Pathology Hinting as the Combination
of Automatic Segmentation with a Statistical
Shape Model

Pascal A. Dufour':2, Hannan Abdillahi3, Lala Ceklic?,
Ute Wolf-Schnurrbusch??, and Jens Kowal'»2

1 ARTORG Center for Biomedical Engineering Research, Ophthalmic Technologies,
University of Bern, 3010 Bern, Switzerland
pascal.dufour@artorg.unibe.ch
2 University Hospital Bern, Ophthalmic Department, 3010 Bern, Switzerland
3 Bern Photographic Reading Center, 3010 Bern, Switzerland

Abstract. With improvements in acquisition speed and quality, the
amount of medical image data to be screened by clinicians is starting
to become challenging in the daily clinical practice. To quickly visual-
ize and find abnormalities in medical images, we propose a new method
combining segmentation algorithms with statistical shape models. A sta-
tistical shape model built from a healthy population will have a close fit
in healthy regions. The model will however not fit to morphological ab-
normalities often present in the areas of pathologies. Using the residual
fitting error of the statistical shape model, pathologies can be visual-
ized very quickly. This idea is applied to finding drusen in the retinal
pigment epithelium (RPE) of optical coherence tomography (OCT) vol-
umes. A segmentation technique able to accurately segment drusen in
patients with age-related macular degeneration (AMD) is applied. The
segmentation is then analyzed with a statistical shape model to visualize
potentially pathological areas. An extensive evaluation is performed to
validate the segmentation algorithm, as well as the quality and sensitiv-
ity of the hinting system. Most of the drusen with a height of 85.5um
were detected, and all drusen at least 93.6pum high were detected.

Keywords: pathology hinting, statistical shape model, multi-surface
segmentation, optical coherence tomography.

1 Introduction

With the recent advances in OCT, the quality and acquisition speed has in-
creased dramatically. This has revolutionized ophthalmology, as it allows the
fast and non-invasive imaging of various structures of the human eye. Today,
the imaging of the retinal layers with OCT is standard clinical practice. As with
other image modalities in medicine, the faster acquisition speed and increased
image resolution also increases the amount of work to be done by the clinician
to screen the datasets and state a diagnosis. The current clinical practice of ana-
lyzing an OCT volume is visual inspection of each individual B-scan. As such an
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inspection takes minutes instead of seconds, in practice clinicians only quickly
scroll through the B-scans and abnormalities are often missed. This calls for new
analysis and visualization tools.

Segmentation of OCT datasets has become an important tool to quantitatively
analyze retinal layers. Recent advances in segmentation techniques [I], [2] make
it possible to segment the drusen of AMD patients with high accuracy.

The main contribution of this work is the use of a statistical model as a tool
to quickly visualize possibly pathological regions in a dataset. For this we built
a statistical shape model [3] from segmentations of fovea-centered OCT datasets
of healthy patients. To analyze a new patient’s OCT volume, the dataset is first
segmented and the statistical shape model is then fitted to that segmentation.
The error of the fitting is then visualized as a top down rendering (en-face map).

Key Contributions: We propose the combination of a graph-based segmenta-
tion algorithm with a statistical shape model to build a quick pathology hinting
system. Our key contributions are twofold:

— A graph-based method for highly accurate drusen segmentation
— A hinting system able to quickly visualize morphological abnormalities.

2 Methods

2.1 Segmentation

The segmentation is based on the optimal net surface problems introduced by
Wu et al. [4] and extended to multiple surfaces by Li et al. [5]. Garvin et al. [I]
applied this algorithm to the segmentation of retinal layers in OCT volumes.
Additional soft constraints, proposed by Song et al. [2], were applied. These
constraints allow us to add costs for the rigidity of a surface and costs for the
distance between two surfaces. Prior information can therefore be better incor-
porated into the graph, resulting in an improved segmentation [2].

Furthermore, the soft constraints also enable more possibilities when seg-
menting pathologies such as drusen. Drusen are an accumulation of extracellular
material in the Bruch’s membrane (BM) of the retina [6]. The result is a dis-
placement of the cell layers above it. In the OCT, this is most visible in the
displacement of the inner and outer photoreceptor segments (IS/OS). However,
the boundary between the choroid and the Bruch’s membrane is left mostly in-
tact. This makes it easy to segment the lower BM boundary with this method.
See Fig for an example of large drusen in an OCT. By adding a strong soft
constraint on the rigidity of the surface of the lower BM boundary, it is possible
to get a smooth and accurate segmentation.

The next step is the segmentation of the upper IS/OS boundary. Because the
displacement from the drusen can be quite large, only a weak soft constraint
on the rigidity is added. Additionally, a medium soft constraint on the expected
distance to the lower BM boundary is added. This favors a segmentation that
is close to the expected IS/OS position of a healthy RPE, but still allows the
segmentation of the displaced IS/OS when a druse is present. Fig[l] shows two
examples of the applied segmentation.
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Fig. 1. Segmented OCT B-scans: Healthy retina around the fovea, AMD patient
with drusen

2.2 Statistical Shape Model

Statistical shape models can capture the natural shape variation from training
shapes [3]. The idea is to allow the statistical shape model to generate the whole
range of healthy shapes, without being able to generate pathological shapes. By
fitting the statistical shape model to a new segmentation, we will then be able
to detect if and where the new segmentation cannot be accurately represented
by this model.

Model Building. To build a statistical shape model, the training shapes first
have to be brought into a common coordinate frame. Because we do not use 3D
positions to build the model, but only the differences between the segmented
layers, the rotation of the shapes can be omitted and a translation is enough to
align all training shapes. The fovea was used as an anchor, which was detected
by finding the lowest point on the segmentation of the inner limiting membrane
(ILM). All shapes were translated so the fovea is at the coordinate origin (0, 0).
Each position (i - dg, j - dy) relative to the fovea becomes a landmark position,
where ¢ and j are integers with predefined boundaries and d, and d, are the
sampling spacing in z- and y-direction. This simplifies the landmarking process,
as the landmark positions form a simple grid around the fovea and no anatomical
landmarks are required. The statistical shape model was then built by computing
the mean shape and covariance matrix, and principal component analysis (PCA)
was applied for dimensionality reduction [3]. Automatic segmentations of 28
OCT volumes were used as training shapes. Fig[2 illustrates all steps required
to build the statistical shape model.

Model Fitting. Given a new segmentation of a new OCT volume, the statistical
shape model can be deformed so that it minimizes the distance to the shape
vector of that new segmentation. See [3] for an iterative approach to deform the
statistical shape model to a new shape vector.

During the fitting, the deformation of the model is limited so it is able to only
represent about 99% of the variation encountered in the training datasets. This
ensures that the generated shape is similar to the shapes seen in the training
datasets and cannot deform to an extreme shape. See Figl3l for the necessary
steps to fit the model to a new segmentation.
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Fig. 2. Complete statistical shape model building procedure including leave-one-out
test for the natural error estimate computation

2.3 Pathology Hinting

For every landmark, the residual absolute fitting error between the deformed
model and the new segmentation serves as a measure of pathology at that posi-
tion. The hinting can be further improved by normalizing that error.

When building the statistical shape model, we perform a leave-one-out test to
estimate the natural residual errors. For every landmark position, the distribu-
tion of the mean unsigned error ¢,, and its variance €2 is computed. Assuming
a normal distribution of that error, we now know that 68% of the errors in the
training set are within the interval ¢, £ ¢, 95% are within ¢, + 2¢,, and so on.

Let’s say we now fit the model to a new segmentation and encounter a residual
fitting error € at a specific landmark, for example ¢ = ¢, 4 3¢,. We know that at
that landmark, only 0.27% of the measured errors in a healthy dataset are at least
this large and that therefore the landmark is highly abnormal. We formulate the
measure of abnormality 1 at a specific landmark position as the actual residual
fitting error normalized to the natural residual fitting error:

wQ — (E - EM) (1)

€

Intuitively, 9 measures in what interval €, £ - €, the error is. The role of this
error normalization is also illustrated in Figl3l
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Fig. 3. Statistical shape model fitting: The statistical shape model (grey) is deformed
to fit to the surfaces of a new segmentation (red) and the residual error is normalized
to build the hinting en-face map for each surface
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Fig. 4. Thickness hinting en-face maps of the RPE thickness: @ AMD patient with
large drusen, small drusen, healthy RPE, @ used color transfer function

To present the computed measurements to the diagnostician, an en-face map
is built for each layer thickness. Every landmark becomes a pixel in this en-face
image. A color transfer function is used to map the values from () to a color
value. Figll shows en-face maps for two dataset with drusen and a healthy one.
The error can of course also be projected back into the OCT volume. Fighl
shows an example B-scans containing drusen where the cell layers between the
segmentation surfaces are colored by the hinting system. The drusen are clearly
made visible by the hinting. Note also the abnormally thin cell layer above the
drusen to the right of the fovea.

We also implemented a statistical shape model using the full 3D positions of
the segmented surfaces. This model is less accurate in detecting small thickness
abnormalities, but can reliably visualize abnormalities in the actual shape of the
segmented surfaces. Figlfl shows an example of a patient with an abnormally
shaped retina.
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Fig. 6. @Shape deformation analysis of the ILM of a patient with a degenerated outer
nuclear layer (lower arrow), leading to an abnormally shaped ILM (upper arrow), visible
in the corresponding hinting en-face map in

3 Experiments and Results

3.1 Segmentation Evaluation

The accuracy of the hinting system depends greatly on the accuracy of the
segmentation and a thorough evaluation was therefore performed. The segmen-
tation algorithm needs to be able to segment healthy datasets as well as datasets
with drusen. We therefore evaluated the algorithm on both healthy and AMD
datasets. 20 OCT volumes, each having five randomly chosen B-scans manually
segmented by two experts, were used in the evaluation. The average manual
segmentation from both observers was compared to the result of the automatic
segmentation algorithm. As we evaluated the hinting system on drusen, the
evaluation of the segmentation focused on the two layers relevant for drusen
segmentation: the lower BM and upper IS/OS boundaries.

The upper IS/OS boundary was segmented with a mean unsigned error of
1.69 + 1.61um. The lower BM boundary was segmented with a mean unsigned
error of 2.75 + 2.49um.

To evaluate the accuracy of the segmentation on actual drusen, 20 datasets
containing drusen were used. In every dataset, the lower BM and upper IS/OS
boundary of every druse up to a height of 141um was segmented manually. The
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healthy parts of the RPE were not segmented and not used in the evaluation.
This allowed us to evaluate the accuracy of the algorithm only on the positions
where drusen were present. For the upper IS/OS boundary, the mean unsigned
error over all drusen was 5.66 + 10.00pum. The mean unsigned error of the lower
BM boundary was 4.67 4 7.42um over all drusen.

While the error for drusen is larger than the error for healthy tissue, it is
still relatively small considering the axial pixel resolution of 3.9um. The result
is also comparable to the results by Garvin et al. [I], who reported an unsigned
mean error of 3.30 & 1.60um for the upper IS/OS boundary on healthy datasets.
Furthermore, the larger segmentation errors were observed for large drusen that
did not have a clear gradient. However, in this case, a larger error is not a problem
as the segmentation is still very much outside the range of segmentations of
healthy eyes and the drusen are clearly visible in the hinting system.

3.2 Hinting Evaluation

To evaluate the statistical shape model, a leave-one-out test was performed. The
mean unsigned error over all landmark points over all datasets was 5.71£7.86um.

To evaluate the actual hinting, we implemented a screening system where
experts had to decide purely from the en-face map of the RPE thickness if a
dataset contained drusen. 20 datasets with drusen were mixed with 20 datasets
of healthy eyes. The datasets were presented in random order to each experts and
they had to decide for each one whether it contained drusen. One dataset with
only a few small drusen was missed by one of the two experts, all other datasets
containing drusen were correctly identified by both experts. The combined false
positive ratio of the two expert was 10% (4 out of 40). As most datasets contained
very large drusen, this test was very easy for the experts. Nevertheless, it shows
that the hinting system works well on real data.

As we wanted to know how sensitive the hinting system is, we implemented
an evaluation procedure with artificially created small drusen. 50 datasets of
50 healthy subjects were used. When a dataset was presented to the expert, a
single druse was created with a probability of 50%. The position of the druse was
randomly chosen, as was the height displacement, ranging from just one pixel to
15 pixels in the OCT volume. With an axial resolution of 3.9um, the resulting
height displacement was in the range of 3.9 to 58.5um. TabldI] shows the results
of the evaluation. Most drusen with a height of 85.5um were already detected,
and all drusen with a height of at least 93.6um were detected. The experts
spent an average duration of only 7.3 + 4.8 seconds looking at the en-face map
before making a decision. This included loading the segmentation, fitting of the
statistical shape model and visualization. As expected, experts had difficulties
identifying the smaller drusen, as they often were not sure if a slightly abnormal
looking area was healthy and had to guess. In a real clinical setting, the OCT
would of course be made visible as well. A click at an abnormal looking area in
the hinting map could for example open the OCT volume at that position for
the diagnostician to check.
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Table 1. Combined results of the two experts identifying drusen from only the hinting
en-face map. The column ‘AMD’ is the result of the test with patients with drusen.

Druse height (um) no 70.2 T74.1 780 &81.9 855 89.70 93.6- AMD
druse 136.5

Identified as drusen 23 0 3 2 3 8 7 49 39
Identified as healthy 129 5 1 4 3 2 1 0 1

Correctly identified (%) 84.9 0 75 33.3 50 80 87.5 100 97.5

4 Conclusion

In this work a new method to quickly detect morphological abnormalities in
medical images is proposed. By combining automatic segmentation with a sta-
tistical shape model, we were able to visualize and detect most drusen in OCT
volumes. With an average time of only 7.3 + 4.8 seconds spent on each dataset,
experts were able to very quickly screen the datasets. The proposed method is
completely complementary to the current clinical practice of visual inspection
of each individual B-scan of the OCT volume. The accuracy and speed make
this method a valuable tool for both large-scale screening systems and the daily
clinical practice. Furthermore, it can be applied in virtually any field where au-
tomatic segmentation and statistical modeling of anatomy is possible. We are
currently working on extending the method to include the analysis of texture
information by using a statistical model of appearance.
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