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Abstract. A new method for the geometrical averaging of labels or
landmarks is presented. This method expands the shape-based averaging
[1] framework from an Euclidean to a geodesic based distance, incorpo-
rating a spatially varying similarity term as time cost. This framework
has unique geometrical properties, making it ideal for propagating very
small structures following rigorous labelling protocols. The method is
used to automate the seeding and way-pointing of optic radiation trac-
tography in DTI imaging. The propagated seeds and waypoints follow a
strict clinical protocol by being geometrically constrained to one single
slice and by guaranteeing spatial contiguity. The proposed method not
only reduces the fragmentation of the propagated areas but also signif-
icantly increases the seed positioning accuracy and subsequent tractog-
raphy results when compared to state-of-the-art label fusion techniques.

1 Introduction

Diffusion magnetic resonance imaging (diffusion MRI) is an imaging technique
that provides insights about the pattern of diffusion of water molecules in the
brain, frequently represented by a tensor. Tractography algorithms have been
proposed to characterise and delimit white matter fibre bundles [2]. However,
diffusion imaging and subsequently tractography techniques are prone to imag-
ing artefacts and algorithmic limitations [3]. Due to these limitations, the most
commonly used technique for tractography initialisation is still manual localisa-
tion of tractography seeds, waypoints and exclusion zones. Nevertheless, diffusion
based image analysis techniques are increasingly used for their ability to charac-
terise white matter connectivity and microstructure [4], possibly leading to the
development of biomarkers for neurodegenerative disease progression[5].

Ideally, one would like to reduce both human interaction time and inter-
rater variability by standardising the tractography procedure using automated
methods. A basic step which is common to many recently proposed automated
seeding and way-pointing procedures is multi-atlas based information propaga-
tion through inter-subject alignment of multiple image volumes. This alignment
involves either a single [6] or multiple reference anatomies [7] and fusion of can-
didate segmentations using a multitude of methods normally adapted from com-
puter vision. For example, Suarez et al. [7] proposes to use non-rigid registration
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based multi-atlas propagation combined with the STAPLE (Simultaneous Truth
and Performance Level Estimation) fusion framework for automated seed prop-
agation. Note that, contrarily to T1 anatomical label fusion frameworks, none
of these automated methods have explored the use of image similarity metrics
to improve the fusion accuracy. Furthermore, the label fusion methods used in
previous works do not permit geometrically restrictive protocols where only a
very limited number of voxels and/or slices are allowed.

In this work we present an extension to Shape-based Averaging (SBA). The
Euclidean distance used in SBA is replaced by a geodesic distance in order to
integrate a image similarity term in the label fusion algorithm. The geodesic
SBA enables the robust propagation of sparse and non-overlaping labels and
allows the inclusion of geometrical and volumetric constrains. To the best of our
knowledge, this paper presents the first framework that incorporates both an
image similarity metric and shape-based label fusion.

2 Methods

This section first introduces the classical SBA framework and its unique geomet-
rical properties, followed by a reformulation of the framework using a geodesic
distance metric. Finally, the similarity based geodesic time cost function is de-
scribed within the geodesic SBA framework.

2.1 SBA and Its Geometrical Properties

The intuitive concept behind the original Shape-based Averaging method [1] is
that if one wants to fuse a set of candidate labels from a number of classifiers,
the fused label would be the one which has the the smallest Euclidean distance
to the boundaries of all the candidate labels, i.e. the one with the mean shape.

For K input images over Rm and k = 1, ...,K, let sk(i) be the label value at
location i. Each label is a number in the set Λ = {0, 1, ..., L − 1}, where zero
without loss of generality represents the image background. Now let a distance
maps dk,l(i) be the signed Euclidean distance transform (EDT) from the pixel i
in image k to label l. The signed EDT for each label is computed as the distance
between pixel i and the edge of label l, with its value being positive if pixel i in
on the inside of the edge, and negative if i is on the outside. Formally, dk,l(i) is
negative if sk(i) = l and dk,l(i) is positive if sk(i) �= l. It is important to note
that dk,l is a convex function.

Then, for each label one can then calculate the mean Euclidean distance from
pixel i to the edge of all candidate labels in all K images, as

Dl(i) =
1

K

K∑

k=1

dk,l(i) (1)

These Euclidean distance transforms from different labels are then fused by
minimizing the mean distance over all labels, S(i) = argmin

l∈Λ
Dl(i). A key feature
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Fig. 1. Top) Four examples with three labels to fuse (in blue, red and green). Overlap-
ing labels are represented by a partial pixels. Middle) Results from the SBA algorithm
in purple. Note that the fused label is continuous even if the labels do not overlap.
Bottom) Results from the Majority Voting algorithm in purple. Majority voting only
places labels in overlaping areas, leading to empty or non-connected results.

to note is that Dl is convex as it is the sum of a series of convex functions
dk,l. Due to this particularity, SBA is known to produce smooth fusions with
reduced structural fragmentations [1]. Also, it is possible to obtain a value of
distance from the shape-based average boundary at every pixel and for every
label. The combination of the convexity of the function and the fact that one
can sample this distance at any point provides unique geometrical properties to
the SBA framework. It allows the fusion of labels that do not overlap and labels
with completely different shapes. A graphical depiction is show in Fig. 1. These
geometrical properties are not present in majority voting, weighted voting and
STAPLE label fusion techniques.

2.2 Geodesic Distance Transform

A natural extension of the above described algorithm is the introduction of
classifier performance weights. If the proposed algorithm is seen in the perspec-
tive of multi-label propagation and fusion, where a series of labels from a tem-
plate database are propagated to a new unseen image using image registration,
then each propagated label should have a different fusion weight depending on
how similar the unseen image is to the registered image after transformation.
The introduction of classifier performance can help the overall label propagation
performance by giving insights about registration accuracy and morphological
similarity between images.

In this perspective, the Eq. 1 can then be extended to

Dl(i) =

∑K
k=1 Wk(i)dk,l(i)∑K

k=1 Wk(i)
(2)

where Wk(i) represent the similarity between the propagated template images k
and the current image at position i. If this similarity Wk(i) is spatially varying,
one cannot guarantee that Wk(i)dk,l(i) will be monotonically increasing. This
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Fig. 2. a) Two labels in blue and green; b) A similarity function Wk(i) for each label
with white being similar and black being dissimilar; d) The resultant geodesic distance
transforms dk,l(i); d) The final set S(i) on the top and the distance Dl(i) at the bottom.
All distances are thresholded between −4 and 4 for the purpose of visualisation.

would only occur if Wk(i) is constant for every i, where Dl(i) is reduced to a
weighted sum of Euclidean distance transforms.

In order to maintain the monotonicity of dk,l(i) while introducing a spatially
variant similarity term, one can replace the Euclidean distance transform by a
Eikonal equation based geodesic distance transform. The Eikonal equation is of
the form | ∇dk,l(i) |= Wk(i), with dk,l(i)|l = 0 and Wk(i) > 0 and with ∇
representing the gradient and |.| representing the Euclidean norm. Physically,
dk,l(i) is the shortest time needed to travel from the boundary of label l to i
with Wk(i) being the time cost at i. This distance can be solved using the fast
marching method [8]. As dk,l(i) is the result of a first order PDE with Wk(i) > 0,
dk,l(i) is guaranteed to be monotonically increasing. An example of this distance
can be seen in Fig. 2.

2.3 Label Propagation and Similarity Metric

Without loss of generality, the proposed method will be used to automate the
seeding and way-pointing of optic radiation tractography. Starting from a
database of 40 datasets containing both T1 and DTI MRI imaging modalities,
each T1 image was rigidly aligned to the fractional anisotropy (FA) of the DTI
image using a block matching approach [9]. An expert human rater manually
placed the seeds and waypoints on the DTI image, following the protocol defined
in [10].

Assuming a new unseen image, all the multimodal datasets in the database
can be propagated to this new dataset by preforming an affine registration, using
the same block matching approach, followed by a non-rigid alignment step. To
make use of the multimodal nature of the available data for the non-rigid regis-
tration step, a multi-modal fast free-form registration algorithm [11] was used.
As in Daga et al. [12], the multimodal data used for the registration step was
compromised of the T1 image and the FA image. The resulting transformations
were then used to propagate the manually placed seeds and waypoints from each
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atlas to the new image under study. These manual labels were resampled using
a nearest-neighbour interpolation in order to maintain their binary nature.

The similarity metric used in this work is based on the local sum of squared dif-
ferences (LSSD) within a gaussian kernel with standard deviation of 5mm. This
similarity term is necessary to characterise both the local differences in tissue
appearance due to pathology, registration errors and morphological variability
between subjects that could not be captured by the registration. The similarity
is calculated independently between the propagated T1 and FA images from
the atlas and the unseen T1 and FA images, respectively. This results in a FA
derived metric (LSSDFA) and an T1 derived metric (LSSDT1). The LSSD can
then be combined into a common similarity metric by using an inverse expo-
nential function. Thus, Wk(i) will be defined as Wk(i) = e(−LSSDFA−LSSDT1),
where higher values of Wk(i) means higher similarity.

2.4 The Clinical Protocol

The seeding and waypoint placement protocol is described in [10]. In short, the
seed mask consists of a series of voxels antero-lateral to the lateral geniculate
nucleus at the base of Meyers loop, positioned in the white matter in one single
coronal slice. These voxels should be contiguous in order to ensure that the
entire coronal cross-section of Meyers loop was encompassed. The volumes of
seed masks were standardised to 15 voxels for all subjects in order to reduce
inter-subject tractography variability. In addition to the seed, a waypoint was
placed in the lateral wall of the occipital horn of the lateral ventricle. This
waypoint was also restricted to one single coronal slice.

From this clinical protocol, three main constrains are necessary: both the
seeds and waypoints should be continuous and restricted to one single coronal
slice and the number of voxels in the seed is standardised to Nl = 15. Due
to the geometrical nature of the proposed method, these constrains are easily
integrated into the current framework by constraining the space of solutions of
S(i). Because we are not interested in the background label, instead of finding
what is the label that minimises the sum of the geodesic distances, one can
find what is the coronal slice with a set S(i) of Nl voxels that minimises the
sum of the geodesic distances. As the geodesic dk,l(i) is not necessarily convex,
contiguity of S(i) is not mathematically guaranteed. However, the monotonically
increasing nature of dk,l(i) will result in a smooth solution.

3 Validation

The validation of the proposed methodology will first quantify the error in auto-
mated placement of seeds and waypoints when compared to the manually placed
ones using a leave-one-out cross validation approach. The propagated seeds and
waypoints will also be characterised in terms of volume and contiguity. Secondly,
because small errors in seed positioning can result in drastically different trac-
tography results, the probabilistic overlap between manual and automatically
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Table 1. Automated seed and waypoint accuracy results using MV, STAPLE, SBA and
the proposed method. Column ’Manual’ contains the gold standard statistics. Distance
is not available for both MV and SBA because the fused output was empty.

Metric
Seed Fusion Waypoint Fusion

MV STAPLE SBA GSBA Manual MV STAPLE SBA GSBA Manual

Distance
Mean - 1.70 - 1.60 - - 1.86 - 1.86 -
Std - 1.81 - 1.41 - - 1.12 - 0.97 -

Voxels #
Mean 0 5.8 0 15 15 0 31.89 0 113.15 136.17
Std 0 2.89 0 0 0 0 18.85 0 17.62 85.6

Mean # Conn.Comp. 0 1.2 0 1 1 0 1.9 0 1 1
Mean Euler 0 3.2 0 2 2 0 7.2 0 2 2

generated tracts is assessed. For all experiments, the geodesic SBA fusion per-
formance is also compared to majority voting (MV), STAPLE [7], Euclidean
SBA [1] with the original cost function for S(i).

3.1 Seed and Way-Point Placement Accuracy

This section aims at assessing both accuracy of seed and waypoint placement and
their geometrical properties. In order to do so, both seeds and waypoints were
propagated as described in Section 2.3 and then fused using the above described
methods. Due to the very small size of the seeds and waypoints and because
they are limited in thickness to one single coronal slice, overlap measures like the
Dice coefficient would not provide insightful information about the placement
accuracy. Instead, we use the mean Euclidean distance from all the points in
the automated seed and waypoints to the manually placed ones as a measure
of accuracy. We also calculate the number of voxels, the number of connected
components and the Euler characteristic of each propagated seed. The later
describes topology of the propagated seed, where an Euler characteristic of 2
means that the seed is homotopic to a closed disk.

Results are presented in Table 1. Due to the label positioning variability,
both MV and SBA methods resulted in an empty set. Note that SBA also fails
because the original metric for S(i) was used. Both GSBA and STAPLE obtain
similar results regarding positioning accuracy, but the geometrical characteristics
of the STAPLE’s seeds and waypoints are discrepant when compared to the gold
standard. The mean number of voxels, number of connected components and the
Euler characteristic for the seeds and waypoints from STAPLE was significantly
different (p < 10−4) from the gold standard, while no significant differences were
found between the GSBA and the gold standard.

3.2 Automated Tractography Validation

As a geometrically accurate positioning of the seeds and waypoints is meaningless
if they lead to different tractography results, a further assessment of the sim-
ilarity between manually generated and automatically generated tracks is also
preformed. In order to do so, the Probabilistic Index of Connectivity (PICo)
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Fig. 3. Left) Optic radiation tractography for two patients. Tractography from the
manual seeds, GSBA and STAPLE are in blue, red and green respectively. Right) A
3D recontruction of the optic radiation for the manual and geodesic SBA methods.

algorithm [2] was used for tractography. Voxels in which a single tensor fitted
the data poorly were identified using a spherical-harmonic voxel-classification
algorithm [13]. In these voxels, a two tensor model was fitted, with the princi-
pal diffusion directions of the two diffusion tensors providing estimates of the
orientations of the crossing fibres. In all other voxels, a single tensor model was
fitted. Tracking from the seed was performed using 50000 Monte Carlo itera-
tions, an angular threshold of 180 (sufficient angular flexibility to allow tracking
of Meyer’s loop) and a fractional anisotropy threshold of 0.1. Because both MV
and SBA method fail to generate usable seeds and waypoints, only STAPLE and
the geodesic SBA were used for the comparison.

As the output from PICo is a probabilistic segmentation and because thresh-
olding a probabilistic segmentation introduces too much boundary variability,
the probabilistic Dice coefficient [14] was used as a measure of similarity between
tracts. Results show that the mean(std) Dice coefficient between the manually
seeded tracts and the automated tracts using the geodesic SBA is 0.547(0.138),
while with STAPLE method is 0.226(0.114). Using a two-tailed paired t-test for
statistical comparison, the geodesic SBA method provides highly statistically
significant improvements (p < 10−4) in tractography accuracy. Note that this is
the overlap of the full tract from the Meyer’s loop to the visual cortex.

4 Conclusion

This work presents an geodesic extension the Euclidean Shape-based Averag-
ing (SBA) framework, integrating an image similarity term in the label fusion
algorithm. The geodesic SBA enables the robust propagation of sparse and
non-overlaping labels and naturally permits the inclusion of geometrical and
volumetric constrains into the propagated label sets. Application to DTI trac-
tography shows statistically significant improvements in both seed and waypoint
placement accuracy, geometric characteristics and topology when compared to
state-of-the-art methodology, leading to improvements in tractography accuracy.
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