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Abstract. Fiber clustering is an essential step towards brain connectivity mod-
eling and tract-based analysis of white matter integrity via diffusion tensor im-
aging (DTI) in many clinical neuroscience applications. A variety of methods 
have been developed to cluster fibers based on various types of features such as 
geometry, anatomy, connection, or function. However, identification of group-
wise consistent fiber bundles that are harmonious across multi-modalities is 
rarely explored yet. This paper proposes a novel hybrid two-stage approach that 
incorporates connectional and functional features, and identifies group-wise 
consistent fiber bundles across subjects. In the first stage, based on our recently 
developed 358 dense and consistent cortical landmarks, we identified consistent 
backbone bundles with representative fibers. In the second stage, other remain-
ing fibers are then classified into the existing backbone bundles using their  
correlations of resting state fMRI signals at the two ends of fibers. Our experi-
mental results show that the proposed methods can achieve group-wise consis-
tent fiber bundles with similar shapes and anatomic profiles, as well as strong 
functional coherences. 
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1 Introduction 

Automatic fiber clustering based on diffusion tensor imaging (DTI) has become a 
very active research area for the purpose of group-based statistical analysis on the 
fiber bundles [3-9]. However, DTI tractography algorithms typically generate a large 
number (10,000–100,000) of fibers per subject, which makes the information pro-
vided by the fibers not easily comprehensible. Therefore, the large number of fibers is 
often grouped into fiber bundles by fiber clustering methods [3-9] to facilitate group-
wise tract-based analysis. 

A typical framework is to first define a similarity between pairwise fibers and then in-
put the similarity matrix to standard data clustering algorithms. Therefore, various simi-
larity measures have been proposed in the literature including geometric, anatomical, 
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connectional and functional characteristics of fibers [3-9]. For example, Maddah et al. [4] 
represented fibers as 3D quintic B-splines, Brun et al. [5] tried to capture the three geo-
metric features using a 9-D descriptor, Corouge et al. [6] and Gerig et al. [7] proposed a 
mean closest distance that contains position and shape information, and Maddah et al. [3] 
enhances the Hausdorff similarity with Mahalanobis distance between fiber points. Later, 
anatomical (or atlas-based) feature was used to guide fiber clustering automatically/semi-
automatically [11]. Recently, Ge et al. [8] made attempts to use the functional correlation 
derived from resting state fMRI (R-fMRI) data to guide fiber clustering.  

This paper presents a novel two-stage hybrid fiber clustering approach that clusters 
fibers in a hierarchical way based on connectional and functional features. Specifical-
ly, the first stage groups a portion of fibers into group-wise consistent representative 
backbone bundles based on our recently developed 358 dense and consistent cortical 
landmarks [2]. The second stage classifies other remaining fibers into the backbone 
bundles obtained in the first stage according to functional coherences derived from R-
fMRI data. The major advantage of this methodology is that those consistent and 
common 358 cortical landmarks define and form the reliable and corresponding back-
bone fiber bundles, which serve as the reliable reference for the following clustering 
of less consistent fibers. Furthermore, in the second stage, the traditional fiber cluster-
ing problem is converted into a fiber classification problem in which the functional 
coherence derived from R-fMRI data guides the fiber clustering procedure. In short, 
the proposed two-stage fiber clustering methodology effectively utilizes the deep-
rooted common connectional and functional brain architectures to guide the fiber 
clustering processes such that the obtained fiber clusters possess both structural and 
functional correspondences across individuals, which was demonstrated by our expe-
rimental results.   

 

 

Fig. 1. Flowchart of the proposed computational framework 
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2 Materials and Methods 

2.1 Overview 

As summarized in Fig.1, our algorithmic pipeline includes the following steps. First, 
we pre-processed the raw DTI data and R-fMRI data, and then performed fiber track-
ing based on DTI data. Also, we registered the R-fMRI signals to the DTI space using 
FSL FLIRT. In the meantime, we predicted the 358 consistent landmarks for all sub-
jects via the methods in [2], and grouped/labeled these 358 landmarks by the MNI 
(Montreal Neurological Institute) atlas. Then, we identified the backbone fiber bun-
dles based on these consistent cortical landmarks, and each backbone bundle is 
represented by several representative fibers. Finally, we represented the backbone 
fiber bundles by the mean R-fMRI signals of these fibers, and classified other remain-
ing fibers into these backbone bundles by comparing the wavelet-derived correlations 
of the R-fMRI signals.  

2.2 Multimodal Data Acquisition and Pre-processing 

Eight student volunteers were scanned using a 3T GE Signa MRI system under IRB 
approvals. We acquired the R-fMRI data with the dimensionality of 128*128*60*100, 
space resolution 2mm*2mm*2mm, TR 5s, TE 25ms, and flip angle 90 degrees. DTI 
data was acquired using the same spatial resolution as the R-fMRI data; the parameters 
were TR 15.5s and TE 89.5ms, with 30 DWI gradient directions and 3 B0 volumes 
acquired. Pre-processing of the R-fMRI data included brain skull removal, motion cor-
rection, spatial smoothing, temporal pre-whitening, slice time correction, global drift 
removal, and band pass filtering (0.01Hz~0.1Hz). For the DTI data, pre-processing 
steps included brain skull removal, motion correction, and eddy current correction. Af-
ter the pre-processing, fiber tracking was performed using MEDINRIA (FA threshold: 
0.2; minimum fiber length: 20). The DTI image space was used as the standard space 
from which to generate the tissue segmentation map and from which to show the func-
tionally coherent fiber bundles on the cortical surface. DTI and fMRI images were  
registered via FSL FLIRT.  

2.3 Identifying Backbone Fiber Bundles via 358 Consistent Cortical Landmarks 

Recently, we identified and validated 358 group-wise consistent cortical landmarks that 
possess intrinsic correspondences across individuals and populations [2]. These land-
marks have consistent DTI-derived fiber connection patterns and exhibit corresponding 
functional locations. Importantly, they have been reproduced in over 240 individual 
brains [2]. Thus, these 358 landmarks offer a universal and individuated brain reference 
system. In particular, these 358 landmarks can be accurately predicted in each individu-
al brain with DTI data [2]. Figure 2(a) shows an example of these 358 landmarks.  

Based on the MNI atlas, first, we grouped these landmarks into Brodmann-labeled 
classes, 37 Brodmann areas were used to label the 358 landmarks. We performed this 
step on one randomly chosen subject once, and then these labeled landmarks can be 
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2. Then, the mean R-fMRI signal (Xjmean) within each backbone fiber bundle was 
computed. That is, ௝ܺ௠௘௔௡ ൌ ݉݁ܽ݊ሺ ௜ܺሻ for the jth bundle. 

3. The MODWT was used to decompose each mean fMRI time series into the follow-
ing scales or frequency intervals [10]: scale 1, 0.16–0.31 Hz; scale 2, 0.08–0.16 
Hz; scale 3, 0.04–0.08 Hz; and scale 4, 0.02–0.04 Hz. Afterwards, we computed 
the MODWT wavelet coefficients ( ෩ܹ௝ୀଷ௑ ) on scale 3 of the wavelet decomposition. 

4. For each other remaining fiber that is neighboring to the fibers within the backbone 
bundle, we computed the MODWT wavelet coefficients ( ෩ܹ௝ୀଷ௒ ) in the same man-
ner. Also, the wavelet correlation [1] between the fiber and each backbone fiber 
bundle was then computed as |ߩ௑௒|, and the fiber was classified into the backbone 
fiber bundle with maximal correlation value, which must be larger than a pre-
defined threshold in order to ensure that the most relevant fibers are selected.   

Notably, in this work, we focused on the scale 3 of the wavelet decomposition in that 
this is the frequency band most commonly studied in R-fMRI analyses and represents 
a reasonable trade-off between avoiding the physiological noise associated with high-
er frequency oscillations and the measurement error associated with estimating very 
low frequency correlations from limited time series [10]. And the threshold was cho-
sen empirically. We manually selected the 11 fiber bundles according to the method 
in [12], and computed the functional correlation values between fibers within each 
bundle, then averaged them for all 11 fiber bundles. The averaged value of 0.7 was 
chosen as threshold. 

3 Experimental Results 

In total, we identified 32 group-wise consistent fiber bundles for the whole brain, as 
shown in Fig 3. For the purpose of visual differentiation, each fiber bundle was 
represented by the representative fiber (shown in Fig 3(b)) whose mean closest distance 
with other fibers within the bundle was minimal. Each corresponding fiber bundle and 
the representative fiber in Fig. 3 have the same color in different brains. It is evident that 
the distributions of these 32 representative fibers are quite reasonable and consistent. As 
a more detailed example, Fig.4 shows 8 consistent fiber bundles from two randomly 
selected subjects. For a quantitative comparison, we computed the Hausdorff distances 
between the corresponding representative fibers of the eight subjects, as shown in  
Table 1. It can be seen that the Hausdorff distances are relatively small.    

Moreover, we compared the percentages of streamline fibers in the 8 backbone fi-
ber bundles and those of the corresponding finally clustered bundles after the second 
stage classification in Table 2. On average, the percentage of consistently clustered 
fibers increases from 8.03% to 25.78%, suggesting that the group-wise consistent 
backbone fiber bundles can really serve as the common white matter fiber tracts for 
clustering, and not all fibers were clustered into these 32 bundles because the 358 
landmarks can only cover a portion of the cortex. Table 3 shows the functional cohe-
rence of the 8 final fiber bundles with the corresponding backbone fiber bundles. We 
can see that final fiber bundles maintain the high functional coherence after classifica-
tion. These above results demonstrated the fiber bundles have both similar connection 
patterns and functional coherences.  
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fiber bundles, whose correspondences and consistencies are achieved automatically. 
In the second stage, the functional coherences derived from R-fMRI data were used to 
guide the classification of the remaining fibers into the already consistent backbone 
bundles. Both qualitative and quantitative analyses demonstrated the good perfor-
mance of the proposed framework. In the future, we plan to investigate finer scale 
clustering of these fibers into a more structurally and functionally homogenous bun-
dles. In addition, we plan to perform large scale task-based fMRI studies to validate 
the functional correspondences of these backbone fiber bundles.  
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