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Abstract. In clinical practice, physicians often exploit previously ob-
served patterns in coronary angiograms from similar patients to quickly
assess the state of the disease in a current patient. These assessments
involve visually observed features such as the distance of a junction from
the root and the tortuosity of the arteries. In this paper, we show how
these visual features can be automatically extracted from coronary artery
images and used for finding similar coronary angiograms from a database.
Testing on a large collection has shown the method finds clinically similar
coronary angiograms from patients with similar clinical history.

1 Introduction

X-ray Coronary angiography is a commonly used technique to assess the state
of coronary artery disease (CAD). During assessment, clinicians look for char-
acteristic visual features, taking into account the overall disease burden, the
complexity of individual lesions, and placing more weight on proximal stenoses
of the coronary arteries. Even though there are quantitative assessment scores
such as the Syntax Score[12], they require manual input of angiographic informa-
tion. Thus the clinicians still characterize the disease by ’eyeballing’ on salient
visual features such as lumen variation or the relative thickness of arteries (see
Fig. Mh-c)[0], the distance of the junctions from the root, the number of trifur-
cations, etc. In this paper, our goal is to automatically extract features from
coronary angiograms that mimic this process and learn a distance matrix to
retrieve similar coronary angiograms for purposes of clinical decision support.

Automatically deriving such salient features from coronary artery imaging is,
however, a challenging problem. It requires reliable separation of the major coro-
nary arteries from the background. Complete delineation of arteries is difficult
due to the similarities in intensity distribution in the regions surrounding the
arteries. It also requires a reliable detection of all major junctions and the tubu-
lar arterial segments between junctions to allow computation of features such as
arterial width and curvature changes or tortuosities.

2 Related Work

Much of the existing work on coronary angiogram analysis has focused on the
preprocessing and segmentation of coronary angiograms. The majority of the
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(a) (b) (c)

Fig. 1. Observable semantic features in coronary angiograms. (a) The dark blobs along
arterial walls are calcifications, and irregular thickness variations can be observed.(b)
Lumen variations along arteries. (¢) Thinner/fine arteries showing diffused vessels.

methods locate vessel regions using various filters, deformable model methods,
and supervised or unsupervised learning-based approaches [B4T0I2]. Completely
automatic artery tree extraction has also been attempted in 3D CT Angiography
[15], but often rely on user identification of root in 2D X-ray angiography [7].
Previous work has also studied the junction detection in arteries. While the
majority of the work is on 3D CT angiography data, relying on a good 3D
vessel tree model and a robust 2D-3D shape alignment algorithm, [TJT5], junction
detection in 2D X-ray angiography has been restricted to either sensing Y or X
junctions in pixel neighborhoods or using the intersection of artery centerlines.

There is also work on quantitative characterization of coronary artery disease
in the identification of coronary artery root. Popular angiography tools offer
measurements such as luminal cross-sectional area and percentage area steno-
sis. Most of these tools, however, require some manual assistance including the
identification of the coronary tree root.

3 Image Pre-processing of Coronary Angiograms

Our pre-processing uses well-known techniques put together in a new sequence
to delineate coronary arteries. Since the clinical assessment focuses on major
coronary arteries, accurate and complete tree reconstruction is not necessary.

3.1 Highlighting Coronary Arteries

Starting from coronary angiogram video frames, we first extract a region of
interest containing the arteries by exploiting the spatial and temporal variance
in pixels. We then highlight the coronary artery vessel structure using a suitable
ridge detection filter. While several filters could be used [4], we adopted Radon-
Like Features (RLF)[0] as it does a non-isotropic sampling of neighborhoods
based on edge sensing along different orientations. It has been shown to give a
more complete highlighting of coronary arteries, including minor segments, while
still suppressing noise. The result of RLF-filtering the coronary artery image of
Fig. Bh is shown in Fig. Bk.
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Fig. 2. Tllustration of artery preprocessing.(a) original image. (b) RLF-filtered image.
(c) Binary image obtained by adaptive thresholding. (d) Skeletonization and initial
junction detection. (e) Junction clustering. (f) Tubular region detection for a single
skeletal curve. (g)Tubular segments surrounding skeletal curves between junctions.

3.2 Locally Adaptive Statistical Thresholding

Next, we threshold the intensity gradients in the filtered region to separate the
foreground vessel region from the background. Since a global threshold is in-
sufficient, we model the filtered coronary image as the output of a short-space
stationary process. Since coronary arteries have small thickness (less than 16 pix-
els), an overlapping window analysis with a small window size W x W (W < 16),
is sufficient. Within each window of size W x W, we find an optimal thresh-
old T using similar ideas to Otsu thresholding [g8], such that it separates the
pixels within the regions into two classes with minimized intra-class variance
02(T) = w1 (T)o}(T) + wo(T)o3(T) where wy,ws are the fraction of pixels be-
longing to the two classes. Fig. Pk shows the result of adaptive thresholding of
the filtered image in Fig. 2b. Due to the narrow artery widths and the use of
local Otsu thresholding, vessel fragmentation is minimized.

3.3 Junction Extraction from Foreground Regions

To locate the junctions, we adopt Zhang and Suen[I4] to skeletonize the binary
thresholded image, as it is fast, simple, and outperformed other approaches we
tried. The skeletonization of Fig. Bk is shown in Fig. Bd, and it preserves the
main artery centerlines. By grouping connected components on interior pixels
(non-junctions) of the skeletal image, we form skeletal curves S; = {(x,y)}. The
set of junctions is J,, = (51, 52, ...Sk) where the mth junction is the intersection
of the incident skeletal curves Si,..Sk to give a junction of degree k. Spurious
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initial junctions which are pixels with at least two incoming curves, are clustered
using this grouping and the centroidal pixel becomes a robust indicator of the
actual junctions, as illustrated in the change from Fig. 2l to Fig. Bk.

3.4 Extracting Coronary Artery Segments

To extract the tubular regions from the skeletal curves, we look for boundary
pixels on either side of the skeletal curve proceeding along surface normals at each
skeletal point. The tubular boundary may have points out of order at turning
points, particularly where there is ambiguity in surface normals (Fig. [2f). These
out-of-order points are corrected by treating the chain of endpoints on either
boundary as pairs of curves to be aligned using dynamic time warping [13]. The
resulting artery fragments are shown in Fig. Bl for the skeletal curves in Fig. 2d.

Each coronary artery segment C; is represented by an ordered set of skeletal
points {(z,y,01,62,0)} where (x,y) € S; is a skeletal pixel on the skeletal curve
S; passing through the tubular segment, and 01, and §2 are the units along the
surface normal 6 at which the tubular boundary points are detected.

4 Feature Extraction from Coronary Angiograms

Given the skeletal representation, we next extract clinically meaningful features.
The proposed features are supported by several clinical studies including those
in the SYNTAX score and JACCO011 guidelines[5[12].

4.1 Number of Significant Junctions

This gives an indication of the bushiness of arteries as diffuse arteries tend to
have a larger number of junctions. This feature f; is simply recorded by the
number of junctions J,, computed in the section above.

4.2 Thickness of Arteries

A blockage in the middle of the artery appears as a sudden change in the width
of the artery. The average thickness of a coronary artery segment is given by
W; = Zj(521i.751j) where the Zj is over the P skeletal points. The range of
thickness variation within tubular regions is given as R; = (6217 — §217"),
and gives an indication of stenosis. The distribution of thickness of arteries is
given by the feature fo = H(W;) and f3 = H(R;), where H(W;) and H(R;) are
the histograms of the average thickness distribution and range respectively. The
peaks in the histograms indicate the widths of dominant arteries and are useful
in identifying the major coronary segments.
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4.3 Number of Trifurcations

Trifurcations are useful to detect in cases when left main trifurcating coronary
artery disease is present. Certain viewpoints (e.g. caudal) can cause trifurcation
junctions to be detected, which is a good viewpoint descriptor. This feature is
simply computed as fq = {Jp, , degree(J,,) > 3}.

4.4 Tortuosity

Tortuosity is the number of curvature changes in the skeletal curves, measured
using a histogram. The significant peaks in the histogram indicate the variation
in tortuosity across the coronary artery segments. To estimate the curvature
changes, we form a line segment approximation to the skeletal curve by recur-
sively partitioning it at points of maximum deviation. These points of deviation
are places where there is significant change in curvature. The tortuosity is nor-
malized by taking the ratio of the curvature change points Ny over the total
number of points N; to give T; = %’“ . By repeating this over all curves, we form
the tortuosity feature vector as a hi%togram over T; as fs = H(T;).

4.5 Lengths of Artery Segments

The length of artery segments is important to assess early bifurcation of the left
main coronary artery. Since the skeletal curves are available, this feature is easily
computed by the pixel length of the skeletal curves and forming a histogram of
it fo = H(]S:i|), where |S;] is the length of skeletal curve .S;.

4.6 Lumen Variations

To measure the lumen variations, we sample the intensity in the original image
along surface normals to the skeletal curve and average it at each point along
the skeletal curve. The range in intensity variations is similarly normalized by
the maximum intensity in the region and its histogram is feature f; = H(I;)
where [; is the normalized range of intensity variation in skeletal curve .S;.

5 Finding Similar Coronary Angiograms

By arranging the features into one long feature vector, each angiogram is repre-
sented by a vector F.. Simple Euclidean distance comparisons between feature
vectors is not sufficient to retrieve similar angiograms, both because of errors in
vessel detection and the inherent variation in raw feature vectors.

Going past the Euclidean metric, we attempt to learn a distance metric so that
vessels that are ”similar” end up close to each other in feature space. Specifically,
we adopted a recent work on a supervised metric learning method called Relevant
Component Analysis (RCA)[I1] as it has been shown to significantly improve
clustering performance. RCA works by eliminating those dimensions that are
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unlikely to be useful for classification using small subsets or chunklets of sample
points. The chunklet covariance matrix is estimated as C' = 3.3 j(zj; —
m;)(z;i —m;)T where m; denotes the mean of the j-th chunklet and z;; the
i-th element of the j-th chunklet. A whitening transformation is then associated
with the covariance matrix C W = C~2 to apply to the data points after
dimensionality reduction[IT].

To obtain the learning matrix, we first normalize all the feature vectors to be
unit range and then annotate the features of a training set from distinct view-
points, so that those from the same viewpoint and similar coronary anatomies
are annotated with the same label. Using the resulting metric learned W, the
distance between any two coronary angiograms is simply given by the Maha-
lanobis distance (X2 — X1)TW (X2 — X1). This distance is finally used to rank
coronary angiogram images in a database using their respective feature vectors.

6 Results

From a collection of 1600 runs of X-ray angiography videos from 70 patients,
we applied a keyframe detection method [I3] to retain the top 10 key frames
from each run, generating a ground truth test set of 600 images drawn across
multiple patients, viewpoints and coronary arteries. The training set for metric
learning was derived from another subset of keyframes chosen from the runs
to depict distinct viewpoints such as anterior oblique projection, left anterior
oblique, caudal and right coronary artery view. The training and testing was
done on different sets of patients.

6.1 Accuracy of Junction Detection

First, trained experts manually counted the number of junctions observed in
a set of about 130 left and right coronary images in 3 viewpoints. The spatial
overlap with the automatically detected junctions is shown in Table[Il The 10%
non-overlap in the spurious junctions is mostly from non-artery regions or from
vessel overlaps and intersections (e.g. cross-overs) while all manually identified
junctions were consistently detected. There is a large agreement between the
manual and automatically found junctions. The lower overlap of RCA is due to
the lower visibility of RCA over LCA in the X-ray images provided.

Table 1. Accuracy of junction detection in coronary arteries

Artery class Number of Avg. Manually detected Automatically % Spatial Overlap
Images Junctions per image detected junctions

LCA 31 62.6 75.3 89.8%

LCA Caudal View 50 45.8 67.6 93.5%

RCA 50 24.3 37.5 74.3%
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6.2 Accuracy of Coronary Artery Segment Extraction

First, trained experts marked major arteries using LabelMe[9] to trace the con-
tours of the segments. We automatically detected tubular structures to extract
the coronary segments and measured the spatial overlap between the two regions.
Table 2l summarizes the average accuracy of the detection process in comparison
with the ground truth for the three artery classes in our dataset. Here we define
average overlap as the fraction of pixels that are in both manual and automat-
ically extracted artery segments over the pixel area of the manual segments.
Similarly, average non-overlap is defined the fraction of pixels in automatic re-
gions that are not within manually indicated segments over the total number of
white pixels in all manual and automatically detected regions. Due to the differ-
ent normalization used, the two numbers need not add up to 100%. From this,
we conclude that a large fraction of the artery regions are accurately detected.

Table 2. Accuracy of coronary artery segment detection

Artery class Number of Images Average Overlap Average Nonoverlap
LCA 31 95.3% 12.4%

LCA Caudal View 50 93.8% 13.5%

RCA 50 86.2% 6.2%

6.3 Similarity Retrieval Performance

Using the learned distance matrix, we used query images from the 600 image test
set to retrieve the top 10 most similar images from the same set. Fig. Bl shows a
sample result with the query image in the top-left, and the top 5 similar images
in ranked order ordered left to right, top to bottom. The retrieved images have
similar topology, lumen variation, variation in artery thickness, and the same
disease (left main). To evaluate precision and recall, we selected 200 images from
the viewpoint set and asked trained experts to mark clinically similar images in
the 600 image data set. We then measured the recall as the fraction of these
images returned by the similarity ranking in the top K list while precision was

Precision-Recall Curve

Fig. 3. Similarity retrieval of coronary angiograms. (a) Query angiogram image. (b)-(f)
ranked order of matching coronary angiograms. (b) Precision-recall curve.
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measured by the fraction of the top K matches returned that were relevant.
The parameter K was varied to obtain the precision-recall curve. Fig. [8] shows
the precision-recall curve using RCA-based metric learning in comparison to the
Euclidean metric, indicating a large improvement in performance. In general, we
found that the similarity retrieval preserved the identity of the arteries in the
top 10 hits when the viewpoints were mixed in the dataset.

7 Conclusions

In this paper, we address for the first time, the problem of finding similar coro-
nary angiograms using clinically meaningful features whose variation across pa-
tient population is learned using metric learning.
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