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Chapter 9 
Fuzzy Forecasting with Fractal Analysis  
for the Time Series of Environmental Pollution 

Wang-Kun Chen and Ping Wang* 

Abstract. Environmental pollution, which is complicated for forecasting, is a 
phenomenon related to the environmental parameters. There are many studies 
about the calculations of concentration variation on pollution time series. A new 
framework of prediction methodology using the concept of fuzzy time series with 
fractal analysis (FTFA) was introduced. The FTFA uses the concept of turbulence 
structure with the fractal dimension analysis to estimate the relationship by fuzzy 
time series. The candidate indexes of each pattern can be selected from the most 
important factors by fractal dimension analysis with autocorrelation and cross 
correlation. Based on the given approach, the relationship between the environ-
mental parameters and the pollution concentration can be evaluated. The proposed 
methodology can also serve as a basis for the future development of environmen-
tal time series prediction. For this reason, the management of environmental quali-
ty can be upgraded because of the improvement of pollution forecasting. 

Keywords: Fuzzy Theory, Fractal Analysis, Environmental Pollution, Time Series. 

1   Time Series of Environmental Phenomenon and Its Physical 
Nature  

Environmental pollution is a kind of natural phenomenon which could be 
explained by the turbulence structure of fluid dynamics. The environmental 
properties such as pollution concentration, wind velocity, ocean current and 
thermal diffusion are all the outcome of natural turbulence. The air pollution is a 
typical phenomenon caused by pollutants emitted into the atmosphere and diffused 
with the eddy.  
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The environmental phenomenon can be described by its physical properties. 

The presence of “eddies” in the environment leads to the complexity and variation 
of the outcome of observation. The length scale of “eddy” differs to several orders 
of magnitude. For example, typhoon is one of those large eddies exists in the at-
mosphere, and the sea breeze is the smaller eddy caused by the air-sea exchange. 
Thus it is very difficult to explain the difference by traditional methods. A better 
insight into the characteristics of turbulence with these “eddies” will be helpful in 
understanding the nature of these environmental phenomenon.  

The modern principle of fluid dynamics and the theory of fractal analysis are 
suitable tools to investigate the properties of environmental events. The irregularity 
and the randomness are the most important characteristics of turbulent flow. These 
characteristics make it impossible to explain the environmental events using deter-
ministic approach, except invoking statistical methods. The environmental pheno-
menon can be investigated by long term and large area monitoring. However, the 
complexity of the time series-based observation has made the interpretation more 
difficult. The models used to describe environmental turbulence should be able to 
simulate the non-linear and non-stationery properties of time series. Therefore, the 
recently developed tool, fractal analysis, can be employed to meet the needs.  

Environmental pollution is a phenomenon resulting from the presence of turbu-
lence, characterized by non-linear, randomness, irregularity, and chaos.  Thus, 
turbulence is a complex environmental phenomenon that is difficult to predict 
precisely through mathematical modeling. 

2   Interpretation of Pollution Time Series by Fractal Analysis 

Since there are so many different eddies with different scales, the concept of  
fractal analysis become useful to understand the behavior of environmental turbu-
lence. Fractal analysis, which expresses the complexity using the fractal dimen-
sion, is a contemporary method to describe the natural phenomenon. It applies the 
nontraditional mathematics in analyzing the environmental problem and has been 
used in the analysis of the scale dependence environmental phenomenon such as 
rainfall (Olsson & Niemczynowicz,1994,1996), air pollutant concentration 
(Lee,2002, Lee et al, 2003, Lee & Lin, 2008; Lee et al,2006a,), and earthquake 
(Lee et al,2006b). 

Mandelbrot has defined fractal as a special class of subsets of a complete metric 
space (Mandelbrot,1982).  The fractal dimension, DF, which is deduced from the 
scaling rule, is the key concept of fractal analysis. The complexity of environmen-
tal phenomenon is due to a change with the variation of turbulence eddies in scale. 
So it is possible to have many types of fractal dimension, DF, in an environmental 
system. These fractal dimensions can be explained in terms of measure of the 
complexity. Comparing with the change with scale in turbulence, so it is necessary 
to deduce a scaling system to represent the “patterns of complexity”  

Here a simple model is proposed for estimation of pollution concentration  
influenced by environmental turbulence. Generally, the scaling rule or fractal di-
mension, DF, can be represented by two terms, N and ε.  The term N is the num-
ber of pieces and ε is the scale used to get new pieces. The relationship can be 
written as:  
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N ∝ ε -DF
                                                      (1) 

which can be further formulated in the form of a scaling rule: 

N = A ε -DF                                  (2) 

where A is a certain constant. By taking the logarithm of both sides of (2), the 
variable DF becomes the ratio of the log of “the number of new parts (N)” to the 
log of “scale (ε)”: 

DF = log N/log ε.                               (3) 

The scaling rule of fractal dimension helps us explain the variation of pollution 
time series in the fuzzy time series prediction with fractal analysis. 

In turbulence, the attribute of correlated variable helps to characterize the phe-
nomenon. The analysis starts from the average of products, which are computed in 
the following way. (Tennekes and Lumley, 1972)~ 
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The terms consisting of a product of a mean value and a fluctuation vanish if they 
are averaged, because the mean value is a mere coefficient as far as averaging is 
concerned, and the average of a fluctuation quantity becomes zero.  

If 0≠jiuu , ui and uj are said to be a correlated; if 0=jiuu , the two varia-

ble are uncorrelated. Figure 1 illustrates the concept of correlated fluctuating vari-
able. The correlation coefficient Cij, is defined by 
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where Cij is a measure for the degree of correlation between two variable ui and uj. 

If 1±=ijC , the correlation is said to be perfect, and could be chosen as the best 

predictor for forecasting.  
In the analysis of turbulence dimension, the “standard deviation” of “root mean 

square (RMS)” amplitude is defined. For a turbulent flow field, a characteristic 
velocity, or “velocity scale”, might be defined as the mean RMS velocity taken 
across the flow field at that position. In this way velocity scale could be used as a 
precise definition in dimensional analysis.  

If the evolution of fluctuating function (t) is to be described, it is necessary to 
know that the value of u at different time is related. The question could be ans-
wered by considering a joint density for u(t) and u’(t). The time difference, or time 

lag, in the property time series is defined by tt −= 'τ . The correlation )'()( tutu  

at two different times is called the autocorrelation, and the correlation between u 
and v is called the cross-correlation. 
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Fig. 1 The example of correlated variable and uncorrelated variable. The green and blue 
line has a negative correlation; however, the red line is uncorrelated to the two variables.  

A tensor R to deal with the correlation between different location x and x+r is 
given by 

)(),( txutxuR iiij +⋅≡ ,                            (6) 

3   Representation of Environmental Phenomenon by Fuzzy 
Time Series 

After interpretation of environmental phenomenon in terms of turbulence scale 
and fractal dimension analysis, we return to the problem of predicting the time 
series value of pollution. Time series is frequently applied to the prediction of 
environmental events. An example of using time series for pollutant concentration 
is given by 

X = {x t  t = 1,……, N }                    (7) 

where t is time index and N is the total number of observations. For example, the 
time series of ozone concentration from a continuous monitoring station, the in-
stantaneous wind velocity at the meteorological observation station is considered 
as an event for a time series.  

The prediction method of fuzzy time series with fractal analysis is a scheme re-
vised from Chen’s study of fuzzy time series (Chen, 1996, 2002)(Chen and Hsu, 
2004, 2008)(Chen and Hwang, 2000)(Song and Chrisson, 1993, 1994, 2003). The 
concept of fuzzy time series has been applied to the prediction of pollutant con-
centration by Chen (Chen, 2011), which produced good results. However, it is  
still unable to describe the non-linear characteristic of the environmental system. 



9   Fuzzy Forecasting with Fractal Analysis for the Time Series  203
 

On the other hand, the database is not extensive enough to generate a complete 
inference engine to simulate all the possible variation of time series.  

In this study, due to an addition of 1440 data sets to the database for generating 
the inference engine, along with the fractal analysis of turbulence, more insight is 
given than before into the behavior of pollution concentration in the environment. 

The prediction method of fuzzy time series with fractal analysis (FTFA) can be 
implemented by the following steps: (1) Define the interval. (2) Get the statistical 
distribution of concentration in each interval. (3) Define each fuzzy set Ai based 
on the re-divided intervals ui derived in step 2. (4) Establish fuzzy logical relation-
ship based on the fuzzified concentration. (5) Use the high-order difference to 
determine the upward or downward trend. (6) Find the appropriate predictors by 
fractal analysis.  

Let U = {u1, u2, u3,……,un}, where U is the universe of discourse. Fuzzy set A, 
in the universe of discourse U, is defined as follows: 

nnni uufAuufAuufAA /)(/)(/)( 222111 +++=    ,        (8) 

where fA is the membership function of the fuzzy set A, fA : U → [0,1], fA(ui) indi-
cates the grade of membership of ui in the fuzzy set A, fA(ui)∈[0,1], and 1≦i≦n.  

Define F( t ) as the fuzzy time series of X(t) (t = ……, 0, 1, 2, ……), and X(t) (t 
= ……, 0, 1, 2, ……) is the universe of discourse in X (t). In order to extract the 
knowledge from the time series database, assume there exists a fuzzy relationship 
R (t, t-1) such that 

F(t) = F(t-1)‧R(t, t-1)                               (9) 

Where, R(t, t-1) denotes the fuzzy relationship between F(t) and F(t-1). If fuzzy 
set F(t-1)=Ai, and F(t)=Aj, the fuzzy relationship is called the first order fuzzy 
time series. 

More hidden relationships could be found in the time series database. If F(t) is 
caused by F(t-1), F(t-2), F(t-3) ……,and F(t-n), then there is a high-order fuzzy 
time series which can be represented by  

F(t-n),……,F(t-2), F(t-1) → F(t).                     (10) 

The fuzzy interval of pollution time series can be an equal-length interval (ELI) or 
an un-equal length interval (ULI). ULI is the improved model of ELI by adjusting 
the length of each interval in the universe of discourse  This is called the multi-
step fuzzy time series for the forecasting of concentration (Chen, 2008) (Chen, 
2010). The proposed method of FTFA is presented as follows: 

Step 1: Define the interval 

Let U be the universe of discourse, U = [Dmin - D1, Dmax + D2], where Dmin and  
Dmax denote the minimum and maximum concentration. 

Step 2: Form the statistical distribution of concentration in each interval.. 

Sort the interval based on the number of concentration data falling into each inter-
val in a descending sequence. 

Step 3 : Define each fuzzy set Ai based on the re-divided intervals ui derived in 
step 2, and fuzzify the historical concentration. 
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The interval with no data distributed was discarded. The interval with more data 
was divided into more sub-intervals. The idea behind the determination of interval 
and sub-interval is to divide the interval containing a higher number of historical 
concentration data into more sub-intervals to improve the accuracy of predict. 

Step 4: Establish fuzzy logical relationship based on the fuzzified concentration.  

If the fuzzified concentration of month i and i+1 are Aj and Ak, respectively, then 
construct the fuzzy logical relationship “Aj → Ak”, where Aj and Ak are called the 
current state and the next state of the concentration. 

If the fuzzified concentration of month i is Aj and the fuzzy logical relationship 
is shown as:Aj→Ak1(x1), Ak2(x2)…Akp(xp) , then the estimated concentration of month i 
is calculated as 
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where Xi denotes the number of fuzzy logical relationships “Aj   Ak” in the fuzzy 
logical relationship group, 1≦i≦p, mk1,mk2,……and mkp are the mid point of the 
intervals uk1,uk2,……and ukp respectively, and the maximum membership values 
of Ak1,Ak2,……and Akp occur at intervals uk1,uk2,…… and ukp, respectively. 

Step 5: Use the high-order difference to determine the upward or downward trend. 

The difference of the second order difference between any two neighboring time 
segments of the historical concentration can be used for forecasting the trend. The 
second order difference is calculated by the equation: Yn = Yn-1-Yn-2. 

The α-cut value determines the fuzzified concentration in the interval. It is quite 
usual to use the triangle function and chose the value of α-cut equal to 0.5 for 
estimation. Another important factor is the value of high-order difference; it will 
dominate the trend of concentration variation. 

Step 6: Selecting the appropriate predictor by fractal analysis 

There are many factors which may influence the concentration variation of time 
series. To improve the accuracy of prediction, it is better to incorporate these fac-
tors into a more advanced model. The properties of pollution, which are influ-
enced by many factors, can be described in terms of an appropriate function and α-
cut value. The triangular function, trapezoidal function, or Gaussian membership 
function are all possible choices.  

The autocorrelation and cross correlation in the knowledge space phase of frac-
tal dimension analysis help us find the best predictor. The autocorrelation coeffi-
cient between Xt and Xt-τ is calculated as follows  
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Where, τ is the time lag of the two time segments Xt and Xt-τ. The autocorrelation 
coefficient helps us define the fractal dimension of the environmental system.  
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The cross correlation help us know the relationship between two properties. It 
is calculated as  
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The fractal dimension is determined by finding the maximum and minimum val-
ues of these two correlation coefficients in the time plot. 

4   Statistical Pattern Recognition of Environmental 
Concentration in Space-Time Series 

The space-time series could be described by the average values and fluctuating 

quantities such as U and uv . It is also important to know how fluctuations are 
related to the adjacent fluctuations in time or space next to each other. The statis-
tical pattern recognition helps us examine how fluctuations are distributed around 
an average value in the space-time series. Some statistical properties are intro-
duced for the purpose of pattern recognition of environmental concentration time 
series such as probability density function and its Fourier transform, the autocorre-
lation and its Fourier transform, etc. 

A steady time series is statistically stable, calculated by the mathematical func-
tion. The probability density function )~(uB is defined by 
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where u~ denotes the fluctuation value.  
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The mean values of the various powers of u~  are called moments. The means 
value is the first moment defined by 
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The variance, or the mean square departure,σ2, from the mean value U is the 
second moment, which is defined by 
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where σ is the standard deviation of root mean square(rms) amplitude.  
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The third moment, skewness (S), K, helps us discriminate the symmetric and 
anti symmetric parts of the time series. It is defined by 

duuBuu 
∞
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= )(33 ,                                (18) 

and the value of skewness is 
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The fourth moment, kurtosis or flatness factor K is represented as 
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The other important measurement is the Fourier transform of B(u), which is  
defined as 
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The Fourier transform of B(u) is the characteristic function which is more conve-
nient to see the pattern of flow property and behavior of pollution concentration. 

In order to examine the feasibility of this model, the numerical experiment was 
conducted. The experimental data for time series analysis were acquired from the 
observed air quality data of Taiwan Environmental Protection Administration. 
Different pollutant concentration such as carbon monoxide, sulfur dioxide, nitro-
gen oxide, PM2.5, and ozone were used. Data for analyzed were obtained from the 
year Sep, 2010, to AUG, 2011.  

The results of the pattern of space-time series was analyzed by the autocorrela-
tion to know the fractal dimension for different pollutants.  

Figure 2 is the autocorrelation coefficient time series plot of ozone concentra-
tion time series. The amplitude of autocorrelation coefficient gradually decreases 
with time lag. There are totally five peaks in five days (120hours) of monitoring 
results, which means c(t) is correlated with itself every twenty four hours. The 
maximum value, which is near 1, is close to the first hours. This result reveals that 
the best predictor for ozone concentration is the time segment prior to the time of 
prediction. 
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Fig. 2 Autocorrelation coefficient of ozone concentration time series 

Figure 3 is the autocorrelation coefficient time series plot of nitrogen dioxide 
concentration. The results exhibit a wave-like trend of decreasing amplitude. The 
reason why the trend of nitrogen dioxide is the same as that of ozone is that they 
are all photochemical pollutants. Their formations are mostly governed by solar 
radiation. Therefore, all the graphical results show the same daily cycle.  

 

Fig. 3 Autocorrelation coefficients of nitrogen dioxide concentration time series 

Figure 4 shows the plot of autocorrelation coefficient time series of carbon mo-
noxide concentration.  Two peaks, including a higher peak and a lower one, are 
found in one day. This represents two possible sources of carbon monoxide emis-
sion in the morning and in the evening. The time lag of twenty four hours has the 
highest value and the one of twelve hours has the second highest value. It is ex-
pected that the autocorrelation coefficient will approaches zero as the time lag 
approaches infinity.  
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Fig. 4 Autocorrelation coefficients of carbon monoxide concentration time series 

Figure 5 includes the autocorrelation coefficient time series plot of PM-10 con-
centration. The irregular trend fails to indicate significant correlation between u(t) 
and time lag. An assumption can be made that the correlation is significant only 
up to 8-hour time lag corresponding to the least coefficient of 0.2. 

 

Fig. 5 Autocorrelation coefficients of PM-10 concentration time series 

Figure 6 presents the autocorrelation coefficient of Non-methane hydrocarbon 
concentration. The figure reveals a very sharp decrease in the autocorrelation coef-
ficient, which means that there are many factors which influence the variation of 
non-methane hydrocarbon concentration. It is more difficult to predict the concen-
tration of non-methane hydrocarbon in time series. 
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Fig. 6 Autocorrelation coefficients of Non-methane hydrocarbon concentration time series 

5   Prediction of Environmental Pollution by Fuzzy Forecasting 

Once understood space-time series pattern by turbulence theory and fractal dimen-
sion analysis, an attempt is made to apply fuzzy forecasting approach for  
prediction. The FTFA method, including a variety of schemes with different fuzzy 
intervals, multi-step fuzzy time series and the high-order fuzzy time series, is used 
to predict pollution concentration. These methods are used to determine the trend 
of data by adjusting the length of each interval in the universe of discourse.  

The Mean Square Error was calculated as follows: 

m

CC
MSE

m

estobs −
= 1

2)(
                           (22) 

where Cobs denotes the actual particulate concentration of time step I, Cest denotes 
the forecasting concentration, and m denotes the historical data.  

The FTFA model is compared with other forecasting methods: 

(1) The linear regression model: This model uses a linear trend over time to esti-
mate the concentration: 

C = a X + b                                  (23) 

where C is the estimated concentration at specific time X. 

(2) The autoregressive model: The autoregressive model uses the previous data to 
estimate the concentration as follows: 

C = r1 Ct-1 + ε                               (24) 

where C denotes the regression result at time t, Ct-1 denotes the concentration at 
time t-1, r1 denotes the regression coefficient , and ε denotes the predicting error.  

The auto-regression model can be modified by the two time step estimation as 
follows: 

C = r1 Ct-1 + r2 Ct-2 +ε                            (25) 
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where r1 and Ct-1 are defined as before, Ct-2 denotes the concentration at time t-2, 
and r2 denotes the regression coefficient. 

The concentration predicted by the above FTFA method is listed in Table 1and 
graphically shown in Fig 7. As shown in table 1, the mean square error from the 
FTFA model is least, exhibiting its superiority over other models in predicting 
concentration.  

Table 1 Example of the observed concentration and fuzzy concentration Cobs : observed 
concentration;  Int : concentration intervals C fuzzy  : fuzzified concentration 

time Cobs  Int  C fuzzy 

T1 46.63 [46,47] 47 
T2 51.35 [51,52] 51 
T3 63.33 [63,64] 63 
T4 58.77 [58,59] 59 

The fuzzy logical relationship is listed in Table 2. For example, the following 
fifth-order fuzzy logical relationship: A17, A17, A16, A16, A15→A14, where the 
fuzzy logical relationship denotes the fuzzified concentration.  

Table 2 Fuzzy logical relationship 

Number of steps fuzzy logical relationship 

One step A1→A13 

Two steps  A17,A13→A20 

Three steps  A12,A15,A16→A19 

Four steps A15,A15,A16, A16, →A18 

Five steps A17,A17,A16, A16, A15, →A14 

Each interval is equally divided into four subintervals, where the points at 0.25 
and 0.75 are used as bases to make forward or backward prediction. From the fuzzy 
logical relationship described above, the forecasted concentration can be deter-
mined. The results of several different prediction methods are shown in Table 3.  

The value of mean square error for multi-steps fuzzy model (MSF) is the smal-
lest among all the prediction methods, as shown in Table 3.  It indicates that the 
proposed method is better than other models based on intervals with 10, 20 and 30 
equal spaces. The prediction results of traditional auto-regressive model and linear 
egression model are both worse than those of the FTFA model. The reason is that 
the traditional statistical method and pattern recognition are either parametric or 
non-parametric models, but the high-order fuzzy time series recognize the pattern 
in other ways.  
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There are usually some data with unknown pattern in our forecasting proce-
dure. The pattern recognition of concentration prediction is important in forecast-
ing the particulate concentration, therefore more advanced tool has to be used.  

An example is taken to compare the “patterned” and “un-patterned” data in this 
study. The method has the capability to catch the pattern of the concentration vari-
ation in the atmosphere. Also, the mean square error from the forecasted results of 
FTFA models was lower than that from the linear regression model and autore-
gressive model. Since the prediction of pollution concentration also involves hour-
ly, daily, concentration, a more sophisticated analysis should take space and time 
into account in predicting variation of concentration. 

Table 3 includes the result of comparison of different forecasting method. 

Table 3 Comparison of the results by different prediction method Note: Ĉ : actual concen-
tration A :(10) equal interval fuzzy model B: (20) equal interval fuzzy model C: (30) equal  
interval fuzzy model D: multi steps fuzzy model E: simple linear model F: AR(1) model G: 
AR(2) model σ: standard deviation MSE: mean square error 

statistical  
Property 

Ĉ forecasted concentration 
A B C D E F G 

mean 7049 7109 7064 7055 7055 7100 7321 7230 
σ 4022 4168 4055 4033 4233 8965 5655 4699 
MSE  827 143 38 34 16323 3266 6803 

 

Fig. 7 Forecasted results with different interval 
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Fig. 8Comparison of mean square error by different forecasting methods A : (10) equal 
interval fuzzy model B: (20) equal interval fuzzy model C: (30) equal  interval fuzzy mod-
el D: multi steps fuzzy model E: simple linear model F: AR(1) model G: AR(2) model 

6   Conclusions 

In this paper, an attempt has been made to predict pollution concentration by two 
methods, i.e. multi-step fuzzy time series (MSFT) and different interval fuzzy time 
series (DIFT). The MFT method was implemented by adjusting the length of each 
interval in the universe of discourse and using the “second order difference” of 
concentration to predict the variation of concentration. The characteristics of pat-
tern recognition of these two methods were discussed. The predicted results from 
those data with known pattern were better than those with unknown pattern. 

By comparing the results, it is shown that the proposed MSFT method produces 
the smallest mean square error among the seven predicting methods. That is, these 
methods give higher accuracy than traditional fuzzy time series, linear regression 
model, and auto-regressive model. Accordingly, the proposed methods are ob-
viously a better choice in predicting pollution concentration. 
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