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Chapter 17 
Predicting Hourly Ozone Concentration Time 
Series in Dali Area of Taichung City Based on 
Seven Types of GM (1, 1) Model 

Tzu-Yi Pai*, Su-Hwa Lin, Pei-Yu Yang, Dyi-Huey Chang, and Jui-Ling Kuo 

Abstract. In this study, seven types of first-order and one-variable grey differen-
tial equation model (abbreviated as GM (1, 1) model) were used to predict hourly 
ozone concentrations in Dali area of Taichung City, Taiwan. The results indicated 
that the minimum mean absolute percentage error (MAPE), mean squared error 
(MSE), root mean squared error (RMSE), and maximum correlation coefficient 
(R) were 19.00 %, 45.27, 6.73, and 0.91, respectively. All statistical values re-
vealed that the prediction performance of GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 
1, b) is better than the performance of other GM (1, 1) models. The GM (1, 1) 
model required a very small sample size, as low as four samples, but the modeling 
could result in very high prediction accuracy. It is also revealed that GM (1, 1) GM 
(1, 1) was an efficiently early warning tool to provide ozone information to inha-
bitants. 
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1  Introduction 

In the past two decades, air pollution has improved in most cities in Western Eu-
rope, North American as well as Japan. Air pollution reductions have resulted 
mainly from greater efficiency and pollution-control technologies in factories, 
power plants, and other facilities (Cunningham and Cunningham, 2006). Although 
improvements are also achieved in transportation, the regulation efficiencies of O3 
pollution sources are not as significant as those of other pollution sources because 
of their emitted and reactive characteristics (Faiz et al., 1995; Fischer et al., 2000; 
Kingham et al., 2000; Lipfert et al., 2006; Pai et al., 2007). 

Among all air pollutants, the elevated O3 concentrations at ground level are of 
particular concern, because of the harm to human health and vegetation. Gao and 
Niemeier (2008) indicated that ozone pollution was caused by photochemical 
reactions of precursor volatile organic compounds (often called non-methane hy-
drocarbons, NMHC) and nitrogen oxides, of which transportation emissions are 
the single major source. Several references showed that the mobile sources had a 
significant influence on ozone formation (Gao, 2007; Gao and Niemeier, 2007; 
Wang et al., 2009). In addition, the emissions of NMHC are one of the main con-
tributors to ozone formation (Delucchi et al., 1994). 

The relationship between ozone and its precursors is complicated due to the 
fact that meteorological and chemical reaction rates range from very fast to very 
slow. Such relationships between meteorological condition and ozone concentra-
tions have been explored in several studies which have utilized statistical regres-
sion, graphical analysis, fuzzy theory, and cluster analysis. 

Typically, environmental data are very complex for modeling because interre-
lations between various components result in a complicated combination of  
relations. Models providing reasonable accuracy have to consider physical and 
chemical relations among O3 and other pollutants under various meteorological 
conditions simultaneously. However, the uncertainty problem will occur when 
above modeling approaches were adopted. One of the most important problems is 
the uncertainty of input data, including source identification, meteorological con-
ditions, and relevant reaction mechanisms. No matter how good the inventory in-
vestigation was carried out in a large-scale modeling analysis, the uncertainties of 
input data in the mechanistic modeling process cannot be completely eliminated. 

Many other attempts to model the interrelations have also been carried out. Li-
near regression methods, for instance, have been widely employed for decades 
(Abdul-Wahab et al., 2005). Additionally, to adequately model complex, 
non-linear phenomena and chemical procedures, artificial neural networks (ANN) 
and fuzzy logic approach have been widely applied because of their ability to 
model  nonlinear data well (Gautam et al. 2008; Cai et al., 2009). 

Although ANNs could predict air pollutant concentrations successfully, they 
require a large amount of training data. In order to simplify statistical complexity 
and gain consistent results from the investigation data for predicting air pollutant, 
the grey system theory (GST) offers a suite of methods. 
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The GST can resolve the problem of incomplete data and has been applied in 
our previous studies (Deng, 2002, 2005; Pai et al., 2007 a, b; Pai et al., 2008 a, b, 
c; Pai et al., 2010; Pai et al., 2010 a, b). GST focuses on the relational analysis, 
model construction, and prediction of the incomplete information. It requires only 
a small amount of data and the better prediction results can be obtained.  

There are many methods of analysis in GST including grey model (GM). GM 
can be used to establish the relationship between many sequences of data. Among 
all air pollutants, the O3 concentrations at ground level are of particular concern 
because of the serious harm to human health, especially in a short-time period. If 
an efficient method could be developed to predict the short-time O3 concentra-
tions, a better control strategy could be sought. Since the hourly data of particulate 
matter (PM) were predicted successfully using GM presented in our previous 
work (Pai et al., 2011), GM could be used to predict the hourly O3 concentrations. 

The objectives of this study are as follows: (1) Construct seven types of 
first-order and one-variable grey differential equation model (abbreviated as GM 
(1, 1) model) for predicting hourly O3 concentrations in Dali area of Taichung 
City in Taiwan, (2) Compare the prediction performance of seven types of GM (1, 
1) model. 

2  Materials and Methods 

2.1  Data Set 

The monitoring data from air quality monitoring station locating in Dali area of 
Taichung City was selected in this study (Figure 1). The concentrations of O3 from 
29th of July to 16th of August 2008 were investigated. They were sampled and 
investigated every hour. The total number of data was 456. Among the data, 384 
data points were used to estimate the coefficients of the models and 72 data points 
were used as the observed values when evaluating the performance of the model. 
The maximum, minimum, mean value and standard deviation of O3 series were 
100.2, 1.1, 25.0, and 21.2 ppb, respectively. The meteorological condition was 
ignored in this study. 

2.2  Grey Modeling Process 

In a situation where information is lacking, using fewer (at least 4) system infor-
mation, one can create a GM to describe the behavior of the few outputs. By 
means of accumulated generating operation (AGO), the disorderly and the unsys-
tematic data may become exponentially behaved such that a first-order differential 
equation can be used to characterize the system behavior. Solving the differential 
equation will yield a time response solution for prediction. Through inverse  
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Fig. 1 Dali area 
 

 
accumulated generating operation (IAGO), the forecast can be transformed back 
to the sequence of original series. A grey modeling process is described as  
follows. 

Assume that a series of data with n samples is expressed as: 
 

)),n(x,),2(x),1(x(X )0()0()0(}0{ =                 (1) 

 
where the superscript (0) of X(0) represents the original series. Let X(1) be the 
first-order AGO of X(0), whose elements are generated from X(0): 
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conducted to develop the r-order AGO series, X(r): 
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− . The IAGO is the inverse operation of 

AGO. It transforms the AGO-operational series back to the one of a lower order. 
The operation of IAGO for the first-order series is defined as follows: 

)1(x)1(x )1()0( =  and n,2,3,k for )1k(x)k(x)k(x )1()1()0( =−−= . After ex-

tending this representation to the IAGO of r-order series, we have 
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n,2,3,k for )1k(x)k(x)k(x rr)1r( =−−=− . The tendency of AGO can be ap-

proximated by an exponential function. Its dynamic behavior resembles differen-
tial equation. The grey model GM (1, 1) thus adopts a first order differential  
equation to fit the AGO series, 

 

bax
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dx =+ )1(
)1(

                        (4) 

 
where the parameter a is the developing coefficient and b is the grey input. Ac-
cording to the definition, GM (1, 1) is that the order in grey differential equation is 
equal to 1 and defined as follows: 
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Transforming (6) into a matrix form, we have 
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Then the coefficients can be estimated by solving the matrix relationship, 
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Sometimes, singularity would be encountered when treating the increasingly ac-
cumulated data. Then the inverse matrix could not be determined. Once this situa-
tion occurs, Computational Intelligence techniques could be applied. In this study, 
the increasingly accumulated data would not result in singularity due to their val-
ues and numbers were not too high. Additionally, the whitening type of GM (1, 1) 
model (or in terms of GM (1, 1, W)) that can be used for prediction is described 
as: 
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Additionally, there are several types of GM (1, 1) model which are derived from 
(4) as follows. 
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Grey difference type of GM (1, 1): GM (1, 1, x(1)) 
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IAGO type of GM (1, 1): GM (1, 1, x(0)) 
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Exponent type of GM (1, 1): GM (1, 1, e) 
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When adopting GM (1, 1, x(0)), GM (1, 1, a), GM (1, 1, b), and GM (1, 1, e), 

)2()0(x  has to be calculated as follows: 
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All seven types of the GM (1, 1) model and their denotation are summarized in 
Table 1. The detailed derivation of these GM (1, 1) models can be found in Deng 
(2002, 2005). 

2.3  Error Analysis 

In order to evaluate the prediction accuracy of GM (1, 1), the mean absolute per-
centage error (MAPE), mean square error (MSE), root mean square error (RMSE), 
and correlation coefficient (R) were employed, 
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Table 1 Seven types of GM (1, 1) model 

Type Denotation  Prediction equation 
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where iobs  is the observed value, ipre  is the result of prediction, obs  and 

pre  are the average values of observed values and prediction values, respectively. 

3  Results and Discussion 

3.1  Determination of Grey Parameters 

For determining the parameters of GM (1, 1), the observed O3 data were plugged 
into (6) and the grey parameters were calculated by solving (7). When predicting, 
the values of the parameters a and b were equal to -0.00090492 and 23.404, re-
spectively. According to (4), the parameter a (developing coefficient) will deter-
mine the predicting trend meanwhile parameter b (grey input) will determine the 
interception of (4). 

3.2  Simulation of O3 

Table 2 shows all the values of MAPE, MSE, RMSE and R using seven types of 
GM (1, 1) model. The 1st to 384th data were used for constructing model, 385th to 
456th data were used to evaluate the fitness. All values of the performance indexes 
revealed that the predicting performance of GM (1, 1, x(0)), GM (1, 1, a), and GM 
(1, 1, b) prevailed. Figure 2 (a), (b), and (c) depict the prediction results of O3 us-
ing seven types of GM (1, 1) model. 

As shown in Table 2, when constructing, MAPEs between the predicted and 
observed values of O3 were between 29.03 % and 29.30 % using GM (1, 1, x(0)), 
GM (1, 1, a), and GM (1, 1, b), but they were 153.60 % - 220.96 % using other 
GM (1, 1) models. When predicting, the MAPEs were 19.00 % - 19.06 % when 
adopting GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b), but they were between 
94.66 % and 147.43 % when using other GM (1, 1) models. 

The MSE values of 78.85 - 79.48 using GM (1, 1, x(0)), GM (1, 1, a), and GM 
(1, 1, b) were lower than those of 440.64 – 541.01 using other GM (1, 1) models 
when model constructing. When predicting, the values of 45.27 - 45.41 using GM 
(1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) were also lower than those of 300.11 – 
586.04 using other GM (1, 1) models. When constructing, the RMSE values of 
8.88 – 8.92 using GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) were lower than  
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Fig. 2 Prediction results of O3. (a) GM (1, 1, W), (b) GM (1, 1, C), (c) GM (1, 1, x(1)), (d) 
GM (1, 1, x(0)), (e) GM (1, 1, a), (f) GM (1, 1, b), (g) GM (1, 1, e) 

 
 

those of 20.99 – 23.26 using other GM (1, 1) models. The RMSE value of 6.73 – 
6.74 using GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) were also lower than 
those of 17.32 – 24.21 using other GM (1, 1) models when predicting. 

When constructing, R value between the predicted and observed values of O3 
was 0.91 using GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b), but they were 0.13 
– 0.14 using other GM (1, 1) models. When predicting, the R was 0.91 when 
adopting GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b), but they were between 
-0.19 and -0.17 when using other GM (1, 1) models. 

Comparable observations were similarly made by Abdul-Wahab et al. (2005). 
Abdul-Wahab et al. (2005) employed data on the concentrations of seven envi-
ronmental pollutants (CH4, NMHC, CO, CO2, NO, NO2 and SO2) and meteoro-
logical variables (WS and direction, Temp, RH and solar radiation) to predict the 
concentration of ozone in the atmosphere using both multiple linear and principal 
component regression methods. They found that R2 for the day and night periods, 
were of 0.82 and 0.76, respectively. In this study, the R of 0.84 was obtained using 
GM.  

Comparable observations were also made by Gautam et al. (2008). They pro-
posed a new algorithm to predict the chaotic time series of O3 based on the ANN 
technique. They found that the MAPEs lay between 12.26 – 24.01 % using ANN 
and 9.46 – 13.55 % even using new algorithm.  

In the study proposed by Cai et al. (2009), ANN was used to predict hourly air 
pollutant concentrations near urban arterials. The results indicated that the MAPE 
for predicting O3 fell in the range of 32.93 % and 45.15 %, RMSE were between 
9.5 and 10.3, and R lay between 0.941 and 0.951, respectively. 
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In our previous study, seven types of GM (1, 1) models were used to predict 
hourly PM including PM10 and PM2.5 concentrations in Banciao City of Taiwan (Pai 
et al., 2011). The results indicated that the minimum MAPE, MSE, RMSE, and 
maximum R was 14.10 %, 25.62, 5.06, and 0.96, respectively when predicting 
PM10. When predicting PM2.5, the minimum MAPE, MSE, RMSE, and maximum R 
value of 15.24 %, 11.57, 3.40, and 0.93, respectively could be achieved. In this 
study, the minimum MAPE, MSE, RMSE, and maximum R was 19.00 %, 45.27, 
6.73, and 0.91, respectively.  

According to both results, the GM (1, 1) model required a very small sample 
size, as little as four sample points, however the modeling could result in very 
high prediction accuracy. Furthermore, the parameter estimation in GM (1, 1) 
model was only a procedure to fit a simple regression. Therefore, GM could be 
applied successfully in predicting O3 when the information was not sufficient.  

In addition, the source identification, meteorological conditions, and relevant 
reaction mechanisms were taken as the input variables when using fuzzy or neural 
network models. But the source identification, meteorological conditions, and re-
levant reaction mechanisms did not be taken into account when using GM (1, 1). 
Although the mechanisms were unclear, the whitening part of the GM (1, 1) mod-
el could serve as useful reference to help observer realize more O3 variation. 

4  Conclusions 

Seven types of GM (1, 1) model were used to predict hourly O3 concentrations in 
Dali area of Taiwan. Their prediction performance was also compared. The con-
clusions can be drawn as follows. All statistical values revealed that the predicting 
performance of GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) outperformed other 
models. When predicting O3, the minimum MAPE, MSE, RMSE, and maximum 
R was 19.00 %, 45.27, 6.73, and 0.91, respectively. According to the results, it is 
shown that GM (1, 1) could predict the hourly O3 variation. Additionally, GM (1, 
1) was an efficiently early warning tool for providing timely O3 information. 
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