
Chapter 2

Incomplete Time Series: Imputation
through Genetic Algorithms

Juan Carlos Figueroa-Garćıa, Dusko Kalenatic, and César Amilcar López

Abstract. Uncertainty in time series can appear in many ways, and its
analysis can be performed based on different theories. An important problem
appears when time series is incomplete since the analyst should impute those
observations before any other analysis.

This chapter focuses on designing an imputation method for multiple miss-
ing observations in time series through the use of a genetic algorithm (GA),
which is designed for replacing these missed observations in the original series.
The flexibility of a GA is used for finding an adequate solution to a multi-
criteria objective, defined as the error between some key properties of the
original series and the imputed one. A comparative study between a classical
estimation method and our proposal is presented through an example.

1 Introduction and Motivation

The analysis of time series includes the handling of nonlinear behavior, het-
eroscedasticity and incomplete series. Data loss is an important problem for
univariate time series analysis since most of the available estimation methods
require either complete information or covariates to estimate missing obser-
vations. Moreover, when the series has a large number of missing observations
or there is a subset of missing observations in a row, then classical estimation
methods cannot produce a reasonable solution, so the use of GAs arises as
an alternative for problems involving multiple missing data.
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Thus, the scope of this chapter is to present an evolutionary algorithm
for imputing all missing observations of an incomplete time series. The main
focus is to preserve some key properties of available data after imputation.

Nowadays, evolutionary algorithms are efficient computational intelligence
tools which provide fast and efficient exploration of the search space of com-
plex problems. To do so, a multi-criteria fitness function derived from the
autocorrelation function, mean and variance of the series, is minimized.

This chapter is divided into six sections, Section 1 presents the Introduc-
tion and Motivation; in Section 2 some useful statistical measures for time
series analysis are introduced; in Section 3 the proposed genetic algorithm is
described and its methodological issues are presented; in Section 4, we apply
the genetic algorithm to a weather prediction case; Section 5 presents a sta-
tistical analysis to verify the obtained results; and finally in Section 6, some
concluding remarks of the proposal are presented.

1.1 A Review

The missing data problem is mainly presented in financial and biological
time series. In fact, it is an uncontrollable phenomenon which conduces to
get biased results on posterior analysis such as identification and prediction.

There exist some methods to impute missing data, some of them based
on optimal estimators, as the EM Algorithm proposed by Dempster [16] and
Gaetana & Yao [22], and its modifications. Other approaches are based on
averages, expected values or simple prediction structures, and some advanced
methods are based on both covariates and additional information of the series,
which leads to new directions to estimate those missed observations. For
further information see González, M. Rueda & A. Arcos [24], Qin, Zhang,
Zhu, Zhang & Zhang [41] Ibrahim & Molenberghs [30], Tsiatis [46], Chambers
& Skinner [15] and Hair, Black, Babin & Anderson [26].

The mathematical treatment of time series is different to multivariate or
longitudinal data since it has some special properties such as autocorrelated
structures, trend and/or seasonal components and ergodic behavior. Basi-
cally, a time series is analyzed for forecasting, so an incomplete series does
not allow to obtain the best predictors. Most of classical estimation methods
do not provide good results when there are no covariates, complementary in-
formation, multiple missing observations in multiple locations, or even when
the time series is volatile.

A univariate time series has no covariates for prediction, and in most cases
there is no additional information available. If the time series has multiple
missing data, then it is impossible to obtain its decomposition into Autorre-
gressive (AR) and Moving Average (MA) processes.

Some applications of GAs to missing data problems were reported by
Figueroa-Garćıa, Kalenatic & Lopez [19, 20], who used GAs to weather time
series; Mussa Abdella & Tshilidzi Marwala [2], who used neural networks
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trained by genetic algorithms to impute missing observations in databases;
Siripitayananon, Hui-Chuan & Jin Kang-Ren [44] treated the missing data
problem by using Neural Networks, Parveen & Green [39] solved a similar
problem using Recurrent networks and Broersen, de Waele & Bos [12] found
an optimal method to estimate missing data by means of autoregressive mod-
els and its spectral behavior.

Other interesting works are proposed by Nelwamondo, Golding and Mar-
wala [37] who use dynamic programming to train neural networks; Kalra
and Deo [32] who applied genetic algorithms for imputing missing data in
biological systems; Zhong, Lingras and Sharma [48] who compared different
imputation techniques for traffic problems; Londhe [35] who design a real-
time framework for impute missed observations of wave measures; Ssali and
Marwala [45] proposed a theoretical approach based on computational intel-
ligence tools and decision trees to missing data imputation; JiaWei, TaoYang
and YanWang [31] used fuzzy clustering for array problems; Abdella and
Marwala [1] provide basic key features for implementing neural networks and
genetic algorithms in missing data problems; and Eklund [18] computed the
confidence interval of missed observations for spatial data problems.

Given this background, we present an evolutive algorithm for imputing
multiple missing observations applied to a study case with multiple missing
observations, where classical algorithms cannot solve the problem properly.
Now, some basic definitions about time series are provided in next section.

2 Statistical Definitions for Time Series Analysis

The main purpose of a statistical analyst when analyzing a time series is to
extract information about its behavior in order to make a decision based on
the available information so far.

Now, a classical scenario starts from the definition of some basic statistical
measures which represent the properties of the series before using any fore-
casting method. This reasoning is based on the concept of a stochastic time
series process, which is defined as follows.

Definition 2.1. Consider a set of observations of the variable x, where x ∈ S
and S is a metric space in which x is measured. This set x is said to be a
Stochastic Process {Xt} if it is a random sequence of observations recorded at
a specific time t, t ∈ T where T is the time space described by its probability
density function (pdf). The pdf is a function in the form f(X ; θ|S, ω) where
ω is the probability space of f(X ; θ) and θ is a vector of parameters that
characterizes its behavior.

Remark 2.1. Indeed, a stochastic process {Xt} has the following property:
Its pdf can vary at different times t1 and t2, although the metric space S is
the same at all instants t ∈ T , then the probability that a specific value x
occurs at different times xt1 and xt2 , is different.
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As usual, the most important order statistics for obtaining optimal mod-
els as ARIMA (Autoregressive, Co-integrated and Moving Average), ARCH
(Autoregressive Conditional Heteroscedastic) and GARCH (Generalized Au-
toregressive Conditional Heteroscedastic) are the mean, the variance and the
autocorrelation function, defined as follows

Definition 2.2. The expected value of a random variable E(Xt) is a measure
of concentration of {Xt} in ω defined as:

E(X) =
∫ ∞

−∞
x f(x; θ) d(x) (1)

Let {x1, x2, · · · , xn} be observations of a time series. An unbiased estimator
of E(Xt) assuming large samples is the sample mean:

x̄ =
n∑

t=1

xt

n
(2)

where n is the sample size.

Definition 2.3. The variance of a random variable Var(X) is a measure of
form of {Xt} in ω and is defined as:

Var(Xt) =
∫ ∞

−∞
(x − E(X))2 f(x; θ) d(x) (3)

An unbiased estimator of Var(Xt) assuming large samples is:

Var(X) =
n∑

t=1

(xt − x̄)2

n − 1
(4)

On the other hand, a time series model is a model that tries to infer some key
properties of the series. According to Brockwell and Davis [10, 11], Hamilton
[27] and Anderson [3], a time series model is

Definition 2.4. A time series is a set of observations xt, each one being
recorded at a specific time t. A time series model for the observed data {xt}
is a specification of joint distribution (or possibly the means and covariances)
of a sequence of random variables {Xt} for which {xt} is postulated to be a
realization.

The sample autocovariance and sample autocorrelation of the series is a linear
relation between the variable at a specific time {xt} to itself at a lag h,
{xt+h}. Graybill & Mood [36], Wilks [47], Huber [29], Grimmet [25], Ross
[42], Brockwell and Davis [10, 11], and Harville [28] defined them as follows



2 Incomplete Time Series: Imputation through Genetic Algorithms 35

Definition 2.5. The sample autocovariance function γ̂(h) is:

γ̂(h) =
n−|h|∑
t=1

(xt+|h| − x̄)(xt − x̄)
n

, −n < h < n (5)

Definition 2.6. The sample autocorrelation function ρ̂(h) is:

ρ̂(h) =
γ̂(h)
γ̂(0)

, −n < h < n (6)

When the series is incomplete, we cannot obtain sufficient statistics, which
leads to misspecification problems of posterior models. In fact, the autocor-
relation function defined in (6) is one of the most important measures of the
behavior of the series, so the imputation of all missed observations is a key
step before computing ρ̂(h).

In the next sections, we show all methodological aspects for imputing those
missing observations through a GA. The main reason to use GAs is its flexi-
bility and speed for finding solutions to nonlinear and complex problems.

3 The Proposed Genetic Algorithm (GA)

GAs are simple structures (For further information about GAs see Kim-Fung
Man, Kit-Sang Tang & Sam Kwong [41]). An individual in a population can
be seen as a set of missed data, so it should be imputed in the incomplete
series. Figueroa-Garćıa, Kalenatic & Lopez [19, 20] use this principle to find
an adequate solution to missing data problems, and this approach improves
its fitness function based on some key properties of available data.

Our approach is based on six steps which guarantee an adequate solution:
1) a statistical preprocessing of the original series to obtain a stationary
process 2) define a fitness function for comparing all individuals 3) generate
of a population of individuals where each one is a solution of all missed
observations 4) apply evolutionary operators for exploring the search space
6) evaluate the fitness function to select the best solution.

3.1 Why GA for Imputing Missing Data in Time
Series?

An incomplete time series is a complex problem in the sense that classical
imputation algorithms depend on covariates or additional information, and
in many cases we have no this information. On the other hand, this is a
multicriteria problem, which has no easy solutions. In this way, GAs are an
interesting option for imputing multiple missing data in time series by the
following reasons:
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• Multicriteria capability.
• Nonlinear capability.
• Flexibility and computational simplicity.
• Efficiency of the solutions.

As shown in the Introduction, some learning-based techniques like neural net-
works and hill-climbing methods are commonly used to solve this problem.
We propose an alternative method which learns from statistical properties
of available data to cases where the series has multiple missed observations
and/or no covariates. Those cases are particularly complex because optimal
estimation techniques do not produce results when either multiple observa-
tions are lost or no covariates exist. Thus, evolutionary optimization arises
as a flexible tool for finding solutions to complex cases, as the proposed one.

The following sections describe some general aspects of genetic algorithms
applied to imputation in time series.

3.2 Preprocessing of Available Data

Some computational aspects should be kept in mind before applying any
genetic operator, among them we have: Linear transformations, lag operators,
seasonal and trend decompositions.

Firstly, we standardize data by using a linear transformation, removing
the effect of units, and then we apply a lag operator to remove the effect of
the mean of the process, obtaining a stationary series. These transformations
reduce the complexity of the mean, the variance and the autocorrelation
function of the series by removing its units, so its interpretation is easier and
its search space is reduced, improving the performance of the algorithm. In
this way, the following transformation is applied to available data {xa

i } in
order to obtain a new standardized series {za

i }:

za
i =

xa
i − x̄a√
Var(xa)

(7)

where {xa
i } is a vector of size (n − m) of available data of the series.

Here, the mean x̄a and variance Var(xa) of available data {xa
i } are ob-

tained by removing the missing observations from its original one, as follows:

x̄a =
n−m∑
i=1

xa
i

n − m
(8)

Var(xa) =
n−m∑
i=1

(xa
i − x̄a)2

n − m − 1
(9)
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Now, we compute a lag operator of order d, ∇d, defined as the difference
between zt and itself at period d,

∇d(zt) = zt − zt−d (10)

The main idea of this transformation is to obtain a stationary series with no
effect of the units of the series, so ∇d(zt) should be used as the target of the
genetic algorithm. To do so, the following definition is given,

Definition 3.1 (Target series). Hereinafter, we will refer to {zt} as a stan-
dardized series after applying (7) and (10) until reach a stationary series with
zero mean and if possible, constant variance.

The autocorrelation function of Zt, ρ̂(h) cannot be computed when the series
is incomplete, so we use a subset of Zt, {zl

t} defined as the largest and most
recent subset from available data, that is:

γ̂(h)l =
n2−|h|∑
t=n1

(zl
t+|h| − z̄l)(zl

t − z̄l)

n2 − n1 + 1
, (n1 − n2) � h � (n2 − n1) (11)

where n1 and n2 are lower and upper bounds of t, and γ̂(h)l is the autoco-
variance of the largest and most recent subset of Xt, denoted by l.

ρ̂(h)l =
γ̂(h)l

γ̂(0)l
(12)

In this way, ρ̂(h)l is an important statistical measure obtained from available
data, so its use as a part of the fitness function of the genetic algorithm is
essential for time series analysis.

Remark 3.1 (Index sets i and t). The index set i is related to available
data {xi}, instead of index t which is related to the series with missing data
{xt}, so we have i ∈ t ∈ T .

An elite-based strategy is combined with a multicriteria fitness function to
compose the basic structure of a genetic algorithm for imputing missing data.
Its methodological aspects are discussed in the following subsections.

3.3 The Fitness Function

A time series {zt} is said to be incomplete if there exist m missing observa-
tions located by an index vector v, where 1 � v � n. A vector of imputations
of all missed observations is called {yt}, where yt = 0 when t /∈ v and yt = zj

when t ∈ v, zj is the jth element of yt, 1 � j � m located in the vth position.
A new series where all missed observations are replaced is defined as {ẑt}:

za
t + yt = ẑt (13)
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Now, the main goal is to find a vector yt which does not change the properties
of available data. For our purposes, the autocorrelation function, mean and
variance of the available data are the goal of the genetic algorithm.

A genetic solution to the m missing observations should not change its
γ̂(h)l, z̄a and Var(za) measures. To do so, we define the fitness function of
the algorithm as a multicriteria function namely F , regarding a set of H lags
used for computing autocorrelations, as follows:

F =
∑
h∈H

∣∣ ρ̂(h)l − ρ̂(h)
∣∣ +

∣∣ z̄a − ¯̂z
∣∣ + | Var(za) − Var(ẑ) | (14)

Thus, the main goal of the algorithm is to minimize F and if possible, reach
zero as optimal solution. Note that our proposal is based on the design of a
fitness function that minimize the differences among the statistical measures
of the available data and the series after imputation ẑt in three ways:

• Significative autocorrelations, h ∈ H .
• Sample mean.
• Sample variance.

As shown in Definition 2.4, a time series can be described through its mean,
variance and covariances, so (14) tries to characterize the time series after
imputation of missing data. In this proposal, we aggregated different units in
a single function without problems, since {zt} is a standardized variable.

Remark 3.2 (Magnitude of F). It is important to note that the use of (7)
and (10) leads to obtain measures of {zt} with no effect of the mean and units
of the original series, so ρ̂(h)l, z̄a and Var(za) are standardized measures that
can be added in (14) without loss of generality.

3.4 Individuals

An individual is defined as a vector of a population indexed on a matrix
where each one is a solution itself. As always, a genetic structure contains
many individuals forming a population.

Each individual represents a complete vector of missed observations, which
will be located in zt by using yt. Thus, each individual has as much elements
(genes) as missed observations exist, indexed by v. A graphical explanation
of the genes and individuals of the algorithm is shown in Figure 1

In Figure 1, v is the index vector of the lost observations of zt. Note that
zj has the same elements than v, but v only has the tth position of the missed
observations while zj is a vector of solutions located by v, which is computed
through GAs. Finally, ẑt is defined in (13) where yt = zj located by v.
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Fig. 1 Individuals, genes, v, zt and ẑt

3.5 Populations and Number of Generations

An important part of a GA is how to generate a population (collection of indi-
viduals), and how many populations (generations) will be used for exploring
the search space. First, the population size is defined by the m missing ob-
servations and a pre-selected k ∈ K number of individuals, creating a matrix
of size k × m labelled as P g

k,m where g denotes the generation index.
Different population sizes can be selected for exploring the search space.

According to Burke et. al. [13], Goldberg [23], Bäck [8], Bagchi [9], and Fon-
seca and Fleming [21], the selection of a higher population sizes together with
fitness-based operators may reduce the performance of the algorithm, even
when the search space would be better covered.

In this way, Figueroa-Garćıa, Kalenatic & Lopez [19, 20] used three pop-
ulation sizes: k ∈ [100, 500, 1000], so based in their experimental evidence,
we recommend to use a size of k = 100 in order to increase the speed of the
algorithm, with no loss of ability of exploration of the solution space.

Another important parameter of the algorithm is the number of genera-
tions G, which is commonly used as stopping criterion. In this approach, this
parameter operates as a controller of the iterations of the algorithm, so we set
maxg = G. This parameter depends on the complexity of the problem, the
size and the nature of the missed observations, so the analyst should select
G experimentally and using knowledge of the problem.

3.6 Population Random Generator

Definition 3.1 establishes that {zt} should be a standardized series, so this
condition reduces the complexity of the algorithm, allowing us to use a stan-
dard uniform generator, which is computationally simpler than other gener-
ators e.g. Normal, exponential or mixed methods.
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The uniform random generator is called Rj . It is defined as Rj(a, b) =
a + rj(b − a)I[0,1](rj) where a is the minimun value, b is the maximum value
and rj is a random number defined by the Index Function I[0,1].

An important analysis of random number generation has been made by
Devroye [17] and Law & Kelton [33]. They concluded that the uniform num-
ber generator is an adequate method for covering the search space, so we
recommend to use a uniform generator instead of the sample distribution.

3.7 Mutation and Crossover Operators

In Figure 1 we have explained how an individual and a gene are defined. This
allows us to easily compose a population through Rj which is ranked using
an elite-based method. After that, a mutation and crossover strategy can be
applied to get a better exploration of the search space, as proposed below:

Mutation strategy:

1. Select a random position for each orderly individual in P g
k,m by its fitness

function.
2. Replace the selected position with a new individual obtained by using a

random generator Rj(a, b).
3. Repeat (2) for the c1 better individuals orderly for each population P g

k,m

at the generation g.

Crossover strategy:

1. Select the c2 first individuals in the orderly population P g
k,m by its fitness

function.
2. Generate a new individual by replacing all even genes with their respective

even gene located in the next individual.
3. Generate a new individual by replacing all odd genes with their respective

odd gene located in the next individual for each one.
4. Repeat (3) for the c2 better individuals orderly for each population P g

k,m

at the generation g.

Remark 3.3 (Ranking of the solutions). Figueroa-Garćıa, Kalenatic and
López [19, 20] used an elite-based method for ranking the individuals of the
population. Although it is a classical method which shows a good behavior, we
encourage the reader to implement other ranking methods for the sake of new
developments and improvements.

3.7.1 Completing the Population

A classical strategy for exploring the space of solutions is by replacing the
worst individuals by new ones, preserving the best ones at each population
P g

k,m. As usual, the number of best individuals is a free parameter, and in
some cases it is involved as a random part of the algorithm.



2 Incomplete Time Series: Imputation through Genetic Algorithms 41

Now, P g+1
k,m is updated by a set of random individuals, which is generated

by replacing the worst individuals with new ones, in order to find better solu-
tions. In short, the best k1 individuals are preserved for the next generation
and later it is completed by {k − k1 − c1 − c2}m new individuals.

3.8 Stopping Strategy

There are different criteria for stopping a GA. Two of the most used methods
are: A first one which uses a predefined maximum number of iterations called
G, that is g → G, and a second one which stops a GA when its fitness function
F has no a significant improvement after a specific number of iterations.

Aytug and Koehler [6, 7] proposed an alternative stopping criterion for
GAs based on a function of its mutation rate, the size of the population
strings and the population size. Bhattacharrya and Koehler [5] generalized
their results to non-binary alphabets. Pendharkar and Koehler [40] proposed
a stopping criterion based on the markovian properties of a GA, and Safe
et.al. [43] proposed entropy measures for constructing stopping operators.

The number of generations G is another degree of freedom of a GA. Usually,
as F has no improvements, then G should be reduced. Finally, the best
individual is selected by ranking F through all runs and generations, so the
best individual will be imputed in the original series to complete the series.

An elite-based approach usually gets better solutions because this ensures
the improvement of the solution through all generations. On the other hand,
different stopping criteria can be used as long as the solutions are improved.

A brief description of the algorithm is presented in the Algorithm 1.

Algorithm 1. Genetic algorithm
Require: v, n, n1, n2, m, H, c1, c2, k

1, ρ̂(h)l, z̄a,Var(z)a

Generate an initial population of size k by using Rj

for g = 1 → G do
return F For each kth individual
Index P g

k,m by F
Apply the mutation operator to the c1 better individuals
Apply the crossover operator to the c2 better individuals
return F For each kth individual
Index P g

k,m by F
Preserve the best k1 individuals, indexed by F
Complete the population with a vector of size {k − k1 − c1 − c2}m

end for
return F For each kth individual
Index P G

k,m by F
return minF
Replace P G

1,m in the original series, indexing it by using v
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Another common strategy for exploring the space of solutions is by running
the algorithm several times, Runs. The number of runs should be a function
of k, m, G and the computing time of each run, so we recommend to initialize
with small attempts before running an adequate experiment. A graphical
display of the imputation strategy is shown in Figure 2.

Preprocess {xt}

Get {zt} Define {v} Compose P
g
k,m Evaluate F

Order P
g
k,m

Mutation, Crossover
Evaluate F

Preserve the best k1

Compose P
g+1

k,m

Select the best zjCompute yt + zt = ẑt

Is {ẑt}
adequate?

Set x̂t = (ẑt)−1

No

Yes

Iterate G times

Fig. 2 Flowchart of the proposed GA

In the following section, an application of the algorithm is presented and
compared to a classical imputation algorithm.

4 Application Example

The selected study case is a weather time series that has multiple missed
observations produced by a failure in the measurement device. In this case, we
use the minimum temperature (MT) recorded at the town of Ch́ıa - Colombia
during 1368 days between 10 p.m. and 5 a.m. when maximum and minimum
levels are registered, each one measured every half an hour throughout the
night. All missed observations are displayed by discontinuities. Figure 3 shows
the original series and the series after preprocessing by applying (7) and (10),
where, a) is the original series and b) is the series after preprocessing.
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Fig. 3 Study Case measured in Ch́ıa - Colombia

4.1 Statistical Analysis

Some basic statistics obtained from available data are shown in Table 1. Its
mean and variance are used as estimations of (8), (9). We obtain ρ̂(h)l by
using (12) for H = {1, · · · , 6} in order to define the fitness function F for
each genetic structure.

Table 1 Observed statistics

Measure ρ̂(1) ρ̂(2) ρ̂(3) ρ̂(4) ρ̂(5) ρ̂(6) z̄a Var(za) min max

Value -0.339 -0.052 0.004 -0.104 0.129 -0.051 -0.027 5.053 -4.436 4.015
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In this case, we have 1367 observations (N = 1367) of the minimum tem-
perature at the town of Ch́ıa - Colombia, where 159 are lost (m = 159, n =
1208). Some randomness tests done over {za

i } are shown in Table 2.

Table 2 Tests of randomness

Tests on normality

Test. p-value p-value p-value p-value

Shapiro-Wilks 0.0023 ≈ 0 ≈ 0 ≈ 0

K-S. ≈ 0 ≈ 0 0.0014 ≈ 0

Tests on randomness

Test. p-value p-value p-value p-value

Runs Test 0.001 ≈ 0 ≈ 0 ≈ 0

Turning Points ≈ 0 ≈ 0 ≈ 0 ≈ 0

Ljung-Box b ≈ 0 ≈ 0 ≈ 0 ≈ 0

ARCH b ≈ 0 ≈ 0 ≈ 0 0.0025

b This test is made by using the first lag of the series

All tests conclude that the series is not a random variable. The Ljung-Box
and ARCH tests reject the hypothesis that the series has no serial correlation,
this means that it presents autocorrelation at least on its first lag. Both
Shapiro-Wilks and Kolmogorov-Smirnov (K-S) tests reject the hypothesis
that each series is normally distributed, which is an important constraint for
some imputation methods that are based on strong normality assumptions.

4.2 Classical Estimation Methods

One of the most popular imputation algorithms is the expectation maximiza-
tion (EM) algorithm, which is based on conditional expectations of a random
variable, obtained from a set of auxiliary variables which give an estimate of
the behavior of the missing data. Its principal objective is to maximize the
Likelihood or Log-Likelihood Function of the pdf sample, obtaining an opti-
mal estimation of the missing observations. This algorithm was proposed by
Dempster [16], and Gaetana & Yao [22] proposed a variation of the EM algo-
rithm based in a simulated annealing approach to improve its efficiency for
the multivariate case. Celeux & Diebolt [14], Levine & Casella [34], Nielsen
[38] have reported some modifications for a stochastic scenario, and Arnold
[4] estimates the parameters of a state-dependant AR model by using the
EM algorithm with no prior knowledge about state equations.

By using the EM algorithm, a maximum likelihood estimator is obtained
by replacing all v positions of {xi} by its expected value E(x), so we have
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that {xt} = E(x); and the regression method replaces all missed observations
by random residuals of available data; its results are displayed in Figure 4.

Another method is based on auxiliary regressions, which consists on esti-
mate the mean and variance of available data, and then each missed obser-
vation is replaced by the estimated mean plus a random residual obtained
from a regression of available data against auxiliary variables. In the case of
univariate series, this method is a simple estimation of its mean and variance.

In Figure 4, a) shows the results of the EM algorithm and b) presents
the results of the regression method. According to Table 3, we can conclude
that these approaches does not show desirable properties for univariate time
series. Their statistical properties are presented in Table 3.

Table 3 Results of classical estimation methods

Measure ρ̂(1) ρ̂(2) ρ̂(3) ρ̂(4) ρ̂(5) ρ̂(6) ¯̂z Var(ẑ) It. F
EM algorithm -0.302 -0.071 -0.046 -0.027 0.042 -0.0003 -0.0002 0.883 4 4.516

Regression -0.266 -0.071 -0.051 -0.018 0.044 0.005 0.0128 0.997 N.A. 4.470

By evaluating the Fitness Function F , both classical algorithms provide
great differences among the obtained mean, variance, ρ̂l(h) and their available
values. With these evidences it is clear that the EM algorithm is not the best
option to estimate missing data on a univariate time series context.

4.3 Genetic Approach

Figure 2 describes the methodology proposed in this chapter. First, we apply
(7) and (10) to standardize data, then we compute ρ(h)l using (12) for the
first H = 6 lags, and later we compute z̄a and Var(za) of available data, as
shown in Table 5.

Figueroa-Garćıa, Kalenatic and Lopez [19, 20] have found better results
with k = 100 individuals, outperforming computing time and improving the
quality of solutions. The crossover, mutation and remaining parameters used
in the GA for each series are shown in Table 4, where a and b are obtained
from the observed series as its potential maximum and minimum values. c1, c2

are free parameters which modify the mutation and crossover rates of the GA,
and G is selected by trial and error based on the behavior of F . n1 and n2 are
initial and end points of the largest and most recent complete dataset (See
“Set l” in Figure 3-b), which are needed by(11) to obtain ρ̂(h)l through the
use of (12) for H = {1, · · · , 6}.
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Fig. 4 Results of classical imputation methods

Table 4 Genetic algorithm parameters

Parameter k a b c1 c2 n1 n2 m G Av. time (sec)

Value 100 -5.5 5 4 4 1036 1211 159 5000 448.3

In this Table, the average time (in sec.) was obtained from 25 runs of
the algorithm. The maximum processing time was 497.3 sec and the lower
processing time was 421.1 sec. After the total 125.000 generations of the
algorithm divided into 25 runs, the best solution (minimum F), was selected.
The obtained solution is displayed in black in Figure 5 and the obtained
results for all imputed data are presented in Table 5.
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Fig. 5 Complete dataset with imputed missing data

Table 5 Results of evolutionary optimization

Measure ρ̂(1) ρ̂(2) ρ̂(3) ρ̂(4) ρ̂(5) ρ̂(6) ¯̂z Var(ẑ) F
Value -0.340 -0.052 0.004 -0.105 0.119 -0.052 -0.027 5.053 0.0112
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Fig. 6 Behavior of the GA for 25 runs



48 J.C. Figueroa-Garćıa, D. Kalenatic, and C.A. López

In Figure 6, the behavior of the proposed GA is measured by the minimum,
average and maximum values of F over 25 runs, called maxg∈G{F},Fg∈G

and ming∈G{F} respectively. Note that the GA always goes to stable values
of F , and they have no a high improvement after about g = 2000 iterations.

In general, the GA solution has no great differences to original data and it
does not change its statistical properties. In this way, the proposed method
seems to be a better method for imputing multiple missing observations in
time series than other classical algorithms.

5 Output Analysis

This section focuses on analyzing the original series vs. genetic imputation.
The output analysis is based on comparisons of some interesting statistical
measures, among them we have: Tests on means, variances, autocorrelations
and experimental design. Figure 7 shows the way all of them are connected.

Output
analysis

Tests on
means

Tests on
variances

Experimental
design

Analysis of
autocorrelations

Fig. 7 Output analysis

Some descriptive statistics, randomness, differences on means, variances
and autocorrelations tests were performed, as shown in Tables 6, 8 and 9.

Table 6 Tests of normality and randomness (significance)

Test Runs Turning-point S-W K-S Ljung-Boxb ARCHb

Original series ≈ 0 ≈ 0 ≈ 0 ≈ 0 0.0001 ≈ 0

Imputed series ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

b This test is made by using the first lag of the series.

5.1 Tests on Means and Variances

The general hypotheses used for finding differences between original and im-
puted series, are as follows
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Table 7 Hypothesis on means and variances

Test on means Test on variances

H0 : ẑ = z̄a Var(ẑ) =Var(za)

Ha : ẑ �= z̄a Var(ẑ) �= Var(za)

The obtained results of the Tests on means are presented in Table 8.

Table 8 Tests on means (significance)

Test ANOVA Welch Brown-Forsythe K-S Mann-Whitney

Original vs. Imputed 0.964 0.964 0.964 ≈1 0.6404

With these statistical evidences, the hypothesis on means defined in Table
7 with a 95% confidence level, is accepted. We implement the Levene’s test
for contrasting their variances. Its results are shown in Table 9.

Table 9 Levene test

Test Levene stat Significance

Original vs. Imputed 0.00414 0.948

The ANOVA, Welch, Brown-Forsythe, K-S, Mann-Whitney and Lev-
ene tests conclude that there are no differences between ¯̂z → z̄a, and
Var(ẑ) →Var(za) respectively, this means that the genetic solution has no
statistical differences to available data. With these statistical evidences, the
hypothesis defined in Table 7 are accepted with a 95% confidence level.

Remark 5.1 (Additional analysis). Although we recommend the use of
experimental design and autocorrelation analysis (See Figure 7), we did not
perform those analysis due to the high similarity among autocorrelations and
the absence of differences between means and variances. In case where means
and/or variances have differences, it is recommended to perform an experi-
mental design for finding the causes of differences among each run of the GA
and the original series.

Roughly speaking, the GA outperforms the solution provided by classical
algorithms, in terms of the statistical properties of the series. The obtained
results have no any statistical evidence to reject H0, so we can accept them.
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6 Concluding Remarks

The following concluding remarks can be made

1. The proposed genetic algorithm outperforms classical algorithms, provid-
ing better solutions without modifying their available properties.

2. The flexibility of evolutionary methods allows us to design efficient algo-
rithms for finding missing observations in a time series context; its non-
linear capability becomes a powerful tool for exploring the search space.

3. The use of multi-criteria fitness operators are alternative tools in front to
classical imputation methods as the EM algorithm and its modifications.

4. Most of optimization techniques need additional variables to be consis-
tent. The presented approach finds successful solutions with no additional
information, which is a common issue in univariate time series.

5. Some emerging applications as multivariate data analysis, signal and image
processing problems are proposed for future applications.

Finally, we encourage the reader to improve the presented results by modi-
fying our proposal. The fitness function (F), population size, c1, c2, k

1 and g
can be modified, so other strategies can be used for getting better results in
other missing data cases.
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