
Chapter 4
Financial Fuzzy Time Series Models
Based on Ordered Fuzzy Numbers

Adam Marszałek and Tadeusz Burczyński

Abstract. The purpose of this chapter is to present an original concept of financial
fuzzy time series models based on financial data in the form of Japanese Candle-
stick Charts. In this approach the Japanese Candlesticks are modeled using Ordered
Fuzzy Numbers (OFN) called further Ordered Fuzzy Candlesticks (OFC). The use
of ordered fuzzy numbers allows modeling uncertainty associated with financial
data. Thanks to well-defined arithmetic of ordered fuzzy numbers, one can con-
struct models of fuzzy time series, such as e.g. an autoregressive process, where all
input values are OFC, while the coefficients and output values are arbitrary OFN, in
the form of classical equations, without using rule-based systems. Finally, several
applications of these models for modeling and forecasting selected financial time
series are presented.

1 Introduction

It is hard to disagree with opinion that among all different sources of data, the fi-
nancial market is the most uncertain. The main reason is the fact that huge amount
of information is reflected in the financial market. What more, we can say that ev-
erything that happens in the world (e.g. in economy, politics) has an effect on quo-
tations of financial instruments. On the other hand, how the information influence
the market is decided by investors by taking a long or short position in the market.
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The investors can be simple divided into two groups. The first group of investors
decides using fundamental analysis, while the second group decides on a basis tech-
nical analysis. Both groups must make a subjective assessment of macroeconomic
factors and signals of technical analysis, respectively, so the human factor is a cause
of uncertainty as well.

The second group of investors very often uses price charts analysis to make deci-
sions. The price charts (e.g. Japanese Candlestick chart) are used to illustrate move-
ments in the price of a financial instrument over time. Notice, that using the price
chart, a large part of the information about the process is lost, e.g. using Japanese
Candlestick chart with one hour frequency, for one hour, we know only four prices,
while in this time the price must have changed hundreds of times.

In this paper we propose fuzzy logic (i.e. ordered fuzzy numbers), to model un-
certainty associated with financial data and reduce the size of lost information. Fur-
ther, we show how the concept (OFC) can be used to build models of financial time
series.

2 Financial Data

In this work as a financial data we mean the quotations of financial instruments (e.g.
stock prices or currency pair). Making investment decisions based on observation of
each single quotation is very difficult or even impossible, when price changes tens
times a minute.

In practice, quotations of financial instruments are represented using price charts
[12]. The open-high-low-close chart (also OHLC chart, or simply bar chart) and
Japanese Candlestick are most often used in technical analysis. Both types of charts
are presented in Figs. 1 and 2, respectively.

Fig. 1 Open-High-Low-Close chart of EUR/USD, four hour frequency

Each bar represents the range of price movement over a given time interval. In
both types of charts, bars are described by only four prices from given time period:
first (open), highest, lowest and last (close) price at a given time interval. In addition,
Japanese Candlestick has a body, whose color illustrates the relationship between
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Fig. 2 Japanese Candlestick chart of EUR/USD, four hour frequency

Fig. 3 The long and short OHLC bar, and long and short Japanese Candlestick

the opening and closing price. If the Candlestick closed higher than it opened, the
body is white or unfilled, else the body is black. The formation of OHLC bar and
Japanese Candlestick are shown in Fig. 3. More details about the Japanese Candle-
sticks and trading techniques based on them can be found in [13].

3 Ordered Fuzzy Numbers

One of many ways of uncertainty modeling is an approach based on fuzzy logic.
Fuzzy data analysis requires also fuzzy arithmetic. Applications of classical fuzzy
numbers (sets) [17, 18] or so-called (L,R)-numbers with two shape functions L and
R [1] lead to some drawbacks that concern properties of fuzzy algebraic operations,
as well as produce unexpected and uncontrollable results when using these opera-
tions in an iterative way [16, 17]. In the series of papers [4, 5, 6, 7, 8], W. Kosiński et
al. introduced and developed main concepts of the space of ordered fuzzy numbers
(OFN), whose arithmetic eliminates these drawbacks.
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3.1 Definition of Ordered Fuzzy Number

The concept of membership functions has been weakened by requiring a mere mem-
bership relation. Consequently, an ordered fuzzy number A is identified with an or-
dered pair of continuous real functions defined on the interval [0,1], i.e. A = ( f ,g)
with f ,g : [0,1]→R.

Fig. 4 Graphical interpretation of OFN and an OFN presented as fuzzy number in classical
meaning

Functions f and g are called the up and down-parts of the fuzzy number A, re-
spectively. The continuity of both parts implies their images are bounded intervals,
say UP and DOWN, respectively. In general, the functions f and g need not be in-
vertible, and only continuity is required. If we assume, however, that these functions
are monotonous, i.e., invertible, and add the constant function of x on the interval
[1−A ,1

+
A ] with the value equal to 1, we might define the membership function

μ(x) =

⎧
⎨

⎩

f−1(x) if x ∈ [ f (0), f (1)],
g−1(x) if x ∈ [g(1),g(0)],

1 if x ∈ [1−A ,1
+
A ],

(1)

if f is increasing and g is decreasing, and such that f ≤ g (pointwise). In this way, the
obtained membership function μ(x), x ∈ R represents a mathematical object which
resembles a convex fuzzy number in the classical sense. The ordered fuzzy number
and ordered fuzzy number as a fuzzy number in classical meaning are presented in
Fig. 4.

Let us note that a pair of continuous functions ( f ,g) determines different ordered
fuzzy number than the pair (g, f ). It follows from the fact that we are dealing with
an ordered pair of functions. In this way, we specified an extra feature to this ob-
ject, named the orientation. In graphical interpretation of the ordered fuzzy number,
orientation is presented by arrow. Depending on the orientation, the ordered fuzzy
numbers can be divided into two types: a positive orientation, if the direction of
ordered fuzzy number is consistent with the direction of the axis Ox and a negative
orientation, if the direction of the ordered fuzzy number is opposite to the direction
of the axis Ox, as shown in Fig. 5.
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Fig. 5 Positively and negatively oriented OFN

3.2 Operations

The basic arithmetic operations on ordered fuzzy numbers are defined as the pair-
wise operations of their elements.

Let A = ( fA,gA), B = ( fB,gB) and C = ( fC ,gC) are mathematical objects called
ordered fuzzy numbers. The sum C = A + B, subtraction C = A − B, product
C = A ·B, and division C = A÷B are defined by formula

fC(y) = fA(y)∗ fB(y), gC(y) = gA(y)∗ gB(y) (2)

where ∗ works for +, −, · and ÷, respectively, and where C = A÷B is defined,
if the functions | fB| and |gB| are bigger than zero. In a similar way, if we want to
multiply an ordered fuzzy number A by a scalar λ ∈ R, then the product C = λ ·A
is defined by formula

fC(y) = λ · fA(y), gC(y) = λ ·gA(y) (3)

Fig. 6 Sum of two opposite ordered fuzzy numbers

Notice that the subtraction of B is the same as the addition of the opposite of
B, i.e. the number (−1) ·B. If we will do B+(−1) ·B we get a numeric zero, i.e.,
an ordered fuzzy number represented by the pair of constant functions equal to
zero. In a similar way, the inverse 1/B of an ordered fuzzy number B is defined
as an ordered fuzzy number such that the product B · (1/B) gives a number, i.e.,
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Fig. 7 Product of ordered fuzzy number and its inverse

an ordered fuzzy number represented by the pair of constant functions equal to one.
This is presented in Figs. 6 and 7, respectively.

The existence of neutral elements of addition and multiplication is the most im-
portant advantage for our further consideration. This fact causes that not always the
result of an arithmetic operation is a fuzzy number with a larger support. This allows
to build fuzzy models based on ordered fuzzy numbers in the form of the classical
equations without losing the accuracy.

3.3 Defuzzification of Ordered Fuzzy Number

Let O be a universe of all ordered fuzzy numbers. O can be identified with
C 0([0,1])×C 0([0,1]), hence the space O is a Banach space [7]. A class of de-
fuzzification operators of ordered fuzzy numbers can be defined, as a linear and
continuous functionals on the Banach space O , thanks to the general representa-
tion theorem (of Banach-Kakutami-Riesz) they are uniquely determined by a pair
of Radon measures (ν1,ν2) on [0,1], as

De f (A) =

1∫

0

fAdν1 +

1∫

0

gAdν2 (4)

where De f (A) is the value of a defuzzification operator at the ordered fuzzy number
A = ( fA,gA).

The above formula gives a continuum of defuzzification operators, both linear
and nonlinear, which map ordered fuzzy numbers into reals. For example, the stan-
dard defuzzification procedure in terms of the area under membership relation can
be defined. It is realized by a linear combinations of two Lebesgue measures of
[0,1].
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4 Ordered Fuzzy Candlesticks

The aim of our research is to find a new tool for modeling of financial data. We want
to make it so easy as classical Japanese Candlesticks for observing by investors. At
the same time to allow for modeling of uncertainty associated with financial data
and also keep more information about the prices than Japanese Candlestick. Ordered
fuzzy numbers presented previously, in a simple way, satisfy our requirements.

Generally, in this approach, further as Japanese Candlestick is identified with or-
dered fuzzy number and it is called Ordered Fuzzy Candlestick (OFC). The general
idea is presented in Fig. 8. Notice, that the orientation of the ordered fuzzy number
shows whether the ordered fuzzy candlestick is long or short. While the information
about movements in the price are contained in the shape of the f and g functions.
In the following sections we will show how the ordered fuzzy candlestick can be
constructed.

Fig. 8 The Japanese Candlesticks presented as a ordered fuzzy numbers

4.1 Proposal of Global Definition of Ordered Fuzzy Candlestick

Let {Xt : t ∈ T} be a given time series and T = {1,2, . . . ,n}. The ordered fuzzy
candlestick is defined as an ordered fuzzy number C = ( f ,g) which satisfies the fol-
lowing properties 1 - 4 or 5 - 8.

Long Candlestick

1. X1 ≤ Xn

2. f : [0,1]→ R is continuous and increasing on [0,1]

3. g : [0,1]→ R is continuous and decreasing on [0,1]

4. S1 < S2, f (1) = S1, f (0) = min
t∈T

Xt −C1, g(1) = S2 and g(0) such that
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1∫

0
g(y)dy− S2

A
=

S1 −
1∫

0
f (y)dy

B
(5)

Short Candlestick

5. X1 > Xn

6. f : [0,1]→ R is continuous and decreasing on [0,1]

7. g : [0,1]→ R is continuous and increasing on [0,1]

8. S1 < S2, f (1) = S2, f (0) = max
t∈T

Xt +C2, g(1) = S1 and g(0) such that

1∫

0
f (y)dy− S2

A
=

S1 −
1∫

0
g(y)dy

B
(6)

The center of ordered fuzzy candlestick (i.e. added interval) is designated by param-

eters S1, S2 ∈
[

min
t∈T

,max
t∈T

]

, while C1 and C2 are arbitrary nonnegative real numbers.

The parameters A and B are positive real numbers, and together with equations (5)
and (6) determine the relationship between the function f and g. A selection of
parameters are discussed in greater detail in the next section.

4.2 Parameters of Ordered Fuzzy Candlesticks

Let {Xt : t ∈ T} be a given time series and T = {1,2, . . . ,n}.

Parameters S1 and S2

For to designate the center of the ordered fuzzy candlestick, we can use the average
of time series Xt . There are many types of average, the most popular ones are

Simple Average

SA =
1
n
(X1 +X2 + · · ·+Xn) (7)

Linear Weighted Average

LWA =
X1 + 2X2 + · · ·+ nXn

1+ 2+ · · ·+ n
(8)

Exponential Average

EA =
(1−α)n−1X1 +(1−α)n−2X2 + · · ·+(1−α)Xn−1+Xn

(1−α)n−1+(1−α)n−2+ · · ·+(1−α)+ 1
, α =

2
n+ 1

(9)
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Consequently we propose the following

S1, S2 ∈ {SA,LWA,EA} such that S1 ≤ S2

Determination of parameters A and B
For parameters A and B the following formula is proposed

A = 1+ S+S2 and B = 1+ S−S1

where S+S2 and S−S1 means that one of the sums from numerator in the formulas
(7), (8) or (9), calculated only for Xt ≥ S2 and Xt ≤ S1, respectively. These parame-
ters shows how much the movement is concentrated above and below parameters S1

and S2, respectively. If formula (8) or (9) is selected then we assume that the more
recent time series values are more important than the past ones, which is a natural
assumption in financial processes.

Parameters C1 and C2

The parameters C1 and C2 are defined as a standard deviation of Xt

C1 =C2 = σXt

4.3 Special Types of Ordered Fuzzy Candlesticks

In this section, some simple types of ordered fuzzy candlesticks are presented.

Trapezoid OFC
Suppose that f and g are linear functions in form

f (y) = ( f (1)− f (0))y+ f (0) (10)

g(y) = (g(1)− g(0))y+ g(0) (11)

then the ordered fuzzy candlestick C = ( f ,g) is called a trapezoid OFC, especially
if S1 = S2 then also can be called a Triangular OFC.

Let Xt be a given time series. Suppose that X1 ≤ Xn then we have

f (y) = (S1 −minXt +C1)y+minXt −C1 (12)

g(y) = (S2 − g(0))y+ g(0) (13)

where

g(0) =
A
B
(S1 −minXt +C1)+ S2 (14)
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Whereas if X1 > Xn then we have

f (y) = (S2 −maxXt +C2)y+maxXt +C2 (15)

g(y) = (S1 − g(0))y+ g(0) (16)

where

g(0) =
B
A
(S2 −maxXt −C2)+ S1 (17)

Gaussian OFC
The ordered fuzzy candlestick C =( f ,g) where the membership relation has a shape
similar to the Gaussian function is called a Gaussian OFC. It means that f and g
are given by functions

f (y) = f (z) = σ f

√
−2ln(z)+m f (18)

g(y) = g(z) = σg

√
−2ln(z)+mg (19)

where e.g. z = 0.99y+ 0.01.
Let Xt be a given time series. Suppose that X1 ≤ Xn then we have

f (z) = σ f

√
−2ln(z)+m f where m f = S1, σ f =

minXt −C1 − S1
√−2ln(0.01)

≤ 0 (20)

g(z) = σg

√
−2ln(z)+mg where mg = S2, σg =−A

B
σ f (21)

Whereas if X1 > Xn then we have

f (z) = σ f

√
−2ln(z)+m f where m f = S2, σ f =

maxXt +C1 − S2
√−2ln(0.01)

≥ 0 (22)

g(z) = σg

√
−2ln(z)+mg where mg = S1, σg =−B

A
σ f (23)

4.4 Experimental Studies

Let Xt be a given time series of quotations of EUR/USD for the 1-hour period ending
09.01.2011 at 7pm (236 ticks). The time series Xt and its histogram are presented in
Fig. 9. For time series Xt we have X0 = X235 = 1.2894, so this Japanese Candlestick
has no body. It is so-called Doji Candlestick. Assume that S1 = EA= 1.28972, S2 =
SA = 1.28986 and C1 =C2 = σXt = 2.23e−7. The exponential average was used in
the calculation of parameters A and B of the ordered fuzzy candlesticks, so we have
A = 60.32825 and B = 70.83852. The classical Japanese Candlestick, Trapezoid
OFC and Gaussian OFC for time series Xt are presented in Fig. 10.
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Fig. 9 The tick chart and histogram of EUR/USD

Fig. 10 Types of Candlesticks for time series Xt : a) classical Japanese Candlestick, b) Trape-
zoidal OFC, c) Gaussian OFC

Fig. 11 The tick charts of the time series Xt and Yt

Now, the two different time series Xt and Yt are presented in Fig. 11. Both
have the same Japanese Candlestick (see Fig. 12a), because the main prices (i.e.
OHLC) are the same. However, the ordered fuzzy candlesticks for time series Xt

and Yt presented in Figs. 12b and 12c are different. Therefore, we can conclude that
the ordered fuzzy candlesticks effectively contain more information than classical
Japanese Candlesticks.
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Fig. 12 Types of Candlesticks for time series Xt and Yt : a) Classical Japanese Candlestick, b)
Trapezoid OFC, c) Gaussian OFC

5 An Application of Ordered Fuzzy Candlesticks

5.1 Ordered Fuzzy Simple Moving Average (OFSMA(s))

Ordered fuzzy candlesticks can be used e.g. to construct a fuzzy version of simple
technical indicators (i.e. a indicators that require only arithmetic operations such as
addition, subtraction and multiplication by a scalar). The Simple Moving Average
is presented as an example of technical indicator.

The classical Simple Moving Average with order s at a time period t is given by
formula

SMAt(S) =
1
s
(Xt +Xt−1 + · · ·+Xt−s+1) (24)

where Xt is the observation (real) at a time period t (e.g. closing prices) [12].
Now, the Ordered Fuzzy Simple Moving Average with order s at a time period t

is also given by formula (24) but the observations Xt are OFC, i.e.

OFSMAt(S) =
1
s
(X̄t + X̄t−1 + · · ·+ X̄t−s+1) (25)

where X̄t is the ordered fuzzy candlestick at a time period t. The process of fuzzifi-
cation of the other simple technical indicators can be done by analogy.

Notice, if A and B are Trapezoidal (Gaussian) ordered fuzzy candlesticks and
λ ∈ R then ordered fuzzy candlesticks C = A+ B, C = A−B and C = λ ·A are
Trapezoidal (Gaussian) OFC as well. Moreover, if their functions are in the form of
following expressions

φ(y ;a,b) = ay+ b, for Trapezoid OFC (26)

ψ(y ;σ ,m) = ψ(z ;σ ,m) = σ
√
−2ln(z)+m, for Gaussian OFC (27)
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then we have

φ(y ;a1,b1)±φ(y ;a2,b2) = φ(y ;a1 ± a2,b1 ± b2)
ψ(y ;σ1,m1)±ψ(y ;σ2,m2) = ψ(y ;σ1 ±σ2,m1 ±m2)

(28)

λ ·φ(y ;a,b) = φ(y ;λ ·a,λ ·b)
λ ·ψ(y ;σ ,m) = ψ(y ;λ ·σ ,λ ·m)

(29)

This causes that the numerical implementation of these operations is much simpler.

Empirical Results
The practical case study was performed on data from FOREX market. The data
covering the period of 93 hours from 5pm of 09.01.2011 till 2pm of 14.01.2011 of
quotations of EUR/USD. The data set included 65376 ticks and is presented in Fig.
13. The classical Japanese Candlestick chart of 1 hour frequency for the set data is
shown in Fig. 14. The result of fuzzification of each Candlestick by Gaussian OFC
is presented in Fig. 15 by a triangle symbols. The triangles correspond to the value
of the function f and g for values 0, 0.5 and 1. Moreover, if an OFC is long then the
triangles are pointing straight up, otherwise down.

Fig. 13 Tick chart of the data set

Fig. 14 Tick chart and Japanese Candlestick chart of the data set
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Fig. 15 The ordered fuzzy candlestick chart of the data

Fig. 16 shows results of realization of classical (line with xcross symbol) and
ordered fuzzy (triangle symbols) simple moving average with order equal to 7 for
the data set. Fig. 16 also shows the ordered fuzzy simple moving average defuzzifi-
cation by center of gravity operator (line with circle symbol). In technical analysis
the moving average indicator usually is used to define the current trend. Notice that
the ordered fuzzy moving average determines the current trend by orientation of
ordered fuzzy candlesticks, if orientation is positive then trend is long else trend is
short.

Fig. 16 The Japanese Candlestick chart of the data set, realization of a classical and ordered
fuzzy simple moving average

5.2 Ordered Fuzzy Autoregressive Model

In a similar way as it is shown in the previous section we construct fuzzy financial
time series models based on ordered fuzzy numbers and candlesticks. In this section,
the autoregressive process is presented as an example.

An classical autoregressive model (AR(p)) is one where the current value of
a variable, depends upon only the values that the variable took in previous periods
plus an error term [15]. The presented approach, an ordered fuzzy autoregressive
model of order p, denoted as OFAR(p), in natural way is fully fuzzy AR(p) and can
be expressed as
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X̄t = ᾱ0 +
p

∑
i=1

ᾱiX̄t−i + ε̄t (30)

where X̄t−i are the ordered fuzzy candlesticks at a time period t, ᾱi are fuzzy coeffi-
cients given by arbitrary ordered fuzzy numbers and ε̄t is an error term.

Fuzzy Coefficients and Their Estimation
The assumption that fuzzy coefficients of OFAR are arbitrary ordered fuzzy numbers
requires the ability to approximate all possible shapes of functions f and g, and the
ability to perform arithmetic operations on them.

Fig. 17 Discretization of ordered fuzzy numbers

Furthermore, if we multiply the functions of the same class (e.g. linear) we get
a function of another class, so the output of OFAR must be represented by arbi-
trary ordered fuzzy numbers as well. The simplest of solutions, discretization and
approximation using the linear function is proposed by us and presented in Fig. 17.
Then the arithmetic operations are performed on individual points.

The Least Squares Method is proposed for estimation fuzzy parameters ᾱi in
OFAR(p) model. Rearranging the terms in (30) we obtain

ε̄t = X̄t −
(

ᾱ0 +
p

∑
i=1

ᾱiX̄t−i

)

(31)

From a least-square perspective, the problem of estimation then becomes

min∑
t

ε̄2
t = min∑

t

(

X̄t − ᾱ0 −
p

∑
i=1

ᾱiX̄t−i

)2

(32)

However, the error term ε̄t is the ordered fuzzy number so we do not know what
equation (32) mean. Therefore, the least-square method is defined using a distance
measure. The measure of the distance between two ordered fuzzy numbers is ex-
pressed by formula

d(A,B) = d (( fA,gA),( fB,gB)) = ‖ fA − fB‖L2 + ‖gA− gB‖L2 (33)
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where ‖ · ‖ is a metric induced by the L2-norm. Hence, the least-square method for
OFAR(p) is to minimize the following objective function

E = ∑
t

d

(

X̄t , ᾱ0 +
p

∑
i=1

ᾱiX̄t−i

)

(34)

So-defined function does not guarantee that received coefficients will be ordered
fuzzy numbers, so we have to control coefficients in the course of estimation.

Empirical Results
For the case study the empirical data was the same as in Section 5.1. but was di-
vided into two sets, the first 80 candlesticks are used for estimation, while the next
13 candlesticks are used to evaluate the quality of prediction. The empirical results
of several types of ordered fuzzy autoregressive processes are presented.

Model 1
First, in Fig. 18 we can see the realization of a classical autoregressive process with
order 4, where the variables Xt are selected prices. On the left side we can see AR(4)
of close prices, while on the right side we can see AR(4) of average of OHLC prices.
Estimation of AR(4) processes was performed in statistical applications Eviews. We
can notice, that the ordered fuzzy autoregressive process is natural generalization of
the classical autoregressive process in the space of ordered fuzzy numbers. Assume
that all coefficients and input values are numbers (i.e. ordered fuzzy numbers, where
functions f and g are equal and constant), then the processes OFAR and AR are
equivalent (i.e. give the same results). For the set data, it is presented in Fig. 19.

Fig. 18 Realization and static forecast of classical AR(4) processes of close prices and aver-
age of OHLC prices, respectively

Model 2
Now, assume that the coefficients still are numbers, while input values are ordered
fuzzy candlesticks. Then OFAR can be identified with the vector autoregressive
model (VAR) and we can use Eviews for estimation coefficients. The realization
OFAR(4) are presented in Fig. 20. In Fig. 20 are shown also defuzzification values
of OFAR(4) received by the center of gravity operator (black line).
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Fig. 19 Realization and static forecast of OFAR(4) (triangle symbols) and classical AR(4)
(plus and star symbols)

Fig. 20 Realization and static forecast of OFAR(4) with assumption from Model 2 (triangle
symbols) with Gaussian OFC and defuzzification values of OFAR(4) (black line)

Model 3
Finally, assume that the coefficients are ordered fuzzy numbers and input values are
ordered fuzzy candlesticks. In this case the realization of OFAR(4) are presented in
Fig. 21. In Fig. 21 are shown also defuzzification values of OFAR(4) (black line).

Fig. 21 Realization and static forecast of OFAR(4) with assumption from Model 3 (triangle
symbols) with Gaussian OFC and defuzzification values of OFAR(4) (black line)
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5.3 Ordered Fuzzy Single-Period Simple Return

In financial studies more often used are returns, instead of prices. Return series are
easier to handle than price series because they have more attractive statistical prop-
erties and for average investors they form a complete and scale-free summary of
the investment opportunity [15]. Using the concept of ordered fuzzy candlestick the
fuzzy return series can be defined in a natural way.

Let X̄t be a ordered fuzzy time series (time series of OFC) given by time series of
prices. Then ordered fuzzy time series of one period return is defined by following
formula

R̄t =
X̄t − X̄t−1

X̄t−1
(35)

Empirical Results
For the case study we take the time series of ordered fuzzy Gaussian Candlestick
obtained in section 5.1 (see Fig. 15). The time series of ordered fuzzy simple return
is presented in Fig. 22.

Fig. 22 Ordered fuzzy one period return series

6 Conclusions

The novel approach to financial time series modeling based on ordered fuzzy num-
bers is presented in this chapter. We described the representation of financial data
using concept of the ordered fuzzy candlestick. The ordered fuzzy candlestick keeps
more information about the prices than the classical Japanese Candlestick. More-
over, the proposed approach enables to build the fuzzy financial time series models
in the simple form of classical equations. It allows to reduce the size of models com-
pared to models based on fuzzy rule-based systems. It is too early to evaluate the
usefulness of ordered fuzzy candlesticks in financial engineering, however one can
expect that this approach to fuzzy modeling based on ordered fuzzy numbers will
bring a new quality. Furthermore, the time series of ordered fuzzy return presented
in section 5.3 can be used in the most interesting area of financial modeling, i.e.
modeling of volatility. Results of further experiments to validate this approach will
be reported on in the future.
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