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Abstract. Connectivity matrices obtained from various modalities
(DTI, MEG and fMRI) provide a unique insight into brain processes.
Their high dimensionality necessitates the development of methods for
population-based statistics, in the face of small sample sizes. In this
paper, we present such a method applicable to functional connectivity
networks, based on identifying the basis of dominant connectivity compo-
nents that characterize the patterns of brain pathology and population
variation. Projection of individual connectivity matrices into this ba-
sis allows for dimensionality reduction, facilitating subsequent statistical
analysis. We find dominant components for a collection of connectivity
matrices by using the projective non-negative component analysis tech-
nique which ensures that the components have non-negative elements
and are non-negatively combined to obtain individual subject networks,
facilitating interpretation. We demonstrate the feasibility of our novel
framework by applying it to simulated connectivity matrices as well as
to a clinical study using connectivity matrices derived from resting state
magnetoencephalography (MEG) data in a population of subjects diag-
nosed with autism spectrum disorder (ASD).

1 Introduction

Although the neurological origin of many brain disorders is still unknown, com-
putational techniques applied to neuroimaging data help unveil the underly-
ing functional or structural differences between patient and typically developing
(TD) populations. Many brain disorders such as ASD and schizophrenia are be-
lieved to be due, in part, to altered brain connectivity [1-4]. Hence, connectivity
analyses of brain function has received considerable attention as an indicator of
or biomarker for brain disorders. Such studies have investigated the functional
or structural connectivity networks using fMRI, DTI, EEG, or MEG recordings
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by calculating correlation, synchronization, or mutual information measures and
interpreting abnormalities such as deficient long-range connections [1, 13].

A number of analysis approaches exists to utilize connectivity methods to
investigate the underlying brain processes occurring during rest as well as un-
der specific task conditions. A successful analysis methodology must possess a
means of identifying relevant sub-networks providing an interpretable represen-
tation of the brain activity, while also facilitating the statistical analysis able to
describe how this representation is affected by disease. The approach taken here
is the decomposition of connectivity matrices into dominant components while
enforcing positivity of both the components and coefficients. Such a decompo-
sition maintains the interpretation of each component as a connectivity matrix
and the coeflicients as activations of those networks while providing a succinct
low dimensional representation of the population amenable to statistical analy-
sis. The traditional approaches, principal and independent components analyses
(PCA and ICA), used for investigating brain networks [5, 6] provide dimen-
sionality reduction but lack the necessary constraints that provide a physiologic
interpretability of the decomposition.

In this paper, we present the projective non-negative component analysis to
identify the dominant functional connectivity networks in a population. These
networks form a basis of variation in the population that could be due to dif-
ferences in age, pathology, gender, etc. The non-negativity constraint on both
components and the coefficients allows the interpretation of a difference in the
coefficient of a particular component as a change in the degree to which it is
activated. Additionally, the connectivity components are nearly orthogonal. The
orthogonality of components with non-negative elements happens only when
they do not share non-zero dimensions, leading to sparsity |7, I8]. Such unique
analysis enables us to obtain the dominant networks, thereby providing a global
view of the brain processes and how they are affected by disease.

The applicability of the proposed method is demonstrated in simulated con-
nectivity matrices while comparing it with an alternate form of basis decom-
position. While the method is generalizable to any type of connectivity matrix
from alternate modalities, in this work we apply it to electrophysiological func-
tional connectivity networks computed from resting-state MEG data by using
the synchronization likelihood (SL) analysis |9]. This novel approach utilizes the
high temporal resolution of MEG data, allowing an accurate characterization of
the functional coupling between different areas of the brain. When coupled with
a suitable analysis framework, such as the proposed, MEG based connectivity
promises valuable insights into the temporal dynamics of brain states that is
unavailable from other modalities as well as how they are affected by pathology.

2 Methods

2.1 Projective Non-Negative Component Analysis (PNCA)

We hypothesize that each connectivity matrix obtained from recording the brain
activity of a subject is a linear combination of several fundamental connectivity
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matrices called connectivity components. Due to the symmetry of connectivity
matrices, a vector of all elements of the upper triangular part of any connectivity
matrix is considered as a representative of that matrix, and is used as an obser-
vation vector y; for the corresponding subject i. To compute the connectivity
components whose mixture approximately constructs the observed connectivity
matrices, a matrix factorization model is used as follows.

Y ~ W, (1)

where columns of Y, ie. y; (1 < ¢ < ¢), are the SL connectivity matrix
representatives, and columns of Wy, i.e. w; (1 < j < r), are representative
of the basis connectivity components, i.e. the upper triangular elements of the
matrix of the corresponding connectivity component. These components (w;)
are then mixed by the elements of each column of the loading matrix @,y, to
approximate the corresponding column of Y [10, I§].

Assuming that & is the projection of Y onto W, i.e. & = WTY, the non-
negativity constraint on the elements of W and € makes our non-negative
component analysis an optimization problem of minimizing the cost function
F(W) = ||Y = WWTY||? with respect to W, where ||.|| represents the ma-
trix norm. Considering the Frobenius norm, the optimization problem can be
denoted by [10]

T
min F,,, (W) = min trace { (¥ —~WWTY) (Y -WWTY)"}. (2)
W>0 W>0
The above cost function can be minimized by a gradient descent approach, i.e.
updating W; ; = W; ; —n; 5 aaf ~ with a positive step-size 7; ; where
2,7
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The gradient descent updating, as stated above, does not guarantee to keep the
elements of W non-negative. However, due to the positivity of the elements of
Y and by applying positive initialization to W, our non-negativity constraint is
guaranteed by having the step-size as follows

2 Wi
i = - ’ 4
i, (WWTYYTW)i,j + (YyTWWTW)M (4)

which results in the following multiplicative updating procedure [10]

2(YY'W),
Wi =W 5 . 5
7 TWWIYYTW),  + (YYTWWTW), . (5)

For stability of the convergence, at each iteration, W is normalized by W =
HVV[E./HQ . Starting by initial random positive elements on W, the iterative procedure
will converge to the desired W > 0 whose columns are PNCA. Each obtained
component w; (the 7" column of W) is then normalized by its norm |jw;||,
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and correspondingly the coefficients, i.e. elements of the matrix & = [pj;], are
adjusted as j; = Hif;\l l<i<g.

The resulting non-negative coefficients are an indicator of the weight of the
corresponding component in reconstructing the original connectivity matrices.
Therefore, we rank each component w; based on the average of corresponding
coefficients, i.e. (11 L o

2.2 Group PNCA Model for SL Networks

As stated by (), the ¢ connectivity observations, i.e. y; : 1 < i < g, in the
matrix Y are approximated by

P11 P12 - - - P1q

(6)

[Y1,Y2,- - Yg) = [wr,wa,...,w,] | 1 :
@r1 Pr2 - .. Prq
Each observation vector per subject i is thus, approximately reconstructed by

T

.
yi~ Y piw; =y (wiyi)w;; 1<i<q (7)
j=1

=1

Let us suppose, with no loss of generality, that the first ¢; elements are from the
first group (e.g. population of ASD) and the remaining from the second group
(e.g. TD group). Thereby, the role of each component w; in reconstructing the
corresponding connectivity vector in the first group, ie. y; : 1 < i < ¢, is
characterized by the corresponding coefficients ¢;;; and so forth for the second
group. Therefore, the statistical significance between the set of {¢;; : 1 < < ¢}
and {¢;; : ¢1 +1 < i < g} describes the importance of the corresponding basis
connectivity component w; in differentiating the two groups.

2.3 Synchronization Likelihood (SL) Connectivity Networks

Time-frequency synchronization likelihood assumes that two signals are highly
synchronized if a pattern of one signal repeats itself at certain time instants
within a time period while the other signal repeats itself at those same instants
[9]. Such signal patterns at a time instant ¢; of channel &k can be represented by
an embedding vector @y, = [wx(t:), T (tiv1), - -+ T (it (m-1)1)] where [ is the
lag and m is the length of the embedding vector. [ and m are typically set to
= gj;ff and m = 3;; ’ +1 where fs is the sampling frequency, and hy and I are
the high and low frequency contents of the signal, respectively [9]. At each time
instant ¢;, the Euclidean distance is measured between the reference embedding
vector x s, and the set of all other embedding vectors at times t;, i.e. Tk4,,
where t; lies in the range t; — bz t; <t; — t';l ort; + t'“2’1 <t; <t;+ t';Q

g 2l(m—1)
m—
)

(in this work t,, was set to 10 sec and t,, = . Then, n,.r nearest

embedding vectors @y, are retained [9].
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This procedure is conducted for each channel k and each time instants ¢;.
Then, the SL between channel k; and channel ks at time instant ¢; is the number
of simultaneous recurrences in the two channels divided by the total number of
recurrences, i.e. SLy, = Nk, /Nref. The synchronization likelihood at all the
time instants t; are then averaged yielding the final SL between the two channels.

3 Results

3.1 Simulation Experiments

In order to demonstrate the effectiveness of the proposed method of PNCA in
identifying the true underlying connectivity components, we apply our method to
simulated connectivity matrices. We compare this with ICA which is the most
widely-adopted method for similar purposes. The simulation is performed by
using random non-negative numbers as the elements of three 10 x 10 simulated
symmetric SL matrices plus a small background random (non-negative) noise.
Ten linear mixtures of the simulated connectivity matrices are composed by a
random mixing matrix with non-negative elements. The upper triangular part
(excluding the diagonal) of the 10 connectivity matrices are vectorized to form
the 10 columns of Y45x10. We apply the fast ICA algorithm [11] as well as
the proposed technique in Sect. 2] to solve for r = 3 normalized components
as columns of W5«3. For visualization, the SL matrices and the elements of
the resulting components from fast ICA and PNCA algorithms are displayed by
grayscale images. The results are shown in Fig. [l It can be seen that while our
method produces the right components (as compared to the original components
in Fig. 1(a)), ICA is unable to resolve the components correctly. This is due to
the fact that ICA forces the components to be statistically independent (i.e. with
covariance of identity) whereas PNCA forces the components to be non-negative
and orthogonal which leads to localized components due to sparsity. Please note
that the resulting components are not ranked and ordered in Fig. [l

3.2 PNCA on MEG SL Connectivity Networks

Dataset and preprocessing. Our dataset consisted of 48 children subjects
(26 ASD’s and 22 TD’s) aged 6-15 years (mean=10.1, SD=2.3 in ASD, and
mean=11.0, SD=2.5 in TD). A standard t-test showed that the populations’
age difference was not statistically significant (p — value > 0.19). All subjects
reported are free from medication use. Resting-state data were collected by a
275-channel MEG system, 274 channels being effective at the time of recording,
with three head-position indicator coils to monitor head motion and ensure im-
mobility. After a band-pass filter (0.03-150 Hz), MEG signals were digitized at
1200 Hz and downsampled offline to 500 Hz. Eye-blink artifacts were removed
by learning the pattern of eye blinks and deleting that component from the data.

The recordings are then used to calculate the 274 x 274 SL matrices for delta
(0.5—4 Hz) frequency band using a fourth order Butterworth bandpass filter. This
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(a) Original components (b) 10 mixtures of original components
(c) Fast ICA components (d) PNCA components

Fig. 1. The results of fast ICA and PNCA on the simulated SL matrices. (a) The simu-
lated SL matrices as the original components. (b) 10 linear mixtures of the components
by random weightings. (c) The solution of fast ICA. (d) The solution of PNCA.

could be computed in any frequency band, but ASD studies, e.g. [1], have shown
delta band anomalies and hence we concentrate on the delta band. Therefore,
a total of 26 and 22 SL matrices are obtained for 26 ASD and 22 TD subjects,
respectively. The upper triangular (excluding the diagonal) elements of each SL
matrix are concatenated to make a vector of 274;273 = 37401 elements which
form one column of Y 37401 x4s.

Component Analysis. In order to determine the number of components used
in the PNCA decomposition, we separately apply PCA to the aggregated con-
nectivity vectors of populations of ASD, TD, and pooled ASD and TD (needed
for a joint statistical analysis). The PCA findings indicated that a decomposi-
tion consisting of five (r = 5) components would account for 93% to 95% of
the total variance. The PNCA is applied to the three cases of ASD (Y 37401x26),
TD (Y 37401x22), and pooled ASD and TD (Y 57401x4s), and the model of () is
solved for five components (W 37401x5) for each of the three population cases.
The resulting 37401-length connectivity components at each column of W are
then used to form the corresponding 274 x 274 symmetric connectivity matrices.
Figure [2 shows the resulting five connectivity components on the MEG sensor
map. These components are ranked here (left to right) based on the descending
average of their corresponding coefficients in each of the three population cases.
The averages of the coeflicients are given in Table [II

A statistical group analysis, as described in Sect. 22 was performed over the
resulting PNCA coefficients, i.e. ¢;;. The two-sample t-test is applied to the
coefficients of each normalized connectivity component from the pooled AST—
TD and the p—values and t—values are given in Table[Il

We see that the average of the first component weights (¢1;) are statisti-
cally smaller in constructing the SL connectivity matrices of the ASD group
compared to the TD group. Interestingly, this is the most dominate compo-
nent, ranked by the average of the corresponding coefficients, in the pooled
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(¢) Connectivity components of pooled ASD and TD

Fig. 2. PNCA connectivity components plotted on the MEG sensor map and sorted
based on their average coefficients

Table 1. PNCA component ranking and statistical group analysis

Component ASD

No. Average

Coeff’s

10.2
6.2
6.0
4.6
2.0

U W N~

TD
Average
Coefl’s

114
6.4
4.8
4.6
2.8

9.7
7.0
5.7
5.0
2.8

group
p—value

0.02
0.32
0.75
0.28
0.23

Pooled ASD-TD ASD-TD ASD-TD
Average
Coeft’s

group
t—value

-2.3
-1.0
+0.3
-1.1
+1.2

population, and is quite similar to the most dominant components determined
from the separate ASD and TD populations. This component can be interpreted
as the default connectivity network observed in the resting brain. It is also no-
table that the presence of the fourth and fifth components of ASD indicates
strong short range frontal connectivity diminished in TD, while the fourth com-
ponent in TD population, with clear long range connectivity, is not found in the
ASD set of components. Together these support intact default connectivity in
ASD with evidence for diminished long range and enhanced short-range connec-
tivity in ASD; a finding consistent with other connectivity analysis investigations

in autism [1].
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4 Conclusion

We have presented a non-negative component analysis technique for learning lo-
calized and part-based sparse components of non-negative connectivity matrices.
The algorithm is based on non-negative projections which produces non-negative
bases and coefficients by a gradient descent approach minimizing a Frobenius
norm of the reconstruction matrix error. We applied it to the simulated con-
nectivity matrices which showed more accurate component findings compared
to the well-known ICA technique. The proposed method is then applied to the
novel problem of investigating MEG derived SL connectivity matrices, within a
group study of ASD. The projections of the connectivity elements onto the com-
ponents revealed statistically significant differences between how the ASD and
TD functional connectivity matrices are composed of their fundamental connec-
tivity components. The presented technique represents a framework, in principle
capable of handling other types of functional or structural connectivity networks
from any modality for statistical group analysis or feature selection.
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