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Chapter 5 
Stochastic-Fuzzy Knowledge-Based Approach 
to Temporal Data Modeling  

Anna Walaszek-Babiszewska and Katarzyna Rudnik* 

Abstract. In the chapter an advanced fuzzy modeling method has been presented 
which can be useful in temporal data analysis. The method joints fuzzy and proba-
bilistic approaches. The notions of the stochastic process with fuzzy states, and 
linguistic random variable have been defined to create a knowledge representation 
of the SISO and MISO dynamic systems. As the basic description of the stochastic 
process with fuzzy states observed at fixed moments, the joint probability distribu-
tion of n linguistic random variables has been assumed. The joint, conditional and 
marginal probability distributions of the stochastic process with fuzzy states va-
luate weights of particular rules of the knowledge rule base. Also, the probability 
distributions determine the probabilistic structure of the particular steps of the 
tested process. A mean fuzzy conclusion (prediction) can be calculated by the 
proposed inference procedure.  

The implemented knowledge-based system, which creates the knowledge base 
with optimal number of elementary rules, has been also presented. The optimiza-
tion method uses a fast algorithm to find fuzzy association rules as a process of 
automatic knowledge base extraction.  

Two examples illustrate the presented methods of the knowledge base extrac-
tion from different numeric time series. 

1   Introduction     

In the topic literature there are many different approaches to time series modeling. 
The main distinguish can be made between statistical and fuzzy methods. Statis-
tical methods are well known in econometrics and in control theory areas and 
there are many identification methods of the models. The key role in ordering of 
the statistical methods in time series modeling has played the work by Box and 
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Jenkins [2]. Also fuzzy approaches or more general, neuro-fuzzy and genetic-
fuzzy approaches to time series modeling have a long history and a very large  
literature. Certain review of trends in fuzzy models and identification methods the 
interested reader can find e.g. in works [11] and [8]. 

It is often assumed, that temporal data collected from many objects of human 
activities constitute realizations of stochastic processes. Since the complete de-
scription of the stochastic process needs calculations of the series of nD probabili-
ty distributions [3, 5, 12], many types of models have been invented, which are 
sufficient under the specific assumptions. Time series models are well known as 
the models of the specific realizations of time-discrete stochastic processes. In the 
fuzzy systems theory, the fuzzy representations of time-discrete stochastic 
processes are known in forms of the linguistic rule-based models, as well as, the 
Takagi-Sugeno-Kang (TSK) fuzzy models with equations at the consequent parts 
of rules [8, 10, 19]. 

In the chapter we present the method of temporal data analysis, which joints 
fuzzy and probabilistic approaches. The notions of the stochastic process with 
fuzzy states [18], and linguistic random variable have been defined. As the basic 
description of the stochastic process with fuzzy states observed at fixed moments 

nttt ,...,, 21 , the joint probability distribution of n linguistic random variables has 

been assumed. The joint, conditional and marginal probability distributions of the 
stochastic process with fuzzy states determine  respective weights of particular 
rules of the knowledge base. Also, the probability distributions are used to deter-
mine the probabilistic structure of the particular steps of the tested process and to 
calculate a mean fuzzy conclusion (prediction) by the proposed inference proce-
dure. 

We also present the implementation of the knowledge-based system [13], 
which creates the probabilistic-fuzzy knowledge base with the optimal number of 
elementary rules. The optimization method uses a fast algorithm to find fuzzy as-
sociation rules as a process of automatic knowledge base extraction.  

Exemplary calculations are presented with results derived by using the imple-
mented knowledge-based system and chosen numeric time series. 

2   Stochastic Process with Fuzzy States      

2.1   Introduction     

According to the theory of stochastic processes, a family of time dependent 
random variables (dependent on a real parameter t), denoted as 

{ }Ω∈∈∈ ωχω ,,),,( TtXtX ,                                    (1) 

is defined as stochastic process (shortly written as X(t)), where R⊆χ  is a do-

main of the process values, RT ⊂  is a domain of  parameter t, and Ω  is an ele-
mentary events domain.  
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For each given t, tXtX =)(  is a random variable and { }xXPxF tt <=)(  is a 

distribution function of Xt. 
For any given set of parameter values, { }nttt ,...,, 21 , stochastic process )(tX  

is determined by n-D probability distribution function  

{ }nnnttt xtXxtXPxxxF
n

<<= )(,...,)(),...,,( 1121,...,, 21  

{ }ntt xXxXP
n

<<= ,...,11
.                   (2) 

Stochastic process is fully determined by a family of all n-D probability distribu-
tion functions, where n=1,2,… For any given elementary event Ω∈'ω , the func-
tion )',()( ωtXtx =  is a realization (trajectory) of the stochastic process X(t) [3, 

5, 12]. 

2.2   One Dimensional Probability Distribution of the Stochastic 
Process with Fuzzy States      

Let X(t) denotes a stochastic process, a family of time dependent random va-
riables, taking its values in R⊂χ , RTt ⊂∈ . Let (X, B, p) be a probability 

space, where B is a σ-field of Borel sets in R⊂χ  and p is a probability measure 

over (X, B).  
Let us determine, in the domain of the stochastic process values χ , a linguistic 

variable which is generated by the process X(t), at fixed t.  The linguistic variable 

is given by quintuple >< MGXLX t ,,),(, χ , where tX  is the name of the vari-

able and L(X)={LXi}, i=1,2,…,I is a collection of its linguistic values. The seman-
tic rule M assigns fuzzy event  Ai, i=1,2,…,I to every meaning of LXi , i=1,2,…,I 
[21]. Let also, membership functions ]1,0[:)( →χμ xiA  be Borel measurable 

and meet 

χμ ∈∀=
=

xx
I

i
Ai

,1)(
1

.                                         (3) 

Then, the collection of linguistic values L(X)={LXi}, i=1,2,…,I and the collection 
of corresponding fuzzy sets Ai, i=1,2,…,I defined over χ , will be called the lin-

guistic ( fuzzy) states of the stochastic process X(t).  
According to Zadeh’s definitions from [20], fuzzy states Ai, i=1,2,…,I of the 

stochastic process constitute fuzzy events in the probability space (X, B, p). Proba-
bility of the occurrence the fuzzy state Ai, can be calculated by the following Le-
besgue-Stietljes’ integral 


⊆

=
χ

μ
x

Ai dpxAP
i

)()( ,                                             (4) 
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if the integral exists [20]. The existence of the integral (4) results from the as-
sumption that )(xiAμ  is a Borel measurable function. If the universal set is a 

countable collection, X= ,...2,1},{ =nxn , and the probability function is deter-

mined for discrete process values nn pxXP == )( , such that 1=
n

np , then 

the probability of fuzzy event ( )=
n

nniAi xxA /)(μ , denoted as P(Ai) , is de-

fined as  

  n
n

nAi pxAP
i

)()( = μ .                                                (5) 

One dimensional probability distribution of linguistic values (fuzzy states) of the 
stochastic process X(t), for any fixed value t, can be defined as a set of probabili-
ties of fuzzy events 

{ } IiAPXP it ,...,2,1,()( == ,                                       (6) 

where )( iAP , i=1,2,...,I are determined according to (4) or (5) and the following 

relationships must be  fulfilled [16]: 

1)(0 ≤≤ iAP , i=1,2,…,I  ;       1)(
1

=
=

I

i
iAP .                          (7) 

2.3   nD Probability Distribution of the Stochastic Process with 
Fuzzy States     

One-dimensional probability of the stochastic process is an efficient description 
for the special type of stochastic processes, so called ‘white noise processes’.  

To determine a probability description of the stochastic process with fuzzy 
states for two fixed moments 21, tt , let us take into account two random variables 

( ))(),( 21 tXtX , determined in the probability space (X2, B, p), where 22 R⊆χ . 

Two linguistic random variables (linguistic random vector) ),(
21 tt XX  generated 

by stochastic process values in 2χ , can be defined. The simultaneous linguistic 

values ji LXLX × , i,j=1,2,…,I  and the corresponding collection of fuzzy events 

{ }
Ijiji AA

,...,1, =
×  can be determined over 2χ  by membership functions 

]1,0[:)( 2 →× χμ u
ji AA , i,j=1,2,…,I. The membership functions )(u

ji AA ×μ  in the 

linguistic vector domain, 2χ , should be Borel measurable and fulfill the following 

relationship: 
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2

1 1

)(,1)( χμ ∈∀=
=

×
=

uu
I

i
AA

I

j
ji

.                                (8) 

Then, fuzzy sets ji AA ×  determined in 2χ are the simultaneous fuzzy events and 

probability )( ji AAP × , is defined according to (4), as follows 


∈

×=×
2

)()(
χ

μ
u

AAji dpuAAP
ji

,                                        (9) 

where  

))(),(()( xxTu
jiji AAAA μμμ =× ,                                       (10) 

in particular 

)()()( xxu
jiji AAAA μμμ =× .                                                  (11) 

If universe X2 is a finite set, )},{(2
lk xx=χ , k=1,…,K, l=1,…,L, then the proba-

bility of simultaneous fuzzy event ji AA ×  is determined, according to  


∈

×=×
2),(

),(),()(
χ

μ
lk

ji
xx

lkAAlkji xxxxpAAP ,                         (12) 

where { } Llkklk xxp ,...,2,1;,...2,1),( ==  is a probability function of the discrete random 

vector variable ( ))(),( 21 tXtX , at two fixed moments 21, tt . 

The joint 2D probability distribution of the linguistic values (fuzzy states) of the 
stochastic process X(t) is determined by the collection of probabilities of simulta-
neous fuzzy events ji AA ×  

Ijijitt AAPXXP ,...,2,1,)},({),(
21 =×= ,                            (13) 

if the following relationships are fulfilled 

IjiAAP ji ,...,1,,1)(0 =∀≤×≤   and  1)(
1 1

=×
= =

ji

I

i

I

j

AAP .        (14) 

To determine the nD probability distribution of the stochastic process with fuzzy 

states, assume first, that stochastic process X(t), for a set of moments ntt ,...,1  is 

represented by a random vector ( ))(),...,( 1 ntXtX  and  (Xn, B, p) is a probability 

space.  Let the linguistic variables  

>< MGXLX t ,,),(,
1

χ ,…, >< MGXLX
nt

,,),(, χ
            

(15) 



102 A. Walaszek-Babiszewska and K. Rudnik
 

be generated by the stochastic process in the domain X . The same sets of the lin-
guistic values 

{ } Iiitt LXXLXLXL
n ,...,1)()(...)(

1 ===== ,                      (16) 

for particular linguistic variables are represented by fuzzy sets Ai, i=1,…,I, with 
membership functions, ]1,0[:)( →χμ xiA .  

Let the random linguistic vector variable whose name is determined by a vector 
( )

ntt XX ,...,
1

 takes simultaneous linguistic values 

{ }
niii

n LXLXLXXL ×××= ...)(
21

, Iii n ,...,1,...,1 =∀ ,               (17) 

whose meanings are represented by  the collection of  simultaneous fuzzy events 
(fuzzy states) 

{ } IiiAA nii n
,...,1,...,,)...( 11

=∀×× .                                 (18) 

Fuzzy events (18) are determined on nχ  by membership functions 
n

AA uu
nii

χμ ∈×× ),(...1
, which are Borel measurable and fulfill the relationship 

.,1)(... ...
1 1

1
1

n
AA

I

i

I

i

uu
nii

n

χμ ∈∀=××
= =
 

                                  

(19) 

Let also probabilities of the simultaneous fuzzy events (18), calculated according 
to (4) or (5), respectively, exist and fulfill the relationships 

IiiAAP nii n
,...,1,...,,1)...(0 11

=∀≤××≤ ;                    (20) 

1)...(...
1

1 1 1

=×× 
= =

n
n

ii

I

i

I

i

AAP .                                    (21) 

Then, nD joint probability distribution of linguistic values (fuzzy states) of the sto-

chastic process X(t) at moments ntt ,...,1  is a probability distribution of linguistic 

vector variable ( )
ntt XX ,...,

1
,  determined by the following collection of probabil-

ities of the simultaneous fuzzy events [16] 

IiIiiitt nnn
AAPXXP ,...,1;...;,...,1111

)}...({),...,( ==××= .                (22) 

In the nD joint probability distribution of linguistic values of the stochastic 
process X(t) we can distinguish rD , r<n marginal probability distributions, e.g. 

IiIiiii

I

i
tt nnn

n
n

AAAPXXP ,...,1;...;,...,1
1

111111
)}...({),...,( ==

=
−−−

×××=  ,    (23) 
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as well as, conditional probability distributions. Generally, nD joint probability 
distribution of linguistic values of the stochastic process X(t) can be expressed by 
using marginal and conditional probability distributions in a way 

).()/()...,...,/(),...,/(

),...,(),...,/(),...,,(

112122121

121121121

,1,

,,,

ttttttttttt

ttttttttttt

XPXXPXXXXPXXXXP

XXXPXXXXPXXXXP

nnnn

nnnnn

−−

−−−

−

==
 (24) 

2.4   Fuzzy Mean Value of the Stochastic Process with Fuzzy 
States     

Let the stochastic process X(t) takes its linguistic values L(X)={LXi}, i=1,2,…,I, 
which are represented by fuzzy events Ai, , i=1,2,…,I in χ . Let the probability dis-

tribution of the fuzzy states, { } IiAPXP it ,...,2,1,()( ==  exists. Then, a fuzzy 

mean value of the stochastic process with fuzzy states, denoted as )(XA , is a 

fuzzy set determined as 

χ∈∀= 
=

xAPAXA
I

i
ii ,)()(

1

,                                    (25) 

and the membership function is calculated as follows: 

χμμ ∈∀= 
=

xAPxx
I

i
iAA i

,)()()(
1

.                                (26) 

3   Fuzzy Knowledge Base of the Stochastic Systems     

Fuzzy rule based models of dynamic systems are being used not only when know-
ledge about the real system functioning is incomplete but also when the fuzzy rule 
based model has to approximate the real system characteristics when the system is 
too complex or nonlinear.  Those models are well known and they are described in 
the subject literature, eg. in [8, 19]. They are often connected with algorithms of 
clustering or evolving algorithms. 

The novelty in the propositions implemented into model known in subject lite-
rature through this work, is the model validation by the probability distributions 
determined by empirical data. 

Defining the fuzzy knowledge base for stochastic environment, it is necessary 
to make some assumptions about the possibility of existing multidimensional 
probability distributions of stochastic processes realizations observed in long time 
intervals. Usually, we assume also ergodicity and stationarity of the processes. 
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3.1   Fuzzy SISO Model of the Stochastic Process     

Let X(t) be a stochastic process with fuzzy states, as it was shown in paragraph 2. 
Assuming that the process was observed at two fixed moments 1221 ;, ttTtt >∈ , 

the process realizations have been used to calculate 2D empirical probability dis-
tributions of fuzzy states. 

The fuzzy knowledge representation of the stochastic process is a collection of 
the following weighted file rules, in the form [18]: 

)(XLAi ∈∀ , i=1,…,I 

iJJt

ijjt

ititi
i

wAisXAlso

wAisXAlso

wAisXThenAisXIfwR

/

/

/11
)(

)(

)(

)(])([:

2

2

21

−−−−−−−−−−−−

−−−−−−−−−−−−
,                         (27) 

where IjiXLAA ji ,...,2,1.),(, =∈ denote the fuzzy states of the process, and 

weights 

)(
1 iti AXPw == , i=1,2,…,I                                 (28) 

are the  probabilities of fuzzy events at the antecedents of the rules (marginal 
probability distribution), and weights 

)]/()[(
12/ itjtij AXAXPw === , j=1,2,…,I;  i=const  (29) 

are the conditional probabilities of the fuzzy events at the consequent part of the 
rules (conditional probability distribution). According to the probability distribu-
tion features, the following relationships are fulfilled 

1
,...,1

=
=

i
Ii

w 1/
,...,1

=
=

ij
Jj

w . 

The model can be also presented as a collection of the elementary weighted rules  

)(XLAi ∈∀ , )( XLAj ∈∀ , i,j=1,2,…,I 

)]()([:
21

),(
jtitij

ji AisXThenAisXIfwR ,                        (30) 

where  

)(),(
21 jittij AAPXXPw ×== , i,j=1,2,…,I                     (31) 

is a joint probability of fuzzy events in the rule (joint probability distribution) and 
the  following relationship must be fulfilled 
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1
,...,1,...,1

=
==

ij
JjIi

w . 

The above propositions of the knowledge representation contain weights: wi, wj/i, 
wij, which stand for the frequency of the occurrence the fuzzy events in particular 
parts of rules. The weights, real numbers from the interval [0, 1], do not change 
logic values of the sentences.  

Assuming stationarity of the process with fuzzy states, the prediction of the 
process can be determined by means of approximate reasoning.  

3.2   Inference Procedure (Prediction Procedure) from the SISO 
Model of the Stochastic Process   

For the logic analysis we take into account the following fuzzy relation 
representing file rule (30)  

)......(: 1
)(

Iji
i AAAAR ∪∪∪∪ ,                               (32) 

which can be described by membership function  

),(),(
21121)( )...( ttAAAttR

xxxx
Iii ∪∪= μμ , i=1,…,I.                      (33) 

To consider the prediction procedure, which is based on well-known procedure of 
approximate reasoning (e.g. in [8, 10, 19]), let us assume the crisp value of the 

stochastic process at moment t1, 
∗=
1

)( 1 txtX . 

Then the level of activation of the elementary rule is determined as  

)(
1

∗= tAi x
i

μτ , i=1,…,I                                               (34) 

and the fuzzy value of the conclusion )( '
/2 ijt AisX , computed e.g. based on  

Larsen’s rule of reasoning, is a fuzzy set '
/ ijA , determined by its membership 

function  

)()(
22'

/
tAitA

xx
jij

μτμ = , j=1,…,I; i=const.                         (35) 

The fuzzy conditional expected value (fuzzy conditional mean value) of the output 

of i-th rule '
1 ]})(/[))({(

2 iijt AAistXAisXE =ϕ , stands for the aggregated 

outputs of elementary rules, j=1,…,J, according to the formula [16] 

)()(
2'

/2' / tAij
j

tA
xwx

iji
μμ = .                                    (36) 
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The fuzzy expected value of the prediction, 
'*]})(/[))({(

12 1 AxtXAisXE tjt ==ϕ , computed as the aggregated outputs of 

all active i-th rules, is determined by the formula [16] 

)()()(
22'2 /' tA

j
iji

i
itA

i
itA xwwxwx

ji
μτμμ  == .                  (37) 

The prediction according to the generalized Mamdani-Assilian’s type interpreta-
tion of fuzzy models gives us the following conclusion 

))(,()(
22'

/
tAitA

xTx
jij

μτμ = , j=1,…,I; i=const.                        (38) 

Prediction determined by using the logic type interpretation of fuzzy models, gives 
us the following relationships, instead of (35) or (38): 

 ))(,()(
22'

/
tAitA

xIx
jij

μτμ = ,  j=1,…,I; i=const,                     (39) 

where T denotes a t-norm and I means the implication operator.  
The scheme of the prediction procedure from the SISO model is presented in 

Fig. 1. 

 

Fig. 1 Scheme of the prediction procedure from the SISO fuzzy model of the stochastic 
process 

3.3   Fuzzy MISO Model of the Long Memory Stochastic Process      

Let the stochastic process X(t) with fuzzy states be determined, as it has been 
shown in paragraph 2. To create the representation of knowledge base in the form 
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of fuzzy If…Then rules, the linguistic random variables have been determined 
with their collection of linguistic values, { }

kikLX , , the same for each variable.  

The meanings of linguistic values are represented by fuzzy sets, 
kikA , , k=1,…,n; 

ik=1,…,I  in χ, with the Borel measurable  membership functions 
]1,0[:)(

,
→χμ x

kikA , k=1,…,n; ik=1,…,I.  

The fuzzy sets divide the  space χn of values of samples into n-D fuzzy areas: 
)...( ,,1 1 nini AA ×× , i1=1,2,…,I;…; in=1,2,…,I.  

Assuming that the process was observed at fixed moments 

1121 ...;,...,, tttTttt nnn >>>∈ − , the process realizations have been used to 

calculate the following empirical probability distributions of fuzzy states: 

• nD joined probability distribution of the linguistic random vector variable 
( )

ntt XX ,...,
1

  

IiIiinitt nnn
AAPXXP ,...,1;...;,...,1,,1 111

)}...({),...,( ==××= ,                   (40) 

• marginal (n-1)D probability distribution of the linguistic random vector varia-
ble (of the antecedent fuzzy events) 

IiIiinittj nnn
AAPXXPw ,...,1;...;,...,1,1,1 111111

)}...({),...,( ==− −−−
××== , (41) 

• conditional probability distribution (of the consequent fuzzy events) 

)]}.../([{),...,/(
1111 ,1,1,/ −− −××==

nnnnn iniintttji AAAPXXXPw   (42) 

.,...,,;,...,2,1 121 constiiiIi nn == −  

The MISO fuzzy model, as the knowledge representation of the stochastic process, 

has the form of the collection { } Jj
jR ,...,2,1
)(

=  of weighted file rules [16]:  

)(
11,1 ti XLA ∈∀ , )(

22,2 ti XLA ∈∀ ,…, )(, nn tin XLA ∈∀ , 

;,...,2,1,...,, 21 Iiii n =  

jIInt

jiint

jnt

intititj
j

wAisXAlso

wAisXAlso

wAisXThen

AisXAndAndAisXAndAisXIfwR

n

nnn

n

nn

/,

/,

/11,

,1,2,1
)(

)(

)(

)(

)](...)()([:
112211

−−−−−−−−−−−−

−−−−−−−−−−−−

−− −

 (43) 
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j=1,2,…J ; J - number of file rules. The number of file rules, J, depends on the 
number of fuzzy (n-1)D areas in the input space Xn-1, with  non-zero probabilities 

iw ; it can be even 1−= nIJ . 

3.4   Prediction Procedure from the MISO Fuzzy Model of the 
Stochastic Process     

Assuming, that the process with fuzzy states is a stationary process, that is, the nD 
joint probability distribution does not depend on time, we can use the created 
knowledge representation for the prediction of the process.  The conclusion, fuzzy 
or numeric, determined by means of approximate reasoning represents the predic-
tion of the process.  The input data can be fuzzy or numeric in their character. 

Let us consider the prediction procedure, assuming crisp data of observations of 

the process, ∗
−

∗∗
−

===
121

)(,...,)(,)( 121 ntntt xtXxtXxtX . Then, the level of acti-

vation of j-th rule is determined by the t-norm of membership functions of fuzzy 
sets in antecedents as follows [8, 10, 19]: 

( ))(),...,(),(
11,122,211,11

∗∗∗
−−−

=
nninii tAtAtAj xxxT μμμτ , j=1,…,J. (44) 

If the values of the process at moments 121 ,...,, −nttt  are expressed by fuzzy num-

bers (linguistic values), that is  

)'(
11 ,1 it AisX  And )'(

22 ,2 it AisX And …And )'(
11 ,1 −− − nn int AisX , 

where 
kikA ,' are given by the membership functions ]1,0[:)(' , →χμ

kk tikA x , 

k=1,2,…,n-1, then the level of activation of j-th rule is expressed  as [8, 10, 19]: 











 ∧











 ∧=

−
−−

−
−−∈∈

)]()([sup,...,)]()([sup
1

1,1
1'

1,11
1,1

1'
1,1

1 n
nin

n
ninii

tAtA
x

tAtA
x

j xxxxT μμμμτ
χχ

.(45) 

The fuzzy conclusion, 
nn int AisX ,' , from in-th consequent part of the rule can be 

determined by one of the ways [8, 10, 19]: 

• according to Mamdani-Assilian’s rule of inference 

)()(
,

'
, n

nin
n

nin
tAjtA

xx μτμ ∧= ,                                       (46) 

• according to Larsen’s rule 

)()(
,

'
, n

nin
n

nin
tAjtA

xx μτμ = ,                                            (47) 
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• according to generalized Mamdani-Assilian’s type of interpretation 







= )(,)(

,
'
,

2 xTx
ninnin AjA

μτμ
                                                 

(48) 

• according to the logic interpretation 







= )(,)(

,
'
, n

nin
n

nin
tAjtA

xIx μτμ .                                            (49) 

The fuzzy conditional expected value of the conclusion '
, ninA   

( ) ( ) ( )[ ] '
/,1,1, 1111
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is the aggregated value (weighted sum) of conclusions from particular in-th out-
puts,  in=1,…,I (calculated according to one of relationships (46) - (49))  and the 
conditional probabilities of fuzzy events in in-th consequents, as follows 
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Taking into account all j-th active rules, the fuzzy conditional expected value of the 
prediction, An’,  
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can be calculated as the aggregated value (weighted sum) of conclusions from par-

ticular j-th file rules, '
/ jnA , (51), and joint probabilities of fuzzy events in particu-

lar antecedents, as follows 
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Subscript n in An’ shows, that fuzzy conclusion is the fuzzy value of the linguistic 

random variable 
ntX . 

The discussed prediction procedure from the MISO model is presented in Fig. 2. 

The numerical value of the prediction, *
nx , can be determined as the centroid of 

An’ calculated  e.g. by the COA method  
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The fuzzy value of the prediction )( '
nt AisX

n
is a function of fuzzy propositions 

)'( , kk ikt AisX , or numerical propositions ∗=
ktk xtX )( , for k=1,2,…,n-1, on the 

input of the system, as well as the chosen procedures of inference. 

 

Fig. 2 Scheme of the prediction procedure from the MISO fuzzy model of the stochastic 
process 

3.5   Probability of Fuzzy Predictions     

We can also determine the probability of the fuzzy conclusions, fuzzy predictions, 
derived from the stochastic-fuzzy rule bases of the SISO and the MISO model.   

Since the fuzzy conclusion (prediction), determined during the reasoning pro-
cedures,  is given by its membership function in a domain of the output variable, 
and the probability distribution p(x) has been determined based on data, then, 
probability of the fuzzy prediction can be determined by the following formula 

( ) dxxpxxtXxtXAisXP
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4   Conception of the Knowledge-Based Inference System   

The knowledge-based systems are usually composed of the following parts [8,  
10, 19]: 

• knowledge base in the form of if-then rules (43), that contains information es-
sential to solve a given problem, 
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• fuzzification block that transforms quantitative data into qualitative data 
represented by fuzzy sets on the bases of membership grades entered in the da-
tabase,  

• inference block that utilizes the database and the implemented aggregation me-
thods and final inference (reasoning) to solve specialized problems, 

• defuzzification block  that calculates the crisp value (defuzzified value) at the 
system output on the bases of the resulting membership grades. 

The implemented knowledge base contains database and rule base. The database 
contains information defined by experts on a given application field containing lin-
guistic values of the variables accounted in the rule base and definitions of fuzzy 
sets identified with these values. On the other hand, knowledge base contains a set 
of linguistic rules created on the grounds of a modified algorithm generating fuzzy 
association rules. The algorithm makes it possible to adjust the model to measure-
ment data. The characteristic form of the rules, exposing an empirical probability 
distribution of fuzzy events enables a simple interpretation of the knowledge con-
tained in the model and additional analysis of the considered problem.  

The inference mechanism with multiple inputs and a single output enables the 
calculation of the membership function of the conclusion, on the bases of the crisp 
input data, and, in consequence, the defuzzified value of the model output. For the 
system with the rule base in the form of (43), there are many possible ways of ob-
taining crisp output results. In this conception of the knowledge-based inference 
system, we consider the methods presented in chapter 3.4. 

4.1   Methods of Fuzzy Knowledge Discovery     

The if-then rules that constitute the knowledge bases of the fuzzy system may be 
defined in two ways: 

• as logical rules constituting subjective definitions created by experts on the 
grounds of experience and knowledge of the investigated phenomenon, 

• as physical rules constituting objective knowledge models defined on the 
grounds of observations and natural research into the analyzed process (object) 
and its regularities. 

In the case of fuzzy modeling there were initially logics rules, yet, in consideration 
of machine learning a hybrid of rules was gradually implemented according to 
which initial assumptions concerning fuzzy sets and the associated rules are de-
fined following the experts’ conviction, whereas other parameters are adjusted to 
measurement data. The objective of automatic data discovery is to obtain the 
smallest set of if-then rules enabling as accurate representation of the modelled ob-
ject or phenomenon as possible. 

Methods of knowledge discovery for fuzzy systems of Mamdani type include 
[10, 19]:  

• Wang-Mendel method,  
• Nozaki-Ishibuchi-Tanaki method,  
• Sugeno-Yasukawa method, 
• template-based method of modelling fuzzy systems.  
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In order to obtain databases for fuzzy systems, data mining methods have also 
been applied. 

Data mining, considered as the main stage in knowledge discovery [4] is  
focused on non-trivial algorithms of searching “hidden”, so far unknown and  
potentially required information [6] and its records in the form of mathematical 
expressions and models. Some of the data mining methods identify zones in the 
space of system variables, which, consequently, create fuzzy events in the rules. 
This may be accomplished by searching algorithm clusters or covering algorithms, 
also called separate and conquer algorithms. Other methods, for example: fuzzy 
association rules, are based on constant division for each attribute (fuzzy grid) and 
each grid element is regarded as a potential component of the rule. As far as the 
first approach is concerned, each identified rule has its own fuzzy sets [17]. There-
fore, from the point of view of rules interpretation, the second approach seems 
more applicable [9].  

4.2   Association Rules as Ways of Fuzzy Knowledge Discovery 

Irrespective of automatic knowledge discovery, rules of the fuzzy model are ob-
tained on the bases of their optimal adjustment to experimental data. In view of 
this, the generation of the rules may be understood as a search for rules with high 
occurrence frequency, where, the frequency parameter influences the optimal rules 
adjustment. In such case, fuzzy rules may be analyzed as the co-existence of fuzzy 
variable values in experimental data, i.e.: fuzzy association rules.  

The issue of association rules was first discussed in [1]. Nowadays it is one of 
the most common data mining methods. In a formal approach, the association 
rules have the form of the following implications: 

c)(s,YX ,                                                        (56) 

where X and Y are separable variable sets (attributes) in the classic approach to 
mathematical sets, often referred to as: X – conditioning values set, Y- conditioned 
values set. 

Considering the fuzzy rules of association for the MISO model (43), the follow-
ing may be derived: 

),()(...)()(
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where 
kikA , , k=1,…,n; ik=1,…,I  denote the fuzzy states of the process.  

Each association rule is connected with two statistical measures that determine 
the validity and power of the rule: support (s) – probability of the simultaneous in-
cidence of set ( YX ∩ ) in the set collection and confidence (c) – also called 
credibility which is conditional probability ( )|( XYP ). The issue of discovering 

fuzzy association rules involves finding, in a given database, all support and trust 
values that are higher than the association rules the support and trust of which are 
higher than the defined minimal values of support and trust given by users. 
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The first application of the association rules was in basket analysis. However, 
taking into account the fact that rules may include variables that are derived from 
diverse variables expressed in a natural language, the ranges of the application of 
the discussed method may be extended to forecasting, decision-making, planning, 
control etc. In the inference system with stochastic-fuzzy knowledge base, we 
proposed to use the idea of fuzzy association rules to knowledge discovery. 

In the topic literature we can find many algorithms of creating the association 
rules and modifications [1, 7] but they generate association rules only in non-
fuzzy version. To knowledge discovery in the form of (43) two algorithms have 
been proposed [13, 14, 17]. One is based on the Apriori algorithm and the second 
algorithm uses the FP-Growth assumption. In these algorithms the so called fre-
quent fuzzy set is a set of which the probability of the occurrence is bigger than 
the value of the assumed minimal support s. Thus, the inputs of the proposed algo-
rithm are: set of measurements used for model identification, predefined database 
(linguistic values of variables considered in the model and definitions of fuzzy sets 
identified with the values), and the threshold value of minimal support (s). 
Threshold value of the minimal confidence (c) is not in use. The output of the al-
gorithms is a rule base of a probabilistic-fuzzy knowledge representation. Fig. 3. 
presents the results of comparison of the generating time of the probabilistic-fuzzy 
knowledge base as the function of the minimal support value for the modified Ap-
riori and FP-Growth algorithms. The chart presents the advantage of modified FP-
Growth algorithm. 

 

Fig. 3 The time of generating the probabilistic-fuzzy knowledge base as the function of the 
minimal support value for the modified Apriori and FP-Growth algorithms (3 input vari-
ables, one output variable, 5 fuzzy sets for each variable, near 500 learning data) 
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5   Exemplary Calculations     

The created in the work [13] inference system has been applied to predict the val-
ues of time varying variables determining the natural phenomena such as wind 
speed and ash contents (incombustible matter) in row coal. Both variables are very 
difficult for prediction because of many random rates influence on the measure-
ments results.  

The set of 11 000 measurements of the wind speed X(t)={v(t)} t=1,2,…n were 
recorded at 1-minute samplings. The averages of measurements from 4 steps were 
researched. First 2000 measurements were treated as learning data, the remaining 
ones – test data. The forecasts of wind speed v(t) have been made on the grounds 
of the last three measurements of wind speed denoted as v(t-3), v(t-2), v(t-1). For 
each variable, in the space of process values, 9 fuzzy sets have been defined, with 
the linguistic values describing the wind speed, as: “very light”, “light”, “mild”, 
“moderate”, “fairly strong”, “strong”, “very strong”, “squally”, “very squally”, as-
suming 45 disjoint intervals of the variables values. Exemplary values of the 
membership functions for variable v(t-3) are shown in Fig. 4. 

The membership grades for other variables have been analogically defined. 

 
Fig. 4 Fuzzy sets defined for 9 linguistic values of the linguistic variable ‘speed wind’ 

In Table 1. the exemplary joint empirical probability distribution for two cho-
sen linguistic random variables has been presented. We can see that variables take 
their three from nine linguistic values and the probability distribution is ‘narrow’, 
concentrated only over the few linguistic values.  
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Table 1 Exemplary joint probability distribution of two linguistic random variables (Xt,Xt-1) 
under the conditions: ((Xt-3 is moderate) and (Xt-2 is moderate)) 

Assumption: wind X(t-3) is 'moderate' and wind X(t-2) is 'moderate' 

                  X(t)
   X(t-1) 

very light light mild moderate fairly strong strong 

very light 0 0 0 0 0 0 

light 0 0 0 0 0 0 

mild 0 0 0,0145 0,0196 0 0 

moderate 0 0 0,0223 0,0934 0,0180 0 

fairly strong 0 0 0 0,0153 0,0156 0 

strong 0 0 0 0 0 0 

The optimal model structure is derived at the minimal support value, equal to 
s=0.001, then, the root mean square error for the learning data is 0.5514 m/sec, 
whereas for the testing data it is 0.6434 m/sec. The model consists of 92 elemen-
tary rules (47 file rules). The most important file rules are: 

R1: (0.1337) IF (X(t-3) IS 'moderate') AND (X(t-2) IS 'moderate') AND (X(t-1) IS 'moderate') 
                          THEN (X(t) IS 'moderate') (0.6989) 
                          ALSO (X(t) IS 'mild') (0.1665) 
                          ALSO (X(t) IS 'fairly strong') (0.1346) 
R2: (0.0973) IF (X(t-3) IS 'fairly strong') AND (X(t-2) IS 'fairly strong') 
 AND (X(t-1) IS 'fairly strong')  
  THEN (X(t) IS 'fairly strong') (0.6827) 
                            ALSO (X(t) IS 'moderate') (0.2253) 
                            ALSO (X(t) IS 'strong') (0.0920) 
R3: (0.0749) IF (X(t-3) IS 'mild') AND (X(t-2) IS 'mild') AND (X(t-1) IS 'mild') 
                    THEN (X(t) IS 'mild') (0.6683) 
                             ALSO (X(t) IS 'moderate') (0.2131) 
                              ALSO (X(t) IS 'light') (0.1186) 

The results of predicted numeric values of the wind speed and measured data have 
been presented in Fig. 5.  

 

Fig. 5 Comparison of the prediction values and empirical data of wind speed for testing data 
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The next application of the tested inference system in dynamic system model-
ling will be shown on the example of coal parameters analysis. Measurements of 
some coal parameters, as contents of particular density fractions of grains, ash or 
sulfur contents are the bases of quality control at coal preparation plants and 
power stations. Sampling research of grain materials are used by technological 
process engineers to approximate needed coal parameters or characteristics. Sam-
ple taking is a random process, according to respective scheme of randomness. In 
the other hand, experts of technology often express some values of measurements 
in linguistic categories. These are the reasons that  knowledge base of the variation 
of empirical data concerning coal parameters is created with regards fuzziness and 
randomness. 

The interested reader can find more details on probabilistic-fuzzy modelling 
characteristics of grain materials in the work [15].  

In the example the coegsisting of two variables: the content of light grains frac-
tion, X, and the ash content in that fraction, Y, in the time series has been analyzed. 
Spaces of considerations of both variables have been divided into 40 disjoint in-
tervals and 7 triangular fuzzy sets have been defined as the representations of lin-
guistic values: {"very small", "small", "medium small", "medium", "medium 
large", "large", "very large"}, for both variables. 

Derived knowledge base for that dynamic system has a form of 779 file rules. 
The most important rules are presented below: 

R1: (0.0487) IF (X(t-2) IS 'med. large') AND (Y(t-2) IS 'small') AND (X(t-1) IS 
'med. large') AND (Y(t-1) IS 'small') THEN (Y(t) IS 'small') (0.5277) 

        ALSO (Y(t) IS 'v. small') (0.2004) 
        ALSO (Y(t) IS 'med. small') (0.1954) 
        ALSO (Y(t) IS 'medium') (0.0398) 
        ALSO (Y(t) IS 'med. large') (0.0257) 
        ALSO (Y(t) IS 'large') (0.0102) 
        ALSO (Y(t) IS 'v. large') (0.0009) 

R2: (0.0247) IF (X(t-2) IS 'medium') AND (Y(t-2) IS 'small') AND (X(t-1) IS 'med. 
large') AND (Y(t-1) IS 'small') THEN (Y(t) IS 'small') (0.4673) 

        ALSO (Y(t) IS 'med. small') (0.2454) 
        ALSO (Y(t) IS 'v. small') (0.1478) 
        ALSO (Y(t) IS 'medium') (0.1293) 
        ALSO (Y(t) IS 'med. large') (0.0075) 
        ALSO (Y(t) IS 'large') (0.0018)  
  ALSO (Y(t) IS 'v. large') (0.0009) 

In Table 2. the probability distribution of two linguistic random variables  
(Yt, Yt-1), under the conditions: ((Xt-2 is medium large) and (Yt-2 is small) and (Xt-1 is 
medium large)), has been presented. It is easy to observe that occurrence of any 
linguistic value of any variable is possible with a probability grater then zero. This 
is different distribution then in the first example. 
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Table 2 Exemplary probability distribution of two linguistic random variables (Yt, Yt-1)  
under the conditions: ((Xt-2 is medium large) and (Yt-2 is small) and (Xt-1 is medium large)) 

Assumption: X(t-2) is 'med. large' and Y(t-2) is 'small' and X(t-1) is 'med. large' 

                 Y(t)  
 Y(t-1) 

'v. small' 'small' 
'medium 
small' 

'medium' 
'medium 
large' 

'large' 'v. large' 

'v. small' 0,0047 0,0087 0,0028 0,0002 0,0004 0,0010 0,0002 

'small' 0,0097 0,0257 0,0095 0,0019 0,0012 0,0005 4,37E-05 

'med. small' 0,0029 0,0063 0,0041 0,0005 0,0002 0,0001 0 

'medium' 0,0009 0,0021 0,0008 0,0005 0,0003 9,29E-05 0 

'med. large' 0,0003 0,0003 0,0002 0,0001 9,985E-06 0 0 

'large' 2,07E-05 0,0005 5,119E-05 0 0 0 0 

'v. large' 2,099E-06 9,38E-05 8,362E-05 0 0 0 0 

The computed marginal and conditional probability distributions have been 
used in the prediction procedure. The optimal structure of the model has been de-
rived at the complete probability distribution, by using both Larsen’s inference 
rule and Fodor’s t-norm as a representation of the logic AND (see T1 in chapter 
3.4.). Than the root mean square for training data was equal to 0.87, and for test-
ing data 1.85. 

6   Conclusions   

The use of fuzzy logics in the knowledge-based system makes it possible to  
express incomplete and uncertain information in a natural language, typical for 
expression and cognition of human beings. In addition, the application of the 
probability of events expressed in linguistic categories enables the adjustment of 
the model on the grounds of numerical information derived from the data stored in 
the course of the operation of a given real processes. The created model becomes 
easier for interpretation by its users, what is very important in the strategic deci-
sion-making situations, as well as, in diagnostic systems.  
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