
W. Pedrycz & S.-M. Chen (Eds.): Time Series Analysis, Model. & Applications, ISRL 47, pp. 139–175. 
DOI: 10.1007/978-3-642-33439-9_7 © Springer-Verlag Berlin Heidelberg 2013 

Chapter 7 
An Application of Enhanced Knowledge 
Models to Fuzzy Time Series 

Chung-Ming Own* 

Abstract. Knowledge is usually employed by domain experts to solve 
domain-specific problems. Huarng was the first to embed knowledge into 
forecasting fuzzy time series (2001). His model involved simple calculations and 
offers better prediction results once more supporting information has been 
supplied. On the other hand, Chen first proposed a high-order fuzzy time series 
model to overcome the drawback of existing fuzzy first-order forecasting models. 
Chen’s model involved limited computing and came with higher accuracy than 
some other models. For this reason, the study is focused on these two types of 
models. The first model proposed here, which is referred to as a weighted model, 
aims to overcome the deficiency of the Huarng’s model. Second, we propose 
another fuzzy time series model, called knowledge based high-order time series 
model, to deal with forecasting problems. This model aims to overcome the 
deficiency of the Chen’s model, which depends strongly on highest-order fuzzy 
time series to eliminate ambiguities at forecasting and requires a vast memory for 
data storage. Experimental study of enrollment of University Alabama and the 
forecasting of a future’s index show that the proposed models reflect fluctuations 
in fuzzy time series and provide forecast results that are more accurate than the 
ones obtained when using the to two referenced models. 

Keywords: Fuzzy time series, knowledge model, domain specific knowledge. 

1   Introduction 

The forecasting of time series is crucial in daily life. It is used in forecasting the 
weather, earthquakes, stock fluctuations, and any phenomenon indexed by 
variables that change over time. Numerous investigations have solved the 
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associated problems by using the Moving Average, the Integrated Moving 
Average, and the Autoregressive Integrated Moving Average (Box & Jenkins, 
1976; Janacek & Swift, 1993). Song and Chissom (1993) first defined fuzzy time 
series and modeled fuzzy relationships from historical data (Song & Chissom, 
1979). The fuzzy time series is a novel concept that is used to solve forecasting 
problems that involve historical data with linguistic values. Song and Chissom 
(1993) used the fuzzy time series model to forecast enrollment at the University of 
Alabama and provided a step-by-step procedure. However, their method requires a 
large amount of computation time. 

In reference to the time-invariant and time-variant models by Song and 
Chissom, Sullivan and Woodall proposed the time-invariant Markov model with 
linguistic labels of probability distribution (Sullivan & Woodall, 1994). 
Subsequently, Chen proposed a new fuzzy time series model that yielded excellent 
forecasting results (Chen, 1996). Chen’s model simplified the complex 
computations of the models by Song and Chissom, and forecasted enrollment 
more accurately than other models. Hwang et al. (1998) proposed a method that 
focused on relation matrix computing for the variation between enrollments in the 
current year and those in past years. The Hwang et al. model was more efficient 
and simpler than most of the other models, although its accuracy was limited. 
Furthermore, Huarng (2001) solved the forecasting problem integrated the 
domain-specific knowledge into the fuzzy time series model. Knowledge is 
typically used by experts to solve domain-specific problems. In the Huarng model, 
available information was used to assist in the selection of proper fuzzy sets. 
Knowledge information can be used to solve the forecasting problem easily, and 
the resulting model outperformed previous models.  

Chen (2002) presented a new fuzzy time series model called the high-order 
fuzzy time series to overcome disadvantages of current fuzzy forecasting models 
based on the first-order model. The Chen model came with excellent forecasting 
results. However, the disadvantage of the Chen model is its high dependence on 
high-order time series preprocessing. Additional methods have been presented to 
forecast Taiwan Futures Exchanges by using fuzzy forecasting techniques 
(Huarng & Yu, 2005, 2006a, 2006b, 2008, 2010; Huarng et al., 2007; Chen, 2008; 
Cheng, 2008). Leu et al. presented the distance-based fuzzy time series model to 
forecast exchange rates. Tanuwijaya and Chen (2009a, 2009b) also presented a 
clustering method to forecast enrollments at the University of Alabama. Jilani 
(2011) proposed a new particle swarm optimization-based multivariate fuzzy time 
series forecasting method. This model involves five factors with one main factor 
of interest. This study focused on applying swarm intelligence approaches to 
forecasting-related problems. Chen et al. (2012) proposed the equal frequency 
partitioning and fast Fourier transform algorithm to forecast stock prices in 
Taiwan. The results show the improving forecasting performance, and 
demonstrated an approach to enhance the efficiency of the fuzzy time-series. 

This study proposes two enhanced models. The first model is a weighted 
model, which is an enhancement of the Huarng model. The proposed weighted 
model overcomes the disadvantage of the Huarng model, that is, the lack of an 
efficient measure of the significance of data in a series. Hence, the proposed 
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model involves straightforward computation to defuzzify fuzzy forecasting with 
the support of knowledge and a weighting measure of the historical fuzzy sets. 
The second model is a high-order fuzzy time series model, which is an extension 
of the Chen model. The proposed high-order fuzzy time series model overcomes 
the disadvantage of the Chen model, which depends strongly on the derivation of 
highest-order fuzzy time series and requires large memory for data storage. Hence, 
this model has the advantage of a higher-order model and can apply the 
knowledge to eliminate the ambiguity in forecasting. An empirical analysis 
demonstrated that the two proposed fuzzy time series models can capture 
fluctuations in fuzzy time series and provide superior forecasting results than 
those coming from other models. 

In this study, Section 2 briefly reviews basic concepts of fuzzy time series. In 
Section 3, we formulate the algorithms of the weighted knowledge and high-order 
models. Section 4 presents empirical analyses of enrollment and TAIFEX 
forecasts. Section 5 concludes this study. 

2   Fuzzy Time Series 

2.1   Basic Concept 

Basic concepts related to fuzzy time series are reviewed below. U is the universe 

of discourse, 
1 2

{ ,  ,  }
k

U x x x=  . A fuzzy set iA  of U is defined as 

1 1 2 2( ) / ( ) / ( ) /
i i ii A A A k kA x x x x x xμ μ μ= + + + , 

where 
iAμ  is the membership function of iA , : [0,  1]

iA Uμ → , and ( )
iA jxμ  

represents the grade of membership of jx  in iA , ( ) [0,  1]
iA jxμ ∈ . The symbols 

“/” and “+” indicate the “separation” and “union” of elements in the universe of 
discourse U. 
 

Definition 2.1. Let Y(t) (t=…, 0, 1, 2, …), a subset of R ( ( )Y t R⊆ ), be the 

universe of discourse in which fuzzy sets ( ) ( 1,  2,  )iu t i =  are defined. Assume 

that F(t) consists ( )i tμ  (i=1,2, …); F(t) is called a fuzzy time series on Y(t). 

From Definition 2.1, F(t) can be considered to be a linguistic variable and 
( ) ( 1,  2,  )iu t i =   can be considered to be the possible linguistic values of F(t). 

The main difference between fuzzy time series and conventional time series is that 
the observations in the former are fuzzy sets and those of the latter are real 
numbers.  

Definition 2.2. Suppose that F(t) is determined only by ( 1)F t − ; then, there 

exists a fuzzy relationship ( 1, )R t t− between F(t) and ( 1)F t − , such that 

( ) ( 1) ( 1, )F t F t R t t= − × − , 

where ×  is the composition operator. This relationship can also be represented as 
( 1) ( )F t F t− → . 
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Definition 2.3. Let ( 1)F t − = iA  and F(t)= rA ; a fuzzy relationship can be 

defined as i rA A→ . On the left-hand side of the fuzzy relationship, iA , is called 

the current state of the relationship; rA , on the right-hand side of the fuzzy 

relationship is called the next state of the relationship. 

Definition 2.4. fuzzy relationships with the same current state can be further 
grouped in a combined fuzzy relationship called the grouped fuzzy relationship. 

For example, some fuzzy relationships exist: 

1
,i rA A→  

2
,i rA A→


 

These fuzzy relationships can be grouped together with the same current state and 
so 

1 2
, ,i r rA A A→   

can be grouped together into a grouped fuzzy relationship. 

Definition 2.5. According to Definition 2.3, if F(t) is caused by more fuzzy sets, 
( )F t n− , ( 1)F t n− + , ,  and ( 1)F t − , then the fuzzy relationship can be 

represented as  

1 2
,  ,  , 

nr r r jA A A A→ , 

where 
1

( ) rF t n A− = , 
2

( 1) ,  rF t n A− + =  , and ( 1)
nr

F t A− = . This relationship 

is called the nth-order fuzzy time series forecasting model. 
1 2
,  ,  , and 

nr r rA A A  

are called as the current states of the time series, and jA  is called as the next 

state of the time series. 
Accordingly, the above equation means “If the time series in the year 1t − , 
2,  t −  , and t n−  are

1 2
,  ,  , and 

nr r rA A A , respectively, then that in the year t 

is jA ”.  

Definition 2.6. For any t, if ( 1, )R t t−  is independent of t, then F(t) is called a 

time-invariant fuzzy time series. In contrast, if ( 1, )R t t−  is estimated from most 

recent observations, then F(t) is called a time-variant fuzzy time series. 
In this study, the models are all based on a time-invariant fuzzy time series. 

2.2   Configuration of the Fuzzy Time Series 

A pure fuzzy system generally comprises four parts: the fuzzifier, the fuzzy rule 
base, the fuzzy inference engine, and the defuzzifier. The fuzzifier is the input, 
which transforms a real-valued variable into a fuzzy set. The defuzzifier is the 
output, which transforms a fuzzy set into a real-valued variable. The fuzzy rule 
base represents the collection of fuzzy IF-THEN rules from human experts or 
domain knowledge. The fuzzy inference engine combines these fuzzy IF-THEN 
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rules into a map from fuzzy sets in the input space, U, to fuzzy sets in the output 
space, V, according to the principles of fuzzy logic (Wang, 1997). 

In (Song and Chissom 1993, 1994), Song and Chissom proposed both the 
time-variant and time-invariant models to forecast enrollments of the University of 
Alabama. Song and Chissom predicted fuzzy time series using historical data, and 
the model ( ) ( 1) ( 1, )F t F t R t t= − × − . The procedures of time-variant models can 

be outlined as follows. 

Step 1. Specify the universe of discourse U in which fuzzy sets will be defined; 
Step 2. Partition the universe of discourse U into the even length intervals; 
Step 3. Define the fuzzy sets on U; 
Step 4. Fuzzify the input data 1tx −  to ( 1)F t − ; 

Step 5. Forecast by the model ( ) ( 1) ( 1, )F t F t R t t= − × − , and use the past w years 

data as a relationship; 
Step 6. Defuzzify the output. 

The main difference between the Song and Chissom’s time-invariant and 
time-variant models is that the relationship ( , 1)R t t −  of the former must be 

established by all the historical data, whereas that of the latter must be determined 
only by some of the historical data. Figure 1 is shown the configuration of the fuzzy 
system to emphasize the distinguishing features of Song and Chissom’s models. The 
fuzzifier is used to map the input to the fuzzy set F(t) (corresponding to Steps 1-4). 
The fuzzy rule base is established based on all possible relationships. The fuzzy 
inference engine is used to compute by the model ( ) ( 1) ( 1, )F t F t R t t= − × −  

(corresponding to Step 5). The defuzzifier is used to transform the resulting fuzzy 
sets into a real-valued variable y (corresponding to Step 6). 
 

Fuzzy Rule Base 

(Collection of all relationships) 

Defuzzifier Fuzzifier 

Fuzzy Inference Engine 

Input 1−tx  

F( 1−t )=Ai 

Output y 

Fig. 1 The configuration of Song and Chissom’s Model 

The derivation of Song and Chissom’s model was very tedious, and the matrix 
composition required a large amount of computation time. Chen proposed a model 
that involved straightforward knowledge reasoning to simplify the calculations in  
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Song and Chissom’s model (Song and Chissom 1993). Chen’s model not only 
applied simplified arithmetic operations rather than complicated max-min 
composition operations, but also provided more accurately forecasts than the other 
models. The procedures of Chen’s model can be outlined as follows. 

Step 1. Specify the universe of discourse U in which fuzzy sets will be defined; 
Step 2. Partition the universe of discourse U into the even length intervals; 
Step 3. Define the fuzzy sets on U, and fuzzify the data; 
Step 4. Establish the fuzzy relationships into a group; 
Step 5. Forecast; 
Step 6. Defuzzify the output by using the arithmetic average. 

Figure 2 shows the configuration of Chen’s system. The fuzzifier is the same as in 
Song and Chissom’s model (corresponding to Steps 1-4). In the fuzzy rule base, 
the important feature of Chen’s model is that the fuzzy relationships are selected 
and summarized here (corresponding to Step 5). These computations are simple 
and straightforward. The defuzzifier takes an arithmetic average operation to 
derive the result (corresponding to Step 6). For more detail, refer to the (Song and 
Chissom 1993). 

Input 1−tx  

Fuzzy Rule Base 

(Grouped fuzzy logical 

relationships) 

Defuzzifier 
Fuzzifier 

Fuzzy Inference Engine 

F( 1−t )=Ai Selected fuzzy sets 

mppp AAA , ,,
21
  

Output y 

Fig. 2 The configuration of the Chen’s model 

Huarng’s model is introduced below (Huarng 2001). Huarng improved 
forecasting by incorporating domain-specific knowledge into Chen’s model. 
Experts usually apply knowledge in solving domain-specific problems. 
Accordingly, domain-specific knowledge is used to help to obtain the proper fuzzy 
sets during the forecasting. His model was easy to calculate and provided better 
forecasts as more supporting information was used. The procedures of Huarng’s 
model can be outlined as follows. 

Step 1. Specify the universe of discourse U in which fuzzy sets will be defined; 
Step 2. Partition the universe of discourse U into the even length intervals; 
Step 3. Define the fuzzy sets on U, and fuzzify the data; 
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Step 4. Establish the fuzzy relationships into a group; 
Step 5. Forecast with knowledge assistance; 
Step 6. Defuzzify the output by using the arithmetic average. 

The inference engine uses two rule bases; one is the same as Chen’s model; 
grouped fuzzy relationships (corresponding to Step 5). The other is the base of 
domain-specific knowledge. All the other parts are the same as Chen’s model. 
Figure 3 is depicted the configuration of Huarng’s model. 

Fuzzy Rule Base 

(Grouped fuzzy logical 

relationships) 

Defuzzifier 
Fuzzifier 

Fuzzy Inference Engine 

Input 1−tx  

F( 1−t )=Ai 

Output y 

Domain-specific knowledge 

database 

(Heuristic) 

Selected fuzzy sets 

mppp AAA , ,,
21
   

Fig. 3 The configuration of the Huarng’s model 

Chen (2002) proposed the high-order fuzzy time series model to improve the 
forecasting accuracy of his model in 1996. This new model can overcome the 
deficiency of the first-order fuzzy time series, which is inefficiently to eliminate 
the ambiguity in the forecasting. The procedure of Chen’s model is outlined as 
follows. 

Step 1. Specify the universe of discourse U in which fuzzy sets will be defined, 
and partition the universe of discourse U into the even length intervals; 
Step 2. Define the fuzzy sets on U; 
Step 3. Fuzzify the input data; 
Step 4. Establish the high-order fuzzy relationship groups; 
Step 5. Forecast by selecting the appropriate nth-order fuzzy relationship; 
Step 6. Defuzzify the output with the elements in the nth-order fuzzy relationship. 

Because this model is highly depended on the establishment of high-order fuzzy 
relationship, the time complexity is O(p), where p denotes the number of grouped 
fuzzy relationship. 
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3   The Proposed Model 

3.1   Weighted Knowledge Model 

This model improves the forecasts based on the Huarng model. First, the Huarng 
model was selected because it is easy to calculate. The Huarng model has the 
advantage of the straightforward model by Chen. Second, the Huarng model 
yielded superior forecasts compared to other models. Third, the Huarng model used 
problem-specific knowledge by using an extra information base to guide the search. 
However, the disadvantage of the Huarng model is its lack of an efficient measure 
of the significance of each fuzzy set in fuzzy relationships; that is, every fuzzy set 
in a grouped fuzzy relationship has the resembling trajectories in the Huarng 
model. This is reflected by the use of the arithmetic average in the defuzzifier. The 
significance of fuzzy sets can be stressed by various measures; that is, 
defuzzification varies according to the observed information. The proposed model 
is based on the weighted measure of historical information and the frequencies of 
the fuzzy sets to adjust their ratios. Hence, this study considered the support of 
weighted measures and knowledge for the proposed model, which is introduced in 
the following paragraphs. 

Step 1. Define the universe of discourse and partition the intervals. According 
to the problem domain, the universe of discourse U can be determined. Then, let 
the universe of discourse be partitioned into intervals 

1 1[ ,  ],  2u a a= 1[ ,  ],  2 2u a a=  , 1, [ ,  ]n n n u a a +=  of even length, where ui is the 

ith divided interval. The midpoints of these intervals are 1,  ,  ,2 nm m m , 

respectively. 

Step 2. Define the fuzzy sets and fuzzify the data. Subsequently, let 

1,  ,  , 2 nA A A  be fuzzy sets, all of which are labeled by possible linguistic values. 

For example, linguistic values can be applied as fuzzy sets; A1=(not many), A2= (not 
too many), A3=(many), A4=(many many), A5=(very many), A6=(too many), A7= (too 
many many). Hence, Ai is defined on as 

1 1 2 2( ) / ( ) / ( ) /
i i ii A A A n nA u u u u u uμ μ μ= + + + ,              (1) 

where ui is the interval expressed as an element of the fuzzy set, 1,  2,  ,  .i n=   

( )
iA juμ  states the degree to which uj belongs to Ai, and ( ) [0,1]

iA juμ ∈ , Then, the 

historical data are fuzzified by the intervals and expressed in the forms of linguistic 
values. Note that Eq. (1) uses interval uj as an equation element. 

Step 3. Establish and group fuzzy relationships. According to the definition of 
relationship in Definition 2.3, the fuzzy relationship can be determined. For 
instance, 



7   An Application of Enhanced Knowledge Models to Fuzzy Time Series 147
 

,

,

,

,

,

,

j r

j s

j t

m r

m q

A A

A A

A A

A A

A A
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→
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According to Definition 2.4, the fuzzy relationships can be grouped by the same 
origin: 

, , ,

, ,
j r s t

m r q

A A A A

A A A

→

→


 

Step 4. Measure the frequency of fuzzy sets shown in the fuzzy relationships. 
Subsequently, according to the fuzzy relationships obtained in Step 3, calculates the 
frequency of each fuzzy set shown in the fuzzy relationships. For expressive 
simplicity, the frequency for fuzzy set iA  is denoted as if . 

Example 3.1: Suppose that the fuzzy relationships calculated from the data set are 
obtained below: 

1

3

1

1

2

,

,

,

,

.

r r

s r

r r

r r

r r

A A

A A

A A

A A

A A

→

→

→

→

→

 

Hence, fuzzy set 
1r

A  shown in relationship 
1r rA A→  occurs three times, denoted 

as 
1r

f =3. Fuzzy set 
2r

A  shown in relationship 
2r rA A→  occurs once, denoted 

as 
2r

f =1. Fuzzy set 
3r

A  shown in relationship 
3r rA A→  occurs once, denoted 

as 
3r

f =1. 

Step 5. Introduce knowledge and establish selection strategy. In this proposed 
model, knowledge is used to guide the selection of proper fuzzy sets. Concerning 
knowledge in this study, changes in time series are used as a variable. According 
to the changes, the trend in selection strategy specifies the difference between 
times to an increase, a decrease or no change, and the symbolization of trend, α  
is set to 1, 1−  and 0, respectively. The trend for an increase is used as a trigger 
to select whose fuzzy sets they have higher ranking in the grouped fuzzy 
relationship. On the contrary, the trend for a decrease is used to select whose fuzzy 
sets they have lower ranking. The trend for no change means to select the current 
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state of the grouped fuzzy relationship. The selection strategy is introduced as 
follows. 

Consider all the fuzzy sets 1,  ,  ,2 nA A A  are ordered in accordance. That is, 

1,  ,  ,2 nA A A  are fuzzy sets on intervals 1 2 2 3 1[ , ],  [ , ],  , [ , ]n na a a a  a a + , 

respectively, where 1 12 na a a +< < < . Suppose that ( 1) iF t A− =  and the 

grouped fuzzy relationship of iA  is 
1 2
, , , , ,

ki i i i iA A A A A→


  , where 

1 2 ki i i i< < < < <   . 

Definition 3.1. Accordingly, all the fuzzy sets are partitioned into two parts; high 
and low parts. High part includes the fuzzy sets in high ranking; on the contrary, 
low part includes the fuzzy sets in low ranking. If 1k ki i i− < < , then fuzzy sets in 

the low part are 
1 2 1

{ ,  ,  , }
ki i iA A A

−
 , and fuzzy sets in the high part are 

1
{ ,  ,  , }

k ki i iA A A
+ 
 . Otherwise, If ki i= , then fuzzy sets in the low part are 

1 2
{ ,  ,  , }

ki i iA A A , and fuzzy sets in the high part are 
1

{ ,  ,  , }
k ki i iA A A

+ 
 . Note 

that, if the low/high part is empty set, then the low/high part needs to include their 
current stat of the relationship for instead, that is iA . 

Hence, the fuzzy sets in the high part mean to be selected in higher ranking, and 
fuzzy sets in the low part mean to be selected in lower ranking. The selection 
strategy of fuzzy sets is: If the trend of time series leads to an increase, the fuzzy 
sets in the high part are all selected, else if the trend of time series leads to a 
decrease, the fuzzy sets in the low part are all selected, else if the trend of time 
series leads to no change, the existing state of affairs would be preferred, the 
origin fuzzy set iA  is selected. 

Step 6. Establish the weighted function. Suppose that the grouped fuzzy 
relationship of iA  is 

1 2
, ,..., ,..., ,...,

j k mi i i i i iA A A A A A→ , where j k m< < < . 

For the purpose to stress the significance of fuzzy sets, the weighting of each 
fuzzy set is applied as the factor during the forecasting. 

Definition 3.2. The weighting of the fuzzy set 
jiA  in the low part is computed as 

the probability of frequency defined by  

1 2

,j

j

Q

i

i
i i i

f
l

f f f
=

+ + +
                       

(2) 

where 
1

1,  if 
k k

Q k i i i−= − < < , and ,  if 
k

Q k i i= = . 
jif  is denoted as the 

frequency of fuzzy set 
jiA . On the other hand, the weighting of the fuzzy set iA


 

in the high part is computed as the probability of frequency defined by 

            
j

k m

i
i

i i

f
l

f f
=

+ +



.                       (3) 
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Hence, for each grouped fuzzy relationships, the weighted function is established 
as follows. 

1

1,0,1

, , , , 

( ) |

( 1) 2(1 )(1 ) ( 1)
,

2 2 2
Q k m

i

j j i j j

j i i j i i

h

l m m q m

αα

α α α α α α
=−

= =

=

− + − +
+ + 

 

  (4) 

where 
1

1,  if , and ,  if .
k k k

Q k i i i  Q k i i−= − < < = = Note that ( )ih α  is derived 

corresponding to the original fuzzy set iA  of each grouped fuzzy relationships, 

1,  , i n=  . α  is the variable to select the proper fuzzy sets derived from Step 

5. jm is the midpoint of the interval uj where the maximum membership value of 

fuzzy set jA  occurs. 

Example 3.2: Consider the same problem as in Example 3.1, in which five fuzzy 
relationships include. The grouped fuzzy relationships are 

1 2 1 2

3 3

, ,  (where 3,  1)

. (where 1)

r r r r r

s r r

A A A f f

A A f

→ = =

→ =
 

Hence, the weighted functions are 

1 2
1,0,1

( 1) 2(1 )(1 ) ( 1) 3 1
( ) | ( )

2 2 2 4 4
r r r r r

h m m m mα

α α α α α α
α =−

− + − +
= + + + , 

3
1,0,1

( 1) 2(1 )(1 ) ( 1)
( ) |

2 2 2
m r s s

h m m mα

α α α α α α
α =−

− + − +
= + + , 

where the ranking of fuzzy sets are 
1 2

r r r< <  and 
3

r s< . 

Step 7: Calculate the forecasted outputs. Subsequently, suppose that input 1tx −  

in time 1t −  is fuzzified to ( 1) iF t A− = , the calculations are carried out as 

follows. Because the fuzzy set is iA , then the corresponding weighted function 

( )ih α  is selected, 1,  , i n=  . In this study, the difference between time 1t −  

and t leads to an increase, a decrease or no change, denoted as parameter α =1, 

1−  and 0, respectively. Accordingly, the output is derived as 
1,0,1

( ) |
i

h αα =− . 

According to the configuration of fuzzy systems, the weighted function involves 
the parts of fuzzy inference engine and defuzzifier. Figure 4 presents the 
configuration of the weighted model. 
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Fuzzy Rule Base 

(Grouped fuzzy logical 

relationships) 

Defuzzifier Fuzzifier 

Fuzzy Inference Engine 

Input 1−tx  

F( 1−t )=Ai 

Output  

)(αih  

Domain-specific knowledge 

database 

(Heuristic) 

1 2
, ,  ,

mp p pA A A  

Weighted heuristic function 

Weighted  
measure 

 

Fig. 4 The configuration of the weighted model 

3.2   High-Order Model 

This study aimed to overcome the deficiency of the Chen model (2002), which is 
strongly dependent on the derivation of highest-order fuzzy time series and 
requires a large amount of memory. In other words, according to Chen’s 
definition, if an ambiguity occurs in the ith-order fuzzy relationship groups, the 
model seeks a higher order, such as (i+1)th-order fuzzy relationship, to perform 
the forecast. The highest-order fuzzy relationship must be computed before the 
model can conduct forecasts. Thus, the model requires a large amount of memory 
to derive the fuzzy relationships from the lowest order to the highest order. 

Knowledge was applied to the high-order fuzzy time series model to eliminate 
the computation “bottleneck.” In the domain of expert systems, knowledge is 
typically considered guides that can be used by domain experts to solve 
domain-specific problems (Russell & Norvig, 1995). Based on Huarng’s 
assumption (2001), knowledge is used to guide the search for suitable fuzzy sets 
appropriate for forecasting indices. Therefore, this study enhanced Chen’s model 
by integrating knowledge with high-order fuzzy time series to eliminate 
ambiguities in forecasting. Thus, the proposed model can be restricted to 
lower-order fuzzy time series to achieve acceptable forecast accuracy and required 
memory.  

Step 1: Define the universe of discourse and partition the intervals. According 
to the problem domain, the universe of discourse U can be determined. Then, let 
the universe of discourse be partitioned into intervals 

1 1[ ,  ],  2u a a= 1[ ,  ],  2 2u a a=  , 1[ ,  ]n n n u a a +=  of even length, where ui is the 

ith divided interval. The midpoints of these intervals are symbolized as 

1,  ,  ,2 nm m m , respectively. 
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Step 2. Define the fuzzy sets and fuzzify the data. Subsequently, let 

1,  ,  , 2 nA A A  be fuzzy sets, all of which are labeled by possible linguistic values. 

For example, linguistic values can be applied as fuzzy sets; A1=(not many), A2= (not 
too many), A3=(many), A4=(many many), A5=(very many), A6=(too many), A7= (too 
many many). Hence, Ai is defined on as  

1 1 2 2( ) / ( ) / ( ) /
i i ii A A A n nA u u u u u uμ μ μ= + + + ,              (5) 

where ui is the interval expressed as an element of the fuzzy set, 1,  2,  ,  .i n=   

( )
iA juμ  states the degree to which ju  belongs to iA , and ( )

iA juμ ∈  [0,1]. 

Then, the historical data are fuzzified by the intervals and expressed in the forms of 

linguistic values. Note that Eq. (5) uses the interval ju  as an element. 

Step 3. Establish and group the nth-order fuzzy relationships. The nth-order 
fuzzy relationships are established based on the fuzzified historical time series. 
Besides, if there are ambiguities, these fuzzy relationships are grouped together 
according to Definition 2.4. 

Step 4. Introduce knowledge and establish the knowledge function. Changes in 
time series (the trend) are used as the knowledge to specify the difference between 
times to an increase, a decrease or no change. For instance, the input in the year 

1t −  is 1tx −  and year t is tx . Then the trend leads to an increase, if 1t tx x −− >0, 

denoted as 1α =  for the simplification. The trend leads to a decrease, if 

1t tx x −− <0, denoted as 0α = . The trend leads to no change, if 1t tx x −− =0, 

denoted as 1α = − .  

Consider all the fuzzy sets 1,  ,  ,2 nA A A  are well ordered. That is, 

1,  ,  ,2 nA A A  are fuzzy sets on intervals 1 2 2 3 1[ , ],  [ , ],  , [ , ]n na a a a  a a + , 

respectively, where 1 12 na a a +< < < . Suppose that there is a certain ambiguity 

in the ith-order fuzzy relationship, and they are grouped as 

1 2 1 2
,  ,  ,  , , , , ,

i kr r r j j j jA A A A A A A→


   , 

where  jjjj k2 <<<<<1 . 

According to fuzzy set 
ir

A  at the right most side of the current states, all the 

fuzzy sets in the next states of the grouped fuzzy relationship are partitioned into 

two parts; high and low parts. If 1k i kj r j− < < , then fuzzy sets in the low part are 

1 2 1
{ ,  ,  , }

kj j jA A A
−

 , and fuzzy sets in the high part are 
1

{ ,  ,  , }
k kj j jA A A

+ 
 . 

Otherwise, if i kr j= , then fuzzy sets in the low part are 
1 2

{ ,  ,  , }
kj j jA A A , and 

fuzzy sets in the high part are 
1

{ ,  ,  , }
k kj j jA A A

+ 
 . 

Hence, the fuzzy sets in the high part mean to be selected in higher ranking, and 
fuzzy sets in the low part mean to be selected in lower ranking. The selection 
strategy is: If the trend of time series leads to an increase, the fuzzy sets in the  
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high part are all selected, else if the trend of time series leads to a decrease, the 
fuzzy sets in the low part are all selected, else if the trend of time series leads to no 
change, the existing current states are selected. According to the selection strategy, 
in this proposed model, the knowledge function accepts the relevant trend α , the 
fuzzy set of the right most current states and grouped fuzzy relationships as 
parameters. The knowledge function is established as follows: 

1 2

1 1

1

1 2

1

, , , , 

i

, , , ,

,  , ,

( ; ; , ,  , )

(1 )
, if 0 or 1, and ,

1 ( 1)

(1 )
, if 0 or 1, and ,

( 1)

1
, if 1.

i

k k

k k

i

r j j j

g g k i k

g j j g j j

g g k

g j j g j j

g

g r r r

h A A A A

m m  j r j
k k

m m  r j
k k

m
i

α

α α
α

α α
α

α

−

−
= =

= =

=

=

−
+ = < <

− − +

−
+ = =

− +

= −







 

 









 

 















  (6) 

Note that α  is the variable. 
kj

m  is the midpoint of the interval 
kj

μ where the 

maximum membership value of fuzzy set 
kj

A  occurs. 

Step 5. Calculate the forecasted outputs. The calculations are implemented as 
follows.  

(1) If the ith-order fuzzified history time series for time t are 
1 2
,  ,  ,  

ir r rA A A , 

where 2i ≥ , and there is the following fuzzy relationship in the ith grouped order 
fuzzy relationships shown as follows: 

1 2
,  ,  ,  

ir r r jA A A A→ . 

The forecasted fuzzy set at time t is jA , and the forecasting result is jm , it is the 

midpoint of the interval uj where the maximum membership value of fuzzy set jA  

occurs. 

(2) If the ith-order fuzzified history time series for time t are 
1 2
,  ,  ,  

ir r rA A A , 

where 2i ≥ , and there is the following fuzzy relationship in the ith grouped order 
fuzzy relationships shown as follows: 

1 2 1 2
,  ,  ,  , , , , ,

i kr r r j j j jA A A A A A A→


   , 

where 1 2 kj j j j< < < < <   . Then, the function is applied to eliminate the 

ambiguity and obtain the forecasting result, 
1 2

( ; ; , ,  , )
ir j j jh A A A Aα


 , where the 

difference between time t-1 and t leads to an increase, a decrease or no change, 
denoted as parameter α =1, 0 and -1, respectively. Accordingly, the output is 
derived as 

1 2 1, 0, 1( ; ; , ,  , ) |
ir j j jh A A A A αα = −

 . 
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4   Forecasting Experiment 

4.1   Forecasting Enrollment with Weighted Knowledge Model 

The proposed weighted knowledge model was applied for effective forecasting of 
university enrollments. Enrollments from 1971 to 1992 at the University of 
Alabama were already forecast in a series of experiments. The forecasting of 
enrollments using the weighted model is detailed in the following paragraphs. 

Step 1. As in Table 1, the historical data on enrollments of the University of 
Alabama yields U=[13000, 20000]. The universe of the discourse is divided into 
seven equally long intervals u1, u2, …, u7 with length 1000,  where u1=[13000,  
14000], u2=[14000, 15000], u3=[15000, 16000], u4=[16000, 17000], u5=[17000, 
18000], u6=[18000, 19000], u7=[19000, 20000]. 

Step 2. The enrollments of the University of Alabama can be represented as seven 
fuzzy sets Ai (i=1, 2, …, 7). The linguistic values are A1=(not many), A2=(not too 
many), A3=(many), A4=(many many), A5=(very many), A6=(too many) , A7=(too 
many many). Each Ai (i=1, 2, …, 7) is defined as follows. 

A1=1/u1 + 0.5/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7, 

A2=0.5/u1 + 1/u2 + 0.5/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7, 

A3=0/u1 + 0.5/u2 + 1/u3 + 0.5/u4 + 0/u5 + 0/u6 + 0/u7, 

A4=0/u1 + 0/u2 + 0.5/u3 + 1/u4 + 0.5/u5 + 0/u6 + 0/u7, 

A5=0/u1 + 0/u2 + 0/u3 + 0.5/u4 + 1/u5 + 0.5/u6 + 0/u7, 

A6=0/u1 + 0/u2 + 0 /u3 + 0/u4 + 0.5/u5 + 1/u6 + 0.5/u7, 

A7=0/u1 + 0/u2 + 0 /u3 + 0/u4 + 0/u5 + 0.5/u6 + 1/u7. 

Table 1 lists the corresponding fuzzy enrollment Ai. 

Step 3. The fuzzy relationships are established and grouped. Table 2 lists the fuzzy 
relationships derived from Table 1. Table 3 lists the grouped fuzzy relationships. 

Step 4. Subsequently, the frequency of the fuzzy set in each fuzzy relationship is 
calculated and recorded in the appendix of Table A-1. 

Step 5. The existence knowledge regarding the trend of increase or decrease in 
university enrollment is referred from the Huarng in [1]. This trend of increase or 
decrease is used as a guide in selecting the proper fuzzy sets for forecasting 
enrollment. The increase, unchanged, decrease of trends are symbolized as 1α = , 
-1 or 0, respectively. 
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Table 1 Enrollment data sets 

Years Enrollments Fuzzy Set Years Enrollments Fuzzy Set 

1971 13055 A1 1972 13563 A1 

1973 13867 A1 1974 14696 A2 

1975 15460 A3 1976 15311 A3 

1977 15603 A3 1978 15861 A3 

1979 16807 A4 1980 16919 A4 

1981 16388 A4 1982 15433 A3 

1983 15497 A3 1984 15145 A3 

1985 15163 A3 1986 15984 A3 

1987 16859 A4 1988 18150 A6 

1989 18970 A6 1990 19328 A7 

1991 19337 A7 1992 18876 A6 

1993 18909 A6 1994 18707 A6 

1995 18561 A6 1996 17572 A5 

1997 17877 A5 1998 17929 A5 

1999 18267 A6 2000 18859 A6 

2001 18735 A6 2002 19181 A7 

2003 19828 A7 2004 20512 A8 

Table 2 Enrollment of fuzzy relationships 

1 1
A A→ , 1 2A A→  

2 3A A→  

3 3
A A→ , 3 4A A→  

4 3
A A→ , 4 4A A→ , 4 6A A→  

6 6
A A→ , 6 7A A→  

7 6
A A→ , 7 7A A→  
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Table 3 Grouped fuzzy relationships 

1 1 2,A A A→  

2 3A A→  

3 3 4,A A A→  

4 3 4 6, ,A A A A→  

6 6 7,A A A→  

7 6 7,A A A→  

 

Hence, according to Definition 3.1, the selection strategy of fuzzy sets is: if the 
annual trend in university enrollment leads to an increase, then the fuzzy sets in 
the high part are all selected. Conversely, if the annual trend in university 
enrollment leads to a decrease, then the fuzzy sets in the low part are all selected, 
or the annual trend in university enrollment leads to no change, then the original 
fuzzy sets is selected. 

Step 6. According to the grouped fuzzy relationships in Table 3, the corresponding 
weighted knowledge functions can be established and are listed as follows: 

1 1,0,1 1 1 1 2
( 1) 2(1 )(1 ) ( 1) 2 1

( ) | ( )
2 2 2 3 3

h m m m mα
α α α α α αα =−

− + − += + + + , 

2 1,0,1 2 2 3

( 1) 2(1 )(1 ) ( 1)
( ) |

2 2 2
h m m mα

α α α α α α
α =−

− + − +
= + + , 

3 1,0,1 3 3 3 4

( 1) 2(1 )(1 ) ( 1) 7 2
( ) | ( )

2 2 2 9 9
h m m m mα

α α α α α α
α =−

− − + +
= + + + , 

4 1,0,1 3 4 4 4 6

( 1) 1 2 2(1 )(1 ) ( 1) 2 1
( ) | ( ) ( )

2 3 3 2 2 3 3
h m m m m mα

α α α α α α
α =−

− − + +
= + + + +  

6 1,0,1 6 6 6 7

( 1) 2(1 )(1 ) ( 1) 1 1
( ) | ( )

2 2 2 2 2
h m m m mα

α α α α α α
α =−

− − + +
= + + + , 

7 1,0,1 6 7 7 7

( 1) 1 1 2(1 )(1 ) ( 1)
( ) | ( )

2 2 2 2 2
h m m m mα

α α α α α α
α =−

− − + +
= + + + , 

where km  is the midpoint of the interval uk, and 1 13500m = , 2 14500m = , 

3m =15500, 4m =16500, 5m =17500, 6m =18500 and 7m =19500. 

Step 7: Subsequently, suppose that input 1tx −  in the year 1t − is fuzzified to 

( 1) iF t A− = , the corresponding weighted function ( )ih α  is selected. 
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Accordingly, the output is derived as 
1,0,1

( ) |
i

h αα =− . The following examples are 

used to demonstrate the procedure of selecting the corresponding weighted 
function and using the knowledge to derive the forecasts. 
[years 1972, 1973, 1974]: The enrollment in 1971 was 13055(A1), in 1972 was 
13563(A1) and in 1973 was 13867(A1). While forecasting 1972, the grouped fuzzy 
relationship of A1 is 1 1 2,A A A→ , so the weighted function 1( )h α  is selected. 

Suppose that the knowledge points to an increase for the enrollment forecasts in 
1972. Hence, α  is set to 1. The forecast in 1972 is 

1 1 1 2
2 1

( ) | 13833
3 3

h m mαα = = + = . 

That is, the enrollment forecast for the year 1972 is 13833. However, the actual 
enrollment in 1972 was 13522. Therefore, the forecasting error is 1.99%. The 
main goal in this paper is to minimize the forecasting error. Meanwhile, the trend 
in 1973 and 1974 leads the knowledge to an increase. Hence, the forecasts for 1973 
and 1974 are both 13833. 

[year 1975]: The enrollment in 1974 was 14696 (A2). The weighted function 

)(2 αh  is determined). Meanwhile, suppose that the knowledge points to an 

increase for the enrollment forecast in 1975, so α =1. Therefore, the weighted 
function is 

2 1 3( ) | 15500h mαα = = = . 

That is, the forecast for 1975 is 15500. 

[year 1976]: The enrollment of 1975 was 15460(A3). The weighted function 3( )h α  

is selected. Meanwhile, suppose that the knowledge points to a decrease for the 
enrollment forecast in 1976, so α =-1. Therefore, the weighted function is 

3 1 3
( ) | 15500h mαα =− = = . 

That is, the forecast for 1976 is 15500. 

[years 1977, 1978, 1979]: The enrollment of 1976 was 15311(A3), 1977 was 
15603(A3), and 1978 was 15861(A3). The grouped fuzzy relationship of A3 is 

3 3 4,A A A→ , so the weighted function 3( )h α  is selected for forecasting year  

1977. Meanwhile, suppose that the knowledge points to an increase for the 
enrollment forecast in 1977, so α =1. The forecast for 1977 is 

3 1 3 4

7 1
( ) | 15722.

9 9
h m mαα = = + =  

Meanwhile, the enrollment trends in 1978 and 1979 both lead the knowledge to an 
increase. Hence, the forecasts for 1978 and 1979 are both 15722. 

[year 1980]: The enrollment of 1979 was 16807(A4). The weighted function 4 ( )h α  

is selected. Meanwhile, suppose that the knowledge points to an increase for the 
enrollment forecast in 1980, so α =1. Hence, the weighted function is 
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4 1 4 6

2 1
( ) | 17167.

3 3
h m mαα = = + =  

That is, the forecast for the year 1980 is 17167. 
Table 4 shows all of the remaining forecasts, and compares various studies of 

fuzzy time series used for forecasting enrollments. Suppose that knowledge is 
available. Empirical analysis yields average forecasting errors of 3.22% and 4.38% 
by Song and Chissom’s two models, respectively (1993, 1994), 3.11% by Chen’s 
model (2002), and 2.45% by Huarng’s model (2001). This proposed weighted 
model, however, has an error of 2.24%. In enrollment forecasting, the proposed 
model outperforms the others. 

Table 4 Comparison of enrollment forecasting 

Years Enrollment 
Song-I 

[5] 

Song-II 

[11] 

Chen 

[7] 

Huarng 

[1] 

This 

proposed 

model 

1971 13055      

1972 13563 14000  14000 14000 13833 

1973 13867 14000  14000 14000 13833 

1974 14696 14000  14000 14000 13833 

1975 15460 15500 14700 15500 15500 15500 

1976 15311 16000 14800 16000 15500 15500 

1977 15603 16000 15400 16000 16000 15722 

1978 15861 16000 15500 16000 16000 15722 

1979 16807 16000 15500 16000 16000 15722 

1980 16919 16813 16800 16833 17500 17167 

1981 16388 16813 16200 16833 16000 16167 

1982 15433 16789 16400 16833 16000 16167 

1983 15497 16000 16800 16000 16000 15500 

1984 15145 16000 16400 16000 15500 15500 

1985 15163 16000 15500 16000 16000 15500 

1986 15984 16000 15500 16000 16000 15722 

1987 16859 16000 15500 16000 16000 15722 
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Table 4 (continued) 

1988 18150 16813 16800 16833 17500 17167 

1989 18970 19000 19300 19000 19000 19000 

1990 19328 19000 17800 19000 19000 19000 

1991 19337 19000 19300 19000 19500 19500 

1992 18876 
No 

forecasting
19600 19000 19000 19000 

  3.22% 4.38% 3.11% 2.45% 2.24% 

4.2   Robust Forecasting with the Memorizing Capability 

In the empirical case, the enrollments for weighted measure and performance 
forecasting were derived from the same years, and prior knowledge was 
constructed by analyzing the obtained information. This is referred to as the 
memorizing capability. Consequently, another robust capability was considered. 
To evaluate robustness, the weighted measure and performance forecasting must 
originate from different sources. Therefore, the enrollments of fuzzy relationships 
were grouped and analyzed from 1971 to 1992 at the University of Alabama, and 
robustness was tested according to the enrollments from 1993 to 2004. The 
authors used current knowledge on the annual increase or decrease in university 
enrollment. This trend of increase, decrease, or no change was used as a guide to 
select the proper fuzzy sets for forecasting enrollment. For example, forecasting 
the enrollment in the year t was dependent on the difference between years 2t −  
and 1t − . The positive difference led to an increase, and 1α = . Conversely, the 
negative difference led to a decrease, and 1α = − . A difference of less than 100 
led to no change, and 0α = . 

Enrollment forecasting using the weighted model proceeded as described.  
Table 5 shows various studies on fuzzy time series used for forecasting 
enrollment. Empirical analysis yielded average forecasting errors of 2.99% when 
using the Chen model, 2.61% when using the Huarng model, and 2.31% when 
using the proposed model. Therefore, the proposed model outperformed the other 
models in robust forecasting. 

Table 5 Comparison of enrollment forecasting with robustness (1993 ~ 2004) 

 Chen’s Model 

[7] 

Huarng’s model 

[1] 

This proposed 

model 

Average error 2.99% 2.61% 2.31% 
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4.3   Forecasting TAIFEX with Weighted Model 

Forecasting of the Taiwan Futures Exchange (TAIFEX) was used to demonstrate 
the advantages of the proposed model (Huarng, 2001). The Taiwan Stock 
Exchange Capitalization-Weighted Stock Index (TAIEX) was used as knowledge 
to evaluate the trend over a number of days. In other words, any two consecutive 
days in the TAIEX reflect gains or losses in the stock market. The TAIFEX and the 
TAIEX are highly related; therefore, differences between consecutive days in the 
TAIEX were used as knowledge to forecast the TAIFEX. 

In forecasting the TAIFEX, the data range from August 3 to September 30 1988. 
Forecasting proceeds as follows. 

Step 1. From the historical data in Table 6, U=[6100, 7700] is derived. Then, the 
universe of the discourse is divided into 16 equally long intervals u1, u2, …, u16 of 
length 100, where u1=[6100, 6200], u2=[6200, 6300], u3=[6300, 6400], u4=[6400, 
6500], u5=[6500, 6600], u6=[6600, 6700], u7=[6700, 6800], u8=[6800, 6900], 
u9=[6900, 7000], u10=[7000, 7100], u11=[7100, 7200], u12=[7200, 7300], u13=[7300, 
7400], u14=[7400, 7500], u15=[7500, 7600], u16=[7600, 7700]. 

Step 2. In this case, the linguistic variable “TAIFEX” which can be represented as 
16 fuzzy sets; Ai (i=1, 2,  , 16 ). The linguistic values are A1=(lowest), A2=(very 
very very low), A3=(very very low), A4=(very low), A5=(low), A6=(quite low) , 
A7=(low medium), A8=(medium), A9=(quite medium), A10=(medium high), 
A11=(quite high), A12=(high), A13=(very high), A14=(very very high), A15=(very very 
very high), A16=(highest). Each Ai (i=1, 2,  , 16 ) is defined in the Table 7. 

Table 6 The fuzzy sets of “TAIFEX” 

A1= 1/u1 + 0.5/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 

+ 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 

A2= 0.5/u1 + 1/u2 + 0.5/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 

0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 

A3= 0/u1 + 0.5/u2 + 1/u3 + 0.5/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 

0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 

A4= 0/u1 + 0/u2 + 0.5/u3 + 1/u4 + 0.5/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 

0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 
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Table 6 (continued) 

A14= 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 

0.5/u12 + 1/u13 + 0.5/u14 + 0/u15 + 0/u16 

A15= 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 

0/u12 + 0.5/u13 + 1/u14 + 0.5/u15 + 0/u16 

A16= 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 

0/u12 + 0/u13 + 0.5/u14 + 1/u15 + 0.5/u16 

 

The data set of TAIFEX and corresponding fuzzy sets are shown in the appendix 
of Table A-2. 

Step 3. The fuzzy relationships are established and grouped in Table 7.  

Step 4. The frequencies of fuzzy sets in each fuzzy relationship are calculated, and 
shown in Table 8. 

Step 5. Daily changes in the TAIEX are used as knowledge to select the proper 
fuzzy sets for forecasting (listed in Table 8). Hence, the trend specifies increase, 
decrease or no change. Then the variable in the weighted function is represented as 
α =1 for an increase, 1α = −  for a decrease, and α =0 for no change. 

Table 7 Grouped TAIFEX fuzzy relationship 

1A →  2A →  

3A →  4 2 4 6A A A A→  

5 4A A→  6 7A A→  

7 5 7 8 9, , ,A A A A A→  8 6 7 8 9 10, , , ,A A A A A A→  

9 7 8 9, ,A A A A→  10 8A A→  

11A →  12 7 8 9, ,A A A A→  

13 12 13,A A A→  14 14 15,A A A→  

15 13 14 15, ,A A A A→  16A →  
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Table 8 Frequency of fuzz sets in TAIFEX relationship 

4 6A A→  1 4 4A A→  1 

4 2A A→  1 5 4A A→  1 

6 7A A→  2 7 9A A→  1 

7 8A A→  2 7 7A A→  4 

7 5A A→  1 8 10A A→  1 

8 9A A→  1 8 8A A→  4 

8 7A A→  2 8 6A A→  1 

9 9A A→  2 9 8A A→  2 

9 7A A→  1 10 8A A→  1 

12 13A A→  1 12 12A A→  4 

12 9A A→  1 13 13A A→  3 

13 12A A→  2 14 15A A→  1 

14 14A A→  1 15 14A A→  1 

15 13A A→  1 15 15A A→  1 

 

Hence, according to Definition 3.1, the selection strategy of fuzzy sets is: if the 
trend in TAIEX leads to an increase, then the fuzzy sets in the high part are all 
selected. Conversely, if the trend in TAIEX leads to a decrease, then the fuzzy sets 
in the low part are all selected. Otherwise, if the trend in TAIEX leads to no 
change, then the origin fuzzy set is selected. 

Step 6. According to the grouped fuzzy relationships in Table 8, the corresponding 
weighted functions can be established and are listed as follows. 

4 1 ,0 ,1 2 4 4 4 6

( 1) 1 1 2(1 )(1 ) ( 1) 1 1
( ) | ( ) ( ),

2 2 2 2 2 2 2
h m m m m m

α

α α α α α α
α α

= −

− − + +
= + + + +

5 1 , 0 ,1 4 5 5

( 1) 2(1 )(1 ) ( 1)
( ) |

2 2 2
h m m m

α

α α α α α α
α

= −

− − + +
= + + , 

6 1 ,0 ,1 6 6 7

( 1) 2(1 )(1 ) ( 1)
( ) |

2 2 2
h m m m

α

α α α α α α
α

= −

− − + +
= + + , 
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7 1 ,0 ,1

5 7 7 7 8 9

( ) |

( 1) 1 4 2(1 )(1 ) ( 1) 4 2 1
( ) ( ),

2 5 5 2 2 7 7 7

h

m m m m m m

α
α

α α α α α α

= −
=

− − + +
+ + + + +

  

8 1 , 0 ,1

6 7 8 8 8 9 10

( ) |

( 1) 1 2 4 2(1 )(1 ) ( 1) 4 1 1
( ) ( ),

2 7 7 7 2 2 6 6 6

h

m m m m m m m

α
α

α α α α α α

= −

− − + +
= + + + + + +

9 1 ,0 ,1 7 8 9 9 9

( 1) 1 2 2 2(1 )(1 ) ( 1)
( ) | ( )

2 5 5 5 2 2
h m m m m m

α

α α α α α α
α

= −

− − + +
= + + + + , 

10 1 , 0 ,1 8 10 10

( 1) 2(1 )(1 ) ( 1)
( ) |

2 2 2
h m m m

α

α α α α α α
α

= −

− − + +
= + + , 

12 1 , 0 ,1

9 12 12 12 13

( ) |

( 1) 1 4 2(1 )(1 ) ( 1) 4 1
( ) ( ),

2 5 5 2 2 5 5

h

m m m m m

α
α

α α α α α α

= −
=

− − + +
+ + + +

 

13 1 , 0 ,1 12 13 13 13

( 1) 2 3 2(1 )(1 ) ( 1)
( ) | ( )

2 5 5 2 2
h m m m m

α

α α α α α α
α

= −

− − + +
= + + + , 

14 1 , 0 ,1 14 14 14 15

( 1) 2(1 )(1 ) ( 1) 1 1
( ) | ( )

2 2 2 2 2
h m m m m

α

α α α α α α
α

= −

− − + +
= + + +

15 1 , 0 ,1 13 14 15 15 15

( 1) 1 1 1 2(1 )(1 ) ( 1)
( ) | ( )

2 3 3 3 2 2
h m m m m m

α

α α α α α α
α

= −

− − + +
= + + + + . 

That is, km is the midpoint of the interval uk, and 1m =6150, 2m =6250, 

3m =6350, 4 6450,m = 5m =6550, 6m =6650, 7m =6750, 8m =6850, 9m =6950, 

10m =7050, 11 7150,m = 12m =7250, 13m =7350, 14m =7450, 15m =7550, 

16m =7650,  respectively. 

Step 7. Subsequently, suppose that input 1tx −  in date 1t − is fuzzified to 

( 1) iF t A− = , the corresponding weighted function ( )ih α  is selected. 

Accordingly, the output is derived as 
1,0,1

( ) |
i

h αα =− . The following examples are 

used to demonstrate the procedure of selecting the corresponding weighted 
function and using the knowledge to derive the forecasts. 

[1998/8/4]: The fuzzy set of 1998/8/3 is A15 (TAIFEX was 7552). The proper 
weighted function 15( )h α  is selected. The TAIEX was 7599 on 1998/8/3 and 7593 

on 1998/8/4. The difference between these two days is 6− , the trend leads the 
knowledge to a decrease, so α =-1. Hence, the forecast for 1998/8/4 is 
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15 1 13 14 15

1 1 1
( ) | 7450

3 3 3
h m m mαα =− = + + = . 

[1998/8/6]: The fuzzy set of 1998/8/5 is A14 (TAIFEX was 7486). The proper 
weighted function 14 ( )h α  is selected. The TAIEX were 7500 on 1998/8/3 and 

7472 on 1998/8/6. The difference between these two days is 28− , the trend leads 
the knowledge to a decrease, so α =-1. Hence, the forecast for 1998/8/6 is 

14 1 14
( ) | 7450h mαα =− = = . 

[1998/8/7]: The fuzzy set of 1998/8/6 is A14 (TAIFEX was 7462). The proper 
weighted function 14 ( )h α  is selected. The TAIEX were 7472 on 1998/8/6 and 

7530 on 1998/8/7. The difference between these two days is 58, the trend leads the 
knowledge to an increase, so α =1. Hence, the forecast for 1998/8/7 is 

14 1 14 15
1 1

( ) | 7500
2 2

h m mαα = = + = . 

[1998/8/10]: The fuzzy set of 1998/8/7 is A15 (TAIFEX was 7530). The proper 
weighted function 15( )h α  is selected. The TAIEX were 7530 on 1998/8/7 and 

77372 on 1998/8/10. The difference between these two days is 158− , the trend 
leads knowledge to a decrease, so α =-1. The forecast for 1998/8/10 is 

15
1 13 14 15

1 1 1
( ) | 7450

3 3 3
A

h m m mαα =− = + + = . 

Table A-3 in the appendix shows all of the remaining forecasts. 
Table 9 compares various studies of fuzzy time series used to forecast TAIFEX. 

From left to right, the columns in Table 10 present the forecasts by Chen (2002), by 
Huarng’s knowledge models (2001), by this proposed weighted model. The average 
forecast errors are 1.05%, 1.06%, 0.94%, respectively. Clearly, the proposed model 
outperforms Chen’s model and Huarng’s model. 

Table 9 Comparison of TAIFEX forecasts 

Data Set 

(1998) 
Index 

Chen 

[7] 

Huarng 

[1] 

This 

Proposed Model 

8/3 7552    

8/4 7560 7450 7450 7450 

8/5 7487 7450 7450 7450 

8/6 7462 7500 7450 7450 

8/7 7515 7500 7500 7500 
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Table 9 (continued) 

8/10 7365 7450 7450 7450 

8/11 7360 7300 7350 7350 

8/12 7330 7300 7300 7310 

8/13 7291 7300 7350 7350 

8/14 7320 7183.33 7100 7190 

8/15 7300 7300 7350 7350 

8/17 7219 7300 7300 7310 

8/18 7220 7183.33 7100 7190 

8/19 7285 7183.33 7300 7270 

8/20 7274 7183.33 7100 7190 

8/21 7225 7183.33 7100 7190 

8/24 6955 7183.33 7100 7190 

8/25 6949 6850 6850 6870 

8/26 6790 6850 6850 6870 

8/27 6835 6775 6650 6710 

8/28 6695 6850 6750 6792.857 

8/29 6728 6750 6750 6750 

8/31 6566 6775 6650 6710 

9/1 6409 6450 6450 6450 

9/2 6430 6450 6550 6550 

9/3 6200 6450 6350 6350 

9/4 6403.2 6450 6250 6250 

9/5 6697.5 6450 6550 6550 

9/7 6722.3 6750 6750 6750 

9/8 6859.4 6775 6850 6807.143 

9/9 6769.6 6850 6750 6792.857 

9/10 6709.75 6775 6650 6710 

9/11 6726.5 6775 6850 6807.143 
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Table 9 (continued) 

9/14 6774.55 6775 6850 6807.143 

9/15 6762 6775 6650 6710 

9/16 6952.75 6775 6850 6807.143 

9/17 6906 6850 6950 6950 

9/18 6842 6850 6850 6870 

9/19 7039 6850 6950 6900 

9/21 6861 6850 6850 6850 

9/22 6926 6850 6950 6900 

9/23 6852 6850 6850 6870 

9/24 6890 6850 6950 6900 

9/25 6871 6850 6850 6838.889 

9/28 6840 6850 6750 6792.857 

9/29 6806 6850 6750 6792.857 

9/30 6787 6850 6750 6792.857 

  1.05% 1.06% 0.94% 

4.4   Forecasting TAIFEX with High-Order Model 

According to the previous definition of TAIFEX, the author proposed the 
empirical analysis of knowledge second order model as follows. The data range 
from August 3 to September 30, 1988.  

Step 1. From the historical data in Table 8, U=[6100, 7700] is derived. Then, the 
universe of the discourse is divided into 16 equally long intervals u1, u2, …, u16 of 
length 100, where u1=[6100, 6200], u2=[6200, 6300], u3=[6300, 6400], u4=[6400, 
6500], u5=[6500, 6600], u6=[6600, 6700], u7=[6700, 6800], u8=[6800, 6900], 
u9=[6900, 7000], u10=[7000, 7100], u11=[7100, 7200], u12=[7200, 7300], u13=[7300, 
7400], u14=[7400, 7500], u15=[7500, 7600], u16=[7600, 7700]. 

Step 2. In this case, the linguistic variable “TAIFEX” which can be represented as 
16 fuzzy sets; Ai (i=1, 2, …,16). The linguistic values are A1=(lowest), A2=(very 
very very low), A3=(very very low), A4=(very low), A5=(low), A6=(quite low) , 
A7=(low medium), A8=(medium), A9=(quite medium), A10=(medium high),  
 



166 C.-M. Own
 

A11=(quite high), A12=(high), A13=(very high), A14=(very very high), A15=(very very 
very high), A16=(highest). Each Ai (i=1, 2, …, 16) is defined as follows. 

A1= 1/u1 + 0.5/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 

0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16, 

A2= 0.5/u1 + 1/u2 + 0.5/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 

+ 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16, 

A3= 0/u1 + 0.5/u2 + 1/u3 + 0.5/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 

+ 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16, 

A14= 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 

0.5/u12 + 1/u13 + 0.5/u14 + 0/u15 + 0/u16, 

A15= 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 

0/u12 + 0.5/u13 + 1/u14 + 0.5/u15 + 0/u16, 

A16= 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 

0/u12 + 0/u13 + 0.5/u14 + 1/u15 + 0.5/u16. 

The data set of TAIFEX and corresponding fuzzy sets are shown in Table 8. 

Step 3. The second order fuzzy relationships are established and grouped in  
Table 10. 

Step 4. Daily changes in the TAIEX are used as the knowledge to select the proper 
fuzzy sets for forecasting (listed in the appendix of Table A-4). Hence, the trend 
specifies increase, decrease or no change. Then the variable in the weighted 
function is represented as α =1 for an increase, α =0 for a decrease, and α =-1 for 
no change. 
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Hence, if there are ambiguities in the fuzzy relationships, then the selection 
strategy is: if the trend in TAIEX leads to an increase, then the fuzzy sets in the 
high part are all selected. Otherwise, if the trend in TAIEX leads to a decrease, 
then the fuzzy sets in the low part are all selected. Otherwise, if the trend in 
TAIEX leads to no change, then the origin fuzzy set is selected. 

Table 10 Second order grouped TAIFEX fuzzy relationship 

15 15 14,  A A A→  

15 14 14,  A A A→  

15 13 13,  A A A→  

14 15 13,  A A A→  

14 14 15,  A A A→  

13 13 12 13,  ,  A A A A→  

13 12 12 13,  ,  A A A A→  

12 13 13,  A A A→  

12 12 9 12,  ,  A A A A→  

12 9 9,  A A A→  

10 8 9,  A A A→  

4 4 2,  A A A→  

4 2 4,  A A A→  

2 4 6,  A A A→  

 

Accordingly, let the grouped fuzzy relationship for forecasting tTAIFEX  

(TAIFEX at time t) be 
1 1 2
,  ,  ,  

2r r j jA A A A→  . The knowledge function is set as 

2 1 2 1, 0, 1( ;  ;  ,  ,  ) |r j jh A A A αα = − . 

Step 5. Subsequently, the second-order forecasting process of TAIFEX F(t) is 
carried out by the fuzzified input of F(t-2) and F(t-1). Some examples below are 
used to illustrate the forecasting process.  

[1998/8/5]: The TAIFEX in 1998/8/3 and 1998/8/4 were 7552 (A15) and 7560 
(A15). According to the list of second order fuzzy relationship in Table 13, the  
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current states “ 15 15,  A A ” mapping to the suitable fuzzy relationship is 

15 15 14,  A A A→ . Because the maximum membership value of the fuzzy set A14 

occurs at the interval 14u , then the midpoint of the interval 14u  is 7450. Thus, 

the forecasted TAIFEX of 1998/8/5 is equal to 7450. 

[1998/8/6]: The TAIFEX in 1998/8/4 and 1998/8/5 were 7560 (A15) and 7487 
(A14). According to the list of second order fuzzy relationship in Table 13, the 
current states “ 15 14,  A A ” mapping to the suitable fuzzy relationship is 

15 14 14,  A A A→ . Because the maximum membership value of the fuzzy set A14 

occurs at the interval 14u , then the midpoint of the interval 14u  is 7450. Thus, 

the forecasted TAIFEX of 1998/8/5 is equal to 7450 

[1998/8/12]: The TAIFEX in 1998/8/10 and 1998/8/11 were 7365 (A13) and 7360 
(A13). According to the list of second order fuzzy relationship in Table 13, the 
current states “ 13 13,  A A ” mapping to the suitable fuzzy relationships is 

13 13 12 13,  ,  A A A A→ . It means that there is an ambiguity. The TAIEX were 7384 

on 1998/8/11 and 7352 on 1998/8/12, respectively. The difference between these 
TAIEX was 32− , the trend is positive and 1α = − . Hence, the knowledge 
function is 13 12 13 1 12 13( ;  ; , ) | ( ) / 2 7300h A A A m mαα =− = + = , where 13m  is the 

midpoint of the interval 13u . 

Table 15 compares various studies of fuzzy time series used to forecast TAIFEX. 
Mean square errors (MSEs) are taken as forecasting errors: 

2

1
( _ _ )

n

i
acturall TAIFEX forecasted TAIFEX

MSE
n

=
−

=  , 

where i represents the year. From left to right, the columns in Table 15 present the 
forecasts by Chen’s model (Chen 1996), by Huarng’s two-variable model and by 
his three-variable knowledge model (Huarng 2001). The MSEs are 9668.94, 
7856.5 and 5437.38, respectively. 

Table 15 A comparison of the MSE of previous models 

 Chen’s 

model (1996) 

Huarng’s 

two variable 

model 

Huarng’s 

three variable 

model 

MSE 9668.94 7856.50 5437.58 
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Table 16 compares the MSEs of Chen’s restricted model and the proposed 
knowledge high-order fuzzy time series model. That is to say, Chen’s later model 
(2002) is restricted in lower-order fuzzy time series and lacking the ability to 
handle the ambiguity well. The averaging operation in Chen’s model (1996) is 
applied to assist to eliminate the ambiguity in Chen’s later model (2002) to 
compare the performance obtained using fuzzy time series of different orders.  

Table 16 A comparison of the MSE of Chen’s model and this proposed model by using 
different orders fuzzy time series 

Second-order Third-order Fourth-order Fifth-order 

Chen Knowledge Chen KnowledgeChen Knowledge Chen Knowledge 

5900.64 4109.09 3209.98 3052.19 1999.09 1830.2 864.64 864.64 

From the left to right, the columns in Table 16 present the MSE of Chen 
second-order model, the knowledge second-order model, Chen third-order model, 
the knowledge third-order model, Chen fourth-order model, the knowledge 
fourth-order model, Chen fifth-order model and the knowledge fifth-order model, 
respectively. The MSEs are 5900.64, 4109.09, 3209.98, 3052.19, 1999.09, 1830.2, 
864.64 and 864.64, respectively. Obviously, the forecasting accuracy is better than 
that of Chen’s model of the same order. Therefore, the knowledge high-order 
fuzzy time series model represents an improvement over the Chen’s model. 

5   Conclusions 

Most fuzzy time series models are independent of a specific domain. Among these 
models, the Chen model uses the simple and straightforward method to find the 
best forecasting results. In the field of expert systems, experts typically consider 
knowledge to solve domain-specific problems. Hence, Huarng enhanced the Chen 
model by integrating knowledge. The weighted model overcomes the disadvantage 
of the Huarng model, that is, a lack of an efficient measure of the significance of the 
knowledge. The first proposed model was based on the weighted measure of the 
fuzzy sets, which differs from the arithmetic average in the traditional defuzzifier. 
The significance of the derived fuzzy sets was considered in the defuzzification 
phase. The knowledge model is proposed to forecast time series based on the 
high-order fuzzy time series and domain-specific knowledge. The proposed model 
overcomes the deficiency of the Chen model, which is strongly dependent on the 
highest-order fuzzy time series and requires a large amount of memory. 

The results showed that the weighted models can reflect fluctuations in fuzzy 
time series and provide superior overall forecasting results compared to previous 
models. The forecasts of university enrollment and the futures index show that 
domain-specific knowledge can be used with ease to assist forecasting. The 
efficient measure of the significance of fuzzy relationships provides additional 
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information for improving forecasts. Empirical analysis showed that the proposed 
high-order model yielded more accurate forecasts than the Chen model when using 
the same orders. Therefore, the knowledge high-order fuzzy time series model 
offers the advantages of high-order time series forecasting and the elimination of 
ambiguity; that is, the forecasting model can be restricted to the acceptable-order 
fuzzy time series to reduce the amount of memory and computation time required. 
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APPENDIX 

Table A-1 Frequency of relationships 

Fuzzy  

relationship 
Frequency 

Fuzzy  

relationship 
Frequency 

1 1A A→  2 1 2A A→  1 

2 3A A→  1 3 3A A→  7 

3 4A A→  2 4 3A A→  1 

4 4A A→  2 4 6A A→  1 

6 6A A→  1 6 7A A→  1 

7 6A A→  1 7 7A A→  1 

 

Table A-2 TAIFEX data set 

Date (1998) Index Fuzzy Set Date (1998) Index Fuzzy Set 

8/3 7552 15A  8/4 7560 15A  

8/5 7487 14A  8/6 7462 14A  

8/7 7515 15A  8/10 7365 13A  

8/11 7360 13A  8/12 7330 13A  

8/13 7291 12A  8/14 7320 13A  

8/15 7300 13A  8/17 7219 12A  

8/18 7220 12A  8/19 7285 12A  

8/20 7274 12A  8/21 7225 12A  

8/24 6955 9A  8/25 6949 9A  

8/26 6790 7A  8/27 6835 8A  

8/28 6695 6A  8/29 6728 7A  

8/31 6566 5A  9/1 6409 4A  

9/2 6430 4A  9/3 6200 2A  

9/4 6403.2 4A  9/5 6697.5 6A  

9/7 6722.3 7A  9/8 6859.4 8A  

9/9 6769.6 7A  9/10 6709.75 7A  
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Table A-2 (continued) 

9/11 6726.5 7A  9/14 6774.55 7A  

9/15 6762 7A  9/16 6952.75 9A  

9/17 6906 9A  9/18 6842 8A  

9/19 7039 10A  9/21 6861 8A  

9/22 6926 9A  9/23 6852 8A  

9/24 6890 8A  9/25 6871 8A  

9/28 6840 8A  9/29 6806 8A  

9/30 6787 7A     

 

Table A-3 TAIEX data set  

Date (1998) Index  Difference Date (1998) Index  Difference 

8/3 7599  8/4 7593 -6 

8/5 7500 -93 8/6 7472 -28 

8/7 7530 58 8/10 7372 -158 

8/11 7384 12 8/12 7352 -32 

8/13 7363 11 8/14 7348 -15 

8/15 7372 24 8/17 7274 -98 

8/18 7182 -92 8/19 7293 111 

8/20 7271 -22 8/21 7213 -58 

8/24 6958 -255 8/25 6908 -50 

8/26 6814 -94 8/27 6813 -1 

8/28 6724 -89 8/29 6736 12 

8/31 6550 -186 9/1 6335 -215 

9/2 6472 137 9/3 6251 -221 

9/4 6463 212 9/5 6756 293 

9/7 6801 45 9/8 6942 141 

9/9 6895 -47 9/10 6804 -91 

9/11 6842 38 9/14 6860 18 
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Table A-3 (continued) 

9/15 6858 -2 9/16 6973 115 

9/17 7001 28 9/18 6962 -39 

9/19 7150 188 9/21 7029 -121 

9/22 7034 5 9/23 6962 -72 

9/24 6980 18 9/25 6980 0 

9/28 6911 -69 9/29 6885 -26 

9/30 6834 -51    

Table A-4 TAIEX data set 

Date (1998) Index  Difference 

8/3 7599  

8/4 7593 -6 

8/5 7500 -93 

8/6 7472 -28 

8/7 7530 58 

8/10 7372 -158 

8/11 7384 12 

8/12 7352 -32 

8/13 7363 11 

8/14 7348 -15 

8/15 7372 24 

8/17 7274 -98 

8/18 7182 -92 

8/19 7293 111 

8/20 7271 -22 

8/21 7213 -58 

8/24 6958 -255 

8/25 6908 -50 
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Table A-4 (continued) 

8/26 6814 -94 

8/27 6813 -1 

8/28 6724 -89 

8/29 6736 12 

8/31 6550 -186 

9/1 6335 -215 

9/2 6472 137 

9/3 6251 -221 

9/4 6463 212 

9/5 6756 293 

9/7 6801 45 

9/8 6942 141 

9/9 6895 -47 

9/10 6804 -91 

9/11 6842 38 

9/14 6860 18 

9/15 6858 -2 

9/16 6973 115 

9/17 7001 28 

9/18 6962 -39 

9/19 7150 188 

9/21 7029 -121 

9/22 7034 5 

9/23 6962 -72 

9/24 6980 18 

9/25 6980 0 

9/28 6911 -69 

9/29 6885 -26 

9/30 6834 -51 
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