
Chapter 16
Building Fuzzy Autocorrelation Model and Its
Application to the Analysis of Stock Price
Time-Series Data

Yoshiyuki Yabuuchi and Junzo Watada

Abstract. The objective of economic analysis is to interpret the past, present or fu-
ture economic state by analyzing economic data. Economic analyses are typically
based on the time-series data or the cross-section data. Time-series analysis plays a
pivotal role in analyzing time-series data. Nevertheless, economic systems are com-
plex ones because they involve human behaviors and are affected by many factors.
When a system includes substantial uncertainty, such as those concerning human
behaviors, it is advantageous to employ a fuzzy system approach to such analysis.
In this paper, we compare two fuzzy time-series models, namely a fuzzy autoregres-
sive model proposed by Ozawa et al. and a fuzzy autocorrelation model proposed
by Yabuuchi and Watada. Both models are built based on the concepts of fuzzy sys-
tems. In an analysis of the Nikkei Stock Average, we compare the effectiveness of
the two models. Finally, we analyze tick-by-tick data of stock dealing by applying
fuzzy autocorrelation model.
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1 Introduction

Many econometric models including the time-series model have been proposed for
evaluating economic systems. In this paper, we propose the fuzzy time-series model,
which is employed in the analysis of an economic system.
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The objective of economic analysis is to precisely understand the past and present
states of an economic system based on the statistical data [1, 21]. However, in an
economic system, the state is closely related to many factors that are triggered by
the aggregation of numerous human behaviors [24].

Therefore, it becomes insufficient to interpret such an economic system with the
use of conventional statistical methods. Instead, it is desirable to apply the concept
of the fuzzy system theory which can handle the ambiguity of a structure when we
analyze an economic system with many vague factors.

In addition, illustrating a time-series system and making a prediction by a time-
series model, estimates are far from observed values. It is a natural interpretation of
one reason that a possibility of a time-series system makes data fluctuating. Under
the consideration that a Box-Jenkins model can describe a time-series with high
accuracy, we propose a fuzzy autocorrelation model based on a Box-Jenkins model
to describe a time-series system.

Ozawa et al. have proposed a fuzzy autoregressive model [11]. Their model de-
scribe the system in terms of error term instead of the coefficient mentioned above.
The Ozawa’s model, the autoregressive parameter is constructed by including time-
series data, minimizing the vagueness of the model, and has real values. In addition,
their model express the vagueness of the time-series system by the error term written
by fuzzy numbers. The characteristics of these two models are compared by using
numerical examples.

We analyze the Nikkei stock average by employing both the fuzzy autoregressive
model which was first proposed by Ozawa et al. [11], and the fuzzy autocorrelation
model, which is being proposed in this paper. Furthermore, the fuzzy autocorrelation
model is applied to an economic analysis by analyzing the tick-by-tick data of stock
prices. This enables us to forecast a future trend by a sequential prediction that fits
the present condition.

The structure of this chapter is organized as follows: In Section 2, a fuzzy time-
series analysis based on the fuzzy auto-correlation model will be built by expanding
the Box-Jenkins model. In Section 3, we compare the characteristics of the fuzzy
autoregressive model with those of the fuzzy autocorrelation model by analyzing
the Nikkei stock average. In Section 4, we analyze the tick-by-tick data of stocks by
applying the fuzzy autocorrelation model.

2 Fuzzy Time-Series Model

This section elaborates on various fuzzy time-series analysis models. Then, the
fuzzy autoregressive model proposed by Ozawa et al. and our fuzzy autocorrela-
tion model are described.

2.1 Various Fuzzy Time-Series Analysis Models

Let us review several fuzzy time-series models before discussing our fuzzy autocor-
relation model and the conventional fuzzy autoregressive model.
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L.A. Zadeh proposed fuzzy set theory [29] in 1965. It helps deal with qualitative
data such as linguistic ones by using membership functions.

Based on these concepts, a fuzzy time-series analysis can be built. The models are
classified into three groups: (1) a regression model-based analysis, (2) a Box-Jenkins
model-based analysis and (3) a fuzzy reasoning(If-Then rule)-based analysis.

These three groups and others are reviewed below.

2.1.1 Regressive Model-Based Analysis of Fuzzy Time-Series Data

In general, a fuzzy regression-based time-series analysis employs the fuzzy regres-
sion model proposed by Tanaka et al. [16], in which the vagueness included in the
target system is addressed with the use of the fuzzy regression coefficients

Yi = (a1,c1)xi1 +(a2,c2)xi2 + · · ·+(ap,cp)xip = (a,c)xi (1)

where, xi are explanatory variables, a = [a1,a2, · · · ,ap] denotes the center position
of the fuzzy coefficients in the vector and c = [c1,c2, · · · ,cp] are the widths of the
fuzzy coefficients. The fuzzy regression model basically deals with the vagueness
included in the system and treated with intervals that can express all of the possi-
bilities by including all of the samples. Therefore, the estimated values, Yi, of the
observed values yi are expressed as fuzzy numbers, and the coefficients are viewed
as fuzzy coefficients. In this formulation, the fuzzy coefficients (a,c) can be ob-
tained by solving a certain Linear Programming (LP) problem.

Watada et al. employ the fuzzy regression model to time-series data, and using
fuzzy coefficients, they build a fuzzy regression model that includes all the vague-
ness of time-series system [22, 23]. However, they change the formulation of the
fuzzy regression model to account the smoothing of time-series data.

2.1.2 Box-Jenkins Model-Based Analysis of Fuzzy Time-Series Data

Similarly to Box-Jenkins model, fuzzy time-series analysis includes two models
based on fuzzy numbers and one model dealing with numeric data. Models dealing
with fuzzy numbers are proposed by Yabuuchi et al. and Ozawa et al.. Yabuuchi et
al. interpreted time-series data from a possibilistic point of view, define fuzzy au-
tocorrelation coefficients based on fuzzified data, and build a fuzzy autocorrelation
model using these values [24].

The fuzzy autocorrelation model aims to capture the present state or the future
state of the time-series process by using past fuzzy time-series data similar to the
Box-Jenkins model. Therefore, the fuzzy autocorrelation model is obtained from
a fuzzy autocorrelation coefficient that expresses the relationship between fuzzy
time-series data by a fuzzy operation. The proposed fuzzy autocorrelation model is
explained below.

In contrast to the above model, Ozawa et al. proposed a fuzzy autoregressive
model [11] that expresses the possibilities of fuzzified difference sequences. The
fuzzy autoregressive model is written down as follows:
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Z̃t = φ1Zt−1 + · · ·+φpZt−p +u
Zt ⊆ Z̃t , Z̃t = (α̃t , β̃t , δ̃t)

}
(2)

A time-series data is fuzzified to be used by the fuzzy autoregressive model:

Yt =

(
zt

3
min
i=1

zt+2−i/
3

max
i=1

zt+2−i, zt , zt
3

max
i=1

zt+2−i/
3

min
i=1

zt+2−i

)
(3)

Using the differenced series Zt , which transformed fuzzy time-series data Yt to de-
trending series, a fuzzy autoregressive model is formed. The fuzzy autoregressive
model illustrate the relationship between fuzzy time-series data by a real-valued
autoregressive parameter φ , and the vagueness of the system by introducing a trian-
gular fuzzy number u = (uα ,uβ ,uγ ).

F.M. Tseng et al. proposed a fuzzy ARIMA model [18]. The fuzzy ARIMA
model expresses the possibilities of the time-series system with fuzzy coefficients
of the model, which is similar to other fuzzy time-series models.

The fuzzy ARIMA model is expressed as follows:

z̃t =(a1,c1)zt−1 + · · ·+(ap,cp)zt−p

+εt − (ap+1,cp+1)εt−1 −·· ·− (ap+q,cp+q)εt−q
(4)

where zt = ∇d(Zt − μ), αi denotes the center position of the fuzzy number and
ci stands for the vagueness of the fuzzy number. In addition, εt are independent
and identically distributed normal random variables with a zero mean and variance
of σ2.

Although the fuzzy ARIMA model does not deal with seasonal variations, the
fuzzy ARIMA model is developed as a fuzzy regression model and has fuzzy pa-
rameters [19]. Therefore, F.M. Tseng et al. proposed the fuzzy seasonal ARIMA
model to deal with the seasonal variations. The fuzzy ARIMA model combines the
fuzzy regression model and the seasonal ARIMA model [19].

This Box-Jenkins model based fuzzy time-series analysis models have a fuzzy
numbers output to illustrate the possibilities of the system. Additionally, because
these models are formulated by the LP problem, the required number of time-series
data is less than that required to construct a statistical model.

2.1.3 Fuzzy Reasoning(If-Then Rule)-Based Analysis

Song et al. proposed a fuzzy reasoning (IF-Then rule)-based model, which is based
on a fuzzy time-series model [13, 14, 15].

Song and Chisson describe the relationships between fuzzy time-series data using
IF-Then rules and build a fuzzy time-series model to express these rules [13, 14,
15]. Various models have been proposed based on Song et al.’s fuzzy time-series
model. Yu proposed the method to employ Song et al.’s fuzzy time-series model
after assigning weighs to emphasize data near to the time point in the fuzzy time-
series data [28].



16 Building Fuzzy Autocorrelation Model and Its Application 351

Teoh et al. improved a model to accept intuitive and subjective opinions using
fuzzy logical rules proposed by Song et al.’s model. Cheng et al. indicated that
Song et al. did not consider any logical relations among rules and proposed a novel
forecasting model that considers the similarities among fuzzy logical relations [3].

Teoh et al. created fuzzy logical relations based on rough sets theory and built a
model with the rules generated by Song et al.’s model [17].

Additional fuzzy time-series models that improve upon Song et al.’s model have
been proposed as well [2, 6]

2.1.4 Some Other Fuzzy Time-Series Models

Many other useful fuzzy time-series models have been proposed. R. Dong et al.
proposed a granular time series approach that employs a fuzzy clustering technique
to construct an original series [4]. This model uses long-term forecasting and trend
forecasting.

M. Khashei et al. proposed a hybrid model, in which the ARIMA models are
integrated with artificial neural networks and fuzzy logic to move beyond the linear-
ity of a model [8]. However, O. Valenzuela et al.’s model is an integrated ARMA
model, using both neural networks and fuzzy logic [20]. K. Lukoseviciute et al.’s
model is employed using an evolutionary algorithm [10].

T. Partal et al. proposed a method that combines a discrete wavelet transform and
a neuro-fuzzy method [12].

C.H.L. Lee et al.’s approach employs the Japanese candlestick theory [9]. The
theory assumes that the candlestick patterns reflect the psychology of the market,
and the investors can make their investment decision based on the identified candle-
stick patterns. With this approach, a vague candlestick patterns is transformed by
fuzzy linguistic variables, and the financial time series data is transformed by fuzzy
candlestick patterns. The objective of this approach is to understand the vagueness
of investors and markets, which is expressed with fuzzy linguistic variables.

J.T Yao et al. proposed the rough set model [27]. The rough set model captures
the vagueness and uncertainty of time-series data.

2.2 Fuzzy Autoregressive Model

Let us assume that all the fuzzy time-series data Zt be defined by triangular fuzzy
numbers. Triangular fuzzy numbers are defined by three parameters, and are de-
noted as Zt = (αt ,βt ,δt),(αt ≤ βt ≤ δt). The inclusion relation of triangular fuzzy
numbers is defined through the following inequalities:

Zt ⊆ Zs ⇔{αt ≥ αs, δt ≤ δs} (5)

In the same way, the arithmetic operations are defined as follows:
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Zt +Zs = (αt +αs,βt +βs,δt + δs)

Zt −Zs = (αt −αs,βt −βs,δt − δs)

p ·Zt =

{
(p×αt , p×βt , p× δt), p ≥ 0
(p× δt , p×βt , p×αt), p < 0,

where p is a real number.
A fuzzy autoregressive model is specified as follows:

Z̃t = φ1Zt−1 + · · ·+φpZt−p +u

Zt ⊆ Z̃t , Z̃t = (α̃t , β̃t , δ̃t) (6)

Based on (5) and (6), it is clear that the following relations hold.

αt ≥ α̃t ,δt ≤ δ̃t

Namely, the fuzzy time-series model includes all of the fuzzy data. The autore-
gressive parameters φ1,φ2, · · · ,φp have real values, and show the degree the fuzzy
time-series data depend on the past. An error term is the constant specific to the
model and refers to the part of the fuzzy data that do not depend on the past data.
This term is defined as a triangular fuzzy number:

u = (uα ,uβ ,uδ )

A fuzzy autoregressive model results through solving a problem of linear program-
ming that minimizes that ambiguity of the model according to the inclusion condi-
tion (6) as follows:

minimize
n

∑
t=p+1

(δ̃t − α̃t)

subject to αt ≥ α̃t ,

δt ≤ δ̃t

(t = p+ 1, p+ 2, · · · ,n)
uα ≤ uδ

(7)

2.3 Fuzzy Autocorrelation Model

Even if we had described the behavior of time-series system by using a time-series
model, the estimated values should have a near value from the observed data. The
understanding of the behavior is shaped so as that the possibility of the time-series
system is making it natural. Our model describes the possibility of the time-series
system by the coefficients. Let us employ a triangular fuzzy number here, since it is
manageable.

When different sequences are employed, trend and noise can be easily removed.
The autocorrelation makes the model describing the behaviors easily. Therefore, we
fuzzify the Box-Jenkins model.
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In the fuzzy autocorrelation model, the time-series data zt are transformed into a
fuzzy number to express the possibilities of the data. The following fuzzy equation
shows the case in which only one time point before and after the time point t is taken
into consideration in building a fuzzy number [23].

Yt = (Y L
t ,YC

t ,YU
t ) = (min(zt−1,zt ,zt+1),zt ,max(zt−1,zt ,zt+1)) (8)

Next, we employ a calculus of finite differences to filter out the time-series trend
data, which enables us to use the first-order difference-equation to write the follow-
ing:

Zt = (ZL
t ,Z

C
t ,Z

U
t ) = (min(Yt −Yt−1),Y

C
t −YC

t−1,max(Yt −Yt−1)) (9)

Generally, if we take the finite differences then we reduce the trend variation, and
only an irregular pattern is included in the difference series. However, when we use
the fuzzy operation, the ambiguity may increase, and the value of an autocorrelation
coefficient may take values not lower than 1 or not greater than -1. To solve this
problem in the case of the fuzzy operation, we adjust the width of a fuzzy number
using α-cut when determing the difference series. An α-cut level h is determined
from the value of the autocorrelation. When we calculate the fuzzy autocorrelation,
we employ the usual fuzzy operation under the condition that the fuzzy autocorre-
lation of lag 0 is set to ρ0 = λ0/λ0 = (1,1,1), which results in the following linear
programming to decide the value at the α-cut level. When we set the α-cut level to
1, the ambiguity of the fuzzy autocorrelation is the smallest, but we cannot obtain
the fuzzy autocorrelation that reflects the possibility of the system. Therefore, we
maximize the width of the autocorrelation. However, the size of the width is decided
automatically as the value of autocorrelation should be included in [-1,1].

maximize
h

p

∑
i=1

(ρU
i −ρL

i )

subject to ρU
i ≤ 1

ρL
i ≥−1

ρL
i ≤ ρC

i ≤ ρU
i

(i = 1,2, · · · , p)

(10)

We can define the fuzzy covariance and the fuzzy autocorrelation as follows:

Λk ≡Cov[ZtZt−k] = E[ZtZt−k] = [λ L
k ,λ

C
k ,λ

U
k ]

rk = Λk/Λ0 = [ρL
k ,ρ

C
k ,ρ

U
k ]

We adjust the ambiguity of the difference series by employing the α-cut level h,
which is obtained by solving the above linear programming. Using the fuzzy auto-
correlation coefficient which is calculated by employing α-cut level h, we redefine
the Yule-Walker equations as in linear programming and calculate the partial auto-
correlation.
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We form the following autoregressive process.

Zt = Φ1Zt−1 +Φ2Zt−2 + · · ·+ΦpZt−p

where Φ = [φL,φC,φU ] is a fuzzy partial autoregressive coefficient.
As mentioned above, the next observation value either exceeds the observed

value at present by the size of the value of autocorrelation or it is less than the
observed value. For this reason, autocorrelation is important to the time-series anal-
ysis. Therefore, we build a model that illustrates the ambiguity of the system cap-
tured by the fuzzy autocorrelation. The reason for the autocorrelation is also fuzzy
autocorrelation, Yule-Walker equations can also be viewed as the fuzzy equation in
the same way.

Rt = Φ1rt−1 +Φ2rt−2 + · · ·+Φprt−p (11)

Φ shown in (11) is an unknown coefficient. We are building the model in terms
of fuzzy autocorrelation which can describe the ambiguity of the system. However,
when the ambiguity of a model is large, the relationship between a model and a sys-
tem becomes ambiguous. Therefore, the possibility of the system cannot be prop-
erly described. Therefore, to obtain the fuzzy partial autocorrelation coefficient, for
which the ambiguity of a time-series model should be minimized, we have the fol-
lowing linear programming:

minimize
p

∑
i=1

(ρU
t −ρL

t )

subject to RU
t ≥ ρU

t

RC
t = ρC

t
RL

t ≤ ρL
t

ρL
t ≤ ρC

t ≤ ρU
t

(t = 1,2, · · · , p)

(12)

As mentioned above R is obtained by the fuzzy operation employing the fuzzy auto-
correlation r and fuzzy partial autocorrelation Φ . RL, RC and RU represent the lower
limit, the center, and the upper limit of R, respectively.

A fuzzy autocorrelation model expresses the possibility that the change of the
system is realized in the data, which is different from the conventional statistical
method. We are building a model that can show an ambiguous portion called a possi-
bility that has not been clearly expressed through conventional statistics techniques.

The time-series data was fuzzified by using Equation (8), and a fuzzy operation
was employed to calculate any coefficients. Then, the center of all coefficients is
coincident to the non-fuzzy coefficient. In addition that, the center of our model is
coincident to the non-fuzzy model, the autoregressive model by the constraint of LP
problem (12).
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3 A Numerical Example

In this section, we employ the Nikkei stock average which indicates the trend of the
whole stock market as an index of the Japanese stock market. We use the monthly
data from 1970 to 1998.
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Fig. 1 Nikkei Stock Average in 1970 to 1998
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Fig. 2 Autocorrelation of Nikkei Stock Average

We show the sample autocorrelation coefficient at each time lag (Figure 2) to
determine the order. Figure 2 shows the negative correlation in lags 1 and 2 where
the sign of the autocorrelation coefficient changes from minus to plus. Because of
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this result, we analyze the Nikkei stock average by employing the AR(2) model of
the second-order.

Furthermore, because of the existing seasonal variation in this data, we employ
the calculation �2 �12 zt which take the first-order seasonal difference of every 12-
month period after taking the second-order difference.

�2 �12 Z̃t = φ1 �2 �12Zt−1 +φ2 �2 �12Zt−2 +u

where the data zt in analysis are statistical data and the actual measurement. u is an
error term of the model. For the ambiguity of the time-series system to reflect these
data, we employ fuzzy numbers to deal with these data.

3.1 Fuzzy Autoregressive Model

We analyze the data by employing the fuzzy autoregressive model with the triangu-
lar fuzzy number. The following is the procedure to obtain the fuzzy autoregressive
model.

Step 1. The original series is fuzzified with the use of Equation (3) and trans-
formed difference without trends. We employ the difference ∇2∇12Zt since the
differebce series is detrending.

Step 2. In order to minimize the vagueness of the model, the autoregressive pa-
rameters φ1,φ2 and an error term (uα ,uβ ,uδ ) was determined by LP problem (7).
Here, the constraint of LP problem (7) is expressed that the time-series model can
include difference series.

Ozawa’s model is obtained by using the above procedures. The coefficients of this
model are determined as follows:

�2 �12 Z̃t =−0.749�2�12Zt−1 − 0.348�2�12Zt−2 +(−0.143,−0.013,0.117)

The model that is obtained by the fuzzy autoregressive model has a negative coeffi-
cient that is the same as the result that is obtained by the autocorrelation. An original
series and its estimate are shown in Figure 3.

Figure 3 shows that the estimated model has a large width of possible values.
Numerically, the width of the possibility of the model is 12,500JPY (on average),
41,340JPY at the maximum and 1,770JPY at the minimum. The ambiguity of this
model is extremely large.

However, the central value of the estimated value shows a value that is almost the
same as the original series. Because it showed a strongly oscillating tendency in the
past, these results are with the large width of the model estimation. This can also be
understood from the section of the error term of the model.

A result of the sequential prediction of this model is shown in Figure 4.
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Fig. 3 The result of the Fuzzy Autoregressive Model
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Fig. 4 The prediction result obtained by the Fuzzy Autoregressive Model (1999)

3.2 Fuzzy Autocorrelation Model

Next, we analyze the Nikkei stock average by employing the fuzzy autocorrelation
model which is proposed in this paper. The following is the procedure to obtain our
model.

Step 1. The original series is fuzzified by Equation (8) and transformed difference
without trends. We employ the difference ∇2∇12Zt since the differebce series is
detrending.

Step 2. The fuzzy autocorrelation coefficients was obtained by fuzzy operation.
The fuzzy autocorrelation coefficient has a large vagueness because fuzzy op-
eration. Therefore, the vagueness is managed using an α−cut method without
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removing characteristics of a fuzzy autocorrelation coefficients. The α−cut value
h is determined by LP problem (10). In this model, we set the α−cut level 0.978.
The fuzzy autocorrelation showed minus in the correlation of lag 2 is similar to
the case of the autocorrelation.

Step 3. The fuzzy autocorrelation coefficients is determined by LP problem (12).

In the estimated fuzzy autocorrelation model, the coefficient was determined as
follows:

�2 �12 Z̃t = (−1,−0.642,−0.642)�2�12Zt−1

+(−0.607,−0.380,−0.321)�2�12Zt−2

The model that is obtained by the fuzzy autocorrelation model has a negative co-
efficient that is the same as the result that is obtained by the fuzzy autoregressive
model.

The original series and estimated series are shown in Figure 6.
As shown in Figure 6, the estimated model has a small width and results in the

low level of fuzziness. Numerically, the width of the possibility of the model is
2,500JPY on average, 18,000JPY at the maximum and 100JPY at the minimum. In
Figure 6, the width of the results produced by the model is smaller than that shown
in Figure 3.

A result obtained by the sequential prediction of this model is shown in Figure 7.
There is a point that is the predicted value which differs from the original series in

Figure 7. Because the fuzzy autocorrelation model places stress on the fluctuation of
a system unlike the fuzzy autoregressive model which includes all of the possibilities
of the system, this model produces a large error.
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Here, the difference between the fuzzy autoregressive model and our model are
summarized as followings:

The fuzzy autoregressive model The fuzzy autoregressive model is determined by
including relation between this and difference series. At that time, non-fuzzy
coefficients φ and fuzzy error term u are determined by LP in order to minimize
the vagueness of model.

Our fuzzy autocorrelation model First, the fuzzy autocorrelation coefficient is ob-
tained from fuzzy difference series by LP. Next, the fuzzy autoregressive coeffi-
cient is obtained from a fuzzy autocorrelation coefficient in order to describe the
behavior of a fuzzy difference series with high dimensional accuracy by LP.

The difference of two models is illustrated in Figures 3 and 6.
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4 Economic Analysis Based on Tick-by-Tick Data

Tick-by-tick data are the record of stock dealing transactions. Let us analyze tick-
by-tick data of stocks by applying the fuzzy autocorrelation model.

Tick-by-tick data record five items: the trading date, stock brand, traded time,
dealing price and dealing amount.

Table 1 Example of Tick-by-Tick Data

Traded date Stock name record Traded time Traded price Traded amount
20080602 13010 0900 200.000 6000
20080602 13010 0900 200.000 4000
20080602 13010 0900 200.000 10000
20080602 13010 0900 200.000 1000
20080602 13010 0900 200.000 4000

...
...

...
...

...
20080602 13010 0900 201.000 1000
20080602 13010 0900 201.000 1000
20080602 13010 0901 202.000 1000

...
...

...
...

...

We will use the stock trading record. Table 1 shows some of the tick-by-tick
data, which is the trading data from 2nd June 2008 recorded from 9 am. From the
stating time at 9 am, 6,000, 4,000 and 10,000 shares of brand code 13010 is traded
at 200JPY. We have all of the trading records. At a later time, the records have
different values. The trading variables change in real time and the stock is traded by
the real time price and amount. These real time trading situations are shown in the
tick-by-tick data.

However, it is not possible to use the tick-by-tick data directly in a time-series
analysis, and the upper, lower and average prices of the same stock at the same time
are employed to create fuzzy numbers of time-series data.

In this chapter, we employ one week tick-by-tick data from 7th July 2008 (Mon-
day) to 11th July 2008 (Friday). When nothing was traded for a certain time period,
we used the previous price.

First, we apply AR model to analyze the tick-by-tick data. When we took a 5
minutes difference of the central value, we could remove its trend. Figure 8 shows
the correlogram time series figure of the tick-by-tick data. As it shows one-time
previous value (Δ5Zt−1), two-time previous value (Δ5Zt−2) and three-time previous
value (Δ5Zt−3) have a large correlation, the following AR(3) model was employed.

Δ5Z̃t = φ1Δ5Zt−1 +φ2Δ5Zt−2 +φ3Δ5Zt−3
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Fig. 9 Tick-by-tick data and the AR(3) model

Solving the Yule-Walker equation we form the following AR(3) model.

Δ5Z̃t = 0.970Δ5Zt−1 − 0.041Δ5Zt−2 − 0.224Δ5Zt−3

φ1 = 0.970, φ2 =−0.041, φ3 =−0.224

Figure 9 shows the forecasted result based on the AR(3) model. Tick-by-tick data
are given as fuzzy numbers but when using interval values, it is not possible to
distinguish between the observed and forecasted values. Therefore, Figure 9 shows
only the center value of the traded values and the forecasted values of the AR(3)
model.
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Figure 9 highlights the success of the forecast but the forecast delay and some
error are recognized in the figure. Therefore, in the figure the movement of lines of
real prices and forecasted values appear to have thick lines. Additionally, in some
places the predicted stock prices are too high.

Figure 10 shows the forecast result by fuzzy autocorrelation model in which the
autocorrelation coefficients are shown as fuzzy numbers. A black up-pointing tri-
angle and a black down-pointing triangle in the figure denote the upper and lower
values of the autocorrelation coefficients, respectively. The circle in the boxes are
the center values of the fuzzy autocorrelation coefficients. Similar to the AR model,
the one-time previous value (Δ5Zt−1), two-time previous value (Δ5Zt−2) and three-
time previous value (Δ5Zt−3) exhibit a high correlation. Therefore, the following
fuzzy autocorrelation model, FAR(3) was employed.

Z̃t = Φ1Δ5Zt−1 +Φ2Δ5Zt−2 +Φ3Δ5Zt−3

The fuzzy autocorrelation model was obtained by solving the fuzzy Yule-Walker
equation.

Z̃t = [0.892,0.970,1]Δ5Zt−1

+[0.041,0.041,0.103]Δ5Zt−2

+[−0.224,−0.224,−0.224]Δ5Zt−3

Figure 11 shows the forecasting result obtained by the fuzzy autocorrelation model.
The figure shows the results are acceptable. The result shows that the high accuracy
of the predicted values in comparison with the results produced by the probabilistic
AR(3) model.

Φ1= [ 0.892, 0.970, 1 ]
Φ2= [−0.041,−0.041, 0.103]
Φ3= [−0.224,−0.224,−0.224]

To validate the model, we compared between the forecasted values and the real
traded result for the last 30 minutes from 14:30 to 15:00 on 11th July 2008 and the
next 30 minutes from 9:00 to 9:30 on 14th July 2008. Figures 12 and 13 show the
results of the AR(3) model and the fuzzy autocorrelation model. In these figures,
the values forecasted by the model based on the tick-by-tick data from 7th July to
11th July are applied to 14th July. Shown are the latter 30 minutes. In each figure,
the observed values are shown by a solid line and the forecasted values by a dotted
line.

First, the result using AR(3) looks one timing proceeding in Figure 12. At some
points, when the real stock price came down, the forecasted value increased. At
another points when the real stock price does not increase, the model forecasted the
increasing of the price. Additionally when the stock price fell, the forecasted stock
price decreased too rapidly.

However, Figure 13 shows the interval values because the fuzzy autocorrelation
model is an interval model. Figure 13 illustrates looks one timing proceeding similar
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Fig. 11 Center Values of Fuzzy Autocorrelation Model of Tick-by-Tick Data

to the AR(3). Furthermore, for some points, the change of stock prices is forecasted
to be too large.

For example, at the closing time on 11th July, the forecasting error looks small
at the center of the model but the vagueness of the forecasted value is large. We
interpret this as the last minute push of dealings that disturbed the forecasting of
the time series system. That is, even though the stock price stopped moving, the
forecasted value increased or decreased with the real value. This tendency of the
forecasted result explicitly shows the forecasted value of the stocks starting on 14th
July.

Overall it was found that the fuzzy autocorrelation model could describe the
movement of the time series system well.
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We can summarize the result as follows: It is difficult to employ this method to
stock trading even though the forecasted values are shown in the interval and even
though almost all the values are included in the intervals. If the fuzzy autocorrela-
tion model has the constraint RC

t = ρC
t (t = 1,2, · · · , p), then the center value of the

fuzzy autocorrelation model is coincident to the autoregressive model. Therefore,
our model illustrate the possibilities of the the time-series data.
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5 Model Interpretation

In this section, we interpret two fuzzy time-series models, the fuzzy autoregressive
model proposed by Ozawa et al. and the fuzzy autocorrelation model proposed by
Yabuuchi and Watada.

Let us compare the results between a fuzzy autoregressive model and a fuzzy au-
tocorrelation model employing the triangular fuzzy number, which are illustrated in
Figures 3 and 6. These figures show that the fuzzy autoregressive model is estimated
as the model with a large width of possibility and the fuzzy autocorrelation is esti-
mated as the model with a small width. The ambiguity of the fuzzy autocorrelation
model is little, and this model estimated the original series more correctly. However,
the fuzzy autoregressive model includes the entire fluctuation of an original series
by estimating its fluctuation with a large value.

Let us compare the results of sequential prediction which are illustrated in Fig-
ures 4 and 7. Though the width of the possibility of the fuzzy autoregressive model
was larger, it should be predicted that the estimated central value corresponds to the
actual measurement. In the case of the fuzzy autocorrelation model, the estimated
value is different from the original series at three points. Because the fuzzy autocor-
relation describes the fluctuation of a system, this is considered to be the cause that
an error produces.

The return and the amount of funds for an investor, a company, etc. are greatly
influenced by the Nikkei stock average. Therefore, if a prediction is greatly different
from a reality, it can cause great damage; in particular, in the case of a company, it
may cause a business downsizing or the laying off of company employees. Some-
times, the Japanese economy may be inactive because of the influence of a wrong
prediction. Therefore, the lower such a risk is, the more favorable it becomes for
the company and the investor when they consider the future return, future prospects,
and so on. However, the monthly fluctuation of the real Nikkei stock average is al-
most less than 10,000JPY. Therefore, for these reasons, we could regard a fuzzy
autocorrelation model as being suitable for estimation and prediction of the Nikkei
stock average.

In the case of the fuzzy autocorrelation model, we should not include all of the
economic data within the model, but we should construct the model by employing
the fuzzy autocorrelation to include the possibility of the fluctuation of data. We
could show the effectiveness of the economic analysis using the Nikkei stock aver-
age by the fuzzy autocorrelation model, because the proposed model could illustrate
the fluctuation in the system.

Next, the forecast of stock prices based on the tick-by-tick data of stocks are pro-
vided using both the autoregressive model and probabilistic autocorrelation model.

In the analysis of the tick-by-tick data of stocks, past traded data from three times,
Δ5Zt−1, Δ5Zt−2, Δ5Zt−3 were used to describe successfully the movement of stock
prices.

The purpose of employing tick-by-tick data for stock price forecasting is to val-
idate the forecasting precision of the fuzzy autocorrelation model in stock trading.
Figure 13 showed the stock prices of both the model building data and the last 30
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minutes for validation. In this validation the figures showed that the fuzzy autocor-
relation model could describe successfully the price movement of the time series
system.

6 Conclusions

In this paper, we proposed a fuzzy autocorrelation model, which is based on a Box-
Jenkins model and describes a time-series system by using fuzzy autocorrelation
coefficients. The proposed model has compared with a fuzzy autoregressive model
proposed by Ozawa et al. through numerical examples, the Nikkei stock average
and the tick-by-tick data of stocks.

We showed the width of a fuzzy autocorrelation model is smaller than the one of
a fuzzy autoregressive model in the analysis of the Nikkei stock average. But, the
center of a fuzzy autoregressive model could estimate the original series.

The fuzzy autocorrelation model had the higher accuracy of the predicted values
in the analysis of the tick-by-tick data of stock.

Finally, we can conclude that the fuzzy autocorrelation model can describe the
movement of the time-series system well.
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