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Abstract. Diffusion Spectrum Imaging (DSI) offers detailed information on 
complex distributions of intravoxel fiber orientations at the expense of extremely 
long imaging times (~1 hour). It is possible to accelerate DSI by sub-Nyquist 
sampling of the q-space followed by nonlinear reconstruction to estimate the 
diffusion probability density functions (pdfs). Recent work by Menzel et al. imposed 
sparsity constraints on the pdfs under wavelet and Total Variation (TV) transforms. 
As the performance of Compressed Sensing (CS) reconstruction depends strongly 
on the level of sparsity in the selected transform space, a dictionary specifically 
tailored for sparse representation of diffusion pdfs can yield higher fidelity results. 
To our knowledge, this work is the first application of adaptive dictionaries in DSI, 
whereby we reduce the scan time of whole brain DSI acquisition from 50 to 17 min 
while retaining high image quality. In vivo experiments were conducted with the 
novel 3T Connectome MRI, whose strong gradients are particularly suited for DSI. 
The RMSE from the proposed reconstruction is up to 2 times lower than that of 
Menzel et al.’s method, and is actually comparable to that of the fully-sampled 50 
minute scan. Further, we demonstrate that a dictionary trained using pdfs from a 
single slice of a particular subject generalizes well to other slices from the same 
subject, as well as to slices from another subject. 

1 Introduction 

Diffusion weighted MR imaging is a widely used method to study the interconnectivity 
and structure of the brain. Diffusion Tensor Imaging (DTI) is an established diffusion 
weighted imaging method, which models the diffusion as a univariate Gaussian 
distribution (1). One limitation of this model arises in the presence of fiber crossings, and 
this can be addressed by using a more involved imaging method. Diffusion Spectrum 
Imaging (DSI) samples the full q-space and yields a complete description of the diffusion 
probability density function (pdf) (2). While DSI is capable of resolving complex 
distributions of intravoxel fiber orientations, full q-space coverage comes at the expense 
of substantially long scan times (~1 hour).     

Compressed Sensing (CS) comprises algorithms that recover data from undersampled 
acquisitions by imposing sparsity or compressibility assumptions on the reconstructed 
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images (3). In the domain of DSI, acceleration with CS was successfully demonstrated 
by Menzel et al. (4) by imposing wavelet and Total Variation (TV) penalties in the pdf 
space. Up to an undersampling factor of 4 in q-space, it was reported that essential 
diffusion properties such as orientation distribution function (odf), diffusion coefficient, 
and kurtosis were preserved (4). 

The performance of CS recovery depends strongly on the level of sparsity of the 
signal in the selected transform domain (3). While prespecified transformations such 
as wavelets and spatial gradients yield sparse signal representation, tailoring the 
sparsifying transform based on the characteristics of the particular signal type may 
offer even sparser results. K-SVD is an algorithm that designs a dictionary that 
achieves maximally sparse representation of the input training data (5). The benefit of 
using data-driven, adaptive dictionaries trained with K-SVD was also demonstrated in 
CS reconstruction of structural MR imaging (6).  

In this work, we employ the K-SVD algorithm to design a sparsifying transform that 
captures the structure in diffusion pdfs and yields a signal representation with increased 
level of sparsity. Coupling this adaptive dictionary with the FOcal Underdetermined 
System Solver (FOCUSS) algorithm (7), we obtain a parameter-free CS algorithm. With 
3-fold undersampling of q-space, we demonstrate in vivo up to 2-fold reduced pdf 
reconstruction errors relative to our implementation of the CS algorithm that uses 
wavelets and variational penalties by Menzel et al. (4). At higher acceleration factors of 5 
and 9, we still demonstrate substantial improvement. For additional validation, the 
RMSE of the reconstructed ‘missing’ diffusion images were calculated by comparing 
them to a gold standard dataset obtained with 10 averages. In this case, dictionary-based 
reconstructions were seen to be comparable to the fully-sampled 1 average data. Further, 
we show that a dictionary trained on data from a particular subject generalizes well to 
reconstruction of another subject’s data, still yielding significantly reduced reconstruction 
errors. Hence, application of the proposed method might reduce a typical 50-minute DSI 
scan to 17 minutes (upon 3× acceleration) while retaining high image quality. 
Additionally, we also investigate using a simple ℓ -norm penalty in the pdf space with 
the FOCUSS algorithm, and show that this approach gives comparable results to the 
more involved wavelet- and TV-based reconstruction by Menzel et al. (4), while being 
computationally more efficient. 

2 Theory 

CS Recovery with Prespecified Transforms  

Letting represent the 3-dimensional diffusion pdf at a particular voxel as a 
column vector, and  denote the corresponding undersampled q-space 
information, CS recovery with wavelet and TV penalties aim to solve the convex 
optimization problem at a single voxel, 

  Ω · · TV  (Eq. 1)

where Ω is the undersampled Fourier transform operator,  is a wavelet transform 
operator, TV .  is the Total Variation penalty, and  and  are regularization 
parameters that need to be determined. 
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Training an Adaptive Transform with K-SVD 

Given an ensemble  formed by concatenating  example pdfs  
collected from a training dataset as column vectors, the K-SVD algorithm (5) aims to 
find the best possible dictionary for the sparse representation of this dataset by solving,   

 ,  ∑ subject to  (Eq. 2)

where  is the matrix that contains the transform coefficient vectors  as its 
columns,  is the adaptive dictionary formed by example pdfs,  is a fixed constant 
that adjusts the data fidelity, and .  is the Frobenius norm. The K-SVD works 
iteratively, first by fixing  and finding an optimally sparse  using orthogonal 
matching pursuit, then by updating each column of  and the transform coefficients 
corresponding to this column to increase data consistency. 
 
CS Recovery with an Adaptive Transform Using FOCUSS 

The FOCUSS algorithm aims to find a sparse solution to the underdetermined linear 
system Ω , where  is the vector of transform coefficients in the transform 
space defined by the dictionary  using the following iterations, 

For iteration number 1, … , 

 W , /
 (Eq. 3)

 argmin   such that Ω  (Eq. 4)
 

  (Eq. 5)

Here,  is a diagonal weighting matrix whose jth diagonal entry is denoted as W , , 
 is the estimate of transform coefficients at iteration t whose jth entry is . The 

final reconstruction in diffusion pdf space is obtained via the mapping .  
We note that it is possible to impose sparsity-inducing ℓ  penalty directly on the 

pdf coefficients by taking  to be the identity matrix . A detailed description of 
application of FOCUSS algorithm to MRI can be found in (8), where it is shown that 
reweighted ℓ  norm solutions for the auxiliary variable  induce ℓ  penalty on . 

3 Methods 

Diffusion EPI acquisitions were obtained from three healthy volunteers (subjects A, B 
and C) using a novel 3T system (Magnetom Skyra Connectom, Siemens Healthcare, 
Erlangen, Germany) equipped with the AS302 “Connectom” gradient with Gmax = 300 
mT/m (here we used Gmax = 200 mT/m) and Slew = 200 T/m/s. A custom-built 64-
channel RF head array (9) was used for reception with imaging parameters of 2.3 mm 
isotropic voxel size, FOV = 220×220×130, matrix size = 96×96×57, bmax = 8000 s/mm2, 
514 directions full sphere q-space sampling organized in Cartesian grid with interspersed 
b=0 image every 20 TRs (for motion correction), in-plane acceleration = 2× (using 
GRAPPA algorithm), TR/TE = 5.4 s / 60 ms, total imaging time ~50 min. In addition, at 



4 B. Bilgic et al. 

 

5 q-space points ( 1,1,0 ,  0,2, 1 ,  0,0,3 , 0,4,0 , and 5,0,0   residing on 5 
different shells, 10 averages were collected for noise quantification. Eddy current related 
distortions were corrected using the reversed polarity method (10). Motion correction 
(using interspersed b=0) was performed using FLIRT (11) with sinc interpolation. 

Variable-density undersampling (using a power-law density function (3)) with R = 3 
acceleration was applied in q-space on a 12×12×12 grid. Three different adaptive 
dictionaries were trained with data from slice 30 of subjects A, B and C. Reconstruction 
experiments were applied on test slices that are different than the training slices. In 
particular, two reconstruction experiments were performed. First, voxels in slice 40 of 
subject A were retrospectively undersampled in q-space, and reconstructed using 5 
different methods: wavelet+TV method of Menzel et al. (4),  ℓ -regularized FOCUSS, 
and Dictionary-FOCUSS with the three dictionaries trained on three different subjects. 
Second, voxels in slice 25 of subject B were undersampled with the same R = 3 sampling 
pattern, and again reconstructed with wavelet+TV, ℓ -FOCUSS, and the three 
dictionaries trained on three different subjects. For Menzel et al.’s method, Haar wavelets 
in MATLAB’s wavelet toolbox were used. The regularization parameters  and  in Eq.1 
were chosen by parameter sweeping with values 10 , 3 · 10 , 10 , 3 · 10  to 
minimize the reconstruction error of 100 randomly selected voxels in slice 40 of subject 
A. The optimal regularization parameters were found to be 3 · 10  for wavelet and 10  for the TV term. By taking the fully-sampled data as ground-truth, the fidelity 
of the five methods were compared using root-mean-square error (RMSE) normalized by 
the ℓ -norm of ground-truth as the error metric both in pdf domain and q-space. 

Since the fully-sampled data are corrupted by noise, computing RMSEs relative to 
them will include contributions from both reconstruction errors and additive noise. To 
address this, the additional 10 average data acquired at the selected 5 q-space points 
were used. As a single average full-brain DSI scan takes ~50 min, it was not practical 
to collect 10 averages for all of the undersampled q-space points. As such, we rely on 
both error metrics, namely: the RMSE relative to one average fully-sampled dataset 
and the RMSE relative to gold standard data for 5 q-space points. 

4 Results 

Fig.1 depicts the error of the five reconstruction methods in the pdf domain for each 
voxel in slice 40 of subject A. At R = 3 acceleration, reconstruction error of Menzel et 
al.’s method averaged over brain voxels in the slice was 15.8%, while the error was 
15.0% for ℓ -regularized FOCUSS. Adaptive dictionary trained on subject A yielded 
7.8% error. Similarly, reconstruction with dictionaries trained on pdfs of the other 
subjects B and C returned 7.8% and 8.2% RMSE, respectively. At R = 5 and 9, 
Dictionary-FOCUSS with training on subjects C and B returned 9.3% and 10.0% RMSE, 
respectively. 

In Fig.2, reconstruction errors at R = 3 on slice 25 of subject B are presented. In 
this case, Menzel et al.’s method yielded 17.5% average RMSE, and ℓ -FOCUSS had 
17.3% error. Dictionary trained on slice 40 of subject B returned 11.4% RMSE, while 
adaptive transforms trained on subjects A and C had 11.4% and 11.8% error, 
respectively. At higher acceleration factors of R = 5 and 9, Dictionary-FOCUSS with 
training on subjects C and A returned 13.5% and 14.2% RMSE, respectively. 
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Reconstruction errors in q-space images of subject A obtained with Wavelet+TV, ℓ -FOCUSS and Dictionary-FOCUSS for the undersampled q-space directions are 

plotted in Fig.3. For two particular diffusion directions, q-space reconstructions 
obtained with the three methods are also presented.  

Fig. 1. RMSE at each voxel in slice 40 of subject A upon R=3 acceleration and reconstruction 
with Menzel et al.’s method (a), ℓ -FOCUSS (b), Dictionary-FOCUSS trained on subjects A 
(c), B (f), and C (g). Dictionary-FOCUSS errors in (d) and (e) are obtained at higher 
acceleration factors of R=9 and 5. 

Fig. 2. RMSE at each voxel in slice 25 of subject B upon R=3 acceleration and reconstruction
with Menzel et al.’s method (a), ℓ -FOCUSS (b), Dictionary-FOCUSS trained on subjects B
(c), A (f), and C (g). Dictionary-FOCUSS errors in (d) and (e) are obtained at higher
acceleration factors of R=9 and 5. 
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To allow inter-subject 
comparison, slices that correspond 
to approximately the same 
anatomical region in subjects A, B 
and C were also reconstructed. As 
shown in Fig.1f, slice 40 of subject 
A when reconstructed using the 
dictionary trained on subject B 
gave 7.8% average error. Slices 38 
of subjects B and C yielded 7.3% 
and 9.3% RMSE when 
reconstructed with the dictionary 
trained on subject A upon 3-fold 
undersampling (not shown). 

In an attempt to quantify the 
noise in q-space and separate it 
from CS reconstruction error, we 
take the 10 average data acquired 
at 5 q-space directions as ground 
truth and compute RMSEs 
relative to them. Fig.4 shows the 
error plots for the 1 average fully 
sampled data, Wavelet+TV, ℓ -
FOCUSS, and Dictionary-
FOCUSS reconstructions relative 
to the 10 average data for slices 
from subjects A and B. 

 
 
 
 

 
 
 
 
 
 
 
 
 
     

 
 
 

Fig. 3. Top: RMSEs in ‘missing’ q-space directions 
estimated with Wavelet+TV, ℓ - and Dictionary-
FOCUSS at R=3. q-space images at directions [5,0,0] 
(a) and [0,4,0] (c) are also depicted. In (b), 
Wavelet+TV and ℓ  recons of dir. [5,0,0] are scaled 
up to have same ℓ  norm as fully-sampled 10 avg . 

Fig. 4. Panel on the left depicts RMSEs of Wavelet+TV, ℓ -FOCUSS and Dictionary-
FOCUSS at R=3  and fully-sampled 1 average data computed in 5 q-space locations relative to 
the 10 average data for subject A. Panel on the right shows the same comparison for the slice 
belonging to subject B. 
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Fig.5 presents Orientation Distribution Function (ODF) visualization of reconstructions 
obtained at 3-fold acceleration using Wavelet+TV and Dictionary-FOCUSS, and 
compares the tractography solutions obtained with adaptive reconstruction and fully-
sampled data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

5 Discussion 

This work presented the first application of adaptive transforms to voxel-by-voxel CS 
reconstruction of undersampled q-space data. Relative to reconstruction with prespecified 
transforms, the proposed algorithm has up to 2 times reduced error in the pdf domain at 
the same acceleration factor (R = 3), while requiring no regularization parameter tuning. 
When the undersampling ratio was increased to R = 5 and even up to R = 9, the proposed 
method still demonstrated substantial improvement relative to using prespecified 
transforms at R = 3 (Figs.1 and 2). This will render DSI clinically feasible, by cutting a 
50 min scan to 5.5 min upon 9-fold acceleration. As demonstrated, a dictionary trained 
with pdfs from a single slice of a particular subject generalizes to other slices of the same 
subject, as well as to different subjects. However, further tests are needed to see if 
dictionaries can generalize across healthy and patient populations, across age groups, or 
fundamentally different anatomical locations. 

Since the acquired 1 average DSI data is corrupted by noise (especially in the outer 
shells), it is desired to obtain noise-free data for more reliable computation of CS 
reconstruction errors. Because even the 1 average full-shell acquisition takes ~50 min, 
it is practically not possible to collect multiple-average data at all q-space points. To 
address this, one representative q-space sample at each shell was collected with 10 
averages to serve as “(approximately) noise-free” data. When the noise-free data were 

Fig. 5. ODFs for subject A using Wavelet+TV (a), dictionary (b), and fully-sampled data (c) 
within the ROI in the FA map in (d). Tracts with R=3 dictionary recon (e) and fully-sampled 
data (f) are also presented. 
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taken to be ground-truth, the dictionary reconstruction with 3-fold undersampling was 
comparable to the fully-sampled 1 average data for both subjects (Fig.4).  

RMSE in Fig.2 was overall higher than in Fig.1. A possible explanation is the 
inherently lower signal-noise-ratio (SNR) in the lower axial slice, particularly in  
the center area of the brain which is further away from the receive coils. In particular, the 
error is higher in the central region of the image where the SNR is expected to be lowest. 
Future work includes a detailed analysis of how SNR level affects the reconstruction 
performance of the proposed CS algorithm and the dictionary learning step. 

As seen in Fig.3, wavelet and TV penalized reconstruction and ℓ -FOCUSS yield 
especially poor quality results in estimating the high q-space samples. In particular, as 
depicted in Fig.3a, these CS methods tend to underestimate the high q-space content. 
However, this is not a simple scaling problem, even when q-space images are scaled 
to have the same ℓ -norm as the fully-sampled 10 average data, they yield either flat 
(Wavelet+TV) or grainy ( ℓ -FOCUSS) results (Fig.3b). ODF visualization and 
tractography solutions in Fig.5 show good agreement between the adaptive 
reconstruction and the fully-sampled dataset. Average FA and tract volume metrics 
obtained from 18 major white-matter pathways were seen to support this good 
agreement (data not shown due to space limitation). As the tract results show that 
main fiber bundles are not corrupted, adaptive reconstruction causes no regional bias 
in the reconstruction.  

In our implementation, per voxel processing time of ℓ -FOCUSS was 0.6 seconds, 
while this was 12 seconds for Dictionary-FOCUSS and 27 seconds for Wavelet+TV 
method on a workstation with 12GB memory and 6 processors. Hence, full-brain 
reconstruction using the Dictionary-FOCUSS algorithm would still take several days. 
Because each voxel can be processed independently, parallel implementation is likely 
to be a significant source of performance gain. 

The proposed CS acquisition/reconstruction can be combined with other 
techniques to further reduce the acquisition time and/or improve reconstruction 
quality. In particular, combining the proposed method with the Blipped-CAIPI 
Simultaneous MultiSlice (SMS) acquisition (12) could reduce a 50 minute DSI scan 
to mere 5.5 minutes upon 9-fold acceleration (3×3 CS-SMS) while retaining high 
image quality.  
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