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Chapter 6 
A Novel Choquet Integral Composition 
Forecasting Model for Time Series Data Based 
on Completed Extensional L-Measure 

Hsiang-Chuan Liu* 

Abstract. In this study, based on the Choquet integral with respect to complete 
extensional L-measure and M-density, a novel composition forecasting model 
which composed the time series model , the exponential smoothing model and 
GM(1,1) forecasting model was proposed.  For evaluating this improved 
composition forecasting model, an experiment with the data of the grain 
production in Jilin during 1952 to 2007 by using the sequential mean square error 
was conducted. Based on the M-density and N- density, the performances of 
Choquet integral composition forecasting model with the completed extensional 
L-measure, extensional L-measure, L-measure, Lambda-measure and P-measure, 
respectively, a ridge regression composition forecasting model and a multiple 
linear regression composition forecasting model and the traditional linear 
weighted composition forecasting model were compared. The experimental results 
showed that the Choquet integral composition forecasting model with respect to 
the completed extensional L-measure and M-density outperforms other ones. 
Furthermore, for each fuzzy measure, including the completed extensional  
L-measure, extensional L-measure, L-measure, Lambda-measure and P-measure, 
respectively, the Choquet integral composition forecasting model based on  
M-density is better than the one based on N-density. 

Keywords: Choquet integral, composition forecasting model, M-density, 
completed extensional L-measure.  
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1   Introduction 

The composition forecasting model is first considered in the work of Bates and 
Granger (1969) [1]. They are now in a widespread use in many areas, especially in 
economic field.  Zhang Wang and Gao (2008) [2] applied the linear composition 
forecasting model which composed the time series model, the second-order 
exponential smoothing model and GM(1,1) forecasting model in the Agricultural 
Economy Research, the GM(1,1) is one of the most frequently used grey 
forecasting model, it is a time series forecasting model, encompassing a group of 
differential equations adapted for parameter variance, rather than a first order 
differential equation [3-4]. In our previous works [5-9], we extended the work of 
Zhang, Wang, and Gao by proposing some nonlinear composition forecasting 
model which also composed the time series model, the second-order exponential 
smoothing model and GM(1,1) forecasting model by using the ridge regression 
model [5] and the theory of Choquet integral with respect to some fuzzy measures, 
including Sugeno’s λ-measure [13], Zadeh’s P-measure [14] and authors’ fuzzy 
measures, L-measure, extensional L-measure and completed extensional L-
measure [6-12]. Since the first two well-known fuzzy measures are univalent 
measures, each of them has just one feasible fuzzy measure satisfying the 
conditions of its own definition, but the others proposed by our previous works are 
multivalent fuzzy measures, all of them have infinitely feasible fuzzy measures 
satisfying the conditions of their own definition. The fuzzy measure based 
Choquet integral composition forecasting models are supervised methods, by 
comparing the mean square errors between the estimated values and the 
corresponding true values, each of our multivalent fuzzy measures based 
forecasting models has more opportunity to find the better feasible fuzzy measure, 
the performances of them are always better than the one based on the univalent 
fuzzy measures, λ-measure and P-measure. In addition, the author has proved that 
the P-measure is a special case of the L-measure [7], we know that all of the 
extended multivalent fuzzy measures of L-measure are at lest as good as their 
special case P-measure. However, the λ-measure is not a special case of the L-
measure, so the improved L-measure, called extensional L-measure, was proposed 
to contain the λ-measure as a special case [7]. And then, all of the P-measure, λ-
measure and L-measure are special cases of the extensional L-measure. However, 
the extensional L-measure does not attend the largest fuzzy measure B-measure, it 
is not a completed fuzzy measure, for overcoming this drawback, an improved 
extensional L-measure, called completed extensional L-measure was proposed, all 
of other above-mentioned fuzzy measures proposed are the special cases of it. The 
real data experiment showed that the extensional L-measure Choquet integral 
based composition forecasting model is the best one. On the other hand, all of 
above mentioned Choquet integral composition forecasting models with some 
different fuzzy measures are based on N-density. From the definition of Choquet 
integral and fuzzy measures, we know that the Choquet integral can be viewed as 
a function of its fuzzy measure, and the fuzzy measure can be viewed as a function 
of its fuzzy density function,  therefore, the performance of any Choquet integral 
is predominate by its fuzzy measure, and the performance of any fuzzy measure is 
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predominate by its fuzzy density function, in other words, the performance of any 
Choquet integral is predominate by its fuzzy density function. Since the older 
fuzzy density function N-density is based on the linear correlation coefficient, the 
new fuzzy density function M-density based on the mean square error is non-
linear, the relations among the composition forecasting model and three given 
forecasting models are non-linear as well, hence, in the same Choquet integral 
with respect to the same fuzzy measure, the performance of the non-linear fuzzy 
density functions is always better than the linear fuzzy density functions.   

In this paper, a novel fuzzy measure, called the completed extensional L-
measure, and the new fuzzy density function, M-density, are considered. Based on 
the M-density and the proposed completed extensional L-measure, a novel 
composition forecasting model is also considered. For comparing the forecasting 
efficiency of two fuzzy densities M-density and N-density, is also considered. 

2   The Composition Forecasting Model 

In this paper, for evaluating the forecasting validation of forecasting model to 
sequential data, the sequential mean square error is used, its formal definition is 
listed as follows. 

Definition 1.   Sequential Mean Square Error (SMSE) [9-10] 

If t jθ + is the realized value of target variable at time ( )t j+ , |
ˆ
t j tθ + is the forecasted 

value of target variable at time ( )t j+ based on training data set from time 1 to 

time t, 

and                ( )( ) ( )2

| 1
1

1ˆ ˆ ˆ
h

h
t t j t j t j

j

SMSE
h

θ θ θ+ + − +
=

= −  (1)

then ( )( )ˆ h
tSMSE θ is called the sequential mean square error (SMSE) of the h 

forecasted values of target variable from time ( )1t + to time ( )t h+  based on 

training data set from time 1 to time t. The composition forecasting model or 
combination forecasting model can be defined as follows. 

Definition 2.   Composition Forecasting Model [9-10] 
(i) Let ty be the realized value of target variable at time t. 

(ii) Let ,1 ,2 ,, ,...,t t t mx x x be a set of m competing predictors of ty , ˆ
ty be a function f 

of ,1 ,2 ,, ,...,t t t mx x x with some parameters, denoted as 

( ),1 ,2 ,
ˆ , ,...,t t t t my f x x x=  (2) 
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(iii) Let | ,t j t kx + be the forecasted values of ty by competing predictor k at time 

( )t j+ based on training data set from time 1 to time t, and for the same function f 

as above, 

Let                  ( )| ,1 ,2 ,
ˆ , ,...,t j t t j t j t j my f x x x+ + + +=  (3)

(iv) Let            ( )( ) ( )2

| 1
1

1
ˆ ˆ

h
h

t t j t j t j
j

SMSE y y y
h + + − +

=

= −  (4)

 ( )( ) ( )2

, ,
1

1 h
h

t k t j k t j
j

SMSE x x y
h + +

=

= −  (5)

For current time t and the future h times, if 

( )( ) ( )( ),1
ˆ minh h

t t kk m
SMSE y SMSE x

≤ ≤
≤  (6) 

then ˆ
ty is called a composition forecasting model for the future h times of 

,1 ,2 ,, ,...,t t t mx x x or, in brief, a composition forecasting model of ,1 ,2 ,, ,...,t t t mx x x . 

Definition 3.   Linear Combination Forecasting Model [9-10] 

For given parameters
1

, 1
m

k k
k

Rβ β
=

∈ = , let 

,
1

ˆ
m

t k t k
k

y xβ
=

=  (7) 

If ˆ
ty is a composite forecasting model of ,1 ,2 ,, ,...,t t t mx x x then ˆ

ty is called a linear 

combination forecasting model or linear composition forecasting model, 
otherwise, it is called a non-linear combination forecasting model or non-linear 
composition forecasting model. 

Definition 4.   Ridge Regression Composition Forecasting Model [5,9,10] 

(i) Let ( )1 2, ,...,
T

tt
y y y y= be realized data vector of target variable from time 1 to 

time t, ( )1, 2, ,, , ,...,
T

k k t kt kx x x x= be a forecasted value vector of competing 

predictor k of target variable ty from time 1 to time t. 

(ii) Let tX be a forecasted value matrix of m competing predictors of target 

variable ty from time 1 to time t. 

(iii) Let                  ( )1 2
ˆ ˆ ˆ ˆ, ,...,

T

tt
y y y y=  (8)
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( ) ( ),1 ,2 ,, ,...,t t t t mf X f x x x=  (9)

(iv) Let      ( ) ( ) ( ) ( )( ) ( ) 1

,1 ,2 ,, ,...,
T

r r r r T T
t t t m t t m tt t

X X rI X yβ β β β
−

= = +  (10)

( ) ( )ˆ r
t t tt

y f X X β= =  (11)

Then                 ( ) ( )
|

ˆ r
t j t j tt j t

y f X X β+ ++
= =  (12)

( )
( ) ( )

| ,1 ,2 ,

,1 ,2 , , ,
1

ˆ , ,...,

, ,...,

t j t t j t j t j m

m
r r

t j t j t j m t k t j kt
k

y f x x x

x x x xβ β

+ + + +

+ + + +
=

=

 = =  
 (13)

For current time t and the future h times, if 

( )( ) ( )( ),1
ˆ minh h

t t kk m
SMSE y SMSE x

≤ ≤
≤  (14) 

And ridge coefficient 0r = then ˆ
ty is called a multiple linear regression 

combination forecasting model of ,1 ,2 ,, ,...,t t t mx x x . If formula (14) is satisfied 

and 0r > , then ˆ
ty is called a ridge regression composition forecasting model 

of ,1 ,2 ,, ,...,t t t mx x x . Note that Hoerl, Kenard, and Baldwin (1975) suggested that the 

ridge coefficient of ridge regression is 

( )
2

22

1

ˆ 1
ˆ ˆ,

t

i tT
i

t

m
r y y

t

σ σ
β β =

= = −  (15) 

3   Choquet Integral Composition Forecasting Model 

3.1   Fuzzy Measures [6-13] 

Definition 5.   Fuzzy Measure [6-13] 
A fuzzy measure μ on a finite set X is a set function [ ]: 2 0,1Xμ → satisfying the 

following axioms: 

( ) ( )0, 1Xμ φ μ= =            (boundary conditions) (16) 

( ) ( )A B A Bμ μ⊆  ≤         (monotonicity) (17) 
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3.2   Fuzzy Density Function [6-10] 

Definition 6.   Fuzzy Density Function, Density [6-10] 
(i) A fuzzy density function of a fuzzy measure μ on a finite set X is a function 

[ ]: 0,1d X → satisfying: 

( ) { }( ) ,d x x x Xμ= ∈  (18) 

( )d x is called the density of singleton x . 

(ii) A fuzzy density function is called a normalized fuzzy density function or a 
density if it satisfying 

( ) 1
x X

d x
∈

=  (19) 

Definition 7.   Standard Fuzzy Measure [6-10] 
A fuzzy measure is called a standard fuzzy measure, if its fuzzy density function is 
a normalized fuzzy density function. 

Definition 8.   N-density [8-10] 
Let μ be a fuzzy measure on a finite set { }1 2, ,..., nX x x x= , iy be global response of 

subject i and ( )i jf x be the evaluation of subject i for singleton jx , satisfying: 

( )0 1, 1, 2,..., , 1, 2,...,i jf x i N j n< < = =  (20)

If                   ( ) ( )( )
( )( )

1

, 1,2,...,
j

N j n

j
j

r f x
d x j n

r f x
=

= =


 (21)

Where ( )( )jr f x is the linear regression coefficient of iy on ( )jf x satisfying 
                    

( )( ) ,
0j

j

y x
j

y x

S
r f x

S S
= ≥  (22)

2

2

1 1

1 1N N

y i i
i i

S y y
N N= =

 
= −  

 
   (23)

( ) ( )
2

2

1 1

1 1
j

N N

x i j i j
i i

S f x f x
N N= =

 
= − 

  
   (24)
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( ) ( ),
1 1 1

1 1 1
j

N N N

y x i i i j i j
i i i

S y y f x f x
N N N= = =

  
= − −      
    (25)

 

then the function [ ]: 0,1Nd X → satisfying { }( ) ( ) ,Nx d x x Xμ = ∀ ∈ is a fuzzy 

density function, called N-density of μ . 

Note that 
 (i) N-density is a normalized fuzzy density function. 
 (ii) N-density is a linear fuzzy density function based on linear correlation 

coefficients 

3.3   M-Density [10] 

We know that any linear function can be viewed as a special case of some 
corresponding non-linear function, In this paper, a non-linear fuzzy density 
function based on Mean Square Error, denoted M-density, is proposed, its formal 
definition is introduced as follows: 

Definition 9.   M-density 
Let μ be a fuzzy measure on a finite set { }1 2, ,..., nX x x x= , iy be global response of 

subject i and ( )i jf x be the evaluation of subject i for singleton jx , satisfying: 

( )0 1, 1, 2,..., , 1, 2,...,i jf x i N j n< < = =  (26)

If               ( ) ( )
( )

1

1

1

, 1, 2,...,
j

M j n

j
j

MSE x
d x j n

MSE x

−

−

=

 
 = =
 
 

 (27)

Where              ( ) ( )( )2

1

1 N

j i i j
i

MSE x y f x
N =

= −  (28)

then the function [ ]: 0,1Md X → satisfying { }( ) ( ) ,Mx d x x Xμ = ∀ ∈ is a fuzzy 

density function, and called M-density of μ . 

3.4   Classification of Fuzzy Measures [6-10] 

Definition 10. Additive measure, sub-additive measure and supper- additive 
measure 
(i) A fuzzy measure μ  is called an sub-additive measure, if  

( ) ( ) ( ), ,A B X A B g A B g A g Bμ μ μφ∀ ⊂ =  < +   (29) 
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(ii)  A fuzzy measure μ  is called an additive measure, if  

( ) ( ) ( ), ,A B X A B g A B g A g Bμ μ μφ∀ ⊂ =  = +   (30) 

(iii)  A fuzzy measure μ  is called a supper-additive measure, if  

( ) ( ) ( ), ,A B X A B g A B g A g Bμ μ μφ∀ ⊂ =  > +   (31) 

(iv) A fuzzy measure is called a mixed fuzzy measure, if is not a Additive 
measure, sub-additive measure and supper- additive measure. 

Theorem 1. Let d be a given fuzzy density function of an additive measure, A-
measure, then its measure function [ ]: 2 0,1X

Ag →  satisfies 

( ) ( )A
x E

E X g E d x
∈

∀ ⊂  =  (32) 

3.4   λ-Measure [13] 

Definition 10.   λ-measure [13] 
For a given fuzzy density function d on a finite set X, X n= , a measure is called 

λ-measure, if its measure function, [ ]: 2 0,1Xgλ → , satisfying: 
 

(i)                     ( ) ( )0, 1g g Xλ λφ = =  (33)

(ii)             
( ) ( ) ( ) ( ) ( )

, 2 , ,XA B A B A B X

g A B g A g B g A g Bλ λ λ λ λ

φ
λ

∈ = ≠
 = + +

 


 (34)

(iii)             ( ) ( ) { }( )
1

1 1 0,
n

i i i
i

d x d x g xλλ λ
=

 + = + > = ∏  (35)

 

Theorem 2. Let d be a given fuzzy density function on a finite set X, X n= ,   

Under the condition ofλ-measure, the equation (35) determines the parameter λ 

uniquely: 

(i)         ( ) 1 0
x X

d x λ
∈

>  < ,λ-measure is a sub-additive measure (36)

(ii)        ( ) 1 0
x X

d x λ
∈

=  = , λ-measure is an additive measure (37)

(iii)        ( ) 1 0
x X

d x λ
∈

<  > , λ-measure is a supper-additive measure (38)
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Note that 

(i) λ-measure has just one feasible fuzzy measure satisfies the conditions of 
its own definition. 

(ii) In equation (35), the value of ( )id x  is decided first, and then to find the 

solution of the measure parameterλ, and ( )
1

1
n

i
i

d xλ
=

 + ∏  can be viewed 

as a function of its fuzzy density ( )id x . Therefore, we can say that λ-

measure is predominate by its fuzzy density function. 
(iii) λ-measure can not be a mixed fuzzy measure. 

3.5   P-Measure [14] 

Definition 11.   P-measure [14] 
For a given fuzzy density function d on a finite set X, X n= , a measure is called 

P-measure, if its measure function, [ ]: 2 0,1X
Pg → , satisfying: 

 

(i)                   ( ) ( )0, 1P Pg g Xφ = =  (39)

(ii)           ( ) ( ) { }( )2 max maxX
P P

x A x A
A g A d x g x∀

∈ ∈
∈  = =  (40)

Theorem 3. P-measure is always a sub-additive measure [6-10] 

Note that since the maximum of any finite set is unique, hence, P-measure has just  
one feasible fuzzy measure satisfies the conditions of its own definition. 

3.6   Multivalent Fuzzy Measure [6-10] 

Definition 12.   Univalent fuzzy measure, multivalent fuzzy measure [4-8] 
A fuzzy measure is called a univalent fuzzy measure, if it has just one feasible 
fuzzy measure satisfies the conditions of its own definition, otherwise, it is called 
a multivalent fuzzy measure. 

Note that both λ-measure and P-measure are univalent fuzzy measures. 

3.7   L-Measure [6-10] 

In my previous work [4], a multivalent fuzzy measure was proposed, which is 
called L-measure, since my last name is Liu. Its formal definition is as follows  

 

Definition 13.   L-measure [6-10] 
For a given fuzzy density function d on a finite set X, X n= , a measure is called 

L-measure, if its measure function, [ ]: 2 0,1X
Lg → , satisfying: 
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(i)                     ( ) ( )0, 1L Lg g Xφ = =  (41) 

(ii) [ ) ( )
( ) ( ) ( )

( ) ( )

1 1 max
0, , max

1

x A
x A

L
x A

x X

A L d x d x
L X A X g d x

n A L A d x

∈∈

∈

∈

 − −
 

∈ ∞ ≠ ⊂  = +
 − + − 




 (42) 

Theorem 4. Important Properties of L-measure [6] 
(i) For any [ )L 0,∈ ∞ , L-measure is a multivalent fuzzy measure, in other words, 

L-measure has infinite fuzzy measure solutions. 
(ii) L-measure is an increasing function on L. 
(iii) If L 0= then L-measure is just the P-measure. 
(iv) L-measure may be a mixed fuzzy measure 

Note that 

(i) P-measure is a special case of L-measure 
(ii) L-measure does not contain additive measure and λ-measure, in other 

words, additive measure and λ-measure are not special cases of L-
measure. 

3.8   Extensional L-Measure [7] 

For overcoming the drawback of L-measure, an improving multivalent fuzzy 
measure which containing additive measure and λ-measure., called extensional L-
measure, was proposed by my next previous paper [7],  Its formal definition is as 
follows; 

Definition 14.   Extensional L-measure, LE-measure [7] 
For a given fuzzy density function d on a finite set X, X n= , a measure is called 

extensional L-measure, if its measure function, [ ]: 2 0,1
E

X
Lg → , satisfying: 

 

(i)                     ( ) ( )0, 1
E EL Lg g Xφ = =  (43) 

(ii)  

[ )

( )

( ) ( ) ( ) [ ]

( )
( ) ( ) ( )

( ) ( )
( )

1, ,

1 max , 1,0

1 1

, 0,
1

E

x A
x A

L
x A x A

x A

x X

L A X

L d x L d x L

g A A L d x d x

d x L
n A L A d x

∈∈

∈ ∈

∈

∈

∈ − ∞ ⊂

 + − ∈ −

   = − −  

  + ∈ ∞
  − + − 



 




 (44) 
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Theorem 5. Important Properties of LE –measure [7] 
(i) For any [ )L 1,∈ − ∞ , LE -measure is a multivalent fuzzy measure, in other 

words, LE-measure has infinite fuzzy measure solutions. 
(ii) LE-measure is an increasing function on L. 
(iii) if L 1= − then LE-measure is just the P-measure. 
(iv) if L 0= then LE-measure is just the additive measure. 

(v) if L 0= and ( ) 1
x X

d x
∈

= , then LE-measure is just the λ-measure. 

(vi) if -1< L< 0 then LE-measure is a supper-additive measure. 

(vii) if L> 0 then LE-measure is a sub-additive measure 

Note that additive measure, λ-measure and P-measure are two special cases of LE-
measure. 

3.9   B-Measure [7] 

For considering to extend the extensional L-measure, a special fuzzy measure was 
proposed by my previous work as below; 

Definition 15.   B-measure [7] 
For a given fuzzy density function d, a B-measure, Bg , is a measure on a finite set 

X, X n= , satisfying: 

            ( )
( ) 1

1 1
x A

B

d x if A
A X g A

if A
∈

 ≤∀ ⊂  = 
>


 (45) 

Theorem 6.  Any B-measure is a supper-additive measure. 

3.10   Comparison of Two Fuzzy Measures [7-10] 

Definition 16. Comparison of two fuzzy measures [7-10] 
For a given fuzzy density function, ( )d x , on a finite set, X,  let 1μ and 2μ be two 

fuzzy measures on X,  
(i) If ( ) ( )

1 2
, ,g A g A A Xμ μ= ∀ ⊂ , then we say that 1μ -measure is equal to 

2μ -measure, denoted as 

                         1 2measure masureμ μ− = −  (46) 

(ii)    If ( ) ( )
1 2

, ,1g A g A A X A Xμ μ< ∀ ⊂ < <  then we say that 1μ -measure is 

less than 2μ -measure, or 2μ -measure is larger than 1μ -measure, denoted as 
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                         1 2measure masureμ μ− < −  (47) 

(iii) If ( ) ( )
1 2

, ,1g A g A A X A Xμ μ≤ ∀ ⊂ < < , then we say that 1μ -measure 

is not larger than 2μ -measure, or 2μ -measure is not smaller than 1μ -

measure, denoted as 

                         1 2measure masureμ μ− ≤ −  (48) 

.                            
Theorem 7.  For any given fuzzy density function, if measureμ −  is a fuzzy 

measure, then we have 

                   P measure as meaure B measureμ− ≤ − ≤ −  (49) 

 

In other words, for any given fuzzy density function, the P-measure is the smallest 
fuzzy measure, and the B-measure is the largest fuzzy measure. 

3.11  Completed Fuzzy Measure 

Definition 17. Completed fuzzy measure [8] 
If the measure function of a multivalent fuzzy measure has continuously infinite 
fuzzy measure solutions, and both P-measure and B -measure are its limit fuzzy 
measure solutions, then this multivalent fuzzy measure is called a completed fuzzy 
measure.  

Note that both the L –measure and LE –measure are not completed fuzzy 
measures, since 

( )

( ) ( )

( )
( )

( 1)
lim 1

1
x A x A

L

x Xx X

A L d x d x

d xn A A L d x
∈ ∈

→∞

∈∈

−
= ≠

 − + − 

 


, the B-measure is not a limit fuzzy 

measure of the L –measure and LE –measure 

3.12   Completed Extensional L-Measure 

Definition 18. Completed extensional L-measue, LCE –measure  
For a given fuzzy density function d on a finite set X, X n= , a measure is called 

extensional L-measure, if its measure function, [ ]: 2 0,1
CE

X
Lg → , satisfying: 

 

(i)                     ( ) ( )0, 1
CE CEL Lg g Xφ = =  (50)
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(ii)   

[ )

( )

( ) ( ) ( ) [ ]

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

1, ,

1 max , 1,0

1 1

, 0,
1

CE

x A
x A

L
x A x A

x A

x X x A

L A X

L d x L d x L

g A A L d x d x

d x L
n A d x L A d x

∈∈

∈ ∈

∈
∈ ∈

∈ − ∞ ⊂

 + − ∈ −

   = − −  

  + ∈ ∞  − + − 



 
  

 

 

 

 

 

(51) 

Theorem 7. Important Properties of LCE –measure [7] 
(i) For any [ )L 1,∈ − ∞ , LCE -measure is a multivalent fuzzy measure, in other 

words, LCE -measure has infinite fuzzy measure solutions. 
(ii) LCE -measure is an increasing function on L. 
(iii) if L 1= − then LCE -measure is just the P-measure. 
(iv) if L 0= then LCE -measure is just the additive measure. 

(v) if L 0= and ( ) 1
x X

d x
∈

= , then LCE -measure is just the λ-measure. 

(vi) if -1< L< 0 then LCE -measure is a sub-additive measure. 

(vii) if L> 0 then LCE -measure is a supper-additive measure 

(viii) L → ∞  then LCE -measure is a B- measure 

(ix) LCE -measure is a completed fuzzy measure. 
 

Note that additive measure, λ-measure, P-measure and B-measure are special 
cases of LCE -measure. 

3.13   Choquet Integral 

Definition 19.   Choquet Integral [9-10] 
Let μ be a fuzzy measure on a finite set { }1 2, ,..., mX x x x= . The Choquet integral 

of :if X R+→ with respect to μ for individual i is denoted by 

( )( ) ( )( ) ( )( )1
1

, 1,2,...,
m

i
C i i ij j j

j

f d f x f x A i Nμ μ−
=

 = − =    (52) 

where ( )( )0 0if x = , ( )( )i jf x indicates that the indices have been permuted so that 

( )( ) ( )( ) ( )( )1 20 ...i i i mf x f x f x≤ ≤ ≤ ≤ , ( ) ( ) ( ) ( ){ }1, ,...,j j j mA x x x+=  (53) 

 

Note that from Definition 19, for given integrand :if X R+→ , the Choquet 

integral can be viewed as a function of the fuzzy measure μ -measure, in other 

words, the value of Choquet integral is predominate by its fuzzy measure. 
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Theorem 8. If a λ-measure is a standard fuzzy measure on { }1 2, ,..., mX x x x= , 

and [ ]: 0,1d X → is its fuzzy density function, then the Choquet integral of 

:if X R+→ with respect to λ for individual i satisfying 

( ) ( )
1

, 1,2,...,
m

C i j i j
j

f d d x f x i Nλ
=

= =  (54) 

3.14   Choquet Integral Composition Forecasting Model 

Definition 20.   Choquet Integral Composition Forecasting Model [8] 
(i) Let ty be the realized value of target variable at time t, 

(ii) Let { }1 2, ,..., mX x x x= be the set of m competing predictors, 

(iii) Let :tf X R+→ , ( ) ( ) ( )1 2, ,...,t t t mf x f x f x be m forecasting values of ty by 

competing predictors 1 2, ,..., mx x x at time t. 

If μ is a fuzzy measure on X , , Rα β ∈ satisfying 

( ) ( )
,

1

ˆˆ , arg min
N

i C t
t

y f dgμα β
α β α β

=

 = − − 
 
   (55)

1 1

1 1ˆˆ
N N

t t
t t

y f dg
N N μα β

= =

= −  , ˆ yf

ff

S

S
β =  (56)

1 1

1 1ˆˆ
N N

t t
t t

y f dg
N N μα β

= =

= −   (57)

1 1 1

1 1

1

N N N

i t t t
t t t

yf

y y f dg f dg
N N

S
N

μ μ
= = =

  
− −  

    =
−

   
 

(58)

then ˆˆˆ , 1,2,...,t ty f dg t Nμα β= + = is called the Choquet integral regression 

composition forecasting estimator of ty , and this model is also called the Choquet 

integral regression composition forecasting model with respect to μ -measure. 

Theorem 9. If a λ-measure is a standard fuzzy measure then Choquet integral 
regression composition forecasting model with respect to λ-measure is just a linear 
combination forecasting model. 
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4   Experiments and Results 

A real data of the grain production with 3 kinds of forecasted values of the time 
series model, the exponential smoothing model and GM(1,1) forecasting model, 
respectively, in Jilin during 1952 to 2007 from the paper of Zhang, Wang and Gao 
[2],was listed in Table 2. For evaluating the proposed new density based 
composition forecasting model, an experiment with the above-mentioned data by 
using sequential mean square error was conducted. 

We arrange the first 50 years grain production and their 3 kinds of forecasted 
values as the training set and the rest data as the forecasting set. And the following 
N-density and M-density of all fuzzy measures were used 

N-density:             { }0.3331, 0.3343, 0.3326  (59)

M-density:            { }0.2770, 0.3813, 0.3417  (60)

The performances of Choquet integral composition forecasting model with 
extensional L-measure, L-measure, λ-measure and P-measure, respectively, a 
ridge regression composition forecasting model and a multiple linear regression 
composition forecasting model and the traditional linear weighted composition 
forecasting model were compared. The result is listed in Table 1. 

Table 1 SMSEs of 2 densities for 7 composition forecasting models 

Composition forecasting Models 
SMSE 

N-density M-density 

Choquet integral regression 

LCE-measure 13149.64 13217.31 

LE-measure 13939.84 13398.29 

L-measure 14147.83 13751.60 

λ-measure 21576.38 19831.86 

P-measure 16734.88 16465.98 
Ridge regression 18041.92 
Multiple linear regression 24438.29 

 
Table 1 shows that the M-density based Choquet integral composition 

forecasting model with respect to LCE-measure outperforms other composition 
forecasting models. Furthermore, for each fuzzy measure, including the LCE-
measure, LE-measure, L-measure, λ-measure and P-measure, the M-density based 
Choquet integral composition forecasting model is better than the N-density based. 

5   Conclusion 

In this paper, a new density, M-density, was proposed. Based on M-density, a 
novel composition forecasting model was also proposed. For comparing the 
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forecasting efficiency of this new density with the well-known density, N-density, 
a real data experiment was conducted. The performances of Choquet integral 
composition forecasting model with the completed extensional L-measure, 
extensional L-measure, λ-measure and P-measure, by using M-density and N-
density, respectively, a ridge regression composition forecasting model and a 
multiple linear regression composition forecasting model and the traditional linear 
weighted composition forecasting model were compared. Experimental result 
showed that for each fuzzy measure, including the LCE-measure, LE-measure, L-
measure, λ-measure and P-measure, the M-density based Choquet integral 
composition forecasting model is better than the N-density based, and the M-
density based Choquet integral composition forecasting model outperforms all of 
other composition forecasting models. 
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Appendix 

Table 2 SMSEs of 2 densities for 6 composition forecasting models 

Years Y X1 X2 X3 X4 

1952 613.20 490.67 518.60 399.51 472.45 

1953 561.45 549.73 570.84 414.09 511.35 

1954 530.95 542.83 586.41 429.20 524.94 

1955 556.53 549.57 584.31 444.86 530.10 

1956 493.64 582.69 591.12 461.09 542.51 

1957 429.35 598.64 570.80 477.91 538.81 

1958 528.84 610.69 531.14 495.35 524.37 

1959 526.60 633.88 540.11 513.43 537.85 

1960 394.70 655.07 544.78 532.16 549.04 

1961 398.55 672.97 497.45 551.58 531.58 

1962 437.16 694.53 465.26 571.71 523.02 

1963 501.67 617.26 457.04 592.57 519.94 

1964 491.80 738.99 475.53 614.19 547.93 

1965 525.10 761.94 484.57 636.61 563.02 

1966 597.60 786.18 503.23 659.84 583.82 

1967 647.74 810.67 543.38 683.91 616.78 

1968 622.15 835.87 589.95 708.87 653.65 

1969 498.70 862.13 612.17 734.74 677.54 

1970 738.80 889.12 580.22 761.55 672.02 

1971 713.05 916.86 647.93 789.33 721.78 
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Table 2 (continued) 

1972 556.99 945.56 684.75 818.14 754.99 

1973 783.00 975.15 650.45 847.99 749.50 

1974 858.15 1005.63 711.01 878.93 796.71 

1975 906.50 1037.08 780.79 911.01 849.50 

1976 755.50 1069.53 846.59 944.25 900.60 

1977 728.35 1102.98 833.96 978.70 909.05 

1978 914.70 1137.47 813.29 1014.40 913.61 

1979 903.34 1173.05 867.92 1051.40 960.20 

1980 859.60 1209.74 900.44 1089.80 995.23 

1981 921.91 1247.58 905.13 1129.60 1015.54 

1982 1000.04 1286.60 930.45 1170.80 1047.82 

1983 1477.98 1326.84 976.21 1213.50 1092.01 

1984 1634.46 1368.34 1187.28 1257.80 1227.91 

1985 1225.26 1411.14 1391.77 1303.70 1360.87 

1986 1397.71 1455.27 1376.80 1351.30 1373.74 

1987 1675.81 1500.79 1428.01 1400.60 1423.79 

1988 1693.25 1547.73 1565.57 1451.70 1522.16 

1989 1351.29 1596.14 1664.67 1504.60 1600.13 

1990 2046.52 1646.06 1600.61 1559.50 1589.13 

1991 1898.87 1697.54 1814.80 1616.50 1732.23 

1992 1840.31 1750.64 1904.70 1675.40 1807.73 

1993 1900.90 1805.39 1940.83 1736.60 1854.61 

1994 2015.70 1861.86 1984.40 1799.90 1906.49 

1995 1992.40 1920.09 2053.78 1865.60 1973.62 

1996 2326.60 1980.15 2089.00 1933.70 2022.96 

1997 1808.30 2042.08 2235.53 2004.30 2134.67 

1998 2506.00 2105.95 2137.39 2077.40 2112.74 

1999 2305.60 2171.82 2328.13 2153.20 2251.02 

2000 1638.00 2239.75 2381.33 2231.80 2314.77 

2001 1953.40 2309.80 2161.43 2313.20 2229.36 

2002 2214.80 2382.04 2123.07 2397.60 2245.19 
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Table 2 (continued) 

2003 2259.60 2456.54 2192.19 2485.10 2321.52 

2004 2510.00 2533.38 2254.69 2575.80 2395.57 

2005 2581.21 2612.61 2390.11 2669.80 2511.18 

2006 2720.00 2694.33 2508.40 2767.20 2618.82 

2007 2454.00 2778.60 2560.38 2831.50 2677.95 

   Y: realized value of target variable 
X1: Fitting value of time series model 
X2: Fitting value of exponential smoothing model 
X3: Fitting value of GM(1,1) model 
X4: Fitting value of composition forecasting model 
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