Chang, K.L., Raman, R.: An SDP primal-dual algorithm for approximat-

ing the Lovsz-theta function. In: Proceedings of the IEEE ISIT 2009, pp. 2808–2812
(2009)

13. Diestel, R.: Graph theory. Springer (2010)
14. Chakrabarti, D., Faloutsos, C.: Graph mining: laws, generators, and algorithms.

ACM Comput. Surv. 38(1), 1–69 (2006)
15. Iyengar, G., Phillips, D.J., Stein, C.: Approximating semidefinite packing pro-

grams. SIAM Journal on Optimization 21(1), 231–268 (2011)
16. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge Univ. Press (2004)
17. Klein, P.N., Lu, H.: Efficient approximation algorithms for semidefinite programs

arising from MAX CUT and COLORING. In: Proc. of ACM STOC 1996, pp.
338–347 (1996)

18. Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining Graph Evolution
Rules. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
PKDD 2009, Part I. LNCS, vol. 5781, pp. 115–130. Springer, Heidelberg (2009)

19. Luigi, P., Pasquale, F., Carlo, S., Mario, V.: A subgraph isomorphism algorithm
for matching large graphs. IEEE Trans. Pat. Anal. Mach. Intell. 26(10), 1367–1372
(2004)

20. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

21. Fagin, R.: Probabilities on finite models. J. of Symbolic Logic 41(1), 50–58 (1976)
22. Kibriya, A., Ramon, J.: Nearly exact mining of frequent trees in large networks.

In: Proceedings of ECML-PKDD 2012 (in press)

Efficient Graph Kernels by Randomization

Marion Neumann1, Novi Patricia1, Roman Garnett2, and Kristian Kersting1

1 Knowledge Discovery Department, Fraunhofer IAIS,
Schloss Birlinghoven, 53754 Sankt Augustin, Germany

{Marion.Neumann,Novi.Patricia,Kristian.Kersting}@iais.fraunhofer.de
2 Robotics Institute, Carnegie Mellon University,

5000 Forbes Avenue, Pittsburgh, PA 15213, United States
rgarnett@cs.cmu.edu

Abstract. Learning from complex data is becoming increasingly impor-
tant, and graph kernels have recently evolved into a rapidly developing
branch of learning on structured data. However, previously proposed ker-
nels rely on having discrete node label information. In this paper, we ex-
plore the power of continuous node-level features for propagation-based
graph kernels. Specifically, propagation kernels exploit node label distri-
butions from propagation schemes like label propagation, which naturally
enables the construction of graph kernels for partially labeled graphs. In
order to efficiently extract graph features from continuous node label dis-
tributions, and in general from continuous vector-valued node attributes,
we utilize randomized techniques, which easily allow for deriving simi-
larity measures based on propagated information. We show that propa-
gation kernels utilizing locality-sensitive hashing reduce the runtime of
existing graph kernels by several orders of magnitude. We evaluate the
performance of various propagation kernels on real-world bioinformatics
and image benchmark datasets.

1 Introduction

For attribute-valued data, sophisticated kernel approaches for classification and
regression have been widely and successfully studied. Nowadays, however, the
bulk of information, such as available on the world wide web, is complex and
highly structured. Structured data is commonly represented by graphs, which
capture relations among entities, but also naturally model the structure of whole
objects. Real-world examples are proteins or molecules in bioinformatics, image
scenes in computer vision, text documents in natural language processing, and
object and scene models in robotics, to name but a few. Learning in such domains
and in turn developing meaningful kernels to take the structure of these data
into account is becoming more and more important.

In addition to the structural properties of data entities, we often have access
to vast quantities of additional, possibly continuous related information, for in-
stance meta-data for images or text documents. Incorporating such information
consistently is difficult and incomplete data and missing information constitute
major challenges for learning. Unfortunately, existing graph kernels [4,6,10,18,19]

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 378–393, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Graph Kernels by Randomization 379

rely on having discrete node labels and, besides, can only handle graphs with
full node label information in a principled manner. In this paper, we propose
the family of propagation kernels which leverage the power of continuous label
distributions.

Triggered by previously introduced kernels on probabilistic models [8, 21],
propagation kernels exploit distributions from propagation schemes like label
propagation (lp) and enhance existing graph kernel frameworks to handle con-
tinuous, vector-valued node attributes. In particular, we define kernel inputs, i.e.
graph features, that are counts of similar node label distributions on the respec-
tive graphs. This generalization additionally enables us to define graph kernels
for partially labeled graphs in a natural way. Unfortunately, comparing all distri-
butions of node labels among all graphs in the database scales as O(n2), where n
is the total number of nodes, and aggregating all distributions on node labels in
one graph to a single vector leads to significant information loss. Hence, in order
to efficiently determine the similarity among node label distributions and in gen-
eral to be able to deal with continuous, vector-valued node attributes, we leverage
randomization techniques from the theoretical computer science community. We
define locality-sensitive hash (lsh) functions to create distance-preserving sig-
natures for each node label distribution. These functions provide a randomized
algorithm that allow us to efficiently compute the distribution-based count fea-
tures for our kernels in O(n). We are able to show that the hash values can
preserve both the total variation and the Hellinger metrics. Therefore, our lsh
enables us to efficiently retrieve similar distributions based on these distance
measures for probability distributions.

To summarize, the main contribution of our work is the introduction of a fam-
ily of fast graph kernels based on propagating node labels. Specifically, we intro-
duce locality-sensitive hash functions to efficiently compute the count features
based on the similarity of node label distributions. Furthermore, we show that
applying randomized techniques reduces the running time of existing graph ker-
nels, namely kernels based on the Weisfeiler–Lehman test of isomorphism [18],
by several orders of magnitude and we propose propagation kernels utilizing
locality-sensitive hashing that are even more efficient.

We proceed as follows. We start off by touching upon related work. After in-
troducing the family of propagation kernels and giving several examples thereof,
we will describe locality-sensitive hashing for handling vector-valued node la-
bel distributions. Before concluding, we present experimental results for graph
classification tasks on state-of-the-art image datasets, and commonly used bioin-
formatics benchmark datasets.

2 Related Work

Propagation kernels are related to three lines of research. First of all, they are
deeply connected to several graph kernels developed within the graph mining
community. Graph kernels can be categorized mainly into four classes: graph
kernels based on walks [4, 10, 22] and paths [2], graph kernels based on limited-
size subgraphs [7,19], graph kernels based on subtree patterns [13,16], and graph

380 M. Neumann et al.

kernels based on structure propagation [18]. Whereas the efficient kernel compu-
tation such as [22] are able to compare unlabeled graphs efficiently, Shervashidze
et al. [19] specifically consider efficient comparisons of large, labeled graphs. The
Weisfeiler–Lehman (wl) subtree kernel, one instance of the family of wl-kernels
introduced, essentially computes count features for each graph based on the sig-
natures arising from iterative multi-set label determination and compression
steps. In every kernel iteration, these features are then the inputs to a base
kernel and the wl-kernel is the sum of those base kernels over the iterations.
The challenge of comparing large, partially labeled graphs—as considered by the
propagation kernels introduced in the present paper—remains to a large extent
unsolved. One could mark unlabeled nodes with a unique symbol and propagate
this symbol using the Weisfeiler–Lehman kernels [18]. However, this neglects any
label proportion information due to the diffusion process of labels on the graph.
Likewise, one could just propagate labels across the graph and then run the
wl-kernel. This, however, is also likely to neglect label proportion information.
Indeed, after label propagation converges, we may ignore the label proportions
of a node. Before convergence, however, we shall be concerned with informa-
tion encoded in intermediate label proportions at nodes. Moreover, a two-stage
approach may run many unnecessary label propagation iterations.

Second, propagation kernels are deeply connected to several recent lifted
message-passing approaches [1, 11, 15, 20] to probabilistic inference. They have
rendered many of these large, previously intractable problems quickly solvable
by exploiting the induced redundancies. Specifically, they automatically group
nodes and potentials of the graphical model into supernodes and superpotentials
if they have identical computation trees (i.e., the tree-structured “unrolling” of
the graphical model computations rooted at the nodes). Then, they run modified
message-passing approaches on this lifted (compressed) network. It is actually
easy to see that the color-passing approach in [11] for computing the lifted net-
work is as a form of the 1-dimensional Weisfeiler–Lehman algorithm as also
employed by the wl-kernels [18]. However, there is a subtle difference. For lifted
inference, symmetries among random variables easily break when variables be-
come correlated by virtue of sharing asymmetrically observed evidence, that is
labels of nodes are observed. Consequently, color-passing provides a lifted model
that is not far from propositionalized, therefore canceling the benefits of lifted
inference. For graph kernels, this is exactly what we want. The correlations help
us to distinguish different graphs. This insight was the seed that grew into the
idea of propagation kernels.

Finally, propagation kernels make another contact point, namely between wl-
kernels and kernels that accommodate probability distributions [8,9,12,14]. How-
ever, whereas the latter ones essentially build kernels based on the outcome of
probabilistic inference after convergence, propagation kernels intuitively count
common sub-distributions induced after each iteration of running inference in
two graphs. In doing so, they are able to take structure information into account.

Efficient Graph Kernels by Randomization 381

3 Propagation Kernels

In the following, we introduce the general family of propagation kernels and
present several instances based on propagating label information. The main in-
sight here is, that the intermediate node label distributions, e.g., the iterative
distribution updates of a label propagation scheme, capture label and structure
information of the graphs. Hence, we design kernel inputs, i.e. graph features,
based on the counts of similar distributions among the respective graphs’ nodes.
Further, we show that propagation kernels generalize existing structure propa-
gating wl-kernels, especially the wl-subtree kernel [18].

3.1 General Definition

Here we will define a similarity measure K : X ×X → R among graph instances
G(i) ∈ X , in particular, let K be a positive semidefinite covariance function. Let
G

(i)
t = (V (i), E(i), L

(i)
t) with t = [0, .., T] be a sequence of graphs in X , where

V (i) is the set of nodes and E(i) is the set of edges. Further, each node in V (i)

is endowed with one of k true labels and each graph has ni nodes. L(i)
t ∈ Rni×k

represents the label distributions1 for all nodes in V (i) which are iteratively
updated. Note that we do not assume that the node labels have to be given for
all nodes. Propagation kernels can naturally be computed for partially labeled
graphs as the features are only built upon the node label distributions, which
can be initialized uniformly for unknown node labels. Observed node labels are
represented by a trivial delta distribution.

Propagation kernels are defined by applying the following iterative procedure
T + 1 times, beginning with an initial set of graphs {G(i)

0 } with label distribu-
tions initialized as above.

Step 1: count common node label distributions. First, we generate feature
vectors φ(G(i)

t) for each graph by counting common label distributions induced
over the nodes among the respective graphs. Therefore, each node in each graph
is placed into one of a number of “bins,” each one collecting similar label distri-
butions, and these vectors count the nodes in each bin for each graph. The exact
details of this procedure are given below, in Section 3.2 and Section 4.
Step 2: calculate current kernel contribution. Given these vectors, for each
pair of graphs G(i) and G(j), we calculate

k(G
(i)
t , G

(j)
t) = 〈φ(G(i)

t), φ(G
(j)
t)〉, (1)

where 〈·, ·〉 is an arbitrary base kernel. This value will be an additive contribution
to the final kernel value between these graphs.
Step 3: propagate node label distributions. Finally, we apply an iterative
update scheme for the node label distributions

L
(i)
t → L

(i)
t+1, (2)

1 Note that L(i) could also involve continuous, vector-valued node attributes, however,
in this paper we focus on label distributions.

382 M. Neumann et al.

Algorithm 1. The general propagation kernel computation.

given iterations T , initial label distributions L(i)
0 , base kernel k(·, ·)

K ← 0
for t← 0 . . . T do

for all graphs G(i) do
φ(G

(i)
t)← 0

for j ← 1 . . . ni do
φ(G

(i)
t)← φ(G

(i)
t) + f(�

(i)
t,j) � count node label distributions, Eq. (4)

end for
L

(i)
t → L

(i)
t+1 � update label distribution, Eq. (2)

end for
K ← K + k(Φ,Φ) � Φ is N × k′′ matrix of φ vectors

end for

e.g. label propagation. These new label distributions replace those in the current
set of graphs, and we continue with Step 1. The exact choice for this update
results in different propagation kernels; examples are provided in Section 3.3.

Finally, the T -iteration propagation kernel between two graphs G(i) and G(j)

is defined as

KT (G
(i), G(j)) =

T∑
t=0

k(G
(i)
t , G

(j)
t). (3)

The propagation kernel computation is summarized in Algorithm 1 and an
illustrative example for t = 0 and t = 1 for two graphs is shown in Figure 1.

3.2 Distribution-Based Graph Features

The main ingredient of propagation kernels is the way distribution-based graph
features are generated. Let �(i)t,j be the j-th row of L(i)

t and L =
⋃N

i

⋃ni

j {�(i)t,j} be
the set of all uniquely occurring label distributions on the nodes of all graphs.
The family of propagation kernels is characterized by generating graph features
by counting node-level features on that graph. This will be captured by a function
f mapping from the space of distributions Rk into the space of standard basis
vectors Ek′ = {e1, ..., ek′} with k′ = |L| ≤ n, where n is the number of nodes for
all graphs n =

∑N
i=1 ni. We now define

φ(G
(i)
t) =

ni∑
j=1

f(�
(i)
t,j). (4)

As the node label distributions �
(i)
t,j are k−dimensional continuous vectors the

cardinality of L might in fact be equal to the total number of nodes n in the
whole graph database. This, however, means that our derived features are not
meaningful as, in this case, we never get the same count feature for any two
similarly distributed nodes and the kernel value for any two graphs as defined

Efficient Graph Kernels by Randomization 383

0

0

1

bin 1 bin 2 bin 3

G
(1)
0

1

0

1

0

bin 1 bin 2 bin 3

G
(2)
0

φ(G
(1)
0) = [2, 1, 3]
 φ(G

(2)
0) = [2, 2, 2]

〈φ(G(1)
0), φ(G

(2)
0)〉 = 12

(a) Initial label distributions and base kernel value for t = 0

bin 1 bin 2 bin 3 bin 4

G
(1)
1

bin 1 bin 2 bin 3 bin 4

G
(2)
1

φ(G
(1)
1) = [1, 1, 3, 1]
 φ(G

(2)
1) = [3, 1, 2, 0]

〈φ(G(1)
1), φ(G

(2)
1)〉 = 10

(b) Updated label distributions and base kernel value for t = 1

Fig. 1. Propagation Kernel Propagation kernel computations for two graphs G(1)
t

and G
(2)
t with binary node labels using one iteration of label propagation, Eq.(6),

as distribution update. Node label distributions are decoded by color, white means
�
(i)
0,j = [1, 0] and dark red stands for �(i)0,j = [0, 1], the initial distributions for unlabeled

nodes (light red) are �(i)0,j = [1/2, 1/2]. Panel (a) shows the initial distributions, bins, and
respective kernel computation and panel (b) depicts distributions, bins, features and
linear base kernel for t = 1.

in Eq. (1) is always zero. To ensure the acquisition of meaningful features we
leverage quantization [5]. Hence, the mapping f is replaced by q : Rk → Ek′ ,
where q is a quantization function such that k′ � |L| ≤ n. Note, that deriving
a quantization function for distributions involves considering distance metrics

384 M. Neumann et al.

for distributions such as Hellinger or total variation (tv) distance. We are not
defining the quantization function here but instead give an efficient solution by
locality-sensitive hashing [3] in Section 4 and also show that we can construct
quantization functions which are Hellinger and tv distance preserving.

3.3 Instances of Propagation Kernels

So far, we defined the general family of propagation kernels. Specific choices of
label update schemes, cf. Eq. (2), result in different instances of the propaga-
tion kernel family. In particular, we introduce the diffusion graph kernel, the
label propagation kernel, the belief propagation kernel, and structure propagation
kernels as for instance the wl-subtree kernel.

Diffusion Graph Kernel: For the diffusion graph kernels we use the following
update for the node label distributions L(i)

t → L
(i)
t+1. Given the adjacency matrix

A(i) of graph G(i) label diffusion on each node is defined as

L
(i)
t+1 ← T (i) L

(i)
t , (5)

where T (i) is the transition matrix, i.e., the row-normalized adjacency matrix
T (i) = (D(i))−1A(i), where D(i) is the diagonal degree matrix with D

(i)
aa =∑

bA
(i)
ab .

Label Propagation Kernel: The label distribution update for the label prop-
agation kernel differs in the fact, that before each iteration of label diffusion
the labels of the originally labeled nodes are pushed back [25]. Let L

(i)
0 =[

L
(i)
0,[labeled], L

(i)
0,[unlabeled]

]�
be the original labels of graph G(i), where the distri-

butions in L
(i)
0,[labeled] represent hard labels and L

(i)
0,[unlabeled] are initialized by a

uniform label distribution, i.e., each entry is 1/k. Then the label propagation is
defined by

L
(i)
t,[labeled] ← L

(i)
0,[labeled],

L
(i)
t+1 ← T (i) L

(i)
t . (6)

Note, that we can choose other step sizes for the label propagation update scheme
as one. This means that we run several iterations of label propagation for each
distribution update. This can be beneficial for settings with partially labeled
graphs. Further, other update schemes, such as “label spreading” [24], can be
used in a similar manner resulting in a label spreading kernel.

Belief Propagation Kernel: Triggered by the idea of defining the similarity of
graphical models, like conditional random field (CRF) representations of images
or different groundings of a Markov logic network (MLN) [17], we can also use
belief propagation [23] to get the node-level feature update in Eq. (2). To define
the belief propagation kernel, we simply use marginal probabilities instead of

Efficient Graph Kernels by Randomization 385

label distributions. Due to space limitations, we do not provide any more details
here and leave comprehensive derivations and experiments for future work.

Structure Propagation Kernel — The wl-subtree Kernel: The wl graph
kernels for labeled graphs are currently state-of-the-art considering both predic-
tion performance and runtime [18]. Therefore, we briefly introduce one instance,
the wl-subtree kernel, and give its definition within our proposed framework of
propagation kernels. Given two graphs G(i) and G(j), the subtree pattern kernel
counts all pairs of matching substructures in subtrees rooted at all nodes of G(i)

and G(j) respectively. The runtime complexity of this approach for N graphs is
O(n2T 4d) [16], where d is the maximum node degree in all graphs. The idea of
using the 1-dimensional Weisfeiler–Lehman test of isomorphism is to overcome
the poor ability to scale to large, labeled graphs, as it scales linearly on the
number of edges of the graphs and the length of the considered graph sequence.
Hence, the wl-subtree kernel on N graphs with T iterations can be computed in
O(Tm+NTn) [18], where m is the total number of edges in all graphs and n is
the total number of nodes. Given two graphs G(i) and G(j), the algorithm works
as follows. First, a signature is generated for each node in each graph by con-
catenating its label with a sorted multiset of its neighboring nodes. Then each
node is assigned a new label such that nodes with the same signature are labeled
the same. This means a hard label update in Eq. (2). Indeed, the wl-subtree
kernel can be defined analogously to Eq. (3). The sequence of graphs {G(i)

t } is
given by hard labels reflecting the signatures for the respective subtree pattern
and the features are represented by

φwl(G
(i)
t) =

ni∑
j=1

g(�
(i)
t,j), (7)

where �
(i)
t,j ∈ {e1, ..., ek′′} with k′′ ≤ n being the number of different subtree

patterns and g : i �→ ei. That means, �(i)t,j represents a hard signature for every
node j and g maps each signature to one standard basis vector. Indeed, this view
opens up the possibility to handle probabilistic subtree patterns in the setting of
wl-kernels for partially labeled graphs, which, in turn, is a compelling direction
to enhance the power of wl-kernels.

4 Locality-Sensitive Hashing for Propagation Kernels

We now describe our quantization approach for implementing propagation ker-
nels on graphs with node label distributions. We take our inspiration from
locality-sensitive hashing [3], which seeks for quantization functions on metric
spaces where points “close enough” to each other in that space are “probably”
assigned to the same bin. In our case, we will consider each node label vector
as being an element of the space of discrete probability distributions on k items
equipped with an appropriate probability metric.

We will begin with a formal definition. Let X be a metric space with metric
d : X × X → R, and let Y = {1, 2, . . . , k′}. Let θ > 0 be a threshold, c > 1 be

386 M. Neumann et al.

an approximation factor, and p1, p2 ∈ (0, 1) be the given success probabilities.
A set of functions H from X to Y is called a (θ, cθ, p1, p2)-locality sensitive hash
(lsh) if for any function h ∈ H chosen uniformly at random, and for any two
points x, x′ ∈ X , we have that

− if d(x, x′) < θ, then Pr(h(x) = h(x′)) > p1, and
− if d(x, x′) > cθ, then Pr(h(x) = h(x′)) < p2.

It is known that we can construct lsh families for Lp spaces with p ∈ (0, 2] [3]. Let
V be a real-valued random variable. V is called p-stable if for any {x1, x2, . . . , xd},
xi ∈ R and independently sampled v1, v2, . . . , vd, we have

∑
xivi ∼ ‖x‖pV . Ex-

plicit p-stable distributions are known for some p; for example, the standard
Cauchy distribution is 1-stable, and the standard normal distribution is 2-stable.
Given the ability to sample from a p-stable distribution V , we may define a lsh
H on Rd with the Lp metric [3]. An element h of H is specified by three param-
eters: a width w ∈ R+, a d-dimensional vector v whose entries are independent
samples of V , and b ∈ [0, w] drawn from U [0, w], and defined as

h(x;w,v, b) =

⌊
v�x+ b

w

⌋
. (8)

We may now consider h(·) to be a function mapping our label distributions to
integer-valued bins, where similar distributions end up in the same bin. If we
number the non-empty integer bins occupied by all the nodes in all graphs from
1 to k′′, then we may define the function f in Eq. (4) by f(·) = u ◦ h(·), where
u : N → Ek′′ . To decrease the probability of collision it is common to choose
more than one random vector v. For propagation kernels, however, we only
use one hyperplane, as we effectively have T hyperplanes for the whole kernel
computation and the probability of a hash conflict is reduced over the iterations.

The intuition behind the expression in Eq. (8) is that p-stability implies that
two vectors that are close under the Lp norm will be close after taking the dot
product with v; specifically, (v�x − v�x′) is distributed as ‖x− x′‖pV . In our
applications, we are concerned with the space of discrete probability distributions
on k elements, endowed with a probability metric d. Here we specifically consider
the total variation (tv) and Hellinger (h) distances:

dtv(p, q) = 1/2
∑
i

|pi − qi|, dh(p, q) =

(
1/2

∑
i

(√
pi −

√
qi
)2)1/2

.

The total variation distance is simply half the L1 metric, and the Hellinger
distance is a scaled version of the L2 metric after applying the map p �→ √

p. We
may therefore create a locality-sensitive hash family for dtv by direct application
of Eq. (8), and create a locality-sensitive hash family for dh by applying Eq. (8)
after applying the square root map to our label distributions. These are the
quantization schemes applied in our experiments.

Efficient Graph Kernels by Randomization 387

5 Empirical Evaluation

Our intention here is to investigate the power of propagation kernels for graph
classification. Specifically, we investigate the two following questions:

(Q1) Do propagation kernels utilizing continuous distribution-based features
arising from propagating label information perform competitively as state-of-
the-art graph kernels for graph classification?
(Q2) Does randomization, in particular locality-sensitive hashing techniques,
improve efficiency over state-of-the-art graph kernels?
To this aim, we implemented propagation kernels in Matlab and considered the
following experimental protocol.

5.1 Experimental Protocol

We compare classification accuracy and runtime for several different instances of
propagation kernels: the diffusion graph kernel and the label propagation kernel
with Hellinger distance and total variation distance, and a structure propaga-
tion kernel, namely the wl-subtree kernel. We choose the wl-subtree kernel for
comparisons as it is currently the most accurate and efficient graph kernel and
additionally report several results for other graph kernels from [18].

We consider two general settings, graph classification for fully and for partially
labeled graphs. The latter is a reasonable situation when dealing with semantic
images as fully labeled data is costly or even impossible to acquire. Note, that for
partially labeled datasets we use the label propagation kernel, whereas for fully
labeled graphs this does not make sense because of the push back of original
labels. Here, we choose the diffusion graph kernel.

The classification performance is evaluated by running C-SVM classifications
using libSVM,2 where the cost parameter is learned by cross-validation on the
training set. We compute all kernels for T = 0, ..., 10 and report the average of
the best accuracies from 10 re-runs of a 10-fold cross-validation. For all runtime
experiments all kernels are as well computed for T = 10 and all experiments
were conducted on an Apple Mac Pro workstation with two 2.26 GHz quad-core
Intel Xeon “Gainestown” processors (model E5520) and 28 GB of RAM. We used
a linear base kernel for all methods and the bin width parameter for lsh was set
to w = 10−5. All results were fairly insensitive to the exact choice of w.

5.2 Datasets

We considered two real-world benchmark datasets.

Bioinformatics Benchmark Data: We ran experiments on the following
benchmark datasets: mutag, enzymes, nci1, nci109, and d&d. mutag con-
tains 188 sets of mutagenic aromatic and heteroaromatic nitro compounds, the
label refers to their mutagenic effect on the Gram-negative bacterium Salmonella

2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

388 M. Neumann et al.

(a) Original image

1 2 3

4 5
6

7

8

9

10

11

12
13

14

(b) Graph over superpixels

b b b

b v
c

c
v

v

v

c

v
v

v

(c) Semantic labels

Fig. 2. Graph Based Scene Classification In semantic scene classification the orig-
inal images (a) are represented by graphs of superpixels (b). Each superpixel node has
an attached semantic label (c) (here: b = building, c = car, and v = void). Each graph
represents the semantic scene of an image and similar scenes are classified according
to a kernel capturing label and structure information.

typhimurium. enzymes has 6 EC top-level classes. It is a dataset of protein ter-
tiary structures belonging to 600 enzymes from the BRENDA enzyme database.
nci1 and nci109 are anti-cancer screens, in particular for cell lung cancer and
ovarian cancer cell lines, respectively. d&d consists of 1178 protein structures,
with the nodes in each graph represent amino acids and two nodes forming an
edge if they are less than 6 Ångstroms separated. For a more comprehensive
introduction and references, see [18].

Image Benchmark Data: The two real-world image datasets MSRC 9-class
and MSRC 21-class3 are state-of-the-art datasets in semantic image processing.
Each image is represented by a conditional Markov random field graph, as illus-
trated in Figure 2. The nodes of each graph are derived by oversegmenting the
images using the quick shift algorithm4 with an average of 40 superpixels per
graph. Hence, each node represents one superpixel and the semantic (ground-
truth) node labels are derived by taking the mode ground-truth label of all pixels
in the corresponding segment. Note, that the number of nodes varies from graph
to graph. msrc9 consists of 221 images, and a total of 8969 nodes. The node
labels consist of nine classes building, grass, tree, cow, sky, aeroplane, face, car,
bicycle and a label void to handle objects that do not fall into one of these classes.
Each image can be classified into one out of eight classes. From the MSRC 21-
class dataset, which is a more comprehensive and complex image dataset, we
derived two datasets for our experiments. msrc21 consists of 565 images with
24 109 labeled superpixels of 21 classes: building, grass, tree, cow, sheep, sky,
airplane, water, face, car, bicycle, flower, sign, bird, book, chair, road, cat, dog,
body, boat, and void. For the second dataset, msrc21c, we extracted a subset of
the most challenging scenes by removing all images having fewer than four dif-
ferent class labels. The resulting dataset consists of 209 graphs and 8 626 nodes
in total. For both datasets based on the MSRC 21-class data each image can be
classified as one out of 20 classes.
3 http://research.microsoft.com/en-us/projects/ObjectClassRecognition/
4 http://www.vlfeat.org/overview/quickshift.html

http://research.microsoft.com/en-us/projects/ObjectClassRecognition/
http://www.vlfeat.org/overview/quickshift.html

Efficient Graph Kernels by Randomization 389

Table 1. Average accuracy (and standard deviation) on the image datasets for diffusion
graph kernel Kdiff using Hellinger distance (+h) resp. total variation distance (+tv),
and for the WL-subtree kernel Kwl. Bold indicates best result.

dataset

method msrc9 msrc21 msrc21c

Kdiff+h 91.6 (0.5) 83.6 (0.8) 88.7 (0.7)
Kdiff+tv 91.6 (0.5) 83.6 (0.8) 88.7 (0.7)
Kwl 92.1 (0.8) 82.2 (1.1) 88.5 (0.4)

Table 2. Average accuracy (and standard deviation) on the bioinformatics benchmark
datasets for diffusion graph kernel Kdiff using Hellinger distance (+h) resp. total vari-
ation distance (+tv), and for the WL-subtree kernel Kwl. Bold indicates best result.
Results for random walk kernel and Ramon–Gärtner kernel are taken from [18] to pro-
vide a broader overview of state-of-the-art graph kernel performances; however, please
note that we did not re-run the experiments and hence they have most likely been
produced using different random folds.

dataset

method mutag enzymes nci1 nci109 d&d

Kdiff+h 87.7 (1.3) 47.1 (1.2) 84.4 (0.2) 84.0 (0.3) 79.2 (0.4)
Kdiff+tv 87.5 (1.3) 47.0 (1.1) 84.2 (0.3) 83.6 (0.3) 79.3 (0.3)
Kwl 87.0 (1.0) 53.1 (1.3) 82.2 (0.2) 82.5 (0.2) 80.0 (0.4)

random walk [22] 80.7 (0.4) 21.7 (0.9) 64.3 (0.3) 63.5 (0.2) 71.7 (0.5)
Ramon–Gärtner [16] 85.7 (0.5) 13.4 (0.9) 61.9 (0.3) 61.7 (0.2) 57.2 (0.1)

Table 3. Average accuracy (and standard deviation) on 10 different sets of partially
labeled images for label propagation kernel using tv distance (Klp+tv), and for the
WL-subtree kernel with unlabeled nodes treated as additional label Kwl and with hard
labels derived from converged LP (lp +Kwl).

labels missing

dataset method 20% 40% 60% 80%

Klp+tv 90.0 (1.2) 88.7 (1.0) 86.6 (1.3) 80.4 (1.8)
msrc9 lp+Kwl 90.0 (0.6) 87.9 (1.9) 83.2 (2.0) 77.9 (3.1)

Kwl 89.2 (1.5) 88.1 (1.5) 85.7 (1.9) 78.5 (2.7)

Klp+tv 86.9 (0.8) 84.7 (1.0) 79.5 (0.9) 69.3 (1.1)
msrc21 lp+Kwl 85.8 (0.6) 81.5 (0.8) 74.5 (1.0) 64.0 (1.2)

Kwl 85.4 (1.3) 81.9 (1.2) 76.0 (0.8) 63.7 (1.3)

390 M. Neumann et al.

5.3 Experimental Results

Under our experimental protocol, propagation kernels gave the following results.

(Q1) Predictive Performance: The predictive performances for fully labeled
graphs are summarized in Tables 1 and 2. On msrc21, msrc21c, mutag, nci1,
and nci109, propagation kernels reached the highest accuracy. Only on en-
zymes, did Kwl perform considerably better than propagation kernels. For the
remaining datasets, the predictive performance is comparable. The Ramon–
Gärtner and random-walk kernels were less competitive to the propagation ker-
nels. To assess the predictive performance of propagation kernels on partially la-
beled graphs, we ran the following experiments 10 times. We randomly removed
20–80% of the labels in msrc9, msrc21, and msrc21c and computed cross-
validation accuracies and standard deviations. Because the wl-subtree kernel
was not designed for partially labeled graphs, we compare the label propagation
kernel to two variants: one where we treat unlabeled nodes as an additional la-
bel “u” (Kwl) and another where we use hard labels derived from running label
propagation until convergence (lp+Kwl). The results for the first two datasets
are shown in Table 3. The results for msrc21c showed the same behavior and
hence were omitted. For larger fractions of missing labels Klp+tv obviously out-
performs the baseline methods and surprisingly running label propagation until
convergence and then the wl-subtree kernel gives poorer results than Kwl. How-
ever, label propagation might be beneficial for larger amounts of missing labels.
In general, the results on all experiments clearly show that question (Q1) can
be answered affirmatively.

(Q2) Running Time: The runtime results are summarized in Table 4. Empiri-
cally, we observe that propagation kernels can be orders of magnitude faster then
existing graph kernels. They can easily scale to graphs with thousands of nodes.
On d&d, Kdiff+tv was computed at least twice as fast as any other method.
On enzymes, Kdiff+tv takes less then a second, whereas all other methods take
several seconds. Compared to Kwl(ref), it is two orders of magnitude faster.
Comparing the runtimes of Kwl(lsh) and Kwl(ref), we clearly see that leverag-
ing randomization significantly outperforms the non-randomized approach. We
also compared the runtime of propagation kernels using label propagation to
the wl-subtree kernel on the msrc21 dataset with partially labeled graphs. We
again compare Klp+tv with Kwl(lsh) and lp+Kwl(lsh). The results are summa-
rized in Figure 3. Kwl(ref) is over 36 times slower than Klp+tv. These results
again confirm that propagation kernels have attractive scalability properties for
large datasets. The lp+Kwl approach wastes computation time while running
lp to convergence before it can even begin calculating the kernel. The inter-
mediate label distributions obtained during the convergence process are already
extremely powerful for classification and allow one to save computation time.
These results clearly answer question (Q2) affirmatively.

To summarize, propagation kernels turned out to be competitive in terms of
predictive accuracy and speed on all datasets, often by orders of magnitude.
Thus, questions (Q1) and (Q2) can be answered affirmatively.

Efficient Graph Kernels by Randomization 391

Table 4. Runtime in seconds for T = 10 on the bioinformatics datasets for the dif-
fusion graph kernel (Kdiff+tv) using tv distance, and for the WL-subtree kernel for
a implementation leveraging randomization (Kwl(lsh)) and the standard implementa-
tion (Kwl(ref)) presented in [18]. Bold indicates best result. Results for wl-edge kernel
(Kwl-edge) and graphlet count kernel are taken from [18] to provide a broader overview
of state-of-the-art graph kernel performances.

dataset

method mutag enzymes nci1 nci109 d&d total

Kdiff+tv 0.12 s 0.89 s 116 s 133 s 55 s 376 s
Kwl(lsh) 0.03 s 1.6 s 185 s 189 s 117 s 493 s
Kwl(ref) 4.7 s 29 s 216 s 216 s 511 s 977 s

Kwl-edge [18] 3 s 11 s 65 s 58 s 3 days 3 days
graphlet count [19] 3 s 5 s 87 s 87 s 23 hours 23 hours

Klp+tv

Kwl(lsh)

lp + Kwl(lsh)

to
ta

l
ti

m
e

(s
)

iteration

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Fig. 3. Runtime for Partially Labeled msrc21 Average time in seconds over 10
different instances of the msrc21 dataset with 50% labeled nodes for kernel iterations
T from 0 to 10. We compare the WL-subtree kernel with unlabeled nodes treated as ad-
ditional label (Kwl(lsh)), and with hard labels derived from converged lp distributions
(lp +Kwl(lsh)), and the label propagation kernel with tv distance (Klp+tv). Kwl(ref)

required 36s for T = 10 and is not included.

6 Conclusions and Future Work

Probabilistic models provide a principled way of spreading information and even
treating missing information within graphs. Known labels can be used to prop-
agate information through the graph in order to label all nodes. On the other
hand, discriminative methods such as support vector machines enable us to con-
struct flexible decision boundaries and often result in classification performance

392 M. Neumann et al.

superior to that of the model based approaches. In this paper, we developed a
natural way of combining both frameworks for the construction of graph kernels,
called propagation kernels. Intuitively, propagation kernels count common sub-
distributions induced in each iteration of running inference in two graphs. For
counting the continuous information — the distributional information computed
for each node — efficiently, they leverage the randomized technique of locality-
sensitive hashing. As our experimental results demonstrate, propagation kernels
are competitive in terms of accuracy with state-of-the-art kernels on several clas-
sification benchmark datasets, even reaching the highest accuracy level on five
out of eight datasets. Moreover, in terms of runtime, propagation kernels out-
perform other graph kernels, even the recently developed efficient wl-kernels.

Propagation kernels provide several interesting avenues for future work. While
we have used classification to guide the development of propagation kernels, the
results are directly applicable to regression, clustering, and ranking, among other
tasks. Employing message-based probabilistic inference schemes such as (loopy)
belief propagation directly paves the way to deal with more general structures
then just graphs; we are currently investigating Markov logic networks [17].
By considering the computation trees—the tree-structured unrolling of a given
graph rooted at the nodes—one may even realize within-network relational clas-
sification using propagation kernels.

Acknowledgments. This work was partly supported by the Fraunhofer AT-
TRACT fellowship STREAM and by the European Commission under contract
number FP7-248258-First-MM.

References

1. Ahmadi, B., Kersting, K., Sanner, S.: Multi-Evidence Lifted Message Passing, with
Application to PageRank and the Kalman Filter. In: Proc. of the 22nd International
Joint Conference on Artificial Intelligence, IJCAI 2011 (2011)

2. Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Proceedings
of International Conference on Data Mining (ICDM 2005), pp. 74–81 (2005)

3. Datar, M., Indyk, P.: Locality-sensitive hashing scheme based on p-stable distribu-
tions. In: Proceedings of the 20th Annual Symposium on Computational Geometry
(SCG 2004), pp. 253–262 (2004)

4. Gärtner, T., Flach, P.A., Wrobel, S.: On Graph Kernels: Hardness Results and
Efficient Alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003.
LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)

5. Gersho, A., Gray, R.: Vector quantization and signal compression. Kluwer Aca-
demic Publishers, Norwell (1991)

6. Hido, S., Kashima, H.: A linear-time graph kernel. In: Proc. of the 9th IEEE
International Conference on Data Mining (ICDM 2009), pp. 179–188 (2009)

7. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph
mining. In: Proceedings of Knowledge Discovery in Databases (KDD 2004), pp.
158–167 (2004)

8. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classi-
fiers. In: Proc. of Neural Information Processing Systems (NIPS 1998), pp. 487–493
(1998)

Efficient Graph Kernels by Randomization 393

9. Jebara, T., Kondor, R.I., Howard, A.: Probability product kernels. Journal of Ma-
chine Learning Research 5, 819–844 (2004)

10. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs.
In: Proc. of the 20th International Conference on Machine Learning (ICML 2003),
pp. 321–328 (2003)

11. Kersting, K., Ahmadi, B., Natarajan, S.: Counting Belief Propagation. In: Proc.
of the 25th Conference on Uncertainty in Artificial Intelligence, UAI 2009 (2009)

12. Lafferty, J.D., Lebanon, G.: Information diffusion kernels. In: Proc. of Neural In-
formation Processing Systems (NIPS 2002), pp. 375–382 (2002)

13. Mahé, P., Vert, J.-P.: Graph kernels based on tree patterns for molecules. Machine
Learning 75(1), 3–35 (2009)

14. Moreno, P.J., Ho, P., Vasconcelos, N.: A Kullback-Leibler Divergence Based Kernel
for SVM Classification in Multimedia Applications. In: Proc. of Neural Information
Processing Systems, NIPS 2003 (2003)

15. Neumann, M., Kersting, K., Ahmadi, B.: Markov logic sets: Towards lifted infor-
mation retrieval using pagerank and label propagation. In: Proceedings of the 25th
AAAI Conference on Artificial Intelligence, AAAI 2011 (2011)

16. Ramon, J., Gärtner, T.: Expressivity versus efficiency of graph kernels. In: Proceed-
ings of the 1st International Workshop on Mining Graphs, Trees and Sequences,
pp. 65–74 (2003)

17. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2),
107–136 (2006)

18. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler–Lehman Graph Kernels. Journal of Machine Learning Re-
search 12, 2539–2561 (2011)

19. Shervashidze, N., Vishwanathan, S.V.N., Petri, T., Mehlhorn, K., Borgwardt,
K.M.: Efficient graphlet kernels for large graph comparison. Journal of Machine
Learning Research - Proceedings Track 5, 488–495 (2009)

20. Singla, P., Domingos, P.: Lifted First-Order Belief Propagation. In: Proc. of the
23rd AAAI Conf. on Artificial Intelligence (AAAI 2008), pp. 1094–1099 (2008)

21. Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.-R.: A new dis-
criminative kernel from probabilistic models. Neural Computation 14(10), 2397–
2414 (2002)

22. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R.I., Borgwardt, K.M.: Graph
kernels. Journal of Machine Learning Research 11, 1201–1242 (2010)

23. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Generalized belief propagation. In: Proc.
of Neural Information Processing Systems (NIPS 2000), pp. 689–695 (2000)

24. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local
and global consistency. In: Proc. of Neural Information Processing Systems, NIPS
2009 (2003)

25. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label
propagation. Technical report, CMU-CALD-02-107. Carnegie Mellon University
(2002)

Graph Mining for Object Tracking in Videos

Fabien Diot1,2, Elisa Fromont1, Baptiste Jeudy1,
Emmanuel Marilly2, and Olivier Martinot2

1 Université de Lyon, Université Jean Monnet de Saint-Etienne
Laboratoire Hubert Curien, UMR CNRS 5516, 42000, Saint-Etienne, France

2 Alcatel-Lucent Bell Labs, Centre de Villarceaux,
Route de Villejust, 91620, Nozay, France

Abstract. This paper shows a concrete example of the use of graph
mining for tracking objects in videos with moving cameras and without
any contextual information on the objects to track. To make the mining
algorithm efficient, we benefit from a video representation based on dy-
namic (evolving through time) planar graphs. We then define a number
of constraints to efficiently find our so-called spatio-temporal graph pat-
terns. Those patterns are linked through an occurrences graph to allow
us to tackle occlusion or graph features instability problems in the video.
Experiments on synthetic and real videos show that our method is effec-
tive and allows us to find relevant patterns for our tracking application.

1 Introduction and Related Work

Object tracking in videos is a very popular research field in computer vision
due to the numerous applications such as video-surveillance in very diverse en-
vironments (airports, cities, large public areas), pedestrian protection systems,
automatic calibration methods using moving robots, tracking complicated sur-
faces, medical image applications etc. [11]. Most of the ongoing research [1,11]
makes strong assumptions about the objects to track (people, car, etc.) which
are often modelled in advance, or about the tracking context (stable background,
object moving in a single direction, stable lighting conditions, etc.) to perform
an efficient tracking. These methods rely on two steps, the object detection in
the frame and the tracking process. For detection, techniques are based on frame
difference or the use of background subtraction [12], optical flow (detection of
the relative motion between a static camera and the filmed objects) [15] or
background information on the objects to track (skin color, shape etc.). For the
tracking process, techniques consist in predicting the next region (or contour) of
interest using probabilistic or deterministic methods [7] (and then possibly add
another detection step). They use some discriminant features attached to the
objects and/or use apriori learned models of the objects which can possibly be
updated during the tracking step [13].

In this work, we would like to show how data mining and in particular graph
mining can help to track multiple objects in a video in the specific case in
which both the objects and the background are moving and when no supervised

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 394–409, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Graph Mining for Object Tracking in Videos 395

information about the objects to track is known in advance (which could allow
to learn some models apriori). We regard a video as a dynamic graph, whose
evolution over time is represented by a series of plane graphs, one graph for each
video frame. The graph representing each frame is a region adjacency graph
(RAG) [6]. In RAGs, the barycenters of the different regions in a frame are
the nodes of the graph, and an edge exists between two nodes if the regions are
adjacent in the frame. By representing a video as a series of plane labelled graphs,
subgraph patterns in this series may correspond to objects that frequently appear
in a video, such as the planes in the frames of Fig. 2 and 3.

This paper is based on [14] where we have already assessed the interest of
our plane graph mining algorithm called Plagram compared to a generic graph
mining algorithm such as gSpan [16] on which it is based. Plagram can effi-
ciently mine a dynamic graph representing a video (i.e. a plane graphs database).
Note that most existing algorithms which mine dynamic graphs (e.g., dynamic
networks) consider graphs with only edges insertions or deletions i.e., the time
series of graphs share the same set of nodes over time (see, e.g.,[3]), or in which
nodes and edges are only added and never deleted (see, e.g., [2]). In [5,17], the
problem is to mine spatio-temporal relationships between moving objects (the
mined relationships are restricted to some predefined graphs like cliques, star
graphs or sequences). In our approach, however, there is no information about
the correspondence between the nodes in one graph (video frame) and those in
the others. In [14], some simple constraints were used in a post processing step to
obtain some so-called spatio-temporal patterns. However, the definition of spatio-
temporal patterns (and especially, of the distance) was not anti-monotonic which
prevented the computation of spatio-temporal patterns during the mining step.
Moreover, the spatio-temporal patterns obtained were quite small in practice
which led to a low recall when using them for object tracking. In this article, we
present an extended version of the plane graph mining algorithm called DyPla-

gram st which can benefit from the spatio-temporal constraints to directly and
thus more efficiently mine the spatio-temporal patterns. Besides, we propose a
method based on a global occurrences graph to combine these patterns in order
to build spatio-temporal paths that can be used to follow some objects in the
videos. By allowing a pattern to change along a path, it is possible to take into
account instability in the video or change of view point which improves the recall
of the patterns.

The tracking methods presented at the beginning of this introduction typi-
cally do not consider moving objects in changing environments. When it is the
case as in [4], multiple cameras are used to tackle object occlusions or features
instability using stereo vision. The setting taken in [8] is close to the one we
are interested in since they consider cameras embedded in surveillance cars but
they rely on strong background information (here GPS position) to perform
an effective tracking. Our method is also similar to [18] but they do not use
the topological information provided by the subgraph patterns and they use a
spatio-temporal Markov Chain Monte Carlo algorithm to sample the possible
paths represented in our occurrences graph.

396 F. Diot et al.

The outline of this paper is the following. In Section 2, we recall some impor-
tant definitions and explain the proposed extensions to the DyPlagram algo-
rithm proposed in [14]. In Section 3 we show how to compute the spatio-temporal
paths used for object tracking. Section 4 shows a large set of experiments on a
synthetic and on a real video to assess both the efficiency of our new algorithm
DyPlagram st but also the usefulness of the spatio-temporal paths to tackle
the problem of object tracking in videos. We conclude in Section 5.

2 Spatio-temporal Patterns Mining

2.1 Dynamic Plane Graphs

The definitions in this section are similar to those of [14]. As in [14], our algorithm
mines 2-connected plane graphs that satisfy various spatio-temporal constraints.
The restriction to 2-connected plane graphs was motivated by the use of plane
graphs in our video data and because it allows to test subgraph isomorphism
in polynomial time. Moreover, this restriction also dramatically decreases the
branching factor of the search space and improves the efficiency (as already
shown in [14]).

Definition 1 (Plane graph). A plane graph is G = (V,E, F, fe, L) where V
is a set of nodes, E is a set of edges, F is a set of faces and L is a labeling
function on V ∪ E. Exactly one of the faces fe ∈ F is called the external face,
the other faces are the internal faces. The graph is 2-connected if each face is a
simple cycle (the face does not use a node or an edge more than once).

Our aim is to find 2-connected plane subgraphs which satisfy some constraints
in a database of graphs.

Definition 2 (Plane subgraph isomorphism, occurrence). Given two
plane graphs G = (V,E, F, fe, L) and G′ = (V ′, E′, F ′, f ′

e, L
′), G′ is a plane

subgraph of G if there is an injective function f from V to V ′ which preserves
the edges, the internal faces of G′ and the labels. The function f is called an
occurrence of G′ in G.

The frames in a video are ordered, and this order is taken into account when
computing spatio-temporal patterns. We thus define a dynamic graph as an
ordered set of graphs.

Definition 3 (Dynamic plane graph). A dynamic plane graph D is an or-
dered set of plane graphs {G1, G2, .., Gn}. Each node of these graphs is associated
to spatial coordinates (x, y).

Example 1. In our video application, each plane graph Gi represents a video
frame. Each node in a graph represents a segmented frame region, and is asso-
ciated to the coordinates (x, y) of the barycenter of this region. The labels on
nodes are built either by a discretization of the size of the regions or of the color.

Graph Mining for Object Tracking in Videos 397

We define an occurrence of a plane graph in a dynamic plane graph and its
frequency.

Definition 4 (Occurrences of a plane graph in a dynamic graph). Given
a plane graph P and a dynamic graph D = {G1, ..., Gn}, the set of occurrences
of P in D is defined as Occ(P) = {(i, f) | f is an occurrence of P in Gi}.

Definition 5 (Frequency of a plane graph in a dynamic graph). The fre-
quency freq(P) of a plane graph P in a dynamic graph D is the number of graphs
Gi ∈ D in which there is an occurrence of P , i.e., | {i | ∃f, (i, f) ∈ Occ(P)} |.

2.2 Occurrences Graph and Spatio-temporal Patterns

In typical subgraph mining problems, where the input collection of graphs does
not represent a dynamic graph, the frequency freq(P) of a pattern graph P is
computed regardless of the fact that its occurrences may be far apart w.r.t. time
and/or space. To define a frequency that takes into account spatio-temporal
distance between the occurrences, we define in this section the notion of an
occurrences graph in which occurrences of the same pattern that are close to one
another are linked. Then, we define spatio-temporal patterns in this occurrences
graph and the associated frequency (called freqst).

The definitions in this section, although similar to the one of [14], have been
changed to integrate the spatio-temporal patterns computation during the min-
ing step instead of during a post-processing step. This offers more pruning op-
portunities.

Definition 6 (Distance between occurrences). The distance between two
occurrences o = (i, f) and o′ = (i′, f ′) of a plane graph P = (V,E, F, fe, L) in
a dynamic graph D is defined as: dist(o, o′) = maxs∈V d(f(s), f ′(s)), where d
denote the Euclidean distance between the nodes.

This distance has an anti-monotonic property:

Proposition 1. ForanypatternsP = (V,E, F, fe, L)andP
′ = (V ′, E′, F ′, f ′

e, L
′)

such that P is a plane subgraph of P ′ and two occurrences o1 = (f1, i), o2 = (f2, i)
of P and two occurrences o′1 = (f ′

1, i), o
′
2 = (f ′

2, i) of P
′ such that f1 is a re-

striction of f ′
1 (i.e., f1 = f ′

1 on V) and f ′
2 is a restriction of f2, then we have

dist(o1, o2) ≤ dist(o′1, o
′
2).

proof (sketch): the set from which the maximum is taken for dist(o1, o2) is in-
cluded in the set for which the maximum is taken for dist(o′1, o

′
2).

The depth first traversal of the search space by our mining algorithm define
a parent relationship on patterns:

Definition 7 (Parent of a pattern and of an occurrence). Given a pattern
P with n ≥ 2 internal faces, the pattern p(P) with n− 1 faces from which P was
built is called the parent of P . And given an occurrence o = (f, i) of P , we call
the parent of o the occurrence p(o) = (f ′, i) such that f ′ is the restriction of f
to the nodes of p(P).

398 F. Diot et al.

The definition of the parent of an occurrence is then used to define the oc-
currences graph. The nodes of the occurrences graph are the occurrences of a
pattern and the edges connect “close” occurrences. This graph is constructed for
each pattern in the mining algorithm.

Definition 8 (Occurrences graph and Spatio-temporal pattern). Given
a spatial threshold ε, a temporal threshold τ , a plane graph P = (V,E, F, fe, L)
and a dynamic graph D, we define the occurrences graph of P as an oriented
graph whose set of nodes is Occ(P).
– If P has only one face, then there is an edge from (f, i) to (g, j) if 0 <

j − i ≤ τ and dist(f, g) ≤ ε.(j − i) and there is no (h, k) with i < k < j and
dist(f, h) ≤ ε.(k − i).

– If P has more than one face, then there is an edge from o = (f, i) to o′ =
(g, j) if there is an edge (p(o), p(o′)) in the occurrences graph of p(P) and
dist(f, g) ≤ ε.(j − i).

A spatio-temporal pattern S based on P is a connected component of the occur-
rences graph of P .

This definition is such that the occurrences graph of a pattern P is always a
subgraph of the occurrences graph of its parent pattern p(P) (if we identify the
node o of the occurrences graph of P with the node p(o) of the occurrences
graph of p(P)). This ensures that the spatio-temporal patterns based on P get
“smaller” as the pattern P grows, and this ensures that the frequency of a
spatio-temporal pattern defined below has the anti-monotonicity property.

Definition 9 (Frequency of a spatio-temporal pattern). The frequency of
a spatio-temporal pattern S based on a graph pattern P in a dynamic graph D
is freqst(S) = | {i | ∃f, (i, f) ∈ S} |.

Example 2. Fig. 1 shows 11 occurrences of a pattern P in a video with five
frames. freq(P) = 5. Since occurrences 1 and 4 are close to each other, i.e., their
spatial distance is lower than 2ε and their temporal distance is 2 ≤ τ , there

1 4
5
6

7
8
9

10

2 3 11

frame 2 frame 3 frame 4 frame 5frame 1

6 9
11

32

87

Occurrence graph:Distance threshold:

Pattern:

10541

Fig. 1. Occurrences of a pattern and occurrences graph of this pattern (temporal
threshold τ = 2 and distance threshold ε)

Graph Mining for Object Tracking in Videos 399

is an edge (1, 4) in the occurrences graph of P . Conversely, the edges (3, 5) or
(2, 11) do not exist in the occurrences graph, as the spatial distance between
3 and 5 or the temporal distance between 2 and 11 are too large. There are 4
spatio-temporal patterns S1 = {1, 4, 5, 7, 8, 10}, S2 = {3, 6, 9}, S3 = {2} and
S4 = {11}. The frequencies of these patterns are: freqst(S1) = 4, freqst(S2) = 3,
and freqst(S3) = freqst(S4) = 1.

Proposition 2. Given a pattern P with more than one face, and given a spatio-
temporal pattern S based on P then there is a spatio-temporal pattern S′ based
on the parent p(P) of P with a larger freqst, i.e., freqst(S) ≤ freqst(S

′).

This proposition shows that, given a minimum threshold minfreqst on freqst, if a
pattern does not have a frequent spatio-temporal pattern then any super-pattern
does not either. This allows to prune the search space.

2.3 DyPlagram st Algorithm

Given a frequency threshold minfreq (also called minimum support), a minimum
threshold minfreqst for freqst a spatial threshold ε and a temporal threshold τ ,
the proposed algorithm DyPlagram st computes all spatio-temporal patterns
with freqst ≥ minfreqst based on patterns with freq ≥ minfreq (the thresholds ε
and τ are used in the construction of the occurrences graph, see Def. 8).

The proposed algorithmDyPlagram st is based onDyPlagram [14] which
itself is based on gSpan. Its main characteristics are :

– a recursive depth first exploration of the search space;

– the use of canonical codes to avoid considering the same graph several times;

– at each level, patterns are extended by adding a whole face to the current
pattern.

The new definition of the freqst is now anti-monotonic, and we can use it in the
DyPlagram st algorithm. However, this frequency is not defined on patterns
but on spatio-temporal patterns. We must therefore also build the occurrences
graph and the spatio-temporal patterns in the algorithm.

Given an occurrence o = (f, i) of a pattern P , an extension E of P is a set
of edges such that P ∪ E has exactly one more face than P and there is an
occurrence o′ = (f ′, i) of P ∪E that extends o, i.e., such that f is the restriction
of f ′ to P .

As its predecessors, DyPlagram st uses canonical codes to represents pat-
terns and extensions. This allows to efficiently enumerate only the so called valid
extensions of a pattern. Informally, a valid extension of a pattern is an extension
that lead to a pattern not already considered by the algorithm. This is a very
efficient way to avoid considering several times the same pattern. We do not
detail here how these codes are built, the interested reader can refer to [14].

The DyPlagram st algorithm first builds all frequent one face patterns and
then calls the following recursive function mine for all of them.

400 F. Diot et al.

mine(P,minfreq,minfreqst, τ, ε,D)

1 occurrences graph(P) = empty graph
2 for each occurrence of P in D do
3 Add this occurrence to occurrences graph(P)
4 Computes all valid extensions of this occurrence
5 Computes the edges of occurrences graph(P) (using ε and τ)
6 Computes all spatio-temporal patterns based on P
7 for each spatio-temporal pattern S based on P do
8 if freqst(S) ≥ minfreqst then output(S)
9 if there is no frequent spatio-temporal pattern then return
10 else
11 for each extension E of P do
12 if the code of E ∪ P is canonical and freq(E ∪ P) ≥ minfreq then
13 mine(P ∪ E,minfreq,minfreqst, τ, ε,D)
14 return

In this algorithm, lines 1, 3, 5, 6, 7, 8, and 9 were not in DyPlagram [14].
Thanks to Prop. 2, this algorithm is correct and output exactly the spatio-

temporal patterns whose freqst is above the user defined threshold σ.

3 Spatio Temporal Path

When tracking an object in a real video, we cannot expect that the object is
represented by the same graph pattern during the whole video (e.g., due to
changes in view point or instability of the segmentation). Thus, if we want to
track it using spatio-temporal patterns, we propose to build a path in the union
of all occurrences graphs. To allow this path to “jump” from a spatio-temporal
pattern to another, similarity edges are added between overlapping occurrences
of different patterns. Weights are also added on the edges so that minimum
weight paths can then be computed in this global occurrences graph.

Definition 10 (Similarity of two occurrences). Let o = (i, f) and o′ =
(i, f ′) be two occurrences of two different patterns P = (V,E, F, fe, L) and
P ′ = (V ′, E′, F ′, f ′

e, L
′). The similarity between these occurrences is defined as

σ(o, o′) = |f(V)∩f ′(V ′)|
|f(V)| .

This similarity is not symmetric and it is used to weight the edges in the global
occurrences graph.

Definition 11 (Global occurrences graph). Given a set of patterns P, tem-
poral and spatial thresholds τ and ε, a similarity threshold σ, the global occur-
rences graph is a weighted oriented graph: its node set is V = ∪P∈POcc(P) and
its edge set is E = EP ∪ Esim where :

– EP is the union of the edge sets of all patterns occurrences graphs. The

weight of an edge ((i, f), (i′, f ′)) is w = (i′−i−1)
τ .

Graph Mining for Object Tracking in Videos 401

– Esim = {(o, o′, w)| o = (i, f), o′ = (i, f ′), σ(o, o′) < σ} is the set of similarity
edges with

w =

{
0 if |V | < |V ′|
1
2 (

1−σ(o,o′)
1−σ + d

ε) otherwise.

where V and V ′ are the node sets of the patterns corresponding resp. to
occurrences o and o′, and d is the distance between the barycenters of o and
o′.

A spatio-temporal path is a path in the global occurrences graph.

The edges in EP are edges between 2 occurrences of the same pattern that are
not in the same frame. If these two occurrences are in consecutive frame, the
weight is 0 (when i′ = i+ 1) otherwise the weight increases with the number of
frames between them (normalized by the temporal threshold τ).

The edges in Esim are similarity edges between 2 occurrences of different
patterns that are in the same frame and whose similarity is below σ. We want to
favor paths that use large patterns, thus the weight of an edge from an occurrence
of a small pattern to a larger one is 0. The weight of an edge from an occurrence
of a large pattern to a smaller one increases as the similarity decreases and the
spatial distance increases.

4 Experiments

Some experiments in [14] have already assessed the efficiency of the plane graph
mining algorithm called DyPlagram compared to a generic graph mining algo-
rithm such as gSpan [16]. The introduction of this plane graph mining algorithm
was necessary to effectively mine the graphs extracted from videos. Experiments
on a very simple video (one object, moving background, no occlusion, no disap-
pearance) showed promising results for object tracking but the interest of the
spatio-temporal patterns for more complex videos was not thoroughly evalu-
ated. Besides, in [14], we did not present an effective way to use spatio-temporal
constraints in DyPlagram nor a systematic method to combine the spatio-
temporal patterns into spatio-temporal paths to track object in videos. Our
proposed experiments aim to answer three main questions:

1. Are the spatio-temporal constraintswell exploitedbythenewDyPlagram st

algorithm compared to the process presented in [14]?
2. How are the results of the DyPlagram st algorithm where the spatial

and the temporal constraints are pushed directly into the mining process
compared to the post-processing experiments described in [14]?

3. How meaningful (in terms of precision and recall) are the spatio-temporal
paths to track objects in a synthetic and in a real video?

402 F. Diot et al.

Fig. 2. Example of RAGs obtained from the synthetic video

Fig. 3. Example of RAGs obtained from the real video

4.1 Video Datasets

We used 2 datasets for these experiments. One was created from a synthetic
video which allows us to avoid the possible segmentation problems. The second
comes from a real (but simple) video with its possible segmentation issues.

For both videos, we used two possible labels on the nodes of the RAGs. The
first possible one comes from a discretization of the size of the segmented regions
(in pixels). The discretization uses 10 bins of equal size that were computed using
all the possible region sizes (sorted for the discretization) for a given video. The
second is a color discretization of the mean color of the segmented regions. We
divided each of the 3 RGB channels in 3 parts, resulting in 27 bins of equal
range.

The synthetic video has 721 frames in total. In average the RAGs are com-
posed of 240.7 nodes with an average degree of 3.9. Three identical objects
(X-wings) are moving in the video such that they may overlap or even get (par-
tially) out of the field of view (this helped us to evaluate how well spatio-temporal
patterns can be used to represent the trajectory of the X-wings individually).
The 3 X-wings have different colors but this feature is not always used in the
experiments. Fig. 2 show three examples of RAGs we obtained for this dataset.

The real video is composed of 950 frames (25 frames per second), each RAG
has on average 194.5 nodes with an average degree of 5.35. This video shows
a drone flying across a covered parking lot. Before building the RAGs, we seg-
mented each frame of the video independently using the algorithm presented in
[10] and available on the web1. This algorithm has 3 parameters for which we

1 http://www.cs.brown.edu/~pff/segment/

http://www.cs.brown.edu/~pff/segment/

Graph Mining for Object Tracking in Videos 403

used standard values. This algorithm helps the merging of small regions which
may result in an unstable segmentation when objects are getting close to or
moving away from the camera. In order to prevent this behavior, we modified
the code of this algorithm to make its second parameter independent from the
size of the regions. Fig. 3 show three examples of RAGs we obtained for this
video.

4.2 Evaluation of the Patterns

To evaluate our spatio-temporal patterns, we use some ground truth. For both
the real and the synthetic videos, we have tagged the positions of the plane(s)
(objects o) in each frame of the video.

We introduce two measures which assess how precisely a spatio-temporal pat-
tern p corresponds to a given target object o in the video frames. These measures
are adaptations of the popular precision and recall measures as described below:

– precision: fraction of the occurrences of p (in the target graphs) of which
every node maps to o in the corresponding video frames. The intuition behind
this measure is to evaluate the purity of p, that is, p has the maximum
precision if it maps only to o and nothing else.

– recall: Let n be the number of frames in which o is present. The recall is
defined as the fraction of n in which there exists at least one occurrence of p
where every node maps to o. Here, the intuition is to evaluate the complete-
ness of p. More precisely, the idea is to check whether the occurrences of p
map to all occurrences of o in the set of video frames.

Since our algorithm is exhaustive, that is, it mines for all frequent spatio-
temporal patterns in the graph database without supervision, the mining result
may consist of different spatio-temporal patterns corresponding to different ob-
jects, or even to no specific one (w.r.t. the proposed measures). To be able to
evaluate the precision and recall of our spatio-temporal patterns for all 3 dif-
ferent planes (in the synthetic video) and for the drone (in the real video), we
have considered that the spatio-temporal patterns starting in every frames of
the video have been tagged according to the object it belongs to. In other words,
we evaluate the precision and recall of each spatio-temporal patterns knowing
in advance what the first occurrence of the pattern in each occurrences graph
maps to.

4.3 Spatio-temporal Paths for Object Tracking

To assess the effectiveness of the spatio-temporal paths for object tracking, we
apply the following strategy. We first build the occurrences graph and then, for
each target object, we select the occurrences matching them in the first frame and
compute the path of lowest cost starting from those occurrences and reaching the
last frame using Dijkstra’s shortest path algorithm. In all experiments reported
here we use a similarity of 2/3 (σ = 0.65).

404 F. Diot et al.

Table 1. Evaluation of the connected components (CC) issued from all patterns with
minfreq = 721 and τ = 1 for DyPlagram and for DyPlagram st. The labels are
created from the size of the region.

DyPlagram with post-processing DyPlagram st

ε = 10, minfreqst = 10
Precision(%) Recall(%) Number of CCs Precision(%) Recall(%) Number of CCs

plane 1 78 7 151 78 7 114
plane 2 72 3 129 95 3 71
plane 3 87 2 131 88 2 84

ε = 20, minfreqst = 50
Precision(%) Recall(%) Number of CCs Precision(%) Recall(%) Number of CCs

plane 1 77 15 73 82 17 65
plane 2 93 26 43 100 29 39
plane 3 100 10 60 100 10 60

ε = 170, minfreqst = 50
Precision(%) Recall(%) Number of CCs Precision(%) Recall(%) Number of CCs

plane 1 45 38 27 51 42 24
plane 2 51 10 15 49 8 17
plane 3 60 12 21 69 13 19

In practice the minimum support threshold minfreq can be set, for example,
to 1/5 of the total number of frames (to make sure that the patterns occur
enough and help the mining process). By default, it will be equal to the minfreqst
threshold. minfreqst should be set as low as possible (depending on available
memory). The τ should, in general, be set as high as possible (as will be shown
in the experiments). The ε constraint depends on the motion speed of the target
object and on the resolution of the video. We most of the time use 20 pixels.

4.4 DyPlagram st vs DyPlagram

The experiments showed in Table 1 allow us to compare the DyPlagram al-
gorithm presented in [14] with our new upgraded algorithm, DyPlagram st,
which uses the spatial and the temporal constraints directly in the mining pro-
cess. These experiments are made with the same synthetic video as in [14] and the
same discretization procedure which uses only the size of the region. The same
minimum support (minfreq = 721) has been used as well as the same gap con-
straint τ = 1 as in [14]. The minfreqseq threshold used in DyPlagram to prune
part of the search space is not used by DyPlagram st which uses a different
minfreqst threshold (explained in Sec. 2.2). However, in these experiments, we set
the same threshold for freqseq and freqst. Note that the results for DyPlagram

are not exactly the ones reported in [14] because we found that the strategy
proposed in [14] was overly optimistic as far as precision was concerned. Indeed,
the chosen spatio-temporal patterns (i.e., the connected components (CC)) were
the ones for which the first occurrence matched a pattern that was selected in
the first frame of the video. This means that a spatio-temporal pattern that also
matched a chosen object but for which the first occurrence belongs to a pattern
that was not selected in the first frame would not be taken into account to com-
pute the precision of this object. Here we compute the precision and recall for
all the CC whose first occurrence matches an object of interest. We expect the
precision/recall results to be comparable for both algorithms, although the CC

Graph Mining for Object Tracking in Videos 405

 0

 500

 1000

 1500

 2000

 2500

 100 200 300 400 500 600

T
im

e

minfreq

DyPlagramST
DyPlagram

DyPlagram with post processed spatial constraint

Fig. 4. Time(s) taken by both versions
of the DyPlagram algorithm, with
τ = 1, minfreqst = 50 and ε = 20
to generate all the occurrences (red vs
blue line) and to generate the occur-
rences graph ((red vs green line)

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 100 200 300 400 500 600

N
um

be
r

of
 O

cc
ur

re
nc

es

minfreq

DyPlagramST
DyPlagram

Fig. 5. Number of occurrences gener-
ated byDyPlagram while pushing the
spatial constraint (red plain line) or not
(blue dashed line)

computed by DyPlagram are expected to be more numerous than the ones
computed by DyPlagram st.

As can be seen in Table 1, the connected component obtained with DyPla-

gram st are in general less numerous, more precise and have a better recall than
the ones obtained with DyPlagram. As already discussed in [14], the distance
threshold ε has an important impact on the obtained results. Indeed, if it is set
too low (to 10 pixels, in our example), we obtain spatio-temporal patterns with
high average precision for each X-wing as different occurrences of patterns which
map to different X-wing are very well distinguished. However, this leads to a low
average recall: since only very close occurrences of the same pattern are linked,
the spatio-temporal patterns tend to be short (i.e., have low freqst). When us-
ing a distance threshold ε = 10, no spatio-temporal patterns with freqst ≥ 50
were found for X-wing2 for DyPlagram ([14]), which explains why we used a
minfreqst of 10 in this case. Conversely, for a higher ε of 170 pixels, the average
precision drops as the different X-wings are not well distinguished anymore. For
example, it was possible to obtain spatio-temporal patterns with higher recall
for the plane 1 (when comparing to the other experiments), but, they had low
average precision. Since the plane 1 gets partially out of the video frames around
6 times, a higher number of spatio-temporal patterns were derived for this X-
wing for minfreqst = 50 and ε of at least 20, which represent the different time
intervals where this X-wing is visible through the video. As another example,
the plane 2 is hidden only twice by the plane 3 (during around 15 frames) and
never goes out of the video frames. This explains the lower number of patterns
found for this object, also for minfreqst = 50 and ε ≥ 20.

Fig. 4 and 5 show efficiency results comparing DyPlagram [14] and DyPla-

gram st. As expected, pushing the spatial constraints during the mining step
allow us to generate less occurrences (especially for support < 350) in a lower
time.

406 F. Diot et al.

Table 2. Evaluation of the spatio-temporal path with minfreq = 250, minfreqst = 150,
σ = 0.65, ε = 20. The numbers between parenthesis correspond to the best precision
and recall of the best path in term of recall, and the emphasized results are the best
results for each plane

Size Discretization Color Discretization
τ Precision(%) Recall(%) Paths Precision(%) Recall(%) Paths

plane 1
10

98.32 (99.72) 97.50 (99.30) 34 93.92 (99.74) 93.60 (99.86) 21
plane 2 99.63 (99.73) 97.26 (98.19) 24 98.65 (100) 96.82 (99.02) 17
plane 3 9.49 (16.64) 8.70 (15.39) 4 - (-) - (-) 0
plane 1

25
95.79 (100) 94.59 (99.02) 38 99.17 (99.73) 98.40 (100) 21

plane 2 65.66 (99.61) 64.61 (98.05) 32 98.54 (100) 96.34 (99.02) 20
plane 3 2.93 (9.09) 2.50 (8.59) 29 31.95 (31.95) 29.54 (29.54) 2
plane 1

100
79.05 (100) 74.37 (94.31) 42 97.76 (100) 95.36 (99.30) 29

plane 2 72.57 (97.53) 67.05 (93.62) 35 98.87 (100) 96.30 (99.02) 39
plane 3 5.42 (18.46) 4.82 (16.36) 31 86.27 (90.52) 75.92 (82.80) 23

4.5 Evaluation of the Spatio-temporal Path for Object Tracking

For both datasets, we report the precision and recall results for the spatio-
temporal patterns (which have a first occurrence on the object of interest
anywhere in the video) and for the spatio-temporal paths (which have a first
occurrence on the object of interest in the first frame of the video). The spatio-
temporal patterns or connected components (CC) correspond to the global
occurrences graph without the similarity edges.

Synthetic Video. The experiments reported in Table 2 show the precision and
recall results for the paths obtained on the synthetic video when varying the
gap between 10 and 100. Results for the CC are similar to the ones reported in
Table 1.

Because of the nature of the video, we use a global minimum support minfreq of
250 in order to prune the number of frequent patterns. Indeed, since the synthetic
video has been especiallymade to produce stable graphs,DyPlagram st returns
a lot of frequent patterns on this dataset which leads to a huge global occurrences
graph that possibly does not fit into memory for processing. To be able to perform
various experiments, especially with the size discretization which does not permit
to distinguish the three planes at the mining step, we set the minfreqst to 150
(although as already discussed, it is better to set it as low as possible).

Overall, we obtain very good results for the first two planes (precision and
recall close to 100%). We can clearly see the lack of discriminative power of
the size discretization when the gap increases. Indeed the paths start to follow
different planes, reducing their precision and their recall. For those two planes the
color discretization always shows good results, with average precisions and recalls
close to the ones of the best paths (values in brackets). Since the 3rd plane moves
back and forth horizontally across the field of view (getting almost completely
out every 120 frames), only few paths starting on the plane manage to reach
the end of the video when we use a low gap. The paths which uniquely follow
this plane are thus more expensive than other paths on which the algorithm
can ”jump” using the similarity edges decreasing the precision and recall. As

Graph Mining for Object Tracking in Videos 407

Table 3. Precision, recall and coverage recall computed for the connected components
computed and for the real video with minfreq = minfreqst, and σ = 0.65

ε = 10 ε = 20
τ minfreqst Precision(%) Recall(%) CC Precision(%) Recall(%) CC

10
100 100 26.18 10 92.48 22.97 13
50 93.55 17.40 20 91.35 15.44 25
10 89.78 2.87 294 89.70 2.72 334

25
100 91.28 35.34 11 89.02 30.03 14
50 90.28 25.12 18 83.79 20.14 24
10 88.90 3.18 307 89.47 2.94 358

100
100 89.52 38.21 14 89.02 31.03 19
50 92.27 24.38 27 90.30 22.45 30
10 89.01 4.03 258 89.88 3.63 302

we can see, increasing the gap allows to overcome this problem with the color
discretization while keeping good results for the other two planes.

Real Video. The experiments reported in Table 3 and 4 were made without
using a global minimum support threshold (which is equivalent to set minfreq =
minfreqst). Because of the segmentation, this dataset is a lot less stable than the
synthetic one resulting in less frequent patterns. For this one, so far, only the
color discretization gave good precision/recall results (we also tried the size and
some other color discretization).

Connected Component (CC). The results for the connected components are pre-
sented in Table 3. Those experiments have been obtained for ε = 10 and ε = 20,
above that the precision started to drop significantly (which is expected for large
ε values if other distracting objects are frequent).

As expected, the precision is a little higher with ε = 10 (100% for ε = 10
when τ = 10 and minfreqst = 100 against 92.48% for ε = 20). The fact that the
average recall also decreases with a higher distance is more surprising at first
glance. This is explained by the fact that most of the time, ε = 10 is enough to
follow the drone, but sometimes the drone or the camera movement accelerates.
In those cases a higher distance might give longer and better CC but also might
introduce some noisy ones which would decrease the average recall and precision.

The average recall also lowers when we lower minfreqst. This is due to the fact
that when using a low minfreqst DyPlagram st outputs short spatio-temporal
patterns that necessarily have a low recall. Lowering minfreqst slightly reduces
the precision of the connected components but increases their number.

As also expected, higher gaps lead to better recall (38.21% for τ = 100 when
ε = 10 and minfreqst = 100 against 26.18% for τ = 10) as well as improve
the coverage of the spatio-temporal patterns in the whole video. The precision
doesn’t seem to be influenced by τ when we allow small spatio-temporal patterns
(i.e., a low minfreqst).

Spatio-temporal Paths. Table 4 shows the results for the CC on the real dataset
for the color discretization.

A distance ε equal to 20 gives the best results in most cases with high precision
and good recall (99.03 for precision and 80.63 for the recall for ε = 20, τ = 25

408 F. Diot et al.

Table 4. Precision and recall computed for the spatio-temporal paths for the real video
with minfreq = minfreqst and σ = 0.65

ε = 10 ε = 20
τ minfreqst Precision(%) Recall(%) Paths Precision(%) Recall(%) Paths

10
100 96.30 (96.30) 67.89 (67.89) 1 98.23 (100) 80.94 (82) 2
50 98.25 (100) 70.00 (71.26) 2 26.16 (38.96) 24.03 (36.21) 3
10 91.93 (93.34) 69.60 (70.63) 8 18.75 (36.09) 17.88 (34.73) 8

25
100 98.43 (100) 68.89 (70) 6 98.51 (100) 78.68 (79.68) 6
50 98.66 (100) 69.05 (70) 7 98.72 (100) 78.82 (79.68) 7
10 99.06 (100) 69.36 (70.21) 10 99.03 (100) 80.63 (81.36) 10

100
100 100 (100) 67.42 (67.78) 8 100 (100) 77.52 (79.68) 9
50 100 (100) 67.36 (67.68) 9 100 (100) 77.54 (79.68) 9
10 100 (100) 67.21 (67.78) 10 99.26 (100) 79.17 (79.78) 10

and minfreqst = 10 for example). However, the values for τ = 10 show the limits
of the use of the shortest path algorithm to tackle our problem. Similarly to
what was happening with the third plane in the synthetic video, the shortest
path might not always be following the object we want to track if elements in
the background or other objects offer better stability than the object we want
to track and are close enough to ”jump” on them.

The results with our preferred setting (low minfreqst = 10, high τ = 100 and a
distance ε = 20) show that the spatio-temporal paths can indeed be used to follow
an object in the video. The similarity edges introduced are very useful to increase
the recall of the patterns and experiments with a higher similarity constraint (for
example with σ = 0.8) show worst results. This shows the importance of this
”inexact” matching phase in the process. On the downside, the choice of the labels
on the node (here it is a color information) seems to play a very important role to
get interesting spatio-temporal patterns although it is difficult to evaluate in an
unsupervised setting what could be the best ones. One solution could be to attach
more diverse information on the labels of the nodes to overcome this problem.

5 Conclusion

We have presented an unsupervised method based on graph mining to track
objects in videos. More precisely, we have used paths computed in an occurrences
graph of these frequent graph patterns. The graph is created by linking through
spatial, temporal and similarity constraints the frequent patterns to follow one
or multiple objects simultaneously in a video. The results on a synthetic and on
a real video show that this method is effective to tackle our tracking problem.
However, it strongly relies on the labels of the nodes (discretization and chosen
features). This problem could be tackled by taking into account multiple and
diverse ordered information on the nodes to automatically select the best features
depending on the video. Some future work could also be done on the computation
of the best paths in the video as the current shortest path algorithm assumes that
our objects of interest are followable from the first to the last frame of the video.
Although still naive, we believe that our method could be useful to tackle the
difficult problem of tracking multiple objects in the specific case in which both

Graph Mining for Object Tracking in Videos 409

the objects and the background are moving and when no supervised information
about the objects to track is known in advance. The proposed method could
also benefit from the very recent work which uses supporters (points or objects
moving in a correlated way with the tracked objects) or distracters (objects
which should not be confused with the objects to track) for example presented
in [9] as these would typically represent correlated frequent subgraphs.

References

1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing
Surveys 38(4), 13+ (2006)

2. Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining Graph Evolution
Rules. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
PKDD 2009, Part I. LNCS, vol. 5781, pp. 115–130. Springer, Heidelberg (2009)

3. Borgwardt, K.M., Kriegel, H.P., Wackersreuther, P.: Pattern mining in frequent
dynamic subgraphs. In: Proceedings ICDM. pp. 818–822 (2006)

4. Cai, L., He, L., Xu, Y., Zhao, Y., Yang, X.: Multi-object detection and tracking
by stereo vision. Pattern Recogn. 43(12), 4028–4041 (2010)

5. Celik, M., Shekhar, S., Rogers, J.P., Shine, J.A.: Mixed-drove spatiotemporal co-
occurrence pattern mining. IEEE TKDE 20(10), 1322–1335 (2008)

6. Chang, R.F., Chen, C.J., Liao, C.H.: Region-based image retrieval using edgeflow
segmentation and region adjacency graph. In: IEEE ICME, pp. 1883–1886 (2004)

7. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space
analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

8. Diego, F., Evangelidis, G., Serrat, J.: Night-time outdoor surveillance by mobile
cameras. In: ICPRAM (2012)

9. Dinh, T.B., Vo, N., Medioni, G.G.: Context tracker: Exploring supporters and dis-
tracters in unconstrained environments. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1177–1184 (2011)

10. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
Int. J. Comput. Vision 59(2), 167–181 (2004)

11. Goszczynska, H.: Object Tracking. InTech (2011)
12. Kim, Z.: Real time object tracking based on dynamic feature grouping with back-

ground subtraction. In: IEEE CVPR (2008)
13. Kuo, C.H., Huang, C., Nevatia, R.: Multi-target tracking by on-line learned dis-

criminative appearance models. In: IEEE CVPR, pp. 685–692 (2010)
14. Prado, A., Jeudy, B., Fromont, E., Diot, F.: Mining spatiotemporal patterns in

dynamic plane graphs. IDA Journal 17(1) (to appear, 2013)
15. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their princi-

ples. In: IEEE CVPR, pp. 2432–2439 (2010)
16. Yan, X., Han, J.: Gspan: Graph-based substructure pattern mining. In: IEEE

ICDM, pp. 721–724 (2002)
17. Yang, H., Parthasarathy, S., Mehta, S.: A generalized framework for mining spatio-

temporal patterns in scientific data. In: ACM SIGKDD, pp. 716–721 (2005)
18. Yu, Q., Medioni, G.: Multiple-target tracking by spatiotemporal monte carlo

markov chain data association. IEEE Trans. Pattern Anal. Mach. Intell. 31(12),
2196–2210 (2009)

Hypergraph Learning with Hyperedge

Expansion

Li Pu and Boi Faltings

Artificial Intelligence Laboratory
École Polytechnique Fédérale de Lausanne

CH-1015, Lausanne, Switzerland
{li.pu,boi.faltings}@epfl.ch

Abstract. We propose a new formulation called hyperedge expansion
(HE) for hypergraph learning. The HE expansion transforms the hyper-
graph into a directed graph on the hyperedge level. Compared to the
existing works (e.g. star expansion or normalized hypergraph cut), the
learning results with HE expansion would be less sensitive to the ver-
tex distribution among clusters, especially in the case that cluster sizes
are unbalanced. Because of the special structure of the auxiliary directed
graph, the linear eigenvalue problem of the Laplacian can be transformed
into a quadratic eigenvalue problem, which has some special properties
suitable for semi-supervised learning and clustering problems. We show
in the experiments that the new algorithms based on the HE expansion
achieves statistically significant gains in classification performance and
good scalability for the co-occurrence data.

1 Introduction

Many tasks require clustering in a graph where each edge represents a similarity
relation. Often, it is a co-occurrence relation that involves more than two items,
such as the co-citation and co-purchase relations. The co-occurrence relation can
be represented by a hyperedge that connects two or more vertices in a hyper-
graph. But most clustering algorithms, such as k-means, or spectral clustering,
are defined for graphs but not hypergraphs. Therefore, hyperedge relations are
often transformed into another graph that is easier to handle [1,2,3].

For classification and clustering tasks, the hyperedges are usually transformed
into cliques of edges. This category of techniques includes clique expansion, star
expansion [4], and normalized hypergraph cut (NHC) [5]. In Figure 1 we shown
a simple example of such transformation from a hypergraph to a graph (the
induced graph). Since the transformations are carried out on the vertex level, we
call them vertex expansions.

With a vertex expansion, evaluating the goodness of clustering is done on the
induced graph. For example, in a hyperedge of k vertices, a cut that separates
the hyperedge into 1 and k − 1 vertices would cut k − 1 pairwise edges, while
a cut that splits the vertices in two equal halves would have k2/4 cut edges.
Thus the vertex expansion would prefer an unbalanced clustering. To mitigate

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 410–425, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Hypergraph Learning with Hyperedge Expansion 411

er e e
ee e h ere eer ev5v2 v8v4v1 v6

v3 v7

v1

v2

v3

v5

v4 v6
v8

v7

e1
+

e1 e2
+

e2

h ere ee
e e r h e e r e er e

0

verticesem
be

dd
in

g
va

lu
e

0

vertices

biased to e
2 unbiased

e2 e2

e1 e1

Fig. 1. An example of hypergraph embedding with two hyperedges. The hyperedge
expansion embedding is unbiased, while the vertex expansion embedding (not to scale)
depends on the hyperedge sizes. (see Section 4 for more details)

the problem of unbalanced clustering, it is proposed in star expansion and NHC
to use the cluster volume as a normalizer for balancing the cluster sizes. But
such normalization can not completely eliminate the problem. We present the
following example of vertex embedding to explain why the problem still exists.

By computing the eigenvectors of the normalized Laplacian LNHC of the
induced graph, it is possible to project the vertices into an Euclidian space,
which is called embedding in spectral graph learning [5]. On the left side of
Figure 1, we show the 1-dimensional vertex embedding of NHC by the eigenvector
corresponding to the second smallest eigenvalue of LNHC . It is worth to focus on
the vertices that belong to both hyperedges (the overlapping part). Although the
hyperedges have the same weight and the cluster volume normalizer is applied,
the overlapping part is still biased to the side with less vertices (in this case e2
side). This means that the optimal clustering of two clusters should assign the
overlapping part and other vertices in e2 to one cluster. Such bias might be a
problem when the hyperedge sizes are unbalanced, e.g. co-citation relations with
a lot or a few citations. Moreover, the behavior of the artificial normalization (or
“correction”) could be undesirable when many hyperedges intersect with each
other, because the cost of the clustering would depend on how a hyperedge is
split into the clusters. An even split would introduce a different cost compared
to an uneven split.

As any hyperedge that is not entirely within the same cluster represents a
relation that is violated by the clustering, it would be natural to have the learn-
ing result independent of the hyperedge sizes and only depend on the hyperedge
connectivity and hyperedge weights. We present a new transformation called

412 L. Pu and B. Faltings

hyperedge expansion (HE) based on a network flow technique so that the learn-
ing result is invariant to the distribution of vertices among hyperedges. HE
expansion is first carried out on the hyperedge level. Then the learning results
on hyperedges are projected back to the vertices through the adjacency infor-
mation between hyperedges and vertices. In Figure 1, the embedding with HE
expansion places the overlapping vertices in the middle without bias.

The main contributions of this paper are as follows. We formulate the HE
expansion with the Laplacian of the auxiliary directed graph, which can be
transformed into a quadratic eigenvalue problem that has some new properties.
To our best knowledge, this is the first work to use such formulation. We also
present the embedding and semi-supervised learning algorithms for hypergraphs
based on HE expansion. In the experiments the proposed algorithms are com-
pared with state-of-the-art methods and show statistically significant gains in
performance.

2 Problem Statement

A hypergraph H = {V , E , w} consists of a vertex set V , a hyperedge set E , and
a weighting function w : E → R+. Each hyperedge e ∈ E is a subset of V .
A hyperedge e is incident with a vertex v if v ∈ e. The weighted degree of a
vertex is deg(v) =

∑
v∈e,e∈E w(e). The degree of a hyperedge is deg(e) = |e|. We

say a hypergraph H is connected if for any vi, vj there exists a hyperedge path
{e1, e2, ..., ep} such that vi ∈ e1, vj ∈ ep and ek ∩ ek+1 �= ∅ (1 ≤ k < p). Without
loss of generality, we assume the hypergraph is always connected in this paper.

The (undirected) induced graph GH = {V ′, E ′, w′} derived from the hyper-
graph H consists of the same vertex set V ′ = V . An edge e′ ∈ E ′ is placed
between vi and vj in GH if there exists a hyperedge e in H which is incident with
both vi and vj . The edge weight is defined as w′(e′) =

∑
e∈E,e�vi,vj

w(e)/deg(e).
One can show that the induced graph is closely related to the star expansion
and NHC. In fact there is only a small difference between the Laplacian of the
induced graph and the Laplacian of NHC on the main diagonal.

Let Y denote a set of class labels. A multi-class labeling on a hypergraph H
is a mapping l : V → Y that associates each vertex v with a label l(v). In this
paper, only a single label is allowed for one vertex. Since l defines several clusters
of vertices by the labels, we interchangeably use “clustering” or “partitioning”
in the paper as “labeling”. For a hyperedge e, l(e) = {l(v)|v ∈ e} is the set of
labels associated to e. When |l(e)| > 1, we say that the hyperedge e is broken or
violated by l. Let Vl,y denote the set of vertices that carry label y in the labeling
l, and Vc

l,y = V \ Vl,y denote the remaining vertices.
In a hypergraph semi-supervised learning (HSSL) problem, a partial labeling

l̄ : V̄ → Y is known on a subset of vertices V̄ ⊂ V . We assume that the vertices
in V̄ carry all the labels in Y. The goal of HSSL is to find the full labeling l that
coincides with l̄ on V̄ , and minimizes some objective minl R(H, l) ∈ R. We list
two typical objective functions as following,

Hypergraph Learning with Hyperedge Expansion 413

RHE =
∑

e∈E,|l(e)|>1

w(e), (1)

RNHC =
∑
y∈Y

∑
e∈E

1
deg(e)w(e)|e ∩ Vl,y||e ∩ Vc

l,y|∑
v∈Vl,y

deg(v)
. (2)

The RHE is the sum of the weights of hyperedges which are broken [6], and
RNHC is defined in [5]. One can show that the (relaxed) optimal solution for
RNHC is an eigenvector of the normalized Laplacian of the induced graph.

Some existing works, for example [7] and [8], have already shown that the
pairwise affinity relations after the projection to the induced graph would intro-
duce information-loss, and working directly on the hypergraph (like the objective
RHE) could produce better performance. Ladicky et al. also experimentally show
that the objective which is invariant to the number of objects (vertices) in each
co-occurrence relation (hyperedge) [9], namely the invariance property, would
achieve better performance on classification tasks. We can verify that RHE sat-
isfies the invariance property, while RNHC does not (see Figure 1).

Although the RHE has been proposed for a long time, all the existing works
focus on the exact algorithms that directly optimize RHE (e.g. see [10] for an
early work and [11] for recent works). These combinatorial algorithms can be
efficient when the number of classes is small (e.g. 2 or 3), but the exact algo-
rithm is NP-hard for an arbitrary number of classes. On the other hand, these
algorithms produce a combinatorial solution of hard clustering. There is no in-
formation about the confidence with which a vertex belongs to a cluster.

We use a different approach, i.e. the spectral technique, to target the same
objective RHE . The complexity of our algorithm is linear to the number of
classes, and the final result is a soft clustering where the certainty of assigning
a vertex to a cluster can be interpreted. To our best knowledge, this is the first
work that applies the quadratic eigenvalue analysis to the RHE objective.

In another task called hypergraph embedding, we would like to project the
vertices into a low dimensional Euclidean space Rk where the vertices that are
close to each other in the hypergraph should also stay close (as shown in Fig-
ure 1). RHE and RNHC actually define different notions of “closeness” in the
hypergraph.

3 Hyperedge Expansion

In the simple case of two classes, in order to implement RHE , we need to find a set
of hyperedges of minimum weight that need to be cut to separate the vertices
of the hypergraph into two parts, which is called the minimum hyperedge cut
problem (MHCP). The optimal MHCP solution for the hypergraph shown in
Figure 2 (a) would split hyperedge e3 into two parts and the optimal RHE cost
is w(e3) (for the moment just consider the example hypergraph without knowing
the meaning of the hyperedge subscripts).

414 L. Pu and B. Faltings

(b)(a)
connected

component 2
connected

component 1

min cut

Fig. 2. (a) The original hypergraph where the hyperedge e3 has the smallest weight.
(b) The weighted directed graph Ĝ constructed from the hypergraph. The directed
edge (e+3 , e

−
3) is the minimum cut of Ĝ since its removal separates Ĝ into two strongly

connected components.

The technique for solving MHCP dates back to [10] where the hypergraph is
transformed into a flow network and the minimum hyperedge cut is identified
with a max-flow solution. We use a slightly different transformation as in [12].

The hyperedge expansion works as follows. We construct a directed graph
Ĝ = (V̂ , Ê) that includes two vertices e+ and e− for each hyperedge e in the
original hypergraph. Note that the vertices in Ĝ correspond to the hyperedges,
but not the vertices in the original hypergraph. A directed edge is placed from
e+ to e− with weight w(e) where w is the weighting function in the hypergraph.
For every pair of overlapping hyperedges e1 and e2, two directed edges (e−1 , e

+
2)

and (e−2 , e
+
1) are added to Ĝ with weights w(e2) and w(e1) (see Figure 2 (b)).

Then we can identify the solution of MHCP by finding the min-cut of Ĝ that
separates Ĝ into at least two strongly-connected components. The correctness
follows immediately from the construction of Ĝ. Note that the edges attached
to an e+ node have the same weights, and an e+ node has exactly one outgoing
edge. For any edge in the min-cut which goes from an e− node to an e+ node, we
can replace it with the outgoing edge of the e+ node and construct an equivalent
min-cut. Thus the min-cut could contain only the edges from the e+ nodes to
the e− nodes. As shown in Figure 2 (b), the min-cut solution includes only the
directed edge (e+3 , e

−
3). The cost of the min-cut is w(e3), which is exactly the

same as the cost of the original MHCP.
In matrix form, the adjacency matrix of Ĝ can be defined as

AĜ =

[
0 AW
W 0

]
, (3)

where A is the |E|×|E| adjacency matrix of hyperedges (A(i, j) = 1 if ei∩ej �= ∅
and ei �= ej , otherwise A(i, j) = 0), and W = diag([w(e1), w(e2), ...]) is the

Hypergraph Learning with Hyperedge Expansion 415

diagonal matrix of hyperedge weights. The index (i, j) after the matrix indicates
the element at ith row and jth column. We sort the rows and columns of AĜ in

the order [e−1 , e
−
2 , ..., e

+
1 , e

+
2 , ...], so the elements in all other matrices and vectors

should follow the same order. The out-degree matrix of Ĝ is D Ĝ,out = [D 0
0 W],

where D = diag(e�WA) and e is an all-ones vector. Then the out-degree
Laplacian of Ĝ can be defined as following

L = D Ĝ,out −AĜ =

[
D −AW

−W W

]
. (4)

There are existing theories about the spectral property of the directed graph
based on symmetrization of L [13,14], and the corresponding learning problem for
directed graph [15]. It is shown that a Cheeger inequality can be established with

the first non-trivial eigenvalue of L̃ = VP+P�V
2 , where P is the (non-symmetric)

transition probability matrix of the directed graph and V is the diagonal matrix
of the first non-trivial eigenvector of P . In the transition probability matrix P ,
all out-going edge weights are normalized by the out-degree. For the special
structure of Ĝ in our case, the out-degree normalization could be problematic
since the correct mapping from the min-cut of Ĝ to the original MHCP problem
relies on the special weighting of the edges. When changing the edge weights, it
could be possible that the min-cut of Ĝ also contains edges from the e− nodes
to the e+ nodes, which is undesirable in our case. Instead, we avoid to use the
normalized P and show that the unnormalized Laplacian L is connected to a
relaxation of the min-cut problem on Ĝ.

Denote the nodes in the connected component on one side of the min-cut
with S ⊂ V̂, and the nodes on the other side with Sc. We define a vector

f ∈ {1/
√

|S|, 0}|V̂|, where f(e) is the entry corresponding to the node e. f(e) =

1/
√

|S| if e ∈ S and otherwise 0. It can be shown that f�f = 1 and the cost of
the cut can be written as

C =
∑

e1,e2∈V̂,(e1,e2)∈Ê

|S|w(e1, e2) (f(e1)− f(e2)) f(e1). (5)

The second f(e1) ensures that only the edges from S to Sc are counted when
f(e1) = 1/

√
|S| and f(e2) = 0. Then we relax f to take positive continuous

values and find the relaxed f that minimizes C by the Lagrange multiplier
method with constraint f�f = 1. When taking the partial derivatives, we drop
the contributions from f(e2) which is close to zero. This implies the following
approximation

∂w(e1, e2) (f(e1)− f(e2)) f(e1)

∂f(e1)
= 2w(e1, e2)f(e1)− w(e1, e2)f(e2)

≈ 2w(e1, e2)f(e1), (6)

∂w(e1, e2) (f(e1)− f(e2)) f(e1)

∂f(e2)
= −w(e1, e2)f(e1). (7)

416 L. Pu and B. Faltings

Setting the partial derivative with respect to f(e) to zero, it results in a matrix

form f�
(
2D Ĝ,out −AĜ

)
= 2λf� where λ is the Lagrange multiplier. The ma-

trix on the left side is the same as L except the doubled diagonal. We can also
interpret 2λ as an eigenvalue and f as a left eigenvector.

For a non-Hermitian matrix like L, the Courant-Fischers min-max theorem
does not hold anymore. The field of values of the non-Hermitian matrix is a
superset of the convex hull of the eigenvalues [16], and there is no guarantee
that all the eigenvalues are real. Although L is a non-Hermitian matrix, we
show in the next section that the special structure of Ĝ leads to some special
properties of L as addition to the properties in the general case. These special
properties would allow us to carry out the learning tasks with L.

4 Hypergraph Embedding

The embedding of a (hyper)graph projects the vertices into a low dimensional
Euclidean space. With the NHC objective one can construct the |V| × |V| nor-
malized hypergraph Laplacian LNHC = I − 1

2D
− 1

2
v HWH�D

− 1
2

v , where H is
the |E| × |V| incident matrix (H (e, v) = 1 if v ∈ e; otherwise H (e, v) = 0) and
Dv = diag(deg(v)) is the vertex degree matrix. Let g0, ..., gk−1 be the eigen-
vectors of LNHC associated with the k smallest eigenvalues. The embedding
of vertex v in a k-dimensional space is just the row vector at the v’th row of
[g0, ..., gk−1] [5].

We can also carry out this task with the RHE objective by taking the left
eigenvectors of L and mapping the hyperedge embedding back to the vertices.
Suppose we have the left (real) eigenvectors x0, ..., xk−1 associated with the k
smallest real eigenvalues of L, i.e. x�i L = λix

�
i , i ∈ {0, ..., k − 1}. Then the

embedding for vertex v can be formulated as

embedding(v) =
[
x−0 , ..., x

−
k−1

]�
H (·, v), (8)

where x−i means the first half (xi(e
−) part) of xi. But in the most general case the

left eigenvectors could be complex for the non-Hermitian matrix L. Fortunately,
for most real problems, we show that all eigenvectors of L are real.

Theorem 1. All eigenvalues of L are non-negative real numbers and the left
eigenvectors of L are real if and only if there exists γ ∈ R such that the matrix
Q(γ) = γ2W−2 + γW−1(I+W−1D) + (W−1D−A) is negative definite.

Proof. Denote the eigenvalue of L by λ and the left eigenvector by x = [x−, x+],
where x− and x+ are the first and second halves of x. The eigenvalue problem
x�L = λx� can be reformulated as

Dx− −W x+ = λx−,

−WAx− +W x+ = λx+.

Hypergraph Learning with Hyperedge Expansion 417

By substituting x+ = W −1(D − λI)x− in the second equation, we obtain
a quadratic eigenvalue problem (QEP) Q(λ)x− = 0. Note that the coefficient
matrices of λ2 and λ are positive definite. It is known that a QEP is overdamped
if and only if there exists γ ∈ R such that the matrix Q(γ) is negative definite
and (W −1D −A) is positive semi-definite (see Theorem 2 and Definition 4 of
[17]). Without loss of generality, the second condition can be always satisfied by
scaling the hyperedge weights with the same factor. It is also known that the
overdamped QEP Q(λ)x− = 0 has 2|E| non-negative real eigenvalues, and thus
2|E| real left eigenvectors. ��

The condition stated in Theorem 1 is hard to verify in practice. The state-of-
the-art techniques usually require to actually compute all the eigenvalues of the
QEP. We give a sufficient condition which is easier to verify.

Corollary 1. All eigenvalues of L are non-negative real numbers and the left
eigenvectors of L are real if d(D(i, i) + W(i, i)) > 8D(i, i)W(i, i) for all i ∈
{1, ..., |E|}, where d = mini(D(i, i) +W(i, i)).

Proof. As shown in Definition 1 of [17], the conclusion of Corollary 1 holds if(
(x−)∗W−1(I +W−1D)x−

)2
> 4

(
(x−)∗W −2x−

) (
(x−)∗(W −1D −A)x−

)
for all non-zero x− ∈ C|E|, where (x−)∗ denotes the conjugate transpose of x−.
Let z = W −1x− and note that W−1 is a diagonal matrix with positive main
diagonal. We can transform the above condition into(

z∗(W +D)z

z∗z

)2

>
z∗W (4W −1D − 4A)W z

z∗z

for all non-zero z ∈ C|E|. Both sides of the inequality contain a Rayleigh quo-

tient. It can be shown that d = minz
z∗(W+D)z

z∗z = mini(D(i, i) +W (i, i)) > 0.
Therefore a sufficient condition is

z∗ (d(W +D)− 4DW + 4WAW) z

z∗z
> 0

for all non-zero z ∈ C|E|, which means that the Hermitian matrix R = (d(W +
D) −4DW+4WAW) must be positive definite. We know that R is positive
definite if R is strictly diagonally dominant and has all positive diagonal entries.
Noting that each row of (WAW −DW) sums up to 0, we obtain the sufficient
condition in Corollary 1. ��

In fact we find that all the hypergraphs tested in the experimental section sat-
isfy this sufficient condition except the dataset AmazonBook. But the first 6
eigenvalues (smallest magnitude) of the hypergraph constructed from Amazon-
Book are all real non-negative numbers. Experiments in Section 6 show that the
hyperedge expansion embedding works well in general.

418 L. Pu and B. Faltings

5 Hypergraph Semi-supervised Learning

Like the existing works (e.g. NHC and [18]), we convert the multi-class HSSL
problem into a set of binary classification problems. We pick up one class y
each time, compute a class score for each unlabeled vertex v that indicates the
possibility of v belonging to class y, and repeat this procedure for all labels.
Finally the label with the highest class score is assigned to v.

5.1 Computing Class Scores

The desired procedure should take the hypergraph H, the partial labeling l̄, and
the chosen class y as input, while output the class scores for all unlabeled vertices.
The class score score(v, y) can be defined as the reciprocal of the “distances” from
the labeled vertices of label y to an unlabeled vertex v. An intuitive score(v, y)
could be the reciprocal of the average commute distance in the induced graph
from v to each vertex of label y, which can be computed by the generalized
inverse of LNHC [19]. Or score(v, y) could be obtained by simulating a random
walk on the induced graph with restart from labeled vertices of label y [20]. Here
we compute the scores based on L with hyperedge expansion.

To incorporate the partial labeling, some auxiliary hyperedges have to be
added to the hypergraph. For each label y ∈ Y, we create a label hyperedge
containing all the vertices in V̄ with label y. In other words, a new hyperedge
ey = l̄−1(y) is added to the original hypergraph, which is illustrated in Figure 2
(a) as ey1 and ey2. The weights of all label hyperedges are set to a pre-defined
value wl, i.e. w(ey1) = w(ey2) = ... = wl.

In each step one class is selected (e.g. the chosen class is y = y1 in Figure 2).
Then we define the class modified Laplacian

Ly = L− αB , B =

⎡⎣ .
.
.

w(ey)

.
.
.

⎤⎦ (9)

where α is a parameter and B has only one non-zero entry w(ey) in the bottom-
right half diagonal corresponding to the position of e+y . A larger α would have a
bigger influence on guiding the direction of the hyperedge partition around e+y ,
while a smaller α would let the partition follow the intrinsic principle direction
of Ĝ. Note that for each class y ∈ Y the matrix Ly has to be recomputed. We
denote the left eigenvector of Ly by fy.

With the commonly-used symmetric Laplacian, the eigenvector associated
with the second smallest eigenvalue, namely the Fiedler vector, is often taken to
partition the graph. For Ly with arbitrary α > 0, we show that the eigenvector
of Ly with the smallest real eigenvalue has the following property.

Theorem 2. When α > 0, there exists one eigenvalue λ0
y of Ly which is real and

has the smallest real part among all eigenvalues of Ly. The left eigenvector f0
y

corresponding to λ0
y has all positive entries. Furthermore we have λ0

y ≥ −αw(ey).

Hypergraph Learning with Hyperedge Expansion 419

Proof. Consider the matrix L′
y = μI − Ly where I is the identity matrix and

μ > 0. Since the underlying graph is strongly connected, the matrix L′
y is non-

negative and irreducible for some μ. By the Perron-Frobenius theorem, there
exists an all positive left eigenvector f0

y and an eigenvalue μ− λ0
y, which is real

and has the biggest magnitude. Thus f0
y is a left eigenvector of Ly corresponding

to λ0
y . The bound of λ0

y directly follows the spectral radius bound of the Perron-
Frobenius theorem. ��

Then we can compute the score of each unlabeled vertex v as the sum of all
f0
y (e

−) values where e is a hyperedge and e) v, i.e. score(v, y) =
∑

e�v f
0
y (e

−).
This score is repeatedly computed for each class y ∈ Y for v, and finally v is
assigned to the class with the highest score. We could analogically justify the
usage of f0

y as in the argument in the end of Section 3. The only difference is
that all the vertices labeled with y should be assigned to the same side of the
min-cut. This can be modeled as a soft constraint with the term αB in (9).

5.2 The Algorithm and Complexity

Summing up all the procedures above, we obtain the complete HE expansion
algorithm for HSSL. Only two parameters are required for the algorithm: the
weight for label hyperedges wl and the parameter α. Empirically it is a good
choice to set wl to the largest weight of all hyperedges.

Algorithm 1. : l = HSSL-HE(H = {V , E , w}, l̄ : V̄ → Y, wl, α)

1: Let Eex = E ∪ {ey|y ∈ Y}, where ey = l̄−1(y) of weight wl

2: Compute L from H = {V, Eex, wex} (see (4))
3: Initialize the score matrix S of size |Eex| × |Y|
4: for all y ∈ Y do
5: Compute the matrix Ly = L− αB (see (9))
6: Compute the left eigenvector f0

y of Ly corresponding to the smallest real eigen-
value

7: Fill in the y’s column of S with the f0
y (e

−) part, i.e., the first half of f0
y

8: end for
9: for all v ∈ V \ V̄ do
10: Let l(v) = argmaxy∈Y

∑
e
v,e∈Eex

S(e, y)
11: end for
12: return l = l ∪ l̄

The HSSL-HE algorithm involves the computation of the eigenvector of a ma-
trix of size 2N × 2N (N = |E|+ |Y|), and this procedure has to be repeated |Y|
times. It is known that each eigenvalue problem can be solved in time O(nN2)
by power iteration methods like Lanczos algorithm, where n is the number of
iterations. The lower bound in Theorem 2 can be used as a good initial guess of
the eigenvalue. If the connectivity between hyperedges is sparse, we can further
reduce the time of computing eigenvector to O(nN) and the total time complex-
ity would be O(nN |Y|). Generally, HSSL-HE would have better scalability when

420 L. Pu and B. Faltings

the number of instances (vertices) is very large and the number of co-occurrence
relations (hyperedges) is relatively small. Such scenarios can be found in many
real applications like categorical data and census data. On the other hand, the
spectral methods that operate on the induced graphs, e.g. star expansion and
NHC, need O(n|E ′|) time where |E ′| is the number of edges created in the induced
graph.

6 Experimental Results

In this section, we present results on two tasks. First, we test the proposed
semi-supervised algorithm on datasets from different domains and compare the
performances with the state-of-the-art methods. Second, we present the result
of the HE expansion embedding.

6.1 Experiment Settings

All the classification tasks are conducted in a transductive manner: we first create
a hypergraph from raw data. Then the hypergraph and some (small amount of)
vertex labels are taken as inputs and the algorithm predicts the labels of the
unlabeled vertices. When evaluating the algorithms in repeated runs, the labeled
vertices are randomly chosen from the vertex set such that every class has at
least one labeled vertex, but the same set of labeled vertices is applied to all
tested algorithms in each run. For evaluation we mainly use the macro-averaged
F-score.

Algorithms for Comparison: since our proposed algorithm belongs to the
family that only uses relational information, we choose four state-of-the-art
relational-only approaches and one feature-based approach (AnchorGraph) for
comparison 1:

(1) the hMETIS toolkit [6] is a commonly used tool for hypergraph partition-
ing, which optimizes the RHE objective with a heuristic algorithm. Although
hMETIS is mainly designed for VLSI applications, reports show that this toolkit
can be applied to general classification/clustering problems [21]. We use the “pre-
assignment of vertices” input file with hMETIS to assign the known labels in
the semi-supervised task.

(2) the normalized hypergraph cut (NHC) algorithm by Zhou et al. [5] first
transforms the hypergraph into an induced graph whose edge weights are normal-
ized by the hyperedge sizes. Then NHC adopts the normalized Laplacian LNHC

to the semi-supervised setting. The NHC algorithm is the most representative
approach among those based on vertex expansions.

(3) the rendezvous algorithm (Rend.) [22] is a semi-supervised learning ap-
proach based on a random walk on a graph. The algorithm first constructs a
directed graph from the k-nearest neighbors in which all the labeled vertices

1 The implementation of our proposed algorithm (HSSL-HE) can be found in
http://lia.epfl.ch/index.php/research/relational-learning

http://lia.epfl.ch/index.php/research/relational-learning

Hypergraph Learning with Hyperedge Expansion 421

have only incoming edges and thus act as absorbing states of the random walk.
Then the algorithm simulates a set of particles that start a random walk from
each unlabeled vertex and stop at some labeled vertices. Intuitively, a particle
from an unlabeled vertex will stop at a labeled vertex of its true label with higher
probability. The algorithm determines the labels based on the outcome of the
random walk. We use the distances in the induced graph (the same as NHC) to
construct the directed k-NN graph. We also apply a Gaussian kernel function to
the distances as instructed by the author.

(4) the semi-supervised kernel k-means (SSKKmeans) [23] is an extension of
the kernel k-means method where the kernel function is a linear combination of
the graph kernel and the label-induced modifier. The label-induced component
includes both same-class rewards and different-classes penalties. Again we use
the induced graph from the hypergraph (the same as NHC) to compute the
graph kernel.

(5) theAnchorGraphalgorithm [24] focuses on the scalability of semi-supervised
learning. Instead of constructing a k-NN graph from the original data, Anchor-
Graph chooses a small set of anchors which connect to the s-nearest neighbors in
the original data, and represents each data point with a linear combination of the
anchors. The semi-supervised algorithm is faster because the values to learn are
only the weights of the anchors rather than the labels of the original data.

In the experiments, we use 13 relational-only datasets from three different do-
mains to evaluate the above algorithms. The AmazonBook co-purchase dataset
contains the books in Amazon.com and the list of books that are co-purchased
[25]. We take three subsets of book products to construct the hypergraphs, where
a vertex represents a book, and a hyperedge represents a co-purchase list of
books. The label of each vertex is simply the category of the corresponding
book. The parameter α for algorithm 1 is set to 1 for AmazonBook. We also
construct co-citation hypergraphs from the commonly-used Cora, citeseer, and
WebKB data. For Cora and citeseer, a vertex represents a paper, and a hyper-
edge contains all the papers that cite the same paper. For WebKB data (cornell
and texas), besides the link information, word-based content information is also
available. So we create some additional hyperedges that include all the papers or
webpages that contain the same word. In order to show how the link information
could help in classification, the hypergraphs using only contents (denoted by C)
and contents plus links (denoted by CL) are respectively constructed for each
WebKB dataset. The parameter α is set to 50 for co-citation datasets. In the last
domain, categorical dataset, every instance has a set of nominal attributes which
could take values from a finite set. We use 4 labeled categorical datasets zoo,
letter, 20newsgroups, and covertype from the UCI repository. For each dataset,
a hypergraph is constructed by taking instances as vertices and creating a hy-
peredge for each value of the attributes. Then every hyperedge contains the
instances that share the same attribute value. We discretize those attributes
whose value is an integer with a range larger than 10 into 10 sections of the
same size. Some tested algorithms (SSKKmeans, NHC, and Rendezvous) do not
scale well on letter, 20newsgroups, and covertype, so only a subset is tested for

422 L. Pu and B. Faltings

Table 1. The averaged macro F-scores (and the standard deviation in the parentheses)
on 13 datasets. The algorithms are tested on AmazonBook (AB) and covertype with
10 runs, co-citation data with 50 runs, other categorical data with 100 runs. Some
information about the dataset is shown below the dataset name (#labeled vertices
/ #all vertices / #classes). The bold number indicates a algorithm that performs
significantly better than others (p-value < 0.05 in paired t-test). The Rendezvous
algorithm cannot return a result in a reasonable time period for AmazonBook, Cora
and citeseer.

dataset hMETIS SSKKmeans AnchorGraph Rend. NHC HE

AB3
(100/24500/3)

0.565(0.022) 0.446(0.015) 0.519(0.025) — 0.645(0.019) 0.657(0.023)

AB4
(100/18120/4)

0.517(0.107) 0.376(0.016) 0.561(0.058) — 0.765(0.046) 0.798(0.023)

AB5
(80/6965/5)

0.525(0.040) 0.357(0.067) 0.472(0.046) — 0.724(0.087) 0.716(0.064)

Cora
(40/1961/7)

0.477(0.054) 0.449(0.048) 0.500(0.050) — 0.613(0.046) 0.637(0.040)

citeseer
(40/1318/6)

0.492(0.046) 0.361(0.030) 0.401(0.038) — 0.518(0.046) 0.509(0.046)

cornell-CL
(20/195/5)

0.275(0.055) 0.411(0.091) 0.417(0.058) 0.304(0.068) 0.320(0.091) 0.497(0.047)

cornell-C
(20/195/5)

0.279(0.057) 0.427(0.092) 0.425(0.059) 0.299(0.056) 0.346(0.069) 0.480(0.050)

texas-CL
(20/187/5)

0.238(0.028) 0.362(0.050) 0.317(0.066) 0.249(0.042) 0.268(0.089) 0.425(0.045)

texas-C
(20/187/5)

0.236(0.039) 0.350(0.047) 0.338(0.050) 0.254(0.047) 0.267(0.098) 0.410(0.068)

zoo
(15/100/7)

0.467(0.066) 0.822(0.058) 0.803(0.075) 0.571(0.088) 0.359(0.147) 0.832(0.052)

letterAE
(50/1022/5)

0.379(0.049) 0.629(0.023) 0.664(0.039) 0.543(0.039) 0.606(0.047) 0.627(0.028)

20newsgroups
(50/1067/4)

0.489(0.080) 0.480(0.041) 0.552(0.042) 0.482(0.069) 0.642(0.033) 0.628(0.042)

covertype
(50/6344/7)

0.164(0.017) 0.285(0.019) 0.238(0.016) 0.268(0.022) 0.254(0.064) 0.307(0.028)

each of them. We set α = 1 for 20newsgroups and α = 100 for other categorical
datasets. Weighting the hyperedges usually depends on the domain knowledge.
For simplicity, we assign the same weights to all hyperedges in the experiments.

6.2 Main Results

As shown in Table 1, HE performs significantly better than other methods in
most cases. For some datasets, hMETIS does not work very well, partially be-
cause it is mainly designed for VLSI applications, but not general classification
tasks. For cornell and texas, we can observe an improvement from C to CL with
the HE algorithm, which confirms that the link information does help in classify-
ing webpages. This improvement, however, does not exist with other algorithms.

Nevertheless, the algorithms directly designed for hypergraphs (hMETIS,
NHC and HE) generally perform significantly better than those based on graphs

Hypergraph Learning with Hyperedge Expansion 423

(SSKKmeans) or feature vectors (AnchorGraph). It suggests that hypergraph
approaches would be better choices when the data is naturally organized as
co-occurrence relations. For letterAE, the AnchorGraph actually works best,
mainly because the original attributes of letterAE are all integer values (such as
the mean of x-position of the pixels) rather than nominal variables. When the
data naturally follows some pattern in a continuous metric space, methods like
AnchorGraph could be better for capturing the underlying regularity.

103 104
10−2

10−1

100

101

102

103

104

number of vertices

ru
nn

in
g

tim
e

(s
ec

on
ds

)

HE− (α=1), m=0.08
HE− (α=5), m=0.20
HE− (α=10), m=0.23
HE− (α=100), m=0.35
HE− (α=500), m=0.46
HE− (α=1000), m=0.46
hMETIS, m=1.08
NHC, m=2.52
SSKKmeans, m=1.98
AnchorGraph, m=1.04
Rendezvous, m=2.35

Fig. 3. The measured running times of different algorithms with 100 labeled vertices
on subsets of covertype. The slope m of each curve is shown in the legend, which is
computed by the least square fitting.

The running time of different algorithms is tested with subsets of covertype
whose vertex set sizes range from 583 to 27056. These subsets are randomly ex-
tracted from the original data. Figure 3 shows the measured times in log scale.
We have shown that the complexity of the HE algorithm mainly depends on the
size of hyperedge set rather than the vertex set. Generally, the HE algorithm
always stays in the same running time level regardless of the vertex set size, be-
cause the number of hyperedges in each subset does not change too much (from
122 to 143). Therefore the HE algorithm can be orders of magnitude faster than
the approaches based on the induced graph when the number of hyperedges is
smaller than the number of vertices. By increasing the parameter α, we can
observe that HE runs faster due to the higher convergence rate of the eigenvec-
tor computation. In practice, the choice of α also depends on the classification
performance, but the running time would not change by more than an order
of magnitude when tuning α. The running times of hMETIS and AnchorGraph
approximately grow linearly with respect to the number of vertices, while for
NHC, SSKKmeans and Rendezvous the running time grows quadratically.

424 L. Pu and B. Faltings

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

bear
carp

clam
crab

deer

dogfish dolphin

dove
flamingo

flea

frog
girl

gnat

gorilla

gull
hawk

honeybee
housefly

kiwi

ladybird

lion

lobster

mink

newt

octopus

ostrich
penguin

pitviper

platypus

pony

scorpion

seahorse

seal

sealion
seasnake

seawasp

slowworm
squirrelstarfish

stingray

swan

toad

tortoise
tuatara vampire

wasp
worm

HEC embedding

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

bear

carp

cavy

clam crab

deer

dogfish
dolphin

dove
flamingo

flea

frog

girl

gnat
gorillagull

hawk
honeybee

kiwiladybird

lion
lobster minknewt

octopus

ostrich

penguin

pitviper

platypus

pony

pussycatscorpion

seahorse

seal

sealion

seasnake
seawasp

slowworm

squirrel

starfish

stingray

swan

toad

tortoise
tuatara

vampire

worm

NHC embedding

Fig. 4. The vertex embeddings of zoo with the eigenvectors (scaled) corresponding to
the 2nd and 3rd smallest eigenvalues (for both HE and NHC embedding)

We use both HE embedding and NHC embedding to project the vertices
(animals) of zoo into a low dimensional space. The results are shown in Figure
4. It can be seen that the HE embedding generates a different picture compared
to the NHC embedding. In general the HE embedding shows a clearer separation
between different classes in the 2-dimensional space, but for some instances (e.g.
seasnake and platypus) both embeddings fail to give them a clear affiliation,
mainly due to their special attributes.

7 Conclusion and Future Work

In this paper we propose a new formulation called hyperedge expansion and new
algorithms for the semi-supervised learning and embedding tasks of hypergraph.
Compared to the existing methods, the learning results with the hyperedge ex-
pansion is less sensitive to the hyperedges sizes when the data is organized with
co-occurrence relations.

Our preliminary work has shown that the hyperedge expansion would be
generally better than the vertex expansions when the average Jaccard coefficient
between the hyperedges is high. Thus it is interesting to theoretically further
investigate the applicable scopes of vertex expansions and hyperedge expansion.
Moreover, we are interested in applying the hyperedge expansion technique to a
broader range of real problems such as social networks and biological networks.

References

1. Chung, F.: The Laplacian of a hypergraph. Expanding graphs (DIMACS series),
pp. 21–36 (1993)

2. Storm, C.: The zeta function of a hypergraph. The Electronic Journal of Combi-
natorics 13(R84) (2006)

3. Balof, B., Storm, C.: Constructing isospectral non-isomorphic digraphs from hy-
pergraphs. Journal of Graph Theory 63(3), 231–242 (2010)

Hypergraph Learning with Hyperedge Expansion 425

4. Agarwal, S., Branson, K., Belongie, S.: Higher order learning with graphs. In:
Proceedings of the 23rd ICML (2006)

5. Zhou, D., Huang, J., Scholkopf, B.: Learning with hypergraphs: Clustering, classi-
fication, and embedding. In: Advances in Neural Information Processing Systems
(2007)

6. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph parti-
tioning: application in VLSI domain. In: Proceedings of the 34th Annual Design
Automation Conference (1997)

7. Shashua, A., Zass, R., Hazan, T.: Multi-way Clustering Using Super-Symmetric
Non-negative Tensor Factorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.)
ECCV 2006, Part IV. LNCS, vol. 3954, pp. 595–608. Springer, Heidelberg (2006)

8. Bulò, S., Pelillo, M.: A game-theoretic approach to hypergraph clustering. In: Ad-
vances in Neural Information Processing Systems (2009)

9. Ladicky, L., Russell, C., Kohli, P., Torr, P.H.S.: Graph Cut Based Inference with
Co-occurrence Statistics. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010, Part V. LNCS, vol. 6315, pp. 239–253. Springer, Heidelberg (2010)

10. Lawler, E.: Cutsets and partitions of hypergraphs. Networks 3(3), 275–285 (1973)
11. Fukunaga, T.: Computing Minimum Multiway Cuts in Hypergraphs from Hy-

pertree Packings. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS,
vol. 6080, pp. 15–28. Springer, Heidelberg (2010)

12. Acid, S., Campos, L.: An algorithm for finding minimum d-separating sets in belief
networks. In: Proceedings of the 12th UAI (1996)

13. Wu, C.: On Rayleigh-Ritz ratios of a generalized Laplacian matrix of directed
graphs. Linear Algebra and Its Applications 402, 207–227 (2005)

14. Chung, F.: Laplacians and the Cheeger inequality for directed graphs. Annals of
Combinatorics 9(1), 1–19 (2005)

15. Zhou, D., Huang, J., Schölkopf, B.: Learning from labeled and unlabeled data on
a directed graph. In: Proceedings of the 22nd ICML (2005)

16. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press
(1991)

17. Guo, C., Lancaster, P.: Algorithms for hyperbolic quadratic eigenvalue problems.
Mathematics of Computation, 1777–1791 (2005)

18. Sun, L., Ji, S., Ye, J.: Hypergraph spectral learning for multi-label classification.
In: Proceeding of the 14th ACM SIGKDD (2008)

19. Von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4),
395–416 (2007)

20. Lin, F., Cohen, W.: Semi-supervised classification of network data using very few
labels. In: International Conference on Advances in Social Networks Analysis and
Mining, pp. 192–199 (2010)

21. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combin-
ing multiple partitions. Journal of Machine Learning Research 3, 583–617 (2003)

22. Azran, A.: The rendezvous algorithm: Multiclass semi-supervised learning with
markov random walks. In: Proceedings of the 24th ICML (2007)

23. Kulis, B., Basu, S., Dhillon, I., Mooney, R.: Semi-supervised graph clustering: a
kernel approach. In: Proceedings of the 22nd ICML (2005)

24. Liu, W., He, J., Chang, S.: Large graph construction for scalable semi-supervised
learning. In: Proceedings of the 27th ICML (2010)

25. SNAP, http://snap.stanford.edu/data/amazon-meta.html

http://snap.stanford.edu/data/amazon-meta.html

Nearly Exact Mining of Frequent Trees

in Large Networks

Ashraf M. Kibriya and Jan Ramon

Department of Computer Science
Katholieke Universiteit Leuven

Leuven, Belgium
{ashraf.kibriya,jan.ramon}@cs.kuleuven.be

Abstract. Mining frequent patterns in a single network (graph) poses
a number of challenges. Already only to match one path pattern to a
network (upto subgraph isomorphism) is NP-complete. Matching algo-
rithms that exist, become intractable even for reasonably small patterns,
on networks which are large or have a high average degree. Based on re-
cent advances in parameterized complexity theory, we propose a novel
miner for rooted trees in networks. The miner, for a fixed parameter k
(maximal pattern size), can mine all rooted trees with delay linear in the
size of the network and only mildly exponential in the fixed parameter
k (2k). This allows us to mine tractably, rooted trees, in large networks
such as the WWW or social networks. We establish the practical appli-
cability of our miner, by presenting an experimental evaluation on both
synthetic and real-world data.

1 Introduction

Mining frequent patterns is one of the fundamental tasks of data mining. Tra-
ditionally, patterns have consisted of simple sets of items. However, since the
last decade interest has been building up in mining more structured forms of
patterns, such as trees and arbitrary graphs. This has especially been the case
due to the phenomenal growth of structured data sources such as the WWW,
and social and citation networks.

There are generally two settings for mining in graphs. A first graph mining
setting is the transactional setting, where we are given a set of graphs and a
threshold t, and we want to find patterns that occur in at least t graphs in the
set. The second graph mining setting, which we will consider in this paper, is
the single network setting, where we are given a single graph and a threshold t,
and we want to find patterns that have a support of at least t in the given single
graph according to some appropriate frequency measure.

Central to any pattern mining task is the notion of pattern matching. In
graph mining, subgraph isomorphism is usually the matching operator of choice.
Checking for even a simple path in a graph under subgraph isomorphism is well
known to be NP-complete. Indeed, the problem of finding a path in a graph can
be reduced to the Hamiltonian path problem. However, recent advances in the

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 426–441, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Nearly Exact Mining of Frequent Trees in Large Networks 427

theory of parameterized complexity have produced algorithms that can tractably
solve several of the computationally hard graph problems, including subgraph
isomorphism, when certain parameters of the problems are bounded. The work
of [20] is particularly relevant in this case. It gives a randomized algorithm
for deciding subgraph isomorphism of a tree in a network with an asymptotic
complexity of O(k2 log2(k)m2k), where m is the number of edges in the network
and k the size of the pattern.

In this paper we build on the work of [20]. We present an algorithm to
mine all frequent rooted tree patterns with delay O(k2 log2(k)m2k), i.e. the
time between any two consecutive frequent patterns being output is bounded
by O(k2 log2(k)m2k). We present an implementation and experiments on both
synthetic and real-world data. To the best of our knowledge, our work is the first
to tractably mine tree patterns under subgraph isomorphism in single networks.

The rest of the paper is structured as follows. In the next section we give a
brief overview of related work, followed by a section of preliminaries required
for explaining our work. We then proceed to presenting our work by building
on the work of [20], followed by a thorough experimental evaluation to establish
the practical applicability of our mining algorithm. We then conclude with some
final remarks, and future direction of our research.

2 Related Work

Most of the work done so far in graph mining is in the transactional setting. For
example, graph miners AGM [18], FSG [21], FFSM [16], gSpan [30], MoFa/MoSS
[3,4] and Gaston [25], are all designed for the transactional setting. These min-
ers employ a variety of optimizations to reduce the overall runtime and memory
use, including canonical forms to avoid duplicate generation of candidates and
extraneous isomorphism tests. The earlier generation of miners, AGM and FSG,
work in an apriori style fashion, whereas the newer generation (FFSM and be-
yond) use depth first search (instead of apriori style breadth-first) to further
optimize memory use [29]. Furthermore, as in itemset mining, considerable work
has also been done in pattern summarization, by mining more representative and
comprehensive graph patterns such as closed graphs [31,7] and maximal graphs
[17,27].

For mining in single networks, work has so far been limited. To our knowledge,
the only ones that exist are for mining evolution of networks [1,2], node/edge
classification [15,12], or mining that uses homomorpshism as matching operator
[11]. Even though in [1] the authors mine patterns when mining their evolution
rules, the language of the patterns is specific to time evolving networks, and
excludes more general (unlabeled) patterns like trees or cycles.

For pattern matching, with (sub)graph isomorphism as the matching operator,
usually the miners use one of a number of base matching algorithms. For gen-
eral arbitrary graphs, Ullman[28] and VF2[8] are often popular choices, whereas
Nauty[22] is also sometimes used if the matching operator is restricted graph
isomorphism. Ullman and VF2 are both branch-and-bound based algorithms

428 A.M. Kibriya and J. Ramon

that employ backtracking and pruning strategies to eliminate large parts of the
search space. Nauty on the other hand, uses results from group theory to cre-
ate unique canonical labelings for (automorphic) graphs that are then compared
for equivalency. Note that graph isomorphism is just a special case of subgraph
isomorphism, and any method for subgraph isomorphism can generally also be
used for graph isomorphism.

VF2 is newer and in comparison provides mostly better runtime than Ullman,
whereas in comparison to Nauty (on graph isomorphism) it is usually better on
real-world structured graphs [9].

An alternative to subgraph isomorphism is to use homomorphism. Homomor-
phism, as used in [11], has a lower computational cost (only polynomial in the
pattern size), but has other disadvantages. One of the major reasons why interest
in mining conjunctive queries has been declining is that candidate generation is
problematic, as illustrated by the fact that no optimal refinement operator ex-
ists [23,24]. Moreover, depending on the application requiring pattern vertices to
map to different network vertices (as in isomorphism) may be the most natural
choice.

3 Preliminaries

3.1 Graphs

We recall basic graph theoretic notions used in this paper. For more background
in this area, see also [10]. A graph is a pair G = (VG, EG), where VG �= ∅ is
a finite set of vertices/nodes, and EG ⊆ {{x, y} | x, y ∈ VG} a set of edges
connecting those vertices. For any graph G its vertex and edge set will also be
referred to as V (G) and E(G) respectively. If {u, v} ∈ E(G), we say u and v are
adjacent vertices and the edge {u, v} is incident with the vertex v. In this paper,
we call |V (G)| the size of G. A path in a graph G is a sequence {v1, v2, . . . , vn} of
pairwise distinct vertices of G such that {vi, vi+1} ∈ E(G) for all 1 ≤ i < n. A
tree is a graph such that there is a unique path between any pair of its vertices.
A rooted tree is a tree T in which a single vertex r ∈ V (T), denoted by root(T),
is distinguished and is called the root.

A labeled graph is a quadruple G = (VG, EG, ΣG, λG), where (VG, EG) is a
graph, ΣG �= ∅ a set of labels, and λG : VG ∪ EG → ΣG a function assigning
labels to vertices and edges.

A graph H = (VH , EH) is called a subgraph of G = (VG, EG), if VH ⊆ VG and
EH ⊆ EG. It is an induced subgraph if for all ∀v ∈ VH , (v, v′) ∈ EH ⇔ (v, v′) ∈
EG, otherwise it is a non-induced subgraph.

A graph H = (VH , EH) is said to be isomorphic to G = (VG, EG) (denoted
by H ∼= G), if there exists an edge-preserving bijective mapping of H onto G.
For labeled graphs the mapping, in addition to edge-preserving, also has to be
label-preserving. Formally, H ∼= G if there exists a function ϕ : VH → VG such
that ∀u, v ∈ VH , (u, v) ∈ EH ⇔ (ϕ(u), ϕ(v)) ∈ EG, and for the labeled case
additionally, ∀u ∈ VH , λH(u) = λG(ϕ(u)). If H is isomorphic to a subgraph of

Nearly Exact Mining of Frequent Trees in Large Networks 429

G, then we call H subgraph isomorphic to G and write H (G. In that case,
the mapping is called an embedding of H in G.

If a mapping from H to G is edge-preserving but not bijective (and hence not
one-to-one), then it defines a homomorphism between H and G.

We denote with Emb(H,G), the set of all isomorphic embeddings of H in G.
Note, that (i) the number of embeddings |Emb(H,G)| can be exponential, and
(ii) that in this paper we consider normal subgraph isomorphism rather than the
more restrictive induced subgraph isomorphism.

3.2 Group Theory

A group G is a set of elements endowed with an arbitrary binary operation (·),
such that it satisfies the following four properties, known as the group axioms:

– Closure. If a, b ∈ G, then so does a · b.
– Associativity. (a · b) · c = a · (b · c).
– Identity. There exists an element i ∈ G, such that for every a ∈ G: a · i =

i · a = a.
– Inverse. For every a ∈ G, there exists an element a−1, such that a · a−1 = i

A ring is a set of elements with two specified binary operations, addition (+)
and multiplication (×). It must satisfy all the group axioms for (+), all but the
inverse axiom for (×), and the following additional axioms:

– Commutativity of (+). For all a, b ∈ G, a+ b = b+ a.
– Distributivity of (×) over (+). For all a, b, c ∈ G, a×(b+c) = a×b+a×c

and (a+ b)× c = a× c+ b× c.

If in addition to the above if it also satisfies commutativity of (×), then it is
called a commutative ring, otherwise a non-commutative ring.

A field is a commutative ring for which also the inverse axiom for × holds.
For a ring R, an integer n and a ∈ R, n.a =

∑n
i=1 a is called the scalar

multiplication between n and a. For any finite field F , it is necessarily the case
that there exists an integer n > 0, such that for every a ∈ F , na = 0. The
smallest such n for a field is called its characteristic.

4 Problem Statement

Let G be the language of all graphs, let LP ⊆ G be a language of patterns,
let M(LP ,G) be some measure of interestingness, let t be a given threshold of
interestingness and G ∈ G be the network we want to mine patterns in. Then,
we would like to compute the set F(LP ,G) of interesting patterns defined by:

F(LP ,G) = {T ∈ LP : M(T,G) ≥ t}
In our case, our pattern language is the class of rooted trees.

Several frequency measures have been proposed, as measures of interesting-
ness, in the literature for single graph mining [5,6]. This paper primarily focuses

430 A.M. Kibriya and J. Ramon

on the matching of patterns, and though our methods are general, for simplicity
we restrict ourselves to the frequency measure obtained by counting the number
of possible images of the root of a rooted tree pattern. This support measure is
defined as follows.

Definition 1 (root image). The root image of a rooted tree T in G is the set of
all vertices v ∈ G to which root(T) can be mapped under subgraph isomorphism,
i.e.,

RI(T,G) = {ϕ(root(T)) | ϕ ∈ Emb(T,G)} ,

Definition 2 (support). Let T be a rooted tree and G be a graph. Then, we
define the support of T in G as the size of its root image, i.e.,

supp(T,G) = |RI(T,G)|.

This support measure is anti-monotone w.r.t. increasing pattern size.
For the remainder of the paper, we will consider a network G and for brevity

we will use n = |V (G)| and m = |E(G)|. Moreover, the symbol T will be used to
refer to rooted tree patterns and denote its size with k = |V (T)|. We will abuse
terminology and use ’tree’ for ’rooted tree’ if it is clear from the context.

5 Mining Frequent Rooted Trees

In order to realise a pattern miner for rooted trees in single networks, the two
most important ingredients are efficient generation of candidate trees and fre-
quency counting of candidates in the network (using subgraph isomorphism). We
proceed by first outlining our candidate generation method, and then reviewing
the subgraph isomorphism method of [20] and showing how it can be employed
to compute the above defined frequency measure. Finally we give complexity
bounds for our complete miner.

5.1 Candidate Generation

In our miner, we use the same technique for generating rooted trees as in [25,26].
It generates rooted ordered candidate trees that are left heavy, i.e. children of a
node are ordered and each left sub-tree is larger than the right sub-tree according
to their canonical form. The left heavy property avoids generating trees that are
isomorphically equivalent.

The method works by adding nodes only to the right most path, and ensuring
that the condition of left heavy subtree is met with each new added node. The
method thus produces a new tree for each added node, and can do so with delay
O(k) for size k trees. The left heavy subtree condition is met by maintaining a
canonical form for the trees, which for unlabeled case is just the depth sequence
of nodes in pre-order traversal. If the trees are labeled, then vertex and edge
labels are inserted. Figure 1 gives some example trees with their corresponding
depth sequence to illustrate the technique.

Nearly Exact Mining of Frequent Trees in Large Networks 431

Fig. 1. The (rooted) unlabeled trees (a) and (b) are isomorphic to each other, but (a)
is left-heavy compared to (b). We can treat as canonical form, the lexicographically
heaviest string of pre-order traversal of depth sequence (given below each tree), and
generate only trees that are like (a). Figure (c) shows an example of a left-heavy labeled
tree with its corresponding canonical string.

5.2 Subgraph Isomorphism and Frequency Counting

Let us first briefly outline the subgraph isomorphism method of [20], which from
here on we will call the Koutis&William’s method. The method exploits the fact
that for trees, subgraph homomorphisms can be computed in polynomial time.
The method essentially consists of two core parts. In the first part, it constructs
an arithmetic circuit computing a polynomial P representing all possible homo-
morphisms of a tree in a network. In particular, with every network vertex v a
variable xv is associated, and every homomorphism π from the pattern T to the
network G corresponds to a term (monomial)

∏
v∈V (T) xπ(v) in the polynomial,

i.e. the product of the variables corresponding to the images of the vertices of the
pattern. A multilinear term is a term where every variable occurs with degree at
most 1. Isomorphisms are injective, and therefore the terms in P corresponding to
isomorphisms will be exactly the multi-linear terms of P . In the second part, the
method then evaluates the polynomial on an appropriate commutative group alge-
bra, that ensures squares evaluate to 0. Hence, all terms which are not multi-linear
(i.e. all homomorphisms which are not isomorphisms) vanish. The randomization
of the values for which the variables xv are substituted is such that multi-linear
terms evaluate to non-zero with probability at least 1/4 and the randomization
of the coefficients of the polynomial P is such that the summation of non-zero
monomials evaluates to non-zero with probability at least 7/8.

In particular, [20] evaluates the polynomial P over GF (2l)Zk
2 . Z

k
2 contains all

bitvectors of length k. For x, y ∈ Zk
2 , the multiplication is defined by component-

wise addition of the elements of the bit vectors. The neutral element, the vector
containing k zeros, is denoted W0. Then, GF (2l)Zk

2 is the ring of linear combi-
nations of elements of Zk

2 with coefficients from GF (2l), the unique field with 2l

elements. GF (2l) has characteristic 2, i.e. x+ x = 0 holds for any x.
The polynomial is evaluated by assigning to each variable xv a value W0 + yv

where yv is a random value from Zk
2 (i.e. a random k-bit vector). The result of

[20] is based on the following observations:

432 A.M. Kibriya and J. Ramon

– For a set S ⊆ V (G) and variables xv = W0 + yv with yv ∈ Zk
2 , it holds

that
∏

v∈S xv �= 0 iff the multiset {yv|v ∈ S} is a set of linearly independent
vectors. Non-multilinear terms therefore evaluate to 0.

– A set of k randomly chosen bitvectors of length k is independent with prob-
ability at least 1/4.

– For any set of element bi ∈ GF (2l)Zk
2 and randomly chosen coefficients ai ∈

GF (2l), if any of the bi is non-zero, then
∑

i aibi is nonzero with probability
1/2l.

Figure 2 gives an illustration of the above concept. It shows the mapping of a
rooted tree to a network, and the corresponding polynomial for this mapping.
The two multi-linear terms x1x2x3 in the polynomial represent isomorphisms,
while the rest represent homomorphisms.

In Algorithm 1, we outline the subgraph isomorphism method of [20]. The
occur method in Algorithm 1 defines an arithmetic circuit of a polynomial for
all homomorphic mappings starting from the mapping of root r ∈ T to some
v′ ∈ G. The creation and evaluation of such circuits for all v′ ∈ G, in method
countFreq, gives us our above defined support measure of root images, for our
root r ∈ T .

The ar,j and xj , in the occur method, are chosen randomly from Zk
2 and

GF (2l), and the arithmetic on the elements of array Ci,j is performed based on
their defined group algebra. In our implementation we use the representation-
theoretic technique similar to [19] for doing the evaluations is memory linear in
k (rather than linear in 2k).

As per [20], the theoretical space complexity of occur method is O(km)
and its time complexity is O(k2m2kl2)1. By extension the time complexity of
countFreq method would be O(k2mn2kl2). However, we note that it is possi-
ble with only a single evaluation of the arithmetic circuit to obtain the values
occur(T,G,r,j) for all j, and hence the time complexity is only O(k2m2kl2).

Remark 1. The occur method’s success probability p > 1/5 can be increased to
an arbitrary p′, by repeating the method !log(1− p′)/log(1− p)" times (thereby
decreasing the probability of failure) .

5.3 Complete Miner and Complexity Bounds

Algorithm 2 gives pseudo-code for our complete pattern miner. It brings together
all the core components to make an apriori style miner.

We now proceed to prove its theoretical bounds. Note, the space complexity
of our miner is bounded by our main datastructure Ci,j , and is O(kn).

Theorem 1. Given a network G with n nodes and m edges labeled by label set
ΣG, and a frequency threshold t we can mine all frequent tree patterns of size
≤ k with time O(|ΣG| log2(k)k2m2k).

1 O(km) being the size of the circuit and O(k2kl2) to do arithmetic over GF (2l)[Zk
2].

Nearly Exact Mining of Frequent Trees in Large Networks 433

x1

x2 x3

t1

t2 t3

 polynomial: x1x2 + x1x2x3 + x1x2x3 + x1x3
2 2

G T

Fig. 2. All homomorphisms of T unto G, when mapping of t1→ x1 is fixed. Solid lines
represent mappings that are also isomorphic

Proof. As mentioned earlier, the countFreq method takes O(log2(k)km2k) time
for each candidate tested. At each call made at level i ≥ 2 the generateCandi-
dates function in algorithm 2 produces at most O(|ΣG|) candidates per frequent
pattern in Si−1. For each such candidate, countFreq is called, taking time
O(log2(k)k2m2k). Therefore, for each new solution output, the algorithm will
need O(|ΣG| log2(k)k2m2k) more time to finish. The theorem follows by noting
that we can delay the printing of the solutions (frequent patterns) in such a
way that between the printing of each pair of consecutive solutions the time is
bounded by O(|ΣG| log2(k)k2m2k).

5.4 Further Optimizations

A number of optimizations are still possible with algorithm 2. Below we mention
some of the more high level optimizations we implemented in our miner.

– Sharing common subtrees. Note that for each Ci for i ≥ 2, the candidate
trees may share a number of subtrees common among them. We do not need
to test each candidate tree in isolation. Instead we can reuse the previously
computed results of the common subparts.
In our implementation we made a directed acyclic graph structure to repre-
sent all T ∈ Ci, i.e. a tree is represented by a node of the directed acyclic
graph (the root) and all nodes below it. Several nodes can be parents of
the same node and hence the corresponding trees can share subtrees. This
method shares computation at the expense of additional memory.

– Checking for homomorphisms. As mentioned earlier, homomorphisms
for trees in networks can be found in polynomial time. In fact in our case
all we have to do is evaluate our circuit over the infinite field of integers,
instead of the group algebra GF (2l)[Zk

2], thereby avoiding all the expensive
arithmetic. Evaluation is linear in the size of the circuit and is only O(km).
We can store and use results of these inexpensive tests, and avoid the more
expensive isomorphism tests for any part of network and common subtrees

434 A.M. Kibriya and J. Ramon

Algorithm 1. Count frequency of tree T in a network G

1: let Ci,j be an array containing the result of mapping each vi ∈ VT to each vj ∈ VG

2:
3: function occur(T,G, r, j):
4: if Cr,j is filled then
5: return Cr,j

6: else if λT (vr) �= λG(vj) then
7: let Cr,j := 0.
8: else
9: let Cr,j := ar,j .xj {where xj is a randomly chosen k-bit vector and ar,j a random

scalar}
10: if |V (T)| > 1 then
11: let ST ′ := {subtrees after removing vr from T}
12: Cr,j := Cr,j .

∏
T ′∈ST ′

(∑
j′:(vj ,vj′)∈EG

occur(T ′, G, r′, j′)
)
.

13: end if
14: end if
15: return Cr,j

16:
17: function countFreq(T,G):
18: let: vr ∈ VT be the root of T
19: freq := 0
20: for j = 1 to |VG| do
21: if occur(T,G, r, j) then
22: freq = freq + 1
23: end if
24: end for
25: return freq

that are not homomorphic. In case of labeled networks especially, this can
offer considerable speedup.

6 Experimental Evaluation

6.1 Experimental Setup

In our experimental evaluation, we are interested in the following experimental
questions:

Q1 What size of patterns and networks can our algorithm handle within reason-
able time?

Q2 How does our pattern matching strategy compare to state of the art strate-
gies, in particular with VF2[8]?

Q3 Does our implementation scale as well as Koutis-William’s theoretical algo-
rithm?

Q4 What is the influence of pattern mining parameters and optimizations?

Nearly Exact Mining of Frequent Trees in Large Networks 435

Algorithm 2. Find all patterns of size upto k

1: function findPatterns(G,k, t,Σ):
2: T := ∅ {set of all frequent trees}
3: S1...k := ∅ {frequent trees of size 1 . . . k}
4: C1...k := ∅ {candidate trees of size 1 . . . k}
5: for i = 1 to k do
6: if i = 1 then
7: C1 := {single vertex graphs labeled with a label in Σ}
8: else
9: Ci := generateCandidates(Si−1, Σ)
10: end if
11: Si := {cj : cj ∈ Ci∧ countFreq(cj , G) ≥ t}
12: T := T ∪ Sl

13: end for
14: return T

To perform our experiments, we implemented a system which we will call Mint

(MIning Networks for Trees), containing a breadth-first pattern mining algo-
rithm using the candidate generation method outlined in Section 5.1. We imple-
mented the frequency counting based Koutis&William’s algorithm as described
in Section 5.2, and a baseline Mint-VF2 using frequency counting based on
the VF2 algorithm[8]. We consider several versions of our new algorithm: First,
Mint-Std implements a vanilla version of Koutis&William’s algorithm. Second,
Mint-Homo implements Koutis&William’s with homomorphism checking op-
timization, and third, Mint-Batch which includes homomorphism checking as
well as sharing common subtrees among the candidates. We call the last one
Mint-Batch, as we share subtrees only among batchsize number candidates in
each pass; otherwise the memory requirements get intractably large due to the
exponential number of frequent patterns.

In order to be able to compare the randomized algorithm to the determinis-
tic VF2, the subgraph isomorphism tests were repeated a sufficient number of
times to achieve a very high probability of success (1 − 10−6). The result was
that in all cases except one, the randomized algorithm found the same set of
frequent patterns as the deterministic one (the only exception was Mint-Std

which classified one out of 124, 687 frequent patterns of size 7 as infrequent for
the 102 network in Table 2).

6.2 Data Sets

We present results on both synthetic as well as real-world data.
For synthetic data we generated power-law graphs with degree distribution

P (d) ∝ d−4. Such graphs show significant clustering, as is often seen in real-
world data. We generated networks of size n = {102, 103, 104, 105, 106, 107}, and
then randomly assigned 1 of 4 labels to each of the vertices.

436 A.M. Kibriya and J. Ramon

Table 1. Real datasets’ summary

Dataset # # # vertex # edge Avg.
vertices edges labels labels degree

Facebook-uniform 984,830 185,508 17 1 0.38

Facebook-mhrw 957,359 1,792,188 16 1 3.74

Dblp-9202 129,073 277,081 1 11 4.29

Dblp-0305 109,044 233,961 1 3 4.29

Dblp-0507 135,116 290,363 1 3 4.28

IMDB 30,835,467 53,686,381 144 1 1.74

For real-world data, we used the DBLP citation network2, the Facebook social
network3, and the IMDB movie database4. The DBLP data is a snapshot of
their citation network from 1992-2007. It is the same data as was used in [1].
The Facebook data is the Facebook social network obtained through random
sampling (one through uniform sampling, and the other through independent
Metropolis-Hastings random walks [13]). For IMDB, we extracted the movie-
actor network from the raw database. Our extracted network consists of movie,
year, role and actor nodes. Movie and role nodes were labeled by movie and role
type, whereas year nodes were labeled by the year the movie was released in.
Actor nodes are left with a default label. Also, Table 1 gives basic statistics of
our real-world networks.

6.3 Results

Complete mining of synthetic data. We ran the algorithms on synthetic datasets,
and mined for as large patterns as we could in 10 hours. Table 2 gives the number
of frequent patterns found in that time period for frequency threshold 0.1, as
a function of the network size and pattern size. It is noteworthy that as the
network size grows, due to the asymptotic properties of the powerlaw graphs
the number of frequent patterns of a given size converges. Figure 3 plots for
each network size the total time used against the pattern size, for each of the
considered algorithms. Note, that we could not run the Mint-Batch for larger
networks, due to its large memory requirements.

Sampled frequent patterns of synthetic data. The number of patterns grows ex-
ponentially. Nevertheless, large patterns may be of interest. A strategy which
gained popularity recently [14] is to not mine all frequent patterns but only gen-
erate a sample of them. Here, we adopt a simple sampling strategy of randomly
selecting only 100 frequent patterns at each level (denoted pattern size in our
breadth-first mining) of the mining process, to make extensions for the next
level. This experiment allows us to study more closely the delay (time used per
pattern found) of our miner.

2 http://www-kdd.isti.cnr.it/GERM/
3 http://odysseas.calit2.uci.edu/doku.php/public:online_social_networks
4 http://www.imdb.com/interfaces

http://www-kdd.isti.cnr.it/GERM/
http://odysseas.calit2.uci.edu/doku.php/public:online_social_networks
http://www.imdb.com/interfaces

Nearly Exact Mining of Frequent Trees in Large Networks 437

Table 2. Number of frequent patterns for synthetic data

network size / 102 103 104 105 106 107

pattern size

1 3 2 2 2 2 2
2 10 4 4 4 4 4
3 48 22 22 22 22 22
4 295 144 142 142 142 142
5 2077 1076 1066 1066 1066
6 15,698 8605 8534 8534
7 124,687 72084
8 1,024,557

Table 3. Number of frequent patterns for real data

network / FB-uniform FB-mhrw Dblp0305 Dblp0507 Dblp9202 IMDB
pattern size

1 2 1 1 1 1 6
2 1 2 3 3 8 10
3 2 5 12 13 10 38
4 3 11 51 57 10 149
5 4 30 189 277 6 692
6 5 88 648 1099 1
7 10 0
8 15

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8

lo
g(

ru
nt

im
e

in
 s

ec
s)

VF2
Std

Homo
Batch

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7

VF2
Std

Homo
Batch

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6

VF2
Std

Homo
Batch

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6

lo
g(

ru
nt

im
e

in
 s

ec
s)

VF2
Std

Homo
Batch

0.1

1

10

100

1000

10000

100000

1 2 3 4 5

VF2
Std

Homo

0.1

1

10

100

1000

10000

100000

1 2 3 4

VF2
Std

Homo

Fig. 3. log-runtime as a function of pattern size

Figure 4 plots for each network the delay (time used per pattern) as a function
of the size of the patterns, and also as a function of the size of the network for
patterns of size 4, for each of the considered algorithms.

Real-world datasets. Here we followed essentially the same procedure as for syn-
thetic data, the only differences being that a smaller frequency threshold of 0.05

438 A.M. Kibriya and J. Ramon

0.01

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lo
g(

de
la

y)

VF2
Std

Homo
Batch

k2*2k*log2(k)*C

0.01

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo
g(

de
la

y)

VF2
Std

Homo
Batch

k2*2k*log2(k)*C

0.001

0.01

0.1

1

10

100

1000

100 1000 10000 100000 1000000

lo
g(

de
la

y)

log(network-size)

VF2
Std

Homo
Batch

network-size*C

Fig. 4. log-delaytime (time per pattern) as a function of pattern size, as well as a
function of network size

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7

lo
g(

ru
nt

im
e

in
 s

ec
s)

VF2
Std

Homo
Batch

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6

VF2
Std

Homo
Batch

0.1

1

10

100

1000

10000

1 2 3 4 5 6

VF2
Std

Homo
Batch

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6

lo
g(

ru
nt

im
e

in
 s

ec
s)

VF2
Std

Homo
Batch

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7

VF2
Std

Homo
Batch

1

10

100

1000

10000

100000

1e+06

1 2 3 4

VF2
Std

Homo

Fig. 5. log-runtime as a function of pattern size

for FB-uniform and IMDB was used to allow for larger patterns to be mined,
and that a higher cut-off point for runtime was used (we allowed 16 hours for
DBLP, 24 hours for Facebook, and 48 hours of runtime for IMDB data). Table
3 lists the number of frequent patterns found for each network. Figure 5 plots
for each network the total time used against the pattern size, for each of the
considered algorithms.

Nearly Exact Mining of Frequent Trees in Large Networks 439

6.4 Discussion

Based on the results reported above, we can answer the experimental questions
as follows:

Q1 Using the new pattern matching method, it is computationally feasible to
match patterns up to size 15 (see figure 4). The main bottleneck when min-
ing all patterns is the number of frequent patterns found. As this number
increases exponentially, in many settings we don’t get further than size 5
patterns. One can observe however, that for real-world pattern mining tasks
one often has prior domain knowledge allowing for pruning the search space
towards the type of patterns one is interested in.

Q2 It is clear from all experiments that the new pattern method is orders of
magnitude better than the VF2 algorithm, especially for larger patterns.

Q3 From figure 4 one can see that the pattern matching algorithm scales at
least as well as the theoretical upper bound. In particular, in contrast to
VF2, our new method scales linearly in the network size and scales indeed
as O(k2 log2(k)2k) in the pattern size.

Q4 The homomorphism check prunes away a significant amount of subgraph
isomorphism tests for patterns which are clearly infrequent. This especially
holds for the real-world dataset.

7 Conclusion and Future Work

We present a novel algorithm for mining trees in single networks. It scales well
with respect to network size, and is only mildly exponential in pattern size, which
makes it tractable for moderately sized patterns. We show the effectiveness of
the method in practice, on real as well as synthetic data.

As for future work, we expect that several heuristic optimizations are possible
which can improve performance on real-world datasets. Furthermore, we would
also like to extend our method to graph classes other than trees.

Acknowledgements. This research is supported by ERCStarting Grant 240186
“MiGraNT: Mining Graphs and Networks, a Theory-based approach”. We thank
Anton Dries and Constantin Commendant for the valuable suggestions.

References

1. Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining Graph Evolution
Rules. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
PKDD 2009, Part I. LNCS, vol. 5781, pp. 115–130. Springer, Heidelberg (2009)

2. Bogdanov, P., Mongiov̀ı, M., Singh, A.K.: Mining heavy subgraphs in time-evolving
networks. In: Proceedings of the 2011 IEEE 11th International Conference on Data
Mining, ICDM 2011, pp. 81–90. IEEE Computer Society, Washington, DC (2011)

440 A.M. Kibriya and J. Ramon

3. Borgelt, C., Berthold, M.R.: Mining molecular fragments: Finding relevant sub-
structures of molecules. In: Proceedings of the 2002 IEEE International Conference
on Data Mining, ICDM 2002, pp. 51–58. IEEE Computer Society, Washington, DC
(2002)

4. Borgelt, C., Meinl, T., Berthold, M.: Moss: a program for molecular substructure
mining. In: Proceedings of the 1st International Workshop on Open Source Data
Mining: Frequent Pattern Mining Implementations, OSDM 2005, pp. 6–15. ACM,
New York (2005)

5. Bringmann, B., Nijssen, S.: What is frequent in a single graph? In: Frasconi, P.,
Kersting, K., Wrobel, S. (eds.) Proceedings of MLG-2007: 5th International Work-
shop on Mining and Learning with Graphs, pp. 1–4 (2007)

6. Calders, T., Ramon, J., Van Dyck, D.: All normalized anti-monotonic overlap graph
measures are bounded. Data Mining and Knowl. Disc. 23(3), 503–548 (2011)

7. Chi, Y., Xia, Y., Yang, Y., Muntz, R.: Mining closed and maximal frequent subtrees
from databases of labeled rooted trees. IEEE Trans. on Knowl. and Data Eng. 17,
190–202 (2005)

8. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: An improved algorithm for
matching large graphs. In: 3rd IAPR-TC15 Workshop on Graph-based Represen-
tations in Pattern Recognition, Cuen, pp. 149–159 (2001)

9. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism al-
gorithm for matching large graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26, 1367–1372 (2004)

10. Diestel, R.: Graph Theory, 4th edn., electronic edn. Springer (2010)
11. Dries, A., Nijssen, S.: Mining Patterns in Networks using Homo-

morphism. In: Proceedings of the Twelfth SIAM International Con-
ference on Data Mining, pp. 260–271. Omnipress (April 2012),
https://lirias.kuleuven.be/handle/123456789/350328

12. Gallagher, B., Tong, H., Eliassi-Rad, T., Faloutsos, C.: Using ghost edges for clas-
sification in sparsely labeled networks. In: Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2008,
pp. 256–264. ACM, New York (2008)

13. Gjoka, M., Kurant, M., Butts, C., Markopoulou, A.: Walking in Facebook: A Case
Study of Unbiased Sampling of OSNs. In: Proc. of IEEE INFOCOM 2010 (2010)

14. Hasan, M.A., Zaki, M.J.: Output space sampling for graph patterns. Proceedings
of the VLDB Endowment 2(1), 730–741 (2009)

15. Henderson, K., Gallagher, B., Li, L., Akoglu, L., Eliassi-Rad, T., Tong, H., Falout-
sos, C.: It’s who you know: graph mining using recursive structural features. In:
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2011, pp. 663–671. ACM, New York (2011)

16. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraphs in the pres-
ence of isomorphism. In: Proceedings of the 2003 Third IEEE International Con-
ference on Data Mining, ICDM 2003, pp. 549–556. IEEE Computer Society, Wash-
ington, DC (2003)

17. Huan, J., Wang, W., Prins, J., Yang, J.: Spin: mining maximal frequent subgraphs
from graph databases. In: Proceedings of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2004, pp. 581–586.
ACM, New York (2004)

18. Inokuchi, A., Washio, T., Motoda, H.: An Apriori-Based Algorithm for Mining Fre-
quent Substructures from Graph Data. In: Zighed, D.A., Komorowski, J., Żytkow,
J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg
(2000)

https://lirias.kuleuven.be/handle/123456789/350328

Nearly Exact Mining of Frequent Trees in Large Networks 441

19. Koutis, I.: Faster Algebraic Algorithms for Path and Packing Problems. In: Aceto,
L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg
(2008)

20. Koutis, I., Williams, R.: Limits and Applications of Group Algebras for Parameter-
ized Problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 653–664. Springer,
Heidelberg (2009)

21. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proceedings of the
2001 IEEE International Conference on Data Mining, ICDM 2001, pp. 313–320.
IEEE Computer Society, Washington, DC (2001)

22. McKay, B.D.: Practical graph isomorphism. Congr. Numerantium 10, 45–87 (1981)
23. Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming.

LNCS (LNAI), vol. 1228. Springer, Heidelberg (1997)
24. Nijssen, S., Kok, J.: There is no optimal, theta-subsumption based refinement

operator, personal communication
25. Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining can make a dif-

ference. In: Proceedings of the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2004, pp. 647–652. ACM, New York
(2004)

26. Nijssen, S., Kok, J.N.: The gaston tool for frequent subgraph mining. Electronic
Notes in Theoretical Computer Science 127(1), 77–87 (2005); Proceedings of the
International Workshop on Graph-Based Tools (GraBaTs 2004)

27. Thomas, L.T., Valluri, S.R., Karlapalem, K.: Margin: Maximal frequent subgraph
mining. ACM Trans. Knowl. Discov. Data 4, 10:1–10:42 (2010)

28. Ullmann, J.: An algorithm for subgraph isomorphism. JACM 23(1), 31–42 (1976)
29. Wörlein, M., Meinl, T., Fischer, I., Philippsen, M.: A Quantitative Comparison of

the Subgraph Miners MoFa, gSpan, FFSM, and Gaston. In: Jorge, A.M., Torgo, L.,
Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721,
pp. 392–403. Springer, Heidelberg (2005)

30. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: Proceedings
of the 2002 IEEE International Conference on Data Mining, ICDM 2002, pp. 721–
724. IEEE Computer Society, Washington, DC (2002)

31. Yan, X., Han, J.: Closegraph: mining closed frequent graph patterns. In: Proceed-
ings of the 9th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2003, pp. 286–295. ACM, New York (2003)

Reachability Analysis and Modeling

of Dynamic Event Networks

Kathy Macropol and Ambuj Singh

Department of Computer Science
University of California

Santa Barbara, CA 93106 USA
{kpm,ambuj}@cs.ucsb.edu

Abstract. A wealth of graph data, from email and telephone graphs to
Twitter networks, falls into the category of dynamic “event” networks.
Edges in these networks represent brief events, and their analysis leads
to multiple interesting and important topics, such as the prediction of
road traffic or modeling of communication flow. In this paper, we analyze
a novel new dynamic event graph property, the “Dynamic Reachability
Set” (DRS), which characterizes reachability within graphs across time.
We discover that DRS histograms of multiple real world dynamic event
networks follow novel distribution patterns. From these patterns, we in-
troduce a new generative dynamic graph model, DRS-Gen. DRS-Gen
captures the dynamic graph properties of connectivity and reachabil-
ity, as well as generates time values for its edges. To the best of our
knowledge, DRS-Gen is the first such model which produces exact time
values on edges, allowing us to understand simultaneity across multiple
information flows.

Keywords: Graph Generator, Dynamic Networks, Reachability.

1 Introduction

Vast amounts of graph datasets are generated each day by applications such as
social networks, communication networks (like email graphs or Twitter), bioin-
formatics, and the Internet. The analysis and mining of these networks has been
an active and important area of research, leading to both newly discovered fun-
damental network properties, as well as interesting and useful new knowledge
and applications, from graph clustering for gene function discovery to network
modeling for link or structure prediction [24,25,26].

Previous work on the analysis of graphs and their properties have analyzed
degree distribution, number of triangles, relationships between the eigenvalues
of the graph, etc [14,33,31]. These discovered properties have led to novel gen-
erative graph models, capable of producing new graph structures which capture
and mimic such properties. Generative graph models have many interesting and
important uses, including generation of synthetic datasets for analysis, graph
anonymization, graph compression, prediction of graph and link evolution. While
useful for many purposes, these graph models still mimic only the static network

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 442–457, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Reachability Analysis and Modeling of Dynamic Event Networks 443

graph structure. The addition of dynamic components to these static networks
has been an active topic of research in the last few years, with much research con-
centrated on dynamic “state” networks (where links have a tendency to endure)
such as in social or collaboration networks.

In contrast to dynamic state networks, links represent brief events in dynamic
“event” networks. Examples of such graphs include communication networks
like email or telephone call graphs. Dynamic event networks form a large and
important category for graph datasets. However, their structure and dynamics
do not fit well with many of the current dynamic network models. In dynamic
event networks, timestamps associated with each link may convey the dynamics,
allowing for both evenly spaced flows as well as arbitrarily long pauses or bursts
of activity. This timed dynamic behavior is an integral part of a time-evolving
network, and can be difficult to capture in models.

In this paper, we focus on dynamic event networks, looking especially at a new
property, the “Dynamic Reachability Set” (DRS), which characterizes reachabil-
ity within graphs across time. Reachability in general, along with concepts such
as graph density or planarity, is a fundamental network property. In an evolv-
ing graph, reachability can convey latency of information flow between pairs
of nodes in dynamically changing networks (e.g. mobile ad hoc or sensor net-
works); or latency along logistic/supply chain networks under dynamics; or even
gossiping latency in dynamic social networks. Specifically, the DRS of a starting
node consists of the set of all nodes reachable from the starting node, across a
fixed time interval Δ. In this paper, we analyze the DRS properties, at a series
of time intervals, for nodes within multiple real world dynamic event networks.
From this analysis, we discover that DRS sizes follow a DGX distribution [6] for
low values of Δ, but that this relation breaks as Δ increases. Additionally, we
find that the rate in which the relation changes is specific to each network, but
generally follow a log-normal-like curve.

The dynamic behaviors discovered from our analysis open the door for the
learning and creation of new, novel generative modeling techniques which can
now link time together with changes in network structure. Using this discovery,
we focus on the generation of network dynamics, and propose a new generative
modeling algorithm, DRS-Gen, able to produce dynamic graph structures that
mimic the DRS properties of real world dynamic event networks across time. To
the best of our knowledge, DRS-Gen is the first generative graph model able to
assign and fit timestamps to edges, such that the rates of flow and reachability
across a dynamic network are preserved. We introduce methods to learn the
model parameters, and from there implement DRS-Gen, fitting this model to
multiple real world dynamic event networks. From our results, we find that our
generated graphs fit well and capture the flow and reachability distributions of
real world graphs, across time, making it both a novel and potentially useful tool
for generative graph modeling and analysis.

Overall, our main contributions come in three parts. First, we introduce and
analyze a novel, relevant, and interesting new dynamic event graph property: the
Dynamic Reachability Set. Second, we propose a new generative dynamic event

444 K. Macropol and A. Singh

Fig. 1. An example dynamic event graph. The numbers on edges represent timestamps
for the links. A time threshold of Δ = [1, 2) would give node A a DRS of {A,B}; for
Δ = [1, 3), DRS = {A,B,C,D}; for Δ = [1, 4), DRS = {A,B,C,D,F}.

graph model, DRS-Gen, that allows for the generation of time-aware edges and
flows. And third, we demonstrate not only how DRS-Gen may produce graphs,
but also how it can be fit, naturally and easily, to real-world communication
graphs, such that it may capture the reachability and dynamics of these graphs.

The rest of this paper is organized as follows. Section 2 introduces the con-
cept of Dynamic Reachability Sets, as well as contains the analysis and results
obtained from studying these sets on real world graphs. Section 3 introduces the
DRS-Gen model, outlining the algorithm and theory behind it, then presenting
and analyzing the results of our model when fit to multiple real world dynamic
networks. Section 4 consists of a short survey of related work and previously
introduced techniques on graph analysis and generation. Finally, in Section 5,
we summarize our work, overviewing our contributions and conclusions.

2 Dynamic Reachability Sets

For this work, we focus our attention on the property of reachability within
dynamic event networks. Specifically, let G = {V,E, T } be a directed, dynamic
graph where V are the set of vertices and E = [e1, e2, · · · , em] are the list
of edges, where edge ei = (vj , vk) represents a link between nodes vj and vk.
Additionally, the edges inE are ordered by the time function T , where T (ei) gives
the timestamp for edge ei. We can then define the DRS starting from node vs
and timestamp tstart, recursively over time interval Δ, as shown in Algorithm 1.

Algorithm 1. Calculate the DRS

Require: DRS := {vs}, tstart, tend := tstart +Δ
1: procedure CalcDRS(DRS, tstart, tend)
2: for all vi where (ek = (vs, vi), vs ∈ DRS, ek ∈ E, tstart ≤ T (ek) < tend)
3: DRS := DRS ∪ {vi}
4: CalcDRS(DRS, T (ek) + 1, tend)

5: end procedure

Figure 1 illustrates an example. In this graph, directed edges are associated
with timestamps, and node A sends a message at timestamp 1 to node B. Node

Reachability Analysis and Modeling of Dynamic Event Networks 445

Fig. 2. Histograms of DRS size for the Facebook wall posts dataset, at increasing
values for Δ. The decreasing slope of the approximately fit power law curve shows the
movement of “mass” to the right as Δ increases.

Fig. 3. Histogram of DRS
size for the Enron Email
dataset at Δ = 5 minutes,
along with the a generated
DGX distribution (σ =
−7.67, μ = 3.03)

Fig. 4. Histogram of DRS
size for the Twitter dataset
at Δ = 5 hours, along with
the a generated DGX dis-
tribution (σ = 1.10, μ =
0.990)

Fig. 5. Histogram of DRS
size for the Facebook Wall
post dataset at Δ = 30
minutes, along with the a
generated DGX distribu-
tion (σ = 0.013, μ = 1.88)

B sends two messages, one to node C and one to node D at timestamp 2, etc.
To find the DRS of node A, given the time interval Δ, we collect the set of all
nodes that may be reached by recursively traveling edges within the time frame,
starting from node A, without going backwards in time. This means that an
interval starting at 1, with a Δ of 2, will include nodes A,B,C,D,and F , but
not node E because to reach node C from node A takes until timestamp 2, and
the edge from C to E occurred previously at timestamp 1.

The reachability set of a node, ns, represents the nodes it is possible for ns

to reach across a specific time interval. Furthermore, the sequence of nodes and
links followed to obtain the DRS can be thought of as a small “flow” within the
graph. Overall, the set of DRS values for all nodes in a graph provides a window
into the graph’s dynamic connectivity and flow between all of its nodes. As the
DRS time interval grows, we would expect the average DRS sizes to increase as
well, since the number of links contained within the interval, and therefore the
chances of reaching additional nodes, grows as well.

We collected and analyzed the actual DRS sets for multiple real world net-
works, and found that this intuition does indeed hold. Figure 2 shows the log-log
plot of DRS size versus count, for a network consisting of Facebook wall posts
and replies [34] containing 47K nodes (users) and 877K directed edges (wall posts
from one user to the other). For each time interval, a series of non-overlapping
time windows (for different values of t1, the initial timestamp mentioned in
Equation (1)) was used to discover DRS counts for each node in the graph.
From the plots, we can see that as Δ increases from 10 minutes to 6 hours, more

446 K. Macropol and A. Singh

Fig. 6. Comparison of slope (for fit log-log curve) against Δ (logarithmic). It can be
seen that various graphs each have their own rate of change. However, each follows a
reversed log-normal form.

nodes gather on the right of the plot. Similar curves were found for other dy-
namic networks, as well (Figures 9 and 11 display additional histogram results
for the Enron Email dataset [15] consisting of 87K unique email users and 360K
directed email edges, as well as a crawled Twitter dataset [26] containing 8K
Twitter users and 663K directed “reply to” and “retweet” edges). Again, this
shift across time is largely reflected in the plots, and is echoed in the decreasing
slope of the power-law curve loosely fit to the data. As the time interval increases,
more nodes are able to reach larger amounts of the graph. Additionally, we can
see that the shape of the curve undergoes an extreme change across time, as
well. Additionally, it is apparent that the rate of change in the slope and curves
varies, depending upon the graph. Figure 6 shows a plot of the slopes for the
various networks, as they change across time, confirming that each network has
its own properties related to reachability and flow, producing different network
behavior.

Overall, the DRS histograms have points that cluster tightly along a curve
for smaller values of Δ, but eventually “pile” to the right as the maximum, or
near maximum, number of nodes they may add is reached.

It has previously been discovered that Discrete Gaussian Exponential (DGX)
distributions match well to many real world datasets [6], and fitting a DGX
distribution to the curves obtained at small Δ values for the DRS, it can be seen
from Figures 3, 4, and 5, that this distribution matches the DRS histogram at
low Δ threshold values, as well.

An interesting insight can be discovered by plotting the negative of the log-log
slopes from the power law distributions for each DRS histogram, such as those
in Figure 2. The resulting curve for the Enron Email network can be seen in
Figure 7. The negative of this log-log slope fits well to a log-normal curve, a
property echoed in each of the other dynamic event networks analyzed, as well.

Reachability Analysis and Modeling of Dynamic Event Networks 447

Fig. 7. Fitting a log-normal curve for the value of (-b), the negative exponent in the
power law curve

3 The DRS-Gen Model

As a model, DRS-Gen focuses upon the generation and modeling of network
dynamics and flow. A wealth of work in previous literature has focused upon
the creation of static graph generators [4,7,10,17,18,20,28], and so, rather than
repeat their work, DRS-Gen instead assumes that a base (static) graph structure
is available. This structure could be the original network itself, without the
dynamics and multi-edges, or it could be generated using any one of the many
existing static network graph generators. For the experiments in this work, we
use the original networks as a base, and generate dynamic behavior upon it.

The basis behind DRS-Gen is the shift in “weight” that occurs as the time
interval Δ is increased. This shift can be seen for example in the DRS histogram
plots of Figure 2, where a much larger number of points have collected to the
right for the last graph in Figure 2, as compared to the preceding graph. This
shift represents the fact that, as the time interval increases, more nodes are able
to reach a larger section of the graph, giving them an increased DRS size. This
property allows us to relate graph structure together with time. For any given
time interval Δ, the associated DRS histogram essentially counts multiple small
flows, separated by either time or graph structure. As the time interval increases,
these smaller flows may join together to become a single larger flow, contributing
toward the shift in mass, as two smaller flows are replaced by a new larger flow
in the histogram.

To model this shift, DRS-Gen takes 5 parameters as input: a min and max time
resolution Δmin and Δmax, a starting number of flows c, and two parameters, μ
and σ which model the change in slope of a log-log power-law distribution fitted
to the normalized DRS histogram, across time. It then proceeds in four basic
steps.

1. First, we generate a series of c number of integers, representing the DRS
sizes for a set of initial “base flows.”

2. Next, we transform this series of integers into a series of small subgraph
structures representing the flows.

448 K. Macropol and A. Singh

3. We then search through the subgraphs, finding and combining subgraphs
which overlap by choosing a time, δt, that represents the time differences
between the occurrences of the flows.

4. Finally, we output the final generated graph. Initial flows are given ran-
dom timestamps, and the δt values are used to calculate the timestamps for
overlapping flows.

We describe these four steps in more detail in the following subsections.

3.1 Generating Flow Sizes

Given our minimum time resolution Δmin, we want to generate a series of c
integers. These integers represent the DRS size of our c initial “base flows”.
The series of DRS sizes should fit the appropriate normalized DRS histogram
distribution, which we model using a power law curve, following the form:

pr[DRS] = a(DRS)−b (1)

Where DRS stands for a particular DRS size. In this case, the exponent b
represents the slope of the line arising within the log-log plot, as can be seen by
taking the logarithm of both sides of Equation (1).

ln(pr[DRS]) = ln(a)− b ln(DRS) (2)

As the time interval (Δ) is increased, the amount of mass in the curve shifts to
the right, resulting in a variation for b across time. Figures 6 and 8 showed that b
varies acrossΔ and fits well to a log-normal distribution, which is represented by:

b =
1

Δσ
√
2π

e−
(lnΔ−μ)2

2σs (3)

where μ and σ are the location and scale parameters of the fit log-normal curve.
Equation (1), together with Equation (3), can be used to relate the probability

of seeing a DRS / flow size, against a particular time interval.
Since we wish to obtain a series of DRS sizes, fSizes, at base time resolution

Δmin, we substitute Δmin for Δ into these equations, to obtain the probability
distribution we wish to achieve. We find and sample from the inverse of the
CDF of this probability distribution to obtain a similar distribution. The CDF
becomes:

Fx =

∫ x

2

ax−b

=
a

1− b

(
x1−b − 21−b

)
(4)

We invert it and obtain:

Fy =

(
(1− b)x

a
+ 21−b

) 1
1−b

(5)

Reachability Analysis and Modeling of Dynamic Event Networks 449

Fig. 8. Example of flows in F combining. Here, Flow 3 (of size 3 nodes) overlaps with
Flow 2 (of size 2 nodes), and will therefore be combined, using a time difference δ
between them, into a flow with 4 unique nodes.

Additionally, by assuming an approximate bound on the maximum DRS size,
taken from the x intercept of the log-log plot shown in Equation (2) (at b

√
a), we

can obtain a relationship for a using the pdf from Equation (1).

1 =

∫ b
√
a

2

ax−b

=
b
√
a− 21−ba

1− b
(6)

We can calculate the value for a from Equation (6) using Newton’s method.
After sampling from Equation (5), we then obtain our series of DRS flow sizes,
fSizes.

3.2 Obtaining Subgraph Flow Structures

In order to obtain the subgraph flow structures, the series of integers found
in the previous section must be transformed into a series of small subgraph
structures, F = [F1, F2, · · · , Fc] of corresponding size. Drawn from the given base
network, each subgraph will represent a single flow. There are multiple methods
which can be used to create these small, static initial subgraph structures. We
choose to use a simple variation (simply enforcing connected subgraphs) on the
“Winners Don’t Take All” method [29], which grows subgraphs by repeatedly
choosing connected nodes either through random chance or through preferential
attachment. The method used (random or preferential attachment) is randomly
chosen at each step, as well.

450 K. Macropol and A. Singh

3.3 Combining Overlapping Flows

With the series of base graph flows discovered, the next step is to combine
overlapping flows. To do this, we assume a tentative ordering in time on F , and
systematically search through the flows in F . For each flow, Fi, in F , we find all
preceding flows, starting from F1 and working our way up, which also overlap in
graph structure. For every discovered overlapping pair of flows, we choose a time
difference δ, using a probability function, that represents the amount of time that
passes between their occurrence. These two flows are then combined (the time
difference δ between them is noted) and the process continues. Figure 8 contains
an example of this process, where Flows 2 and 3 overlap. A time difference δ
is chosen between them, and they are combined. Pseudocode for this process is
contained in Algorithm 2.

Given that we have found two overlapping simple flows of sizes S1 and S2,
they will combine at some point in time, producing a single flow (of size S3,
where max(S1, S2) ≤ S3 ≤ S1 + S2 − 1). The time difference between them is
represented by δ. The two possibilities (whether the flows are combined or not)
can be represented as two separate distributions: R, a distribution representing
the combined state and having a probability of 1 for flow size S3 and 0 for
every other flow size, and U , a distribution representing the uncombined state
and having a probability U1 for flow size S1, U2 for S2, and U3 for S3 (with
U1, U2, and U3 being discrete values of either 0, 0.5, or 1). As an example, in
Figure 8, Flow 2 has a size of S1 = 2 and Flow 3 has a size of S2 = 3. When they
combine, they produce a flow with size S3 = 4. The probability distribution for
the combined state, R, has probability 1 for size 4, and a probability of 0 for
every other size. The distribution for the uncombined state, U , has probabilities
0.5 for size 2, 0.5 for size 3, 0 for size 4, as well as 0 for every other size.

The distance between these two possible distributions, and the modeled “true”
distribution, T , of Equation (1) may be calculated. The likelihood of the flows
combining may be found by comparing the distance between R and T with
the distance between U and T . For distance comparison, we choose to use the
Kullback-Leibler divergence (KL divergence).

DKL(P ||Q) =
∑
i∈S

P (i) ln
P (i)

Q(i)

=
∑
i∈S

P (i)(lnP (i)− lnQ(i)) (7)

From Equation (7), it can be seen that the KL divergence calculates a weighted
distance between corresponding points on the log-log curve. This means that a
distribution with a closer distance is more likely.

The probability values for the modeled distribution T can be found by using
Equation (1), and are normalized.

Ti =
P (Si)∑
j∈S P (Sj)

(8)

Reachability Analysis and Modeling of Dynamic Event Networks 451

Algorithm 2. DRS-Gen

1: procedure Generate(F)
2: Initialize fSizes[]
3: for i← 1, c do
4: r ← random number from Eq. 6
5: fSizes[i]← r

6: Initilize F[]
7: for i← 1, c do
8: Initialize K[]
9: for j ← 1, fSizes[i] do
10: K[j]← new node using
11: “Winners Don′t Take All′′

12: F[i]← K

13: Initilize Deltas[][]
14: for i← 1, c do
15: for j ← i− 1, 1 do
16: if F[i] ∩ F[j] > 0 then
17: if Deltas[i][j] isn′t set then
18: δ ← random number from Eq. 13
19: Deltas[i][j] = δ
20: for k← 1, c do
21: if Deltas[j][k] exists then
22: Deltas[i][k] = δ +Deltas[j][k]

23: end procedure

Substituting using Equation (1), we obtain

Ti =
aS−b

i∑
j∈S aS−b

j

=
S−b
i∑

j∈S S−b
j

(9)

(
where b =

1

Δσ
√
2π

e−
(lnΔ−μ)2

2σs

)
When b is found using the parameters μ and σ, we obtain an equation relating
the probability of certain sized flow occurring, to the time interval Δ.

To find the likelihood of combining, we calculate the relative closeness:

Pr[combining] = 1− DKL(R||T)
DKL(R||T) +DKL(U ||T) (10)

Substituting using Equation (7), we obtain Pr[combining] as:

1−
∑

i∈S Ri(lnRi − lnTi)∑
i∈S Ri(lnRi − lnTi) +

∑
i∈S Ui(lnUi − lnTi)

(11)

452 K. Macropol and A. Singh

Given that R1 = 1, all other Ri = 0, and at least one of S1, S2, or S3 = 0, we
may simplify and combine with Equation (1), obtaining Pr[combining] as:

1− b lnS1 + ln(S−b
1 + S−b

2 + S−b
3)

b ln(S1+U1
1 SU2

2 SU3
3) + 2 ln(S−b

1 + S−b
2 + S−b

3)
(12)

where b is the log-normal curve shown in Equation (3), and all other values are
constant. This probability varies across time, as Δ varies between Δmin and
Δmax. A δ value, weighted by this distribution, can be picked using a series of
approximations. The overall function and its integral can be approximated using
Taylor series. Additionally, the area under the curve is calculated using the given
value for Δmax. Next, a random fraction of this AUC is chosen, and finally the
appropriate δ for this AUC can be solved for numerically using Newton’s method.

From this process, values for δ between overlapping flows are generated, with
δ values fitting the dynamic distribution behavior discovered in Section 2.

3.4 Producing the Generated Graph

With the flow and timing information generated, these structures can be output
to produce the final graph. Starting with the first flow F1, a timestamp of 0 is
assigned and output. Next, all other flows combined with F1 are output, using
their assigned time differences to produce their timestamps. If any flows remain,
they are assigned a random timestamp, output, and their connected flows output
as before. This process repeats until all flows have been output.

3.5 Parameter Fitting

From the steps in the overall algorithm, it is a simple extension to fit this gen-
erator to a known graph. First, a series of DRS histograms, at varying Δ, are
calculated. Next, the c values for each histogram are normalized, producing a
probability distribution. A power curve is fit to each distribution and the values
for the power, b, extracted. From this series of b values, the appropriate values
of μ and σ can be estimated by fitting a log-normal curve, and the generator
may now be fit to the graph, using these parameter values.

Overall, this process allows a dynamic event graph to be generated, with
dynamic reachability behavior fit to parameters learned from real world data.

3.6 Implementation and Analysis

Using this method, we implemented DRS-Gen and used the the captured DRS
histograms for the Enron Email, Facebook wall post, and Twitter networks men-
tioned earlier and shown in Figures 2 and 3, to train (using the parameter fitting
methods described in Section 3.5) a generative model capable of producing flows
which imitate the properties of the original, real world graphs.

Figures 9, 10, and 11 show the resulting DRS histograms obtained through
generation by the model, as compared to the original distribution. As can be seen,

Reachability Analysis and Modeling of Dynamic Event Networks 453

Fig. 9. Comparison of the DRS size histograms for both a graph generated using DRS-
Gen, as well as the original Enron Email dataset, at increasing values for Δ. Both the
tight fit of points, as well as the similarity in shape and dynamics emphasize the
strength and quality of DRS-Gen’s dynamic modeling results.

Fig. 10. Comparison of the DRS size histograms for both a graph generated using
DRS-Gen, as well as the original Facebook dataset, at increasing values for Δ. Again,
the strong similarity between both the original histogram and the generated, across
time, helps to confirm the effectiveness of DRS-Gen’s model.

Fig. 11. Comparison of the DRS size histograms for both a graph generated using
DRS-Gen, as well as the original Twitter dataset, at increasing values for Δ

both the distribution shapes, slopes, as well as the rates of change across time
match extremely well to the original dynamic network distributions. Though
each of the three original networks evolve at different rates, the graphs generated
from our model manage to capture this evolution and fit the generated flows
together in time such that the flow distribution and reachability match closely
to the original curve.

A series of Quantile-Quantile plots are shown in Figure 12, comparing the
original and generated distributions for the Enron Email, Facebook wall post,
and Twitter graphs (at Δ =5 minutes, 10 minutes, and 1 hour respectively). The
close fit to a straight y = x line further emphasizes the closeness of the generated
vs. original distributions, and helps to confirm that our generative model is truly
capturing the distribution and reachability of the original network.

454 K. Macropol and A. Singh

Fig. 12. Quantile-Quantile plots of the Enron Email, Facebook wall post, and Twitter
graphs. The close fit to the y=x line emphasizes the closeness of the generated vs.
original distributions.

These results help to confirm the effectiveness of our model, emphasizing its
strength and ability to generating dynamic event network data, while capturing
the dynamic reachability and flow properties of the original graph.

4 Related Work

Decades of research on graph theory has concentrated on studying fundamental
properties of graphs and been successfully applied to the analysis and modeling of
graph data and real world networks; however, researchers have mainly looked at
static graph properties, leading to generative models that mimic static network
structure [3,11,20]. In contrast, temporal graphs have been an active topic of
research in only the last few years and the research has largely concentrated on
dynamic “state” networks and ignored dynamic “event” networks [2,26,32].

A major focus of current research is on generative models that allow for the
prediction of the slow evolution (long-term dynamics) of graph structure [12,16].
Previously introduced models for dynamic graphs include the Markovian Dy-
namic Graph models, which are random models where the graph structure at
every time step t is dependent only on the structure at time t − 1, and cre-
ated according to random transition probabilities. In Edge-Markovian Dynamic
Graphs [9], each edge at time step t is dependent only on its presence (or not) at
t−1. There are fixed global birth and death rate functions, giving the probability
of a new edge arising and an old edge dying. A variation on this model, where
nodes are initially assigned a fixed position, and node distances affect birth and
death rate values, was introduced in [13].

Despite their elegant formulation and ease of analysis, the Markovian Dynamic
Graph models fail to capture many real-world network properties. For example,
two general dynamic graph properties that have been observed are densification
power laws, relating the number of nodes and edges of a graph over time to a
power law distribution, as well as shrinking diameters across time [21]. To cap-
ture these discovered properties, new generative graph models were introduced.

Reachability Analysis and Modeling of Dynamic Event Networks 455

On example is the Forest Fire model, where new links are formed by randomly
choosing “ambassador” nodes and recursively following their links, linking to dis-
covered nodes with a certain probability [21]. Other dynamic network properties
recently discovered include the bursty-weight law, where edge weight additions
were found to be bursty over time [27,19], and the relation between age of a node
and its likelihood to attract new edges [20]. From these observations, new gen-
erative models such as the Butterfly graph model and Triangle-closing models
were introduced [19,27]. Another recent graph generative model which accounts
for numerous static as well as dynamic graph properties is RTG [1], based on the
concept of random typing. In RTG, a set of keys have a probability distribution
representing their likelihood to be typed. Every word randomly typed is a node
label, and the stream of nodes typed are divided into source and destination
pairs to create edges.

Dynamic processes on complex networks such as information diffusion and
epidemiological processes have also been studied [5]. Epidemic models, such as
the Susceptible-Infected-Susceptible (SIS) model [3], have been applied to the
modeling of link cascades within blogs in [22,23]. Interestingly, even though the
process is time-varying, the network in these models are usually considered static
or changing very slowly. In contrast, recent work by Prakash et. al [30] analyzes
virus propagation graphs by formulating them as an approximate nonlinear dy-
namical system. In [8], the authors utilize the spectral radius of the adjacency
matrix for predicting the virulence of epidemics on static graphs.

Additionally, most current dynamic network generative models use the con-
cept of abstract “timesteps” for their dynamics, which do not fit well with real
world event graphs. Typically, for many models, each timestep label corresponds
to a single event rather than a precise measure of time. This sequence of labels
conveys the network dynamics. However, many real world networks instead have
actual time values associated with each link, allowing for both evenly spaced
flows as well as arbitrarily long pauses or bursts of activity. This timed behavior
is an integral part of a dynamic network, and its oversight leaves a large area
of important graph data and knowledge largely unexplored. The lack of time
values upon edges also renders it difficult to calculate and compare DRS values
from graphs generated by these algorithms to the original graphs, as Δ intervals
cannot be easily mapped onto timesteps.

5 Summary

In this paper, we have introduced and analyzed a novel new property of dynamic
event networks, their Dynamic Reachability Sets (DRS), across time. The DRS
characterizes reachability within a graph across time, and connects to many
important graph relationships such as network flow and latency, in addition
to reachability. From this analysis, we have discovered several important new
properties of dynamic networks, including a novel distribution pattern for the
DRS histograms, related to a DGX distribution at small time intervals.

Additionally, we have made use of this newly discovered pattern by introduc-
ing a new generative graph model, DRS-Gen, based upon the DRS distribution

456 K. Macropol and A. Singh

dynamics.DRS-Gen is capable of generating event network dynamics upon graphs,
and particularly able to fit naturally to real world event networks, learning pa-
rameters that can capture and model dynamic flow and reachability across time.
Dynamic graph models such as DRS-Gen can have many possible practical appli-
cations, including prediction of future graph evolution or behavior (such as in link
or email thread prediction), and graph compression.

Implementing DRS-Gen and testing it on multiple networks, we find that the
generated graphs closely matched the distributions and dynamics of the original
networks they modeled, helping to emphasize DRS-Gen’s use and effectiveness
as a new dynamic event network graph generator, and a novel and potentially
useful new tool for generative graph modeling and analysis.

Acknowledgements. Research was sponsored by the Army Research Labora-
tory and was accomplished under Cooperative Agreement Number W911NF-09-
2-0053. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation here on.

Work was also partially supported by the National Science Foundation under
grant IIS-0917149.

References

1. Akoglu, L., Faloutsos, C.: RTG: A Recursive Realistic Graph Generator Using Ran-
dom Typing. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.)
ECML PKDD 2009, Part I. LNCS, vol. 5781, pp. 13–28. Springer, Heidelberg (2009)

2. Akoglu, L., Mcglohon, M., Faloutsos, C.: Rtm: Laws and a recursive generator for
weighted time-evolving graphs. In: ICDM 2008 (2008)

3. Bailey, N.: The mathematical theory of infectious disease and its applications.
Hafner Press (1975)

4. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5439), 509–512 (1999)

5. Barrat, A., Barthlemy, M., Vespignani, A.: Dynamical Processes on Complex Net-
works, New York, NY, USA (2008)

6. Bi, Z., Faloutsos, C., Korn, F.: The ”dgx” distribution for mining massive, skewed
data. In: KDD, pp. 17–26 (2001)

7. Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms.
ACM Comput. Surv. 38 (June 2006)

8. Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic thresh-
olds in real networks. ACM Trans. Inf. Syst. Secur. 10, 1:1–1:26 (2008)

9. Clementi, A.E., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time in
edge-markovian dynamic graphs. In: PODC, pp. 213–222 (2008)

10. Erdös, P., Rényi, A.: On the evolution of random graphs. In: Publication of the
Mathematical Institute of the Hungarian Academy of Sciences, pp. 17–61 (1960)

11. Fabrikant, A., Koutsoupias, E., Papadimitriou, C.: Heuristically Optimized Trade-
Offs: A New Paradigm for Power Laws in the Internet. In: Widmayer, P., Triguero,
F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS,
vol. 2380, p. 110. Springer, Heidelberg (2002)

Reachability Analysis and Modeling of Dynamic Event Networks 457

12. Goldenberg, A., Zheng, A.X., Fienberg, S.E., Airoldi, E.M.: A survey of statistical
network models. Found. Trends Mach. Learn. 2, 129–233 (2010)

13. Grindrod, P., Higham, D.J.: Evolving graphs: dynamical models, inverse problems
and propagation. Proc. of TRSA: Math, Phys. Engr. Sci. 466, 753–770 (2010)

14. Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The
web as a graph: Measurements, models, and methods (1999)

15. Klimt, B., Yang, Y.: Introducing the enron corpus. In: CEAS (2004)
16. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT

News 42, 82–96 (2011)
17. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.:

Stochastic models for the web graph. In: Proc. Found. of CS, pp. 57–66 (2000)
18. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tompkins, A., Upfal,

E.: The web as a graph. In: PODS, pp. 1–10. ACM, New York (2000)
19. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of

social networks. In: KDD (2008)
20. Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C.: Realistic, Mathemati-

cally Tractable Graph Generation and Evolution, Using Kronecker Multiplication.
In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD
2005. LNCS (LNAI), vol. 3721, pp. 133–145. Springer, Heidelberg (2005)

21. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: KDD (2005)

22. Leskovec, J., Mcglohon, M., Faloutsos, C., Glance, N., Hurst, M.: Cascading be-
havior in large blog graphs: Patterns and a model. Technical report (2006)

23. Leskovec, J., McGlohon, M., Faloutsos, C., Hurst, M.: Cascading behavior in large
blog graphs patterns and a model. In: SDM (2007)

24. Macropol, K., Can, T., Singh, A.: Rrw: repeated random walks on genome-scale
protein networks for local cluster discovery. BMC Bioinformatics 10, 283 (2009)

25. Macropol, K., Singh, A.: Scalable discovery of best clusters on large graphs.
PVLDB 3(1), 693–702 (2010)

26. Macropol, K., Singh, A.K.: Content-based modeling and prediction of information
dissemination. In: ASONAM (2011)

27. McGlohon, M., Akoglu, L., Faloutsos, C.: Weighted graphs and disconnected com-
ponents: patterns and a generator. In: KDD, pp. 524–532 (2008)

28. Nickel, C.L.M.: Random Dot Product Graphs: A Model For Social Networks. PhD
thesis, Johns Hopkins University, Maryland, USA (2006)

29. Pennock, D., Flake, G., Lawrence, S., Glover, E., Giles, C.L.: Winners don’t take
all: Characterizing the competition for links on the web. In: PNAS (2002)

30. Prakash, B.A., Tong, H., Valler, N., Faloutsos, M., Faloutsos, C.: Virus Propagation
on Time-Varying Networks: Theory and Immunization Algorithms. In: Balcázar,
J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS,
vol. 6323, pp. 99–114. Springer, Heidelberg (2010)

31. Siganos, G., Faloutsos, M., Faloutsos, P., Faloutsos, C.: Power laws and the as-level
internet topology. IEEE/ACM Trans. Netw. 11, 514–524 (2003)

32. Snijders, T.A., van de Bunt, G.G., Steglich, C.E.: Introduction to stochastic actor-
based models for network dynamics. Social Networks 32, 44–60 (2010)

33. Tsourakakis, C.E.: Fast counting of triangles in large real networks without count-
ing: Algorithms and laws. In: ICDM (2008)

34. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user
interaction in facebook. In: WOSN 2009 (2009)

CC-MR – Finding Connected Components

in Huge Graphs with MapReduce

Thomas Seidl, Brigitte Boden, and Sergej Fries

Data Management and Data Exploration Group
RWTH Aachen University, Germany

{seidl,boden,fries}@cs.rwth-aachen.de

Abstract. The detection of connected components in graphs is a well-
known problem arising in a large number of applications including data
mining, analysis of social networks, image analysis and a lot of other
related problems. In spite of the existing very efficient serial algorithms,
this problem remains a subject of research due to increasing data
amounts produced by modern information systems which cannot be
handled by single workstations. Only highly parallelized approaches on
multi-core-servers or computer clusters are able to deal with these large-
scale data sets. In this work we present a solution for this problem for
distributed memory architectures, and provide an implementation for
the well-known MapReduce framework developed by Google. Our al-
gorithm CC-MR significantly outperforms the existing approaches for
the MapReduce framework in terms of the number of necessary itera-
tions, communication costs and execution runtime, as we show in our
experimental evaluation on synthetic and real-world data. Furthermore,
we present a technique for accelerating our implementation for datasets
with very heterogeneous component sizes as they often appear in real
data sets.

1 Introduction

Web and social graphs, chemical compounds, protein and co-author networks,
XML databases - graph structures are a very natural way for representing com-
plex data and therefore appear almost everywhere in data processing. Knowledge
extraction from these data often relies (at least as a preprocessing step) on the
problem of finding connected components within these graphs. The horizon of
applications is very broad and ranges from analysis of coherent cliques in so-
cial networks, density based clustering, image segmentation, where in some way
connected parts of the image have to be retrieved, data base queries and many
more. Thus, it is not surprising that this problem has a long research history,
and different efficient algorithms were developed for its solution. Nevertheless,
modern information systems produce more and more increasing data sets whose
processing is not manageable on single workstations any more. Social networks
like Facebook process networks with more then 750 million users1 where each

1 http://www.facebook.com/press/info.php?statistics, state Sep. 2011.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 458–473, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.facebook.com/press/info.php?statistics

CC-MR – Finding Connected Components in Huge Graphs with MapReduce 459

node is connected to 130 other nodes on average. The analysis of such enormous
data volumes requires highly scalable parallelized algorithms. In this paper, we
present a highly scalable algorithm for MapReduce [4], which is a programming
model for the development of parallel algorithms developed by Google Inc. in
2004. Since then it experienced a fast spread out and nowadays its open-source
implementation Hadoop2 is used in companies like Yahoo! Inc. or Facebook Inc..

In MapReduce, the data is given as a list of records that are represented as
(key, value) pairs. Basically, a MapReduce program consists of two phases: The
first phase is the “Map” phase, in which the records are arbitrarily distributed
to different computing nodes (called “mappers”) and each record is processed
separately, independent of the other data items. In the second phase, called “Re-
duce” phase, records having the same key are grouped together and processed in
the same computing node (“reducer”). Thus, the reducers combine information
of different records having the same key and aggregate the intermediate results
of the mappers. By using this framework, programmers may concentrate on the
data flow which is implemented by map jobs and reduce jobs. They do not have
to take care of low-level parallelization and synchronization tasks as in classic
parallel programming.

On top of this new programming model, Hadoop and other implementations of
the MapReduce framework show a lot of non-functional advantages: First, they
are scalable to clusters of many computing nodes, which are easily expanded by
new nodes. Moreover, they show a high fault-tolerance: If one of the computing
nodes fails during the execution of the program, the work of the other nodes is
not affected or discarded, instead just the records that were currently processed
on the failing node have to be processed again by another node.

In this paper, we propose an algorithm for finding connected components
which is based on the MapReduce programming model and is implemented using
Hadoop. Thus, our approach can make use of the aforementioned advantages of
Hadoop such as high scalability and fault-tolerance.

The main contributions of our paper are:

– We present the parallelized algorithm CC-MR for the efficient detection of
connected components in a graph using the MapReduce framework.

– We evaluate the performance of our algorithm compared to state-of-the-art
approaches using synthetic and real-world datasets.

– We develop a technique to improve the load balancing of CC-MR for graphs
with heterogeneous component sizes.

2 Fundamentals

In this section we give a short formal problem definition for the finding of con-
nected components in Section 2.1. In Section 2.2 we introduce the MapReduce
framework, which is used for the implementation of our algorithms.

2 http://hadoop.apache.org/

http://hadoop.apache.org/

460 T. Seidl, B. Boden, and S. Fries

2.1 Connected Components

Let G = (V,E) be an undirected graph without self loops, with V being a set of
vertices and E = {(v, u), (u, v)}, u, v ∈ V a set of edges. Intuitively, a connected
component in G is a maximal subgraph S = (V S , ES) in which for any two
vertices v, u ∈ V S there exists an undirected path in G with v as start and u as
end vertex. The term “maximal subgraph” means that for any additional vertex
w ∈ V \ V S there is no path from any v ∈ V S to w.

In this work we present a solution for finding all connected components inside
the graph G. The algorithm can as well be applied to directed graphs, in this
case the result is the set of all weak connected components in the graph.

2.2 MapReduce

MapReduce is a programming model for processing web-scale datasets presented
by Deam and Ghemawat at Google [4]. The main idea of this model is to divide
data processing into two steps: map and reduce. The map phase is responsible
for processing given (key,value) pairs stored on the distributed file system and
generating intermediate (key,value) pairs. In the reduce phase, intermediate pairs
with the same key are collected, processed at once, and the results are stored
back to the distributed file system.

In the MapReduce model, communication between different computing nodes
only takes place during a single communication phase, when the intermediate
pairs from the map nodes are transferred to the reduce nodes. Apart from this,
no further communication takes place. Neither do the individual mappers nor
the individual reducers communicate with each other. This loose coupling of
the computational nodes enables the framework to perform the calculations in
a highly distributed and fault-tolerant way. Since all computational nodes pro-
cess the data independently from each other, the only limitation for the number
of parallel reducer-jobs is the number of unique intermediate key values. Addi-
tionally, since the single jobs do not depend on the results of other jobs, the
failure of hardware can be easily managed by restarting the same job on another
computational node. This high fault-tolerance and the loose coupling of compu-
tational nodes suits perfectly for usage of this model on commodity hardware
like personal PCs connected to a cluster over a network. However, this limited
communication also poses a challenge for the development of algorithms, which
have to be designed such that the data in different mappers/reducers can be
processed completely independently. Especially, the results computed by differ-
ent reducers can not be combined in a MapReduce job. Thus, many problems
cannot be solved using a single MapReduce job, but have to be solved by a
chain of MapReduce jobs, such that the result records of one iteration can be
re-distributed to the reducers and thus combined in the next iteration.

3 Related Work

The detection of connected components in a graph is a fundamental and
well-known problem. In the past, different approaches for finding connected

CC-MR – Finding Connected Components in Huge Graphs with MapReduce 461

components were introduced. The diversity of the proposed techniques ranges
from simple linear time techniques using breadth-first search / depth-first search
to efficient logarithmic algorithms. Though, due to the fast growing data sizes
(just think of social network graphs of Facebook or Google+), even these effi-
cient algorithms cannot deal with such big graphs. Thus, approaches to paral-
lelize the detection of this components have already been developed for several
decades: Hirschberg et al. [6] present an algorithm which uses n2 processors
(where n = |V | denotes the number of vertices in the graph) and having a time
complexity of O(log2 n). Chin et al. [2] present a modified version of this algo-

rithms which achieves the same time bound with only n
⌈

n
log2 n

⌉
processors. A

parallel algorithm with a time bound of O(log n) is presented by Shiloach and
Vishkin [11]. Greiner [5] presents an overview of several parallel algorithms for
connected components.

All of the aforementioned approaches assume that all computing processors
have access to a shared memory and, thus, can access the same data. In contrast,
the MapReduce model relies on distributing the data as well as the computation
between the computing nodes and, thus, reduce the required communication be-
tween the computing nodes. There also exist some approaches that are based on
a “distributed memory” model, i.e they consider the cost of communication be-
tween the computing nodes, e.g., the approach proposed in [1] which is an exten-
sion of the algorithm of [8]. In their distributed memory model, every computing
node is able to access the memory of other computing nodes, which, however,
leads to certain communication costs. In contrast, the MapReduce model only
allows for special communication flows. E.g., communication between different
reducers in a MapReduce job is not possible. Thus, for computing connected
components using MapReduce, special types of algorithms are necessary.

Recently, a few approaches for the detection of connected components using
the MapReduce model were proposed. Wu et al. [12] present an algorithm for
detecting connected components based on Label Propagation. PEGASUS [7] is
a graph mining system based on MapReduce and also contains an algorithm for
the detection of connected components. In this system, graph mining operations
are represented as repeated matrix-vector multiplications. In [9] the problem is
solved by finding a minimum spanning tree of the graph. For that, edges which
certainly do not belong to any MST are iteratively removed until the subgraphs
are small enough to be processed by a single machine. Two further algorithms
were proposed in [10]. These aims at minimizing the number of iterations and
communication per step. The authors provide probable bounds which are loga-
rithmic in the largest component size but claim that in practice the number of
iterations for one of the algorithms is at most 2 log d (d=diameter of the graph).

In [3] another connected components algorithm based on MapReduce is pre-
sented. As this algorithm is the most similar one to our approach, it will be
introduced in the following. In this algorithm, nodes are assigned to so-called
zones, where each zone is identified by the vertex with the smallest ID contained
in this zone. Initially, each node defines an own zone. The zones are then merged
iteratively until finally each zone corresponds to a connected component of the

462 T. Seidl, B. Boden, and S. Fries

graph: In each iteration, each edge is tested whether it connects nodes from
different zones. Subsequently the algorithm finds for each zone z the zone zmin

with the smallest ID that is connected to z and adds all vertices of z to zmin.
A drawback of this algorithm is that for each iteration, three MapReduce jobs

have to be executed and in each iteration all edges of the original graph have to
be processed.

0

1

2

3
4

5

6

7
8

0

1

2

3
4

5

6

7
8

(a) Initial graph

0

1

2

3
4

5

6

7
8

0
1

2
3

4

5

6
7

(b) First Iter.

0

1

2

3
4

5

6

7
8

0
1

2
3

4

5
6

(c) Second Iter.
· · ·

0

1

2

3
4

5

6

7
8

0

(d) Last Iter.

Fig. 1. Example for the algorithm from [3]

In Fig. 1 we show the processing of this algorithm for a simple example graph
consisting of just one component. The numbers inside the vertices are the IDs
of the vertices, the numbers beside the vertices denote the number of the zone
a vertex is currently assigned to. The vertices that are already assigned to the
“final” zone 0 are encircled. Initially, each vertex is assigned to its own zone.
In the first iteration, the algorithm determines the edges that connect vertices
from different zones, i.e. the zones 0 and 1. Then, i.e. for zone 1 the algorithm
detects that the smallest zone connected to it is zone 0, i.e. the vertex 1 is now
assigned to zone 0. Similarly, the vertex 2 is assigned to zone 1 etc.. In the second
iteration, the same processing is done, i.e. vertex 2 is added to zone 1, vertex 3
(former zone 2) is added to zone 1 etc. Overall, the algorithm needs 8 iterations to
detect the component. This example shows another drawback of the algorithm:
Although in the first iteration e.g. the connection between zone 1 and zone 0 and
the connection between zone 1 and zone 2 are detected, this information is not
used in the second iteration. Using this information, we could e.g. directly add
the vertex 3 from zone 2 to zone 0, as we know they are connected via zone 1
and thus have to belong to the same connected component. By neglecting these
information, the algorithm needs a large number of iterations.

The basic idea of our new algorithm is to use this kind of information from
previous iterations by adding additional edges (“shortcuts”) in the graph such
that fewer iterations are needed to find the final components. In our experimental
section we compare our approach to the approaches from [3] and [7].

4 Algorithm

In this section we present our CC-MR-algorithm for detecting components in
large-scale graphs using the MapRecuce framework. In subsection 4.1 we describe

CC-MR – Finding Connected Components in Huge Graphs with MapReduce 463

our solution. For better understanding, we show in section 4.2 the processing of
CC-MR on the example from section 3. Section 4.3 provides a formal proof of
the correctness of CC-MR.

The basic idea of our algorithm is to iteratively alter growing local parts of
the graph until each connected component is presented by a star-like subgraph,
where all nodes are connected to the node having the smallest ID. For that,
in each iteration, we add and delete edges such that vertices with larger IDs
are assigned to the reachable vertex with smallest ID. Applying an intelligent
strategy to use the information from previous iterations, our algorithm needs
significantly less iterations than existing approaches.

4.1 CC-MR Algorithm

Basically there are two states for a (sub)component S: either it is already max-
imal or there are still further subcomponents which S can be merged with. The
main question of every algorithm for finding connected components is, therefore,
how to efficiently recognize those two states and how to react on them. I.e., if a
component is already maximal, no further step should be performed, and in the
second case the merging or some other equivalent action should be done with as
little effort as possible. When dealing with parallel algorithms the question of
balanced distribution of the calculations arises. Considering a distributed mem-
ory programming model like MapReduce additionally complicates the problem
since an efficient information flow between independent computational nodes has
to be established.

We propose a solution to handle the aforementioned states locally for every
graph vertex in such a way that after at most linearly many iterations (experi-
ments often show a logarithmic behavior for big graphs) in terms of the diameter
of the largest component the solution is found. Pushing down the problem to the
single vertices of the graph enables a very scalable processing in the MapReduce
framework. Additionally, by using techniques for prevention of duplicated data,
which often appears in distributed memory models, CC-MR-algorithm signifi-
cantly outperforms the state-of-the art approaches as e.g. [3].

Let G = (V,E) be an undirected graph where V is a set of vertices with IDs
from Z and E = {(vsource, vdest) ∈ V 2} is a set of edges. The algorithm’s basic
idea is simple: independently check for each vertex v and its adjacent vertices
adj(v) whether v has the smallest ID or not. If yes (locallyMaxState), assign
all u ∈ adj(v) to v and stop the processing of v, since the component of v is
already locally maximal. Otherwise (mergeState), there is a vertex u ∈ adj(v)
with u < v; then connect v and adj(v) to u. This corresponds to assigning
(merging) the component of v to the component of u. By iteratively performing
these steps each component is finally transformed to a star-like subgraph where
the vertex having the smallest ID is the center. The overall algorithm stops as
far as the mergeState situation does not occur any more.

In the following, we present an efficient implementation based on a simple
concept of forward and backward edges. We call an edge v → u a forward edge,
if v < u, and a backward edge, if v > u, where the comparison of vertices means

464 T. Seidl, B. Boden, and S. Fries

the comparison of their IDs. Both types of edges are represented by a tuple
(v, u) which we represent by (key, value) pairs in the MapReduce framework.
The semantic of the forward edge (v, u) is that vertex u belongs to the component
of the vertex v. The backward edge can be regarded as a “bridge” between the
component of vertex u and the component of a vertex w which has a connection
to v as shown in Fig. 2. The backward edge between vertices v and u enables
the reducer of v to connect u and w in a single iteration of the algorithm.

w v u
...
...

...

...
...
...

Fig. 2. The backward edge (v, u) connects components of w and u in the reducer of v

These concepts will become clearer from the explanation of the algorithm.

Listing 1.1. Reducer implementation.

1newIterationNeeded = false // global variable
2void reduce(int vsource, Iterator<int> values)
3 isLocMaxState = false
4 vfirst = values.next(); // take first element
5 if (vsource < Vfirst)
6 isLocMaxState = true
7 emit(vsource, vfirst)
8 vdestold = vfirst
9 while (values.hasNext())

10 vdest = values.next()
11 if (vdest == vdestold) continue // remove duplicates
12 if (isLocMaxState) // locMaxCase
13 emit(vsource, vdest) // only fwd. edge
14 else // cases stdMergeCase, optimizedMergeCase
15 emit(vfirst, vdest) // fwd. edge and
16 emit(vdest, vfirst) // backwd. edge
17 newIterationNeeded = true
18 vdestold = vdest
19 // stdMergeCase
20 if (vsource < vdest && !isLocMaxState)
21 emit(vsource, vfirst) // backwd. edge

As described earlier, a MapReduce job consists of a map and a reduce phase.
In our case, the mapper is a so-called identity mapper which simply passes
all read data to the reducer without performing any changes. The pseudo-code
for the reduce phase is given in listing 1.1. The emitted edges (vsource, vdest) are
automatically grouped by their vsource values and then sorted in ascendent order

CC-MR – Finding Connected Components in Huge Graphs with MapReduce 465

0

3

7 9 1

(a) Original graph

0

3

7 9 1

Vsource

(b) locMaxCase

0

3

7 9
Vsource

1

(c) stdMergeCase

Vsource

0

3

7 9 1

(d) optimizedMerge-
Case

Fig. 3. Three cases of the algorithm. vsource strings marks the node under consideration
in the considered reducer. Bold highlighted nodes are adjacent nodes of vsource.

of their vdest-values. Technically we use the secondary sort method of Hadoop
to establish the desired sorting. The main part of the algorithm is located in
the reducer (listing 1.1), where both aforementioned cases are handled. Tuples
having the same key arrive as a data stream and are processed one after another
in the ‘while’ loop. After the elimination of duplicate entries in the line 11, three
cases are distinguished:

– locMaxCase: lines 5–7 and 12–13
– optimizedMergeCase: lines 15–18
– stdMergeCase: lines 15–18 and 20 – 21

locMaxCase corresponds to the locallyMaxState, i.e., it deals with the situation
when a local maximal component with root vsource is already found and there-
fore all adjacent nodes vdest ∈ adj(vsource) have to be assigned to vsource. This
assignment is performed by emitting forward edges vsource → vdest in the lines 7
and 13. Fig. 3(b) depicts the processing of the case locMaxCase by showing the
changes of the original graph structure from Fig. 3(a). Nodes marked by vsource
are the nodes which are considered in single reducer with all its adjacent nodes,
which for their part are highlighted by bold circles. The dimmed circles show the
remaining vertices of the graph which are not regarded during the computation
of the node vsource. Dashed arrows represent the newly created edges inside the
reducer. In this example the reducer of the node 0 emits therefore two edges
0 → 3 and 0 → 7. Cases stdMergeCase and optimizedMergeCase on their
part deal with the merge state (mergeState), where optimizedMergeCase is a
special case of stdMergeCase which reduces duplicate edges, as will be shown
later. Both cases arise, if the condition vsource > vfirst holds, which means that
at least one of the adjacent nodes vdest ∈ adj(vsource) has a smaller ID than
vsource. Due to the fact that the vertices are sorted in order of their IDs, vfirst
has the smallest value. Since the main aim of the algorithm is to assign all ver-
tices with larger IDs to the vertex with smallest ID, this implies that all vertices
in adj(vsource) except for vfirst itself are assigned to vfirst, i.e., for each of this
vertices a forward edge vfirst → vdest (line 15) is emitted. Please note that this
is not the case for the edge vfirst → vsource, since this edge will be emitted
in the reducer of the vertex vfirst. Therefore, in the example of stdMergeCase
in Fig. 3(c) the edges 0 → 3 and 0 → 9 are emitted.

466 T. Seidl, B. Boden, and S. Fries

0

1

2

3
4

5

6

7
8

(a) Initial graph

0

1

2

3
4

5

6

7
8

(b) Iteration 1

0

1

2

3
4

5

6

7
8

(c) Iteration 2

0

1

2

3
4

5

6

7
8

(d) Iteration 3

0

1

2

3
4

5

6

7
8

(e) Iteration 4

Fig. 4. Example for CC-MR

In addition to the forward edges, the algorithm emits backward edges vdest →
vfirst (line 16), i.e., edges 3 → 0 and 9 → 0 in the example. These edges form
“bridges” or “shortcuts” between components and are needed due to the fact
that vdest (nodes 3, 9) could be connected to some other vertex w with even
smaller ID than 0 such that at some point of time node 0 could have to be
connected to w. If there were no backward edge vdest → vfirst then there would
not be any reducer which would be able to merge 0 and w.

Because of the same arguments, the backward edge vsource → vfirst should
be actually emitted too. This indeed happens in the case when vsource is smaller
than one of its adjacent vertices (lines 20 and 21). If vsource has the biggest
ID among all its adjacent nodes (optimizedMergeCase), then this edge can be
omitted due to the fact that all adjacent nodes of vsource are already reassigned
to the vertex with smallest ID and therefore vsource will never deal as a bridge
node between two components. In Fig. 3(d) case optimizedMergeCase is depicted.

The identity mapper and the reducer from Listing 1.1 form one iteration
of the CC-MR-algorithm. These jobs have to be iterated as long as there are
subcomponents which can be merged. In order to recognize this case, we have to
check whether in the last iteration a backward edge was emitted. If this is the case
then there are still subcomponents which could be merged and a new iteration
has to be started. Otherwise, all components are maximal and the algorithm can
stop. The information whether backward edges were created or not is indicated
by the global variable newIterationNeeded, which can be implemented as a global
counter in Hadoop. Setting the value of this variable to e.g. value 1 indicates the
boolean value ‘true’ and value 0 indicates ‘false’. This variable is set to true if
either case stdMergeCase or case optimizedMergeCase holds (line 17).

4.2 Example for the Processing of CC-MR

In Fig. 4 we show the processing of CC-MR using the same example that was
used in section 3 for the algorithm from [3]. For each iteration, we show the
edges that the algorithm emits in this iteration. The vertices that are already
connected to the vertex with the smallest ID 0 are marked in the graph for each
iteration. In table 1, the output of the single iterations is shown as lists of edges.
For each iteration, the all edges that are emitted in this iteration are shown,
sorted by their key vertices. Some edges occur repeatedly in the same iteration.
This is due to the fact that the same edge can be generated by different reducers.

CC-MR – Finding Connected Components in Huge Graphs with MapReduce 467

Table 1. Edges generated by CC-MR for the example graph

iter. 0 1 2 3 4 5 6 7 8
0 0-1 1-0 2-1 3-2 4-3 5-4 6-5 7-6 8-7

1-2 2-3 3-4 4-5 5-6 6-7 7-8
1 0-1 1-0 2-0 3-1 4-2 5-3 6-4 7-5 8-6

0-2 1-3 2-1 3-2 4-3 5-4 6-5 7-6
2-4 3-5 4-6 5-7 6-8

2 0-1 (2x) 1-0 2-0 3-0 4-0 5-1 6-2 7-3 8-4
0-2 1-0 2-1 3-1 4-2 5-3 6-4
0-3 1-2 2-3 3-2 4-3 5-4 6-5
0-4 1-5 2-6 3-4 4-5 5-6

3-7 4-8
3 0-1 (3x) 1-0 2-0 3-0 4-0 5-0 6-0 7-0 8-0

0-2 (4x) 1-0 2-0 3-0 4-0 5-0 6-1
0-3 (3x) 1-0 2-0 3-0 4-1 5-1
0-4 (2x) 1-3 2-0 3-1 4-2 5-2
0-5 (2x) 1-4 2-4
0-6 1-6 2-5
0-7
0-8

iter. 0 1 2 3 4 5 6 7 8
4 0-1 (5x) 1-0 2-0 3-0 4-0 5-0 6-0

0-2 (3x) 1-0 2-0 4-0
0-3 (2x) 1-0 2-0
0-4 (3x) 1-0
0-5 (2x) 1-0
0-6 (2x)
0-7
0-8

5 0-1
0-2
0-3
0-4
0-5
0-6
0-7
0-8

In the initial graph, for each edge (u, v) ∈ E both directions, i. e. (u, v) and
(v, u) are given. In the first iteration, the reducers mostly insert “two-hop” edges,
e.g. the reducer for the vertex 3 connects the vertices 2 and 4. In the second
iteration, for example, the reducer for the vertex 2 inserts an edge between the
vertices 0 and 4 and the reducer of the vertex 6 inserts an edge between 4 and 8.
Thus, vertices are already connected to each other that had a shortest path of 4 in
the initial graph. In the third iteration, finally all vertices have direct connections
to the node 0. However, to obtain a star graph for this compoment and thus to
detect that the final component as already been found, the algorithm still has
to delete all edges (v, w) with v, w �= 0. This is done in iteration 4. Though the
resulting graph is already the desired star graph, some vertices (i.e. vertex 3) still
have backward edges, which are finally removed in a fifth iteration (not depicted
here). Overall, our algorithm needs 5 iterations for this example. In comparison,
the algorithm from [3] needed 8 iterations in the same example.

4.3 Proof of Correctness

In this section we present a proof for the correctness of CC-MR, i.e. we show that
CC-MR correctly detects the connected components of the graph. As presented
in the previous section, the idea of our algorithm is to add and delete edges in
the graph such that the resulting graph consists of one star graph per component
where the center of each star graph is the vertex with the smallest ID from the
corresponding component. Thus, in each iteration we have a different set of edges
in the graph. Let Ei denote the set of edges that exist after iteration i.

To prove that the resulting graphs of the algorithm really correspond to the
connected components, we prove two different steps:

1. An edge (v1, v2) is emitted in iteration i ⇒ There has already been a path
between v1 and v2 in iteration i− 1.
(We never add edges between vertices that were not in the same component
before.)

468 T. Seidl, B. Boden, and S. Fries

2. There exists a path between v1 and v2 in iteration i − 1 ⇒ there exists a
path between them in iteration i.

(We do not disconnect components that existed before).

Steps 1 and 2 together show that although the algorithm adds and removes
edges in the graph, the (weak) connected components do never change during the
algorithm. Please note that as our input graph is undirected, the connectedness
of the components does not depend on the directions of the edges, even though
CC-MR sometimes only adds one direction of an edge for optimization reasons.
Thus, for the paths we construct in our proof the directions of the edges are
neglected. In the following we present the proofs for the single steps:

1. In CC-MR, edges are only added in the reducers. Thus, to add an edge
(v1, v2) ∈ Ei, the vertices v1 and v2 have to occur together in the re-
ducer of some vertex vsource. Therefore, for each vj , j ∈ {1, 2} : vj =
vsource or (vsource, vj) ∈ Ei−1. Thus, there existed a path between v1 and v2
in the iteration i− 1.

2. It suffices to show: There exists an edge (v1, v2) ∈ Ei−1 ⇒ there exists a path
between them in iteration i (Because a path between some vertices u and w
in Ei−1 can be reconstructed in Ei by replacing each edge (v1, v2) ∈ Ei−1

on the path by its corresponding path in Ei):

Case 1: v1 < v2 (i.e. (v1, v2) is a forward edge):

(v1, v2) is processed in the reducer of vsource = v1. Now we can look at the
three different cases that can occur in the reducer:

– locMaxCase: (v1, v2) is emitted again.

– stdMergeCase: We emit edges (vfirst, v2), (v2, vfirst) and (v1, vfirst),
thus there still exists a path between v1 and v2.

– optimizedMergeCase: Not possible because v1 < v2.

Case 2: v1 > v2 (i.e. (v1, v2) is a backward edge):

For this case, we can show that in some iteration ix ≤ i − 1 also the corre-
sponding forward edge (v2, v1) was emitted:

For the backward edge (v1, v2) ∈ Ei−1, there are two possible scenarios where
(v1, v2) can have been emitted:

– (v1, v2) ∈ Ei−1 can have been emitted by the reducer of v1 in the case
stdMergeCase. In this case, the edge has already existed in the previous
iteration , i.e. (v1, v2) ∈ Ei−2, else the vertex v2 would not be processed
in the reducer of v1.

– (v1, v2) ∈ Ei−1 can have been emitted by the reducer of a vertex vsource
with vsource �= v1 and vsource �= v2 in the case stdMergeCase or opti-
mizedMergeCase. In this case, also the forward edge (v2, v1) has been
emitted.

– i− 1 = 0, i.e. the edge (v1, v2) already existed in the initial graph. Then,
by definition of the original (undirected) graph, also the forward edge
(v2, v1) existed.

CC-MR – Finding Connected Components in Huge Graphs with MapReduce 469

Thus, we know that for each backward edge (v1, v2), the corresponding for-
ward edge (v2, v1) exists or has existed in an earlier iteration. In case 1 it was
already shown that the path between v2 and v1 is preserved in the following
iterations. ��

4.4 Dealing with Large Components

In CC-MR a single reducer processes a complete component, which can result
in high workloads of a single reducer for very large components. Now we briefly
present a solution which distributes the calculations for large components over
multiple reducers and that way balances the workload. Consider the example in
Fig. 5, in which vertex 7 is a center of a component with too many elements.
Assume that we have this information from a previous iteration and we want
to distribute the computations on three reducers. For that, in the map-phase

71...
7

1... 7
7

Reducer 1

Reducer 2

Reducer 3

MAP

Fig. 5. Example for workload balancing for big components

each forward edge (7, x) is augmented by a hash value to ((7, hash(x)), x) which
is then used in the partitioner in order to distribute edges (7, ·) to different
reducers. In the example a small circle represents such a vertex x, which is then
sent to one of the three reducers. For backward edges (in the example (7, 1)), a
set of edges {((7, hash(i)), 1)|i = 1, 2, 3} is produced, which guarantees that each
vertex 7 in each of the three reducers has a backward edge to 1 and can reassign
its neighbors to 1 in the reduce phase. All other edges whose source vertices do
not have too many neighbors are not augmented by a hash value and therefore
are processed as in the original algorithm.

The reduce-phase remains as in the original algorithm, with the difference that
for each vertex the number of neighbors in Ei is determined and for vertices
with too many neighbors the value is stored in the distributed cache for the
next iteration. This simple strategy produces almost no additional overhead
but achieves a very good balancing of the workload as will be shown in the
experiments.

5 Experiments

In this section we present the experimental evaluation of the CC-MR approach,
comparing it to the approach from [3] (denoted as ‘GT’ here) and to the approach
from the Pegasus system [7]. All experiments were performed on a cluster running

470 T. Seidl, B. Boden, and S. Fries

0
500

1000
1500
2000
2500

5 15 25

Ru
nt
im

e
in
se
c.

Diameter of components

CC MR GT PEGASUS

(a) Component diameter
vs. runtime

1.E+07

1.E+08

1.E+09

5 15 25Re
du

ce
ri
np

ut
re
co
rd
s

Diameter of components

CC MR GT PEGASUS

(b) Component diameter
vs. number of input records

0

10

20

30

40

5 15 25N
um

be
ro

fi
te
ra
tio

ns

Diameter of components

CC MR GT PEGASUS

(c) Component diameter
vs. number of iterations

Fig. 6. Performance for varying component diameters

Hadoop 0.20.2 and consisting of 14 nodes with 8 cores each that are connected
via a 1 Gbit network. Each of the nodes has 16 Gb RAM. For each experiment
the number of distance computations and the runtime is measured3.

5.1 Scalability on Synthetic Data

In this section we evaluate CC-MR with respect to different properties of the
input graphs. Therefore, we use synthetic datasets such that in each experiment,
one property of the generated graphs changes while the others remain stable.

Performance for Varying Component Diameters. In this experiment we
vary the diameter of the connected components in our synthetic datasets. Each
dataset consists of one million vertices and is divided into 1000 connected com-
ponents with 1000 vertices each. The diameter of the generated components is
varied from 10 to 30 in this experiment.

In Fig. 6(a), the runtime of the algorithms is depicted. For all algorithms the
runtime increases for higher diameters. However, the runtime of CC-MR is al-
ways significantly lower (at least a factor of two) than that of GT and Pegasus
and scales better for increasing diameters. In Fig. 6(c) we show the number of
iterations needed by the algorithms to find the connected components. As ex-
pected, for higher diameters the number of iterations increases for all algorithms.
For CC-MR, the number of iterations is always lower than for GT and Pegasus.
In Fig. 6(b), we depict for each algorithm the number of input records (summed
over all iterations) that are processed, i.e. the number of records that are com-
municated between the iterations. For all algorithms, this number increases with
increasing diameter. The number of records for CC-MR is significantly lower (at
least by a factor of two) than that of GT and Pegasus, due to the fact that they
perform more iterations than CC-MR and GT needs to perform 3 MapReduce
jobs per iteration.

Performance for Varying Component Sizes. In this experiment we vary
the number of vertices per component in the generated graphs and examine its
influence on the runtime and the number generated records in reducers. The cre-
ated datasets consist of 1000 components with 15, 150, 1500 and 15000 edges and

3 The source code of the CC-MR-algorithm and the used datasets can be found at:
http://dme.rwth-aachen.de/en/ccmr

http://dme.rwth-aachen.de/en/ccmr

CC-MR – Finding Connected Components in Huge Graphs with MapReduce 471

0

500

1000

1500

0 5000 10000

Ru
nt
im

e
in
se
c.

Number vertices per component

CC MR GT PEGASUS

(a) Component size vs. run-
time

1.E+05
1.E+06
1.E+07
1.E+08
1.E+09
1.E+10

0 5000 10000Re
du

ce
ri
np

ut
re
co
rd
s

Number vertices per component

CC MR GT PEGASUS

(b) Component size vs.
number of input records

0

5

10

15

0 5000 10000N
um

be
ro

fi
te
ra
tio

ns

Number vertices per component

CC MR GT PEGASUS

(c) Component size vs. num-
ber of iterations

Fig. 7. Performance for varying component sizes

0

500

1000

1500

2000

10 100 1000 10000

Ru
nt
im

e
in
se
c.

Number of components

CC MR GT PEGASUS

(a) Number of components
vs. runtime

0.0E+0
2.0E+8
4.0E+8
6.0E+8
8.0E+8
1.0E+9
1.2E+9
1.4E+9

0 5000 10000Re
du

ce
ri
np

ut
re
co
rd
s

Number of components

CC MR GT PEGASUS

(b) Number of components
vs. number of input records

0

5

10

15

10 100 1000 10000N
um

be
ro

fi
te
ra
tio

ns

Number of components

CC MR GT PEGASUS

(c) Number of components
vs. number of iterations

Fig. 8. Performance for varying numbers of components

10, 100, 1000, 10000 vertices, respectively. The figures 7(a), 7(b) and 7(c) depict
the results for the runtime (in sec.), the number of records, and the iteration
number respectively. As expected, all of these values increase with growing size
of the components. The runtime of the CC-MR algorithm remains smaller (up
to a factor of 2) then the runtimes of GT and Pegasus for each component size.

Performance for Varying Numbers of Components. This experiment
shows the dependency between the number of components in a graph, the run-
time, the number of input records and the number of iterations. The synthetic
datasets consist of 10, 100, 1000, 10000 components each with 1000 vertices and
1500 edges. The figures 8(a), 8(b) and 8(c) depict the runtime, the processed
number of input records and the number of iterations. Similar to previous re-
sults, CC-MR has a much lower runtime and produces in the worst case (10
components) 15% and in the best case (10000 components) over 55% less input
records compared to the other approaches. Furthermore, CC-MR outperforms
both competitors in terms of the number of performed iterations.

5.2 Real-world Data

We use three real-world datasets to evaluate CC-MR: a web graph (Web-google)
and two collaboration networks (IMDB, DBLP). The Web-google dataset can be
found at snap.stanford.edu/data/web-Google.html and consists of 875713
nodes, 5105039 edges and 2746 connected components. In this web graph, the
vertices represent web pages and the edges represent hyperlinks between them.

snap.stanford.edu/data/web-Google.html

472 T. Seidl, B. Boden, and S. Fries

Table 2. Results of CC-MR, GT and PEGASUS

CC-MR GT PEGASUS
web-google imdbdblpweb-google imdbdblpweb-google imdbdblp

Runtime (sec.) 535 1055 472 3567 3033 4385 4847 2834 3693

#iters 8 6 7 10 6 12 16 6 15

#input rec. (·106) 29 179 27 102 564 210 292 299 108

0
1
2
3
4
5
6

0 20 40 60 80

Sp
ee
du

p

Reducers

CC MR GT PEGASUS

Fig. 9. Speedup for vary-
ing number of reduce
nodes

0%
20%
40%
60%
80%

100%

0 20 40 60 80Ru
nt

im
e

pe
rc

en
ta

ge

Number of reducers

Map Reducer Shuffle

Fig. 10. CC-MR-Runtime
distribution among map,
shuffle and reduce phases

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6

M
ax
im

al
w
or
kl
oa

d
(%

of
al
l

ed
ge
s)
of

a
si
ng

le
re
du

ce
r

Iteration

Large comp. extension CC MR

Fig. 11. Maximal reducer
workload for processing
large components

In the IMDB dataset (176540 nodes; 19992184 edges; 16 comps.), actors are
represented by vertices, edges between actors indicate that the actors worked
together in some movie. The data was extracted from the IMDB movie database
(imdb.com). In the DBLP dataset (generated using the data from dblp.org,
553797 nodes; 1677487 edges; 24725 comps.) each vertex corresponds to an au-
thor, while each edge represents a collaboration between two authors.

The results of the comparison are given in Table 2. CC-MR clearly outper-
forms GT and PEGASUS in terms of the number of iterations as well as in the
runtime and the communication (i.e the number of input records).

Figure 9 depicts the scalability results of the evaluated algorithms. The CC-
MR-algorithm shows a speedup more than twice as high compared with compet-
ing approaches. As Figure 10 shows, the reduce time of our approach decreases
very fast with growing number of reducers. The moderate overall speedup of 4.7
with 80 reducers puts down to the fact that the map phase does not depend on
the number of used reducers and therefore the speedup of calculations is lim-
ited by I/O speed. The significant communication reduction of our approach is
therefore a very big advantage in comparison to the competing approaches.

5.3 Load Balancing for Large Components

Fig. 11 shows the load balancing properties of our large component extension (cf.
Section 4.4) on the IMDB dataset using 20 reducers and threshold for the max-
imal size of a component set to 1% of the number of edges in an iteration. This
dataset contains 16 components, 15 small ones and one, Cmax, containing more
than 99% of the vertices. In the first three iterations both algorithms perform
similarly well and distribute the workload almost evenly among all reducers.
In iteration 4, however, the reducer Rmax of the CC-MR responsible for Cmax

imdb.com
dblp.org

CC-MR – Finding Connected Components in Huge Graphs with MapReduce 473

already processes about 50% of all edges remaining in the iteration, as more and
more vertices are assigned to Cmax. This trend goes on until in the last iteration
almost all vertices of the graph are processed by Rmax. In contrast, our extended
algorithm is able to balance the workload after each iteration when a disbalance
occurs, as it is the case in the iterations 3 and 5.

6 Conclusion

In this paper, we propose the parallel algorithm CC-MR for the detection of the
connected components of a graph. The algorithm is built on top of the MapRe-
duce programming model. CC-MR effectively manipulates the graph structure
to reduce the number of needed iterations and thus to find the connected com-
ponents more quickly. Furthermore, we propose an extension to CC-MR to deal
with heterogeneous component sizes. Apart from the description of the algo-
rithm, we also provide a proof for the correctness of CC-MR. The performance
of CC-MR is evaluated on synthetic and real-world data in the experimental
section. The experiments show that CC-MR constantly outperforms the state-
of-the-art approaches.

References

1. Bus, L., Tvrd́ık, P.: A Parallel Algorithm for Connected Components on Dis-
tributed Memory Machines. In: Cotronis, Y., Dongarra, J. (eds.) PVM/MPI 2001.
LNCS, vol. 2131, pp. 280–287. Springer, Heidelberg (2001)

2. Chin, F.Y.L., Lam, J., Chen, I.-N.: Efficient parallel algorithms for some graph
problems. Commun. ACM 25(9), 659–665 (1982)

3. Cohen, J.: Graph twiddling in a MapReduce world. Computing in Science and
Engineering 11(4), 29–41 (2009)

4. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: OSDI, pp. 137–150 (2004)

5. Greiner, J.: A comparison of parallel algorithms for connected components. In:
SPAA, pp. 16–25 (1994)

6. Hirschberg, D.S., Chandra, A.K., Sarwate, D.V.: Computing connected compo-
nents on parallel computers. Commun. ACM 22(8), 461–464 (1979)

7. Kang, U., Tsourakakis, C.E., Faloutsos, C.: Pegasus: A peta-scale graph mining
system. In: ICDM, pp. 229–238 (2009)

8. Krishnamurthy, A., Lumetta, S., Culler, D., Yelick, K.: Connected components on
distributed memory machines. DIMACS Implementation Challenge 30, 1 (1997)

9. Lattanzi, S., Moseley, B., Suri, S., Vassilvitskii, S.: Filtering: a method for solving
graph problems in mapreduce. In: SPAA, pp. 85–94 (2011)

10. Rastogi, V., Machanavajjhala, A., Chitnis, L., Sarma, A.D.: Finding connected
components on map-reduce in logarithmic rounds. Computing Research Repository
(CoRR), abs/1203.5387 (2012)

11. Shiloach, Y., Vishkin, U.: An o(log n) parallel connectivity algorithm. J. Algo-
rithms 3(1), 57–67 (1982)

12. Wu, B., Du, Y.: Cloud-based connected component algorithm. In: Artificial Intel-
ligence and Computational Intelligence (AICI), vol. 3, pp. 122–126 (2010)

Fast Near Neighbor Search in High-Dimensional

Binary Data

Anshumali Shrivastava and Ping Li

Cornell University, Ithaca NY 14853, USA

Abstract. Numerous applications in search, databases, machine learn-
ing, and computer vision, can benefit from efficient algorithms for near
neighbor search. This paper proposes a simple framework for fast near
neighbor search in high-dimensional binary data, which are common in
practice (e.g., text). We develop a very simple and effective strategy for
sub-linear time near neighbor search, by creating hash tables directly
using the bits generated by b-bit minwise hashing. The advantages of
our method are demonstrated through thorough comparisons with two
strong baselines: spectral hashing and sign (1-bit) random projections.

1 Introduction

As a fundamental problem, the task of near neighbor search is to identify a set of
data points which are “most similar” to a query data point. Efficient algorithms
for near neighbor search have numerous applications in the context of search,
databases, machine learning, recommending systems, computer vision, etc.

Consider a data matrix X ∈ Rn×D, i.e., n samples in D dimensions. In mod-
ern applications, both n and D can be large, e.g., billions or even larger [1].
Intuitively, near neighbor search may be accomplished by two simple strategies.
The first strategy is to pre-compute and store all pairwise similarities at O(n2)
space, which is only feasible for small number of samples (e.g., n < 105).

The second simple strategy is to scan all n data points and compute similar-
ities on the fly, which however also encounters difficulties: (i) The data matrix
X itself may be too large for the memory. (ii) Computing similarities on the fly
can be too time-consuming when the dimensionality D is high. (iii) The cost
of scanning all n data points is prohibitive and may not meet the demand in
user-facing applications (e.g., search). (iv) Parallelizing linear scans will not be
energy-efficient if a significant portion of the computations is not needed.

Our proposed (simple) solution is built on the recent work of b-bit minwise
hashing [2,3] and is specifically designed for binary high-dimensional data.

1.1 Binary, Ultra-High Dimensional Data

For example, consider a Web-scale term-doc matrix X ∈ Rn×D with each row
representing one Web page. Then roughly n = O(1010). Assuming 105 common
English words, then the dimensionality D = O(105) using the uni-gram model

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 474–489, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Fast Near Neighbor Search in High-Dimensional Binary Data 475

and D = O(1010) using the bi-gram model. Certain industry applications used
5-grams [4,5,6] (i.e., D = O(1025) is conceptually possible). Usually, when using
3- to 5-grams, most of the grams only occur at most once in each document. It
is thus common to utilize only binary data when using n-grams.

1.2 b-Bit Minwise Hashing

Minwise hashing [5] is a standard technique for efficiently computing set similar-
ities in the context of search. The method mainly focuses on binary (0/1) data,
which can be viewed as sets. Consider two sets S1, S2 ⊆ Ω = {0, 1, 2, ..., D− 1},
the method applies a random permutation π : Ω → Ω on S1 and S2 and utilizes

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|
|S1 ∪ S2|

= R (1)

to estimate R, the resemblance between S1 and S2. A prior common practice was
to store each hashed value, e.g., min(π(S1)), using 64 bits [6], which can lead to
prohibitive storage and computational costs in certain industrial applications [7].
b-bit minwise hashing [2] is a simple solution by storing only the lowest b bits of
each hashed value. For convenience, we define

zj = min(π(Sj)), z
(b)
j = the lowest b bits of zj .

Assuming D is large, [2] derived a new collision probability:

Pb(R) = Pr
(
z
(b)
1 = z

(b)
2

)
= C1,b + (1− C2,b)R (2)

r1 =
f1
D
, r2 =

f2
D
, f1 = |S1|, f2 = |S2|

C1,b = A1,b
r2

r1 + r2
+A2,b

r1
r1 + r2

, C2,b = A1,b
r1

r1 + r2
+ A2,b

r2
r1 + r2

,

A1,b =
r1 [1− r1]2

b−1

1− [1− r1]2
b
, A2,b =

r2 [1− r2]2
b−1

1− [1− r2]2
b
.

This result suggests an unbiased estimator of R from k permutations π1, ..., πk:

R̂b =
P̂b − C1,b

1− C2,b
, P̂b =

1

k

k∑
j=1

1{z(b)1,πj
= z

(b)
2,πj
} (3)

whose variance would be

Var
(
R̂b

)
=

1

k

[C1,b + (1− C2,b)R] [1− C1,b − (1−C2,b)R]

[1− C2,b]
2

(4)

The advantage of b-bit minwise hashing can be demonstrated through the

“variance-space” trade-off: Var
(
R̂b

)
× b. Basically, when the data are highly

similar, a small b (e.g., 1 or 2) may be good enough. However, when the data
are not very similar, b can not be too small.

476 A. Shrivastava and P. Li

1.3 Our Proposal for Sub-linear Time Near Neighbor Search

Our proposed method is simple, by directly using the bits generated from b-bit
minwise hashing to build hash tables, which allow us to search near neighbors
in sub-linear time (i.e., no need to scan all data points).

Specifically, we hash the data points using k random permutations and store
each hash value using b bits (e.g., b ≤ 4). For each data point, we concatenate
the resultant B = b× k bits as a signature. The size of the space is 2B = 2b×k,
which is not too large for small b and k (e.g., bk = 16). This way, we create
a table of 2B buckets, numbered from 0 to 2B − 1; and each bucket stores the
pointers of the data points whose signatures match the bucket number. In the
testing phrase, we apply the same k permutations to a query data point to
generate a bk-bit signature and only search data points in the corresponding
bucket.

Of course, using only one hash table will likely miss many true near neighbors.
As a remedy, we generate (using independent random permutations) L hash
tables; and the query result is the union of the data points retrieved in L tables.

00 10

11 10
11 11

00 00
00 01

Index Data Points

11 01

8, 13, 251
 5, 14, 19, 29
(empty)

33, 174, 3153
 7, 24, 156

 61, 342

00 10

11 10
11 11

00 00
00 01

Index Data Points

11 01

8

17, 36, 129
2, 19, 83

7, 198

56, 989
,9, 156, 879

4, 34, 52, 796

Fig. 1. An example of hash tables, with b = 2, k = 2, and L = 2

In the example in Figure 1, we choose b = 2 bits and k = 2 permutations, i.e.,
one hash table has 24 buckets. Given n data points, we apply k = 2 permutations
and store b = 2 bits of each hashed value to generate n (4-bit) signatures.
Consider data point 8. After k = 2 permutations, the lowest b-bits of the hashed
values are 00 and 00. Therefore, its signature is 0000 in binary and hence we place
a pointer to data point 8 in bucket number 0 (as in the left panel of Figure 1).

In this example, we choose to build L = 2 tables. Thus we apply another
k = 2 permutations and place the n data points to the second table (as in
the right panel of Figure 1) according to their signatures. This time, the signa-
ture of data point 8 becomes 1111 in binary and hence we place it in the last
bucket.

Suppose in the testing phrase, the two (4-bit) signatures of a new data point
are 0000 and 1111, respectively. We then only search the near neighbors in
the set {8, 9, 13, 156, 251, 879}, which is much smaller than the set of n data
points.

Fast Near Neighbor Search in High-Dimensional Binary Data 477

2 Other Methods for Efficient Near Neighbor Search

Developing efficient algorithms for finding near neighbors has been an active
research topic since the early days of modern computing. For example, K-D
trees [12] and variants often work reasonably well in very low-dimensional data.

Our technique can be viewed as an instance of Locality Sensitive Hashing
(LSH) [13,14,15], which represents a very general family of algorithms for near
neighbor search. The performance of any LSH scheme depends on the underlying
algorithm. Our idea of directly using the bits generated from b-bit miniwise
hashing to build hash tables is novel and requires own analysis.

The effectiveness of our proposed algorithm can be demonstrated through
thorough comparisons with strong baselines. In this paper, we focus on spectral
hashing (SH) [8] and the LSH based on sign random projections [9,10,11].

2.1 Centered and Noncentered Spectral Hashing (SH-C, SH-NC)

Spectral hashing (SH) [8] is a representative example of “learning-based hashing”
algorithms, which typically require a (very) expensive training step. It appears
that more recent learning-based hashing algorithms, e.g., [16,17] have not shown
a definite advantage over SH. Moreover, other learning-based search algorithms
are often much more complex than SH. Thus, to ensure our comparison study
is fair and repeatable, we focus on SH.

Given a data matrix X ∈ Rn×D, SH first computes the top eigenvectors of the
sample covariance matrix and maps the data according to the top eigenvectors.
The mapped data are then thresholded to be binary (0/1), which are the hash
code bits for near neighbor search. Clearly, for massive high-dimensional data,
SH is prohibitively memory-intensive and time-consuming. Also, storing these
eigenvectors (for testing new data) requires excessive disk space when D is large.

We made two modifications to the original SH implementation [8]. Here, we
quote from their Matlab code [8] to illustrate the major computational cost:

[pc, l] = eigs(cov(X), npca); X = X * pc;

Our first modification is to replace the eigen-decomposition by SVD, which
avoids materializing the covariance matrix (of size D × D). That is, we first
remove the mean from X (called “centering”) and then apply Matlab “svds”
(instead of “eigs”) on the centered X. This modification can substantially reduce
the memory consumption without altering the results.

The centering step (or directly using “eigs”), however, can be disastrous be-
cause after centering the data are no longer sparse. For example, with center-
ing, training merely 4000 data points in about 16 million dimensions (i.e., the
Webspam dataset) took 2 days in a workstation with 96GB memory, to obtain
192-bit hash codes. Storing those 192 eigenvectors consumed 24GB disk space
after compression (using the “-v7.3” save option in Matlab).

In order to make reliable comparisons with SH, we implemented both centered
version (SH-C) and noncentered version (SH-NC). Since we focus on binary data

478 A. Shrivastava and P. Li

in this study, it is not clear if centering is at all necessary. In fact, our experiments
will show that SH-NC often perform similarly as SH-C.

Even with the above two modifications, SH-NC is still very expensive. For
example, it took over one day for training 35,000 data points of the Web-
spam dataset to produce 256-bit hash code. The prohibitive cost for storing the
eigenvectors remains the same as SH-C (about 32GB for 256 bits).

Once the hash code has been generated, searching for near neighbors amounts
to finding data points whose hash codes are closest (in hamming distance) to the
hash code of the query point [8]. Strictly speaking, there is no proof that one can
build hash tables using the bits of SH in the sense of LSH. Therefore, to ensure
that our comparisons are fair and repeatable, we only experimentally compare
the code quality of SH with b-bit minwise hashing, in Section 3.

2.2 Sign Random Projections (SRP)

The method of random projections utilizes a random matrix P ∈ RD×k whose
entries are i.i.d. normal, i.e., Pij ∼ N(0, 1). Consider two sets S1, S2. One first
generates two projected vectors v1, v2 ∈ Rk: v1j =

∑
i∈S1

Pij , v2j =
∑

i∈S2
Pij ,

and then estimates the size of intersection a = |S1 ∩ S1| by 1
k

∑k
j=1 v1jv2j .

It turns out that this method is not accurate as shown in [3]. Interestingly,
using only the signs of the projected data can be much more accurate (in terms
of variance per bit). Basically, the method of sign random projections estimates
the similarity using the following collision probability:

Pr (sign(v1,j) = sign(v2,j)) = 1− θ

π
, j = 1, 2, ..., k, (5)

where θ = cos−1
(

a√
f1f2

)
is the angle. This formula was presented in [9] and

popularized by [10]. The variance was analyzed and compared in [11].
We will first compare SRP with b-bit minwise hashing in terms of hash code

quality. We will then build hash tables to compare the performance in sub-linear
time near neighbor search. See Appendix A for the variance-space comparisons.

3 Comparing Hash Code Quality

We tested three algorithms (b-bit, SH, SRP) on two binary datasets: Webspam
and EM30k. The Webspam dataset was used in [3], which also demonstrated that
using the binary-quantized version did not result in loss of classification accuracy.
For our experiments, we sampled n = 70, 000 examples from the original dataset.
The dimensionality is D = 16, 609, 143.

The EM30k dataset was used in [18] to demonstrate the effectiveness of image
feature expansions. We sampled n = 30, 000 examples from the original dataset.
The dimensionality is D = 34, 950, 038.

Fast Near Neighbor Search in High-Dimensional Binary Data 479

3.1 The Evaluation Procedure

We evaluate the algorithms in terms of the precision-recall curves. Basically,
for each data point, we sort all other data points in the dataset in descending
(estimated) similarities using the hash code of length B. We walk down the list
(up to 1000 data points) to retrieve the “top T ” data points, which are most
similar (in terms of the original similarities) to that query point. We choose
T = 5, T = 10, T = 20, and T = 50. The precision and recall are defined as:

Precision =
True Positive

#Retrieved
, Recall =

True Positive

T
(6)

We vary # retrieved data points from 1 to 1000 spaced at 1, to obtain continuous
precision-recall curves. The final results are averaged over all the test data points.

3.2 Experimental Results on Webspam (4000)

We first experimented with 4000 data points from the Webspam dataset, which
is small enough so that we could train the centered version of spectral hashing
(i.e., SH-C). On a workstation with 96 GB memory, SH-C took about 2 days
and used about 90GB memory at the peak, to produce 192-bit hash code.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
) b =1, 2b = 4

Webspam (4000)
B = 192, T = 5

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
) b =1,2 4

Webspam (4000)
B = 192, T = 10

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
)

Webspam (4000)
B = 192, T = 20

b = 4
1

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
)

Webspam (4000)
B = 192, T = 50

b = 42

1

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1,2b = 4

Webspam (4000)
B = 128, T = 5

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1,24

Webspam (4000)
B = 128, T = 10

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
)

Webspam (4000)
B = 128, T = 20

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
)

1 b = 4

Webspam (4000)
B = 128, T = 50

2

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1,24

Webspam (4000)
B = 32, T = 5

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1,24

Webspam (4000)
B = 32, T = 10

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

Recall (%)

P
re

ci
si

on
 (

%
)

b = 2

Webspam (4000)
B = 32, T = 20

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

Recall (%)

P
re

ci
si

on
 (

%
) b = 2

Webspam (4000)

B = 32, T = 50

SH−NC
SH−C
SRP
b−bit

Fig. 2. Precision-recall curves (the higher the better) for all four methods (SRP, b-bit,
SH-C, and SH-NC) on a small subset (4000 data points) of the Webspam dataset. The
task is to retrieve the top T near neighbors (for T = 5, 10, 20, 50). B is the bit length.

Figure 2 presents the results of b-bit hashing, SH-C, SH-NC, and SRP in terms
of the precision-recall curves (the higher the better), for B = 192, 128, and 32

480 A. Shrivastava and P. Li

bits. Basically, for b-bit hashing, we choose b = 1, 2, 4 and k so that b× k = B.
For example, if B = 192 and b = 2, then k = 96. As analyzed in [2], for a pair of
data points which are very similar, then using smaller b will outperform using
larger b in terms of the variance-space tradeoff. Thus, it is not surprising if b = 1
or 2 shows better performance than b = 4 for this dataset.

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
) b = 1,2

4

Webspam (4000)
B = 1024, T = 5

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
) b = 1,2

 4

Webspam (4000)
B = 1024, T = 10

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1,2

4

Webspam (4000)
B = 1024, T = 20

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

1 2,4

Webspam (4000)
B = 1024, T = 50

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

Webspam (4000)
B = 512, T = 5

b=4 b = 1,2

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

Webspam (4000)
B = 512, T = 10

b = 1,24

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
) b = 1,24

Webspam (4000)
B = 512, T = 20

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

Webspam (4000)
B = 512, T = 50

SRP
b−bit

Fig. 3. Precision-recall curves for SRP and b-bit hashing on 4000 data points of the
Webspam dataset using 1024-bit and 512-bit codes, for which we could not run SH

Figure 3 compares b-bit hashing with SRP with much longer hash code (1024
bits and 512 bits). These two figures demonstrate that:

– SH-C and SH-NC perform very similarly in this case, while SH-NC is sub-
stantially less expensive (several hours as opposed to 2 days).

– SRP is better than SH and is noticeably worse than b-bit hashing for all b.

We need to clarify how we obtained the gold-standard list for each method. For
b-bit hashing, we used the original resemblances. For SRP, we used the original
cosines. For SH, following [8] we used the original Euclidian distances.

3.3 Experimental Results on Webspam (35000)

Based on 35000 (which are more reliable than 4000) data points of the Webspam
dataset, Figure 4 again illustrates that SRP is better than SH-NC and is worse
than b-bit hashing. Note that we can not train SH-C on 35000 data points. We
limited the SH bit length to 256 because 256 eigenvectors already occupied 32GB
disk space after compression. On the other hand, we can use much longer code
lengths for the two inexpensive methods, SRP and b-bit hashing. As shown in
Figure 5, for 512 bits and 1024 bits, b-bit hashing still outperformed SRP.

3.4 EM30k (15000)

For this dataset, as the dimensionality is so high, it is difficult to train SH
at a meaningful scale. Therefore, we only compare SRP with b-bit hashing in
Figure 6, which clearly demonstrates the advantage of b-bit minwise hashing.

Fast Near Neighbor Search in High-Dimensional Binary Data 481

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1 4

Webspam (35000)
B = 256, T = 5

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
)

b = 14

Webspam (35000)
B = 256, T = 10

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
) b = 14

Webspam (35000)
B = 256, T = 20

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
)

b = 14

Webspam (35000)
B = 256, T = 50

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1 4

Webspam (35000)
B = 128, T = 5

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
)

b = 14

Webspam (35000)
B = 128, T = 10

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
)

b = 14

Webspam (35000)
B = 128, T = 20

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1,24

Webspam (35000)
B = 128, T = 50

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

Recall (%)

P
re

ci
si

on
 (

%
)

b = 14

Webspam (35000)
B = 64, T = 5

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1 4

Webspam (35000)
B = 64, T = 10

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

Recall (%)

P
re

ci
si

on
 (

%
)

b = 14

Webspam (35000)
B = 64, T = 20

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

Recall (%)

P
re

ci
si

on
 (

%
)

b = 14

Webspam (35000)
B = 64, T = 50

SH−NC
SRP
b−bit

Fig. 4. Precision-recall curves for three methods (SRP, b-bit, and SH-NC) on 35000
data points of the Webspam dataset. Again, b-bit outperformed SH and SRP.

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1,2

b = 4

Webspam (35000)
B = 1024, T = 5

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1,2

b = 4

Webspam (35000)
B = 1024, T = 10

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
) b = 1,2

b = 4

Webspam (35000)
B = 1024, T = 20

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
) b = 1,2

b = 4

Webspam (35000)
B = 1024, T = 50

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1 4

Webspam (35000)
B = 512, T = 5

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1 4

Webspam (35000)
B = 512, T = 10

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1 4

Webspam (35000)
B = 512, T = 20

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
) b = 1 4

Webspam (35000)
B = 512, T = 50

SRP
b−bit

Fig. 5. Precision-recall curves for SRP and b-bit minwise hashing on 35000 data points
of the Webspam dataset, for longer code lengths (1024 bits and 512 bits)

4 Sub-linear Time Near Neighbor Search

We have presented our simple strategy in Section 1.3 and Figure 1. Basically,
we apply k permutations to generate one hash table. For each permutation,
we store each hashed data using only b bits and concatenate k b-bit strings to
form a signature. The data point (in fact, only its pointer) is placed in a table
of 2B buckets (B = b × k). We generate L such hash tables using independent
permutations. In the testing phrase, given a query data point, we apply the same

482 A. Shrivastava and P. Li

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

 1 b = 2,4

EM30k (15000)
B = 1024, T = 5

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

1 b = 4

EM30k (15000)
B = 1024, T = 10

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
) 1 b = 4

EM30k (15000)
B = 1024, T = 20

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
) 1 b = 4

EM30k (15000)
B = 1024, T = 50

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1 b = 4

EM30k (15000)
B = 512, T = 5

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

1 b = 4

EM30k (15000)
B = 512, T = 10

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

1 b = 4

EM30k (15000)
B = 512, T = 20

SRP
b−bit

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

 1 b = 4

EM30k (15000)
B = 512, T = 50

SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1 b = 4

EM30k (15000)

B = 256, T = 5

SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Recall (%)

P
re

ci
si

on
 (

%
)

1 b = 4

EM30k (15000)
B = 256, T = 10

SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Recall (%)

P
re

ci
si

on
 (

%
)

1 b = 4

EM30k (15000)
B = 256, T = 20

SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Recall (%)

P
re

ci
si

on
 (

%
)

 1 b = 4

EM30k (15000)

B = 256, T = 50

SRP
b−bit

Fig. 6. Precision-recall curves for SRP and b-bit minwise hashing on 15000 data points
of the EM30k dataset

random permutations to generate signatures and only search for data points
(called the candidate set) in the corresponding buckets.

In the next step, there are many possible ways of selecting near neighbors from
the candidate set. For example, suppose we know the exact nearest neighbor has
a resemblance R0 and our goal is to retrieve T points whose resemblances to the
query point are ≥ cR0 (c < 1). Then we just need to keep scanning the data
points in the candidate set until we encounter T such data points, assuming that
we are able to compute the exact similarities. In reality, however, we often do
not know the desired threshold R0, nor do we have a clear choice of c. Also, we
usually can not afford to compute the exact similarities.

To make our comparisons easy and fair, we simply re-rank all the retrieved
data points and compute the precision-recall curves by walking down the list of
data points (up to 1000) sorted by descending order of similarities. For simplicity,
to re-rank the data points in the candidate set, we use the estimated similarities
from k × L permutations and b bits per hashed value.

4.1 Theoretical Analysis

Collision Probability. Eq. (2) presents the basic collision probability Pb(R).
After the hash tables have been constructed with parameters b, k, L, we can
easily write down the overall collision probability (a commonly used measure):

Pb,k,L(R) = 1−
(
1− P k

b (R)
)L

(7)

which is the probability at which a data point with similarity R will match the
signature of the query data point at least in one of the L hash tables.

Fast Near Neighbor Search in High-Dimensional Binary Data 483

For simplicity, in this section we will always assume that the data are sparse,
i.e., r1 → 0, r2 → 0 in (2) which leads to convenient simplification of (2):

Pb(R) =
1

2b
+

(
1− 1

2b

)
R. (8)

Required Number of Tables L. Suppose we require Pb,k,L(R) > 1 − δ, then
the number of hash tables (denoted by L) should be

L ≥ log 1/δ

log
(

1
1−Pk

b
(R)

) (9)

which can be satisfied by a combination of b and k. The optimal choice depends
on the threshold level R, which is often unfortunately unknown in practice.

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

10
3

 k = 1

 k = 2

 k = 4

 k = 8 k = 16

 b = 1

Resemblance (R)

R
eq

ui
re

d
N

um
be

r
of

 T
ab

le
s

(L
)

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

10
3

 k = 1

 k = 2

 k = 4
 k = 8

 k = 16

 b = 2

Resemblance (R)

R
eq

ui
re

d
N

um
be

r
of

 T
ab

le
s

(L
)

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

10
3

 k = 1

 k = 2

 k = 4 k = 8

 b = 4

Resemblance (R)

R
eq

ui
re

d
N

um
be

r
of

 T
ab

le
s

(L
)

 k = 16

Fig. 7. Required number of tables (L) as in (9), without the log 1/δ term. The numbers
in the plots should multiply by log 1/δ, which is about 3 when δ = 0.05.

Number of Retrieved Points before Re-ranking. The expected number of
total retrieved points (before re-ranking) is an integral, which involves the data
distribution. For simplicity, by assuming a uniform distribution, the fraction of
the data points retrieved before the re-ranking step would be (See Appendix B):∫ 1

0

Pb,k,L(tR)dt = 1−
L∑

i=0

(
L

i

)
(−1)i 1

2bki
1

(2b − 1)R

(
(2b − 1)R + 1

)ki+1 − 1

ki+ 1
(10)

Figure 8 plots (10) to illustrate that the value is small for a range of parameters.

Threshold Analysis. To better view the threshold, one commonly used strat-
egy is to examine the point R0 where the 2nd derivative is zero (i.e., the inflection

point of Pb,k,L(R)):
∂2Pb,k,L

∂R2

∣∣∣
R0

= 0, which turns out to be:

R0 =

(
k−1
Lk−1

)1/k

− 1
2b

1− 1
2b

(11)

Figure 9 plots (11). For example, suppose we fix L = 100 and B = b× k = 16. If
we use b = 4, then R0 ≈ 0.52. If we use b = 2, then R0 ≈ 0.4. In other words, a
larger b is preferred if we expect that the near neighbors have low similarities.

484 A. Shrivastava and P. Li

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

L=1

L=1000

b = 1 k = 16

Resemblance (R)

F
ra

ct
io

n
R

et
rie

ve
d

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

L=1

L=1000

b = 2 k = 8

Resemblance (R)

F
ra

ct
io

n
R

et
rie

ve
d

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

L=1

L=1000

b = 4 k = 4

Resemblance (R)

F
ra

ct
io

n
R

et
rie

ve
d

Fig. 8. Numerical values for (10), the fraction of retrieved points

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

k = 2

k = 4

k = 8

k = 16

b = 1

L

T
hr

es
ho

ld
 R

0

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

k = 2

k = 4

k = 8

k = 16
b = 2

L

T
hr

es
ho

ld
 R

0

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

k = 2

k = 4

k = 8

k = 16 b = 4

L

T
hr

es
ho

ld
 R

0
Fig. 9. The threshold R0 computed by (11), i.e., inflection point of Pb,k,L(R)

4.2 Experimental Results on the Webspam Dataset

We use 35,000 data points to build hash tables and another 35,000 data points for
testing. We build hash tables from both b-bit minwise hashing and sign random
projections, to conduct shoulder-by-shoulder comparisons.

Figure 10 plots the fractions of retrieved data points before re-ranking.
b-bit hashing with b = 1 or 2 retrieves similar numbers of data points. This
means, if we also see that the b-bit hashing (with b = 1 or 2) has bet-
ter precision-recall curves than SRP, we know that b-bit hashing is definitely
better.

8 12 16 20 24
10

−2

10
−1

10
0

Webspam: L = 15

B (bits)

F
ra

ct
io

n
E

va
lu

at
ed

b = 1

b = 2

b = 4

SRP
b−bit

8 12 16 20 24
10

−2

10
−1

10
0

Webspam: L = 25

B (bits)

F
ra

ct
io

n
E

va
lu

at
ed

b = 1

b = 2

b = 4

SRP
b−bit

8 12 16 20 24
10

−2

10
−1

10
0

B (bits)

F
ra

ct
io

n
E

va
lu

at
ed

b = 1

b = 2

b = 4

Webspam: L = 50

SRP
b−bit

8 12 16 20 24
10

−2

10
−1

10
0

Webspam: L = 100

B (bits)

F
ra

ct
io

n
E

va
lu

at
ed

b = 1

b = 2

b = 4

SRP
b−bit

Fig. 10. Fractions of retrieved data points (before re-ranking) on the Webspam dataset

Figures 11 and 12 plot the precision-recall curves for L = 100 and 50 tables,
respectively, demonstrating the advantage of b-bit minwise hashing over SRP.

Fast Near Neighbor Search in High-Dimensional Binary Data 485

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 24 L= 100
Webspam: T = 5

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 24 L= 100
Webspam: T = 10

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 24 L= 100
Webspam: T = 20

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 24 L= 100
Webspam: T = 50

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 20 L= 100
Webspam: T = 5

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 20 L= 100
Webspam: T = 10

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 20 L= 100
Webspam: T = 20

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 20 L= 100
Webspam: T = 50

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 16 L= 100
Webspam: T = 5

1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 16 L= 100
Webspam: T = 10

1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 16 L= 100
Webspam: T = 20

1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 16 L= 100
Webspam: T = 50

1

b = 4

SRP
b−bit

Fig. 11. Precision-recall curves for SRP and b-bit minwise hashing on the Webspam
dataset using L = 100 tables, for top T = 5, 10, 20, and T = 50 near neighbors

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 20 L= 50
Webspam: T = 5

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 20 L= 50
Webspam: T = 10

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 20 L= 50
Webspam: T = 20

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 20 L= 50
Webspam: T = 50

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 16 L= 50
Webspam: T = 5 b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 16 L= 50
Webspam: T = 10

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 16 L= 50
Webspam: T = 20

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 16 L= 50
Webspam: T = 50

b = 1

b = 4

SRP
b−bit

Fig. 12. Precision-Recall curves for SRP and b-bit minwise hashing on the Webspam
dataset, using L = 50 tables

4.3 Experimental Results on EM30k Dataset

For this dataset, we choose 5000 data points (out of 30000) as the query points
and use the rest 25000 points for building hash tables.

Figure 13 plots the # retrieved data points before the re-ranking step. We
can see that b-bit hashing with b = 2 retrieves similar numbers of data points.
Again, this means, if we also see that the b-bit hashing (with b = 1 or 2) has
better precision-recall curves than SRP, then b-bit hashing is certainly better.

486 A. Shrivastava and P. Li

8 12 16
10

−3

10
−2

10
−1

10
0

EM30k: L = 15

B

F
ra

ct
io

n
E

va
lu

at
ed

b = 4

b = 2

b = 1

srp
b−bit

8 12 16
10

−3

10
−2

10
−1

10
0

EM30k: L = 25

B

F
ra

ct
io

n
E

va
lu

at
ed

b = 4

b = 2

b = 1

srp
b−bit

8 12 16
10

−3

10
−2

10
−1

10
0

EM30k: L = 50

B

F
ra

ct
io

n
E

va
lu

at
ed

b = 4

b = 2

b = 1

srp
b−bit

8 12 16
10

−3

10
−2

10
−1

10
0

EM30k: L = 100

B

F
ra

ct
io

n
E

va
lu

at
ed

b = 4

b = 2

b = 1

srp
b−bit

Fig. 13. Fractions of retrieved data points (before re-ranking) on the EM30k dataset

0 20 40 60 80 100
0

20

40

60

80

100
B= 16 L= 100

EM30k: T = 5

Recall (%)

P
re

ci
si

on
 (

%
)

1

b = 2

b = 4

SRP
b−bit

0 20 40 60 80 100
0

20

40

60

80

100
B= 16 L= 100

EM30k: T = 10

Recall (%)

P
re

ci
si

on
 (

%
)

1

b = 2 b = 4

SRP
b−bit

0 20 40 60 80 100
0

20

40

60

80

100
B= 16 L= 100

EM30k: T = 20

Recall (%)
P

re
ci

si
on

 (
%

)

1

b = 2 b = 4

SRP
b−bit

0 20 40 60 80 100
0

20

40

60

80

100
B= 16 L= 100

EM30k: T = 50

Recall (%)

P
re

ci
si

on
 (

%
)

1

b = 2 b = 4

SRP
b−bit

0 20 40 60 80 100
0

20

40

60

80

100
B= 12 L= 100

EM30k: T = 5

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1

b = 2

b = 4

SRP
b−bit

0 20 40 60 80 100
0

20

40

60

80

100
B= 12 L= 100

EM30k: T = 10

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1

b = 2

b = 4

SRP
b−bit

0 20 40 60 80 100
0

20

40

60

80

100
B= 12 L= 100

EM30k: T = 20

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1

b = 2

b = 4

SRP
b−bit

0 20 40 60 80 100
0

20

40

60

80

100
B= 12 L= 100

EM30k: T = 50

Recall (%)

P
re

ci
si

on
 (

%
)

b = 1

b = 2

b = 4

SRP
b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 8 L= 100

EM30k: T = 5

b = 1

b = 2,4

SRP
b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 8 L= 100

EM30k: T = 10

1

b = 4

SRP
b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 8 L= 100

EM30k: T = 20

1

b = 4

SRP
b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 8 L= 100

EM30k: T = 50

1

b = 4

SRP
b−bit

Fig. 14. Precision-Recall curves for SRP and b-bit minwise hashing on the EM30k
dataset, using L = 100 tables

Figure 14 presents the precision-recall curves for L = 100 tables, again demon-
strating the advantage of b-bit hashing over SRP.

5 Conclusion

This paper reports the first study of directly using the bits generated by b-bit
minwise hashing to construct hash tables, for achieving sub-linear time near
neighbor search in high-dimensional binary data. Our proposed scheme is ex-
tremely simple and exhibits superb performance compared to two strong base-
lines: spectral hashing (SH) and sign random projections (SRP).

Acknowledgement. This work is supported by NSF (DMS-0808864, SES-
1131848), ONR (YIP-N000140910911), and DARPA (FA-8650-11-1-7149).

Fast Near Neighbor Search in High-Dimensional Binary Data 487

References

1. Tong, S.: Lessons learned developing a practical large scale machine learning sys-
tem (2008), http://googleresearch.blogspot.com/2010/04/lessons-learned-
developing-practical.html

2. Li, P., König, A.C.: b-bit minwise hashing. In: WWW, Raleigh, NC, 671–680 (2010)
3. Li, P., Shrivastava, A., Moore, J., König, A.C.: Hashing algorithms for large-scale

learning. In: NIPS, Vancouver, BC (2011)
4. Broder, A.Z.: On the resemblance and containment of documents. In: The Com-

pression and Complexity of Sequences, Positano, Italy, pp. 21–29 (1997)
5. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of

the web. In: WWW, Santa Clara, CA, pp. 1157–1166 (1997)
6. Fetterly, D., Manasse, M., Najork, M., Wiener, J.L.: A large-scale study of the

evolution of web pages. In: WWW, Budapest, Hungary, pp. 669–678 (2003)
7. Manku, G.S., Jain, A., Sarma, A.D.: Detecting Near-Duplicates for Web-Crawling.

In: WWW, Banff, Alberta, Canada (2007)
8. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS (2008)
9. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-

imum cut and satisfiability problems using semidefinite programming. Journal of
ACM 42(6), 1115–1145 (1995)

10. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
STOC, Montreal, Quebec, Canada, pp. 380–388 (2002)

11. Li, P., Hastie, T.J., Church, K.W.: Improving Random Projections Using Marginal
Information. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI),
vol. 4005, pp. 635–649. Springer, Heidelberg (2006)

12. Friedman, J.H., Baskett, F., Shustek, L.: An algorithm for finding nearest neigh-
bors. IEEE Transactions on Computers 24, 1000–1006 (1975)

13. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the
curse of dimensionality. In: STOC, Dallas, TX, pp. 604–613 (1998)

14. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM 51, 117–122 (2008)

15. Rajaraman, A., Ullman, J.: Mining of Massive Datasets,
http://i.stanford.edu/ullman/mmds.html

16. Salakhutdinov, R., Hinton, G.E.: Semantic hashing. Int. J. Approx. Reason-
ing 50(7), 969–978 (2009)

17. Li, Z., Ning, H., Cao, L., Zhang, T., Gong, Y., Huang, T.S.: Learning to search
efficiently in high dimensions. In: NIPS (2011)

18. Li, P.: Image classification with hashing on locally and gloablly expanded features.
Technical report

A Variance-Space Comparisons (b-Bit Hashing v.s. SRP)

From the collision probability (5) of sign random projections (SRP), we can

estimate the angle θ = cos−1
(

a√
f1f2

)
, with variance

Var
(
θ̂
)
=

π2

k

(
1− θ

π

)(
θ

π

)
=

θ(π − θ)

k
.

http://googleresearch.blogspot.com/2010/04/lessons-learned-developing-practical.html
http://googleresearch.blogspot.com/2010/04/lessons-learned-developing-practical.html
http://i.stanford.edu/ullman/mmds.html

488 A. Shrivastava and P. Li

We can then estimate the intersection a = |S1 ∩ S2| by

âS = cos θ̂
√
f1f2, V ar (âS) =

θ(π − θ)

k
f1f2 sin

2(θ)

and the resemblance by R̂S = âS

f1+f2−âS

V ar
(
R̂S

)
=

θ(π − θ)

k
f1f2 sin

2(θ)

(
f1 + f2

(f1 + f2 − a)2

)2

+O

(
1

k2

)
.

We already know the variance of the b-bit minwise hashing estimator (4), denoted

by V ar
(
R̂b

)
. To compare it with V ar

(
R̂S

)
, we define

Wb =
V ar

(
R̂S

)
V ar

(
R̂b

)
× b

=
θ(π − θ)f1f2 sin

2(θ)
(

f1+f2
(f1+f2−a)2

)2

[C1,b+(1−C2,b)R][1−C1,b−(1−C2,b)R]

[1−C2,b]
2

(12)

where C1,b, C2,b (functions of r1, r2, b) are defined in (2). Wb > 1 means b-bit
minwise hashing is more accurate than SRP at the same storage; see Figure 15.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Resemblance (R)

W
b

b = 4, r2 = r1

r1 = 0.01

r1 = 0.99

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

Resemblance (R)

W
b

b = 4, r2 = 0.8× r1

r1 = 0.99

r1 = 0.01

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

Resemblance (R)

W
b

b = 4, r2 = 0.4× r1

r1 = 0.99

r1 = 0.01

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Resemblance (R)

W
b

b = 2, r2 = 1× r1

r1 = 0.99

r1 = 0.01

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

Resemblance (R)

W
b

b = 2, r2 = 0.8× r1

r1 = 0.99

r1 = 0.01

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

Resemblance (R)

W
b

b = 2, r2 = 0.4× r1

r1 = 0.99

r1 = 0.01

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Resemblance (R)

W
b

b = 1, r2 = r1

r1 = 0.01

0.99

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

Resemblance (R)

W
b

b = 1, r2 = 0.8× r1

r1 = 0.01

0.99

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

Resemblance (R)

W
b

b = 1, r2 = 0.4× r1

r1 = 0.01

r1 = 0.99

Fig. 15.Wb, b = 4, 2, 1, as defined in (12). r1 and r2 are defined in (2). BecauseWb > 1
in most cases (sometimes significantly so), we know that b-bit minwise hashing is more
accurate than 1-bit random projections at the same storage cost.

Fast Near Neighbor Search in High-Dimensional Binary Data 489

B The Derivation of (10)

∫ 1

0

Pb,k,L(tR)dt =

∫ 1

0

1−
(
1− P k

b (tR)
)L

dt = 1−
∫ 1

0

(
1− P k

b (tR)
)L

dt

=1−
∫ 1

0

L∑
i=0

(
L

i

)
(−1)iP ki

b (tR)dt = 1−
L∑

i=0

(
L

i

)
(−1)i

∫ 1

0

P ki
b (tR)dt

=1−
L∑

i=0

(
L

i

)
(−1)i 1

2bki

∫ 1

0

(
1 + (2b − 1)tR

)ki

dt

=1−
L∑

i=0

(
L

i

)
(−1)i 1

2bki

ki∑
j=0

(2b − 1)jRj

(
ki

j

) ∫ 1

0

tjdt

=1−
L∑

i=0

(
L

i

)
(−1)i 1

2bki

ki∑
j=0

(
ki

j

)
(2b − 1)jRj 1

j + 1

=1−
L∑

i=0

(
L

i

)
(−1)i 1

2bki
1

(2b − 1)R

(
(2b − 1)R + 1

)ki+1 − 1

ki+ 1

Fully Sparse Topic Models

Khoat Than1 and Tu Bao Ho1,2

1 Japan Advanced Institute of Science and Technology,
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

2 John von Neumann Institute, Vietnam National University, HCM, Vietnam
{khoat,bao}@jaist.ac.jp

Abstract. In this paper, we propose Fully Sparse Topic Model (FSTM)
for modeling large collections of documents. Three key properties of the
model are: (1) the inference algorithm converges in linear time, (2) learn-
ing of topics is simply a multiplication of two sparse matrices, (3) it pro-
vides a principled way to directly trade off sparsity of solutions against
inference quality and running time. These properties enable us to speed-
ily learn sparse topics and to infer sparse latent representations of doc-
uments, and help significantly save memory for storage. We show that
inference in FSTM is actually MAP inference with an implicit prior. Ex-
tensive experiments show that FSTM can perform substantially better
than various existing topic models by different performance measures. Fi-
nally, our parallel implementation can handily learn thousands of topics
from large corpora with millions of terms.

1 Introduction

Topic modeling has been increasingly maturing to be an attractive research area.
Originally motivated from textual applications, it has been going beyond far from
text to touch upon many amazing applications in Computer Vision, Bioinformat-
ics, Software Engineering, Forensics, to name a few. Recently, much interest in
this community has focused on developing topic models for large-scale settings,
e.g., [1, 2, 3, 4, 5]. In our observations, the most common large-scale settings
are: (a) the number of training documents is large; (b) the number of topics to be
learned is large; (c) the vocabulary size is large; (d) a large number of documents
need to be a posteriori inferred in a limited time budget. Further, combinations
of these settings yield more challenges to the topic modeling community.

Most previous works have focused on the settings (a) and (b) by utilizing
parallel/distributed/online architectures [1, 2, 3, 4, 6]. Those works, despite being
breakthrough developments for Latent Dirichlet Allocation (LDA) [7], however
will encounter some severe problems when vocabularies are very large or when
new representations of documents have to be stored for doing other tasks. The
main reason is that the Dirichlet distribution employed by LDA prevents any zero
contributions of terms to topics and of topics to documents; therefore the learned
topics and new representations of documents are extremely dense, consuming
huge memory. This challenges deployment of LDA in practical applications with

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 490–505, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Fully Sparse Topic Models 491

the settings (b) and (c).1 Besides, inference methods for LDA are often slow,
partially due to the NP-hardness nature of the model [8]. This characteristic
may ruin out applicability of LDA to applications with the setting (d).

To reduce memory for efficient storage and inference, some studies have in-
troduced the notion of sparsity for topic models. A popular approach is to use
regularization techniques to impose sparsity constraints on topics or/and latent
representations of documents, leading to RLSI [5], SRS [9], and STC [10].2 Even
though these models provide elegant solutions to the sparsity problem, they
remain some serious drawbacks when dealing with large-scale settings. Indeed,
SRS has no guarantee on convergence of inference/learning, and its scalability is
unknown. STC is extremely problematic with learning, because learning of top-
ics is to solve a optimization problem with a large number of variables which are
inseparable. RLSI has high complexity for both learning and inference, triple in
the number of topics. Finally, there are two common limitations of those models:
first, auxiliary parameters of those models associated with regularization terms
require us to do model selection, which is problematic in dealing with large-scale
settings; second, one cannot directly trade off sparsity of solutions against time
and quality.3

In this paper, we present our initial step towards resolving the mentioned four
large-scale settings. Specifically, we present Fully Sparse Topic Model (FSTM)
which is a simplified variant of LDA and Probabilistic Latent Semantic Analysis
(PLSA) [13]. Unlike LDA, our model does not employ Dirichlet priors, and allows
us to learn sparse latent representations of documents which are necessary for
many applications, e.g., information/image retrieval. Inference in our model is
casted as a concave maximization problem over the simplex of topics, which
can be solved in linear time by the Frank-Wolfe algorithm [14].4 One crucial
property of the Frank-Wolfe algorithm is that it is easy to directly trade off
sparsity level of solutions against quality and running time. So FSTM inherits
this property for inference. Sparse inference in FSTM results in an interesting
characteristic that there is an implicit prior over latent representations, without
an explicit endowment even. In addition, learning of topics is formulated as an
optimization problem so that it admits a closed-form solution, being a product
of two sparse matrices. Hence the learned topics are very likely to be sparse.

Summarizing, the ability to learn sparse topics and to infer sparse latent repre-
sentations of documents allows FSTM to save substantially memory for storage.

1 Topical exploration of huge corpora, e.g. Google n-gram books, is an example.
2 Another direction is to use Indian buffet processes [11] or a spike-and-slap distribu-
tion [12] to induce sparsity. Nonetheless, this approach often results in much involved
models and thus complicates learning and inference. The proposed learning and in-
ference methods [11, 12] are very far from a touch upon large-scale settings.

3 For regularization techniques, one may expect to get sparser solutions by increasing
the values of the auxiliary parameters. However, it is not always provably true. Hence
such a control over sparsity is indirect.

4 Note that our reformulation of inference for FSTM can be readily applied to many
variants of PLSA and LDA, and hence can help accelerate their inference. The reason
is that such models often assume a document to be a mixture of topics.

492 K. Than and T.B. Ho

Table 1. Theoretical comparison of some topic models. V is the vocabulary size, K is
the number of topics, n is the length of the document to be inferred. K̄ is the average
number of topics to which a term has nonzero contributions, K̄ ≤ K. L is the number
of iterations for inference. K̄ (and L) is different for these models. ‘-’ denotes ‘no’ or
‘unspecified’ ; ‘�’ means ‘yes’ or ‘taken in consideration’.

Model FSTM PLSA LDA STC SRS RLSI
Document sparsity � - - � � -
Topic sparsity � - - - � �
Sparsity control direct - - indirect indirect indirect
Trade-off:

sparsity vs. quality � - - - - -
sparsity vs. time � - - - - -

Inference complexity L.O(n.K̄ + K) L.O(n.K) L.O(n.K) L.O(n.K) L.O(n.K) L.O(V.K̄2 + K3)
Inference error O(1/L) - - - - 0
Storage for topics V.K̄ V.K V.K V.K V.K̄ V.K̄
Auxiliary parameters 0 0 0 3 2 2

Combined with a linear time inference algorithm, FSTM overcomes severe limi-
tations of previous probabilistic models and can deal well with the settings (b),
(c), and (d). Fast learning of topics and fast inference of documents also help
FSTM to overcome limitations of non-probabilistic models (e.g., STC and RLSI),
and enable us to deal well with the setting (a). Besides, an intriguing property
of our model is the ability to directly trade off inference quality against running
time and sparsity level of latent representations. This property is essential in
order to resolve large-scale settings.

For further comparison, we report some theoretical characteristics of six closely
related models in Table 1. Extensive experiments demonstrate that FSTM
performs substantially better than various existing topic models by different per-
formance measures. Our parallel implementation can handily learn thousands of
topics from large corpora with millions of terms, which is on the order of mag-
nitudes larger than known experiments with state-of-the-art models.

Roadmap of this paper: we discuss briefly in Section 2 some necessary
concepts and results for concave optimization over simplex. The main model
will be presented in Section 3. Section 4 is devoted to analyzing some theoretical
characteristics of FSTM, and to revealing why there is an implicit prior over
latent representations. Evaluation and comparison are discussed in details in
Section 5. Our conclusions are in the final section.

2 Background

Before going deeply into our model and analysis, it is necessary to introduce
some notations and to revisit some known results about sparse approximation
for concave optimization over simplex.

V : vocabulary of V terms, often written as {1, 2, ..., V }.
Id: set of term indices of document d,

i.e., each element in Id is the vocabulary index of a term appearing in d.
d: a document represented as a count vector, d = (dj)j∈Id ,

where dj is the frequency of term j in d.

Fully Sparse Topic Models 493

C: a corpus consisting of M documents, C = {d1, ...,dM}.
βk: a topic which is a distribution over the vocabulary V .

βk = (βk1, ..., βkV)
t, βkj ≥ 0,

∑V
j=1 βkj = 1.

K: number of topics.

A topic model often assumes that a given corpus is composed from K topics,
β = (β1, ...,βK), and each document is a mixture of those topics. Example
models include PLSA, LDA and many of their variants. Under those models,
each document has another latent representation. Such latent representations of
documents can be inferred once those models have been learned previously.

Definition 1 (Topic proportion). Consider a topic model M with K topics.
Each document d will be represented by θ = (θ1, ..., θK)t, where θk indicates the

proportion that topic k contributes to d, and θk ≥ 0,
∑K

k=1 θk = 1. θ is called
topic proportion (or latent representation) of d.

Definition 2 (Inference). Consider a topic model M with K topics, and a
given document d. The inference problem is to find the topic proportion that
maximizes the likelihood of d under the model M.

For some applications, it is necessary to infer which topic contributes to a specific
emission of a term in a document. Nevertheless, it may be unnecessary for many
other applications. Therefore we do not take this problem into account and leave
it for future work.

Definition 3 (Document sparsity). Consider a topic model M with K
topics, and a corpus C with M documents. Let θm be the topic proportion of
document dm ∈ C. Then the document sparsity of C under the model M is de-
fined as the proportion of non-zero entries of the new representation of C, i.e.,
document sparsity = #non-zeros of (θ1,...,θM)

M.K .

Definition 4 (Topic sparsity). Consider a topic model M with K topics β =
(β1, ...,βK). Topic sparsity of M is defined as the proportion of non-zero entries
in β, i.e., topic sparsity = #non-zeros of β

V.K .

2.1 Concave Maximization over Simplex and Sparse Approximation

Let b1, ..., bK be vectors in RV . Denote as Δ = conv(b1, ..., bK) the convex
hull of those vectors. Consider a concave function f(x) : RV → R which is
twice differentiable over Δ. We are interested in the following problem, concave
maximization over simplex,

x∗ = argmax
x∈Δ

f(x) (1)

Convex/concave optimization has been extensively studied in the optimization
literature. There has been various excellent results such as [15, 16]. However, we
will concentrate on sparse approximation algorithms specialized for the problem
(1). More specifically, we focus on the Frank-Wolfe algorithm [14].

494 K. Than and T.B. Ho

Loosely speaking, the Frank-Wolfe algorithm is an approximation one for the
problem (1). Starting from a vertex of the simplex Δ, it iteratively selects the
most potential vertex of Δ to change the current solution closer to that vertex
in order to maximize f(x). It has been shown that the Frank-Wolfe algorithm
converges at a linear rate to the optimal solution. Moreover, at each iteration,
the algorithm finds a provably good approximate solution lying in a face of Δ.

Theorem 1. [14] Let f be a twice differentiable concave function over Δ, and
denote Cf = − 1

2 supy,z∈Δ;ỹ∈[y,z](y− z)t.∇2f(ỹ).(y− z). After � iterations, the
Frank-Wolfe algorithm finds a point x� on an (� + 1)−dimensional face of Δ
such that

max
x∈Δ

f(x)− f(x�) ≤
4Cf

�+ 3
. (2)

It is worth noting some observations about the Frank-Wolfe algorithm:

- It achieves a linear rate of convergence, and has provably bounds on the
goodness of solutions. These are crucial for practical applications.

- Overall running time mostly depends on how complicated f and ∇f are.
- It provides an explicit bound on the dimensionality of the face of Δ in which
an approximate solution lies. After � iterations, x� is a convex combination of
at most �+1 vertices ofΔ. Let θ� be the coefficients of that combination, i.e.,
x� =

∑
k θ�kbk. Theorem 1 ensures that at most �+ 1 out of K components

of θ� are non-zero. This implies that we can find an approximate solution to
the problem (1) with an associated sparse latent representation θ�.

- It is easy to directly control the sparsity level of such latent representations
by trading off sparsity against quality. (The fewer the number of iterations,
the more sparse the latent representation.) This characteristic makes the
algorithm more attractive for resolving high dimensional problems.

3 Fully Sparse Topic Models

In this section, we present our model, named Fully Sparse Topic Model (FSTM),
which is considerably simple. To be more detailed, FSTM assumes that a corpus
is composed from K topics, β1, ...,βK , and each document d is generated by the
following process:

1. Pick randomly a topic proportion θ.
2. For the jth word in d:

– Pick a latent topic zk with probability P (zk|d) = θk,
– Generate a word wj with probability P (wj |zk) = βkj .

It is straightforward to see that FSTM is a simplified variant of LDA. The main
difference is that FSTM does not employ Dirichet prior over topic proportions,
and deliberately allows only few topics to contribute to a document. This relax-
ation allows us to infer really sparse topic proportions of documents. Besides,
we further propose an approach to learning topics so that sparsity of topic pro-
portions can be exploited. The latent topics are sparse as well, hence leading to

Fully Sparse Topic Models 495

Fig. 1. Graphical representations of three topic models

the name of our model. Figure 1 depicts the graphical representation of FSTM,
accompanied by PLSA and LDA.

In spite of no explicit prior over θ in the model description, we will see in
Section 4 that in fact there exists an implicit prior having density function
p(θ|λ) ∝ exp(−λ.||θ||0), where ||θ||0 is the number of non-zero entries of θ.
This property is a consequence of sparse inference in our model. Note that this
property of FSTM is intriguing and hence we term it “implicit modeling”.

3.1 Inference

Given a document d and topics β, the inference task in FSTM is to find which
topics contribute to d and how much they contribute to d. In other words, we
have to infer θ. Unlike existing inference approaches for topic models, we will
not make effort to infer directly θ. Instead, we reformulate the inference task as
a concave maximization problem over the simplex of topics.

Lemma 1. Consider FSTM with topics β1, ...,βK , and a given document d.
The inference problem can be reformulated as the following concave maximization
problem, over the simplex Δ = conv(β1, ...,βK),

x∗ = argmax
x∈Δ

∑
j∈Id

dj log xj . (3)

Proof. For a given document d, the probability that a term wj appears in d can

be expressed as P (wj |d) =
∑K

k=1 P (wj |zk).P (zk|d) =
∑K

k=1 θkβkj . Hence the
log likelihood of d is logP (d) = log

∏
j∈Id

P (wj |d)dj =
∑

j∈Id
dj logP (wj |d) =∑

j∈Id
dj log

∑K
k=1 θkβkj .

The inference task is the problem of searching for θ to maximize the likelihood
of d. Denoting as xj =

∑K
k=1 θkβkj and x = (x1, ..., xV)

t, we arrive at

logP (d) =
∑
j∈Id

dj log xj . (4)

Therefore optimization over θ now is translated into that over x. Note that
x = (x1, ..., xV)

t =
∑K

k=1 θkβk. Combining this with the fact that
∑

k θk = 1,
θk ≥ 0, ∀k, one can easily realize that x is a convex combination of the K topics
β1, ...,βK . It implies x ∈ Δ. As a result, the inference task is in turn the problem
of finding x ∈ Δ that maximizes the objective function (4). ��

496 K. Than and T.B. Ho

Algorithm 1. Inference algorithm

Input: document d and topics β1, ...,βK .
Output: θ∗, for which

∑K
k=1 θ∗,kβk = x∗ maximizes f(x) =

∑
j∈Id

dj log xj .
Pick as βr the vertex of Δ = conv(β1, ...,βK) with largest f value.
Set x0 := βr; θ0,r = 1; θ0,k = 0, ∀k �= r;
for � = 0, ...,∞ do
i′ := argmaxi β

t
i∇f(x
);

α′ := argmaxα∈[0,1] f(αβi′ + (1− α)x
);
x
+1 := α′βi′ + (1− α′)x
;
θ
+1 := (1− α′)θ
; and then set θ
+1,i′ := θ
+1,i′ + α′.

end for

This lemma provides us a connection between inference and concave optimiza-
tion, and allows us to seamlessly use the Frank-Wolfe algorithm for inference. An
appropriate adaptation to the Frank-Wolfe algorithm [14] results in an inference
algorithm for FSTM, as presented in Algorithm 1. In our implementation, we
solve for α by the gradient ascent approach.

3.2 Learning

The task of learning FSTM is to learn all topics β, given a corpus C. We use EM
scheme to iteratively learn the model. Specifically, we repeat the following two
steps until convergence: (E-step) do inference for each document of C; (M-step)
maximize the likelihood of C with respect to β.

Note that the E-step for each document is discussed in the previous subsec-
tion. The remaining task is to solve for β. Denoting as θd the topic proportion of
document d ∈ C which has been inferred in the E-step, we express the log like-
lihood of C as logP (C) =

∑
d∈C logP (d) =

∑
d∈C

∑
j∈Id

dj log
∑K

k=1 θdkβkj ≥∑
d∈C

∑
j∈Id

dj
∑K

k=1 θdk log βkj . We have used Jensen’s inequality to derive the
last term, owing to the fact

∑
k θdk = 1, θdk ≥ 0, ∀k. Next we maximize the lower

bound of logP (C) with respect to β. In other words, we have to maximize

g(β) =
∑
d∈C

∑
j∈Id

dj

K∑
k=1

θdk log βkj , such that

V∑
j=1

βkj = 1, βkj ≥ 0, ∀k, j. (5)

It is worthwhile noticing that the vectors βk are separable from each other in
the objective function g(β). Hence we can solve for each individually. Taking
the Lagrange function into consideration and forcing its derivatives to be 0, we
easily arrive at the following solution

βkj ∝
∑
d∈C

djθdk. (6)

Up to this point, we can learn FSTM by iterating E-step and M-step until
convergence. In the E-step, each document is inferred by using the Frank-Wolfe
algorithm, given the objective function as in (3) and topics β. The M-step only
does simple calculation according to (6) to update all topics.

Fully Sparse Topic Models 497

4 Theoretical Analysis

We will show that the inference algorithm for FSTM can provide provably good
solutions. It requires modestly few arithmetic operations, linear in the length of
the document to be inferred or/and in the number of topics. Further, we can
easily trade off quality of solution against sparsity and inference time. Existing
topic models do not own these interesting properties.

4.1 Complexity and Goodness of Inference

Theorem 2. Consider FSTM with K topics, and a document d. Let Cf be de-
fined as in Theorem 1 for the function f(x) =

∑
j∈Id

dj log xj . Then Algorithm 1
converges to the optimal solution with a linear rate. In addition, after L itera-
tions, the inference error is at most 4Cf/(L+3), and the topic proportion θ has
at most L+ 1 non-zero components.

Proof. Inference of FSTM is exactly the Frank-Wolfe algorithm for the function
f(x) =

∑
j∈Id

dj log xj which is twice differentiable at all x satisfying xj > 0,
∀j ∈ Id. Hence this theorem is a corollary of Theorem 1. ��
Next we will analyze computational complexity of the inference algorithm. Com-
mon technique to store a sparse matrix is row-wise, i.e., we store all non-zero
elements in a row of that matrix by an 1-dimensional array. This is beneficial
to do multiplication of a sparse matrix with a vector. Indeed, consider a matrix
B of size m × n. Letting m̄ be the average number of non-zero elements of a
column of B, computing Bx requires only O(n.m̄+m) arithmetic operations.

Theorem 3. Each iteration of Algorithm 1 requires only O(n.K̄+K) arithmetic
operations, where K̄ is the average number of topics to which a term has non-
zero contributions, K̄ ≤ K, and n = |Id|. Overall, after L iterations, Algorithm 1
requires L.O(n.K̄ +K) arithmetic operations.

Proof. Letting a = ∇f(x), we have βt∇f(x) = βta. Note that a is very sparse
because of ai = ∂f/∂xi = 0, for i /∈ Id. Hence only n columns of βt involve
in computation of βta. This implies that we need just O(n.K̄ +K) arithmetic
operations to compute βta and to find the index i′. O(n.K̄ + K) arithmetic
operations are also sufficient to do the initial step of choosing x0, since the most
expensive computations are to evaluate f at the vertices of the simplex, which
amounts to a multiplication of (logβ)td, where logβ = (log βij)V ×K .

Searching for α can be done very quickly since the problem is concave in
one variable. Each evaluation of f(x) requires only O(n) operations. Moreover
O(n.K̄ +K) arithmetic operations are sufficient to update other variables. ��
Remark 1 (Learning). Our model is learned by the EM scheme. Each EM it-
eration requires M.L.O(n.K̄ + K) arithmetic operations to infer M training
documents, and an update for the topics according to formula (6). Note that up-
date of topics amounts to multiplication of two very sparse matrices (one is the
matrix representing the training corpus, and the other is the new representation
of that corpus.) Hence it can be computed very fast.

498 K. Than and T.B. Ho

4.2 Managing Sparsity Level and Trade-off

Good solutions are often necessary for practical applications. In practice, we
may have to spend intensive time and huge memory to search such solutions.
This sometimes is not necessary or impossible in limited time/memory settings.
Hence one would prefer to trading off quality of solutions against time/memory.

Searching for sparse solutions is a common approach in Machine Learning to
reduce memory for storage and efficient processing. Most previous works have
tried to learn sparse solutions by imposing regularization which induces spar-
sity, e.g., L1 regularization [10, 5] and entropic regularization [9]. Nevertheless,
those techniques are severely limited in the sense that we cannot directly control
sparsity level of solutions (e.g., one cannot decide how many non-zero compo-
nents solutions should have). In other words, sparsity level of solutions is a priori
unpredictable. This limitation makes regularization techniques inferior in mem-
ory limited settings. This is also the case with other works that employ some
probabilistic distributions to induce sparsity such as [11, 12].

Unlike prior topic models, the inference algorithm for FSTM naturally pro-
vides a principled way to control sparsity. Theorem 2 implies that if stopped at
the Lth iteration, the inferred solution has at most L+1 non-zero components.
Hence one can control sparsity level of solutions by simply limiting the number
of iterations. It means that we can predict a priori how sparse and how good
the inferred solutions are. Less iterations, more sparse (but probably worse) so-
lutions of inference. Besides, we can trade off sparsity against inference time.
More iterations imply more necessary time and probably denser solutions.

4.3 Implicit Prior over θ

In Section 3 we describe our model without any specific prior over latent repre-
sentations θ. As well-known in the literature, no prior endowment may cause a
model to be prone to overfitting. Nonetheless, it seems not the case with FSTM.
Indeed, we argue that there is an implicit prior over θ in the model.

Note that the inference algorithm of FSTM allows us to easily trade off spar-
sity of solutions against quality and time. If one insists on solutions with at
most t nonzero components, the inference algorithm can modified accordingly.
In this case, it mimics that one is trying to find a solution to the problem
maxθ∈Δ1{f(θ) : ||θ||0 ≤ t}, where Δ1 is the unit simplex in RK . We re-
mark a well-known fact that the constraint ||θ||0 ≤ t is equivalent to addi-
tion of a penalty term λ.||θ||0 to the objective function [17], for some constant
λ. Therefore, one is trying to solve for θ∗ = argmaxθ∈Δ1{f(θ) − λ.||θ||0} =
argmaxθ∈Δ1 P (d|θ).P (θ) = argmaxθ∈Δ1 P (θ|d), where p(θ) ∝ exp(−λ.||θ||0).
Notice that the last problem, θ∗ = argmaxθ∈Δ1 P (θ|d), is an MAP inference
problem. Hence, these observations basically show that inference by Algorithm 1
for sparse solutions mimics MAP inference. As a result, there exists an implicit
prior, having density function p(θ;λ) ∝ exp(−λ.||θ||0), over latent topic propor-
tions. This is another characteristic that distinguish FSTM from existing topic
models.

Fully Sparse Topic Models 499

5 Experimental Evaluation

This section is devoted to investigating practical performance of our model. Due
to space limit, we focus mainly on investigating practical behaviors of FSTM to
see clearly its characteristics. We will describe briefly performance of our model
on huge corpora, omitting implementation details in this extended abstract.5

5.1 Sparsity, Time, Quality, and Trade-off

We first aim at answering the following questions: (1) how sparse are topics and
latent representations of documents? (2) how fast can the model infer/learn?
(3) can the model achieve good quality? To this end, we chose 4 corpora for
experiments: 2 small (AP, KOS), and 2 average (Grolier, Enron).6 Figure 2 con-
tains some information about these corpora. For each corpus, we used 90% for
learning and 10% held out for evaluation. Four models are included for com-
parison: FSTM, PLSA, LDA, and STC.7 In our experiments we used the same
convergence criteria for these models: relative improvement of log likelihood (or
objective functions in STC) is less than 10−6 for inference, and 10−4 for learning;
at most 1000 iterations are allowed to do inference. We used default settings for
some other auxiliary parameters of STC, relating to regularization terms.

Document sparsity: Figure 2 presents the results of experiments on four cor-
pora. Document sparsity is used to see sparsity level of latent representations
discovered by those models. Observing the first two rows of Figure 2, one can see
that all models, except LDA, can discover sparse latent representations. PLSA
interestingly can discover very sparse representations. It even often outperformed
STC, which was intentionally designed for modeling sparsity. However, it seems
that PLSA achieved sparse solutions by incident. Indeed, we rarely observed
sparse topic proportions in the learning phase, but inference often resulted in
sparse ones. One crucial reason for these contrary behaviors is that information
was lost when saving the learned models, as we observed many nonzero elements
of topics went to 0. STC can indeed discover sparse latent representations as
expected. Nonetheless, the discovered sparsity level was not very high, i.e., new
representations of documents were still pretty dense. Furthermore, the sparsity
level seems to be inconsistent as the number of topics increases

On contrary, FSTM can discover very sparse latent representations in both
learning and inference phases. The sparsity level consistently decreases as the

5 The code is available at http://www.jaist.ac.jp/~s1060203/codes/fstm.
6 AP was retrieved from http://www.cs.princeton.edu/~blei/lda-c/ap.tgz

KOS and Enron were retrieved from http://archive.ics.uci.edu/ml/datasets/

Grolier was from http://cs.nyu.edu/~roweis/data.html
7 LDA code was taken from http://www.cs.princeton.edu/~blei/lda-c/

STC code was taken from http://www.cs.cmu.edu/~junzhu/stc/

PLSA was coded by ourselves with the best effort. SRS and RLSI were not included
because of two reasons. First, there is no available code for these models. More im-
portantly, there is an inconsistence in the update formula derived in [9] that prevents
us from implementation; RLSI heavily needs involved distributed architectures.

http://www.jaist.ac.jp/~s1060203/codes/fstm
http://www.cs.princeton.edu/~blei/lda-c/ap.tgz
http://archive.ics.uci.edu/ml/datasets/
http://cs.nyu.edu/~roweis/data.html
http://www.cs.princeton.edu/~blei/lda-c/
http://www.cs.cmu.edu/~junzhu/stc/

500 K. Than and T.B. Ho

Data AP KOS Enron Grolier

M 2246 3430 39861 29762
V 10473 6906 28102 15276

0 50 100
0

0.5

1

K

D
oc

um
en

t s
pa

rs
ity

(i
nf

er
en

ce
)

AP

0 50 100
0

0.5

1

K

D
oc

um
en

t s
pa

rs
ity

(l
ea

rn
in

g)

0 50 100
0

0.5

1

K

T
op

ic
 s

pa
rs

ity

0 50 100
0

0.5

1

K

KOS

0 50 100
0

0.5

1

K

0 50 100
0.4

0.6

0.8

1

K

0 50 100
0

0.5

1

K

Enron

0 50 100
0

0.5

1

K

0 50 100
0.4

0.6

0.8

1

K

0 50 100
0

0.5

1

K

Grolier

0 50 100
0

0.5

1

K

0 50 100
0.7

0.8

0.9

1

K

0 50 100
0

20

40

60

K

In
fe

re
nc

e
tim

e
(s

)

0 50 100
0

2000

4000

6000

K

L
ea

rn
in

g
tim

e
(s

)

0 50 100
0

20

40

K

0 50 100
0

2000

4000

6000

K

0 50 100
0

200

400

600

K

0 50 100
0

5

10

15
x 10

4

K

0 50 100
0

500

1000

K

0 50 100
0

2

4

6
x 10

4

K

FSTM PLSA LDA STC

Fig. 2. Experimental results as the numberK of topics increases. For STC, there was a
memory problem when dealing with Enron and Grolier for large K (e.g., when K = 70,
STC has to solve a optimization problem with more than 20 millions of variables, and
hence cannot be handled in a personal PC.) Hence we could not do experiments for
such large K’s.

Fully Sparse Topic Models 501

number of topics increases. This implies that despite modeling a corpus with
many topics, few topics actually contributes to a specific document. For example,
on average, only 3 topics have non-zero contributions to a document of AP among
100 topics of the model; when modeling with 10 topics, only 2 topics on average
have non-zero contributions to a document. This seems to be consistent with the
fact that a document often says about few topics, independent with the number
of topics a model is taking into account. Hence FSTM can discover very compact
representations and save significantly memory for storage.

Topic sparsity: observing Figure 2, one easily realizes that most models could
not discover sparse topics. LDA and STC are not surprised, because topics are
assumed to be samples of Dirichlet distributions which implicitly prevent any
zero contribution of terms to topics. PLSA could discover some sparse topics,
but the sparsity level was insignificant. FSTM outperformed other models in this
aspect, having discovered very sparse topics. The sparsity level of topics tends to
increase as we model data with more topics. This achievement can be explained
by the facts that new representations of documents inferred by FSTM are very
sparse, that the original documents are sparse, and that topics are simply a
product of these two sparse representations (see equation 6). Therefore, the
learned models are often significantly compact.

Inference time: in Section 4, we have shown theoretically that inference of
FSTM is in linear time. This is further supported by our experiments, as de-
picted in Figure 2. Both FSTM and STC worked comparably in practice. PLSA
inferred most slowly by the folding-in technique. LDA can infer much more
quickly by fast variational Bayesian methods [7]. Nevertheless, it still worked
much more slowly than FSTM, often tens of times more slowly. There are at
least two reasons for this slow inference: first, the inference problem in LDA
is inherently NP-hard [8] and thus may require much time to reach at good
solutions; second, the variational Bayesian algorithm has to do many compu-
tations relating to logarithm, exponent, gamma, and digamma functions which
are expensive. In contrast, inference in FSTM can be done in linear time, and
the objective function (likelihood) is relatively cheap to compute. In addition,
the learned topics are often very sparse. All of these contribute to speeding up
inference in FSTM.

Learning time: observing the last row of Figure 2, one can see that LDA
and STC learned really slowly, often hundreds/thousands of times more slowly
than FSTM and PLSA.8 Slow learning of STC can be explained by the fact
that learning of topics in this model is very expensive, since we have to solve
a optimization problem with huge number, K.V , of variables which are insep-
arable. LDA learned slowly because its inference algorithm is slow, and it has
to solve various optimization problems requiring various evaluations of Gamma
and Digamma functions which are often expensive. PLSA learned fastest due

8 At some settings, we observe that STC did stop learning very early after only 4 or
5 iterations, but inference after that paid more time to do than usual. Otherwise, it
needed many iterations (often more than 30) to reach convergence. Hence we suppose
that those early terminations were caused by some internal issues.

502 K. Than and T.B. Ho

to its simple learning formulations. There is a seemingly contrary behavior of
PLSA, in which learning is fastest but inference is slowest. The main reason is
that inference by folding-in [13] is an adaptation of learning, and more impor-
tantly learning does not require doing separately inference of documents which
differs from other models. FSTM can learn very fast, comparably with PLSA.
One reason for such a fast learning is the fast inference algorithm. Another rea-
son is that the inferred topic proportions and topics themselves are very sparse,
and hence help further speed up learning.

Quality: we next consider how good our model is. We use three measures to
quantify the quality: Bayesian Information Criterion (BIC), Akaike Information
Criterion (AIC) [18], and Perplexity [7]. BIC and AIC are popular measures
for model selection in Machine Learning.9 They measure both simplicity and
goodness-of-fit of the considered models; the simpler is preferred when two mod-
els have comparable quality of fitting data. A model with larger BIC/AIC is
more likely to overfit the data [18]. Perplexity is also a common measure in topic
modeling literature to compare predictive power of different models.10

Figure 3 presents the quality of three models on four corpora. (STC was not
included in this investigation, because the objective function in learning is a
regularized one, and hence different in manner with probabilistic topic models.)
Observing the first two rows of the figure, one can easily realize that BIC and
AIC of FSTM were significantly better than those of LDA and PLSA for most
experiments. Note that FSTM can learn very sparse topics as previously dis-
cussed. In addition, we observed that the likelihoods achieved by FSTM were
often comparable with those by PLSA, while those by LDA were often worst.
Hence FSTM was evaluated better than other models according to BIC/AIC.
For PLSA and LDA, despite using more free parameters (dense topics) to model
data, the achieved likelihoods were not very significantly greater than those of
FSTM. Therefore, they are more likely prone to overfitting. The ability to avoid
overfitting of FSTM in these experiments supports further the theoretical analy-
sis in Section 4, where an implicit prior is argued to keep FSTM from overfitting.

The last row of Figure 3 shows perplexity obtained by three models. We ob-
serve that PLSA consistently achieved better perplexity than LDA and FSTM.
This seems unusual since LDA is a Bayesian extension of PLSA and thus should
have better predictive power. Nonetheless, in our observations, at least two fac-
tors had contributed to this inferior predictiveness: first, the variational Bayesian
method [7] is not guaranteed to find good solutions; second, the objective of in-
ference in LDA is posterior probability P (θ|d), not the likelihood P (d), while
perplexity is mainly about likelihood. FSTM achieved good predictive power.

9 AIC = (−2 logL + 2p)/M , and BIC = (−2 logL + p logM)/M , where L is the
achieved likelihood, and p is the number of free parameters of the model. Note that
free parameters in the considered topic models basically correspond to the entries of
topics, and one more for LDA. Hence p = (V − 1)K + 1 for LDA, while p +K for
FSTM/PLSA is the number of non-zero entries of the learned topics.

10 Perplexity of a model M is calculated on the testing set D by Perp(D|M) =
exp

(
−

∑
d∈D logP (d|M)/

∑
d∈D |d|

)
.

Fully Sparse Topic Models 503

0 50 100
2000

4000

6000

8000

K

B
IC

AP

0 50 100
2500

3000

3500

4000

K

A
IC

0 50 100
2000

3000

4000

K

KOS

0 50 100
2000

2200

2400

K

0 50 100
2500

3000

3500

K

Enron

0 50 100
2550

2600

2650

2700

K

0 50 100
1500

2000

2500

K

Grolier

0 50 100
1800

1850

1900

1950

K

0 50 100
2000

2500

3000

3500

K

Pe
rp

le
xi

ty

0 50 100
1000

1500

2000

2500

K
0 50 100

2000

3000

4000

5000

K
0 50 100

1000

2000

3000

4000

K

FSTM PLSA LDA

Fig. 3. Quality of three models as the number of topics increases. Lower is better.

The inference algorithm of FSTM played a crucial role in this good power, since
it is guaranteed to find provably good solutions as analyzed in Section 4.

Trade-off: Figure 4 illustrates how FSTM trades off sparsity of solutions
against inference quality (measured by perplexity) and running time. Unsurpris-
ingly, more iterations means better quality but probably denser topic propor-
tions. Note that the upper bound on inference error in Theorem 2 is quite loose.
However, in practice inference converged very quickly, as observed in Figure 4.
After 20 iterations on average, the quality and sparsity level were almost stable.
We rarely observed inference needed more than 100 iterations to reach conver-
gence. This is an interesting behavior of FSTM and is appealing to resolving
large-scale settings.

5.2 Large-Scale Settings

We implemented a parallel version of FSTM using OpenMP for large-scale learn-
ing. Even though OpenMP is a shared memory model, we employed both data
parallelism and task parallelism schemes. Data is distributed across clusters of
CPUs, each cluster has its own subset of data and sub-model in the learning
phase. Communication of a cluster with the master is only its sub-model. Note
that FSTM consistently learns sparse models. Hence communication of sub-
models for FSTM are significantly more compact than other implementations of
LDA [1, 3, 4]. (Details of implementation are omitted due to space limit.)

504 K. Than and T.B. Ho

20 40 60 80 100
0

0.2

0.4

Number of iterations

D
oc

um
en

t s
pa

rs
ity

20 40 60 80 100
2000

3000

4000

Pe
rp

le
xi

ty

0.15 0.2 0.25
0

0.5

1

Document sparsity

In
fe

re
nc

e
tim

e
(s

)

0.15 0.2 0.25
2000

3000

4000

Pe
rp

le
xi

ty

Fig. 4. Illustration of trading off sparsity against quality and time. Inference was done
on AP, where FSTM had been learned with 50 topics.

We then experimented with the Webspam corpus consisting of 350K docu-
ments with more than 16 millions of terms.11 2000 topics was selected, and we
run on 128 CPUs (each with 2.9 GHz), divided into 32 clusters. We observed that
even though the documents in this corpus are often very long, inference was done
very quickly, and each iteration of the EM algorithm took approximately 1 hour.
After convergence, the achieved topic sparsity is 0.0114 and document sparsity
is 0.0028. This means, over 2000 topics, on average only 5.6 topics contribute
to a specific document; and 1.14% of 16 million terms significantly contribute
to a topic. Storage of the new representation of the corpus is less than 34Mb,
substantially reduced from 23.3Gb of the original one.

Since Webspam is a supervised dataset, we did a classification experiment ei-
ther. We use the new representation of the corpus previously learned by FSTM
to be the input for Liblinear [19], resulting in Liblinear+FSTM method for clas-
sification where FSTM plays the role as a dimensionality reduction subroutine.
Using 5-folds cross-validation and default settings for Liblinear, the obtained
accuracy is 99.146%. The most recent advanced method [20] can achieve a com-
parable accuracy of 99.15%, but evaluated on only one split of data. Note that
the new representation has 2000 dimensions, and is 700 times smaller than the
original one. All of these suggest that FSTM can infer very meaningful repre-
sentations of documents. As a result, FSTM can provide us a useful tool, not
only a model of linguistic data but also a dimensionality reduction approach, to
efficiently deal with large-scale settings.

6 Conclusion

We have introduced our novel topic model for modeling large collections of doc-
uments. Our model overcomes many serious limitations of existing topic models,
and has been demonstrated to work qualitatively on real data. The scalability
of our model enables us to easily deal with large-scale settings.

Our work in this paper also touches upon two interesting questions: (1) Is
there an algorithm for efficiently inferring sparse latent representations of docu-
ments/objeccts? (2) Is it possible to directly trade off sparsity against inference
quality and inference time? The first question has been addressed in Machine

11 Webspam was retrieved from http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/
datasets/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Fully Sparse Topic Models 505

Learning. Existing regularization techniques can help us find sparse solutions,
but cannot provide an affirmative answer to the second question. Our work pro-
vides a positive answer for both questions, at least for Topic Modeling, by real-
izing that the Frank-Wolfe algorithm for sparse approximation can help. Hence,
it opens various potential directions for future research.

Acknowledgement. We would like to thank the reviewers for very helpful
comments.

References

[1] Smola, A., Narayanamurthy, S.: An architecture for parallel topic models. Pro-
ceedings of the VLDB Endowment 3(1-2), 703–710 (2010)

[2] Hoffman, M.D., Blei, D.M., Bach, F.: Online learning for latent dirichlet alloca-
tion. In: NIPS, vol. 23, pp. 856–864 (2010)

[3] Newman, D., Asuncion, A., Smyth, P., Welling, M.: Distributed algorithms for
topic models. The Journal of Machine Learning Research 10, 1801–1828 (2009)

[4] Asuncion, A.U., Smyth, P., Welling, M.: Asynchronous distributed estimation of
topic models for document analysis. Statistical Methodology 8(1), 3–17 (2011)

[5] Wang, Q., Xu, J., Li, H., Craswell, N.: Regularized latent semantic indexing. In:
SIGIR 2011, pp. 685–694. ACM (2011)

[6] Wang, Y., Bai, H., Stanton, M., Chen, W.-Y., Chang, E.Y.: PLDA: Parallel Latent
Dirichlet Allocation for Large-Scale Applications. In: Goldberg, A.V., Zhou, Y.
(eds.) AAIM 2009. LNCS, vol. 5564, pp. 301–314. Springer, Heidelberg (2009)

[7] Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine
Learning Research 3(3), 993–1022 (2003)

[8] Sontag, D., Roy, D.M.: Complexity of inference in latent dirichlet allocation. In:
Advances in Neural Information Processing Systems, NIPS (2011)

[9] Shashanka, M., Raj, B., Smaragdis, P.: Sparse overcomplete latent variable de-
composition of counts data. In: NIPS (2007)

[10] Zhu, J., Xing, E.P.: Sparse topical coding. In: UAI (2011)
[11] Williamson, S., Wang, C., Heller, K.A., Blei, D.M.: The ibp compound dirichlet

process and its application to focused topic modeling. In: ICML (2010)
[12] Wang, C., Blei, D.M.: Decoupling sparsity and smoothness in the discrete hierar-

chical dirichlet process. In: NIPS, vol. 22, pp. 1982–1989 (2009)
[13] Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis.

Machine Learning 42, 177–196 (2001)
[14] Clarkson, K.L.: Coresets, sparse greedy approximation, and the frank-wolfe algo-

rithm. ACM Trans. Algorithms 6, 63:1–63:30 (2010)
[15] Nesterov, Y.: Smooth minimization of non-smooth functions. Mathematical Pro-

gramming 103(1), 127–152 (2005)
[16] Lan, G.: An optimal method for stochastic composite optimization. Mathematical

Programming, 1–33 (2011)
[17] Murray, W., Gill, P., Wright, M.: Practical optimization. Academic Press (1981)
[18] Forster, M.R.: Key concepts in model selection: Performance and generalizability.

Journal of Mathematical Psychology 44(1), 205–231 (2000)
[19] Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: Liblinear: A library for large

linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)
[20] Yu, H.F., Hsieh, C.J., Chang, K.W., Lin, C.J.: Large linear classification when data

cannot fit in memory. ACM Trans. Knowl. Discov. Data 5(4), 23:1–23:23 (2012)

Learning Compact Class Codes for Fast

Inference in Large Multi Class Classification

M. Cissé, T. Artières, and Patrick Gallinari

Laboratoire d’Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie,
Paris, France

firstname.lastname@lip6.fr,

http://www-connex.lip6.fr

Abstract. We describe a new approach for classification with a very
large number of classes where we assume some class similarity informa-
tion is available, e.g. through a hierarchical organization. The proposed
method learns a compact binary code using such an existing similarity
information defined on classes. Binary classifiers are then trained using
this code and decoding is performed using a simple nearest neighbor
rule. This strategy, related to Error Correcting Output Codes methods,
is shown to perform similarly or better than the standard and efficient
one-vs-all approach, with much lower inference complexity.

1 Introduction

Classification problems with very large number of classes (VLC) now occur in
many applications in the web, text, image or video domains. Current problems
often deal with tens or hundreds of thousand of classes. For example, for patent
classification the number of classes is around 60 000, for image annotation classes
are keywords and their number is not limited, the number of classes in large class
hierarchies like Dmoz is around 600 000 and still growing.

Scaling algorithms for VLC is a recent research direction compared to scaling
wrt the sample size or data dimensionality and this is still a challenging problem
[1], [2] [3], [4], [5]. Its specificity lies in the complexity of inference. The inference
linear complexity in the number of classes of standard one vs rest approaches
is prohibitive for VLC and only sub-linear inference methods are acceptable for
practical purpose. Of course, training should also remain feasible. Besides pure
scaling problems, classes in VLC problems may evolve, e.g. some classes may
become rarely observed. Designing classifiers that do not require full retraining
for new classes is also important in many cases.

We focus here on the design of algorithms for dealing with these different
issues. In our approach the classification problem is casted into a cost-sensitive
framework where a class distance or class similarity information is supposed
available. Cost sensitivity reflects an existing latent structure between the classes
and these relations will be exploited as complementary knowledge to improve
classification performance and to reduce the inference and training complexities.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 506–520, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Learning Compact Class Codes for Fast Inference 507

This information could be provided by existing resources which in our case
is a class-taxonomy, but the extension to other class similarity measures is
straightforward.

Within this framework, the approach we develop relies on first learning binary
class codes using the similarity information between classes, a class will then be
represented as a l-dimensional binary code with values in {−1,+1}, and second
in training l binary classifiers, each will predict one bit of the class code. The
dichotomizer for the jth bit of the code will be trained to distinguish between
the samples of all classes whose jth bit is 1 and those whose jth bit is -1. A test
example will then be categorized according to a simple nearest neighbor rule
between the code computed for this example and learned codes. This method is
inspired by Error Correcting Output Codes (ECOC) [6] and Class embeddings
[7]. With this strategy, the complexity of inference will become linear in the
length of the code instead of the number of classes for computing the output
code of an input sample and logarithmic in the number of classes to compute
the closest class code. Consequently we aim at designing compact class codes.
Besides fast decoding, these codes should be discriminant enough to reach a
performance equivalent to or higher than standard classification methods, at a
reduced inference complexity.

Our main contribution is an efficient procedure for learning compact binary
class codes of length l such that l << k where k stands for the number of
classes. The inference requires then computing the output of l classifiers while
for the one vs rest (OVR) approach inference requires computing the output of
k classifiers. The value of l may be set so as to achieve a compromise between
complexity and acuracy. We show experimentally that the value of l required
for reaching OVR performance, scales sub-linearly with the number of classes k
and that increasing the complexity of the method (i.e. l) allows outperforming
OVR. We provide an experimental comparison, with respect to performance and
runtimes, of our method with baselines, including OVR, on datasets up to 10 000
classes built from the 2010 Large Scale Hierarchical Text Classification challenge
datasets [8].

Finally, beyond its raw performance, we investigate the particular ability of
our method for zero-shot learning, i.e. recognizing samples from new classes
without any training sample. We show that providing the similarity information
for new classes allows recognizing samples from theses classes even in the case
when no training samples are available.

The paper is structured as follows. Section 2 reviews related works, section
3 presents our approach for learning compact class codes, and finally section 4
reports experimental results.

2 Related Works

Classification in a large number of classes has received an increasing attention
in the last few years. The challenge of designing sub-linear inference complex-
ity algorithms has guided the researchers into two main directions: hierarchical
approaches and class nearest neighbor search methods.

508 M. Cissé, T. Artières, and P. Gallinari

Hierarchical Approaches exploiting a tree structured relation among classes
are straightforward solutions for reducing the inference complexity from O(k) to
O(log k). Besides, many problems can be formulated as hierarchical classifica-
tion, and most of the datasets available to the research community are organized
hierarchically. Different methods have been proposed and some start from an
existing hierarchy while others learn the class hierarchy. The filter tree and the
conditional probability tree [9] for example are consistent reduction of multi-
class problems to binary that learn a tree of classifiers. Trees offer a natural and
efficient solution to the inference complexity problem, on the other hand, it is
widely recognized (e.g. [3], [2]), that classifier cascades greatly suffer from the
propagation of errors from parent to children. This is why some authors [10], [3]
propose to globally train the classifiers in the tree, instead of using local clas-
sifiers, and report improved performance at the cost of larger training complexity.

The One-vs-Rest [11] approach is the most popular flat multi-class classi-
fier. Surprisingly, it remains one of the most efficient approaches in terms of
accuracy, for VLC [3]. Although the inference complexity is O(k), it is readily
parallellizable which might be another way for solving the complexity issue. The
one-vs-rest classifier is then a strong contender for large scale classification and
often the best classifier for VLC in terms of accuracy.

Taxonomy [7] and Label Embedding [3] are other flat approaches that
propose to jointly learn a projection of the data and the classes (or the taxon-
omy) in a low dimensional latent space where each data will be close to its class
representation. The inference procedure is based on a class nearest neighbor
search, so that its complexity is potentially O(log k). This, and the competi-
tive performance reported make these methods appealing for large multi-class
problems though their performance is often below that of OVR method (e.g. [3]).

Error Correcting Output Coding [6] has not been used up to now for VLC.
Since our method produces ECOCs, we introduce its principle here and will
compare our strategy with standard ECOC in the experimental section. ECOC
is a general framework for handling multi-class problems and consists in repre-
senting each class with a codeword. These codewords are arranged into a coding
matrix M(k× l) where l is the code length and k is the number of classes. ECOC
uses a binary coding M ∈ {−1, 1}k×l, each column of the coding matrix defines
a partition of the target space and learning consists in training l dichotomizers
to predict a codeword for each new instance. Prediction, also called decoding,
is done by assigning a new sample to the class having the closest codeword
according to a distance measure. The key issue here is designing a coding ma-
trix with good error correcting properties. It is usually required that both rows
and columns are well separated. Row separation ensures that a large number of
binary classifiers have to make a wrong decision before the decoding process mis-
classifies a test sample. Column separation ensures that the binary dichotomizers
(there is one dichotomizer per column) are uncorrelated. The most popular way
for initialiazing M is to choose each mij to be 1 or −1 with probability 1/2
[12], it is called dense random ECOC. For small number of classes, ECOC might

Learning Compact Class Codes for Fast Inference 509

outperform the standard one-vs-rest scheme [6] [12] and the inference complexity
is O(log k).

3 Our Approach: Learned Distributed Representation
(LDR)

3.1 Principle

As demonstrated in recent publications one of the best performing method for
VLC today is the OVR method [3]. Yet this strategy has inference complexity
that scales linearly with the number of classes. Alternatively hierarchical meth-
ods allow fast inference but fail to reach the accuracy of OVR, due to error
propagation in the tree. We aim here at building a method that allows, both
fast inference and high accuracy. To reach this goal we propose a method called
Learned Distributed Representation (LDR) that first learns binary low dimen-
sional class codes, then uses binary classifiers to learn each bit of the codes, as
in ECOC.

A key issue is to take into account the available relationships between classes
(e.g. a hierarchical or a graph organization of classes). We propose to compute
low dimensional binary class codes that reflect these relationships. In order to
do that we first represent a class as a vector of similarities between the class
and all other classes, si = [s(Ci, C1), ..., s(Ci, Ck)] (see section 4 for an example).
Different similarity measures may be used. It may be computed from a hierarchy
of classes or from a similarity between samples of the two classes. Then, we learn
short class codes that reflect these relationships between classes, by transforming
these high k-dimensional representations of classes (si) into lower l-dimensional
codes (hi) via a dimension reduction algorithm. This step is explained in details
in section 3.2. Once low dimensional (say l-dimensional, with l << k) binary
class representations are learned, we train l binary classifiers, one for every bit.
The binary classifier for the jth bit is a dichotomizer that is learned to separate
samples of all classes whose class code has the jth bit set to 1 from the samples
of all classes whose class code has the jth bit set to -1. All these binary classifiers
are then learned with all training samples from all classes.

Finally at test time, when one wants to decide the class of an input sample x,
we use the l classifiers on x to compute a l-length binary word m = (m1, ...,ml)
which is compared to the k class codes {hi, i = 1..k} to find the nearest neighbor.

3.2 Learning Compact Binary Class-Codes

We propose to learn compact class codes with autoencoders which have been
widely used for feature extraction and dimensionality reduction [13], [14]. Among
many existing dimension reduction methods the advantage of autoencoders lies
in the flexibility of the optimization criterion that allows us including additional
terms related to class codes separation. An autoencoder is trained by minimizing
a squared reconstruction error between the input (here a class representation si)

510 M. Cissé, T. Artières, and P. Gallinari

and its reconstruction at the output of the autoencoder, ŝi. It may be viewed
as an encoder (input → hidden layer) followed by a decoder (hidden → output
layer). Usually it is required that encoding and decoding weights are tied [14],
both for linear and non linear encoders, so that if W is the coding matrix, WT is
the decoding matrix. We used this strategy here. Training an autoencoder writes
(omitting bias terms):

argmin
W

k∑
i=1

||si − WT × f(W × si)||2 (1)

where ||.|| is the euclidean distance. The activation function in hidden units f
may be a linear function, then the projection learned by the autoencoder is sim-
ilar to the one learned by a principal component analysis. One can expect to
learn more interesting features by using nonlinearities on hidden units, using
sigmoid or hyperbolic tangent activation functions (in our implementation, we
use hyperbolic tangent activation function hidden units). To perform dimension-
ality reduction one uses a narrow hidden layer which forces to learn non trivial
regularities from the inputs, hence interesting and compact codes on the hidden
layer. The vector of activation of hidden units is the learned encoding function.
Here the new class code for class Ci is then hi = f(W × si).

Ideally, new class codes should satisfy two properties. First, similar classes
(according to the cost-sensitive information and/or to similar examples) should
have close codes hi. Second, class codes for any pair of classes should be signif-
icantly different to ensure accurate classification at the end. The first property
is naturally satisfied since an autoencoder actually learns hidden codes that
preserve distances in the original space. Next, to ensure minimal separation be-
tween class codes we propose to look for a solution of the following constrained
problem:

argmin
W

k∑
i=1

||si − WT × f(W × si)||2 (2)

s.t. ∀(i, j), i �= j : ||f(W × si)− f(W × sj)|| ≥ b

The constraints are inspired from margin based learning and yield to maximize
the distance between any pair of class codes up to a given threshold b. We solve
this optimization problem by stochastic gradient descent using the unconstrained
regularized form:

argmin
W

α

k∑
i=1

||si − WT × f(W × si)||2

+ β

k∑
i,j=1

max(0, b− ||f(W × si)− f(W × sj)||)

+
λ

2
||W||2 (3)

Learning Compact Class Codes for Fast Inference 511

Fig. 1. Learning the autoencoder from pairs of input samples (here α and β are
considered equal to 1). See Algorithm 1 for details.

where α and β weight the respective importance of the reconstruction error term
and of the margin terms, and ||W||2 is a regularization term. Note that α, β, and
b (which tunes the margin between two class codes) are set by cross validation.

We learn the autoencoder using stochastic gradient descent by iteratively pick-
ing two training samples i and j at random and making a gradient step. Figure 1
illustrates the training process which recalls somehow Siamese architectures used
in the past for vision tasks [15]. At the end, in order to get binary class codes,
we threshold the learned real valued class codes. This means that the jth com-
ponent of all class codes hi are set to hi(j) = −1 if hi(j) < θj , and hi(j) = +1
otherwise. The threshold value θj is chosen so that the prior probability of the
jth bit of a class code be +1 is equal to 0.5, and this is done by setting θj to the
median of {hi(j)|i = 1...k}. Although this cut-off it is not learned to optimize
classification accuracy, it should be noted that it is defined according to the usual
property in ECOC (firing with probability 0.5). Also since similar classes should
have close class codes, it is expected that the obtained two class classification
problem (i.e. for the jth bit of class codes, separating samples of all classes with
hi(j) = +1 from the samples of all classes with hi(j) = −1) should be easier to
solve than any random two class problem as those defined in traditional ECOC.
We will come back to this point in the next section. Algorithm 1 describes the
whole algorithm.

3.3 Relations to ECOC

Because each element in the class codes has probability 1/2 of being either +1 or
−1, our method bares some similarities with the standard dense random ECOC.
However, there are two fundamental differences.

512 M. Cissé, T. Artières, and P. Gallinari

The first difference is that by construction, our learned distributed represen-
tation is intended to have a reduced tree induced loss compared to randomly
generated methods because the autoencoder projects classes that are close in
the hierarchy in the same area of the latent space. The second difference, which
is somehow related to the first one, is that the binary classification problems
induced by the learned class codes should be easier than in random ECOC.
Indeed, since similar classes should have close class codes, it is likely that for
similar classes most bits are equal. This means that a particular dichotomizer is
trained with samples for class +1 and for class -1 that are more homogeneous
than if the partitioning of classes was random, as in traditional ECOCs. At the
end, if dichotomizers reach higher accuracy, the overall accuracy of the multiclass
classifier should also be higher.

Algorithm 1. Learning Compact Binary Class Codes

1: Input:
{
si ∈ Rk|i = 1, ...k

}
, l, ε

2: Output:
{
hi ∈ Rl|i = 1, ...k

}
3: Learn the weights W of an autoencoder (with k input neurons, l hidden neurons,

and k output neurons) on
{
si ∈ Rk|i = 1, ...k

}
to minimize cost in Eq. (3)

4: repeat
5: Pick randomly two samples (si, sj)
6: Make a gradient step : W =W − ε∂LW(si, sj)/∂W

with: LW(si, sj) =
1
2

∑
k∈{i,j} α||sk−W

T ×f(W×sk)||2+λ||W||2+βmax(0, b−
||f(W × si)− f(W × sj)||)

7: until convergence criterion is met
8: Compute the learned class codes ∀i ∈ [1, k] ,hi = f(W × si)
9: for all j = 1...l do
10: Compute the median θj of the jth component of hi’s, {hi(j)|i = 1, ..., k}
11: Threshold the jth component of hi’s at θj so that ∀i ∈ [1, k] ,hi(j) ={

1 if hi(j) ≤ θ
−1 otherwise

12: end for
13: return Compact binary class codes

{
hi ∈ Rl|i = 1, ...k

}

An ECOC coding scheme closer to our method is the discriminative ECOC
(DECOC) which learns a discriminative coding matrix by hierarchically parti-
tioning the classes according to a discriminative criteria [16]. The hierarchy is
built so as to maximize the mutual information between the data in each parti-
tion and the corresponding labels. Our method differs from this in that we are
seeking codewords having a sub-linear dependency on the number of classes k
while the DECOC method creates codewords of length k − 1.

3.4 Training and Inference Complexity

We focus here on complexity issues with respect to the number of classes k, the
number of training samples N , the dimension of samples d, and the length of

Learning Compact Class Codes for Fast Inference 513

the learned class codes l. Let us denote by CT (N) the complexity of training one
binary classifier with N training samples, and by CI the complexity of inference
for a binary classifier. All complexities in the following will be expressed as a
function of CT and CI .

We start with our method. Training consists in learning the class codes of
length l, then in learning l classifiers. Learning class codes is done by gradi-
ent descent whose complexity depends on the number of iterations. Yet since
class codes are binarized at the end, one can expect that the method will not
be very sensitive to accurate convergence of the autoencoder and one can rea-
sonably assume a fixed and limited number of iterations I so that learning the
autoencoder requires O(I × k2 × l) (I iterations with k samples every iteration
whose forward and backward pass costs roughly O(k × l)). Next, learning the
l binary classifiers requires O(l × CT (N)). At the end training complexity is in
O(I × k2 × l + l × CT (N)). Inference consists in finding the class code which
is most similar (wrt. Hamming distance) to the output code computed for this
input sample. Computing the output code requires using the l classifiers, hence
O(l×CI). Next, using fast nearest neighbor search methods such as ball trees or
kd-trees for finding the closest class code may be done (in practice) in O(log k)
comparisons [17], where each comparison costs O(l). Overall, the inference com-
plexity is then O(l × (log k + CI)).

We compare these costs to those of the OVR method which is the most ac-
curate technique for large scale classification [3] (see Table 1). Training in OVR
method requires O(k × CT (N)) since one uses k classifiers that are all trained
with all training samples, while inference requires O(k × CI).

It clearly appears from this discussion that OVR does not extend easily to
VLC due to its inference complexity that scales linearly with the number of
classes. Compared to these baselines, our method exhibits interesting features. As
we will argue from experimental results, it may outperform OVR for l << k and
the minimal length l for such a behavior seems to scale strongly sublinearly with
k. Furthermore although the training complexity includes a term in O(k2), it
must be clear that in experimental settings such as the ones we investigate in this
paper (large number of samples and high dimensionality), the overall training
complexity in O

(
lIk2 + lCT (N)

)
is dominated by the second term O(lCT (N)).

Table 1. Comparison of training and inference complexity for our method and for
standard methods, OVR and ECOC, as a function of the number of classes k, the
dimension of the data d, the size of the class codes l, the learning complexity of a
binary classifier with N training samples CT (N), the inference complexity of a binary
classifier CI , and the number of training iterations I of the autoencoder (LDR method).

Training Inference

OVR O(kCT (N)) O(kCI)
ECOC(l) O(lCT (N)) O (lCI + l log k))
LDR(l) O

(
lIk2 + lCT (N)

)
O (lCI + l log k)

514 M. Cissé, T. Artières, and P. Gallinari

4 Experiments

We performed experiments on three large scale multi-class single label datasets.
The proposed method (LDR) is compared to two coding methods, spectral em-
bedding (SPE) and traditional error correcting output coding (ECOC), and to
a standard OVR baseline. We first present the datasets, then we explain our
experimental setup and finally we present results and analysis.

4.1 Datasets

We used datasets with respectively 1000, 5000 and 10000 classes. Each dataset
was created by randomly selecting the corresponding classes from a large scale
dataset released for the first PASCAL large scale hierarchical text classifica-
tion challenge (Kosmopoulos et al., 2010). This dataset was extracted from
the open Mozilla directory DMOZ (www.dmoz.org). The classes are organized
in a tree hierarchy, classes being at the leaves of the hierarchy and internal
nodes being not instantiated classes. Hierarchies are of depth 5 (Kosmopoulos
et al., 2010).

The documents were provided as word counts, and then transformed into
normalized TF/IDF feature vectors. Considering that for large multi-class text
classification every new class is likely to bring specific new words, we did not
performed any feature selection although all datasets have very high dimensional
feature spaces.

Statistics of the datasets are detailed in Table 2. Each dataset is split into
training, validation and testing sets (see Table 2).

We exploited a similarity measure between classes i and j, which is defined
as a function of the distance di,j between the two classes in the hierarchy mea-
sured by the length of the shortest path in the tree between the two classes:
si(j) = s(Ci, Cj) = exp(−d2i,j/2σ

2). The tree path distance between two classes
is also used in the tree loss used as a classification measure in section 4.3. We
systematically used σ = 1 in our experiments.

Table 2. Statistics of the dataset used in the experiments

Statistics 103 classes 5 ∗ 103 classes 104 classes

Nb. training docs 8119 36926 76417

Nb. validation docs 3005 13855 28443

Nb. testing docs 3006 13771 28387

Nb. features 347 255 - -

4.2 Experimental Setup

Three classifiers were used as baselines: OVR, random ECOC and a Spectral
Embedding technique.

Learning Compact Class Codes for Fast Inference 515

Besides ECOC classifiers, we also compared our method to a spectral embed-
ding technique (SPE) which can be used for learning class codes from a similarity
matrix and is an alternative to our auto-associator method. Spectral embedding
is widely used as a preprocessing step before applying k-means in clustering ap-
plications. It has also been used recently for hashing and we exploit a similar
idea here. In [18] the authors propose to embed the data for fast retrieval by
binarizing the components of the eigenvectors of the similarity matrix Lapla-
cian. This process aims at mapping similar examples in the same regions of a
target space. The training complexity of the method is O(k3 + lCT (N)), which
is much larger than LDR or ECOC, and is due to the high complexity if the
eigen-decomposition. This method is similar in spirit to LDR and ECOC and is
a natural candidate for comparison. The classes here play the same role as data
do in spectral hashing.

We chose logistic regression as a base classifier (dichotomizers) for all methods,
but any other binary classifier could be used as well. The binary classifiers were
trained with a regularization parameter selected from λ ∈ {0.001, 0.0005, ...,
10−6} using the validation set.

To train random ECOC classifiers, for a given code length l and a number of
class k, we generated several k× l matrices and discarded those having equal or
complementary rows. We then used the coding matrices with best error correct-
ing property (the top 25 matrices for 103 classes and the top 10 for 5 ∗ 103 and
104 classes) to train an ECOC classifier. Then we kept the model that reached
the best performance on the validation set for evaluation on the test set.

We compare the methods using accuracy and tree induced loss which is defined
as the average of the length of the shortest path in the hierarchy between the
correct class and the predicted class. The tree induced loss measures the ability
of the classifier to take into account the hierarchical nature of the classification
problem, and the class proximity according to this metric. A low tree loss means
that confusions are made between neighboring classes, while a high tree loss
signifies that confusions occur among distant classes.

4.3 Comparison of the Methods

We investigate here the behavior of the different methods on the three datasets
and explore how the performance evolves with respect to the class code length.
Comparisons with all methods are performed on the 103 and 5 ∗ 103 classes
corpora, while on the larger 104 classes dataset, only OVR vs LDR were tested.
Figure 2 reports accuracies on the first two datasets for code length in {200, 300,
400, 500, 600}. First it can be seen that LDR outperforms systematically the two
other coding methods (SPE and ECOC) whatever the dataset, and whatever the
class code length. Second, the performance of the three coding methods (LDR,
SPE and ECOC) increases, with some fluctuation, with the code length. A higher
code is needed when the number of classes increases. This behavior is intuitive.
Finally one can see that LDR reaches and even exceeds the performance of OVR
on these two datasets, while ECOC and SPE stay under the performance of
OVR, even when increasing the code length l.

516 M. Cissé, T. Artières, and P. Gallinari

Table 3 compares the different methods using their best accuracy score1, and
the corresponding tree induced loss on the same two datasets. It can be seen
that the best performance of the different methods are quite close, LDR being
systematically higher and providing a clear speedup wrt OVR. For example, for
1 000 classes, with a code length of 200 LDR achieves an accuracy of 67.49%
while OVR’s accuracy is 66.50%. In this case, the number of classifiers used by
the OVR method is 5 times that of LDR.

We come back to our previous observation that LDR is consistently better
than random error correcting output coding (ECOC) (Figure 2), which holds
whatever the code length. Our main explanation of this phenomenon is that the
binary problems are probably easier to solve with LDR. It has been observed
since the early use of ECOCs [6] that the dichotomies induced by the codes
where more difficult to solve than the initial OVR dichotomies. Here, neighbor
classes in the tree, are forced to have similar codes. The data for these classes
are often closer one to the other than that of distant classes, so that similar
inputs will most often be required to be classified similarly. On the opposite,
classical ECOCs where codes are designed at random do not share this property.
To investigate this, we compared the mean accuracy of the binary classifiers
induced by our method to the mean accuracy of classifiers in a random ECOC
scheme. The mean accuracy remains between 72% and 75% for LDR while it is
constant at about 69% for ECOC which confirms the hypothesis that learned
dichotomizers induce easier problems. Also we think that the learning criteria
of the autoencoder helps creating better class codes than those produced by the
spectral embedding method.

At last we compare LDR and OVR on classification tasks with up to 10 000
classes. Figure 3 shows the performance of LDR vs OVR for the three datasets
(103, 5 ∗ 103 and 104 classes) for a code length of size 500. LDR outperforms
OVR whatever the number of classes. Speedup are more and more important
as the number of classes increases. For 104 classes LDR achieves an accuracy of
36.81% (with a code length of 500) while the OVR’s performance is 35.20%. This
performance is achieved while using 20 times less classifiers than the number of
classes. This corresponds to a speedup of 46 wrt OVR (measured by runtimes).
Such a speedup is not only due to the smaller number of classifiers used by LDR,
but also to fast bitcounts routines that exploit the binary representation of codes
for nearest neighbour search.

4.4 Zero-Shot Learning

A few approaches have been proposed in the literature to answer the zero-
shot learning problem [19], [20], i.e. designing a classifier that is able to dis-
criminate between classes for which we do not have instances in the training
set. One particular approach proposes the use of a rich semantic encoding of
the classes [20]. Our approach is close to this idea since the codes of classes

1 For each method, one uses the parameterization, including the value of l, leading to
the best score.

Learning Compact Class Codes for Fast Inference 517

Fig. 2. Accuracy of our method (LDR), random ECOC (ECOC), Spectral Embedding
(SPE), and OVR as a function of code length on datasets with 1 000 classes (top) and
with 5 000 classes

Table 3. Comparative results of OVR, Random ECOC, Spectral Embedding, and
LDR, on datasets with 1000 and 5000 classes with respect to accuracy, tree induced
loss, and inference runtime. The runtimes are given as speed-up factors compared to
OVR (×2 means twice as fast as OVR). Reported results are the best ones obtained on
the datasets whatever the class code length. For LDR, we also provide the performance
reached for a minimal l yielding performance at least equal to that of OVR, denoted
as LDR (first), to to stress the speed-up.

Classifiers 1000 classes 5000 classes
Accuracy T.I.L Speed Accuracy T.I.L Speed

One-vs-rest 66.50% 2.63 ×1 44.76% 3.98 ×1
Random ECOC 65.10% 2.74 ×2 44.41% 4.12 ×12
SPE 67.73% 2.51 ×2 43.75% 4.30 ×12
LDR (first) 67.49% 2.54 ×5 44.88% 3.98 ×17
LDR(best) 68.40% 2.46 ×2 45.44% 3.93 ×12

518 M. Cissé, T. Artières, and P. Gallinari

Fig. 3. Accuracy of our method (LDR) and OVR on datasets with 1 000, 5 000 and
10 000 classes. Whatever the dataset LDR exploits class codes of length l = 500.

Table 4. Average accuracy (and standard deviation) of LDR (l = 200) for zero-shot
learning tasks. Results are averaged over 10 runs with removal of different random sets
of classes.

classes removed 10 20 30 40 50

Accuracy (std) 25.64(12.20) 24.45(6.34) 16.76(4.24) 14.31(3.18) 12.76(2.48)

(computed by the autoencoder) are vectors that encode some semantic
information on classes.

To explore empirically how our model is able to achieve zero-shot learning,
we performed the following experiment on the 1000 classes dataset. We learned
the class codes on the 1000 class representations (similarity vectors) computed
from the hierarchy, si. Then we selected randomly a number of classes (10 to
50) and removed all training samples of these classes from the training set.
The dichotomizers were then trained with this reduced training set. At test
time, following the approach in [19], we use the learned classifier to discriminate
between the classes whose training samples were not present in the training set.
Results are given in Table 4 for a class code length equal to 200. One can see
that the accuracy achieved by LDR on classes that have not been learned is
significantly greater than a random guess although it is naturally lower than the
accuracy obtained on classes that were actually represented in the training set
as reported in previous section.

Note also that one could go one step further than the zero-shot paradigm and
try to recognize samples from a new class which was even not used for learning

Learning Compact Class Codes for Fast Inference 519

the class codes, provided one gets its similarity with all classes in the training
stage. This would fit with many large multi-class problems where the set of
classes is not closed (for instance new classes appear periodically in the DMOZ
repository). Preliminary results show a similar performance as above provided
the number of new classes remains small. This is a perspective of our work.

5 Conclusion

We have presented a new approach for dealing with hierarchical classification
in a large number of classes. It combines the accuracy of flat methods and the
fast inference of hierarchical methods. It relies on building distributed com-
pact binary class codes that preserve class similarities. The main features of the
method lies in its inference complexity that scales sub-linearly with the number
of classes while outperforming the standard OVR and Error Correcting Output
Codes techniques on problems up to 10 000 classes. Interestingly our approach
also allows, to some extent, considering the addition of new classes in the hier-
archy without providing training samples, an instance of the zero-shot learning
problem.

References

1. Weinberger, K., Chapelle, O.: Large margin taxonomy embedding for document
categorization. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Ad-
vances in Neural Information Processing Systems, vol. 21, pp. 1737–1744 (2009)

2. Bennett, P.N., Nguyen, N.: Refined experts: improving classification in large tax-
onomies. In: SIGIR, pp. 11–18 (2009)

3. Bengio, S., Weston, J., Grangier, D.: Label embedding trees for large multi class
tasks. In: Advances in Neural information Processing (2010)

4. Xiao, L., Zhou, D., Wu, M.: Hierarchical classification via orthogonal transfer. In:
Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on
Machine Learning (ICML 2011), pp. 801–808. ACM, New York (2011)

5. Deng, J., Satheesh, S., Berg, A.C., Li, F.F.: Fast and balanced: Efficient label tree
learning for large scale object recognition. In: NIPS, pp. 567–575 (2011)

6. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research 2, 263–286
(1995)

7. Weinberger, K., Chapelle, O.: Large taxonomy embedding with an application to
document categorization. In: Advances in Neural Information Processing (2008)

8. Kosmopoulos, A., Gaussier, E., Paliouras, G., Aseervatham, S.: The ecir 2010 large
scale hierarchical classification workshop. SIGIR Forum 44(1), 23–32 (2010)

9. Beygelzimer, A., Langford, J., Lifshits, Y., Sorkin, G., Strehl, A.: Conditional prob-
ability tree estimation analysis and algorithms. In: Proceedings of the Twenty-Fifth
Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI 2009),
pp. 51–58. AUAI Press, Corvallis (2009)

10. Cai, L., Hofmann, T.: Hierarchical document categorization with support vector
machines. In: Proceedings of the Thirteenth ACM International Conference on
Information and Knowledge Management, pp. 78–87 (2004)

520 M. Cissé, T. Artières, and P. Gallinari

11. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn.
Res. 5, 101–141 (2004)

12. Allwein, E.L., Schapire, R.E., Singer, Y., Kaelbling, P.: Reducing multiclass to
binary: A unifying approach for margin classifiers. Journal of Machine Learning
Research 1, 113–141 (2000)

13. Gallinari, P., LeCun, Y., Thiria, S., Fogelma-soulie, F.: Mémoires associatives dis-
tribuées: une comparaison (distributed associative memories: a comparison). In:
Proceedings of COGNITIVA 1987, Paris, La Villette, Cesta-Afcet (May 1987)

14. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing
robust features with denoising autoencoders. In: Proceedings of the 25th Interna-
tional Conference on Machine learning, ICML 2008, pp. 1096–1103. ACM, New
York (2008)

15. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification
using a siamese time delay neural network. In: NIPS, pp. 737–744 (1993)

16. Pujol, O., Escalera, S., Radeva, P.: An incremental node embedding technique for
error correcting output codes. Pattern Recogn. 41(2), 713–725 (2008)

17. Moore, A.: Efficient memory-based learning for robot control (October 1990)
18. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS, pp. 1753–1760

(2008)
19. Larochelle, H., Erhan, D., Bengio, Y.: Zero-data learning of new tasks. In: AAAI,

pp. 646–651 (2008)
20. Palatucci, M., Pomerleau, D., Hinton, G.E., Mitchell, T.M.: Zero-shot learning

with semantic output codes. In: NIPS, pp. 1410–1418 (2009)

ParCube: Sparse Parallelizable Tensor

Decompositions

Evangelos E. Papalexakis1,�, Christos Faloutsos1,
and Nicholas D. Sidiropoulos2,��

1 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
{epapalex,christos}@cs.cmu.edu

2 Department of Electrical and Computer Engineering, University of Minnesota,
Minneapolis, MN, USA
nikos@ece.umn.edu

Abstract. How can we efficiently decompose a tensor into sparse fac-
tors, when the data does not fit in memory? Tensor decompositions have
gained a steadily increasing popularity in data mining applications, how-
ever the current state-of-art decomposition algorithms operate on main
memory and do not scale to truly large datasets. In this work, we propose
ParCube, a new and highly parallelizable method for speeding up tensor
decompositions that is well-suited to producing sparse approximations.
Experiments with even moderately large data indicate over 90% sparser
outputs and 14 times faster execution, with approximation error close
to the current state of the art irrespective of computation and mem-
ory requirements. We provide theoretical guarantees for the algorithm’s
correctness and we experimentally validate our claims through exten-
sive experiments, including four different real world datasets (Enron,
Lbnl, Facebook and Nell), demonstrating its effectiveness for data
mining practitioners. In particular, we are the first to analyze the very
large Nell dataset using a sparse tensor decomposition, demonstrating
that ParCube enables us to handle effectively and efficiently very large
datasets.

Keywords: Tensors, PARAFAC decomposition, sparsity, sampling,
randomized algorithms, parallel algorithms.

� Research was sponsored by the Defense Threat Reduction Agency and was accom-
plished under contract No. HDTRA1-10-1-0120. Funding was provided by the U.S.
Army Research Office (ARO) and Defense Advanced Research Projects Agency
(DARPA) under Contract Number W911NF-11-C-0088. Research was sponsored by
the Army Research Laboratory and was accomplished under Cooperative Agreement
Number W911NF-09-2-0053. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation here on. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the funding parties.

�� N. Sidiropoulos was partially supported by ARO contract W911NF-11-1-0500.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 521–536, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

522 E.E. Papalexakis, C. Faloutsos, and N.D. Sidiropoulos

1 Introduction

Tensors and tensor decompositions have recently attracted considerable atten-
tion in the data mining community. With the constantly increasing volume of
today’s multi-dimensional datasets, tensors are often the ‘native’ format in which
data is stored, and tensor decompositions the natural modeling toolset - albeit
still suffering from major scalability issues. The state of the art toolboxes for ten-
sors [8,4] still operate on main memory and cannot possibly handle disk-resident
tensor datasets, in the orders of millions or billions of non-zeros.

Motivated by the success of random sampling - based matrix algorithms such
as [11], it is natural to ask whether we can we use similar tools in the case of
tensors. Is it possible to randomly under-sample a tensor multiple times, process
the different samples in parallel and cleverly combine the results at the end to
obtain high approximation accuracy at low complexity and main memory costs?
There exists important work on how to use sampling in order to achieve a sparse
matrix decomposition, the CUR decomposition [11]; this method has also been
extended in order to handle tensors [15]. However, both these methods are tied
to a specific decomposition, while we desire to disconnect sampling from the
specific decomposition that follows.

This paper introduces ParCube, a fast and parallelizable method for speed-
ing up tensor decompositions by leveraging random sampling techniques. A nice
side-benefit of our algorithm is its natural tendency to produce sparse outer-
product approximations, i.e., the model-synthesized approximation of the given
tensor data is naturally very sparse, which is a desirable property in many appli-
cations. Our core contribution is in terms of the merging algorithm that collects
the different ‘punctured’ decompositions and combines them into one overall
decomposition in an efficient way. We provide theoretical guarantees for the
correctness of our approach.

In Fig. 1 we demonstrate a preview of our results: On subfigure 1(a), we show
a successful discovery of what appears to be a port scanning attack, on the LBNL
network traffic dataset, and subfigure 1(b) demonstrates over 90% sparser results
than regular Parafac, while maintaining the same approximation error.

The rest of this paper is structured as follows. Section 2 provides some useful
background; section 3 describes the proposed method, and section 4 contains
experiments. Related work is reviewed in section 5, and conclusions are drawn
in section 6.

2 Tensor Decompositions

A Note on Notation. A scalar is denoted by a lowercase, italic letter, e.g.
x. A column vector is denoted by a lowercase, boldface letter, e.g. x. A ma-
trix is denoted by an uppercase, boldface letter, e.g. X. A three-way tensor is
denoted by X. Let I be a set of indices, e.g. I = {1, 4, 7}; then, a(I) denotes
{a(1), a(4), a(7)}; a(:) spans all the elements of a. This notation naturally ex-
tends to matrices and tensors, i.e., A(I, :) comprises all columns of A restricted
to rows in I. By NNZ() we denote the number of non-zeros.

ParCube: Sparse Parallelizable Tensor Decompositions 523

0 1 2 3 4 5 6 7

x 10
4

0

10

20

0 1 2 3 4 5 6 7

x 10
4

0

0.5

1

0 1 2 3 4 5 6 7

x 10
4

0

0.05

0.1

Src

Dst

Port Scaning AttackPort

(a) Port Scanning Attack-like behaviour on
the LBNL Network Traffic Dataset

0 1 2 3 4 5
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

s = 1.5, r = 3
s = 2, r = 4

s = 2.5, r = 5

s = 3, r = 6

s = 5, r = 10

s = 10, r = 20

Relative cost

R
el

at
iv

e
ou

tp
ut

 s
iz

e

I = J = K = 100, F = 10, avg. fraction of non−zeros = 0.001173

(b) Over 90% sparser results
than regular Parafac, with
same approximation error

Fig. 1. A snapshot of our results. In (a) we have one source (addr. 29571) contacts
one destination (addr. 30483) using a wide range of near consecutive ports and same
amount of packets. In (b), we see that with same relative error, we achieve 90 % sparser
outputs, compared to the ALS-Parafac algorithm.

Tensors. A tensor of n modes (or n-way/n-mode tensor) is a structure indexed
by n variables. For example, a matrix is a two-way tensor. In this work, we focus
on three-way tensors, because they are most common; however, all results can be
readily extended to higher-way tensors. A three-way tensor X is a structure that
resembles a data cube. A detailed survey for tensors and tensor decompositions
may be found in [14].

The PARAFAC Decomposition. The Parafac decomposition [12] ofX into

F components is X ≈
F∑

f=1

af ◦ bf ◦ cf , where a ◦ b ◦ c(i, j, k) = a(i)b(j)c(k).

Fig. 2. The F -component Parafac decomposition of X

The most popular algorithm for fitting the Parafac decomposition is the
Alternating Least Squares (ALS) [9,14]. The computational complexity of the
ALS Algorithm for a I × J ×K tensor, and for F components is O(IJKF) per
iteration.

3 The ParCube Method

In this section we introduce ParCube, a new method for Parafac decomposi-
tion designed with three main goals in mind: G1: Relative simplicity, speed, and

524 E.E. Papalexakis, C. Faloutsos, and N.D. Sidiropoulos

parallelizable execution; G2: Ability to yield sparse latent factors and a sparse
tensor approximation; and G3: provable correctness in merging partial results,
under appropriate conditions.

Sampling for ParCube. The first step of ParCube is to sample a very
high dimensional tensor and use the sampled tensor in lieu of the original one,
bearing three important requirements in mind: R1 The need to significantly
reduce dimensionality; R2 The desire that sampling should be decomposition-
independent - we should be able to apply any decomposition we desire after
sampling, and be able to extrapolate from that; and R3: Sampling should
maintain linear complexity on the number of non-zero entries.

The first thing that comes to mind in order to satisfy requirementR1 is to take
a uniform random sample of the indices of each mode, i.e., take a uniform random
sample of the index sets {1 · · · I}, {1 · · ·J}, and {1 · · ·K}. However, this naive
approach may not adequately preserve the data distribution, since the random
index samples may correspond to entirely arbitrary rows/columns/fibers of the
tensor. We performed initial tests using this naive method, and the results were
consistently worse than the proposed method’s. We thus propose to do biased
sampling: If we, somehow, determine a measure of importance for each index of
each mode, then we may sample the indices using this measure as a sampling
weight/probability. For the purposes of this work, let us assume that our tensor
X has non-negative entries (which is the case in huge variety of data mining
applications); if we were to deal with tensors containing real values, we should
consider the element-wise absolute value of the tensor for the notions that we
introduce in the sequel.

A reasonable measure of importance is the marginal sum of the tensor for each
mode 1. Namely, the measure of importance for the indices of the first mode is

defined as: xa(i) =

J∑
j=1

K∑
k=1

X(i, j, k) for i = 1 · · · I.

Similarly, we define the following importance measures for modes 2 and 3:

xb(j) =

I∑
i=1

K∑
k=1

X(i, j, k),xc(k) =

I∑
i=1

J∑
j=1

X(i, j, k)

for j = 1 · · ·J and k = 1 · · ·K.
Intuitively, if xa(i) is high for some i, then we would desire to select this

specific index i for our sample with higher probability than others (which may
have lower xa value). This is the very idea behind ParCube: We sample the
indices of each mode of X without replacement, using xa, xb and xc to bias the
sampling probabilities.

We define s to be the sampling factor, i.e. if X is of size I × J × K, then
Xs derived by ParCube will be of size I

s × J
s × K

s . We may also use different
sampling factors for each mode of the tensor, without loss of generality.

1 Another, reasonable alternative is the sum-of-squares of the elements of rows,
columns and fibers, which is a measure of energy. We leave this for future work.

ParCube: Sparse Parallelizable Tensor Decompositions 525

In order to obtain the sample we 1) Compute set of indices I as random
sample without replacement of {1 · · · I} of size I/s with probability pI(i) =

xa(i)/

I∑
i=1

xa(i). 2) Compute set of indices J as random sample without re-

placement of {1 · · ·J} of size J/s with probability pJ (j) = xb(j)/
J∑

j=1

xb(j). 3)

Compute set of indices K as random sample without replacement of {1 · · ·K} of

size K/s with probability pK(k) = xc(k)/
K∑

k=1

xc(k).

The ParCube method defines a means of sampling the tensor across all
three modes, without relying on a specific decomposition or a model. Therefore,
it satisfies requirement R3. Algorithm 1 provides an outline of the sampling
forParCube.

Lemma 1. The computational complexity of Algorithm 1 is linear in the number
of non zero elements of X.

Proof. Suppose we have a representation ofX in quadruplets of the form (i, j, k, v)
where X(i, j, k) = v, for v �= 0 and v ∈ NNZ(X). For each of these quadruplets,
we may compute the density vectors as:

xa(i) = xa(i) + v,xb(j) = xb(j) + v,xc(k) = xc(k) + v

This procedure requires 3 O(1) additions per element v, therefore the total
running time is O(NNZ(X)). �

By making use of the above Lemma, and noticing that sampling of the elements,
after having computed the densities of each mode is a linear operation on the
number of non-zeros, we conclude that requirement R3 is met, i.e. our compu-
tation of the biases and biased sampling are linear on the number of non-zeros.
Furthermore, sampling pertains to Goal G1 which calls for a fast algorithm.

Non-negative PARAFAC Decomposition Using ParCube. Now, let us
demonstrate how to apply ParCube in order to scale up the popular Parafac
decomposition, with non-negativity constraints. We choose to operate under the
non-negativity regime since the vast majority of applications of interest naturally
impose this type of constraint.

Algorithm 2 demonstrates the most basic approach in which one extracts
a sample from the original tensor, runs the Parafac decomposition on that
(significantly) smaller tensor and then redistributes the factor vectors to their
original positions, according to the sampled indices I,J ,K. Note that many of
the coefficients of the resulting Parafac factor matrices will be exactly zero,
since their corresponding indices will not be included in the sample and con-
sequently, they will not receive an updated value. This implies that a natural

526 E.E. Papalexakis, C. Faloutsos, and N.D. Sidiropoulos

Algorithm 1: BiasedSample

Input: Original tensor X of size I × J ×K, sampling factor s.
Output: Sampled tensor Xs, index sets I,J ,N .
1: Compute

xa(i) =
J∑

j=1

K∑
k=1

X(i, j, k), xb(j) =
I∑

i=1

K∑
k=1

X(i, j, k), xc(k) =
I∑

i=1

J∑
j=1

X(i, j, k).

2: Compute set of indices I as random sample without replacement of {1 · · · I}

of size I/s with probability pI(i) = xa(i)/
I∑

i=1

xa(i). Likewise for J ,K.

3: Return Xs = X(I,J ,K).

by-product of our approach is sparsity on the factors by construction, thereby
satisfying Goal G2.

However, Algorithm 2 relies on a sole sample of the tensor and it might be the
case that some significant portions of the data, depending on the sampling factor
and the data distribution, may be left out. To that end, we introduce Algorithm
3 which is our main contribution. Algorithm 3 generates many samples and
correctly combines them, in order to achieve better extraction of the true latent
factors of the data tensor.

The key idea behind Algorithm 3 is the method by which all the different sam-
ples are combined in order to output the decomposition matrices; more specif-
ically, intuitively we enforce all the different samples to have a common set of
indices Ip,Jp,Kp (which is a p fraction of the whole sample). Having this com-
mon basis, we are able to combine the samples using Algorithm 4. The basic idea
of Algorithm 4 is the following: We arbitrarily choose the factors of one sample
to serve as reference, and we distribute their coefficients to the corresponding
indices of the factor matrices of the original tensor, as in Algorithm 2. We then
process each of the remaining samples individually. For each one of them, we es-
tablish a correspondence of the sampled factors to the reference factors, and we
update the zero coefficients of the reference factors using values from the current
sample. A fairly subtle issue that arises is how to overcome scaling disparities
between factors coming from two different samples. Key here, as described in
line 5 of Algorithm 3, is to counter-scale the two merge candidates, using only
the norms of the common parts indexed by Ip,Jp,Kp; by doing so, the common
parts will be scaled to unit norm, and the rest of the vectors will also refer to
the correct, same scaling, thereby effectively resolving scaling correspondence.

Note that the generation of the r distinct samples ofX, as well as the Parafac
decomposition of each of them may be carried out in parallel; thus satisfying Goal
G1. Regarding Goal G3, note that correctness of the merge operation requires
certain conditions; it cannot be guaranteed when the individual random samples
do not satisfy Parafac identifiability conditions, or when the common piece
that is used as a reference for merging is too small (p is too low). Proposition 1
provides a first correctness result for our merging algorithm.

ParCube: Sparse Parallelizable Tensor Decompositions 527

Fig. 3. Example of rank-1 Parafac using ParCube (Algorithm 3). The procedure
described is the following: Create r independent samples of X, using Algorithm 1. Run
the Parafac- ALS algorithm for K = 1 and obtain r triplets of vectors, corresponding
to the first component of X. As a final step, combine those r triplets, by distributing
their values to the original sized triplets, as indicated in Algorithm 3.

Algorithm 2: Basic ParCube for Non-negative Parafac

Input: Tensor X of size I × J ×K, number of components F , sampling factor s.
Output: Factor matrices A,B,C of size I × F , J × F , K × F respectively.
1: Run BiasedSample (X, s) (Algorithm 1) and obtain Xs and I,J ,K.
2: Run Non-Negative Parafac (Xs, F) and obtain As,Bs,Cs of size I/s× F ,
J/s× F and K/s× F .

3: A(I, :) = As, B(J , :) = Bs, C(K, :) = Cs

Algorithm 3: ParCube for Non-negative Parafac with repetition

Input: Tensor X of size I × J ×K, number of components F , sampling factor s,
number of repetitions r.

Output: Parafac factor matrices A,B,C of size I × F , J × F , K × F respect-
ively and vector λ of size F × 1 which contains the scale of each component.

1: Initialize A,B,C to all-zeros.
2: Randomly, using mode densities as bias, select a set of 100p% (p ∈ [0, 1])

indices Ip,Jp,Kp to be common across all repetitions.
3: for i = 1 · · · r do
4: Run Algorithm 2 with sampling factor s, using Ip,Jp,Kp as a common

reference among all r different samples and obtain Ai,Bi,Ci. The sampling
is made on the set difference of the set of all indices and the set of common
indices.

5: Calculate the �2 norm of the columns of the common part:
na(f) = ‖Ai(Ip, f)‖2, nb(f) = ‖Bi(Jp, f)‖2, nc(f) = ‖Ci(Kp, f)‖2 for
f = 1 · · ·F . Normalize columns of Ai,Bi,Ci using na,nb,nc and set
λi(f) = na(f)nb(f)nc(f). Note that the common part will now be
normalized to unit norm.

6: end for
7: A =FactorMerge (Ai), B =FactorMerge (Bi),C =FactorMerge (Ci)
8: λ = average of λi.

528 E.E. Papalexakis, C. Faloutsos, and N.D. Sidiropoulos

Algorithm 4: FactorMerge

Input: Factor matrices Ai of size I × F each, where i = 1 · · · r, and r is the
number of repetitions, Ip: set of common indices.

Output: Factor matrix A of size I × F .
1: Set A = A1

2: for i = 2 · · · r do
3: for f1 = 1 · · ·F do
4: for f2 = 1 · · ·F do
5: Compute similarity v(f2) = (A(Ip, f2))T (Ai(Ip, f1)))
6: end for
7: c = argmaxc′ v(c

′)
8: Update only the zero entries of A(:, c) using vector Ai(:, f1).
9: end for
10: end for

Proposition 1. Let (A,B,C) be the Parafac decomposition of X, and assume
that A(Ip, :) (A restricted to the common I-mode reference rows) is such that any
two of its columns are linearly independent; and likewise for B(Jp, :) and C(Kp, :
). Note that if A(Ip, :) has as few as 2 rows (|Ip| ≥ 2) and is drawn from a jointly
continuous distribution, this requirement on A(Ip, :) is satisfied with probability
1. Further assume that each of the sub-sampled models is identifiable, and the
true underlying rank-one (punctured) factors are recovered, up to permutation
and scaling, from each sub-sampled dataset. Then Algorithm 4 is able to merge
the factors coming from the different samples of the tensor correctly, i.e., is able
to find the correct correspondence between the columns of the factor matrices
Ai,Bi,Ci.

Proof sketch 1 Consider the common part of the A-mode loadings recovered
from the different sub-sampled versions of X: under the foregoing assumptions,
the Ai(Ip, :) will be permuted and column-scaled versions of A(Ip, :). After scal-
ing the common part of each column to unit norm, Algorithm 4 seeks to match
the permutations by maximizing correlation between pairs of columns drawn from
Ai(Ip, :) and Aj(Ip, :). From the Cauchy-Schwartz inequality, correlation be-
tween any two unit-norm columns is ≤ 1, and equality is achieved only when
the correct columns are matched, because any two distinct columns of the under-
lying A(Ip, :) are linearly independent. Furthermore, by normalizing the scales
of the matched columns to equalize the norm of the common reference part, the
insertions that follow include the correct scaling too. This shows that Algorithm
4 works correctly in this case. �

The above proposition serves as a sanity check for correctness. In reality, there
will be noise and other imperfections that come into play, implying that the
punctured factor estimates will at best be approximate. This implies that a
larger common sample size (|Ip| ≥ 2, |Jp| ≥ 2, |Kp| ≥ 2) will generally help
Algorithm 4 to correctly merge the pieces coming from the different samples.
We have carried out extensive experiments verifying that Algorithm 4 works

ParCube: Sparse Parallelizable Tensor Decompositions 529

well in practice, under common imperfections. Those experiments also suggest
that increasing the number of samples, r, reduces the Parafac approximation
error.

4 Experiments and Discoveries

In this section we provide experimental evaluation of our proposed method.
First, we evaluate the performance of ParCube, compared to the current state
of the art for handling sparse tensors in Matlab, i.e. the Tensor Toolbox for
Matlab [8]. Since our algorithm, by construction, tends to output sparse factors,
we also evaluate the validity of that claim by comparing the degree of sparsity
of the output to the one given by the Tensor Toolbox and the one given by
Parafac SLF [19], which is the state of the art for Parafac decompositions
with sparsity on the latent factors. The speedups we are reporting were measured
on a 2.7 GHz Intel Core i5 with 4GB of RAM. Finally, we apply our approach
in order to analyze real datasets presented in Table 1.

Table 1. Datasets analyzed

Name Description Dimensions NNZ
Enron [1] (sender, recipient, month) 186× 186× 44 9838
Lbnl [18] (src, dst, port #) 65170 × 65170 × 65327 27269
Facebook [25] (wall owner, poster, day) 63891 × 63890 × 1847 737778
Nell [2] (noun-phrase, noun-phrase, context) 14545 × 14545 × 28818 76879419

We implemented ParCube in Matlab, and we make it available through the
first author’s web site 2. We furthermore use the Tensor Toolbox for Matlab [8]
as our core Parafac decomposition implementation.

4.1 Performance and Scalability Evaluation

In the following lines, we evaluate the performance of Parafac using ParCube

(Algorithm 2). As a performance metric, we use the the relative cost of the
Parafac model, i.e. the cost of the model using our sampling approach, divided
by the cost of fitting a Parafac model using the original tensor. In Fig. 4,
we measure the relative cost as a function of the speedup incurred by using our
ParCube, for different values of the sampling factor; this experiment was carried
out on 100×100×100 randomly generated, synthetic tensors, as we required full
control over the true number of components and the degree of sparsity for each
component. In Fig. 5, we show the relative cost using the Enron dataset, for
various numbers of repetitions (i.e. distinct samples). We see, in this case, that
as the number of repetitions increases, the approximation improves, as expected,
from our theoretical result.

2 Download ParCube at www.cs.cmu.edu/~epapalex/src/parCube.zip

www.cs.cmu.edu/~epapalex/src/parCube.zip

530 E.E. Papalexakis, C. Faloutsos, and N.D. Sidiropoulos

2 4 6 8 10 12
1

1.2

1.4

1.6

1.8

2

2.2

2.4

s = 1.5

s = 2

s = 2.5

s = 3

Relative cost

E
xe

cu
tio

n
T

im
e

S
pe

ed
up

I=J=K = 100, F = 10, avg. fraction of non−zeros = 0.058158

(a)

20 25 30 35 40 45
2

3

4

5

6

7

8

9

s = 1.5

s = 2

s = 2.5

s = 3

Relative cost

E
xe

cu
tio

n
T

im
e

S
pe

ed
up

I=J=K = 100, F = 10, avg. fraction of non−zeros = 0.306845

(b)

Fig. 4. ParCube is faster than ALS-Parafac: Speedup vs Relative cost (ParCube/
ALS-Parafac) for 1 repetition, for varying sampling factor and different degrees of
sparsity. We observe that even for a relatively high sampling factor, we get relatively
good relative cost, which may be further improved using repetition. Key here is that
by using repetition, because this procedure may be carried out in parallel, we may
improve the accuracy and maintain similar speedup.

0 2 4 6 8 10 12
1

1.2

1.4

1.6

1.8

No. of repetitions

R
el

at
iv

e
co

st

Reative cost vs no. of repetitions (varying s)

s = 2
s = 3
s = 4
s = 5
s = 6

(a) Enron: Relative cost vs No. of repeti-
tons (varying s)

0 2 4 6 8 10
1

1.5

2

No. of repetitions

R
el

at
iv

e
co

st

Relative cost vs no. of repetitions (varying F)

 F = 1
F = 2
F = 3
F = 4

(b) Enron: Relative cost vs No. of repeti-
tons (varying F)

Fig. 5. ParCube reduces the Parafac approximation cost: (a) Approximation cost vs
number of repetitions for varying s, where r = 2s (b) Approximation cost vs number
of repetitions for varying F and fixed s = 5. In both cases, the approximation improves
as r increases, as expected

4.2 Factor Sparsity Assessment

In Fig.6, we measure the relative output size (i.e. the relative degree of sparsity)
between ParCube and Tensor Toolbox non-negative Parafac. The output size
is simply defined as NNZ(A)+NNZ(B)+NNZ(C), which clearly reflects the
degree of sparsity in the decomposition factors. In Fig. 7 we measure the relative
output size between ParCube and Parafac SLF, as a function of the sampling
factor s, for different values of the sparsifying parameter λ used by Parafac

SLF (more details in [19]).

ParCube: Sparse Parallelizable Tensor Decompositions 531

0 1 2 3 4 5 6 7
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

s = 1.5, r = 3

s = 2, r = 4

s = 2.5, r = 5

s = 3, r = 6

s = 5, r = 10

s = 10, r = 20

Relative cost

R
el

at
iv

e
ou

tp
ut

 s
iz

e
I = J = K = 100, F = 10, avg. fraction of non−zeros = 0.008543

(a)

0 1 2 3 4 5
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

s = 1.5, r = 3
s = 2, r = 4

s = 2.5, r = 5

s = 3, r = 6

s = 5, r = 10

s = 10, r = 20

Relative cost

R
el

at
iv

e
ou

tp
ut

 s
iz

e

I = J = K = 100, F = 10, avg. fraction of non−zeros = 0.001173

(b)

Fig. 6. ParCube outputs sparse factors: Relative Output size (ParCube/ ALS-
Parafac) vs Relative cost. We see that the results of ParCube are more than 90%
sparser than the ones from Tensor Toolbox, while maintaining the same approximation
error.

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

Sampling factor

R
el

at
iv

e
ou

tp
ut

 s
iz

e ENRON, F = 5, avg. fraction of non−zeros = 0.006604

 lambda = 30
lambda = 40
lambda = 50
lambda = 60

Fig. 7. ParCube outputs sparse factors: Relative Output size (ParCube/ Parafac

SLF) vs sampling factor s (where no. of repetitions is r = 2s.

4.3 Parallelizability

As we have mentioned above, lines 3 to 6 of Algorithm 3 may be carried out
entirely in parallel; we have also established, in the previous subsection, that
by doing more repetitions, we largely improve the approximation error, and in
particular, we converge to the approximation error of the ALS-Parafac algo-
rithm. In its current version, ParCube is not implemented to run in multiple
machines, however, here we discuss the potential merits of such an implemen-
tation. For evaluation purposes, we divided the run time of Algorithm 3 to a
parallelizable (lines 3 to 6) and a serial part (everything else). For r repetitions,
we added the serial run-time with the maximum of the r different, parallel run-
ning times. This way, we are loosely emulating the run-time that we would get if
we used r cores or machines to run the Algorithm. In particular, by conducting
experiments on 256 × 256 × 256 tensors with 0.0578 fraction of non-zeros on
average, we got 1.2 average speedup with relative error 1.67 (for s = 2, r = 4)
and 14.2 speedup with relative error 5.9 (for s = 10, r = 20).

532 E.E. Papalexakis, C. Faloutsos, and N.D. Sidiropoulos

4.4 ParCube at Work

In this section we present interesting patterns and anomalies, that we were able
to discover in the datasets of Table 1, demonstrating that our proposed algo-
rithm ParCube is both practical and effective for data mining practitioners. So
far, we don’t have an automated method for the selection of parameters s, r, and
p, but we leave this for future work; the choice is now made empirically.

ENRON. This very well known dataset contains records for 44 months (between
1998 and 2002) of the number of emails exchanged between the 184 employees of
the company, forming a 184×184×44 of 9838 non-zero entries. We executed Al-
gorithm 3 using s = 2 and r = 4 and we applied similar analysis to the resulting
factors as the one applied in [7,19]. In Figure 8 we illustrate the temporal evolu-
tion of the 4 most prevailing groups in our analysis, having annotated the figure
with important events, corresponding to peaks in the communication activity.
Labelling of the groups was done manually; because the factors were not very
sparse we filtered out very low values on each factor. This issue most certainly
stems from the fact that this dataset is not particularly large and therefore by
applying the regular ALS-Parafac algorithm to the samples (which is known
to yield dense factors), we end up with dense sample factors, which eventually,
due to repetition, tend to cover most of the data points. This, however, was not
the case for larger datasets analyzed in the following lines, for which the factors
turned out to be extremely sparse.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Temporal evolution of ENRON groups

Legal
Legal
VP/Govt. Affairs
Trading

Investigation startsCEO change

Enron goes
bankrupt

Fig. 8. Temporal evolution of 4 groups in the Enron dataset. We have labelled the
groups, according to the position of the participants in the company. The labels of the
extracted groups are consistent with other works in the literature [7,19], albeit they
have been extracted with somewhat different order. We have also discovered 2 ’Legal’
groups that behave slightly differently over time, a fact probably stemming from the
different people involved in each group.

LBNL Network Traffic. This dataset consists of (source, destination, port #)
triplets, where each value of the corresponding tensor is the number of packets
sent. The snapshot of the dataset we used, formed a 65170 × 65170 × 65327
tensor of 27269 non-zeros. We ran Algorithm 3 using s = 5 and r = 10 and we
were able to identify what appears to be a port-scanning attack: The component
shown in Fig. 9 contains only one source address (addr. 29571), contacting one
destination address (addr. 30483) using a wide range of near-consecutive ports

ParCube: Sparse Parallelizable Tensor Decompositions 533

0 1 2 3 4 5 6 7

x 10
4

0

10

20

0 1 2 3 4 5 6 7

x 10
4

0

0.5

1

0 1 2 3 4 5 6 7

x 10
4

0

0.05

0.1

Src

Dst

Port Scaning AttackPort

Fig. 9. Anomaly on the Lbnl data: We have one source address (addr. 29571), con-
tacting one destination address (addr. 30483) using a wide range of near-consecutive
ports, possibly indicating a port scanning attack

(while sending the same amount of packets to each port), a behaviour which
should certainly raise a flag to the network administrator, indicating a possible
port-scanning attack.

Facebook Wall Posts. This dataset 3 first appeared in [25]; the specific part
of the dataset we used consists of triplets of the form (Wall owner, Poster,
day), where the Poster created a post on the Wall owner’s Wall on the specified
timestamp. By choosing daily granularity, we formed a 63891 × 63890 × 1847
tensor, comprised of 737778 non-zero entries; subsequently, we ran Algorithm 3
using s = 100 and r = 10. In Figure 10 we present our most surprising findings:
On the left subfigure, we demonstrate what appears to be the Wall owner’s
birthday, since many posters posted on a single day on this person’s Wall; this
event may well be characterized as an ”anomaly”. On the right subfigure, we
demonstrate what ”normal” Facebook activity looks like.

0 1 2 3 4 5 6 7

x 10
4

0

10

20

0 1 2 3 4 5 6 7

x 10
4

0

0.5

1

0 500 1000 1500 2000
0

0.5

1

Wall Owner

Posters

Day

(a) Facebook anomaly (Wall owner’s
birthday)

0 1 2 3 4 5 6 7

x 10
4

0

5

10

0 1 2 3 4 5 6 7

x 10
4

0

0.5

1

0 500 1000 1500 2000
0

0.5

1

Posters

Day

Wall Owner

(b) Facebook normal activity

Fig. 10. Results for Facebook using s = 100, r = 10, F = 15. Subfigure (a): Facebook
”anomaly”: One Wall, many posters and only one day. This possibly indicates the
birthday of the Wall owner. Subfigure(b): Facebook ”normal” activity: Many users
post on many users’ Walls, having a continuous daily activity.

3 Download Facebook at http://socialnetworks.mpi-sws.org/data-wosn2009.html

http://socialnetworks.mpi-sws.org/data-wosn2009.html

534 E.E. Papalexakis, C. Faloutsos, and N.D. Sidiropoulos

NELL. This dataset consists of triplets of the form (noun-phrase, noun-phrase,
context). which form a tensor with assorted modes of size 14545×14545×28818
and 76879419 non-zeros, and as values the number of occurrences of each triplet.
The context phrase may be just a verb or a whole sentence. After computing the
Parafac decomposition of the tensor using ParCube with s = 500, and r = 10
repetitions, we computed the noun-phrase similarity matrix AAT + BBT and
out of that, we were able to discover potential synonyms to noun-phrases, that
we report on Table 2.

Table 2. Nell: Potential synonym discovery

Noun-phrase Potential Synonyms
computer development
period day, life
months life
facilities families, people, communities
rooms facilities
legs people
communities facilities, families, students

5 Related Work

Tensor Applications. Tensors and tensor decompositions have gained increas-
ing popularity in the last few years, in the data mining community [14]. The
list of tensor applications in data mining is long, however we single out a few
that we deemed representative: In [13], the authors extend the well known link
analysis algorithm HITS, incorporating textual/topical information. In [7] and
[6] the authors use tensors for social network analysis on the Enron dataset.
In [22], the authors propose a sampling-based Tucker3 decomposition in order
to perform content based network analysis and visualization. The list continues,
including applications such as [10] [16] [3]. Apart from Data Mining, tensors have
been and are still being applied in a multitude of fields such as Chemometrics
[9] and Signal Processing [21].

State of the Art Toolboxes. The standard framework for working with ten-
sors is Matlab; there exist two toolboxes, both of very high quality: The Tensor
Toolbox for Matlab[5,8] (specializing in sparse tensors) and the N-Way Toolbox
for Matlab [4] (specializing in dense tensors).

Relevant Approaches. In [20], the authors propose a partition-and-merge
scheme for the Parafac decomposition which, however, does not offer factor
sparsity. In [19], the authors introduce a Parafac decomposition with latent
factor sparsity. In [17] and [23] we find two interesting approaches, where a
tensor is viewed as a stream and the challenge is to track the decomposition.
In terms of parallel algorithms, [26] introduces a parallel Non-negative Ten-
sor Factorization. Finally, [24,22] propose randomized, sampling based Tucker3
decompositions.

ParCube: Sparse Parallelizable Tensor Decompositions 535

6 Conclusion

In this work we have introduced ParCube, a new, fast, parallelizable tensor
decomposition which produces sparse factors by construction. Furthermore, it
enables processing of large tensors that may not fit in memory. We provide
theoretical results that indicate correctness of our algorithm; one of our core
contributions pertains to the correct merging of the individual samples. We
have demonstrated its merits with respect to sparsity and speedup, compared to
the current state of the art, through extensive experimentation. Moreover, the
speedup benefits of ParCube may be further improved if we exploit its massive
parallelizability. Finally, the practicality of ParCube is heavily pronounced by
analyzing four different real datasets, discovering patterns and anomalies.

References

1. Enron e-mail dataset, http://www.cs.cmu.edu/~enron/
2. Read the web, http://rtw.ml.cmu.edu/rtw/
3. Acar, E., Aykut-Bingol, C., Bingol, H., Bro, R., Yener, B.: Multiway analysis of

epilepsy tensors. Bioinformatics 23(13), i10–i18 (2007)
4. Andersson, C.A., Bro, R.: The n-way toolbox for matlab. Chemometrics and In-

telligent Laboratory Systems 52(1), 1–4 (2000)
5. Bader, B.W., Kolda, T.G.: Efficient MATLAB computations with sparse and fac-

tored tensors. SIAM Journal on Scientific Computing 30(1), 205–231 (2007)
6. Bader, B.W., Berry, M.W., Browne, M.: Discussion tracking in enron email using

parafac. Survey of Text Mining II, 147–163 (2008)
7. Bader, B.W., Harshman, R.A., Kolda, T.G.: Temporal analysis of social net-

works using three-way dedicom. Sandia National Laboratories TR SAND2006-2161
(2006)

8. Bader, B.W., Kolda, T.G.: Matlab tensor toolbox version 2.2. Sandia National
Laboratories, Albuquerque (2007)

9. Bro, R.: Parafac. tutorial and applications. Chemometrics and Intelligent Labora-
tory Systems 38(2), 149–171 (1997)

10. Chew, P.A., Bader, B.W., Kolda, T.G., Abdelali, A.: Cross-language information
retrieval using parafac2. In: Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 143–152. ACM (2007)

11. Drineas, P., Kannan, R., Mahoney, M.W., et al.: Fast monte carlo algorithms for
matrices iii: Computing a compressed approximate matrix decomposition. SIAM
Journal on Computing 36(1), 184 (2006)

12. Harshman, R.A.: Foundations of the parafac procedure: Models and conditions for
an ”explanatory” multimodal factor analysis (1970)

13. Kolda, T.G., Bader, B.W.: The tophits model for higher-order web link analysis.
In: Workshop on Link Analysis, Counterterrorism and Security, vol. 7, pp. 26–29
(2006)

14. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Re-
view 51(3) (2009)

15. Mahoney, M.W., Maggioni, M., Drineas, P.: Tensor-cur decompositions for tensor-
based data. In: Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 327–336. ACM (2006)

http://www.cs.cmu.edu/~enron/
http://rtw.ml.cmu.edu/rtw/

536 E.E. Papalexakis, C. Faloutsos, and N.D. Sidiropoulos

16. Maruhashi, K., Guo, F., Faloutsos, C.: Multiaspectforensics: Pattern mining on
large-scale heterogeneous networks with tensor analysis. In: Proceedings of the
Third International Conference on Advances in Social Network Analysis and Min-
ing (2011)

17. Nion, D., Sidiropoulos, N.D.: Adaptive algorithms to track the parafac decom-
position of a third-order tensor. IEEE Transactions on Signal Processing 57(6),
2299–2310 (2009)

18. Pang, R., Allman, M., Bennett, M., Lee, J., Paxson, V., Tierney, B.: A first look at
modern enterprise traffic. In: Proceedings of the 5th ACM SIGCOMM Conference
on Internet Measurement, p. 2. USENIX Association (2005)

19. Papalexakis, E.E., Sidiropoulos, N.D.: Co-clustering as multilinear decomposition
with sparse latent factors. In: 2011 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2064–2067. IEEE (2011)

20. Phan, A.H., Cichocki, A.: Block decomposition for very large-scale nonnegative
tensor factorization. In: 2009 3rd IEEE International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 316–319. IEEE
(2009)

21. Sidiropoulos, N.D., Giannakis, G.B., Bro, R.: Blind parafac receivers for ds-cdma
systems. IEEE Transactions on Signal Processing 48(3), 810–823 (2000)

22. Sun, J., Papadimitriou, S., Lin, C.Y., Cao, N., Liu, S., Qian, W.: Multivis: Content-
based social network exploration through multi-way visual analysis. In: Proc. SDM,
vol. 9, pp. 1063–1074 (2009)

23. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analy-
sis. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 374–383. ACM (2006)

24. Tsourakakis, C.E.: Mach: Fast randomized tensor decompositions, Arxiv preprint
arXiv:0909.4969 (2009)

25. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user
interaction in facebook. In: Proceedings of the 2nd ACM SIGCOMM Workshop on
Social Networks (WOSN 2009) (August 2009)

26. Zhang, Q., Berry, M.W., Lamb, B.T., Samuel, T.: A Parallel Nonnegative Tensor
Factorization Algorithm for Mining Global Climate Data. In: Allen, G., Nabrzyski,
J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009, Part
I. LNCS, vol. 5545, pp. 405–415. Springer, Heidelberg (2009)

Stochastic Coordinate Descent Methods

for Regularized Smooth and Nonsmooth Losses

Qing Tao1,2, Kang Kong1, Dejun Chu1, and Gaowei Wu2

1 New Star Research Inst. of Applied Technology, Hefei 230031, P.R. China
ln.kang.kong,fangboc@gmail.com

2 Inst. of Automation, Chinese Academy of Sciences, Beijing, 1000190, P.R. China
{qing.tao,gaowei.wu}@ia.ac.cn

Abstract. Stochastic Coordinate Descent (SCD) methods are among
the first optimization schemes suggested for efficiently solving large scale
problems. However, until now, there exists a gap between the convergence
rate analysis and practical SCD algorithms for general smooth losses and
there is no primal SCD algorithm for nonsmooth losses. In this paper, we
discuss these issues using the recently developed structural optimization
techniques. In particular, we first present a principled and practical SCD
algorithm for regularized smooth losses, in which the one-variable sub-
problem is solved using the proximal gradient method and the adaptive
componentwise Lipschitz constant is obtained employing the line search
strategy. When the loss is nonsmooth, we present a novel SCD algorithm,
in which the one-variable subproblem is solved using the dual averaging
method. We show that our algorithms exploit the regularization struc-
ture and achieve several optimal convergence rates that are standard in
the literature. The experiments demonstrate the expected efficiency of
our SCD algorithms in both smooth and nonsmooth cases.

Keywords: Optimization Algorithms, Coordinate Descent Algorithms,
Nonsmooth and smooth Losses, Large-Scale Learning.

1 Introduction

Given a training set S = {(x1, y1), . . . , (xm, ym)}, where (xi, yi) ∈ RN × Y, Y =
{−1, 1}, xi is independently drawn and identically distributed, and yi is the
label of xi. The task of regularized learning is usually cast as the following
convex optimization problem,

F (w) = λP (w) +

m∑
i=1

fi(w) (1)

where λ is a trade-off parameter, P (w) is a simple regularizer (such as l1 or l2
norm) and fi(w) is the loss caused by (xi, yi). If the gradient of each fi(w) is
Lipschitz continuous, we call (1) a regularized smooth problem. In the literature
[3,6,26], fi(w) = max{0, 1 − yi〈w,xi〉}2 is usually referred to as L2-loss and
fi(w) = max{0, 1− yi〈w,xi〉} is L1-loss.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 537–552, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

538 Q. Tao et al.

Using Coordinate Descent (CD) methods to solve optimization problems has
a long history and we refer readers to [24] and [26] that summarize previous
work and present comparison for various kinds of CD algorithms. In machine
learning, the primal CD operates by sequentially drawing all features, one at a
time, and adjusting the learning variables using the closed-form solvers that are
based on the single feature only. More precisely, the process from wt to wt+1

is called an outer iteration. In each outer iteration, there are N inner iterations
so that sequentially the component wt

1, w
t
2, · · · , wt

N are updated. As indicated in
[18,19], the low computational complexity at per iteration, the inherently fresh
information of updated features and cheap computation of coordinate directional
derivatives make CD one of the most efficient optimization techniques in dealing
with sparse huge scale problems. In the huge-scale problems in the sense that
even the problem’s data may be only partially available at the moment of evalu-
ating the current test point, going over all dimensions causes an expensive outer
iteration. Instead, one can randomly update only one component of w at each
outer iteration. This kind of methods is referred to as Stochastic CD (SCD).

The practical efficiency of CD has been shown by extensive comparison exper-
iments and an important fact is that the dual CD method for linear SVM in [6]
performs very well on large scale document data [26]. However, as pointed out
in [3], one should use primal CD when the number of features is much smaller
than the number of instances. Although the primal CD methods for regularized
learning [3,19,20,24,26] has been receiving much attention, some problems still
exist. First, for a general smooth loss especially the commonly used L2-loss, the
existing results either just prove convergence rates [20] or only provide practical
algorithms [26] due to the lack of the strong convexity. How to fill the gap be-
tween the convergence rate analysis and practical efficiency is still an emergent
question. Second, for a nonsmooth loss such as the popularly used hinge loss,
there is still no primal SCD algorithm due to the lack of the differentiability. In
this paper, we discuss these issues using the structural optimization techniques.

Recently, many remarkable achievements have been made in the area of struc-
tural convex optimization [16]. It has been shown that the black-box gradient-
type optimization approaches can be replaced by optimization techniques based
on a clever use of problem’s structure. For nonsmooth problems, Nesterov pro-
posed a primal-dual subgradient method [17] to take the place of the classical
Projected Subgradient Algorithm (PSA, [1]). In all situations, this method was
proved to be optimal from the viewpoint of worst-case black-box lower com-
plexity bounds. Further, if the objective function is smooth, Nesterov presented
novel smooth convex optimization algorithms whose rate of convergence achieve
the optimal O(1/t2) convergence rate in a seminal work [13]. Other variants of
this method for minimizing composite objective functions of the form are called
APG in [23] and FISTA in [2]. By extending the dual averaging scheme in [17] to
regularized problems, an online Regularized Dual Averaging (RDA) method for
solving regularized problem (1) was obtained in [25]. In the case of l1 regulariza-
tion, RDA can particularly exploit the regularization structure and effectively

Stochastic Coordinate Descent Methods 539

obtain the sparse solutions. More recently, by using PG, Nesterov proposed an
efficient SCD scheme for solving huge-scale smooth optimization problems [18].

In this paper, we present a unified framework for developing CD algorithms
from the smooth and nonsmooth structural optimization methods. In particular,
for smooth losses, we first extend the smooth CD algorithm in [18] to solve reg-
ularized smooth problems with nonsmooth regularizers by using PG. Then we
consider the important question of decreasing the factor in the convergence rate
and derive an adaptive SCD algorithm using the line search technique. Second,
for nonsmooth losses, we present a novel SCD algorithm for regularized nons-
mooth losses, in which the randomly selected one-variable subproblem is solved
using the RDA method. Since we separately treat the regularizer and loss, all
our SCD algorithms can effectively exploit the regularization structure. Theo-
retical analysis shows that we achieve several optimal rates which are standard
in the literature especially for convex and strongly convex problems. Our nons-
mooth SCD expands the field of SCD and our smooth SCD fills the gap between
convergent rate analysis [20] and practical algorithms [26] especially for L2-loss.

The experiments show that our nonsmooth SCD outperforms the state-of-the-
art solvers in [17,4,21,6]. For regularized smooth loss problems, the toy experi-
ments illustrate that our adaptive smooth SCD outperforms the state-of-the-art
solver in [2] while the real experiments demonstrate that it has the same prac-
ticality as the state-of-the-art solver in [26].

The rest of this paper is organized as follows. Section 2 and Section 3 discuss
SCD algorithms for smooth and nonsmooth losses respectively. Experimental
results are reported in Section 4 and conclusions are made in the last section.

2 SCD Algorithms for Smooth Losses

It is well-known that the complexity of a convex optimization problem is closely
linked with its level of smoothness on the first derivatives of functional compo-
nents [16]. If more information on the smoothness about f is available, higher
performance algorithms are expected. In this section, we assume that ∇f is
Lipschitz continuous. The Lipschitz condition of ∇f measures how well f is
approximated at some point by its linearization.

For a primal CD method, the optimization process starts from an initial point
w0 and generates a sequence of vectors {wt}. Each outer iteration generates
vectors wt,i ∈ RN , i = 1, 2, · · · , N + 1, such that wt,1 = wt, wt,N+1 = wt+1

and wt,i = [wt+1
1 , · · · , wt+1

i−1 , w
t
i , · · · , wt

N]T , ∀i = 2, · · · , N . The concerned one-
variable sub-problem is minz λP (wt,i+ zei)+ ai(z), where ai(z) = f(wt,i+ zei)
and ei = [0, · · · , 0, 1, 0, · · · , 0]T .

As L2-loss is only Lipschitz differentiable but not twice differentiable and
P (w) = ‖w‖1 is non-differentiable, certain special considerations in generalizing
the second derivative are given in [3]. First, in order to derive the closed-form
solution of single-variable sub-problem for L2-loss, the following second-order
approximation of the loss term is adopted

min
z

a′i(0)z +
1

2
a′′i (0)z

2 + λp(wt,i
i + z)− λp(wt,i

i) (2)

540 Q. Tao et al.

where a′′i (0) is the generalized second derivative defined in [26]and [3], p(ω) = ω2

when P (w) = ‖w‖22 and p(ω) = |ω| when P (w) = ‖w‖1. On the other hand, to
ensure the convergence of l1 regularized CD algorithms, the line search strategy
in [24] is modified in [26] to find γ,

F (wt,i + γdei)− F (wt,i) ≤ σγ[a′i(0)d+ λ|wt,i
i + d| − λ|wt,i

i |] (3)

where d is the solution of (2), σ is any constant in (0, 1), β ∈ (0, 1), and γ =
max{1, β, β2, . . . , } such that γd satisfies (3). By solving (2) and (3), the inner
update from wt,i to wt,i+1 is wt,i+1

i = wt,i
i + γd.

In the following, we will construct CD based on the gradient methods for
smooth functions. Obviously, there exist a constant L(f) > 0 such that ‖∇f(w)−
∇f(u)‖ ≤ L(f)‖w− u‖, ∀w,u ∈ RN . Then, for any L ≥ L(f),

f(w) ≤ f(u) + 〈w − u,∇f(u)〉+ (L/2)‖w− u‖2 (4)

for every w,u ∈ RN . Let lf (w,u) = f(u) + 〈w − u,∇f(u)〉. The key operation
in PG [23] is

wt+1 = argmin
w

{lf(w,wt) + λP (w) + (L/2)‖w−wt‖2} (5)

It is easy to find that (5) is separable and has an entry-wise closed-form solution.
Motivated by the CD for L2-loss in [3], we can solve (5) in only one of the N
components at each step. To be more precise, the randomly selected one-variable
sub-problem now is

wt+1
i = argmin

ω

{
ω(gti − Lwt

i) + λp(ω) + (L/2)ω2
}

(6)

If d is the solution of (6), the update from wt to wt+1 is wt+1 = wt + dei. We
describe our SCD algorithm for regularized smooth losses in Algorithm 1.

Algorithm 1. Smooth SCD

Initialize a weight vector w1.
repeat

1. Choose i ∈ {1, 2, . . . , N} uniformly at random
2. calculate gti
3. solve (6) and update wt+1

4. t := t+ 1
until a stopping condition is satisfied

If we let λ = 0 or P (w) be the indicator function of a closed convex set,
Smooth SCD recovers the SCD scheme including both unconstrained and con-
strained minimizations in [18]. After t iterations, Nonsmooth SCD generates a
random output [wt, F (wt)]. Obviously, [wt, F (wt)] depends on the random vari-
able ξt = {i0, i1, i2, . . . it}, where it is independently and randomly chosen from

Stochastic Coordinate Descent Methods 541

the set {1, 2, · · · , N} with probability 1/N . We denote φt = Eξt−1F (wt). In
the following, we extend the convergence theorem in [18] to regularized learning
problems. Even when λ = 0, our proof is new and rather concise (see Appendix).

Theorem 2.1. Let w∗ be the optimal solution of (1) in F. Assume {wt} is
generated by Smooth SCD. Then

i) If P (w) = ‖w‖1, φt − F (w∗) ≤ O(L/t).
ii) If P (w) = ‖w‖22, there exists a 0 < μ < 1 such that φt − F (w∗) ≤ O(μt).

By fixing the expected accuracy of solution and the confidence level, we can also
derive the same orders of convergence rates of Smooth SCD with high proba-
bility as that in [21] and [25]. When P (w) = ‖w‖22, Theorem 2.1 indicates that
we have achieved optimal convergence rates that are standard in the literature
for strongly convex optimization [18]. If the loss function is smooth but not
strongly convex such as L2-loss, we obtain the convergence rate O(L/t) for its
l1 regularization. However, the rate O(L/t) is not optimal for general convex
smooth losses. In a series of work, Nesterov proposed several methods to ac-
celerate convergence of PG. They obtain the optimal convergence rate O(L/t2)
that are standard in the literature [14,15]. As an extension of Nesterov’s ac-
celerated method [13], a shrinkage-thresholding Accelerated Proximal Gradient
(APG) algorithm was recently proposed in [2]. This accelerated scheme for gra-
dient methods can be done also for the SCD schemes, and several variants that
can reach convergence rate O(L/t2) has been discussed in [18]. Unfortunately
for some applications, as pointed out in [18], the complexity of one iteration of
the accelerated scheme is rather high since the computation of full-dimensional
vectors has to be concerned. As the focus in this paper is only on stochastic
algorithms, we will not discuss the accelerated SCD. However, we will compare
with the batch APG [2] in the experiments.

A possible drawback of the above scheme especially for stochastic learning
is that the Lipschitz constant L(f) is not always known or computable. In the
optimization process, L(f) plays a dominant part as the stepsize. The selection
of stepsize severely affects the performance of optimization methods even in the
stochastic setting. It has been indicated in [26] that SCD is much slower than
the corresponding deterministic methods when a too large upper bound of the
second derivative is used. This fact indicates that the factor L in convergence
rate O(L/t) is extremely useful in practice. We therefore analyze an adaptive
SCD algorithm with compact Lipschitz constants in the following.

To ensure the holding of Theorem 2.1, the local Lipschitz condition should be
satisfied in each iteration, i.e., for any w ∈ [wt,wt+1], there exists a constant Lt

such that

f(w) ≤ f(wt) + 〈w −wt,∇f(wt)〉+ (Lt/2)‖w−wt‖2 (7)

with inft≥1{Lt} > 0. Obviously, Lt can be roughly selected as an upper bound
on the second derivative of the loss. To find a more compact Lt at each step, it
is intuitive to use the second-order derivative of f at wt as an initial point for
line search. Specifically, let ai(z) = f(wt+zei), we solve the following randomly

542 Q. Tao et al.

selected single-variable sub-problem

min
z

a′i(0)z +
1

2
a′′i (0)z

2 + λp(wt
i + z)− λp(wt

i) (8)

where a′′i (0) is a subgradient of a′i(0). To get the solution of (8) in closed-form,
we restrict

a′′i (0) = ε if a′′i (0) < ε (9)

where ε is a predefined sufficiently small positive number. We use the following
backtracking line search strategy to find γd,

f(wt + γdei)− f(wt) ≤ γ[a′i(0)d+ (γ/2)d2] (10)

where d is the solution of (8), β ∈ (1,∞) and γ = min{1, β, β2, . . . , }a′′i (0) such
that γd satisfies (10). By solving (8) and (10), the update from wt to wt+1 is
wt+1 = wt+γdei. We describe our adaptive smooth SCD in Algorithm 2, which
is a coordinate-wise version of ISTA with backtracking in [2]. As discussed in
[2], Algorithm 2 has the same order of convergence rate as Algorithm 1.

Algorithm 2. Adaptive Smooth SCD

Initialize a weight vector w1 and choose β ∈ (1,∞).
repeat

1. Choose i ∈ {1, 2, . . . , N} uniformly at random
2. calculate a′i(0) and a

′′
i (0) according to (9)

3. calculate d via (8)
4. compute γ = min{1, β, β2, . . . , }a′′i (0) such that γd satisfies (10) and update wt

5. t := t+ 1
until a stopping condition is satisfied

In [20], an O(L/t) convergence rate for SCD was indeed obtained, but it
didn’t discuss the linear convergence rate for strongly convex objective functions
and only focused on several specific data sets with fixed Lipschitz constants. In
[26], a practical CD method using one-dimensional Newton direction (CDN)
to minimize the second-order approximation in (2) was proposed. CDN uses
the line search strategy (3) to find the parameter γ and the optimal linear
convergence rate has been obtained when dealing with strongly convex objective
functions (see also [3,6]), but its convergence rate for L2-loss with l1 regularizer
was not explicitly described in [26]. At first sight, our line search strategy (10)
is only a little different from the strategy (3). Nevertheless, our strategy looks
rather natural and flexible. Further, the principles behind (10) and (3) are quite
different, i.e., the goal of the former is to guarantee the effectiveness of a local
Lipschitz expansion and decrease the factor in convergence rates while that of
the latter is only to ensure sufficient decrease of the objective function. At this
point, we have established a close link between the practical CD algorithms in
[24,26] and principled structural optimization techniques. Note that (10) has the

Stochastic Coordinate Descent Methods 543

same computational cost as (3), thus we believe that SCD algorithms developed
in this section can fill the gap between convergence rate analysis and practical
efficiency. Compared with the SCD in [20] and CDN in [26], our method is
interesting in both theory and practice.

3 SCD Algorithms for Nonsmooth Losses

In this section, we only assume that f is only continuous and convex. Since the
generalized second derivative of f doesn’t exist, we can not discuss CD algo-
rithms along the lines in Section 2. This is the main obstacle to establish CD
algorithms for nonsmooth losses. Note that many SCD algorithms as well as their
convergence heavily depend on the associated corresponding full-gradient algo-
rithms [18,20]. This fact motivates us to start from the nonsmooth deterministic
optimization method.

In [17], a dual averaging method was presented for different types of nons-
mooth problems only requiring the subgradient information. At each iteration,
the learning variables are adjusted by solving a simple minimization problem
that involves running average of all past subgradients that emphasizes more
recent gradients. RDA is an extension of this method, which can solve online
regularized learning problems [25]. More specifically, the key iteration of batch
RDA takes the form

wt+1 = argmin
w

{
〈ḡt,w〉+ λP (w) + (βt/t)h(w)

}
(11)

where ḡt = 1
t

∑t
j=1 ∇f(wj), ∇f(wj) is a subgradient of f atwj , h(w) is an aux-

iliary strongly convex function, and {βt}t≥1 is a nonnegative and nondecreasing
input sequence. We describe RDA for batch learning in Algorithm 3.

Algorithm 3. Batch RDA

Initialize a weight vector w1 = 0 and ḡ0 = 0.
repeat

1. compute gt = ∇f(wt)
2. update ḡt = [(t− 1)ḡt−1 + gt]/t
3. compute wt+1 via (11)
4. t := t+ 1

until a stopping condition is satisfied

For simplicity, we choose h(w) = (1/2)‖w‖22 throughout this paper. According
to (11), wt+1 can be found in closed-form with little effort. This is the main
reason that RDA methods can successfully deal with large scale problems and
exploit the regularization structure. As optimization problem (11) is separable,
we can get wt+1 by solving each wt+1

i independently, i.e.,

wt+1
i = argmin

ω

{
ωḡti + λp(ω) + (βt/2t)ω

2
}

(12)

544 Q. Tao et al.

where ḡti denotes the i-th component of 1
t

∑t
j=1 ∇f(wj).

To conduct convergence analysis, we gather the following assumptions from
[25], although some of them don’t appear explicitly in Theorem 3.1 and 3.2.

Assumption 3.1. There exists a constant M > 0 such that ‖∇if(w)‖ ≤
M , ∀w ∈ RN , 1 ≤ ∀i ≤ N and max{σ1, β1} > 0, where σ1 is dedicated to
the convexity parameter of P (w). If P (w) = ‖w‖1, βt is order exactly

√
t. If

P (w) = ‖w‖22, βt ≤ O(ln t).

[25] gave several precise regret bounds of the RDA method for solving regu-
larized online problems. The convergence rates for stochastic learning problems
can be established based on these regret bounds. If the regularizer is general
convex such as P (w) = ‖w‖1, the online RDA has an O(

√
t) regret bound. If

the regularization term is strongly convex such as P (w) = ‖w‖22, the online
RDA has an O(ln t) regret bound. As a direct consequence of regret analysis in
[25], we can get

Theorem 3.1. Let FD = {h(w) ≤ D2} and w∗ be the optimal solution of (1)
in FD. Assume {wt} is generated by Batch RDA and w̄t = 1

t

∑t
j=1 w

j. Then

i) If P (w) = ‖w‖1, F (w̄t)− F (w∗) ≤ O(MD
√
t

t).

ii) If P (w) = ‖w‖22, F (w̄t)− F (w∗) ≤ O(
(2D2+M2

4)(1+lnt)

t).

In order to derive CD algorithms for regularized nonsmooth losses, we at each
step only solve (11) on one component which is randomly selected from to-
tal N components instead of separately going over all the components in the
batch setting. In particular, if d is the solution of the randomly selected one-
variable subproblem in the form of (12), the update from wt to wt+1 becomes
wt+1 = wt + dei. We describe our primal SCD algorithm for nonsmooth losses
in Algorithm 4.

Algorithm 4. Nonsmooth SCD

Initialize a weight vector w1 = 0 and ḡ0 = 0.
repeat

1. Choose i ∈ {1, 2, . . . , N} uniformly at random
2. let gti be the i-th element of ∇f(wt)
3. update ḡti = [(t− 1)ḡt−1

i + gti]/t
4. solve (12) and update wt+1

5. t := t+ 1
until a stopping condition is satisfied

To measure the stochastic quality of the solutions w1, . . . ,wt, we first prove
(in Appendix)

Lemma 3.1.Assumewt is generated by Nonsmooth CD. ∀w = (w1, w2, . . . , wN)T

∈ FD, define δt(w) =
∑t

τ=1{gτiτ (wτ
iτ −wiτ)+λp(wτ

iτ)}−
1
N tλP (w) and Rt(w) =∑t

τ=1{φτ − F (w)}. Then Rt(w) ≤ NEξtδt(w)

Stochastic Coordinate Descent Methods 545

From the proof of Lemma 3.1,NEξtδt(w) = Eξt

∑t
τ=1[g

τ (wτ −w) + λP (wτ)−
λP (w)]. In online learning, the bound of

∑t
τ=1{gτ (wτ −w)+λP (wτ)−λP (w)}

has been analyzed in [25]. The regret, primal variable and dual average can be
bounded based on this bound. Following similar arguments, we can derive

Theorem 3.2. Let w∗ be the optimal solution of (1) in FD. Assume {wt} is
generated by Stochastic Nonsmooth CD. Then

i) If P (w) = ‖w‖1, 1
t

∑t
τ=1φτ − F (w∗) ≤ O(MD

√
t

t).

ii) If P (w) = ‖w‖22, 1
t

∑t
τ=1 φτ − F (w∗) ≤ O(

(2D2+M2

4)(1+lnt)

t).

In addition to convergence in expectation, we can also derive the same orders
of convergence rates with high probability. Theorem 3.2 indicates that we have
achieved the optimal convergence rates that are standard in the literature for
convex and strongly convex nonsmooth losses minimization. At first sight, online
RDA in [25] and our Nonsmooth SCD share the same idea in principle, i.e., both
of them approach the solution of (1) by optimizing the regularized dual averaging
objective function defined in [17]. However, the former accomplishes the task of
sparse online learning and the latter expands the field of SCD algorithms.

4 Experiments

In this section, we will present experiments to validate our theoretical analysis
and demonstrate the performance of our algorithms. Typically, we consider one
toy data set and four large scale data sets. The toy data set with 800 samples in
R800 is generated like [4], i.e., we choose a w with entries distributed normally
with 0 mean and unit variance and randomly zeroed 50% of the vector, the
data matrix X ∈ R800×800 was random with entries also normally distributed,
and we set y = Xw + v, where the components of v were also distributed
normally at random. The four real data sets are described in Table 1. We do not
include the bias term for all the solvers. All algorithms are implemented in C++
and all the experiments are run on a Sun Ultra 45 Workstation with 1.6GHz
UltraSPARC IIIi processor and 4GB of main memory under Solaris 10. The
trade-off parameter λ is chosen by using the cross validation strategy. To have a
fair comparison, each stochastic algorithm is run 10 times and the reported are
averaged results. We find that SCD achieves consistently better test accuracy
than other solvers. For clarity, we category the experiments into nonsmooth and
smooth loss problems.

Nonsmooth Loss Problems. We first consider the hinge loss with l1 regular-
izer (l1-R-L1) problem. It has been shown in [4] that the variants of stochastic
gradient projection methods augmented with L1 efficient projection procedures
outperform many optimization techniques such as exponentiated gradient al-
gorithm. Specifically, we can employ the efficient projection algorithm in [4]
to implement the PSA for hinge loss (L1-PSA) ([22]). Since few papers study
large scale l1-R-L1 problems and they are excluded from the comparison in
[26], to illustrate the scalability of our Nonsmooth SCD, we choose to compare

546 Q. Tao et al.

Table 1. Real Data-sets where the split describes the size of a train/test set

Data-set Dimension Split

Astro-Physics 99,757 29,882/32,487

CCAT 47,236 23,149/781,265

A9a 123 24,703/7,858

Covtype 54 522,911/58,101

our Nonsmooth SCD with L1-PSA and Batch RDA. In the experiments, Nons-
mooth SCD obtains the same level of sparsity as Batch RDA. The relationship
between|(F (wt)− F (w∗)|/|F (w∗)| vs. CPU time is illustrated in Fig. 1, Fig. 2,
Fig. 3 and Fig. 4.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

CPU time (s)

R
e
la

tiv
e
 f
u
n
ct

io
n
 v

a
lu

e
 d

iff
e
re

n
ce

Nonsmooth SCD
Batch RDA
L1−PSA

Fig. 1. l1-R-L1 on Astro-ph

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

CPU time (s)

R
e
la

tiv
e
 f
u
n
ct

io
n
 v

a
lu

e
 d

iff
e
re

n
ce

Nonsmooth SCD
Batch RDA
L1−PSA

Fig. 2. l1-R-L1 on CCAT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

CPU time (s)

R
e

la
tiv

e
 f

u
n

ct
io

n
 v

a
lu

e
 d

iff
e

re
n

ce

Nonsmooth SCD
Batch RDA
L1−PSA

Fig. 3. l1-R-L1 on A9a

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

CPU time (s)

R
e

la
tiv

e
 f

u
n

ct
io

n
 v

a
lu

e
 d

iff
e

re
n

ce

Nonsmooth SCD
Batch RDA
L1−PSA

Fig. 4. l1-R-L1 on Covertype

We then consider the hinge loss with l2 regularizer (l2-R-L1). For this problem,
one of the most efficient primal algorithms is Pegasos in [21] and the state-of-
the-art dual algorithm is Dual SCD in [6]. In particular, the experiments in [6]
indicate that Dual CD is much faster than many solvers such as Pegasos, TRON
[9], SVMperf [7]. To illustrate the scalability of our Nonsmooth SCD, we choose
to compare with Pegasos (λpegasos = 2λSCD/m, [6]), Dual SCD and Batch RDA.

Stochastic Coordinate Descent Methods 547

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5x 10
4

CPU time (s)

O
bj

 v
al

ue

Nonsmooth SCD
Pegasos
Dual SCD
Batch RDA

Fig. 5. l2-R-L1 on Astro-ph

0 0.5 1 1.5
0

0.5

1

1.5

2x 10
4

CPU time (s)

O
b
j v

a
lu

e

Nonsmooth SCD
Pegasos
Dual SCD
Batch RDA

Fig. 6. l2-R-L1 on CCAT

0 0.1 0.2 0.3 0.4
0.4

0.6

0.8

1

1.2

1.4

1.6x 10
4

CPU time (s)

O
b
j v

a
lu

e

Nonsmooth SCD
Pegasos
Dual SCD
Batch RDA

Fig. 7. l2-R-L1 on A9a

0 0.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

3.5

4x 10
5

CPU time (s)

O
b
j v

a
lu

e

Nonsmooth SCD
Pegasos
Dual SCD
Batch RDA

Fig. 8. l2-R-L1 on Covertype

The relationship between F (wt)− F (w∗) vs. CPU time is illustrated in Fig. 5,
Fig. 6, Fig. 7 and Fig. 8.

In l1 and l2 regularized experiments, three kinds of phenomena are observed:
1) our Nonsmooth SCD converges faster than Batch RDA. 2) our primal Nons-
mooth SCD is faster than the two other primal algorithms L1-PSA and Pegasos.
3) the performance of primal CD degrades as the datasets get larger and this can
be seen when the size of the training set is greater than the dimension (m < N).
For example, on Astro-physics and CCAT, our primal Nonsmooth SCD is a little
slower than the state of the art Dual SCD in [6] (Fig. 5 and 6). 4) the perfor-
mance of primal CD upgrade as the dimensions get larger and this can be seen
when the size of the training set is less than the dimension (m > N). For exam-
ple, our primal Nonsmooth SCD has similar performance as the state of the art
Dual on CD A9a and outperforms it on Convertype (Fig. 7 and 8).

Based the above experimental results, SCD methods outperform their cor-
responding deterministic approaches and Nonsmooth SCD is among the first
optimization schemes suggested for efficiently solving large scale nonsmooth pri-
mal learning problems. We conclude that our Nonsmooth SCD has achieved all
the expected effects that a primal SCD algorithm should have.

Smooth Loss Problems. Our Adaptive Smooth SCD algorithm can deal with
many learning problems such as the popular regularized squared and logistic loss

548 Q. Tao et al.

problems considered in [20]. To illustrate our main contribution in smooth cases,
we only consider L2-loss.

In [26], many scalable algorithms for regularized smooth losses were compared.
These solvers include CDN, SCD [20], CGDGS [27], IPM [8], Lassplore [10] and
GLMNET [5]. The extensive experiments sufficiently illustrate that CDN is the
fastest. Therefore, to illustrate the scalability of our Adaptive Smooth SCD,
we only focus on comparing with the stochastic CDN in [26]. The relationships
between F (wt) and CPU time are illustrated in Fig. 9, Fig. 10, Fig. 11 and Fig.
12. In addition to obtaining the same level of both sparsity and test accuracy,
from these figures, it is easy to find that our Adaptive smooth SCD has almost
the same practicality as the stochastic CDN in [26].

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2x 10
4

CPU time (s)

O
b

j v
a

lu
e

Stochastic CDN
Adaptive Smooth SCD

Fig. 9. l1-R-L2 on Astro-ph

0 0.2 0.4 0.6 0.8 1

5000

6000

7000

8000

9000

10000

11000

12000

CPU time (s)

O
b
j v

a
lu

e

Stochastic CDN
Adaptive Smooth SCD

Fig. 10. l1-R-L2 on CCAT

0 0.05 0.1 0.15 0.2
3000

3500

4000

4500

5000

5500

6000

CPU time (s)

O
b

j v
a

lu
e

Stochastic CDN
Adaptive Smooth SCD

Fig. 11. l1-R-L2 on A9a

0 1 2 3 4 5

2

2.1

2.2

2.3

2.4

2.5

2.6

x 10
5

CPU time (s)

O
b

j v
a

lu
e

Stochastic CDN
Adaptive Smooth SCD

Fig. 12. l1-R-L2 on Covertype

To further illustrate the effectiveness of our line search strategy in (10), we
also do a toy experiment. One purpose is to compare the performance of PG,
APG and Adaptive Smooth SCD when the global Lipschitz constant of ∇f is
known, and the other is to test if our line search strategy (10) can really select
a more aggressive local Lipschitz constant.

On the toy data set, we follow the strategy in [11] and [12] to calculate the
global Lipschitz constant of ∇f . We use this Lipschitz constant to implement PG

Stochastic Coordinate Descent Methods 549

and APG. The objective values vs. CPU time are illustrated in Fig. 13. From Fig.
13, we can see that our Adaptive Smooth SCD converges much faster than PG.
This fact shows that SCD methods with line search strategy outperform their
corresponding deterministic approaches in smooth loss cases. What is more, our
Adaptive Smooth SCD converges even faster than APG.

More details about the selection of Lipschitz constant are reported in Fig.
14, where the red points represent the local componentwise Lipschitz constant
in each iteration of Adaptive Smooth SCD while the blue line is the global
Lipschitz constant. From Fig. 14, we find that the local componentwise Lipschitz
constant is much smaller than the global Lipschitz constant. This fact means that
our line search strategy can decrease the factor of the convergence rates and
then improve the performance of smooth SCD. Based on our theoretic analysis

5 10 15 20

50

100

150

200

250

300

Iterations

O
b

j v
a

lu
e

PG
APG
Adaptive Smooth SCD

Fig. 13. l1-R-L2 on toy data set

2 4 6 8 10 12
x 10

4

500

1000

1500

2000

2500

3000

3500

Iterations

S
te

p
 S

iz
e

Adaptive Lipschitz constant
Globall Lipschitz constant

Fig. 14. The adaptive Lipschitz constant

in Section 3 and experimental results in this example, we conclude that our
Adaptive Smooth SCD has achieved the expected effects in both convergence
rates and practicality. Therefore, Adaptive Smooth SCD is a principled and
practical method for solving large scale problems.

5 Conclusion

In this paper, we have established an interesting framework for developing SCD
algorithms for regularized both nonsmooth and smooth losses minimization from
structural optimization techniques. We have analyzed how our algorithms are not
worse than the state-of-the-art scalable solvers. Experiments confirm the correct-
ness of our theoretical analysis and efficiency of the proposed algorithms. There
are several possible extension to this work. For example, the cyclic CD algo-
rithms for regularized nonsmooth losses and the comparison analysis of runtime
bounds. These will be included in our future work.

550 Q. Tao et al.

Acknowledgments. The work was supported in part by the NSFC (Grant No.
60835002, 60975040 and 61175050) and the first author is also supported by the
Open Project Program of the NLPR. We thank the anonymous reviewers for
their helpful comments.

Appendix

To prove Theorem 2.1, we first give the following key lemma [23].
3-Point Property. Assume

wτ+1 = argminw lf (w,wτ) + λP (w) + L
2 ‖w−wτ‖2

Then ∀w ∈ RN , we have
lf (w,wτ) + λP (w) + L

2 ‖w−wτ‖2
≥ lf (w

τ+1,wτ) + λP (wτ+1) + L
2 ‖wτ+1 −wτ‖2 + L

2 ‖w−wτ+1‖2

Proof of Theorem 2.1
i) Note

φτ = EξτF (wτ+1) = Eξτ−1EiτF (wτ+1)

∀w ∈ RN , by using the smooth assumption

EiτF (wτ+1) ≤ Eiτ [lf (w
τ+1,wt) + λP (wτ+1) + L

2 ‖wτ+1 −wτ‖2]

By using the 3-Point Property,

EiτF (wτ+1) ≤ Eiτ [lf(w,wτ) + λP (w) + L
2 ‖w−wτ‖2 − L

2 ‖w −wτ+1‖2]
≤ F (w) + L

2 ‖w−wτ‖2 − L
2Eiτ ‖w−wτ+1‖2

So,
φt ≤ Eξτ−1 [F (w) + L

2 ‖w−wτ‖2 − L
2Eiτ ‖w−wτ+1‖2]

≤ F (w) + L
2Eξτ−1‖w −wτ‖2 − L

2Eξτ ‖w −wτ+1‖2

Adding the above inequalities from τ = 1 to τ = t,

t∑
τ=1

[φτ − F (w)] ≤ L
2 ‖w−w1‖2

On the other hand,

φτ − F (w) ≤ φτ−1 − F (w), t[φt − F (w)] ≤
t∑

τ=1
[φτ − F (w)] ≤ L

2 ‖w−w1‖2

This proves i) in Theorem 2.1.

ii) If P (w) = ‖w‖22, F becomes a strongly convex function with Lipschiz con-
stant L+ 2λ. This fact implies that ii) follows from Theorem 2 in [18].

Stochastic Coordinate Descent Methods 551

Proof of Lemma 3.1

Eξt

t∑
τ=1

{gτiτ (wτ
iτ − wiτ) + λp(wτ

iτ)} =
t∑

τ=1
Eξτ {gτiτ (wτ

iτ − wiτ) + λp(wτ
iτ)}

=
t∑

τ=1
Eξτ−1Eiτ {gτiτ (w

τ
iτ

− wiτ) + λp(wτ
iτ
)}

By the definition of expectation in iτ , we obtain

Eiτ {gτiτ (w
τ
iτ

− wiτ) + λp(wτ
iτ
)} = 1

N [gτ (wτ −w) + λP (wτ)]

According to the definition of subgradient 〈gτ ,wτ −w〉 ≥ f(wτ)− f(w). So,
1
N [gτ (wτ−w)+λP (wτ)]− 1

N λP (w) ≥ 1
N [f(wτ)−f(w)+λP (wτ)]− 1

N λP (w)

= 1
N [F (wτ)− F (w)]

By taking the expectation Eξτ−1 ,

Eξτ−1Eiτ {gτiτ (wτ
iτ − wiτ) + λp(wτ

iτ)} − 1
N λP (w)

≥ 1
NEξτ−1 [F (wτ)− F (w)] ≥ 1

N [φτ − F (w)]

By adding the above inequalities from τ = 1 to τ = t, the lemma is proved.

References

1. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press
(2004)

2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)

3. Chang, K.W., Hsieh, C.J., Lin, C.J.: Coordinate descent method for large-scale
L2-loss linear support vector machines. Journal of Machine Learning Research 9,
1369–1398 (2008)

4. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto
the l 1-ball for learning in high dimensions. In: Proceedings of the 25th International
Conference on Machine Learning, pp. 272–279 (2008)

5. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010)

6. Hsieh, C.J., Chang, K.W., Lin, C.J., Keerthi, S.S., Sundararajan, S.: A dual co-
ordinate descent method for large-scale linear SVM. In: Proceedings of the 25th
International Conference on Machine Learning, pp. 408–415 (2008)

7. Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
217–226 (2006)

8. Koh, K., Kim, S.J., Boyd, S.: An interior-point method for large-scale l1-regularized
logistic regression. Journal of Machine Learning Research 8, 1519–1555 (2007)

9. Lin, C.J., Weng, R.C., Keerthi, S.S.: Trust region newton method for logistic re-
gression. Journal of Machine Learning Research 9, 627–650 (2008)

10. Liu, J., Ye, J.: Efficient Euclidean projections in linear time. In: Proceedings of the
26th International Conference on Machine Learning, pp. 657–664 (2009)

11. Mangasarian, O.L.: A finite Newton method for classification. Optimization Meth-
ods and Software 17(5), 913–929 (2002)

12. Mangasarian, O.L., Musicant, D.R.: Successive overrelaxation for support vector
machines. IEEE Trans. Neural Networks 10, 1032–1037 (1999)

552 Q. Tao et al.

13. Nesterov, Y.: A method of solving a convex programming problem with convergence
rate O(1/k2). Soviet Mathematics Doklady 27, 372–376 (1983)

14. Nesterov, Y.: Smooth minimization of non-smooth functions. Mathematical Pro-
gramming 103(1), 127–152 (2005)

15. Nesterov, Y.: Gradient methods for minimizing composite objective function.
CORE Discussion Papers 2007076. Center for Operations Research and Econo-
metrics, CORE (2007)

16. Nesterov, Y.: How to advance in structural convex optimization. OPTIMA: Math-
ematical Programming Society Newsletter 78, 2–5 (2008)

17. Nesterov, Y.: Primal-dual subgradient methods for convex problems. Mathematical
Programming 120(1), 221–259 (2009)

18. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization
problems. Technical report, University catholique de Louvain, Center for Opera-
tions Research and Econometrics, CORE (2010)

19. Saha, A., Tewari, A.: On the finite time convergence of cyclic coordinate descent
methods. Arxiv preprint arXiv:1005.2146 (2010)

20. Shalev-Shwartz, S., Tewari, A.: Stochastic methods for l1 regularized loss mini-
mization. In: Proceedings of the 26th Annual International Conference on Machine
Learning, pp. 929–936 (2009)

21. Shalev-Shwartz, S., Singer, Y., Srebro, N.P.: Primal estimated sub-gradient solver
for SVM. In: Proceedings of the 24th International Conference on Machine Learn-
ing, pp. 807–814 (2007)

22. Tao, Q., Sun, Z., Kong, K.: Developing Learning Algorithms via Optimized Dis-
cretization of Continuous Dynamical Systems. IEEE Trans. Syst. Man Cybern.
B 42(1), 140–149 (2012)

23. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimiza-
tion. submitted to SIAM Journal on Optimization (2008)

24. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable
minimization. Mathematical Programming 117(1), 387–423 (2009)

25. Xiao, L.: Dual averaging methods for regularized stochastic learning and online
optimization. Journal of Machine Learning Research 11, 2543–2596 (2010)

26. Yuan, G.X., Chang, K.W., Hsieh, C.J., Lin, C.: A Comparison of Optimization
Methods and Software for Large-scale L1-regularized Linear Classification. Journal
of Machine Learning Research 11, 3183–3234 (2010)

27. Yun, S., Toh, K.C.: A coordinate gradient descent method for l1-regularized convex
minimization. To appear in Computational Optimizations and Applications (2009)

Sublinear Algorithms for Penalized Logistic

Regression in Massive Datasets

Haoruo Peng1,2, Zhengyu Wang1,3, Edward Y. Chang1,
Shuchang Zhou1, and Zhihua Zhang1,4

1 Google Research Beijing, Beijing, China 100084
2 Department of Computer Science and Technology

Tsinghua University, Beijing, China 100084
3 Institute for Interdisciplinary Information Sciences

Tsinghua University, Beijing, China 100084
4 College of Computer Science and Technology
Zhejiang University, Zhejiang, China 310027

penghaoruo@hotmail.com, wangsincos@163.com, eyuchang@gmail.com,

georgezhou@google.com, zhzhang@cs.zju.edu.cn

Abstract. Penalized logistic regression (PLR) is a widely used super-
vised learning model. In this paper, we consider its applications in large-
scale data problems and resort to a stochastic primal-dual approach for
solving PLR. In particular, we employ a random sampling technique
in the primal step and a multiplicative weights method in the dual
step. This technique leads to an optimization method with sublinear
dependency on both the volume and dimensionality of training data. We
develop concrete algorithms for PLR with �2-norm and �1-norm penal-
ties, respectively. Experimental results over several large-scale and high-
dimensional datasets demonstrate both efficiency and accuracy of our
algorithms.

1 Introduction

The penalized logistic regression (PLR) model [9] plays an important role in
machine learning and data mining. The model serves for classification problems,
and enjoys a substantial body of supporting theories and algorithms. PLR is
competitive with the support vector machines (SVMs) [18], because it has both
high accuracy and interpretability (PLR can directly estimate a conditional class
probability).

Recently, large-scale applications have emerged from many modern massive
datasets. A key characteristic of these applications is that the size of their train-
ing data is very large and data dimensionality is very high. For example, in
medical diagnostic applications [17], both doctors and patients would like to
take the advantage of millions of records over hundreds of attributes. More evi-
dently, search engines on texts or multimedia data must handle data volume in
the billion scale and each data instance is characterized by a feature space of
thousands of dimensions [7]. Large data volume and high data dimensionality
pose computational challenges to machine learning problems.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 553–568, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

554 H. Peng et al.

In this paper, we tackle these challenges via stochastic approximation
approaches. Stochastic approximation methods, such as stochastic gradient
descent [20] and stochastic dual averaging [19], obtain optimal generalization
guarantees with only a single pass or a small number of passes over the data.
Therefore, they can achieve a desired generalization with runtime linear to the
dataset size. We further speed up the runtime, and propose sublinear algorithms
for PLR via the use of stochastic approximation idea. Our algorithms work at
the same level of performance with traditional learning methods for PLR, but
require much shorter running time. Our methods access a single feature of train-
ing vectors instead of entire training vectors at each iteration. This sampling
approach brings much improved computational efficiency by eliminating a large
number of vector multiplication operations. By devising clever randomized al-
gorithms, we can also enjoy the benefits of taking less number of iterations and
hence accessing less number of features. Such reduction in accessing features can
substantially reduce running time as pointed out by [11].

Our algorithms can be easily applied to distributed storage systems [12] with
parallel updates on all instances. Compared with other traditional batch algo-
rithms, we do not require any global reduction [14] computation, which is a
speedup bottleneck. Thus, our algorithms can achieve significant speedup on
massive datasets.

The rest of the paper is organized as follows: Section 2 discusses some re-
lated work. In Section 3, we review some preliminaries and explain the setting
along with the model. In Section 4, we present the framework of our sublinear
algorithms for PLR. In Section 5, we depict detailed algorithms and analysis.
Section 6 describes the datasets and the baseline of our experiments and presents
the experimental results. Finally, we offer our concluding remarks in Section 7.

2 Related Work

There are many existing techniques that address logistic regression with �1-
penalty in the literature.

The Reduced Memory Multi-pass (RMMP) algorithm, proposed by Balakr-
ishnan and Madigan [2], is one of the most accurate and fastest convergent
algorithms. RMMP trains sparse linear classifiers on high-dimensional datasets
in a multi-pass manner. However, this algorithm has computational complexity
and memory requirements that make learning on large-scale datasets infeasible.
The central idea of the work is a straightforward quadratic approximation to
the likelihood function. When the dimensionality of the data gets large, the cost
of many vector-vector multiplication operations increases significantly. Also, the
quadratic approximation is added together for all instances in each iteration, and
such computation inevitably requires global reduction in a distributed storage
system.

The Hybrid Iterative Shrinkage (HIS) algorithm, proposed by Shi et al. [15], is
also computationally efficient without loss of classification accuracy. This algo-
rithm includes a fixed point continuation phase and an interior point phase. The

Sublinear Algorithms for Penalized Logistic Regression in Massive Datasets 555

first phase is based completely on memory efficient operations such as matrix-
vector multiplications, while the second phase is based on a truncated Newton’s
method. Thus, HIS is in the scope and constraints of traditional way of solv-
ing the optimization problem. As RMMP has relatively better scalability and
performance, we choose to use RMMP instead of HIS as our baseline for the
empirical comparison in this paper.

Recently, Clarkson et al. [3] proposed a new method by taking advantage
of randomized algorithms. They presented sublinear-time approximation algo-
rithms for optimization problems arising in machine learning, such as linear
classifiers and minimum enclosing balls. The algorithm uses a combination of a
novel sampling techniques and a new multiplicative update algorithm. They also
proved lower bounds which show the running times to be nearly optimal on the
unit-cost RAM model.

Hazan et al. [11] exploited sublinear approximation approach to the linear
SVM with �2-penalty, from which we were inspired and borrowed some of the
ideas (We generally refer to them as the ETN framework in Section 4). Later on,
Cotter et al. [4] extended the work to kernelized SVM cases. In [10], Hazan et al.
applied the sublinear approximation approach for solving ridge (�2-regularized)
and lasso (�1-regularized) linear regression. Garber and Hazan [6] developed the
method in semidenfinite programming (SDP).

3 Penalized Logistic Regression Models

Logistic regression is a widely used method for solving classification problems.
In this paper, we are mainly concerned with the binary classification problem.
Suppose that we are given a set of training data X = {(xi, yi) : i = 1, . . . , n}
where xi ∈ Rd are input samples and yi ∈ {−1, 1} are the corresponding labels.
For simplicity, we let X = [x1,x2, . . . ,xn]

T and y = (y1, y2, . . . , yn)
T . In the

logistic regression model, the expected value of yi is given by

P (yi|xi) =
1

1 + exp(−yi(xT
i w+ b))

� gi(yi),

where w = (w1, . . . , wd)
T ∈ Rd is a regression vector and b ∈ R is an offset term.

The log likelihood function F (w, b;X) on the training data is given as

F (w, b|X) =
n∑

i=1

log gi(yi).

Under the penalized framework, one imposes a prior p(w) to w. This allows us
to address the maximum a posteriori (MAP) estimation for w as

max
w,b

{
log p(w, b|X) ∝ F (w, b|X) + log p(w)

}
. (1)

In this paper, we consider Gaussian and Laplace priors for w, which in turn
induce the �2 and �1 penalties for w, respectively.

556 H. Peng et al.

3.1 The �2-Penalty Logistic Regression

We assume that w follows a Gaussian distribution with mean 0 and covariance
matrix λId where Id is the d×d identity matrix, i.e. w ∼ N(0, λId). In this case,
since

log p(w) =
d

2
log

λ

2π
− λ

2
‖w‖22,

we can equivalently formulate the optimization problem in (1) as

max
w,b

{
F (w, b|X) − λ

2
‖w‖22

}
. (2)

(2) shows us that the problem reduces to an optimization problem with an �2-
penalty.

3.2 The �1-Penalty Logistic Regression

In the second case, we impose a Laplace prior for w, whose density is given by

log p (w) = d log
γ

2
− γ‖w‖1.

With this prior, the optimization problem in (1) is equivalent to the following
problem with the �1-penalty.

max
w,b

{
F (w, b|X)− γ‖w‖1

}
. (3)

The advantage of �1-penalty over �2-penalty is its utility in sparsity modeling
[16] . Thus, �1-penalty logistic regression can serve for both classification and
feature selection simultaneously.

4 Methodology

In this section, we first develop an approach to sublinear learning for �2-penalty
logistic regression. We then extend the approach to �1-penalty case by adding
certain conditions to achieve sparseness. Our approach is inspired by the Elad-
Tomer-Nathan (ETN) framework in [11], a hybrid framework that deals with
both hard margin and soft margin. Roughly speaking, our approach consists
of three steps: deriving the hard margin and soft margin from the objective
function, computing the derivative, and applying the ETN framework.

4.1 From �2-Penalty to Soft Margin

We treat the objective function (2) as two parts: likelihood and penalty. With this
in mind, we introduce the notion of hard margin and soft margin to respectively
represent these two parts.

Sublinear Algorithms for Penalized Logistic Regression in Massive Datasets 557

In particular, we consider an alternative optimization problem under an ε-
suboptimal solution basis. That is,

max
w,b,ξi≥0

min
i∈{1,··· ,n}

fi (w, b) + ξi s.t. ‖w‖2 ≤ 1 and

n∑
i=1

ξi ≤ nν. (4)

In (4) fi(w, b) = log gi(yi) is the hard margin part, while ξi is the soft margin

part, and we have ν = −
∑n

i=1 fi(w,b)

n‖w‖2
.

The following lemma shows the equivalent relationship between (2) and (4).

Lemma 1. Let (wε, bε, ξε) be an ε-suboptimal solution to the optimization prob-
lem (4) with optimal value κ, and consider the rescaled solution w̃ = wε/κ, b̃ =
bε/κ, ξ̃ = ξε/κ. The the following two inequalities hold.

‖w̃‖2 ≤ 1

1− ε‖w‖2
‖w‖2 and F

(
w̃, b̃

)
≤ 1

1− ε‖w‖2
F (w, b) .

The proof of Lemma 1 is given in Appendix A. Lemma 1 shows that solving
(4) exactly yields Pareto optimal solutions of (2). Moreover, if we solve (4) via
approximation, we obtain a suboptimal solution. As for parameters ν and ξi, we
only need to consider 0 ≤ ν ≤ 1 and 0 ≤ ξi ≤ 2.

4.2 Derivative of Objective Function

For hard margin, we compute the derivative of fi(w, b) with respect to w. In
this case, we have

fi(w, b) = log gi(yi). (5)

The first partial derivative of (5) is as follows

coef � ∂fi (w, b)

∂w
= −∂ log[1 + exp(−yi(w

Txi + b))]

∂w
(6)

=
xiyi exp(−yi(w

Txi + b))

1 + exp(−yi (wTxi + b))
= yigi (−yi)xi.

In order to extend this result to �1-penalty logistic regression, we only need to
adjust the derivative of fi(w, b) with respect to w. In this case, we need to use
the sub-differential of ‖w‖1. First, we define a signum multi-function of t ∈ R as

S(t) � ∂|t| =

⎧⎪⎨⎪⎩
{+1} if t > 0

[−1, 1] if t = 0

{−1} if t < 0.

For x ∈ Rd, we define S (x) ∈ Rd with (S(x))i = S(xi) for i = 1, . . . , d. Then
the derivative of (3) is

coef = yigi (−yi)xi − γS (w) . (7)

Eqn. (7) is the simple and general form for coef .

558 H. Peng et al.

4.3 The ETN Framework

The Elad-Tomer-Nathan framework [11] is a hybrid method to handle hard
margin and soft margin separately and simultaneously. The ETN framework
enjoys the property of fast convergence for both hard margin and soft margin.

Each iteration of the method works in two steps. The first one is the stochastic
primal update:

(1) An instance i ∈ {1, . . . , n} is chosen according to a probability vector p;

(2) The primal variable w is updated according to the derivative of fi(w, b) and
the soft margin, via an online update with regret.

The second one is the stochastic dual update:

(1) A stochastic estimate of fi(w, b) plus the soft margin is obtained, which can
be computed in O(1) time per term;

(2) The probability vector p is updated based on the above computed terms by
using the Multiplicative Updates (MW) framework [1] for online optimization
over the simplex.

5 Algorithms and Analysis

We use the following notations in our algorithms and analysis.
clip (·) is a projection function defined as follows:

clip (a, b) � max (min (a, b) ,−b) a, b ∈ R.

sgn (·) is the sign function; namely,

sgn (x) =

⎧⎪⎨⎪⎩
+1 if x > 0

0 if x = 0

−1 if x < 0.

g (·) is the logistic function; namely,

g (x) =
1

1 + e−x

We let Λ be the Rn Euclidean space which meets the following conditions:

Λ = {ξ ∈ Rn | ∀i, 0 ≤ ξi ≤ 2, ‖ξ‖1 ≤ νn} .

5.1 The Sublinear Algorithm for �2-Penalty Logistic Regression

We give the sublinear algorithm for �2-penalty logistic regression in Algorithm 1.
In the pseudo-code of Algorithm 1, line 5 to line 11 is the primal part, where
coef is the estimator of the derivatives and ξ is the soft margin. Line 12 to line

Sublinear Algorithms for Penalized Logistic Regression in Massive Datasets 559

Algorithm 1. SLLR-L2

1: Input: ε > 0, 0 ≤ ν ≤ 1, X ∈ Rn×d, Y ∈ Rn

2: Let T ← 10002ε−2 log n, η ←
√

log (n) /T
3: u0 ← 0d,w1 ← 0d,q1 ← 1n, b1 ← 0
4: for t = 1 to T do
5: pt ← qt/‖qt‖1
6: Choose it ← i with probability p(i)

7: Let coef = yitg
(
−yit

(
wt

Txit + bt
))

8: Let ut ← ut−1 +
coef√

2T
xit

9: ξt ← argmaxξ∈Λ

(
pt

T ξ
)

10: bt ← sgn
(
pt

Ty
)

11: wt ← ut/max {1, ‖ut‖2}
12: Choose jt ← j with probability wt (j)

2/‖wt‖22
13: for i = 1 to n do

14: σ ← xi (jt) ‖wt‖22/wt (jt) + ξt (i) + yibt
15: σ̂ ← clip (σ, 1/η)
16: qt+1 (i)← qt (i)

(
1− ησ̂ + η2σ̂2

)
17: end for
18: end for
19: Output: w̄ = 1

T

∑
t wt, b̄ =

1
T

∑
t bt

17 is the dual part, where σ serves as an estimator of fi (w, b) plus the soft
margin. σ also serves as the derivative of p(i). Although the computation of line
15 and 16 makes σ̂ a biased approximation, it is critical to the stability of the
algorithm. The resulting bias is negligible in our approach. This can be shown in
the experimental results in [11]. Because of the similarity between our SLLR-L2
and SVM-SIMBA presented in [11], we can naturally invoke the statement here.

Note that the update of ξt in line 9 can be accomplished by using a simple
greedy algorithm in O(n) time. We can always set ξt (i) = 2 corresponding to
the first [νn2] number of largest entries p (i) of pt with respect to i. Then the

residue νn−2[νn2] is assigned to ξt (̂i), where î is exactly the index of the [νn2]+1
largest one in pt. Finally, we put ξt (i) = 0 elsewhere.

5.2 The Sublinear Algorithm for �1-Penalty Logistic Regression

In Algorithm 2, we give the sublinear approximation procedure for �1-penalty
logistic regression. Here, we let uprevt be ut−1 in the previous iteration. We
achieve sparseness by adding pseudo-code from Line 11 to Line 16.

To make use of (7), we introduce some techniques to ensure the numerical
convergence and stability. Considering the update computation in the primal
step, we should make the following three rules.

(1) When ut(j) = 0, we do not apply −γS(w) and simply make the value 0 by
default.

560 H. Peng et al.

Algorithm 2. SLLR-L1

1: Input: ε > 0, γ > 0, X ∈ Rn×d, Y ∈ Rn

2: Let T ← 10002ε−2 log n, η ←
√

log (n) /T
3: u0 ← 0d,wavg0 ← 0d,q1 ← 1n, b1 ← 0
4: for t = 1 to T do
5: pt ← qt/‖qt‖1
6: uprevt ← ut−1

7: Choose it ← i with probability p(i)
8: Let coef = yitg

(
−yit

(
wavgt−1

Txit + bt
))

9: Let ut ← ut−1 +
coef√

2T
xit

10: bt ← sgn
(
pt

Ty
)

11: for j = 1 to d do
12: if uprevt (j) > 0 and ut (j) > 0
13: ut (j) = max (ut (j) − γ, 0)
14: if uprevt (j) < 0 and ut (j) < 0
15: ut (j) = min (ut (j) + γ, 0)
16: end for
17: wt ← ut/max {1, ‖ut‖2}
18: wavgt ← t−1

t
wavgt−1 +

1
t
wt

19: Choose jt ← j with probability wt (j)
2/‖wt‖22

20: for i = 1 to n do

21: σ ← xi (jt) ‖wt‖22/wt (jt) + yibt
22: σ̂ ← clip (σ, 1/η)
23: qt+1 (i)← qt (i)

(
1− ησ̂ + η2σ̂2

)
24: end for
25: end for
26: Output: wavgt, b̄ =

1
T

∑
t bt

(2) In order to apply −γS(w) for sparseness, we set ut(j) = 0, if it changes
between positive values and negative values after applying the derivative.
This is showed in Line 13 and Line 15.

(3) To avoid a 0 vector when γ is large, we need to determine the derivative by
a trend, not a single point. Thus, we consider two consecutive update steps
of ut(j). Line 12 and Line 14 ensure that if ut(j) and ut−1(j) are either both
positive values or both negative ones, we apply the derivative, otherwise we
do not change ut(j). This is a logical approximation, and enables the small
variance of values changing between positive values and negative ones.

For �1-penalty logistic regression, the derivative is much more sensitive with re-
spect to wt, as it is sparse in the computation. So in line 8, when we compute
coef , we change wt to wavgt−1 in order to make our algorithm more computa-
tionally stable.

5.3 Running Time Analysis

We now formally describe the MW algorithm and give theorems for running
times of our algorithms.

Sublinear Algorithms for Penalized Logistic Regression in Massive Datasets 561

Definition 1. (MW algorithm) [3]. Consider a sequence of vectors v1, ...,vT ∈
Rd and a parameter η > 0. The Multiplicative Weights (MW) algorithm is de-
fined as follows: let w1 ← 1n, and for t ≥ 1,

pt ← wt/‖wt‖1, and wt+1(i) ← wt(i)
(
1− ηvt(i) + η2vt(i)

2
)
.

The following lemma establishes a regret bound for the MW algorithm.

Lemma 2. (The Variance MW Lemma) [3]. The MW algorithm satisfies

T∑
t=1

pT
t vt ≤ min

i∈{1,...,n}

T∑
t=1

max{vt(i),−
1

η
}+ logn

η
+ η

T∑
t=1

pT
t v

2
t

The following theorems give the running times of Algorithm 1 and Algorithm 2,
respectively.

Theorem 1. The SLLR-L2 algorithm returns an ε-approximate solution to the
optimization problem of (4) with probability at least 1/2. Its running time is
Õ
(
ε−2 (n+ d)

)
.

We give the proof of Theorem 1 in Appendix B. Because the SLLR-L1 is essen-
tially an extension of SLLR-L2, the running time is the same, and we omit the
proof of Theorem 2 in this paper due to length constraint.

Theorem 2. The SLLR-L1 algorithm returns an ε-approximate solution to the
optimization problem of (3) with probability at least 1/2. Its running time is
Õ
(
ε−2 (n+ d)

)
6 Experiments

In this section, we conduct an empirical analysis of our algorithms. Particularly,
we illustrate test errors in terms of feature accesses and convergence in terms
of MAP. As illustrated in Section 1, feature accesses are the main cost in com-
putation. They are good indicators of running time and best demonstrate the
efficiency of the proposed algorithms. For SLLR-L2, we choose SVM-SIMBA
algorithm [11] as a comparison baseline. For SLLR-L1, we choose the state-of-
the-art RMMP [2] algorithm, a popular method for solving logistic regression
with �1-penalty.

We choose three open datasets to run all four test programs: The News-
Group dataset (after proper preprocessing) has 893 features and 1985 instances.
We split it into a training set of 1390 instances and a test set of 595 instances.
The second test dataset is the Gisette [8] dataset, which has 5000 features and
7000 instances. We split it into a training set of 6000 instances and a test set of
1000 instances. The third and final test dataset is the ECUE Spam [5] dataset,
which has 197650 features and 10978 instances (after proper preprocessing). We
split it into a training set of 9000 instances and a test set of 1978 instances. We
randomly repeat such split 20 times and our analysis is based on the average
performance of 20 repetitions.

562 H. Peng et al.

6.1 Analysis of Performance

In all three experiments, we tuned parameters ν and γ of each algorithm based
on the cross-validation method [13]. Note that our algorithms assume random
access to features (as opposed to instances), thus it is not meaningful to compare
the test error as a function of the number of iterations of each algorithm. Instead,
according to our computational model, we compare the test error as a function
of the number of feature accesses of each algorithm. The results, averaged over
20 repetitions, are presented in Figure 1, 2 and 3.

As can be seen from the figures, the performance of our SLLR-L2 algorithm
is competitive with that of SIMBA on all the three datasets. With respect to �2-
penalty, our experiments show that our SLLR-L2 algorithm can achieve a similar
performance with SIMBA. With respect to �1-penalty, our SLLR-L1 algorithm
can achieve a same level of performance as RMMP. Our SLLR-L1 algorithm has
a fast convergence rate, which enables us to achieve an acceptable test error
with much fewer feature accesses in comparison with RMMP (basically a batch
algorithm).

10
4

10
5

10
6

10
70

0.05

0.1

0.15

0.2

0.25

feature accesses

te
s
t

e
rr

o
r

γ=29.5

10
5

10
6

10
70

0.05

0.1

0.15

0.2

0.25

feature accesses

te
s
t

e
rr

o
r

γ=30.3

(a) SLLR-L1 (b) RMMP

10
4

10
5

10
6

10
70

0.1

0.2

0.3

0.4

0.5

feature accesses

te
s
t

e
rr

o
r

μ=0.46

10
4

10
5

10
6

10
70

0.1

0.2

0.3

0.4

0.5

feature accesses

te
s
t

e
rr

o
r

μ=0.48

(c) SLLR-L2 (d) SVM-SIMBA

Fig. 1. The test error, as a function of the number of feature accesses, on the News-
Group dataset. For both SLLR-L1 and SLLR-L2, we set ε = 0.5.

Sublinear Algorithms for Penalized Logistic Regression in Massive Datasets 563

10
5

10
6

10
7

10
8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

feature accesses

te
s
t

e
rr

o
r

γ=29.2

10
7

10
8

10
9

0.05

0.1

0.15

0.2

0.25

0.3

0.35

feature accesses

te
st

 e
rr

o
r

γ=30.3

(a) SLLR-L1 (b) RMMP

10
5

10
6

10
7

10
8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

feature accesses

te
s
t

e
rr

o
r

μ=0.52

10
5

10
6

10
7

10
8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

feature accesses

te
s
t

e
rr

o
r

μ=0.56

(c) SLLR-L2 (d) SVM-SIMBA

Fig. 2. The test error, as a function of the number of feature accesses, on the Gisette
dataset. For both SLLR-L1 and SLLR-L2, we set ε = 0.5.

10
6

10
7

10
80

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

feature accesses

te
s
t

e
rr

o
r

γ=24.6

10
7

10
8

10
90

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

feature accesses

te
st

 e
rr

o
r

γ=25.2

(a) SLLR-L1 (b) RMMP

10
6

10
7

10
80

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

feature accesses

te
s
t

e
rr

o
r

μ=0.38

10
6

10
7

10
80

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

feature accesses

te
s
t

e
rr

o
r

μ=0.41

(c) SLLR-L2 (d) SVM-SIMBA

Fig. 3. The test error, as a function of the number of feature accesses, on the ECUE
Spam dataset. For both SLLR-L1 and SLLR-L2, we set ε = 0.5.

564 H. Peng et al.

6.2 Analysis of Convergence

Figures 4 shows the convergence of our algorithms. With respect to �2-penalty,
we do not consider SVM-SIMBA, as its optimization objective function is not
comparable with that of SLLR-L2. As the variance of MAP in different exper-
iments is so small and does not contain much information, they are not shown
in the figure for simplicity. The convergence of SLLR-L2 algorithm is very fast.
There is a rapid growing of MAP, and it happens in a very early stage. With
respect to �1-penalty, the optimum value achieved by our SLLR-L1 and RMMP,
a state-of-art algorithm with a remarkable accuracy on MAP, is very close. Our
SLLR-L1, though not strictly better than RMMP on accuracy, has a very small
gap away from the optimum solution and it is acceptable considering the test
error results shown previously. Moreover, our SLLR-L1 has the advantage of
achieving its local optimum value much earlier than RMMP. This is because our

10
4

10
5

10
6

10
7−418.8

−418.7

−418.6

−418.5

−418.4

−418.3

−418.2

−418.1

−418

−417.9

−417.8

feature accesses

M
A

P

SLLR−L1(γ=29.5)
RMMP(γ=29.5)

10
4

10
5

10
6

10
7

−400

−350

−300

−250

−200

−150

−100

−50

feature accesses

M
A

P

μ=0.46

10
5

10
6

10
7

10
8−1805

−1800

−1795

−1790

−1785

−1780

−1775

feature accesses

M
A

P

SLLR−L1(γ=29.2)
RMMP(γ=29.2)

10
5

10
6

10
7

10
8−1500

−1400

−1300

−1200

−1100

−1000

−900

−800

−700

−600

−500

feature accesses

M
A

P

μ=0.52

10
6

10
7

10
8−2.417

−2.416

−2.415

−2.414

−2.413

−2.412

−2.411

−2.41

−2.409

−2.408

x 10
4

feature accesses

M
A

P

SLLR−L1(γ=24.6)
RMMP(γ=24.6)

10
6

10
7

10
8−2.45

−2.4

−2.35

−2.3

−2.25

−2.2

−2.15

−2.1x 10
4

feature accesses

M
A

P

μ=0.38

(a)SLLR-L1 and RMMP for �1-penalty (b)SLLR-L2 for �2-penalty

Fig. 4. The MAP, averaged over 20 random repetitions, as a function of the num-
ber of feature accesses, on the NewsGroup(first row), Gisette(second row), ECUE
Spam(third row) datasets. For both SLLR-L1 and SLLR-L2, we set ε = 0.5.

Sublinear Algorithms for Penalized Logistic Regression in Massive Datasets 565

approach loosely takes anywhere from 100 to 1000 times fewer feature accesses
than RMMP.

7 Conclusion

In this paper, we have presented two efficient algorithms to solve PLR through
the use of a stochastic approximation approach. In particular, we have devised
two sublinear algorithms for the logistic regression models with �2-penalty and
�1-penalty, respectively. Experimental results have illustrated that our algo-
rithms work well on massive datasets and have significant computational perfor-
mance over other existing methods for PLR. Our algorithms can also be easily
applied to distributed storage systems with parallel update on all instances.

Appendix

A. Proof of Lemma 1

The method we use here is similar to that in [11].

Proof. We first consider the solution which is given by w∗ = w/‖w‖2, b∗ =
b/‖w‖2, ξ∗ = ξ/‖w‖2. So we have

∑n
i=1 ξ

∗
i = F (w, b) /‖w‖2 = nν. Then the

optimal value is given by:

κ∗ = min
i∈{1,··· ,n}

fi(w, b) + ξi
‖w‖2

=
1

‖w‖2
.

By the assumption on the suboptimality of wε, bε, ξε, we have κ ≥ κ∗ − ε =
1

‖w‖2
− ε, from which we can conclude that:

‖w̃‖2 =
‖w‖2
κ

≤ ‖w‖2
1/‖w‖2 − ε

≤ 1

1− ε‖w‖2
‖w‖2.

From the form of the objective function, we also have:

F
(
w̃, b̃

)
≤

n∑
i=1

ξ̃i ≤
nν

κ
≤ F (w, b)

‖w‖2
· 1

1/‖w‖2 − ε
=

F (w, b)

1− ε‖w‖2
.

B. Proof of Theorem 1

The method we use here is similar to that in [11].
We first introduce some basic lemmas to simplify the proof.

Lemma 3. For
√
log(n)/T ≤ η ≤ 1/6 with probability at least 1 − O(1/n), it

holds that

max
i∈{1,··· ,n}

T∑
t=1

vt(i)−
T∑

t=1

[
xT
i wt + ξt(i)

]
≤ 4ηT,∣∣∣∣∣

T∑
t=1

pT
t vt −

T∑
t=1

pT
t (Xwt + ξt)

∣∣∣∣∣ ≤ 4ηT.

566 H. Peng et al.

Lemma 4. For
√
log(n)/T ≤ η ≤ 1/4 with probability at least 1 − O(1/n), it

holds that∣∣∣∣∣
T∑

t=1

xT
itwt −

T∑
t=1

pT
t Xwt

∣∣∣∣∣ ≤ 12ηT and

∣∣∣∣∣
T∑

t=1

xT
itw

∗ −
T∑

t=1

pT
t Xw∗

∣∣∣∣∣ ≤ 12ηT.

Lemma 5. With probability at least 3/4, it holds that

T∑
t=1

pT
t v

2
t ≤ 48T

We omit the proofs because they can be immediately obtained from [11] with
some minor modifications.

Proof. Firstly, we prove the running time. Algorithm 1 makes T = O(ε−2 logn)
iterations. Each iteration consists of two steps: the primal update and the dual
update. The primal update contains a �1-sampling process for the choice of it
(O(n) time), and the update of wt (O(d) time). The update of ξt can be done
using a simple greedy algorithm which takes O(n) time. The primal update
contains a �2-sampling process for the choice of jt (O(d) time), and an update
of p (O(n) time). Altogether, each iteration takes O(n+ d) time and the overall
running time is therefore Õ

(
ε−2 (n+ d)

)
.

Next, we analyze the output quality of Algorithm 1. Let γ∗ be the value of
the optimal solution of (4). Then, by the definition we have

T∑
t=1

pT
t (Xw∗ + ξ∗) ≥ Tγ∗. (8)

In the primal part of the algorithm we have

T∑
t=1

xT
itwt ≥

T∑
t=1

xT
itw

∗ − 2
√
2T.

Thus, from Lemma 4 we obtain that with probability 1−O(1/n),

T∑
t=1

pT
t Xwt ≥

T∑
t=1

pT
t Xw∗ − 2

√
2T − 24ηT.

On the other hand,
T∑

t=1

pT
t ξt ≥

T∑
t=1

pT
t ξ

∗
t ,

since ξt is the maximizer of pT
t ξ, and recalling (8), we get the following lower

bound:
T∑

t=1

pT
t (Xwt + ξt) ≥ Tγ∗ − 2

√
2T − 24ηT. (9)

Sublinear Algorithms for Penalized Logistic Regression in Massive Datasets 567

In the dual part of the algorithm, applying Lemma 2 on the clipped vector vt,
we have that

T∑
t=1

pT
t vt ≤ min

T∑
t=1

vt +
logn

η
+ η

T∑
t=1

pT
t v

2
t ,

and together with Lemma 3, we get that with probability 1−O(1/n),

T∑
t=1

pT
t (Xwt + ξt) ≤ min

T∑
t=1

(Xwt + ξt) +
logn

η
+ η

T∑
t=1

pT
t v

2
t + 8ηT.

Hence, from Lemma 5, we obtain the following upper bound, with probability
more than 3

4 −O(1/n) ≥ 1
2

T∑
t=1

pT
t (Xwt + ξt) ≤ min

T∑
t=1

(Xwt + ξt) +
logn

η
+ 56ηT. (10)

Finally, combining bounds (9), (10) and dividing by T we have that with prob-
ability more than 1

2 ,

min
1

T

T∑
t=1

pT
t (Xwt + ξt) ≥ γ∗ − 2

√
2√
T

− logn

ηT
− 80η,

and using our choices for T and η, we conclude that with probability at least 1
2 ,

it holds that
min (Xwt + ξt) ≥ γ∗ − ε.

This implies that the vectors (w̄, ξ̄) form an ε-approximate solution.

References

1. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta
algorithm and applications (2005), Preliminary draft of paper available online at
http://www.cs.princeton.edu/~arora/pubs/MWsurvey.pdf (manuscript)

2. Balakrishnan, S., Madigan, D.: Algorithms for sparse linear classifiers in the mas-
sive data setting. The Journal of Machine Learning Research 9, 313–337 (2008)

3. Clarkson, K.L., Hazan, E., Woodruff, D.P.: Sublinear optimization for machine
learning. In: Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science, pp. 449–457. IEEE Computer Society (2010)

4. Cotter, A., Shalev-Shwartz, S., Srebro, N.: The kernelized stochastic batch percep-
tron. Arxiv preprint arXiv:1204.0566 (2012)

5. Delany, S.J., Cunningham, P., Tsymbal, A., Coyle, L.: A case-based technique for
tracking concept drift in spam filtering. Knowledge-Based Systems 18(4-5), 187–
195 (2005)

6. Garber, D., Hazan, E.: Approximating semidefinite programs in sublinear time. In:
Advances in Neural Information Processing Systems (2011)

7. Genkin, A., Lewis, D.D., Madigan, D.: Large-scale bayesian logistic regression for
text categorization. Technometrics 49(3), 291–304 (2007)

http://www.cs.princeton.edu/~arora/pubs/MWsurvey.pdf

568 H. Peng et al.

8. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the nips 2003 feature
selection challenge. In: Advances in Neural Information Processing Systems, vol. 17,
pp. 545–552 (2004)

9. Hastie, T., Tishirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, New York (2001)

10. Hazan, E., Koren, T.: Optimal algorithms for ridge and lasso regression with par-
tially observed attributes. Arxiv preprint arXiv:1108.4559 (2011)

11. Hazan, E., Koren, T., Srebro, N.: Beating sgd: Learning svms in sublinear time.
In: Advances in Neural Information Processing Systems (2011)

12. Hogan, C., Cassell, L., Foglesong, J., Kordas, J., Nemanic, M., Richmond, G.: The
livermore distributed storage system: Requirements and overview. In: Tenth IEEE
Symposium on Mass Storage Systems Digest of Papers, pp. 6–17. IEEE (1990)

13. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: International Joint Conference on Artificial Intelligence,
vol. 14, pp. 1137–1145. Lawrence Erlbaum Associates Ltd. (1995)

14. Panda, D.K.: Global reduction in wormhole k-ary n-cube networks with multides-
tination exchange worms. In: IPPS: 9th International Parallel Processing Sympo-
sium, pp. 652–659. IEEE Computer Society Press (1995)

15. Shi, J., Yin, W., Osher, S., Sajda, P.: A fast hybrid algorithm for large scale
l1-regularized logistic regression. Journal of Machine Learning Research 1, 8888
(2008)

16. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), 267–288 (1996)

17. Tsumoto, S.: Mining diagnostic rules from clinical databases using rough sets and
medical diagnostic model. Information Sciences 162(2), 65–80 (2004)

18. Vapnik, V.: Statistical Learning Theory. John Wiley and Sons, New York (1998)
19. Xiao, L.: Dual averaging methods for regularized stochastic learning and online

optimization. The Journal of Machine Learning Research 11, 2543–2596 (2010)
20. Zhang, T.: Solving large scale linear prediction problems using stochastic gradient

descent algorithms. In: Proceedings of the Twenty-First International Conference
on Machine Learning, p. 116. ACM (2004)

Author Name Disambiguation

Using a New Categorical Distribution Similarity

Shaohua Li, Gao Cong, and Chunyan Miao

Nanyang Technological University
shaohua@gmail.com, {gaocong,ascymiao}@ntu.edu.sg

Abstract. Author name ambiguity has been a long-standing problem
which impairs the accuracy of publication retrieval and bibliometric
methods. Most of the existing disambiguation methods are built on sim-
ilarity measures, e.g., “Jaccard Coefficient”, between two sets of papers
to be disambiguated, each set represented by a set of categorical features,
e.g., coauthors and published venues1. Such measures perform bad when
the two sets are small, which is typical in Author Name Disambiguation.
In this paper, we propose a novel categorical set similarity measure. We
model an author’s preference, e.g., to venues, using a categorical distri-
bution, and derive a likelihood ratio to estimate the likelihood that the
two sets are drawn from the same distribution. This likelihood ratio is
used as the similarity measure to decide whether two sets belong to the
same author. This measure is mathematically principled and verified to
perform well even when the cardinalities of the two compared sets are
small. Additionally, we propose a new method to estimate the number of
distinct authors for a given name based on the name statistics extracted
from a digital library. Experiment shows that our method significantly
outperforms a baseline method, a widely used benchmark method, and
a real system.

Keywords: Name Disambiguation, Categorical Sampling Likelihood
Ratio.

1 Introduction

Bibliometrics is an important methodology to assess the output and impact of
researchers and institutions. Ambiguous names which correspond to many au-
thors are a long-standing headache for bibliometric assessors and users of digital
libraries. For example, in DBLP, there are at least 8 authors named Rakesh Ku-
mar, and their publications are mixed in the retrieved citations. The ambiguity
on Chinese names is more severe, as many Chinese share a few family names
such as Wang, Li, and Zhang. An extreme example is Wei Wang. According to
our labeling, it corresponds to over 200 authors in DBLP! As more and more
researchers become active, the ambiguity problem will only become graver.

1 Venues here refer to the journal or conference, such as J. ACM or SIGIR.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 569–584, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

570 S. Li, G. Cong, and C. Miao

Author Name Disambiguation refers to splitting the bibliographic records by
different authors with the same name into different clusters, so that each cluster
belongs to one author and each author’s works are gathered in one cluster.

For each paper, we consider 3 features: coauthors, published venue and title,
by following the setting used in previous work [5,3,12]. Under this setting, our
proposed method can be general and applicable to the existing bibliography
databases, e.g., DBLP, since they contain information on the three features for
each paper. Each feature serves as a body of evidence used to decide whether
two homonymous authors are the same person. Coauthors and venues are two
important features that have categorical values. During disambiguation, we need
measure the similarity between two clusters of papers. Naturally the feature
values in each cluster form a set of categorical data, and thus a categorical set
similarity measure is an important foundation of a disambiguation algorithm.

Given two sets of categorical data, previous methods of name disambigua-
tion use set similarity measures, such as Jaccard Coefficient ([2,12]) or cosine
similarity ([8]), which often fail when the sets are unbalanced in cardinality, or
when the frequencies of the elements in each set have distinctive patterns (to be
explained in Section 4). We exploit the property that categorical sets from the
same author follow similar distributions, and propose a generative probabilis-
tic model to estimate the similarity of two sets. We name this novel similarity
measure as Categorical Sampling Likelihood Ratio (CSLR).

In addition, the ambiguity (number of distinct people) of a disambiguated
name needs to be estimated to guide the disambiguation process. We exploit the
property that the different parts of a person name in a given culture are chosen
roughly independently, and derive a simple statistical method to estimate the
ambiguity, based only on the name statistics in a digital library. The estimated
ambiguity is shown to be reasonably close to the actual value for Chinese names.

We evaluate our system on two test sets extracted from the January 2011
dump of DBLP. Experiments show that our method significantly outperform
one baseline method (by 2-12%), a representative previous method DISTINCT
(by 4-13%) and a well-known system Arnetminer [9] (http://arnetminer.org/)
(by 6-17%) in terms of macro-average F1 scores.

The rest of this paper is organized as follows. In Section 2, we review related
work. In Section 3, we define basic notations used in this paper, and state the
objective of Author Name Disambiguation. In Section 4, we establish the novel
set similarity measure CSLR. In Section 5, we outline our clustering system based
on CSLR. In Section 6, we describe the name ambiguity estimation method. In
Section 7, we report experimental results. Finally, we conclude in Section 8. In
addition, all proofs are in the full version of this paper ([6]). The source code
and data set are available at http://github.com/askerlee/namedis.

2 Related Work

A pioneering work [5] on Author Name Disambiguation presents two supervised
learning approaches, using Naive Bayes and SVM, respectively. For each name to

http://arnetminer.org/
http://github.com/askerlee/namedis

Author Name Disambiguation Using a New Categorical Distribution Similarity 571

be disambiguated, a specific classifier is trained. Therefore, hand-labeled papers
for each name are needed. This overhead is unaffordable in practice.

The method DISTINCT [12] uses SVM to learn the weights of features. The
training data for SVM is generated automatically. The title is considered the
unigram “bag-of-words” (BoW). Each cluster of papers has a few features, and
the similarity between feature value sets of two clusters is calculated using Jac-
card Coefficient. As another similarity measure, the connection strength between
clusters is measured by a random walk probability. The two similarity measures
are combined and form the similarity used in the agglomerative clustering.

The work [2] formulats the Name Disambiguation problem as a hypergraph,
where each author is one node. Relationships among authors, such as the coau-
thorship of a few authors, are represented as hyperedges. The similarity between
two clusters is measured by comparing their “neighboring sets” (other clusters
they connect with), using Jaccard Coefficient or Adamic/Adar Similarity.

Torvik et al. ([10]) develops a disambiguation system on MEDLINE. First
a training set is automatically generated, and the likelihood ratio of each fea-
ture value as its evidential strength is estimated from the training set. Evidence
provided by different feature values is aggregated under the Naive Bayes assump-
tion, and the probability that two papers belong to the same author is estimated.
Finally, a maximum likelihood agglomerative clustering is conducted.

Recently, Tang et al. ([8,11]) presents two closely-related methods based on
Pairwise Factor Graph models. The authorship is modeled as edges between
observation variables (papers) and hidden variables (author labels). Features of
each paper, and relationships such as CoPubVenue and CoAuthor, have impact
on the probability of each assignment of labels. The similarity between two clus-
ters is encoded in different “factors” (edge potentials) on different features. The
clustering process tries different author label assignments and finds the one with
maximal probability. Moreover, [11] improves the disambiguation resultes based
on user feedback, and is being used online in Arnetminer for disambiguation
(http://arnetminer.org/disambiguation).

In addition to the title, co-authorship and venue information, authors’ home-
pages ([11]), and results returned by a search engine ([7]) are also used for
disambiguation. However, such information is not always available.

3 Problem Formulation

In a digital library, each author name e may correspond to one or more authors
{a1, a2, · · · , aκ(e)}. Each ai is called e’s namesake. The number of namesakes
κ(e) is the ambiguity of name e. The estimated ambiguity is denoted by κ̂(e).
The name e being disambiguated is called the focus name. Each paper d has a
set of authors Ad = {a1, a2, · · · , am}. Suppose ai has name e. The rest authors
(if any) Ad \ {ai} are the coauthors with regard to paper d, denoted by co(d).

We represent a collection of categorical data as a multiset. In contrast to
the traditional set, here each element x in set S has a frequency value freqS(x).
freqS(x) could be a real number after scaling. The cardinality of a multiset S,

http://arnetminer.org/disambiguation

572 S. Li, G. Cong, and C. Miao

denoted by |S|, is the sum of frequencies of all its elements: |S| =
∑

x∈S freqS(x).
A multiset S is often represented as a list of pairs as {x1 : f1, · · · , xm : fm}, where
fi = freqS(xi). Often we simply refer to a multiset as a set when the meaning
is clear from context.

Given a set of papers C = {d1, d2, · · · , dn} written by author a, the coauthor
set of C is the union of coauthors2 of all di, i.e., co(C) = ∪n

i=1 co(di). Each
coauthor bi ∈ co(C) has a frequency freqco(C)(bi), which is the count of papers
in C having bi as a coauthor.

Likewise, we refer to the multiset of publication venues for the set of papers C
as the venue set of C, denoted by V (C). Each venue vi ∈ V (C) has a frequency
freqV (C)(vi), which is the number of papers in C published in vi.

Problem Statement. Given a focus name e and a set of papers authored by
name e: P(e) = {d1, d2, · · · , dn}, the problem of name disambiguation is to
partition P(e) into different clusters {C1, · · · , Cκ(e)}, so that all papers in Ci are
authored by person ai and all the papers in P(e) by ai are in Ci.

Before we present the proposed method for name disambiguation in Section 5,
we first present the proposed similarity measure in Section 4, which lays the
foundation of our method.

Table 1. Notation table

Notation Description

e An ambiguous name
κ(e) Ambiguity of name e
ai An author (with no ambiguity)
C A cluster of papers that belong to the same author
co(C) Coauthor multiset of C: the union of coauthors of all papers in C
V (C) Venue multiset of C: the union of venues of all papers in C
freqS(x) Frequency of an element x in a multiset S
S A multiset, where each element x ∈ S has a frequency
|S| Cardinality of a multiset, i.e., the sum of frequencies of all elements
p = (p0, p1, · · · , pm) A parameter vector of a categorical distribution
B Base Set (the larger one of two compared multisets S1 and S2)
BCD, B Base Categorical Distribution where B is drawn
A Sampled Set (the smaller one of two multisets S1 and S2)

Ã Conflated sampled set (all “unseen” outcomes become UNSEEN)

A′ Tolerated sampled set (by reducing some UNSEEN counts from Ã)
Cat(p) A categorical distribution with the parameter vector p
Pr(S|p) Probability of drawing set S from Cat(p)
S ∼ D The case of drawing S from distribution D
Λ(A,B) Categorical Sampling Likelihood Ratio (CSLR) between A and B

2 As different coauthors with the same name are literally indistinguishable, the coau-
thor here may correspond to more than one actual author.

Author Name Disambiguation Using a New Categorical Distribution Similarity 573

4 Categorical Sampling Likelihood Ratio – A Categorical
Set Similarity Measure

In Section 4.1, we use a categorical distribution to model the preference of each
author, introduce the intuition behind Categorical Sampling Likelihood Ratio
(CSLR), and formulate CSLR as the ratio of two likelihoods. In Section 4.2, we
present methods to approximate the two likelihoods. Section 4.3 presents the
proposed CSLR.

For ease of discussion, we present CSLR in the context of two venue sets, each
representing a set of papers by an author. The comparison between two coauthor
sets can be computed similarly.

4.1 Modeling Using the Categorical Distribution and Motivation

Each author has preferences to the publication venue, and such preferences can
be represented as a categorical distribution, namely the Preference Distribution.
The frequency that the author published in a venue reflects the preference of
this author to the venue. Consider a cluster of papers C belonging to author a.
The venue of each paper in C is an observation of the preference distribution,
and the whole venue set V (C) forms a sample of that distribution. Suppose
there are m possible outcomes (i.e., venues) in this distribution, denoted by
xi, i = 1, · · · , m. Each xi has a probability pi drawn from this distributuion. We
denote all the outcome probabilities as a vector: p = (p1, · · · , pm). A categorical
distribution with a parameter vector p is denoted by Cat(p). Therefore author
a’s preference distribution is Cat(p).

Different authors usually have distinctive preference distributions. Hence we
can estimate the possibility that two clusters belong to the same author, by
comparing the two distributions from which these venue sets are drawn. Such a
problem is traditionally known as the two-sample problem ([4]).

The biggest challenge of the two-sample problem in Author Name Disam-
biguation is: during the clustering, a cluster of papers are often a small fragment
of the complete set of papers by that author, and therefore the venue set is a
small sample and often only a partial observation of the preference distri-
bution. It is difficult to compare two distributions based only on two partial
observations. Traditional categorical set/distribution similarity measures, such

as Jaccard Coefficient : J(A,B) = |A∩B|
|A∪B| , its variant Adamic/Adar Similarity,

cosine similarity, or Kullback-Leibler divergence, perform well when the sets A
and B are large and good approximations of the underlying distributions, but
do not fit well with Author Name Disambiguation. We take Jaccard Coefficient
to illustrate the problems of these measures:

1. Sets A and B often have unbalanced cardinalities, and J(A,B) is sensitive
to the relative set cardinalities. In the extreme case that A ⊂ B, intuitively
A,B are probably drawn from the same distribution (A is a smaller sample);

however J(A,B) = |A|
|B| varies drastically with the cardinality of either set;

574 S. Li, G. Cong, and C. Miao

2. The evidential strength of each shared element is usually regarded as the
same, regardless of their relative importance. But some elements are more
discriminative than others. For example, suppose x is the most frequent
elemnt in B, but absent in A. Then it is strong evidence that A and B
follow different distributions, and are dissimilar. But if x appears once in B
and absent in A, it is only weak evidence. Note adding weights to elements
does not help much, e.g., Adamic/Adar Similarity, the weighted version of
Jaccard Coefficient, is shown to perform worse than Jaccard Coefficient ([2]).

To this end, we propose a new measure. Assume two multisets A,B have arisen
under one of the two hypotheses H0 and H1. The null hypothesis H0 here is:
A and B are drawn from different distributions (and thus belong to different
authors). The alternative hypothesis H1 is: A and B are drawn from the same
distribution (and thus belong to the same author). We want to see how likely
one hypothesis holds relative to the other. The more likely H1 is relative to H0,
the more similar are A and B.

Formally, we estimate both Pr(H1|B, A) and Pr(H0|B, A). We compare these

two posterior probabilities and get a likelihood ratio Λ =
Pr(H1|B, A)

Pr(H0|B, A)
. We use

the likelihood ratio as the similarity between A and B.
We assume a flat prior on the two hypotheses: Pr(H0) = Pr(H1) = 0.5. By

applying Bayes’ theorem (the proof can be found in [6]), we get

Theorem 1

Λ =
Pr(H1|B, A)

Pr(H0|B, A)
=

Pr(A|B, H1)

Pr(A|B, H0)
.

To compute the likelihood ratio, we need to compute the two probabilities that
A is seen, given B and one of the hypotheses, H0 and H1.

4.2 Calculating the Two Likelihoods

Computing Pr(A|B, H1). Consider two authors a1 and a2, whose preference
distributions are Cat(p1) and Cat(p2), respectively, and whose venue sets are A
and B, respectively.

We proceed to estimate Pr(A|B, H1). First, suppose hypothesis H1 holds.
Then p1 = p2. This implies, given B and H1, A is drawn from Cat(p2). Let
Pr(A|p2) be the probability that A is drawn from Cat(p2). Then Pr(A|B, H1) =
Pr(A|p2).

We estimate p1,p2 from A and B and get p̂1, p̂2, respectively. Then

Pr(A|B, H1) = Pr(A|p2) ≈ Pr(A|p̂2).

Note in Theorem 1, A and B are symmetric and exchangeable. Empiracally a
larger sample tends to better reflect the actual distribution Cat(pi). Without loss
of generality, suppose |B| ≥ |A|. Then Cat(p̂2) is probably a better estimation
of Cat(p2) than Cat(p̂1) as an estimation of Cat(p1). The likelihood Pr(A|p̂2)
would likely be more accurate than Pr(B|p̂1). So we choose B as the conditioning
set, namely the Base Set, from which we estimate a Base Categorical Distribution

Author Name Disambiguation Using a New Categorical Distribution Similarity 575

(BCD) B, and the smaller set A as the conditioned set, namely the Sampled Set.
If |A| > |B|, we simply exchange A and B.

Let us denote the base set as B = {x1 : f1, x2 : f2, · · · , xn : fn}, and the sam-
pled set as A = {y1 : g1, y2 : g2, · · · , ym : gm}, where xi, yj are outcomes (venues),
and fi = freqB(xi), gj = freqA(yj). We can estimate B from B using Maximum

Likelihood Estimation (MLE): p̂i =
fi∑
i fi

.

Considering that B may not cover all the outcomes in B, we should tolerate
outcomes in A but not in B. We introduce a “wildcard” outcome: UNSEEN
(denoted by x0, drawn with a small probability p0). Any outcome in A but
not in B is treated as UNSEEN, without discrimination. We adopt the widely
used Jeffreys prior([1]) to assign a pseudocount δ = 0.5 to UNSEEN and all the
observed outcomes in B. The smoothed estimator gives the following parameters:

p̂0 =
δ

δ(n+ 1) +
∑

i fi
, p̂i =

fi + δ

δ(n+ 1) +
∑

i fi
, for i = 1, · · · , n. (1)

The estimated B is B̂ = Cat(p̂2) = Cat(p̂0, p̂1, · · · , p̂n).
Before calculating the probability that A is drawn from B̂, we partition A into

two sets – the “seen” outcomes As and the “unseen” ones Au, and conflate Au

into UNSEEN:

1) As = A ∩ B. Suppose As = {y1 : g1, ... , yt : gt}. We align (relabel) the ele-
ments in B with As, so that xi = yi, for i = 1, ..., t (the remaining outcomes
in B are labeled as xt+1, · · · , xn arbitrarily). Then outcome yi is drawn with
probability p̂i from B̂;

2) Au = A\B is the unseen outcomes. Suppose Au = {yt+1 : gt+1, ... , ym : gm}.
All elements in Au are “conflated” to UNSEEN (x0). Let the frequency of
x0 be g0, then g0 = |Au| =

∑m
i=t+1 gi.

We denote the conflated set as Ã. We have Ã = {x0 : g0, y1 : g1, ... , yt : gt}. Note
the conflation does not change the cardinality of the set, i.e., |Ã| = |A|. Then
the probability that drawing A from distribution B, denoted by A ∼ B, is ap-
proximated by the probability that Ã ∼ B̂:

Pr(A|B, H1) ≈ Pr(Ã|p̂2) =

(
|A|

g0, g1, · · · , gt

)
p̂g00

t∏
i=1

p̂gii , (2)

where
(|A|
g0, g1,··· ,gt

)
is the multinomial coefficient, counting the total number of

sequences with the same frequencies of outcomes as in A.

Toleration of Preference Divergence: Converting from A to A′. The
preference distribution of an author often evolves slowly with time. Thus an au-
thor has different preference distributions at different periods; however typically
these categorical distributions share many common outcomes, and the probabili-
ties of shared outcomes are still close. Thus the difference between the preference
distributions of the same author at different times is usually much smaller than
the difference between the distributions of different authors.

Consider two sets A and B, both belonging to author a, are drawn from
slightly different preference distributions Cat(p1) and Cat(p2), respectively,

576 S. Li, G. Cong, and C. Miao

where the parameter vectors p1 and p2 are similar but not identical. Let B
be the base set, and B̂ is the estimated BCD. When we calculate the probability
that A ∼ B̂, A may contain a few “unseen” outcome occurrences with respect to
B̂, as well as a lot of “seen” outcome occurrences. These UNSEEN occurrences
are all assigned a tiny probability p̂0, and contribute c · p̂g00 (c is a small factor
in the multinomial coefficient) in (2), which reduces the probability drastically
(although the majority of outcome occurrences are “seen”), wrongly indicating
that A and B unlikely belong to the same author. The “culprit” of this undesir-
able result is the few “unseen” outcomes. In other words, the direct likelihood
estimation is too stringent and intolerant to deviation from B̂.

To allow for preference divergence, before we calculate the likelihood, we re-
duce some count of UNSEEN, proportional to the cardinality of A. This strategy
is called toleration. The kept outcome occurrences form a new Tolerated Set A′.

To perform toleration on set A, first we conflate the “unseen” outcomes in A
and get Ã. Parameter θt controls the UNSEEN count to be reduced relative to
A’s cardinality, i.e., UNSEEN frequency g0 will be reduced by θt|A|. If UNSEEN
frequency g0 < θt|A|, then the new frequency g′0 = 0. We set θt = 1

3 . We
denote the tolerated set as A′ = {x0 :h0, y1 :h1, · · · , yr :hr}, where h0 = g′0, and
hi = freqA(yi), for ∀i > 0. The probability in (2) becomes Pr(A′|p̂2):

Pr(A|B, H1) ≈ Pr(A′|p̂2) =

(
|A′|

h0, h1, · · · , hr

)
p̂h0
0

r∏
i=1

p̂hi

i . (3)

Computing Pr(A′|B, H0). In the following, the sampled set in our likelihood
estimation is the tolerated set A′. We will estimate Pr(A′|B, H0) first.

The hypothesis H0 states that A′ and B are drawn from different categorical
distributions, i.e., A′ is drawn from a distribution other than Cat(p2). Since any
randomly-chosen categorical distribution is probably dissimilar to Cat(p2), we
can approximate Pr(A′|B, H0) by Pr(A′), i.e., the probability that A′ is drawn
from a categorical distribution Cat(p), where we have no information about p.

We limit the sample space of any possible categorical distribution Cat(p) to
the set of outcomes in B: {x1, · · · , xn}. Naturally, we assume a flat Dirichlet
Dir(1n) as the prior distribution of p, where 1n = (1, · · · , 1) is n dimensional.

Suppose A′ = {x0 :h0, y1 :h1, · · · , yr−1 :hr−1, yr :hr}, then we can represent
A′ by the frequency vector of its elements: h = (h0, h1, · · · , hr, hr+1, · · · , hn),
where hr+1 = · · · = hn = 0. Then we have the following Theorem.

Theorem 2

Pr(A′|B, H0) ≈ Pr(A′) =

∫
p

Pr(h|p) Pr(p;1n)dp =
1(|A′|+n
n

) , (4)

where Pr(p;1n) denotes the probability of drawing p from Dir(1n).

The proof can be found in [6]. Theorem 2 reveals an interesting fact: Pr(A′) is
only determined by |A′|, A’s cardinality, and n, the number of categories in B,
but irrelevant to the histogram of outcome frequencies in A′.

Author Name Disambiguation Using a New Categorical Distribution Similarity 577

4.3 Categorical Sampling Likelihood Ratio (CSLR)

As we have obtained two approximations of the two likelihoods in Eq. (3) and
Theorem 2, we combine them and get the approximation of Λ:

Λ ≈ Pr(A′|p̂2)

Pr(A′)
=

(
|A′|

h0, h1, · · · , hr

)(
|A′|+ n

n

)
p̂h0
0

r∏
i=1

p̂hi
i . (5)

We name Λ as Categorical Sampling Likelihood Ratio (CSLR). It is directly used
as the similarity between two categorical sets, such as venue sets and coauthor
sets. For two sets A and B, we denote their CSLR as Λ(A,B).

5 Clustering Framework

5.1 Overview of the Clustering Procedure

We use Agglomerative Clustering as the basic framework. It starts with each
paper being a cluster, and at each step we find the most similar (the similar-
ity measures will be defined later) pairs of clusters, and merge them, until the
maximal similarity falls below certain threshold, or the cluster number is smaller
than the estimated ambiguity of the disambiguated name. The whole clustering
process divides into two stages:

1. Merge based on the evidence from shared coauthors;

2. Merge based on the combined similarity defined on the title sets and venue
sets of each pair of clusters.

The reasons for developing the two-stage clustering are twofold: First, coauthors
generally provide stronger evidence than other features, based on which the
generated cluster usually comprises of papers of the same author, but the papers
of an author may distribute among multiple clusters ([3]); Second, the venue and
title features are relatively weak evidence, based on which we can further merge
clusters from the same author.

5.2 Stage 1: Merging by Shared Coauthors

The existing work ([5,12,10,2,3]) usually takes shared coauthors as a crucial fea-
ture. They usually treat all authors equally, and combine two clusters if they
have shared coauthors. However, we observe that the strength of the evidence
provided by a shared coauthor varies from one to another. If a coauthor collab-
orates with many people, it is likely that the coauthor collaborate with different
people with the same focus name. Especially when the focus name to be dis-
ambiguated has high ambiguity, the chance of different people sharing the same
coauthor names would be high. Hence, we propose to distinguish those weak
evidential coauthors from the strong evidential coauthors and treat them dif-
ferently. For example, consider to disambiguate “Wei Wang”. Coauthors Jiawei
Han and Jian Pei both collaborate with different “Wei Wang”. We observe that
both Jiawei Han and Jian Pei have over 200 collaborators, and thus they should
be treated as weak evidential coauthors when disambiguating “Wei Wang”.

578 S. Li, G. Cong, and C. Miao

We proceed to present a statistical approach to estimating the probability
that a coauthor b works with only one namesake of a given name e. Given that
a coauthor b is shared by two clusters C1 and C2, the alternative hypothesis H1

says C1 and C2 belong to the same author. If Pr(H1|b) is large enough (≥ θco),
then b is regarded as strong evidential, and we merge C1 and C2. Otherwise b is
weak evidential. Here θco is the decision threshold. We choose θco = 0.95.

Let e be the disambiguated focus name. Suppose that the coauthor b randomly
chooses n authors from the whole author set A3 to collaborate with, and among
the n collaborators at least one person a1 has name e. The total count of authors
is denoted by M = |A|. We assume the choice of collaboration follows a uniform
distribution U over A. Thus the n collaborators are viewed as n independent
trials from U , where each author ai ∈ A has probability 1/M to be chosen4.
Since one trial is reserved for a1, only n − 1 trials are really random. Suppose
we have known e’s ambiguity κ(e). Then in each trial, choosing another author

with name e has probability κ(e)−1
M−1 ≈ κ(e)−1

M .
The probability that no other collaborator of b has name e is:

Pr(H∗
1 |b) = (

M − κ(e)

M
)n−1 ≈ 1− (n− 1)κ(e)

M
, (6)

considering κ(e) � M . H∗
1 means that for any pair of clusters C1 and C2, H1

holds. So H∗
1 =⇒ H1, and Pr(H∗

1 |b) ≤ Pr(H1|b).
But we do not know n, the actual number of collaborators of b. We only

know b has collaborated with | co(b)| names. So n ≥ | co(b)|. We can obtain n’s
expectation E[n] as n’s estimation:

E[n] ≈ M(| co(b)| − 1)

M −
∑

ei∈co(b) (κ(ei)− 1)
, (7)

where κ(ei) is approximated by κ̂(e) in Section 6, and M ≈
∑

e∈A
κ̂(e).

Strong evidential coauthors require Pr(H1|b) ≥ θco. Combining this with Eq.
(6), we obtain

n ≤ (1− θco)M

κ(e)
+ 1. (8)

The right-hand value of Eq. (8) is a threshold value to partition authors into
two groups: one contains authors who have fewer coauthors than the threshold,
and thus provide strong evidence; the other contains authors who have more
coauthors than the threshold and thus offer weak evidence.

Given two clustersC1 andC2, if there is one shared strong evidential coauthors,
then we see enough evidence supportingH1, and then we merge them. Otherwise
all shared coauthors are weak evidential. We use CSLR to see how likely the two
coauthor sets are drawn from the same distribution. If Λ(co(C1), co(C2)) > 1, we
merge C1 and C2.
3 A includes all authors in the DBLP dump.
4 The n trials is without replacement. The probability is approximated by trials with
replacement. This approximation is good, since n�M .

Author Name Disambiguation Using a New Categorical Distribution Similarity 579

5.3 Stage 2: Merging by Venue Set and Title Set

Consider a pair of clusters C1 and C2 with venue sets V1, V2, and title sets T1, T2.
We denote the Venue Set Similarity by simV (V1, V2), and Title Set Similarity by
simT (T1, T2). These two similarity measures are heterogeneous metrics, and we
multiply them to compute the combined similarity:

sim(C1, C2) = simV (V1, V2) · simT (T1, T2). (9)

As the ambiguity κ(e) of an author e increases, there are more and more authors
working in the same subfields and publishing in the same venues. Therefore the
clustering threshold in this stage, denoted by θc, should increase monotonically
with κ(e). We set θc as a linear function of κ̂(e):

θc(κ̂(e)) = 0.2 ·max(1,
1

5
κ̂(e)) (10)

Due to space limitations, the technical details of using CSLR to compute the
similarity simV (V1, V2) and using BoW to compute simT (T1, T2) are omitted
here, and can be found in the full version of this paper ([6]).

Next we briefly introduce the idea of computing the two similarities.

Venue Set Expansion and Similarity. We use CSLR to compare two venue
sets. But CSLR treats different outcomes as disparate and their correlations
are not considered. Often two venue sets do not share common venues, but the
venues are correlated, such as “TKDE” in one set, and “CIKM” in the other.
They still favor (to certain degree) the hypothesis that the two clusters are from
the same author. In this case, CSLR returns a very small likelihood ratio.

To remedy this problem, before computing CSLR, we expand each venue set
with correlated venues first. Now a venue set {TKDE: 2, CIKM: 3} could become
{TKDE: 2, CIKM: 3, ICDM: 1, KDD: 0.5}, and the CSLR value between it and
another set {ICDM: 3, KDD: 1} will become reasonably large.

The idea is to predict the frequencies of absent but correlated venues of a set,
based on observed venues, and then add the predicted {venue : frequency} pairs
into that set. The correlated venues are mined using linear regression on the 1.5
million DBLP papers.

We denote the expanded venue set of Vi as Ṽi, then simV (V1, V2) = Λ(Ṽ1, Ṽ2).

Title Set Similarity Based on Unigram BoW. We adopt the traditional
unigram BoWmodel to represent two title sets and calculate their similarity. The
similarity simT (T1, T2) is the weighted sum of shared unigrams5. The weighting
scheme is a variant of TF*IDF, which regards all the titles of an author as a
single document when calculating the Inverse Document Frequency (IDF).

5 Words in the titles are so sparse and diverse that even if two title sets belong to the
same author, the two corresponding sets of words are usually not drawn from the
same distribution, and thus CSLR does not fit in here.

580 S. Li, G. Cong, and C. Miao

6 Name Ambiguity Estimation

We present a statistical method to estimate the ambiguity κ(e) of each focus
name e. The estimation κ̂(e) is used in (8) and (10). In addition, it plays two
other roles: First, it is one of the stop criteria of the clustering. Once we reach
κ̂(e) clusters, we should stop merging. Note the clustering may stop before the
number of clusters becomes κ̂(e) due to other criteria. Second, if κ̂(e) is much
less than 1, it means name e is rare, and it is highly possible that only one person
has this name, regardless how many papers is authored by e. For example, in our
dataset, 448 papers have author name Jiawei Han. We assert that all of them
are by the same person, given that Jiawei Han’s estimated ambiguity is 0.29.

Our method is inspired by the “Ambiguity Estimate” intuition in [2]. Our
estimation only needs the names statistics in a digital library.

In the digital library names in a given culture usually have a fixed number
of parts. For example in DBLP, a Chinese name usually has 2 parts (e.g., “Xi-
aofeng” and “Wang” for name “Xiaofeng Wang”). Suppose that these parts were
chosen roughly independently with each other. Thus we can estimate the prob-
ability of each option of each part, and then the probability of a full name is the
joint probability of its parts.

We formulate the case of 3-part names as an example. Suppose a name e in a
given culture consists of a given name G(e), a middle name M(e) and a family
name F (e), i.e., e = G(e)+M(e)+F (e), where “+” means string concatenation.

For any name e in this culture, we assume G(e), M(e) and F (e) are drawn
independently from 3 categorical distributions CatG, CatM and CatE , respec-
tively. Then Pr(e) = Pr(G(e)) Pr(M(e)) Pr(F (e)).

The parameters of CatG, CatM and CatE are estimated using MLE. Take
CatG as an example. Let E be the set of all names in this culture, and G be the
set of all given names in this culture,

∀g ∈ G, Pr(G(e) = g) ≈
∑

e∈E,G(e)=g κ(e)∑
∀e∈E

κ(e)
. (11)

Noticing
∑

∀e∈E κ(e) is the total number of different authors in this culture, the
MLE of the instances (i.e., ambiguity) of name e in the DBLP author set is:

κ̂(e) = Pr(G(e)) Pr(M(e)) Pr(F (e))
∑
∀e∈E

κ(e). (12)

We do not know κ(e), and thus we use κ̂(e) in place of κ(e), and evaluate (11)
and (12) iteratively, until κ̂(e) converges. It is possible that κ̂(e) < 1 (a rare
name), so during the iteration, we round κ̂(e) to 1 if κ̂(e) < 1. Specifically,

1. Initially, ∀e, κ̂0(e) = 1;

2. In the (i + 1)-th iteration, we plug max(κ̂i(e), 1) for κ(e) into (11) and
(12), evaluate them and get κ̂i+1(e). Repeat this step until |

∑
∀e κ̂i+1(e)−∑

∀e κ̂i(e)| ≤ εm, where εm is a small number to measure the convergence.

When the estimation converges at the n-th iteration, we round κ̂n(e) up to 1
and get κ̂(e). If we want to check the rarity of a name, we use κ̂n(e) directly.

Author Name Disambiguation Using a New Categorical Distribution Similarity 581

Table 2. Statistics of Data Set 1∗

Name e #Pubs κ(e) κ̂(e)

Hui Fang 9 3 1.62

Ajay Gupta 16 4 n/a

Joseph Hellerstein 151 2 n/a

Rakesh Kumar 36 2 n/a

Michael Wagner 29 5 n/a

Bing Liu 89 6 6.91

Jim Smith 19 3 n/a

Lei Wang 55 13 (31) 22.34

Wei Wang 140 14 (57) 49.43

Bin Yu 44 5 (11) 8.7

Table 3. Statistics of Data Set 2

Name e #Pubs κ(e) κ̂(e)

Hui Fang 45 8 6.8

Ajay Gupta 25 8 n/a

Joseph Hellerstein 234 2 n/a

Rakesh Kumar 104 8 n/a

Michael Wagner 61 16 n/a

Bing Liu 192 23 21.0

Jim Smith 54 5 n/a

Lei Wang 400 144 104.6

Wei Wang 833 216 254.2

Bin Yu 102 18 17.3

* [12] removed authors who have only one paper from their data set. So for the last
three names in Table 2, [12] reported much smaller ambiguities than the real values,
which are given in the parentheses.

Note the name-part independence assumption holds only among names in a
given culture. Given names from one culture and family names from another
culture are usually anti-correlated, for example “Jacob Li” is a very rare combi-
nation. So Ambiguity Estimation should be conducted culture-wise. For names in
a culture which are too few in the digital library to form a large enough sample,
external demographic data could be incorporated to get better estimation.

7 Experimental Results

7.1 Experimental Setting

Data Set. Two test sets are used. For fairness of comparison, both use the same
set of names as in [12]. Papers written by these names in DBLP are extracted
for disambiguation.

Set 1 is the same dataset as that used in [12]. Its statistics are listed in Table
2. This data set was extracted from a 2006 dump of DBLP.

Set 2 is extracted from a January 2011 dump of DBLP. Each name corresponds
to many more papers (and bigger ambiguity, as more authors with these names
publish) in Set 2 than Set 1. Their statistics are in Table 3. All these papers
were hand-labeled and available at the URL given in Section 1.

As a part of our experiments, we test Ambiguity Estimation on Chinese author
names, and list the results on names in the test set in Tables 2 and 3. Set 1 was
built at the beginning of year 2006 ([12]), so we use the DBLP statistics before
2006 to estimate these ambiguities. Set 2 contains all authors and papers in
DBLP till January 2011, and we use the whole DBLP statistics to estimate
these ambiguities. The actual ambiguities κ(e) are obtained by hand-labeling.

For Chinese names, our method gives a reasonable estimation: κ̂(e) ∈ (0.5κ(e),
1.5κ(e)). We have not estimated the ambiguities of names in other cultures.
But usually their ambiguities are small (below 30) and we set all of them to
2. Experiments show such inaccuracy does not impair the performance of our
system noticeably.

582 S. Li, G. Cong, and C. Miao

Evaluation. As in [12,8], we use Pairwise Precision, Pairwise Recall, and Pair-
wise F1 scores to evaluate the performance of our method and other methods.
Specifically, any two papers that are annotated with the same label in the ground
truth are called a correct pair, and any two papers that are predicted with the
same label (if they are grouped in the same cluster, we also call they have the
same label) by a system but are labeled differently in the ground truth are called
a wrong pair. Note the counting is for pairs of papers with the same label (either
predicted or labeled) only. Thereafter, we define the three scores:

Prec =
#PairsCorrectlyPredicted

#TotalPairsPredicted
Rec =

#PairsCorrectlyPredicted

#TotalCorrectPairs

F1 =
2× Prec×Rec

Prec+Rec

Experimental Details. We evaluated one baseline, denoted by Jac, which uses
Jaccard Coefficient for coauthor/venue sets, the unigram BoW based similarity
for title sets, and Eq. (10) as its clustering threshold. The optimal Jaccard Co-
efficient thresholds for coauthor sets and venue sets are different. We tested Jac
with different thresholds, and chose the thresholds for coauthor sets and venue
sets that produce the highest macro-average F1 scores, respectively. The best
thresholds are 0.03 for coauthor sets, and 0.04 for venue sets.

We compared our method with two representative methods: DISTINCT ([12])
and Arnetminer ([11]). We acquired the original source code of DISTINCT.
DISTINCT uses randomly generated training sets, and in different runs its per-
formance varies greatly. Moreover, DISTINCT does not have a mechanism to
determine a clustering threshold for a given name. Instead it tries 12 different
thresholds between [0, 0.02]. For each name, different thresholds lead to dis-
parate performance. So we ran DISTINCT 10 times and averaged its scores
at each threshold, and then took the threshold that gives the highest macro-
average F1 score over all names, as the chosen threshold (0.002 for Set 1, 0.001
for Set 2). Additionally, we crawled the disambiguation pages of these 10 names
from http://arnetminer.org/ on March 12, 2012, and extracted the disam-
biguation results. These results are generated by the up-to-date work of [11]. As
Arnetminer contains papers newer than the release date of our DBLP dump, we
discarded papers that are not in our data sets.

We refer to our own method as CSLR. It has 3 important parameters: θt,
which controls the degree of toleration; θco, which controls the decision threshold
between strong/weak-evidential coauthors; and θc(κ̂(e)), which controls when to
stop the second-stage clustering. They are tuned on a development set of 5
names: Tao Peng, Peng Cheng, David Jensen, Xiaodong Wang, and Gang Wu.

7.2 Experimental Results and Discussion

The results for all methods are shown in Table 4 and 5. For each method, the
most important measure, the macro-average F1 score over all names, is under-
lined. On both sets, CSLR significantly outperforms all the other methods.

http://arnetminer.org/

Author Name Disambiguation Using a New Categorical Distribution Similarity 583

Table 4. Comparison of Performance on Set 1

Name
Jac Arnetminer DISTINCT Our (CSLR)

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Hui Fang 100.0 100.0 100.0 55.6 100.0 71.4 85.6 100.0 88.7 100.0 100.0 100.0

Ajay Gupta 100.0 93.1 96.4 100.0 100.0 100.0 67.7 94.5 78.8 100.0 93.1 96.4

Joseph Hellerstein 50.7 83.9 63.2 97.4 97.4 97.4 92.4 80.6 84.6 100.0 69.7 82.1

Rakesh Kumar 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Michael Wagner 100.0 64.0 78.1 100.0 33.7 50.5 90.1 96.2 92.9 100.0 64.0 78.1

Bing Liu 99.8 84.5 91.5 86.2 79.8 82.9 86.5 82.0 83.6 91.8 87.0 89.4

Jim Smith 100.0 83.1 90.8 100.0 84.5 91.6 95.6 91.7 93.3 100.0 87.3 93.2

Lei Wang 100.0 71.2 83.2 59.4 94.2 72.9 42.5 75.0 51.8 100.0 63.3 77.6

Wei Wang 60.5 83.7 70.2 28.1 98.5 43.8 31.0 98.8 47.1 59.3 72.4 65.2

Bin Yu 70.7 64.7 67.6 87.8 95.3 91.4 77.1 89.2 81.3 98.8 68.5 80.9

Avg. (macro-F1) 88.2 82.8 84.1 81.5 88.4 80.2 76.9 90.8 80.2 95.0 80.5 86.3

Table 5. Comparison of Performance on Set 2

Name
Jac Arnetminer DISTINCT Our (CSLR)

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Hui Fang 100.0 68.8 81.5 59.1 63.7 61.3 81.3 97.9 88.0 100.0 78.9 88.2

Ajay Gupta 96.0 47.0 63.1 60.0 65.4 62.6 65.3 87.9 74.2 96.0 39.6 56.1

Joseph Hellerstein 52.8 80.5 63.7 94.5 95.9 95.2 92.3 89.5 90.0 100.0 79.6 88.6

Rakesh Kumar 100.0 89.0 94.2 98.4 89.3 93.7 89.9 96.0 92.5 99.9 97.8 98.8

Michael Wagner 92.8 59.4 72.4 55.6 36.7 44.2 67.4 98.2 79.1 88.1 64.6 74.6

Bing Liu 97.8 67.0 79.5 75.7 67.2 71.2 83.0 84.7 83.3 98.1 74.7 84.8

Jim Smith 100.0 44.1 61.2 88.6 45.1 59.7 94.8 87.8 90.0 100.0 48.8 65.6

Lei Wang 30.0 79.8 43.6 18.1 83.1 29.8 29.3 85.9 42.4 78.1 87.6 82.6

Wei Wang 40.2 77.0 52.8 9.7 88.2 17.5 25.8 84.2 38.9 81.0 71.8 76.1

Bin Yu 70.6 42.8 53.3 72.4 62.2 66.9 54.0 62.0 57.0 88.0 49.1 63.0

Avg. (macro-F1) 78.0 65.5 66.5 63.2 69.7 60.2 68.3 87.4 73.5 92.9 69.2 77.8

On Set 1 DISTINCT has a lower macro-average F1 score than that reported
in [12]. We think it is partly due to the random nature of DISTINCT when it
chooses a random training set to trains the feature weights. But since we have run
DISTINCT for consecutive 10 times, we think the average scores truly reflect its
performance in practice without ground truth to select the best trained weights.

On Set 2 Arnetminer has a sudden performance drop compared to its per-
formance on Set 1. One important “culprit” is its precision on Wei Wang is
extremely low. As we can see in the actual disambiguation result online at
http://arnetminer.org/, 727 papers are credited to the professor at UNC,
among which we believe only < 200 papers are authored by her. The reason
might be Arnetminer merges clusters based on a few weak evidential coauthors.

The baseline Jac performs well on Set 1. This may ascribe to two factors: 1) It
uses the optimal Jaccard Coefficient thresholds, which are impossible to obtain
in practice without ground truth; 2) It uses the same estimated name ambiguity
to set the clustering threshold. However, Jac’s performance plunges on Set 2
where the ambiguity of each name is larger. This contrast suggests the adverse
effect of the inaccuracy of Jaccard Coefficient intensifies as the ambiguity grows.

Compared to other methods, our system has slightly lower recall, but much
higher precision. We think a major reason is that CSLR returns a high similarity
only when two clusters follow similar distributuions. Sometimes clusters of papers
by the same author are drastically different (e.g., very few shared venues and

http://arnetminer.org/

584 S. Li, G. Cong, and C. Miao

shared terms in titles), and it is difficult even for a human to decide whether
they belong to the same author. From a user’s perspective, it is often more
frustrating to see papers of different authors are mixed up (low precision), than
to see papers of the same author are split into smaller clusters (low recall).

8 Conclusions and Future Work

In this paper, we present a novel categorical set similarity measure named CSLR
for two sets which both follow categorical distributions. It is applied in Author
Name Disambiguation to measure the similarity between two venue sets or coau-
thor sets. It is verified to be better than the widely used Jaccard Coefficient. We
have also proposed a novel method to estimate the distinct author number of
each name, which gives reasonable estimation. Our experiments show that our
system clearly outperforms other methods of comparison.

We envision broad applications of CSLR since it is a general categorical set
similarity measure. In scenarios such as Social Networks and Natural Language
Processing, an entity often has a set of contextual features. Often these features
have categorical values, and two entities are similar iff these sets follow similar
categorical distributions. Some previous work used Jaccard Coefficient etc. as
the similarity measures. We expect CSLR will perform better than them.

References

1. Agresti, A.: Categorical data analysis. Wiley series in probability and statistics.
Wiley-Interscience (2002)

2. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. ACM
Trans. Knowl. Discov. Data 1 (March 2007)

3. Cota, R.G., Ferreira, A.A., Nascimento, C., Gonalves, M.A., Laender, A.H.F.: An
unsupervised heuristic-based hierarchical method for name disambiguation in bib-
liographic citations. J. Am. Soc. Inf. Sci. Technol. 61(9), 1853–1870 (2010)

4. Gretton, A., Borgwardt, K., Rasch, M., Schlkopf, B., Smola, A.: A kernel method
for the two sample problem. In: NIPS, vol. 19, pp. 513–520. MIT Press (2007)

5. Han, H., Giles, L., Zha, H., Li, C., Tsioutsiouliklis, K.: Two supervised learning ap-
proaches for name disambiguation in author citations. In: JCDL 2004. ACM (2004)

6. Li, S., Cong, G., Miao, C.: Supplementary material to author name disambiguation
using a categorical distribution similarity, http://git.io/namedis

7. Pereira, D.A., Ribeiro-Neto, B., Ziviani, N., Laender, A.H., Gonçalves, M.A., Fer-
reira, A.A.: Using web information for author name disambiguation. In: JCDL
2009. ACM (2009)

8. Tang, J., Fong, A.C., Wang, B., Zhang, J.: A unified probabilistic framework for
name disambiguation in digital library. IEEE TKDE 99 (2011) (preprints)

9. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and
mining of academic social networks. In: KDD 2008. ACM (2008)

10. Torvik, V.I., Smalheiser, N.R.: Author name disambiguation in medline. ACM
Trans. Knowl. Discov. Data 3, 11:1–11:29 (2009)

11. Wang, X., Tang, J., Cheng, H., Yu, P.S.: Adana: Active name disambiguation. In:
ICDM 2011 (2011)

12. Yin, X., Han, J., Yu, P.S.: Object distinction: Distinguishing objects with identical
names by link analysis. In: ICDE 2007 (2007)

http://git.io/namedis

Lifted Online Training of Relational Models

with Stochastic Gradient Methods

Babak Ahmadi1, Kristian Kersting1,2,3, and Sriraam Natarajan3

1 Fraunhofer IAIS, Knowledge Discovery Department, Sankt Augustin, Germany
2 University of Bonn, Institute of Geodesy and Geoinformation, Bonn, Germany

3 Wake Forest University, School of Medicine, Winston-Salem, USA

Abstract. Lifted inference approaches have rendered large, previously
intractable probabilistic inference problems quickly solvable by employ-
ing symmetries to handle whole sets of indistinguishable random vari-
ables. Still, in many if not most situations training relational models
will not benefit from lifting: symmetries within models easily break since
variables become correlated by virtue of depending asymmetrically on
evidence. An appealing idea for such situations is to train and recom-
bine local models. This breaks long-range dependencies and allows to
exploit lifting within and across the local training tasks. Moreover, it
naturally paves the way for online training for relational models. Specifi-
cally, we develop the first lifted stochastic gradient optimization method
with gain vector adaptation, which processes each lifted piece one af-
ter the other. On several datasets, the resulting optimizer converges to
the same quality solution over an order of magnitude faster, simply be-
cause unlike batch training it starts optimizing long before having seen
the entire mega-example even once.

1 Introduction

Statistical relational models, see [1, 2] for overviews, have recently gained popu-
larity in the machine learning and AI communities since they provide powerful
formalisms to compactly represent complex real-world domains. Unfortunately,
computing the exact gradient in such models and hence learning the parameters
with exact maximum-likelihood training using current optimization methods
like conjugate gradient and limited-memory BFGS is often not feasible as it
requires computing marginal distributions of the entire underyling graphical
model. Since inference is posing major computational challenges one has to resort
to approximate learning.

One attractive avenue to scale relational learning is based on lifted message-
passing approaches [3, 4]. They have rendered large, previously intractable prob-
abilistic inference problems quickly (often approximately) solvable by employing
symmetries to handle whole sets of indistinguishable random variables. Still, in
most situations training relational models will not benefit from lifting:

(Limitation 1) Symmetries within a model easily break since variables
become correlated by virtue of depending asymmetrically on evidence.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 585–600, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

586 B. Ahmadi, K. Kersting, and S. Natarajan

Because of this, lifting produces new models that are often not far from propo-
sitionalized, therefore canceling the benefits of lifting for training. Moreover, in
relational learning we often face a single mega-example [5] only, a single large
set of inter-connected facts. Consequently, many if not all standard statistical
learning methods do not naturally carry over to the relational case. Consider
e.g. stochastic gradient methods. Similar to the perceptron method [6], stochas-
tic gradient descent algorithms update the weight vector in an online setting.
We essentially assume that the training examples are given one at a time. The
algorithms examine the current training example and then update the parame-
ter vector accordingly. They often scale sub-linearly with the amount of training
data, making them very attractive for large training data as targeted by statistial
relational learning. Empirically, they are even often found to be more resilient
to errors made when approximating the gradient. Unfortunately, stochastic gra-
dient methods do not naturally carry over to the relational cases:

(Limitation 2) Stochastic gradients coincide with batch gradients in the
relational case since there is only a single mega-example.

In this paper, we demonstrate how to overcome both limitations.
To do so, we shatter the full model into pieces. In each iteration, we train the

pieces independently and re-combine the learned parameters from each piece.
This overcomes limitation 1 by breaking long-range dependencies and allows
one — as we will show — to exploit lifting across the local training tasks. It also
paves the way for online training — as we will show — of relational models since
we can treat (mini-batches of) pieces as training examples and process one piece
after the other, hence overcoming limitation 2. Based on this insight, we develop
our main algorithmic contribution: the first lifted online training approach for
relational models using a stochastic gradient optimization method with gain
vector adaptation based on natural gradients. As our experimental evaluation
demonstrates, it already results in considerable efficiency gains, simply because
unlike batch training it starts optimizing long before having seen the entire
mega-example even once. However, we can do considerably better. The way we
shatter the full model into pieces greatly effects the learning quality. Important
influences between variables might get broken. To overcome this, we randomly
grow relational piece patterns that form trees. Our experimental results show
that tree pieces can balance well lifting and quality of the online training.

We proceed as follows. After touching upon related work, we recap Markov
logic networks, the probabilistic relational framework we focus on for illustration
purpose. Then, we develop the stochastic relational gradient framework. Before
concluding, we present our experimental evaluation.

2 Related Work

Our work aims at combining stochastic gradient methods for online training, re-
lational learning, and lifted inference hence is related to several lines of research.

Local training is well known for propositional graphical models. Besag [7]
presented a pseudolikelihood (PL) approach for training an Ising model with a

Lifted Online Training of Relational Models 587

rectangular array of variables. PL, however, tends to introduce a bias and is not
necessarily a good approximation of the true likelihood with a smaller number
of samples. In the limit, however, the maximum pseudolikelihood coincides with
that of the true likelihood [8]. Hence, it is a very popular method for training
models such as Conditional Random Fields (CRF) where the normalization can
become intractable while PL requires normalizing over only one node. An al-
ternative approach is to decompose the factor graph into tractable subgraphs
(or pieces) that are trained independently [9], as also follows in the present
paper. This piecewise training can be understood as approximating the exact
likelihood using a propagation algorithm such as BP. Sutton and McCallum [9]
also combined the two ideas of PL and piecewise training to propose piecewise
pseudolikelihood (PWPL) which inspite of being a double approximation has
the benefit of being accurate like piecewise and scales well due to the use of
PL. Another intuitive approach is to compute approximate marginal distribu-
tions using a global propagation algorithm like BP, and simply substitute the
resulting beliefs into the exact ML gradient [10], which will result in approxi-
mate partial derivatives. Similarly, the beliefs can also be used by a sampling
method such as MCMC where the true marginals are approximated by running
an MCMC algorithm for a few iterations. Such an approach is called constructive
divergence [11] and is a popular method for training CRFs.

All the above methods were originally developed for propositional data while
real-world data is inherently noisy and relational. Statistical Relational Learning
(SRL) [1, 2] deals with uncertainty and relations among objects. The advantage
of relational models is that they can succinctly represent probabilistic depen-
dencies among the attributes of different related objects leading to a compact
representation of learned models. While relational models are very expressive,
learning them is a computationally intensive task. Recently, there have been
some advances in learning SRL models, especially in the case of Markov Logic
Networks [12–14]. Algorithms based on functional-gradient boosting [15] have
been developed for learning SRL models such as Relational Dependency Net-
works [16], and Markov Logic Networks [14]. Piecewise learning has also been
pursued already in SRL. For instance, the work by Richardson and Domin-
gos [17] used pseudolikelihood to approximate the joint distribution of MLNs
which is inspired from the local training methods mentioned above. Though all
these methods exhibit good empirical performance, they apply the closed-world
assumption, i.e., whatever is unobserved in the world is considered to be false.
They cannot easily deal with missing information. To do so, algorithms based
on classical EM [18] have been developed for ProbLog, CP-logic, PRISM, prob-
abilistic relational models, Bayesian logic programs [19–23], among others, as
well as gradient-based approaches for relational models with complex combining
rules [24, 25]. All these approaches, however, assume a batch learning setting;
they do not update the parameters until the entire data has been scanned. In
the presence of large amounts of data such as relational data, the above method
can be wasteful. Stochastic gradient methods as considered in the present pa-
per, on the other hand, are online and scale sub-linearly with the amount of

588 B. Ahmadi, K. Kersting, and S. Natarajan

training data, making them very attractive for large data sets. Only Huynh
and Mooney [26] have recently studied online training of MLNs. Here, train-
ing was posed as an online max margin optimization problem and a gradient
for the dual was derived and solved using incremental-dual-ascent algorithms.
They, however, do not employ lifted inference for training and also make the
closed-world assumption.

3 Markov Logic Networks

We develop our lifted online training method within the framework of Markov
logic networks [17] but would like to note that it naturally carries over to other
relational frameworks. A Markov logic network (MLN) is defined by a set of
first-order formulas (or clauses) Fi with associated weights wi, i ∈ {1, . . . , k}.
Together with a set of constants C = {C1, C2, . . . , Cn} it can be grounded, i.e.
the free variables in the predicates of the formulas Fi are bound to be constants
in C, to define a Markov network. This ground Markov network contains a
binary node for each possible grounding of each predicate, and a feature for each
grounding fk of each formula. The joint probability distribution of an MLN is

given by P (X = x) = Z−1 exp
(∑|F |

i θini(x)
)
where for a given possible world

x, i.e. an assignment of all variables X , ni(x) is the number of times the ith
formula is evaluated true and Z is a normalization constant.

The standard parameter learning task for Markov Logic networks can be
formulated as follows. Given a set of training instances D = {D1, D2, . . . DM}
each constisting of an assignment to the variables in X the goal is to output a
parameter vector θ specifying a weight for each Fi ∈ F . Typically, however, a
single mega-example [5] is only given, a single large set of inter-connected facts.
For the sake of simplicity we will sometimes denote the mega-example simply
as E. To train the model, we can seek to maximize the log-likelihood function
logP (D | θ) given by �(θ,D) = 1

n

∑
D logPθ(X = xDn). The likelihood, however,

is computationally hard to obtain. A widely-used alternative is to maximize
the pesudo-log-likelihood instead i.e., logP ∗(X = x | θ) =

∑n
l=1 logPθ(X =

xl|MBx(Xl)) where MBx(Xl) is the state of the Markov blanket of Xl in the
data, i.e. the assignment of all variables neighboring Xl. In this paper, we resort
to likelihood maximization. No matter which objective function is used, one
typically runs a gradient-descent to train the model. That is, we start with some
initial parameters θ0 — typically initialized to be zero or at random around zero
— and update the parameter vector using θt+1 = θt − ηt · gt . Here gt denotes
the gradient of the likelihood function and is given by:

∂�(θ,D)/∂θk = nk(D)−MEx∼Pθ
[nk(x)] (1)

This gradient expression has a particularly intuitive form: the gradient attempts
to make the feature counts in the empirical data equal to their expected counts
relative to the learned model. Note that, to compute the expected feature counts,
we must perform inference relative to the current model. This inference step

Lifted Online Training of Relational Models 589

must be performed at every step of the gradient process. In the case of partially
observed data we cannot simply read-off the feature counts in the empirical
data and have to perform inference there as well. Consequently, there is a close
interaction between the training approach and the inference method employed
for training.

4 Lifted Online Training

Lifted Belief propagation (LBP) approaches [4, 27] have recently drawn a lot of
attention as they render large previously intractable models quickly solvable by
exploiting symmetries. Such symmetries are commonly found in first-order and
relational probabilistic models that combine aspects of first-order logic and prob-
ability. Instantiating all ground atoms from the formulae in such models induces
a standard graphical model with symmetric, repeated potential structures for all
grounding combinations. To exploit the symmetries, LBP approaches automat-
ically group nodes and potentials of the graphical model into supernodes and
superpotentials if they have identical computation trees (i.e., the tree-structured
unrolling of the graphical model computations rooted at the nodes). LBP then
runs a modified BP on this lifted (clustered) network simulating BP on the
propositional network obtaining the same results. When learning parameters of
a given model for a given set of observations, however, the presence of evidence
on the variables mostly destroys the symmetries. This makes lifted approaches
virtually of no use if the evidence is non symmetrical.

In the fully observed case, this may not be a major obstacle since we can simply
count how often a clause is true. Unfortunately, in many real-world domains, the
mega-example available is incomplete, i.e., the truth values of some ground atoms
may not be observed. For instance in medical domains, a patient rarely gets all
of the possible tests. In the presence of missing data, however, the maximum
likelihood estimate typically cannot be written in closed form. It is a numerical
optimization problem, and typically involves nonlinear, iterative optimization
and multiple calls to a relational inference engine as subroutine.

Since efficient lifted inference is troublesome in the presence of partial evi-
dence and most lifted approaches basically fall back to the ground variants we
need to seek a way to make the learning task tractable. An appealing idea for ef-
ficiently training large models is to divide the model into pieces that are trained
independently and to exploit symmetries across multiple pieces for lifting.

4.1 Piecewise Shattering

In piecewise training, we decompose the mega-example and its corresponding
factor graph into tractable but not necessarily disjoint subgraphs (or pieces)
P = {p1, . . . , pk} that are trained independently [28]. Intuitively, the pieces turn
the single mega-example into a set of many training examples and hence pave the
way for online training. This is a reasonable idea since in many applications, the
local information in each factor alone is already enough to do well at predicting

590 B. Ahmadi, K. Kersting, and S. Natarajan

(a) Orig. model (b) Depth d = 0 (c) Depth d = 1 for f1 and f3 (d) Trees d = 1

Fig. 1. Schematic factor-graph depiction of the difference between likelihood (a), stan-
dard piecewise (b,c) and treewise training (d). Likelihood training considers the whole
mega-example, i.e., it performes inference on the complete factor graph induced over
the mega-example. Here, circles denote random variables, and boxes denote factors.
Piecewise training normalizes over one factor at a time (b) or higher-order, complete
neighbourhoods of a factor (c) taking longer dependcies into account, here shown fac-
tors f1 and f3. Treewise training (d) explores the spectrum between (b) and (c) in that
it also takes longer dependecies into account but does not consider complete higher
neighbourhoods; shown for tree features for factors f1 and f3. In doing so it balances
complexity and accuracy of inference.

the outputs. The parameters learned locally are then used to perform global
inference on the whole model.

More formally, at training time, each piece from P = {p1, . . . , pk} has a local
likelihood as if it were a separate graph, i.e., training example and the global
likelihood is estimated by the sum of its pieces: �(θ,D) =

∑
pi∈P �(θ|pi , D|pi) .

Here θ|pi denotes the parameter vector containing only the parameters appearing
in piece pi and D|pi the evidence for variables appearing in the current piece pi.
The standard piecewise decomposition breaks the model into a separate piece
for each factor. Intuitively, however, this discards dependencies of the model
parameters when we decompose the mega-example into pieces. Although the
piecewise model helps to significantly reduce the cost of training the way we
shatter the full model into pieces greatly effects the learning and lifting quality.
Strong influences between variables might get broken. Consequently, we next
propose a shattering approach that aims at keeping strong influence but still
features lifting.

4.2 Relational Tree Shattering

Assume that the mega-example has been turned into a single factor graph for
performing inference, cf. Fig. 1(a). A factor graph is a bipartite graph and
contains nodes representing random variables (denoted by circles) and factors
(squares). It explicitly represents the factorization of the graphical model and
there is an edge between a factor fk and a node i iff variable Xi appears in
fk. Now, starting from each factor, we extract networks of depth d rooted in
this factor. A local network of depth d = 0 thus corresponds to the standard
piecewise model as shown in Fig. 1(b), i.e. each factor is isolated in a separate
piece. Networks of depth d = 1 contain the factor in which it is rooted and

Lifted Online Training of Relational Models 591

Algorithm 1. RelTreeFinding: Relational Treefinding

Input: Set of clauses F, a mega example E, depth d, and discount t ∈ [0, 1]
Output: Set of tree pieces T
// Tree-Pattern Finding

1 Initialize the dictionary of tree patterns to be empty, i.e., P = ∅ ;
2 for each clause Fi ∈ F do
3 Select a random ground instance fj of Fi in E;
4 Initialize tree pattern for Fi, i.e., Pi = {fj} ;

// perform random walk in a breath-first manner starting in fj
5 for fk = BFS.next() do
6 if current depth > d then break;
7 sample p uniformly from [0, 1] ;

8 if p > t|Pi| or fkwould induce a cycle then
9 skip branch rooted in fk in BFS ;

10 else
11 add fk to Pi;

12 Variablilize Pi and add it to dictonary P ;

// Construct tree-based pieces using the relational tree patterns

13 for each fj ∈ E do
14 Find Pk ∈ P matching fj , i.e., the tree pattern rooted in the clause Fk

corresponding to factor fj ;
15 Unify Pk with fj to obtain piece Tj and add Tj to T ;

16 return T ;

all of its direct neighbors, Fig. 1(c). Thus when we perform inference in such
local models using say belief propagation (BP) the messages in the root factor
of such a network resemble the BP messages in the global model up to the d-th
iteration. Longer range dependencies are neglected. A small value for d keeps the
pieces small and makes inference and hence training more efficient, while a large
d is more accurate. However, it has a major weakness since pieces of densely
connected networks may contain considerably large subnetworks, rendering the
standard piecewise learning procedure useless.

To overcome this, we now present a shattering approach that randomly grows
piece patterns forming trees. Formally, a tree is defined as a set of factors such
that for any two factors f1 and fn in the set, there exists one and only one
ordering of (a subset of) factors in the set f1, f2 , . . . fn such that fi and fi+1

share at least one variable, i.e. there are no loops. A tree of factors can then
be generalized into a tree pattern, i.e., conjunctions of relational ”clauses” by
variablizing their arguments. For every clause of the MLN we thus form a tree
by performing a random walk rooted in one ground instance of that clause. This
process can be viewed as a form of relational pathfinding [29].

The relational treefinding is summarized in Alg. 1. For a given set of Clauses
F and a mega example E the algorithm starts off by constructing a tree pat-
tern for each clause Fi (lines 1-12). Therefore, it first selects a random ground
instance fj (line 3) from where it grows the tree. Then it performs a

592 B. Ahmadi, K. Kersting, and S. Natarajan

Fig. 2. Illustration of tree shattering: from the original model (left) we compute a
tree piece (right). Starting from factor f3, we randomly follow the tree-structured
”unrolling”’ of the graphical model rooted at f3. Green shows that the factor has been
included in the random walk while all red factors have been discarded. This results in
the tree pattern for f3 shown on the right hand side. A similar random walk generated
the other shown tree pattern for f1.

breadth-first traversal of the factors neighborhood and samples uniformly whether
they are added to the tree or not (line 7). If the sample p is larger than t|Pi|,
where t ∈ [0, 1] is a discount threshold and |Pi| the size of the current tree, or
the factor would induce a cycle, the factor and its whole branch are discarded
and skipped in the breadth-first traversal, otherwise it is added to the current
tree (lines 8-11). A small t basically keeps the size of the tree small while larger
values for t allow for more factors being included in the tree. The procedure is
carried out to a depth of at most d, and then stops growing the tree. This is
then generalized into a piece-pattern by variablizing its arguments (line 12).
All pieces are now constructed based on these piece patterns. For fj we apply
the pattern Pk of clause Fk which generated the factor (lines 13-15).

These tree-based pieces can balance efficiency and quality of the parameter
estimation well. Reconsider the example from Fig. 1. Fig. 2 shows the tree rooted
in the factor f3 where green colors show that the factors have been included
in the piece while all red factors have been discarded. The neighborhood of
factor f3 is traversed in a breadth-first manner, i.e., first its direct neighbors in
random order. Assume we have reached factor f4 first. We uniformly sample a
p ∈ [0, 1]. It was small enough, e.g. p = 0.3 < 0.91 so f4 is added to the tree.
For f2 we sample p = 0.85 > 0.92 so f2 and its branch are discarded. For f1
we sample p = 0.5 < 0.92 so f1 could be added. If we added f1, however, it
would together with f3 and f4 form a cycle, so its branch is discarded. For f5 we
sample p = 0.4 < 0.92 so it is added to the tree. Note that now we cannot add
any more edges without including cycles. In this way we can include longer range
dependencies in our pieces without sacrificing efficiency. The connectivity of a
piece and thereby its size can be controlled via the discount t. By forming tree
patterns and applying them to all factors we ensure that we have a potentially
high amount of lifting: Since we have decomposed the model into smaller pieces,
the influence of the evidence is limited to a shorter range and hence features
lifting the local models.

Moreover, we get an upper bound on the log partition function A(Θ). To
see, this, we first write the original parameter vector Θ as a mixture of param-
eter vectors Θ(Tt) induced by the tractable subgraphs. For each edge in our

Lifted Online Training of Relational Models 593

mega-example E, we add a non-spanning tree Tt which contains all the origi-
nal vertices but only the edges present in t. With each tree Tt we associate an
exponential parameter vector Θ(Tt). Let μ be a strictly positive probability dis-
tribution over the tractable subgraphs, such that the original parameter vector
Θ can be written as a combination of per-tree-clause parameter vectors

Θ =
∑
F

∑
t

μt,FΘ(Tt) ,

where we have expressed parameter sharing among the ground instance of the
clauses. Now using Jensen’s inequality, we can state the following upper bound
to the log partition function:

A(Θ) = A(
∑
F

∑
t

μt,FΘ(Tt)) = A(
∑
t

μtΘ(Tt)) ≤
∑
t

μtA(Θ(Tt)) (2)

with μt =
∑

F μt,F . Since the μt,F are convex, the μt are convex, too, and
applying Jensen’s inequality is safe. So we can follow Sutton and McCallum’s [9]
arguments. Namely, for tractable subgraphs and a tractable number of models
the right-hand side of (2) can be computed efficiently. Otherwise it forms an
optimization problem, which according to [30] can be interpreted as free energy
and depends on a set of marginals and edge appearance probabilities, in our
case the probability that an edge appears in a tree, i.e. is visited in the random
walk. Also, it is easy to show that pieces of depth 0 are an upper bound to this
bound since, we can apply Jensen’s inequality again when breaking the trees
into independent pathes from the root to the leaves.

Now, we show how to turn this upper bound into a lifted online training for
relational models.

4.3 Lifted Stochastic Meta-descent

Stochastic gradient descent algorithms update the weight vector in an online
setting. We essentially assume that the pieces are given one at a time. The
algorithms examine the current piece and then update the parameter vector
accordingly. They often scale sub-linearly with the amount of training data,
making them very attractive for large training data as targeted by statistial
relational learning. To reduce variance, we may form mini-batches consisting
of several pieces on which we learn the parameters locally. In contrast to the
propositional case, however, mini-batches have another important advantage:
we can now make use of the symmetries within and across pieces for lifting.

More formally, the gradient in (1) is approximated by∑
i

1

#i

∂�(θ,Di)

∂θk
, (3)

where the mega-exampleD is partitioned into pieces respectively mini-batches of
piecesDi. Here #i denotes a per-clause normalization that counts how often each

594 B. Ahmadi, K. Kersting, and S. Natarajan

clause appears in mini-batch Di. This is a major difference to the propositional
case and avoids “double counting” parameters. For example, let gi be a gradient
over the the mini-batch Di. For a single piece we count how often a ground
instance of each clause appears in the piece Di. If Di consists of more than
one piece we add the count vector of all pieces together. For example, if for a
model with 4 clauses the single piece mini-batch Di has counts (1, 3, 0, 2) the
gradient is normalized by the respective counts. If the mini-batch, however, has
an additional piece with counts (0, 2, 1, 0) we normalize by the sum, i.e. (1, 5, 1, 2).

Since the gradient involves inference per batch only, inference is again feasible
and more importantly liftable as we will show in the experimental section. Con-
sequently, we can scale to problem instances traditional relational methods can
not easily handle. However, the asymptotic convergence of first-order stochas-
tic gradients to the optimum can often be painfully slow if e.g. the step-size is
too small. One is tempted to just employ standard advanced gradient techniques
such as L-BFGS. Unfortunately most advanced gradient methods do not tolerate
the sampling noise inherent in stochastic approximation: it collapses conjugate
search directions [31] and confuses the line searches that both conjugate gra-
dient and quasi-Newton methods depend upon. Gain adaptation methods like
Stochastic Meta-Descent (SMD) overcome these limitations by using second-
order information to adapt a per-parameter step size [32]. However, while SMD
is very efficient in Euclidian spaces, Amari [33] showed that the parameter space
is actually a Riemannian space of the metric C, the covariance of the gradients.
Consequently, the ordinary gradient does not give the steepest direction of the
target function. The steepest direction is instead given by the natural gradient,
that is by C−1g. Intuitively, the natural gradient is more conservative and does
not allow large variances. If the gradients highly disagree in one direction, one
should not take the step. Thus, whenever we have computed a new gradient gt
we integrate its information and update the covariance at time step t by the
following expression:

Ct = γCt−1 + gtg
T
t (4)

where C0 = 0, and γ is a parameter that controls how much older gradients are
discounted. Now, let each parameter θk have its own step size ηk. We update
the parameter b

θt+1 = θt − ηt · gt (5)

The gain vector ηt serves as a diagonal conditioner and is simultaneously adapted
via a multiplicative update with the meta-gain μ:

ηt+1 = ηt · exp(−μgt+1 · vt+1) ≈ ηt ·max(
1

2
, 1− μgt+1 · vt+1) (6)

where v ∈ Θ characterizes the long-term dependence of the system parameters
on gain history over a time scale governed by the decay factor 0 ≤ λ ≤ 1 and is
iteratively updated by

vt+1 = λvt − η · (gt + λC−1vt) . (7)

Lifted Online Training of Relational Models 595

Algorithm 2. Lifted Online Training of Relational Models

Input: Markov Logic Network M, mega-example E, decay factors t, γ, and λ
Output: Parameter vector θ
// Generate mini-batches

1 Generate set of tree pieces P using RelTreeFinding;
2 Randomly form mini-batches B = {B1, . . . , Bm} each consisting of l pieces;

// Peform lifted stochastic meta-descent

3 Initialize θ and v0 with zeros and the covariance matrix C to the zero matrix;
4 while not converged do
5 Shuffle mini-batches B randomly;
6 for i = 1, 2, . . . ,m do
7 Compute gradient g for Bi using lifted belief propagation;
8 Update covariance matrix C using (4) or some low-rank variant;
9 Update parameter vector θ using (5) and the involved equations;

10 return θ;

To ensure a low computational complexity and a good stability of the com-
putations, one can maintain a low rank approximation of C, see [34] for more
details. Using per-parameter step-sizes considerably accelerates the convergence
of stochastic natural gradient descent.

Putting everything together, we arrive at the lifted online learning for re-
lational models as summarized in Alg. 2. That is, we form mini-batches of
tree pieces (lines 1-2). After initialization (lines 3-4), we then perform lifted
stochastic meta-descent (lines 5-9). That is, we randomly select a mini-batch,
compute its gradient using lifted inference, and update the parameter vector.
Note that pieces and mini-batches can also be computed on the fly and thus its
construction be interweaved with the parameter update. We iterate these steps
until convergence, e.g. by considering the change of the parameter vector in the
last l steps. If the change is small enough, we consider it as evidence of conver-
gence. To simplify things, we may also simply fix the number of times we cycle
through all mini-batches. This also allows to compare different methods.

5 Experimental Evaluation

Our intention here is to investigate the following questions: (Q1) Can we
efficiently train relational models using stochastic gradients? (Q2) Are there
symmetries within mini-batches that result in lifting? (Q3) Can relational
treefinding produce pieces that balance accuracy and lifting well? (Q4) Is it
even possible to achieve one-pass relational training?

To this aim, we implemented lifted online learning for relational models in
Python. As a batch learning reference, we used scaled conjugate gradient (SCG)
[35]. SCG chooses the search direction and the step size by using informa-
tion from the second order approximation. Inference that is needed as a sub-
routine for the learning methods was carried out by lifted belief propagation

596 B. Ahmadi, K. Kersting, and S. Natarajan

10 20
Passes over the data

−160

−120

−80

C
M

L
L

SCG
SMD

1 5 10 50 100200 500
Size of mini-batchesL

if
ti
ng

R
at
io

(G
ro
un

d/
L
if
te
d)

SCG

10 100 500 1000
Size of mini-batchesL

if
ti
ng

R
at
io

(G
ro
un

d/
L
if
te
d)

Pieces (d=0)
Tree pieces (d=1)

SCG

Fig. 3. ”Passes over mega-example” vs. Test-CMLL for the Friends-and-Smokers (left)
(the higher the better). lifted online learning has already learned before seeing the mega
example even once (black vertical line). (center) Benefit of local training for lifting.
Lifting ratio for varying mini-batch size versus the full batch model on the Friends-
and-Smokers MLN. Clearly for a batch size of 1 there is no lifting but with larger
mini-batch sizes there is more potential to lift the pieces within each batch; the size
can be an order of magnitude smaller. (right) Lifting ratio for standard pieces vs. tree
pieces on the Voting MLN. Due to rejoining of pieces, additional symmetries are broken
and the lifting potential is smaller. However, the sizes of the models per mini-batch
still gradually decrease with larger mini-batch sizes. (Best viewed in color)

(LBP) [4, 36]. For evaluation, we computed the conditional marginal log-likelihood
(CMLL) [10], which is defined with respect to marginal probabilities. More pre-
cisely, we first divide the variables into two groups: Xhidden and Xobserved.
Then, we compute CMLL(E) =

∑
X∈Xhidden

logP (X |Xobserved) for the given
mega-example. To stabilize the metric, we divided the variables into four groups
and calculated the average CMLL when observing only one group and hiding
the rest. All experiments were conducted on a single machine with 2.4 GHz and
64 GB of RAM.

(Q1, Q2) Friends-and-Smokers MLN: In our first experiment we learned
the parameters for the “Friends-and-Smokers” MLN [27], which basically defines
rules about the smoking behaviour of people, how the friendship of two people
influences whether a person smokes or not, and that a person is more likely
to get cancer if he smokes. We enriched the network by adding two clauses: if
someone is stressed he is more likely to smoke and people having cancer should
get medical treatment. For a given set of parameters we sampled 5 dataset from
the joint distribution of the MLN with 10 persons. For each dataset we learned
the parameters on this dataset and evaluated on the other four. The ground
network of this MLN contains 380 factors and 140 variables. The batchsize was
10 and we used a stepsize of 0.2. Fig. 3(left) shows the CMLL averaged over all
of the 5 folds. We ran the lifted piecewiese learning with a batchsize of 10 and a
step size of 0.2. Other parameters for SMD were chosen to be λ = .99, μ = 0.1,
and γ the discount for older gradients as 0.9.

As one can see, the lifted SMD has a steep learning curve and has already
learned the parameters before seeing the mega example even once (indicated
by the black vertical line. Note that we learned the models without stopping
criterion and for a fixed number of passes over the data thus the CMLL on the

Lifted Online Training of Relational Models 597

Passes over the data

C
M
L
L

Tree SMD
SMD
SCG

time (seconds)

0

C
M
L
L

Tree SMD
SMD

Fig. 4. Experimental results. From left to right, ”passes over mega-example” vs. Test-
CMLL for the CORA and ”number of batches” vs. Test-CMLL for the Wumpus MLNs
(the higher the better). The last graph on the right-hand-side shows the runtime vs.
CMLL on the Wumpus MLN. As one can see, lifted online learning has already con-
verged before seeing the mega example even once (black vertical line). For the Wumpus
MLN, SCG did not converge within 72 hours. (Best viewed in color)

test data can decrease. SCG on the other hand requires four passes over the
entire training data to have a similar result in terms of CMLL. Thus Q1 can
be answered affirmatively. Moreover, as Fig 3(center) shows, piecewise learning
greatly increases the lifting compared to batch learning, which essentially does
not feature lifting at all. Thus, Q2 can be answered affirmatively.

(Q2,Q3) Voting MLN: To investigate whether tree pieces although more
complex can still yield lifting, we considered the Voting MLN from the Alchemy
repository. The network contains 3230 factors and 3230 variables. Note that
it is a propositional Naive Bayes (NB) model. Hence, depth 0 pieces will yield
greater lifting but hamper information flow among attributes if the class variable
is unobserved. Tree pieces intuitively couple depth 0 hence will indeed yield
lower lifting ratios. However, with larger mini-batches they should still yield
higher lifting than the batch case. This is confirmed by the experimental results
summarized in Fig 3(right). Thus, Q3 can be answered affirmatively.

(Q3,Q4) CORA Entity Resolution MLN: In our second experiment we
learned the parameters for the Cora entity resolution MLN, one of the standard
datasets for relational learning. In the current paper, however, it is used in a non-
standard, more challenging setting. For a set of bibliographies the Cora MLN has
facts, e.g., about word appearances in the titles and in author names, the venue
a paper appeared in, its title, etc. The task is now to infer whether two entries
in the bibliography denote the same paper (predicate samePaper), two venues
are (sameVenue), two titles are the same (sameTitle), and whether two authors
are the same (sameAuthor). We sampled 20 bibliographies and extracted all
facts corresponding to these bibliography entries. We constructed five folds then
trained on four folds and tested on the fifth. We employed a transductive learning
setting for this task. The MLN was parsed with all facts for the bibliographies
from the five folds, i.e., the queries were hidden for the test fold. The query
consisted of all four predicates (sameAuthor,samePaper,sameBib, sameVenue).
The resulting ground network consisted of 36, 390 factors and 11, 181 variables.
We learnt the parameters using SCG, lifted stochastic meta-descent with stan-
dard pieces as well as pieces using relational treefinding with a threshold t of

598 B. Ahmadi, K. Kersting, and S. Natarajan

0.9. The trees consisted of around ten factors on average. So we updated with
a batchsize of 100 for the trees and 1000 for standard pieces with a stepsize of
0.05. Furthermore, other parameters were chosen to be λ = .99, μ = 0.9, and
γ = 0.9. Fig. 4(left) shows the averaged learning results for this entity resolution
task. Again, online training does not need to see the whole mega-example; it has
learned long before finishing one pass over the entire data. Thus, (Q4) can be
answered affirmatively.

Moreover, Fig. 4 also shows that by building tree pieces one can considerably
speed-up the learning process. They convey a lot of additional information such
that one obtains a better solution with a smaller amount of data. This is due to
the fact that the Cora dataset contains a lot of strong dependencies which are
all broken if we form one piece per factor. The trees on the other hand preserve
parts of the local structure which significantly helps during learning. Thus, (Q3)
can be answered affirmatively.

(Q3,Q4) Lifted Imitation Learning in the Wumpus Domain: To fur-
ther investigate (Q3) and (Q4), we considered imitation learning in a relational
domain for a Partially Observed Markov Decision Process (POMDP). We cre-
ated a simple version of the Wumpus task where the location of Wumpus is
partially observed. We used a 5×5 grid with a Wumpus placed in a random lo-
cation in every training trajectory. The Wumpus is always surrounded by stench
on all four sides. We do not have any pits or breezes in our task. The agent can
perform 8 possible actions: 4 move actions in each direction and 4 shoot actions
in each direction. The agent’s task is to move to a cell so that he can fire an
arrow to kill the Wumpus. The Wumpus is not observed in all the trajectories
although the stench is always observed. Trajectories were created by real human
users who play the game. The resulting network contains 182400 factors and
4469 variables. We updated with a batchsize of 200 for the trees and 2000 for
standard pieces with a stepsize of 0.05. As for the cora dataset used λ = .99,
μ = 0.9, and γ = 0.9.

Figure 4 shows the result on this dataset for lifted SMD with standard pieces
as well as pieces using relational treefinding with a threshold t of 0.9. For this
task, SCG did not converge within 72 hours. Note that this particular network
has a complex structure with lots of edges and large clauses. This makes inference
on the global model intractable. Fig. 4 (center) shows the learning curve for the
total number of batches seen as well as the total time needed for one pass over
the data (right). As one can see, tree pieces actually yield faster convergence,
again long before having seen the dataset even once. Thus, (Q3) and (Q4) can
be answered affirmatively.

Taking all experimental results together, all questions Q1-Q4 can be clearly
answered affirmatively.

6 Conclusions

In this paper, we have introduced the first lifted online training method for rela-
tional models. We employed the intuitively appealing idea of separately training

Lifted Online Training of Relational Models 599

pieces of the full model and combining the results in iteration and turned it
into an online stochastic gradient method that processes one lifted piece after
the other. We showed that this approach can be justified as maximizing a loose
bound on the log likelihood and that it converges to the same quality solution
over an order of magnitude faster, simply because unlike batch training it starts
optimizing long before having seen the entire mega-example even once.

The stochastic relational gradient framework developed in the present paper
puts many interesting research goals into reach. For instance, one should tackle
one-pass relational learning by investigating different ways of gain adaption and
scheduling of pieces for updates. One should also investigate budget constraints
on both the number of examples and the computation time per iteration. In
general, relational problems can easily involve models with millions of random
variables. At such massive scales, parallel and distributed algorithms for training
are essential to achieving reasonable performance.

Acknowledgements. The authors thank the reviewers for their helpful comments.

BA and KK were supported by the Fraunhofer ATTRACT fellowship STREAM and

by the European Commission under contract number FP7-248258-First-MM. SN grate-

fully acknowledges the support of the DARPA Machine Reading Program under AFRL

prime contract no. FA8750-09-C-0181. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the view of DARPA, AFRL, or the US government.

Bibliography

1. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. The MIT
Press (2007)

2. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.): Probabilistic In-
ductive Logic Programming. LNCS (LNAI), vol. 4911. Springer, Heidelberg (2008)

3. Singla, P., Domingos, P.: Lifted First-Order Belief Propagation. In: AAAI (2008)
4. Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. In: UAI,

Montreal, Canada (2009)
5. Mihalkova, L., Huynh, T., Mooney, R.: Mapping and revising markov logic net-

works for transfer learning. In: AAAI, pp. 608–614 (2007)
6. Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms. Spartan (1962)
7. Besag, J.: Statistical Analysis of Non-Lattice Data. Journal of the Royal Statistical

Society. Series D (The Statistician) 24(3), 179–195 (1975)
8. Winkler, G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods.

Springer (1995)
9. Sutton, C., Mccallum, A.: Piecewise training for structured prediction. Machine

Learning 77(2-3), 165–194 (2009)
10. Lee, S.I., Ganapathi, V., Koller, D.: Efficient structure learning of Markov networks

using L1-regularization. In: NIPS (2007)
11. Hinton, G.: Training products of experts by minimizing contrastive divergence.

Neural Computation 14 (2002)
12. Kok, S., Domingos, P.: Learning Markov logic network structure via hypergraph

lifting. In: ICML (2009)

600 B. Ahmadi, K. Kersting, and S. Natarajan

13. Kok, S., Domingos, P.: Learning Markov logic networks using structural motifs.
In: ICML (2010)

14. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learning markov logic networks
via functional gradient boosting. In: ICDM (2011)

15. Friedman, J.H.: Greedy function approximation: A gradient boosting machine.
Annals of Statistics, 1189–1232 (2001)

16. Natarajan, S., Khot, T., Kersting, K., Guttmann, B., Shavlik, J.: Gradient-based
boosting for statistical relational learning: The relational dependency network case.
Machine Learning (2012)

17. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2),
107–136 (2006)

18. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society B.39 (1977)

19. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. J. Artif. Intell. Res (JAIR) 15, 391–454 (2001)

20. Kersting, K., De Raedt, L.: Adaptive Bayesian Logic Programs. In: Rouveirol,
C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 104–117. Springer,
Heidelberg (2001)

21. Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilistic models of
link structure. Journal of Machine Learning Research 3, 679–707 (2002)

22. Thon, I., Landwehr, N., De Raedt, L.: Stochastic relational processes: Efficient
inference and applications. Machine Learning 82(2), 239–272 (2011)

23. Gutmann, B., Thon, I., De Raedt, L.: Learning the Parameters of Probabilistic
Logic Programs from Interpretations. In: Gunopulos, D., Hofmann, T., Malerba,
D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part I. LNCS, vol. 6911, pp. 581–
596. Springer, Heidelberg (2011)

24. Natarajan, S., Tadepalli, P., Dietterich, T.G., Fern, A.: Learning first-order prob-
abilistic models with combining rules. Annals of Mathematics and AI (2009)

25. Jaeger, M.: Parameter learning for Relational Bayesian networks. In: ICML (2007)
26. Huynh, T., Mooney, R.: Online max-margin weight learning for markov logic net-

works. In: SDM (2011)
27. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: AAAI (2008)
28. Sutton, C., McCallum, A.: Piecewise training for structured prediction. Machine

Learning 77(2-3), 165–194 (2009)
29. Richards, B., Mooney, R.: Learning relations by pathfinding. In: AAAI (1992)
30. Wainwright, M., Jaakkola, T., Willsky, A.: A new class of upper bounds on the log

partition function. In: UAI, pp. 536–543 (2002)
31. Schraudolph, N., Graepel, T.: Combining conjugate direction methods with

stochastic approximation of gradients. In: AISTATS, pp. 7–13 (2003)
32. Vishwanathan, S.V.N., Schraudolph, N.N., Schmidt, M.W., Murphy, K.P.: Accel-

erated training of conditional random fields with stochastic gradient methods. In:
ICML, pp. 969–976 (2006)

33. Amari, S.: Natural gradient works efficiently in learning. Neural Comput. 10, 251–
276 (1998)

34. Le Roux, N., Manzagol, P.A., Bengio, Y.: Topmoumoute online natural gradient
algorithm. In: NIPS (2007)

35. Müller, M.: A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks 6(4), 525–533 (1993)

36. Ahmadi, B., Kersting, K., Sanner, S.: Multi-Evidence Lifted Message Passing, with
Application to PageRank and the Kalman Filter. In: IJCAI (2011)

Scalable Relation Prediction Exploiting

Both Intrarelational Correlation and Contextual
Information

Xueyan Jiang2, Volker Tresp1,2, Yi Huang1,2,
Maximilian Nickel2, and Hans-Peter Kriegel2

1 Siemens AG, Corporate Technology, Munich, Germany
2 Ludwig Maximilian University of Munich, Munich, Germany

Abstract. We consider the problem of predicting instantiated binary
relations in a multi-relational setting and exploit both intrarelational
correlations and contextual information. For the modular combination
we discuss simple heuristics, additive models and an approach that can
be motivated from a hierarchical Bayesian perspective. In the concrete
examples we consider models that exploit contextual information both
from the database and from contextual unstructured information, e.g.,
information extracted from textual documents describing the involved
entities. By using low-rank approximations in the context models, the
models perform latent semantic analyses and can generalize across spe-
cific terms, i.e., the model might use similar latent representations for
semantically related terms. All the approaches we are considering have
unique solutions. They can exploit sparse matrix algebra and are thus
highly scalable and can easily be generalized to new entities. We evaluate
the effectiveness of nonlinear interaction terms and reduce the number of
terms by applying feature selection. For the optimization of the context
model we use an alternating least squares approach. We experimentally
analyze scalability. We validate our approach using two synthetic data
sets and using two data sets derived from the Linked Open Data (LOD)
cloud.

1 Introduction

There recently has been a growing interest in the prediction of the truth values of
(instantiated) binary relations, i.e., grounded statements. A major reason is the
growing amount of data that is published in the Linked Open Data (LOD) cloud
where information is represented in the form of subject-predicate-object (s, p, o)
triples. In the associated RDF graph (Resource Description Framework), entities
(i.e., subjects and objects) are represented as nodes and statements are repre-
sented as directed labeled links from subject node to object node. Thus relation
prediction becomes equivalent to the prediction of labeled links. In this paper
we focus on the prediction of statements with a common predicate p and with
defined sets of subject nodes and object nodes. We then generalize to entities not
in the training set. For predicting instantiated binary relations we exploit both

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 601–616, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

602 X. Jiang et al.

intrarelational correlations and contextual information. Intrarelational correla-
tions exploits dependencies within the relation of interest and would correspond
to the data dependencies exploited in typical collaborative learning systems.
Contextual information consists of all other information sources.

In the concrete examples we consider models that exploit two sources of con-
textual information. The first one is multi-relational contextual information that
is derived from the database. The second one concerns information from un-
structured sources, e.g., in form of textual documents describing the involved
entities (e.g., from the entities’ Wikipedia pages). As a new contribution we
exploit nonlinear interactions between the associated information sources. By
using low-rank approximations in the context models, the models perform la-
tent semantic analyses and can generalize across specific terms, i.e., the model
might use similar latent representations for semantically related terms. In [12]
we have introduced a hierarchical Bayesian approach that is highly scalable by
exploiting sparse matrix algebra, can easily generalize to new entities and does
not suffer from local optima. [13] describes the additive modelling approach in
greater detail. In this paper we compare the two approaches and also consider
simple heuristic solutions.

The paper is organized as follows. The next section discusses related work.
Section 3 describes our different ways of combining contextual information with
intrarelational correlations. In section 4 we discuss how context information can
be modeled and we introduce an alternating least squares solution for combining
intrarelational correlations with contextual information. Section 5 contains our
experimental results on synthetic data sets and on two data sets derived from
the Linked Open Data (LOD) cloud. We also perform extensive experiments on
scalability. Section 6 presents our conclusions.

2 Related Work

Some standard models for relational learning are, e.g., Probabilistic Relational
Models [16,9], Markov Logic Networks [24] and the infinite models in [29,15].
Although conceptionally elegant, they are difficult to apply and often involve
complex structural learning.1 Our approach is related to link prediction, which
is reviewed in [22,8]. SVD-based decompositions, as used in our approach, were
compared to nonnegative matrix factorization (NMF) and latent Dirichlet alloca-
tion (LDA) in [10]. All three approaches benefitted greatly from regularization
and then gave comparable performance. We used SVD-based decompositions
since they can efficiently be computed using highly optimized packages, since
predictions for new entities can be calculated easily and since they have unique
solutions.

The winning entries in the Netflix competitions are based on matrix factoriza-
tion [25,1,4]. The main difference is that, in those applications, unknown ratings

1 As an example, we were not successful in getting the structural learning in MLNs
to work in our domains.

Scalable Relation Prediction 603

can be treated as missing entries. In contrast, in relation prediction an instanti-
ated relationship not known to be true is very likely untrue. In the experiments
in our paper we include the hierarchical Bayesian model developed in [12]. An
advantage of that model is that it is based on a probabilistic generative model.

RFD graphs also map elegantly to a tensor representation. Tensor models for
relational learning have been explored in [20] and [21], showing both scalability
and state-of-the-art results on benchmark datasets.

Recently, there has been quite some work on the relationship between kernels
and graphs [5,27,7,3,18]. Kernels for semi-supervised learning, for example, have
been derived from the spectrum of the Graph-Laplacian. In [30,28] approaches
for Gaussian process based link prediction have been presented. Link prediction
in relational graphs has also been studied by the relational learning communities
and by the ILP communities [26,19,17]. Kernels for semantically rich domains
have been developed by [6]. Link prediction is covered and surveyed in [22,8].
Inclusion of ontological prior knowledge to relational learning has been discussed
in [23].

3 Relation Prediction by Exploiting Both Intrarelational
Correlation and Context Information

3.1 Notation and Contextual Information

In this paper we assume that binary relations are presented by RDF triples of
the form (s, p, o) where subject s and object o stand for entities in a domain
and where p is the predicate. In an RDF graph, entities are nodes and a triple is
a labeled directed link from subject node to object node. Let Zi,j,k be a variable
assigned to the triple (s = i, p = j, o = k). Zi,j,k = 1 stands for the fact that
the corresponding triple is known to exist and Zi,j,k = 0 stands for the fact that
the corresponding triple is not known to exist.

We are now interested in a particular set of triples {(s = i, p = p, o =
k)}i,k where p = p is fixed and where the sets of subject and object entities
are known. Let X be the matrix of Z-values where (X)i,k = 1 if (s = i, p
= p, o = k) is known to exist; otherwise (X)i,k = 0. In the following we will
derive a number of matrices where the zeros are replaced by continuous numbers
that can be interpreted as confidence values for a relation being true, based on
the available evidence. In a probabilistic sense, we can interpret the continuous
numbers as P ((X)i,k = 1|Data). These confidence values can then be the basis
for classification and ranking tasks as described in Section 5.

In this paper we assume that contextual information is available from which
we can derive an estimate of how likely a target relation is true, denoted by

fi,k.

Contextual information might consist of other statements in the knowledge
base relevant for the relation under consideration, but could also include un-
structured information, e.g., textual documents describing the involved entities

604 X. Jiang et al.

(see Section 4). The corresponding matrix F with (F)i,k = fi,k has the same
dimensionality as X and entries typically assume values between zero and one,
although this is not enforced.

Our first and most simple estimate for the confidence values for statements
would be simply derived from this estimate and represents a pure context-based
model of the form

XF = F. (1)

Here we do not exploit intrarelational correlations and this solution is sensible if
X is very sparse. Alternatively, we might trust the ones in the X matrix (which
represent certain facts) and use

XM = max(X,F) (2)

where max is applied componentwise or, if we are willing to tolerate confidence
values greater than one,

XS = X + F. (3)

In both solutions, F is mostly relevant to the zero entries of X .

3.2 Intrarelational Correlations

In many applications the correlations in the relational matrix can be exploited
to derive predictions, an effect often associated with collaborative filtering. The
leading approaches exploiting intrarelational correlations are based on a factor-
ization of X , which is also the approach we are taking.

We propose to minimize the cost function

min
Xr

‖X −Xr‖2F

where we impose the constraint on Xr to have a maximum rank of r.
It is well known that one specific solution can be derived from a singular value

decomposition (SVD) with

X = UDV T (4)

where U and V are matrices with orthonormal columns and whereD is a diagonal
matrix. The diagonal entries di ≥ 0 are ordered according to magnitude. The
optimal r-rank reconstruction can be written as

Xr = UrDr V
T
r

where Ur and Vr contain the first r columns of the respective matrices and
where Dr is a diagonal matrix with the r leading components of D. Low-rank
reconstructions are used in latent semantic analysis to generalize from observed
terms to related terms, they are an important ingredient in the winning entries in
the Netflix competition [25,1,4], and they also give very good results in predicting
links in semantic graphs [10].

Scalable Relation Prediction 605

We also consider a regularized version which typically improves predictions
significantly by using the cost function

min
W̃

(
‖X − W̃Xr‖2F + λ‖W̃‖2F

)
where Xr is fixed and where the parameter matrix W̃ is optimized.

The overall solution is then2

XCF = Ur diag

{
d3i

d2i + λ

}r

i=1

V T
r

= Ur diag

{
d2i

d2i + λ

}r

i=1

UT
r X = XVr diag

{
d2i

d2i + λ

}r

i=1

V T
r (5)

where diag
{

d2
i

d2
i+λ

}r

i=1
is an r× r diagonal matrix with r diagonal entries. In the

following we assume that X has fewer rows than columns such that Ur is fast
to compute based on an SVD of the kernel matrix XXT , but one should simply
apply the reconstruction most suitable.

We can easily generalize to a new subject entity with xnew (as column vector)
using

xnewCF = Vr diag

{
d2i

d2i + λ

}r

i=1

V T
r xnew = XTUr diag

{
1

d2i + λ

}r

i=1

UT
r Xxnew. (6)

We can now include contextual information by adding the context matrix and
the intrarelational module and obtain as a heuristics

XH = XCF + F. (7)

Note that in contrast to XS, here we use XCF instead of X and we obtain a
combination model that exploits correlations in X . Thus we will get a high score
for a link, if either the context model or the intrarelational model (or both) is
positive about the link.

3.3 Hierarchical Bayes

So far, the combination scheme in Equation 7 might be considered a plausible
heuristic. In this section and in the next section we consider two combination
schemes that can be derived from principled approaches.

In [12] we described a hierarchical Bayesian (HB) approach for the combina-
tion of contextual information with intrarelational correlation. It motivates the
following approach: We are searching for the low-rank approximation XHBS that
minimizes

min
XHBS

‖XS −XHBS‖2F

2 Here and in the following we have typically these three ways of formulating the solu-
tion. One should take the one which is most efficient considering the dimensionalities
of the involved matrices.

606 X. Jiang et al.

where XS = X +F was defined in Equation 3. Again, the solution can be based
on the SVD, in this case in the form of

X + F = UMFDMFV MF T

and a regularized low-rank approach now leads to the model

XHBS = UMF
r diag

{
(dMF

i)2

(dMF
i)2 + λ

}r

i=1

UMF
r

T
(X + F). (8)

A similar solution, i.e., XHBM, is obtained if we use XM instead of XS. Note that
for XH we first smooth X via a regularized low-rank approximation and then
add F , whereas for MHBS we first add X and F and then smooth the resulting
matrix.

Alternatively we can use as a basis the decomposition of X instead of the
decomposition of X + F and obtain

XHBS2 = Ur diag

{
d2i

d2i + λ

}r

i=1

UT
r (X + F)

= XCF + Ur diag

{
d2i

d2i + λ

}r

i=1

UT
r F. (9)

For XHBS2 we can exploit sparse matrix algebra for calculating the decomposi-
tion of X (whereas X+F is typically non sparse) and F only needs to be calcu-
lated for the entities of interest. Interestingly, the solution consists of adding to
XCF a regularized projections of F using the largest singular values, so we add
to XCF a “low-frequency” version of F .

3.4 Additive Models

The idea here is that the intrarelational correlations should only model the
residual difference after F has been subtracted from X . The goal is then to
minimize the cost function

min
XCFa

‖X − (F +XCFa)‖2F .

A regularized low-rank approximation where the basis is calculated from the
decomposition of X is then

XCFa = Ur diag

{
d2i

d2i + λ

}r

i=1

UT
r (X − F) (10)

and the overall prediction is

Xadd = XCFa + F

Scalable Relation Prediction 607

such that

Xadd = XCFa + F = Ur diag

{
d2i

d2i + λ

}r

i=1

UT
r (X − F) + F

= XCF + U

(
I − diag

{
d2i

d2i + λ

}r

i=1

)
UTF. (11)

Interestingly, the solution consists of adding to XCF a “high frequency” version
of F .

In the next section we derive specific models for F . An overall additive model
where F and Xadd are adapted in turn (the latter using Equation 10) and where
Equation 11 is used for overall prediction is defined as Xglobal.

4 Context Models for Our Applications

4.1 Context Models Based on the Database

So far, f could have been an arbitrary function of context information. We see
this as a great advantage of our approach since it permits a great modularity and
the context model and the intrarelational model can be optimized independently.

Now we derive a specific context model that we will use in the applications.
Let’s consider a multi-relational database of triples (i.e., a triple store). Let A
be a matrix with as many rows as X , i.e., with one row for each subject entity
in X . The columns of A represent features describing the subjects in X . In the
simplest case they consist of the truth value of all (relevant) triples with the
same subject. Consider the example that rows are users and columns are movies
and the task is to predict if a user watches a movie. In this example, a particular
column in A might indicate if a user is of young age and the model would be
able to exploit the preference of young people for certain movies.

Similarly, B is a matrix. The number of rows of B is equal to the number
of columns of X .The columns of B represent features describing the objects in
X . In the simplest case they consist of the truth values of all (relevant) triples,
where the object ofX is the subject. Following the example, a column in B might
indicate if a movie is an action movie and the model can exploit the preference of
some people for action movies. Thus B is suitable to model personal preferences.

Finally, we introduce the matrix C formed by the Kronecker product C =
A ⊗ B, i.e., C contains all possible product terms of the elements of A and B.
The number of rows in C is the number of rows of A times the number of rows
of B and the number of columns in C is the number of columns of A times the
number of columns of B. Following the example, a column in C might indicate
if a movie is an action movie and, at the same time, the user is young and the
model might learn that young people like action movies.

We now write a least squares cost function

‖X − F‖2F

608 X. Jiang et al.

where
F = AWA + (BWB)T +matrix(CwC) (12)

and where matrix(·) transforms the vector into a matrix of appropriate dimen-
sions. ‖ · ‖F is the Frobenius norm. The matrices WA and WB and the vector
wC contain the parameters to be optimized. Thus we predict the entries in F as
a linear combination of the subject features in A, the column features in B and
the interaction features in C.

To control overfitting,we add to the cost functions the penalty termsλA‖WA‖2F ,
λB‖WB‖2F , and λC‖wC‖2F .

To reduce the amount of computation and also as a means to prevent overfit-
ting, we are looking for low-rank solutions with ranks rA, rB , and rC as discussed
in the next subsection. By using low-rank models, the models perform latent se-
mantic analyses and can generalize across specific terms, i.e., the model might
use similar latent representation for semantically related terms.

The number of interaction terms in C can easily be several millions, so we
perform fast feature selection strategies by evaluating the Pearson correlation
between targets and features.

4.2 Alternating Least Squares

An easy way to optimize the cost function is to repeatedly iterate over all three
terms where in each iteration we keep the other two fixed.

Let

X−A = X −
(
(BWB)T +matrix(CwC)

)
X−B = X −

(
AWA +matrix(CwC)

)
X−C = X −

(
AWA + (BWB)T

)
and let x−C = vec(X−C).

The individuals contributions are the calculated as

AWA = UA,rA diag

{
(d

(A)
i)2

(d
(A)
i)2 + λA

}rA

i=1

UT
A,rAX

(−A) (13)

BWB = UB,rB diag

{
(d

(B)
i)2

(d
(B)
i)2 + λB

}rB

i=1

UT
B,rB (X

(−B))T (14)

CwC = UC,rC diag

{
(d

(C)
i)2

(d
(C)
i)2 + λC

}rC

i=1

UT
C,rCx

(−C) (15)

where we have used the singular value decompositions (SVD)

A = UADAV
T
A B = UBDBV

T
B C = UCDCV

T
C (16)

and where UA,rA contains the first rA columns of UA, UB,rB contains the first
rB columns of UB, and UC,rC contains the first rC columns of UC .

Scalable Relation Prediction 609

Again we can exploit sparse matrix algebra for calculating the decompositions.
The convergence of the alternating least squares algorithm is quite fast, requiring
fewer than 10 iterations.

Note again that we can include the intrarelational model as an additional
fourth component to be optimized with alternating least squares leading to the
model Xglobal introduced in Section 3.4. A more extensive analysis of the ad-
ditive models can be found in [13] where also additional feature candidates are
discussed. Since the bases for the decompositions (calculated in Equations 4
and 16) are calculated before the optimization of the parameters, the alternat-
ing least squares iterations converge to unique solutions. 3

4.3 Incorporating External Information Sources and Aggregation

In the applications we are considering we sometimes have available textual data
describing the involved entities. We simply treat the keywords in the textual
descriptions as additional features describing subjects, resp. objects. In some
applications, it is useful to add aggregated information. This can be represented
as additional features as well.

5 Experiments

5.1 Scalability

For the kind of relational data that we are considering, X is very sparse and the
reduced-rank reconstruction can be calculated efficiently. Figure 1 shows exper-
imental results. Note that for a sizable X-matrix with 105 rows, 106 columns,
107 nonzero elements and a rank of r = 50, the computation only takes ap-
proximately 10 minutes on a standard laptop computer. For matrices where
K = XXT becomes dense one might employ the alternating least squares solu-
tion described in [20] that does not rely on a sparsity of K in the factorization
and does not enforce orthogonality constraints.

5.2 Tuning of Hyperparameters

The approaches contain up to 8 hyperparameters (r, rA,rB ,rC , λ, λA,λB,λC)
which are tuned using cross-validation sets (i.e. they are not tuned on the test
set). We follow the approach described in [2] and perform a random search for
the best hyperparameters.

3 Recall that we first calculate the kernel matrix K = XXT and then perform the
SVD decomposition. Naturally, we could start with a kernel matrix suitable for the
RDF graph. In this view our alternating least squares solution is an efficient way
of calculating a kernel solution with a kernel k(s, s′, o, o′) = kCF (s, s

′) + kA(s, s
′) +

kB(o, o′) + kC(s, s
′, o, o′) where kCF (s, s

′) is the intrarelational kernel, kA(s, s
′) is a

kernel for subject nodes, kB(o, o′) is a kernel for object nodes, and kC(s, s
′, o, o′) is

a kernel for modeling interactions.

610 X. Jiang et al.

Fig. 1. We consider a sparse random N ×M matrix X. First we construct the kernel
matrix via K = XXT and then use sparse SVD to obtain Ur. The top left figure shows
computational time for the SVD as a function of N (red dashed). We see approximately
a linear dependency which is related to the fact that the number of rows of U is N as
well. In this experiment, r = 50, M = 106 and the number of nonzero entries in X is
p = 106. The top right figure shows computation time for the SVD as a function of M
(red dashed). We see a decrease: the reason is that with increasing M , K becomes less
dense. We used p = 106, N = 105, and r = 50. The bottom left shows an approximately
quadratic dependency of the computational time for the SVD on p (M = 106, N = 105,
r = 50) (red dashed). Note that the last data point in the plot is a system with p = 107

requiring only 10 minutes of computation. Finally, the bottom right figure shows the
dependency on r (M = 106, N = 105, p = 106) (red dashed). A 10 fold increase in r
approximately displays a 10 fold increase in computational cost. Each figure also shows
the computational time for calculating K = XXT , which, in comparison, is negligible
(blue continuous). A prediction for data for a novel subject (i.e., a new row in X) can
efficiently be calculated using Equation 6.

Scalable Relation Prediction 611

5.3 Synthetic Data

The synthetic data has been generated according to our modeling assumptions.
The target relation is a sum of four components: the first one is modeling the
intrarelations correlation, the second one uses features describing the subject
entities, the third one uses features describing the object entities, and the fourth
one uses interaction terms. In the first experiment, both the intrarelational cor-
relation and the context models have predictive power and all six combination
schemes improve upon the subsystems. The additive models Xadd and Xglobal

seem to be more robust and perform well on both experiments.
We randomly selected one true relation to be treated as unknown (test state-

ment) for each subject entity in the data set. In the test phase we then predicted
all unknown relations for the entity, including the entry for the test statement.
The test statement should obtain a high likelihood value, if compared to the other
unknown entries. The normalized discounted cumulative gain (nDCG@all) [11]
is a measure to evaluate a predicted ranking.

5.4 Associating Diseases with Genes

As the costs for gene sequencing are dropping, it is expected to become part of
clinical practice. Unfortunately, for many years to come the relationships between
genes and diseases will remain only partially known. The task here is to predict
diseases that are likely associated with a gene based on knowledge about gene
and disease attributes and about known gene-disease patterns.

Disease genes are those genes involved in the causation of, or associated with
a particular disease. At this stage, more than 2500 disease genes have been
discovered. Unfortunately, the relationship between genes and diseases is far from
simple since most diseases are polygenic and exhibit different clinical phenotypes.
High-throughput genome-wide studies like linkage analysis and gene expression
profiling typically result in hundreds of potential candidate genes and it is still a
challenge to identify the disease genes among them. One reason is that genes can
often perform several functions and a mutational analysis of a particular gene
reveals dozens of mutation cites that lead to different phenotype associations to
diseases like cancer [14]. An analysis is further complicated since environmental
and physiological factors come into play as well as exogenous agents like viruses
and bacteria.

Despite this complexity, it is quite important to be able to rank genes in terms
of their predicted relevance for a given disease as a valuable tool for researchers
and with applications in medical diagnosis, prognosis, and a personalized treat-
ment of diseases.

In our experiments we extracted information on known relationships between
genes and diseases from the LOD cloud, in particular from Linked Life Data and
Bio2RDF, forming the triples (Gene, related to, Disease). In total, we considered
2462 genes and 331 diseases. For genes we extracted 11332 features and for
the diseases 1283 features from the LOD cloud. In addition, we retrieved 8000
textual features describing genes and 3800 textual features describing diseases

612 X. Jiang et al.

Fig. 2. Test results on synthetic data. In the first experiment (top), we had 100 sub-
jects and 80 objects, A had 80 columns, B had 80 columns, and C had 8000 rows and
4000 columns. The three context models FY |A, FY |B, and FY |INTER make valuable
predictions significantly above random. The combination of all three context models,
i.e., XF = Fall, is better than any of the individual context models. The context model
and the intrarelation correlation are comparable strong in prediction: XCF gives com-
parable results to Fall. All six combination schemes are better than the intrarelational
model or the context model on their own, so all combination schemes are sensible.
The additive model Xadd and the additive model where the context model and the
context model are jointly optimized (Xglobal) perform best, although there is no statis-
tical significant difference between the 6 combination models. In the second experiment
(bottom), we had 1000 subjects and 1000 objects, A had 6 columns, B had 7 columns,
and C had 1000000 rows and 42 columns. Thus the intrarelation correlation is stronger
than the contextual model. Xadd and Xglobal show better performance than XCF and
Fall individually.

Scalable Relation Prediction 613

Fig. 3. The goal is to predict the relationship between genes and diseases. On the
top we ranked recommended diseases for genes and on the bottom we ranked recom-
mended genes for diseases. We considered contextual features from disease attributes
FY |AD and from gene attributes FY |AG, and contribution from the interaction term
FY |INTER. The combination of all contextual models in Fall is better than the individ-
ual context models where FY |INTER is not better than random. All six combination
schemes are better than the intrarelational model or the context model on their own, so
all combination schemes are sensible. In this experiment, two of the hierarchical Bayes
models, i.e., XHBS and XHBS2 give best results. The results are generally better than
the results reported in [12] since, there, only contextual features from text documents
were used. The second task, predicting genes for diseases, is more difficult due to the
great number of potential genes. Intrarelational correlation on its own is relatively weak
(XCF). Again, all combination schemes give good results.

614 X. Jiang et al.

Fig. 4. The task is to predict the nationalities of writers. The writer attributes FY |W
have considerable predictive power. The intrarelational correlation (XCF) benefits from
the imbalance of classes. We display the area under precision/recall curve on writers
not in the training set (induction). None of the combination models is significantly
better than FY |W , which in this experiment is reasonable, since very few writers have
more than one nationality (of the combination schemes, we only show XH).

from corresponding text fields in Linked Life Data and Bio2RDF. After applying
feature selection, the interaction matrix C had 814922 rows and 1133 columns.

Figure 3 shows the results. This is a very interesting data set: when predicting
diseases for genes, the contextual information (reflected in Fall) and the intrarela-
tion correlational (reflected in XCF) are both equally strong; in most data sets,
one of the two is dominating. All six combination schemes are effective and pro-
vide results significantly better than Fall or XCF on their own. Predicting genes
for diseases generally gives a weaker nDCG score and the leading approaches are
Xadd and Xglobal.

5.5 Predicting Writer’s Nationality in YAGO2

The final set of experiments was done on the YAGO2 semantic knowledge base.
YAGO2 is derived from Wikipedia and also incorporates WordNet and GeoN-
ames. There are two available versions of YAGO2: core and full. We used the first
one which currently contains 2.6 million entities, and describes 33 million facts
about these entities. Our experiment was designed to predict the nationalities
of writers. We choose four different types of writers: American, French, German
and Japanese.

We obtained 440 entities representing the selected writers. We selected 354 en-
tities (i.e., writers) and added textual information describing the writers
and the countries. We performed 10-fold cross validation for each model, and

Scalable Relation Prediction 615

evaluated them with the area under precision and recall curve. Figure 4 shows
the results. As there are only 4 nationalities, which are almost always mutual
exclusive (there is a small number of writers with more than one nationality),
the intrarelational correlation is quite weak and the country attributes were not
used. Interestingly, the interaction term is reasonable strong (FY|INTER). In fact,
no model is better than FY |W which only exploits the contextual information of
the writers.

6 Conclusions

In this paper we have considered the problem of predicting instantiated binary
relations in a multi-relational setting and exploit both intrarelational correlations
and contextual information. We have presented a number of sensible algorithms.
The algorithms are all modular and have unique solutions. As contextual infor-
mation we consider information extracted from the database and textual data
describing the entities. To include contextual information we use an alternating
least squares approach that includes models for subject features, object features
and an interaction model. By using low-rank approximations in the context
models, the models perform latent semantic analyses and can generalize across
specific terms, i.e., the model might use similar latent representation for seman-
tically related terms. The approaches can exploit sparse matrix algebra and, as
we have demonstrated experimentally, are highly scalable. The models can easily
be applied to new entities not considered in model training. We presented experi-
mental results on synthetic data, on life science data from the Linked Open Data
(LOD) cloud. All the presented combination schemes are effective and there is
no clear best approach, although there seems to be a general advantage for the
additive models Xadd and Xglobal.

References

1. Bell, R.M., Koren, Y., Volinsky, C.: All together now: A perspective on the netflix
prize. Chance (2010)

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal
of Machine Learning Research (2012)

3. Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In:
ESWC (2007)

4. Candes, E.J., Recht, B.: Exact matrix completion via convex optimization. Com-
puting Research Repository - CORR (2008)

5. Cumby, C.M., Roth, D.: On kernel methods for relational learning. In: ICML (2003)

6. D’Amato, C., Fanizzi, N., Esposito, F.: Non-parametric statistical learning meth-
ods for inductive classifiers in semantic knowledge bases. In: IEEE International
Conference on Semantic Computing, ICSC (2008)

7. Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels and distances for structured data.
Machine Learning (2004)

8. Getoor, L., Diehl, C.P.: Link mining: a survey. SIGKDD Explorations (2005)

616 X. Jiang et al.

9. Getoor, L., Friedman, N., Koller, D., Pfeffer, A., Taskar, B.: Probabilistic relational
models. In: Introduction to Statistical Relational Learning (2007)

10. Huang, Y., Tresp, V., Bundschus, M., Rettinger, A., Kriegel, H.-P.: Multivariate
Prediction for Learning on the Semantic Web. In: Frasconi, P., Lisi, F.A. (eds.)
ILP 2010. LNCS, vol. 6489, pp. 92–104. Springer, Heidelberg (2011)

11. Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant
documents. In: SIGIR 2000 (2000)

12. Jiang, X., Huang, Y., Nickel, M., Tresp, V.: Combining Information Extraction,
Deductive Reasoning and Machine Learning for Relation Prediction. In: Simperl,
E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS,
vol. 7295, pp. 164–178. Springer, Heidelberg (2012)

13. Jiang, X., Tresp, V., Huang, Y., Nickel, M., Kriegel, H.-P.: Link Prediction in
Multi-relational Graphs using Additive Models (submitted, 2012)

14. Kann, M.G.: Advances in translational bioinformatics: computational approaches
for the hunting of disease genes. In: Briefings in Bioinformatics (2010)

15. Kemp, C., Tenenbaum, J.B., Griffiths, T.L., Yamada, T., Ueda, N.: Learning sys-
tems of concepts with an infinite relational model. In: AAAI (2006)

16. Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: AAAI (1998)
17. Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: kFOIL: Learning simple

relational kernels. In: AAAI (2006)
18. Lösch, U., Bloehdorn, S., Rettinger, A.: Graph Kernels for RDF Data. In: Simperl,

E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS,
vol. 7295, pp. 134–148. Springer, Heidelberg (2012)

19. Muggleton, S.H., Lodhi, H., Amini, A., Sternberg, M.J.E.: Support Vector Induc-
tive Logic Programming. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS
2005. LNCS (LNAI), vol. 3735, pp. 163–175. Springer, Heidelberg (2005)

20. Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on
multi-relational data. In: ICML (2011)

21. Nickel, M., Tresp, V., Kriegel, H.-P.: Factorizing YAGO: scalable machine learning
for linked data. In: WWW (2012)

22. Popescul, A., Ungar, L.H.: Statistical relational learning for link prediction. In:
Workshop on Learning Statistical Models from Relational Data (2003)

23. Rettinger, A., Nickles, M., Tresp, V.: Statistical Relational Learning with Formal
Ontologies. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.)
ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 286–301. Springer, Heidelberg
(2009)

24. Richardson, M., Domingos, P.: Markov logic networks. In: Machine Learning (2006)
25. Takacs, G., Pilaszy, I., Nemeth, B., Tikk, D.: On the gravity recommendation

system. In: Proceedings of KDD Cup 2007 (2007)
26. Taskar, B., Wong, M.F., Abbeel, P., Koller, D.: Link prediction in relational data.

In: NIPS (2003)
27. Vishwanathan, S.V.N., Schraudolph, N., Kondor, R.I., Borgwardt, K.: Graph ker-

nels. Journal of Machine Learning Research - JMLR (2008)
28. Xu, Z., Kersting, K., Tresp, V.: Multi-relational learning with gaussian processes.

In: IJCAI (2009)
29. Xu, Z., Tresp, V., Yu, K., Kriegel, H.-P.: Infinite hidden relational models. In: UAI

(2006)
30. Yu, K., Chu, W., Yu, S., Tresp, V., Xu, Z.: Stochastic relational models for dis-

criminative link prediction. In: NIPS (2006)

Relational Differential Prediction

Houssam Nassif1, Vı́tor Santos Costa2,
Elizabeth S. Burnside1, and David Page1

1 University of Wisconsin, Madison, USA
2 University of Porto, Portugal

Abstract. A typical classification problem involves building a model
to correctly segregate instances of two or more classes. Such a model
exhibits differential prediction with respect to given data subsets when
its performance is significantly different over these subsets. Driven by a
mammography application, we aim at learning rules that predict breast
cancer stage while maximizing differential prediction over age-stratified
data. In this work, we present the first multi-relational differential predic-
tion (aka uplift modeling) system, and propose three different approaches
to learn differential predictive rules within the Inductive Logic Program-
ming framework. We first test and validate our methods on synthetic
data, then apply them on a mammography dataset for breast cancer
stage differential prediction rule discovery. We mine a novel rule linking
calcification to in situ breast cancer in older women.

Keywords: Uplift modeling, relational data mining, differential predic-
tion, inductive logic programming, ILP, stratified data, breast cancer, in
situ.

1 Introduction

A recurrent problem in social sciences is to understand why two or more differ-
ent populations exhibit differences in a trait. In psychology [8,20,36], one may
want to assess the fairness of a test over several different populations. In market-
ing [17,27,21], one may want to compare subjects and controls in order to study
the effectiveness of an advertising campaign. Similar tasks thus arise in several
domains and depending on the domain, the problem is known as differential
prediction, differential response analysis, or uplift modeling.

In contrast to most studies of differential prediction in psychology, market-
ing’s uplift modeling assumes an active agent. But, given that in both cases
we have two populations that have been subjected to an external agent, we
argue that the concepts and techniques originally developed for uplift mar-
keting can, and should, apply to the task of differential prediction (and vice
versa). Differential prediction has been studied extensively in the context of
multi-attribute data [30,28]. One approach is to generate different classifiers for
each sub-population, and to look for differences between the classifiers. Further
progress requires building models driven by evaluation functions that take into

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 617–632, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

618 H. Nassif et al.

account the differential nature of uplift modeling [29]. Also, techniques such as
uplift curves have made it possible to evaluate and compare differential models.

An important differential problem arises in the area of breast cancer research.
Breast cancer is the most common type of cancer among women, with a 12%
probability of incidence in a lifetime [3]. Breast cancer has two basic stages: an
earlier in situ stage where cancer cells are still confined where they developed,
and a subsequent invasive stage where cancer cells infiltrate surrounding tissue.
Since nearly all in situ cases can be cured [2], current practice is to treat in situ
occurrences in order to avoid progression into invasive tumors [3]. Nevertheless,
the time required for an in situ tumor to reach invasive stage may be sufficiently
long for a woman to die of other causes; raising the possibility that the diagnosis
and treatment may not have been necessary, a phenomenon called overdiagnosis.

Cancer occurrence and stage are determined through biopsy, a costly, invasive,
and potentially painful procedure. Actual treatment is costly, and may generate
undesirable side-effects. For these reasons, the 2009 US National Institutes of
Health consensus conference on ductal carcinoma in situ highlighted the need
for methods that can accurately identify patient subgroups that would benefit
most from treatment, as well as those who do not need treatment [1]. In recent
work, Nassif et al. [25] reported that different pre-biopsy mammographic features
can indeed be used to classify cancer as invasive or in situ for different age
groups. They identified invasive/in situ classification rules that have significantly
different performance across age strata. This finding confirms that, based on age,
different mammographic features can be used to classify cancer stage. The key
motivation to this work is to understand how breast cancer evolves differently
across different age groups, and what features exhibit differential cancer stage
prediction across age.

Differential breast cancer prediction introduces two novel problems to differ-
ential prediction. First, in order to classify a sample, best results require taking
into account previous and simultaneous samples for the same patient [9]. This
demands a multi-relational data representation. We thus need a relational differ-
ential model. Second, it is of utmost importance that experts be able to interpret
the results and identify patient subgroups. Both challenges can be addressed by
using rules to represent the model.

We hereby introduce a rule-based multi-relational differential classifier, and
demonstrate its applicability on medical data. This work makes three main con-
tributions. First, we present the first multi-relational differential modeling sys-
tem, and introduce, implement and evaluate novel methods to guide search in
a rule-based differential setting. We propose three general methods that are im-
plemented within the Inductive Logic Programming (ILP) framework [23,11],
a commonly used approach for relational data mining. We opt for ILP-based
rule learning instead of decision-tree-based rule learning because the latter is
a special case of the former [6,34]. Second, we present a detailed evaluation of
the applicability and usefulness of our approach under different data sizes and
noise rates through simulated data. Third, we demonstrate that the system can
indeed obtain differential rules of interest to an expert on real data.

Relational Differential Prediction 619

2 Related Work

To the best of our knowledge, differential prediction was first used in psychology
to assess the fairness of cognitive and educational tests. In this area, it is defined
as the case where consistent nonzero errors of prediction are made for members
of a given subgroup [8], and it is detected by fitting a common regression equa-
tion and checking for systematic prediction discrepancies for given subgroups,
or by building regression models for each subgroup and testing for differences
between the resulting models [20,36]. The standard approach uses moderated
multiple regression, where the criterion measure is regressed on the predictor
score, subgroup membership, and an interaction term between the two [5,33].
If the predictive model differs in terms of slopes or intercepts, it implies that
bias exists because systematic errors of prediction would be made on the basis
of group membership.

An example is assessing how college admission test scores predict first year
cumulative grades for males and females. For each gender group, we fit a regres-
sion model. We then compare the slope, intercept and/or standard errors for
both models. If they differ, then the test exhibits differential prediction and may
be considered unfair.

The same concept arises in case-control studies, and is referred to as differ-
ential misclassification. Instances are cross-classified by case-control status and
exposure category. An exposure misclassification is defined as differential if the
probabilities of misclassification differ for instances with different case-control
categories. Similarly, a case-control misclassification is defined as differential if
the probabilities of misclassification differ for instances with different exposure
categories [7,13]. This concept is the basis of the related machine learning con-
cept of “differential misclassification cost”, incorporating different misclassifica-
tion costs into a cost sensitive classifier [31].

An important application of differential prediction is in marketing studies,
where it can be used to understand the best targets for an advertising campaign
and it is often known as uplift modeling. Seminal work includes Radcliffe and
Surry’s true response modeling [27], Lo’s true lift model [21], and Hansotia and
Rukstales’ incremental value modeling [17]. As an example, Hansotia and Ruk-
stales construct a regression and a decision tree, or CHART, model to identify
customers for whom direct marketing has sufficiently large impact. The split-
ting criterion is obtained by computing the difference between the estimated
probability increase for the attribute on the treatment set and the estimated
probability increase on the control set.

Recent work by Rzepakowski and Jaroszewicz [29] suggests that performance
of a tree-based uplift model may improve by using a divergence statistic. The
authors propose three postulates that should be obeyed by tree-based split-
ting criteria. First, the value of the splitting criterion is minimum if and only
if the class distributions in treatment and control groups are the same in all
branches. Second, splitting criterion is zero if treatment and control are in-
dependent. Third, if the control group is empty, the criterion reduces to the
case measure. They introduce two new statistics, one based on Kullback-Leibler

620 H. Nassif et al.

divergence, the other based on Euclidean distance. Evaluation on prepared data
suggests improved performance. Radcliffe and Surry [28] criticize one of the pos-
tulates and the fact that the measures are independent of population size, a
parameter that they consider crucial in practical applications.

We observe that the task of discriminating between two dataset strata is
closely related to the problem of Relational Subgroup Discovery (RSD), that is,
“given a population of individuals with some properties, find subgroups that are
statistically interesting” [37]. In the context of multi-relational learning systems,
RSD applies a first propositionalization step and then applies a weighted covering
algorithm to search for rules that can be considered to define a sub-group in the
data. Although the weighting function is defined to focus on unexplored data
by decreasing the weight of covered examples, RSD does not explicitly aim at
discovering the differences between given partitions.

3 Differential Predictive Concept Definition

Given data that can be partitioned into a set of strata, we define a differential
predictive concept as a concept whose measure is significantly different over one
stratum as compared to the others. To be more precise, we define a stratified
dataset as one composed of disjoint partitions, where each partition contains at
least one instance of each target class.

Definition 1 (Stratified Dataset). Let tc be a target class defined over the
set of instances X, and let D = {〈x, tc(x)〉} be a set of training examples labeled
according to tc. Let {D1, . . . , Dn} be n disjoint subsets of D, and let Dl

i be the
set of training examples of Di with class label l, such that:

(∀(i, j) ∈ [1, n], i �= j) Di ⊂ D, Di ∩Dj = ∅, ∀l Dl
i �= ∅. (1)

A k-strata dataset D over the set of instances X is the union of k such subsets
Di, with 2 ≤ k ≤ n, such that:

D = {Di | 1 ≤ i ≤ k}. (2)

After specifying the instance space, we define a differential predictive concept.

Definition 2 (Differential Predictive Concept). Let c be a concept over the
set of instances X, and let D be a k-strata dataset. Let S(c|Di) be the classifica-
tion performance score for c over the subset Di. A stratum-j specific differential
predictive concept is a concept cj such that:

∀i �= j, S(cj |Dj) , S(cj |Di). (3)

Score difference (,) can be evaluated using statistical significance tests or by
comparing against a threshold. In this work we will focus on 2-strata 2-class
differential problems.

Relational Differential Prediction 621

4 Learning Differential Predictive Rules

This work uses Inductive Logic Programming (ILP) [11] to build the first rela-
tional differential classifier. The benefit of using ILP in this context is twofold.
First, we can use a first-order logic formulation to represent complex relational
patterns spanning the patient and mammogram levels. In our motivating appli-
cation, we can represent data on one mammogram and relate it to prior mam-
mograms for the same patient. Second, we shall take advantage of ILP’s ability
to learn easily-comprehensible logical rules.

Used for differential prediction, ILP — as a rule-learning technique — has a
major advantage: each individual rule can be viewed as a feature describing a
subgroup. We can investigate the performance of each rule on a given dataset,
identify rules that only apply to particular data subsets, and isolate subgroups
covered by a particular rule. Given a stratified dataset, we can examine the
performance of rules on the various strata, and select stratum-specific rules that
have significantly different performances across strata.

We propose and evaluate three different approaches to learn differential pre-
dictive rules. All three approaches can be applied to any ILP algorithm, and
can be used with any scoring function S. We use m-estimate to represent the
probability of an example given a rule. We set both m and the minimum number
of positive examples to be covered by an acceptable clause to 10% of the number
of positive examples per stratum and class.

An important concern in real-life situations is population size [28]. Probability
estimates tend to favor highly precise estimates (even taking into account the
m count) and may be prone to overfitting, a difficult problem in ILP given the
number of rules we generate and their complexity. In this work, we heuristically
compensate for population size by weighing over the rule positive cover on the
case set, as shown below.

4.1 Baseline Approach

As a running example, suppose we are given a 2-strata 2-class dataset of breast
cancer records, with class labels in situ and invasive, and strata older and
younger. Our task is to find rules that exhibit a differential performance over
the two strata. More precisely, we want rules that correctly predict in situ versus
invasive in the older stratum, but have a significantly worse performance over
the younger stratum. Our target stratum Dt is thus older, while younger is the
other stratum Do.

A simple approach is to merge both strata together while including the strat-
ifying attribute as an additional predicate in the background knowledge. Thus
older stratum examples will have stratum(Example, older) as an additional
feature, while stratum(Example, younger) will describe younger instances. We
run ILP over the whole dataset and select theory rules that have the condi-
tion stratum(Example, older) in their body. Such rules are specific to the older
stratum. We call this approach the baseline approach (BASE).

622 H. Nassif et al.

We score each rule R by considering its positive cover and m-estimate over
the merged strata:

SBASE(R|Dt, Do) = poscover(R|Dt ∪Do)×mestimate(R|Dt ∪Do). (4)

4.2 Model Filtering Approach

Our second method is a model filtering (MF) approach based on [25]. It follows
similar principles to the Two Model approach [21,28]. We start by construct-
ing a predictive ILP model over a given stratum. The model outputs a high-
performance stratum-specific theory. By construction, the theory rules perform
well on their stratum, according to a given scoring function S. We test each the-
ory rule on the other stratum, and select rules with a poor performance, hence
filtering the original model. According to this model, the greater the performance
difference, the more differential predictive a rule should be.

Fig. 1 flowchart outlines the construction of in situ rules specific to the older
stratum. Starting with the older subset, we construct an ILP model that dis-
criminates between in situ and invasive. The generated rules are expected to
have good performance over the older stratum. We then test each rule on the
younger stratum, and keep rules that perform poorly.

Fig. 1. Model Filtering approach to identify older-specific in situ rules

During theMF search phase, we score a ruleR over strataDt using SBASE(R|Dt).
Given the final theory, we score each theory rule Rt according to:

SMF (Rt|Dt, Do) = SBASE(Rt|Dt)− SBASE(Rt|Do). (5)

4.3 Differential Prediction Search Approach

Our third method, differential prediction search (DPS), builds a differential pre-
diction ILP classifier by altering the ILP search. Unlike our generate-then-test
model filtering method, DPS uses test-incorporation by altering the ILP search
space. It defines a new clause evaluation function that considers both strata

Relational Differential Prediction 623

during search-space exploration and rule construction. This allows ILP to return
rules specifically selected for their differential prediction score, that it would have
overlooked otherwise. This is achieved through a differential-prediction-sensitive
score that measures the performance difference of a rule over both strata.

Definition 3 (Differential-Prediction-Sensitive Scoring). Let R be a
clause (rule) over the set of instances X, and let D be a 2-strata dataset over X.
We define a differential-prediction-sensitive scoring function Q as a function of
R, Dt and Do, such that Q is positively correlated to the performance of R over
Dt, and negatively correlated to the performance of R over Do.

For theDPSmethod,we introduce the following differential-prediction-sensitive
scoring function:

QDPS(R|Dt, Do) = poscover(R|Dt)× (mestimate(R|Dt)−mestimate(R|Do)).
(6)

Note that this function is non-monotonic, as are most user-defined scoring func-
tions, which prohibits us from custom-pruning the search space.

It is enlightening to relate this scoring function with the postulates described
in [29]. Postulate 2 is trivially satisfied: if the condition is independent from
treatment than the measure should indeed be zero. In contrast to postulate
1, we select rules that do better in one strata, and not rules that do differently.
This is standard in ILP, where the search aims at covering the positive examples,
E+. In fact, in this setting, the standard techniques to explain negatives is to
perform another search, switching E+ and E−. The last postulate concerns the
case where the control set is empty. In this case, this measure indeed reduces to
a classic non-differential ILP scoring function.

Our work thus obeys the main postulates followed by prior work in uplift
modeling. Regardless, we observe that, to the best of our knowledge, this the
first approach directly designed to learn differential rules. Instead, prior work on
differential prediction has focused on learning trees or logistic regression models
that can estimate differential performance. Instead, our work focuses on under-
standing factors that describe differential performance.

Fig. 2 flowchart outlines the construction of older-specific in situ rules. The
differential-prediction classifier takes both strata as input. It constructs, scores
and selects rules according to their differential-prediction-sensitive score.

5 Experimental Setting

We implement our three differential predictive rule learning methods using Aleph
[34]. We invoke induce max, which induces a theory that is unaffected by the
order of the examples. We set depth = 100000, i = 10, nodes = 50000 and
clauselength = 5. We perform experiments with the YAP Prolog compiler [32].

When using synthetic data, we know the ground truth. We then can com-
pare the predicted rules to the original rules. We consider identical rules (up
to variable renaming) as true findings. We label the remaining theory rules as

624 H. Nassif et al.

Fig. 2. Differential prediction search approach to identify older-specific in situ rules

false positive findings, and the missing original rules as false negative findings.
We rank the theory rules by their score, and compute their precision-recall (PR)
curve using [10]. Since we do not have scores associated with the missing false
negative findings, we truncate the PR curve at the recall returned by the theory.
Note that this yields a PR curve on recovered rules rather than on data.

We compare the different classifiers using their PR area under the curve (AUC-
PR). We use the Mann-Whitney test to compare two sets of experiments. When
comparing multiple sets, we use the Friedman test with a Hommel adjusted two-
tailed Wilcoxon for the post-hoc pairwise tests. We chose these tests based on
the recommendation of [12]. We set the confidence level to 95%.

Lacking differential rule ground truth, we can not use this method for real
world data. Uplift curves are often used to address this problem [29]. Using 5-
folds cross-validation, we use the learned theory rules as attributes to a TAN
classifier [14] to assign a probability to each example. Given a threshold p, we
compute the lift Li, defined as the number of positive examples amongst the
fraction p of examples that are ranked the highest on strata i. We generate an
uplift curve by ranging p from 0 to 1 and plotting {p, L1 − L2}.

6 Synthetic Dataset

Before going to our target application, we use synthetic data to evaluate the
ability of our approaches to uncover ground truth differential rules, and to study
their sensitivity to variations in noise and in dataset size, two major concerns in
real-world data. The multi-relational Michalski-trains dataset [19] is often used
by ILP researchers to evaluate system performance in a controlled environment.
Given two sets of trains, eastbound and westbound, the original problem consists
of finding a concept which explains the eastbound trains. Each train includes
multiple carriages of varying size, content and shape. Concept complexity is
parametrized by generating more complex explanations of eastbound trains.

To test for differential prediction, we define two categories of trains, red and
blue. We thus have a 2-strata (red, blue) 2-class (east, west) dataset. We ran-
domly create up to 5 eastbound rules that are common for both red and blue
trains. We then randomly create two additional sets of eastbound rules, each set

Relational Differential Prediction 625

is specific to one stratum, red or blue. These are color-specific eastbound differ-
ential predictive rules. We ensure that all rules are unique, and that color-specific
rules are not subsets of common rules nor of each other.

We generate the eastbound trains using the stratum’s common and specific
rules. We define westbound trains as non-eastbound trains. Our aim is to recover
the color red differential predictive eastbound rules. They are our target rules.

As an example, suppose we have the following eastbound rules. Common
eastbound rule:

east(T) :- infront(T,C1, C2), short(C1), long(C2). (7)

Stratum red specific eastbound rule (target rule):

east(T) :- has car(T,C), jagged(C). (8)

Stratum blue specific eastbound rule:

east(T) :- has car(T,C), double(C). (9)

Fig. 3(a) shows red trains, where eastbound trains 1, 3 and 4 have a short
carriage in front of a long one (common rule), while train 2 has a jagged roof
carriage (red specific rule). Fig. 3(b) shows blue trains, where eastbound trains 3
and 4 follow the common rule, while trains 1 and 2 have a double-hulled carriage
(blue specific rule). Note a jagged roof on blue westbound train 5, it would have
been classified eastbound if it was red.

We devise two scenarios, the first with one red target rule to recover, and the
second with up to 5 red target rules. For both scenarios we have up to 5 blue-
specific rules. For each scenario, we randomly generate 30 different 2-strata 2-
class train problems. For every problem, we use a random train generator [24] to
randomly construct 1000 eastbound and 1000 westbound trains for each strata,
for a total of 4000 trains per experiment. We ensure that each red eastbound
target rule covers at least 10% of the eastbound red trains. We refer to this
noise-free data as clean1000. To test the scalability of our algorithms, we also
construct clean100, which consists of the first 100 trains (for each strata, class
and problem) of clean1000. Since real world data is hardly clean, we also create
noisy versions. For each problem, we randomly swap the target class of 5% of
our instances, creating the noisy1000 and noisy100 datasets.

We end up with 30 simulations for each scenario, noise level, size and method
combination. Table 1 reports the AUC-PR mean and standard deviation of each
experimental block. When using the clean sets, we don’t allow any negative
examples to be covered by an acceptable clause. When using the noisy sets, we
allow a negative rule cover of up to 10% of the number of red trains.

We compare two methods by using a paired Mann-Whitney test on all their
corresponding experiments. Our results show that MF outperforms BASE on all
testbeds (p-value = 0.00048). BASE outperforms DPS on size 100 sets (p-value
= 0.019), while DPS outperforms BASE on size 1000 (p-value = 0.01). On large
noisy sets, DPS outperforms both BASE (p-value = 0.0018) and MF (p-value
= 0.0374).

626 H. Nassif et al.

TRAINS GOING EAST TRAINS GOING WEST

1.

2.

3.

4.

5.

6.

7.

8.

(a) Color red trains, specific rule (jagged-roof) in bold

TRAINS GOING EAST TRAINS GOING WEST

1.

2.

3.

4.

5.

6.

7.

8.

(b) Color blue trains, specific-rule (double-hulled) in bold

Fig. 3. A 2-strata 2-class Michalski-train problem

Table 1. AUC-PR mean and standard deviation for each scenario, noise level, size and
method combination. Each experimental block is composed of 30 experiments.

Dataset clean100 clean1000 noisy100 noisy1000
Method BASE MF DPS BASE MF DPS BASE MF DPS BASE MF DPS

One target rule scenario
Mean 0.73 0.83 0.62 0.87 0.90 0.88 0.57 0.62 0.54 0.63 0.80 0.87
Std dev 0.45 0.34 0.40 0.35 0.24 0.29 0.50 0.47 0.42 0.49 0.36 0.31

Multiple target rules scenario
Mean 0.61 0.70 0.42 0.75 0.86 0.77 0.38 0.52 0.31 0.52 0.55 0.65
Std dev 0.33 0.28 0.29 0.33 0.24 0.30 0.37 0.28 0.32 0.39 0.27 0.29

6.1 Discussion

As one expects, performance improves with larger sets of training examples, and
decreases with multiple target rules and noisy sets. The noisy runs are harder
for three reasons. First is the noise effect per se, randomly assigning the wrong
target class to 5% of the trains. Second is the 10% minimum positive cover
threshold per rule. If a target rule originally narrowly passed this threshold, the
addition of noise may decrease its positive coverage below the threshold, and the
rule becomes undetectable. Third is the maximum negative cover threshold: in

Relational Differential Prediction 627

clean runs, we only consider rules that don’t cover any westbound train, which
drastically reduces the number of evaluated rules. In noisy runs, we allow up to
10% of negative cover. Even if no noise is injected, the exponential expansion
of the search space increases the probability that some non-target rule scores
better than a target.

It is interesting to note that DPS is the least affected by noise. In each ex-
perimental block, DPS suffers the least decrease in mean AUC-PR, none being
significant. In the one-target rule and large-set block, adding noise decreases
DPS mean by just 1 point, from 0.88 to 0.87 (p-value = 0.94). On the other
hand, MF and BASE drop by 10 and 24 percentage points (Table 1). In the
four sets of experiments where noise is a variable, DPS drops an average of 8
percentage points, compared to 21.5 for BASE and 20 for MF.

Similarly, DPS improves the most with increasing sample size. In each of
the four sets of experiments where size is a variable, DPS displays the highest
increase in mean AUC-PR, all of which are significant. In these experiments,
DPS increases an average of 32 percentage points, compared to 12 for BASE
and 11 for MF (Table 1).

Although no clear pattern emerges from comparing different methods on both
one-target and multiple-target scenarios, DPS seems to be slightly more sensitive
to the number of target rules. DPS suffers an average decrease of 19 AUC-PR
percentage points over the four experimental blocks where target rule scenario
is a variable, compared with 13.5 for BASE and 13 for MF (Table 1). Never-
theless, this performance decrease does not alter the method ranking over each
experimental block.

In summary, our experiments show that MF is more suitable for either clean
data or small datasets. But for large and noisy data, which is what most real
world applications are, DPS is more appropriate. In addition, DPS performance
increases at a faster rate than MF, and thus may outperform MF for larger clean
datasets. DPS, by navigating the differential prediction search space, requires
more training examples and generates a set of rules as a consistent theory which
explains the data. In contrast, MF and BASE select individual rules that may
be suboptimal.

7 Breast Cancer Diagnosis

Our motivating application is to learn older-specific in situ breast cancer differ-
ential predictive rules. We apply our three methods to the breast cancer data
used in [25]. The data consists of two cohorts: patients younger than 50 years
old form the younger cohort, while patients aged 65 and above form the older
cohort. The older cohort has 132 in situ and 401 invasive cases, while the younger
one has 110 in situ and 264 invasive.

The data is organized in 20 extensional relations that describe the mammo-
gram, and 35 intensional relations that connect a mammogram with related
mammograms, discovered at the same or in prior visits. The background knowl-
edge also maintains information on prior surgeries.

628 H. Nassif et al.

We use the same experimental setting as for the synthetic data, but set
nodes = 200, 000 since the number of predicates is much larger. The BASE
method does not return any rule, which highlights the difficulty of this task.
Lacking ground truth, we use uplift curves to compare MF and DPS (Fig. 4).
DPS consistently outperforms MF, which in turn consistently outperforms a
baseline random classifier. DPS has an area under the curve (taken to the base-
line) of 16.5, almost double the 9.1 of MF.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

U
pl

ift

Fraction of total mammograms

DPS
MF

Baseline

Fig. 4. Uplift curve for breast cancer stage

MF returns 4 differential predictive rules that have a significantly better pre-
cision and recall [16] over the older cohort. DPS returns 15. A practicing radiol-
ogist, fellowship-trained in breast imaging, examined and assessed all the rules.
One MF rule was not found meaningful, while the remaining three are redundant
to each other and translate to:

1. Tumor is older-specific in situ if its principal mammographic finding is cal-
cification or single dilated duct, and patient does not have prior surgery.

Single dilated duct is a rare finding and was combined with calcification in our
data for convenience. Based on this rule, the more common finding, calcification,
is a differential predictor of in situ disease in older patients, which is a novel and
interesting result. A possible explanation is that, in asymptomatic women, in
situ disease is often associated with screen-detected micro-calcifications; while
in symptomatic women, in situ is associated with a palpable mass or pathological
nipple discharge [26]. Younger women tend to have more rapidly proliferating
cancers that develop into a palpable mass [15], in contrast to more indolent,
non-palpable in situ disease manifest as micro-calcification in older patients.
This previously unreported finding merits further investigation.

Relational Differential Prediction 629

DPS provides a more complete picture of older-specific in situ differential
predictors. All 15 returned rules are meaningful and, in addition to extracting
the rule described above, four additional themes emerge. DPS is thus able to
detect more differentially predictive features than MF, offering a better insight
into the medical problem. We select representative clauses from each theme.
Tumor is older-specific in situ if:

2. Patient had prior in situ biopsy, and examined-breast had a BI-RADS score
of 1 during a previous mammogram, which was not the first visit.

3. Patient had prior in situ biopsy, its examined-breast BI-RADS increased by
at least 3 since a previous visit, whereas its other-breast BI-RADS remained
constant.

4. Principal mammographic finding is calcification or single dilated duct,
examined-breast BI-RADS score increased by at least 3 since a previous
visit, and patient had an even earlier screening mammogram.

5. Patient has a breast density of 2, is having a unilateral exam, doesn’t have
a focal asymmetric density, and principal mammographic finding is calcifi-
cation or single dilated duct.

Besides calcification, the second DPS rules theme is the presence of a prior in
situ biopsy (rules 2, 3). A prior history of biopsy revealing in situ disease is
thus a better predictor of in situ recurrence in older women. This observation
is partially explained by the longer life span of older women which offers more
time for a recurrence to manifest. But this rule may also relate to the indolent
nature of in situ breast cancer in older women. In fact, both invasive and in
situ tumors in older patients tend to be less aggressive and have lower rates of
local recurrence than tumors in younger patients [15]. More specifically, younger
women with in situ disease are more likely to progress to an invasive recurrence
rather than develop another in situ tumor when they recur [35].

The third theme is the increase in the examined breast BI-RADS score (rules
3, 4). The BI-RADS score is a number that summarizes the examining radi-
ologist’s opinion and findings concerning the mammogram [4]. The radiologist
assigns a score for each examined breast. An increase in the BI-RADS score over
multiple visits reflects increasing suspicion of malignancy. This may be a more
pronounced feature in older women because they have more prior mammograms.

The next observation, whereas screening visits predict in situ in older women
(rule 4), may also relate to the greater opportunity for screening in older patients.
Regular screening mammography is usually recommended for women aged 40
and above. Younger women are more likely to seek care for a palpable lump
detection rather than via screening [15]. Thus older women tend to have more
screening exams because of regular visits after age 40.

Finally we note a class 2 breast density, out of an increasing density scale of 1
to 4 (rule 5). This is a relatively low breast density, more common in older women,
since breast density decreases with age [18]. This rule is of special relevance since
it doesn’t link to any previous mammogram or history predicate, hence leveling
the playing field between younger and older in terms of time. It requires a class

630 H. Nassif et al.

2 breast density and an observed calcification during a unilateral (and hence
diagnostic) exam. A lower breast density significantly increases mammogram
sensitivity [22], allowing for easier micro-calcification detection.

8 Future Work

This work can be extended in several directions. First, our differential prediction
search can be tested and validated using a larger experimental set. We can
systematically vary the sample size to establish a performance-size curve, and
try different scoring functions. We can also fine grain the construction of the
Michalski-trains sets by monitoring the coverage of each target or common rule.
Noting that we defined westbound as not-eastbound, it would be interesting to
gauge model differences if westbound was defined using a separate set of rules.

Second, this work assumes the presence of a stratified dataset. Given a non-
stratified dataset, we may be able to select the best dividing attribute that
maximizes differential predictive rules performance. We can repeatedly stratify
the data using each of its attributes, and perform differential prediction. We
then select the stratification achieving the best results. This approach may be
used for differential subgroup discovery.

Third, we only proposed solutions for the 2-strata 2-class differential pre-
diction problem. We plan on extending it to multi-strata problems using f -
divergence functions. This being the first attempt at relational differential pre-
diction, we can similarly extend our approach to decision-tree learners.

9 Conclusion

In this work, we extend differential prediction to the multi-relational domain
using ILP. We devise and implement three methods to learn 2-strata 2-class
differential predictive rules. The first baseline method merges the two strata
together while including the stratifying attribute as an additional predicate. The
model filtering method generates rules on the target stratum and tests them for
differential prediction on the other stratum. The differential prediction search
approach alters the ILP search space to use a differential-prediction-sensitive
scoring function to assess rules over both strata during rule construction. Our
experiments over synthetic data show that the model filtering method is more
suitable for either clean or small datasets. For large and noisy data, which is
what most real world applications are, the differential prediction search method
outperforms both the baseline (p-value = 0.0018) and the model filtering (p-
value = 0.0374) approaches. We apply our methods on a breast cancer dataset,
and extract novel rules linking calcification to in situ disease in older women.

Acknowledgment. This work is supported by US National Institute of Health
(NIH) grant R01-CA127379-01.We thank Kendrick Boyd for his help in comput-
ing AUC-PR. VSC was funded by the ERDF through the Progr. COMPETE, the
PortugueseGov. through FCT, proj. HORUS ref. PTDC/EIA-EIA/100897/2008,

Relational Differential Prediction 631

ADE (PTDC/ EIA-EIA/121686/2010), and the EU Sev. Fram. Progr. FP7/2007-
2013 under grant aggrm. 288147.

References

1. Allegra, C.J., Aberle, D.R., Ganschow, P., Hahn, S.M., Lee, C.N., Millon-
Underwood, S., Pike, M.C., Reed, S., Saftlas, A.F., Scarvalone, S.A., Schwartz,
A.M., Slomski, C., Yothers, G., Zon, R.: National Institutes of Health State-of-the-
Science Conference Statement: Diagnosis and Management of Ductal Carcinoma
In Situ. J. Natl. Cancer Inst. 102(3), 161–169 (2010)

2. American Cancer Society: Breast Cancer Facts & Figures 2009-2010. American
Cancer Society, Atlanta, USA (2009)

3. American Cancer Society: Cancer Facts & Figures 2009. American Cancer Society,
Atlanta, USA (2009)

4. American College of Radiology, Reston, VA, USA: Breast Imaging Reporting and
Data System (BI-RADSTM), 3rd edn. (1998)

5. American Educational Research Association/American Psychological Associa-
tion/National Council on Measurement in Education: The Standards for Educa-
tional and Psychological Testing (1999)

6. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees.
Artif. Intell. 101(1-2), 285–297 (1998)

7. Chyou, P.H.: Patterns of bias due to differential misclassification by case control
status in a case control study. European Journal of Epidemiology 22, 7–17 (2007)

8. Cleary, T.A.: Test bias: Prediction of grades of negro and white students in inte-
grated colleges. Journal of Educational Measurement 5(2), 115–124 (1968)

9. Davis, J., Burnside, E.S., de Castro Dutra, I., Page, D., Ramakrishnan, R., Santos
Costa, V., Shavlik, J.: View Learning for Statistical Relational Learning: With
an application to mammography. In: Proceedings of the 19th International Joint
Conference on Artificial Intelligence, Edinburgh, Scotland, pp. 677–683 (2005)

10. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves.
In: Proc. of the 23rd International Conference on Machine Learning, Pittsburgh,
PA, pp. 233–240 (2006)

11. De Raedt, L.: Logical and Relational Learning. Springer (2008)
12. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal

of Machine Learning Research 7, 1–30 (2006)
13. Flegal, K.M., Keyl, P.M., Nieto, F.J.: Differential misclassification arising from

nondifferential errors in exposure measurement. American Journal of Epidemiol-
ogy 134(10), 1233–1244 (1991)

14. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine
Learning 29, 131–163 (1997)

15. Gajdos, C., Tartter, P.I., Bleiweiss, I.J., Bodian, C., Brower, S.T.: Stage 0 to stage
III breast cancer in young women. J. Am. Coll. Surg. 190(5), 523–529 (2000)

16. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and F -
score, with implication for evaluation. In: Proc. of the 27th European Conference
on IR Research, pp. 345–359. Santiago de Compostela, Spain (2005)

17. Hansotia, B., Rukstales, B.: Incremental value modeling. Journal of Interactive
Marketing 16(3), 35–46 (2002)

18. Kelemen, L.E., Pankratz, V.S., Sellers, T.A., Brandt, K.R., Wang, A., Janney, C.,
Fredericksen, Z.S., Cerhan, J.R., Vachon, C.M.: Age-specific trends in mammo-
graphic density. American Journal of Epidemiology 167(9), 1027–1036 (2008)

632 H. Nassif et al.

19. Larson, J., Michalski, R.S.: Inductive inference of VL decision rules. ACM SIGART
Bulletin 63, 38–44 (1977)

20. Linn, R.L.: Single-group validity, differential validity, and differential prediction.
Journal of Applied Psychology 63, 507–512 (1978)

21. Lo, V.S.: The true lift model - a novel data mining approach to response modeling
in database marketing. SIGKDD Explorations 4(2), 78–86 (2002)

22. Mandelson, M.T., Oestreicher, N., Porter, P.L., White, D., Finder, C.A., Taplin,
S.H., White, E.: Breast density as a predictor of mammographic detection: compari-
son of interval- and screen-detected cancers. J. Natl. Cancer Inst. 92(13), 1081–1087
(2000)

23. Muggleton, S.: Inductive Logic Programming. New Generation Computing 8(4),
295–318 (1991)

24. Muggleton, S.: Random train generator (1998),
http://www.doc.ic.ac.uk/textasciitildeshm/Software/GenerateTrains/

25. Nassif, H., Page, D., Ayvaci, M., Shavlik, J., Burnside, E.S.: Uncovering age-specific
invasive and DCIS breast cancer rules using Inductive Logic Programming. In:
1st ACM International Health Informatics Symposium, Arlington, VA, pp. 76–82
(2010)

26. Patani, N., Cutuli, B., Mokbel, K.: Current management of DCIS: a review. Breast
Cancer Res. Treat 111(1), 1–10 (2008)

27. Radcliffe, N.J., Surry, P.D.: Differential response analysis: Modeling true response
by isolating the effect of a single action. In: Credit Scoring and Credit Control VI,
Edinburgh, Scotland (1999)

28. Radcliffe, N.J., Surry, P.D.: Real-world uplift modelling with significance-based
uplift trees. White Paper TR-2011-1, Stochastic Solutions (2011)

29. Rzepakowski, P., Jaroszewicz, S.: Decision trees for uplift modeling. In: 2010 IEEE
International Conference on Data Mining, Sydney, Australia, pp. 441–450 (2010)

30. Sackett, P.R., Laczo, R.M., Lippe, Z.P.: Differential prediction and the use of
multiple predictors: The omitted variables problem. Journal of Applied Psychol-
ogy 88(6), 1046–1056 (2003)

31. Sahami, M., Dumais, S., Heckerman, D., Horvitz, E.: A bayesian approach to filter-
ing junk e-mail. In: AAAIWorkshop on Learning for Text Categorization, Madison,
WI (1998)

32. Santos Costa, V.: The life of a logic programming system. In: de la Banda, M.G.,
Pontelli, E. (eds.) Proceedings of the 24th International Conference on Logic Pro-
gramming, Udine, Italy, pp. 1–6 (2008)

33. Society for Industrial and Organizational Psychology: Principles for the Validation
and Use of Personnel Selection Procedures, 4th edn (2003)

34. Srinivasan, A.: The Aleph Manual, 4th edn. (2007),
http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/aleph.html

35. Vicini, F.A., Recht, A.: Age at diagnosis and outcome for women with ductal
carcinoma-in-situ of the breast: A critical review of the literature. Journal of Clin-
ical Oncology 20(11), 2736–2744 (2002)

36. Young, J.W.: Differential validity, differential prediction, and college admissions
testing: A comprehensive review and analysis. Research Report 2001-6, The College
Board, New York (2001)

37. Zelezný, F., Lavrac, N.: Propositionalization-based relational subgroup discovery
with rsd. Machine Learning 62(1-2), 33–63 (2006)

http://www.doc.ic.ac.uk/textasciitildeshm/Software/GenerateTrains/
http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/aleph.html

Efficient Training of Graph-Regularized

Multitask SVMs

Christian Widmer1,2, Marius Kloft3, Nico Görnitz3, and Gunnar Rätsch1,2

1 Memorial Sloan-Kettering Cancer Center, New York, USA
2 FML, Max-Planck Society, Tübingen, Germany

3 Machine Learning Laboratory, TU Berlin, Germany

Abstract. We present an optimization framework for graph-regularized
multi-task SVMs based on the primal formulation of the problem. Previ-
ous approaches employ a so-called multi-task kernel (MTK) and thus are
inapplicable when the numbers of training examples n is large (typically
n < 20, 000, even for just a few tasks). In this paper, we present a primal
optimization criterion, allowing for general loss functions, and derive its
dual representation. Building on the work of Hsieh et al. [1,2], we derive
an algorithm for optimizing the large-margin objective and prove its con-
vergence. Our computational experiments show a speedup of up to three
orders of magnitude over LibSVM and SVMLight for several standard
benchmarks as well as challenging data sets from the application domain
of computational biology. Combining our optimization methodology with
the COFFIN large-scale learning framework [3], we are able to train a
multi-task SVM using over 1,000,000 training points stemming from 4
different tasks. An efficient C++ implementation of our algorithm is be-
ing made publicly available as a part of the SHOGUN machine learning
toolbox [4].

1 Introduction

The main aim of multi-task learning [5] is to leverage the information of multiple,
mutually related learning tasks to make more accurate predictions for the indi-
vidual tasks. For example in computational biology, multiple organisms share a
part of their evolutionary history and thus contain related information that can
be exploited to mutually increase the quality of predictions (see, e.g., [6,7]). Fur-
ther examples of successful application domains for multi-task learning include
natural language processing [8] (each speaker giving rise to a task) or computer
vision [9,10], where multiple visual object classes may share some of the relevant
features [11].

Recently, there has been much research revolving around regularization-based
multi-task learning machines, which, given training points X = {x1, . . . ,xn} ⊂
Rd, each associated with a task t(i) ∈ {1. . . . , T }, and labels Y = {y1, . . . , yn} ⊂
{−1, 1}, for each task t ∈ {1, . . . , T } learn a linear hypothesis x �→ 〈wt,x〉 by

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 633–647, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

634 C. Widmer et al.

solving the following mathematical optimization problem:

min
w=(w1;...;wT)∈RnT

1

2
‖w‖2 + J(w) + C

n∑
i=1

l
(
yiw

�
t(i)xi

)
, (1)

where l : R → R+,0 is a convex loss function and J(w1, ...,wM) denotes an addi-
tional regularization term that promotes similarities of the hypotheses associated
to the tasks [5,12,13].

One of the most popular approaches to multi-task learning is by [14], who
have introduced a graph-based regularization framework; in this setting, each
task is represented by a node in a graph and the similarities between the tasks
are encoded via an adjacency matrix A, which can be used to promote couplings
between tasks in (1) by putting:

J(w1, ...,wM) =
1

2

∑
i

∑
j

‖wi −wj‖2Ai,j . (2)

Evgeniou, Micchelli, and Pontil [14] show that the dual of this formulation boils
down to training a standard support vector machine [15,16] using a so-called
multi-task kernel

KMTL((x, s), (x̃, t)) = ST(s, t) · 〈x, x̃〉 , (3)

where ST(s, t) is a similarity measure induced by the adjacency matrix A.
In the past, this optimization of this formulation has been addressed by

decomposition-based SVM solvers such as SVMLight [17] or LibLinear [2,1] in
conjunction with the “kernel” defined in (3). However, this strategy is subject to
serious limitations, namely large memory requirements that come from storing
the kernel matrix. These limitations allow the efficient use of multi-task learning
only for a relative small number of training examples (typically n < 20, 000, even
for a small number of tasks). For larger sample sizes, strategies such as on-the-fly
computation of kernel products must be used, which, however, can substantially
increase the execution time.

Such large-scale learning problems are frequently encountered nowadays: for
example in sequence biology, millions of examples are available from the genomes
of multiple organisms and the biological interactions to be learned are typically
very complex, so that many training examples are needed to obtain a good fit
(the lack of sufficient training data is often the main bottleneck in computational
biology and multi-task learning). In this paper, we address these limitations by
proposing a new optimization framework and giving a high-performance imple-
mentation, which is capable of dealing with millions of training points at the
same time.
In a nutshell, the contributions of this paper can be summarized as follows:

• We present a unifying framework for graph-regularized multi-task learning
allowing for arbitrary loss functions and containing, e.g., the works of [12,14]
as a special case.

Efficient Training of Graph-Regularized Multitask SVMs 635

• We give a general dual representation and use the so-obtained primal-dual
relations to derive an efficient, provable convergent optimization algorithm
for the corresponding large-margin formulation that is based on dual coor-
dinate descent.

• A variety of computational experiments on synthetic data and proven real-
world benchmark data sets as well as challenging learning problems from
computational genomics show that our algorithms outperform the state-of-
the-art by up to three orders of magnitude.

• By including the recent COFFIN framework [3] into our new methodology,
we are, for the first time, able to perform graph-based MTL training on very
large splice data set consisting of millions examples from 4 organisms.

2 A Novel View of Graph-Regularized Multi-Task
Learning

All methods developed in this paper are cast into the established framework of
graph-regularized multi-task learning (GB-MTL) outlined in the introduction.
Note that Eq (2) may be expressed as

Eq. (2) =
1

2

∑
i

∑
j

‖wi − wj‖2Ai,j =
∑
i

∑
j

wT
i wjLi,j , (4)

where L = D−A denotes the graph Laplacian corresponding to a given similarity
matrix A and Di,j := δi,j

∑
k Ai,k. The matrix A is of crucial importance here as

it encodes the similarity of the tasks. Note that the number k of zero eigenvalues
of the graph Laplacian corresponds to the number of connected components. For
the scenario that we are interested in, this will be 1, always.

2.1 Primal Formulation

Using (4), we can thus re-write our base problem (1) as follows:

Generalized Primal MTL Problem. Let x1, . . . ,xn ∈ Rm be training data
points, each denoted by a task t(i) ∈ {1, . . . , T }, and let l : R → R be a convex
loss function. Then the primal MTL optimization problem is given by

min
w1,...,wT∈Rm

1

2

T∑
t=1

‖wt‖22 +
1

2

T∑
s=1

T∑
t=1

Lstw
�
s wt + C

n∑
i=1

l
(
yiw

�
t(i)xi

)
. (5)

A first problem we face is that, when applying the standard Lagrangian for-
malism and invoking the KKT conditions, there are couplings in between the
ws and wt. Unfortunately, this hinders expressing the wt solely in terms of the
coordinate-wise gradient of the dual objective, which is the core idea behind re-
cently proposed optimization strategies in SVM research that we wish to exploit
[1]. As a remedy, in this paper, we propose an alternative approach that is based
on the following two improvements:

636 C. Widmer et al.

• First, we deploy a new dualization technique that based on the combination
of Lagrangian duality with Fenchel-Legendre conjugate functions, extending
the work of [18]. The so-obtained synergy allows us to derive the dual in a
cleaner way than it would have been using Lagrangian duality alone.

• Second, we use the “block vector view”, which—in combination with the
above improvement—allows us to formulate a representer theorem that can
be resolved for w.

As it turns out, the combination of the above two ingredients allows us to express
the weights wt in terms of the gradients of the dual objective in a very simple
way.

2.2 “Block-Vector/Matrix” View

We define w = (w�
1 , . . . ,w

�
T)

� and ψ : Rm �→ RmT is the canonical injective
mapping that maps a data point xi ∈ Rm to a vector in RmT that is zero
everywhere except at the task(i)-th block, i.e., ψ(xi) looks like as follows:

ψ(xi) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
xi

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
← t(i)-th block (6)

For example, if xi belongs to the first task, i.e. t(i) = 1, then we have ψ(xi) =
(xi, 0, . . . , 0)

�, while, if xi belongs to the last task, i.e. t(i) = T , then ψ(xi) is
is of the form: ψ(xi) = (0, . . . , 0,xi)

� .

Similarly, for a matrix B ∈ RT×T , we define

block(B) :=

⎛⎜⎝diag(b11) · · · diag(b1T)
...

...
diag(bT1) · · · diag(bTT)

⎞⎟⎠ , (7)

where diag(bst) is a diagonal matrix in Rm×m with entries bst at the diagonal
and zeros everywhere else, i.e., the resulting matrix block(B) is an element of
RmT×mT .

We can thus very elegantly write our primal problem (5) in terms of the block
notation as follows:

Generalized Primal MTL Problem (Block View).

min
w

1

2
w�block(I + L)w + C

∑
i

l
(
yiw

�ψ(xi)
)
, (8)

where I is the identity matrix in RT×T .

Efficient Training of Graph-Regularized Multitask SVMs 637

Table 1. Loss functions and regularizers used in this paper and corresponding conju-
gate functions

loss l(t) / regularizer g(w) dual loss l∗(t) / conjugate regularizer g∗(w)

hinge loss max(0, 1− t) t if −1 ≤ t ≤ 0 and ∞ else

�p-norm
1
2
‖w‖2p 1

2
‖w‖2p∗ where p∗ = p

p−1

quadratic form 1
2
w�Bw 1

2
w�B−1w

2.3 Dualization

Now, the above (block-view-) form of the MTL primal allows to derive the
Fenchel dual as follows:

Eq. (8) = min
w,t

[
1

2
w�block(I + L)w + C

∑
i

l (ti)]

s.t. ti = yiw
�ψ(xi)

Lagrange
= max

α
min
w,t

[
1

2
w�block(I + L)w

+ C
∑
i

l (ti) +
∑
i

αi

(
ti − yiw

�ψ(xi)
)
]

= max
α

[−C
∑
i

max
ti

(
−αiti

C
− l (ti)

)

−max
w

(∑
i

αiyiw
�ψ(xi)−

1

2
w�block(I + L)w

)
] .

(9)

We now make use of the notion of the Fenchel conjugate of a function f , that is
f∗(x) := supy x

�y − f(y) to derive a general dual form. Note that the Fenchel
conjugates of many functions are known from the literature (see Table 1 for
conjugates relevant for this paper; cf. [18] for further reading). For example, the

conjugate of the function f(x) = 1
2 ‖x‖2B := 1

2x
�Bx is f∗(x) = 1

2 ‖x‖2B−1 =
1
2x

�B−1x and the conjugate of the hinge loss l(t) = max(0, 1− t) is l∗(t) = t if
−1 ≤ t ≤ 0 and ∞ else.

We are now ready to proceed with the derivation:

Eq.(8) = max
α

[−max
w

(∑
i

αiyiw
�ψ(xi)−

1

2
‖w‖2block(I+L)

)
︸ ︷︷ ︸

= 1
2‖

∑
i αiyiψ(xi)‖2

(block(I+L))−1

− C
∑
i

max
ti

(
−αiti

C
− l (ti)

)
︸ ︷︷ ︸

=l∗(−αi
C)

]

= max
α

[−C
∑
i

l∗
(
− αi

C

)
− 1

2

∥∥∥∥∥∑
i

αiyiψ(xi)

∥∥∥∥∥
2

block((I+L)−1)

]

638 C. Widmer et al.

where we used the definition of the Fenchel conjugate and the fact that, clearly,
for any matrix B it holds

(block(B))−1 = block(B−1) .

We thus obtain the following MTL dual optimization problem:

General Dual MTL Problem. The dual MTL problem is given by:

max
α

−C
∑
i

l∗
(
− αi

C

)
− 1

2

∥∥∥∥∥∑
i

αiyiψ(xi)

∥∥∥∥∥
2

block(M)

(10)

where
M := (I + L)−1 (11)

2.4 Special Case: Large-Margin Learning

We can now employ specific loss functions in the primal (5) and obtain a corre-
sponding dual representations right away by plugging the Fenchel conjugate into
(10). For example, for the hinge loss, from Table 1 we obtain the conjugate of
l(t) = max(0, 1− t) is l∗(t) = t, if −1 ≤ t ≤ 0 and ∞ else. Clearly, the minimum
in (12) will never be attained for the objective being ∞ (take, e.g., w = 0 in (5)
to obtain a finite upper bound on the optimal objective) so that the left-hand
term

∑
i l

∗(− αi

C

)
translates into the hard constraints

∀i : 0 ≤ αi ≤ C .

Moreover, by (7), we have

1

2

∥∥∥∥∥∑
i

αiyiψ(xi)

∥∥∥∥∥
2

block(M)

=
1

2

T∑
s,t=1

mstw
�
s wt,

where M = (mst)1≤s,t≤T , so that we obtain the following dual problem for the
hinge loss:

Dual MTL-SVM Problem. Denote by M := (I+L)−1. Then the dual MTL-
SVM problem is given by:

max
0≤α≤C

1�α− 1

2

∥∥∥∥∥∑
i

αiyiψ(xi)

∥∥∥∥∥
2

block(M)

(12)

2.5 A Representer Theorem

By the KKT condition Stationarity, it follows from (9) that

∇w

(∑
i

αiyiw
�ψ(xi)−

1

2
w�block(I + L)w

)
= 0 ,

Efficient Training of Graph-Regularized Multitask SVMs 639

which, by (11), translates to

w =
∑
i

αiyiw
�Mψ(xi) (13)

and (recalling the definitions (6) and (7)) can be equivalently written as

wt =

n∑
i=1

mt,t(i)αiyixi. (14)

3 Optimization Algorithms

In order to solve the optimization problem (12), we define:

∀t = 1, . . . , T : vt =
∑
i∈It

αiyixi , (15)

where It ⊂ {1, . . . , n} denotes the indices of the data points of task t. We thus
associate each task t with a “virtual weight vector” v that can be expressed solely
terms of the support vectors corresponding to the respective task. Importantly,
all the information we need to compute w is contained in v := (v�

1 , . . . ,v
�
T)

�,
since by (14) holds

∀1, . . . , T : wt =
T∑

s=1

ms,tvs. (16)

If there is just a single task, as for standard SVM, i.e., T = 1 and M = I
(because L = 0), then the above definition is simply

w = v =
n∑

i=1

αiyixi ,

which is precisely the representation exploited by [1].

3.1 Derivation of the Optimization Algorithm

The basic idea of our dual coordinate descent strategy is to optimize one example
weight αi per iteration, project it onto its feasible set and then update the
corresponding parameter vector vt accordingly. In particular, we can perform
dual coordinate descent as follows: for each i ∈ {1, . . . , T } we solve

640 C. Widmer et al.

argmax
d:0≤αi+d≤C

d+ 1�α

− 1

2

T∑
s,t=1

mst

(
vs + dyixi�t(i)=s

)� (
vt + dyixi�t(i)=t

)
= argmax

d:0≤αi+d≤C
d− 1

2

(
mt(i),t(i)

∥∥vt(i) + dyixi

∥∥2
+ 2

∑
s:s�=t(i)

ms,t(i)v
�
s

(
vt(i) + dyixi

))

= argmax
d:0≤αi+d≤C

d−
(
mt(i),t(i)

(
dyiv

�
t(i)xi +

1

2
d2x�

i xi

)
+

∑
s:s�=t(i)

ms,t(i)yiv
�
s xid

)

= argmax
d:0≤αi+d≤C

d− 1

2
d2x�

i xi −
T∑

s=1

ms,t(i)yiv
�
s xid

We thus observe that for the gradient it holds

∂f(α+ dei)

∂d
= 1− dx�

i xi −
T∑

s=1

ms,t(i)yiv
�
s xi = 0

which is equivalent to

d =
1−

∑T
s=1 ms,t(i)yiv

�
s xi

x�
i xi

. (17)

Therefore, taking the needed projections onto the constraints into account, we
have the following update rule in each coordinate descent step:

αi = max

(
0,min

(
C,αi + d

))
. (18)

Note that, if there is only a single task, then L = 0 and thus M = I, where I is
the identity matrix, and we hence obtain the usual LibLinear standard update
(denoting w = v = v1):

d =
1− yiw

�xi

x�
i xi

.

The resulting training algorithm is shown in Algorithm (1).

3.2 Convergence Analysis

To prove convergence of our algorithms, we phrase the following useful result
about convergence of the (block-) coordinate descent method:

Efficient Training of Graph-Regularized Multitask SVMs 641

Algorithm 1. (Multi-task LibLinear training algorithm). Generaliza-
tion of the LibLinear training algorithm to multiple tasks.

1: input: x1, . . . ,xn ∈ Rm, t(1), . . . , t(n) ∈ {1, . . . , T}, y1, . . . , yn ∈ {−1, 1}
2: for all i ∈ {1, . . . , n} initialize αi = 0
3: for all t ∈ {1, . . . , T} put vt =

∑
i∈It

αiyixi

4: while optimality conditions are not satisfied do
5: for all i ∈ {1, . . . , n}
6: compute d according to (17)
7: store α̂i := αi

8: put αi := max(0,min(C, α̂i + d))
9: update vt(i) := vt(i) + (αi − α̂i)yixi

10: end for
11: end while
12: for all t ∈ {1, . . . , T} compute wt from v1, . . . ,vT according to (16)
13: output: w1, . . . ,wT

Proposition 1 (Bertsekas, 1999, Prop. 2.7.1). Let X =
⊗M

m=1 Xm be the
Cartesian product of closed convex sets Xm ⊂ Rdm, be f : X → R a contin-
uously differentiable function. Define the nonlinear block Gauss-Seidel method
recursively by letting x0 ∈ X be any feasible point, and be

xk+1
m = argmin

ξ∈Xm

f
(
xk+1
1 , · · · ,xk+1

m−1, ξ,x
k
m+1, · · · ,xk

M

)
, (19)

for all m = 1, . . . ,M . Suppose that for each m and x ∈ X , the minimum

min
ξ∈Xm

f (x1, · · · ,xm−1, ξ,xm+1, · · · ,xM) (20)

is uniquely attained. Then every limit point of the sequence {xk}k∈N is a sta-
tionary point.

The proof can be found in [19], p. 268-269. We can conclude the following corol-
lary, which establishes convergence of the proposed MTL training algorithm.

Theorem 1. Let l be the hinge loss. Then every limit point of Algorithm 1 is a
globally optimal point of (12).

Proof. First, note that the objective function in (12) is continuously differen-
tiable and convex. Second, we can without loss of generality replace the con-
straints 0 ≤ αi by 0 ≤ αi ≤ α∗

i for all i, where α∗ denotes the optimal solution
of (12). Thus, in order to show that the constraints form a closed set, it suffices
to show that α∗

i < ∞ for all i. To this end, we note that setting w = 0, which is a
feasible point in the primal (5), lets us conclude that the optimal primal objective
is less than or equal to o := C

∑n
i=1 l(0) = C

∑n
i=1 max(0, 1 − 0) = Cn < ∞.

Hence, denoting by w∗ the primal-optimal point, we obtain 1
2 ‖w∗‖ ≤ o and

thus, by (14), it holds 1
2 ‖

∑
i α

∗
i yiψ(xi)‖2block(M) ≤ o, so that we can conclude

that the dual objective in (12) in smaller than or equal to 2o < ∞. From the
latter, we can conclude α∗i ≤ 2o < ∞ for all i, which was sufficient to show.

642 C. Widmer et al.

4 Computational Experiments

In this section, we evaluate the runtime of our proposed dual coordinate de-
scent (DCD) algorithm (described in Algorithm Table 1), which we have im-
plemented1 (along with a LibLinear-style shrinking strategy) in C++ as a part
of the SHOGUN machine learning toolbox [4]. We compare our solver with the
state-of-the-art, that is, SVMLight (as integrated into the SHOGUN toolbox)
using the multi-task kernel (MTK) as defined in (3).2

We experiment on the following five data sets, whose data statistics are sum-
marized in Table 2:

• Gauss2D. A controlled, synthetic data set consisting of a balanced sample
from two isotropic Gaussian distributions.

• Breast Cancer. A classic benchmark data set consisting of a genetic signa-
ture of 60 genes used to predict the response to chemotherapy.

• MNIST-MTL. A multi-task data set derived from the well-known MNIST
data3 by considering the three separate tasks “1vs. 0”, “7 vs. 9”, and
“2 vs. 8”.

• Landmine. A classic multi-task data set, where the different tasks corre-
spond to detecting land mines under various conditions [20].

• Splicing. This is the most challenging data set: a huge-scale, multiple-
genomes, biological data set, where the goal is to detect splice sites in various
organisms, each organism corresponding to a task. The features are derived
from raw DNA strings by means of a weighted-degree string kernel [21].

The above data sets are taken from various application domains including com-
puter vision, biomedicine, and computational genomics, and cover many different
settings such as small and large dimensionality, various numbers of examples and
tasks. Our corpus includes controlled synthetic data as well as established real-
world benchmark data and challenging multiple-genomes splice data. The first
four data sets contain real valued data, for which we used linear kernels and
corresponding standard scalar products.

To compare our implementation with SVMLight using the multi-task kernel
(MTK), we measure the function difference

Δ :=
∣∣∣obj∗ − ôbj

∣∣∣ ,
where obj∗ the true optimal objective and ôbj the actual objective achieved by
the solver (for DCD and MTK these are primal and dual objectives, respec-
tively). The true objective obj∗ is computed up to a duality gap of < 10−10. All
experiments are performed on a 4GB AMD64 machine using a single core.

1 For implementation details, see: http://bioweb.me/mtl-dcd-solver
2 We expect very similar run times by using LIBSVM instead of SVMLight. The
runtime measurement was easier to implement in SVMLight than in LIBSVM, which
is why we chose the former in our experiments. The SVMLight timing code is specific
to our experiments and is therefore located in the ecml2012 git branch of SHOGUN,
which is available at: http://bioweb.me/mtl-dcd

3 http://yann.lecun.com/exdb/mnist/

http://bioweb.me/mtl-dcd-solver
http://bioweb.me/mtl-dcd
http://yann.lecun.com/exdb/mnist/

Efficient Training of Graph-Regularized Multitask SVMs 643

Table 2. Statistics of the data sets used in this paper

dim #examples #tasks

Gauss2D 2 1 · 105 2
Breast Cancer 44 474 3
MNIST-MTL 784 9.0 · 103 3
Land Mine 9 1.5 · 104 29
Splicing 6 · 106 6.4 · 106 4

(a) Gauss2D (b) Breast cancer

(c) MNIST-MTL (d) Land Mine

Fig. 1. Results of the runtime experiment in terms of the function difference as a
function of the execution time

The results are shown in Figure 1, where the function difference of the four
real-valued data sets is shown as a function of the execution time. First of all, we
observe that in all four cases the two solvers suffer from an initialization phase,
in which the function value improves only slowly. For Gauss2D the convergence
properties of the two methods (e.g., steepness of the decrease in function differ-
ence) are very similar, but our proposed DCD solver being up to three magni-
tudes faster. Furthermore, we observe that, for two out the four data sets, the
MTK baseline fails to decrease the function difference beyond a threshold rang-
ing from 10−2 to 10−4, while the proposed DCD algorithm nicely converges to

644 C. Widmer et al.

(a) Gauss2D

0 100 200 300 400 500
number of training examples

10
-3

10
-2

10
-1

10
0

10
1

10
2

tr
a
in

in
g
 t

im
e
 (

s
)

proposed DCD

baseline MTK

(b) Breast cancer

(c) MNIST-MTL (d) Land Mine

Fig. 2. Results of the second runtime experiment: required time to train a multi-task
SVM to a relative precision of 10−4 for various sample sizes n

a precision of 10−7 to 10−10 (cf. Figure 1 (b) – (d)). Finally, we can observe that
if we stop both algorithms at some arbitrary time point, our method tends to
output a solution that is more precise than the MTK baseline by usually several
orders of magnitudes (up to ten orders for, e.g., Gauss2D, and Breast Cancer).

In a second experiment, we measure the training time a solver needs to reach
a given precision (we chose 10−4) as a function of the training set size. The
results of this experiment are shown in Figure 2. We observe that for 3 out of
4 data sets, the proposed DCD methods requires less computation time than
the MTK solver. For the synthetic data set the difference is the most drastic,
being of the order of up to 2.5 magnitudes. Our method is outperformed by the
MTK algorithm on the landmine data set (see Subfigure 2(d)), which indicates
that our strategy is in disadvantage if the number of tasks is large relative the
number of training examples, due to the update rule given by Equation 17. We
expect the curves to cross if there are more training examples per task.

Finally, we study a very large splice data set, where the goal is to detect
splice sites in various organisms, each organism corresponding to one task. For
the MTK solver, the features are derived from raw DNA strings by means of a
weighted-degree string kernel [21] of degree 8; for the DCD solver, we combine

Efficient Training of Graph-Regularized Multitask SVMs 645

Fig. 3. Results of the large-scale splice site detection experiment

the proposed algorithmic methodology with the COFFIN framework [3] (efficient
feature hashing for high-dimensional but sparse feature spaces) as implemented
in SHOGUN [4].

The results of this experiment are shown in Figure 3. We observe that the
proposed DCD solver is capable of dealing with millions of training points, while
the MTK baseline is limited to rather moderate training set sizes of up to hun-
dreds of thousands training points. This experiment demonstrates that we are
now able to train on very large genomic sequences in reasonable time, finally
allowing for truly large-scale multi-task learning.

5 Conclusion

We have introduced a dual coordinate descent method for graph-regularized
multi-task learning. Unlike previous approaches, our optimization methodology
is based on the primal formulation of the problem. Viewing the latter in terms
of block vectors and subsequently deploying Fenchel-Legendre conjugate func-
tions, we derived a general dual criterion allowing us to plug in arbitrary convex
loss functions. We presented an efficient optimization algorithm based on dual
coordinate descent and prove its convergence. Empirically, we show that our
method outperforms existing optimization approaches by up to three orders of
magnitude.

By including the recently developed COFFIN framework [3]—which devises
feature hashing techniques for extremely high-dimensional feature spaces—into
our methodology, we are able, to train a multi-task support vector machine on
a splice data set consisting of over 1, 000, 000 training examples and 4 tasks. An
efficient C++ implementation of our algorithm is being made publicly available
as a part of the SHOGUN machine learning toolbox [4].

646 C. Widmer et al.

Our new implementation opens the door to various new applications of multi-
task learning in sequence biology and beyond, as it now becomes feasible to
combine very large data sets frommultiple organisms [22]. Our methodology may
also serve as technological blueprint for developing further large-scale learning
techniques in general: the block vector view gives insights into structured learning
problems beyond the ones studied in the present paper and, combined with our
novel dualization technique, we are able to also extend our optimization approach
to various other structured learning machines such as, e.g., structured output
prediction as proposed by [7] and block �p-norm regularized risk minimizers
(e.g., [23]).

Acknowledgements. We would like to thank Alexander Zien, who contributed
to the cancer data set and Jose Leiva for helpful discussions. This work was
supported by the German National Science Foundation (DFG) under MU 987/6-
1 and RA 1894/1-1 as well as by the European Communitys 7th Framework
Programme under the PASCAL2 Network of Excellence (ICT-216886).

References

1. Hsieh, C., Chang, K., Lin, C., Keerthi, S., Sundararajan, S.: A dual coordinate de-
scent method for large-scale linear SVM. In: Proceedings of the 25th International
Conference on Machine Learning, pp. 408–415 (2008)

2. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: A library for large
linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)

3. Sonnenburg, S., Franc, V.: Coffin: A computational framework for linear SVMs.
In: Fürnkranz, J., Joachims, T. (eds.) ICML, pp. 999–1006. Omnipress (2010)

4. Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., de Bona,
F., Binder, A., Gehl, C., Franc, V.: The SHOGUN Machine Learning Toolbox.
Journal of Machine Learning Research 11, 1799–1802 (2010)

5. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 1345–1359 (2009)

6. Schweikert, G., Widmer, C., Schölkopf, B., Rätsch, G.: An Empirical Analysis of
Domain Adaptation Algorithms for Genomic Sequence Analysis. In: Koller, D.,
Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information
Processing Systems 21, pp. 1433–1440 (2008)

7. Görnitz, N., Widmer, C., Zeller, G., Kahles, A., Sonnenburg, S., Rätsch, G.: Hier-
archical Multitask Structured Output Learning for Large-scale Sequence Segmen-
tation. In: Advances in Neural Information Processing Systems 24 (2011)

8. Collobert, R., Weston, J.: A unified architecture for natural language process-
ing: deep neural networks with multitask learning. In: Cohen, W.W., McCallum,
A., Roweis, S.T. (eds.) ICML. ACM International Conference Proceeding Series,
vol. 307, pp. 160–167. ACM (2008)

9. Jiang, Y.G., Wang, J., Chang, S.F., Ngo, C.W.: Domain adaptive semantic diffusion
for large scale context-based video annotation. In: ICCV, pp. 1420–1427. IEEE
(2009)

10. Samek, W., Binder, A., Kawanabe, M.: Multi-task Learning via Non-sparse Multi-
ple Kernel Learning. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A.,
Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 335–342. Springer,
Heidelberg (2011)

Efficient Training of Graph-Regularized Multitask SVMs 647

11. Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass
and multiview object detection. IEEE Trans. Pattern Anal. Mach. Intell. 29, 854–
869 (2007)

12. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: International Con-
ference on Knowledge Discovery and Data Mining, pp. 109–117 (2004)

13. Agarwal, A., Daumé III, H., Gerber, S.: Learning Multiple Tasks using Manifold
Regularization. In: Advances in Neural Information Processing Systems 23 (2010)

14. Evgeniou, T., Micchelli, C., Pontil, M.: Learning multiple tasks with kernel meth-
ods. Journal of Machine Learning Research 6(1), 615–637 (2005)

15. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297
(1995)

16. Müller, K.R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to
kernel-based learning algorithms. IEEE Neural Networks 12(2), 181–201 (2001)

17. Joachims, T.: Making large–scale SVM learning practical. In: Schölkopf, B., Burges,
C., Smola, A. (eds.) Advances in Kernel Methods — Support Vector Learning, pp.
169–184. MIT Press, Cambridge (1999)

18. Rifkin, R.M., Lippert, R.A.: Value regularization and Fenchel duality. J. Mach.
Learn. Res. 8, 441–479 (2007)

19. Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)
20. Xue, Y., Liao, X., Carin, L., Krishnapuram, B.: Multi-task learning for classifica-

tion with dirichlet process priors. J. Mach. Learn. Res. 8, 35–63 (2007)
21. Sonnenburg, S., Rätsch, G., Rieck, K.: Large scale learning with string kernels.

In: Bottou, L., Chapelle, O., DeCoste, D., Weston, J. (eds.) Large Scale Kernel
Machines, pp. 73–103. MIT Press, Cambridge (2007)

22. Consortium, T.W.T.C.C.: Genome-wide association study of 14,000 cases of seven
common diseases and 3,000 shared controls. Nature 447(7145), 661–678 (2007)

23. Kloft, M., Brefeld, U., Sonnenburg, S., Zien, A.: Lp-norm multiple kernel learning.
Journal of Machine Learning Research 12, 953–997 (2011)

Geometry Preserving Multi-task Metric Learning

Peipei Yang, Kaizhu Huang, and Cheng-Lin Liu

National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences,

Beijing, China 100190
{ppyang,kzhuang,liucl}@nlpr.ia.ac.cn

Abstract. Multi-task learning has been widely studied in machine learn-
ing due to its capability to improve the performance of multiple related
learning problems. However, few researchers have applied it on the im-
portant metric learning problem. In this paper, we propose to couple
multiple related metric learning tasks with von Neumann divergence. On
one hand, the novel regularized approach extends previous methods from
the vector regularization to a general matrix regularization framework;
on the other hand and more importantly, by exploiting von Neumann
divergence as the regularizer, the new multi-task metric learning has the
capability to well preserve the data geometry. This leads to more ap-
propriate propagation of side-information among tasks and provides po-
tential for further improving the performance. We propose the concept
of geometry preserving probability (PG) and show that our framework
leads to a larger PG in theory. In addition, our formulation proves to
be jointly convex and the global optimal solution can be guaranteed.
A series of experiments across very different disciplines verify that our
proposed algorithm can consistently outperform the current methods.

Keywords: multi-task learning, metric learning, geometry preserving.

1 Introduction

Metric learning has been widely studied in machine learning due to its impor-
tance in many machine learning tasks [6,10]. The objective of metric learning
is to learn a proper metric function from data, usually a Mahalanobis distance
defined as dA(x,y) =

√
(x− y)�A(x − y), while satisfying certain extra con-

straints called side-information, e.g., similar (dissimilar) points should stay closer
(further). On the other hand, multi-task learning (MTL), which refers to the
joint training of multiple problems, has recently received considerable atten-
tion [4,8,11]. If the different problems are closely related, MTL could lead to
better performance by propagating information among tasks.

Despite their importance, there are few researches combining multi-task learn-
ing with metric learning. To our best knowledge, only recently [8], [12], and [11]
developed a multi-task metric learning framework separately. [8] proposed a novel
multi-task framework called mtLMNN which directly extends the famous metric
learning method Large Margin Nearest Neighbor (LMNN) [10]. Assuming the

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 648–664, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Geometry Preserving Multi-task Metric Learning 649

metric of each task to be a combination of a common and a task-specific metric,
mtLMNN proposed to learn the metrics jointly for all the tasks. Exploiting fur-
ther the Frobenius norm as the regularization term to encourage the similarity
among all tasks, mtLMNN indeed showed promising performance in several real
datasets. On the other hand, [12] first concatenated all columns of each Maha-
lanobis matrix At for each task t to form a vector Ãt = vec (At). Tasks are then
coupled with each other by tr

(
ÃΩ−1Ã�

)
where Ã = [vec (A1) , . . . , vec (AT)].

The author explained this method from a probabilistic viewpoint while failing
to validate it empirically. In another aspect, [11] assumed that the useful infor-
mation of all tasks share a common low-rank subspace. By jointly learning the
metrics in this common subspace, the performances of all tasks are improved.

All the above methods have some limitations. When describing the task re-
lationship, the former two methods exploited merely simple vector-based diver-
gence measures. More specifically, if we concatenated all columns of each matrix
as a vector, in [8], Frobenius norm between two matrices simply presents the Eu-
clidean distance, while, in [12], the divergence is given as the weighted Euclidean
distance. Vector-based divergence may not be powerful enough to measure the
relationship between matrices or distance metrics. It cannot preserve the data
geometry and will lead to inaccurate information propagation among tasks. For
[11], since the formulation is not convex, the global optimal solution is not guar-
anteed. Besides, the assumption is too strict in some cases.

For a better illustration of the above mentioned phenomenon, we show in
Fig. 1 three graphs associated with different distance metrics, determined by
a Mahalanobis matrix B, A1, and A2 respectively for each graph (from left to
right). To visualize the Mahalanobis metric in the Euclidean space, we transform
each point xi to x̂i = A1/2xi when plotting so that the Euclidean distance of any
pair of transformed points ‖x̂i − x̂j‖2 is exactly the Mahalanobis distance of the
original points dA(xi,xj). Geometrically observed, the metric A2 is obviously
more similar to B than to A1. However, when calculating the similarity using
the squared Frobenius norm of difference, surprisingly, A1 is more similar to B
than to A2! This shows that minimizing Frobenius norm cannot preserve the
geometry and hence it may not be appropriate for measuring the divergence of
metrics.

Distinct with the above methods, in this paper, we engage the Bregman matrix
divergence [3] and design a more general regularized framework for multi-task

Fig. 1. Illustration of Frobenius norm for metric measurement. Using Frobenius norm,
B is more similar to A1 than to A2, showing that Frobenius norm cannot preserve the
geometry.

650 P. Yang, K. Huang, and C.-L. Liu

metric learning. On one hand, the general framework exploited a more general
matrix divergence. We show that it naturally incorporates mtLMNN (using the
Frobenius norm) as a special case. On the other hand and more importantly, by
exploiting a special Bregman divergence called von Neumann divergence [3] as
the regularizer, the new multi-task metric learning has the capability to well pre-
serve the geometry when transferring information from one metric to another.
We define the geometry preserving probability and provide theoretical analysis
showing that our new multi-task metric learning method leads to a larger geom-
etry preserving probability and has the capability to better preserve geometry.
This enables more appropriate information propagation among tasks and hence
provides potentials for further raising the performance. In addition to the geom-
etry preserving property, the new multi-task framework with the von Neumann
divergence remains convex, provided that any convex metric learning is used.
The novel regularized multi-task metric learning framework is then justified in
the probabilistic view point with a series of theoretical analysis. Extensive ex-
perimental results across very different disciplines also verify that our proposed
algorithm can consistently outperform the current methods.

The rest of this paper is organized as follows. In Section 2, we will present the
novel multi-task metric learning framework with Bregman matrix divergence.
In Section 3, we present theoretical analysis to show our method can indeed
preserve the geometry. In Section 4, we evaluate our method across five real
data sets. Finally, we give concluding remarks in Section 5.

2 Novel Regularized Multi-task Metric Learning

In this section, we first present the problem definition and describe the objective
of multi-task metric learning formally. Then the concept of geometry preserv-
ing probability is proposed to give a mathematical measure of the capability
to preserve the relative distance between two metrics. After that, we introduce
the main work that exploits von Neumann divergence to regularize the relation-
ship among multiple tasks. Finally, we present a practical algorithm to solve the
involved optimization problem.

2.1 Problem Definition

A metric defined on set X is a function d : X × X → R+
.
= [0,+∞) satisfying

certain conditions [2]. Denoting the set containing all metrics by FX and given
any pair of metrics dA(·, ·), dB(·, ·) ∈ FX, a divergence function D : FX × FX →
R+ is defined to measure the dissimilarity of dA and dB. Since the Mahalanobis
metric dA(·, ·) is ultimately determined by the Mahalanobis matrix A, we denote
D(dA, dB) � D(A,B) for short.

Assume that there are T related metric learning tasks. For each task-t, its
training data set St contains Nt m-dimensional data points xtk ∈ Rm and
a triplet set Tt = {(i, j, k)|d(xi,xj) ≤ d(xi,xk)}. These triplets provide side-
information like relative constraints such that xi is more similar to xj than

Geometry Preserving Multi-task Metric Learning 651

to xk under the new metric.1 The objective of multi-task metric learning is to
learn T proper Mahalanobis matrices At, t = 1, 2, . . . T jointly and simultane-
ously. This is significantly different from single-task metric learning where the
Mahalanobis matrix is learned independently and isolatedly.

The advantages of learning multiple metrics jointly can be illustrated in Fig. 2
where the famous single task metric learning method LMNN [10] is adopted. As-
sume different colors indicate the labels of samples and the points with (without)
a black border represent training (testing) samples. LMNN attempts to learn a
new metric to encourage the neighborhood around every point to stay “pure”.
For each point, some points with the same label are selected as targets (�)
and any point with different label is expected to stand further than each tar-
get with a large margin (the dashed perimeter). Points with different label and
lying within the margin are called imposers (�). The objective of LMNN is to
pull the target nearer and push all imposers outside the margin. Fig. 2(b)/2(f)
show the learned metric of task-1/2 where the red/green imposers are pushed
away. Unfortunately, when the training samples of green/red class are too few
to represent the distribution, some testing samples invade the perimeter in the
learned metric of task-1/2. However, as shown in Fig. 2(a) and 2(e), the samples
in both tasks have a similar distribution to each other and we expect to improve
the performance of both two tasks with help of each other. Appropriate joint
metric learning of task-1 and task-2 can lead to an ideal metric for each task.
For example, in Fig. 2(c)/2(g), the metric of task-1/2 can be well learned based
on our novel geometry preserving framework by pushing away green/red classes
with the help of task-2/1 samples. On the other hand, inappropriate multi-task
metric learning may not lead to good performance. See Fig. 2(d)/2(h) for ex-
ample, where the side-information is propagated by squared Frobenius norm of
difference of Mahalanobis matrices as mtLMNN did.

2.2 Geometry Preserving between Metrics

In Section 2.1, we have illustrated that jointly learning multiple related metrics
could benefit from the geometry preserved from other metrics. In the follow-
ing, we will propose the mathematical description of the concept of geometry
preserving.

Since the purpose of metric learning is to refine the distances among different
points based on the side-information, when we mention propagating information
among tasks by jointly learning multiple metric learning tasks, the information
propagated is nothing but the side-information embedded in the metric. On the
other hand, in most situations, the side-information specifies the relative dis-
tances between different pairs of points rather than their exact distances. For
example, one popular kind of side-information is to make similar pairs nearer
than dissimilar pairs. Thus, it is more important to propagate the relative dis-
tance of points from one task to another. Specifically, assume that we have two

1 Other settings, e.g., the constraints given by similar and dissimilar pairs could be
also used.

652 P. Yang, K. Huang, and C.-L. Liu

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. An illustration of multi-task metric learning. (a/e) The original data of task
1/2. (b/f) The data of task 1/2 after single task metric learning. (c/g) The data of task
1/2 after joint metric learning using von Neumann divergence as regularizer. (d/h) The
data of task 1/2 after joint metric learning using squared Frobenius norm of difference as
regularizer. Joint learning of multiple tasks (given by our proposed geometry preserving
framework) can lead to ideal metrics for both task-1 in (c) & task-2 in (g).

metric learning tasks to learn Mahalanobis matrices A and B respectively. Given
dB(x1,x2) < dB(x3,x4), if we are going to propagate this side-information em-
bedded in dB to dA, it is desirable of dA to make the similar judgement on the
relative distance of these two pairs of points, i.e. dA(x1,x2) < dA(x3,x4). In
contrast, the exact absolute values of these distances are less important.

Based on the idea, we propose the concept of geometry preserving probability
to measure the probability of that the relative distance of arbitrary two pairs of
points can be preserved or be consistent for the two metrics.

Definition 1 (Geometry Preserving Probability). Suppose x1,y1 ∈ X and
x2,y2 ∈ X are two pairs of random points following certain distribution defined
by probability density f(x1,y1,x2,y2). If two metrics dA and dB defined on
X are used to compare the distances between each pair of points d(x1,y1) and
d(x2,y2), the probability that dA and dB make the same judgement about their
relative distance is called geometry preserving probability of dA and dB with
f . It is denoted by PGf (dA, dB) with mathematical description shown in (1).

PGf (dA, dB) =P [dA(x1,y1) > dA(x2,y2) ∧ dB(x1,y1) > dB(x2,y2)] +

P [dA(x1,y1) < dA(x2,y2) ∧ dB(x1,y1) < dB(x2,y2)]
(1)

where (x1,y1,x2,y2) ∼ f and ∧ represents the logical “and” operator.

By this definition, the larger PGf (dA, dB) is, the better the geometry is preserved
from dB to dA. In the following parts, we will propose our multi-task metric

Geometry Preserving Multi-task Metric Learning 653

learning framework and then present the theoretical analysis, which shows that
our method is more liable to make PGf (dA, dB) larger and thus can better
preserve geometry. In contrast, mtLMNN focus more on propagating the absolute
distances and could not leads to a large PG as ours.

2.3 Main Framework

We describe our novel multi-task metric learning framework as follows. Assume a
common metric dc is defined and the metric of each (the t-th) task dt is enforced
to be similar to dc by a regularizer D(dt, dc). Information contained in each
metric can be propagated to others through the common metric. In case of the
Mahalanobis metric, the regularizer can be also written as D(At, B), where the
matrices At and B correspond to the t-th task and the common one respectively.
The novel framework can be formulated as

min
{At},B

∑
t

(L(At,St) + γD(At, B)) + γ0D(A0, B) s.t. At ∈ C(St), At $ 0, (2)

where L is the loss function of the training samples of the t-th task St depending
on the metric learning method, D is the divergence function to enforce the metric
of the t-th task At similar to a common metric B, and C(St) is the set of feasible
At of the t-th task, which can be defined via side-information or the triplet set
Tt. The term D(A0, B) restricts B not far from a predefined metric A0 as prior.

In this paper, we propose a framework to use the Bregman matrix diver-
gence [3] as the regularizer D(A,B) in (2), which is defined as

Dφ(A,B) = φ(A) − φ(B)− tr
(
(∇φ(B))�(A−B)

)
,

where φ : SPD(m) → R is a strictly convex, differentiable function.
It is easy to show that this framework includes mtLMNN as a special case

by using φ(A) = ‖A‖2F and replacing At $ 0 with At $ B $ 0. However, this
method has two main drawbacks: (1) The constraints At $ B are unnecessarily
strong for At to be a Mahalanobis matrix, which implies distance of any task
has to be larger than the distance defined by the common part. (2) It is not
appropriate to use Frobenius norm as the regularizer, since it cannot preserve
the data geometry.

To overcome these drawbacks, we use the von Neumann divergence as the
regularizer and obtain our multi-task metric learning method, where the von
Neumann divergence is defined as DvN(A,B) = tr (A logA−A logB −A+B),
where logA is the matrix logarithm2 of A.

Using our method to learn a metric A that is assumed to be similar to B, it
is more liable to obtain a solution with better geometry property preserved. We
will detail the theoretical analysis in Section 3.

2 If A = V ΛV � is the eigendecomposition of A, the matrix logarithm is V logΛV �

where logΛ is the diagonal matrix containing the logarithm of eigenvalues.

654 P. Yang, K. Huang, and C.-L. Liu

An example. Now we revisit the example proposed in Fig. 2 where single-task
metric learning fails to learn a good metric for any task. Fig. 2(c) and 2(d) show
the data of task-1 in the metric learned using von Neumann divergence and
Frobenius norm as regularizer respectively. Obviously, when Frobenius norm is
used, although red points are pushed away, some testing points of green class
invade into the margin again and the geometry has not been preserved. In con-
trast, when von Neumann divergence is used, both testing samples of red and
green class are pushed outside the perimeter, which means the nice geometry
property from task-2 is appropriately preserved after transferred to task-1. For
task-2 shown in Fig. 2(g) and 2(h), von Neumann divergence also performs better
than Frobenius norm.

Optimization. Since von Neumann divergence is jointly convex with two ar-
guments [9], our multi-task metric learning method is jointly convex with its
arguments if L is convex with At. This means that any convex metric learning
method can be extended to our multi-task framework without losing its con-
vexity. Therefore, it guarantees a global optimal solution and we solve it by
alternating minimization method. Due to the convex, differentiable, and non-
negative properties of von Neumann divergence, it is not difficult to verify the
convergence of our algorithm.

Fix B and Optimize At. Suppose that L is convex with At, then the op-
timization is divided to T individual convex subproblems, each of which is a
single-task metric learning problem with a regularizer. In this paper, we apply
our multi-task framework to LMNN [10] metric learning approach which proved
effective in many applications.

The subproblem for the t-th task can be solved by gradient descent method
with ∂L̃t

∂At
= ∂L

∂At
+γ ∂DvN

∂At
= ∂L

∂At
+γ(logAt− logB). The first part is the gradient

of a single-task metric learning problem, while the second part enforces At to be
similar to a common matrix B.

Fix At and Optimize B. If all At are fixed, the variable to be optimized is B.
With [1], the optimal solution of B is called the Bregman representative in case
of matrix variables. It is straightforward to prove that Proposition 1 of [1] can
be extended to the case of matrix and the minimizer is the weighted average of
{At} and A0 as B = (γ

∑
tAt + γ0A0)/(γT + γ0).

3 Theoretical Analysis

In this section, we analyze our multi-task metric learning method theoretically,
showing how the von Neumann divergence encourages a larger geometry preserv-
ing probability and thus preserves geometry better. To this end, we firstly define
an operator ρ called scale extractor to transform a metric to a vector called scale
vector, which characterizes the important scale property of the metric. Since the
scale vector is much more convenient to deal with than the metric which is a
function, it provides a tool to bridge the von Neumann divergence and geometry

Geometry Preserving Multi-task Metric Learning 655

preserving probability. We establish such a relationship in three steps: (1) The
geometry preserving probability monotonically decreases with a function of scale
vectors R(A,B). (2) For any orthonormal basis W and two Mahalanobis metrics
dA, dB, the KL-divergence of ρW (A) and ρW (B) is bounded by the von Neumann
divergence of A and B. (3) Minimizing DKL(ρW (A), ρW (B)) has the effect to
minimize R(A,B) and thus encourages larger geometry preserving probability
PGf (A,B). These steps are discussed in detail in the following subsections.

3.1 Basic Definitions

Our motivation comes from the following fact. Given any pair of points ∀x,y ∈ X,
if two metrics dA and dB are similar, then the distances they give dA(x,y) and
dB(x,y) are expected to be similar. It provides a way to measure the similarity
between two metrics by comparing the distances they give for a certain pairs
of points instead. Motivated by this, we can use a vector to characterize the
properties of a metric and transform some problems from the intricate functional
space FX to a much simpler vector space. Based on this idea, we propose the
following definitions.

Definition 2 (Scale). Given any metric d : X × X → R+ and a unit vector
w ∈ X where ‖w‖ = 1, the squared distance d2(w,0) is defined as the scale of
d on w.

Since Mahalanobis metric determines a series of scales on different directions,
the essential objective of metric learning is to redefine these scales with side-
information so that a certain constraints are satisfied. Due to the translation-
invariant property of Mahalanobis metric, we always translate x to the original
and briefly denote dA(x,y)

.
= dA(z) where z = x− y and thus the scale of d on

z is briefly denoted as d2(z).

Definition 3 (Scale Extractor). Define the operator ρW : FX → Rn which
transforms a metric d to a vector consisting of the scales of d on a group of
vectors Wm×n = [w1 w2 . . . wn] as scale extractor:

ρW (d) =
[
ρw1(d) ρw2(d) . . . ρwn(d)

]�
=

[
d2(w1) d

2(w2) . . . d
2(wn)

]�
The vector ρW (d) is called the scale vector of d on W .

Given any W , the more similar dA and dB are, the more similar ρW (dA)
and ρW (dB) should be. Since ρW (dA) and ρW (dB) are just real vectors, the
divergence between them is much easier to estimate and has an explicit sense
as metric definition for the same points. Therefore, it can be used to define
D(dA, dB) with proper W .

When estimating the divergence of two metrics dA, dB ∈ FX, a natural choice
of W is an orthonormal basis of X because they represent the scales of dA on
different directions. Then, by enforcing ρW (dA) and ρW (dB) to be similar, we
can make the scales of dA and dB on different directions similar. As we have
indicated, in metric learning problems, we hope them to be similar in the sense

656 P. Yang, K. Huang, and C.-L. Liu

of the same relative distances. In next subsections, we will show that if we
choose KL-divergence of ρW (dA) and ρW (dB) as the regularizer, it has the effect
to encourage a larger geometry preserving probability for dA and dB.

3.2 Enlarging PGf (dA, dB) by Minimizing R(A,B)

In this subsection, we show that the geometry preserving probability monoton-
ically decreases with a function of scale factor vectors of two metrics, which
couples the complicated defined probability with a simpler property of metric.
As we have shown in Section 2.2, the geometry preserving property is mathe-
matically measured by the geometry preserving probability PG, whose original
definition is intractable, though. In following, we propose the relationship be-
tween PG and the scale vectors which correlates PGf (dA, dB) with the property
of dA and dB.

For convenience of calculating PG, we first define the geometry preserving
indicator. In the following discussion, we always denote zi = xi − yi as the
difference of two points.

Definition 4 (Geometry Preserving Indicator). The Geometry Preserv-
ing Indicator ΨA,B(x1 − y1,x2 − y2) = ΨA,B(z1, z2) is a function that takes two
metrics dA, dB as parameters and two differences of two pairs of points as vari-
ables. We use dA and dB to calculate the distances of the two pairs of points and
then compare which pair is relatively further. Then Ψ = 1 if the two metrics give
the same judgement and Ψ = 0 otherwise. Mathematically, it is

ΨA,B(z1, z2) =1 [(dA(z1) > dA(z2)) ∧ (dB(z1) > dB(z2))] +

1 [(dA(z1) < dA(z2)) ∧ (dB(z1) < dB(z2))]

where 1[E] is the indicator function which equals to 1 if the logical expression E
holds and 0 otherwise.

Noting that any f(x1,y1,x2,y2) uniquely determines a probability density
f̃(x1 − y1,x2 − y2) = f̃(z1, z2) for the differences, the geometry preserving
probability PGf (dA, dB) can be calculated as an integral on the whole space

PGf (dA, dB) =

∫∫
Rm×Rm

ΨA,B(z1, z2)f̃(z1, z2)dz
(1)
1 . . . dz

(m)
1 dz

(1)
2 . . .dz

(m)
2

(3)
Then we propose the theorem to couple geometry preserving probability with
scales.

Theorem 1 (Geometry Preserving Theorem). Suppose that there are two
pairs of random points x1,y1 ∈ Rm and x2,y2 ∈ Rm following probability den-
sity f(x1,y1,x2,y2). Given any dB ∈ FRm , the geometry preserving probability
PGf (dA, dB) is determined by dA ∈ FRm and monotonically decreases with

R(A,B) =

∫∫
Sm−1×Sm−1

Rw1,w2(A,B)dΩ(w1)dΩ(w2) (4)

Geometry Preserving Multi-task Metric Learning 657

where

Rw1,w2(A,B) =

∣∣∣∣∣
√

ρw2(A)

ρw2(B)
−

√
ρw1(A)

ρw1(B)

∣∣∣∣∣ ·
(√

ρw1(A)

ρw2(B)
+

√
ρw2(A)

ρw1(B)

)−1

, (5)

dΩ(wi) is the solid angle element corresponding to the direction of wi which
contains all the angular factors3 [5], and Sm−1 = {x ∈ Rm | ‖x‖ = 1} is the
(m − 1)-dimensional unit sphere in Rm. The integration is calculated on Sm−1

for both w1 and w2.

We interpret the theorem slightly before proof. The integration (3) is taken on
all the solid angle values and independent of the radius, which implies that the
values of Rw1,w2(A,B) corresponding to each pair of directions of w1 and w2

are integrated to get R(A,B). Thus, if we make Rw1,w2(A,B) smaller for each
pair of directions, we can get a smaller R(A,B) and a larger PGf (dA, dB) as we
expected. What is better, this relation is independent of the distribution f . To
prove the theorem, we first present a lemma.

Lemma 2. Suppose there are two pairs of random points x1,y1 ∈ Rm and
x2,y2 ∈ Rm. For each pair, the difference zi = xi − yi lies in a 1-dimensional
subspace Xi which means there exists a unit vector wi ∈ Xi and a random real
number ri so that zi = riwi. Then for any Mahalanobis metrics dB ∈ FRm , the
geometry preserving probability PGf (dA, dB) is determined by dA ∈ FRm and
monotonically decreases with Rw1,w2(A,B) defined in (5).

Proof. Due to the translation-invariant property of dA and dB, for ∀i = 1, 2, we
have d2A(xi,yi) = r2iw

�
i Awi = r2i ρwi(A), thus the squared distance d2A equals

to the weighted scale on wi with weight r2i . Similarly, d2B(xi,yi) = r2i ρwi(B). It
is straightforward to show that

dA(x1,y1) > dA(x2,y2) ⇔ |r1/r2| >
√
ρw2(A)/ρw1(A) (6)

which also holds for B. Denote r = [r1 r2]
� and substitute (6) into ΨA,B, then

PG can be reformulated as a function of r

PGf (dA, dB) =

∫∫
R+×R+

ΨA,B(r1w1, r2w2)f̃(r1, r2)dr1dr2 =

∫
SI∪SII

f̃(r)dr

(7)
where f̃(r) is the probability density of r determined by f(x1,y1,x2,y2), and

SI =
{
r | |r1/r2| > max

{√
ρw2(A)/ρw1(A),

√
ρw2(B)/ρw1(B)

}}
,

SII =
{
r | |r1/r2| < min

{√
ρw2(A)/ρw1(A),

√
ρw2(B)/ρw1(B)

}}
,

The integral field is illustrated as the green part in Fig. 3. Since the probability
density f̃(r) is non-negative anywhere and the border corresponding to dB is
3 For example, for m = 2, dΩ(wi) = dθ which is independent of wi; for m = 3,
dΩ(wi) = sin θdθdϕ where w(1)

i = cos θ, w
(2)
i = sin θ cosϕ,w

(3)
i = sin θ sinϕ.

658 P. Yang, K. Huang, and C.-L. Liu

fixed, PG monotonically decreases with |ω|, where ω is the angle between the
two borders determined by ρW (A) and ρW (B). Then, we have

|ω| =
∣∣∣arctan√ρw2(A)/ρw1(A)− arctan

√
ρw2(B)/ρw1(B)

∣∣∣
=arctan

∣∣∣∣∣
√
ρw2(A)/ρw1(A)−

√
ρw2(B)/ρw1(B)

1 +
√
ρw2(A)ρw2(B)/

√
ρw1(A)ρw1(B)

∣∣∣∣∣ = arctanRw1,w2(A,B)

where Rw1,w2(A,B) is the ratio shown in (5). Since arctan is a monotony increas-
ing function and PGf (dA, dB) monotonically decreases with |ω|, the conclusion
that PGf (dA, dB) monotonically decreases with Rw1,w2(A,B) is proved. ��

−10 −5 0 5 10
−10

−5

0

5

10

r
1

r 2

r1
r2

=

√
ρw2

(A)

ρw1
(A)

r1
r2

= −

√
ρw2

(A)

ρw1
(A)

r1
r2

=

√
ρw2

(B)

ρw1
(B)

r1
r2

= −

√
ρw2

(B)

ρw1
(B)

ω

S
I

S
II

S
I

S
II

Fig. 3. Integral domain

(a) KL-divergence (b) Euclidean distance

Fig. 4. Gradient field of Dϕ(ρW (A), ρW (B)).

Proof (Theorem 1). Denote zi = riwi where wi is a unit vector and ri is the
length of zi, then the volume element is dz(1)i . . . dz

(m)
i = rm−1

i dri dΩ(wi), where
dΩ(wi) is the solid angle corresponding to the direction wi.∫∫
Sm−1×Sm−1

∫∫
R+×R+

ΨA,B(r1w1, r2w2)f̃(r1w1, r2w2)r
m−1
1 rm−1

2 dr1dr2dΩ(w1)dΩ(w2)

(8)
Note that for any fixed w1,w2, the inner integration is just (7) discussed in
case of Lemma 2 if f̃(r1w1, r2w2)r

m−1
1 rm−1

2 is regarded as the unnormalized
probability density function4 of (r1, r2). Thus, replacing the inner integration
of (8) with (5) and using Lemma 2, we get the conclusion that the geometry
preserving probability PGf (dA, dB) monotonically decreases with (4). ��

Remarks. Note that if dA and dB are learned simultaneously, PG is not guar-
anteed to strictly monotonically decrease with (4) because R(A,B) also depends
on f . However, if we have little information about f , a smaller (4) also leads to
a larger PG in most cases.
4 By the proof of Lemma 2, the conclusion also holds if f is unnormalized.

Geometry Preserving Multi-task Metric Learning 659

3.3 Bounding the KL-divergence with von Neumann Divergence

In this subsection, we show that by minimizing the von Neumann divergence of
two Mahalanobis matrices, the KL-divergence [3] of scales on any pair of direc-
tions is minimized. This result is shown in Theorem 4 where the KL-divergence
is defined as DKL(x,y) =

∑
i xi(log xi − log yi)− xi + yi.

The main result Theorem 4 is supported by Lemma 3, a result very similar
to that in quantum information [7]. We have to omit the detailed proof due to
the limit of space and present only the results. We found that it can be proved
in the similar way as [7].

Lemma 3. For any trace preserving map [7] Φ, given by Φ(A) =
∑n

i=1 ViAV
�
i

and
∑n

i=1 V
�
i Vi = Im, we have that DKL (Φ(A), Φ(B)) ≤ DvN(A,B).

Theorem 4. Suppose dA, dB ∈ FRm are two Mahalanobis metrics defined on
Rm, then for any orthonormal basis W = [w1 . . . wm] in Rm, the KL-divergence
of their scale vectors ρW (A) and ρW (B) is bounded by the von Neumann
divergence of their Mahalanobis matrices A and B: DKL(ρW (A), ρW (B)) ≤
DvN(A,B).

Proof. For any orthonormal basis W = [w1 . . . wm], we have

DKL (ρW (A), ρW (B)) =
∑
i

DKL(w
�
i Awi,w

�
i Bwi)

=
∑
i,j

(w�
i wj)

2DKL(w
�
i Awi,w

�
j Bwj)

=DvN(
∑
i

WiAW
�
i ,

∑
i

WiBW�
i) ≤ Dφ(A,B)

where Wi = wiw
�
i . The third equality is the decomposition of Bregman matrix

divergence [3] and the last inequality results from Lemma 3. ��

Using Theorem 4, it is easy to show that minimizing DvN(A,B) has the ef-
fect to minimize DKL(ρw(A), ρw(B)) on any direction w. Interestingly, when
D(A,B) = ‖A − B‖2F is used, a similar result can be attained using simple
matrix calculation. We propose it in Theorem 5 and omit the proof.

Theorem 5. Suppose dA, dB ∈ FRm are two Mahalanobis metrics defined on
Rm, then for any orthonormal basis W = [w1 . . . wm] in Rm, the squared Eu-
clidean distance of their scales ρW (A) and ρW (B) is bounded by the squared
Frobenius norm of the difference of their Mahalanobis matrices A and B:
‖ρW (A)− ρW (B)‖2 ≤ ‖A−B‖2F .

In the language of Bregman divergence, the results of Theorem 4 and Theorem 5
can be uniformly formulated as Dϕ(ρW (A), ρW (B)) ≤ Dφ(A,B), where Dϕ and
Dφ are Bregman divergence and Bregman matrix divergence with the same seed
function (φ = ϕ ◦ λ). However, this result cannot be straightforwardly extended
to other Bregman divergences.

660 P. Yang, K. Huang, and C.-L. Liu

3.4 Minimizing Rw1,w2(A,B) by Minimizing DKL(ρW (A), ρW (B))

As we have proved that minimizing DvN(A,B) is to minimize
DKL(ρW (A), ρW (B)) for any W , in this subsection, we then show that it
furthermore encourages a smaller R(A,B) in (4) and thus a larger PG(A,B)
by Theorem 1.

Supposing there is a metric learning problem5 minA L(A,S) whose optimal
solution is Ã, we have ∇AL |Ã= 0. If there exists a related task with optimal
solution B and we would like to propagate the information embedded in B to A,
the optimization formula becomes minA L(A,S)+γDvN(A,B) where a new loss
function is added to L and the optimal solution should move to another point
with a smaller loss. Obviously, it always moves towards the negative gradient
direction where the loss is smaller.

Here we study how ρW (A) is effected by the regularizer for any given W .
As we have shown, when DvN(A,B) is added to loss function, it aims to min-
imize DKL(ρW (A), ρW (B)) and thus ρW (A) is more liable to move towards
−∇DKL(ρW (A), ρW (B)). The gradient of DKL with respect to ρW (A) is

∇DKL = [log(ρw1(A)/ρw1(B)) . . . log(ρwn(A)/ρwn(B))]
�
.

By its formulation, the gradient on each direction wi is proportional to the loga-
rithm of the ratio of scales on wi. This means that the regularizer always enforces
the component ρwi(A) with larger ρwi(A)/ρwi(B) decreases more quickly, which
encourages the ratios of scales ρwi(A)/ρwi(B) on different wi equal.

Noting that the numerator of Rw1,w2(A,B) in (5) is the absolute value of dif-
ference of the ratios of scales on two directions, encouraging ρw1(A)/ρw1(B) =
ρw2(A)/ρw2(B) to be equal is to minimize Rw1,w2(A,B). Thus the main con-
clusion of this subsection can be proposed as

Proposition 1. For any n unit vectors W = [w1 . . . wn] ∈ Rm×n, the
regularizer minρW (A) DKL(ρW (A), ρW (B)) encourages the solution to make
Rwi,wj (A,B) smaller for ∀i, j.

In contrast, if D(A,B) = ‖A − B‖2F is used, the equivalent regularizer is
‖ρW (A) − ρW (B)‖2. It encourages the differences of scales (ρwi(At)− ρwi(B))
on different wi equal, which is not beneficial to minimizing Rwi,wj (A,B).

This phenomenon is illustrated with the contour and gradient field in Fig. 4
where the red line represents the points with the same ratio of scales. The con-
centric circles are contours of Dϕ(ρW (A), ρW (B)) and the radial lines are field
lines of its negative gradient where the tangent direction at any point of the line
indicates −∇ρW (A)Dϕ(ρW (A), ρW (B)). Minimizing Dϕ(ρW (A), ρW (B)) with re-
spect to ρW (A) will make the solution move along the gradient field lines because
it directs to the steepest descendent direction. From this figure, we see that the
field lines in Fig. 4(a) are more liable to go towards the red line, which makes
the solution of ρw1(A)/ρw1(B) more similar to ρw2(A)/ρw2(B).

5 The constraints can be reformulated into loss function using Lagrangian multiplier.

Geometry Preserving Multi-task Metric Learning 661

3.5 Summary

As a short summary of previous theoretical analysis, we have Proposition 2 for
our multi-task metric learning framework.

Proposition 2 (Geometry Preserving with von Neumann divergence).
When the von Neumann divergence is minimized, the KL-divergence of the scales
on different directions is minimized. This makes a smaller Rw1,w2(A,B) for
any pair of directions and thus a smaller R(A,B), further leading to a larger
PGf (dA, dB) by Theorem 1. In short, von Neumann divergence DvN(A,B) en-
courages a larger PGf (A,B) and can thus better propagate the side-information
about relative distance.

4 Experiments

In this section, we conduct a series of experiments to validate the advantages of
our proposed approach. In our experiments, we choose LMNN [10] as the metric
learning algorithm for all methods which determines the loss function L in (2).
For brevity, we call our proposed multi-task metric learning with von Neumann
divergence as mt-von, while the method proposed in [8] is written in short as
mt-Frob (also called mtLMNN). We compare them with three baseline methods:
the Euclidean metric, the single-task metric learning (in short stLMNN) and the
uniform task metric learning (in short utLMNN). stLMNN means that a metric
is learned for each task independently, while utLMNN puts the samples of all
tasks together and train a uniform metric for all tasks.

We learn a specific metric using different methods. According to the distances
calculated based on the learned metric, we use 1-Nearest Neighbor as the final
classifier to predict the label of a new test sample. If all tasks share a common
label space, which is referred as the label-compatible scenario [8], we also evaluate
with the pooled training sets [8] at the classification phase. This special classifi-
cation setting is called mtpool-von or mtpool-Frob, depending on the regularizer.
We also report the performance of nearest neighbor using the Euclidean distance
(in short Euclidean) as the baseline. We tune the hyper-parameters involved in
LMNN by cross validation.

We evaluate the above mentioned methods on five real data sets obtained from
very different disciplines. (1). Handwritten Letter Classification dataset6
consists of 8 binary handwritten letter classification problems. Each classification
problem is regarded as one task. Some randomly selected samples are used to
train a metric while the remaining for test. (2). USPS digit dataset7 consists of
7,291 16× 16 grayscale images of digits 0 ∼ 9. For each digit, we can get a two-
class classification task in which the samples of this digit represent the positive
patterns and the others negative patterns. (3). Isolet dataset8 was collected from
150 speakers uttering all characters in the English alphabet twice. The task is
6 http://multitask.cs.berkeley.edu/
7 http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
8 Available from UCI Machine Learning Repository.

http://multitask.cs.berkeley.edu/
http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html

662 P. Yang, K. Huang, and C.-L. Liu

5 10 15 20

0.4

0.45

0.5

0.55

Ratio of training samples used

E
rr

or

(a) Vowel

5 10 15 20

0.1

0.15

0.2

0.25

Ratio of training samples used

E
rr

or

(b) Isolet

5 10 15 20
0.05

0.1

0.15

0.2

0.25

0.3

Ratio of training samples used

E
rr

or

(c) USPS

5 10 15 20
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Ratio of training samples used

E
rr

or

(d) Handwritten

5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

Ratio of training samples used

E
rr

or

(e) CoIL

Fig. 5. Experiment results on five datasets

to classify the letter to be uttered. The speakers are grouped into 5 smaller
sets of similar speakers and this makes the problem naturally be suitable for
multi-task learning. Each subset is treated as a task and they are trained jointly.
(4). Insurance Company (CoIL) Benchmark dataset9 contains information on
customers of an insurance company. The data consist of 86 variables. We select
out the 68 ∼ 73-th variables as categorical features and predict their values with
other features. (5). Multi-speaker Vowel Classification dataset10 consists
of 11 vowels uttered by 15 speakers of British English. We used the data of
1-8 (9-15) speakers as the training (testing) set. In both of them, speakers are
divided into two subgroups according to their gender. It is reasonable because
men pronounce in a different style with women. For this dataset, we treat each
subgroup as a task.

For the first 4 datasets, we randomly choose a certain number of samples as
the training set and leave the remaining samples as the test set. For the Multi-
speaker Vowel dataset, we randomly select a number of samples from the 1-8
speakers as the training samples, and consider all the samples from the 9-15
speakers as the test set. In each experiment, we vary the number of training
samples in each class from 4 to 20 and repeat the evaluations 10 times. The
average error rates over all the tasks and the 10 times evaluations are reported
in Fig. 5 as the final results. Note that, similar to [8], the five datasets are
categorized into label-compatible and label-incompatible according to whether all
9 http://kdd.ics.uci.edu/databases/tic/tic.html

10 Available from UCI Machine Learning Repository.

http://kdd.ics.uci.edu/databases/tic/tic.html

Geometry Preserving Multi-task Metric Learning 663

tasks share a common label space. For label-compatible datasets, we compare all
approaches mentioned above; for label-incompatible datasets, since tasks have
different label spaces and

⋃
Sτ is meaningless, the utLMNN, mtpool-von, and

mtpool-Frob are not evaluated.
Observed from the experimental results, our proposed multi-task metric learn-

ing method performs the best across all the data sets whatever the num-
ber of training samples are used. This clearly demonstrates the superiority of
our proposed multi-task framework. In particular, the geometry preserving mt-
von method demonstrated significantly better performance against mt-Frob or
mtLMNN consistently in all the cases. This clearly validates that the perfor-
mance can be improved by preserving relative distances. For the label-compatible
datasets, we see that in most cases, the performance is better if only the training
samples in the task are used as the prototype of k-NN classifier. This once again
demonstrates the advantages of our proposed method.

5 Conclusion

In this paper, we propose a novel multi-task metric learning framework using
von Neumann divergence. On one hand, the novel regularized approach extends
previous methods from the vector regularization to a general matrix regular-
ization framework; on the other hand and more importantly, by exploiting von
Neumann divergence as the regularizer, the new multi-task metric learning has
the capability to well preserve the data geometry. This leads to more appropriate
propagation of side-information among tasks and proves very important for fur-
ther improving the performance. We propose the concept of geometry preserving
probability (PG) and justify our framework with a series of theoretical analysis.
Furthermore, our formulation is jointly convex and the global optimal solution
can be guaranteed. A series of experiments verify that our proposed algorithm
can significantly outperform the current methods.

Acknowledgements. This work has been supported in part by the Na-
tional Basic Research Program of China (973 Program) Grant 2012CB316301,
the National Natural Science Foundation of China (NSFC) Grants 61075052
and 60825301, and Tsinghua National Laboratory for Information Science and
Technology (TNList) Cross-discipline Foundation.

References

1. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with bregman diver-
gences. Journal of Machine Learning Research 6, 1705–1749 (2005)

2. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. American Math-
ematical Society (June 2001)

3. Dhillon, I.S., Tropp, J.A.: Matrix nearness problems with bregman divergences.
SIAM Journal on Matrix Analysis and Applications 29, 1120–1146 (2008)

664 P. Yang, K. Huang, and C.-L. Liu

4. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel meth-
ods. Journal of Machine Learning Research 6, 615–637 (2005)

5. Haber, H.E.: The volume and surface area of ann-dimensional hypersphere (2011),
http://scipp.ucsc.edu/~haber/ph116A/volume_11.pdf

6. Huang, K., Ying, Y., Campbell, C.: Generalized sparse metric learning with relative
comparisons. Knowledge and Information Systems 28(1), 25–45 (2011)

7. Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math.
Phys. 40(2), 147–151 (1975)

8. Parameswaran, S., Weinberger, K.: Large margin multi-task metric learning. In:
Advances in Neural Information Processing Systems 23, pp. 1867–1875 (2010)

9. Tropp, J.A.: From joint convexity of quantum relative entropy to a concavity the-
orem of lieb. Proceedings of the American Mathematical Society 140, 1757–1760
(2012)

10. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Research 10, 207–244 (2009)

11. Yang, P., Huang, K., Liu, C.L.: A multi-task framework for metric learning with
common subspace. Neural Computing and Applications, 1–11 (2012)

12. Zhang, Y., Yeung, D.Y.: Transfer metric learning by learning task relationships. In:
Proceedings of the tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2010)

http://scipp.ucsc.edu/~haber/ph116A/volume_11.pdf

Learning and Inference in Probabilistic Classifier

Chains with Beam Search

Abhishek Kumar1,�, Shankar Vembu2,�, Aditya Krishna Menon1,
and Charles Elkan1

1 Department of Computer Science, UC San Diego, USA
{abhishek,akmenon,elkan}@ucsd.edu

2 Donnelly Centre for Cellular and Biomolecular Research,
University of Toronto, Canada
shankar.vembu@utoronto.ca

Abstract. Multilabel learning is an extension of binary classification
that is both challenging and practically important. Recently, a method
for multilabel learning called probabilistic classifier chains (PCCs) was
proposed with numerous appealing properties, such as conceptual sim-
plicity, flexibility, and theoretical justification. However, PCCs suffer
from the computational issue of having inference that is exponential in
the number of tags, and the practical issue of being sensitive to the suit-
able ordering of the tags while training. In this paper, we show how the
classical technique of beam search may be used to solve both these prob-
lems. Specifically, we show how to use beam search to perform tractable
test time inference, and how to integrate beam search with training to de-
termine a suitable tag ordering. Experimental results on a range of mul-
tilabel datasets show that these proposed changes dramatically extend
the practical viability of PCCs.

1 Introduction

In the classical supervised learning task of binary classification, our goal is to
learn some model that, given an input x ∈ X , returns a single binary prediction
y ∈ {0, 1}. This value y is considered to be a label of the example x, denoting
whether it possesses some characteristic, or not. For example, xmay represent an
image by its pixel values, and y may denote whether or not the image contains a
face. Multilabel learning is an extension of binary classification where the goal is
to return multiple binary predictions, or equivalently a vector y ∈ {0, 1}K. The
label y now measures multiple characteristics of the example x, each of which we
call a tag. For example, x may represent an image as before, and y could denote
whether K specific people’s faces appear in the image.

The recently proposed probabilistic classifier chains [1,2] (PCCs) are an at-
tractive solution for multilabel classification for several reasons. First, it is based
on a reduction of multilabel to binary classification, which allows us to leverage
existing research on designing scalable and powerful binary classifiers. Second,

� Contributed equally.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 665–680, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

666 A. Kumar et al.

it is a principled probabilistic model, and there is a theoretical understanding of
how it may be used to produce Bayes optimal predictions for a variety of loss
functions [1]. Third, it is computationally inexpensive to train (unlike e.g. struc-
tured prediction methods [3], which involve inference during training). Fourth, it
is trained on the original label space without any prior transformations [4,5,6,7],
which is important in certain settings and applications.

Despite the above positive characteristics, the current formulation of PCCs
suffers from at least a couple of drawbacks. First, on the computational side,
they are only applicable to multilabel data sets with a few number of tags. This
is because to use a PCC at test time for an example with K possible tags, we
need to evaluate all 2K possible labellings, and pick the highest scoring one.
This becomes quickly infeasible as K increases. Second, on the performance
side, their accuracy depends on a pre-specified ordering of the tags. Different
orderings result in solutions of different accuracy, and so a natural question
is whether one can determine the ordering that yields the best performance.
As with the previous issue, the current understanding of PCCs requires either
picking a random ordering, or trying all K! possibilities.

In this paper, we propose to address these shortcomings with PCCs using beam
search, a classical AI search technique. In particular, we propose to use beam
search to perform inference on PCCs at test time, changing the runtime from
O(2K) to O(bK), where b is a tunable beam width. As we shall demonstrate,
in practice a beam size b � 2K achieves good performance. We also present
an algorithm that integrates the search for the best ordering of tags with the
learning algorithm. To avoid the burden of training a classifier for each ordering,
we use kernel target alignment [8] to score the viability of a given ordering.
Finally, we propose a richer feature representation for learning individual tag
models than that is used in existing PCC solutions [1,2]. Experimental results
on a range of multilabel data sets show that our scheme is able to improve on
PCC, and extend its applicability to data sets with a large number of tags.

This paper is organized as follows. First, in Section 2, we analyze PCCs in
detail and highlight some of the challenges in using them. Next, in Section 3,
we show how one may use beam search to speed up test time inference of the
method. In Section 4, we then show how beam search may be integrated during
the learning phase to determine the tag ordering. Finally, we present a range of
experimental results in Section 5.

2 Multilabel Learning and Probabilistic Classifier Chains

2.1 Multilabel Learning

Let X ⊆ Rd be the input space and Y = {0, 1}K be the label output space defined
over a fixed set of K tags. Given a set of m training samples T = {(x(i), y(i))}mi=1

where (x(i), y(i)) ∈ X × Y, the goal of a multilabel classification algorithm is to

learn a mapping f : X → Y. We will use the notation y
(i)
k to denote the kth tag

of the ith example.

Learning and Inference in Probabilistic Classifier Chains with Beam Search 667

The näıve solution to the multilabel learning problem is to decompose it into
K independent binary classification problems, one for each tag yk. This method
is known as binary relevance. In principle, this method is in fact optimal for
certain loss functions, such as the Hamming and the ranking loss [1]. However, in
practical situations where training data is limited, and for loss functions that take
into account consistency of the entire tag sequence, it is intuitively necessary to
exploit correlations between tags to make better predictions. This has motivated
a slew of multilabel learning methods (see [9,10,11] for surveys).

Recently, Read et al. [2] proposed a simple decomposition method called the
classifier chain (CC) that appears similar to binary relevance, but is able to ex-
ploit tag correlations. As with binary relevance, the idea is to train K separate
models, one for each tag. The difference is that in the model for tag k, we use as
input features not only the data point x but also the (k−1) tags, y1, y2, . . . , yk−1,
previously modeled. We thus attempt to use any relevant information in the pre-
vious tags to help simplify our model. Our focus in this paper is the related PCC
method [1], which generalizes this scheme through a probabilistic framework.

2.2 The PCC Model for Multilabel Learning

A probabilistic classifier chain [1] tries to estimate the conditional distribution
p(y | x) using the chain rule of probabilities:

p(y | x) = p(yπ(1) | x)
K∏

k=2

p(yπ(k) | x, yπ(1), . . . , yπ(k−1)) ,

where π(·) is some fixed permutation/ordering of tags. Thus, learning a multil-
abel classifier is reduced to learning K independent probabilistic binary classi-
fiers. These independent base classifiers may be, for example, logistic regression
models with a specialized feature representation:

p(yπ(k) | x, yπ(1), . . . , yπ(k−1); θ) ∝ exp(
〈
θπ(k), φπ(k)(x, y)

〉
), ∀k ∈ {2, . . . ,K}.

In [1], the choice φk(x, y) = x ⊕ (y1, . . . , yk−1) was used, where a ⊕ b is the
concatenation of the vectors a and b, so that θk ∈ Rd+k−1. In total, this means
we need to learn RdK+K(K−1)/2 parameters, as opposed to RdK parameters
with binary relevance. Suppose we write θk =

[
wk; vk

]
, where wk ∈ Rd and

vk ∈ Rk−1. Then, it may be verified that the joint probability model with a
logistic regression base learner is

p(y | x; θ) =
exp

(
yTWx+ yTV y

)∏K
k=1(1 + exp ((Wx+ V y)k))

, (1)

where we have W =
[
w1 . . . wK

]
and V =

[
v1 . . . vK

]
. The matrix V is lower-

triangular, since we first model yπ(1), then yπ(2), et cetera. By contrasting this
to the joint model assumed for binary relevance,

p(y | x; θ) =
exp

(
yTWx

)∏K
k=1(1 + exp((Wx)k))

,

668 A. Kumar et al.

we see that the key difference in the joint probability model (1) is the tag
correlation term yTV y.

2.3 Advantages of Using PCCs

PCCs have a number of attractive properties as amultilabel classificationmethod.
(i) It is based on a reduction from multilabel to binary classification, which

allows us to leverage existing research on designing scalable and powerful binary
classifiers. Compared to the original CC method [2], which also uses decomposi-
tion, the key difference in this regard is that the decomposition is probabilistically
motivated. Also, unlike CC, PCC does not use the model’s predictions of the
past tags during test time inference.

(ii) It is a principled probabilistic model with a theoretical understanding of
how it may be used to produce Bayes optimal predictions for a variety of loss
functions [1]. This is in contrast to several multilabel learning methods, where
the statistical consistency of the algorithm is unclear. Further, the probabilistic
underpinning gives a clear idea on how to modify the algorithm. For example, as
we shall see later, the probabilistic setup allows one to design inference methods
that are more efficient than the greedy inference described in [2].

(iii) Being a decomposition method, it is computationally inexpensive to train,
requiring only marginally more effort than the binary relevance baseline. This
is unlike e.g. structured prediction methods [3] which involve inference during
training.

(iv) It is trained on the original label space without any prior transformations
[4,5,6,7]. This is conceptually appealing and makes modifications much simpler.
As an example, suppose we want to address the issue of class imbalance at the
tag level. One way to do this is to appropriately modify the inputs to the models
for each p(yk | x, y1, . . . , yk−1) by applying cost-sensitive weighting. By contrast,
in transformation methods, since we lose the relationship to the original label
space, it is not clear how modifications in the transformed space affect those in
the original space.

2.4 Challenges with Using PCCs

Thus far, we have not discussed two crucial questions in using PCCs: how to
train them, and how to apply them at test time. At training time, one may
maximize the log-likelihood of the given training set, which decomposes into K
distinct optimizations for each tag:

L(θ;π(·)) =
m∑
i=1

log p(y(i) | x(i); θ)

=
m∑
i=1

[
log p(y

(i)
π(1) | x

(i); θ)+
K∑

k=2

log p(y
(i)
π(k) |x

(i), y
(i)
π(1), . . . , y

(i)
π(k−1); θ)

]
.

(2)

Learning and Inference in Probabilistic Classifier Chains with Beam Search 669

The above hides a subtle issue: while in theory the chain rule applies regardless
of the ordering of the tags, in practice, the ordering can make a big difference.
The reason is that our model for each individual p(yπ(k) | x, yπ(1), . . . , yπ(k−1))
may be misspecified, in which case some orderings will be better modeled than
others. Therefore, we can expect different solutions based on the choice of π(·).
This prompts the natural question of what the best ordering π(·) is, in the sense
of resulting in the highest possible value of L(θ). It may seem that one should
order the tags in order of “difficulty”, but this may not be optimal: for example,
a tag that is difficult to model may make subsequent tags considerably easier to
model. Thus, some principled algorithmic solution is necessary.

At test time, the problem becomes one of estimating, for a given feature vector
x, the most likely set of tags under the learned parameters θ̂:

ŷ = argmax
y∈{0,1}K

p(y | x; θ̂) .

This inference is unfortunately computationally intractable. The proposal in [1]
is to simply perform brute-force enumeration of all possible labels.

To summarize, we see that there are two main issues with using PCCs in prac-
tice. On the computational side, the method proposed for test time inference in
[1] requires that we enumerate all 2K possible candidate labellings, and evaluate
them. Indeed, existing applications of PCCs have been restricted to data sets
with relatively few number of tags. A general purpose multilabel method should
of course handle a large number of tags. On the accuracy side, the choice of
ordering the tags while training can make a difference in generalization perfor-
mance. One might hope to do significantly better than just a random ordering.
While Dembczyński et al. [1] proposed taking several random orderings to create
an ensemble of PCCs, we would like a more principled procedure, that searches
more intelligently.

We note that there are related schemes that deal with the above problems for
PCCs. An inference algorithm was proposed in [12] which makes assumptions
on the joint probability distribution of labels to guarantee polynomial-time con-
vergence of the algorithm. However, it does not address the problem of learning
tag orderings. Our algorithm based on beam search is generic in the sense that
it is possible to accommodate a variety of scoring functions into the search algo-
rithm thereby allowing us to solve both the inference problem and the problem
of learning tag orderings. In [13], an algorithm is proposed to learn an undirected
network of dependencies between the tags, which is intractable in general, and
therefore approximates the structure learning problem using the Chow-Liu al-
gorithm to learn a tree dependency structure between tags. However, this tree
structure is unlikely to represent many real-world scenarios and it is an empirical
question whether such an approximation is good or not.

3 Label Inference Using Beam Search

Recall that the inference problem in PCC is ŷ = argmaxy∈Y p(y | x; θ̂), i.e.,
we wish to find the maximum scoring label vector. Assuming our probability

670 A. Kumar et al.

y1 = 0

y2 = 0

�

(0,0,0)

�

(0,0,1)

y2 = 1

�

(0,1,0)

�

(0,1,1)

y1 = 1

y2 = 0

�

(1,0,0)

�

(1,0,1)

y2 = 1

�

(1,1,0)

�

(1,1,1)

Fig. 1. Binary tree used in beam search for inference with K = 3 tags

model is correctly specified, the resulting solution will give the Bayes optimal
prediction for subset 0/1 loss [1]. This inference task is equivalent to finding the
optimal path in a rooted, complete binary tree of height K, where each internal
vertex at level k denotes a possible partial label vector of length k, so that the leaf
nodes represent all possible 2K label vectors (see Figure 1). Thus, the inference
problem is one of finding the optimal path from the root to one of the leaves in
this binary tree, where the score of a vertex v at level k with a corresponding
partial label y(v) is equal to the partial probability:

sk(v; θ̂) = p(y
(v)
1 | x; θ̂) ·

k∏
j=2

p(y
(v)
j | x, y(v)1 , . . . , y

(v)
j−1; θ̂) , (3)

which can be computed recursively. The inference algorithm in the original clas-
sifier chain [2] greedily searches for the optimal path by deciding at each level of
the tree whether to traverse in the left or the right direction. However, this may
not result in finding the optimal label vector [1].

We propose an inference algorithm using beam search [14], which is a heuristic
search technique. A*[15] and similar search algorithms could also be used as more
sophisticated alternatives to beam search. The basic idea is that we will keep b
candidate solutions at each level of the tree, where b is a user-defined parameter
known as the beam width, which represent the best partial solutions seen thus
far. We then explore the tree in a breadth-first fashion using these solutions.
Greedy search is recovered for the case of b = 1.

Our inference procedure for PCCs is described in Algorithm 1. At each level
of the tree, we maintain a list of best-scoring candidate vertices of size at most
b, where b is the beam width. We traverse down the tree by considering the
children of only those vertices that are in this list, sort them in increasing order
of their partial probabilities (3), and prune all the vertices that are not in the
top-b list.

Learning and Inference in Probabilistic Classifier Chains with Beam Search 671

Algorithm 1. Inference using beam search.

Input: Query point x, learned model parameters θ̂, beam width b
Output: Estimate ŷ for argmaxy p(y | x; θ̂)

B(0) = {(1, 0)} {initialize beam}
for j = 1 . . . K do
B(j) = {}
for (parentTags,parentScores) ∈ B(j−1) do

for z ∈ {0, 1} do
if p(yj = z | x,parentTags; θ̂) > min{v : (·, v) ∈ B(j)} then
B(j) ← B(j) ∪ (parentTags ∪ {z}, p(yj = z | x,parentTags; θ̂))
B(j) ← Top-b(B(j))

end if
end for

end for
end for
v̂ = argmaxv{v : (·, v) ∈ B(K)} {highest score}
return ŷ : (ŷ, v̂) ∈ B(K)

The greedy inference algorithm used in classifier chain [2] is recovered as a
special case with beam width b = 1 and performing inference by exhaustively
enumerating all possible labels is equivalent to doing beam search with b = ∞.
Thus, by tuning b, we can control the tradeoff between computation time and
accuracy of our method. The hope is that for real-world multilabel datasets, we
can use a relatively small value of b and get performance that is significantly bet-
ter than the greedy approach, and commensurate with exhaustive enumeration.
This is a question that we will answer empirically in Section 5.

4 Learning to Order Tags

Recall that training a PCC involves picking a particular ordering π(·) of the tags,
based on which we apply the chain rule decomposition. The tag ordering problem
is to find the best π(·) in the sense of yielding the maximum log-likelihood
L(θ;π(·)) in Equation 2. It is easy to see that if each individual tag model is
misspecified, this quantity varies based on the choice of the permutation π(·).
Even if the model is correctly specified, the optimal solution may vary due to
finite sample effects; for example, suppose that a tag yk is extremely rare; then,
on any finite sample, we may seriously misestimate p(yk = 1 | x), even if in the
infinite sample case we will discover the correct probability.

Intuitively, one may expect the optimal ordering to progressively involve pick-
ing the easiest tag to model given the previously picked tags. But it may alter-
nately be the case that given a “difficult” tag, subsequent tags are easy to model.
A basic question then is to how to determine a suitable tag ordering without re-
sorting to heuristics, or performing exhaustive enumeration over all K! possible
orderings.

672 A. Kumar et al.

1

2

�

(1,2,3)

3

3

�

(1,3,2)

2

2

1

�

(2,1,3)

3

3

�

(2,3,1)

1

3

1

�

(3,1,2)

2

2

�

(3,2,1)

1

Fig. 2. Example of ordering tree for K = 3 tags

We propose to use beam search to solve the problem of determining a suitable
tag ordering. We do so by casting it as a search problem over a tree. Instead of
a complete binary tree used in the inference algorithm, for the ordering problem
we have a tree of height K, where every vertex at level t has (K − t) children, as
shown in Figure 2. Given such a tree, our goal is again to find the optimal path
from the root to one of the leaf vertices.

Our procedure to learn tag orderings for PCC is described in Algorithm 2.
Similar to the beam search algorithm used for inference, we use a beam of fixed
width b, maintain a list of best-scoring candidate vertices of size at most b and
prune all the vertices that are not in the top-b list. We now need to determine
the scoring function used to prune the vertices. One possible scoring function
is the validation error of classifier, i.e., for every candidate vertex in the tree,
we train a (partial) PCC. More specifically, the score of a vertex v at level t is
given by:

st(v; θ̂) =
∑

(x,y)∈V
log p(yπv(t) | x, yπv(1), . . . , yπv(t−1); θ̂) ,

where θ̂ are the parameters of the (partial) PCC that is being evaluated on a valida-
tion set of examplesV , and the partial tag ordering specified by πv(·) is the directed
path from the root to the vertex v. However, this results in training a (partial) PCC
at every vertex of the tree which can be prohibitively expensive. As a computation-
ally cheaper alternative, we propose to instead use kernel target alignment (KTA)
[8] as a measure to score vertices.We want to measure to what extent similar train-
ing examples agree on a single given binary tag. Let y ∈ {0, 1}m be a vector con-
taining the value of this tag for each of them training examples. The matrix yy� is
a kernel matrix based on this tag. LetK be the kernel matrix based on the feature
vector representing each of them examples. Let 〈A,B〉F =

∑
ij AijBij denote the

Frobenius inner product between two matrices A and B. The kernel target align-
ment between K and yy� is

Learning and Inference in Probabilistic Classifier Chains with Beam Search 673

Algorithm 2. Learning to order tags using beam search.

Input: Training set T = {(x(i), y(i))}mi=1, beam width b
Output: Model parameters θ̂

B(0) = {(1, 0)} {initialize beam}
for j = 1 . . . K do
B(j) = {}
for (parentTags,parentScores) ∈ B(j−1) do

for i ∈ {1, . . . , K}\parentTags do
K ← k

(
φ(x, y[parentTags]), φ(x

′, y′[parentTags])
)

� = [y
(1)
i ; y

(2)
i ; . . . ; y

(m)
i]

if KTA(K, �) > min{v : (·, v) ∈ B(j)} then
B(j) ← B(j) ∪ (parentTags ∪ {i},KTA(K, �))
B(j) ← Top-b(B(j))

end if
end for

end for
end for
v̂ = argmaxv{v : (·, v) ∈ B(K)} {highest score}
Return θ̂ learned by training a PCC using the ordering specified by π̂ : (π̂, v̂) ∈ B(K)

KTA(K, y) =
〈K, yy�〉F√

〈K,K〉F 〈yy�, yy�〉F
.

In practice, the KTA score may be much more efficient to compute than train-
ing a (partial) PCC. (Indeed, this was our experience in the empirical study
reported in Section 5.) Note that there are also hidden costs with training a
classifier, such as performing cross-validation to determine regularization and
other hyperparameters. Intuitively, the KTA score can be considered as a proxy
for the accuracy of a classifier trained on the same input features and outputs
and therefore it is reasonable to expect the KTA scores to correlate positively
with the accuracies of a classifier.

The KTA score of a vertex v at level t is computed by constructing a ker-

nel matrix whose entries are k
(
φ(x, yπv([t−1])), φ(x

′, y′πv([t−1]))
)
, where k(·, ·) is

the kernel function, φ(x, z) = x ⊗ z, i.e., the Kronecker product of x and z,
for cross-product features and φ(x, z) = x ⊕ z for concatenated features, and
yπv([t−1]) = (yπv(1), . . . , yπv(t−1)). For linear kernels, the kernel matrix factorizes
into the product of the kernel matrix defined on the input features and the kernel
matrix defined on the output labels. Note that earlier, the log-likelihood scoring
function led to a naturally additive objective function. While the same can be
done with KTA, it is an empirical question whether this will be appropriate
or not. Observe in particular that an alternative is to use the product of KTA
scores, which treats the KTA as a surrogate for the raw probability score itself.

674 A. Kumar et al.

Table 1. Details of benchmark multilabel data sets [16]

Data set # training inst. (m) # test inst. # features (d) # tags (K)

Emotions 391 202 72 6
Scene 1211 1196 294 6
Yeast 1500 917 103 14

Genbase 463 199 1186 27
Medical 333 645 1449 45
Enron 1123 579 1001 53

5 Experimental Results

5.1 Data Sets and Methods

We report experiments on benchmark multilabel data sets [16] listed in Table 1.
We selected all the data sets with fewer than 100 tags and fewer than 10K train-
ing instances so that all models can be trained easily using batch optimization
methods. Note that on the majority of these data sets, inference by exhaustive
enumeration is either computationally expensive or intractable. All data sets
have a pre-defined test set, and our reported results are on this set. We compare
the following reduction-based algorithms:

(a) Binary relevance (BR): This is the baseline algorithm where we train sepa-
rate independent logistic regressors for each tag.

(b) Kernel dependency estimation (KDE): This is the algorithm described in [4].
Here, a (linear) transformation using PCA is applied to the original label
matrix in order to decorrelate the tags. Then, independent regressors are
trained in the transformed label space.

(c) Probabilistic classifier chain (PCC): We use the original formulation as de-
scribed in [1] but with beam search as inference and the original ordering of
tags found in the data sets.

(d) PCC with logistic regression using beam search for both learning the tag
ordering and inference. To learn the tag ordering, we use kernel target align-
ment as the scoring function in beam search. Note that, in this setting, the
output of beam search for learning is the tag ordering which is then used at
a later stage to train a PCC.

We evaluate the performance of algorithms using the following loss functions:
(i) Subset 0/1 loss:

�0/1(y, ŷ) = �y �= ŷ� ,

(ii) Hamming loss:

�h(y, ŷ) =

K∑
i=1

�yi �= ŷi� , and

Learning and Inference in Probabilistic Classifier Chains with Beam Search 675

(iii) Ranking loss:

�r(y, ŷ) =
∑

(i,j):yi>yj

(
�ŷi < ŷj� +

1

2
�ŷi = ŷj�

)
,

where y and ŷ are the target and the predicted labels respectively. It has been
noted previously that BR is a strong baseline on a number of loss functions [2,1].
(It is in fact theoretically optimal for Hamming and ranking losses [1].) We have
found this to be especially true if the base classifier for each tag is regularized.
Some previous studies, such as [1], use an unregularized base classifier, for which
BR may be misleadingly sub-optimal. In all our experiments, we used regularized
linear models and tuned the regularization parameter using cross-validation.

5.2 Results and Analysis

Q1: What is the effect of beam width used in inference and learning
tag orderings on the performance of PCC?

For three of the data sets, namely, Emotions, Scene and Yeast, it is possible to
do inference by exhaustive enumeration of all possible labels. We compared the
performance of (i) binary relevance (BR) and (ii) probabilistic classifier chain
(PCC) with the original tag ordering and using beam search for inference for
several values of beam width b. Figure 3 shows the performance of the algorithms
measured in terms of subset 0/1 loss, Hamming loss and ranking loss with varying
beam width.

From the figures, we see that the test set performance of PCC converges
rapidly with b < 15 to the performance obtained with exhaustive enumeration,
especially for the subset 0/1 loss. We also observed that with b = 15, more
than 90% of the correct labels were predicted within the candidate labels found
by beam search, even if the single best label found by beam search was not
exactly correct. Note that for Hamming and ranking losses, the loss at certain
values of beam width is lower than the loss obtained by exhaustive enumeration
which is surprising at first glance since exhaustive enumeration should ideally
provide a lower bound for the test set loss. However, note that in beam search,
labels are scored according to the joint probability p(y | x) which may not
necessarily correspond to the optimal result. Indeed, one of the points made in
[1] was that taking argmaxy∈Y p(y | x) gives the optimal result for subset 0/1
loss, but for Hamming and ranking losses the optimal result is for tag k, i.e.,
argmaxb∈{0,1} p(yk = b | x), which could be different in the case of misspecified
models.

We also analyzed the effect of increasing beam width used in beam search
to determine the tag ordering on the classifier performance. Figure 4 shows the
performance of PCC with varying beam width on the three data sets, Emotions,
Scene and Yeast. The test time inference was done by exhaustive enumeration
of all possible labels. From the figure, we see that there is no clear pattern with
varying beam width for subset 0/1, Hamming and ranking losses. However, we
note that negative log-likelihood is non-increasing with increasing beam width.

676 A. Kumar et al.

0 5 10 15

0.7

0.75

0.8

S
ub

se
t 0

/1
 lo

ss

Emotions Dataset

0 5 10 15

0.35

0.4

0.45

0.5

0.55

Scene Dataset

0 5 10 15

0.75

0.8

0.85

Yeast Dataset

PCC

B inary Re le vanc e

PCC w ith b = ∞

0 5 10 15
0.22

0.23

0.24

0.25

H
am

m
in

g
lo

ss

0 5 10 15

0.1

0.105

0.11

0 5 10 15
0.198

0.2

0.202

0.204

0 5 10 15

1.3

1.4

1.5

Beam width for inference

R
an

ki
ng

 lo
ss

0 5 10 15

0.45

0.5

0.55

0.6

Beam width for inference
0 5 10 15

6

6.5

7

7.5

8

Beam width for inference

Fig. 3. Effect of beam width used in inference on the performance of classifiers

0 5 10 15
0.8

0.85

0.9

0.95

1

Beam width for ordering tags

Lo
ss

Emotions Dataset

0 5 10 15

0.9

0.92

0.94

0.96

0.98

1

Beam width for ordering tags

Scene Dataset

0 5 10 15
0.98

0.985

0.99

0.995

1

Beam width for ordering tags

Yeast Dataset

Ranking loss

Hamming loss

Subset 0/1 loss

Negative log−likelihood

Fig. 4. Effect of beam width used to learn the tag ordering on the performance of
PCCs. All losses have been scaled to [0, 1] for the sake of legibility.

This confirms that beam search using KTA as the scoring function is successful
at finding orderings that lead to good negative log-likelihood; as the amount of
search done by beam search increases, better orderings are found.

Learning and Inference in Probabilistic Classifier Chains with Beam Search 677

Table 2. Test set performance of binary relevance (BR), kernel dependency estima-
tion (KDE) and probabilistic classifier chain (PCC) trained with cross-product features
measured w.r.t. subset 0/1 loss (top), Hamming loss (middle) and ranking loss (bot-
tom) on the benchmark data sets. Numbers in subscript and superscript indicate beam
width used to learn tag ordering and for inference respectively. PCCor is PCC trained
with original tag ordering. The last row in each table shows the ranking of algorithms
averaged across all the data sets, with lower ranks being better.

BR KDE PCC1
or PCC

5
or PCC

15
or PCC

1
1 PCC

5
1 PCC

5
5 PCC

15
15

Scene 0.5309 0.6204 0.3487 0.3395 0.3395 0.3829 0.3620 0.3495 0.3478
Yeast 0.8462 0.8397 0.7699 0.7416 0.7416 0.7666 0.7579 0.7590 0.7601

Emotions 0.7921 0.7822 0.7426 0.6832 0.6832 0.6832 0.6733 0.6733 0.6634
Enron 0.8774 0.9016 0.8273 0.8169 0.8169 0.8394 0.8048 0.8100 0.8100
Medical 0.4170 0.4310 0.3891 0.3643 0.3643 0.3798 0.3597 0.3597 0.3597
Genbase 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201

Avg. Rank 7.83 8 6 3.67 3.67 6 3.25 3.5 3.08

BR KDE PCC1
or PCC

5
or PCC

15
or PCC

1
1 PCC

5
1 PCC

5
5 PCC

15
15

Scene 0.1086 0.1204 0.1033 0.1005 0.1005 0.1189 0.1105 0.1044 0.1058
Yeast 0.1989 0.1984 0.2035 0.2033 0.2035 0.2154 0.2106 0.2094 0.2098

Emotions 0.2261 0.2236 0.2450 0.2360 0.2360 0.2351 0.2302 0.2302 0.2211
Enron 0.0463 0.0465 0.0488 0.0506 0.0508 0.0507 0.0516 0.0507 0.0517
Medical 0.0122 0.0127 0.0148 0.0132 0.0132 0.0122 0.0114 0.0114 0.0114
Genbase 0.0010 0.0008 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

Avg. Rank 3.67 3.5 5.67 4.83 5.58 6.42 5.83 4.58 4.92

BR KDE PCC1
or PCC

5
or PCC

15
or PCC1

1 PCC5
1 PCC5

5 PCC15
15

Scene 0.4548 0.5084 0.5844 0.5936 0.5936 0.6112 0.5920 0.5610 0.5284
Yeast 6.4209 6.4384 7.5267 7.3021 7.3010 7.6194 7.5463 7.4297 7.4526

Emotions 1.2822 1.4307 1.4158 1.4109 1.4109 1.5347 1.4851 1.4851 1.2970
Enron 12.9378 14.7219 16.1105 16.8929 16.9326 16.4447 16.9197 16.8765 16.6123
Medical 1.6271 1.3659 3.6922 3.7186 3.7202 2.9093 3.0783 3.0682 3.0682
Genbase 0.1709 0.0452 0.1910 0.1910 0.1910 0.1834 0.1834 0.1884 0.1884

Avg. Rank 1.33 2.33 5.83 6.33 6.67 6.25 6.5 5.42 4.33

Q2: Does learning to order tags improve the performance of PCC
when compared to PCC using a random or otherwise pre-defined or-
dering?

The results are shown in Table 2. All variants of PCC consistently outperform
or are in par with binary relevance for the subset 0/1 loss. Note that PCC1

or is the
variant of PCC which uses the original tag ordering in the data sets and greedy
search for inference, i.e., beam search with b = 1. All variants of PCC that uses
beam search for inference and/or beam search to determine the tag ordering
outperform PCC1

or which clearly demonstrates the advantages of using beam
search for PCC. On a majority of the data sets, variants of PCC that used beam

678 A. Kumar et al.

search to determine the tag ordering using KTA as the scoring function gave the
best results. For Hamming and ranking losses, we found that binary relevance
is a strong baseline and outperformed PCC on average thus also confirming the
results reported in [1]. Nevertheless, as for the subset 0/1 loss, we found that
PCC using beam search to determine the tag ordering performed, on average,
better than PCC that used the original tag ordering.

An interesting observation from the results reported in [1] is that for Ham-
ming and ranking losses, PCC performs worse than binary relevance on average,
but an ensemble of PCCs that were created from a random subsample of tag
orderings performed better than binary relevance. As noted in [1], comparing a
non-ensemble method with ensemble methods is not fair and we suspect that the
improvements in performance from using an ensemble of PCCs may be due to

Table 3. Test set performance of binary relevance (BR), kernel dependency estimation
(KDE) and probabilistic classifier chain (PCC) trained with concatenated features mea-
sured w.r.t. subset 0/1 loss (top), Hamming loss (middle) and ranking loss (bottom) on
the benchmark data sets. The last row in each table shows the ranking of algorithms
averaged across all the data sets, with lower ranks being better.

BR KDE PCC1
or PCC

5
or PCC

15
or PCC

1
1 PCC

5
1 PCC

5
5 PCC

15
15

Scene 0.5309 0.6204 0.4022 0.3863 0.3863 0.4022 0.3813 0.3855 0.3813
Yeast 0.8462 0.8397 0.7895 0.7634 0.7634 0.8070 0.7612 0.7601 0.7601

Emotions 0.7921 0.7822 0.7475 0.6832 0.6832 0.7228 0.6634 0.6634 0.6634
Enron 0.8774 0.9016 0.8670 0.8497 0.8497 0.8566 0.8411 0.8411 0.8428
Medical 0.4170 0.4310 0.4093 0.4000 0.4000 0.4124 0.4031 0.4031 0.4031
Genbase 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201

Avg. Rank 7.83 8 6.25 4.08 4.08 6.25 2.83 2.83 2.83

BR KDE PCC1
or PCC

5
or PCC

15
or PCC

1
1 PCC

5
1 PCC

5
5 PCC

15
15

Scene 0.1086 0.1204 0.1145 0.1113 0.1113 0.1104 0.1086 0.1095 0.1056
Yeast 0.1989 0.1984 0.2131 0.2092 0.2092 0.2204 0.2113 0.2106 0.2106

Emotions 0.2261 0.2236 0.2368 0.2261 0.2261 0.2228 0.2112 0.2129 0.2129
Enron 0.0463 0.0465 0.0465 0.0462 0.0462 0.0461 0.0461 0.0461 0.0461
Medical 0.0122 0.0127 0.0122 0.0120 0.0120 0.1216 0.1196 0.1196 0.1196
Genbase 0.0010 0.0008 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

Avg. Rank 4.58 4.92 7.08 4.92 4.92 5.83 4.25 4.5 4

BR KDE PCC1
or PCC

5
or PCC

15
or PCC1

1 PCC5
1 PCC5

5 PCC15
15

Scene 0.4548 0.5084 0.6120 0.5978 0.5978 0.5397 0.5485 0.5293 0.5000
Yeast 6.4209 6.4384 7.7121 7.5071 7.5071 7.5474 7.6619 7.6314 7.6336

Emotions 1.2822 1.4307 1.3911 1.3218 1.3218 1.3317 1.3564 1.3366 1.3366
Enron 12.9378 14.7219 13.0743 13.0846 13.0846 13.0708 13.0656 13.0639 13.0639
Medical 1.6271 1.3659 1.7798 1.7752 1.7752 1.7395 1.7333 1.7333 1.7333
Genbase 0.1709 0.0452 0.1859 0.1859 0.1859 0.1884 0.1884 0.1884 0.1884

Avg. Rank 1.33 4.17 7.5 5.42 5.42 5.42 6.08 4.92 4.75

Learning and Inference in Probabilistic Classifier Chains with Beam Search 679

the ensemble effect. Due to these reasons, we do not report results for ensembles
of our method. The goal in this paper is to conduct a fair, controlled compari-
son of our beam search approach to the original PCC approach. Note that it is
possible to create an ensemble of PCCs in our approach by selecting a subset of
best scoring leaf vertices from the beam search tree used to determine the tag
ordering.

Q3: How much of an impact does cross-product features have on the
performance of PCC when compared to concatenated features?

The results are shown in Table 3. The relative performance of different algo-
rithms is similar to those reported in Table 2. For the subset 0/1 loss, we found
improvements in performance when using cross-product features, φ(x, y) = x⊗y.
However, for Hamming and ranking losses, cross-product features seem to de-
grade the performance of classifiers when compared to features formed by con-
catenating labels, φ(x, y) = x ⊕ y. The fraction of experiments (an experiment
is an entry in Table 2 or 3) where cross-product features performed better than
concatenated features were 0.82, 0.44 and 0.31 (with ties broken at random) for
subset 0/1, Hamming and ranking loss respectively. We suspect this rather sur-
prising negative result for Hamming and ranking losses may be due to overfitting
with increased number of features in the cross-product feature representation.
However, the interplay between choice of loss functions and the choice of feature
representations is unclear and we leave this as an open question.

6 Concluding Remarks

Empirical results clearly demonstrate the benefit of using beam search for test
time inference and to learn the tag ordering. We believe these are important ex-
tensions to probabilistic classifier chains. Regarding directions for future work,
one general issue with multilabel classification is that most data sets are highly
imbalanced at the tag level, i.e., every tag has very few positive instances. Us-
ing logistic regression gives biased probability estimates on imbalanced datasets
[17]. Since probabilistic classifier chains rely on predicting accurate probabili-
ties for each classifier in the chain, such biased estimates may hamper overall
performance. At a minimum, we believe better results can be obtained by post-
processing the scores by isotonic regression [18,19].

Another issue is concerned with using cross-product features for large num-
ber of tags where learning linear models may pose scalability issues. To cir-
cumvent this problem, we may compute the cross-product (linear) kernel ma-
trix, and, if the number of training instances is not high, use a kernel method
(kernel SVM, kernel logistic regression). Otherwise, we can compute a low-
dimensional representation of the feature space given the kernel matrix using,
for example, kernel PCA. An alternative (approximation) is to treat the rows
(or columns) of the kernel matrix as features – the so-called empirical kernel
map [20] – and train a linear SVM or a linear logistic regression using these
features.

680 A. Kumar et al.

References

1. Dembczyński, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classifica-
tion via probabilistic classifier chains. In: ICML (2010)

2. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Machine Learning 85(3), 333–359 (2011)

3. Finley, T., Joachims, T.: Training structural SVMs when exact inference is in-
tractable. In: ICML (2008)

4. Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.: Kernel depen-
dency estimation. In: NIPS (2002)

5. Rai, P., Daumé III, H.: Multi-label prediction via sparse infinite CCA. In: NIPS
(2009)

6. Hsu, D., Kakade, S., Langford, J., Zhang, T.: Multi-label prediction via compressed
sensing. In: NIPS (2009)

7. Bi, W., Kwok, J.T.: Multilabel classification on tree- and DAG-structured hierar-
chies. In: ICML (2011)

8. Cristianini, N., Shawe-Taylor, J., Elisseeff, A., Kandola, J.S.: On kernel-target
alignment. In: NIPS (2001)

9. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International
Journal of Data Warehousing and Mining 3(3), 1–13 (2007)

10. Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Mining multi-label data. In: Data Min-
ing and Knowledge Discovery Handbook, pp. 667–685. Springer (2010)

11. Sorower, M.S.: A literature survey on algorithms for multi-label learning. Technical
report, Oregon State University, Corvallis, OR, USA (December 2010)

12. Dembczyński, K., Waegeman, W., Hüllermeier, E.: Joint mode estimation in multi-
label classification by chaining. In: ECML Workshop - CoLISD (2011)

13. Zaragoza, J., Sucar, L., Morales, E.: Bayesian chain classifiers for multidimensional
classification. In: IJCAI (2011)

14. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Prentice-Hall, Englewood Cliffs (2003)

15. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2),
100–107 (1968)

16. Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: A java
library for multi-label learning. Journal of Machine Learning Research 12, 2411–
2414 (2011)

17. King, G., Zeng, L.: Logistic regression in rare events data. Political Analysis 9(2),
137–163 (2001)

18. Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass
probability estimates. In: KDD (2002)

19. Menon, A.K., Jiang, X., Vembu, S., Elkan, C., Ohno-Machado, L.: Predicting ac-
curate probabilities with a ranking loss. In: ICML (2012)

20. Schölkopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Müller, K.R., Rätsch, G.,
Smola, A.J.: Input space versus feature space in kernel-based methods. IEEE Trans-
actions on Neural Networks 10(5), 1000–1017 (1999)

Learning Multiple Tasks with Boosted Decision

Trees

Jean Baptiste Faddoul2, Boris Chidlovskii1, Rémi Gilleron2, and Fabien Torre2

1 Xerox Research Center Europe
boris.chidlovskii@xrce.xerox.com

http://www.xrce.xerox.com
2 Lille University, LIFL and INRIA Lille Nord Europe

{jean-baptiste.faddoul,fabien.torre,remi.gilleron}@univ-lille3.fr
http://www.lifl.fr

Abstract. We address the problem of multi-task learning with no label
correspondence among tasks. Learning multiple related tasks simultane-
ously, by exploiting their shared knowledge can improve the predictive
performance on every task. We develop the multi-task Adaboost en-
vironment with Multi-Task Decision Trees as weak classifiers. We first
adapt the well known decision tree learning to the multi-task setting. We
revise the information gain rule for learning decision trees in the multi-
task setting. We use this feature to develop a novel criterion for learning
Multi-Task Decision Trees. The criterion guides the tree construction by
learning the decision rules from data of different tasks, and representing
different degrees of task relatedness. We then modify MT-Adaboost to
combine Multi-task Decision Trees as weak learners. We experimentally
validate the advantage of the new technique; we report results of ex-
periments conducted on several multi-task datasets, including the Enron
email set and Spam Filtering collection.

Keywords: Multi-Task Learning, Boosting, decision trees, information
gain.

1 Introduction

Multi-task learning [3] aims at improving the performance of related tasks by
learning a model representing the common knowledge across the tasks. Tradi-
tionally, the existing techniques assume that tasks share the same instance and
label space [14], in the case of classification [6,18], regression [5,1], ranking [4]
and feature learning [2].

However, in many natural settings these assumptions are not satisfied. A
known example is the automatic categorization of Web pages into hierarchical
directories, like DMOZ or Yahoo! [12]. When building a categorizer for the Ya-
hoo! directory, it is desirable to take into account DMOZ web directory, and vice
versa. The two tasks are clearly related, but their label sets are not identical.
Moreover, both ontologies can evolve with time when new categories are added
to the directories and some old categories die naturally due to lack of interest.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 681–696, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.xrce.xerox.com
http://www.lifl.fr

682 J.B. Faddoul et al.

Multi-task learning with no label correspondence was considered in
Quadrianto et al. in [15], where the problem is formulated as learning the max-
imum entropy estimator H(Y |X) for each task while maximizing the mutual
information −H(Y, Y ′) among the label sets Y and Y ′ of different tasks. Their
approach relies on the hypothesis of the global correlation between tasks in the
whole learning space. Tests on the real world datasets show however that this
global relatedness assumption turns to be too strong. Indeed, task relatedness
may show up different degrees or even different signs in different regions of the
learning space. It is therefore important that the multi-task learner copes with
the varying relatedness of tasks, learns its different degrees and accommodates
the inductive bias accordingly.

We are interested in the multi-task learning where label sets are close but
differ from one task to another and the number of classes might be different
across tasks. Our motivating example is the automatic classification of e-mails
in personal inboxes [13]. Similarly to the case of Yahoo! and DMOZ web directo-
ries, categories used in two e-mail inboxes may be related but not identical. For
example, people may use Family or Home categories for personal e-mails and Fi-
nance or Budget for e-mails relevant to financial issues. The application becomes
particularly critical when inboxes are owned by people from the same organiza-
tion; they may share the same messages but classify them according to personal
category names. We therefore expect that learning all tasks simultaneously can
benefit to the classification model for each task.

In the previous work [7] we proposed a method for multi-task learning for
tasks with different label sets which makes no assumption on global relatedness.
For this purpose, we developed a multi-task learning algorithm (MT-Adaboost)
which extends Adaptive boosting (Adaboost) [9] to the multi-task setting. The
boosting technique is used to generate and combine multiple (weak) classifiers
to improve the predictive accuracy. As weak classifiers, we introduced multi-
task stumps which are trees having at each node a decision stump for one task.
According to the boosting principle, a smart re-weighting of examples from dif-
ferent tasks without label correspondences can grasp the local relatedness of
tasks. The method however suffers from some limitations. The greedy algorithm
which learns a multi-task stump level-by-level, is based on a heuristic choosing
at the root the best stump for the easiest task (where the training error is the
lowest); then it forwards recursively to the next levels to learn the remaining
tasks. In this kind of a cascade classification on tasks, it learns at each node a
classifier for a task taking into account the other tasks’ classifiers in the node’s
ancestors. Unfortunately, such a sequential design of multi-task stumps performs
poorly when its greedy algorithm fails to capture task relatedness. In addition,
multi-task stumps are binary classifiers, and their extension to multiple multi-
class tasks requires additional efforts.

In this work, we propose a novel technique for the multi-task learning which
addresses the limitations of previous approaches. First, we propose Multi-Task
Decision Tree (MT-DT) as a multi-task weak classifier. We revisit the well known
C4.5 decision tree learning and adapt it to the multi-task setting. Decision trees

Learning Multiple Tasks with Boosted Decision Trees 683

are naturally multi-class classifiers, thus MT-DT can learn multiple multi-class
classification tasks. Our main contribution is in proving that MT-DT can benefit
from an improved information gain criterion due to the multi-tasking. Unlike
multi-task stumps, the criterion used to learn the nodes makes use of the data
from several tasks at each node.

Second, we proceed by plugging the MT-DT in the boosting framework; we mod-
ify MT-Adaboost to cope with the multi-class problems accordingly. We follow
the work of Schapire et al. [17] which analyzed Adaboost with weak learners
which abstain and proposed several variations of Adaboost to carry on multi-
class problems. Our modification of MT-Adaboost adapts their Adaboost.M1
algorithm.

As the experimental study will show, our method does not have a uniform
margin of improvement over all the tasks. In other words, the tasks which have
lower prediction accuracy in single task learning they have a higher improvement
potential when learned by our multi-task algorithm.

In the following section we formalize the multi-task learning and introduce
the multi-task decision trees. We revisit the information gain rule for the multi-
task learning and derive a novel criterion for learning MT-DT. In Section 3 we
present the boosting framework for the multi-task with MT-DT as weak learners.
We report the evaluation results for synthetic and real world multi-task datasets
in Section 4; Section 5 concludes the paper.

2 Multi-Task Learning

2.1 Notation and Setting

In the conventional setting, a supervised classification task T is defined over the
instance space X and the space Y of labels. Let D denote a distribution over
(X ,Y), let f : X → Y be a target function. Given a set of training examples
S = {(xi, yi) | xi ∈ X , yi = f(xi), 1 ≤ i ≤ m}, the goal of learning is to find
an hypothesis function h which minimizes an error function, defined over D as
error(h) = Pr<x,y>∼D[h(x) �= y].

We now consider N classification tasks T1, . . . , TN over the instance space X
and label sets Y1, . . . , YN , where labels in sets Yi are correlated but not identical.
Due to the label mismatch the label sets, we assume that Yi ∩ Yj = ∅ for
i �= j. We are interested in solving N classification tasks simultaneously, in
order to improve classification accuracy. We suppose a distribution DN over
X ×{1, . . . , N}. We assume that, for every j ∈ {1, . . . , N}, the projection on the
distribution’s j-th component will correspond to the original distribution for task
Tj. A multi-task classification algorithm will take as input the training set S =
{< xi, yi, j >| xi ∈ X , yi = fj(xi) ∈ Yj , j ∈ {1, . . . , N}, 1 ≤ i ≤ m}. It should
be noted that the same instance x can appear in sample S in different tasks Ti

and Tj with corresponding labels yi and yj . The goal is to find an hypothesis
h : X → Y1 × . . . × YN which minimizes error(h) = Pr<x,y,j>∼DN [hj(x) �= y],
where hj(x) is the j-th component of h(x) and j ∈ {1, . . . , N}.

684 J.B. Faddoul et al.

2.2 Multi-Task Decision Tree

Decision tree learning is a well known technique in machine learning; it uses a
decision tree as a predictive model which maps observations from the instance
space to the target values. In the case of classification, tree leaves represent class
labels and branches represent conjunctions of item attributes that lead to those
class labels [16].

In the C4.5 and C5.0 tree generation algorithms, the decision tree learning
uses the concept of the information gain (IG) from the information theory. At
the root of the tree, the algorithm chooses an attribute that yields the highest IG
on the training set. Such an attribute splits the training set S into two subsets S1

and S2 whose sum of labels entropy is the lowest. The algorithm then recursively
applies the information gain rule on the subsets. The recursion is stopped when
all items of a subset have the same label, a decision leaf corresponding to this
label 1.

The amount of information gain about a label variable Y ∈ Y obtained by
observing that an attribute variable a takes value v can be measured by the
Kullback-Leibler divergence DKL(p(Y |a)||p(Y)) of the prior distribution p(Y)
from the posterior distribution p(Y |a) for Y given a. The information gain rule
estimates the average improvement. Thus the decision tree algorithm uses the
rule to recursively split the instance space, by selecting an attribute with the
high information gain.

In this paper we adapt the information gain based decision tree learning to the
multi-task setting. One obvious difference between one- and multi-task setting is
in the tree structure. One-task decision tree uses the internal test nodes to guide
the decision process while the final decision on assigning a label to a sample is
made in a tree leaf.

The structure of an multi-task decision tree (MT-DT) is different in the way
it guides the decision process for multiple tasks. This process is not necessarily
the same for all tasks. An MT-DT can make a final decision for some tasks in an
internal test node, not a tree leaf. This happens when the internal test node has
enough information to classify an instance of a certain task T , in such a case a
decision leaf with the appropriate classification decision for T is added to the
tree and the learning proceeds with the remaining tasks.

Figure 1.a gives an example of an MT-DT learned for two synthetic tasks gener-
ated from 2Dmixture of Gaussians (see Figure 1.b). T1 has four labels (Y1 ={�, .,
/, ◦}) and T2 has two labels (Y2 ={+,∗}). Two labels of T1 (�, .) are correlated
with label + of T2, while two other labels of T1 (/, ◦) are correlated with label ∗
of T1. The generated MT-DT has three internal test nodes and each decision leaf
carries one rule per task.

Another example of MT-DT is showed in Figure 2. Task T1 is the same as
Figure 1, while task T2 is generated differently from a mixture of Gaussians (see
Figure 2.b). This results in a different correlation pattern between the tasks.
The learned MT-DT has an early decision leaf for T2 since knowing that x1 > −2
is enough to predict the label class ∗ for T2.

1 Some pruning is often used to generalize the rules learned to unobserved items.

Learning Multiple Tasks with Boosted Decision Trees 685

a)
b)

Fig. 1. a) MT-DT example for two tasks. b) Two 2D mixture of Gaussian tasks.

a)
b)

Fig. 2. a) MT-DT with early decision leaf. b) Two 2D mixture of Gaussian tasks.

When moving from one- to multi-task setting, the adaptation of the tree struc-
ture learning is straightforward. The main challenge is however in the optimal
way of using the information gain criteria. In the next section we show how
MT-DT can profit from the multi-task setting.

2.3 Multi-Task Information Gain

As said before the decision tree learning is based on the entropy-based criteria,
in particular, on the quantity of the mutual dependency between two random
variables, the label variable Y ∈ Y and the observation attribute a which is
one of the attributes of an input vector x ∈ X . The information gain denoted
IG(Y ; a) can be expressed as follows

IG(Y ; a) = H(Y)−H(Y |a), (1)

686 J.B. Faddoul et al.

where H(Y) = −
∑

y∈Y p(y)logp(y) is the marginal entropy of label set Y and
H(Y |a) =

∑
v p(v)H(Y |a = v) is the conditional entropy of Y knowing a.

Assume now we cope with N tasks with the corresponding label sets Y1, . . . ,
YN , respectively. For learning the MT-DT, the baseline approach is to treat
all the tasks together by concatenating the label sets, denoted as ⊕N

j=1Yj .
The concatenated task takes as input a sample S = {< xi, yi >| xi ∈
X , yi = f(xi) ∈ ⊕N

j=1Yj , 1 ≤ i ≤ m}. It can use the joint information gain

for learning decision rules, defined as IGJ = IG(⊕N
j=1Yj ; a). As an alterna-

tive to IGJ , we could use the unweighted sum of individual task information
gains, IGU =

∑T
j=1 IG(Yj ; a). Evaluations however show that IGU gives lower

information gain values comparing to IGJ .
We will prove below that IGJ is equivalent to the weighted sum of individual

task information gains and infer an IG criterion with higher values compared to
IGJ . The novel IG criterion, denoted IGM , takes the maximum value among
the individual IGs, IGM = max{IG(Yj ; a), j = 1, . . . , N}.

We first recall the generalized grouping feature of the entropy [10] in the
following lemma. It establishes a relationship between the entropy of an entire
set of values and the entropies of its disjoint subsets.

Lemma 1. For qkj ≥ 0, such that
∑n

k=1

∑m
j=1 qkj = 1, pk =

∑m
j=1 qkj , ∀k =

1, . . . , n, the following holds

H(q11, . . . , q1m, q21, . . . , q2m, . . . , qn1, . . . , qnm) = (2)

H(p1, . . . , pn) +
∑

pkH

(
qk1
pk

, . . . ,
qkm
pk

)
, pk > 0, ∀k. (3)

Using Lemma 1, we can prove the following theorem on the relationship between
the joint information gain IG(⊕N

j=1Yj ; a) of the full task set and of the individual
tasks IG(Yj ; a), j = 1, . . . , N .

Theorem 1. For N tasks with the class sets Y1, . . . ,YN , let pj denote the frac-

tion of task j in the full dataset, pj =
|Sj|∑

N
j=1 |Sj |

, j = 1, . . . , N ,
∑N

j=1 pj = 1.

Then we have

IG(⊕N
j=1Yj ; a) =

N∑
j=1

pjIG(Yj ; a) ≤ max(IG(Y1; a), . . . , IG(YN ; a)). (4)

Proof. First, we use Lemma 1 to develop the entropy term H(⊕N
j=1Yj) of the

information gain (1). We have

H(⊕N
j=1Yj) = H(p1, . . . , pN) +

N∑
j=1

pjH(Yj), (5)

where
∑N

j=1 pj = 1.

Learning Multiple Tasks with Boosted Decision Trees 687

Second, we develop the conditional entropy term in (1), as follows

H(⊕N
j=1Yj |X) =

∑
x

p(x)H(⊕N
j=1Yj |a = v) (6)

=
∑
v

p(v)

⎛⎝H(p1, . . . , pN) +
N∑
j=1

pjH(Yj |a = v)

⎞⎠ (7)

= H(p1, . . . , pN) +

N∑
j=1

pjH(Yj |a). (8)

Now we combine the entropy (5) and the conditional entropy (9) terms to eval-
uate the joint information gain IG(⊕N

j=1Yj ; a). We obtain

IG(⊕N
j=1Yj ; a) = H(⊕N

j=1Yj)−H(⊕N
j=1Yj |a) (9)

=
N∑
j=1

pjIG(Yj ; a) (10)

≤ max(IG(Y1; a), . . . , IG(YN ; a)). (11)

This completes the proof of the theorem.
Theorem 1 says that criterion IGM for the decision tree learning in the

multi-task case gives larger information gain values comparing to the joint one
IGJ .

Figure 3 compares three criteria IGU , IGJ and IGM for some randomly
generated two-task datasets. Two label sets are generated by sampling from the
Uniform, Normal (with μ = 0, σ = 1) and Poisson (λ = 1) distributions; the
number of labels in the two sets vary from 2 to 20. Attributes values are sampled
from uniform distributions in all cases. We measure the relative values of IGM

and IGU with respect to IGJ . In all cases, we report the median, the upper
and lower percentiles, and the whiskers over 100 runs. As the figure shows, IGM

yields on average up to 42% larger information gain values than IGJ , with the
minimal gain in the case of two Uniform distributions.

As we can notice from the plots, the variance of IGM values is very high
compared to this of IGU which have almost zero variance. An information gain
criterion with small variance is not a good indicator to help choosing a good
node because all node will have very close IG values. The explanation of such
small variance is that when we take the sum of IGs for all tasks, it is difficult to
come out with a node that satisfies all of them.

688 J.B. Faddoul et al.

Fig. 3. Information gain for synthetic two-task datasets. The relative values of IGM

(in blue) and IGU (in red).

2.4 Learning Algorithm for MT-DT

The learning algorithm for MT-DT applies one of proposed information gain cri-
teria to the available training set S:

MTIG(S) ≡ (a∗, v∗) = maxa∈X ,v∈VaIG∗(S),

where a is an attribute in feature space X , S is the training set, a takes one of
the possible values v ∈ Va and a pair (a∗,v∗) yields the optimal split on S using
as criterion IG∗ which can refer to IGJ , IGU or IGM .

The pseudo code of the MT-DT algorithm is presented in Algorithm 1. The
algorithm makes a call to a function MTIG which returns the node with rule
a ≤ v that maximizes a given information gain on a multi-task training set S,
Then it gets subsets S1, S2 resulting from splitting S on the chosen node. At
each node the algorithm adds decision leaves for the tasks having no items in
the subset or having items with the same label. Then, it calls recursively the
procedure on each of subsets. The learning algorithm returns at the end a tree
that gives for each example (x) one label for each task.

In the evaluation section, we test three versions of the IG criterion introduced
before, IGJ , IGU and IGM . It is worth noting that we can limit the depth of
the trees by modifying the stopping criterion, instead of stopping the growth of
a certain branch when we have homogenous labels for all tasks in the subspace
corresponding to that branch, we can stop when we exceed a threshold. For
instance, when 80% of the examples are from the same labels. This should not
be an issue as long as we are using an ensemble of trees learned by a boosting
algorithm.

Learning Multiple Tasks with Boosted Decision Trees 689

Require: S = ∪N
j=1{ei =< xi, yi, j >| xi ∈ X ; yi ∈ Yj}

Require: MTIG: multi-task information gain criterion
1: res = [] {Will contain the chosen node and early decision leaves, if any}
2: for j = 1 to N do
3: if task j’s examples (Sj) has all the same label or Sj = ∅ then
4: Add to res a leaf for task j and label y. {y is either the unique label of Sj in

case it is homogeneous or it is the majority label of its parent subset in case
Sj = ∅}

5: S = S \ Sj

6: end if
7: end for
8: Get the bestnode rule (a, v) =MTIG(S) which maximizes the information gain
9: Call split(S, a, v))
10: Get back [S1, S2], two subsets resulted from splitting S based on bestnode

11: Add bestnode to res

12: Call recursively the algorithm on S1 and S2 to get the children of res
13: return res

Algorithm 1. MT-DT algorithm

3 Multi-Task Adaboost

In the previous section we developed a novel technique for learning MT-DT’s with
an improved information gain criterion. To avoid all disadvantages of the decision
trees such as overfitting, in this section we proceed by plugging the MT-DT’s in
the boosting framework.

We adapt Adaboost.M1 which was introduced in [9]. We preferred M1 to
MH or other multi-class boosting algorithm because it requires a weak classifier
which is naturally multi-class. It does not need a weak learner which transforms
a problem to several binary problems, and since, we propose a multi-task learner
based on decision trees that are naturally multi-class classifiers, Adaboost.M1
is a good candidate. In addition to that, it is the most straightforward multi-
class extention of Adaboost. Nevertheless, it puts strong requirement on the
weak learner; actually, it requires the classification error of the weak classifier
to be less than 0.5 w.r.t. to the current weight distribution, regardless the num-
ber of class labels. Some weak learners, such as stumps, are unable to satisfy
such a strong boosting condition. But, normally, decision trees can satisfy this
condition.

The proposed Multi-Task Adaboost algorithm (MT-Adaboost) is presented
in Algorithm 2. T is the number of boosting iterations; init is a procedure
to initialize the distribution D1 over S; and WL is a weak learner that returns
an MT-DT given as input a sample S and a distribution D over S. The final
output is a multi-task classifier H from X into Y1 × . . . × YN . As in single
task boosting algorithms, MT-Adaboost calls WL repeatedly in a series of rounds.

690 J.B. Faddoul et al.

On each round t, the algorithm provides WL with the current distribution Dt and
the training sample S, in return WL learns a classifier ht : X → Y1 × . . . × YN

which minimizes the training error on S with respect to Dt. The distribution
Dt+1 is then calculated from Dt and ht as follows. Correctly classified examples
by ht will have their weights multiplied by 0 ≤ βt ≤ 1 (i.e., decreased), and the
weights of misclassified examples will be left unchanged. Finally, the weights are
renormalized by using the normalization constant Zt.

The final classifier H for a given task j is a weighted vote of the weak clas-
sifiers’ predictions for this task. The weight given to hypothesis ht is defined
to be ln(1/βt) so that greater weight is given to hypotheses with lower error.
MT-Adaboost has the same theoretical properties of Adaboost.M1, that is, if the
weak hypotheses have error only slightly better than 1/2, then the (training)
error of the final hypothesis H drops to zero exponentially fast in function to
the number of boosting iterations T .

4 Experiments

In this section we present a series of experiments on three datasets. We describe
the datasets and evaluation framework, then we compare the predictive perfor-
mance of single task decision trees to different MT-DTs learned using IGJ , IGU

and IGM criteria. Then we report experimental results on boosted trees using
MT-Adaboost.

Require: S = ∪N
j=1{ei =< xi, yi, j >| xi ∈ X ; yi ∈ Yj}

1: D1 = init(S) initialize distribution
2: for t = 1 to T do
3: ht = WL(S,Dt) {train the weak learner and get an hypothesis MT-DT }
4: Calculate the error of ht: εt =

∑N
j=1

∑
i:ht

j(xi) �=yi
Dj(xi).

5: if εt > 1/2 then
6: Set T = t− 1 and abort loop.
7: end if
8: βt =

εt
1−εt

{Update distribution:}
9: if htj(xi) == yi then

10: Dt+1(ei) =
Dt(ei)×βt

Zt

11: else
12: Dt+1(ei) =

Dt(ei)
Zt

13: end if
14: end for
{Where Zt is a normalization constant chosen so that Dt+1 is a distribution}

15: return Classifier H defined by:

Hj(x) = argmax
y∈Yj

(
i=T∑
i=1

(ln 1/βt)), 1 ≤ j ≤ N

Algorithm 2. MT-Adaboost

Learning Multiple Tasks with Boosted Decision Trees 691

4.1 Datasets

Synthetic. We generate synthetically tasks with local relatedness patterns,
by following the data generation technique described in [8]. Each pattern is
generated a random Bayesian network (BN) from which one can derive different
but related probabilistic distributions. The BN is created by generating (a) a
random (directed acyclic) graph, (b) a set of functions (with random parameters)
characterizing the dependence of every node on each one of its parents in the
graph, and (c) a set of functions (with randomly assigned parameters) defining
the probability density of each node 2.

Figure 4 shows some examples of the local tasks relatedness generated us-
ing such method. In the plotted examples, the distributions feature cubic, ex-
ponential and linear correlation functions, with Beta, Gaussian and Laplacian
densities. Using the random relatedness generator we generate three multi-task
learning datasets. DS1 consists of two tasks T1 and T2, having three and two
labels, respectively. They are plotted in Figure 5.a. We can see that the red
class of T1 is locally correlated with the light blue class of T2; similarly, the
green class is locally correlated with the violet. However the dark blue class of
T1 which is locally correlated with the violet in the upper part of its density
and with the light blue in the lower part. The second dataset DS2 is shown
in Figure reffig:mtsynthetic.b with tasks being also locally correlated. Finally,
random noise is added to the labels of all tasks as follows. For a certain example
with label y we place a discrete probability distribution over the label set with
90% of mass concentrated over y and the rest distributed equally over the other
labels. Then we sample the noisy label from this distribution. It should be noted
that we generate tasks with different number of class labels on purpose, in or-
der to test the proposed methods on configurations not addressed by prior-art
methods.

Enron. Enron dataset3 contains all e-mails sent and received by some 150 ac-
counts of the top management of Enron company and spans a period of several
years. Annotations of the Enron dataset come from two different sources, thus,
naturally constituting two tasks. The first is from the Department Of Justice of
the United States DOJ4, which has published a list of responsive emails used in
the trials against the two CEO’s of Enron. This set along with a manually an-
notated non-responsive emails constitute a binary classification task, Responsive
Vs. Non-responsive, with total of 372 emails. The second annotated set comes
from students of Berkeley University. Emails in this set are annotated by topic,
for an average of 250 emails per topic. Five topics are used in our experiments:
Business, Legal, Influence, Arrangement and Personal. We used the textual fea-
tures of Enron dataset along with the social features (see [11] for more details).

2 The code is provided by Antonino Freno
http://researchers.lille.inria.fr/~freno/software.html

3 http://www.cs.cmu.edu/~enron/
4 http://www.usdoj.gov/enron/

http://researchers.lille.inria.fr/~freno/software.html
http://www.cs.cmu.edu/~enron/
http://www.usdoj.gov/enron/

692 J.B. Faddoul et al.

(a) A correlation pattern from beta-
quadratic distributions

(b) A correlation pattern from
gaussian-cubic distributions

(c) A correlation pattern from
gaussian-exponential distribu-
tions

(d) A correlation pattern from
gaussian-quadratic distributions

Fig. 4. Tasks Relatedness Patterns for synthetic 2D data

(a) Two related multi-class tasks (b) Two related multi-class tasks

Fig. 5. Two classification problems, each with two multi-class tasks

Spam Filtering. This dataset was used for the ECML/PKDD 2006 discovery
challenge. It contains email inboxes of 15 users. Each inbox has 400 spam/ham
emails. They are encoded by standard bag-of-word vector representation. We
consider each user as a task.

Learning Multiple Tasks with Boosted Decision Trees 693

MNIST Character Recognition. We use this dataset adapted to the multi-
task setting because it was used by a state-of-the-art method [15], so we can and
we can compare with their results. For the experiments, we consider multi-task
learning problems with 10 tasks representing the digits {1, 2, 3, 4, 5, 6, 7, 8, 9, 0}.
We follow the same protocol given in [15] so we can be able to have a good
comparison.

4.2 Results on Trees

In this section we report experimental results of MT-DTs learned using IGJ ,
IGU and IGM criteria introduced in Section 2.3. We also compare MT-DT to
single task decision trees learned with C4.5 algorithm. In all experiments we
use the 5-fold cross validation, where each run consists of training on four folds
and testing on the remaining one. We run all methods fifty times on random
shuffles of the data and report the average values. Results in bold are statistically
significant by a t-test with α = 0.05.

Table 1 reports the size of training/test sets and the evaluation results
for three synthetic datasets. We note that MT-DT with IGM brings a sig-
nificant improvement over C4.5. While IGJ and IGU behave comparably to
C4.5, they are slightly better on Task-1, but suffer an accuracy drop on
Task-2.

Table 1. Average classification accuracy on the three synthetic datasets

Tasks Train (Test) C4.5 IGJ IGU IGM

Data Set 1
Task-1 300 (1200) 86.432 ± 0.003 86.116 ± 0.063 86.070 ± 0.029 87.180 ± 0.037
Task-2 200 (1300) 89.532 ± 0.167 88.980 ± 0.391 89.237 ± 0.445 89.246 ± 0.341
Avg 87.982 87.548 87.653 88.213

Data Set 2
Task-1 200 (1300) 90.738 ± 0.092 88.008 ± 0.606 89.848 ± 0.063 90.751 ± 0.085
Task-2 300 (1200) 83.525 ± 0.600 88.056 ± 1.363 88.221 ± 1.316 88.366 ± 0.366
Avg 87.132 88.032 89.035 89.559

The same behavior is observed on ECML’06 data (see Table 2). It
shows a superiority of IGM over other MT-DT criteria in accuracy
values. However, learning tasks simultaneously does not bring the same improve-
ment to all tasks, some tasks tend to benefit more from multi-task learning than
others. Results show that more difficult tasks (tasks with a lower accuracy)
got a higher improvement on their prediction accuracy when learned by other
tasks.

694 J.B. Faddoul et al.

Table 2. Average classification accuracy on three ECML’06 user inboxes

Tasks Train (Test) C4.5 IGJ IGU IGM

User-1 320 (80) 86.45 ± 1.23 86.19 ± 1.14 86.00 ± 1.88 87.65±3.42
User-2 320 (80) 85.13 ± 2.16 85.53 ± 2.22 85.07 ± 3.16 88.93±3.44
User-3 320 (80) 88.03 ± 2.11 88.22 ± 2.56 88.52±1.33 88.19 ± 2.51

Avg 86.54 86.65 86.53 88.26

Table 3. Comparison on the MNIST datasets of (single-task) Adaboost, MTL and
MT-Adaboost

Tasks Train (Test) Adaboost MTL [15] MT-Adaboost

1/-1 100 (10000) 91.770 ± 1.188 96.80 ± 1.91 96.802 ± 0.562
2/-2 100 (10000) 83.138 ± 2.347 69.95 ± 2.68 86.875 ± 0.676
3/-3 100 (10000) 82.959 ± 1.245 74.18 ± 5.54 87.679 ± 1.038
4/-4 100 (10000) 83.975 ± 1.408 71.76 ± 5.47 90.382 ± 0.713
5/-5 100 (10000) 78.423 ± 0.691 57.26 ± 2.72 84.253 ± 0.731
6/-6 100 (10000) 88.954 ± 1.601 80.54 ± 4.53 92.880 ± 0.896
7/-7 100 (10000) 87.105 ± 0.904 77.18 ± 9.43 92.811 ± 0.575
8/-8 100 (10000) 77.513 ± 1.905 65.85 ± 2.50 85.279 ± 1.727
9/-9 100 (10000) 81.842 ± 1.850 65.38 ± 6.09 86.904 ± 1.258
0/-0 300 (10000) 93.660 ± 1.287 97.81 ± 1.01 97.137 ± 0.418

Average - 84.934 75.67 90.100

4.3 Results on Boosted Trees

In the previous section we experimentally validated the advantage of learning
related tasks simultaneously, by using multi-task information gain criteria, in
particular IGM . In this section we compare boosted MT-DT’s to the boosted C4.5
trees. We use Adaboost.M1 [17] and MT-Adaboost (see algorithm 2) as boosters
for C4.5 and for MT-DT respectively. Both algorithms have only one parameter,
the number of boosting iterations which we set on a separated validation set.

Table 3 reports our comparison with the work in [15], we can see that our
multi-task algorithm significantly outperform Adaboost with trees for single task
learning and it proves a large margin of improvement over the method in [15],
despite that we exactly follow their protocol.

Table 4. Average classification accuracy of boosted trees on Enron tasks

Tasks Train (Test) Adaboost MT-Adaboost MT-Adaboost MT-Adaboost
C4.5 IGJ IGU IGM

Responsive Vs. 299 (74) 85.10 ± 1.21 84.66 ± 2.15 84.52 ± 1.2 86.01±1.53
NonResponsive

5 Topics 265 (66) 51.34 ± 0.43 52.89 ± 0.87 52.17 ± 0.74 57.11±0.02
Avg 68.22 68.78 68.35 71.65

Learning Multiple Tasks with Boosted Decision Trees 695

Table 4 reports the average values of classification accuracy over three random
runs for Enron dataset. With boosted trees we observe an accuracy improvement
similar to simple trees. Namely, MT-Adaboost+MT-DT is significantly better
than Adaboost+C4.5; also the most difficult tasks enjoy a larger margin of im-
provement.

5 Conclusion

We proposed an adaptation of decision tree learning to the multi-task setting,
with the following important contributions. First, we developed multi-task de-
cision trees to deal with multi-class tasks with no label correspondence. The
criterion to learn the decision rules makes use of the data from several tasks
at each step of the decision tree learning, thus enabling to capture any degree
of relatedness between the tasks. We then feature an important property of in-
formation gain rule when working with multiple tasks. This enabled us derive
the new information gain criterion for learning decision trees in the multi-task
setting. We also modified MT-Adaboost to cope with multi-class problems. We
finally validated the proposed methods by series of experiments on three cases
of multi-task learning.

Acknowledgment. This work was partially supported by Ministry of Higher
Education and Research, Nord-Pas de Calais Regional Council, FEDER through
the CPER 2007-2013 and the LAMPADA project co-funded by the French As-
sociation on Research - ANR.

References

1. Archembeau, C., Guo, S., Zoeter, O.: Sparse Bayesian Multi-Task Learning. In:
NIPS (2011)

2. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Advances
in Neural Information Processing Systems 19 (2007)

3. Caruana, R.: Multitask learning. Machine Learning 28, 41–75 (1997)
4. Chapelle, O., Shivaswamy, P., Vadrevu, S., Weinberger, K., Zhang, Y., Tseng, B.:

Multi-task learning for boosting with application to web search ranking. In: Proc.
16th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1189–1198 (2010)

5. Dai, W., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In: ICML
2007: Proceedings of the 24th International Conference on Machine Learning, pp.
193–200. ACM (2007)

6. Evgeniou, T., Pontil, M.: Regularized multi–task learning. In: KDD 2004: Proceed-
ings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 109–117. ACM (2004)

7. Faddoul, J.B., Chidlovskii, B., Torre, F., Gilleron, R.: Boosting multi-task weak
learners with applications to textual and social data. In: Proceedings of the Ninth
International Conference on Machine Learning and Applications (ICMLA), pp.
367–372 (2010)

696 J.B. Faddoul et al.

8. Freno, A., Trentin, E., Gori, M.: Kernel-based hybrid random fields for nonpara-
metric density estimation. In: ECAI, pp. 427–432 (2010)

9. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55(1),
119–139 (1997)

10. Gray, R.M.: Entropy and Information Theory, 2nd edn. Springer (2011)
11. Hovelynck, M., Chidlovskii, B.: Multi-modality in one-class classification. In: Pro-

ceedings of the 19th International Conference on World Wide Web (WWW), pp.
441–450 (2010)

12. Liu, T.-Y., Yang, Y., Wan, H., Zeng, H.-J., Chen, Z., Ma, W.-Y.: Support vec-
tor machines classification with a very large-scale taxonomy. SIGKDD Explor.
Newsl. 7(1), 36–43 (2005)

13. Mantrach, A., Renders, J.-M.: A Mailbox Search Engine Using Query Multi-modal
Expansion and Community-Based Smoothing. In: Baeza-Yates, R., de Vries, A.P.,
Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.)
ECIR 2012. LNCS, vol. 7224, pp. 576–577. Springer, Heidelberg (2012)

14. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowl-
edge and Data Engineering 22, 1345–1359 (2010)

15. Quadrianto, N., Smola, A., Caetano, T., Vishwanathan, S.V.N., Petterson, J.:
Multitask learning without label correspondences. In: Proceedings of the Twenty-
Fourth Annual Conference on Neural Information Processing Systems (NIPS), pp.
1957–1965 (2010)

16. Ross Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lishers Inc., San Francisco (1993)

17. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. Machine Learning 37 (1999)

18. Xue, Y., Liao, X., Carin, L., Krishnapuram, B.: Multi-task learning for classifica-
tion with dirichlet process priors. J. Mach. Learn. Res. 8, 35–63 (2007)

Multi-Task Boosting by Exploiting Task Relationships

Yu Zhang and Dit-Yan Yeung

Hong Kong University of Science and Technology
{zhangyu,dyyeung}@cse.ust.hk

Abstract. Multi-task learning aims at improving the performance of one learn-
ing task with the help of other related tasks. It is particularly useful when each
task has very limited labeled data. A central issue in multi-task learning is to learn
and exploit the relationships between tasks. In this paper, we generalize boosting
to the multi-task learning setting and propose a method called multi-task boost-
ing (MTBoost). Different tasks in MTBoost share the same base learners but with
different weights which are related to the estimated task relationships in each iter-
ation. In MTBoost, unlike ordinary boosting methods, the base learners, weights
and task covariances are learned together in an integrated fashion using an al-
ternating optimization procedure. We conduct theoretical analysis on the conver-
gence of MTBoost and also empirical analysis comparing it with several related
methods.

1 Introduction

In many real-world applications, the amount of labeled data available in a single learn-
ing task is scarce but there exist multiple related tasks. Multi-task learning [1,2,3] ex-
ploits this scenario to improve the performance of one learning task with the help of
other related tasks. This learning paradigm, which can date back to some research in
psychology and cognitive science, is inspired by human learning ability in that people
often apply the knowledge gained from previous learning tasks to help learn a new task.
For example, if a person can play Chinese chess, then (s)he will learn to play chess
more easily by transferring the knowledge gained from playing Chinese chess. Major
advances have been made in multi-task learning over the past decade. Multi-layered
feedforward neural network [1] is one of the earliest models for multi-task learning.
The units of the hidden layer in a neural network represent the common features for
data points from all tasks and each unit in the output layer usually corresponds to the
output of one task. Besides multi-layered feedforward neural networks, multi-task fea-
ture learning [4,5] also learns common features for all tasks with the difference being
that it is a regularized method. Different from these methods which learn common data
representations, some methods aim to learn similar model parameters for different tasks,
e.g., regularized multi-task support vector machine (SVM) [6] defines a new regularizer
to enforce the SVM parameters for all tasks to be close to each other. Moreover, one
widely used approach for multi-task learning is the task clustering approach [7,8,9] in
which the main idea is to group the tasks into several clusters and then learn identical or
similar data features or model parameters for the tasks within each cluster. An advan-
tage of this approach over the above mentioned methods is its robustness against outlier

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 697–710, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

698 Y. Zhang and D.-Y. Yeung

tasks because they reside in separate clusters that do not affect other tasks. Among
many existing methods proposed for multi-task learning, a central issue in multi-task
learning is to learn and exploit the pairwise relationships between tasks. There are three
types of pairwise task relationships, namely, positive task correlation, negative task cor-
relation, and task unrelatedness. However, most existing multi-task learning methods
cannot make full use of all three types of task relationships. One way to incorporate the
task relationships into a learning model is by adopting some model assumption about
task relatedness. Unfortunately, the model assumption adopted may be incorrect. Worse
still, it is not easy to verify the correctness of the model assumption. As such, it is more
desirable to take an alternative approach by learning the task relationships from data
automatically. The multi-task Gaussian process (GP) model [10] and its extension [11]
are recently proposed methods that adopt this approach under the Bayesian framework.
Moreover, Zhang and Yeung proposed a method in [12] to learn task relationships un-
der the regularization framework for classification and regression problems, and then
extended it for feature selection problems in [13].

Boosting [14], which seeks to combine multiple (weak) base learners to form a
learner with significantly better performance, has been widely used in many areas, such
as machine learning and data mining. There exist some explanations, e.g., margin the-
ory [15,16], for the success of boosting. Moreover, some studies show that boosting is
related to the additive model [17,18] in statistics. Even though boosting methods have
shown good performance in many applications, their performance is often unsatisfac-
tory when the labeled data is scarce. This calls for combining boosting and multi-task
learning [19,20].

In this paper, we generalize boosting to the multi-task learning setting via learning
and exploiting the pairwise task relationships. Our point of departure is a regularized
method in [12] which learns the task relationships in the form of a task covariance
matrix under a regularization framework and is related to maximum a posteriori (MAP)
estimation of the weight-space interpretation of the multi-task GP model [10] presented
in [11]. We then extend the formulation for boosting to give a method called multi-task
boosting (MTBoost). By viewing boosting as a feature generating process, different
tasks in MTBoost share the same base learners but with different weights which are
related to the estimated task relationships in each iteration. Unlike single-task boosting
methods which learn the base learners and weights separately, the base learners, weights
and task covariances in MTBoost are learned together in an integrated fashion using an
alternating optimization procedure. We conduct theoretical analysis on the convergence
of the MTBoost learning algorithm.

The remainder of this paper is organized as follows. We present our MTBoost model
and its learning algorithm in Section 2. Section 3 reviews some related work and Sec-
tion 4 reports experimental results on some multi-task learning applications. Concluding
remarks are given in the final section.

2 Multi-Task Boosting by Exploiting Task Relationships

Let there be m learning tasks {Ti}mi=1. For the ith task Ti, the training set consists of ni

labeled data points (xi
j , y

i
j), j = 1, . . . , ni, with xi

j ∈ Rd and its corresponding output
yij ∈ {−1, 1} for a binary classification problem.

Multi-Task Boosting by Exploiting Task Relationships 699

2.1 Task Covariance Matrix

In [10], Bonilla et al. proposed a multi-task GP model which models the pairwise task
relationships using a task covariance matrix under the Bayesian framework. However,
it is not clear how to learn the task covariance matrix for other models such as those
formulated under the regularization framework. In [12], the authors presented a regu-
larized method, shedding light on how the task covariance matrix affects the learning of
multiple tasks. More specifically, the task covariance matrix Ω is used as a parameter
matrix for the matrix-variate normal distribution [21] over the model parameters in least
squares regression or support vector machine (SVM):

A = (a1, . . . , am) ∼ MN d×m(A |0d×m, Id ⊗Ω), (1)

where ai ∈ Rd is the model parameter vector for the ith task, MN d×m(M,Σ ⊗ Ω)
denotes a matrix-variate normal distribution with mean M ∈ Rd×m, row covariance
matrix Σ ∈ Rd×d and column covariance matrix Ω ∈ Rm×m. The probability density
function of the matrix-variate normal distribution is

p(X |M,Σ,Ω) =
exp

(
− 1

2 tr
(
Σ−1(X−M)Ω−1(X−M)T

))
(2π)md/2|Σ|m/2|Ω|d/2 ,

where tr(·) denotes the trace of a square matrix, | · | denotes the determinant of a square
matrix, and B−1 denotes the inverse of a non-singular matrix B or the pseudo-inverse
when it is singular. From this view, we can see that Ω is used to model the covariance
between the columns in the model parameter matrix A and hence to model the task rela-
tionships since each column in A represents the model parameters of the corresponding
task.

Given the likelihood (i.e., logistic model for classification problem or Gaussian noise
model for regression problem) and the prior defined in Eq. (1), the MAP solution is
obtained by solving the following problem:

min
A,Ω

m∑
i=1

ni∑
j=1

l(aTi x
i
j , y

i
j) +

λ

2
tr(AΩ−1AT)

s.t. Ω $ 0, tr(Ω) = 1, (2)

where l(·, ·) defines the empirical loss corresponding to the likelihood, λ is a regu-
larization parameter which balances the tradeoff between the empirical loss and the
regularization term, and Ω $ 0 means that the matrix Ω is positive semidefinite. The
first constraint in problem (2) is needed because Ω is defined as a task covariance ma-
trix and the second constraint serves to restrict the complexity of Ω. The second term
in the objective function of problem (2) is derived from the matrix-variate normal prior
in Eq. (1) and is used to regularize the task relationships.

It is easy to show that problem (2) is a convex problem as long as the loss function
l(·, ·) is convex, as proved in [12]. We will show how to design a boosting algorithm
according to problem (2).

700 Y. Zhang and D.-Y. Yeung

2.2 Multi-Task Boosting

In a boosting algorithm, we are given a fixed class of functions (or called base hy-
potheses) denoted by F and are required to find a linear combination of functions
in F , denoted by lin(F), that minimizes a cost functional C(·) on lin(F). For ex-
ample, in our experiments, due to the high-dimensional data involved, a linear least-
squares SVM is utilized as the base learner. The final hypothesis can be written as
F (x) =

∑Q
t=1 wtft(x) where ft ∈ F and wi ∈ R. So, boosting may be viewed as

finding for each data point x a new feature representation z = (f1(x), . . . , fQ(x))
T

and also a coefficient vector. From this view, we can extend problem (2) for multi-task
boosting as

min
W,Ω,{ft}

m∑
i=1

ni∑
j=1

l(wT
i z

i
j , y

i
j) +

λ

2
tr(WΩ−1WT)

s.t. zij = (f1(x
i
j), . . . , fQ(x

i
j))

T ∀i, j
Ω $ 0, tr(Ω) = 1, (3)

where W = (w1, . . . ,wm). In this formulation, we can see that the final hypothesis Fi

for the ith task can be expressed as Fi =
∑Q

j=1 wijfj , where wij is the jth element of
wi. So different tasks share the same base hypotheses but with different weights.

However, here we cannot know the base hypotheses in advance. So we view this
model as an additive model [17] and use the gradient boosting technique [18,22] to
learn the base hypotheses and their weights. More specifically, in the t-th iteration, the
existing combined hypothesis for the ith task is denoted by F

(t−1)
i and the optimization

problem is

min
wt,Ω,ft

m∑
i=1

C(F
(t−1)
i + witft) +

λ

2
tr(WtΩ

−1WT
t)

s.t. Ω $ 0, tr(Ω) = 1, (4)

where Wt is the weight matrix until the tth iteration with (i, j)th element as wji and
wt = (w1t, . . . , wmt) denotes the new weight vector obtained in the tth iteration.
Here C(Fi) =

∑ni

j=1 l(Fi(x
i
j), y

i
j). Since we mainly consider the classification prob-

lem in this section, we take the margin cost functional to be the loss function, i.e.,
l(F (xi

j), y
i
j) = c(yijF (xi

j)) for some monotonically decreasing function c(·). In this
paper, c(·) takes the form of c(x) = ln(1+ exp(−x)) which is widely used in boosting
algorithms such as LogitBoost [17].

Since problem (4) is still not easy to solve, we use the majorization-minimization (MM)
algorithm [23] to solve it. The MM algorithm is an iterative algorithm which seeks an up-
per bound of the objective function based on the solution of the previous iteration as a
surrogate function for a minimization problem and minimizes the surrogate function in-
stead of the original objective function. It has been proved that the MM algorithm is guar-
anteed to find a local optimum. Here for simplicity, we just run one iteration of the MM
algorithm with the initial solution of ft as a zero function. Since c(x) = ln(1+exp(−x))

Multi-Task Boosting by Exploiting Task Relationships 701

is a concave function due to the fact that ∂2c(x)
∂2x = − exp(−x)

(1+exp(−x))2 < 0, C(·) is also a
concave functional and hence we have

C(F
(t−1)
i + witft) ≤ C(F

(t−1)
i) + wit〈∇C(F

(t−1)
i), ft〉,

due to the first-order property of a concave function. Here ∇C(Fi) denotes the func-
tional derivative of C at Fi and 〈Fi, Gi〉 is the inner product which is defined as
〈Fi, Gi〉 =

∑ni

j=1 Fi(x
i
j)Gi(x

i
j). So in each iteration of the MM algorithm, the op-

timization problem can be formulated as

min
wt,Ω,ft

m∑
i=1

wit〈∇C(F
(t−1)
i), ft〉+

λ

2
tr(WtΩ

−1WT
t)

s.t. Ω $ 0, tr(Ω) = 1. (5)

Unlike conventional boosting algorithms which can optimize wit and ft separately as
in [18,22], here in problem (5) wit and ft are coupled together. We use an alternating
method to solve the problem.

When wt and Ω are given, we can get

〈∇C(F
(t−1)
i), ft〉 =

ni∑
j=1

yijft(x
i
j)c

′(yijF
(t−1)
i (xi

j)),

where c′(·) is the derivative of c(·), since C(F
(t−1)
i) =

∑ni

j=1 c(y
i
jF

(t−1)
i (xi

j)). Then
we need to solve the following minimization problem to find ft:

min
ft

m∑
i=1

wit

ni∑
j=1

yijft(x
i
j)c

′(yijF
(t−1)
i (xi

j)). (6)

Since c(·) is monotonically decreasing, the derivative c′(·) is negative. Problem (6) can
be reformulated as

max
ft

m∑
i=1

ni∑
j=1

ỹijft(x
i
j)d

i
j , (7)

where dij =
c′(yi

jF
(t−1)
i (xi

j))|wit|∑m
i=1 |wit|

∑ni
j=1 c′(yi

jF
(t−1)
i (xi

j))
defines the instance weight for xi

j , ỹij =

sign(wit)y
i
j , and sign(·) is the sign function. Since wit ∈ R, here we take the abso-

lute value of wit to keep the instance weights {dij} non-negative and the equivalence
between problem (6) and (7) is due to the fact that wit = sign(wit)|wit|. We assume
ft(·) ∈ {−1, 1}. Since ỹij ∈ {−1, 1},1 the objective function in problem (7) can be
rewritten as

m∑
i=1

ni∑
j=1

ỹijft(x
i
j)d

i
j =

∑
ỹi
j=ft(xi

j)

dij −
∑

ỹi
j �=ft(xi

j)

dij = 1− 2
∑

ỹi
j �=ft(xi

j)

dij .

1 When wit = 0, the ith task has no effect on problem (7) and hence can be ignored.

702 Y. Zhang and D.-Y. Yeung

So problem (7) is equivalent to minimizing the weighted classification error

min
ft

∑
ỹi
j �=ft(xi

j)

dij . (8)

From problem (8), we may look at it as a weighted combination of multiple tasks to
give a single “supertask” with possible label flipping from yij to ỹij depending on the
relationships between tasks. For a base learner such as least-squares SVM, we need to
solve a weighted least-squares SVM where the instance weights are defined by {dij}.

When ft and wt are given, we need to solve the following problem

min
Ω

tr(WtΩ
−1WT

t)

s.t. Ω $ 0, tr(Ω) = 1. (9)

Then we have

tr(Ω−1B) = tr(Ω−1B)tr(Ω)

= tr((Ω− 1
2B

1
2)(B

1
2Ω− 1

2))tr(Ω
1
2Ω

1
2)

≥ (tr(Ω− 1
2B

1
2Ω

1
2))2 = (tr(B

1
2))2,

where B = WT
t Wt. The first equality holds because of the last constraint in prob-

lem (9), and the last inequality holds because of the Cauchy-Schwarz inequality for the
Frobenius norm. Moreover, tr(Ω−1B) attains its minimum value (tr(B

1
2))2 if and only

if Ω− 1
2B

1
2 = aΩ

1
2 for some constant a and tr(Ω) = 1. So we can get the analytical

solution

Ω =
(WT

t Wt)
1
2

tr
(
(WT

t Wt)
1
2

) . (10)

When ft and Ω are given, the optimization problem for wt is formulated as

min
wt

J(wt) = wtβt +
λ

2
wtΩ−1(wt)T , (11)

where βt = (〈∇C(F
(t−1)
1), ft〉, . . . , 〈∇C(F

(t−1)
m), ft〉)T . We set the derivative of

problem (11) with respect to wt to zero to get the solution of wt as

wt = − 1

λ
(βt)

TΩ. (12)

We summarize the MTBoost algorithm in Table 1.
For the initialization of wt, we randomly generate it from a normal distribution with

zero mean and Ω as the covariance matrix due to the matrix-variate normal prior on
Wt in Eq. (1).

The whole procedure of our MTBoost algorithm includes solving problem (8) and
updating Ω and wt according to Eqs (10) and (12). The main computational cost lies in
solving problem (8) whose complexity equals the computational cost of training a base
learner (i.e., SVM or least-squares SVM) on the training data of all tasks.

Multi-Task Boosting by Exploiting Task Relationships 703

Table 1. Algorithm for Multi-Task Boosting (MTBoost)

Input: {(xi
j , y

i
j)}ni

j=1 (i = 1, . . . ,m), λ,
maximum numbers of iterations Q and Q1

Let F (0)
i (x) := 0 for i = 1, . . . ,m and Ω := Im;

for t := 1 to Q do
Initialize wt;
for t1 := 1 to Q1

Update ft by solving problem (8);
Update Ω via Eq. (10);
Update wt via Eq. (12);

end for
Let F (t)

i := F
(t−1)
i + witft for i = 1, . . . ,m;

if (βt)
TΩβt ≤ ε

break;
end if

end for

Output: F (Q)
i for i = 1, . . . ,m

2.3 Theoretical Analysis

In this section, we prove the convergence of the MTBoost algorithm.

Theorem 1. The solution minimizing problem (5) also minimizes problem (4).

Proof Let G(wt,Ω, ft) denote the objective function of problem (4) and H(wt,Ω, ft)
denote the objective function of problem (5). Due to the concavity of C(·), for any wt,
Ω and ft, we have

G(wt,Ω, ft) ≤ H(wt,Ω, ft) +

m∑
i=1

C(F
(t−1)
i).

Moreover, we have

G(wt
0,Ω0, 0) = H(wt

0,Ω0, 0) +
m∑
i=1

C(F
(t−1)
i),

where 0 denotes the zero function and wt
0 and Ω0 are the initial values for the variables

wt and Ω. For the solution (wt,Ω, ft) minimizing problem (5), we have

H(wt,Ω, ft) ≤ H(wt
0,Ω0, 0).

Then we can get

G(wt,Ω, ft) ≤ H(wt,Ω, ft) +
m∑
i=1

C(F
(t−1)
i)

≤ H(wt
0,Ω0, 0) +

m∑
i=1

C(F
(t−1)
i)

= G(wt
0,Ω0, 0),

704 Y. Zhang and D.-Y. Yeung

which means the value of the objective function of problem (4) at the solution of prob-
lem (5) is lower than that at the initial values. Hence we prove the result. �

Theorem 2.

m∑
i=1

C(F
(t)
i) ≤

m∑
i=1

C(F
(t−1)
i)− 1

λ
βtΩβt ≤

m∑
i=1

C(F
(t−1)
i)

Proof Due to the concavity of C(·), we have

C(F
(t)
i) = C(F

(t−1)
i + witft)

≤ C(F
(t−1)
i) + wit〈∇C(F

(t−1)
i), ft〉.

Then we can get

m∑
i=1

C(F
(t)
i) ≤

m∑
i=1

C(F
(t−1)
i) + wit〈∇C(F

(t−1)
i), ft〉

=

m∑
i=1

C(F
(t−1)
i) +wtβt

=
m∑
i=1

C(F
(t−1)
i)− 1

λ
(βt)

TΩβt,

where the last equality holds due to the relationship between wt and βt reflected in
Eq. (12). Moreover, since Ω is a positive semi-definite matrix which can be verified by
the solution of Ω in Eq. (10), we have

1

λ
(βt)

TΩβt ≥ 0

and hence
m∑
i=1

C(F
(t−1)
i)− 1

λ
βtΩβt ≤

m∑
i=1

C(F
(t−1)
i).

Finally we reach the conclusion. �
From Theorem 2, we can see that when adding a new component classifier in MTBoost,
the empirical loss of all tasks decreases. Since the empirical loss is non-negative, our
method is guaranteed to converge. Moreover, Theorem 2 suggests a termination criterion
for the MTBoost algorithm in Table 1: (βt)

TΩβt is small and below a threshold ε.

3 Related Work

Duchi and Singer [24] proposed a boosting method for multi-class classification prob-
lems by utilizing the structural sparsity of model parameters. They claimed that the
method can be generalized for multi-task learning. An underlying assumption of their
method is that all tasks are similar and they share a similar model or data representation.

Multi-Task Boosting by Exploiting Task Relationships 705

However, in many applications, there exist tasks which exhibit negative task correlation
or task unrelatedness and hence the assumption is violated, impairing the performance
of the method.

Wang et al. [19] extended the idea of task clustering [8] to boosting by grouping the
tasks into several clusters and learning similar data features or model parameters for the
tasks within each cluster. This approach is robust against outlier tasks because outlier
tasks reside in separate clusters that do not affect other tasks, but they are local methods
in the sense that only similar tasks within the same task cluster can interact to help each
other, thus ignoring negative task correlation which may exist between tasks residing
in different clusters. Moreover, how to determine the number of clusters is a difficult
model selection problem.

Chapelle et al. [20] proposed a multi-boost method for multi-task learning which
assumes that the model parameters in different tasks are similar and utilizes the differ-
ence between different model parameters to define a regularization term for boosting.
The relationship between the multi-boost method and single-task boosting is similar to
that between regularized multi-task SVM [6] and single-task SVM. Moreover, similar
to [24], the multi-boost method also uses l1 regularization to enforce sparsity.

Dai et al. [25] proposed a boosting method for transfer learning. Transfer learning
is related to multi-task learning but there exist some differences. The tasks in trans-
fer learning can be divided into source and target tasks and transfer learning aims at
improving the performance of the target task with the help of the source tasks while
multi-task learning seeks to improve the performance of all tasks simultaneously. Par-
doe and Stone [26] extended boosting to regression problems in the transfer setting.

4 Experiment

In this section, we study MTBoost empirically on some applications and compare it
with a single-task boosting method called AnyBoost [22], a multi-task boosting method
called Multi-boost [20], a multi-task learning method called multi-task GP (MTGP) [10]
and MTRL [12] which can also learn the task relationships under the GP and regular-
ization framework respectively.2

4.1 Multi-domain Sentiment Classification

In this subsection, we study a multi-domain sentiment classification application3 which
is naturally a multi-task classification problem. Its goal is to classify the reviews of
some products into two classes: positive and negative reviews. In this application, there
are four different products (tasks) from Amazon.com: books, DVDs, electronics, and
kitchen appliances. For each task, there are 1,000 positive and 1,000 negative data
points corresponding to positive and negative reviews, respectively. Each data point
has 473,856 feature dimensions.

2 The implementation of our method can be downloaded from http://www.cse.ust.
hk/∼dyyeung/code/MTBoost.zip

3 http://www.cs.jhu.edu/˜mdredze/datasets/sentiment/

http://www.cse.ust.hk/~dyyeung/code/MTBoost.zip
http://www.cse.ust.hk/~dyyeung/code/MTBoost.zip
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/

706 Y. Zhang and D.-Y. Yeung

Table 2. Comparison of different methods on multi-domain sentiment classification. Each column
in the table represents one task. For each method, the first row records the mean classification
error over 10 trials and the second row records the standard deviation. 1st task: books; 2nd task:
DVDs; 3rd task: electronics; 4th task: kitchen appliances.

Method 1st Task 2nd Task 3rd Task 4th Task
AnyBoost 0.2595 0.2500 0.1999 0.1789

0.0086 0.0085 0.0096 0.0054
MTGP 0.2594 0.2510 0.2493 0.2407

0.0097 0.0089 0.0076 0.0085
Multi-boost 0.2918 0.3041 0.3116 0.3165

0.0138 0.0122 0.0204 0.0175
MTRL 0.2474 0.2233 0.1925 0.1719

0.0116 0.0115 0.0135 0.0098
MTBoost 0.2385 0.2236 0.1666 0.1491

0.0105 0.0087 0.0054 0.0114

Since the feature dimensionality is very high making tree classifiers such as C4.5 and
decision stump difficult to use, we choose linear least-squares SVM as the base learner
in AnyBoost, Multi-boost and our MTBoost method. To simulate real applications in
which the labeled data is scarce, we choose only 20% of the data in each task to form
the training set and the rest to form the test set. We perform 10 random splits of the data
and report the mean and standard deviation over the 10 trials. The number of rounds
in AnyBoost, Multi-Boost and MTBoost is set to 100 and the number of the inner
iterations of our MTBoost (i.e., Q1) is set to 10. The optimal λ is determined by 5-
fold cross validation where the candidate set is {0.01, 0.1, 1, 10, 100}. The results are
summarized in Table 2 and the best result after pairwise t-test is shown in bold. From
the table, we can see that MTBoost outperforms AnyBoost, Multi-boost, MTGP and
MTRL on almost every task. Moreover, we notice that the performance of Multi-boost
is just comparable or even worse than that of AnyBoost. One possible reason is that
not all the tasks are very similar to each other as can be revealed by the mean task
correlation matrix shown in Table 3. In other words, the assumption underlying Multi-
boost is not satisfied well in this data set.

The mean task correlation matrix over 10 trials is shown in Table 3. We can see that
the first task ‘books’ is more correlated with the second task ‘DVDs’ than with the other
tasks; the third and fourth tasks achieve the highest correlation among all pairs of tasks.
The finding from Table 3 about the relationships between tasks matches our intuition,
with the following possible interpretation: ‘books’ and ‘DVDs’ are mainly for enter-
tainment; and almost all the elements in ‘kitchen appliances’ belong to ‘electronics’.

4.2 Handwritten Letter Classification

The handwritten letter classification applicaton4 consists of seven tasks each of which is
a binary classification problem. The corresponding letter pairs for the seven tasks are:

4 http://multitask.cs.berkeley.edu/

http://multitask.cs.berkeley.edu/

Multi-Task Boosting by Exploiting Task Relationships 707

Table 3. Mean task correlation matrix over 10 trials for multi-domain sentiment data. 1st task:
books; 2nd task: DVDs; 3rd task: electronics; 4th task: kitchen appliances.

1st 2nd 3rd 4th
1st 1.0000 0.6977 0.6253 0.6357
2nd 0.6977 1.0000 0.6306 0.6186
3rd 0.6253 0.6306 1.0000 0.7994
4th 0.6357 0.6186 0.7994 1.0000

Table 4. Comparison of different methods on handwritten letter classification. Each column in
the table represents one task. For each method, the first row records the mean classification error
over 10 trials and the second row records the standard deviation.

Method 1st Task 2nd Task 3rd Task 4th Task 5th Task 6th Task 7th Task
AnyBoost 0.1330 0.3026 0.1271 0.0970 0.0895 0.1997 0.0689

0.0231 0.0135 0.0311 0.0068 0.0137 0.0178 0.0062
MTGP 0.1316 0.2844 0.1146 0.0903 0.1349 0.2177 0.0852

0.0135 0.0070 0.0153 0.0075 0.0256 0.0388 0.0456
Multi-boost 0.2064 0.3425 0.2144 0.1295 0.1301 0.2111 0.0989

0.0548 0.1238 0.1001 0.0675 0.0175 0.0327 0.0754
MTRL 0.1184 0.2790 0.1058 0.0824 0.0880 0.2180 0.0561

0.0048 0.0128 0.0090 0.0060 0.0057 0.0131 0.0073
MTBoost 0.1136 0.2642 0.1001 0.0611 0.0830 0.1924 0.0623

0.0161 0.0108 0.0127 0.0066 0.0105 0.0233 0.0078

Table 5. Comparison of different methods on USPS digit classification. Each column in the table
represents one task. For each method, the first row records the mean classification error over 10
trials and the second row records the standard deviation.

Method 1st Task 2nd Task 3rd Task 4th Task 5th Task 6th Task 7th Task 8th Task 9th Task
AnyBoost 0.0040 0.0120 0.0437 0.0166 0.0292 0.0490 0.0078 0.0234 0.0232

0.0003 0.0017 0.0034 0.0028 0.0076 0.0080 0.0027 0.0090 0.0066
MTGP 0.0009 0.0050 0.0374 0.0139 0.0252 0.0484 0.0069 0.0232 0.0230

0.0005 0.0028 0.0035 0.0025 0.0073 0.0065 0.0034 0.0085 0.0087
Multi-boost 0.0010 0.0107 0.0421 0.0153 0.0276 0.0481 0.0065 0.0249 0.0259

0.0363 0.0082 0.0088 0.0037 0.0021 0.0085 0.0041 0.0078 0.0078
MTRL 0.0008 0.0048 0.0353 0.0120 0.0267 0.0340 0.0029 0.0225 0.0223

0.0007 0.0011 0.0035 0.0044 0.0014 0.0040 0.0019 0.0026 0.0046
MTBoost 0.0003 0.0040 0.0324 0.0105 0.0252 0.0348 0.0052 0.0206 0.0213

0.0005 0.0034 0.0056 0.0042 0.0094 0.0075 0.0017 0.0060 0.0095

708 Y. Zhang and D.-Y. Yeung

c/e, g/y, m/n, a/g, a/o, f/t and h/n. Each data point has 128 features corresponding to
the pixel values of the handwritten letter images. For each task, there are about 1,000
positive and 1,000 negative data points. The experimental settings are the same as those
for the multi-domain sentiment application above.

The mean classification errors and the standard deviations of different methods over
10 trials are summarized in Table 4. The results show that MTBoost outperforms Any-
Boost on every task, showing the effectiveness of sharing between multiple learning
tasks. MTGP, another method which can learn the task covariance matrix from data,
performs better than AnyBoost on some tasks but worse on other tasks. One possible
reason is that MTGP usually uses low-rank approximation for the task covariance ma-
trix to reduce the computational cost. This may affect the expressive power of the model
and impair its performance. Moreover, MTBoost outperforms Multi-boost, MTGP and
MTRL.

4.3 USPS Digit Classification

The USPS digit data set5 contains 7,291 examples each of which is described by 255
features. There are nine classification tasks, each corresponding to the classification
of two digits. The experimental settings are similar to those in the above subsections.
The mean classification errors and the standard deviations of different methods over 10
trials are summarized in Table 5. Again, we find that MTBoost outperforms AnyBoost,
Multi-boost and MTGP on almost every task. Moreover, MTBoost performs better than
MTRL on most tasks and comparable with MTRL on the other tasks.

5 Conclusion

In this paper, we have proposed a multi-task boosting method based on learning and
exploiting the pairwise relationships between tasks. The alternating optimization proce-
dure in MTBoost has been shown to converge with theoretical guarantee. In the current
setting, each task is a binary classification problem. One future direction is to extend
this work to a general setting where each task can be either a binary or a multi-class clas-
sification problem. Besides, we mainly consider classification problems in this paper.
In our future work, we will also investigate the extension of our method to regression
problems. One possibility is to make use of the loss function defined in [27] for such
problems.

Acknowledgment. This research has been supported by General Research Fund 621310
from the Research Grants Council of Hong Kong.

References

1. Caruana, R.: Multitask learning. Machine Learning 28(1), 41–75 (1997)
2. Baxter, J.: A Bayesian/information theoretic model of learning to learn via multiple task

sampling. Machine Learning 28(1), 7–39 (1997)

5 http://multitask.cs.berkeley.edu/

http://multitask.cs.berkeley.edu/

Multi-Task Boosting by Exploiting Task Relationships 709

3. Thrun, S.: Is learning the n-th thing any easier than learning the first? In: Touretzky, D.S.,
Mozer, M., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8,
Denver, CO, pp. 640–646 (1996)

4. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Schölkopf, B., Platt,
J.C., Hoffman, T. (eds.) Advances in Neural Information Processing Systems 20, Vancouver,
British Columbia, Canada, pp. 41–48 (2007)

5. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Machine Learn-
ing 73(3), 243–272 (2008)

6. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the Tenth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seat-
tle, Washington, USA, pp. 109–117 (2004)

7. Thrun, S., O’Sullivan, J.: Discovering structure in multiple learning tasks: The TC algorithm.
In: Proceedings of the Thirteenth International Conference on Machine Learning, Bari, Italy,
pp. 489–497 (1996)

8. Bakker, B., Heskes, T.: Task clustering and gating for bayesian multitask learning. Journal of
Machine Learning Research 4, 83–99 (2003)

9. Xue, Y., Liao, X., Carin, L., Krishnapuram, B.: Multi-task learning for classification with
Dirichlet process priors. Journal of Machine Learning Research 8, 35–63 (2007)

10. Bonilla, E., Chai, K.M.A., Williams, C.: Multi-task Gaussian process prediction. In: Platt, J.,
Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems
20, Vancouver, British Columbia, Canada, pp. 153–160 (2008)

11. Zhang, Y., Yeung, D.Y.: Multi-task learning using generalized t process. In: Proceedings
of the 13rd International Conference on Artificial Intelligence and Statistics, Chia Laguna
Resort, Sardinia, Italy, pp. 964–971 (2010)

12. Zhang, Y., Yeung, D.Y.: A convex formulation for learning task relationships in multi-task
learning. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence,
Catalina Island, California, pp. 733–742 (2010)

13. Zhang, Y., Yeung, D.Y., Xu, Q.: Probabilistic multi-task feature selection. In: Lafferty, J.,
Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural In-
formation Processing Systems 23, Vancouver, British Columbia, Canada, pp. 2559–2567
(2010)

14. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of
the 13th International Conference on Machine Learning, Bari, Italy, pp. 148–156 (1996)

15. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new explanation
for the effectiveness of voting methods. The Annals of Statistics 26(5), 1651–1686 (1998)

16. Reyzin, L., Schapire, R.E.: How boosting the margin can also boost classifier complexity. In:
Proceedings of the Twenty-Third International Conference on Machine Learning, Pittsburgh,
Pennsylvania, USA, pp. 753–760 (2006)

17. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of
boosting. The Annals of Statistics 28(2), 337–407 (2000)

18. Friedman, J.: Greedy function approximation: A gradient boosting machine. The Annals of
Statistics 29(5), 1189–1232 (2001)

19. Wang, X., Zhang, C., Zhang, Z.: Boosted multi-task learning for face verification with ap-
plications to web image and video search. In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Miami, Florida, USA, pp. 142–
149 (2009)

710 Y. Zhang and D.-Y. Yeung

20. Chapelle, O., Shivaswamy, P., Vadrevu, S., Weinberger, K., Zhang, Y., Tseng, B.: Multi-
task learning for boosting with application to web search ranking. In: Proceedings of the
16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, pp. 1189–1198 (2010)

21. Gupta, A.K., Nagar, D.K.: Matrix Variate Distributions. Chapman & Hall (2000)
22. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient descent. In:

Solla, S.A., Leen, T.K., Müller, K.R. (eds.) Advances in Neural Information Processing Sys-
tems 12, Denver, Colorado, USA, pp. 512–518 (1999)

23. Lange, K., Hunter, D.R., Yang, I.: Optimization transfer using surrogate objective functions.
Journal of Computational and Graphical Statistics 9(1), 1–59 (2000)

24. Duchi, J., Singer, Y.: Boosting with structural sparsity. In: Proceedings of the 26th Interna-
tional Conference on Machine Learning, Montreal, Quebec, Canada, pp. 297–304 (2009)

25. Dai, W., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In: Proceedings of the
24th International Conference on Machine Learning, Corvalis, Oregon, USA, pp. 193–200
(2007)

26. Pardoe, D., Stone, P.: Boosting for regression transfer. In: Proceedings of the 27th Interna-
tional Conference on Machine Learning, Haifa, Israel, pp. 863–870 (2010)

27. Zemel, R.S., Pitassi, T.: A gradient-based boosting algorithm for regression problems. In:
Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing
Systems 13, Denver, CO, USA, pp. 696–702 (2000)

Sparse Gaussian Processes for Multi-task

Learning

Yuyang Wang and Roni Khardon

Tufts University, Medford, MA USA
{ywang02,roni}@cs.tufts.edu

Abstract. Multi-task learning models using Gaussian processes (GP)
have been recently developed and successfully applied in various appli-
cations. The main difficulty with this approach is the computational cost
of inference using the union of examples from all tasks. The paper inves-
tigates this problem for the grouped mixed-effect GP model where each
individual response is given by a fixed-effect, taken from one of a set
of unknown groups, plus a random individual effect function that cap-
tures variations among individuals. Such models have been widely used
in previous work but no sparse solutions have been developed. The pa-
per presents the first sparse solution for such problems, showing how the
sparse approximation can be obtained by maximizing a variational lower
bound on the marginal likelihood, generalizing ideas from single-task
Gaussian processes to handle the mixed-effect model as well as grouping.
Experiments using artificial and real data validate the approach showing
that it can recover the performance of inference with the full sample,
that it outperforms baseline methods, and that it outperforms state of
the art sparse solutions for other multi-task GP formulations.

1 Introduction

In multi-task learning one learns multiple related tasks simultaneously, with
the intention of getting improved predictive performance for all tasks by taking
advantage of the common aspects of the tasks. In this paper we explore Bayesian
models especially using Gaussian Processes (GP) where sharing the prior and its
parameters among the tasks can be seen to implement multi-task learning [3, 4,
18, 7]. Our focus is on the functional grouped mixed-effect model [5, 17] where
each task is modeled as a sum of a group-specific fixed-effect (or mean effect,
group effect) shared by all the tasks in the group and a random effect that can
be interpreted as representing task specific deviations. In particular, all effects
are realizations of zero-mean Gaussian processes. Thus, in this model, tasks
share structure through hyper-parameters of the prior and through the group-
specific fixed-effect portion. This model and its single center counterpart [5, 7]
(the classical mixed-effect GP model) have shown success in a wide range of
applications, including geophysics [5], medicine [7] and astrophysics [17]. One
of the main difficulties with this model, however, is the computational cost,
because while the number of samples per task Nj is small, the total sample size

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 711–727, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

712 Y. Wang and R. Khardon∑
j Nj can be large, and the typical cubic complexity of GP inference can be

prohibitively large [18]. Some improvement can be obtained when all the tasks
share the same sampling points, or when different tasks share many of the input
points [6, 7]. However, if the number of distinct sampling points is large the
complexity remains high. For example, this is the case in [17] where sample
points are clipped to a fine grid to avoid the high cardinality of the example set.

The same problem, handling large samples, has been extensively studied in
single task formalizations of GP, where several approaches for so-called sparse
solutions have been developed [11–13, 15]. These methods approximate the GP
with m � N support variables (also called inducing variables or pseudo inputs)
Xm and their corresponding function values fm and perform inference using this
set. In the multi-task GP literature, sparse solutions have been proposed in [4]
and [1] for a multi-task GP formulation that is different from the one considered
in this paper. A more detailed discussion is given in Section 5.

In this paper, we develop a sparse solution for multi-task learning with GP
in the context of the functional grouped mixed-effect model. Specifically, we ex-
tend the approach of [15] and develop a variational approximation that allows
us to efficiently learn the shared hyper-parameters and choose the support vari-
ables. In addition, we show how the variational approximation can be used to
perform prediction efficiently once learning has been performed. Our approach
is particularly useful when individual tasks have a small number of samples, dif-
ferent tasks do not share sampling points, and there is a large number of tasks.
Our experiments, using artificial and real data, validate the approach showing
that it can recover the performance of inference with the full sample, and that
it performs better than simple baseline sparse approaches as well as the sparse
convolved multiple output GP [1].

To summarize, our contribution is threefold. First we propose the first sparse
learning algorithm for multi-task GP in the context of the functional grouped
mixed-effect model. Second, we develop a variational model selection approach
for the proposed sparse model. Finally we evaluate the algorithm and several
baseline approaches for multi-task GP, showing that the proposed method per-
forms well against state of the art sparse solutions for other multi-task GP
formulations.

2 Nonparametric Bayesian Grouped Mixed-Effect Model

We start by presenting the model which is closely related to the one in [17].
Consider a set of M tasks where the data for the j-th task is given by Dj =
{(xj

i , y
j
i)}, i = 1, 2, · · · , Nj. Given data D = {Dj}, we are interested in learning

the nonparametric Bayesian grouped mixed-effect model and using the model to
perform inference. The model captures each task f j as a sum of a mean effect
function chosen from a predefined set of K groups and an individual variation
(random effect) specific to the j-th task. More precisely,

Assumption 1. For each j and x ∈ X , f j(x) = f̄zj (x)+f̃ j(x), j = 1, · · · ,M
where {f̄k}, k = 1, · · · ,K and f̃ j are zero-mean Gaussian processes with

Sparse Gaussian Processes for Multi-task Learning 713

covariance function Kk and K̃, and zj ∈ {1, · · · ,K}. In addition, {f̄k} and

f̃ j are assumed to be mutually independent.

The generative process is as follows, where Dir and Multi denote the Dirichlet
and the Multinominal distribution respectively.

1. Draw the processes of the mean effect: f̄k(·)|θθθk ∼ GP(0,Kk(·, ·)), k =
1, 2, · · · ,K;

2. Draw πππ|ααα0 ∼ Dir(ααα0);
3. For the j-th task (time series);

– Draw zj |πππ ∼ Multi(πππ);

– Draw the random effect: f̃ j(·)|θ̃θθ ∼ GP(0, K̃(·, ·));
– Draw yj |zj , f j,xj , σ2

j ∼ N
(
f j(xj), σ2

j · Ij
)
, where f j = f̄zj + f̃ j and

where to simplify the notation Ij stands for INj .

When K = 1, our model reduces to the classical mixed-effect GP model [7, 5].
Due to the analogy to clustering we sometimes refer to the latent fixed-effect
functions as “centers”. Let x̆ be the concatenation of the examples from all tasks
x̆ = (xj

i), and similarly let y̆ = (yj
i), where i = 1, 2, · · · , Nj, j = 1, 2, · · · ,M and

N =
∑

j Nj. When the assignment of tasks into groups is known, the likelihood
decomposes into separate terms and the predictive distribution can be obtained
directly.

IE(f j(x∗)|Z) = C†(x∗, x̆)(C†(x̆, x̆) + I)−1y̆

Cov(f j(x∗)|Z) = C†(x∗,x∗)−C†(x∗, x̆)(C†(x̆, x̆) + I)−1C†(x̆,x∗),
(1)

where the covariance matrix C† is given by C†((xj
i), (x

l
k)) = δzj ,zlKzj (x

j
i ,x

l
k)+

δjl · K̃(xj
i ,x

l
k), and I =

⊕
j σ

2
j Ij (

⊕
denotes the matrix direct sum). The

marginal distribution is Pr(y̆|x̆) ∼ N (0,C†(x̆, x̆) + I), which can be used for
model selection when group membership is known or if our model only allows
for one group. This model works well in that sharing the information improves
predictive performance but, as the number of tasks grows, the dimension N in-
creases leading to slow inference scaling as O(N3). In other words, even though
each task may have a very small sample, the multi-task inference problem be-
comes infeasible when the number of tasks is large. This holds even if we have
the group structure.

For single task GP regression, in order to reduce the computational cost,
several sparse GP approaches have been proposed [11–13, 15]. In general, these
methods approximate the GP with a small number m � N of support variables
and perform inference using this subset and the corresponding function values
fm. Different approaches differ in how they choose the support variables and
the simplest approach is to choose a random subset of the given data points.
Recently, Titsias [15] introduced a sparse method based on variational inference
using a set Xm of support variables, which are independent from the training
points. In this approach, the support variables Xm are chosen to maximize a
variational lower bound on the marginal likelihood, therefore providing a clear

714 Y. Wang and R. Khardon

methodology for the choice of the support set. Later, [2] extended this idea to
derive variational approximation for the sparse convolved multiple output GPs.

Developing a sparse solution for our model is significantly more complex than
the single task case because of the need to perform inference over multiple tasks,
and even more so because the group structure is not known in advance. In this
paper, we propose a variational method to solve the learning problem for the
mixture model (both full and sparse) as well as choosing the optimal support
variables for the sparse model. As in the case of sparse methods for single task
GP, we want to introduce a small set of m auxiliary support variables Xm and
base the learning and inference on these points. For the multi-task case, each
f̃ j(·) is specific to the j-th task. Therefore, it makes sense to induce values only
for the fixed-effect portion. Our sparse model picks a separate set X k

m for each
group and uses the fixed-effect portion ηηηk = f̄k(X k

m) for inference. The details of
this construction for learning and for prediction are developed in the next two
sections.

3 Learning the Sparse Model

In this section we show how to perform the learning via variational approxima-
tion. As mentioned above, for the k-th mixed-effect (or center), we introduce mk

auxiliary inducing support variables X k
m and the hidden variable ηηηk = f̄k(X k

m),
which is the value of k-th fixed-effect function evaluated at X k

m.
Let fk = f̄k(x̆) ∈ IRN denote the function values of the k-th mean effect so

that f jk = f̄k(x
j) ∈ IRNj is the sub-vector of fk corresponding to the j-th task.

Let f̃ j = f̃(xj) ∈ IRNj be the values of the random effect at xj. Denote the

collection of the hidden variables as F = {fk}, F̃ = {f̃ j},H = {ηηηk}, Z = {zj},
and πππ. In addition let ck∗j = Kk(x

∗,xj), Ck
jj = Kk(x

j ,xj),Cjk = Kk(x
j ,X k

m)

and Ckk = Kk(X k
m,X k

m), and similarly c̃∗j = K̃(x∗,xj), C̃jj = K̃(xj ,xj) and

Ĉjj = C̃jj + σ2
j Ij where Ij stands for INj .

To learn the sparsemodel we need to maximize themarginal likelihood Pr(y̆|x̆),
which cannot be evaluated directly. In the following we develop a variational lower
bound for this quantity. To this end, we need the complete data likelihood and the
variational distribution. The complete data likelihood is given by

Pr(y̆,F, F̃ ,H,Z,πππ) = Pr(y̆|F, F̃ ,Z) Pr(F|H) Pr(Z|πππ) Pr(πππ) Pr(F̃) Pr(H), (2)

Pr(H) =

K∏
k=1

Pr(ηηηk), Pr(F̃) =
M∏
j=1

Pr(f̃ j),Pr(πππ) = Dir(πππ|ααα0), Pr(Z|πππ) =
M∏
j=1

K∏
k=1

π
zjk
k

Pr(F|H) =
K∏

k=1

Pr(fk|ηηηk), Pr(y̆|F, F̃ ,Z) =
M∏
j=1

K∏
k=1

[
Pr(yj |̃f j , fk)

]zjk
where, as usual, {zjk} represent zj as a unit vector.

Sparse Gaussian Processes for Multi-task Learning 715

Next we approximate the true posterior Pr(F, F̃ ,H,Z,πππ|y̆) on the hidden
variables using the following variational distribution

q(F, F̃ ,H,Z,πππ) = q(F, F̃ ,H|Z)q(Z)q(πππ) (3)

where q(F, F̃ ,H|Z) = Pr(F̃ |F,Z, y̆) Pr(F|H)Φ(H), which equals

M∏
j=1

K∏
k=1

[
Pr(f̃ j |fk,yj)

]zjk K∏
k=1

Pr(fk|ηηηk)φ(ηηηk).

This generalizes the variational form used by [15] to handle the multiple tasks,
their grouping and the individual variations of each task. One can see that the
variational distribution is not completely factorized (i.e., some dependencies are
preserved) but also not completely in free form in that the value of some of
the factors is already determined. In particular, q(·) preserves the exact form of
Pr(̃f j |fk,yj) and in using Pr(fk|ηηηk) it preserves some information but implicitly
assumes that ηηηk is a sufficient statistic for fk. The free form φ(ηηηk) corresponds to
Pr(ηηηk|D) but allows it to diverge from this value to compensate for the assump-
tion that ηηηk is sufficient. Notice that we are not making any assumption about
the sufficiency of ηηηk in the generative model and the approximation is entirely
due to the variational distribution. An additional assumption is needed in the
next section to derive a simplified form of the predictive distribution.

The variational lower bound, denoted as FV , is given by:

Pr(y̆|x̆) 	 FV =

∫
q(F, F̃ ,H,Z,πππ)× log

[
Pr(y̆,F, F̃ ,H,Z,πππ)
q(F, F̃ ,H,Z,πππ)

]
dF dF̃ dH dZ dπππ

=

∫
q(Z)q(πππ) log

[
Pr(πππ)Pr(Z|πππ)
q(Z)q(πππ)

]
dπππdZ

+

∫
q(Z)q(F, F̃ ,H|Z) log

[
Pr(y̆|F, F̃ ,Z) Pr(F|H)Pr(F̃) Pr(H)

q(F, F̃ ,H|Z)

]
dFdF̃dHdZ

After some algebraic manipulation, the variational lower bound can be rewritten
as follows.

FV =

∫
q(Z)q(π) log

[
Pr(πππ) Pr(Z|πππ)
q(Z)q(πππ)

]
dπππdZ

+

∫
q(Z)

[∫ K∏
k=1

φ(ηηηk)

{
logG(Z,H, y̆) +

K∑
k=1

log

[
Pr(ηηηk)

φ(ηηηk)

]}
dH

]
dZ

(4)

where logG(Z,H, y̆) equals

∫
Pr(F̃ |F,Z, y̆) Pr(F|H) log

[
M∏
j=1

K∏
k=1

[
Pr(yj |fk, f̃ j) Pr(f̃ j)

Pr(f̃ j |fk,yj)

]zjk
]
dFdF̃ .

716 Y. Wang and R. Khardon

In Section 3.1, we show that logG(Z,H, y̆) can be decomposed as logG(Z,H, y̆)

=
∑M

j=1

∑K
k=1 zjk logG(ηηηk,y

j), where

logG(ηηηk,y
j) = log

[
N (yj |αk

j , Ĉjj)
]
− 1

2
Tr

[
(Ck

jj −Qk
jj)Ĉ

−1
jj

]
, (5)

where αk
j = CjkC

−1
kk ηηηk and Qk

jj = CjkC
−1
kk Ckj .

To optimize the parameters we use the variational EM algorithm. In the Vari-
ational E-Step, we estimate q∗(Z), q∗(πππ) and {φ∗(ηηηk)}.

To get the variational distribution q∗(Z), we take derivative of FV w.r.t. q(Z)
and set it to 0. Solving for q(Z), we get

q∗(Z) =
M∏
j=1

K∏
k=1

r
zjk
jk , rjk =

ρjk∑K
k=1 ρjk

log ρjk = IEq(πππ)[log πk] + IEφ(ηηηk)[logG(ηηηk,y
j)],

where IEq(πππ)[log πk] = Ψ(αk) − Ψ(
∑

k αk) where Ψ is the digamma function, αk

is defined below, and IEφ(ηηηk)[logG(ηηηk,y
j)] is given below in (16).

Similarly, q∗(πππ) can be obtained as q∗(πππ) = Dir(πππ|ααα) where αk = α0 + Nk

and Nk =
∑K

j=1 rjk.
The final step is to get the variational distribution of φ∗(ηηηk), k = 1, · · · ,K.

Notice that only the second term of FV is a function of φ(ηηηk) and it can be
rewritten as

K∑
k=1

∫
φ(ηηηk)

⎧⎨⎩
⎡⎣ M∑
j=1

IEq(Z)[zjk] logG(ηηηk,y
j)

⎤⎦+ log

[
Pr(ηηηk)

φ(ηηηk)

]⎫⎬⎭ dηηηk. (6)

Thus, our task reduces to find each φ∗(ηηηk) separately. Taking the derivative of
(6) w.r.t. φ(ηηηk) and setting it to 0, we obtain

φ∗(ηηηk) ∝
M∏
j=1

[
N (yj |αk

j , Ĉjj)
]IEq(Z)[zjk]

Pr(ηηηk). (7)

Thus, we have

φ∗(ηηηk) ∝ exp

⎧⎨⎩−1

2
ηηηTk

(
C−1

kk ΦC−1
kk

)
ηηηk + ηηηTk

⎛⎝C−1
kk

M∑
j=1

rjkCkj [Ĉjj]
−1yj

⎞⎠⎫⎬⎭ ,

where Φ = Ckk +
∑M

j=1 rjkCkj [Ĉjj]
−1Cjk. Completing the square yields the

Gaussian distribution φ∗(ηηηk) = N (μμμk,Σk), where

μμμk = CkkΦ
−1

M∑
j=1

rjkCkj [Ĉjj]
−1yj , Σk = CkkΦ

−1Ckk. (8)

Sparse Gaussian Processes for Multi-task Learning 717

In the Variational M-Step, based on the previous estimated variational dis-
tribution, we wish to find hyperparameters that maximize the variational lower
bound FV . The terms that depend on the hyperparameters Θ and the inducing
variables Xm = {X k

m} are given in (6). Therefore, using (5) again, we can express
FV (Xm,Θ) as

K∑
k=1

IEφ∗(ηηηk)

⎧⎨⎩log

⎡⎣∏
j

[
N (yj |αk

j , Ĉjj)
]rjk

Pr(ηηηk)

φ∗(ηηηk)

⎤⎦⎫⎬⎭−1

2

m∑
k,j

rjkTr
[
(Ck

jj −Qjj)Ĉ
−1
jj

]
.

From (7), we know that the term inside the log is constant, and therefore, ex-
tracting the log from the integral and cancelling the φ∗(ηηηk) terms we see that
the k’th element of first term is equal to the logarithm of∫ M∏

j=1

[
N (yj |αk

j , Ĉjj)
]rjk

Pr(ηηηk)dηηηk. (9)

We next show how this multivariate integral can be evaluated. First we can write[
N (yj |αk

j , Ĉjj)
]rjk

=AjkN (yj |αk
j , r

−1
jk Ĉjj), where Ajk = (rjk)

Nj
2 (2π)

Nj(1−rjk)

2

|Ĉjj |
1−rjk

2 . Thus, we have
∏

j

[
N (yj |αk

j , Ĉjj)
]rjk

=
[∏

j Ajk

]∏
j N (yj |αk

j , r
−1
jk Ĉjj).

As the first part is not a function of ηηηk, for the integration we are only interested
in the second part. Since y̆ is the concatenation of all yj ’s, we can write

M∏
j=1

N (yj |αk
j , r

−1
jk Ĉjj) = N (y̆|ΛkC

−1
kk ηηηk, Ĉ

k), (10)

where Λk = [CT
1k,C

T
2k, · · · ,CT

Mk]
T ∈ IRN,mk and Ĉk =

⊕M
j=1 r

−1
jk Ĉk

jj ∈ IRN,N ,

which is the block diagonal matrix with element r−1
jk Ĉk

jj . Therefore, the integral

can the written as the following marginal distribution of Pr(y̆|k),
∫ M∏

j=1

N (yj |αk
j , r

−1
jk Ĉjj) Pr(ηηηk)dηηηk =

∫
N (y̆|ΛkC

−1
kk ηηηk, Ĉ

k)Pr(ηηηk)dηηηk. (11)

Using the fact that Pr(ηηηk) = N (0,Ckk) and observing that (10) is a conditional

Gaussian, we have Pr(y̆|k) = N (0,ΛkC
−1
kk Λ

T
k + Ĉk). Using this form and the

portion of Ajk that depends on the parameters we get the variational lower
bound FV (Xm,Θ), which equals

K∑
k=1

log Pr(y̆|k) + K − 1

2

M∑
j=1

log |Ĉjj | −
1

2

∑
j,k

rjkTr
[
(Ck

jj −Qjj)Ĉ
−1
jj

]
. (12)

Notice that when the number of tasks and the number of centers are both 1, we
recover the results in [15] provided that the random effect is independent white
noise.

718 Y. Wang and R. Khardon

Using the ideas in the previous derivation, the direct inference for the full
model can also be obtained where ηηηk is substituted with fk and the variational
lower bound becomes

FV (Xm,Θ) =

K∑
k=1

logN (y̆|0,Ckk + Ĉk) +
K − 1

2

M∑
j=1

log |Ĉjj |. (13)

We have explicitly written the parameters that can be chosen to further optimize
the lower bound (12), namely the support inputs {X k

m}, and the set of hyper-

parameters Θ which is composed of {θk} and {θ̃θθ} in Kk and K̃ respectively.
By calculating derivatives of (12) we can optimize the lower bound using a

gradient based method. This can be done by making use of the special form of
the covariance matrix ΛkC

−1
kk Λ

T
k + Ĉk, the matrix inversion formula, the chain

rule for derivatives, and sequencing the matrix operations appropriately (details
omitted due to space constraints). The complexity of evaluating the derivative of
(12) is O(N

∑
k m

2
k+

∑
k m

3
k+

∑
j N

3
j). In our implementation, we use stochastic

coordinate descent, where at each iteration, one coordinate (parameter) is chosen
at random and we perform gradient descent on that coordinate.

3.1 Evaluating logG(Z,H, y̆)

In this section, we wish to evaluate logG(Z,H, y̆), which equals∫ M∏
l=1

K∏
p=1

[
Pr(f̃ l|fp, yl)

]zlp K∏
v=1

Pr(fv|ηηηv)×
M∑
j=1

K∑
k=1

zjk log

[
Pr(yj |fk, f̃ j) Pr(f̃ j)

Pr(f̃ j |fk,yj)

]
dFdF̃

=

M∑
j=1

K∑
k=1

zjk

[∫
Pr(f̃ j |fk,yj) Pr(fk|ηηηk)× log

[
Pr(yj |fk, f̃ j) Pr(f̃ j)

Pr(f̃ j |fk,yj)

]
dfkdf̃

j

]
,

(14)

where the second line holds because in the sum indexed by l and p all the

product measures
∏

l �=j,p�=k

[
Pr(̃f l|fp,yl)

]zlp
are integrated to 1, leaving only

the Pr(̃f j |fk,yj). Denote the term inside the brackets by logG(ηηηk,y
j); this term

can be evaluated as∫
Pr(f̃ j |fk, yj) Pr(fk|ηηηk)× log

[
Pr(yj |fk, f̃ j) Pr(f̃ j) ·

Pr(yj |fk)
Pr(yj |fk, f̃ j) Pr(f̃ j |fk)

]
dfkdf̃

j

=

∫
Pr(fk|ηηηk) log

[
Pr(yj |fk)

]
dfk =

∫
Pr(f jk |ηηηk) log

[
Pr(yj |f jk)

]
df jk (15)

where the last line holds because of the independence between f̃ j and fk. Notic-
ing that evaluating (15) involves marginalization over Gaussians, after some
algebraic manipulation, we obtain (5).

Furthermore, marginalizing out ηηηk, we get that IEφ∗(ηηηk) logG(ηηηk,y
j) equals

log
[
N (yj |μk, Ĉjj)

]
− 1

2
Tr

[
CjkC

−1
kk (Σk −Ckk)C

−1
kkCjkĈ

−1
jj

]
. (16)

Sparse Gaussian Processes for Multi-task Learning 719

4 Prediction Using the Sparse Model

The proposed sparse model can be used for two types of problems. Prediction
for existing tasks and prediction for a newly added task. We start with deriving
the predictive distribution for existing tasks. Given any task j, our goal is to
calculate the predictive distribution Pr(f j(x∗)|D) at new input point x∗, which
can be written as

K∑
k=1

Pr(f j(x∗)|zjk = 1,D) Pr(zjk = 1|D) =
K∑

k=1

rjk Pr(f
j(x∗)|zjk = 1,D). (17)

That is, because zjk form a partition we can focus on calculating Pr(f j(x∗)|
zjk = 1,D) and then combine the results using the partial labels. Instead of
calculating the full Bayesian prediction, one can use Maximum A Posteriori
(MAP) by assigning the j-th task to the center c such that c = argmaxPr(zjk =
1|D). Preliminary experiments (not shown here) show that the full Bayesian ap-
proach gives better performance. In the following, we will show how to calculate
Pr(f j(x∗)|zjk = 1,D), i.e. the predictive distribution when f j = f̄k + f̃j.

As described before, the full inference is expensive and therefore we wish to
use the variational approximation for the prediction as well. The key idea is that
ηηηk contains as much information as D in terms of making prediction for f̄k. To
start with, for each k, it is easy to see that the predictive distribution is Gaussian
(conditioned on zjk = 1) and that it satisfies

IE[f j(x∗)|D] = IE[f̄k(x
∗)|D] + IE[f̃ j(x∗)|D]

Var[f j(x∗)|D] = Var[f̄k(x
∗)|D] +Var[f̃ j(x∗)|D] + 2Cov[f̄k(x

∗)f̃ j(x∗)|D].
(18)

The above equation is more complex than the predictive distribution for single-
task sparse GP because of the coupling induced by f̄k(x

∗)f̃ j(x∗)|D. We next
show how this can be calculated via conditioning.

The calculation of the terms in (18) consists of three parts, i.e. Pr(f̄k(x
∗)|D),

Pr(f̃(x∗)|D) and Cov[f̄k(x
∗)f̃j(x

∗)|D]. Using the approximation of the varia-
tional form given in (3), we have the following facts:

1. ηηηk|D ∼ φ∗(ηηηk) = N (μk,Σk) where μk and Σk are given in (8).
2. ηηηk is sufficient for fk, i.e. Pr(fk|ηηηk,D) = Pr(fk|ηηηk). Since we are interested

in prediction for each task separately, by marginalizing out the tasks other than
j, we also have Pr(f jk |ηηηk,D) = Pr(f jk |ηηηk) and

f jk |ηηηk,D ∼ N
(
CjkC

−1
kk ηηηk,C

k
jj −CjkC

−1
kk Ckj

)
. (19)

3. For f̃ j(x∗) we can view yj − f jk as noisy realizations from the same GP as

f̃ j(xj).

f̃ j(x∗)|f jk ,D ∼ N
(
c̃∗j

[
C̃jj + σ2

j Ij
]−1

(yj − f jk), c̃∗∗ − c̃∗j
[
C̃jj + σ2

j Ij
]−1

c̃j∗

)
.

(20)

720 Y. Wang and R. Khardon

In order to obtain a sparse form of the predictive distribution we need to make
an additional assumption beyond the variational approximation used for train-
ing the model. Specifically, we assume that ηηηk is sufficient for f̄k(x

∗), i.e.,
Pr(f̄k(x

∗)|ηηηk,D) = Pr(f̄k(x
∗)|ηηηk), implying that

f̄(x∗)|ηηηk,D ∼ N
(
ck∗kC

−1
kk ηηηk, c

k
∗∗ − c∗kC

−1
kk ck∗

)
. (21)

The above set of conditional distributions also imply that f̄k(x
∗) and f̃ j(x∗) are

independent given ηηηk and D. Next, we can easily get Pr(f̄k(x
∗)|D) by marginal-

izing out ηηηk|D in (21).

Similarly, we can obtain Pr(f̃(x∗)|D) by first calculating Pr(f jk |D) by marginal-

izing out ηηηk|D in (19) and then marginalizing out f jk |D in (20). Finally, for

the remaining term we have Cov[f̄k(x
∗)f̃ j(x∗)|D] = IE

[
f̄k(x

∗)f̃ j(x∗)|D
]
−

IE[f̄k(x
∗)|D]IE[f̃ j(x∗)|D] where

IE
[
f̄k(x

∗) · f̃ j(x∗)|D
]
= IEηηηk|DIE

[
f̄k(x

∗) · f̃ j(x∗)|ηηηk,D
]

= IEηηηk|D
[
IE

[
f̄k(x

∗)|ηηηk
]
· IE[f̃ j(x∗)|ηηηk,yj]

] (22)

where the second line holds because, as observed above, the terms are condition-
ally independent. The first term IE

[
f̄ j(x∗)|ηηηk

]
can be obtained directly from

(21). By marginalizing out f jk |ηηηk in (20) we can get the second term. Finally
taking expectation w.r.t. φ∗(ηηηk|D) can be calculated via properties of the mul-
tivariate normal distribution.

We have therefore shown how to calculate the predictive distribution in (18).
The complexity of these computations is O(K(N3

j +m3)) which is a significant

improvement over O(KN3) where N =
∑

j Nj .
Our model is also useful for making prediction for newly added tasks. Suppose

we are given {xM+1,yM+1} and we are interested in predicting fM+1(x∗). We
use the variational procedure to estimate its partial labels w.r.t. different centers
Pr(zM+1,k = 1|D) and then (17) can be applied for making the prediction. In
the variational procedure we update the parameters for ZM+1 but keep all other
parameters fixed. Since each task has small number of samples, we expect this
step to be computationally cheap.

5 Related Work

Our work is related to [15] particularly in terms of the form of the variational
distribution of the inducing variables. However, our model is much more complex
than the basic GP regression model. With the mixture model and an additional
random effect per task, we must take into account the coupling of the random
effect and group specific fixed-effect functions. The technical difficulty that the
coupling introduces is addressed in our paper, yielding a generalization that is
consistent with single-task solution.

Sparse Gaussian Processes for Multi-task Learning 721

The other related thread comes from the area of GP for multi-task learning.
Bonilla et al. proposed a model that learns a shared covariance matrix on fea-
tures and a covariance matrix for tasks that explicitly models the dependency
between tasks [4]. They also presented techniques to speed up the inference by
using Nystrom approximation of the kernel matrix and incomplete Cholesky de-
composition of the task correlations matrix. Their model, which is known as
the linear coregionalization model (LCM) is subsumed by the framework of con-
volved multiple output Gaussian process [1]. The work of [1] also derives sparse
solutions which are extensions of different single task sparse GP [13, 9]. Our
work differs from the above models in that we allow a random effect for each
individual task. As we show in the experimental section, this is important in
modeling various applications. If the random effect is replaced with indepen-
dent white noise, then our model is similar to LCM. To see this, from (17), we
recognize that the posterior GP is a convex combination of K independent GPs
(mean effect). However, our model is capable of prediction for newly added tasks
while the models in [4] and [1] cannot. Further, the proposed model can nat-
urally handle heterotopic inputs, where different tasks do not necessarily share
the same inputs. In [4], each task is required to have same number of samples so
that one can use the property of Kronecker product to derive the EM algorithm.

6 Experimental Evaluation

Our implementation of the algorithm makes use of the gpml package [10] and
extends it to implement the required functions. For performance criteria we use
the standardized mean square error (SMSE) and the mean standardized log loss
(MSLL) that are defined in [11]. We compare the following methods. The first
four methods use the same variational inference as described in Section 3. They
differ in the form of the variational lower bound they choose to optimize.

1. Direct Inference: use full samples as the support variables and optimize
(13). When K = 1, the marginal likelihood is described in Section 2 and the
predictive distribution is (1).

2. Variational Sparse GP for MTL (MT-VAR): the proposed approach.
3. MTL Subset of Datapoints (MT-SD): a subset X k

m of size mk is chosen
uniformly from the input points from all tasks x̆ for each center. The hyper-
parameters are selected using X k

m (the support variables are fixed in advance)
and their corresponding observations by maximizing the variational lower
bound. We call this MT-SD as a multi-task version of SD [11], because in
the single center case we can use the marginal likelihood and (1) where the
subset Xm,Ym and xj ,yj serve as the full sample (thus discarding other
samples).

4. MTL Projected Process Approximation (MT-PP): the variational
lower bound of MT-PP is given by the first two terms of (12) ignoring the
trace term, and therefore the optimization chooses different support variables
and hyper-parameters. We call it MT-PP because in the single center case
it corresponds to a multi-task version of PP [11].

722 Y. Wang and R. Khardon

5. Convolved Multiple Output GP (MGP-FITC, MGP-PITC): the
approaches proposed in [1]. For all experiments, we use code from [1] with
the following setting. The kernel type is set to be gg. The hyperparameters
parameters and the position of inducing variables are obtained via optimizing
the marginal likelihood using a scaled conjugated gradient algorithm. The
support variables are initialized as equally spaced points over the range of
the inputs. We set the Rq = 1, which means that the latent functions share
the same covariance function. Whenever possible, we set Q which, roughly
speaking, corresponds to the number of centers in our approach, to agree
with the number of centers. The number of maximum iterations allowed in
the optimization procedure is set to be 200. The number of support variables
is controlled in the experiments as in our methods.

Three datasets are used to demonstrate the empirical performance of the pro-
posed approach. The first synthetic dataset contains data sampled according to
our model. The second dataset is also synthetic but it is generated from dif-
ferential equations describing glucose concentration in biological experiments, a
problem that has been previously used to evaluate multi-task GP [7]. Finally, we
apply the proposed method on a real astrophysics dataset. For all experiments,
the kernels for different centers are assumed to be the same. The hyperparame-
ter for the Dirichlet distribution is set to be α0 = 1/K. The inducing variables
are initialized to be equally spaced points over the range of the inputs. To ini-
tialize, tasks are randomly assigned into groups. We run the conjugate gradient
algorithm (minimize.m) on a small subset of tasks (100 tasks each having 5

samples) to get the starting values of hyperparameters of the K̃ and K, and then
follow with the full optimization as above. Finally, we repeat the entire pro-
cedure 5 times and choose the one that achieves best variational lower bound.
The maximum number of iterations for the stochastic coordinate descent is set
to be 50 and the maximum number of iterations for the variational inference is
set to be 30. The entire experiment is repeated 10 times to obtain the average
performance and error bars.

6.1 Synthetic Data

In the first experiment, we demonstrate the performance of our algorithm on
a regression task with artificial data. More precisely, we generated 1000 single-
center tasks where each f j(x) = f̄(x) + f̃ j(x) is generated on the interval x ∈
[−10, 10]. Each task has 5 samples. The fixed-effect function is sampled from

a GP with covariance function Cov[f̄(t1), f̄(t2)] = e−(t1−t2)
2/2. The individual

effect f̃ j is sampled via a GP with the covariance function Cov[f̃ j(t1), f̃
j(t2)] =

0.25e−(t1−t2)
2/2. The noise level σ2 is set to be 0.1. The sample points xj for each

task are sampled uniformly in the interval [−10, 10] and the 100 test samples are
chosen equally spaced in the same interval. The fixed-effect curve is generated by
drawing a single realization from the distribution of f̄ while the {f j} are sampled
i.i.d. from their common prior. We set the number of latent functions Q = 1 for
MGP. The results are shown in Fig. (1). The top row shows qualitative results

Sparse Gaussian Processes for Multi-task Learning 723

−10 −5 0 5 10
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Estimating the fixed−effect function

Direct Inference
MT−VAR

−10 −5 0 5 10
−3

−2

−1

0

1

2

3
Estimating the fixed−effect function

Direct Inference
MT−SD

−10 −8 −6 −4 −2 0 2 4 6 8 10
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Estimating the fixed−effect function

Direct Infernece
MT−PP

10 20 30 40 50 60 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No. of support variables

S
M

S
E

Direct Infer
MT−VAR
MT−SD
MT−PP
MGP−FITC
MGP−PITC

10 20 30 40 50 60 70

−2

−1.5

−1

−0.5

No. of support variables

M
S

LL

Direct Infer
MT−VAR
MT−SD
MT−PP
MGP−FITC
MGP−PITC

Fig. 1. Synthetic Data. Top row: Predictive distribution for the fixed-effect. The solid
line denotes the predictive mean and the corresponding dotted line is the predictive
variance. The black crosses (at the top) are the initial value of the support variables
and the red ones (at the bottom) are their values after learning process. Bottom row:
The average SMSE and MSLL for all the tasks.

for one run using 20 support variables. We restrict the initial support variables
to be in [−7, 7] on purpose to show that the proposed method is capable of
finding the optimal inducing variables. It is clear that the predictive distribution
of the proposed method is much closer to the results of direct inference. The
bottom row gives quantitative results for SMSE and MSLL showing the same,
as well as showing that with 40 pseudo inputs the proposed method recovers
the performance of full inference. The MGP performs poorly on this dataset,
indicating that it is not sufficient to capture the random effect. We also see a large
computational advantage over MGP in this experiment. When the number of
inducing variables is 20, the training time for FITC (the time for constructing the
sparse model plus the time for optimization) is 1515.19 sec. while the proposed
approach is about 7 times faster (201.81 sec.).

6.2 Simulated Glucose Data

We evaluate our method to reconstruct the glucose profiles in an intravenous
glucose tolerance test (IVGTT) [16, 7] where [7] developed an online multi-task
GP solution for the case where sample points are frequently shared among tasks.
This provides a more realistic test of our algorithm because data is not generated
explicitly by our model. We follow previous work and generate the data using

724 Y. Wang and R. Khardon

minimal models of glucose which is commonly used to analyze glucose and insulin
IVGTT data [16], as follows

Ġ(t) = −[SG +X(t)]G(t) + SG ·Gb + δ(t) ·D/V
Ẋ(t) = −p2 ·X(t) + p2 · SI · [I(t)− Ib]
G(0) = Gb, X(0) = 0

(23)

where D denotes the glucose dose, G(t) is plasma glucose concentration and I(t)
is the plasma insulin concentration which is assumed to be known. Gb and Ib
are the glucose and insulin base values. X(t) is the insulin action and δ(t) is the
Dirac delta function. SG, SI , p2, V are four parameters of this model.

We generate 1000 synthetic subjects (tasks) following the setup in previous
work: 1) the four parameters are sampled from a multivariate Gaussian with
the results from the normal group in Table 1 of [16], 2) I(t) is obtained via
spline interpolation using the real data in [16]; 3) Gb is fixed to be 84 and
D is set to be 300; 4) δ(t) is simulated using a Gaussian profile with support
on the positive axis and the standard deviation (SD) randomly drawn from a
uniform distribution on the interval [0, 1]; 5) Noise is added to the observations
with σ2 = 1. Each task has 5 measurements chosen uniformly from the interval
[1, 240] and an additional 10 measurements are used for testing. Notice that the
approach in [7] cannot deal with this situation efficiently since the inputs do not
share samples often.

The experiments were done under both the single center and the multi center
setting. The plots of task distribution on the left of Fig. 2 suggest that one can
get more accurate estimation by using multiple centers. For the multiple center

0 50 100 150 200

100

150

200

250

Time (min)

G
llu

co
se

 c
on

ce
nt

ra
tio

n
(m

g/
gl

)

5 10 15 20 25 30 35 40

0.15

0.2

0.25

0.3

0.35

No. of support variables

S
M

S
E

Direct Infer
MT−VAR
MT−SD
MT−PP
MGP−FITC
MGP−PITC

5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

No. of support variables

M
S

LL

Direct Infer
MT−VAR
MT−SD
MT−PP
MGP−FITC
MGP−PITC

0 50 100 150 200

100

150

200

250

Time (min)

G
llu

co
se

 c
on

ce
nt

ra
tio

n
(m

g/
gl

)

5 10 15 20 25 30 35 40
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

No. of support variables

S
M

S
E

Direct Infer
MT−VAR
MT−SD
MT−PP
MGP−FITC
MGP−PITC

5 10 15 20 25 30 35 40

−2.5

−2

−1.5

−1

−0.5

No. of support variables

M
S

LL

Direct Infer
MT−VAR
MT−SD
MT−PP
MGP−FITC
MGP−PITC

Fig. 2. Simulated Glucose Data. Left: 15 tasks (Blue) with observations (Red Dia-
monds) and estimated fixed-effect curve (Green) obtained from 1000 IVGTT responses.
Center: The average SMSE for all tasks; Right: The average MSLL for all tasks.

Sparse Gaussian Processes for Multi-task Learning 725

case, the number of centers for the proposed method is (arbitrarily) set to be 3
(K = 3) and the number of latent function of MGP is set to be 2 (Q = 2) (We
were not able of obtain reasonable results using MGP when Q = 3). The experi-
mental results (top/bottom for single/multi center) are shown in Fig. 2. First, we
observe that the multi-center version performs better than the single center one,
indicating that the group-based generalization of the traditional mixed-effect
model is beneficial. Second, we can see that all the methods achieve reasonably
good performance, but that the proposed method significantly outperforms the
other methods.

6.3 Real Astrophysics Data

We evaluate our method using the astronomy dataset of [17], where a generative
model was developed to capture and classify different types of stars. The dataset,
extracted from the OGLEII survey [14], includes stars of 3 types (RRL, CEPH,
EB) which constitute 3 datasets in our context. One example of EB is shown
in Fig. 3. This star is densely sampled but some stars have less samples and
we simulate the sparse case by sub-sampling in our experiments. In [17], we
developed a grouped mixed-effect multi-task model that in addition allowed for
phase shift of the light measurements. As shown in [17], stars of the same type
have a spread of different shapes and the group structure is useful in modeling
this domain. However, for inference, [17] used a simple approach clipping sample
points to a fine grid of 200 equally spaced points, due to the high dimensionality
of the full sample (over 18000 points).

Here we use a random subset of 700 stars (tasks) for each type and preprocess
the data normalizing each star to have mean 0 and SD 1, and using universal
phasing [8] to phase each time series to align the maximum of a sliding window of
5% of the original points. For each time series, we randomly sample 10 examples
for training and 10 examples for testing per evaluation of SMSE and MSLL.
The number of centers is set to be 3 for the proposed approach and for MGP
we set Q = 1 (We were not able to use Q > 1). The results for EBs are shown
in Fig. (3). We can see that the proposed model outperforms all other methods.
For Cepheid and RRL (results not shown due to space limit), the performance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

18.2

18.3

18.4

18.5

18.6

18.7

18.8

18.9

19

19.1

Phase

R
ed

 M
ag

ni
tu

de

10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No. of support variables

S
M

S
E

EB

MT−VAR
MT−SD
MT−PP
MGP−FITC
MGP−PITC

10 20 30 40 50

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

No. of support variables

M
LS

S

EB

MT−VAR
MT−SD
MT−PP
MGP−FITC
MGP−PITC

Fig. 3. OGLEII: Left: time series for EB star. Middle and Right show SMSE and MSLL
respectively for EB type.

726 Y. Wang and R. Khardon

of the proposed model and MGP is very close and they outperform the other
methods.

7 Conclusion

The paper develops an efficient variational learning algorithm for the grouped
mixed-effect GP for multi-task learning, which compresses the information of all
tasks into an optimal set of support variables for each mean effect. Experimental
evaluation demonstrates the effectiveness of the proposed method. In future, it
will be interesting to derive an online sparse learning algorithm for this model.

Acknowledgement. We would like to thank the authors of [1] who kindly
made their code available online. This research was partly supported by NSF
grant IIS-0803409. The experiments in this paper were performed on the the
Tufts Linux Research Cluster supported by Tufts UIT Research Computing.

References

1. Álvarez, M.A., Lawrence, N.D.: Computationally efficient convolved multiple out-
put Gaussian processes. JMLR 12, 1425–1466 (2011)

2. Álvarez, M.A., Luengo, D., Titsias, M.K., Lawrence, N.D.: Efficient multioutput
Gaussian processes through variational inducing kernels. In: AISTATS (2010)

3. Álvarez, M., Rosasco, L., Lawrence, N.: Kernels for vector-valued functions: a re-
view. Arxiv preprint arXiv:1106.6251 (2011)

4. Bonilla, E., Chai, K.M., Williams, C.: Multi-task Gaussian process prediction. In:
NIPS, vol. 20, pp. 153–160 (2008)

5. Lu, Z., Leen, T., Huang, Y., Erdogmus, D.: A reproducing kernel Hilbert space
framework for pairwise time series distances. In: ICML, pp. 624–631 (2008)

6. Pillonetto, G., De Nicolao, G., Chierici, M., Cobelli, C.: Fast algorithms for non-
parametric population modeling of large data sets. Automatica 45(1), 173–179
(2009)

7. Pillonetto, G., Dinuzzo, F., De Nicolao, G.: Bayesian Online Multitask Learning
of Gaussian Processes. IEEE T-PAMI 32(2), 193–205 (2010)

8. Protopapas, P., Giammarco, J.M., Faccioli, L., Struble, M.F., Dave, R., Alcock,
C.: Finding outlier light curves in catalogues of periodic variable stars. Monthly
Notices of the Royal Astronomical Society 369, 677–696 (2006)

9. Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate
gaussian process regression. The Journal of Machine Learning Research 6, 1939–
1959 (2005)

10. Rasmussen, C.E., Nickisch, H.: Gaussian Processes for Machine Learning (GPML)
Toolbox. JMLR 11, 3011–3015 (2010)

11. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The
MIT Press (2005)

12. Seeger, C., Williams, M., Lawrence, N.: Fast forward selection to speed up sparse
gaussian process regression. In: AISTATS 9 (2003)

13. Snelson, E., Ghahramani, Z.: Sparse Gaussian processes using pseudo-inputs. In:
NIPS, vol. 18, pp. 1257–1264 (2006)

Sparse Gaussian Processes for Multi-task Learning 727

14. Soszynski, I., Udalski, A., Szymanski, M.: The Optical Gravitational Lensing
Experiment. Catalog of RR Lyr Stars in the Large Magellanic Cloud 06. Acta
Astronomica 53, 93–116 (2003)

15. Titsias, M.K.: Variational learning of inducing variables in sparse gaussian pro-
cesses. In: AISTATS (2009)

16. Vicini, P., Cobelli, C.: The iterative two-stage population approach to ivgtt min-
imal modeling: improved precision with reduced sampling. American Journal of
Physiology-Endocrinology and Metabolism 280(1), E179 (2001)

17. Wang, Y., Khardon, R., Protopapas, P.: Shift-invariant grouped multi-task learning
for Gaussian processes. In: ECML, pp. 418–434 (2010)

18. Yu, K., Tresp, V., Schwaighofer, A.: Learning Gaussian processes from multiple
tasks. In: ICML, pp. 1012–1019 (2005)

Collective Information Extraction

with Context-Specific Consistencies

Peter Kluegl1,2, Martin Toepfer1, Florian Lemmerich1,
Andreas Hotho1, and Frank Puppe1

1 Department of Computer Science VI, University of Würzburg,
Am Hubland, Würzburg, Germany

2 Comprehensive Heart Failure Center, University of Würzburg,
Straubmühlweg 2a, Würzburg, Germany

{pkluegl,toepfer,lemmerich,hotho,puppe}@informatik.uni-wuerzburg.de

Abstract. Conditional Random Fields (CRFs) have been widely used
for information extraction from free texts as well as from semi-structured
documents. Interesting entities in semi-structured domains are often con-
sistently structured within a certain context or document. However, their
actual compositions vary and are possibly inconsistent among different
contexts. We present two collective information extraction approaches
based on CRFs for exploiting these context-specific consistencies. The
first approach extends linear-chain CRFs by additional factors speci-
fied by a classifier, which learns such consistencies during inference. In
a second extended approach, we propose a variant of skip-chain CRFs,
which enables the model to transfer long-range evidence about the con-
sistency of the entities. The practical relevance of the presented work for
real-world information extraction systems is highlighted in an empirical
study. Both approaches achieve a considerable error reduction.

Keywords: information extraction, conditional random fields, collec-
tive, context-specific consistencies, long-range dependencies.

1 Introduction

The accurate transformation of unstructured data into a structured representa-
tion for further processing is an active area of research with many interesting
challenges. One central task for mining unstructured textual data is Information
Extraction (IE), which tries to find well-defined entities and relations in textual
data. Over the last decade, statistical sequence labeling models and especially
Conditional Random Fields (CRFs) [10] became the dominant technique for IE
tasks. CRFs are discriminative undirected probabilistic graphical models often
trained in a supervised fashion. When applied on textual data, they are usually
designed as a linear chain with the first order Markov assumption.

In many scenarios, the entities in textual data are not independent and iden-
tically distributed. Recently, much effort went in new approaches that can be

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 728–743, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Collective Information Extraction with Context-Specific Consistencies 729

summarized under the term Collective IE [2,4,8,9,15]. They break the linear-
chain assumption and model also long-range dependencies in order to label re-
lated entities or instances collectively. One example is Named Entity Recognition
(NER), a task that aims at the extraction of persons or similar entities. Here,
the accuracy can be improved by the assumption that similar tokens should have
the same label or by providing contextual evidence of related tokens.

In semi-structured documents a different form of long-range dependency of-
ten occurs. Here, the context in which the textual data is created or written
introduces a homogeneous composition of the entities. The reference section of
this paper, for example, is generated using a style guide that defines the layout
of the citation information. Thus, all author entities end with a colon. However,
the reference sections of other publications follow different style guides in which
the author possibly ends with a period. Another example for consistency intro-
duced in a certain context is curricula vitae: Each author describes his or her
employments homogeneously but possibly with an arrangement of the interest-
ing entities different from other authors. If these long-range dependencies are not
taken into account, then the IE system faces a heterogeneous and inconsistent
composition of the entities in the complete dataset. However, by considering the
similarities of entities within a context and processing those entities collectively,
many labeling errors can be prevented. The accuracy for the detection of the
author of a reference, for example, can be greatly increased when the model is
encouraged that all authors in a reference section should end identically.

In this work, we present two collective IE approaches based on CRFs that
are able to exploit such context-specific consistencies. Both approaches consult
a classifier, which detects consistent boundaries of an entity within one con-
text. This classifier is trained during inference on an intermediate label sequence
predicted by an additional model. The generalization of the classifier’s learning
algorithm detects only equally shaped boundaries ignoring entities that break
the consistency assumption. This evidence about the consistency is exploited
in two different models. The first model extends linear-chain CRFs with addi-
tional unigram factors. The positions of the factors are given by the classification
result of the classifier combined with the predicted label sequence. In a second
approach, we investigate a variant of skip-chain CRFs [15]. Instead of adding de-
pendencies for similar tokens, the boundaries of related entities are connected.
These additional edges then transport evidence about the consistency of the en-
tities’ compositions at the positions indicated by the classifier. In an empirical
study, we evaluate our approaches with real-word datasets, for the segmentation
of references and for template extraction in curricula vitae. The results show
the practical relevance of the presented work for real-world IE systems. Our
approaches are able to achieve a substantial error reduction, up to 34%.

The rest of the paper is structured as follows: In Section 2, we recap different
variants of CRFs for information extraction. The two novel approaches for ex-
ploiting context-specific consistencies are described in Section 3. Their results in
an empirical study are presented in Section 4. Section 5 gives a short overview
of the related work and Section 6 concludes with a summary.

730 P. Kluegl et al.

2 Conditional Random Fields

Conditional Random Fields (CRFs) [10] are undirected graphical models which
model conditional distributions over random variables y and x. Given exponen-
tial potential functions Φ (yc,xc) = exp (

∑
k λkfk (yc,xc)) a CRF assigns

pθ (y|x) =
1

Z(x)

∏
c∈C

Φ (yc,xc) (1)

to a graph with cliques C under model parameters θ = (λ1, . . . , λK) ∈ RK . The
partition function Z(x) =

∑
y′
∏

c∈C Φ (yc,xc) is a normalization factor to assert∑
y pθ(y|x) = 1. The feature functions fk can be real valued in general, however,

we assume binary feature functions if not mentioned differently.
When CRFs are applied for IE tasks, the model is adapted to the properties

of sequential data or textual documents respectively. Therefore the graph struc-
ture is normally restricted to be a linear chain representing the sequence of labels
that are assigned to a sequence of tokens. The entities of the IE tasks are iden-
tified by sequences of equal labels. If linear-chain CRFs also model long-range
dependencies with additional edges between distant labels, then the models are
called skip-chain CRFs [15]. Both models are shortly outlined in the following.

2.1 Linear-Chain CRFs

Linear chain CRFs [10] restrict the underlying graph structures to be linear
sequences, typically with a first order Markov assumption. The assignment of
yt given x and y− yt = (yt)t=1,...,t−1,t+1,...,T is then only dependent on yt−1,yt,
yt+1 and x. The probability of a label sequence y given an token sequence x is
modeled by

pθ (y|x) =
1

Z(x)

T∏
t=1

Φl (yt, yt−1,x) . (2)

We are using Φl to describe the factors of the linear-chain edges that link adjacent
labels:

Φl (yt, yt−1,x) = exp

{∑
k

λlkflk (yt, yt−1,x, t)

}
. (3)

The discriminative impact of the feature functions flk is weighted by the pa-
rameters θ = θl = {λlk}Kk=1. The feature functions can typically be further
factorized into indicator functions plk and observation functions qlk

flk (yt, yt−1,x, t) = plk (yt, yt−1) · qlk(x, t) . (4)

plk returns 1 for a certain label configuration and qlk relies only on the input
sequence x. Thus, a feature function, e.g., that indicates capitalized tokens, can
be separately weighted for each label transition. Figure 1 contains an example

Collective Information Extraction with Context-Specific Consistencies 731

Author Author Author Author Author Title Title Title Title . . .

y1 y2 y3 y4 y5 y6 y7 y8 y9 . . .

Sutton , C . : GRMM : GRaphical Models . . .

Fig. 1. A linear-chain CRF applied on the reference segmentation task, i.e., the 14th
reference of this paper. The associated labels and tokens are depicted above and below
the variables.

of a linear-chain CRF in factor graph representation, which is applied for the
reference segmentation task. We added the label and token sequence for better
understanding. Dependencies of the factors to tokens are omitted for simplicity.

2.2 Skip-Chain CRFs

Skip-chain CRFs [15] break the first order Markov assumption of linear-chain
CRFs by adding potentials to the graph that address dependencies between dis-
tant labels and tokens. A set Ix = {(u, v)} ⊂ {1, . . . , T } × {1, . . . , T } defines
positions u, v for which yu, yv are connected by skip edges. We refer to compo-
nents of skip-chain CRFs with the index x in order to point out their usage in
previous publications, e.g., [15]. The set Ix unrolls skip edges based on token sim-
ilarity and is therefore only dependent on the token sequence x. In NER tasks,
for example, the accuracy can often be increased when the model is encouraged
to label similar tokens identically. For controlling the computational cost, Ix has
to be kept small. An extension of Equation 2 with additional skip edges results
in the conditional probability

pθ (y|x) =
1

Z(x)

T∏
t=1

Φl (yt, yt−1,x)
∏

(u,v)∈Ix

Ψx (yu, yv,x) . (5)

The potentials Ψx for the skip edges are given by

Ψx (yu, yv,x) = exp

{∑
k

λxkfxk (yu, yv,x, u, v)

}
(6)

extending the complete set of parameters θ = θl ∪ θx. The feature functions
factorize again in an indicator function pxk and an observation function qxk:

fxk (yu, yv,x, u, v) = pxk (yu, yv, u, v) · qxk (x, u, v) (7)

The observation function enables the model to share observed information be-
tween the positions u and v and their neighborhoods, e.g., for providing local
evidence at a position where such information is missing.

732 P. Kluegl et al.

3 CRFs with Context-Specific Consistencies

This section introduces two different approaches to exploit context consistencies.
Both methods are divided into two different parts. When unrolling the graph dur-
ing inference, we first have to detect the patterns that describe the consistency
of the context. Secondly, we need to incorporate the gained knowledge into the
graph structure for a better prediction. In the following, we first describe chal-
lenges of dependencies on the label sequence and the applied method to learn
context-specific consistencies. Then, we explain the differences of the two ap-
proaches which only concern the structure and complexity of the models that
exploit the context-specific patterns.

3.1 Context-Specific Consistencies

Context-specific consistencies refer to a special kind of long-range dependen-
cies that are often found in semi-structured documents. The interesting entities
within a specific context or document share a similar composition caused by
the process the document is created or written in. Examples for this process
are authors that arrange the entities homogeneously or templates that enforce
a specific layout. We call these consistencies context-specific, because the ac-
tual composition is unknown at application time and can strongly vary between
contexts. There are many different ways to describe the composition of entities.
In this work we take a closer look at the entity boundaries, that is, the first
and the last label of the entity1. Other possibilities include the labels within the
boundaries of an entity. More generally, this can be extended to any kind of label
transition. However, the boundaries alone are very suitable to classify an entity
independently of the actual label transition and allow to restrict the long-range
dependencies to a minimal amount.

3.2 Dependencies Based on the Label Sequence

In this paper, we investigate how these consistencies can be exploited with the
idea of skip-chain CRFs or in general CRFs with additional potentials for long-
range dependencies. In contrast to skip-chain CRFs, where the potentials are
only based on the token sequence (cf. Equation 6), our additional potentials
are mainly dependent on the label sequence. Our approaches need a prediction
of the assignment in order to be able to link or relate the boundaries of the
entities. The label sequence (hidden variables) is of course not available during
inference when we unroll the graph on an instance with all potentials since it is
the result of the computation of pθ (y|x). However, there are many different ways
to provide a prediction of the label sequence during inference. Our initial choice
was to incrementally unroll the graph: We first unrolled the potentials of the
linear-chain part, computed the currently most likely label sequence and used

1 No additional encoding like IOB is applied in order to identify the entities in the
label sequence.

Collective Information Extraction with Context-Specific Consistencies 733

this prediction to further unroll the additional potentials. However, we observed
problems with the parameter estimation and inference mechanism applied in this
work (cf. Section 3.6). While we sometimes achieved remarkable improvements,
the approach frequently did not converge at all. Therefore, we utilize a separate
static linear-chain model in order to provide a constant prediction of the label
sequences, which corresponds to the approach of stacked graphical models [8,9,7].
Here, an initial model is used to compute new features for a stacked model. In
our approach, however, the predicted assignments of the initial model lead to
additional potentials. Normally, cross-fold training is applied for the initial model
in order to prevent unrealistic predictions during training of the stacked model.
We neglect this improvement in the belief that the advantages of the presented
models prevail.

3.3 Learning Context-Specific Consistencies

When we try to exploit the context-specific consistencies, it is very helpful to
acquire a description or model for the consistencies in each context or docu-
ment. Thereby, one can distinguish consistent and inconsistent boundaries of
the entities. As in previous work [7], we train and apply a binary classifier on
the boundaries of an entity within one context. The learning task of the clas-
sifier for a boundary of one type of entity is defined as following: Each token
of the context is a training example and the features of the CRF become bi-
nary attributes, possibly with an additional windowing. The intermediate label
sequence (cf. 3.2), respectively the predicted boundaries, specifies the learning
target of the classifier. The generalization capacity of the classifier’s learning al-
gorithm is the key to gain knowledge about the context-specific consistency. We
assume that the hypothesis space of the classifier is not sufficient to provide a
perfectly accurate model and therefore only describes the dominant consistency.

A suitable classifier for the tasks presented in this work has to provide follow-
ing properties:

– The classifier should be efficient with respect to its execution time since it
is trained and applied on all emerging label sequences during inference.

– The classifier should not tend to overfit since it is trained and applied on
possibly erroneous data. These errors should not be reproduced. In general,
overfitting can also be restrained by limiting the amount of attributes.

– The classifier should not combine different hypotheses in order to solve the
classification problem if only one consistency for the boundary exists in data
as it is in our examples.

– The classifier should handle label bias correctly, even if there are only a few
true positives and thousands of true negatives.

We decided to utilize a simple but efficient rule learner based on subgroup dis-
covery [6], an exhaustive search for the best conjunctive pattern describing an
target attribute, respectively the entity’s boundary. This technique fulfills all
requirements with minimal efforts of configuration and is fast enough if the set

734 P. Kluegl et al.

of attributes is constrained. As an improvement to [7], a new quality function
F exp
1 selects the best pattern:

F exp
1 =

2 · tp
2 · tp+ fn+ fp

·
(
1−

(
|tp+ fp− Ey|

max(tp+ fp, Ey)

)2
)

(8)

The left part of this measure describes the traditional F1-Measure, that is how
well the pattern reproduces the predicted boundaries. The right factor is a
penalty term for the divergence of the amount of instances classified as bound-
aries to a given variable Ey, the expected amount of boundaries in a context. Ey

can simply be estimated using the token sequence and the feature functions in
the data set applied in this work. In the domain of reference segmentation, for
example, we expect that each reference contains exactly one author. Although
this is not true in general, it provides for a valuable weighting of the hypothesis
space and further reduces overfitting.

3.4 Comb-Chain CRFs

In a first approach, we extend the variables of a linear chain model with ad-
ditional (unigram) factors dependent on the classification result (cf. Figure 2).
Hence, we chose the name comb-chain CRFs for this approach because of the
layout of the graph.

Let Rb(y) and Re(y) be the set of positions, which are identified by the
classifier as the beginning and end of an entity with the label y. We can now
define the positions of additional factors:

Ub =

{
u : yu−1 �= yu ∨ u ∈

⋃
y

Rb(y)

}

Ue =

{
u : yu �= yu+1 ∨ u ∈

⋃
y

Re(y)

}
U = Ub ∪ Ue

(9)

Ub and Ue contain all positions that are either intermediately labeled by the
external model or are identified by the classifier as the beginning, respectively
end of an entity. The conditional probability is then defined as2

pθ (y|x) =
1

Z(x)

T∏
t=1

Φl (yt, yt−1,x)
∏
u∈U

Ψc (y, u) (10)

and the potentials for the unigram factor are given by

Ψc (y, u) = exp

{∑
k

λckfck (y, u)

}
(11)

2 The different usage of y for the predicted sequence and the label configuration of
the parameters deduces from the context.

Collective Information Extraction with Context-Specific Consistencies 735

Author Author Author Title . . . Author Author Author Title . . .

yu-2 yu-1 yu yu+1 . . . yv-2 yv-1 yv yv+1 . . .

: GRMM : GRaphical . . . A . : Collective . . .

Fig. 2. An excerpt of a comb-chain graph with erroneous labeling whereas only addi-
tional factors for the end of the author are displayed. The output functions indicate a
missing end at position yu-2, a surplus end at yu and a consistent end at yv.

whereas θc = {λck} is the set of additional parameters for the classifier template.
We let the feature function factorize into an indicator function pck and an output
function qck:

fck (y, u) = pck (yu) · qck (y, u) (12)

We introduce six different output functions:

qe-consistent (y, u) =

{
1 iff yu �= yu+1 ∧ u ∈ Re(yu)

0 else

qe-project (y, u) =

{
1 iff yu �= ỹ ∧ u ∈ Re(ỹ)

0 else

qe-suppress (y, u) =

{
1 iff yu �= yu+1 ∧ u �∈ Re(yu)

0 else

(13)

The output functions qb-consistent, qb-project and qb-suppress are defined equiva-
lently for the beginning of an entity. This reflects the meaning, that is the result
of the classification combined with the intermediate labeling: qe-consistent indi-
cates a true positive, qe-project a false positive and qe-suppress a false negative
classification compared to the label sequence. Together these feature functions
supply evidence, which parts of the label sequence agree with the consistency and
which parts should be altered in order to gain a higher likelihood. The resulting
graph of the model contains no loops and provides therefore less challenges for
an inference mechanism.

The idea of comb-chain CRFs is summarized with an example for the seg-
mentation of references (cf. Figure 2). Let the reference section of this paper be
the input sequence. When unrolling the graph, we ask the external model for
an intermediate labeling specifying the entities. A classifier is trained to detect
the boundaries of the entities. The descriptive result of the classifier for the end
of the author is, for example, a pattern like “A period followed by a colon”.
Now, the additional potentials with the output functions influence the model to
assign a high likelihood to label sequences that confirm with the description of
the classifier.

736 P. Kluegl et al.

3.5 Skyp-Chain CRFs

Skyp-chain CRFs are a variant of skip-chain CRFs. But instead of creating addi-
tional edges between labels whose tokens are similar or identical, this approach
adds long-range dependencies based on the patterns occurring in the predicted
label sequence y and the classification result. Thus, the small modification of the
name. When applying skyp-chain CRFs for exploiting context-specific consisten-
cies, two additional differences to published approaches for skip-chain CRFs or
similar collective IE models can be identified:

1. There is no need to transfer local evidence to distant labels since we already
assume a homogeneous composition of the entities.

2. Useful observation functions for the skip edges cannot be specified, because
the relevance of certain properties is unknown.

We first define the set of additional edges that specify the positions of the long-
range dependencies using the positions Ub and Ue of Equation 9.

Eb = {(u, v) : u �= v ∧ yu = yv ∧ u ∈ Ub ∧ v ∈ Ub}
Ee = {(u, v) : u �= v ∧ yu = yv ∧ u ∈ Ue ∧ v ∈ Ue}
E = Eb ∪ Ee

(14)

The set Eb contains edges that connect the start label of an entity with all
other start labels of entities with the same type. The set Ee refers accordingly to
the links between the end labels of entities. Further, we introduce a parameter
me for controlling the model complexity that restricts the maximal amount of
additional long-range dependencies for each variable. E.g., for me = 2, a label
is only connected to the closest previous and following boundary of the same
entity type.

Our skyp-chain approach extends the linear-chain model with additional po-
tentials for edges defined in Equation 14. The conditional probability for the
assignment of the label sequence is given by

pθ (y|x) =
1

Z(x)

T∏
t=1

Φl (yt, yt−1,x)
∏

(u,v)∈E
Ψy (y, u, v) . (15)

An example of an unrolled graph of this model is depicted in Figure 3. Similar
to Equation 6, the additional potentials factorize to

Ψy (y, u, v) = exp

{∑
k

λykfyk (y, u, v)

}
, (16)

resulting in the complete parameter set θ = θl ∪ θy with θ = θy = {λyk} to
be estimated for this model. In contrast to the skip-chain model, our feature
functions depend on the complete (predicted) label sequence y. The feature
functions consist again of an indicator function for the label configuration, but

Collective Information Extraction with Context-Specific Consistencies 737

Author Author Author Title . . . Author Author Author Title . . .

yu-2 yu-1 yu yu+1 . . . yv-2 yv-1 yv yv+1 . . .

: GRMM : GRaphical . . . A . : Collective . . .

Fig. 3. An excerpt of a skyp-chain graph with erroneous labeling. Only one additional
edge for the end of the author is displayed. The likelihood of the sequence is decreased
because only position u − 2 and v but not u were identified as a boundary by the
classifier.

not of an observation function on the input sequence. Instead we apply the
output functions of Equation 13 separately for the source and destination of the
skip edge.

Let us illustrate the skyp-chain model in an example for reference segmenta-
tion (cf. Figure 3). Let the input sequence be the reference section of this paper.
When the graph of the model is unrolled during inference, the most probable
label assignments are calculated. During this process we consider long-range
dependencies, e.g., for the end of the author entities (cf. labels yu and yv in Fig-
ure 3). Due to our additional potentials, label sequences with boundaries that
are identified by the classifier as consistently structured become more likely. In
Figure 3, the likelihood of the sequence is decreased in comparison to a graph
with an additional edge between the labels yu−2 and yv.

3.6 Parameter Estimation and Inference

We compute pθ (y|x) to decide which label sequence y is most likely for the
observed token sequence x, and to estimate the parameters θ of the model.
The applied inference technique, tree based reparameterization (TRP) [17], is
related to belief propagation and computes approximate marginals for loopy
graphs. TRP is also used in [15] for the original skip-chain models. Unfortunately,
severe convergence problems could be oberserved when applied on complex graph
structures. The parameters θ of our models are obtained using training data

D =
{
x(i),y(i)

}N

i=1
and maximum a-rrposteriori estimation. The log likelihood

L(θ|D) of the model parameters given the training examples is optimized with
the quasi-Newton method L-BFGS and a Gaussian prior on the parameters as
in [15].

4 Experimental Results

We demonstrate the advantages of the presented approach in a five-fold cross
evaluation in two different real-world applications: The segmentation of refer-
ences and the template extraction in curricula vitae. First, both domains and
the real-world datasets are described and then we specify the settings of the
evaluation. Finally, we present and discuss the empirical results.

738 P. Kluegl et al.

4.1 Datasets

Two datasets are utilized in the evaluation of this work. The dataset References
origins in a domain that is very popular for the evaluation of novel IE techniques
(cf. [1,11,12,13]), whereas the dataset Curricula Vitae belongs to classical IE
problems of template extraction.

References. This dataset for the segmentation of references was introduced in
previous work [7] and consists only of complete reference sections of real publi-
cations, mainly from the computer science domain. The application behind this
dataset consists mainly in the identification of Bibtex fields in crawled pub-
lications, which can be used to improve scientific search engines or to analyze
citation graphs. The dataset contains 566 references in 23 reference sections with
overall 15 different labels and is comparable to datasets of previous publications
with respect of size, label and feature set, e.g., Peng et al. [11]. For the evalua-
tion in this paper, we reduced the label set for the identification of the entities
Author, Date, Title and Venue, which are sufficient for the targeted appli-
cation. The dataset can be freely downloaded3. We skip a detailed description
of the features and refer to the archive because it contains all applied features.

Curricula Vitae. The IE task of this dataset is to identify the time span
and company for which the author of these documents worked in a stage of his
or her life (employments). This information can be used to improve the search
for suitable future employees for certain projects. The data set consists of 68
curricula vitae and is annotated with 896 companies or sectors4 and 937 time
spans in overall 921 stages of life. We use the label Date for the time span
and the label Client for the companies or sectors. The feature set extends the
feature set of the dataset References with additional domain-specific features
like the number of the line, the position within a line and keywords for company
prefixes/suffixes and date indicators. Unfortunately, we can not publish this
dataset due to non-disclosure agreements.

4.2 Evaluation Measure

The performance of the presented models is measured with the F1 score. Let tp
be the number of true positive labeled tokens and fn and fp respectively the
number of false negatives and false positives tokens. Precision, recall and F1 are
then defined as:

precision =
tp

tp+ fp
, recall =

tp

tp+ fn
, F1 =

2 · precision · recall
precision+ recall

.

For the dataset References we present the F1 score combined for all labels,
whereas we distinguish the labels Date and Client for Curricula Vitae.

3 http://www.is.informatik.uni-wuerzburg.de/staff/kluegl_peter/research/
4 The authors of the curricula vitae sometimes anonymize the actual name of a com-
pany and replace it with the sector in which the company is located.

http://www.is.informatik.uni-wuerzburg.de/staff/kluegl_peter/research/

Collective Information Extraction with Context-Specific Consistencies 739

Table 1. F1 scores for the seg-
mentation of references

References
All

Linear Chain 0.966

Comb Chain 0.976
Skyp Chain 0.972

Table 2. F1 scores for template extraction in cur-
ricula vitae

Curricula Vitae
Date Client

Linear Chain 0.944 0.725

Comb Chain 0.962 0.814
Skyp Chain 0.962 0.764

4.3 Settings

All models are trained with identical settings and features. In order to minimize
the model complexity of the skyp-chain approach, we set me = 2. We used 11
(for References) and 12 (for Curricula Vitae) manually selected feature func-
tions in a window of five tokens as attributes for the rule learner. The learned
descriptions had a maximum of three attributes and a minimum quality score
of 0.01. For the dataset References, only the boundaries for the labels Author,
Date, Title are considered. Our implementation of the CRFs is based on the
GRMM package [14].

4.4 Results

We compare the proposed models to a linear-chain CRF (base line). Additionally,
we have applied the stacked approach with exact inference of [7] for a comparable
model. However, its evaluated F1 score was surprisingly lower than our base line.
An analysis revealed that the different implementations of CRFs and the varying
definition of an instance influenced the results. We have also considered different
variants of skip-chain CRFs, but none of them returned noteworthy results. As
a consequence, we compare our models only with the base line.

The results of the five-fold cross evaluation are depicted in Table 1 for the
dataset References and in Table 2 for the dataset Curricula Vitae. The comb-
chain models achieve overall an average error reduction of over 30% and increased
the measured averaged F1 score by at least 1%, 9% for the label Client. The
skyp-chain model provides more challenges for the inference technique and is
only able surpass the comb-chain results for the label Date of the dataset Cur-
ricula Vitae. In the evaluation of the remaining label, the average error reduction
is 14%.

If the comb-chain model is compared to the skyp-chain model, then it becomes
apparent that the skyp-chain model with the applied inferencing technique TRP
has no advantages when exploiting consistencies even at the cost of a compu-
tationally more expensive inference. Table 3 and Table 4 contain the average
evaluation time for one fold. In general, it takes longer to train models with the
larger dataset Curricula Vitae.

740 P. Kluegl et al.

Table 3. Average time for one fold
(References)

References

Linear Chain 0.03h

Comb Chain 0.17h
Skyp Chain 0.53h

Table 4. Average time for one fold
(Curricula Vitae)

Curricula Vitae

Linear Chain 0.11h

Comb Chain 0.27h
Skyp Chain 0.97h

4.5 Discussion

The evaluated results of the presented IE models have a valuable influence on
real-world applications. An error reduction of 30% considerably improves the
quality of automatically extracted entities in the database and reduces the work-
load to correct possible IE errors. The reported increase of the accuracy and the
corresponding error reduction of the presented models compete well with pub-
lished approaches for Collective IE, joint inference in IE or other models that
exploit long-range dependencies.

The performance time of the presented models is in our opinion fast enough
for the planned applications, but can still be increased with further optimizations
or faster inference and learning techniques.

5 Related Work

In this section, we give a short overview of the related work, which can be
categorized into Information Extraction (IE) publications about:

– Collective IE for Named Entity Recognition (NER).
– Collective IE with respect to structured texts.
– Collective IE with context-specific consistencies.
– Improved IE models in general, evaluated for the segmentation of references.

Collective IE is an active and popular field of research and thus we can only
discuss some representatives of each category.

Models of collective approaches for NER are often motivated by two assump-
tions: The labeling of similar tokens is quite consistent within a given context
or document since those mentions mostly refer to the same type of entity. The
discriminative features to detect the entities are sparsely distributed over the
document. Thus, the accuracy for different mentions of an entity can be im-
proved by leveraging and transferring their local context to distant positions.

Bunescu et al.[2] use Relational Markov Networks and model dependencies
between distant entities. They apply special templates in order to assign equal
labels if the text of the tokens is identical. The skip-chain approach introduced
by Sutton et al.[15] extends linear-chain CRFs with additional factors for long-
range dependencies. They link the labels of similar tokens and provide feature
functions that combine evidence of both positions by which missing context can

Collective Information Extraction with Context-Specific Consistencies 741

be transferred. Finkel et al. [4] criticize the usage of believe propagation and
apply Gibbs sampling for enforcing label consistency and extraction template
consistency constraints. All of these approaches with higher order structures
fight the exponential increase in model complexity and are forced to apply ap-
proximate inference techniques instead of exact algorithms. Kou et al. [8] and
Krishnan et al. [9] have shown that stacked graphical models with exact infer-
ence can compete with the accuracy of those complex models. They reduce the
computational cost by applying an ensemble for two linear-chain CRFs where
they aggregate the output of the first models in order to provide information
about related instances or entities to a stacked model.

Yang et al. [19] and Gulhane et al. [5] presented work about IE in webforums
and websites. The first approach applies Markov Logic Networks to encode prop-
erties of a typical forum page like attribute similarities among different posts and
sites. The second approach developed an Apriori-style algorithm and assumes
that values of an attribute distributed over different pages are similar for equal
entities and the pages of one website share a similar structure due to the creation
template. In contrast to our models, both approaches are domain-dependent and
rely on prior knowledge about the structure.

In previous work [7], we proposed stacked CRFs in combination with rule
learning techniques to exploit context-specific consistencies. The output of the
first CRF was utilized to learn the manifestation of feature functions for the
stacked CRF. The approach was evaluated only for the segmentation of ref-
erences and achieved a significant error reduction compared to a linear-chain
CRF. The stacked CRFs with feature induction during inference is similar to
the comb-chain model. However, we developed a novel quality function and uti-
lize the classification result to add new potentials instead of only normal features
for a label transition. The skyp-chain approach further increases the model com-
plexity and adds edges for long range dependencies.

The segmentation of references is a widely used domain for the evaluation of
novel machine learning and IE models. The work of Peng et al. [11] provides
a deep analysis of different settings and established linear-chain CRFs as the
state-of-the-art for the segmentation of references. Approaches for joint infer-
ence [12,13] combine different tasks within a model. Here, the accuracy of the
labeling can be increased when entity resolution and segmentation are jointly
performed. Finally, Bellare et al. [1] present a semi-supervised approach for ref-
erence segmentation by encoding expectations in higher-order constraints that
cover more expressive and structural dependencies than the underlying model.

6 Conclusions

Exploiting context-specific consistencies can substantially increase the accu-
racy of sequence labeling in semi-structured documents. We presented two ap-
proaches based on CRFs, which combine ideas of stacked graphical models and
higher-order models like skip-chain CRFs. Both approaches outperform the com-
mon models and have a valuable impact for real-world IE applications. The

742 P. Kluegl et al.

comb-chain CRFs are able to achieve an average error reduction of about 30%
in two datasets.

For future work, two interesting improvements can be identified: On a techni-
cal level, the usage of newer inference techniques for factor graphs like Sample-
Rank [18] should be able to avoid some of the described problems. On a more
conceptual level, a joint inference approach like [13] that combines labeling and
consistency identification within a probabilistic graphical model has the poten-
tial to gain further advantages in the evaluated domains.

Acknowledgments. This work was supported by the Competence Network
Heart Failure, funded by the German Federal Ministry of Education and Re-
search (BMBF01 EO1004).

References

1. Bellare, K., Druck, G., McCallum, A.: Alternating Projections for Learning with
Expectation Constraints. In: Proceedings of the Twenty-Fifth Conference on Un-
certainty in AI, pp. 43–50. AUAI Press (2009)

2. Bunescu, R., Mooney, R.J.: Collective Information Extraction with Relational
Markov Networks. In: Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, ACL 2004. Association for Computational Linguistics,
Stroudsburg (2004)

3. Elidan, G., McGraw, I., Koller, D.: Residual Belief Propagation: Informed Schedul-
ing for Asynchronous Message Passing. In: Proceedings of the Twenty-second Con-
ference on Uncertainty in AI (UAI), Boston, Massachussetts (July 2006)

4. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local Information into
Information Extraction Systems by Gibbs Sampling. In: Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, ACL 2005, pp. 363–
370. Association for Computational Linguistics, Stroudsburg (2005)

5. Gulhane, P., Rastogi, R., Sengamedu, S.H., Tengli, A.: Exploiting Content Redun-
dancy for Web Information Extraction. Proc. VLDB Endow. 3, 578–587 (2010)

6. Klösgen, W.: Explora: A Multipattern and Multistrategy Discovery Assistant. In:
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in
Knowledge Discovery and Data Mining, pp. 249–271. AAAI Press (1996)

7. Kluegl, P., Toepfer, M., Lemmerich, F., Hotho, A., Puppe, F.: Stacked Conditional
Random Fields Exploiting Structural Consistencies. In: Carmona, P.L., Sánchez,
J.S., Fred, A. (eds.) Proceedings of 1st International Conference on Pattern Recog-
nition Applications and Methods (ICPRAM), pp. 240–248. SciTePress, Vilamoura
(2012)

8. Kou, Z., Cohen, W.W.: Stacked Graphical Models for Efficient Inference in Markov
Random Fields. In: Proceedings of the 2007 SIAM Int. Conf. on Data Mining (2007)

9. Krishnan, V., Manning, C.D.: An Effective two-stage Model for Exploiting non-
local Dependencies in Named Entity Recognition. In: Proc. of the 21st Int. Conf.
on Computational Linguistics and the 44th Annual Meeting of the ACL. ACL-44,
pp. 1121–1128. ACL, Stroudsburg (2006)

10. Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data. In: Proc. 18th International
Conf. on Machine Learning, pp. 282–289 (2001)

Collective Information Extraction with Context-Specific Consistencies 743

11. Peng, F., McCallum, A.: Accurate Information Extraction from Research Papers
using Conditional Random Fields. In: HLT-NAACL, pp. 329–336 (2004)

12. Poon, H., Domingos, P.: Joint Inference in Information Extraction. In: AAAI 2007:
Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 913–918.
AAAI Press (2007)

13. Singh, S., Schultz, K., McCallum, A.: Bi-directional Joint Inference for Entity Res-
olution and Segmentation Using Imperatively-Defined Factor Graphs. In: Buntine,
W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part
II. LNCS, vol. 5782, pp. 414–429. Springer, Heidelberg (2009)

14. Sutton, C.: GRMM: GRaphical Models in Mallet (2006),
http://mallet.cs.umass.edu/grmm/

15. Sutton, C., McCallum, A.: Collective Segmentation and Labeling of Distant Enti-
ties in Information Extraction. In: ICML Workshop on Statistical Relational Learn-
ing and Its Connections to Other Fields (2004)

16. Sutton, C.A., McCallum, A.: Improved Dynamic Schedules for Belief Propagation.
In: Parr, R., van der Gaag, L.C. (eds.) UAI, pp. 376–383. AUAI Press (2007)

17. Wainwright, M.J., Jaakkola, T., Willsky, A.S.: Tree-based Reparameterization for
Approximate Inference on Loopy Graphs. In: NIPS, pp. 1001–1008 (2001)

18. Wick, M.L., Rohanimanesh, K., Bellare, K., Culotta, A., McCallum, A.: Sample-
Rank: Training Factor Graphs with Atomic Gradients. In: Getoor, L., Scheffer, T.
(eds.) ICML, pp. 777–784. Omnipress (2011)

19. Yang, J.M., Cai, R., Wang, Y., Zhu, J., Zhang, L., Ma, W.Y.: Incorporating Site-
level Knowledge to Extract Structured Data from Web Forums. In: Proceedings of
the 18th International Conference on World Wide Web, pp. 181–190. ACM (2009)

http://mallet.cs.umass.edu/grmm/

Supervised Learning of Semantic Relatedness

Ran El-Yaniv and David Yanay

Department of Computer Science, Technion - Israel Institute of Technology
rani@cs.technion.ac.il, dudu.yanay@gmail.com

Abstract. We propose and study a novel supervised approach to learning statis-
tical semantic relatedness models from subjectively annotated training examples.
The proposed semantic model consists of parameterized co-occurrence statistics
associated with textual units of a large background knowledge corpus. We present
an efficient algorithm for learning such semantic models from a training sample
of relatedness preferences. Our method is corpus independent and can essentially
rely on any sufficiently large (unstructured) collection of coherent texts. More-
over, the approach facilitates the fitting of semantic models for specific users or
groups of users. We present the results of extensive range of experiments from
small to large scale, indicating that the proposed method is effective and compet-
itive with the state-of-the-art.

1 Introduction

Semantic relatedness (SR) has been steadily gaining attention among statistical NLP
and AI researchers. The interest in SR research has been reinforced by the emergence
of applications that can greatly benefit from SR capabilities. Among these applications
we mention targeted advertising [1], information retrieval and web search [2], automatic
tagging and linking [3], and text categorization [4]. The importance of SR is particu-
larly evident when attempting to categorize short texts (e.g., ads, tweets, search queries)
where standard bag-of-words representation is not sufficiently effective [5].

The goal in SR is to quantify the intensity of how much two target terms are related
to each other, and all relation types between these terms might be considered. These
relations can be among the linguistically formal ones, which typically have a name
(e.g., synonyms, hypernyms, etc.), but in general, such relations can be informal in the
sense that they have not been coined, and they express some (perhaps complex) associa-
tion between the two terms. For example, consider the following term pairs: (Michael
Jordan,Basketball), (Madonna,Pop), and (Marilyn Monroe,Movie). All
three pairs, (X,Y), are strongly related via a common relation.1 Thus, the SR task in-
volves all possible relations whose number is in principle unbounded. We note that in a
restricted version of SR, called semantic similarity, one considers only synonymy rela-
tions. As argued by Budanitsky and Hirst [6] and others, SR is considered more general
than semantic similarity, and in this sense it is more difficult.

In this work we consider the SR task and we aim to correctly qualify the relatedness
of two given terms where the underlying relation can be linguistic or informal. However,

1 The relation we had in mind is “X is an all times Y star”; other variations are sensible.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 744–759, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Supervised Learning of Semantic Relatedness 745

we do not aim at identifying or characterizing the underlying relation. Note also that in
the standard SR setting we consider here (see definitions in Section 3), the terms to be
evaluated for relatedness are provided without a context, unlike typical disambiguation
tasks. Hence, as most existing works on SR focusing on this or equivalent setup, we do
not aim at directly solving the disambiguation problem along the way.

SR is an elusive concept. While a rigorous mathematical definition of SR is currently
beyond grasp, the concept is intuitively clear to everyone. Indeed, the popular concep-
tion of SR is reflected in its nebulous Wikipedia entry (at the moment of writing this)
stating that: In essence, semantic similarity, semantic distance, and semantic related-
ness all mean, “How much does term A have to do with term B”? Clearly, SR “has
to do” with the understanding of meaning – a grand challenge in AI research. Can a
computer program quantify the extent to which two terms share the same meaning?

The statistical NLP and AI communities have adopted a pragmatic modus operandi
to these questions: even if we don’t know how to define SR, we can still create computer
programs that generate useful SR assesments. Indeed, a number of effective heuristic
approaches to SR have been proposed, and this line of work has proven to be rewarding,
see e.g., [7, 8]. In particular, it has been shown that useful SR scores can be systemati-
cally extracted from large lexical databases or electronic repositories of common-sense
and domain-specific background knowledge.

With the exception of a few papers, most of the algorithms proposed for SR valuation
have been following an unsupervised learning or knowledge engineering procedures.
Such SR valuation functions have been generated, for the most part, using some hand-
crafted formula applied to semantic information that is extracted from a (structured)
background knowledge corpus. The proposed methods have employed a number of
interesting techniques, some of which are discussed in Section 2.

One motivation for the present work is the realization that SR assessments are sub-
jective and often relative, rather than objective and absolute. While we can expect some
kind of consensus among people on the (relative) relatedness valuations of basic terms,
the relatedness assessments of most terms depend on many subjective factors such as
literacy, intelligence, context, time and location. For example, the name Michael
Jordan is generally strongly related to Basketball, but some people in the ma-
chine learning community may consider it more related to Machine Learning. As
another example, consider WordSim353 [9], a standard benchmark dataset for evaluat-
ing and comparing SR measures. This benchmark contains some controversial relative
preferences between word pairs such as (Arafat,Peace) vs. (Arafat,Terror)
and (Jerusalem,Israel) vs. (Jerusalem, Palestinian). Can you tell which
pair is more related in each instance? Obviously, the answer must be personal/subjective.

This sensitivity of SR to subjective factors should make it very hard, if not impossi-
ble, to satisfy all SR needs using a single “universal” method. Indeed, some published
SR measures outperform others in certain benchmarks tests and underperform in oth-
ers. For example, Strube and Ponzetto [10] mentioned that the WordNet-based measures
perform better than the Wikipedia-based measures on the Rubenstein and Goodenough
benchmark, but the WordNet methods are inferior over WordSim353.

In this work we propose a novel supervised approach to learning SR from examples.
Following Agirre at al. [11] we model SR learning as a binary classification problem

746 R. El-Yaniv and D. Yanay

where each instance encodes the relative relatedness of two term pairs. Given a labeled
training set our goal is to learn an SR function capable of determining the labels of
unobserved instances. We present an empirical risk minimization (ERM) algorithm that
learns by inducing a weighted measure of terms co-occurrence defined over a back-
ground knowledge corpus of free-text documents. The labeled examples are used to fit
this model to the training data. The resulting algorithm is relatively simple, has only few
hyper-parameters, and is corpus independent. Our experiments show that the algorithm
achieves notable generalization performance. This is observed over a wide range of ex-
periments on a number of benchmarks. We examine and demonstrate the effectiveness
of our algorithm using two radically different corpora: an old version of Wikipedia and
the books in the Project Gutenberg.

2 Related Work

SR techniques typically rely on some kind of world or expert knowledge, which we
term here background knowledge (BK) corpus. The BK corpus is a key element in many
methods and we categorize existing SR techniques into three main families according
to type and structure of their BK corpus. Lexical methods rely on lexical databases such
as WordNet or Rodget’s Thesaurus. Wiki methods rely on structured BK corpora like
Wikipedia or the Open Directory Project (DMOZ). Finally, SR techniques that rely on
unstructured text collections are referred to as structure-free methods. Currently, the
largest publicly available SR benchmark dataset is WordSim353 [9]. Encompassing a
variety of semantic relations, WordSim353 has been providing a focal point to empirical
SR research in the past years. In the semantic relatedness literature it is common to
evaluate relatedness ranking using the Spearman correlation. Hence, in the sequel we
mention WordSim353 Spearman correlation scores in cases where they were reported.

Unsupervised Methods: Lexical, Wiki and Structure-Free. Numerous lexical meth-
ods utilize the WordNet database, which organizes words in synsets (sets of synonyms).
The lexical relations among synsets are categorized into types such as synonyms,
antonyms and hypernyms. Another lexical database is the well-known Roget’s The-
saurus. Similarly to WordNet, Rodget’s Thesaurus contains groups of terms, called
semicolon groups. These groups are inter-linked, but the links are not lexically anno-
tated as in WordNet. Lexical SR methods typically view the lexical database as a graph
whose nodes are terms and edges are lexical relations.

Several researchers have defined SR measures combining lexical links with structure
free corpora [12–14]. Others only utilize the lexical links [15–17]. Yet others [18–20]
use WordNet by taking advantage of glosses (terms’ definitions). Refer to [6, 21, 22]
for various other lexical methods.

Structure in Wiki BK corpora can be manifested in various ways, and the most im-
portant ones are semantic coherency of documents and titles [8, 23], meaningful inter-
links [24, 25], and hierarchical categorization [26]. Many such Wiki methods associate
an article in Wikipedia to each term and utilize known or newly proposed measures
between Wikipedia’s articles. Examples include Strube and Ponzetto [10], as well as
Gabrilovich and Markovitch’s celebrated Explicit Semantic Analysis (ESA) method [8],

Supervised Learning of Semantic Relatedness 747

whereby each term is represented as a sparse vector containing a non-zero component
for each significant Wikipedia article in which it appears, and the SR score of two terms
is defined as the cosine of their vectors. ESA achieved a correlation of 0.75 with Word-
Sim353, and is used as a subroutine in applications [23, 25, 27]. The Temporal Semantic
Analysis (TSA) measure proposed by Radinsky et al. [23] recently achieved 0.82 corre-
lation for WordSim353, which is the best known unsupervised result on WordSim353.

Structure-free methods posit that SR is a function of the co-occurrence statistics of
a pair of terms in a BK corpus. Lin [28] proposed information-based methods to define
and quantify term similarity. Dagan et al. [29] and Terra and Clarke [30] experimented
with various statistical co-occurrence measures for estimating SR from structure-free
corpora. Deerwester et al. [31] used algebraic representation of the BK. Applying this
measure, Finkelstein et al. [9] achieved 0.56 correlation with WordSim353. Reisinger
and Mooney [32] obtained a correlation of 0.77 with WordSim353 by generating for a
term t a feature vector for each context in which t appears.

Supervised Methods. There have been a few successful attempts to utilize supervised
learning techniques for constructing SR functions. For the most part, these works follow
a similar methodology whereby the features of a learning instance are assembled from
scores obtained from various unsupervised methods (such as those discussed above).
Using this feature generation approach, the existing works then resorted to known in-
ductive learning schemes, such as support vector machines (SVMs). For a partial list
of results, refer to [10, 11, 27, 33]. Haralambous and Klyuev reported on 0.8654 cor-
relation score with WirdSim353 [27], which is the best that was ever reported. The
second best result is by Agirre et al. [11], achieving 0.78 correlation with WordSim353.
These two works are also the closest to ours, mainly in their formulation of the learning
problem. However, our solution methodology is fundamentally different.

3 Problem Setup

We consider a fixed corpus, C � {c1, c2, . . . , cN}, defined to be a set of contexts. Each
context ci, i = 1, . . . , N , is a textual unit conveying some information in free text. In
this work we consider contexts that are sentences, paragraphs or whole documents. Let
D � {t1, t2, . . . , td} be a dictionary consisting of a desired subset of all the terms ap-
pearing in the corpus. A term may be any frequent phrase (unigram, bigram, trigram, etc.)
in the corpus, e.g., “book”, “New York”, “The Holly Land.” Ultimately, our goal is to au-
tomatically construct a function f(t1, t2) that correctly ranks the relatedness of the terms
t1, t2 ∈ D in accordance with the subjective semantics of a given user. We emphasize
that we do not require f to provide absolute scores but rather a relative value inducing
a complete order over the relatedness of all terms. In reality this total order assumption
doesn’t hold, since the comparison between two term pairs not sharing any term might
be meaningless. Furthermore, human preferences may contain cycles, perhaps due to
comparisons made using different features (as in the rock-paper-scissors game).

Our goal is to construct the function f using supervised learning. Specifically, the
user will be presented with a training set {X1, . . . , Xm} to be labeled, where each
Xi � ({ti1, ti2}, {ti3, ti4}) is a quadruple of terms. The binary label, yi ∈ {±1}, of

748 R. El-Yaniv and D. Yanay

the instance Xi should be +1 if the terms in the first pair {ti1, ti2} are more related to
each other than the terms in the second pair {ti3, ti4}, and −1 otherwise. Each quadruple
along with its label, (Xi, yi) is also called a preference.

Denote by Sm � {(X1, y1), . . . , (Xm, ym)}, a set of labeled training examples
received from the user. We assume that if (X, y) ∈ Sm then (X,−y) /∈ Sm.
A binary classifier in our context is a function h : D4 → {±1} satisfying, for
all ({t1, t2}, {t3, t4}) ∈ D4, the “anti-symmetry” condition h({t1, t2}, {t3, t4}) =
−h({t3, t4}, {t1, t2}). The 0/1 training error of h is, Rm(h) � 1

m

∑
i I{h(Xi) �= yi}.

The standard underlying assumption in supervised learning is that (labeled) instances
are drawn i.i.d. from some unknown distributionP (X,Y) defined overD4×{±1}. The
classifier h is chosen from some hypothesis class H. In this work we focus on the real-
izable setting whereby labels are defined by some unknown target hypothesis h∗ ∈ H.
Thus, the underlying distribution reduces to P (X). The performance of a classifier h is
quantified by its true or (0/1) test error, R(h) � EP {h(X) �= h∗(X)}.

Why do we choose to ask the user about pairwise preferences rather than requesting
an absolute relatedness score of a single pair of terms? Our choice is strongly motivated
by recent work showing that answers to such questions are more accurate than answers
to questions about absolute quality. In order to extract an absolute score, a user must rely
on some implicit global scale, which may or may not exist. For a sample of literature
justifying this general approach (both theoretically and empirically) see [34, 35].

4 Adaptive Measure

Recognizing the widely accepted idea that the SR of two terms is a function of their co-
occurrence pattern in documents, we would like to somehow measure co-occurrence
using a BK corpus where such patterns are manifested. Therefore, a major component
of the proposed algorithm is an appropriate co-occurrence measure. However, we also
require adaptivity to specific user’s subjective relatedness preferences. Our observation
is that such adaptivity can be achieved by learning from examples user specific weights
to be assigned to contexts. Overall, our approach is to construct a reasonable initial
model, derived only from the BK corpus (without supervision), which fits a rough gen-
eral consensus on relatedness of basic terms. This initial model is the starting point of
a learning process that will refine the model to fit specific user preferences.

We examined various co-occurrence indices, such as Jaccard measure, pointwise mu-
tual information, KL- and Jensen-Shannon divergences, and latent semantic analysis.
Based on this study and some other results [29, 30, 36], we selected the normalized se-
mantic distance measure of Cilibrasi and Vitanyi [37].2 Indeed, this measure by itself
can achieve a high 0.745 Spearman correlation with WordSim353 (via our implementa-
tion using Wikipedia as the BK corpus) thus providing a very effective starting point. We
note that information measures are also effective, but not quite as good.3 We also find it
appealing that this measure was derived from solid algorithmic complexity principles.

2 Note that Cilibrasi and Vitanyi termed this function “Google similarity distance” and applied
it by relying on Google to retrieve proxies for co-occurrence statistics. In our discussion co-
occurrence statistics can be obtained in any desirable manner.

3 Pointwise mutual information achieved correlation of 0.73 with WordSim353[36].

Supervised Learning of Semantic Relatedness 749

Cilibrasi and Vitanyi defined the semantics S(t1, . . . , tn) of the terms t1, . . . , tn, as
the set of all contexts in which they appear together. Than they defined the normalized
semantic distance (NSD) between t1, t2 to be

NSD (t1, t2) �
max {log (|S (t1)|) , log (|S (t2)|)} − log (|S (t1, t2)|)

log (Z)−min {log (|S (t1)|) , log (|S (t2)|)}
,

where Z �
∑

t1,t2∈D |S(t1, t2)|. The NSD function, like any other absolute scoring
function for pairs, induces a permutation over all the term pairs, and therefore, can
be utilized as a classifier for SR preferences, as required. However, this classifier is
constructed blindly without any consideration of the user’s subjective preferences. To
incorporate user subjective preferences we introduce a novel extension of NSD that al-
lows for assigning weights to contexts. Define the weighted semantics WS(t1, . . . , tn)
of the terms t1, . . . , tn as WS(t1, . . . , tn) �

∑
c∈S(t1,...,tn)

w(c), where w(c) ∈ R+

is a weight assigned to the context c, where we impose the normalization constraint∑
c∈C w(c) = |C| = N. Thus, given a BK corpus, C = {c1, c2, . . . , cN}, and a set W

of weights,W � {w(c1), w(c2), . . . , w(cN)}, we define weighted normalized semantic
distance (WNSD) between t1 and t2 is,

WNSDW (t1, t2) �
max{log(WS(t1)), log(WS(t2))} − log(WS(t1, t2))

log(Z)−min{log(WS(t1)), log(WS(t2))}
,

where Z is a normalization constant, Z �
∑

t1,t2∈D WS(t1, t2). We call the set W of
weights a semantic model. Our goal is to learn a good model from labeled examples.

Recall that our objective is to quantify the relatedness of two terms regardless of the
types of relations that link these terms. Is it really possible to learn a single model W
that will encode coherent semantics universally for all terms and all relations?

At the outset, this objective might appear hard or even impossible to achieve. Ad-
ditional special obstacle is the modeling of synonym relations. The common wisdom
is that synonym terms, which exhibit a very high degree of relatedness, are unlikely to
occur in the same context (see, e.g., [6, 28]), especially if the context unit is very small
(e.g., a sentence). Can our model capture also similarity relations? We empirically in-
vestigate this issue and answer this question in the affirmative.

5 The SemanticSort Algorithm

Let fW : D × D → R+ be any adaptive co-occurrence measure satisfying: (i) each
context has an associated weight in W ; (ii) fW (t1, t2) monotonically increases with
increasing weight(s) of context(s) in S(t1, t2); and (iii) fW (t1, t2) monotonically de-
creases with (increasing) weight(s) of context(s) in S(t1)\S(t1, t2) or S(t2)\S(t1, t2).

We now present a learning algorithm that can utilize any such function. We later
apply this algorithm while instantiating this function to WNSD, which clearly satisfies
the required properties. Note, however, that many known co-occurrence measures can
be extended (to include weights) and be applied as well.

Relying on fW we would like utilize empirical risk minimization (ERM) to learn an
appropriate model W of context weights so as to be consistent with the training set Sm.

750 R. El-Yaniv and D. Yanay

Algorithm 1. SemanticSort(Sm, α, αmax, ε, λ)
1: Initialize:
2: W ← −→1 , Δprev ←MaxDoubleV alue
3: repeat
4: Δ← 0
5: For all e = (({t1, t2}, {t3, t4}), y) ∈ Sm do
6: If (y == −1) then
7: ({t1, t2}, {t3, t4})← ({t3, t4}, {t1, t2})
8: score12 ← fW (t1, t2) score34 ← fW (t3, t4)
9: If (score12 < score34) then

10: {This is an unsatisfied example.}
11: λup ← α·λ(Δe)+1

α·λ(Δe)
, λdn ← 1

λup

12: Δ← Δ+Δe

13: for all c ∈ S(t1, t2) do w(c)← w(c) · λup

14: for all c ∈ S(t3, t4) do w(c)← w(c) · λdn

15: Normalize weights s.t.
∑

c∈C w(c) = |C|
16: If (Δ−Δprev + ε ≥ 0) then
17: α← 2 · α
18: If (α ≥ αmax) then Return
19: Δprev ← Δ
20: untilΔ == 0

To this end we designed SemanticSort, an algorithm that minimizes the training error
overSm by fitting appropriate weights to fW . A pseudocode is provided in Algorithm 1.

The inputs to SemanticSort are Sm, a learning rate factor α, a learning rate factor
threshold αmax, a decrease threshold ε, and a learning rate function λ. When a training
example is not satisfied, e.g., e = (X = ({t1, t2}, {t3, t4}), y = +1) and fW (t1, t2) <
fW (t3, t4), we would like to increase the semantic relatedness score of t1 and t2 and
decrease the semantic relatedness score of t3 and t4. SemanticSort achieves this by
multiplicatively promoting/demoting the weights of the “good”/“bad” contexts in which
t1, t2 and t3, t4 co-occur. The weight increase (resp., decrease) depends on λup (resp.,
λdn), which are defined as follows. λup � α·λ(Δe)+1

α·λ(Δe)
, λdn � 1

λup
.

SemanticSort uses λ to update context weights in accordance with the error mag-
nitude incurred for example e, defined as Δe � |fW (t1, t2) − fW (t3, t4)|. Thus, we
require that λ is a monotonically decreasing function so that the greater Δe is, the more
aggressive λup and λdn will be. The learning speed of the algorithm depends on these
rates, and overly aggressive rates might prevent convergence due to oscillating semantic
relatedness scores. Hence, SemanticSort gradually refines the learning rates as follows.
Define Δ �

∑
e is not satisfied

Δe, as the total sum of the differences over unsatisfied exam-
ples. We observe that if Δ decreases at least in ε in each iteration, then SemanticSort
converges and the learning rates remain the same. Otherwise, SemanticSort will up-
date the learning rate to be less aggressive by doubling α. Therefore, we require that
0 < ε. Note that the decrease of Δ is only used to control convergence, but we test
SemanticSort using the 0/1 loss function as described in Section 3. SemanticSort it-
erates over the examples until its hypothesis satisfies all of them, or α exceeds αmax.
Thus, empirical risk minimization in our context is achieved by minimizing Δ.

Supervised Learning of Semantic Relatedness 751

6 Empirical Evaluation

To evaluate the effectiveness of SemanticSort we conducted several experiments. One
of the barriers in designing these experiments is the lack of labeled dataset of term
quadruples as required by our model. The common benchmark datasets are attractive
because they were labeled by human annotators, but these datasets are rather small.
When considering a small real world application involving even 500 vocabulary terms,
we need to be able to compare the relatedness of many of the

(
500
2

)
= 124, 750 involved

pairs. However, the largest available dataset, WordSim353, contains only 353 pairs.
Although we utilized all available datasets in our experiments (see below), we sought a
benchmark of significantly larger scale in order to approach real world scenarios.

Gutenberg Semantic Score (GSS). Without access to a humanly annotated dataset of
a large scale, we synthesized a labeled dataset as follows. Noting that a vocabulary of
1000-2000 words covers about 72%-80% of written English texts [38], we can envision
practical applications involving vocabularies of such sizes. We therefore selected a dic-
tionary Dn consisting of the n most frequent English words (n = 500, 1000). For each
of the

(
n
2

)
term pairs over Dn we used an independent corpus of English texts, namely

the Gutenberg Project, to define the SR score of pairs, using the NSD method, applied
with sentence based contexts. We refer to this as the Gutenberg Semantics Score (GSS).

Project Gutenberg is a growing repository that gathers many high quality and clas-
sic literature that is freely available on the web. For example, among the books one
can find Alice’s Adventures in Wonderland, The Art of War, The
Time Machine, Gulliver’s Travels, and many well known fiction ebooks.
Currently, Project Gutenberg offers over 36,000 ebooks.4

While GSS is certainly not as reliable as human generated score (for the purpose of
predicting human scores), it is positively correlated with human annotation, achieving
0.58 Spearman correlation with the WordSim353 benchmark. Given a set of term pairs
together with their SR scores (such as those generated by GSS), we construct a labeled
set of preferences according to SR scores (see definitions in Section 3).

We emphasize that the texts of the Project Gutenberg were taken conclusively and
as is, without any modifications, to avoid any selection bias.5 Nevertheless, despite its
statistical correlation to human annotation, our main objective isn’t to evaluate absolute
performance scores, but rather to see if generalization can be accomplished at this scale
while using an extremely small fraction of the available training examples.

Background Knowledge Corpora. An integral part of the SemanticSort model is its
BK corpus. We conducted experiments using two corpora. The first corpus is the snap-
shot of Wikipedia from 05/11/05 preprocessed using Wikiprep.6 Following [8], in order
to remove small and overly specific articles, we filtered out articles containing either

4 In this work we used a complete older version of Project Gutenberg from February 1999 con-
taining only 1533 texts bundled by Walnut Creek CDROM.

5 The GSS dataset is available at
http://www.cs.technion.ac.il/˜rani/semantic_relatedness.

6 Wikiprep is an XML preprocessor for Wikipedia, available at
http://www.cs.technion.ac.il/˜gabr/resources/code/wikiprep.

http://www.cs.technion.ac.il/~rani/semantic_relatedness
http://www.cs.technion.ac.il/~gabr/resources/code/wikiprep

752 R. El-Yaniv and D. Yanay

less than 100 non-stopword terms and/or less than 5 incoming links and/or less than 5
outgoing links. The second corpus we used is the Project Gutenberg mentioned above.
We emphasize that in all experiments involving GSS scores only Wikipedia was used
as the BK corpus. Also, in each experiment we either used Wikipedia or Gutenberg as
a BK corpus and not both. In all the experiments we ignored stopwords and stemmed
the terms using Porter’s stemmer. Finally, We considered three types of contexts: sen-
tences, paragraphs and whole documents. Sentences are parsed using ‘.’ as a separator
without any further syntax considerations; paragraphs are parsed using an empty line as
a separator. No other preprocessing, filtering or optimizations were conducted.

Evaluation Methodology. Consider a collection P of preferences, where each pref-
erence is a quadruple, as define in Section 3. When we evaluate performance of the
algorithm w.r.t. a training set of size m, we choose an m-subset, Sm ⊆ P uniformly
at random. The rest of the preferences in P \ Sm are taken as the test set.7 However,
if P \ Sm remains very large, only 1,000,000 preferences, chosen uniformly at random
from P \ Sm, are taken for testing. The training set Sm is fed to SemanticSort, which
generates an hypothesis h, consisting of a weights vector W that includes a component
for each context in C. Then we apply the hypothesis on the test set and calculate the
resulting accuracy (using the 0/1 loss function). This quantity provides a relatively ac-
curate estimate of (one minus) the true error R(h). In order to obtain a learning curve
we repeat this evaluation procedure for a monotonically increasing sequence of training
set sizes. The popular performance measure in SR research is the Spearman correlation
coefficient of the ranking obtained by the method to the ground truth ranking. There-
fore, we also calculated and reported it as well. In addition, in order to gain statistical
confidence in our results, we repeated the experiments for each training set size multi-
ple times and reported the average results. For each estimated average quantity along
the leaning curve we also calculated its standard error of the mean (SEM), and depicted
the resulting SEM values as error bars.

Experiment 1: Large Scale. In order to evaluate SemanticSort on ambitious, large
scale and quite realistic scenario, we conducted the following experiments. Taking
D1000 (the top 1000 most frequent words in Wikipedia) we considered all possible pref-
erences. Note that the number of preferences associated with D1000 is huge, containing
about 1012/4 quadruples. We labeled the preferences according to GSS as described
above. In generating the learning curve we were only able to reach m = 2, 000, 000
training examples, thus utilizing an extremely small fraction of the available preferences
(the largest fraction is about 10−5). Figure 1 presents 0/1 test accuracy and Spearman
correlation learning curves. On this figure we also mark the results obtained by two
unsupervised methods: (i) NSD using Wikipedia as BK corpus with paragraph level
contexts; (ii) the well known ESA method using the same filtered Wikipedia snap-
shot mentioned above. Both these unsupervised performance scores were calculated
by us using our implementations of these methods. It is evident that SemanticSort
successfully generalized the training sample and accomplished a notable improvement

7 Formally speaking, this type of sampling without replacement of the training set, is within a
standard transductive learning model [39, Sec. 8.1,Setting 1] .

Supervised Learning of Semantic Relatedness 753

0 0.5 1 1.5 2

x 10
6

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Training Set Size

GSS − Large Scale

Accuracy
Spearman Correlation

ESA Correlation − 0.415

NSD Correlation − 0.476

Fig. 1. Experiment 1 (large scale) - Learning
curves for test accuracy (solid) and test corre-
lation (dashed), with standard error bars

0 2 4 6 8 10

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

Training Set Size

GSS − Medium Scale

Accuracy
Spearman Correlation

NSD Correlation − 0.482

ESA Correlation − 0.416

Fig. 2. Experiment 2 (medium scale) - Learn-
ing curves for test accuracy (solid) and test
correlation (dashed),with standard error bars

over its starting point. We believe that these results can serve as a proof of concept and
confirm SemanticSort’s ability to handle real world challenges.

Experiment 2: Medium Scale. We repeated the previous experiment, now with D500,
taken to be a random of D1000. All other experiment parameters were precisely as in
Experiment 1. The resulting learning curves are shown in Figure 2. Clearly, this medium
scale problem gave rise to significantly higher absolute performance scores. We believe
that the main reason for this improvement (over the large scale experiment) is merely
the use of a larger fraction of preferences in training.

Experiment 3: Small Scale. As mentioned in Section 2, many of the known tech-
niques, including the published supervised methods, evaluated performance with re-
spect to the WordSim353 benchmark. In order to link the proposed approach to the
current literature we also conducted an experiment using WordSim353 as a source for
labeled preferences. This experiment serves three purposes. First, it can be viewed as a
sanity check for our method, now challenging it with humanly annotated scores. Sec-
ond, it is interesting to examine the performance advantage of our supervised approach
vs. no systematic supervision as obtained by the unsupervised methods (we already
observed in Experiments 1&2 that our supervised method can improve the scores ob-
tained by ESA and NSD). Finally, using this experiment we are able compare between
SemanticSort and the other known supervised methods that so far have been relying
on SVMs.

Figure 3 shows the learning curves obtained by SemanticSort applied with para-
graph contexts using either Wikipedia or Gutenberg (but not both together) as a BK
corpus. The lower horizontal line, at the 0.82 level, marks the best known unsuper-
vised result obtained for WordSim353 [23]. The upper horizontal line, at the 0.8654
level, marks the best known supervised result [27]. It is evident that quite rapid learn-
ing is accomplished using either the Wikipedia or the Gutenberg models, but Wikipedia

754 R. El-Yaniv and D. Yanay

0 2 4 6 8 10 12

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Training Set Size (%)

C
or

re
la

tio
n

Learning Curves: Paragraphs − Spearman Correlation

0 2 4 6 8 10 12

0.7

0.8

0.9

1

Training Set Size (%)

A
cc

ur
ac

y

Gutenberg

Wikipedia

Gutenberg

Wikipedia

0.8654 − Best Known Supervised Correlation

0.82 − Best Known Unsupervised Correlation

Fig. 3. Experiment 3 (small scale) - Learning
curves for test correlation and test accuracy
(sub-plot) with standard error bars using ei-
ther Wikipedia or Gutenberg.

0 1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Training Set Size (%)

C
or

re
la

tio
n

Learning Curves: Gutenberg − Spearman Correlation

Sentences
Paragraphs
Documents

0.1 0.2 0.4 0.8 1.6 3.2
0.5
0.6
0.7
0.8
0.9

Training Set Size (%)

C
or

re
la

tio
n

0.82 − Best
Known
Unsupervised
Correlation

0.8654 − Best
Known
Supervised
Correlation

Fig. 4. Experiment 3 (small scale) - Learning
curves for test correlation with standard er-
ror bars using Project Gutenberg. The sub-plot
uses logarithmically scaled X-axis.

enables significantly faster learning and smaller sample complexity for each error level.
The curves in the internal panel show the corresponding test accuracies (0/1 loss) for
the same experiments. Note that meaningful comparisons between SemanticSort and
the other (SVM based) supervised methods (described in Section 2) can only be made
when considering the same train/test partition sizes. Unlike our experimental setting,
both Agirre et al. [11], and Haralambous and Klyuev [27] achieved their reported re-
sults (0.78 and 0.8654 correlation with WordSim353, respectively) using 10-fold cross
validation, thus utilizing 90% of the available labeled preferences for training. When
considering only the best results obtained at the top of the learning curve, SemanticSort
outperforms the best reported supervised performance after consuming 1.5% of all the
available WordSim353 preferences using the Wikipedia model and after consuming 3%
of the preferences using the Project Gutenberg model.

Figure 4 depicts three Gutenberg learning curves: one for each context type. The
internal panel zooms into the same curves of sentence- and paragraph-based contexts,
now with logarithmically scaled X-axis to emphasize their differences. As before, the
lower (resp., upper) horizontal line at 0.82 (resp., 0.8654) marks the best known unsu-
pervised (resp., supervised) result for WordSim353 [23] (resp., [27]). Clearly, paragraph
contexts exhibit the best test performance for almost all training set sizes. In contrast,
contexts consisting of whole documents perform poorly, to the extent that even after
utilizing the largest training set size, they are still way behind sentences and paragraphs
(even without using a single labeled example). A similar comparison (not presented) for
Wikipedia contexts showed entirely different picture with all contexts exhibiting very
similar (and almost indistinguishable) performance as shown for paragraphs in Figure 3.

Experiment 5: Semantic Similarity. Synonymous relations are considered among
the most prominent semantic relations. Semantic similarity is a sub-domain of SR
where one attempts to assess the strength of synonymous relations. A widely accepted

Supervised Learning of Semantic Relatedness 755

approach to handle synonyms (and antonyms) is via distributional similarity [6, 28].
In this approach, to determine the similarity of terms t1 and t2 we consider D(t1) and
D(t2), the “typical” distributions of terms in close proximity to t1 and t2, respectively.
It is well known that these distributions tend to resemble whenever t1 is similar to t2,
and vice versa. In contrast, SemanticSort computes its similarity scores based on co-
occurrence counts, and the conventional wisdom is that synonyms tend not to co-occur.
Can we expect SemanticSort to handle synonymous relations?

We examine and analyze the behavior of a paragraph-based SemanticSort on a spe-
cialized semantic similarity task. To this end, we use the semantic similarity datasets,
namely Rubenstein and Goodenough (R&G) [40] and Miller and Charles (M&C) [41].

Figure 5 depicts the results obtained for the M&C dataset. The upper (resp. lower)
horizontal line, at the 0.92 (resp. 0.9) level, marks the best known supervised (resp. un-
supervised) results obtained for the M&C dataset [11] (resp. [14, 42]). Figure 6 depicts
the results obtained for the R&G dataset. The upper (resp. lower) horizontal line, at the
0.96 (resp. 0.8614) level, marks the best known supervised (resp. unsupervised) results
obtained for R&G dataset [11] (resp. [17]). The learning curves depicted in both figures
clearly indicate that learning synonyms using our method is an achievable task, and
in fact, can improve upon the distributional similarity methods. While synonyms and
antonyms co-occur infrequently, they still do co-occur. It is a nice property of our model
that it can leverage these sparse co-occurrence counts and accurately detect synonyms
by sufficiently increasing the weights of their mutual contexts.

7 Model Interpretability

The model learned by SemanticSort is encoded in its weight vector W . In this section
we summarize our preliminary study to explore the model W and gain some insight
into its structure. Are the weights in W “arbitrarily” optimized to reduce the training
error, or is it the case that they are organized in a meaningful and interpretable manner?
Can we learn from W something about the human rater(s) who tagged the training set?
Can something on their world knowledge and/or intellectual interests be inferred?

Trying to answer the above questions we conducted the following study. The results
fall short of fully answering these questions, but they are indicative and suggest that the
model W contains useful information that perhaps could be utilized in applications. In
our experiments, due to the absence of human annotating resources, we again synthe-
sized “human” raters whose knowledge is focused on specific topics.

Given a specific topic T in Wikipedia (e.g., sports) we extracted the set ST of doc-
uments pertaining to T (using the Wikipedia topic tags), and partitioned ST uniformly
at random into two subsets, S1

T and S2
T . We used S1

T for labeling, and S2
T , as part of

the BK corpus together with the rest of the Wikipedia corpus. Our synthetic rater an-
notated preferences based on NSD applied over S1

T , whose articles were partitioned to
paragraph units. We call the resulting semantic preferences the T -semantics.

Taking D1000 as a dictionary, we generated a training set by sampling uniformly
at random m = 2, 000, 000 preferences, which were tagged using the T -semantics.
We then applied SemanticSort to learn the T -semantics using this training set while
utilizing S2

T (as well as the rest of Wikipedia) as a BK corpus, whose documents were
parsed to the paragraph level as well. We then examined the resulting WT model.

756 R. El-Yaniv and D. Yanay

0 10 20 30 40 50 60 70 80 90

0.8

0.85

0.9

0.95

1

Training Set Size (%)

Miller and Charles Dataset

Spearman Correlation
Accuracy

0.9 − Best Unsupervised
Correlation Result

0.92 − Best Supervised
Correlation Result

Fig. 5. Experiment 5 – Semantic similarity
with Miller & Charles dataset

0 10 20 30 40 50 60 70 80
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Training Set Size (%)

Rubenstein and Goodenough Dataset

Spearman Correlation
Accuracy

0.8614 − Best Unsupervised Correlation Result

0.96 − Best Supervised
Correlation Result

Fig. 6. Experiment 5 – Semantic similarity
with Rubenstein and Goodenough dataset

Table 1. Model Interpretability - Top 10 related terms according to Music and Sports Semantics

#
play player record club

Music Sports Music Sports Music Sports Music Sports
1 band game instrument play release set dance football
2 guitar team play league album season night league
3 instrument season replace game label win heart cup
4 perform player join season band career fan play
5 time football guitar born song finish local divis
6 year first technique team first run house season
7 role score key football new game London manage
8 tour club example professional studio won scene success
9 two year football baseball production score mix found
10 new career hand major sign second radio player

Two topics T were considered: Music and Sports, resulting in two models: Wmusic

and Wsports. In order to observe and understand the differences between these two
models, we identified and selected, before the experiment, a few target terms that have
ambiguous meanings with respect to Music and Sports. The target terms are: play,
player, record, club. Table 1 exhibits the top 10 most related terms to each of
the target terms according to either Wmusic or Wsports. It is evident that the semantics
portrayed by these lists are quite different and nicely represent their topics as we may
intuitively expect. The table also emphasizes the inherent subjectivity in SR analysis,
that should be accounted for when generating semantic models.

Given a topical category C in Wikipedia, and a hypothesis h, we define the aggre-
gate C-weight according to h, to be the sum of the weights of all contexts that belong
to an article that is categorized into C or its Wikipedia sub-categories. Also, given a
topic T , we denote by hT

init, its initial hypothesis and by hT
final, its final hypothesis (af-

ter learning). In order to evaluate the influence of the labeling semantics on hT
final, we

Supervised Learning of Semantic Relatedness 757

calculated, for each topic T , the difference between its aggregate C-weights according
to hT

init, and according to hT
final.

Figure 7 presents the increase/decrease in those aggregate C-weights for some of
Wikipedia’s major categories C. In both cases of labeling topics, Music or Sports, ob-
serve that by and large the aggregate weights of categories that are related to the label-
ing topic were increased, while weights of unrelated categories were decreased. Quite
surprisingly, when considering the Music topic, many mathematical categories dramat-
ically increased their weight. Various other interesting relations are highlighted by this
process. For example, notice the sharp decrease of political topics in the Sports model
(right), and the decrease of wars and military in the music model (left).

While these results aren’t conclusive (and can certainly be viewed as anecdotal),
we believe they do indicate that the weights in W are organized in a meaningful and
interpretable manner, which encodes the labeling semantics as a particular weight dis-
tribution over the corpus topics. In addition, not only did SemanticSort identified the
labeler BK, it also revealed some other unexpected topical relations.

Fig. 7. Model Interpretability – Weights increase (upper/white) and decrease (lower/black) of
Wikipedia’s major categories according to Music hypotheses (left) and Sports (right)

8 Concluding Remarks

Building on successful and interesting ideas, we presented in this work a novel super-
vised method for learning SR. The proposed SemanticSort algorithm exhibits interest-
ing performance over a large and medium scale problems and competitive performance
on small scale problems. The SemanticSort algorithm performs feature re-weighting
as done by multiplicative update algorithms such as Winnow. Moreover, any (kernel)
inner product algorithm such as SVM can be applied on a vectorial representation of
features corresponding to contexts as induced by the proposed semantic model. How-
ever, from a learning theoretic perspective, the use of general purpose classification
algorithms over those features can be problematic due to the huge number of contexts
in our model, which may unfortunately lead to overfitting. In contrast, by its construc-
tion with appropriate fW function (such as the WNSD), SemanticSort can only output
permutations over the set of word pairs of size

(|D|
2

)
. Thus, the hypothesis space con-

sidered by SemanticSort is a subset of those permutations, whose VC-dimension can
be shown to be precisely

(|D|
2

)
− 1. Moreover, the utilization of the BK corpus through

the WNSD measure, provides further capacity reductions by placing many constraints

758 R. El-Yaniv and D. Yanay

on the set of allowable permutations. For example, observe that SemanticSort only up-
dates the weights of contexts that include both terms in a given pair, so it cannot change
the semantic relatedness score of terms that do not co-occur.

It would be nice to gain further theoretical insights on SemanticSort that can explain
its successful performance. Another interesting question is how to extend our SR model
and the algorithm to allow for active learning. The performance of SemanticSort de-
pends on appropriate choice of the learning rate function λ(·). It is desired to explore
possibilities for automatically adapting this learning rate. Our results indicate that high
quality SR can be learned with markedly different types of BK corpora. It would be
very interesting to obtain better understanding on the role of the BK corpus, and per-
haps even quantify the effectiveness of a given BK corpus. Finally, SemanticSort is
a general ranking algorithm in the sense that it can be applied with any feature vector
accompanied with appropriate fW . It is interesting to explore applications of the algo-
rithm for ranking problems in other domains such as media (images, music) ranking.

References

1. Broder, A., Fontoura, M., Josifovski, V., Riedel, L.: A semantic approach to contextual ad-
vertising. In: SIGIR. ACM (2007)

2. Guha, R., McCool, R., Miller, E.: Semantic search. In: WWW. ACM (2003)
3. Green, S.: Building hypertext links by computing semantic similarity. IEEE 11 (1999)
4. Gabrilovich, E., Markovitch, S.: Overcoming the brittleness bottleneck using wikipedia: En-

hancing text categorization with encyclopedic knowledge. In: AAAI (2006)
5. Sun, X., Wang, H., Yu, Y.: Towards effective short text deep classification. In: SIGIR. ACM

(2011)
6. Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of lexical semantic related-

ness. Comp. Ling. 32, 13–47 (2006)
7. Bloehdorn, S., Moschitti, A.: Structure and semantics for expressive text kernels. In: CIKM.

ACM (2007)
8. Gabrilovich, E., Markovitch, S.: Wikipedia-based semantic interpretation for natural lan-

guage processing. AI Research (2009)
9. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.:

Placing search in context: the concept revisited. In: WWW (2001)
10. Ponzetto, S.P., Strube, M.: Knowledge derived from wikipedia for computing semantic re-

latedness. JAIR (2007)
11. Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Pasca, M., Soroa, A.: A study on similarity

and relatedness using distributional and wordnet-based approaches. In: NAACL (2009)
12. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In:

IJCAI (1995)
13. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy.

CoRR (1997)
14. Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring semantic similarity between

words using multiple information sources. IEEE 15, 871–882 (2003)
15. Jarmasz, M., Szpakowicz, S.: Roget’s thesaurus and semantic similarity. In: RANLP (2003)
16. Tsatsaronis, G., Varlamis, I., Vazirgiannis, M., Nørvåg, K.: Omiotis: A Thesaurus-Based

Measure of Text Relatedness. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor,
J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 742–745. Springer, Heidelberg
(2009)

Supervised Learning of Semantic Relatedness 759

17. Tsatsaronis, G., Varlamis, I., Vazirgiannis, M.: Text relatedness based on a word thesaurus.
JAIR (2010)

18. Lesk, M.: Automatic sense disambiguation using machine readable dictionaries: how to tell
a pine cone from an ice cream cone. In: SIGDOC, pp. 24–26. ACM (1986)

19. Banerjee, S., Pedersen, T.: Extended gloss overlaps as a measure of semantic relatedness. In:
IJCAI (2003)

20. Patwardhan, S., Pedersen, T.: Using wordnet based context vectors to estimate the semantic
relatedness of concepts. In: EACL (2006)

21. Morris, J., Hirst, G.: Lexical cohesion computed by thesaural relations as an indicator of the
structure of text. Comp. Ling (1991)

22. Hirst, G., St-Onge, D.: Lexical chains as representations of context for the detection and
correction of malapropisms. In: WordNet (1998)

23. Radinsky, K., Agichtein, E., Gabrilovich, E., Markovitch, S.: A word at a time: computing
word relatedness using temporal semantic analysis. In: WWW (2011)

24. Milne, D., Witten, I.: An effective, low-cost measure of semantic relatedness obtained from
wikipedia links. In: AAAI Workshop (2008)

25. Yeh, E., Ramage, D., Manning, C., Agirre, E., Soroa, A.: Wikiwalk: random walks on
wikipedia for semantic relatedness. ACL (2009)

26. Liberman, S., Markovitch, S.: Compact hierarchical explicit semantic representation. In: IJ-
CAI Workshop (2009)

27. Haralambous, Y., Klyuev, V.: A Semantic Relatedness Measure Based on Combined En-
cyclopedic, Ontological and Collocational Knowledge. Computing Research Repository
(2011)

28. Lin, D.: An information-theoretic definition of similarity. In: ICML (1998)
29. Dagan, I., Lee, L., Pereira, F.: Similarity-based models of cooccurrence probabilities. Ma-

chine Learning 34, 43–69 (1999)
30. Terra, E., Clarke, C.: Frequency estimates for statistical word similarity measures. In:

NAACL (2003)
31. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by

latent semantic analysis. JASIST (1990)
32. Reisinger, J., Mooney, R.: Multi-prototype vector-space models of word meaning. In:

NAACL, pp. 109–117 (2010)
33. Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring semantic similarity between words using

web search engines. In: WWW (2007)
34. Eyke, H., Johannes, F., Weiwei, C., Klaus, B.: Label ranking by learning pairwise prefer-

ences. AI 172(16-17), 1897–1916 (2008)
35. Das Sarma, A., Das Sarma, A., Gollapudi, S., Panigrahy, R.: Ranking mechanisms in twitter-

like forums. In: WSDM (2010)
36. Recchia, G., Jones, M.: More data trumps smarter algorithms: Comparing pointwise mutual

information with latent semantic analysis. Behavior Research Methods (2009)
37. Cilibrasi, R., Vitanyi, P.: The google similarity distance. IEEE 19, 370–383 (2007)
38. Francis, W.N., Kucera, H.: Frequency analysis of English usage: Lexicon and grammer.

Houghton Mifflin (1982)
39. Vapnik, V.: Statistical Learning Theory. Wiley Interscience (1998)
40. Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM

(1965)
41. Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Language and Cog-

nitive Processes 6 (1991)
42. Hughes, T., Ramage, D.: Lexical semantic relatedness with random graph walks. In:

EMNLP-CoNLL (2007)

Unsupervised Bayesian Part of Speech Inference
with Particle Gibbs

Gregory Dubbin and Phil Blunsom

Department of Computer Science, University of Oxford, United Kingdom
Gregory.Dubbin@wolfson.ox.ac.uk,

Phil.Blunsom@cs.ox.ac.uk

Abstract. As linguistic models incorporate more subtle nuances of language and
its structure, standard inference techniques can fall behind. These models are of-
ten tightly coupled such that they defy clever dynamic programming tricks. Here
we demonstrate that Sequential Monte Carlo approaches, i.e. particle filters, are
well suited to approximating such models. We implement two particle filters,
which jointly sample either sentences or word types, and incorporate them into
a Particle Gibbs sampler for Bayesian inference of syntactic part-of-speech cat-
egories. We analyze the behavior of the samplers and compare them to an exact
block sentence sampler, a local sampler, and an existing heuristic word type sam-
pler. We also explore the benefits of mixing Particle Gibbs and standard samplers.

1 Introduction

Modern research is steadily revealing more of the subtle structure of natural language
to create increasingly intricate models. Recent advances in Bayesian non-parametrics
have been employed by Computational Linguistics researchers to create effective unsu-
pervised models of the latent structure text [1–4]. These models predominantly make
use of the Dirichlet Process (DP), and its generalization the Pitman-Yor Process (PYP),
in part due to the ease of deriving a collapsed Gibbs sampler for its inference. However
this ease of inference comes at a cost; collapsed Gibbs samplers mix poorly due to the
tight global dependencies present in the conditional distributions sampled from [5].

Previously [5] investigated techniques for alleviating the influence of long range con-
ditional dependencies by simultaneously sampling groups of latent variables, however
this approach is specific to models based on the simpler Dirichlet distribution. Here we
present a general inference approach based on Sequential Monte Carlo (SMC) suitable
for more advance models that employ Pitman-Yor Process priors.

Sequential Monte Carlo (SMC) methods, like particle filters, are particularly well
suited to estimating tightly coupled distributions [6]. Particle filters sample sequences
of latent variable assignments by concurrently generating several representative se-
quences consistent with a model’s conditional probability distribution. The sequential
nature of the sampling simplifies inference by ignoring ambiguous correlations with
future latent variables at the cost of sampling the sequence multiple times. The few ap-
plications of particle filters in computational linguistics generally focus on the online
nature of SMC [7, 8]. However, in this paper we demonstrate that batch applications
benefit from the power of SMC to generate samples from tightly coupled distributions

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 760–773, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Unsupervised Bayesian Part of Speech Inference with Particle Gibbs 761

that would otherwise need to be approximated. Furthermore, the time cost of the addi-
tional samples generated by SMC can be mitigated by generating them in parallel.

In this paper we focus on the task of unsupervised part-of-speech (PoS) induction,
where we seek to label tokens in a corpus with the syntactic role they play. In particular
we describe and evaluate novel SMC inference algorithms for the Pitman-Yor Hid-
den Markov Model (PYP-HMM) first proposed in [4]. This model represents the state-
of-the-art for unsupervised PoS induction, but the complex conditional dependencies
present in the posterior led the authors of [4] to resort to a heuristic inference startegy
and unrealistic restrictions on the model to achieve their highest reported results.

We start in Section 2 by introducing PYP-HMM model and its previously proposed
inference algorithms. Section 3 introduces the Sequential Importance Sampling (SIS)
algorithm, a basic SMC method that generates samples from the model’s posterior. Us-
ing this approach we describe two novel inference algorithms for the PYP-HMM: a
simple sentence-based block sampler (3.1) and a more complicated type-based sampler
(3.2). We evaluate these algorithms in Section 4, analyzing their behavior in compar-
isons to the previously proposed state-of-the-art approaches. In summary we show that
our SMC based algorithms are able to improve inference, finding higher probability
modes, and task specific accuracies.

2 The Pitman-Yor Hidden Markov Model

The PYP-HMM model of PoS induction exhibits the tightly coupled correlations that
complicate many standard inference methods [4]. The model applies a hierarchical
Pitman-Yor process (PYP) prior to a trigram hidden Markov model (HMM) to jointly
model the distribution of a sequence of latent word tags, t, and word tokens, w. The
joint probability defined by the transition, Pθ(tl|tn−1, tn−2), and emission, Pθ(wn|tn),
distributions of a trigram HMM is

Pθ(t,w) =

N+1∏
n=1

Pθ(tl|tn−1, tn−2)Pθ(wn|tn)

where N = |t| = |w| and the special tag $ is added to denote the sentence boundaries.
The model defines the transition and emission distributions to be multinomial:

tn|tn−1, tn−2, T ∼ Ttn−1,tn−2

wn|tn, E ∼ Etn

The PYP-HMM draws the above multinomial distributions from a hierarchical Pitman-
Yor Process prior. The hierarchical prior can be intuitively understood to smooth the
trigram transition distributions with bigram and unigram distributions in a similar man-
ner to an ngram language model [9]. This backoff structure greatly reduces sparsity in
the trigram distributions and is achieved by chaining together the PYPs through their
base distributions:

762 G. Dubbin and P. Blunsom

Tij |aT , bT , Bi ∼ PYP(aT , bT , Bi)

Bi|aB, bB, U ∼ PYP(aB, bb, U)

U |aU , bU ∼ PYP(aU , bU ,Uniform).

Ei|aE , bE , C ∼ PYP(aE , bE, Ci),

where Tij , Bi, and U are trigram, bigram, and unigram transition distributions respec-
tively and Ci is either a uniform distribution (PYP-HMM) or a bigram character lan-
guage model distribution (PYP-HMM+LM, intended to model basic morphology).

Draws from the posterior of the hierarchical PYP can be calculated with a variant of
the Chinese Restaraunt Process (CRP) called the Chinese Restaurant Franchise (CRF)
[9, 1]. In the CRP analogy, each latent variable (tag) in a sequence is represented by
a customer entering a restaurant and sitting at one of an infinite number of tables. A
customer chooses to sit at a table in a restaurant according to the probability

P (zn = k|z1:n−1) =

{
c−k −a

n−1+b 1 ≤ k ≤ K−

K−a+b
n−1+b k = K− + 1

(1)

where zn is the index of the table chosen by the nth customer to the restaurant, z1:n−1

is the seating arrangement of the previous n − 1 customers to enter, c−k is the count of
the customers at table k, and K− is the total number of tables chosen by the previous
n − 1 customers. All customers at a table share the same dish, representing the value
assigned to the latent variables. When customers sit at an empty table, a new dish is
assigned to that table according to the base distribution of the PYP. To expand the CRP
analogy to the CRF for hierarchical PYPs, when a customer sits at a new table, a new
customer enters the restaurant representing the PYP of the base distribution.

Blunsom and Cohn [4] explored two Gibbs sampling methods for inference with the
PYP-HMM model. The first individually samples tag assignments for each token. The
second employs a tactic shown to be effective by earlier works by constraining inference
to only one tag per word type (PYP-1HMM). However marginalizing over all possible
table assignments for more than a single tag is intractable, and must be approximated.
Blunsom and Cohn [4] approximates the PYP-1HMM tag assignment probabilities for
a particular sample according to heuristic fractional table counts. Specific details of this
model and associated samplers can be found in [4].

In this paper we present a principled SMC based sampler that allows for the simul-
taneous sampling of all the tags associated with a given word type without resorting to
heuristics. This type based sampler achieves state-of-the-art performance without the
requirement that all words of a given type share the same tag. This one-tag-per-type as-
sumption is clearly false for syntactic categories (e.g. sample as a verb and a noun), thus
its elimination is a step on the path to high performance unsupervised PoS induction.

3 Sequential Monte Carlo

Sequential Monte Carlo was introduced in 1993 as a Bayesian estimator for signal pro-
cessing problems with strong non-linear conditional dependencies [10]. Since then,

Unsupervised Bayesian Part of Speech Inference with Particle Gibbs 763

SMC methods have been adopted by many fields, including statistics, biology, eco-
nomics, etc. [11–13]. The SMC approach is the probabilistic analogue of the beam
search heuristic, where the beam width can be compared to the number of particles
and pruning is analogous to resampling. The basic SMC approach serves as the basis
for several variants. Many SMC implementations resample the population of particles
from the existing population to minimize the effect of increasing sample variance with
increasing sequence length [14]. Particle smoothing variants of SMC reduce the relative
variance of marginals early in the sequence, as well improving the diversity of the final
sample [15]. Particle Markov chain Monte Carlo (PMCMC) formally augments classic
Markov chain Monte Carlo (MCMC) approaches, like Gibbs sampling, with samples
generated by particle filters [6].

While MCMC approximates a distribution as the average of a sequence of samples
taken from the posterior of the distribution, SMC approximates a distribution as the
importance weighted sum of several sequentially generated samples, called particles.
This article describes two SMC samplers that jointly sample multiple tag assignments:
a sentence based block sampler (sent) and a word type based block sampler (type).
The basics of particle filtering are outlined below, while the implementation specifics
of the sent and type particle filters are described in secions 3.1 and 3.2, respectively.

SMC is essentially the probabilistic analogue of the beam search heuristic. SMC
stores P sequences, analogous to beam width, and extends each incrementally accord-
ing to a proposal distribution qn, similar to the heuristic cost function in beam search.
Many particle filtering implementations also include a resampling step which acts like
pruning by reducing the number of unlikely sequences.

We implemented Sequential Importance Sampling (SIS), detailed by Doucet and
Johansen [16], to approximate joint samples from the sentence and word type distri-
butions. This approach approximates a target distribution, πn(x1:n) =

γn(x1:n)
Zn

, of the
sequence, x1:n, of n random variables, that is γn(x1:n) calculates the unnormalized
density of x1:n.

SIS initilizes each particle p ∈ [1, P] by sampling from the initial proposal distribu-
tion q1(x

p
1), where xpn is the value assigned to the n-th latent variable for particle p. The

algorithm then sequentially extends each particle according to the conditional proposal
distribution qn(x

p
n|x

p
1:n), where xp1:n is the sequence of values assigned to the first n

latent variables in particle p. After extending a particle p, SIS updates the importance
weight ωp

n = ωp
n−1 ∗ αn(x

p
1:n). The weight update, defined as

αn(x1:n) =
γn(x1:n)

γn−1(x1:n−1)qn(xn|x1:n−1)
, (2)

accounts for the discrepancy between the proposal distribution, qn, and the target dis-
tribution, πn, without normalizing over x1:n, which becomes intractable for longer
sequences even in discrete domains. The normalizing constant of the target distribu-
tion is approximately Zn ≈

∑P
p=1 ω

p
n and the unnormalized density is γn(x1:n) ≈∑P

p=1 ω
p
nifxp1:n = x1:n. The particles can also be used to generate an unbiased sample

from πn by choosing a particle p proportional to its weight ωp
n.

Andrieu et al. [6] shows that to ensure the samples generated by SMC for a Gibbs
sampler has the target distribution as the invariant density, the particle filter must be

764 G. Dubbin and P. Blunsom

modified to perform a conditional SMC update. This means that the particle filter gau-
rantees that one of the final particles is assigned the same values as the previous Gibbs
iteration. Our implementation of the conditional SMC update reserves one special parti-
cle, 0, for which the proposal distribution always chooses the previous iteration’s value
at that site.

3.1 Sentence Sampling

The sent particle filter samples blocks of tag assignments tS1:n for a sentence, S, com-
posed of tokens,wS

1:n. Sampling an entire sentence minimizes the risk of assigning a tag
with a high probability given its local context but minimal probability given the entire
sentence. Sentences can be sampled by ignoring table counts while sampling a proposal
sentence, incorporating them after the fact with a Metropolis-Hastings acceptance test
[17]. The Metropolis-Hastings step simplifies the sentence block particle filter further
by not requiring the conditional SMC update.

While there is already a tractable dynamic programming approach to sampling an
entire sentence based on the Forward-Backward algorithm, particle filtering the sen-
tences PYP-HMM model should prove beneficial. For the trigram HMM defined by the
model, the forward-backward sampling approach has time complexity in O(NT 3) for
a sentence of length N with T possible tag assignments at each site. Particle filters with
P particles can approximate these samples in O(NTP) time, which becomes much
faster as T increases.

Sampling of sentence S begins by removing all of the transitions and emissions in
S from the table counts, z, resulting in the table counts z−S of tag assignments t−S

the values assigned to the variables outside of S. For each site index n ∈ [1, N] in
the sentence, the particle filter chooses the new tag assignment, tS,pn , for each particle
p ∈ [1, P] from the sentence proposal distribution,

qSn (t
S,p
n |tS,p1:n−1) ∝ P (tS,pn |tS,pn−2, t

S,p
n−1, t

−S , z−S)

× P (wS,p
n |tS,pn , t−S , z−S ,w−S).

After each new tag is assigned, the particle’s weight is updated according to equation
(2). The simplicity of the proposal density hints at the advantage of particle filtering
over forward-backward sampling: it tracks onlyP histories and their weights rather than
tracking the probability of over all possible histories. Once each particle has assigned a
value to each site in the sentence, one tag sequence is chosen proportional to its particle
weight, ωS,p

N .

3.2 Type Sampling

The type sampling case for the PYP-HMM is more complicated than the sent sampler.
The long-range couplings defined by the hierarchical PYP priors strongly influence the
joint distribution of tags assigned to tokens of the same word type [5]. Therefore, the
affects of the seating decisions of new customers cannot be postponed during filtering
as in sentence sampling. To account for this, the type particle filter samples sequences

Unsupervised Bayesian Part of Speech Inference with Particle Gibbs 765

of seating arrangements and tag assignments jointly, xW
1:n = (tW1:n, z

W
1:n), for the word-

type, W . The final table counts are resampled once a tag assignment has been chosen
from the particles.

Tracking the seating arrangement history for each particle adds an additional compli-
cation to the type particle filter. The exchangeability of seating decisions means that
only counts of customers are necessary to represent the history. Each particle represents
both a tag sequence, tW,p

1:n , and the count deltas, zW,p
1:n . The count deltas of each particle

are stored in a hash table that maps a dish in one of the CRF restaurants to the number
of tables serving that dish and the total number of customers seated at those tables. The
count delta hash table ensures that it has sufficient data to calculate the correct proba-
bilities (per equation (1)) by storing any counts that are different from the base counts,
z−W , and defering to the base counts for any counts it does not have stored.

At each token occurence n, the next tag assignment, tW,p
n for each particle p ∈ [1, P]

is chosen first according to the word type proposal distribution

qWn (tW,p
n |tW,p

1:n−1, z
W,p
1:n−1) ∝

P (tW,p
n |c−2

n , c−1
n , t−W,p

1:n−1, z
−W,p
1:n−1)

× P (c+1
n |c−1

n , tW,p
n , t−W,p

1:n−1, z
−W,p
1:n−1)

× P (c+2
n |tW,p

n , c+1
n , t−W,p

1:n−1, z
−W,p
1:n−1)

× P (wW
n |tW,p

n , t−W,p
1:n−1, z

−W,p
1:n−1,w

−W,p
1:n−1).

In this case, c±k
n represents a tag in the context of site tWn offset by o, while t−W,p

1:n−1,

zW,p
1:n−1, and w−W,p

1:n−1 represent the tag assignments, table counts, and word token values
chosen by particle p as well as the values at all of the sites where a word token of type W
does not appear. This proposal distribution ignores changes to the seating arrangement
between the three transitions involving the site n. The specific seating arrangement of
a particle is chosen after the tag choice, at which point the weights are updated by the
result of equation (2). As with the sent sampler, once all of the particles have been
sampled, one of them is sampled with probability proportional to its weight. This final
sample is a sample from the true target probability.

As mentioned earlier, the sequence of particle approximations do not have the target
distribution as invariant unless they use the conditional SMC update. Therefore, a spe-
cial 0th particle is automatically assigned the value from the prior iteration of the Gibbs
sampler at each site n, though the proposal probability qWn (tW,0

n |tW,p
1:n−1, z

W,p
1:n−1) still

has to be calculated to update the weight ωW,p
n properly. This ensures that the type

sampler has a non-zero probability of reverting to the prior iteration’s sequence.

4 Experiments and Results

We aim to explore several aspects of both the PG sampler and the specifics of the PoS
inference task. Firstly, the motivation of the PG implementations is to allow better infer-
ence on tightly coupled models. This suggests that the PG samplers should mix better
than the local sampler, finding the mode of the model in fewer iterations. The type sam-
pler should perform especially better with the character-LM, which assigns a higher

766 G. Dubbin and P. Blunsom

likelihood when words of the same type are labeled with the same tag. If the PG ap-
proach does find more likely modes, does that correspond to gains in practical measures
like accuracy? Finally, how does the number of particles in PG samplers influence the
inference? We hypothesize that increasing the number of particles decreases the vari-
ance of the posterior likelihoods as the chance of generating a population dominated by
likely modes increases. However, the marginal improvement from additional particles
should exhibit diminishing returns.

Section 4.1 describes the corpora on which these hypotheses are tested. We evaluate
the performance of the samplers with two approaches. The first approach is an analysis
of the samplers as inference algorithms. Each approach should tend toward a mode in
the distribution as it mixes, resulting in more likely restaurant configurations. Section
4.2 analyzes the particle filter based samplers with various numbers of particles in an
effort to understand how they behave. Then, section 4.3 evaluates each of the proposed
approaches on PoS inference tasks from several languages. These results allow a prac-
tical comparison with other PoS inference approaches.

4.1 Data

Section 4.2 tests and compares several different approaches with a number of param-
eters. To simplify the procedures, all of the tests in the analysis are performed on a
reduced version of the Penn Wallstreet Journal (WSJ) treebank, similar to Gao and
Johnson [17] and Goldwater and Griffiths [18]. This reduced corpus is composed of the
first 10,000 sentences in the Penn WSJ treebank, with 240,236 tokens. Additionally, this
corpus uses the same, 17 tag, reduced tagset as Goldwater and Griffiths [18], developed
by Smith and Eisner [19].

Section 4.3 compares the many-to-one (M-1) accuracy of the induced tag assign-
ments on the full Penn WSJ treebank corpus, as well as the corpora from the CoNLL-X
shared language task [20]. M-1 accuracy assigns the induced syntactic categories to the
PoS of the most tokens of that category.

4.2 SMC Analysis

Before comparing the performance of the PG samplers to other inference methods, we
wish to learn more about the approaches themselves. It is not obvious how well the ben-
efits of block sampling transfer to SMC based approaches. Both the sent and type
samplers are novel approaches to computational linguistics, and many of their proper-
ties are unclear. For example, the samples generated from the particle filter should have
a higher variance than the target distribution. If the variance is too high, the sampler
will be slower to converge. While additional particles lower the relative variance, they
also increase the run time linearly. We hypothesize that there is a threshold of particles
necessary to ensure that some are high likelihood sequences, beyond which inference
gains are minimal the additional computational expense is wasted.

Like other MCMC methods, particle Gibbs generates a sequence of samples from
the posterior distribution of the model in question. The PG sampler should mix more

Unsupervised Bayesian Part of Speech Inference with Particle Gibbs 767

quickly than a local sampler because it takes larger steps. These larger steps should
move the PG sampler to a more likely mode in fewer iterations. The results in this
section measure the power of the inference as the rate at which the posterior likelihood
of the restaurant configuration increases.

The sentence based sampler, sent, samples from a distribution that can be exactly
computed, facilitating comparisons between the exact sampler and the SMC approach.
Figure 1 compares the posterior log-likelihoods of the sent sampler and the exact
sentence sampler over 200 iterations. As expected, the likelihoods of the particle filters
approach that of the exact sentence sampler as the number of particles increases from
10 to 100.

0 50 100 150 200

Iterations

2.7

2.6

2.5

2.4

2.3

2.2

2.1

2.0

L
o
g
 L

ik
e
li
h
o
o
d

1e6 Sentence Samplers over Iterations

Local

Sent: P = 10

Sent: P = 25

Sent: P = 50

Sent: P = 100

Sent: Exact

(a) Iterations

0 50 100 150 200 250 300 350 400

Time (min.)

2.7

2.6

2.5

2.4

2.3

2.2

2.1

2.0

L
o
g
 L

ik
e
li
h
o
o
d

1e6 Sentence Samplers over Time

Local

Sent: P = 10

Sent: P = 25

Sent: P = 50

Sent: P = 100

Sent: Exact

(b) Time (min.)

Fig. 1. Posterior Log-Likelihood of PYP-HMM inference over iterations (a) and time (b) with
exact as well as PG sent sampler with various numbers of particles. Except for the local sampler,
which ran for 300 iterations in the time graph, the samplers were run for 200 iterations each, the
end of a line represents the time to finish those 200 iterations.

Figure 2 compares the table configuration log-likelihood of the 1HMM approxima-
tion implemented by Blunsom and Cohn [4] with the type particle filter based sampler
as well as the local sampler and the exact block sentence sampler. Unlike the sentence
based block sampler, type sampler cannot be exactly calculated, even with the 1HMM
approach of constraining inference to only consider sequences that assign the same tag
to every token of the same word type. The 1HMM sampler approximates these proba-
bilities using expected table counts. Theoretically, the type sampler should be a better
approximation, being gauranteed to approach the true distribution as the number of par-
ticles increases. The results suggest that the type sampler can perform better than the
1HMM sampler with few particles. Unlike the sent sampler, the type sampler per-
forms well even with fewer particles than the number of PoS categories in the tagset.
These results suggest that the choice of block has a strong influence on the resulting
sampler.

768 G. Dubbin and P. Blunsom

Interestingly, the local sampler reaches a higher mode than the 1HMM approach
before the fiftieth iteration. However, earlier work by Blunsom and Cohn [4] found that
the 1HMM approximation achieved a consistently higher M-1 accuracy than the local
sampler. Section 4.3 confirms the same result. This reveals a disconnect between the
likelihood under the PYP-HMM model and the M-1 accuracy. Additionally, both the
type and 1HMM samplers reach likely modes within 30 iterations, after which they
plateau and the additional cost of these approaches is wasted.

0 50 100 150 200

Iterations

2.7

2.6

2.5

2.4

2.3

2.2

2.1

L
o
g
 L

ik
e
li
h
o
o
d

1e6 Type Samplers over Iterations

Local

Type: P = 10

Type: P = 25

Type: P = 50

Type: P = 100

1HMM Approx.

(a) Iterations

0 5 10 15 20

Time (hr.)

2.7

2.6

2.5

2.4

2.3

2.2

2.1

L
o
g
 L

ik
e
li
h
o
o
d

1e6 Type Samplers over Time

Type: P = 10

Type: P = 25

Type: P = 50

Type: P = 100

1HMM Approx.

(b) Time (hr.)

Fig. 2. Posterior Log-Likelihood of PYP-HMM inference over iterations (a) and time (b) with the
type sampler as well as the 1HMM approximation proposed by Blunsom and Cohn [4] with
various numbers of particles. Except for the local sampler, which ran for 300 iterations in the
time graph, the samplers were run for 200 iterations each, the end of a line represents the time to
finish those 200 iterations.

An interesting variant of the basic PYP-HMM model replaces the uniform base of the
emission distribution with a bigram character language model (PYP-HMM-LM) [4]. In
addition to allowing the PYP-HMM to recognize basic word morphology, the character
language model creates a strong bias toward only one tag per word type. Figure 3(a)
shows that the PYP-HMM-LM model is too tightly coupled for either the local or the
sent samplers to mix quickly as they did with the simpler PYP-HMM model. The
PYP-HMM-LM model reveals a weakness of the simple local Gibbs sampler approach,
because the probability of a word being emitted by a new state is so low that sampler is
highly likely to choose the same PoS tag assignment as other occurences of that word.
The additional context of the sent sampler results in bigger steps and faster mixing
than the local sampler, but most of the variables influencing probability of and particular
tag assignment are in different sentences.

On the other hand, the type and 1HMM samplers sample all of the tags assignments
for words of the same type simultaneously. Figure 3(b) shows that the result is drasti-
cally faster mixing. The type sampler is just as strongly influenced to assign all words
of the same type to the same PoS category, but there are no same-word-type assignments

Unsupervised Bayesian Part of Speech Inference with Particle Gibbs 769

to bias the choice of which one tag they will all get. This strong correlation between
the tags assigned to words of the same type may explain the type sampler’s strong
performance with so many fewer particles than necessary for the sent sampler: once
a tag has been assigned to a sufficient number of words of the same type, that same
tag will be progressively more likely to be chosen again. Perhaps a one-tag-per-type
particle filter can take advantage of this fact to simplify the proposal distribution.

0 50 100 150 200

Iterations

3.15

3.10

3.05

3.00

2.95

2.90

2.85

2.80

2.75

L
o
g
 L

ik
e
li
h
o
o
d

1e6 Sentence Samplers with Character-LM

Local

Sent: P = 10

Sent: P = 25

Sent: P = 50

Sent: P = 100

Sent: Exact

(a) sent

0 50 100 150 200

Iterations

3.2

3.1

3.0

2.9

2.8

2.7

2.6

2.5

L
o
g
 L

ik
e
li
h
o
o
d

1e6 Type Samplers with Character-LM

Type: P = 10

Type: P = 25

Type: P = 50

Type: P = 100

1HMM Approx.

(b) type

Fig. 3. Posterior Log-Likelihood of PYP-HMM-LM inference with the sent sampler (a), and
the type sampler as well as the 1HMM approximation proposed by Blunsom and Cohn [4] (b)
with various numbers of particles

The fact that the type sampler requires so few particles for inference relative to
the sent sampler suggests that the choice of block can heavily influence the perfor-
mence of a block Particle Gibbs sampler. The optimal block for a given model is not
obvious and may be difficult to determine empirically. On the other hand, the large and
expensive steps taken by a Particle Gibbs sampler are likely only necessary when faster
methods reach modes from which they are slow to escape. A mixed sampler that only
occasionally takes large steps with Particle Gibbs might achieve similar results with
less computational cost. Such an approach need not even rely on any specific block par-
titioning, particle filters do not place many restrictions on the distributions from which
they generate samples.

There are a multitude of possible combinations of mixed samplers, figure 4 demon-
strates the performance of a few instantiations of one simple approach. Each of the
mixed samplers in figure 4 randomly choses on of either the local, sent, or type
samplers (the numbers in the legend describe the ratio of each sampler in the mixture.)
For the sake of simplicity, each mixed sampler uses the same number of particles for the
sent and type samplers, the mixed samplers in figure 4 all use ten particles. While
there is a high degree of variance, the mixed samplers all show the rapid migration
toward the mode shown by the type sampler, but each iteration takes less time on

770 G. Dubbin and P. Blunsom

average because of the sent and local samplers. The results in figure 4(b) suggest
that the computational costs of the Particle Gibbs samplers can be mitigated by mixed
sampling without eliminating the benefits from particle filtering. Finally, the samplers
with the sent sampler in the mix performed quite well with ten particles despite the
its poor performance with the same number of particles on its own. Perhaps mixing the
block samplers diminishes the particle cost of poor block choice.

0 50 100 150 200

Iterations

2.7

2.6

2.5

2.4

2.3

2.2

2.1

L
o
g
 L

ik
e
li
h
o
o
d

1e6 Mixed Samplers over Iterations

Mix - 1 Sent: 1 Type

Mix - 1 Local: 1 Type

Mix - 9 Local: 1 Type

Mix - 1 Local: 1 Sent: 1 Type

Mix - 8 Local: 1 Sent: 1 Type

(a) Iterations

0 10 20 30 40 50 60 70 80

Time (min.)

2.7

2.6

2.5

2.4

2.3

2.2

2.1

L
o
g
 L

ik
e
li
h
o
o
d

1e6 Mixed Samplers over Time

Mix - 1 Sent: 1 Type

Mix - 1 Local: 1 Type

Mix - 9 Local: 1 Type

Mix - 1 Local: 1 Sent: 1 Type

Mix - 8 Local: 1 Sent: 1 Type

(b) Time (min.)

Fig. 4. Posterior Log-Likelihood of PYP-HMM inference with various mixed samplers over 200
iterations ((a)) and over time ((b)). The colon separated lists provide the ratio of each mixed
sampler: the sampler run on any given iteration is proportional to the number next to it. In each
sampler, the particle filters are run using 10 particles. The samplers were run for 200 iterations
each, the end of a line represents the time to finish those 200 iterations.

4.3 Unsupervised Part-of-Speech Tagging

Table 1 compares the M-1 accuracy of the sent and type particle filter samplers,
from sections 3.1 and 3.2, with 100 particles each. Each site in a corpus is assigned
the most commonly visited tag assignment at that site over all iterations. The particle
filter based samplers rarely score a higher accuracy than even the local sampler, which
completes 500 iterations before the particle filters complete 200.

While figures 1(a) and 2(a) show that all of the samplers surpass the 1HMM sampler
in likelihood, the accuracies of the 1HMM and 1HMM-LM approximations remain
well above the other approaches. This suggests that there are high-likelihood assign-
ments that produce lower accuracy results, presumably related to the fact that the type
sampler is not restricted to assignments with exactly one tag for each word type. If
the model assigns equal likelihood to these assignments, inference will not be able to
distinguish between them.

Excepting Arabic, the Type-10-LM sampler outperforms all of the other non-
restrictive approaches, suggesting that the PYP-HMM-LM model may be a more accu-
rate representation of PoS. As noted in section 4.2, the PYP-HMM-LM model is biased
toward fewer tags per type than the more standard HMM model, resulting in an average
number of tags per word type that is closer to the true value. Even so, figure 3(b) shows

Unsupervised Bayesian Part of Speech Inference with Particle Gibbs 771

Table 1. Many-to-1 accuracies on CoNLL and Penn-Treebank Wall Street Journal corpora for
sentence- (Sent) and type- (Type) based filtering. The table lists the average M-1 accuracy mea-
sured according to the maximum marginal tag assignments over 3 seperate runs after 200 itera-
tions for the sent, type, 1HMM and 1HMM-LM samplers, and 500 iterations for the HMM
local sampler.

Language Sent-100 Type-100 Type-10-LM Local 1HMM 1HMM-LM Tokens Tag types
WSJ 69.8% 70.1% 74.7% 70.2% 75.6% 77.5% 1,173,766 45
Arabic 53.5% 57.6% 51.3% 56.2% 61.9% 62.0% 54,379 20
Bulgarian 64.8% 67.8% 71.6% 67.6% 71.4% 76.2% 190,217 54
Czech 59.8% 61.6% 65.2% 64.5% 65.4% 67.9% 1,249,408 12c

Danish 65.0% 70.3% 74.9% 69.1% 70.6% 74.6% 94,386 25
Dutch 61.6% 71.6% 70.1% 64.1% 73.2% 72.9% 195,069 13c

Hungarian 61.8% 61.8% 68.5% 64.8% 69.6% 73.2% 131,799 43
Portuguese 59.4% 71.1% 74.4% 68.1% 72.0% 77.1% 206,678 22
Spanish 66.3% 69.1% 75.3% 68.5% 74.7% 78.8% 89,334 47
Swedish 62.9% 63.5% 68.3% 67.6% 67.2% 68.6% 191,467 41

that the type sampler mixes at least as well as the 1HMM sampler with the character
language model, yet the 1HMM sampler still scored a higher many-to-one accuracy on
all languages other than Danish. This discrepancy between model likelihood and accu-
racy suggests that a different model is necessary to further improve unsupervised PoS
induction.

5 Conclusion

This paper presented a novel application of the Particle Gibbs sampler approach to the
computational linguistic inference application of unsupervised PoS induction. Such ap-
proaches show great potential for inference, especially in highly dependent distributions
e.g. non-parametric Bayesian applications. While this power generally comes and the
expense of significantly increased computation, results show that a mixed sampler that
only occasionally performs a Particle Gibbs sampling step can achieve similar results
in a fraction of the time. Additionally, the type particle filter itself can be largely run
in parallel, only bottlenecking when the particle weights need to be normalized. Fur-
ther expansion of the basic ideas presented will enable scalable inference in otherwise
intractable models.

References

1. Goldwater, S., Griffiths, T., Johnson, M.: Interpolating between types and tokens by estimat-
ing power-law generators. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural
Information Processing Systems 18, pp. 459–466. MIT Press, Cambridge (2006)

2. Liang, P., Petrov, S., Jordan, M., Klein, D.: The infinite PCFG using hierarchical Dirichlet
processes. In: Proc. of the 2007 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2007), Prague, Czech Republic, pp. 688–697 (2007)

772 G. Dubbin and P. Blunsom

3. Cohn, T., Goldwater, S., Blunsom, P.: Inducing compact but accurate tree-substitution gram-
mars. In: HLT-NAACL 2009: Proceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of the Association for Computational
Linguistics, pp. 548–556. Association for Computational Linguistics, Morristown (2009)

4. Blunsom, P., Cohn, T.: A hierarchical Pitman-Yor process hmm for unsupervised part of
speech induction. In: Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies, pp. 865–874. Association for Com-
putational Linguistics, Portland (2011)

5. Liang, P., Jordan, M.I., Klein, D.: Type-based MCMC. In: North American Association for
Computational Linguistics, NAACL (2010)

6. Andrieu, C., Doucet, A., Holenstein, R.: Particle markov chain monte carlo methods. Journal
of The Royal Statistical Society Series B 72(3), 269–342 (2010)

7. Canini, K.R., Shi, L., Griffiths, T.L.: Online inference of topics with latent Dirichlet alloca-
tion. In: van Dyk, D., Welling, M. (eds.) Proceedings of the 12th International Conference
on Artificial Intelligence and Statistics (AISTATS 2009), pp. 65–72 (2009)

8. Borschinger, B., Johnson, M.: A particle filter algorithm for bayesian wordsegmentation. In:
Proceedings of the Australasian Language Technology Association Workshop 2011, Can-
berra, Australia, pp. 10–18 (December 2011)

9. Teh, Y.W.: A hierarchical bayesian language model based on Pitman-Yor processes. In: Pro-
ceedings of the 21st International Conference on Computational Linguistics and the 44th
Annual Meeting of the Association for Computational Linguistics. ACL-44, pp. 985–992.
Association for Computational Linguistics, Morristown (2006)

10. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEE Proceedings F Radar and Signal Processing 140(2), 107–113
(1993)

11. Jasra, A., Doucet, A., Stephens, D., Holmes, C.: Interacting sequential Monte Carlo samplers
for trans-dimensional simulation. Computational Statistics & Data Analysis 52(4), 1765–
1791 (2008)

12. Beaumont, M.A.: Estimation of Population Growth or Decline in Genetically Monitored
Populations. Genetics 164(3), 1139–1160 (2003)

13. Fernandez-Villaverde, J., Rubio-Ramirez, J.F.: Estimating macroeconomic models: A likeli-
hood approach. Review of Economic Studies 74(4), 1059–1087 (2007)

14. Kitagawa, G.: Monte carlo filter and smoother for non-gaussian nonlinear state space models.
Journal of Computational And Graphical Statistics 5(1), 1–25 (1996)

15. Fearnhead, P., Wyncoll, D., Tawn, J.: A sequential smoothing algorithm with linear computa-
tional cost. Technical report, Department of Mathematics and Statistics, Lancaster University
(2008)

16. Doucet, A., Johansen, A.M.: A Tutorial on Particle Filtering and Smoothing: Fifteen Years
Later. Oxford University Press (2009)

17. Gao, J., Johnson, M.: A comparison of bayesian estimators for unsupervised hidden markov
model pos taggers. In: Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2008, pp. 344–352. Association for Computational Linguistics,
Morristown (2008)

18. Goldwater, S., Griffiths, T.: A fully bayesian approach to unsupervised part-of-speech tag-
ging. In: Proc. of the 45th Annual Meeting of the ACL (ACL 2007), Prague, Czech Republic,
pp. 744–751 (June 2007)

Unsupervised Bayesian Part of Speech Inference with Particle Gibbs 773

19. Smith, N.A., Eisner, J.: Contrastive estimation: Training log-linear models on unlabeled data.
In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguis-
tics (ACL), Ann Arbor, Michigan, pp. 354–362 (June 2005)

20. Buchholz, S., Marsi, E.: Conll-x shared task on multilingual dependency parsing. In: Pro-
ceedings of the Tenth Conference on Computational Natural Language Learning, CoNLL-X
2006, pp. 149–164. Association for Computational Linguistics, Morristown (2006)

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 774–793, 2012.
© Springer-Verlag Berlin Heidelberg 2012

WikiSent: Weakly Supervised Sentiment Analysis
through Extractive Summarization with Wikipedia

Subhabrata Mukherjee and Pushpak Bhattacharyya

Dept. of Computer Science and Engineering, IIT Bombay
{subhabratam,pb}@cse.iitb.ac.in

Abstract. This paper describes a weakly supervised system for sentiment analy-
sis in the movie review domain. The objective is to classify a movie review into
a polarity class, positive or negative, based on those sentences bearing opinion
on the movie alone, leaving out other irrelevant text. Wikipedia incorporates the
world knowledge of movie-specific features in the system which is used to ob-
tain an extractive summary of the review, consisting of the reviewer’s opinions
about the specific aspects of the movie. This filters out the concepts which are
irrelevant or objective with respect to the given movie. The proposed system,
WikiSent, does not require any labeled data for training. It achieves a better or
comparable accuracy to the existing semi-supervised and unsupervised systems
in the domain, on the same dataset. We also perform a general movie review
trend analysis using WikiSent.

Keywords: Sentiment Analysis, Wikipedia, Information Extraction, Weakly
Supervised System, Text mining, Summarization, Reviews.

1 Introduction

In the movie domain, like many other product domains, there has been a flurry of
review sites giving critics view about the performance of the actor, director, story as
well as the public acceptance of the movie. This is of importance not only to the
people directly related to the movie-making but also to the audience, whose viewing
decisions are quite influenced by these reviews.

Sentiment analysis of movie reviews aims to automatically infer the opinion of the
movie reviewer and often generates a rating on a pre-defined scale. Automated analy-
sis of movie reviews is quite a challenge in text classification due to the various
nuances associated with the critic reviews. The author may talk about a lot of topics
which are not directly related to the movie in focus. Tightly intermixed with various
objective statements are his subjective opinions about the movie, which are quite
difficult to extract. Here, an objective statement is defined as not just a factual state-
ment, but as objective from the point of view of analyzing the opinion about a particu-
lar movie.

This work is different from traditional automatic text summarization or abstractive
summarization. This is because the objective is not to obtain a shorter text but to re-
trieve relevant opinionated text. This focused extraction requires external world
knowledge about the various technical aspects of the movie (like movie plot, film

 WikiSent: Weakly Supervised Sentiment Analysis through Extractive Summarization 775

crew, characters, domain specific features etc.). Wikipedia feeds the system with this
technical knowledge which is used to create an extract of the review. This extract is
subsequently classified by a lexicon. Figure 1 shows the system architecture.

Fig. 1. System Block Diagram

Consider the fragment of a review of the movie L.I.E taken from the IMDB movie
review corpus [14] which has been tagged as a negative review:

Example 1. Review of the Movie L.I.E

[1]Best remembered for his understated performance as Dr. Hannibal Lecter in Michael

Mann's forensics thriller, Manhunter, Scottish character actor Brian Cox brings something
special to every movie he works on. [2]Usually playing a bit role in some studio schlock (he
dies halfway through The Long Kiss Goodnight), he's only occasionally given something meaty
and substantial to do. [3]If you want to see some brilliant acting, check out his work as a
dogged police inspector opposite Frances McDormand in Ken Loach's Hidden Agenda.

[4]Cox plays the role of Big John Harrigan in the disturbing new indie flick L.I.E., which
Lot 47 picked up at Sundance when other distributors were scared to budge. [5]Big John feels
the love that dares not speak its name, but he expresses it through seeking out adolescents and
bringing them back to his pad. [6]What bothered some audience members was the presentation
of Big John in an oddly empathetic light. [7]He's an even-tempered, funny, robust old man
who actually listens to the kids' problems (as opposed to their parents and friends, both caught
up in the high-wire act of their own confused lives.). [8]He'll have sex-for-pay with them only
after an elaborate courtship, charming them with temptations from the grown-up world”

……
[9]It's typical of unimaginative cinema to wrap things up with a bullet, sparing the writers

from actually having to come up with a complex, philosophical note. [10]In this regard, l.i.e. (and
countless other indie films) share something in common with blockbuster action films: problems
are solved when the obstacle is removed. [11]How often does real life work this way to extend the
question : if a movie is striving for realism , do dramatic contrivances destroy the illusion?

Movie
Review

Wikipedia

Extractive
Opinionated

Summary

Sentiment
Lexicon

Polarity

Metadata, Plot, Crew,
Cast, Characters, Movie
Domain Features

Frequent
Words List

Input Output

Mobile,
Printer

Reviews
World Knowledge

776 S. Mukherjee and P. Bhattacharyya

The first paragraph of the review talks about the central character Brian Cox’s not-
able performance in some earlier movie. The second paragraph gives a brief descrip-
tion of his character in an empathetic light which comprises of positive opinions about
the character. The reviewer opinion about the movie comes only in the last paragraph,
where he gives some negative opinions about the movie. The review consists of ma-
jority positive words, not all of which are significant to the reviewer opinion, out-
weighing the negative opinions about the movie. A bag-of-words classifier, thus,
would wrongly classify this as positive.

In this work, we give an analysis of the various aspects of a movie review in Sec-
tion 3. There we highlight the significant and non-significant concepts for sentiment
analysis of movie reviews. Section 4 describes how the sectional information in Wi-
kipedia helps in this task. It also gives the automated feature extraction process from
Wikipedia. Section 5 gives the algorithm for the extraction of the opinion summary
consisting of the relevant reviewer statements, which is classified by a sentiment lex-
icon in Section 6. Section 7 discusses different approaches for parameter learning for
the model. The experimental evaluation is presented in Section 8 on a gold standard
dataset of 2000 movie reviews as well as on an unlabeled pool of 27,000
documents to find the trend. Section 9 discusses the results followed by conclusions
in Section 10.

The main contribution of this work is to show how Wikipedia info-box sectional
information can be used to incorporate World Knowledge in a system, to obtain an
extractive opinionated summary of a movie review. This, in turn, helps in sentiment
analysis of the review due to the filtering out of objective concepts from subjective
opinions. This work is mostly unsupervised, requiring no labeled training data. The
weak supervision comes from the usage of resources like WordNet, POS-tagger and
Sentiment Lexicons, due to their mode of construction.

2 Related Work

There are 2 prominent paradigms in automatic text summarization [3]: extractive and
abstractive text summarization. While extractive text summarization attempts to iden-
tify prominent sections of a text by giving more emphasis on the content of the sum-
mary, abstractive text summarization gives more emphasis on the form so that the
sentences are syntactically and semantically coherent. The topic-driven summariza-
tion paradigm is more common to IR where the summary content is based on the user
query about a particular topic. [4] attempts to find the top-ranked significant sentences
based on the frequency of the content words present in it. [5] gives importance to the
position of a sentence i.e. where the sentence appears in the text and comes up with an
optimum position policy and emphasis on the cue words. [6] uses tf-idf to retrieve
signature words, NER to retrieve tokens, shallow discourse analysis for cohesion and
also uses synonym and morphological variants of lexical terms using WordNet. [7]
uses a rich set of features like Title, Tf & Tf-Idf scores, Position score, Query Signa-
ture, IR Signature, Sentence Length, Average Lexical Connectivity, Numerical Data,
Proper Name, Pronoun & Adjective, Weekday & Month, Quotation, First Sentence
etc. and uses decision trees to learn the feature weights. There are other works based
on HMM [8], RTS [9], lexical chain and cohesion [10].

 WikiSent: Weakly Supervised Sentiment Analysis through Extractive Summarization 777

We use many of the above features for finding the extract of the summary. Howev-
er, our objective differs in the fact that we intend to derive relevant subjective sen-
tences significant for the movie, and not objective sentences. It is also topic-driven,
depending on the movie plot, actors, film crew, fictional characters etc.

[11] proposes to find subjective sentences using lexical resources where the au-
thors hypothesize that subjective sentences will be more similar to opinion sentences
than to factual sentences. As a measure of similarity between two sentences they used
different measures including shared words, phrases and the WordNet. [12] focuses on
extracting top sentiment keywords which is based on Pointwise Mutual Information
(PMI) measure [13].

The pioneering work for subjectivity detection is done in [14], where the authors
use min-cut to leverage the coherency between the sentences. The fundamental as-
sumption is that local proximity preserves the objectivity or subjectivity relation in
the review. But the work is completely supervised requiring two levels of tagging.
Firstly, there is tagging at the sentence level to train the classifier about the subjectivi-
ty or objectivity of individual sentences. Secondly, there is tagging at the document
level to train another classifier to distinguish between positive and negative reviews.
Hence, this requires a lot of manual effort. [15] integrates graph-cut with linguistic
knowledge in the form of WordNet to exploit similarity in the set of documents to be
classified.

Now, if a system possesses world knowledge about the technical aspects of the
movie, then it would be easier for it to detect objective or subjective sentences based
on the key concepts or features of a movie. Wikipedia1 can incorporate this world
knowledge in the system. Wikipedia is recently used in a number of works mainly for
concept expansion in IR for expanding the query signature [16], [17], [18] as well as
for topic driven multi document summarization [19].

There has been a few works in sentiment analysis using Wikipedia [20], [21]. [20]
focuses on concept expansion using Wikipedia where they expand the feature vector
constructed from a movie review with related concepts from the Wikipedia. This in-
creases accuracy as it helps in unknown concept classification due to expansion, but it
does not address the concern of separating subjective from objective sentences.

These works do not take advantage of the Sectional arrangement of the Wikipedia
articles into categories. Each Wikipedia movie article has sections like Plot, Cast,
Production etc. which can be explicitly used to train a system about the different as-
pects of a movie. In this work, our objective is to develop a system that requires no
labeled data for training and classifies the opinionated extractive summary of
the movie; where the summary is created based on the extracted information from
Wikipedia.

3 Facets of a Movie Review

Movie review analysis is a challenging domain in Sentiment Analysis due to sarcasm,
thwarting and requirement of extensive world knowledge. The reviewer opinion about
the movie may target the characters in the movie, the plot or his expectations from the
crew involved. We categorize the reviewer statements in the following categories:

1 http://www.wikipedia.org/

778 S. Mukherjee and P. Bhattacharyya

Table 1. Reviewer Statement Categories

1. General Perception about the Crew
2. Objective Facts about the Crew and Movies
3. Past Performance of the Crew and Movies
4. Expectations from the Movie or Crew
5. Movie Plot

6. Opinion about Movie Characters
7. Characteristics of a Movie or Genre
8. Opinion about the Movie and Crew
9. Unrelated Category

We define Crew in a movie as the people who are involved in making of the movie like
the Producer, Director, Actor, Story-Writer, Cinematographer, Musician etc. We are
mainly interested in extracting opinions from Category 8 where all the other Categories
may lend a supporting role to back his opinions or add noise. We give examples (taken
from the movie reviews of the IMDB corpus [2]) for each of the categories in Table 2.

Table 2. Reviewer Statement Categories with Examples

1. General Perception

about the Crew

2. Objective Facts
about the Crew and
Movie

3. Past Performance of
the Crew

4. Expectations from

the Movie or Crew

5. Movie Plot

6. Opinion about the

Characters in the
Movie

7. Characteristics of a
Movie or Genre

8. Opinion about the
Movie and Crew

9. Unrelated Category

John Travolta is considered by many to be a has-been, or a one-
hit wonder … Leornardo DeCaprio is an awesome actor.

Born into a family of thespians -- parents Roger Winslet and
Sally Bridges-Winslet were both stage actors – Kate Winslet
came into her talent at an early age.

The role that transformed Winslet from art house attraction to
international star was Rose DeWitt Bukater, the passionate,
rosy-cheeked aristocrat in James Cameron's Titanic (1997).

I cancelled the date with my girlfriend just to watch my favorite
star featuring in this movie.

L.I.E. stands for Long Island Expressway, which slices through
the strip malls and middle-class homes of suburbia. Filmmaker
Michael Cuesta uses it as a metaphor of dangerous escape for
his 15-year old protagonist, Howie (Paul Franklin Dano).

He's an even-tempered, funny, robust old man who actually lis-
tens to the kids' problems (as opposed to their parents and
friends, both caught up in high-wire act of their confused lives.).

Horror movies are supposed to be scary.
There is an axiom that directors who have a big hit with their
debut have a big bomb with their second film.

While the movie is brutal, the violence is neither very graphic
nor gratuitous. It may scare the little ones, but not any teen-ager.
 Besides the awesome direction, the ageless glamor and fabulous
acting of Leonardo DeCaprio and Kate Winslet made the movie
titanic a timeless hit.

So my grandson gives me passes to this new picture One Night at
McCool's because the free screening is the same night as that
horrible show with those poor prisoners trapped on the island
who eat the bugs. "Go," he says, "it's just like Rush-o-Man."

 WikiSent: Weakly Supervised Sentiment Analysis through Extractive Summarization 779

It is evident from the examples above why movie domain text is difficult to ana-
lyze. Consider the Example from Category 5, which talks about the movie plot. The
keyword dangerous, there, makes the segment negative. But it expresses only a con-
cept about the movie and not the reviewer opinion. Similarly, Category 6 Example
talks about a character in the movie which expresses a positive opinion but unrelated
w.r.t the opinion analysis of the review. Category 7 Example has the keywords movie
and audience directly related to the movie domain. Thus it is more probable that they
are expressing some direct opinion about a certain aspect of the movie. Similarly, the
name of the actors in Category 8 Example 2 makes it relevant, as they reflect opi-
nions about the persons involved in the making of the movie. Hence, it is important to
extract only those concepts which are significant from the point of view of opinion
analysis of the movie and filter out the non-significant portion. A unigram based bag-
of-words model would capture a lot of noise, if it considers all categories to be equal-
ly relevant.

4 Wikipedia Information Extraction for Movie Review Analysis

Wikipedia is the largest English knowledge repository consisting of more than 20
million articles collaboratively written by volunteers all around the world. It is open-
access and regularly updated by about 100,000 active contributors daily. Each Wiki-
pedia page is an article on some known concept or topic. Each article belongs to one
of the many defined categories or subcategories. For Example, Category Film has 31
sub-categories like Film making, Works about Films, Film Culture etc. Furthermore,
each article has a number of sections which can be edited separately. Any Wikipedia
article on films may consist of sections like Plot, Cast, Production, Marketing, Re-
lease etc. which are common among most of the articles of that category. We utilize
this feature to extract movie specific information from the Wikipedia.

A Wikipedia movie article consists of a small paragraph, in the beginning, giving
information about the movie story, crew and achievements in short. We call this sec-
tion the Metadata about the movie. There is a table on the extreme right of the article
which provides information about the name of the Producer, Director, Actors, Cine-
matographer etc. We call this section the Crew Information. There is a section on the
movie plot which summarizes the story of the movie and talks about its fictional as-
pects. We call this section the Plot of the movie. There is another section which gives
information about the actors in the movie, the roles they perform and the characters
they enact. We call this section the Character of the movie. We use all the above
information extracted from the Wikipedia article about the particular movie to incor-
porate World Knowledge into the system.

We used the IMDB movie corpus [2] consisting of 2,000 tagged positive and nega-
tive movie reviews, each class consisting of 1,000 reviews. The tagged information is
used only for evaluation. Furthermore, there is a collection of 27,000 raw html

780 S. Mukherjee and P. Bhattacharyya

documents taken from the IMDB review site, from which the authors extracted and
tagged the above 2000 documents, used for finding the general trend in the movie
domain.

4.1 Wikipedia Article Retrieval

The 2,000 processed review documents had their titles removed. Thus the correspond-
ing reviews had to be retrieved from the unprocessed html documents and their titles
extracted. The title of the movie review was used to construct a http get request to
retrieve the corresponding html page of the movie directly from Wikipedia. In case of
multiple articles in different domains with same name, the film tag was used to re-
trieve the desired article. For multiple movies with the same name, the year (in which
the movie was released) information available with the title was used to extract the
correct Wikipedia article. Thus the Wikipedia article retrieval was in the order film
name → film tag → film year.

4.2 Crew Information

All the crew information were extracted from the table in the right hand side of the
Wiki article, bearing the name of all the persons involved in the making of the movie
like the director, producer, cinematographer, story-writer etc., and added to the
Crew list.

The first line in the Wiki article that contains the phrase Directed by or Author and
is a part of any table (detected by the html tags /td, /tr, /th, /table etc.) is taken as the
start of the Crew info-section. The phrases Release Date or Language or the html tags
/table and /tbody, that signify the end of the Crew table, is taken as the end of the
info-section.

4.3 Metadata Extraction

The metadata was extracted from the html page just below the title of the article. The
text was POS-tagged using a part of speech tagger2 and all the Nouns were extracted.
The Nouns were further stemmed3 and added to the Metadata list. The words were
stemmed so that acting and action have the same entry corresponding to act. Some
movie articles in Wikipedia had the Plot section missing. The metadata was used in
those cases to replace the Plot. In other cases, the Metadata information was simply
appended to the Plot information.

According to the structure of the Wikipedia html page on movie articles, the meta-
data information on the movie appears just after the Crew table in the html page.

2 http://nlp.stanford.edu/software/tagger.shtml
3 http://sourceforge.net/projects/stemmers/files/
Lovins-stemmer-Java/

 WikiSent: Weakly Supervised Sentiment Analysis through Extractive Summarization 781

This section spans the page from the end of the Crew info-section till the start of the
next info-box, which is indicated by the Wiki tag editsection. The Wiki tag editsection
allows users to edit an info-box. All the Wikipedia info-boxes are editable.

4.4 Plot Extraction

The movie plot was extracted from the Plot Section of the Wikipedia. The words
were extracted similarly as in Metadata extraction. In both the Plot and Metadata, the
concepts were restricted to be Nouns. For example, in the Harry Potter movie the
nouns wizard, witch, magic, wand, death-eater, power etc. depict concepts in the
movie.

The Wikipedia html id-attribute id=“Plot” is taken as the beginning of the Plot in-
fo-box which spans the text till the next info-box, indicated by the Wiki tag editsection.

If we consider all the Nouns, a lot of noise will be incorporated into the Plot list.
This is because the commonly used Nouns like vision, flight, inform, way etc. are
added as well. To prevent this, both in the Metadata and the Plot, a separate list was
created comprising of the frequently found terms (it will be shortly discussed how this
list was compiled) in a corpus. Subsequently, the frequently occurring words were
filtered out, leaving only movie and genre-specific concepts in the Metadata and
Plot list.

4.5 Character Extraction

The Cast section in the Wiki article has the name of the actors and the name of the
characters they enact. These character names were extracted and added to the Cha-
racter list. These depict the fictional roles played by the actors in the movie.

The Wiki html id-attribute id=“Cast” is taken as the beginning of the Cast info-
box which spans the text till the next info-box, indicated by the Wiki tag editsection.

4.6 Frequent Word List Construction

The underlying hypothesis for this list creation is that movie reviews will have certain
concepts and terms those are exclusive to this domain and will less frequently occur
in other domains. Review data from the Printer and Mobile Phone domains4 were
used to create a list of frequently occurring terms in those domains. Since those do-
mains are completely disjoint from the movie review domain, words which frequently
occur in all of these domains must be commonly occurring words. Thus the common-
ly used words list consists of the frequently occurring terms in all these domains. The
tf-idf measure was used and all those words above a threshold were added to the
FreqWords list. For example, the word person (which is a Noun) occurred in all the
domains with a very high frequency and thus added to the FreqWords list.

4 http://mllab.csa.iisc.ernet.in/downloads/reviewmining/
 fulldata.tar.gz

782 S. Mukherjee and P. Bhattacharyya

4.7 Domain Specific Feature List Construction

Wikipedia articles on films and aspects of films5 were extracted. The sentences
in those documents were POS-tagged. The Nouns were retrieved and frequently
occurring words were removed. The remaining words were stemmed and added to the
MovieFeature list. Table 3 shows a snapshot of the genre specific terms extracted
from Wiki movie articles.

Table 3. Extracted Movie Domain Specific Terms

Movie, Staffing, Casting, Writing, Theory, Rewriting, Screenplay, Format, Treatments, Script-
ments, Synopsis, Logline, Pitching, Certification, Scripts, Budget, Ideas, Funding, Plans,
Grants, Pitching, Tax, Contracts, Law, Copyright, Pre-production, Budgeting, Scheduling, Pre-
production, Film, Stock, Story, Boarding, Plot, Directors, Location, Scouting, …..

5 Algorithm to Extract Opinion Summary

Section 4 describes the creation of the feature lists Metadata, Plot, Crew, Character,
FreqWords and MovieFeature. Now, given a movie review the objective is to extract
all the sentences that reflect the true opinion of the reviewer about the movie. This
forms the OpinionSummary of the movie. A sentence-by-sentence analysis of a re-
view is performed.

Any sentence not involving any word from any of the above lists is not considered
relevant at all, thus pertaining to the Unrelated Category 9. Sentences involving con-
cepts from the Plot, Metadata and Character Lists are considered least significant, as
they talk about the movie story and not about the reviewer opinion. But they are not
considered completely irrelevant as they may contain sentences that back the review-
er’s opinion about the movie. This covers Category 5 and 6. Sentences containing
terms from the MovieFeature list are likely to comment on some specific aspect of the
movie and are thus considered more relevant (Category 7). Finally, any sentence con-
taining the movie Title, or Crew information is considered most relevant, as the re-
viewer is likely to express his opinion about the movie. This covers Category 1-4. The
final opinion of the reviewer (Category 8) is actually a weighted function of all the
other Categories.

The Metadata, Plot and Character lists are combined into a single list called the
Plot. We now have 3 main categories of features corresponding to the Plot, Crew and
MovieFeature lists with an auxiliary FreqWords list.

Given a movie review R with n sentences Si, our objective is to determine whether
each sentence Si is to be accepted or rejected based on its relevance to the reviewer
opinion. Let each sentence Si consist of ni words , 1 … . The Plot list does not
contain any word from the FreqWords list or the MovieFeature list. Similarly, the
MovieFeature list also does not contain any word from the FreqWords list. The relev-
ance factor of the sentence Si is given by,

5 http://en.wikibooks.org/wiki/Movie_making_manual

 WikiSent: Weakly Supervised Sentiment Analysis through Extractive Summarization 783

1 1
1 , , , , 0, 1

The relevance factor is actually a weighted combination of the various features in the
lists. It counts the words appearing from different lists in a sentence and weighs them
separately. The concepts belonging to the Plot are not so much relevant in judging the
reviewer’s opinion about the movie and may add noise. They play a dampening role,
which is captured in the ‘-’ sign before . More weight is given to any word referring
to the Crew or Movie Title than any word simply referring to a movie domain feature,
which is captured in . Any sentence Si is accepted if corresponding
to Si is 1. 1 . .

 0 2

Here is a threshold parameter. Thus any sentence is accepted as being relevant, if
its score is greater than some threshold value and there is atleast one word in the sen-
tence that belongs to the Crew, MovieFeature or the MovieTitle lists.

Considering the Review Example 1, the algorithm works as follows: Let us consid-
er , , to assume integer values. Let 2, 1, 1. The variables assume the
first integer values satisfying all the conditions in Equation 1. 0.

In Sentence [1], Brian Cox is the only keyword present and it belongs to the Cast
list (the other keywords are not present in the Wiki article for the film L.I.E.).

=2*1+1*0-1*0=2 0, 1 and the sentence is accepted. In
[2], there is no keyword from the lists and it is rejected straightaway. [3] has the key-
word acting from MovieFeature and is accepted where, =1, 1.
[4] has the keywords Cox, L.I.E from Cast and MovieTitle, John Harrigan from Cha-
racter list and distributor from the MovieFeature list. =2*2+1-1=4 0 and
the sentence is accepted. [5] has only the keyword Big John from Character. Its

=0+0-1=-1 0 and the sentence is rejected. [6] has the keyword audience
from MovieFeature and Big John from Character. Its =0+1-1=0 0 and it
is accepted. [7] has the keywords temper, friend from Plot and =0+0-2=-2

 0 and is rejected. [8] has the keywords sex, charm from Plot and =0+0-
2=-2 0 and is rejected. [9] has the keywords cinema, writers from MovieFeature
and bullet from Plot. Thus =0+1*2-1=1 0 and is accepted as being rele-
vant. [10] has the keywords l.i.e from MovieTitle, films(2), action from MovieFeature.
Thus =2*1+1*3-0=5 0 and is accepted as being relevant. [11] has the
keyword movie from MovieFeature. =0+1*1-0=1 0 and it is accepted.

784 S. Mukherjee and P. Bhattacharyya

Algorithm 1. Extractive Opinion Summary from Review

Input : Review R
Output: OpinionSummary
Step 1: Extract the Crew list from Wikipedia
Step 2: Extract the Plot list from Wikipedia
Step 3: Extract the MovieFeature list from Wikipedia
Step 4: Extract the FreqWords list as the common frequently
occurring concepts in Mobile Phone, Printer and Movie domains.
Let
for i=1..n
 if 1

 add

6 Classification of the Opinion Summary

The words in the extracted opinion summary can be directly used as features in a
supervised classification system. But since we do not use any labeled data for train-
ing, a sentiment lexicon is used in the final phase to classify the opinion summary. A
sentiment lexicon contains an opinion word along with its polarity. SentiWordNet
[22], Inquirer [23] and the Bing Liu [24] sentiment lexicons are used to find the polar-
ity of a word. SentiWordnet is tagged at the synset level (word sense and polarity)
whereas the Inquirer and Bing Liu sentiment lexicons contain the words and their
most commonly considered polarity. While using the SentiWordNet, we use the first
sense of a word as we do not perform word sense disambiguation.

Let pol(wij) be the polarity of a word wij, where i indexes a particular sentence and j
indexes a particular word in the sentence. Let flipij be a variable which indicates
whether the polarity of wij should be flipped or not. Negation handling is being done
in the lexical classification, in which the polarity of all the words in a window of 5,
from the occurrence of any of the negation operators not, neither, nor and no, are
flipped.

The final polarity of the review (pos or neg) is given by,

 _ 0 1 0 (3)

The polarity is given by the signed sum of the polarity bearing opinion words in the
sentence weighted by the negation_bias. The range of the polarity function is , where is the number of polarity-bearing words in the sentence.

Any review has more explicit positive expressions of opinion than negative ones
[1],[25],[26],[27]. This is because negative sentiment is often implicit as in sarcasm
and thwarting. Likewise sentiment lexicons have a high bias towards positive and

 WikiSent: Weakly Supervised Sentiment Analysis through Extractive Summarization 785

objective words [1]. A negation bias is added, so that the occurrence of any negative
word in the review is weighed more than a positive word. The SentiWordNet has a
high coverage as well as a high bias towards positive and objective terms since it uses
a semi-supervised learning method. Inquirer, being manually hand-tagged, has a low
coverage but high accuracy similar to the Bing Liu sentiment lexicon, although the
latter has a higher coverage than the Inquirer. We experimented with all the three
lexicons.

7 Parameter Setting

A simple but effective strategy used in information retrieval and automatic text sum-
marization for feature weighting is to use weights that are simple integral multiples,
preferably prime, to reduce the possibility of ties [35]. There are 5 parameters for the
model we used: , , , . The first 3 parameters can be best
trained if sentence level label (whether each sentence is relevant or not) information is
available. However, in the absence of any label information, we adopt a simpler ap-
proach as mentioned above. We took the first set of integer values, satisfying all the
constraints in Equation 1, and assigned them to the first 3 parameters : , , .

The value of should be set such that the number of significant keywords, from
Crew, MovieFeature and MovieTitle lists, should be more than the number of key-
words from less significant concepts like Plot and Character lists. This means

 should be greater than or equal to zero which, implies 0.
The authors in [1] weighted up the negative expressions by a fixed amount (50%) over

positive expressions. In our experiment, value of the negation bias is determined as: _

This is done to give any positive or negative opinion word equal importance in the
review. In the ideal case, since the corpus is balanced having equal number of positive
and negative reviews, the ratio should have been close to 1, in absence of any nega-
tion bias. However, due to the bias problem explained before, the negation_bias
comes out to be 1.4.

Semi-supervised Learning of Parameters
This work does not evaluate this angle for parameter learning, since our objective has
been to develop a system that requires no labeling information at the sentence level or
the document level. However, if some sentence level information is available, a robust
learning of parameters is possible.

Equation 1 and 2 can be re-written as: , , , , , , , , , , where , 1

786 S. Mukherjee and P. Bhattacharyya

Let Yi be the binary label information corresponding to each sentence in the develop-
ment set, where Yi=1 if 0 and -1 otherwise. . where, , , , , , . , … …

This is a linear regression problem which can be solved by the ordinary least squares
method by minimizing the sum of the squared residuals i.e. the sum of the squares of
the difference between the observed and the predicted values [37]. The solution for W
is given by .

A regularizer can be added to protect against over-fitting and the solution can be
modified as: .

8 Evaluation

The experimental evaluation is performed on the IMBD movie review corpus [2]. It
consisted of 2000 reviews collected from the IMDB movie review site and polarity
labeled at the document level, 1000 from each of the two classes. This forms our gold
standard data. Apart from this, there is an unlabeled corpus of 27,886 unprocessed
html files from which the above 2000 reviews had been extracted and labeled by the
annotators.

The parameters are set as: , , , , _ . .

8.1 Movie Review Analysis Using WikiSent

This analysis is performed on the unprocessed pool of 27,886 html documents. The
movie reviews belong to 20 different genres. Figure 2 shows the number of movies
belonging to each genre in the dataset as well as all the genre names.

Fig. 2. Movies per Genre in the Dataset

0
1000
2000
3000
4000

Movies Per Genre

 WikiSent: Weakly Supervised Sentiment Analysis through Extractive Summarization 787

Fig. 3. Genre Popularity in the Dataset

The genre popularity (refer to Figure 3) is given by:

Table 4 gives the fraction of the movie reviews that are predicted to be positive and
negative by WikiSent and the baseline bag-of-words model (expressed in percentage).
Figure 4 shows the total number of movies released and the total number of movies
predicted to be positive per year (as is present in the dataset).

Table 4. Movie Review Polarity Comparison of WikiSent vs. Baseline System

 WikiSent Bag-of-Words Baseline

Positive Reviews (%) 48.95 81.2
Negative Reviews (%) 51.05 18.79

Fig. 4. Movie Popularity per Year in the Dataset

0

0.2

0.4

0.6

Popularity per Genre

0

1000

2000

3000

4000

19
15

19
25

19
33

19
37

19
41

19
45

19
50

19
54

19
58

19
62

19
66

19
70

19
74

19
78

19
82

19
86

19
90

19
94

19
98

Movies Per Year

Positive Movies Per Year

788 S. Mukherjee and P. Bhattacharyya

8.2 WikiSent Evaluation on the Gold Standard Data

The baseline for WikiSent has been taken as the bag-of-words model, in which all the
terms in a review are considered relevant and classified with the help of a lexicon.
The baseline accuracy Table 5 is adapted from [1], in which the evaluation is done on
the same dataset as ours, but with different sentiment lexicons. It also shows the per-
formance of WikiSent using different sentiment lexicons. Table 6 shows the accuracy
variation with and Table 7 shows the accuracy variation with negation_bias. Table
8 shows that accuracy comparison of WikiSent with the best performing unsupervised
and semi-supervised systems in the domain. The compared systems have been eva-
luated on the same corpus [2]. We directly incorporated the accuracies from the re-
spective papers for comparison.

Table 5. Accuracy using Different Lexicons Without and With WikiSent

Only Google-Full 66.31
Only Google-Basic 67.42
Only Maryland-Full-Now 67.42
Only Maryland-Basic 62.26
Only GI-Full 64.21
Only GI-Basic 65.68
Only SentiWordNet-Full 61.89
Only SentiWordNet-Basic 62.89

Only Subjectivity-Full 65.42
Only Subjectivity-Basic 68.63
WikiSent + SentiWordNet 73.30
WikiSent + Inquirer (GI) 76.85
WikiSent + Bing Liu 69.80
WikiSent + Above 3 Lex-
icons

74.56

Table 6. Accuracy Variation with Table 7. Accuracy Variation with
 _

 Accuracy Negation_Bias Accuracy

3 63.63

2 66.74

1 69.31

0 76.85

-1 71.43

1 70.89

1.1 73.90

1.3 74.74

1.4 76.85

1.5 75.53

1.6 73.59

 WikiSent: Weakly Supervised Sentiment Analysis through Extractive Summarization 789

Table 8. Accuracy Comparison with Different Systems

 System Classification Method Accuracy

Li [33] Semi Supervised with 10% doc. label 60.00
Li [33] Semi Supervised with 40% doc. label 60.00
Lin [32] LSM Unsupervised without prior info 61.70
Taboada SO-CAL Basic [1] Lexicon Generation 68.05
Shi [28], Dasgupta [29] Eigen Vector Clustering 70.90
Lin [32] LSM Unsupervised with prior info 74.10
Taboada SO-CAL Full [1] Lexicon Generation 76.37
Socher [30] RAE Semi Supervised Recursive Auto Encoders

with random word initialization
76.80

WikiSent Wikipedia+Lexicon 76.85
Nakagawa [31] Supervised Tree-CRF 77.30
Socher [30] RAE Semi Supervised Recursive Auto Encoders

with 10% cross-validation
77.70

9 Discussions

9.1 Movie Trend Analysis

The movie review corpus contains most movies from the genres comedy, romance,
thrill, drama, war, horror, action, crime and least number of movies from the genres
west, sport, history, biography, sci-fi (in the descending order). This depicts a general
trend in the movie-making of sticking to the most popular genres.

It is observed that movies belonging to the categories musical, comedy, mystery,
animation and news received the most number of positive reviews whereas movies
belonging to the genres family, action, western, documentary and horror received the
least number of positive reviews. This shows that there are a large number of movies
from the comedy genre and in general these movies tend to do well; whereas the mov-
ies from the action and horror genres, despite having a large number of releases, do
not fare very well. The movies from the genres musical and animation, generally have
a good acceptance despite less number of releases.

The number of movies per year has grown exponentially with time as is observed
from Figure 4. This also highlights the importance of movie review analysis in the
socio-economic aspect. It is seen that the number of movies as well as good movies
have increased with time. The dip after the year 2000 may be attributed to the fact
that the data collection process was only till 2002, so the reviews crawled after 2000
were less.

The number of negative reviews in the movie domain actually outweighs the num-
ber of positive reviews, to some extent (refer to Table 4). This shows that people are a
bit skeptical in calling a movie good, despite the large number of movies that are

790 S. Mukherjee and P. Bhattacharyya

being released. It is also seen that the baseline bag-of-words model, which tags a huge
number of movie reviews as positive, is unable to catch this trend. This also shows the
limitation of the baseline model which considers all words to be relevant, in analyzing
movie reviews.

9.2 WikiSent Performance Analysis

It is observed that WikiSent performs the best with Inquirer (GI) among all the other
lexicons used with it. It is interesting to find the huge accuracy leap from the baseline
accuracy using Only SentiWordNet (61.89 and 62.89) and SentiWordNet + WikiSent
(73.3) in Table 5. This accuracy improvement is achieved through the deployment of
extractive summarization using Wikipedia, by which the objective sentences are elim-
inated from the review before classification. However, using all the resources (3)
together does not give the maximum accuracy.

As the value of increases, fewer sentences are considered relevant due to which
many informative sentences are left out. Higher value of means a single sentence
should have a large number of representatives from the Crew, MovieFeature lists,
which is rare. Again, as decreases more number of sentences are considered rele-
vant which captures noise due to the inclusion of many insignificant sentences. Low
value of means the number of insignificant features from the Character, Plot lists
outnumber those from the Crew, MovieFeature lists.

As negation_bias increases, negative expressions outweigh positive expressions
and accuracy decreases. A low value of the negation_bias is unable to offset the inhe-
rent corpus bias of the positive expressions and accuracy falters.

WikiSent achieves a better accuracy than most of the existing unsupervised and
semi-supervised systems, as is evident from Table 8. Its performance is comparable to
SO-Cal Full [1], Recursive Auto Encoders (RAE) [30] and Tree-CRF [31]. The accu-
racy difference of WikiSent with these systems is not statistically signficant. The SO-
Calculator does not use any document label like WikiSent, whereas the Tree-CRF is
supervised and RAE [30] reports a 10-fold cross-validation. It is notable that Wiki-
Sent is able to perform better or at par with the semi-supervised systems, which use
partial document labels, without using any labeled training data.

9.3 WikiSent Drawbacks

One of the biggest drawbacks of the system is that we do not perform co-reference
resolution due to which valuable information is lost. Thus any sentence having a
feature anaphorically referring to a relevant feature in the previous sentence will be
ignored, due to which significant sentences may be rejected. We do not perform
word-sense disambiguation6, in this work. Since we consider only the first sense of
the word (which is not always the best sense according to the context) we miss out on
the actual sense of a word and its proper polarity in many cases [36]. For example, we
use a simple lexicon which does not distinguish between the various meanings of the

6 http://en.wikipedia.org/wiki/Word-sense_disambiguation

 WikiSent: Weakly Supervised Sentiment Analysis through Extractive Summarization 791

same word, like ‘bank’ in the sense of ‘relying’ which is a positive term and ‘bank’ in
the sense of a ‘river bank’ which is objective. Furthermore the lexicon, that we use,
has a low coverage. If a more specialized lexicon had been used, like SO-CAL [1],
more accuracy improvement would have been possible. Inquirer suffers from a low
coverage since it is manually hand-tagged. Thus many of the polarity-bearing words
are absent in it. Though SentiWordNet has a large coverage, it is biased towards posi-
tive and objective terms and classifies less number of words as negative.

10 Conclusions and Future Work

In this work, we proposed a weakly supervised approach to sentiment classification of
movie reviews. The polarity of the review was determined by filtering out irrelevant
objective text from relevant subjective opinions about the movie in focus. The rele-
vant opinionated text extraction was done using Wikipedia.

We showed that the incorporation of world knowledge through Wikipedia, to filter
out irrelevant objective text, can significantly improve accuracy in sentiment classifi-
cation. Our approach differs from other existing approaches to sentiment classifica-
tion using Wikipedia in the fact that WikiSent does not require any labeled data for
training. Weak supervision comes from the usage of resources like WordNet,
POS-Tagger and Sentiment Lexicons. This work is different in the way it creates an
extractive opinionated summary of the movie using the sectional information from
Wikipedia and then uses a lexicon to find its polarity. The work extensively analyzes
the significance of the various aspect specific features in movie reviews that are rele-
vant to sentiment analysis and harnesses this information using Wikipedia. We define
an acceptance factor for each sentence in the review based on which it should be
included in the extract or not. In the final stage, we use a simple sentiment lexicon to
classify the words in the extract to find the final polarity (positive or negative) of the
review.

WikiSent has a number of parameters which have been simplistically set in the ab-
sence of any label information. In case the polarity information is used, the parame-
ters can be set robustly (the semi-supervised learning method describes this aspect)
which may further increase accuracy. The system suffers from the lack of handling
anaphora resolution and word sense disambiguation. Usage of a simple lexicon at the
final stage for polarity calculation also mars its accuracy. Addressing these concerns,
significant performance improvement may be possible.

Nevertheless, we showed that WikiSent attains a better or comparable accuracy to
all the existing unsupervised and semi-supervised systems in the domain on the same
dataset, without using any labeled data for training. Furthermore, we also do a general
analysis of the movie domain using WikiSent (based on the genre, year of release and
movie review polarity) to show the general trends persisting in movie-making as well
as public acceptance of the movie.

792 S. Mukherjee and P. Bhattacharyya

References

1. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for
sentiment analysis. In: Computational Linguistics 2011 (2011)

2. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment Classification using Machine
Learning Techniques. In: Proceedings of EMNLP 2002 (2002)

3. Das, D., Martins, A.F.T.: A Survey on Automatic Text Summarization, Literature Survey
for the Language and Statistics II course at CMU, Pittsburg (2007)

4. Luhn, H.P.: The automatic creation of literature abstracts. IBM Journal of Research Devel-
opment 2(2), 159–165 (1958)

5. Edmundson, H.P.: New methods in automatic extracting. Journal of the ACM 16(2), 264–
285 (1969)

6. Aone, C., Okurowski, M.E., Gorlinsky, J., Larsen, B.: A trainable summarizer with know-
ledge acquired from robust nlp techniques. In: Mani, I., Maybury, M.T. (eds.) Advances in
Automatic Text Summarization, pp. 71–80 (1999)

7. Lin, C.-Y.: Training a selection function for extraction. In: Proceedings of CIKM 1999, pp.
55–62 (1999)

8. Conroy, J.M., O’leary, D.P.: Text summarization via hidden markov models. In: Proceed-
ings of SIGIR 2001, pp. 406–407 (2001)

9. Marcu, D.: Improving summarization through rhetorical parsing tuning. In: Proceedings of
The Sixth Workshop on Very Large Corpora, Montreal, Canada, pp. 206–215 (1998)

10. Barzilay, R., Elhadad, M.: Using lexical chains for text summarization. In: Proceedings
ISTS 1997 (1997)

11. Yu, H., Vasileios, H.: Towards answering opinion questions: Separating facts from opi-
nions and identifying the polarity of opinion sentences. In: EMNLP (2003)

12. Potthast, M., Becker, S.: Opinion Summarization of Web Comments. In: Gurrin, C., He,
Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.)
ECIR 2010. LNCS, vol. 5993, pp. 668–669. Springer, Heidelberg (2010)

13. Turney, P.: Thumbs up or thumbs down? semantic orientation applied to unsupervised
classification of reviews. In: Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, ACL 2002 (2002)

14. Pang, B., Lee, L.: A Sentimental Education: Sentiment Analysis Using Subjectivity Sum-
marization Based on Minimum Cuts. In: Proceedings of the ACL (2004)

15. Agarwal, A., Bhattacharyya, P.: Sentiment Analysis: A New Approach for Effective Use
of Linguistic Knowledge and Exploiting Similarities in a Set of Documents to be Classi-
fied. In: International Conference on Natural Language Processing (ICON 2005), IIT Kan-
pur, India (December 2005)

16. Müller, C., Gurevych, I.: Using Wikipedia and Wiktionary in Domain-Specific Informa-
tion Retrieval. In: Peters, C., Deselaers, T., Ferro, N., Gonzalo, J., Jones, G.J.F., Kurimo,
M., Mandl, T., Peñas, A., Petras, V. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 219–226.
Springer, Heidelberg (2009)

17. Wu, F., Weld, D.S.: Automatically Refining the Wikipedia Infobox Ontology. In: WWW
(2008)

18. Milne, D.N., Witten, I.H., Nichols, D.M.: A knowledge-based search engine powered by
wikipedia. In: Proceedings of the Sixteenth ACM Conference on Information and Know-
ledge Management. ACM, New York (2007)

19. Wang, H., Zhou, G.: Topic-driven Multi-Document Summarization. In: Proceedings Inter-
national Conference on Asian Language Processing (2010)

 WikiSent: Weakly Supervised Sentiment Analysis through Extractive Summarization 793

20. Gabrilovich, E., Markovitch, S.: Overcoming the Brittleness Bottleneck using Wikipedia:
Enhancing Text Categorization with Encyclopedic Knowledge. In: Proceedings of the 21st
National Conference on Artificial Intelligence, vol. 2. AAAI (2006)

21. Wang, P., Domeniconi, C.: Building semantic kernels for text classification using Wikipe-
dia. In: KDD (2008)

22. Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0: An Enhanced Lexical Resource
for Sentiment Analysis and Opinion Mining. In: LREC 2010 (2010)

23. Stone, P.J., Dunphy, D.C., Smith, M.S., Ogilvie, D.M., Associates: The General Inquirer:
A Computer Approach to Content Analysis. The MIT Press (1966)

24. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, Seattle,
Washington, USA, August 22-25 (2004)

25. Kennedy, A., Inkpen, D.: Sentiment classification of movie and product reviews using
contextual valence shifters. Computational Intelligence 22(2), 110–125 (2006)

26. Voll, K., Taboada, M.: Not all words are created equal: Extracting semantic orientation as
a function of adjective relevance. In: Proceedings of the 20th Australian Joint Conference
on Artificial Intelligence, Gold Coast, pp. 337–346

27. Boucher, J.D., Osgood, C.E.: The Pollyanna hypothesis. Journal of Verbal Learning and
Verbal Behaviour 8, 1–8 (1969)

28. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22(8), 888–905 (2000)

29. Dasgupta, S., Ng, V.: Topic-wise, Sentiment-wise, or Otherwise? Identifying the Hidden
Dimension for Unsupervised Text Classification. In: EMNLP (2009)

30. Socher, R., Pennington, J., Huang, E.H., Ng, A.Y., Manning, C.D.: Semi-supervised recur-
sive autoencoders for predicting sentiment distribution. In: EMNLP (2011)

31. Nakagawa, T., Inui, K., Kurohashi, S.: Dependency tree-based sentiment classification us-
ing CRFs with hidden variables. In: NAACL (2010)

32. Lin, C., He, Y., Everson, R.: A comparative study of Bayesian models for unsupervised
sentiment detection. In: CoNLL (2010)

33. Li, T., Zhang, Y., Sindhwani, V.: A nonnegative matrix tri-factorization approach to sen-
timent classification with lexical prior knowledge. In: Proceedings of (ACL-IJCNLP), pp.
244–252 (2009)

34. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval. Cam-
bridge University Press (2008)

35. McCarthy, D., Koeling, R., Weeds, J., Carroll, J.: Finding Predominant Word Senses in
Untagged Text. In: Proceedings of the 42nd Meeting of the Association for Computational
Linguistics, ACL 2004 (2004)

36. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Springer-Verlag New York, Inc. (2006)

Adaptive Two-View Online Learning

for Math Topic Classification

Tam T. Nguyen, Kuiyu Chang, and Siu Cheung Hui

Nanyang Technological University,
50 Nanyang Avenue, Singapore 639798

nguy0080@e.ntu.edu.sg, {askychang,asschui}@ntu.edu.sg

Abstract. Text categorization has been a popular research topic for
years and has become more or less a practical technology. However, there
exists little research on math topic classification. Math documents con-
tain both textual data and math expressions. The text and math can be
considered as two related but different views of a math document. The
goal of online math topic classification is to automatically categorize a
math document containing both mathematical expressions and textual
content into an appropriate topic without the need for periodically re-
training the classifier. To achieve this, it is essential to have a two-view
online classification algorithm, which deals with the textual data view
and the math expression view at the same time. In this paper, we pro-
pose a novel adaptive two-view online math document classifier based on
the Passive Aggressive (PA) algorithm. The proposed approach is evalu-
ated on real world math questions and answers from the Math Overflow
question answering system. Compared to the baseline PA algorithm, our
method’s overall F-measure is improved by up to 3%. The improvement
of our algorithm over the plain math expression view is almost 6%.

1 Introduction

Math documents such as math questions, scientific papers, etc., constitute a
substantial portion of modern scientific literature. To organize these materials
for easy retrieval, they are usually classified into pre-defined categories via auto-
matic topic classifiers. Online documents such as blog posts, question and answer
posts, emails, etc., are growing at extreme speeds. Manual classification is time
consuming and expensive, to say the least. Over the years, machine-based topic
classification has become matured enough to be deployed practically for this
task. However, existing methods only focus on the textual data, which typically
overwhelms underlying semantics like math expressions, tables, charts, diagrams,
etc. In an attempt to improve the performance of classifiers on rich math content
documents, we propose a novel approach for math-aware topic classification.

Clearly, it is trivial to regard math expressions as normal text data during
tokenization, and treat the entire math document just like a regular text doc-
ument using conventional text document classification methods. However, this
approach basically ignores math expressions, which are highly structured data

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 794–809, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Adaptive Two-View Online Learning for Math Topic Classification 795

containing valuable hints. As such, math expression semantics should be ex-
tracted using math-aware methods. Ideally, we should treat text and math as
two distinct feature sets or views. To classify math documents based on text and
math features, we need a suitable algorithm that can work on the two kinds of
data at the same time without one view dominating the other. SVM-2K [11] and
Two-view SVM [17] can be applied in this case. However, in dynamic systems
such as online question answering sites, where new data is generated continu-
ously, an online/incremental classification algorithm is more desirable. Such a
system can predict the topic of each posting and adjust dynamically (if the au-
tomatic prediction is deemed wrong by the user). In this case, an online learning
algorithm such as Perceptron [2,21], Second-order Perceptron [4], or Passive Ag-
gressive (PA) [8] can be considered. However, these algorithms only work on a
single view and therefore cannot be applied directly to two-view data.

User postings in question answering systems such as Cross Validated1, Meta
Optimize2, and Math Overflow3, etc., typically contain many math expressions.
While Cross Validated and Meta Optimize are mainly used by computer scien-
tists, Math Overflow users include serious mathematicians. Moreover, one com-
mon characteristic of postings on all three sites is their rich math content. To
automatically classify these content, we need a fast online learning algorithm
that can work on two kinds of features, textual data and math expressions.

2 Related Work

Document topic classification aims to automatically categorize a given document
into the appropriate topics or classes. Common classification algorithms include
Näıve Bayes [15,16], Nearest-Neighbors [6], C4.5 [22], Support Vector Machine
(SVM) [5], etc. Document topic classification has been applied to many domains,
e.g., emails, blogs, and news articles.

For online document topic classification, many algorithms have been proposed.
The Perceptron algorithm [2,21] is simple and fast but its classification accuracy
is not good enough. To improve the performance of the Perceptron algorithm,
Cesa-Bianchi et al. [4] proposed the Second-order Perceptron (SOP) algorithm,
which takes advantage of second-order information; it performs better than the
original Perceptron in terms of accuracy but is slower due to the added com-
plexity required to estimate the covariance.

Later, Crammer et al. [8] proposed another Perceptron-based algorithm called
the Passive Aggressive (PA) algorithm [8], which uses modern margin maximiza-
tion learning. The PA algorithm performs better than both the original and
Second-order Perceptrons. Nevertheless, the PA algorithm only works on single
view datasets. Similar algorithms that improved upon the PA algorithm in-
clude the Passive-Aggressive Mahalanobis [19], Confidence-Weight (CW) Linear

1 http://stats.stackexchange.com/
2 http://metaoptimize.com/qa/
3 http://mathoverflow.net/questions

http://stats.stackexchange.com/
http://metaoptimize.com/qa/
http://mathoverflow.net/questions

796 T.T. Nguyen, K. Chang, and S.C. Hui

Classification [10], and CW algorithm for multi-class classification [9]. In this
paper, we derive a two-view adaptive version of the PA algorithm.

3 Math Topic Classification

3.1 Math Document

Math documents contain not only textual data, but also math expressions. Math
expressions embody abstract mathematical semantics via math symbols and
structures. In math documents, math expressions are presented in ASCII or
markup formats, e.g., LATEX, ASCIIMath [12], OMDoc [13], OpenMath [3], and
MathML [1]. Among these, the LATEX markup language has been used by many
researchers for more than 40 years.We choose LATEX as the raw storage format for
embedding math expressions in math documents, since it requires less memory
compared to other markup languages. For example, the raw format of a posting
from Math Overflow is given in Listing 1.1, where math expressions are enclosed
between the $ symbols.

Listing 1.1. An Example Question

Title : Why isn ’ t Likelihood a Probability Density Function?
Content : I ’ ve been trying to get my head around why a likelihood isn ’ t a

probability density function . My understanding says that for an
event X and a model parameter m:

$P(X|m)$ is a probability density function
$P(m|X)$ is not . . .

It fee l s l ike i t should be , and I can ’ t find a clear explanation of
why it ’ s not . Does i t also mean that a Likelihood can take a
value greater than 1?

Different from textual descriptions, math expressions cannot be simply en-
coded as an unordered sequence of tokens due to its rich math semantics, which
includes functions, operators, variables, constant numbers, etc. As such, we pro-
pose a novel feature extraction method to convert math expressions into math
features, as described in the following section.

3.2 Math Feature Extraction

Due to the existence of both semantic and structural information, the prepro-
cessing step for math expressions is more complex than that of text documents.
For the purpose of math topic classification, math features should be represen-
tative enough to reflect the underlying characteristics of each math topic. To do
that, we perform the following steps:

– Content MathML conversion. We convert the retrieved LATEX math expres-
sions into Content MathML format.

– Math feature extraction. From the Content MathML data, we can extract
math features by traversing the MathML tree.

Adaptive Two-View Online Learning for Math Topic Classification 797

To convert math expressions from LATEX, we use the SnuggleTeX library4. We
first convert the math expressions from LATEX to the representation MathML
format, then we use cascading stylesheets to map the representation MathML
to content MathML. MathML is selected over LATEX for its rich semantics and
ease of processing via standard XML libraries. Listing 1.2 shows an example of
content MathML for the math expression (x+ y)2.

For content MathML data, we use the XML tree traversal approach for ex-
tracting math features. In this research, we only use two kinds of features, single
features and combination features. The single features are used to express con-
stant numbers, variable names, functions names, etc. Combination features are
the combinations of math operators and operands in the math expressions.

Listing 1.2. MathML Content Markup of (x+ y)2

<apply> % apply operator
<power/> % power operator
<mfence>

<apply> % apply operator
<plus/> % plus operator
<ci>x</ci> % variable (ci) x
<ci>y</ci> % variable (ci) y

</apply>
</mfence>
<cn>2</cn> % constant (cn) 2

</apply>

Take the sub-expression x + y in Listing 1.2 as an example; based on the
content MathML data, we have two single features (ci)x and (ci)y, where ci
stands for a variable and (ci)x stands for a variable named x. We also have one
combination feature (plus)(ci)x(ci)y, where plus stands for the operator + and
(plus)(ci)x(ci)y denotes the operator + applied to two operands x and y.

3.3 Supervised Key Phrase Extraction

In math document classification, key phrases play a crucial role in discriminating
math documents. Take “Wishart distribution” and “topological vector space”
as examples, “Wishart distribution” tends to appear in documents related to
statistics. On the other hand, “topological vector space” is a very common phrase
in linear algebra. Therefore, in this research, we adapt the Natural Language
Toolkit (NLTK)5 to extract noun phrases from math documents. Then, the
Jensen-Shannon (JS) divergence [7] is used to weight each noun phrase as follows:

JS(p1, . . . , pC) = −(
C∑
i=1

πipi) log(
C∑
i=1

πipi) +
C∑
i=1

πipi log(pi) (1)

4 http://www2.ph.ed.ac.uk/snuggletex
5 http://www.nltk.org/

http://www2.ph.ed.ac.uk/snuggletex
http://www.nltk.org/

798 T.T. Nguyen, K. Chang, and S.C. Hui

where pi is the probability of the phrase appearing in class i,
∑

i πi = 1 over
all C classes, and πi > 0. JS is zero for phrases that appear uniformly over all
classes, and maximized (at 1) for phrases appearing only in one class.

3.4 Online Learning Classification

Given a classification task of two classes (negative −1 and positive +1) and
an unknown pattern represented by feature vector x. The goal is to learn the
weight w of a linear prediction function f(x) = sign(w · x). The online learning
algorithm operates in rounds, as input data arrives sequentially. Let xt ∈ Rn be
an example arriving at round t. The algorithm predicts its label ŷt ∈ {−1,+1},
after which it receives the true label. If its prediction is correct, the learning
process proceeds to the next round. Otherwise, it suffers a loss �(yt, ŷt), and
updates its weight w accordingly. The loss can be modeled using the hinge-loss
function, which equals to zero when the margin exceeds 1, as follows.

�(wt; (xt, yt)) =

{
0 if yt(wt · xt) ≥ 1
1− yt(wt · xt) otherwise

(2)

Crammer et al. [8] formulated three optimization problems; one based on hard
margin and two using soft margins, which are named PA, PA-I, and PA-II re-
spectively, as follows.

wt+1 = argmin
w∈Rn

1

2
‖ w −wt ‖2 (PA)

s.t. �(w; (xt, yt)) = 0.

wt+1 = argmin
w∈Rn

1

2
‖ w −wt ‖2 +Cξ (PA-I)

s.t. �(w; (xt, yt)) ≤ ξ; ξ ≥ 0.

wt+1 = argmin
w∈Rn

1

2
‖ w −wt ‖2 +Cξ2 (PA-II)

s.t. �(w; (xt, yt)) ≤ ξ.

(3)

Intuitively, the new weight wt+1 should be close to the old weight wt while
minimizing the loss �(w; (xt, yt)). Solving the above problems, they obtained
the weight update equation as follows:

wt+1 = wt + τtytxt

where the coefficient τt has one of the following three forms:

τt =
1− yt(wt · xt)

‖ xt ‖2
(PA), τt = min

{
C,

1− yt(wt · xt)

‖ xt ‖2
}
(PA-I), and

τt =
1− yt(wt · xt)

‖ xt ‖2 + 1
2C

(PA-II).

For the two-view online learning setting, training data are triplets (xA
t ,x

B
t , yt) ∈

Rn × Rm × [−1,+1], which arrive in sequence where xA
t ∈ Rn is the first view

Adaptive Two-View Online Learning for Math Topic Classification 799

vector, xB
t ∈ Rm is the second view vector, and yt is their common label. Since

we don’t know which view is more important than the other, the coupled weights
(wA

t ,w
B
t) should be learnt based on the weighted hybrid model [20] as follows:

f(xA
t ,x

B
t) = sign

(
ηwA

t · xA
t + (1 − η)wB

t · xB
t

)
where η ∈ (0, 1) is used to adjust the importance of the two views.

Let g(xA
t ,x

B
t) = ηwA

t · xA
t + (1 − η)wB

t · xB
t . To incorporate the new model

into the algorithm, we define the loss function as follows:

�((wA
t ,w

B
t); (x

A
t ,x

B
t , yt)) =

{
0 if ytg(x

A
t ,x

B
t) ≥ 1

1− ytg(x
A
t ,x

B
t) otherwise

(4)

Relationship between Views. To determine the relatedness between the two
views, we define a disagreement factor as follows:

|ηwA
t · xA

t − (1− η)wB
t · xB

t | (5)

where | · | denotes the absolute function and η, similar to the hybrid model, is
used to trade off the disagreement between the two views. The objective is to
minimize the disagreement between the two views.

Adaptive Two-View Passive Aggressive Algorithm. The ideal objective
function should include both the new loss function in (4) and the view relatedness
factor in (5). Similar to the PA algorithm, the new weights of the two-view
learning algorithm are updated based on the optimization problem as follows:

(wA
t+1,w

B
t+1) = argmin

(wA,wB)∈Rn×Rm

1

2
‖ wA −wA

t ‖2 +
1

2
‖ wB −wB

t ‖2

+γ|ηytwA · xA
t − (1 − η)ytw

B · xB
t |+ Cξ

s.t. 1− ytg(x
A
t ,x

B
t) ≤ ξ; ξ ≥ 0 .

where γ and C are positive agreement and aggressiveness parameters respec-
tively. While γ is used to adjust the importance of the agreement between the
two views, C is used to control the aggressiveness property of the PA algorithm.
Note that the multiplier yt in the agreement is there to simplify subsequent
derivations.

For the absolute function, we have

|ηytwA · xA
t − (1− η)ytw

B · xB
t | = max

(
ηytw

A · xA
t − (1− η)ytw

B · xB
t ,

(1− η)ytw
B · xB

t − ηytw
A · xA

t

)
Suppose z = |ηytwA · xA

t − (1 − η)ytw
B · xB

t |, the above optimization problem
can be expressed as follows:

800 T.T. Nguyen, K. Chang, and S.C. Hui

(wA
t+1,w

B
t+1) = argmin

(wA,wB)∈Rn×Rm

1

2
‖ wA−wA

t ‖2 +
1

2
‖ wB −wB

t ‖2 +γz+Cξ

s.t. 1− ytg(x
A
t ,x

B
t) ≤ ξ; ξ ≥ 0;

z ≥ ηytw
A · xA

t − (1− η)ytw
B · xB

t ;
z ≥ (1 − η)ytw

B · xB
t − ηytw

A · xA
t .

(6)

Remark. When the value of the objective function is small, the disagreement
factor z of the two views is forced to be small. If we set γ = 0, the problem reduces
to learning two independent linear models; if we set γ = 1, we aggressively
penalize any view disagreements. By adjusting the value of 0 < γ < 1, we can
control the amount of collaboration between the two views.

Proposition 1. The optimization problem (6) has the following close form so-
lution:

wA = wA
t − η(α− β − τ)ytx

A
t

and

wB = wB
t − (1− η)(β − α− τ)ytx

B
t

where

τ = min
{
C,

(α− β)
(
η2 ‖ xA

t ‖2 −(1− η)2 ‖ xB
t ‖2

)
+ �t

η2 ‖ xA
t ‖2 +(1− η)2 ‖ xB

t ‖2
}
,

α = min
{
γ,

1

2

(
γ +

1

η

ytw
A
t · xA

t

‖ xA
t ‖2 − 1

1− η

ytw
B
t · xB

t

‖ xB
t ‖2

)}
, and

β = min
{
γ,

1

2

(
γ − 1

η

ytw
A
t · xA

t

‖ xA
t ‖2 +

1

1− η

ytw
B
t · xB

t

‖ xB
t ‖2

)}
.

Finally, we obtain our Adaptive Two-view Passive Aggressive formulation as
shown in Algorithm 1.

Getting Rid of Parameter η. One limitation of the Two-view PA algorithm
in [20] is that its view parameter η must be chosen beforehand. In practice,
however, choosing a suitable value for this parameter can be tedious. In addition,
the optimal value may change with time, thereby affecting the performance.
Therefore, we propose an adaptive variant of the Two-view PA algorithm that
automatically determines the best value of η. The idea is to modify the objective
function of the optimization problem (6) by adding a new regularization factor
ζ
2 (η − ηt)

2. The new optimization problem has no close form expression for η
since α, β, and τ all depend on η. Without loss of generality, we assume that
these variables only depend on the previous value of η, i.e., ηt.

Proposition 2. Suppose that α, β, and τ are independent of η, the new opti-
mization problem has an approximated close form solution as follows.

η = ηt −
1

ζ

(
(α− β − τ)ytw

A · xA
t − (β − α− τ)ytw

B · xB
t

)
(7)

Adaptive Two-View Online Learning for Math Topic Classification 801

Initially the two views are treated equally, i.e., η = 0.5, and will be updated based
on Equation (7) thereafter. This is thus an adaptive version of the Two-view PA
algorithm, which we call the Adaptive Two-view PA algorithm.

Algorithm 1. Adaptive Two-view Passive Aggressive Algorithm

Input:
C = positive aggressiveness parameter
γ = positive agreement parameter

Output:
None

Process:

Initialize wA
1 ← 0; wB

1 ← 0; η = 0.5;
for t = 1, 2, . . . do

Receive instances xA
t ∈ Rn and xB

t ∈ Rm

Predict ŷt = sign(ηwA
t · xA

t + (1− η)wB
t · xB

t)
Receive correct label yt ∈ {−1,+1}
Suffer loss
�t ← max

{
0, 1− ηytwA

t · xA
t − (1− η)ytwB

t · xB
t

}
if �t > 0 then

Update wA
t and wB

t per Proposition 1
Update η per Proposition 2

end if
end for

Table 1. Summary of Datasets in Our Experiments

View Sample Count
Name #Dim #Pos #Neg #Total

Ads img & dest 929 459 2820 3279
alt & base 602

Product Review lexical 2759 1000 1000 2000
formal 5

WebKB page 3000 230 821 1051
link 1840

4 Performance Evaluation

In this section, we evaluate the online classification performance of our proposed
Adaptive Two-view PA algorithm on three benchmark datasets, Ads [14], Prod-
uct Review [17], and WebKB [23], and a math dataset taken from the Math
Overflow site. The single-view PA algorithm serves as the baseline. We employ
a different PA model for each view, denoted as PA View 1 and PA View 2 for
each view, respectively. We also report the results from a simple concatenation
of the input feature vectors from each view to form a larger feature set, denoted

802 T.T. Nguyen, K. Chang, and S.C. Hui

as PA Cat. We compare the performance of all algorithms based on F-measure
instead of accuracy because most of the datasets are highly (class) imbalanced.

4.1 Two-View Learning Evaluation

In this section, we evaluate the proposed algorithm on three benchmark datasets.
The dataset characteristics are listed in Table 1. We use cross validation to select
the optimal value for all parameters C, γ, and η, so as to make the comparison
fair and meaningful. Here, η is learnt using the Adaptive Two-view PA algorithm.

Table 2. F-Measure on 3 benchmark datasets

Dataset PA View 1 PA View 2 PA Cat Adaptive Two-view PA

Ads 83.41 ± 2.76 76.26 ± 2.21 81.95 ± 2.55 84.96 ± 2.41

Product Review 86.69 ± 1.39 70.80 ± 1.57 86.68 ± 1.63 88.72 ± 1.80

WebKB 93.76 ± 2.30 90.68 ± 2.70 95.56 ± 0.98 98.02 ± 2.14

The Ads dataset was first used by Kushmerick [14] to automatically filter ad-
vertisement images from web pages. In our experiments, we used just four views,
namely image URL view, destination URL view, base URL view, and alt view.
Since we are limited to handling two views for each task, the first and second
views were concatenated into View 1 and the remaining two views were con-
catenated into View 2. This dataset has 3279 examples, including 459 positive
examples (ads), with the remaining samples negative (non-ads). Experimental
learning results on the Ads dataset are shown in Table 2, which shows the pro-
posed algorithm to have the best F-measure score, performing more than 1%
better than the runner-up, PA View 1. Interestingly, PA Cat fared worse than
PA View 1, which could be due to a noisy decision boundary in the space of
PA View 2. This can also be seen by the marginal improvement of 1% of the
adaptive Two-view PA results.

The Product Review dataset is crawled from popular online Chinese cell-
phone forums [17]. The dataset has 1000 true reviews and 1000 spam reviews.
It comprises two sets of features: one based on review content (lexical view)
and the other based on extracted characteristics of the review sentences (formal
view). The experimental results on this dataset are shown in Table 2. Again, our
Two-view adaptive PA performs better than the rest, beating the runner-up (PA
View 1) by 2%. Here PA Cat performed better than either view alone, which is
typically the case.

The WebKB course dataset has been frequently used in the empirical study
of multi-view learning. It comprises 1051 web pages collected from the computer
science departments of four universities. Each page has a class label, course or
non-course. The two views of each page are the textual content of a web page
(page view) and the words that occur in the hyperlinks of other web pages point-
ing to it (link view), respectively. We used a processed version of the WebKB

Adaptive Two-View Online Learning for Math Topic Classification 803

course dataset [23] in our experiment. The performance of PA Cat here is also
better than the best single-view PA. And the Adaptive Two-view PA performed
more than 2% better than PA Cat, and 4% better than the best individual view
PA. Compared to the non-adaptive (equal weightage of both views) Two-view
approach of [20], our adaptive Two-view approach performed similarly or better.

4.2 Math Topic Classification

We downloaded more than 30,000 math questions and answers belonging to
20 math categories such as algebraic geometry, number theory, algebraic topol-
ogy, combinatorics, group theory, probability, etc., from the Math Overflow site,
a popular math question answering system. Each math question or answer is
treated as one math document, which may contain both text content and math
expressions. To evaluate math topic classification, we choose two major cat-
egories (algebraic geometry and number theory), which comprises more than
7,200 math documents. After preprocessing, we obtain the following datasets.

– Text only. All math expressions are removed from math documents. The
remaining text-only documents are transformed into a vector format using
tf × idf weighting [18].

– Math only. To evaluate whether math expressions are useful for math topic
classification, we extract all math expressions from each math document.
Then we apply the math feature extraction method of Section 3.2 to generate
the math only dataset.

– Raw. It is trivial to treat math expressions as normal text data. One can
use the latest text preprocessing techniques to extract textual features from
both math and text.

– Math and text. We store themath only and text only datasets as two datasets
(views), called the math & text dataset.

– Key phrase. Math key phrases extracted using the method of Section 3.3.

PA Only. After preprocessing, we then run the PA algorithm on all datasets
using 5-fold cross validation. The experimental results are shown in column 2
of Table 3. Note that the PA model trained on Math & Text operates on a
concatenation of the two views. We see that the PA algorithm performed the
worst on the math only dataset and best on the text only dataset. Clearly, there
is much room for improvement in our math expression extraction process.

For the raw text and math & text datasets, the F-measure of the PA algorithm
is not high, although both math and text data are taken into consideration. In
fact, the PA algorithm did very poorly on just the raw text. Its performance is
only better than its math only dataset results. Compared with the math only
and raw text datasets, the math & text dataset can improve the performance
of the PA algorithm. However, its performance on this dataset is actually worse
than the text only dataset.

804 T.T. Nguyen, K. Chang, and S.C. Hui

The Missing View. In practice, math documents do not always contain both
text data and math expressions. So what happens if either text data or math
expressions are available, but not both? Can Two-view PA work in this case? To
find out, we trained the Two-view PA on the text & math dataset and tested it
on the text only and math only datasets. It means that we trained the Two-view
PA on both views to have two weight vectors and then used them to predict
the labels for documents in individual views. While testing on one view, we will
ignore the other view.

Table 3. F-Measure Comparison on Math Overflow Datasets (∗ trained on the Math
& Text Dataset, with results for individual views shown)

Dataset PA Adaptive Two-view PA∗

Text Only 72.73 ± 2.97 73.85± 2.90

Math Only 56.31 ± 7.47 64.25± 6.05

Raw 61.02 ± 0.12 -

Math & Text 68.91 ± 5.03 75.70± 3.37

Key Phrase 76.78 ± 0.90 78.15± 1.27

We also ran the Two-view PA algorithm on the math & text dataset (treating
each as one view), whose 75.70% F-measure score is more than 6% better than
the PA algorithm (68.91%), which was trained on the combined view. Moreover,
compared with the PA on text only dataset (72.73%), the two view performance
(75.70%) is improved by nearly 3%.

This means when user posts a math question containing math expressions
but without text data, the Two-view PA algorithm performs better than the
PA algorithm trained on the math only dataset by up to 6%. The results are
encouraging because we are able to take advantage of the data of one view to
improve the performance of the classifier on another view by enforcing agreement
between the two views.

Similarly, for the key phrase dataset, the performance is improved by up to
4% compared to the text only dataset in the single view PA. If we train the Two-
view PA with the key phrase and math only datasets, the Two-view performs
better than the single view PA by nearly 2%.

Table 4. The Adaptive Two-view PA Results for All Datasets

Dataset η F-measure

Ads 0.342 ± 0.015 84.96 ± 2.41

Math Overflow 0.524 ± 0.001 75.70 ± 3.37

Product Review 0.795 ± 0.011 88.72 ± 1.80

WebKB 0.438 ± 0.001 98.02 ± 2.14

Adaptive Two-View Online Learning for Math Topic Classification 805

4.3 View Weight Parameter Learning

The average η value for the Adaptive Two-view PA algorithm for all datasets are
listed in Table 4. Note that for all 3 datasets, View 1 performed better than View
2, individually. For the Ads and WebKB datasets, we note that η < 0.5 despite
View 1 performing better than View 2. On the other hand, for the Math Overflow
and Product Review datasets, we have η > 0.5. Therefore, we cannot rely solely
on performance of individual views to determine the value of η. Generally, the
better performing view does not automatically deserves a higher weightage. The
Adaptive Two-view PA algorithm can solve this problem by adaptively updating
η at each round of the learning process.

5 Conclusion

We proposed an Adaptive Two-view Passive Aggressive algorithm, which is able
to take advantage of multiple views of data to achieve an improvement in overall
classification performance. We formulated our learning framework into an opti-
mization problem and derive a closed form solution. Making a simple assumption
on the independence of other parameters on the weight parameter, we derived
an approximated close-form update equation for the view mixing parameter.

We evaluated the proposed approach on practical applications such as product
review classification, advertising image removal, and math topic classification.
We also prepared a two-view Math Overflow dataset containing text and math
expressions, which is useful for math topic classification since this is the first
publicly available dataset of its kind.

Although in this research, we evaluated the proposed approach on math ques-
tions and answers, it can be applied in practice to deal with other kinds of math
documents such as math questions in student books, scientific papers, etc. There
remain some interesting open problems that warrant further investigations. First,
the math feature extraction method should be investigated further because the
performance based on math features only is not good enough. We would also
like to extend the Two-view PA algorithm to handle multiple views and multiple
classes. However, formulating a multi-view PA is non-trivial, as it involves defin-
ing multi-view relatedness and minimizing pairs of view agreements. Formulating
a multi-class Two-view PA should be more feasible.

Acknowledgements. We thank the anonymous reviewers for their valuable
comments and suggestions, especially one reviewer who pointed out the flaw in
the original presentation of proposition 2. This research was supported in part by
Singapore Ministry of Education’s Academic Research Fund Tier 2 grant ARC
9/12 (MOE2011-T2-2-056).

References

1. Ausbrooks, R., Buswell, S., Dalmas, S., Devitt, S., Diaz, A., Hunter, R., Smith, B.,
Soiffer, N., Sutor, R., Watt, S.: Mathematical markup language (mathml) version
2.0 (2000)

806 T.T. Nguyen, K. Chang, and S.C. Hui

2. Block, H.: The perceptron: A model for brain functioning. Rev. Modern Phys. 34,
123–135 (1962)

3. Buswell, S., Caprotti, O., Carlisle, D.P., Dewar, M.C., Gaetano, M., Kohlhase, M.:
The Open Math standard version 2.0 (2004)

4. Cesa-Bianchi, N., Conconi, A., Gentile, C.: A second-order perceptron algorithm.
Siam J. of Comm. 34 (2005)

5. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297
(1995)

6. Cover, T., Hart, P.: Nearest Neighbor Pattern Classification 13, 373–389 (2002)
7. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley-Interscience,

New York (1991)
8. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-

aggressive algorithms. Journal of Machine Learning Research, 551–585 (2006)
9. Crammer, K., Dredze, M., Kulesza, A.: Multi-class confidence weighted algorithms.

In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing, Singapore, pp. 496–504. Association for Computational Linguistics,

10. Dredze, M., Crammer, K., Pereira, F.: Confidence-weighted linear classification. In:
ICML 2008: Proceedings of the 25th International Conference on Machine Learn-
ing, pp. 264–271. ACM, New York (2008)

11. Farquhar, J.D.R., Hardoon, D.R., Meng, H., Shawe-Taylor, J., Szedmák, S.: Two
view learning: Svm-2k, theory and practice. In: Proceedings of NIPS 2005 (2005)

12. Jipsen, P.: Translating ascii math notation to mathml and graphics (2007)
13. Kohlhase, M., Sucan, I.: A Search Engine for Mathematical Formulae. In: Calmet,

J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 241–253.
Springer, Heidelberg (2006)

14. Kushmerick, N.: Learning to remove internet advertisements. In: Proceedings of the
Third Annual Conference on Autonomous Agents, AGENTS 1999, pp. 175–181.
ACM, New York (1999)

15. Langley, P., Iba, W., Thompson, K.: An analysis of bayesian classifiers. In: AAAI
1992: Proceedings of the Tenth National Conference on Artificial Intelligence, pp.
223–228. AAAI Press (1992)

16. Lewis, D.D.: Naive (bayes) at Forty: The Independence Assumption in Information
Retrieval. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp.
4–15. Springer, Heidelberg (1998)

17. Li, G., Hoi, S.C.H., Chang, K.: Two-view transductive support vector machines.
In: Proceedings of SDM 2010, pp. 235–244 (2010)

18. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press (2008)

19. Nguyen, T.T., Chang, K., Hui, S.C.: Distribution-aware online classifiers. In:
Walsh, T. (ed.) IJCAI, pp. 1427–1432. IJCAI/AAAI (2011)

20. Nguyen, T.T., Chang, K., Hui, S.C.: Two-View Online Learning. In: Tan, P.-N.,
Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part I. LNCS, vol. 7301, pp.
74–85. Springer, Heidelberg (2012)

21. Novikoff, A.: On convergence proofs of perceptrons. In: Proceedings of the Sympo-
sium on the Mathematical Theory of Automata, vol. 7, pp. 615–622 (1962)

22. Quinlan, J.R., Rivest, R.L.: Inferring decision trees using the minimum description
length principle. Inf. Comput. 80(3), 227–248 (1989)

23. Sindhwani, V., Niyogi, P., Belkin, M.: Beyond the point cloud: from transductive
to semi-supervised learning. In: Proceedings of the 22nd International Conference
on Machine Learning, ICML 2005, pp. 824–831. ACM, New York (2005)

Adaptive Two-View Online Learning for Math Topic Classification 807

A Proof of Proposition 1

To prove the Proposition 1, we first define the Lagrangian of the optimization
problem as follows:

L =
1

2
‖ wA −wA

t ‖2 +
1

2
‖ wB −wB

t ‖2 +γz + Cξ − λξ

+τ
(
1− ξ − ηytw

A · xA
t − (1− η)ytw

B · xB
t

)
+α

(
ηytw

A · xA
t − (1− η)ytw

B · xB
t − z

)
+β

(
(1− η)ytw

B · xB
t − ηytw

A · xA
t − z

)
=

1

2
‖ wA −wA

t ‖2 +
1

2
‖ wB −wB

t ‖2 +(γ − α− β)z + (C − λ− τ)ξ

+η(α− β − τ)ytw
A · xA

t + (1− η)(β − α− τ)ytw
B · xB

t + τ

(8)

where α, β, τ , and λ are positive Lagrangian multipliers.
Setting the partial derivatives of L with respect to the weight wA to zero, we

have

0 =
∂L
∂wA

= wA −wA
t + η(α− β − τ)ytx

A
t ⇒ wA = wA

t − η(α− β − τ)ytx
A
t

(9)
Similarly, for the other view we have

wB = wB
t − (1− η)(β − α− τ)ytx

B
t (10)

Setting the partial derivatives of L with respect to weight z to zero, we have

0 =
∂L
∂z

= (γ − α− β) ⇒ α+ β = γ (11)

Setting the partial derivatives of L with respect to weight ξ to zero, we have

0 =
∂L
∂ξ

= (C − λ− τ) ⇒ λ+ τ = C (12)

Note that λ ≥ 0, so we can conclude that 0 ≤ τ ≤ C.
Substituting (9), (10), (11), and (12) into (8), we have

L =
1

2
η2(α− β − τ)2 ‖ xA

t ‖2 +
1

2
(1− η)2(β − α− τ)2 ‖ xB

t ‖2

+η(α− β − τ)yt

(
wA

t − η(α− β − τ)ytx
A
t

)
· xA

t

+(1− η)(β − α− τ)yt

(
wB

t − (1− η)(β − α− τ)ytx
B
t

)
· xB

t + τ

= −1

2
η2(α − β − τ)2 ‖ xA

t ‖2 −1

2
(1− η)2(β − α− τ)2 ‖ xB

t ‖2

+η(α− β − τ)ytw
A
t · xA

t + (1− η)(β − α− τ)ytw
B
t · xB

t + τ

(13)

808 T.T. Nguyen, K. Chang, and S.C. Hui

Setting the partial derivatives of L with respect to weight τ to zero, we have

0 =
∂L
∂τ

= η2(α− β − τ) ‖ xA
t ‖2 +(1− η)2(β − α− τ) ‖ xB

t ‖2

+1− ηytw
A
t · xA

t − (1 − η)ytw
B
t · xB

t)

⇒ τ =
(α − β)

(
η2 ‖ xA

t ‖2 −(1− η)2 ‖ xB
t ‖2

)
+ �t

η2 ‖ xA
t ‖2 +(1− η)2 ‖ xB

t ‖2

where the loss �t = 1− ηytw
A
t ·xA

t − (1− η)ytw
B
t ·xB

t . For the sake of simplicity,
we denote

a =
1

η2 ‖ xA
t ‖2 +(1− η)2 ‖ xB

t ‖2 and b =‖ xA
t ‖2‖ xB

t ‖2 (14)

As mentioned in Equation (12), we have τ + λ = C and λ ≥ 0, we can conclude
that τ ≤ C. Now τ can be determined as follows:

τ = min
{
C, a

(
(α− β)(η2 ‖ xA

t ‖2 −(1− η)2 ‖ xB
t ‖2) + �t

)}
(15)

Substituting (15) into (13), we have

L = −1

2
a2η2

(
(α− β)(1− η)2 ‖ xB

t ‖2 −�t)
)2

‖ xA
t ‖2

−1

2
a2(1 − η)2

(
(β − α)η2 ‖ xA

t ‖2 −�t)
)2

‖ xB
t ‖2

+aη((α− β)(1 − η)2 ‖ xB
t ‖2 −�t)ytw

A
t · xA

t

+a(1− η)((β − α)η2 ‖ xA
t ‖2 −�t)ytw

B
t · xB

t

+a
(
(α− β)(η2 ‖ xA

t ‖2 −(1− η)2 ‖ xB
t ‖2) + �t

)
(16)

Setting the partial derivatives of L with respect to weight α to zero, we have

0 =
∂L
∂α

= −a2η2
(
(α− β)(1 − η)2 ‖ xB

t ‖2 −�t

)
b

+a2(1− η)2
(
(β − α)η2 ‖ xA

t ‖2 −�t

)
b

+aη(1− η)2 ‖ xB
t ‖2 ytwA

t · xA
t − a(1− η)η2 ‖ xA

t ‖2 ytwB
t · xB

t

+a(η2 ‖ xA
t ‖2 −(1− η)2 ‖ xB

t ‖2)
(17)

Simplifying the above equality, we have

−bη(1− η)(α − β)(η2 ‖ xA
t ‖2 +(1− η)2 ‖ xB

t ‖2)
+(1− η) ‖ xB

t ‖2 ytwA
t · xA

t − η ‖ xA
t ‖2 ytwB

t · xB
t = 0

(18)

Hence, we have

α− β =
1

η

ytw
A
t · xA

t

‖ xA
t ‖2 − 1

1− η

ytw
B
t · xB

t

‖ xB
t ‖2

Adaptive Two-View Online Learning for Math Topic Classification 809

Recall that we have α+ β = γ. Therefore, we can conclude that

α =
1

2

(
γ +

1

η

ytw
A
t · xA

t

‖ xA
t ‖2 − 1

1− η

ytw
B
t · xB

t

‖ xB
t ‖2

)
(19)

Similarly, we have

β =
1

2

(
γ − 1

η

ytw
A
t · xA

t

‖ xA
t ‖2

+
1

1− η

ytw
B
t · xB

t

‖ xB
t ‖2

)
(20)

Recall that we have α ≥ 0, β ≥ 0, and α + β = γ. Hence, we can conclude that
0 ≤ α ≤ γ and 0 ≤ β ≤ γ. That is

α = min
{
γ,

1

2

(
γ +

1

η

ytw
A
t · xA

t

‖ xA
t ‖2 − 1

1− η

ytw
B
t · xB

t

‖ xB
t ‖2

)}
β = min

{
γ,

1

2

(
γ − 1

η

ytw
A
t · xA

t

‖ xA
t ‖2 +

1

1− η

ytw
B
t · xB

t

‖ xB
t ‖2

)}

B Proof of Proposition 2

For the Adaptive PA algorithm, we have new Lagrangian as follows:

L =
1

2
‖ wA −wA

t ‖2 +
1

2
‖ wB −wB

t ‖2

+(γ − α− β)z + (C − λ− τ)ξ + η(α− β − τ)ytw
A · xA

t

+(1− η)(β − α− τ)ytw
B · xB

t + τ +
ζ

2
(η − ηt)

2

(21)

Assuming that α, β, and τ are independent on the new value of η, we have
∂α
∂η = 0, ∂β

∂η = 0, and ∂τ
∂η = 0.

Setting the partial derivatives of L with respect to the variable η to zero, we
have

0 =
∂L
∂η

= ζ(η − ηt) + (α− β − τ)ytw
A · xA

t − (β − α− τ)ytw
B · xB

t

⇒ η = ηt −
1

ζ

(
(α− β − τ)ytw

A · xA
t − (β − α− τ)ytw

B · xB
t

) (22)

BDUOL: Double Updating Online Learning

on a Fixed Budget

Peilin Zhao and Steven C.H. Hoi

School of Computer Engineering,
Nanyang Technological University, Singapore

{zhao0106,chhoi}@ntu.edu.sg

Abstract. Kernel-based online learning often exhibits promising empir-
ical performance for various applications according to previous studies.
However, it often suffers a main shortcoming, that is, the unbounded
number of support vectors, making it unsuitable for handling large-scale
datasets. In this paper, we investigate the problem of budget kernel-based
online learning that aims to constrain the number of support vectors by
a predefined budget when learning the kernel-based prediction function
in the online learning process. Unlike the existing studies, we present
a new framework of budget kernel-based online learning based on a re-
cently proposed online learning method called “Double Updating Online
Learning” (DUOL), which has shown state-of-the-art performance as
compared with the other traditional kernel-based online learning algo-
rithms. We analyze the theoretical underpinning of the proposed Budget
Double Updating Online Learning (BDUOL) framework, and then pro-
pose several BDUOL algorithms by designing different budget mainte-
nance strategies. We evaluate the empirical performance of the proposed
BDUOL algorithms by comparing them with several well-known budget
kernel-based online learning algorithms, in which encouraging results val-
idate the efficacy of the proposed technique.

1 Introduction

The goal of kernel-based online learning is to incrementally learn a nonlinear
kernel-based prediction function from a sequence of training instances [1–4].
Although it often yields significantly better performance than linear online learn-
ing, the main shortcoming of kernel-based online learning is its potentially un-
bounded number of support vectors with the kernel-based prediction function,
which thus requires a large amount of memory for storing support vectors and
a high computational cost of making predictions at each iteration, making it
unsuitable for large-scale applications. In this paper, we aim to tackle this chal-
lenge by studying a framework for kernel-based online learning on a fixed budget
or known as “budget online learning” for short, in which the number of support
vectors for the prediction function is bounded by some predefined budget size.

In literature, several algorithms have been proposed for budget online learning.
Crammer et al. [5] proposed a heuristic approach for budget online learning by

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 810–826, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

BDUOL: Budget Double Updating Online Learning 811

extending the classical kernel-based perceptron method [6], which was further
improved in [7]. The basic idea of these two algorithms is to remove the support
vector that has the least impact on the classification performance whenever
the budget, i.e., the maximal number of support vectors, is reached. The main
shortcoming of these two algorithms is that they are heuristic without solid
theoretic supports (e.g., no any mistake/regret bound was given).

Forgetron [8] is perhaps the first approach for budget online learning that of-
fers a theoretical bound of the total number of mistakes. In particular, at each it-
eration, if the online classifier makes a mistake, it conducts a three-step updating:
(i) it first runs the standard Perceptron [6] for updating the prediction function;
(ii) it then shrinks the weights of support vectors by a carefully chosen scaling
factor; and (iii) it finally removes the support vector with the least weight. An-
other similar approach is the Randomized Budget Perceptron (RBP) [9], which
randomly removes one of existing support vectors when the number of support
vectors exceeds the predefined budget. In general, RBP achieves similar mistake
bound and empirical performance as Forgetron.

Unlike the above strategy that discards one support vector to maintain the
budget, Projectron [10] adopts a projection strategy to bound the number of
support vectors. Specifically, at each iteration where a training example is mis-
classified, it first updates the kernel classifier by applying a standard Perceptron;
it then projects the new classifier into the space spanned by all the support vec-
tors except the new example received at the current iteration, if the difference
between the new classifier and its projection is less than a given threshold, oth-
erwise it will remain unchanged. Empirical studies show that Projectron usu-
ally outperforms Forgetron in classification but with significantly longer running
time. In addition to its high computational cost, another shortcoming of Pro-
jectron is that although the number of support vectors is bounded, it is unclear
the exact number of support vectors achieved by Projectron in theory.

The above budget online learning approaches were designed based on the Per-
ceptron learning framework [6]. In this paper, we propose a new framework of
Budget Double Updating Online Learning (BDUOL) based on a recently pro-
posed Double Updating Online Learning (DUOL) technique [4], which has shown
state-of-the-art performance for online learning. The key challenge is to develop
an appropriate strategy for maintaining the budget whenever the size of support
vectors overflows. In this paper, following the theory of double updating online
learning, we analyze the theoretical underpinning of the BDUOL framework,
and propose a principled approach to developing three different budget mainte-
nance strategies. We also analyze the mistake bounds of the proposed BDUOL
algorithms and evaluate their empirical performance extensively.

The rest of the paper is organized as follows. Section 2 first introduces the
problem setting and then presents both theoretical and algorithmic framework
of the proposed budget online learning technique. Section 3 presents several
different budget maintenance strategies for BDUOL. Section 4 discusses our
empirical studies. Section 5 concludes this work.

812 P. Zhao and S.C.H. Hoi

2 Double Updating Online Learning on a Fixed Budget

In this section, we first introduce the problem setting for online learning and
Double Updating Online Learning (DUOL), and then present the details of the
proposed Budget Double Updating Online Learning framework.

2.1 Problem Setting

We consider the problem of online classification on a fixed budget. Our goal is
to learn a prediction function f : Rd → R from a sequence of training examples
{(x1, y1), . . . , (xT , yT)}, where xt ∈ Rd is a d-dimensional instance and yt ∈
Y = {−1,+1} is the class label assigned to xt. We use sign(f(x)) to predict the
class assignment for any x, and |f(x)| to measure the classification confidence.
Let �(f(x), y) : R× Y → R be the loss function that penalizes the deviation of
estimates f(x) from observed labels y. We refer to the output f of the learning
algorithm as a hypothesis and denote the set of all possible hypotheses by H =
{f |f : Rd → R}.

In this paper, we consider H a Reproducing Kernel Hilbert Space (RKHS)
endowed with a kernel function κ(·, ·) : Rd×Rd → R [11] implementing the inner
product〈·, ·〉 such that: 1) reproducing property 〈f, κ(x, ·)〉 = f(x) for x ∈ Rd;
2) H is the closure of the span of all κ(x, ·) with x ∈ Rd, that is, κ(x, ·) ∈ H
for every x ∈ X . The inner product 〈·, ·〉 induces a norm on f ∈ H in the usual

way: ‖f‖H := 〈f, f〉 1
2 . To make it clear, we use Hκ to denote an RKHS with

explicit dependence on kernel function κ. Throughout the analysis, we assume
κ(x,x) ≤ 1 for any x ∈ Rd.

2.2 Double Updating Online Learning: A Review

Our BDUOL algorithm is designed based on the state-of-the-art Double Up-
dating Online Learning (DUOL) method [4]. Unlike traditional online learning
algorithms that usually perform a single update for each misclassified example,
DUOL not only updates the weight for the newly added Support Vector (SV),
but also updates that of another existing SV, which conflicts most with the new
SV. Furthermore, both theoretical and empirical analysis have demonstrated
the effectiveness of this algorithm. Below we briefly review the basics of double
updating online learning.

Consider an incoming instance xt received at the t-th step of online learning.
The algorithm predicts the class label ŷt = sgn(ft−1(xt)) using the following
kernel-based classifier:

ft−1(·) =
∑

i∈St−1

γ̂iyiκ(xi, ·),

where St−1 is the index set of the SVs for the (t−1)-th step, and γ̂i is the weight of
the i-th existing support vector. After making the prediction, the algorithm will
suffer a loss, defined by a hinge loss as �(ft−1(xt), yt) = max(0, 1− ytft−1(xt)).

BDUOL: Budget Double Updating Online Learning 813

If �(ft−1(xt), yt) > 0, the DUOL algorithm will update the prediction function
ft−1 to ft by adding the training example (xt, yt) as a new support vector.

Specifically, when the new added example (xt, yt) conflicts with (xb, yb), b ∈
St−1, by satisfying conditions: 1)�t = 1−ytft−1(xt) > 0; 2) �b = 1−ybft−1(xb) >
0; 3) ytybκ(xt,xb) ≤ min(−ρ, ytyaκ(xt,xa)), a ∈ St−1, and a �= b, where ρ ∈
[0, 1) is a threshold, then the updating strategy referred as double updating will
be adopted as follows:

ft(·) = ft−1(·) + γtytκ(xt, ·) + dγb
ybκ(xb, ·),

where γt and dγb
are computed in the following equations:

(γt, dγb
)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C,C − γ̂b) if (ktC + wab(C − γ̂b)− �t) < 0 and
(kb(C − γ̂b) + wabC − �b) < 0

(C, �b−wabC
kb

) if
w2

abC−wab�b−ktkbC+kb�t
kb

> 0 and
�b−wabC

kb
∈ [−γ̂b, C − γ̂b]

(�t−wab(C−γ̂b)
kt

, C − γ̂b) if �t−wab(C−γ̂b)
kt

∈ [0, C] and

�b − kb(C − γ̂b)− wab
�t−wab(C−γ̂b)

kt
> 0

(kb�t−wab�b
ktkb−w2

ab
, kt�b−wab�t

ktkb−w2
ab

) if kb�t−wab�b
ktkb−w2

ab
∈ [0, C] and

kt�b−wab�t
ktkb−w2

ab
∈ [−γ̂b, C − γ̂b]

,(1)

where kt = κ(xt,xt), kb = κ(xb,xb), wab = ytybκ(xt,xb) and C > 0; or when no
existing SV conflicts with (xt, yt), the single update strategy will be adopted as
follows:

ft(·) = ft−1(·) + γtytκ(xt, ·), (2)

where γt = min(C, �t/k
2
t). It is not difficult to see that the single update strategy

is reduced to the Passive-Aggressive updating strategy [3].

2.3 Framework of Budget Double Updating Online Learning

Although DUOL outperforms various traditional single updating algorithms, one
major limitation is that it does not bound the number of support vectors, which
could result in high computation and heavy memory cost when being applied
to large-scale applications. In this paper, we aim to overcome this limitation
by proposing a budget double updating online learning framework in which the
number of support vectors is bounded by a predefined budget size.

Let us denote by B a predefined budget size for the maximal number of sup-
port vectors associated with the prediction function. The key difference of Budget
DUOL over regular DUOL is to develop an appropriate budget maintenance step
to ensure that the number of support vectors with the classifier ft is less than
the budget B at the beginning of each online updating step. In particular, let us
denote by ft−1 the classifier produced by a regular DUOL at the t− 1-th step,
when the support vector size of ft−1 is equal to the B, BDUOL performs the
classifier update towards budget maintenance: ft−1 ← ft−1 − Δft−1 such that

814 P. Zhao and S.C.H. Hoi

Algorithm 1. The Budget Double Updating Online Learning Algorithm (BDUOL)

Procedure

1: Initialize S0 = ∅, f0 = 0;
2: for t=1,2,. . . ,T do
3: Receive a new instance xt;
4: Predict ŷt = sign(ft−1(xt));
5: Receive its label yt;
6: �t = max{0, 1− ytft−1(xt)};
7: if �t > 0 then
8: if (|St| == B) then
9: ft−1 = ft−1 −Δft−1; (Budget Maintenance)
10: end if
11: �t = max{0, 1− ytft−1(xt)};
12: if �t > 0 then
13: wmin =∞;
14: for ∀i ∈ St−1 do
15: if (f i

t−1 ≤ 1) then
16: if (yiytκ(xi,xt) ≤ wmin) then
17: wmin = yiytκ(xi,xt);
18: (xb, yb) = (xi, yi);
19: end if
20: end if
21: end for
22: f t

t−1 = ytft−1(xt);
23: St = St−1 ∪ {t};
24: if (wmin ≤ −ρ) then
25: Compute γt and dγb using equation (1);
26: for ∀i ∈ St do
27: f i

t ← f i
t−1 + yiγtytκ(xi,xt) + yidγbybκ(xi,xb);

28: end for
29: ft = ft−1 + γtytκ(xt, ·) + dγbybκ(xb, ·);
30: else /* no auxiliary example found */
31: γt = min(C, �t/κ(xt,xt));
32: for ∀i ∈ St do
33: f i

t ← f i
t−1 + yiγtytκ(xi,xt);

34: end for
35: ft = ft−1 + γtytκ(xt, ·);
36: end if
37: else
38: ft = ft−1; St = St−1;
39: for ∀i ∈ St do
40: f i

t ← f i
t−1;

41: end for
42: end if
43: end if
44: end for
return fT , ST

End

Fig. 1. The Algorithms of Budget Double Updating Online Learning (BDUOL)

BDUOL: Budget Double Updating Online Learning 815

the support vector size of the updated ft−1 is smaller than B. The details of
the proposed Budget DUOL (BDUOL) algorithmic framework are summarized
in Algorithm 1.

The key challenge of BDUOL is to choose an appropriate reduction term
Δft−1 by a proper budget maintenance strategy, which can only meet the budget
requirement but also minimize the impact of the reduction on the prediction
performance. Unlike some existing heuristic budget maintenance approaches, in
this paper, we propose a principled approach for developing several different
budget maintenance strategies. Before presenting the detailed strategies, in the
following, we analyze the theoretical underpinning of the proposed budget double
updating online learning scheme, which is the theoretical foundation for the
proposed budget maintenance strategies in Section 3.

2.4 Theoretical Analysis

In this section, we analyze the mistake bound of the proposed BDUOL algorithm.
To simplify the analysis, the primal-dual framework is used to derive the mis-
take bound following the strategy of DUOL algorithm. Through this framework,
we will show that the gap between the mistake bound of DUOL and BDUOL
is bounded by the cumulative dual ascent induced by the function reduction,
i.e., Δf =

∑
Δγiyiκ(xi, ·). To facilitate the analysis, we firstly introduce the

following lemma, which provides the dual objective function of the SVM.

Lemma 1. The dual objective of Pt(f) =
1
2‖f‖Hκ +C

∑t
i=1 �(f(xi), yi), C > 0

is

Dt(γ1, . . . , γt) =

t∑
i=1

γi −
1

2
‖

t∑
i=1

γiyiκ(xi, ·)‖2Hκ
, γi ∈ [0, C], (3)

where the relation between f and γi, i = 1, . . . , t is f(·) =
∑t

i=1 γiyiκ(xi, ·).

According to the above lemma, after the t-th budget maintenance, the resultant
dual ascent will be computed as follows:

Theorem 1. The Dual Ascent DAt = Dt(γ1−Δγ1, . . . , γt−Δγt)−Dt(γ1, . . . , γt)
for the t-th budget maintenance, i.e., ft = ft −Δft, is given as follows:

DAt = −
t∑

i=1

Δγi +

t∑
i=1

Δγiyift(xi)−
1

2
‖Δft‖2Hκ

. (4)

Proof.

Dt(γ1 −Δγ1, . . . , γt −Δγt)−Dt(γ1, . . . , γt)

=

t∑
i=1

(γi −Δγi)−
1

2
‖

t∑
i=1

(γi −Δγi)yiκ(xi, ·)‖2Hκ
− [

t∑
i=1

γi −
1

2
‖

t∑
i=1

γiyiκ(xi, ·)‖2Hκ
]

= −
t∑

i=1

Δγi +
1

2
[‖ft‖2Hκ

− ‖ft −Δft‖2Hκ
]

816 P. Zhao and S.C.H. Hoi

= −
t∑

i=1

Δγi +
1

2
[‖ft‖2Hκ

− ‖ft‖2Hκ
+ 2〈ft,Δft〉 − ‖Δft‖2Hκ

]

= −
t∑

i=1

Δγi + 〈ft, Δft〉 −
1

2
‖Δft‖2Hκ

= −
t∑

i=1

Δγi + 〈ft,
t∑

i=1

Δγiyiκ(xi, ·)〉 −
1

2
‖Δft‖2Hκ

= −
t∑

i=1

Δγi +
t∑

i=1

Δγiyift(xi)−
1

2
‖Δft‖2Hκ

.

Based on the above dual ascent for budget maintenance, we can now analyze
the mistake bound of the proposed BDUOL algorithm. To ease our discussion,
we first introduce the following lemma [4] about the mistake bound of DUOL.

Lemma 2. Let (x1, y1), . . . , (xT , yT) be a sequence of examples, where xt ∈
Rd, yt ∈ {−1,+1} and κ(xt,xt) ≤ 1 for all t, and assume C ≥ 1. Then for
any function f in Hκ, the number of prediction mistakes M made by DUOL on
this sequence of examples is bounded by:

2 min
f∈Hκ

{1

2
‖f‖2Hκ

+ C

T∑
i=1

�(f(xi), yi)
}

− ρ2

2
Mw

d (ρ)− 1 + ρ

1− ρ
M s

d(ρ),

where ρ ∈ [0, 1), Mw
d (ρ) > 0 and M s

d(ρ) > 0.

Combining the above lemma with Theorem 1, it is not difficult to derive the
following mistake bound for the proposed BDUOL algorithm.

Theorem 2. Let (x1, y1), . . . , (xT , yT) be a sequence of examples, where xt ∈
Rd, yt ∈ {−1,+1} and κ(xt,xt) ≤ 1 for all t, and assume C ≥ 1. Then for any
function f in Hκ, the number of prediction mistakes M made by BDUOL on
this sequence of examples is bounded by:

2 min
f∈Hκ

{1

2
‖f‖2Hκ

+ C

T∑
i=1

�(f(xi), yi)
}

− 2

T∑
i=1

DAi −
ρ2

2
Mw

d (ρ)− 1 + ρ

1− ρ
M s

d(ρ),

where ρ ∈ [0, 1).

Proof. According to the proof of Lemma 2 [4], we have

1

2
Ms +

1 + ρ2

2
Mw

d (ρ) +
1

1− ρ
M s

d(ρ) ≤ min
f∈Hκ

{1

2
‖f‖2Hκ

+ C

T∑
i=1

�(f(xi), yi)
}
,

and M = Ms + Mw
d (ρ) + M s

d(ρ). Furthermore, by taking the dual ascents of
budget maintenance into consideration, we have

T∑
i=1

DAi +
Ms

2
+

1 + ρ2

2
Mw

d (ρ) +
M s

d(ρ)

1− ρ
≤ min

f∈Hκ

{1

2
‖f‖2Hκ

+ C
T∑
i=1

�(f(xi), yi)
}
.

Rearranging the above inequality will concludes the theorem.

BDUOL: Budget Double Updating Online Learning 817

According to the above theorem, we can see that, if there is no budget main-
tenance step, the mistake bound of BDUOL is reduced to the previous mistake
bound for the regular DUOL algorithm. This theorem indicates that in order
to minimize the mistake bound of BDUOL, one should try to maximize the
cumulative dual ascent, i.e.,

∑T
i=1DAi, when designing an appropriate budget

maintenance strategy.

3 Budget Maintenance Strategies

In this section, we follow the above theoretical results to develop several different
budget maintenance strategies in a principled approach. In particular, as revealed
by Theorem 2, a key to improving the mistake bound of BDUOL is to maximize
the cumulative dual ascent

∑T
t=1DAt caused by the budget maintenance. To

achieve this purpose, we propose to maximize the dual ascent caused by budget
maintenance at each online learning step, i.e.,

max
Δγ1,...,Δγt

DAt = −
t∑

i=1

Δγi +

t∑
i=1

Δγiyift(xi)−
1

2
‖Δft‖2Hκ

. (5)

Below, we propose three different budget maintenance strategies, and analyze
the principled approach of achieving the best dual ascent as well as the time
complexity and memory cost for each strategy.

3.1 BDUOL Algorithm by Removal Strategy

The first strategy for budget maintenance is the removal strategy that discards
one of existing support vectors, which is similar to the strategies used by For-
getron [8] and RBP [9]. Unlike the previous heuristic removal strategy, the key
idea of our removal strategy is to discard the support vector which can maximize
the dual ascent by following our previous analysis.

Specifically, let us assume the j-th SV is selected for removal. We then have
the following function reduction term:

Δft = γjyjκ(xj , ·). (6)

As a result, the optimal removal solution is to discard the SV which can maximize
the following dual ascent term:

DAt,j = −γj(1 − yjft(xj))−
1

2
(γj)

2κ(xj ,xj). (7)

We note that the above removal strategy is similar with the one in [5], when
the Gaussian kernel is adopted where κ(xj ,xj) = 1. However, our strategy is
strongly theoretically motivated.

Complexity Analysis. Since theBDUOLalgorithmwill cache the value yjft(xj)
for every SV, the computational complexity ofDAt,j isO(1) in practice. Thus, this

818 P. Zhao and S.C.H. Hoi

BDUOL algorithm requires O(B) time complexity of computing all the DAt,j ’s.
After removing the SV with the largestDAt,j , the complexity of updating all the
values of yjft(xj) is O(B). Furthermore, combining the above discussion with the
fact that the original DUOL’s time complexity is O(B), we can conclude that the
overall time complexity of this BDUOL algorithm is also O(B). As for the mem-
ory cost, since only B SVs, their weight parameters and the yjft(xj)s have to be
cached, the space complexity is thus also O(B).

3.2 BDUOL Algorithm by Projection Strategy

Although the above removal strategy is optimized to find the best support vector
that maximizes the dual ascent (i.e., minimizes the loss of dual ascent caused
by budget maintenance), it is still unavoidable to result in the loss of the dual
ascent due to the removal of one existing support vector. To minimize such loss,
we propose a projection strategy for budget maintenance.

Specifically, in the projection strategy, the selected j-th SV for removal will
be projected to the space spanned by the rest SVs. The objective is to find the
function closest to γjyjκ(xj , ·) in the space spanned by the remaining SVs, or
formally:

min
βi∈[−γi,C−γi],i�=j

‖γjyjκ(xj , ·)−
∑
i�=j

βiyiκ(xi, ·)‖2Hκ
. (8)

which is essentially a Quadratic Programming (QP) problem. So, we can exploit
the existing efficient QP solvers to find the optimal solution.

However, solving the above QP problem directly may not be efficient enough
for online learning purpose. To further improve the efficiency, we also proposed
an approximate solution by firstly solving the unconstrained optimization prob-
lem and then projecting the solution into the feasible region of the constraints.
Specifically, setting the gradient of the above equation with respect to β = [βi]

�,
i �= j as zero, one can obtain the optimal solution as

β = γjyjK
−1kj ./y, (9)

where K is the kernel matrix for xi, i �= j, kj = [κ(xi,xj)]
�, i �= j, ./ is element-

wise division and y = [yi]
�, i �= j. In the above, inverting K can be efficiently

realized by using Woodbury formula [12]. As a result, we should set

Δft(·) = γjyjκ(xj , ·)−
∑
i�=j

βiyiκ(xi, ·). (10)

However, the resultant ft −Δft’s SV weights may not fall into the range [0, C].
To fix this problem, we will project each βi as follows:

β = Π[−γ,C−γ](γjyjK
−1kj ./y), (11)

where Π[a,b](x) = max(a,min(b, x)) and γ = [γi]
�, i �= j.

BDUOL: Budget Double Updating Online Learning 819

Now the key problem is to find the best SV among B + 1 candidates for
projection. Since after the projection of γjyjκ(xj , ·), the resultant dual ascent is

DAt,j = −
∑
i

Δγi +
∑
i

Δγiyift(xi)−
1

2
‖Δft‖2Hκ

. (12)

So the best SV is the one which can achieve the largest value DAt,j .

Complexity Analysis. The time complexity for BDUOL is dominated by the
computationK−1. Computing K−1 usingK will cost O(B3) time, however using
Woodbury formula, we can efficiently compute it using only O(B2) time. In
addition, we need to compute B times projections for every SV, so the total
time complexity for one step of updating is O(B3). Finally, the memory burden
for the BDUOL algorithm is O(B2), since the storage of kernel matrix K and
inverse kernel matrix K−1 dominated the main memory cost.

3.3 BDUOL Algorithm by Nearest Neighbor Strategy

The above projection strategy is able to achieve a better improvement of dual
ascent than the removal strategy, it is however much more computationally ex-
pensive. To balance the tradeoff between efficiency and effectiveness, we propose
an efficient nearest neighbor strategy which approximates the projection strategy
by projecting the removed SV to its nearest neighbor SV, based on the distance
in the mapped feature space. This strategy is motivated by the fact that the
nearest neighbor SV usually could be a good representative of the removed SV.
Using this strategy, we can significantly improve the time efficiency. In particular,
as we use only the nearest neighbor for projection, the corresponding solution
according to equation 11 can be expressed:

βNj = Π[−γNj
,C−γNj

](γjyjκ(xNj ,xNj)
−1κ(xNj ,xj)/yNj), (13)

where κ(xNj , ·) is the nearest neighbor of κ(xj , ·). As a result, the corresponding
Δft = γjyjκ(xj , ·)− βNjyNjκ(xNj , ·). Since after the projection of γjyjκ(xj , ·),
the resultant dual ascent is

DAt,j = −
∑
i

Δγi +
∑
i

Δγiyift(xi)−
1

2
‖Δft‖2Hκ

. (14)

Thus, the best SV is the one that has the largest value DAt,j .

Complexity Analysis.All the computation steps except looking for the nearest
neighbor have constant time complexity of O(1). For improving nearest neighbor
searching, we can cache the indexes and the distances about the nearest neigh-
bors of the SVs, making finding the nearest neighbor in O(1). After remove the
best SV, we should also update the caches. The time complexity for this updat-
ing is at most O(B). In summary, the time complexity for the overall strategy
is O(B), and the overall memory cost is also O(B).

820 P. Zhao and S.C.H. Hoi

Remark: To improve the efficiencies of the projection and nearest neighbor
strategies, we could use the projection or the nearest neighbor strategy to keep
the information from the SV selected by the removal strategy and then remove
it, since the search cost of the removal strategy is quite lower than the other two
strategies.

4 Experimental Results

In this section, we evaluate the empirical performance of the proposed algorithms
for Budget Double Updating Online Learning (BDUOL) by comparing them with
the state-of-the-art algorithms for budget online learning.

4.1 Algorithms for Comparison

In our experiments, we implement the proposed BDUOL algorithms as follows:

– “BDUOLremo”: the BDUOL algorithm by the removal strategy for budget
maintenance described in section 3.1,

– “BDUOLproj”: the BDUOL algorithm by the exact projection strategy by
a standard QP solver for budget maintenance described in section 3.2,

– “BDUOLappr”: the BDUOL algorithm by the approximate projection strat-
egy for budget maintenance described in section 3.2,

– “BDUOLnear”: the BDUOL algorithm by the nearest neighbor strategy for
budget maintenance described in section 3.3,

For comparison, we include the following state-of-the-art algorithms for budget
online learning:

– “RBP”: the Random Budget Perceptron algorithm [9],
– “Forgetron”: the Forgetron algorithm [8],
– “Projectron”: the Projectron algorithm [10], and
– “Projectron++”: the aggressive version of Projectron algorithm [10].

Besides, we also include two non-budget online learning algorithms as yardstick:

– “Perceptron”: the classical Perceptron algorithm [6], and
– “DUOL”: the Double Updating Online Learning algorithm [4].

4.2 Experimental Testbed and Setup

We test all the algorithms on six benchmark data sets from web machine learning
repositories listed in Table 1. These data sets can be downloaded from LIBSVM
website1, UCI machine learning repository2, and MIT CBCL face data sets3.
These datasets were chosen fairly randomly to cover various sizes of datasets.

1 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
2 http://www.ics.uci.edu/~mlearn/MLRepository.html
3 http://cbcl.mit.edu/software-datasets

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://cbcl.mit.edu/software-datasets

BDUOL: Budget Double Updating Online Learning 821

Table 1. Details of the datasets in our experiments

Dataset # instances # features

german 1000 24
MITface 6977 361
mushrooms 8124 112
spambase 4601 57
splice 3175 60
w7a 24692 300

To make a fair comparison, all the algorithms in our comparison adopt the
same experimental setup. A gaussian kernel is adopted in our study, for which
the kernel width is set to 8 for all the algorithms and datasets. To make the
number of support vectors fixed for Projectron and Projectron++ algorithms, we
simply store the received SVs before the budget overflows, and then project the
subsequent ones into the space spanned by the stored SVs afterward. The penalty
parameter C in the DUOL algorithm was selected by 5-fold cross validation for
all the datasets from range 2[−10:10]. Due to the cross-validation, we randomly
divide every dataset into two equal subsets: cross validation (CV) dataset and
online learning dataset. And C is set as the same value with DUOL. Furthermore,
the value ρ for the DUOL and its budget variants is set as 0, according to the
previous study on the effect of ρ.

The budget sizes B for different datasets are set as proper fractions of the
support vector size of Perceptron, which are shown in Table 3. All the exper-
iments were conducted 20 times, each with a different random permutation of
data points. All the results were reported by averaging over the 20 runs. For
performance metrics, we evaluate the online classification performance by eval-
uating online cumulative mistake rates and running time cost.

4.3 Performance Evaluation of Non-budget Algorithms

Table 2 summarizes the average performance of the two non-budget algorithms
for kernel-based online learning. First of all, similar to the previous study [4],
we found that DUOL outperforms Perceptron significantly for all the datasets

Table 2. Evaluation of non-budget algorithms on the the data sets

Algorithm Perceptron DUOL

Datasets Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

german 35.760 %± 1.149 178.800 ± 5.745 0.007 29.820 %± 1.243 381.750 ± 5.866 0.044

MITface 6.246 %± 0.252 217.85 ± 8.774 0.04 2.418 %± 0.156 408.5 ± 9.339 0.114

mushrooms 3.175 %± 0.463 128.950 ± 18.805 0.040 0.591 %± 0.086 247.050 ± 14.084 0.099

spambase 27.354 %± 0.561 629.150 ± 12.906 0.050 22.680 %± 0.557 1385.800 ± 17.519 0.317

splice 21.808 %± 0.709 346.100 ± 11.257 0.026 15.633 %± 0.461 777.450 ± 11.551 0.130

w7a 4.366 %± 0.093 539.000 ± 11.530 0.272 3.068 %± 0.114 1171.600 ± 30.396 0.728

822 P. Zhao and S.C.H. Hoi

Table 3. Evaluation of several budgeted algorithms with varied budget sizes

Budget Size B=50 B=100 B=150
Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

german RBP 39.140 %± 1.338 0.010 36.940 %± 1.837 0.009 36.080 %± 1.392 0.008

Fogetron 38.840 %± 1.551 0.014 37.250 %± 1.399 0.013 36.570 %± 1.641 0.013

Projectron 36.990 %± 1.652 0.020 36.310 %± 1.441 0.027 35.870 %± 1.149 0.063

Projectron++ 35.370 %± 1.413 0.036 35.620 %± 1.251 0.046 35.680 %± 1.380 0.103

BDUOLremo 39.970 %± 3.150 0.068 37.180 %± 2.297 0.077 33.330 %± 2.264 0.088

BDUOLnear 37.090 %± 1.763 0.098 33.330 %± 1.697 0.112 31.360 %± 1.511 0.129

BDUOLappr 35.540 %± 2.010 0.160 32.340 %± 1.570 0.381 30.450 %± 1.338 0.941

BDUOLproj 34.030 %± 1.104 0.214 30.710 %± 1.261 0.624 30.330 %± 1.221 1.341

Budget Size B=50 B=100 B=150
Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

MITface RBP 18.964 %± 1.330 0.063 9.557 %± 0.615 0.053 7.463 %± 0.609 0.050

Fogetron 18.038 %± 1.470 0.081 10.707 %± 0.883 0.077 8.373 %± 0.546 0.076

Projectron 7.137 %± 0.384 0.086 6.461 %± 0.288 0.098 6.316 %± 0.304 0.142

Projectron++ 6.135 %± 0.312 0.149 5.973 %± 0.215 0.197 5.978 %± 0.219 0.373

BDUOLremo 17.516 %± 2.264 0.225 8.096 %± 0.811 0.208 4.700 %± 0.449 0.194

BDUOLnear 4.435 %± 0.396 0.179 3.078 %± 0.304 0.187 2.701 %± 0.277 0.205

BDUOLappr 3.632 %± 0.277 0.249 2.618 %± 0.221 0.429 2.501 %± 0.258 0.836

BDUOLproj 3.611 %± 0.319 0.273 2.645 %± 0.228 0.492 2.481 %± 0.168 0.755

Budget Size B=50 B=75 B=100
Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

mushrooms RBP 6.551 %± 1.056 0.054 17.841 %± 1.539 0.073 3.488 %± 0.713 0.049

Fogetron 11.273 %± 1.750 0.085 14.154 %± 2.748 0.094 3.895 %± 1.141 0.079

Projectron 4.264 %± 0.613 0.095 3.703 %± 0.731 0.099 3.207 %± 0.473 0.107

Projectron++ 3.986 %± 0.297 0.161 3.557 %± 0.174 0.178 3.484 %± 0.117 0.197

BDUOLremo 8.754 %± 2.438 0.210 2.547 %± 0.865 0.181 0.891 %± 0.152 0.162

BDUOLnear 1.329 %± 0.198 0.141 0.710 %± 0.095 0.132 0.618 %± 0.081 0.131

BDUOLappr 1.065 %± 0.218 0.193 0.667 %± 0.092 0.194 0.623 %± 0.080 0.248

BDUOLproj 0.729 %± 0.060 0.230 0.604 %± 0.080 0.266 0.577 %± 0.071 0.290

Budget Size B=200 B=400 B=600
Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

spambase RBP 31.826 %± 0.924 0.065 29.220 %± 0.550 0.069 27.417 %± 0.598 0.059

Fogetron 32.461 %± 0.971 0.077 29.641 %± 0.742 0.084 27.424 %± 0.644 0.082

Projectron 29.237 %± 0.750 0.238 27.480 %± 0.484 0.929 27.750 %± 2.134 2.776

Projectron++ 28.822 %± 0.725 0.819 28.693 %± 6.781 3.874 27.559 %± 1.572 7.277

BDUOLremo 34.559 %± 1.308 0.522 28.989 %± 0.927 2.013 25.661 %± 0.709 4.541

BDUOLnear 28.180 %± 1.084 0.756 25.607 %± 0.748 3.874 24.187 %± 0.584 8.570

BDUOLappr 28.950 %± 2.001 5.555 26.843 %± 0.948 16.396 24.846 %± 0.695 30.186

BDUOLproj 27.448 %± 0.961 8.837 25.307 %± 0.793 53.987 23.780 %± 0.640 197.199

Budget Size B=100 B=200 B=300
Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

splice RBP 30.003 %± 1.318 0.035 25.126 %± 0.900 0.033 22.530 %± 0.967 0.028

Fogetron 29.912 %± 1.483 0.044 25.545 %± 0.582 0.043 22.457 %± 0.734 0.041

Projectron 22.851 %± 0.756 0.061 22.007 %± 1.023 0.146 21.830 %± 0.811 0.356

Projectron++ 22.628 %± 0.649 0.163 21.843 %± 1.002 0.445 21.919 %± 1.188 0.922

BDUOLremo 26.150 %± 1.279 0.238 22.117 %± 1.321 0.409 18.299 %± 0.797 0.641

BDUOLnear 23.125 %± 1.161 0.435 18.847 %± 0.866 0.458 16.991 %± 0.600 1.201

BDUOLappr 19.779 %± 0.754 1.110 18.062 %± 2.000 2.596 17.927 %± 2.065 3.905

BDUOLproj 20.243 %± 0.667 1.041 17.190 %± 0.734 2.685 16.191 %± 0.517 5.475

Budget Size B=300 B=400 B=500
Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

w7a RBP 4.681 %± 0.257 0.291 4.597 %± 0.227 0.316 4.434 %± 0.108 0.332

Fogetron 4.697 %± 0.102 0.367 4.584 %± 0.180 0.390 4.466 %± 0.137 0.398

Projectron 4.680 %± 0.290 0.727 4.625 %± 0.456 1.174 4.406 %± 0.130 1.929

Projectron++ 3.880 %± 0.526 4.366 3.672 %± 0.214 7.763 3.666 %± 0.152 8.796

BDUOLremo 3.832 %± 0.170 0.995 3.361 %± 0.145 1.824 3.175 %± 0.133 2.401

BDUOLnear 3.572 %± 0.114 1.241 3.269 %± 0.133 3.324 3.183 %± 0.087 4.859

BDUOLappr 4.126 %± 0.502 4.553 4.001 %± 0.153 6.794 3.775 %± 0.121 9.646

BDUOLproj 3.367 %± 0.096 11.306 3.227 %± 0.126 18.965 3.254 %± 0.332 29.807

BDUOL: Budget Double Updating Online Learning 823

according to t-test results, which validates our motivation of choosing DUOL
as the basic online learning algorithm for budget online learning. Second, we
noticed that the support vector size of DUOL is in general much larger than
that of Perceptron. Finally, the time cost of DUOL is much higher than that of
Perceptron, mostly due to the larger number of support vectors. Both the large
number of support vectors and high computational time motivate the need of
studying budget DUOL algorithms in this work.

4.4 Performance Evaluation of Budget Algorithms

Table 3 summarizes the results of different budget online learning algorithms.
We can draw several observations.

First of all, we observe that RBP and Forgetron achieve very similar perfor-
mance for most cases. In addition, we also find that Projectron++ achieves a
lower mistake rate than Projectron for almost all the datasets and for varied

0 100 200 300 400 500
0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

0 100 200 300 400 500
0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

0 100 200 300 400 500
0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

RBP
Forgetron
Projectron
Projectron++
BDUOL

remo

BDUOL
near

BDUOL
appr

BDUOL
proj

(a) german(B=50) (b) german(B=100) (c) german(B=150)

0 500 1000 1500 2000 2500 3000 3500
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

0 500 1000 1500 2000 2500 3000 3500
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

0 500 1000 1500 2000 2500 3000 3500
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

RBP
Forgetron
Projectron
Projectron++
BDUOL

remo

BDUOL
near

BDUOL
appr

BDUOL
proj

(d) MITface(B=50) (e) MITface(B=100) (f) MITface(B=150)

500 1000 1500 2000 2500 3000 3500 4000
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

500 1000 1500 2000 2500 3000 3500 4000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

500 1000 1500 2000 2500 3000 3500 4000
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

RBP
Forgetron
Projectron
Projectron++
BDUOL

remo

BDUOL
near

BDUOL
appr

BDUOL
proj

(g) mushrooms(B=50) (h) mushrooms(B=75) (i) mushrooms(B=100)

Fig. 2. Evaluation of online mistake rates against the number of samples on three
datasets. The plotted curves are averaged over 20 random permutations.

824 P. Zhao and S.C.H. Hoi

0 500 1000 1500 2000 2500
0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

0 500 1000 1500 2000 2500
0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

0 500 1000 1500 2000 2500
0.22

0.24

0.26

0.28

0.3

0.32

0.34

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

RBP
Forgetron
Projectron
Projectron++
BDUOL

remo

BDUOL
near

BDUOL
appr

BDUOL
proj

(j) spambase(B=200) (k) spambase(B=400) (l) spambase(B=600)

200 400 600 800 1000 1200 1400 1600
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

200 400 600 800 1000 1200 1400 1600
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

200 400 600 800 1000 1200 1400 1600
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

RBP
Forgetron
Projectron
Projectron++
BDUOL

remo

BDUOL
near

BDUOL
appr

BDUOL
proj

(m) splice(B=100) (n) splice(B=200) (o) splice(B=300)

0 2000 4000 6000 8000 10000 12000
0.03

0.035

0.04

0.045

0.05

0.055

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

0 2000 4000 6000 8000 10000 12000
0.03

0.035

0.04

0.045

0.05

0.055

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

0 2000 4000 6000 8000 10000 12000
0.03

0.035

0.04

0.045

0.05

0.055

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

RBP
Forgetron
Projectron
Projectron++
BDUOL

remo

BDUOL
near

BDUOL
appr

BDUOL
proj

(p) w7a(B=300) (q) w7a(B=400) (r) w7a(B=500)

Fig. 3. Evaluation of online mistake rates against the number of samples on three
datasets. The plotted curves are averaged over 20 random permutations.

budget sizes, which is similar to the previous results reported in [10]. More-
over, compared with the baseline algorithms RBP and Forgetron, the proposed
BDUOLremo algorithm using a simple removal strategy achieves comparable or
better mistake rate when the budget size is large, but fails to improve when the
budget size is very small, which indicates a simple removal strategy may not be
always effective and a better budget maintenance strategy is needed.

Second, among all the algorithms in comparison for budget online learning,
we find that BDUOLproj always achieves the lowest mistake rates for most
cases. These promising results indicate the projection strategy can effectively
reduce the information loss. However, we also notice that the time cost of the
BDUOLproj is among the highest ones, which indicates it is important to find
some more efficient strategy.

Third, by comparing two approximate strategies, we find that BDUOLappr

achieves better mistake rates than BDUOLnear only on the german and mush-
rooms datasets, while it consumes too much time than the proposed BDUOLnear

algorithms, which indicates BDUOLnear achieves better trade off between

BDUOL: Budget Double Updating Online Learning 825

mistake rates and time complexity than BDUOLappr . In addition, when the
number of budget is large, BDUOLnear always achieves similar performance
with the BDUOLproj, while consumes significantly less time, which indicates
the proposed nearest neighbor strategy is a good alternative of the projection
strategy.

Finally, Figure 2 and Figure 3 show the detailed online evaluation processes
of the several budget online learning algorithms. Similar observations from these
figures further verified the efficacy of the proposed BDUOL technique.

5 Conclusions

This paper presented a new framework of budget double updating online learn-
ing for kernel-based online learning on a fixed budget, which requires the number
of support vectors associated with the prediction function is always bounded by
a predefined budget. We theoretically analyzed its performance, which reveals
that its effectiveness is tightly connected with the dual ascent achieved by the
model reduction for budget maintenance. Based on the theoretical analysis, we
proposed three budget maintenance strategies: removal, projection, and near-
est neighbor. We evaluate the proposed algorithms extensively on benchmark
datasets. The promising empirical results show that the proposed algorithms
outperform the state-of-the-art budget online learning algorithms in terms of
mistake rates. Future work will exploit different budget maintenance strategies
and extend the proposed work to multi-class budgeted online learning.

Acknowledgments. This work was supported by Singapore MOE tier 1 grant
(RG33/11) and Microsoft Research grant (M4060936).

References

1. Kivinen, J., Smola, A.J., Williamson, R.C.: Online learning with kernels. IEEE
Transactions on Signal Processing 52(8), 2165–2176 (2004)

2. Cheng, L., Vishwanathan, S.V.N., Schuurmans, D., Wang, S., Caelli, T.: Implicit
online learning with kernels. In: NIPS, pp. 249–256 (2006)

3. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-
aggressive algorithms. Journal of Machine Learning Research 7, 551–585 (2006)

4. Zhao, P., Hoi, S.C.H., Jin, R.: Double updating online learning. Journal of Machine
Learning Research 12, 1587–1615 (2011)

5. Crammer, K., Kandola, J.S., Singer, Y.: Online classification on a budget. In: NIPS
(2003)

6. Rosenblatt, F.: The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review 65, 386–407 (1958)

7. Weston, J., Bordes, A.: Online (and offline) on an even tighter budget. In: AIS-
TATS, pp. 413–420 (2005)

8. Dekel, O., Shalev-Shwartz, S., Singer, Y.: The forgetron: A kernel-based perceptron
on a budget. SIAM J. Comput. 37(5), 1342–1372 (2008)

826 P. Zhao and S.C.H. Hoi

9. Cavallanti, G., Cesa-Bianchi, N., Gentile, C.: Tracking the best hyperplane with a
simple budget perceptron. Machine Learning 69(2-3), 143–167 (2007)

10. Orabona, F., Keshet, J., Caputo, B.: Bounded kernel-based online learning. Journal
of Machine Learning Research 10, 2643–2666 (2009)

11. Vapnik, V.N.: Statistical Learning Theory. Wiley (1998)
12. Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector ma-

chine learning. In: Advances in Neural Information Processing Systems 13 (NIPS),
pp. 409–415 (2000)

Handling Time Changing Data with Adaptive Very Fast
Decision Rules

Petr Kosina1 and João Gama2

1 LIAAD-INESC Porto, FI Masaryk University, Czech Republic
petr.kosina@inescporto.pt

2 LIAAD-INESC Porto, FEP-University of Porto
jgama@fep.up.pt

Abstract. Data streams are usually characterized by changes in the underlying
distribution generating data. Therefore algorithms designed to work with data
streams should be able to detect changes and quickly adapt the decision model.
Rules are one of the most interpretable and flexible models for data mining pre-
diction tasks. In this paper we present the Adaptive Very Fast Decision Rules
(AVFDR), an on-line, any-time and one-pass algorithm for learning decision rules
in the context of time changing data. AVFDR can learn ordered and unordered
rule sets. It is able to adapt the decision model via incremental induction and spe-
cialization of rules. Detecting local drifts takes advantage of the modularity of
rule sets. In AVFDR, each individual rule monitors the evolution of performance
metrics to detect concept drift. AVFDR prunes rules that detect drift. This explicit
change detection mechanism provides useful information about the dynamics of
the process generating data, faster adaption to changes and generates compact
rule sets. The experimental evaluation shows this method is able to learn fast and
compact rule sets from evolving streams in comparison to alternative methods.

1 Motivation

Machine learning in recent years has undergone a change in the focus and application of
its techniques. More and more attention is shifted towards ubiquitous mining and real-
time applications as more and more data is represented by possibly infinite streams.
New approaches and stream extensions to off-line methods emerge in order to improve
performance under constrains given by the stream environment. It includes characteris-
tics such as being able to produce a model while scanning the data only once, the model
must be available at any point of time, must be up-to-date, and all must be able to run
under computational and memory constrains [19].

One of the common phenomena in stream mining is a change in data that might
occur over time. This phenomenon addresses mostly the up-to-date requirement of the
stream approaches. Almost everything in this world changes and so can the concepts
in data if they are being observed for long enough time. The influence of seasonal
change, economical change, health conditions or wear of machinery can cause decrease
of quality of the models built on previous observations. Therefore, fast adaptation of
models has an advantage for most of the real world problems.

Among the best known and most used models for data stream classification are algo-
rithms based on Hoeffding Trees [12] (HT). The adaptation in HT algorithms is present

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 827–842, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

828 P. Kosina and J. Gama

in an inexplicit form via incremental growth of the tree. The adaptation in this case is
slow. Faster adaptation might be achieved by employing explicit drift detection meth-
ods, e.g. [20,1,22]. This approach, however, require rebuilding the current tree which
might be inefficient. Decision rules are a classification model similar to decision trees,
which has an advantage of having individual rules that can be managed independently.
Therefore, in decision rules the implicit adaptation feature that is present in the trees
remains but in addition to it, the set of rules can be altered more easily. Instead of re-
building the classifier from scratch or executing a complicated change of the structure
of a tree, individual rules which are considered outdated can be simply removed. This
paper presents Adaptive Very Fast Decision Rules (AVFDR) classifier as an extension
to VFDR [16]. The main contribution is that this system focuses on time changing data
and it incorporates a drift detection mechanism for each individual rule. It is capable of
faster adaptation to a change and the mechanism also serves as rule set pruning.

The paper is organized as follows. The Section 2 discusses the related work in rule
learning and handling time changing data. The AVFDR system is presented in Section 3
and the experimental results are in Section 4. Finally, Section 5 concludes the paper and
mentions future work directions.

2 Related Work

Decision rules are well known classification method in off-line learning with a strong
connection to decision tree learning. There are approaches that build decision lists from
the tree [28], where each rule then corresponds to the path from the root to a leaf and
there are as many rules as leaves. The set can be then optimized to obtain simpler and
more accurate classifier.

There exist many algorithms for building decision lists [29,7,9,11,34]. CN2, pre-
sented in [7], evaluates every possible conjunction of attribute tests (if-conditions) of a
rule based on information-theoretic entropy measure. Later in [8], the entropy measure
is replaced by Laplace accuracy estimate. The algorithm searches for new rules for each
class in turn each time separating one (positive) from all the others (negative) as two-
class problem. Only positive examples that satisfy learned rule are removed from the
training set for next iteration of the rule search. RIPPER [9] orders classes in increasing
order of their frequency in the training set. After learning rules that separate minority
class, the covered examples are removed and the algorithm proceeds with the next class.
The process stops when the last single class remains that represents the default class.

Incremental rule learners include STAGGER [30], the first system designed expressly
for coping with concept drift, the FLORA family of algorithms [35] with FLORA3 being
the first system able to deal with recurring contexts, and the AQ-PM family [27]. The
first rule learning system designed for streaming numerical data is system Facil, pre-
sented in [13]. Facil learns decision rules that might overlap. Expansion of a rule is
controlled by border examples that are stored together with rules when they are learned.
Adaptation to drift is blind, by deleting older rules.

The original VFDR system, which incrementally learns new rules and specialises
existing ones, was presented by [16]. It is capable of learning ordered or unordered
sets and employs Bayesian leaves. The system is further extended in [26] to focus the

Handling Time Changing Data with Adaptive Very Fast Decision Rules 829

attention on learning rules for various classes of labeled data and it can induce multiple
rules (one for each such class) at one point when specialization is evaluated.

The stream mining community has already introduced many different approaches to
deal with the phenomenon of concept drift. Sliding windows and example weights [25]
are widely used approaches to maintain a classifier consistent to the most recent data.
In [4] the authors proposed the ADWIN algorithm, a detector and estimator which auto-
matically adapts to the current rate of change by keeping the window of recent examples
of variable length. It employs the Hoeffding bound to guarantee that the window has
maximal length without a change inside the window. Other methods can explicitly de-
tect change-points or small time-windows where the concept to learn has changed. A
classifier can be equipped with such drift detection methods associated with a forgetting
mechanism. Drift detection methods might monitor the evolution of the error rate, like
the SPC algorithm [20], monitor the distance between classification errors, like in [1],
etc.

In [23], the authors presented system CVFDT, a decision tree learner for mining data
streams with non-stationary distribution. CVFDT learns model consistent with a sliding
window of recent examples. When concept is changing and split that was previously
executed would no longer be the best, it starts learning an alternate subtree with new
best attribute as its root. The subtree replaces the original one when it becomes more
accurate.

As pointed out in [33], a drawback of decision trees is that even a slight drift of
the target function may trigger several changes in the model and severely compromise
learning efficiency. On the other hand, ensemble methods avoid expensive revisions by
weighting the members, but may run the risk of building unnecessary learners when
virtual drifts are present in data. In [5] two new decision tree ensemble methods were
presented: ADWIN Bagging and Adaptive-Size Hoeffding Tree bagging. The former
extends on-line bagging with ADWIN change detector, which works as an estimator for
the weights of the boosting method. The worst performing classifier is removed from
the ensemble when change is detected and it is replaced by a new one. The latter uses
Hoeffding trees of different maximum sizes since smaller trees adapt faster to changes
and larger work better for long periods with little or no change.

3 Adaptive Very Fast Decision Rules

In this section we present AVFDR algorithm which extends VFDR classifier for data
streams by integrating drift detection to each rule.

3.1 Growing a Set of Rules

The AVFDR algorithm is designed for high-speed data streams which learns unordered
set rules and needs only one scan of data.

The algorithm begins with a empty rule set (RS) and a default rule {} → L, where
L is initialized to ∅. L is a data structure that contains information used to classify
test instances, and the sufficient statistics needed to expand the rule. Each learned rule
(r) is a conjunction of literals, that are conditions based on attribute values, and a Lr.

830 P. Kosina and J. Gama

Algorithm 1: AVFDR: Rule Learning Algorithm.
input : S: Stream of examples

ordered set: boolean flag
output: RS: Set of Decision Rules
begin

Let RS← {}
Let default rule L ← ∅
foreach example (x, yk) ∈ S do

foreach Rule r ∈ RS do
if r covers the example then

/* Estimate Rule Status */
Status← SPC (r, xt, yt)
if Status == OutControl then

RS ← RS − {r}
else

if Status == InControl then
Update sufficient statistics of r
RS ← RS − {r}
RS ← RS ∪ExpandRule(r)
if ordered set then

BREAK

if none of the rules in RS covered example then
Update sufficient statistics of the default rule
RS ← RS ∪ExpandEmptyRule(default rule)

For numerical attributes, each literal is of the form Xi > v, or Xi ≤ v for some feature
Xi and some constant v. For categorical attributes AVFDR produce literals of the form
Xi = vj where vj is a value in the domain of Xi. Please note that for simplicity we use
the Xi = vj notation for both cases, numerical and categorical, in the context of adding
a new condition.

If all the literals are true for a given example, then the example is said to be covered
by the rule. The labeled examples covered by a rule r are used to update Lr. A rule
is expanded with the literal that has the highest gain measure of the examples covered
by the rule. Lr accumulates the sufficient statistics, is similar to statistics in [15], to
compute the gain measure of all possible literals. Lr is a data structure that contains:
an integer that stores the number of examples covered by the rule; a vector to compute
p(ck), i.e., the probability of observing examples of class ck; a matrix p(Xi = vj |ck) to
compute the probability of observing value vj of a nominal attribute Xi per class; and
a btree to compute the probability of observing values greater than vj of continuous
attribute Xi, p(Xi > vj |ck), per class.

The number of observations after which a rule can be expanded or new rule can
be induced is determined by Hoeffding bound. It guarantees that with the probability
1 − δ the true mean of a random variable x with a range R will not differ from the

Handling Time Changing Data with Adaptive Very Fast Decision Rules 831

Algorithm 2: The SPC Algorithm

Input : r: rule ;
/* nth observation of rule r */
Current example: xn, yn ;

Output: Status ∈ {InControl, OutControl, Warning}
begin

Let ŷn ← r(xn);
Let errorn ← L(ŷn, yn);
Compute error’s mean pn and variance sn;
if pn + sn < pmin + smin then

pmin ← pn;
smin ← sn;

if pn + sn < pmin + β × smin then
Status← ’InControl’ ;

else
if pn + sn < pmin + α× smin then

Status← ’Warning’;

else
Status← ’OutControl’;

Return: Status;

estimated mean after N independent observations by more than: ε =
√

R2ln(1/δ)
2N . It

is not efficient to check for the sufficient number of examples with every incoming
example, therefore it is done after only Nmin observations.

The set of rules (RS) is learned in parallel as described in Algorithm 1. We consider
two cases: learning ordered or unordered set of rules (AVFDRo and AVFDRu). In the
former, every labeled example updates statistics of the first rule that covers it. In the
latter, every labeled example updates statistics of all the rules that cover it. If a labeled
example is not covered by any rule, the default rule is updated.

We can further apply different strategies to functions that are responsible for creating
new rules from default rule and expansion of other rules.

3.2 Expansion of a rule

The AVFDR classifier applies one vs. all strategy in which examples of class ck ∈ C
are positive and ∀cl ∈ C, cl �= ck are negative. It considers a rule expansion for each
class c ∈ Cr, where Cr is the set of classes observed at rule r. The process to select
new condition for a rule works as follows.

For each attribute Xi the value of gain function G adopted from FOIL is computed.
The change in gain between rule r and a candidate rule after adding a new condition

r′ is defined as Gain(r′, r) = s ×
(
log2

N ′
+

N ′ − log2
N+

N

)
, where N is the number of

examples covered by r and N+ is the number of positive examples in them, N ′
+ and

832 P. Kosina and J. Gama

Algorithm 3: ExpandRule: Expanding Unordered Rule.
input : r: One Rule;

δ: Confidence
τ : Constant to solve ties

output: NR: New Rules Set;
begin

Let NR ← {r}

Compute ε =
√

R2ln(1/δ)
2N

(Hoeffding bound)

/* Expand rule for the original class */
Let cr be class of r
EvaluateLiterals(cr)

if gkbest − gk2best > ε or ε < τ then
Extend r with a new condition based on the best attributeXa = vj
/* Expand rule for other classes */
foreach class ck �= cr do

EvaluateLiterals(ck)

if gkbest − gk2best > ε or ε < τ then
create new r′ by extending r with a new condition Xa = vj and class ck
NR ← NR ∪ {r′}

Release sufficient statistics of r

return NR

N ′ represent the same for r′, and s is the number of true positives in r that are still true
positives in r′, which in this case corresponds to N ′

+.
We are interested only in positive gain, therefore we consider the minimum of the

gain function as 0 and the maximum for a given rule is N+ ×
(
− log2

N+

N

)
. We can

then normalize the positive gain as: GainNorm(r′, r) = Gain(r′,r)

N+×
(
− log2

N+
N

) .
G is computed for each attribute value vj , which was observed in more than certain

fraction of examples (e.g., 10% of examples) and class ck. Procedure in Algorithm 6
searches for the best and second best value of G() for given class. If gkbest is the true
best gain measure, i.e., satisfies condition gkbest − gk2best > ε for given class value ck,
the rule is expanded with condition Xa = vj ⇒ ck.

Algorithm 5 describes the expansion of default rule to a new rule of the rule set.
The new literal of the new rule has the best attribute-value evaluation and its positive
class is the one with the minimum frequency among those that satisfy the Hoeffding
bound condition. The search for new rules continues until the expansions for all possible
classes are checked.

In case of expanding some rule that already contains conditions the procedure works
as follows. The rule was induced for a certain class that was set as positive. To keep
this class of interest in the set, it is maintained as positive for the next computations of
the measure criterion (Algorithm 4). The unordered rule set in Algorithm 3 considers
computations of other classes set as the positive one and expanding the rule with the

Handling Time Changing Data with Adaptive Very Fast Decision Rules 833

Algorithm 4: ExpandRule: Expanding Ordered Rule.
input : r: One Rule;

δ: Confidence
τ : Constant to solve ties

output: NR: New Rules Set;
begin

Let NR ← {r}
Let c be the class of rule r

Compute ε =
√

R2ln(1/δ)
2N

(Hoeffding bound)

Let cr be class of r
EvaluateLiterals(cr)

if gk2best − gkbest > ε or ε < τ then
Extend r with a new condition based on the best attributeXa = vj
Release sufficient statistics of r

return NR

best condition for such class. Nevertheless, it is allowed only when the rule has already
been expanded with the original class at that call of ExpandRule. This setting is able
to produce more rules in one call of ExpandRule and the number of rules induced
from one rule r in RS in such call is at most |Cr |. Should the same rule already exist
in the set, duplicate rule is not allowed to be expanded with given condition Xa = vj .
This process creates multiple rules for different classes marked as positive, but not
necessarily for all the available classes in one call.

3.3 Rule Reaction to a Drift

As opposed to decision trees the set of rules offers the possibility to remove individual
rules, which do not perform well, without the need of rebuilding the model. This char-
acteristic is very important for incremental learning where change might occur, because
it allows faster adaptation of the model.

The previous algorithm VFDR was adapting only implicitly by inferring new rules
and specializing the existing ones. AVFDR extends the algorithm with explicit drift
detection. In addition to Lr, each rule r in AVFDR contains a drift detection method
which tracks the performance of the rule r during learning. The method employed in
AVFDR is the SPC [20] described in Algorithm 2. With every labeled training example
covered by a rule, the rule makes prediction and updates its error rate. SPCmonitors the
error rate and manages two registers during training: pmin and smin, where p is error
rate and s is standard deviation. Every time a new example (xn, yn) is covered by the
rule those values are updated when pn + sn is lower than pmin + smin.

The learning process of given rule can be in one of the following 3 stages: in-control,
out-of-control, or in warning. We follow the 3-sigma rule [21]: the warning stage is
reached if pn + sn ≥ pmin + β × smin and the out-of-control stage is reached if
pn + sn ≥ pmin + α× smin, where α = 3 and β = 2.

834 P. Kosina and J. Gama

Algorithm 5: ExpandEmptyRule: Expanding Empty Rule.
input : r: One Rule;

δ: Confidence
τ : Constant to solve ties

output: NR: New Rules Set;
begin

NR← {r}

Compute ε =
√

R2ln(1/δ)
2N

(Hoeffding bound)

foreach class ck in ascending order of class frequency do
EvaluateLiterals(ck)

if gkbest − gk2best > ε or ε < τ then
create new r′ as Xa = vj ⇒ ck
NR ← NR ∪ {r′}

if NR is not empty then
Release sufficient statistics of r

return NR

In warning stage the rule stops learning until either the status if the rule becomes
again in-control. If the rule reaches out-of-control it implies that the performance of
the particular rule has degraded significantly and can negatively influence the quality of
predictions of the classifier therefore it is removed from the set. This control enables to
keep the set up-to-date and prevent the set from excessive growth.

3.4 Classification Strategy

The set of rules learned by AVFDR can employ different classification strategies: First
Hit, Weighted Max, and Weighted Sum. The ordered rules use First Hit strategy as the
most appropriate. For the unordered rules we decided to apply Weighted Sum in the rest
of the paper. In that case all rules covering the example are used for classification and
the final class is decided by using weighted vote.

More specifically, assume that a rule r covers a test example. The example will be
classified using the information in Lr of that rule. The simplest strategy uses the dis-
tribution of the classes stored in Lr , and classify the example in the class that max-
imizes p(ck). This strategy only uses the information about class distributions and
does not look for the attribute-values; therefore it uses only a small part of the avail-
able information. In a more informed strategy, a test example is classified with the
class that maximizes the posteriori probability given by Bayes rule assuming the in-
dependence of the attributes given the class. There is a simple motivation for this
option. L stores information about the distribution of the attributes given the class
usually for hundreds or even thousands of examples, before expanding the rule and
re-initializing the counters. Naive Bayes (NB) takes into account not only the prior
distribution of the classes, but also the conditional probabilities of the attribute-values
given the class. This way, there is a much better exploitation of the available information

Handling Time Changing Data with Adaptive Very Fast Decision Rules 835

Algorithm 6: EvaluateLiterals
input : G: Gain evaluation function;

ck: Class
begin

foreach attribute Xi do
Let gijk be the G() of the best literal based on attributeXi and value vj for class
ck
if gijk > gkbest then

Let gk2best ← gkbest
Let gkbest ← gijk

else
if gijk > gk2best then

Let gk2best ← gijk

in each rule. Given the example x = (x1, . . . , xj) and applying Bayes theorem, we ob-
tain: P (ck|x) ∝ P (ck)

∏
P (xj |ck).

Using NB1 in VFDT like algorithms, is a well-known technique since it was intro-
duced by [17]. One of its greatest advantages is the boost in any-time learning property
because even though the learned rule set might not be robust enough or the individual
rules might not provide sufficient information for expert interpretation (not being spe-
cialized enough, i.e., having only one or few conditions), it may already be able highly
informed predictions based on NB classification.

4 Experimental Evaluation

In this section we test AVFDR on datasets with different properties such that we can
evaluate the behavior in various situations. We also provide comparison against deci-
sion rules which does not have explicit drift detection, and against stream decision tree
classifiers2 - VFDTc and Hoeffding Tree with ADWIN.

As an evaluation method we employed prequential classification scenario [18], where
a classifier first makes a prediction and consequently the class label is observed, the
error-rate is updated, and classifier is trained with said example. All algorithms were
implemented in Java as an extension for KNIME [2] except ADWIN, which is imple-
mented in MOA [3]. The evaluation datasets include both artificial and real data, as
well as sets with categorical and continuous attributes or their combination.

1 Other Bayesian techniques might be used. We use NB due to simplicity and being incremental.
2 Default parameters for tests: Nnb (threshold to use NB) = 50, ws (minimal weight of new

condition partition - in rules only) = 0.1, δ (confidence level) in HB = 10−6, Nmin (examples
after which HB is computed) = 200, τ (tie breaking constant) = 0.05. Due to space limitation
we do not provide thorough discussion about the influence of different parameter settings.

836 P. Kosina and J. Gama

Fig. 1. The prequential error during the learning process in RBF(50,0.0001) dataset with gradual
drift. Non-adaptive methods are slowly increasing their error rate.

4.1 Artificial Datasets

The artificial datasets were obtained using generators in [3].
The Hyperplane is generated such that the class is given by rotating hyperplane [23].

This set with 1,000,000 examples has 2 classes, 10 attributes changing at speed 0.001
with 5% noise (probability for each instance to have its class inverted). Another artificial
dataset is SEA Concepts [32] and is commonly used in stream mining tasks that require
time changing qualities of data. It is a two-class problem, defined by three attributes
(two relevant) and 10 % of noise (the same as previous). There are four concepts, each
containing 15,000 examples. The total number of examples is 60,000. LED is formed
by examples [6] with {0, 1} values of each attribute signalling whether given LED is
off or on. Only seven out of 24 are relevant. Class label reflects the number (0 to 9) dis-
played by the relevant diodes. There is 10 % of noise added to this dataset (probability
for each attribute that it would have its value inverted). The generated training set size is
1,000,000 instances. The RBF’s are generated datasets with drift introduced by moving
centroids with constant speed. The sets have 1,000,000 examples and are described as
RBF(x, y) where x is the number of centroids moving at the speed y. In Waveform
dataset [6] there are 3 classes of waves each described with 40 attributes. This dataset
had 100,000 instances and it is generated with 10 drift attributes occurring at 50,000.

4.2 Real Datasets

These datasets are mostly obtained from [14] unless cited otherwise.
The Intrusion detection from KDDCUP 99, is a data set describing connections

which are labeled either as normal or one of four categories of attack. The dataset

Handling Time Changing Data with Adaptive Very Fast Decision Rules 837

Fig. 2. The prequential error evolution throughout the learning process in LED dataset with
abrupt drift. The increase of error rate after abrupt drift occurring at 500,000 is visibly larger in
non-adaptive methods.

consists of 4,898,431 instances. The next set is Covtype, which has 54 cartographic
attributes, continuous and categorical. The goal is to predict the forest cover type for
given area. The dataset contains 581,012 instances. The Elec dataset contains data col-
lected from electricity market of New South Wales, Australia. It has 45,312 instances.
Inspired by a regression dataset used in [24], the task of Airlines dataset [3] is to pre-
dict whether a flight will be delayed given the information of the scheduled departure in
7 attributes. It consists of 539,383 instances. The Connect-4 dataset from UCI repos-
itory consists of 42 categorical attributes and contains 67,557 examples. The Activity
dataset is the Localization Data for Person Activity. The set has 164,860 instances and
8 attributes, but we removed the time information (timestamp and date).

4.3 Results

We conducted 5 runs over the synthetic datasets using different random seeds. These
datasets are designed to contain concept drift therefore provide evidence of the benefit
of adaptation. Figure 1 and Fig. 2 depict examples of the performance of the classifiers
in selected artificial datasets. The first one, Figure 1, shows RBF(50,0.0001) dataset,
which contains gradual concept drift. It can be observed that both AVFDRs cope best
with the drift. ADWIN contains adaptation technique to adapt to drift and sustains its
accuracy as opposed to VFDT and VFDRs which over time decrease their respective
accuracies. In the second example, LED dataset on Figure 2, the sudden concept drift
is highlighted by vertical line at 500,000 where all classifiers except ADWIN have no-
ticeably increased error-rate. The increase is lower in the case of adaptive methods.
AVFDRu has the best reaction and ADWIN keeps its performance on very stable level.

838 P. Kosina and J. Gama

Table 1. Prequential error rates of rule based classifiers using NB. For comparative purposes, we
report the prequential error of VFDTc using NB classifiers at the leaves.

Error rate % (variance)
VFDRo VFDRu VFDTc AVFDRu AVFDRo ADWIN

LED 30.67 (0.53) 27.17 (0.06) 29.35 (0.11) 26.65 (0.01) 28.79 (0.04) 27.63 (0.00)
RBF(0,0) 20.43 (2.62) 11.90 (2.48) 18.6 (3.74) 12.07 (2.1) 21.99 (0.63) 19.05 (4.70)

RBF(50,0.001) 68.74 (6.48) 62.15 (0.83) 69.37 (4.93) 57.63 (19.05) 60.27 (2.34) 52.50 (13.1)
RBF(50,0.0001) 49.74 (1.19) 37.62 (2.82) 54.54 (2.10) 33.60 (0.86) 34.93 (2.18) 43.81 (1.15)

SEA 15.64 (0.34) 14.68 (0.31) 15.51 (0.13) 14.14 (0.41) 15.6 (0.03) 13.48 (0.08)
Hyperplane 14.63 (0.47) 13.24 (0.53) 15.01 (0.76) 12.64 (0.31) 14.72 (0.43) 12.76 (0.18)
Waveform 24.43 (0.38) 19.07 (0.35) 20.27 (1.07) 18.90 (0.61) 23.40 (013) 19.96 (0.02)
Intrusion 7.0E-4 2.9E-4 5.4E-4 4.3E-4 5.0E-4 0.15
Covtype 18.88 13.65 15.21 15.34 15.35 19.53

Elec 28.75 25.53 27.58 25.37 24.38 19.56
Airlines 33.46 32.46 33.67 32.94 33.41 37.33

Connect-4 27.67 27.73 26.41 26.86 27.38 27.96
Activity 34.47 27.16 38.54 17.03 18.91 42.48

Average rank 5 2.54 4.31 1.78 3.62 3.77

Using artificial datasets with known position of drifts is especially beneficial for
closer examination of the drift detection. In the case of SEA datasets we observed for
AVFDRu that first drifts appeared on average after 570, 502 and 285 examples of the
second, third and fourth concept respectively. This reflects the increasing difference be-
tween the concepts. There were various numbers of other drifts following with various
delays, which is expected since a rule reflects only local change of the feature space and
might react much later depending on the examples arriving. This is a good result. A stan-
dard NB with SPC, a very good classifier for this task, needed on average 1328, 1024
and 461 examples to detect the (global) change. AVFDRo was not that successful. In
some cases the some drifts were not detected at all or very late. LED datasets were also
generated with known sudden concept drift. The results are not that straightforward.
The noise, irrelevant attributes and relatively high number of classes in combination
with higher sensitivity in local detection caused that many rules, that were generated,
were pruned before they were precise enough. Besides these false drifts many of the
actual local drifts were detected mostly between 30-100 examples.

The second group of datasets is real world data. The presence of concept drift is un-
known but can be expected. In these datasets,VFDRu mostly performs well since change,
if there is any, is probably very slow. Nevertheless, the size of the decision model grows
one order of magnitude larger than the other rule learning systems.AVFDRu still presents
very competitive performance in most of the real world sets with the advantage of smaller
rule set size. The example of prequential error evolution throughout the learning process
in real world dataset is plotted on Fig. 3. The noticeably worst performing classifier in
Airlines dataset is ADWIN. The other classifiers perform relatively similarly with the
unordered rules sets being slightly better than the rest.

The results from all the tests are collected in Tab. 1 with averaged score ranks. In
order to compare multiple classifiers on multiple datasets we applied the Friedman
test [31] and post-hoc Nemenyi test [10], based on average ranks achieved on all the
datasets, with p-value of 0.05. At this levelAVFDRu was significantly better than VFDRo

Handling Time Changing Data with Adaptive Very Fast Decision Rules 839

Fig. 3. The prequential error evolution throughout the learning process in real-world Airlines
dataset where the presence of drift is not known

and VFDTc. VFDRu was significantly better than VFDRo. With p-value of 0.1 AVFDRu

was also significantly better than ADWIN.
Conceptually, each rule is closely related to a path in a decision tree. The consequent

of a rule plays similar role as a leaf. They contain practically the same information and
possess the same functionality. Therefore, the size of the classifiers can be compared
by considering the number of rules in a set and number of leaves in a tree. The Table 2
shows the number of rules/leaves (the average number in case of the artificial datasets)
that were available at the end of the prequential process. Note that among these classi-
fiers only AVFDRs are able to decrease the number over the learning process. VFDRu

produces the largest classifier, which is expected due to its design. But it can be ob-
served that by using the drift detecting technique AVFDR is able to effectively reduce
the set while having good accuracy. Only in Covtype, complex real dataset, the much
larger set of VFDRu achieved notably better result.

In order to analyze the time we provide the prediction and learning times in prequen-
tial evaluation process of the classifiers in relation with the learning time of VFDTc
in the right part of Tab. 2. Since ADWIN was running on different framework it is not
included in this evaluation. We can conclude that the times of ordered rule sets are
practically the same as in case of VFDTc. For the unordered rules of VFDRu the time is
dependent on the number of rules, because as opposed to tree search the whole rule set
is scanned for rules that cover an example. The advantage of AVFDR is that it removes
potentially incorrect rules thus keeps the set smaller and learning and prediction times
are reduced.

840 P. Kosina and J. Gama

Table 2. The number of rules in decision rule learners at the end of the learning process. For
comparative purposes we present also the number of leaves generated by VFDTc. Relative times
refer to the ratio of the learning time of rule learners with respect to the learning time of VFDTc.

Size of Decision Models Relative times
VFDRo VFDRu VFDTc AVFDRu AVFDRo VFDRo VFDRu AVFDRu AVFDRo

LED 26 3698 50 972 16 1.1 14.5 11.9 1.5
RBF(0,0) 33 2012 81 1255 22 0.8 14.2 11.7 1.1

RBF(50,0.001) 21 6029 52 1 2 1.3 52.3 1.7 1.3
RBF(50,0.0001) 56 745 80 6 1 0.9 9.8 0.9 0.9

SEA 13 68 28 35 12 1.1 1.5 1.1 1
Hyperplane 79 1348 353 514 62 1.2 12.2 5.4 1.2
Waveform 13 637 12 129 4 0.8 9.5 2.7 0.9
Intrusion 28 424 642 5 5 1 6.6 0.9 1.1
Covtype 79 844 393 23 16 1.4 7.8 1.3 0.9

Elec 22 71 38 4 6 1.1 2.7 0.9 0.5
Airlines 59 501 1096 157 34 1.1 2.7 0.9 0.5

Connect-4 14 21 31 7 4 1 1.4 0.9 1.2
Activity 61 4278 85 31 7 1 36.9 0.9 0.8

5 Conclusions

This work presented Adaptive Very Fast Decision Rule classifier, which incrementally
induces rules for each class in a decision problem. It requires only one scan of data
and provides any-time classification model that is capable of fast adaptation to changes
in data. The adaptation is achieved by exploiting the modularity and independence of
single rules within the rule set and assigns an error based on a drift detection method
to each rule. Whenever the quality of a rule decreases significantly, the rule is removed
from the set. This approach works not only as fast adaptation tool but also as rule set
pruning method.

The proposedAVFDRmethod was tested on multiple artificial and real-world datasets
and achieved very promising results. Especially the unordered version, AVFDRu, was
very successful in fast adaptation in artificial sets with known drift. In all the datasets
AVFDRu achieved very good ranks and was significantly better than state-of-the-art Ho-
effding Tree algorithm VFDTc. The extension effectively reduced the rule set size for
time changing data streams which also reduced the learning and prediction in prequen-
tial evaluation process.

Acknowledgments. This work is funded by the ERDF - through the COMPETE pro-
gramme and by National Funds through the FCT Project KDUS (PTDC/EIA/098355/
2008). Petr Kosina acknowledges the support of Fac. of Informatics, MU, Brno.

References

1. Baena-Garcia, M., Campo-Avila, J., Fidalgo, R., Bifet, A., Gavalda, R., Morales-Bueno,
R.: Early drift detection method. In: 4th International Workshop on Knowledge Discovery
from Data Streams, ECML-PKDD, Berlin, Germany (2006)

Handling Time Changing Data with Adaptive Very Fast Decision Rules 841

2. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Thiel, K.,
Wiswedel, B.: Knime - the konstanz information miner: version 2.0 and beyond. SIGKDD
Explor. Newsl. 11, 26–31 (2009)

3. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: Massive online analysis. Journal of
Machine Learning Research, JMLR (2010)

4. Bifet, A., Gavaldà, R.: Adaptive Learning from Evolving Data Streams. In: Adams, N.M.,
Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 249–260.
Springer, Heidelberg (2009)

5. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavaldà, R.: New ensemble methods for
evolving data streams. In: Proc. of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2009, pp. 139–148. ACM, New York (2009)

6. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees,
1st edn. Chapman and Hall/CRC (1984)

7. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3, 261–283 (1989)
8. Clark, P., Boswell, R.: Rule induction with CN2: Some recent improvements. pp. 151–163.

Springer (1991)
9. Cohen, W.: Fast effective rule induction. In: Prieditis, A., Russel, S. (eds.) Machine Learn-

ing, Proc. of the 12th International Conference. Morgan Kaufmann (1995)
10. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn.

Res. 7, 1–30 (2006)
11. Domingos, P.: Unifying instance-based and rule-based induction. Machine Learning 24,

141–168 (1996)
12. Domingos, P.: Mining high-speed data streams. pp. 71–80. ACM Press (2000)
13. Ferrer, F., Aguilar, J., Riquelme, J.: Incremental rule learning and border examples selection

from numerical data streams. Journal of Universal Computer Science 11(8), 1426–1439
(2005)

14. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
15. Gama, J., Fernandes, R., Rocha, R.: Decision trees for mining data streams. Intelligent Data

Analysis 10, 23–45 (2006)
16. Gama, J., Kosina, P.: Learning decision rules from data streams. In: Proc. of the 22nd In-

ternational Joint Conference on Artificial Intelligence, pp. 1255–1260. AAAI, Menlo Park
(2011)

17. Gama, J., Rocha, R., Medas, P.: Accurate decision trees for mining high-speed data streams.
In: Proc. of the 9th International Conference on Knowledge Discovery and Data Mining,
ACM Press, New York (2003)

18. Gama, J., Sebastiäo, R., Rodrigues, P.P.: Issues in evaluation of stream learning algorithms.
In: Proc. of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 329–338. ACM, New York (2009)

19. Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall/CRC (2010)
20. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with Drift Detection. In: Bazzan,

A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer,
Heidelberg (2004)

21. E., Grant, Leavenworth, R.: Statistical Quality Control. McGraw-Hill (1996)
22. Hinkley, D.: Inference about the change point from cumulative sum-tests. Biometrika 58,

509–523 (1970)
23. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proc. of the

7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 97–106. ACM, New York (2001)

24. Ikonomovska, E., Gama, J., Džeroski, S.: Learning model trees from evolving data streams.
Data Min. Knowl. Discov. 23, 128–168 (2011)

842 P. Kosina and J. Gama

25. Klinkenberg, R.: Learning drifting concepts: Example selection vs. example weighting. In-
telligent Data Analysis 8(3), 281–300 (2004)

26. Kosina, P., Gama, J.: Very fast decision rules for multi-class problems. In: Proc. of the 2012
ACM Symposium on Applied Computing, pp. 795–800. ACM, New York (2012)

27. Maloof, M., Michalski, R.: Incremental learning with partial instance memory. Artificial
Intelligence 154, 95–126 (2004)

28. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers (1993)
29. Rivest, R.: Learning decision lists. Machine Learning 2, 229–246 (1987)
30. Schlimmer, J.C., Granger, R.H.: Incremental learning from noisy data. Machine Learning 1,

317–354 (1986)
31. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 4th edn.

Chapman & Hall/CRC (2007)
32. Street, W.N., Kim, Y.: A streaming ensemble algorithm SEA for large-scale classification,

pp. 377–382. ACM Press (2001)
33. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble

classifiers. In: Proc. of the ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pp. 226–235. ACM Press (2003)

34. Weiss, S., Indurkhya, N.: Predictive Data Mining, a practical Guide. Morgan Kaufmann
Publishers (1998)

35. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts.
Machine Learning 23, 69–101 (1996)

Improved Counter Based Algorithms

for Frequent Pairs Mining
in Transactional Data Streams

Konstantin Kutzkov

IT University of Copenhagen
konk@itu.dk

Abstract. A straightforward approach to frequent pairs mining in trans-
actional streams is to generate all pairs occurring in transactions and
apply a frequent items mining algorithm to the resulting stream. The
well-known counter based algorithms Frequent and Space-Saving are
known to achieve a very good approximation when the frequencies of the
items in the stream adhere to a skewed distribution.

Motivated by observations on real datasets, we present a general tech-
nique for applying Frequent and Space-Saving to transactional data
streams for the case when the transactions considerably vary in their
lengths. Despite of its simplicity, we show through extensive experiments
that our approach is considerably more efficient and precise than the
näıve application of Frequent and Space-Saving.

1 Introduction

Mining heavy items from data streams is a fundamental problem in knowledge
discovery. It has been widely studied from both theoretical and practical point of
view, see [10] for an overview of achieved results. Motivated by applications for
finding associations among purchased items in market baskets, many algorithms
have been developed for mining frequent k-itemsets, for k ≥ 2. In the case when
transactions are revealed one at a time in a streaming fashion, a straightfor-
ward approach to mining the frequent k-itemsets is to generate all size-k subsets
in each transaction and then apply a frequent items mining algorithm to the
resulting stream. However, this approach does not make use of the additional
information that for a transaction of length � we implicitly know the next

(
�
k

)
k-itemsets in the stream. In this paper we show that for many real datasets this
information allows us to design significantly more efficient and robust algorithms
than the näıve application of counter-based frequent items mining algorithm.

Transactional data streams. Classic algorithms likeApriori [1] andFP-Growth [14]
need several passes over the input to find the frequent itemsets. This implies that
we need a persistently stored database and for many applications this is not a fea-
sible requirement. Historically, Manku and Motwani [25] first recognized the ne-
cessity for frequent itemset mining algorithms over high-speed transactional data

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 843–858, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

844 K. Kutzkov

streams. They heuristically generalized theirLossyCounting algorithm and ob-
served that it provides good estimates for the most frequent itemsets. Association
rule mining from transactional data streams has been recognized a major research
problem due to continuously increasing data volume, see [15] for an overview of
the area.

Assuming that transactions are either generated by a random process or ar-
rive in a random order, researchers have designed randomized algorithms for
frequent itemset mining [8,30]. The theoretical analysis of the algorithms perfor-
mance thus utilizes Chernoff bounds in order to show quality estimates with high
probability. However, experiments indicate [8] that such assumptions are too op-
timistic for real datasets and the results are not nearly as good as suggested by
the theoretical analysis.

Frequent items mining. Algorithms for frequent items mining in data streams
can be roughly divided in two categories: sketch-based and counter-based algo-
rithms. Sketch-based algorithms work by hashing the items to a small sketch
of the data stream processed so far and updating a corresponding counter. The
frequency of individual items can be then estimated by reading a counter in
the sketch. The two well-known algorithms Count-Sketch [9] and Count-

Min [11] are based on this approach. The sketches consist of O(1/ε) counters.

Count-Sketch provides an additive approximation of O((εF2)
1
2) and Count-

Min of O(εF1) where Fp is the p-norm of the frequency vector of the stream. In
order to guarantee that the approximation is correct with high probability, one
runs several copies of the algorithm in parallel and returns the median of the
estimates.

Counter based algorithms are deterministic. They maintain a summary of the
items processed so far. The summary consists of a small subset of the items
with associated counters approximating the frequency of the item in the stream.
For a summary maintaining O(1/ε) entries, they provide an additive approxima-
tion εF1. It was experimentally observed that counter based algorithms provide
better guarantees than sketch based algorithms but the reasons have been un-
clear. In a recent work Berinde et al. [4] present an analysis of so called heavy
tolerant counter based algorithms, including Frequent [13,17,27] and Space-

Saving [26]. They show that both algorithms are clearly superior to sketch based
algorithms, see the third paragraph of Section 2 for a detailed discussion.

Mining frequent k-itemsets. In this paper we consider frequent pairs mining in
transactional data streams. Our algorithm can be extended in a straightforward
way to k-itemsets mining but for the ease of presentation we concentrate on
results for frequent pairs mining. Note that the generation of the frequent pairs
is considered to be the most time consuming phase in Apriori [1]. As noted by
Park et al. [28] “...the initial candidate set generation, especially for the large
2-itemsets, is the key issue to improve the performance of data mining”.

Our contribution. The straightforward application of frequent items mining al-
gorithms is the only known approach to mining frequent itemsets from trans-
actional data streams with rigorously understood behaviour. The focus in our

Improved Counter Based Algorithms for Frequent Pairs Mining 845

work is on improving the approach for counter based frequent items algorithms.
Our main contributions can be summarized as follows:

– We make the observation that for many real-life datasets the length of the
transactions considerably vary and most of the pairs in the transactional
stream are generated by a fraction of the transactions.

– Utilizing the main idea behind the Frequent algorithm, we present a simple
technique for adjusting Frequent and Space-Saving to mining frequent
pairs in transactional data streams.

– We prove that our modified approach yields an additive approximation er-
ror at least as good as the original algorithms. However, through extensive
experiments on real datasets, we obtain considerable improvements in both
running time and accuracy of the estimates.

Building upon Frequent, Jin and Agrawal [16] presented a method for improv-
ing the space requirements of Apriori. Thus, our algorithm automatically yields
an improved version of Apriori for the considered class of datasets.

2 Preliminaries

Notation. Let I be a set of n items. We assume a total order on I and for the
ease of presentation we set I = {0, 1, 2, . . . , n− 1}. A weighted stream S over I
is a sequence of m entries (i, v) for an item i ∈ I and weight v ∈ R+. When for
all entries (i, v) in S, v = 1 holds, we will refer to S as an unweighted stream. A
transaction T is a subset of items of I. The length of a transaction T , denoted
as |T |, is the number of items occurring in it. A transactional stream T consists
of m transactions revealed one at a time, p = (i, j) ⊂ I for i < j is a pair.

The frequency or weight of an item i is defined as fi =
∑

(i,v)∈S v and fS =

(f0, . . . , fn−1) is the frequency vector of the stream S. For unweighted streams
the frequency is simply the number of occurrences of i in S. For transactional
streams the frequency of a pair p is the number of transactions containing p,
|{Tj : p ⊆ Tj}|, 1 ≤ j ≤ m. The �-norm of a weighted stream S over a set I is

denoted as F�(S) = (
∑

i∈I f
�
i)

1
	 for � ≥ 0. For an unweighted stream S, F1(S)

is simply the length, i.e. the number of entries, in S. Without loss of generality,
we assume that the items i ∈ I are ordered by decreasing frequency such that
f1 ≥ f2 ≥ . . . ≥ fn. The kth item in this sequence is the item of rank k. The

k-residual �-norm of a stream S is then defined as F
res(k)
� (S) = (

∑n
i=k+1 f

�
i)

1
	 .

Clearly, F
res(0)
� (S) = F�(S). Items with weight above εF1, for a user-defined

0 < ε < 1, will be called ε-heavy hitters or just heavy hitters when ε is clear from
the context.

Heavy tolerant counter based algorithms. Let us first briefly recall how the algo-
rithms Frequent and Space-Saving work for an unweighted stream of items.
Both algorithms maintain a summary B of b entries. The summary consists of
items i ∈ I with associated counter ci serving as an estimate of the frequency of
i in the stream processed so far. We will refer to the size of the summary as the

846 K. Kutzkov

number of entries that can be recorded in the summary. When a new item j ar-
rives, we check whether j is recorded in B. If so, we increment cj by 1. If not, we
check whether all b slots are occupied by an entry and if not, we insert the entry
(j, 1) to B. The algorithms proceed differently when j is not recorded in B. In
this case Frequent decrements by 1 the counters of all entries in the summary
and then removes entries with a counter equal to 0. Space-Saving replaces an
entry (k, ck) with the smallest counter by the new entry (j, ck + 1). After pro-
cessing the stream one estimates the frequency of a given item i by checking
the corresponding entry in the summary. If i is not recorded in the summary,
Frequent returns 0 as an estimate of i’s frequency and Space-Saving returns
minimum counter in the summary. A simple analysis shows that after process-
ing the whole stream, Frequent guarantees that the frequency of each item is
underestimated by at most F1/b, and Space-Saving provides an upper bound
of the overestimation of each item by F1/b. This leads to the following

Definition 1. For a stream S, a counter based algorithm A with a summary of
size b = !1/ε" provides an ε-heavy hitter guarantee if δi ≤ !εF1" for all items
i ∈ I where δi is the absolute additive approximation error. A provides then an
ε-approximation of the weight of each item and it is called an ε-heavy tolerant
counter based algorithm.

The above implies that after processing a stream S, a counter based algorithm
providing an ε-heavy hitter guarantee will correctly detect all ε-heavy hitters.
The algorithms can be generalized in a straightforward way to handle weighted
updates such that the approximation guarantee is maintained. The generaliza-
tion poses a challenge only for the processing time of each incoming item, see
the discussion on the running time of our algorithm in Section 3 for more on
this.

Counter based vs. sketch based frequent items mining algorithms. Skewness in
the frequency distribution of items in data streams is ubiquitous, see for exam-
ple [10,12]. Therefore, an algorithm providing an approximation guarantee in
terms of the residual norm of a stream can be considered superior to algorithms
with approximation error depending on the norm of the whole stream. The anal-
ysis of randomized sketch based algorithms naturally applies to obtaining strong

k-tail approximation guarantees, i.e. depending on F
res(k)
1 , for the frequency dis-

tribution of individual items. For data streams adhering to a skewed distribution
such guarantees are much stronger than the heavy hitter guarantees provided
by the näıve analysis of counter based analysis. Building upon work by Bose et
al. [5], Berinde et al. [4] recently presented a deeper analysis of the behaviour of
heavy tolerant counter-based algorithms. In particular, their results show that

Frequent and Space-Saving yield a k-tail guarantee of (ε/k)F
res(k)
1 using a

summary with O(k/ε) entries as opposed to sketch based algorithms requiring
O((k/ε) logn) counters. This result closed the discrepancy between the better
results yielded by counter based algorithms on real and synthetic data sets as
compared to counter based algorithms, clearly indicating that counter based
algorithms are superior.

Improved Counter Based Algorithms for Frequent Pairs Mining 847

Approximation guarantees of Frequent and Space-Saving. In the following
we list several results about the approximation guarantees provided by counter
based algorithms. The first one is a generalization of the correctness argument
of Frequent.

Lemma 1. After decreasing d times the weight of at least s > b = 1
ε distinct

items in a stream S, such that no item has negative weight, all ε-heavy hitters
are guaranteed to have positive weight.

Proof. Since no item can have negative weight, d ≤ F1(S)/s holds. This implies
fi − d > 0 for all i : fi ≥ εF1(S).

Lemma 2. [4,26] After processing a weighted stream S by either Frequent or
Space-Saving the following hold

– The sum of all counters in the summary of Space-Saving is exactly F1(S).
– For a summary of size b = O(k/ε), the underestimation of the approxi-

mation returned by Frequent of the weight of each entry is bounded by

(ε/k)F
res(k)
1 .

– For a summary of size b = O(k/ε) , the overestimation of the approxima-
tion returned by Space-Saving of the weight of each entry is bounded by

(ε/k)F
res(k)
1 .

From the above we derive the following

Definition 2. A counter based algorithm with a summary of size O(k/ε) pro-
vides a (k, ε)-tail guarantee if the additive approximation of the weight of each

item is bounded by (ε/k)F
res(k)
1 .

3 Our Approach

Motivation. Before presenting our improved algorithm, let us give some infor-
mal motivation. Figure 1 presents the distribution of transaction lengths for
the Kosarak dataset and the number of pairs generated from transactions with
the given length. It turns out that more than 90% of the pairs are generated
by less than 10% of the transactions. Thus, by efficiently processing the long
transactions we can achieve considerable improvement in the running time of a
counter based algorithm applied to a stream of pairs occurring in transactions. A
näıve solution would be to simply not consider long transactions. This approach
would yield incomplete results since it is often the case the long transactions
contain more specific but still important information. In Section 4 we show that
for datasets from various real-life domains the pairs per transaction distribution
follows this pattern.

848 K. Kutzkov

0 500 1000 1500 2000 2500
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Pairs generated by transactions

Transaction lengths

N
um

be
r

of
 p

ai
rs

Fig. 1. The number of pairs in the Kosarak dataset generated by transactions with the
given length

The basic idea. At the heart of our improved counter based algorithms is the
following simple observation. Assume we want to find an ε-approximation of
the frequencies of the items in a given unweighted stream. If we repeatedly
remove s ≥ 1/ε distinct items from the stream, and then apply a counter based
frequent items mining algorithm to the updated stream, we will again achieve an
ε-approximation for all items in the stream. An informal correctness argument is
that each item removal is witnessed by the removal of s− 1 other distinct items
and thus the total decrease in the item frequency is bounded by F1/s ≤ εF1,
thus the heavy hitter guarantee is maintained. Essentially, this is a reformulation
of the main idea of the Frequent algorithm.

For mining frequent pairs in transactional streams the above idea may be
useful because we know that a transaction of length � contains

(
�
2

)
distinct pairs.

This suggests a more efficient way for processing the long transactions.

The Algorithm

A high-level pseudocode description of our algorithm FrequentPairsMiner

is presented in Figure 2. The input consists of a counter based algorithm A
providing an (ε, k)-approximation, a stream of transactions T and a user-defined
parameter t. We will distinguish between the cases when A is either Frequent
or Space-Saving. A maintains a summary B consisting of b entries. We assume
that A is capable of handling weighted updates. We proceed a transaction T ∈ T
as follows: If |T | ≤ t we generate all

(
t
2

)
pairs occurring in T and feed them into

A. Otherwise if |T | > t we add T to a batch of long transactions L and check
whether the number of distinct pairs in L is bigger than �/ε for � ≥ 1. If so, we
find the number of occurrences of all pairs occurring more than � times in L,
decrease their weight by �, and feed the resulting weighted stream into A.

Improved Counter Based Algorithms for Frequent Pairs Mining 849

function FrequentPairsMiner

Input: stream of transactions T , a counter based algorithm A, a threshold t
1: for each transaction T ∈ T do
2: if |T | ≤ t then
3: Generate the set PT of all pairs in T
4: for each pair p ∈ PT do
5: call A.update(B,p, 1)
6: else
7: add T to a batch L
8: if there are � groups of at least b distinct pairs in L then
9: Compute the set PL of weighted pairs occurring in L more than �

times
10: for each (p,wp) ∈ PL do
11: call A.update(B,p,wp − �)
12: Report all pairs in the summary B and their estimated frequency.

Fig. 2. A high-level pseudocode description of the algorithm

Theorem 1. Let T be a transactional stream and A = {Frequent, Space-

Saving} with a summary of size O(k/ε). Then for the stream of pairs in T
FrequentPairsMiner provides a (k, ε)-tail guarantee.

Proof. We first show that FrequentPairsMiner provides an ε-approximation.
Assume that d times we eliminate at least 1/ε distinct pairs in lines 8-11 and
decrease the weight of a pair by at most d. Then, we feed A with a stream with
F1 − d/ε pairs. A provides an ε-approximation, thus we have that the absolute
additive approximation for each pair is bounded by ε(F1 − d/ε) + d = εF1.

Next we prove that if δ is an upper bound on the absolute additive approx-

imation, then
δk+F

res(k)
1

b is also an upper bound on the additive approximation
of each pair for any 0 ≤ k ≤ P where P is the total number of distinct pairs in
the stream. We consider two cases:

1. A =Frequent. In this case we can charge the underestimation only from
pairs occurrences that have been deleted from the stream. Clearly, their

number is upper-bounded by kδ+F
res(k)
1 and since each deletion is witnessed

by the deletion of at least b+ 1 distinct pairs, the bound follows.
2. A =Space-Saving. In the following we denote by S the stream of pairs

generated from T . Let Pk be the set of the k most frequent pairs in the
transactional data stream. The frequency of each pair p ∈ Pk is approxi-
mated within absolute additive error of δ. Denote by SA the stream fed into
A and by SL the stream of the remaining pairs in the transactional stream S.
By Lemma 2 the total sum of counters in the summary of A is then F1(SA).
Now consider the k counters in the summary of A with the largest value.
Each of them approximates a pair with an additive error at most δ. Also, the
ith such counter, i ≤ k, has a value of at least the weight of the ith heaviest
pair in SA, which in turn implies that its value is at least the weight of the

850 K. Kutzkov

ith heaviest pair in S restricted to SA. Therefore, together with Lemma 2
we obtain that the total sum of the counters in the summary, different from

the largest k counters, is bounded by F
res(k)
1 (SA). Also, we have deleted

F1(SL) pairs occurrences from S. Therefore, the total approximation error

for all pairs amounts to kδ + F
res(k)
1 (SA) + F

res(k)
1 (SL). By Lemma 2 the

overestimation of each pair in the stream SA is bounded by
kδ+F

res(k)
1 (SA)

b .
In the stream SL we delete d times at least b distinct pairs, thus together
with Lemma 1 we obtain that we can charge to each pair an approximation

error of at most
kδ+F

res(k)
1 (SA)+F

res(k)
1 (SL)

b ≤ kδ+F
res(k)
1

b .

Once we have the recursive form for the upper bound, we can continue iterating

in this way setting δi =
kδi−1+F

res(k)
1 (S)
b while δi ≤ δi−1 for the approximation

error in the ith step holds. We either reach a state where no progress is made or,

since the approximation error is lower bounded by F
res(k)
1 (S), we have δi → δ

as i → ∞. In either case the claim follows. Setting b = O(k/ε) concludes the
proof. ��

Running time. We present efficient algorithms for the steps in Frequent-

PairsMiner. We assume that the summary can be updated in constant time.
For Frequent a hashtable implementation guarantees a constant amortized
processing time per pair. More sophisticated data structures [13,17] improve
this to constant time in the worst case. For Space-Saving a linked list imple-
mentation of the summary [26] guarantees constant worst case processing time
per pair. Using the modification from [7] one can achieve constant processing
time for weighted pairs such that the approximation error is increased by at
most a factor of 2. Using similar techniques one can obtain constant time for
weighted updates for Frequent.

The running time crucially depends on how we process a batch of long trans-
actions and mine the frequent pairs in the batch. Under the assumption that
many items will occur only once in the batch a suitable choice would be a classic
frequent itemset mining algorithm like Apriori [1] or FP-growth [14]. However,
in this case we have a relatively small number of long transactions. Under the
assumption that most pairs will occur at most once in the batch, we present
another approach aimed at minimizing the running time:

For each combination of two transactions in the batch L we compute their
intersection, generate the pairs occurring in the intersection and store them
in a hashtable associating a set of transactions IDs with each pair. Assuming
transactions are given in sorted order we can compute the intersection of two
transactions in linear time. Therefore, for a batch of q transactions, such that
the total number of items in the transactions in the batch is r, the running time
is upper bounded by O(qr): for each transactions we compute in time O(r) the
intersections with the other transactions. Let PL be the pairs occurring in L and
fL be the frequency vector of PL. Assuming a given pair p occurs fL(p) times in

the batch L, it will occur in
(
fL(p)

2

)
transaction intersections. Then the number

of pairs generated from all transactions is bounded by
∑

p∈PL:fL(p)≥2 f
L(p)2.

Improved Counter Based Algorithms for Frequent Pairs Mining 851

We can efficiently estimate whether there exist � groups in L, each of them
containing at least b distinct pairs, by a simple modification of the approach
presented in [2]. Building upon work by Bar-Yossef et al. [3], in [2] the authors
present an efficient algorithm for estimating the number of distinct pairs in
transactional data streams. Essentially, the algorithm hashes each pair in the
stream to a random number in (0,1], keeps track of the k smallest hash values
and returns as an unbiased estimate of the number of distinct pairs !k/rk" where
rk is the kth smallest hash value. Using a pairwise independent hash function one
shows that we obtain with constant error probability an (1 ± ε)-approximation
of the number of distinct pairs for k = O(1/ε2). Running O(1/δ) copies of the
algorithm in parallel and returning the median of the results guarantees an error
probability of at most δ. A clever construction of the hash function allows each
transaction to be processed in expected linear time.

The above approach admits a natural generalization for estimating the number
of pairs occurring exactly i times in L. As shown in [2] the hash function is
injective with high probability and thus instead the hash value we can also store
the pair with the corresponding hash value. At the end we obtain a sample of
pairs with their exact frequency in L and using standard approaches we estimate
the desired quantities.

4 Observations on Datasets

Table 1 summarizes the results for several real datasets. Assuming the transac-
tions are sorted by their length in decreasing order, each row stands for a dataset
and the columns give the fraction of pairs generated by the first k percent of the
transactions, 1 ≤ k ≤ 10. As can be clearly seen from the values in the table, a
small ratio of the transactions contributes the majority of pairs. We argue that
this is a ubiquitous pattern for many real-life domains.

The first datasets are taken from the FIMI repository. Kosarak contains
anonymized click-stream data of a Hungarian on-line news portal, provided by
Ferenc Bodon. Webdocs [24] is built from a spidered collection of web html
documents. BMS-Web-View1 [18] is built from purchase data of a legwear and
legcare web retailer. MovieActors was built from the IMDB database and lists
the actors acting in a given movie [7].

The next datasets were built from graphs available at the Stanford Large
Network Dataset Collection (http://snap.stanford.edu/data/). For a (directed
or undirected) graph given as a set of edges we created a transaction from the
neighbors of each vertex. Arxiv COND-MAT [23] (Condense Matter Physics) col-
laboration network is from the e-print arXiv and covers scientific collaborations
between authors papers submitted to Condense Matter category. If an author i
co-authored a paper with author j, the graph contains a undirected edge from i
to j. Therefore for each author there exists a transaction representing the set of
her coauthors. The next two datasets, WikiTalk and WikiVote, are built from
the online encyclopedia Wikipedia. For WikiTalk for each Wikipedia user i a
transaction records the set of other users j whose talk page was edited at least

852 K. Kutzkov

Table 1. The ratio of pairs from the top-k percent longest transactions to the total
number of pairs for several datasets

Dataset 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Kosarak 0.7834 0.8634 0.9012 0.9237 0.9386 0.9493 0.9572 0.9633 0.9681 0.9719

Webdocs 0.7741 0.8189 0.8467 0.8663 0.8811 0.8930 0.9027 0.9111 0.9182 0.9244

BMS-Web-View1 0.7434 0.8009 0.8347 0.8582 0.8766 0.8920 0.9035 0.9144 0.9224 0.9296

MovieActors 0.8555 0.8991 0.9163 0.9271 0.9351 0.9414 0.9467 0.9512 0.9551 0.9586

CA-CondMat 0.3917 0.5011 0.5709 0.6225 0.6633 0.6965 0.7246 0.7487 0.7695 0.7879

WikiTalk 0.9817 0.9950 0.9979 0.9989 0.9994 0.9996 0.9997 0.9998 0.9998 0.9999

WikiVote 0.5797 0.7179 0.7933 0.8412 0.8749 0.9004 0.9203 0.9352 0.9465 0.9556

web-BerkStan 0.3734 0.5234 0.6005 0.6551 0.6886 0.7179 0.7470 0.7761 0.7997 0.8213

Email-EU-All 0.9895 0.9944 0.9962 0.9973 0.9978 0.9983 0.9986 0.9987 0.9989 0.9991

soc-Epinions1 0.7432 0.8462 0.8977 0.9289 0.9488 0.9619 0.9711 0.9777 0.9825 0.9859

once by i. WikiVote represents popularity of users. For a user i a transaction lists
all users j who voted on user i [20,21]. In Web-BerkStan for a page i from the
berkely.edu and stanford.edu domains a transaction contains all pages j linked to
by i [22]. Email-EU-All is built from email data from a large European research
institution. For an email address i a transaction records all email addresses j if
i sent at least one message to j [23]. The last dataset, soc-Epinions1, uses data
from the general consumer review site Epinions.com. This is a who-trust-whom
online social network and members of the site can decide whether to ”trust”
each other. For a member i a transaction contains all the users trusted by i [29].

5 Experiments

We choose the two datasets Kosarak and Webdocs for our experiments. Kosarak
consists of 990,002 transactions over 41,270 items. The total number of pairs is
more than 108 and the number of distinct pairs is more than 107. We took a prefix
of Webdocs consisting of the first 100,000 transactions. There are over 5,267,656
items, almost 1010 pairs in total and the number of distinct pairs is slightly more
than 109. Clearly, an exact solution using a hashtable to compute the support
of all pairs is infeasible since it will require several Gigabytes of memory. As
reported in [6], the distribution of pairs frequencies in both datasets adheres to
a power law, therefore an approximation guarantee depending on the residual
norm of the frequency vector will yield high quality estimates.

Implementation details. FrequentPairsMiner has been implemented in Java.
Experiments have been run on a Mac Pro desktop equipped with Quad-Core In-
tel 2.8GHz and 8 GB RAM. For Space-Saving we implemented the algorithm as
described in [26]. For Frequent we observed that the simpler solution guaran-
teeing constant amortized cost per update is more efficient than the the linked
list data structure presented in [13,17]. We worked with standard Java data
structures which required the use of objects. A cache optimized implementation
can achieve better space complexity by using only primitive data types. How-
ever, the goal of the present paper is to compare our approach with the näıve

Improved Counter Based Algorithms for Frequent Pairs Mining 853

application of Frequent and Space-Saving to the transactional data stream.
Therefore, we don’t employ optimization tricks that will equally benefit both
approaches.

Parameters. Of crucial importance for the achieved results, both in terms of
complexity and accuracy, are the various parameters we set. In particular, how
many pairs will the summary record, which transactions will be considered long
and how many transactions are we going to keep in the batch. Frequent and
Space-Saving need a summary of size O(k/ε) to provide an (ε, k)-guarantee.
However, a frequent pair is defined in terms of the number of transactions con-
taining it. Therefore, without prior knowledge on the distribution of transaction
lengths it is impossible to predict how long will be the stream of pairs and thus
how many pairs we need to record in the summary in order to guarantee that
frequent pairs will be in the summary after processing the transactional stream.
Jin and Agrawal [16] claim that by adjusting the size of the summary of Fre-
quent for each incoming transactions we can guarantee that ε-heavy hitters
will be reported but this is erroneous. As a counter example consider a stream
of m transactions such that all transactions have length 2. Assume each pair
occurs exactly d times in the stream and we have a summary of size d− 1, such
that after processing of the m transactions no pair is recorded in the summary.
Since transactions have the same length length we will not update the size of the
summary. Then for fixed m, ε and d it is easy to construct a stream of f(m, ε, d)
longer transactions such that some of the pairs become ε-heavy hitters but have
exactly the same frequency as pairs that have not appeared among the first m
transactions. Thus, the algorithm has no way to distinguish between those pairs.
Therefore in the following we assume that the summary size is a user-defined
parameter which is to be chosen depending on the available memory. (Note that
the parameters k and ε in the theoretical analysis of the algorithm are not user
defined but simply used to obtain the best possible bounds on the approximation
error.)

From the discussion about the complexity of the algorithm it is clear that a
large batch of long transactions will dominate the running time since we need to
compute the intersection of each two transactions. Therefore, we implemented
the following heuristic: Let b be the size of the summary. In order to achieve
good running time, we will keep q long transactions in the batch L, each of them
of length at least t, such that q < t and qt2 ≥ cb for some small constant c > 1.
This will ensure that the running time for finding the intersections of the long
transactions is of the order q2

∑
ti opposed to q

∑
t2i for the explicit generation

of all pairs in the long transactions. Assuming there are not many intersections
among the long transactions, the factor c guarantees that we will (implicitly)
find at least b distinct pairs in the batch. If this fails, i.e. it turns out that we
have less than b distinct pairs in the batch, we explicitly generate all pairs in the
transactions and update the summary with each of them.

Further we observed that the frequent pairs in the batch rarely occur more
than a few times. Thus, we simply kept track of a few summary entries with the
lowest estimates and when needed, replaced one of them with a heavy entry not
recorded in the summary.

854 K. Kutzkov

Overview of experiments. We compared the straightforward application of Fre-
quent and Space-Saving to the stream of pairs to FrequentPairsMining

with respect to the following criteria:

1. Running time: For different summary sizes we measured the running time.
2. Precision: How many of the reported pairs in the summary are among the

top-k pairs for various k.
3. Recall: The ratio of the top-k pairs reported in the summary for various k.
4. Average relative error: Following [10], for the most frequent k pairs we plot

δrel = |f(p)−f̂(p)|
f(p) , i.e. the absolute difference of the estimate f̂(p) and the

exact count f(p) scaled by f(p).

In all experiments for 2)–4) we set the size of the summary to be 50,000 for
kosarak and 100,000 for webdocs. In general, we observe better running times
and more precise estimates. The former is a result of the fast processing of long
transaction. The latter is due to the fact that in many cases we find a number
of distinct pairs which is much bigger than the size of the summary. In order to
concentrate on the approximation guarantees achieved by the näıve application
of Space-Saving and our optimized approach, we did not implement the book-
keeping extension proposed in the original work [26] providing a lower bound on
the estimates.

5.1 Experiments for A =Frequent

Running time. As can be seen from Figure 3 we achieve considerably better
running time for summary sizes that are not too big. Note that all summary
sizes guarantee reasonably good estimates. For larger summaries the advantages
of our modified approach become less pronounced since less transactions are
considered long.

10
3

10
4

10
5

10
6

0

20

40

60

80

100

120

140

160

Summary size

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Naive
Optimized

10
5

0

1000

2000

3000

4000

5000

6000

7000

Summary size

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Naive
Optimized

Fig. 3. Running times for Frequent for kosarak(left) and webdocs(right) for growing
summary size

Precision and recall. In Figures 4 and 5 we plot the precision and recall for the
top-k pairs for growing k. Note that the number of pairs explicitly recorded in the
summary varies, as we do not explicitly record pairs with a counter set to 0, and
for the näıve implementation of Frequent it is usually smaller. Nevertheless,
FrequentPairsMiner achieves better precision.

Improved Counter Based Algorithms for Frequent Pairs Mining 855

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.05

0.1

0.15

0.2

0.25

Top−k pairs

P
re

ci
si

on
 fo

r
th

e
to

p−
k

pa
irs

Naive
Optimized

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Top−k pairs

P
re

ci
si

on
 fo

r
th

e
to

p−
k

pa
irs

Frequent Naive
Frequent Optimized

Fig. 4. Precision top-k pairs, k varied from 100 to 20000, for kosarak(left) and web-
docs(right)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

0.2

0.4

0.6

0.8

1

Top−k pairs

R
ec

al
l f

or
 th

e
to

p−
k

pa
irs

Frequent Naive
Freuent Optimized

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Top−k pairs

R
ec

al
l f

or
 th

e
to

p−
k

pa
irs

Frequent Naive
Frequent Optimized

Fig. 5. Recall for Frequent for top-k pairs, k varied from 100 to 20000, for
kosarak(left) and webdocs(right)

Relative approximation error. The approximation achieved by Frequent-

PairsMiner is also considerably better which can be explained with the smaller
number of pair weights decrements.

5.2 Experiments for A =Space-Saving

Running time. The running time measurements are presented in Figure 7. The
larger difference compared to Frequent seems to be due to the fact that the
summary size for Space-Saving remains constant.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top 1000 pairs in Kosarak dataset

R
at

io
 o

f d
ev

ia
tio

n
of

 th
e

es
tim

at
e

fr
om

 th
e

ex
ac

t c
ou

nt
 a

nd
 e

xa
ct

 c
ou

nt

Frequent Optimized
Frequent Naive

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top−2000 pairs

R
el

at
iv

e
er

ro
r

pe
r

pa
ir

Frequent Optimized
Frequent Naive

Fig. 6. Average relative error for Frequent for kosarak(left) and webdocs(right)

856 K. Kutzkov

10
5

0

100

200

300

400

500

600

700

800

Summary size

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

SS Naive
SS Optimized

10
5

0

5000

10000

15000

Summary size

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

SS Naive
SS Optimized

Fig. 7. Running times for Space-Saving for kosarak(left) and webdocs(right)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

0.2

0.4

0.6

0.8

1

Top−k pairs

R
ec

al
l f

or
 th

e
to

p−
k

pa
irs

SS Naive
SS Optimized

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

Top−k pairs

R
ec

al
l f

or
 th

e
to

p−
k

pa
irs

SS Naive
SS Optimized

Fig. 8. Recall for Space-Saving for kosarak(left) and webdocs(right)

Recall. The number of returned pairs in Space-Saving always equals the size of
the summary, thus results on precision will be redundant from results on recall.
Figure 8 shows the recall for the two considered datasets.

Relative approximation error. Figure 9 presents results for the relative approxi-
mation error. The straight line parallel to the x-axis is from pairs that have not
been reported.

6 Further Directions

We presented evidence that meanwhile classic frequent items mining streaming
algorithms can be considerably improved when applied to transactional streams

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Top−2000 pairs

A
ve

ra
ge

 r
el

at
iv

e
er

ro
r

fo
r

th
e

to
p−

20
00

 p
ai

rs

SS Naive
SS Optimized

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Top−k pairs

A
ve

ra
ge

 r
el

at
iv

e
er

ro
r

fo
r

to
p

pa
irs

SS Naive
SS Optimized

Fig. 9. Average relative error for Space-Saving for kosarak(left) and webdocs(right)

Improved Counter Based Algorithms for Frequent Pairs Mining 857

when the transactions lengths are skewed. A more thorough research is needed
to fully employ the benefits of our approach. In particular, other approaches
for counting exactly frequent pairs in a few long transaction should be possible.
Note that the current approach relies on the observation on real datasets that
the overlap in the long transactions in the batch is small. However, for other
datasets this assumption might not be feasible and the intersections approach
will produce poor results. In such a case applying a standard approach like
Apriori to the transactions in the batch might be more suitable.

Another direction is to apply our technique to mining frequent items from
transactional data streams over sliding windows. In the sliding window model,
we are interested in pairs occurring a certain number of times in the last t trans-
actions for a user-defined t. A natural candidate to apply (a modification of)
our approach is the algorithm by Lee and Ting [19]. This algorithm builds upon
Frequent and detects frequent items among the most recently seen t items.

Acknowledgements. I would like to thank my supervisor Rasmus Pagh for
helpful discussions.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: VLDB 1994, pp. 487–499 (1994)

2. Amossen, R.R., Campagna, A., Pagh, R.: Better Size Estimation for Sparse Matrix
Products. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010,
LNCS, vol. 6302, pp. 406–419. Springer, Heidelberg (2010)

3. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Counting
Distinct Elements in a Data Stream. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RAN-
DOM 2002. LNCS, vol. 2483, pp. 1–10. Springer, Heidelberg (2002)

4. Berinde, R., Indyk, P., Cormode, G., Strauss, M.J.: Space-optimal heavy hitters
with strong error bounds. ACM Trans. Database Syst. 35(4), 26 (2010)

5. Bose, P., Kranakis, E., Morin, P., Tang, Y.: Bounds for Frequency Estimation of
Packet Streams. In: SIROCCO 2003, pp. 33–42 (2003)

6. Campagna, A., Kutzkov, K., Pagh, R.: Frequent Pairs in Data Streams: Exploiting
Parallelism and Skew. In: ICDM Workshops 2011, pp. 145–150 (2011)

7. Campagna, A., Pagh, R.: Finding Associations and Computing Similarity via Bi-
ased Pair Sampling. In: ICDM 2009, pp. 61–70 (2009)

8. Campagna, A., Pagh, R.: On Finding Similar Items in a Stream of Transactions.
In: ICDM Workshops 2010, pp. 121–128 (2010)

9. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
Theor. Comput. Sci 312(1), 3–15 (2004)

10. Cormode, G., Hadjieleftheriou, M.: Finding the frequent items in streams of data.
ACM Commun. 52(10), 97–105 (2009)

11. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

12. Cormode, G., Muthukrishnan, S.: Summarizing and Mining Skewed Data Streams.
In: SDM 2005 (2005)

13. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency Estimation of Internet
Packet Streams with Limited Space. In: Möhring, R.H., Raman, R. (eds.) ESA
2002. LNCS, vol. 2461, pp. 348–360. Springer, Heidelberg (2002)

858 K. Kutzkov

14. Han, J., Pei, J., Yin, Y., Mao, R.: Mining Frequent Patterns without Candidate
Generation: A Frequent-Pattern Tree Approach. Data Min. Knowl. Discov. 8(1),
53–87 (2004)

15. Jiang, N., Gruenwald, L.: Research issues in data stream association rule mining.
SIGMOD Record 35(1), 14–19 (2006)

16. Jin, R., Agrawal, G.: An Algorithm for In-Core Frequent Itemset Mining on
Streaming Data. In: ICDM 2005, pp. 210–217 (2005)

17. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding fre-
quent elements in streams and bags. ACM Trans. Database Syst. 28, 51–55 (2003)

18. Kohavi, R., Brodley, C.E., Frasca, B., Mason, L., Zheng, Z.: KDD-Cup 2000 Or-
ganizers’ Report: Peeling the Onion. SIGKDD Explorations 2(2), 86–98 (2000)

19. Lee, L.K., Ting, H.F.: A simpler and more efficient deterministic scheme for finding
frequent items over sliding windows. In: PODS 2006, pp. 290–297 (2006)

20. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed Networks in Social Media. In:
CHI 2010 (2010)

21. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting Positive and Negative
Links in Online Social Networks. In: WWW 2010 (2010)

22. Leskovec, J., Lang, K., Dasgupta, A., Mahoney, M.: Community Structure in Large
Networks. Natural Cluster Sizes and the Absence of Large Well-Defined Clusters.
Internet Mathematics 6(1), 29–123 (2009)

23. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph Evolution. Densification and
Shrinking Diameters. ACM TKDD 1(1) (2007)

24. Lucchese, C., Orlando, S., Perego, R., Silvestri, F.: WebDocs: a real-life huge trans-
actional dataset. In: FIMI 2004 (2004)

25. Manku, G.S., Motwani, R.: Approximate Frequency Counts over Data Streams. In:
VLDB 2002, pp. 346–357 (2007)

26. Metwally, A., Agrawal, D., El Abbadi, A.: An integrated efficient solution for
computing frequent and top-k elements in data streams. ACM Trans. Database
Syst. 31(3), 1095–1133 (2006)

27. Misra, J., Gries, D.: Finding Repeated Elements. Sci. Comput. Program. 2(2),
143–152 (1982)

28. Park, J.S., Chen, M.-S., Yu, P.S.: Using a Hash-Based Method with Transaction
Trimming for Mining Association Rules. IEEE TKDE 9(5), 813–825 (1997)

29. Richardson, M., Agrawal, R., Domingos, P.: Trust Management for the Semantic
Web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
pp. 351–368. Springer, Heidelberg (2003)

30. Yu, J.X., Chong, Z., Lu, H., Zhang, Z., Zhou, A.: A false negative approach to min-
ing frequent itemsets from high speed transactional data streams. Inf. Sci. 176(14),
1986–2015 (2006)

Mirror Descent for Metric Learning:

A Unified Approach

Gautam Kunapuli and Jude Shavlik

University of Wisconsin-Madison, USA

Abstract. Most metric learning methods are characterized by diverse
loss functions and projection methods, which naturally begs the question:
is there a wider framework that can generalize many of these methods?
In addition, ever persistent issues are those of scalability to large data
sets and the question of kernelizability. We propose a unified approach to
Mahalanobis metric learning: an online regularized metric learning algo-
rithm based on the ideas of composite objective mirror descent (comid).
The metric learning problem is formulated as a regularized positive semi-
definite matrix learning problem, whose update rules can be derived
using the comid framework. This approach aims to be scalable, ker-
nelizable, and admissible to many different types of Bregman and loss
functions, which allows for the tailoring of several different classes of
algorithms. The most novel contribution is the use of the trace norm,
which yields a sparse metric in its eigenspectrum, thus simultaneously
performing feature selection along with metric learning.

1 Introduction

The concept of similarity, or metric, is central to many well-known algorithms
such as k-means clustering [1], k-nearest neighbors [2], multi-dimensional scal-
ing [3] and semi-supervised clustering [4]. While there are many approaches to
metric learning, a large body of work is focussed on learning the Mahalanobis
distance, which amounts to learning a feature-space transformation and com-
puting the distance in the transformed space. Among these approaches are the
work of Xing et al., [5], the large-margin nearest neighbor (LMNN) algorithm [6],
information-theoretic metric learning (ITML) [7] and BoostMetric [8]. In addi-
tion to the batch approaches above, online algorithms such the pseudo-metric on-
line learning algorithm (POLA) [9] have also been developed. These approaches
have been applied successfully to a diverse range of real-world applications such
as face verification [10] and road-lane detection [4].

The goal of a metric learning approach is to learn a distance function, typically
from additional information about the data set. In the supervised and semi-
supervised classification setting, the notion of similarity or dissimilarity can be
inferred from the class information available from the labels. Thus, if two data
points are in the same class, they are assumed to be similar to each other, while
two points in different classes are assumed to be dissimilar. The learned metric
should ensure that distance between dissimilar points is larger than distance

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 859–874, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

860 G. Kunapuli and J. Shavlik

between similar points. Such a metric, can then be used different semi-supervised
and unsupervised learning methods such as k-means clustering.

In this work, we consider the Mahalanobis metric learning problem applied to
k-nearest neighbors classification. The Mahalanobis metric is a distance function
we learn that is of the form d(x, z) = ‖Lx − Lz‖2. Thus, we hope to learn a
transformation of the data L that separates dissimilar points and brings similar
points closer, and we measure distance in this transformed space.

For the remainder of this section, we discuss the problem setting and in Sec-
tion 2, we introduce composite mirror descent for metric learning. We derive
the general update rules, and discuss their implementation details from the per-
spective of efficiency in Sections 3 and 4. The kernel version of this approach
is introduced in Section 5. This method is closely related to several other well-
known metric learning approaches and this aspect is discussed in Section 6. In
Section 7, we compare the mirror descent approach with some well-known metric
learning methods on different data sets, and conclude in Section 8.

1.1 Problem Setting

We wish to learn a Mahalanobis metric d(x, z) over a feature space X ⊆ Rn. The
metric is a distance function that is used to measure similarity between two in-
stances x and z in feature space and satisfies three conditions: d(x, z) ≥ 0 (non-
negativity), d(x, z) = d(z, x) (symmetry), and d(x, z) ≥ d(x, w) + d(w, z)
(sub-additivity). We formulate the problem in the spirit of Shalev-Shwartz et
al., [9], where the goal is to incrementally learn a metric, given triplets of the
form (xt, zt, yt)

T
t=1. The label yt = 1 indicates that training point xt is similar

to zt and y = −1 indicates dissimilarity.
The metric we learn is of the form d(x, z) = ‖L(x− z)‖2, where L ∈ Rn×n is

a linear transformation. Since learning this metric directly is difficult owing to
non-convexity, we consider instead:

dM (x, z)2 = (x − z)′L′L(x− z) = (x − z)′M(x− z), (1)

with M ∈ Sn+, the cone of positive semi-definite (psd) matrices. Given T labeled
pairs of points (xt, zt, yt)

T
t=1, we learn (M,μ) such that similar points are trans-

formed to be closer to each other, which dissimilar points are transformed to be
farther from each other. This condition can be formulated via the constraints

∀(x, z, y = +1) ⇒ dM (x, z)2 ≤ μ− 1,

∀(x, z, y = −1) ⇒ dM (x, z)2 ≥ μ+ 1,
(2)

which can be written simply as yt(μ − dM (xt, zt)
2) ≥ 1. Note that we cannot

have μ < 1 as it implies via the constraints (2) that the distance is negative. We
define the margin function for a pair of instances xt and zt, given a label yt, as

m(xt, zt, yt) = yt(μ− dM (xt, zt)
2) = yt (μ− (xt − zt)

′M(xt − zt)) . (3)

This lets us define several loss functions, for instance, the hinge-loss: �t(M,μ)
= max{ 0, 1−m(xt, zt, yt) }. The behavior of such loss functions can be observed

Mirror Descent for Metric Learning: A Unified Approach 861

in the one-dimensional example in Figure 1. When points z near x = −0.5 are
labeled similar (Figure 1, left), and their distance measured through the metric
M is under the threshold μ, the loss is zero or small. Similarly labeled points z
that are far away from x = −0.5 are penalized, with the penalty increasing with
the distance. In contrast, dissimilarly labeled points near x = −0.5 suffer a high
loss (Figure 1, right), while those that are sufficiently far away according to the
threshold μ are not penalized. It should be noted that μ controls the width of
sensitivity around x. Loss functions are discussed further in Section 2.1.

In addition to learning a metric that minimizes this notion of loss, we also
incorporate regularization into the problem so that the resulting metric has
sparsity. It is well-known that �1-regularization yields sparse solutions [11]; anal-
ogously, minimizing the trace-norm of M i.e., the sum of the singular values of
M yields sparsity in the spectrum of M , thus minimizing the rank of M [12].
Given T samples, the overall problem is one of regularized loss minimization,
which leads to an optimization problem of the form

min
M�0,μ≥1

1

T

T∑
t=1

�t(M,μ) + ρ r(M), (4)

where the loss function �t : Sn+ × R → R and the regularization function r :
Sn+ → R are both convex and ρ ∈ R+ is the regularization parameter. Note that
the minimization step in (4) contains a matrix projection into Sn+, which is a
consequence of constraining M $ 0, and a scalar projection of μ ≥ 1. Before
describing the proposed approach, we introduce some notation.

1.2 Notation and Background

Scalars are denoted in lower-case (μ), vectors in bold face (v), and matrices
in upper case (M). The vector e denotes a vector of ones, while I denotes the
identity matrix, with the dimension of either being apparent from the context.
For a vector v, the plus function v+ is defined as the componentwise maximum
with respect to zero i.e., (vj)+ = max{0, vj}, for the j-th component of v. The

−3 −2 −1 0 1 2

0

1

2

3

4

5

Hinge
Logistic
Exponential
Least sq.

−3 −2 −1 0 1 2

0

1

2

3

4

5

Hinge
Logistic
Exponential
Least sq.

Fig. 1. Behavior of different loss functions: (left) y = +1; (right) y = −1

862 G. Kunapuli and J. Shavlik

step function v� is defined componentwise as (vj)� = vj if vj > 0 and 0 if vj ≤ 0.
The inner product of matrices X and Y is defined as using the trace: 〈X, Y 〉 =
trX ′Y . We can also compute matrix gradients; one particularly useful definition
is ∇X 〈X, Y 〉 = Y . We write the singular value decomposition of X = UΣV ,
while for symmetric matrices, we can write X = V ΛV ′. Matrix functions f(X)
(e.g., expX , logX) can be computed via the eigen-decomposition of X , that is,
f(X) = V f(Λ)V ′. The Frobenius norm of X is denoted ‖X‖F =

√
〈X, X 〉;

the trace norm of X is denoted �X� = e′σ, where σ are the singular values of
X . For symmetric matrices, �X� = e′|λ|, where λ are the eigenvalues of X .

The Bregman divergence [13] with respect to a strictly convex function ψ is
defined as Bψ(x, z) = ψ(x) − ψ(z) − ∇ψ(z)′(x − z). For example, the function
ψ(x) = 1

2 ‖x‖22 is a Bregman function which induces the squared-Euclidean norm,
Bψ(x, z) = 1

2 ‖x − z‖22. This definition can naturally be extended to convex
functions defined over matrices i.e., Bψ(X,Z) = ψ(X)− ψ(Z)− 〈∇ψ(Z), (X −
Z) 〉. A well-known example is the squared-Frobenius norm Bψ(X,Z) = 1

2‖X −
Z‖2F , induced by ψ(X) = 1

2‖X‖2F .

2 Mirror Descent for Metric Learning

The mirror descent algorithm [14] is an iterative proximal-gradient method for
minimizing a convex function, φ : Ω → R. Based on this approach, an update in
the online setting, with function φt is

wt+1 = arg min
w∈Ω

Bψ(w, wt) + η∇′φt(wt)(w −wt). (5)

Recently, Duchi et al., [15] generalized mirror descent to the case where the
functions φt = �t + r are composite, consisting of loss and regularization terms:

wt+1 = arg min
w∈Ω

Bψ(w, wt) + η∇′�t(wt)(w −wt) + η r(w). (6)

The subtle, yet significant difference between (5) and (6) is that the entire com-
posite function φt is not linearized. Rather, only �t is linearized; this leads to the
composite mirror descent algorithm (comid). The reason for partial lineariza-
tion is because general mirror descent applied to �1-regularization does not lead
to sparse updates, whereas the comid update does.

We utilize the framework of Duchi et al., to formulate metric learning as
an online problem. However, we compute matrix update rules directly rather
than derive passive-aggressive-like online updates of [9]. The goal is to optimize
the objective (4) in an online manner i.e., at each iteration t = 1, . . . , T , the
algorithm receives a labeled pair of points (xt, zt, yt), which has an associated
loss function �t(M,μ), and the estimates Mt+1 and μt+1 are calculated using a
composite mirror descent update rule. Since we are interested in sparse updates
as well, we use the trace norm, �M�, the effect of which is controlled via a
regularization parameter ρ > 0. We derive generalized update rules for a general

Mirror Descent for Metric Learning: A Unified Approach 863

loss function and Bregman divergence. At each step, we compute updates given
a learning rate η > 0, and regularization parameter ρ > 0 according to

Mt+1 = arg min
M�0

Bψ(M, Mt) + η 〈∇M �t(Mt, μt), M −Mt 〉+ η ρ � M�, (7)

μt+1 = arg min
μ≥1

Bψ(μ, μt) + η∇μ�t(Mt, μt)
′ (μ− μt). (8)

This metric learning formulation1 has several advantages:

1. General framework. Different classes of algorithms can be designed based
on different Bregman and loss functions. For example, using the Euclidean
distance as the Bregman function produces additive updates, while using
relative entropy produces multiplicative updates.

2. Scalable to large data sets. As we show below, the matrix updates involve
the computation of a rank-1 update to the current eigendecomposition of
M , which is highly efficient. Furthermore, the rank-one eigen-update scheme
discussed here is embarrassingly parallelizable.

3. Trace-norm regularization produces sparse metric. The trace-norm
regularization ensures that at each step, the updated M = L′L is sparse
in its spectrum of singular/eigenvalues. The trace-norm, like the �1 norm,
introduces sparsity into the eigenvalues of M . The solution typically has
r < n non-zero eigenvalues: L̃ = VrΛrV

′
r and the approach performs input-

space feature selection.
4. Theoretical regret guarantees. In the online optimization setting, for a

strongly-convex Bregman function Bψ and a Lipschitz continuous loss func-

tion �t, comid has O(
√
T) regret [15]. Furthermore, strong convexity of the

composite function ensures O(log T) regret.
5. Kernelizable for nonlinear metric learning. Many existing distance

learning methods are not intuitively kernelizable. Recently, Chatpatanasiri
et al., [16] showed various techniques of kernelizing some popular metric
learning approaches. Their results are easily extended to this approach in
order to learn nonlinear metrics.

2.1 Loss Functions

Recall that the margin for a labeled pair of points (xt, zt, yt) is defined as
mt(ut, yt) = yt(μ− trMutu

′
t), with ut = xt−zt. When a pair (xt, zt) are similar

with yt = 1, any loss function should produce zero (or small loss) if the distance
according to the learned metric is less than a threshold i.e., trMutu

′
t ≤ μ. For

dissimilar points (yt = −1), when trMutu
′
t ≤ μ, the loss suffered is higher.

Many such loss functions can be used with the update rules (7–8). Table 1 and
Figure 1 show some common loss functions. It is interesting to note that all the
loss functions in Table 1 have gradients of the form αuu′. As we show in Section
4, we can exploit this fact to implement update rules more efficiently.

1 As the trace-norm allows us to learn a low-rank matrixM , this problem is an instance
of pseudo-metric learning; directions in the null space of M cannot be differentiated.

864 G. Kunapuli and J. Shavlik

Table 1. Examples of some loss functions, and their gradients with respect to M and
μ. For a pair of instances, ut = xt − zt, and mt(ut;M,μ) = yt(μ− trMutu

′
t).

Loss �t(Mt, μt) ∇M �t(Mt, μt) ∇μ �t(Mt, μt)

Hinge (1−mt)+ (1−mt)� (ytutu
′
t) − (1−mt)� yt

Modified Least Sq. 1
2
(1−mt)

2
+ (1−mt)+ (ytutu

′
t) −(1−mt)+yt

Exponential exp(−mt) exp(−mt) (ytutu
′
t) − exp(−mt)yt

Logistic log (1 + exp(−mt))
exp(−mt)

1+exp(−mt)
(ytutu

′
t) − exp(−mt)

1+exp(−mt)
yt

2.2 Bregman Divergences

Bregman divergences have been extensively studied in literature; see, for in-
stance, Censor and Zenios [17]. The strong convexity of Schatten and entropic
matrix functions, which we use here, was recently established by Kakade et al.,
[18]. Slightly abusing notation, we use Bψ(·, ·) for both scalars and matrices.

The squared p-norms ψ(x) = 1
2‖x‖2p are strongly convex and induce Bregman

divergences. For a matrix X , the definition can be extended to Schatten p-
norms [19], a family of unitary norms defined by applying the p-norm to its
singular values: ψ(X) = 1

2‖σ(X)‖2p. With p = 2, we obtain the squared-Euclidean

distance Bψ(x, z) = 1
2‖x − z‖22 for scalars, and the squared-Frobenius distance

i.e., Bψ(X,Z) = 1
2‖X − Z‖2F for matrices.

The function ψ(x) =
∑

i xi log xi − xi induces the Kullback-Liebler (KL)
divergence, Bψ(x, z) =

∑
i xi log

xi

zi
− xi + zi. For a matrix X , if λi is the

i-th eigenvalue, the Bregman function can be analogously extended: ψ(X) =∑
i λi logλi − λi = trX logX − X giving us the von Neumann divergence,

Bψ(X,Y) = tr (X logX −X log Y −X + Y).

3 Deriving Update Rules for Mt+1 and μt+1

The update rule (7) can be broken down into two separate updates:

Mt+ 1
2
= arg min

M
Bψ(M, Mt) + η 〈∇M �t(Mt, μt), M −Mt 〉, (9)

Mt+1 = arg min
M�0

Bψ(M, Mt+ 1
2
) + ηρ � M � . (10)

The gradient condition of (9): 0 ∈ ∇ψ(Mt+ 1
2
) − ∇ψ(Mt) + η∇M �t(Mt, μt),

gives us the intermediate solution: Mt+ 1
2
= ∇ψ−1 (∇ψ(Mt)− η∇M �t(Mt, μt)),

which can be used to solve (10). The latter is closely related to the trace-norm
minimization problem, which was solved by Cai et al., [20]:

minimize
X

Bψ(X,Y) + τ � X � . (11)

Cai et al., showed that when ψ(X) = 1
2 ‖X‖2F , the optimal solution to (11)

is Στ (Y), where Στ is the singular-value thresholding/shrinkage operator. For
X ∈ Rm×n, with SVD X = U diag(σ)V ′, the singular-value shrinkage operator

Mirror Descent for Metric Learning: A Unified Approach 865

is defined as Στ (X) = U diag(στ)V
′, where (στ)i = (σi − τ)+. Thus, Στ shrinks

all singular values by τ > 0, and cuts off those below the specified threshold to
zero i.e., those σi ≤ τ . This problem (10) differs from (11) in two key ways:

– The solution is derived for X,Y ∈ Rm×n, and assumes unitarily invariant
Bregman functions ψ(X). It relies on an elegant result by Lewis [21] that
shows that for a unitarily invariant matrix function ψ(X) (i.e., ψ(PXQ) =
ψ(X), for any P , Q unitary), the subdifferential can be calculated as ∇ψ(X)
= U diag(∇ψ(σ))V ′. However, all Bregman functions are not unitarily in-
variant2, and consequently, it is not possible to characterize the subgradients
in our general case. Fortunately, we are interested in symmetric X ∈ Sn+, and
in these cases, an analogous result by Lewis [22] characterizes subgradients
of spectral functions ψ(X) as ∇ψ(X) = V diag(∇ψ(λ))V ′, given the eigen-
decomposition X = V diag(λ)V ′. The symmetry of X ensures that ψ(X) are
orthogonally invariant (i.e., ψ(QXQ′) = ψ(X), for any orthogonal Q).

– No positivity constraintsX $ 0 are imposed in (11). In our case, since X is a
pseudo-metric, we need to ensure that it is positive semidefinite. As we show
below, we can derive a closed-form solution, taking into account that X $ 0,
using the modified eigenvalue thresholding operator, Sτ (X) = V diag(λτ)V

′,
where (λτ)i = (λi − τ)+, ensuring that all eigenvalues below the threshold τ
are cut off, including all negative eigenvalues.

Proposition 1. The optimal solution to (10) is given by

Mt+1 = ∇ψ−1
(
Sηρ(∇ψ(Mt+ 1

2
))
)

= V ∇ψ−1 (diag(Sηρ(λ))) V
′, (12)

where ∇ψ(Mt+ 1
2
) = ∇ψ(Mt)− η∇M�t(Mt, μt) = V diag(λ)V ′.

Note here that the computation of ∇ψ(Mt+ 1
2
) involves a symmetric rank-one

update because the gradient of the loss function ∇M �t is a rank-one matrix (see
Table 1). The update essentially consists of computing a symmetric rank-one
update to the current eigendecomposition of the pseudo-metric and then cutting
off all eigenvalues < ηρ. We discuss this step further in Section 4. Finally, a
closed-form update can be derived for μt+1 as well, from the formulation (8). In
this case, the intermediate solution μt+ 1

2
is projected onto μ ≥ 1.

Proposition 2. The optimal solution to (8) is given by

μt+1 = max
(
∇ψ−1 (∇ψ(μt)− η∇μ�t(Mt, μt)) , 1

)
. (13)

4 Implementing Update Rules for Mt+1

At the t-th iteration, with Mt = Vt∇ψ(Λt)V
′
t , we have:

(Intermediate gradient) ∇ψ(Mt+ 1
2
) = Vt∇ψ(Λt)V

′
t − αutu

′
t

(EVD of intermediate gradient) ∇ψ(Mt+ 1
2
) = Vt+1 Λt+1 V

′
t+1

(Matrix update/thresholding) Mt+1 = Vt+1 ∇ψ−1 (Sηρ(Λt+1)) V
′
t+1

2 An example is the entropy function that induces the von Neumann divergence: ro-
tations applied by arbitrary matrices P , Q could change the sign of the eigenvalues.

866 G. Kunapuli and J. Shavlik

−2 0 2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 99.9
10

−2

10
−1

10
0

10
1

Fraction of zero eigenvalues in spectrum (%)

T
im

e
to

 c
om

pu
te

 E
V

D
, l

og
(s

ec
on

ds
)

PROPACK lanczos

MATLAB eig

Rank−1 update: newton

Rank−1 update: rational

Fig. 2. (left) The interleaving of eigenvalues λi (�) of a matrix M ∈ S
6 with the

eigenvalues μi (◦) of a rank-one perturbation M̃ = M + ρuu′; (right) Comparing
the efficiency of Newton’s method and the rational interpolation method with Lanczos
and MATLAB’s eig which uses QR + Householder. The approaches are compared on 20
random matrices in S

500
+ , over increasing sparsity in the spectrum of the matrix.

From Table 1, we observe that the gradient of the loss function is generally
of the form �t = αutu

′
t, where ut = xt − zt. The first two steps constitute

a rank-one update of the eigendecomposition at the current iteration, which is
the most expensive step. While there are several well-known approaches (power
iteration, Lanczos, QR + Householder; see [23]), we discuss a different approach
that exploits the the eigenvalue interlacing property [23, Chapter 8] (Figure 2,
left) to significantly improve efficiency.

If Mt = V diag(λ)V ′, with eigenvalues λ1 ≤ . . . ≤ λn, then a symmetric rank-
one update is Mt+1 = Mt + αuu′, with Mt+1 = W diag(μ)W ′, and eigenvalues
μ1 ≤ . . . ≤ μn. The eigenvalues are related by the secular equation

f(μ) := 1− αu′(μIn − diag(λ))−1u = 0,

and the eigenvalues interlace i.e., if α > 0, λ1 ≤ μ1 ≤ λ2 ≤ μ2 . . . ≤ λn ≤ μn;
and if α < 0, μ1 ≤ λ1 ≤ μ2 ≤ λ2 ≤ . . . ≤ μn ≤ λn. The eigenvectors can also be
easily updated as

wi = vi(μIn − diag(λ))−1u,

where wi and vi are the i-th columns of W and V respectively. Now, since
we know that the i-th eigenvalue of Mt+1, μi ∈ (λi, λi+1), for α > 0 (and
μi ∈ (λi−1, λi), for α < 0) any root-finding method such as Newton-Raphson
safeguarded with bisection search can be used to find μi. Another consequence
of interlacing is that if λi = λi+1 = . . . = λi+k = λ, i.e., there are k repeated
eigenvalues, then we can avoid the computation of k− 1 eigenvalues (and eigen-
vectors) in the update since μi = μi+1 = . . . = μi+k−1 = λ as well. This
is particularly suitable for our purposes since we seek to introduce more zero
eigenvalues into the spectrum of the metric. We discuss some specific details of
our implementation:

Mirror Descent for Metric Learning: A Unified Approach 867

– Numerical stability. General root-finding approaches introduce numerical
instability, which propagates into the computation of the eigenvectors leading
to non-orthogonality. This issue is addressed by the rational interpolation
approach of Gu and Eisenstat [24], which we implement. The approach is
based on the observation that while Newton’s method uses a local linear
approximation of the secular equation, since the secular equation is rational,
better stability can be obtained through a local rational approximation.

– Learning rate. We use an adaptive learning rate, ηt = η/
√
t, which gives

O(
√
T) regret. The approach requires the user to select the learning rate η

and the parameter ρ, which controls the sparsity of the learned metric.
– Low Rank Learning. As, the von Neumann divergence is undefined for
low-rank matrices, we compute updates using the reduced eigendecomposi-
tion, Mt = ṼtΛ̃tṼ

′
t , where Ṽt and Λ̃t correspond only to the r non-zero

eigenvalues. This is similar to the approach of Kulis et al., [25] for low-rank
kernel learning. As a result of applying ∇ψ−1 = exp (·) to the updated eigen-
values in (12), the smallest eigenvalues in the updated matrix will all be 1,
resulting in a full-rank matrix. However, we are still able to perform feature
selection in this case by selecting the r largest eigenvalues, similar to feature
selection in principal components analysis (PCA).

The complete algorithm is described below.

Algorithm 1. Mirror Descent for Metric Learning

1: input: data (xt, zt, yt)
T
t=1, parameters ρ, η > 0

2: choose: Bregman functions ψ(M); ψ(μ), loss function �(M,μ;x, z, y)
3: initialize: M0 = In, μ0 = 1
4: for (xt, zt, yt) do
5: let ut = xt − zt, ηt = η/

√
t

6: compute gradients of loss ∇M�t = αtutu
′
t and ∇μ�t = −αt (see Table 1)

7: write ∇ψ(Mt) = Vt∇ψ(Λt)V
′
t

8: compute symmetric rank-one update Vt+1 Λt+1 V
′
t+1 = Vt∇ψ(Λt)V

′
t − αutu

′
t

9: shrink the eigenvalues Mt+1 = Vt+1∇ψ−1 (Sηρ(Λt+1)) V
′
t+1

10: margin update μt+1 = max
(
∇ψ−1 (∇ψ(μt)− η∇�t(Mt, μt)) , 1

)
11: end for

5 Kernel MDML

There are two primary approaches to kernelizing metric learning algorithms: one
based on the direct application of the kernel trick, and the other based on the
application of the Kernel Principal Components Analysis (KPCA) framework
[16]. We use the first approach here. Consider the (possibly infinite-dimensional)
nonlinear mapping φ : X → F, that maps all data x in the input space X to
a high-dimensional feature space F. Associated with this map is a kernel func-
tion κ(·, ·) that can compute inner-products in F without explicit transforma-
tion. Let X ∈ R�×n denote the matrix of all examples and Φ denote the matrix

868 G. Kunapuli and J. Shavlik

of corresponding high-dimensional vectors obtained from applying the mapping
φ to the data. In feature space, the squared Mahalanobis distance is computed
as d2(φ(x), φ(z)) = ‖L(φ(x) − φ(z)) ‖22 = (φ(x) − φ(z))′L′L(φ(x) − φ(z)). If
we parameterize L′ = ΦG′, we have that

d2(φ(x), φ(z)) = (φ(x) − φ(z))′ΦG′GΦ(φ(x) − φ(z)).

This allows us to kernelize the equation above which leads to a metric in the
feature space, dκ, expressed in terms of input-space vectors as:

d2κ(x, z) = (κ(X,x) − κ(X, z))′ M (κ(X,x) − κ(X, z)), (14)

where κ(X,x) is the column of the kernel matrix corresponding to x, and where,
with a slight abuse of notation, we have setM = G′G. Now, the margin in feature
space can be redefined as,

mκ(xt, zt, yt) = yt (μ − (κ(X,x)− κ(X, z))′ M (κ(X,x) − κ(X, z))) . (15)

As before, we can define ut = κ(X,x) − κ(X, z). Finally, once the matrix M is
learned, the Mahalanobis distance of some test point x̃ with respect to a data
point x can easily be computed as:

d2κ(x̃, x) = κ(X, x̃)− κ(X,x))′ M (κ(X, x̃)− κ(X,x). (16)

6 Related Work

Prior approaches to learning the Mahalanobis metric include work by Xing et
al., [5], the SVM-based approach of Schultz and Joachims [26] and large-margin
nearest neighbors (LMNN) [6]. Davis et al., formulate the metric learning prob-
lem as minimizing the Burg divergence subject to similarity constraints, an ap-
proach called information theoretic metric learning (ITML) [7]. The BoostMetric
approach developed by Shen et al., generalizes the well known AdaBoost algo-
rithm to use a metric as a weak learner rather than a classifier [8]. This results in
the optimization of the exponential loss of the margin function, which is solved
via coordinate descent. Recently, Guillaumin et al., [27] proposed a metric learn-
ing approach that uses logistic regression loss. Many of these algorithms can be
viewed as cases of the MDML approach presented here. The MDML approach
is also closely related to low rank kernel learning, which was studied by Kulis et
al., [25], where the nearness of kernels is measured using the von Neumann and
Burg divergences.

There also exist several metric learning approaches such as discriminant adap-
tive nearest neighbor classification (DANN) [28], neighborhood components anal-
ysis (NCA) [29] and relevant components analysis (RCA) [30] that can perform
feature selection, in addition to learning a metric. Other online algorithms for su-
pervised learning of the Mahalanobis metric include the work of Shalev-Shwartz
et al., [9] and Jain et al, [31].

Mirror Descent for Metric Learning: A Unified Approach 869

Table 2. UCI data sets

Data set #train #test #dim #trn pairs # classes

iris 105 45 4 630 3
wine 123 55 13 738 3
scale 436 189 4 2616 3

segment 147 63 19 882 7
breast 397 172 30 2382 2

ionosphere 245 106 34 1470 2

iris wine breast ionosphere segment scale
0

5

10

15

20

T
es

t E
rr

or
 (

%
)

LMNN
ITML
POLA
BoostMetric
MDML H+F
MDML L+V

iris wine breast ionosphere segment scale
0

2

4

6

8

53

63

R
un

 T
im

e
(s

ec
on

ds
)

LMNN
ITML
POLA
BoostMetric
MDML H+F
MDML L+V

Fig. 3. Comparing test error (left) and run times (right) on six UCI data sets

7 Experiments

In this section, we compare the MDML approach with some current metric
learning approaches on various data sets. We consider two classes of algorithms:
an additive algorithm that arises from using the hinge loss with the Frobenius
divergence (MDML H+F) and a multiplicative algorithm that arises from using
the logistic loss with the von Neumann divergence (MDML L+V).

7.1 Benchmark Data Sets

Weconsider fourwell-knownbatchandonlinemetric learning approaches:LMNN3,
ITML4, BoostMetric5 and POLA [9]. The latter, as well as the MDML approaches
were implemented in MATLAB.

The performance of these methods on six data sets from the UCI repository6.
The statistics of these data sets are described in Table 2. All data sets were
normalized to zero mean and unit standard deviation. The experimental results
are averaged over 10 runs; for each run, the data was split uniformly randomly
into training and test sets: 70% was used for training and the remaining 30%

3 http://www.cse.wustl.edu/~kilian/code/code.html
4 http://www.cs.utexas.edu/~pjain/itml/
5 http://code.google.com/p/boosting/
6 http://archive.ics.uci.edu/ml/

 http://www.cse.wustl.edu/~kilian/code/code.html
http://www.cs.utexas.edu/~pjain/itml/
http://code.google.com/p/boosting/
http://archive.ics.uci.edu/ml/

870 G. Kunapuli and J. Shavlik

was used for testing. The various parameters in ITML, LMNN, MDML H+F
and MDML L+V were selected through 10-fold cross validation.

For each data set, we generate triplets and similar/dissimilar pairs for the
methods here based on the approach described by Weinberger et al., [6]. To
summarize, for each data point xt, k similarly labeled nearest neighbors (targets)
and k differently labeled nearest neighbors (impostors) are selected, and triplets
are constructed appropriately. We chose k = 3 for the generation of triplets
and labeled pairs. Once the models were learned, test data were classified using
3-nearest neighbors classification as well.

Figure 3 shows the performance of these approaches with respect to test error
and running time.The generalization performance of the MDML approaches is
consistently comparable to that of other metric learning approaches. However,
the significance of the MDML approaches becomes apparent when consider-
ing the running times. BoostMetric is the most expensive approach here, even
among the batch approaches, which is not surprising considering it is an ensem-
ble approach. The generalization performance of BoostMetric is good overall,
but the performance comes at a significantly higher computational cost. While
the MDML approaches outperform the batch methods computationally, they are
also faster than POLA, which is an online approach.

We also studied the feature selection performance of the MDML approaches
on these benchmark datasets. These results are shown in Figure 4. While it is
clear that increasing values of ρ force more features to zero, it is interesting to
note that, in many cases, with an appropriate choice of the learning rate η, it is
possible to learn a highly sparse metric whose generalization performance does
not degrade significantly. As hoped, the algorithm performs input-space feature
selection while learning a pseudo-metric, which can be helpful to practitioners
when trying to learn interpretable models. A similar trend is observed when
counting the number of eigenvalues that account for 90% of the cumulative
energy of the metric. Again, the MDML approaches are able to accumulate more
information into a smaller subset of features. While Boostmetric and LMNN are
able to perform well by this measure, it should be noted again, that this comes
at a higher computational expense.

7.2 Digit Recognition

We use the Optical Recognition of Handwritten Digits (optdigits) data set
from the UCI repository for these experiments. This 64-dimensional, 10 class
data set consists of 3823 training points and 1797 test points. Generating triplets
using the approach by Weinberger et al., as described above, results in 34, 407
triplets for training. For the metric learning methods that take labeled pairs,
this approach resulted in the generation of 11, 469 similar pairs of data and
11, 469 dissimilar pairs of data. As before, we set k = 3 for both training and
testing. Parameters were selected using 5-fold cross validation. The results are
summarized in Table 3.

We compare the different approaches on test error, run time and feature se-
lection. As with the previous benchmark results, LMNN and BoostMetric are

Mirror Descent for Metric Learning: A Unified Approach 871

0.25 0.5 1 2 4
0

5

10

15

20

25

Regularization parameter, rho

N
um

be
r

of
 z

er
o

ei
ge

nv
al

ue
s

iris
wine
segment
breast
ionosphere

0.25 0.5 1 2 4 8 16 32
0

5

10

15

20

25

30

35

Regularization parameter, rho

T
es

t E
rr

or
 (

%
)

iris
wine
segment
breast
ionosphere

0.25 0.5 1 2 4 8 16 32
0

5

10

15

20

25

Regularization parameter, rho

N
um

be
r

of
 e

ig
en

va
lu

es
 d

ro
pp

ed

iris
wine
segment
breast
ionosphere

0.25 0.5 1 2 4 8 16 32
2

4

6

8

10

12

14

16

Regularization parameter, rho

T
es

t E
rr

or
 (

%
)

iris
wine
segment
breast
ionosphere

Fig. 4. (top) MDML H+F: (left) Average number of zero eigenvalues of the learned met-
ric, with fixed learning rate η, and different regularization parameters ρ; (right) the
corresponding test error. (bottom) MDML L+V: number of features dropped i.e., whose
eigenvalues do not contribute to the top 90% of the cumulative energy. This experiment
could not be performed for scale as it was extremely sensitive to parameters.

able to produce the best models, but again, this comes at the expense of a large
computational cost, particularly in the case of BoostMetric. The MDML ap-
proaches are able to generalize well overall, but the overall run time for both
methods is several orders of magnitude smaller. We also compare the ability
to perform feature selection across all the data sets using two measures. Given
L = V diag(λ)V ′, the first measure is simply the number of non-zero eigenvalues
of L i.e., ‖λ‖0. The second measure is the number of eigenvalues required to
account for 90% of the cumulative energy of the metric. The cumulative energy
of the i-th largest eigenvalue is ei =

∑i
j=1 λj . The last column shows the number

of features r such that er ≥ 0.9
∑n

i=1 λi; this is used to pick a reduced subset
of features during PCA. Both MDML methods are able to perform input space
feature selection effectively; for von Neumann, even though a full-rank matrix is
learned, we are able to pick a reduced subset because the cumulative energy is
concentrated in a few eigenvalues.

872 G. Kunapuli and J. Shavlik

Table 3. Performance of the different approaches on the optdigits data set

Data set Test Error Run Time Non-zero Num. feats.
(%) (seconds) features for 90% energy

LMNN 1.669 54.213 30 20
ITML 5.509 25.745 62 43
POLA 2.282 14.607 53 40

BoostMetric 1.758 2072.427 62 19
MDML H+F 1.892 15.232 26 22
MDML L+V 1.948 13.768 62 29

8 Conclusions and Future Work

We have presented an incremental metric learning approach (MDML) which not
only optimizes the notion of loss at every step, but is also regularized. Specifi-
cally, we are interested in learning metrics that are sparse in the eigenspectrum,
and to this end, the metric learning problem was regularized with the trace
norm. This formulation is solved using composite mirror descent and results in
a very general framework. Several different types of algorithms can be derived
by choosing different loss functions and Bregman functions. Furthermore, the
updates result in a symmetric rank-one update at the current step; this can be
implemented very efficiently making the approach scalable to large data sets.
Preliminary experimental results suggest that the approach performs compara-
bly with current approaches with regard to generalization. However, the ability
to learn a metric along with feature selection makes this approach attractive to
machine learning practitioners.

These proof-of-concept results suggests several exciting directions for future
research, some of which are currently under consideration. Given that the up-
dates are embarrassingly parallelizable, an immediate target is the massive data
setting, where we need to learn with millions of data points. In addition, the
approach is also amenable to the addition of local geometry constraints in or-
der to learn low-dimensional geometry-aware metrics that lead to representable
models. Finally, the kernel-MDML approach is a very powerful extension to lin-
ear metric learning, with applications in colored dimensionality reduction and
manifold alignment.

Proof of Proposition 1

The optimal solution M̄ = V̄ diag(λ̄) V̄ ′ should satisfy the gradient condition for (10):

∇ψ(Mt+ 1
2
)−∇ψ(M̄) ∈ ηρ ∂ � M̄�, (17)

where ∂ � M̄� denotes the set of all subgradients of �M̄�. For an m × n matrix, M̄
with SVD of M̄ = Udiag(σ)V ′ the subgradients are given by [32]:

∂ � M̄� =
{
UV ′ +W |W ∈ R

m×n, U ′W = 0, WV = 0, ‖W ‖2 ≤ 1
}
. (18)

Mirror Descent for Metric Learning: A Unified Approach 873

In this case, since M̄ is symmetric, we have M̄ = V̄ Λ̄V̄ ′ and we now need to show that
any M̄ which satisfies M̄ ! 0 and the subgradient condition

∂ � M̄� =
{
In +W |W ∈ S

n, V̄ ′W = 0, W V̄ = 0, ‖W ‖2 ≤ 1
}

(19)

is optimal. Decompose ∇ψ(Mt+ 1
2
) = V ΛV ′ further into ∇ψ(Mt+ 1

2
) = V+Λ+V

′
+ +

V−Λ−V ′
−, where the subscript + (and similarly −) refers to components of V and Λ

with eigenvalues λi > ηρ (and similarly λi ≤ ηρ). The gradient at the optimal solution
∇ψ(M̄) = Sηρ(∇ψ(Mt+ 1

2
)) can be expressed by directly thresholding the eigenvalues:

∇ψ(M̄) = V+(Λ+ − ηρ In)V ′
+.

Substituting the gradients into the first-order condition (17), we have

∇ψ(Mt+ 1
2
)−∇ψ(M̄)= ηρ In + V−Λ−V ′

−,

= ηρ
(
In + 1

ηρ
V−Λ−V ′

−
)
.

(20)

Choosing V̄ = V+ and W = 1
ηρ
V−Λ−V ′

−, we immediately have W ∈ S
n, V̄ ′W = 0 and

WV̄ = 0. Also, ‖W ‖2 = ηρ ‖λ−‖2 ≤ 1, since, by construction, all components of λ−
are ≤ ηρ. By the very same construction, we also have that M̄ is psd, since λ+ > ηρ.
Thus, we have shown that ∇ψ(M̄) = Sηρ(∇ψ(Mt+ 1

2
)) is optimal to (10). �

Acknowledgements. The authors gratefully acknowledge the support of Defense
Advanced Research Projects Agency (DARPA) Machine Reading Program under Air
Force Research Laboratory (AFRL) prime contract no. FA8750-09-C-0181, and the
National Institutes of Health under the National Library of Medicine grant no. NLM
R01-LM008796. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the view of the
DARPA, AFRL, or the US government. The authors would also like to acknowledge
anonymous reviewers for their invaluable comments.

References

1. MacQueen, J.: On convergence of k-means and partitions with minimum average
variance. Annals of Mathematical Statistics 36, 1084 (1965)

2. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transac-
tions on Information Theory IT-13(1) , 21–27 (1967)

3. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman and Hall (2001)
4. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering

with background knowledge. In: Proc. 18th ICML, pp. 577–584 (2001)
5. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with

application to clustering with side-information. In: NIPS, vol. 15, pp. 505–512
(2002)

6. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin
nearest neighbor classification. In: NIPS, vol. 19 (2006)

7. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric
learning. In: Proc. 24th ICML, pp. 209–216 (2007)

8. Shen, C., Kim, J., Wang, L., van den Hengel, A.: Positive semidefinite metric
learning with boosting. In: NIPS, vol. 22, pp. 629–633 (2009)

874 G. Kunapuli and J. Shavlik

9. Shalev-Shwartz, S., Singer, Y., Ng, A.Y.: Online and batch learning of pseudo-
metrics. In: Proc. 21st ICML, pp. 94–102 (2004)

10. Chopra, S., Hadsell, R., Lecun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: Proceedings of Computer Vision and Pat-
tern Recognition Conference, pp. 539–546. IEEE Press (2005)

11. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B 58, 267–288 (1994)

12. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

13. Bregman, L.M.: The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Computational Mathematics and Mathematical Physics 7, 200–217 (1967)

14. Beck, A., Teboulle, M.: Mirror descent and nonlinear projected subgradient meth-
ods for convex optimization. Operations Research Letters 31, 167–175 (2003)

15. Duchi, J., Shalev-Shwartz, S., Singer, Y., Tewari, A.: Composite objective mirror
descent. In: COLT, pp. 14–26 (2010)

16. Chatpatanasiri, R., Korsrilabutr, T., Tangchanachaianan, P., Kijsirikul, B.: On
kernelization of supervised Mahalanobis distance learners. Computing Research
Repoisitory (CoRR) abs/0804.1441 (2008)

17. Censor, Y.A., Zenios, S.A.: Parallel Optimization: Theory, Algorithms and Appli-
cations. Oxford University Press (1997)

18. Kakade, S.M., Shalev-Shwartz, S., Tewari, A.: On the duality of strong convexity
and strong smoothness: Learning applications and matrix regularization (preprint)

19. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (1990)
20. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix

completion. SIAM Journal on Optimization 20, 1956–1982 (2010)
21. Lewis, A.S.: The convex analysis of unitarily invariant matrix functions. Journal

of Convex Analysis 2, 173–183 (1995)
22. Lewis, A.S.: The mathematics of eigenvalue optimization. Mathematical Program-

ming 97, 155–176 (2003)
23. Golub, G.H., Van Loan, C.F.: Matrix Computations (Johns Hopkins Studies in

Mathematical Sciences). 3rd edn. The Johns Hopkins University Press (1996)
24. Gu, M., Eisenstat, S.C.: A stable and efficient algorithm for the rank-one mod-

ification of the symmetric eigenproblem. SIAM Journal on Matrix Analysis and
Applications 15(4), 1266–1276 (1994)

25. Kulis, B., Sustik, M.A., Dhillon, I.S.: Low-rank kernel learning with bregman ma-
trix divergences. J. Mach. Learn. Res. 10, 341–376 (2009)

26. Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons.
In: NIPS, vol. 16 (2004)

27. Guillaumin, M., Verbeek, J.J., Schmid, C.: Is that you? metric learning approaches
for face identification. In: ICCV, pp. 498–505 (2009)

28. Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification.
IEEE Trans. on Pattern Analysis and Machine Intelligence 18(6), 607–616 (1996)

29. Goldberger, J., Roweis, S.T., Hinton, G.E., Salakhutdinov, R.: Neighbourhood
components analysis. In: NIPS, vol. 17 (2004)

30. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning distance functions
using equivalence relations. In: Proc. 20th ICML, pp. 11–18 (2003)

31. Jain, P., Kulis, B., Dhillon, I.S., Grauman, K.: Online metric learning and fast
similarity search. In: NIPS, pp. 761–768 (2008)

32. Watson, G.A.: Characterization of the subdifferential of some matrix norms. Linear
Algebra and its Applications 170, 33–45 (1992)

Author Index

Abbeel, Pieter I-1
Affenzeller, Michael II-824
Ahmadi, Babak I-585
Akaho, Shotaro II-35
Akrour, Riad II-116
Ali, Wafa Bel Haj I-314
An, Aijun II-483
Artières, T. I-506
Asoh, Hideki II-35
Atzmueller, Martin II-277, II-842
Aussem, Alex I-58

Bai, Bing I-159
Bai, Xiao I-207
Balcan, Maria-Florina II-846
Bannai, Hideo II-435
Barlaud, Michel I-314
Batal, Iyad II-260
Batina, Lejla I-253
Bauckhage, Christian II-850
Becker, Martin II-277
Beham, Andreas II-824
Bespalov, Dmitriy I-159
Bhargava, Aniruddha II-644
Bhattacharyya, Pushpak I-774
Bickel, Steffen II-676
Blanc, Sebastian II-828
Blasiak, Sam II-419
Blunsom, Phil I-760
Boden, Brigitte I-458
Böhm, Klemens II-828
Bootkrajang, Jakramate I-143
Boularias, Abdeslam II-227
Boullé, Marc II-243
Buccafurri, Francesco II-467
Buntine, Wray I-106
Burger, Thomas I-299
Burnside, Elizabeth S. I-617

Cao, Qiong I-283
Chang, Edward Y. I-553
Chang, Kuiyu I-794
Chen, Enhong II-548
Chen, Tianqi II-757

Cheng, Weiwei II-83
Chidlovskii, Boris I-681
Chin, Alvin II-613
Chowdhary, Girish II-99
Chu, Dejun I-537
Chudán, David II-808
Chung, Fu-lai II-789
Cissé, M. I-506
Cohen, William W. II-773
Collins, John II-132
Collins, Tony J. I-269
Cong, Gao I-569
Cooper, Gregory II-260
Courty, Nicolas I-299
Cox, James I-237
Crammer, Koby II-323

D’Ambrosio, Roberto I-314
Denoyer, Ludovic II-180
De Raedt, Luc I-2
Ding, Chris II-339
Diot, Fabien I-394
Dogan, Ürün I-122
Dubbin, Gregory I-760
Dugan, Michael II-51
Duh, Kevin II-293
Dulac-Arnold, Gabriel II-180
Duling, David I-237

Eck, Douglas I-4
Edelkamp, Stefan I-175
Elghazel, Haytham I-58
Elkan, Charles I-665, II-211
El-Yaniv, Ran I-744
Enokuma, Yuki II-435
Ermon, Stefano II-195, II-499

Faddoul, Jean Baptiste I-681
Faloutsos, Christos I-521
Faltings, Boi I-410
Forman, George II-51
Frasconi, Paolo II-854
Fries, Sergej I-458
Fromont, Elisa I-394

876 Author Index

Gallinari, Patrick I-506, II-180
Gama, João I-827
Gao, Jing II-692
Garnett, Roman I-378
Gasse, Maxime I-58
Gay, Dominique II-243
Geramifard, Alborz II-99
Geurts, Pierre I-191, I-346
Ghahramani, Zoubin II-858
Ghosh, Shalini I-90
Giannotti, Fosca II-1
Gilleron, Rémi I-681
Glasmachers, Tobias I-122
Golshan, Behzad II-660
Gomes, Carla II-195
Görnitz, Nico I-633
Grabocka, Josif II-725
Graepel, Thore I-106
Guo, Shengbo I-106
Guo, Wenge II-1
Guo, Yuhong II-355
Gupta, Manish II-692

Hai, Phan Nhat II-820
Han, Jiawei II-692
Hancock, Edwin R. I-207
Harvey, Nicholas J.A. II-846
Hauskrecht, Milos II-260
Hazucha, Andrej II-808
Heyer, Gerhard II-812
Hidasi, Balázs II-67
Hinneburg, Alexander II-838
Ho, Tu Bao I-490
Hoi, Steven C.H. I-810
Hopcroft, John E. II-499
Hotho, Andreas I-728
How, Jonathan P. II-99, II-148
Hruschka Jr., Estevam R. II-307
Hu, Fangwei II-757
Huang, Kaizhu I-648
Huang, Sheng II-597
Huang, Tzu-Kuo II-741
Huang, Yi I-601
Hui, Siu Cheung I-794
Hüllermeier, Eyke II-83
Husaini, Mus’ab II-804

I, Tomohiro II-435
Ienco, Dino II-820

Igel, Christian I-122
Iwata, Tomoharu II-293

Jähnichen, Patrick II-812
Jeudy, Baptiste I-394
Jiang, Wenhao II-789
Jiang, Xueyan I-601

Kabán, Ata I-143
Kalousis, Alexandros I-223
Kamishima, Toshihiro II-35
Kandemir, Melih II-403
Kargar, Mehdi II-483
Kaski, Samuel II-403
Kautz, Henry I-90
Keim, Daniel I-5
Keller, Fabian II-828
Kersten, René I-42
Kersting, Kristian I-378, I-585, II-850
Ketter, Wolfgang II-132
Khardon, Roni I-711
Kibriya, Ashraf M. I-426
Kimura, Masahiro II-565
Kirshenbaum, Evan II-51
Klami, Arto II-403
Kliegr, Tomáš II-808
Kloft, Marius I-633
Kluegl, Peter I-728
Knobbe, Arno II-371
Koçyiğit, Ahmet II-804
Koedinger, Kenneth R. II-773
Kommenda, Michael II-824
Kong, Deguang II-339
Kong, Kang I-537
Kosina, Petr I-827
Kranjc, Janez II-816
Kriegel, Hans-Peter I-601
Krishnamurthy, Prashant II-531
Krömer, Oliver II-227
Kronberger, Gabriel II-824
Kumar, Abhishek I-665
Kunapuli, Gautam I-859
Kutzkov, Konstantin I-843

Laber, Eduardo S. II-709
Landwehr, Niels II-676
Laskey, Kathryn B. II-419
Lavrač, Nada II-816
Lax, Gianluca II-467
Lee, Sangkyun II-387

Author Index 877

Lee, Wee-Sun II-164
Lemmerich, Florian I-728, II-277, II-842
Leong, Tze-Yun II-164
Li, Ming I-269
Li, Nan I-330, II-773
Li, Peng I-283
Li, Ping I-474
Li, Shaohua I-569
Liebig, Thomas II-629
Lijffijt, Jefrey II-451
Lippi, Marco II-854
Liu, Cheng-Lin I-648
Liu, Nathan N. II-757
Liu, Qi II-548
Liu, Ruilin II-1
Louppe, Gilles I-346
Luo, Zhigang I-269

Macropol, Kathy I-442
Maes, Francis I-191
Mantrach, Amin I-130
Marchiori, Elena I-253
Marek, Tomáš II-808
Marilly, Emmanuel I-394
Marteau, Pierre-François I-299
Martinot, Olivier I-394
Mavroeidis, Dimitrios I-253
May, Michael II-629
Menon, Aditya Krishna I-665
Miao, Chunyan I-569
Michini, Bernard II-148
Misra, Gaurav II-660
Monreale, Anna II-1
Morik, Katharina II-387
Motoda, Hiroshi II-565
Mücke, Manfred I-74
Mukherjee, Subhabrata I-774
Müller, Emmanuel II-828

Nanavati, Amit A. II-581
Nanopoulos, Alexandros II-725
Narayanam, Ramasuri II-581
Nassif, Houssam I-617
Natarajan, Sriraam I-585
Neumann, Marion I-378
Nguyen, Huy II-515
Nguyen, Tam T. I-794
Nguyen, Truong-Huy Dinh II-164
Nickel, Maximilian I-601
Niekler, Andreas II-812

Nielsen, Frank I-314
Nijssen, Siegfried II-371
Nocera, Antonino II-467
Nock, Richard I-314
Nowak, Robert II-644

Ohara, Kouzou II-565
Orbach, Matan II-323

Page, David I-617
Pápai, Tivadar I-90
Papalexakis, Evangelos E. I-521
Papapetrou, Panagiotis II-451
Passerini, Andrea II-854
Patricia, Novi I-378
Pedreschi, Dino II-1
Pelechrinis, Konstantinos II-531
Peng, Haoruo I-553
Pernkopf, Franz I-74
Peters, Jan II-227
Peters, Markus II-132
Podpečan, Vid II-816
Poncelet, Pascal II-820
Preiss, Rico II-838
Preux, Philippe II-180
Pu, Li I-410
Punta, Marco II-854
Puolamäki, Kai II-451
Puppe, Frank I-728

Qi, Yanjun I-159

Ramavajjala, Vivek II-211
Ramon, Jan I-362, I-426
Rangwala, Huzefa II-419
Rätsch, Gunnar I-633
Reinprecht, Peter I-74
Renders, Jean-Michel I-130
Reutemann, Peter II-833
Riondato, Matteo I-25

Saar-Tsechansky, Maytal II-132
Saito, Kazumi II-565
Sakuma, Jun II-35
Sanner, Scott I-106
Santos Costa, Vı́tor I-617
Sarle, Warren I-237
Sawade, Christoph II-676
Saygın, Yücel II-804
Scheffer, Tobias II-676

878 Author Index

Scheibenpflug, Andreas II-824
Schmidt-Thieme, Lars II-725
Schneider, Jeff II-741
Schoenauer, Marc II-116
Schröder, René II-838
Schuurmans, Dale II-355
Sebag, Michèle II-116
Seidl, Thomas I-458
Selman, Bart II-195
Shad, Shafqat Ali II-548
Shavlik, Jude I-859
Shokoufandeh, Ali I-159
Shrivastava, Anshumali I-474
Sidiropoulos, Nicholas D. I-521
Siebes, Arno I-42
Šimůnek, Milan II-808
Singh, Ambuj I-442
Škrabal, Radek II-808
Smyth, Padhraic I-7
Sotelo, David II-709
Stolpe, Marco II-387
Stommel, Martin I-175
Sun, Yizhou II-692

Takeda, Masayuki II-435
Tang, Jie II-613
Tao, Qing I-537
Tapucu, Dilek II-804
Tatti, Nikolaj I-9
Teisseire, Maguelonne II-820
Terzi, Evimaria II-660
Than, Khoat I-490
Thurau, Christian II-850
Tikk, Domonkos II-67
Toepfer, Martin I-728
Tong, Hanghang II-597
Torre, Fabien I-681
Tresp, Volker I-601
Tschiatschek, Sebastian I-74

Upfal, Eli I-25
Ure, N. Kemal II-99
Ursino, Domenico II-467

Valentim, Caio II-709
van Laarhoven, Twan I-253
Vanschoren, Joaquin II-371, II-833
Vembu, Shankar I-665
Verma, Saurabh II-307
Vespier, Ugo II-371

Vetek, Akos II-403
Vinterbo, Staal A. II-19
Voj́ı̌r, Stanislav II-808
von Oertzen, Timo II-676
Vreeken, Jilles I-9

Wagner, Stefan II-824
Wahabzada, Mirwaes II-850
Wang, Hongnan I-269
Wang, Hui (Wendy) II-1
Wang, Jun I-223
Wang, Liaoruo II-499
Wang, Wei II-597, II-613
Wang, Xia II-613
Wang, Yuyang I-711
Wang, Yuyi I-362
Wang, Zhengyu I-553
Wehenkel, Louis I-191
Widmer, Christian I-633
Wilson, Andrew Gordon II-858
Woznica, Adam I-223
Wrobel, Stefan II-629
Wu, Gaowei I-537
Wu, Sen II-613

Xiang, Biao II-548
Xiao, Yanghua II-597
Xu, Bo II-597
Xu, Jun-Ming II-644
Xu, Tong II-548
Xu, Zhao II-629
Xue, Yexiang II-195

Yanay, David I-744
Yang, Deqing II-597
Yang, Peipei I-648
Yang, Qiang II-757
Yang, Yu II-548
Yanikoglu, Berrin II-804
Yeung, Dit-Yan I-697
Ying, Yiming I-283
Yu, Yang I-330
Yu, Yong II-757

Zhang, Xianglilan I-269
Zhang, Yu I-697
Zhang, Zhihong I-207
Zhang, Zhihua I-553
Zhao, Peilin I-810
Zhao, Zheng I-237

Author Index 879

Zheng, Rong II-515
Zhou, Shuchang I-553
Zhou, Zhi-Hua I-330

Zhu, Xiaojin II-644
Zhuang, Honglei II-613
Zihayat, Morteza II-483

	Title
	Preface
	Organisation
	Table of Contents
	Invited Talks
	Machine Learning for Robotics
	Declarative Modeling for Machine Learning and Data Mining
	Machine Learning Methods for Music Discover yand Recommendation
	Solving Problems with Visual Analytics: Challenges and Applications
	Analyzing Text and Social Network Data with Probabilistic Models

	Association Rules and Frequent Patterns
	Discovering Descriptive Tile Trees
	Introduction
	Encoding Data with Tile Trees
	Mining Good Tile Trees
	Finding the Optimal Tile
	Related Work
	Experiments
	Discussion
	Conclusion
	References

	Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight PerformanceGuarantees
	Introduction
	Previous Work
	Our Contributions

	Preliminaries
	Datasets, Itemsets, and Association Rules
	VC-Dimension

	The Dataset's Range Space and Its VC-Dimension
	Mining (top-K) Frequent Itemsets and Association Rules
	Mining Frequent Itemsets
	Mining Top-K Frequent Itemsets
	Mining Association Rules

	Experimental Evaluation
	References

	Smoothing Categorical Data
	Introduction
	Preliminaries
	Data and Patterns
	Introducing Krimp

	The Problem
	Formalising the Problem

	Introducing Smooth
	Experiments
	UCI Data
	Artificial Data

	Discussion
	Related Work
	Conclusions
	References

	Bayesian Learning and Graphical Models
	An Experimental Comparison of HybridAlgorithms for Bayesian Network Structure Learning
	Introduction
	Preliminaries
	Constraint-Based Structure Learning
	The Hybrid Parents and Children Algorithm (HPC)
	Hybrid HPC (H2PC)
	Experimental Validation
	Discussion
	Conclusion
	References

	Bayesian Network Classifiers with ReducedPrecision Parameters
	IntroductionWrite introduction …
	Motivating Example
	Background
	Probabilistic Classification
	Bayesian Networks and Learning Bayesian Network Classifiers
	Sensitivity of Bayesian Networks

	BNCs in the Integer Domain
	Experiments
	Number of Extreme Parameter Values in BNCs
	Reduced Precision Classification Performance

	Conclusion and Further Work
	References

	Combining Subjective Probabilities and Datain Training Markov Logic Networks
	Introduction
	Background
	Markov Logic Network
	Exponential Families of Probability Distributions

	Relationship between Subjective Probabilities and the Parameters of the Exponential Family
	Gaussian Priors and Chordal Graphs
	Defining a Prior on the Natural Parameters
	Defining Prior on the Mean Parameters
	Choosing the Prior
	Cases Solvable by Gradient Ascent

	Experiments
	Related Work
	Conclusion
	References

	Score-Based Bayesian Skill Learning
	Introduction
	Skill Learning Using TrueSkill
	Score-Based Bayesian Skill Models
	Offence and Defence Skill Models
	Poisson Offence/Defence Skill Model.
	Gaussian Offence/Defence Skill Model.

	Gaussian Score Difference (SD) Model

	Skill and Win Probability Inference
	Inference in TrueSkill
	Inference in Poisson-OD Model
	Inference in Gaussian-OD Model
	Inference in Gaussian-SD Model

	Empirical Evaluation
	Data Sets
	Evaluation Criteria
	Information Gain.
	Win/No-Win Prediction Accuracy.
	Score Prediction Error.

	Results
	Information Gain.
	Win/No-Win Prediction Accuracy.
	Score Prediction Errors.

	Related Work
	Conclusion
	References

	Classification
	A Note on Extending Generalization Boundsfor Binary Large-Margin Classifiers to Multiple Classes
	Introduction
	Large-Margin Multi-category Classification
	Extending Bounds to Multi-category Classification
	Example: A Bound Based on Rademacher Complexity
	Extending a Binary Bound Based on Rademacher Complexity
	Sum vs. Maximum of Margin Violations

	Discussion
	References

	Extension of the Rocchio Classification Methodto Multi-modal Categorization of Documents in Social Media
	Introduction
	Problem Statement
	Multi-modal Classes Modeling
	Multi-modal Late Fusion
	Experiments and Discussions
	The ENRON Data Set
	Benchmark Protocol
	Classification Models and Tuning
	Results and Discussion

	Related Work
	Conclusions
	References

	Label-Noise Robust Logistic Regressionand Its Applications
	Introduction
	Label-Noise Robust Logistic Regression
	Parameter Estimation with Multiplicative Updates
	Multiclass Label-Noise Robust Logistic Regression

	Convergence of the Algorithm
	Comparison with EM Based Optimisation

	Sparse Extension via a Bayesian-Regularised Generalised Lasso
	Experimental Validation and Applications
	Simulated Label Noise
	Application to Finding Mislabelled Gene Arrays in Colon Cancer Data
	Application to Structure Discovery: Inferring a Class-Topology in Multi-class Problems
	Application to Learning from Crowds: Learning to Classify Images Using Cheaply Obtained Labelled Data

	Conclusions
	References

	Sentiment Classification with Supervised SequenceEmbedding
	Introduction
	Supervised Sequence Embedding
	Latent n-Gram Embedding
	Latent Document Embedding
	Classifier
	Related Methods

	Experiments
	Implementation Details
	Classification Results
	Illustrative Examples
	Topic Categorization

	Conclusions and Future Work
	References

	The Bitvector Machine: A Fast and RobustMachine Learning Algorithm for Non-linear Problems
	Introduction
	Support Vector Machines
	Bitvector Machine
	Case Studies
	Experiments
	Artificial Data
	Real World Data

	Conclusion
	References

	Dimensionality Reduction, Feature Selection andExtraction
	Embedding Monte Carlo Search of Featuresin Tree-Based Ensemble Methods
	Introduction
	Problem Formulation
	A General Scheme for Embedding Feature Generation
	Feature Generation Algorithms
	Feature Grammar Using Reverse Polish Notation
	Feature Generation as a Sequential Decision-Making Problem
	Monte Carlo Search for Feature Generation

	Experimental Results
	Datasets and Methods
	Impact of Parameters K and D
	Overall Comparison of Methods

	Conclusion
	References

	Hypergraph Spectra for Semi-supervised FeatureSelection
	Introduction
	Hypergraph Construction
	Hypergraph Representation
	Feature Selection through Semi-supervised Subspace Learning
	Hypergraph Semi-supervised Subspace Learning
	Robust Feature Selection Based on 1-Norms

	Feature Evaluation Indices
	Experiments and Comparisons
	Conclusion
	References

	Learning Neighborhoods for Metric Learning
	Introduction
	Related Work
	Learning Target Neighborhoods for Metric Learning
	Target Neighbor Assignment Rule

	Optimization
	Properties of the Optimization Problem
	Optimization Algorithm

	Instantiating LNML
	Learning the Neighborhood for LMNN
	Learning the Neighborhood for MCML

	Experiments
	Results

	Conclusion and Future Work
	References

	Massively Parallel Feature Selection:An Approach Based on Variance Preservation
	Introduction
	Maximum Variance Preservation for Feature Selection
	Unsupervised Feature Selection
	Supervised Feature Selection

	The Computation
	Closed Form Solutions Based on SFS
	Parallel Computation through MPP and SMP
	The Implementations

	Connections to Existing Methods
	Experimental Study
	Study of Unsupervised Cases
	Study of Supervised Cases
	Study of Scalability

	Conclusions
	References

	PCA, Eigenvector Localization and Clusteringfor Side-Channel Attacks on Cryptographic Hardware Devices
	Introduction
	Differential Power Analysis and Clustering
	Differential Power Analysis (DPA)
	DPA as Clustering

	PCA, Localization and Clustering
	PCA and Clustering
	Eigenvector Localization
	Localized Principal Eigenvectors and Clustering Structures That Depend on Few Features

	Why (and when) Are the Eigenvectors of PCA Localized
	Related Work
	Experiments
	Data Description
	Empirical Results

	Discussion
	References

	Distance-Based Methods and Kernels
	Classifying Stem Cell Differentiation Imagesby Information Distance
	Introduction
	Information Distance
	Materials
	Information Distance Classification Method
	Image Compression
	Image Information Distance Calculation
	Control Images Statistics
	Average Image Information Distance between Any Image and Control Images
	Image Classification
	Compound Classification

	Results
	Conclusion
	References

	Distance Metric Learning Revisited
	Introduction
	Convex Metric Learning Model
	Equivalent Formulation and Optimization
	Related Work
	Experiments
	Convergence and Generalization on UCI Datasets
	Application to Face Verification

	Conclusion
	References

	Geodesic Analysis on the Gaussian RKHSHypersphere
	Introduction
	Geodesic Analysis on the Hypersphere
	Problem Statement
	Analysis on Riemannian Manifolds

	Data Analysis over the Hypersphere in the Gaussian RKHS
	Geodesic Distance and Karcher Mean
	Projection on the Tangent Space

	A New Kernel Accounting for Geodesics in Hyperspherical RKHS
	The Gaussian Case
	The General Case

	Experiments
	Hyperspherical Kernel Clustering
	Classification

	Conclusion and Discussion
	References

	Ensemble Methods
	Boosting Nearest Neighbors for the EfficientEstimation of Posteriors
	Introduction
	Definitions
	Estimation
	Surrogates, Losses and Risks
	One Dimensional Exponential Families and Posteriors Estimation

	Strictly Convex Losses and the Efficient Estimationof Posteriors
	Leveraging and boosting Nearest Neighbors
	Experiments
	Computing Leveraging Coefficients and Weights Update
	General Experimental Settings
	Results on Simulated Data
	Results on the SUN Database Domains

	Conclusion
	References

	Diversity Regularized Ensemble Pruning
	Introduction
	Related Work
	Diversity and Generalization Performance of Voting
	Basics and Diversity Measure
	Theoretical Results
	Remarks and Discussions

	Diversity Regularized Ensemble Pruning
	Empirical Studies
	Settings
	Results

	Conclusion and Future Work
	References

	Ensembles on Random Patches
	Motivation
	Random Patches
	Description
	Tree-Based Methods
	Related Work

	On Accuracy
	Protocol
	Small Datasets
	Larger Datasets
	Conclusions

	On Memory
	Sensitivity to ps and pf
	Memory Reduction, without Significant Loss
	Memory Reduction, with Loss
	Conclusion

	Conclusions and Future Work
	References

	Graph and Tree Mining
	An Efficiently Computable Support Measurefor Frequent Subgraph Pattern Mining
	Introduction
	Preliminaries
	Graph Theory
	Support Measures

	A New Normalized Anti-monotonic Measure
	Conditions for Anti-monotonicity
	Sufficient Condition
	Necessary Condition

	Bounding Theorem
	The Phase Transition from Frequent to Infrequent
	Experiments
	Experimental Setup
	Results
	Discussion

	Conclusions
	References

	Efficient Graph Kernels by Randomization
	Introduction
	Related Work
	Propagation Kernels
	General Definition
	Distribution-Based Graph Features
	Instances of Propagation Kernels

	Locality-Sensitive Hashing for Propagation Kernels
	Empirical Evaluation
	Experimental Protocol
	Datasets
	Experimental Results

	Conclusions and Future Work
	References

	Graph Mining for Object Tracking in Videos
	Introduction and Related Work
	Spatio-temporal Patterns Mining
	Dynamic Plane Graphs
	Occurrences Graph and Spatio-temporal Patterns
	DyPlagram_st Algorithm

	Spatio Temporal Path
	Experiments
	Video Datasets
	Evaluation of the Patterns
	Spatio-temporal Paths for Object Tracking
	DyPlagram_st vs DyPlagram
	Evaluation of the Spatio-temporal Path for Object Tracking
	Synthetic Video.
	Real Video.

	Conclusion
	References

	Hypergraph Learning with HyperedgeExpansion
	Introduction
	Problem Statement
	Hyperedge Expansion
	Hypergraph Embedding
	Hypergraph Semi-supervised Learning
	Computing Class Scores
	The Algorithm and Complexity

	Experimental Results
	Experiment Settings
	Main Results

	Conclusion and Future Work
	References

	Nearly Exact Mining of Frequent Treesin Large Networks
	Introduction
	Related Work
	Preliminaries
	Graphs
	Group Theory

	Problem Statement
	Mining Frequent Rooted Trees
	Candidate Generation
	Subgraph Isomorphism and Frequency Counting
	Complete Miner and Complexity Bounds
	Further Optimizations

	Experimental Evaluation
	Experimental Setup
	Data Sets
	Results
	Discussion

	Conclusion and Future Work
	References

	Reachability Analysis and Modelingof Dynamic Event Networks
	Introduction
	Dynamic Reachability Sets
	The DRS-Gen Model
	Generating Flow Sizes
	Obtaining Subgraph Flow Structures
	Combining Overlapping Flows
	Producing the Generated Graph
	Parameter Fitting
	Implementation and Analysis

	Related Work
	Summary
	References

	Large-Scale, Distributed and Parallel Mining andLearning
	CC-MR – Finding Connected Componentsin Huge Graphs with MapReduce
	Introduction
	Fundamentals
	Connected Components
	MapReduce

	Related Work
	Algorithm
	CC-MR Algorithm
	Example for the Processing of CC-MR
	Proof of Correctness
	Dealing with Large Components

	Experiments
	Scalability on Synthetic Data
	Real-world Data
	Load Balancing for Large Components

	Conclusion
	References

	Fast Near Neighbor Search in High-DimensionalBinary Data
	Introduction
	Binary, Ultra-High Dimensional Data
	b-Bit Minwise Hashing
	Our Proposal for Sub-linear Time Near Neighbor Search

	Other Methods for Efficient Near Neighbor Search
	Centered and Noncentered Spectral Hashing (SH-C, SH-NC)
	Sign Random Projections (SRP)

	Comparing Hash Code Quality
	The Evaluation Procedure
	Experimental Results on Webspam (4000)
	Experimental Results on Webspam (35000)
	EM30k (15000)

	Sub-linear Time Near Neighbor Search
	Theoretical Analysis
	Experimental Results on the Webspam Dataset
	Experimental Results on EM30k Dataset

	Conclusion
	References

	Fully Sparse Topic Models
	Introduction
	Background
	Concave Maximization over Simplex and Sparse Approximation

	Fully Sparse Topic Models
	Inference
	Learning

	Theoretical Analysis
	Complexity and Goodness of Inference
	Managing Sparsity Level and Trade-off
	Implicit Prior over bold0mu mumu

	Experimental Evaluation
	Sparsity, Time, Quality, and Trade-off
	Large-Scale Settings

	Conclusion
	References

	Learning Compact Class Codes for FastInference in Large Multi Class Classification
	Introduction
	Related Works
	Our Approach: Learned Distributed Representation (LDR)
	Principle
	Learning Compact Binary Class-Codes
	Relations to ECOC
	Training and Inference Complexity

	Experiments
	Datasets
	Experimental Setup
	Comparison of the Methods
	Zero-Shot Learning

	Conclusion
	References

	ParCube: Sparse Parallelizable TensorDecompositions
	Introduction
	Tensor Decompositions
	The ParCube Method
	Experiments and Discoveries
	Performance and Scalability Evaluation
	Factor Sparsity Assessment
	Parallelizability
	ParCube at Work

	Related Work
	Conclusion
	References

	Stochastic Coordinate Descent Methodsfor Regularized Smooth and Nonsmooth Losses
	Introduction
	 SCD Algorithms for Smooth Losses
	SCD Algorithms for Nonsmooth Losses
	Experiments
	Conclusion
	References

	Sublinear Algorithms for Penalized LogisticRegression in Massive Datasets
	Introduction
	Related Work
	Penalized Logistic Regression Models
	The 2-Penalty Logistic Regression
	The 1-Penalty Logistic Regression

	Methodology
	From 2-Penalty to Soft Margin
	Derivative of Objective Function
	The ETN Framework

	Algorithms and Analysis
	The Sublinear Algorithm for 2-Penalty Logistic Regression
	The Sublinear Algorithm for 1-Penalty Logistic Regression
	Running Time Analysis

	Experiments
	Analysis of Performance
	Analysis of Convergence

	Conclusion
	References

	Multi-Relational Mining and Learning
	Author Name DisambiguationUsing a New Categorical Distribution Similarity
	Introduction
	Related Work
	Problem Formulation
	Categorical Sampling Likelihood Ratio – A Categorical Set Similarity Measure
	Modeling Using the Categorical Distribution and Motivation
	Calculating the Two Likelihoods
	Categorical Sampling Likelihood Ratio (CSLR)

	Clustering Framework
	Overview of the Clustering Procedure
	Stage 1: Merging by Shared Coauthors
	Stage 2: Merging by Venue Set and Title Set

	Name Ambiguity Estimation
	Experimental Results
	Experimental Setting
	Experimental Results and Discussion

	Conclusions and Future Work
	References

	Lifted Online Training of Relational Modelswith Stochastic Gradient Methods
	Introduction
	Related Work
	Markov Logic Networks
	Lifted Online Training
	Piecewise Shattering
	Relational Tree Shattering
	Lifted Stochastic Meta-descent

	Experimental Evaluation
	Conclusions
	Bibliography

	Scalable Relation Prediction ExploitingBoth Intrarelational Correlation and Contextual Information
	Introduction
	Related Work
	Relation Prediction by Exploiting Both Intrarelational Correlation and Context Information
	Notation and Contextual Information
	Intrarelational Correlations
	Hierarchical Bayes
	Additive Models

	Context Models for Our Applications
	Context Models Based on the Database
	Alternating Least Squares
	Incorporating External Information Sources and Aggregation

	Experiments
	Scalability
	Tuning of Hyperparameters
	Synthetic Data
	Associating Diseases with Genes
	Predicting Writer's Nationality in YAGO2

	Conclusions
	References

	Relational Differential Prediction
	Introduction
	Related Work
	Differential Predictive Concept Definition
	Learning Differential Predictive Rules
	Baseline Approach
	Model Filtering Approach
	Differential Prediction Search Approach

	Experimental Setting
	Synthetic Dataset
	Discussion

	Breast Cancer Diagnosis
	Future Work
	Conclusion
	References

	Multi-Task Learning
	Efficient Training of Graph-RegularizedMultitask SVMs
	Introduction
	A Novel View of Graph-Regularized Multi-Task Learning
	Primal Formulation
	``Block-Vector/Matrix'' View
	Dualization
	Special Case: Large-Margin Learning
	A Representer Theorem

	Optimization Algorithms
	Derivation of the Optimization Algorithm
	Convergence Analysis

	Computational Experiments
	Conclusion
	References

	Geometry Preserving Multi-task Metric Learning
	Introduction
	Novel Regularized Multi-task Metric Learning
	Problem Definition
	Geometry Preserving between Metrics
	Main Framework

	Theoretical Analysis
	Basic Definitions
	Enlarging PGf(dA,dB) by Minimizing R(A,B)
	Bounding the KL-divergence with von Neumann Divergence
	Minimizing Rw1,w2(A,B) by Minimizing DKL(W(A),W(B))
	Summary

	Experiments
	Conclusion
	References

	Learning and Inference in Probabilistic ClassifierChains with Beam Search
	Introduction
	Multilabel Learning and Probabilistic Classifier Chains
	Multilabel Learning
	The PCC Model for Multilabel Learning
	Advantages of Using PCCs
	Challenges with Using PCCs

	Label Inference Using Beam Search
	Learning to Order Tags
	Experimental Results
	Data Sets and Methods
	Results and Analysis

	Concluding Remarks
	References

	Learning Multiple Tasks with Boosted DecisionTrees
	Introduction
	Multi-Task Learning
	Notation and Setting
	Multi-Task Decision Tree
	Multi-Task Information Gain
	Learning Algorithm for MT-DT

	Multi-Task Adaboost
	Experiments
	Datasets
	Synthetic.
	Enron.
	Spam Filtering.
	MNIST Character Recognition.

	Results on Trees
	Results on Boosted Trees

	Conclusion
	References

	Multi-Task Boosting by Exploiting Task Relationships
	Introduction
	Multi-Task Boosting by Exploiting Task Relationships
	Task Covariance Matrix
	Multi-Task Boosting
	Theoretical Analysis

	Related Work
	Experiment
	Multi-domain Sentiment Classification
	Handwritten Letter Classification
	USPS Digit Classification

	Conclusion
	References

	Sparse Gaussian Processes for Multi-taskLearning
	Introduction
	Nonparametric Bayesian Grouped Mixed-Effect Model
	Learning the Sparse Model
	Evaluating logG(Z, H,)

	Prediction Using the Sparse Model
	Related Work
	Experimental Evaluation
	Synthetic Data
	Simulated Glucose Data
	Real Astrophysics Data

	Conclusion
	References

	Natural Language Processing
	Collective Information Extractionwith Context-Specific Consistencies
	Introduction
	Conditional Random Fields
	Linear-Chain CRFs
	Skip-Chain CRFs

	CRFs with Context-Specific Consistencies
	Context-Specific Consistencies
	Dependencies Based on the Label Sequence
	Learning Context-Specific Consistencies
	Comb-Chain CRFs
	Skyp-Chain CRFs
	Parameter Estimation and Inference

	Experimental Results
	Datasets
	References.
	Curricula Vitae.

	Evaluation Measure
	Settings
	Results
	Discussion

	Related Work
	Conclusions
	References

	Supervised Learning of Semantic Relatedness
	Introduction
	Related Work
	Problem Setup
	Adaptive Measure
	The SemanticSort Algorithm
	Empirical Evaluation
	Model Interpretability
	Concluding Remarks
	References

	Unsupervised Bayesian Part of Speech Inferencewith Particle Gibbs
	Introduction
	The Pitman-Yor Hidden Markov Model
	Sequential Monte Carlo
	Sentence Sampling
	Type Sampling

	Experiments and Results
	Data
	SMC Analysis
	Unsupervised Part-of-Speech Tagging

	Conclusion
	References

	WikiSent: Weakly Supervised Sentiment Analysisthrough Extractive Summarization with Wikipedia
	Introduction
	Related Work
	Facets of a Movie Review
	Wikipedia Information Extraction for Movie Review Analysis
	Wikipedia Article Retrieval
	Crew Information
	Metadata Extraction
	Plot Extraction
	Character Extraction
	Frequent Word List Construction
	Domain Specific Feature List Construction

	Algorithm to Extract Opinion Summary
	Classification of the Opinion Summary
	Parameter Setting
	Evaluation
	Movie Review Analysis Using WikiSent
	WikiSent Evaluation on the Gold Standard Data

	Discussions
	Movie Trend Analysis
	WikiSent Performance Analysis
	WikiSent Drawbacks

	Conclusions and Future Work
	References

	Online Learning and Data Streams
	Adaptive Two-View Online Learningfor Math Topic Classification
	Introduction
	Related Work
	Math Topic Classification
	Math Document
	Math Feature Extraction
	Supervised Key Phrase Extraction
	Online Learning Classification
	Relationship between Views.
	Adaptive Two-View Passive Aggressive Algorithm.
	Getting Rid of Parameter .

	Performance Evaluation
	Two-View Learning Evaluation
	Math Topic Classification
	PA Only.
	The Missing View.

	View Weight Parameter Learning

	Conclusion
	References

	BDUOL: Double Updating Online Learningon a Fixed Budget
	Introduction
	Double Updating Online Learning on a Fixed Budget
	Problem Setting
	Double Updating Online Learning: A Review
	Framework of Budget Double Updating Online Learning
	Theoretical Analysis

	Budget Maintenance Strategies
	BDUOL Algorithm by Removal Strategy
	BDUOL Algorithm by Projection Strategy
	BDUOL Algorithm by Nearest Neighbor Strategy

	Experimental Results
	Algorithms for Comparison
	Experimental Testbed and Setup
	Performance Evaluation of Non-budget Algorithms
	Performance Evaluation of Budget Algorithms

	Conclusions
	References

	Handling Time Changing Data with Adaptive Very FastDecision Rules
	Motivation
	Related Work
	Adaptive Very Fast Decision Rules
	Growing a Set of Rules
	Expansion of a rule
	Rule Reaction to a Drift
	Classification Strategy

	Experimental Evaluation
	Artificial Datasets
	Real Datasets
	Results

	Conclusions
	References

	Improved Counter Based Algorithms for Frequent Pairs Miningin Transactional Data Streams
	Introduction
	Preliminaries
	Our Approach
	Observations on Datasets
	Experiments
	Experiments for A=Frequent
	Experiments for A=Space-Saving

	Further Directions
	References

	Mirror Descent for Metric Learning:A Unified Approach
	Introduction
	Problem Setting
	Notation and Background

	Mirror Descent for Metric Learning
	Loss Functions
	Bregman Divergences

	Deriving Update Rules for Mt+1 and t+1
	Implementing Update Rules for Mt+1
	Kernel MDML
	Related Work
	Experiments
	Benchmark Data Sets
	Digit Recognition

	Conclusions and Future Work
	References

	Author Index

