
Chapter 13
How to Describe and Propagate Uncertainty
When Processing Time Series: Metrological
and Computational Challenges, with Potential
Applications to Environmental Studies

Christian Servin, Martine Ceberio, Aline Jaimes,
Craig Tweedie, and Vladik Kreinovich

Abstract. Time series comes from measurements, and often, measurement inaccu-
racy needs to be taken into account, especially in such volatile application areas as
meteorology and economics. Traditionally, when we deal with an individual mea-
surement or with a sample of measurement results, we subdivide a measurement
error into random and systematic components: systematic error does not change
from measurement to measurement while random errors corresponding to different
measurements are independent. In time series, when we measure the same quantity
at different times, we can also have correlation between measurement errors cor-
responding to nearby moments of time. To capture this correlation, environmental
science researchers proposed to consider the third type of measurement errors: pe-
riodic. This extended classification of measurement error may seem ad hoc at first
glance, but it leads to a good description of the actual errors. In this paper, we pro-
vide a theoretical explanation for this semi-empirical classification, and we show
how to efficiently propagate all types of uncertainty via computations.

1 Formulation of the Problem

In many applications areas – e.g., in meteorology, in financial analysis – the value
of the important variable (temperature, stock price, etc.) changes with time. In order
to adequately predict the corresponding value, we need to analyze the observed time
series and to make a prediction based on this analysis; see, e.g., [3, 20].

All the values that form the time series come from measurements or from ex-
pert estimates. Neither measurements nor expert estimates are 100% accurate, es-
pecially in such volatile application areas as meteorology and economics. Thus, the
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actual values of the corresponding variables are, in general, slightly different from
the observed values xt . These measurement uncertainties affects the result of data
processing.

For example, in meteorological and environmental applications, we measure, at
different locations, temperature, humidity, wind speed and direction, flows of carbon
dioxide and water between the soil and atmosphere, intensity of the sunlight, reflec-
tivity of the plants, plant surface, etc. Based on these local measurement results, we
estimate the regional characteristics such as the carbon fluxes describing the region
as a whole – and then use these estimates for predictions. These predictions range
from short-term meteorological predictions of weather to short-term environmental
predictions of the distribution and survival of different ecosystems and species to
long-term predictions of climate change; see, e.g., [1, 12]. Many of these quantities
are difficult to measure accurately: for example, the random effects of turbulence
and the resulting rapidly changing wind speeds and directions strongly affect our
ability to accurately measure carbon dioxide and water flows; see, e.g., [18]. The
resulting measurement inaccuracy is one of the main reasons why it is difficult to
forecast meteorological, ecological, and climatological phenomena.

It is therefore desirable to describe how the corresponding measurement uncer-
tainty affects the result of data processing. In this paper, we analyze this problem,
describe the related challenges, and show how these challenges can be overcome.

2 Traditional Approach to Measurement Errors

When we are interested in the value x of some quantity that we can measure directly,
we apply an appropriate measuring instrument and get the measurement result x̃. In
the ideal world, the measurement result x̃ is exactly equal to the desired value x.
In practice, however, there is noise, there are imperfection, there are other factors
which influence the measurement result. As a consequence, the measurement re-
sult x̃ is, in general, different from the actual (unknown) value x of the quantity of

interest, and the measurement error Δx
def
= x̃− x is different from 0.

Because of this, if we repeatedly measure the same quantity by the same measur-
ing instrument, we get, in general, slightly different results. Some of these results
are more frequent, some less frequent. For each interval of possible values, we can
find the frequency with which the measurement result gets into this interval; at first,
some of these frequencies change a lot with each new measurement, but eventually,
once we have a large number of measurements, these frequencies stabilize – and
become probabilities of different values of x̃ and, correspondingly, probabilities of
different values of measurement error Δx. In other words, the measurement error
becomes a random variable.

Usually, it is assumed that random variables corresponding to different measure-
ment errors are statistically independent from each other. In statistics, independence
of two events A and B means that the probability of A does not depend on B, i.e.,
that the conditional probability P(A |B) of A under condition B is equal to the un-
conditional probability P(A) of the event A.
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The probability P(A) of the event A can be estimated as the ratio
N(A)

N
of the

number of cases N(A) when the event A occurred to the total number N of ob-
served cases. Similarly, the probability P(B) of the event B can be estimated as

the ratio
N(B)

N
of the number of cases N(B) when the event A occurred to the

total number N of observed cases, and the probability P(A&B) of both events A

and B can be estimated as the ratio
N(A&B)

N
of the number of cases N(A&B)

when both events A and B occurred to the total number N of observed cases.
In contrast, to estimate the conditional probability of A given B, we must only
take into account cases when B was observed. As a result, we get an estimate

P(A |B) ≈ N(A&B)
N(B)

. Since P(A&B) ≈ N(A&B)
N

and P(B) ≈ N(B)
N

, we con-

clude that N(A&B) ≈ P(A&B) ·N and N(B) ≈ P(B) ·N and therefore, P(A |B) ≈
P(A&B) ·N

P(B) ·N =
P(A&B)

P(B)
, so P(A |B)≈ P(A&B)

P(B)
. The larger the sample, the more

accurate are these estimates, so in the limit when N tends to infinity, we get the

equality P(A |B) = P(A&B)
P(B)

, i.e., equivalently, P(A&B) = P(A |B) ·P(B). For in-

dependent events, P(A |B) = P(A) and thus, P(A&B) = P(A) ·P(B).
So, under the independence assumption, if we have two different series of

measurements, resulting in measurement errors Δx and Δy, then the probability
P(Δx ∈ [x,x]&Δy ∈ [y,y]) that Δx is in an interval [x,x] and Δy is in an interval
[y,y] is equal to the product of the two probabilities:

• the probability P(Δx ∈ [x,x]) that Δx is in the interval [x,x], and
• the probability P(Δy ∈ [y,y]) that Δy is in the interval [y,y]:

P(Δx ∈ [x,x]&Δy ∈ [y,y]) = P(Δx ∈ [x,x]) ·P(Δy ∈ [y,y]).

Usually in metrology, the measurement error is divided into two components (see,
e.g., [16]):

• the systematic error component, which is defined as the expected value (mean)
E(Δx) of the measurement errors, and

• the random error component which is defined as the difference Δx−E(Δx) be-
tween the measurement error Δx and its systematic component E(Δx).

Systematic error component is usually described by the upper bound Δs on its ab-
solute value: |E(Δx)| ≤ Δs, while the random error is usually described by its mean
square value

σ =
√

E [(Δx−E(Δx))2].

In statistical terms, σ =
√

V is the standard deviation of the random variable Δx,
i.e., the square root of the variance V = E

[

(Δx−E(Δx))2
]

.
The practical meaning of these components – and the practical difference be-

tween them – can be described if, in order to improve measurement accuracy, we
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repeatedly measure the same quantity several times. Once we have several results
x̃(1), . . . , x̃(M) of measuring the same (unknown) quantity x, we can then take the
arithmetic average

x̃ =
x̃(1) + . . .+ x̃(M)

M
as the new estimate.

One can easily see that the measurement error Δx = x̃− x corresponding to this
new estimate is equal to the average of the measurement errors Δx(k) = x̃(k) − x
corresponding to individual measurements:

Δx =
Δx(1) + . . .+Δx(M)

M
.

What are the systematic and random error components of this estimate? Let us start
with the systematic error component, i.e., in mathematical terms, with the mean.
It is known that the mean of the sum is equal to the sum of the means, and that
when we divide a random variable by a constant, its mean is divided by the same
constant. All M measurements are performed by the same measuring instrument

with the same systematic error E
(

Δx(1)
)

= . . . = E
(

Δx(M)
)

. Thus, for the sum

Δx(1) + . . .+Δx(M), the mean is equal to

E
(

Δx(1) + . . .+Δx(M)
)

= E
(

Δx(1)
)

+ . . .+E
(

Δx(M)
)

= M ·E
(

Δx(k)
)

.

Therefore, the mean of the ratio Δx (which is obtained by dividing the above sum by

M) is M times smaller than the mean of the sum, i.e., equal to E(Δx) =E
(

Δx(k)
)

. In

other words, the systematic error component does not decrease if we simply repeat
the measurements.

In contrast, the random component decreases, or, to be precise, its standard devi-
ation decreases. Indeed, for independent random variables, the variance of the sum
is equal to the sum of the variances, and when we divide a random variable by a
constant, the variance is divided by the square of this constant. The variance V = σ2

of each random error component is equal to V (1) = . . .=V (M); thus, the variance of
the sum Δx(1) + . . .+Δx(M) is equal to the sum of these variances, i.e., to

V
[

Δx(1) + . . .+Δx(M)
]

=V (1) + . . .+V (M) = M ·
(

σ (k)
)2

.

Therefore, the variance of the ratio Δx (which is obtained by dividing the above sum

by M) is M2 times smaller than the variance of the sum, i.e., equal to

(

σ (k)
)2

M
. So,

the standard deviation σ (which is the square root of this variance) is equal to
σ (k)
√

M
.

In other words, the more times we repeat the measurement, the smaller the resulting
random error.
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So, when we repeat the same measurement several times, the random error dis-
appears, and the only remaining error component is the systematic error.

3 The Traditional Metrological Approach Does Not Work Well
for Time Series

In the traditional approach, we represent the measurement error as the sum of two
components:

• a systematic component which is the same for all measurements, and
• a random component which is independent for different measurements.

When we process time series, this decomposition is insufficient: e.g., usually, there
are strong correlations between measurement errors corresponding to consequent
measurements.

To achieve a better representation of measurement errors, researchers in environ-
mental science have proposed a semi-empirical idea of introducing the third com-
ponent of measurement error: the seasonal (periodic) component; see, e.g., [14].

For example, a seasonal error component can represent errors that only happen
in spring (this is where the name of this error component comes from), or errors that
only happen at night, etc.

From the purely mathematical viewpoint, we can have periodic error components
corresponding to all possible frequencies. However, from the physical viewpoint, it
makes sense to concentrate on the components with physically meaningful frequen-
cies – and with frequencies which are multiples of these frequencies, e.g., double or
triple the daily or yearly frequencies.

For example, in environmental observations, it makes sense to concentrate on
daily and yearly periodic errors. If we are interested in the effect of human activity,
then we need to add weekly errors – since human activity periodically changes from
weekdays to weekends.

The idea of using three components of measurement error works extremely well
– which leads to two related challenges:

• A metrological challenge: how can we explain this success? What is the founda-
tion of this idea?

• A computational challenge: how can we efficiently describe this new error com-
ponent and how can we efficiently propagate it through computations?

In this paper, we address both challenges:

• we provide a theoretical justification for the semi-heuristic idea of the third error
component, and

• we show a natural way for efficiently describing this error component, and show
how to efficiently propagate different error components through computations.
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4 First Result: A Theoretical Explanation of the
Three-Component Model of Measurement Error

Our objective is to analyze measurement errors Δx(t) corresponding to time series.
Namely, we want to represent a generic measurement error as a linear combination
of several error components.

This division into components can be described on different levels of granularity.
Let us consider the level where the granules are the smallest, i.e., where each gran-
ule corresponds to a finite-dimensional linear space, i.e., to the linear space whose
elements can be determined by finitely many parameters.

Each component of the measurement error is thus described by a finite-
dimensional linear space L, i.e., by the set of all the functions of the type x(t) =
c1 · x1(t)+ . . .+ cn · xn(t), where x1(t), . . . , xn(t) are given functions, and c1, . . . ,cn

are arbitrary constants.
In most applications, observed signals continuously (and even smoothly) depend

on time, so we will assume that all the functions xi(t) are smooth (differentiable).
Also, usually, there is an upper bound on the measurement error, so we will as-

sume that each of the the functions xi(t) are bounded by a constant.
Finally, for a long series of observations, we can choose a starting point arbi-

trarily. If instead of the original starting point, we take a starting point which is
t0 seconds earlier, then each moment of time which was originally described as
moment t is not described as moment t + t0. Then, for describing measurement er-
rors, instead of the original function x(t), we have a new function xt0(t) for which
xt0(t + t0) = x(t + t0). It is reasonable to require that the linear space that describes
a component of the measurement error does not not change simply because we
changed the starting point. Thus, we arrive at the following definitions.

Definition 1. We say that a function x(t) of one variable is bounded if there exists a
constant M for which |x(t)| ≤ M for all t.

Definition 2. We say that a class F of functions of one variable is shift-invariant if
for every function x(t) ∈ F and for every real number t0, the function x(t + t0) also
belongs to the class F .

Definition 3. By an error component we mean a shift-invariant finite-dimensional
linear space of functions

L = {c1 · x1(t)+ . . .+ cn · xn(t)},

where x1(t), . . . , xn(t) are given bounded smooth functions and ci are arbitrary num-
bers.

Theorem 1. Every error component is a linear combination of the functions

x(t) = sin(ω · t) and x(t) = cos(ω · t).
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Proof.

1◦. Let us first use the assumption that the linear space L is shift-invariant.

For every i from 1 to n, the corresponding function xi(t) belongs to the linear space
L. Since the error component is shift-invariant, we can conclude that for every real
number t0, the function xi(t + t0) also belongs to the same linear space. Thus, for
every i from 1 to n and for every t0, there exist values c1, . . . ,cn (possibly depending
on i and on t0) for which

xi(t + t0) = ci1(t0) · x1(t)+ . . .+ cin(t0) · xn(t). (1)

2◦. We know that the functions x1(t), . . . , xn(t) are smooth. Let us use the equation
(1) to prove that the functions ci j(t0) are also smooth (differentiable).

Indeed, if we substitute n different values t1, . . . , tn into the equation (1), then we
get a system of n linear equations with n unknowns to determine n values ci1(t0),
. . . , cin(t0):

xi(t1 + t0) = ci1(t0) · x1(t1)+ . . .+ cin(t0) · xn(t1);

. . .

xi(tn + t0) = ci1(t0) · x1(tn)+ . . .+ cin(t0) · xn(tn).

The solution of a system of linear equations – as determined by the Cramer’s rule –
is a smooth function of all the coefficients and right-hand sides. Since all the right-
hand sides xi(t j + t0) are smooth functions of t0 and since all the coefficients xi(t j)
are constants (and thus, are also smooth), we conclude that each dependence ci j(t0)
is indeed smooth.

3◦. Now that we know that all the functions xi(t) and ci j(t0) are differentiable, we
can differentiate both sides of the equation (1) with respect to t0 and then take t0 = 0.
As a result, we get the following systems of n differential equations with n unknown
functions x1(t), . . . , xn(t):

ẋi(t) = ci1 · x1(t)+ . . .+ cin · xn(t),

where ẋi(t) denotes derivative over time, and ci j denoted the value of the corre-
sponding derivative ċi j when t0 = 0.

4◦. We have shown that the functions x1(t), . . . , xn(t) satisfy a system of linear
differential equations with constant coefficients.

It is known that a general solution of such system of equations is a linear com-
bination of functions of the type tk · exp(λ · t), where k is a natural number (non-
negative integer), and λ is a complex number. Specifically, λ is an eigenvalue of the
matrix ci j, and the value k > 0 appears when we have a degenerate eigenvalue, i.e.,
an eigenvalue for which there are several linearly independent eigenvectors.

5◦. Every complex number λ has the form a+ i ·ω , where a is its real part and ω is
its imaginary part. So:
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exp(λ · t) = exp(a · t) · cos(ω · t)+ i · exp(a · t) · sin(ω · t).

Thus, every function xi(t) can be represented as a linear combination of expressions
of the types tk · exp(a · t) · cos(ω · t) and tk · exp(a · t) · sin(ω · t).
6◦. Now, we can use the requirement that the functions xi(t) are bounded.

6.1◦. Because of this requirement, we cannot have a �= 0:

• for a > 0, the function is unbounded for t →+∞, while
• for a < 0, the function is unbounded for t →−∞.

So, we must have a = 0.

6.2◦. Similarly, if k > 0, the corresponding function is unbounded. Thus, we must
have k = 0.

7◦. Thus, every function xi(t) is a linear combination of the trigonometric functions
x(t) = sin(ω · t) and x(t) = cos(ω · t).

The theorem is proven.

What are the practical conclusions of this result? We have concluded that the mea-
surement error Δx(t) can be described as a linear combination of sines and cosines
corresponding to different frequencies ω .

In practice, depending on the relation between the frequency ω and the fre-
quency f with which we perform measurements, we can distinguish between small,
medium, and large frequencies:

• frequencies ω for which ω 	 f are small;
• frequencies ω for which ω 
 f are large, and
• all other frequencies ω are medium.

Let us consider these three types of frequencies one by one.
When the frequency ω is low, the corresponding values cos(ω · t) and sin(ω · t)

practically do not change with time: the change period is much larger than the usual
observation period.

Thus, we can identify low-frequency components with systematic error compo-
nent – the error component that practically does not change with time.

When the frequency ω is high, ω 
 f , the phases of the values cos(ω · ti) and
cos(ω · ti+1) (or, alternatively,
sin(ω · ti) and sin(ω · ti+1)) corresponding to the two sequential measurements ti and
ti+1 differ so much that for all practical purposes, the resulting values of cosine or
sine functions are independent.

Thus, high-frequency components can be identified with random error compo-
nent – the error component for which measurement errors corresponding to different
measurements are independent.

In contrast to the cases of low and high frequencies, where the periodicity of the
corresponding cosine and sine functions is difficult to observe, components cos(ω ·
t) and sin(ω · t) corresponding to medium frequencies ω are observably periodic.
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It is therefore reasonable to identify medium-frequency error components with
seasonal (periodic) components of the measurement error.

This conclusion explains why, in addition to the original physically meaningful
frequencies, it is also reasonable to consider their multiples:

• We know that the corresponding error component is a periodic function of time,
with the physically meaningful period T0.

• It is known that every periodic function can be explained into Fourier series,
i.e., represented as a linear combination of sines and cosines with frequencies

ω which are multiples of the basic frequency ω0 =
2π
T0

corresponding to the

period T0.

Thus, we have indeed provided a justification to the semi-empirical three-component
model of measurement error.

5 Periodic Error Component: Technical Details

In the above section, we explained that the periodic error component is as fundamen-
tal as the more traditional systematic and random error components. It is therefore
necessary to extend the usual analysis of error components and their propagation to
this new type of measurement errors.

For systematic and random error components we know:

• how to describe reasonable bounds on this error component, and
• how to estimate this error component when we calibrate the measuring instru-

ment.

Specifically, the random error component is characterized by its standard deviation
σ , while a systematic error component s is characterized by the upper bound Δ :
|s| ≤ Δ .

The standard deviation σ of the measuring instrument can be estimated if we re-
peatedly measure the same quantity x by this instrument. Then, the desired standard
deviation can be estimated as the sample standard deviation of the corresponding
measurement results x̃(1), . . . , x̃(M):

σ ≈
√

1
M

·
M

∑
k=1

(

x̃(k)−E
)2
,

where E =
1
M

·
M

∑
k=1

x̃(k).

To estimate the systematic error component, it is not enough to have the given
measuring instrument, we also need to calibrate the measuring instrument, i.e., to
measure the same quantity x with an additional much more accurate (“standard”)
measuring instrument – whose measurement result x̃s is assumed to be very close
to the actual value x of the measured quantity. Here, E ≈ E(x̃) and x̃s ≈ x, so the
difference E − xs is approximately equal to E(x̃)− x = E(x̃− x) = E(Δx). Thus,



288 C. Servin et al.

this difference E − x̃s can be used as a good approximation to the systematic error
component.

Since we want to also take into account the periodic error component, it is desir-
able to provide answers to the above two questions for the periodic error component
as well.

How can we describe reasonable bounds for each part of the periodic error com-
ponent? For each frequency ω , the corresponding linear combination

ac · cos(ω · t)+ as · sin(ω · t)

can be equivalently represented as A · cos(ω · t +ϕ). This is the form that we will
use for describing the periodic error component.

Similarly to the systematic error, for the amplitude A, we will assume that we
know the upper bound P: |A| ≤ P.

For phase ϕ , it is natural to impose a requirement that the probability distribution
of phase be invariant with respect to shift t → t + t0. When time is thus shifted, the
phase is also shifted by ϕ0 = ω · t0. Thus, the requirement leads to the conclusion
that the probability distribution for the phase be shift-invariant, i.e., that the corre-
sponding probability density function ρ(ϕ) is shift-invariant ρ(ϕ) = ρ(ϕ +ϕ0) for
every possible shift ϕ0. This means that this probability density function must be
constant, i.e., that the phase ϕ is uniformly distributed on the interval [0,2π ].

How can we estimate the periodic error component when calibrating a measur-
ing instrument? When we compare the results of measuring the time series by our
measuring instrument and by a standard measuring instrument, we get a sequence
of differences x̃(t)− x̃s(t) that approximates the actual measurement errors Δx(t).

Periodic error components are sinusoidal components corresponding to several
frequencies. In data processing, there is a known procedure for representing each
sequence as a linear combination of sinusoids of different frequency – Fourier
transform. To find the periodic components, it is therefore reasonable to perform a
Fourier Transform; the amplitudes of the Fourier transform corresponding to physi-
cally meaningful frequencies (and their multiples) ω will then serve as estimates for
the amplitude of the corresponding periodic measurement error component.

Computing Fourier transform is fast: there is a known Fact Fourier Transform
(FFT) algorithm for this computation; see, e.g., [2].

In this process, there is a still a computational challenge. Indeed, while the
standard measuring instrument is reasonably accurate and its measurement results
x̃s(t) provide a good approximation to the actual values x(t), these results are
still somewhat different from the actual values x(t). Hence, the observed differ-
ences x̃(t)− x̃s(t) are only approximately equal to the measurement errors Δx(t) =
x̃(t)− x(t). When we apply FFT in a straightforward way, this approximation error
sometimes leads to drastic over-estimation of the results; see, e.g., [4, 13]. Because
of this fact, many researchers replaced FFT by much slower – but more accurate –
error estimation algorithms.
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In our paper [13], we showed how we can modify the FFT techniques so that
we get (almost) exact error bounds while being (almost) as fast as the original FFT.
So, to estimate the periodic error component, we need to use thus modified FFT
algorithm.

6 Because of Our Justification, the Three-Component Model of
Approximation Error Can Also Be Applied to Expert
Estimates

In many practical situations, the measurement results are not sufficient to make rea-
sonable conclusions. We need to supplement measurement results with the knowl-
edge of experts. The use of expert knowledge in processing data is one of the
important aspects of computational intelligence.

For example, when a medical doctor makes a diagnosis and/or prescribes
medicine, he or she is usually not following an algorithm that inputs the patients
stats and outputs the name of the disease and the dosage of the corresponding
medicine. If medicine was that straightforward, there would have been no need
for skilled medical doctors. A good doctor also uses his/her experience, his/her
intuition. Similarly, in environmental research, we measure temperature, humid-
ity, etc. However, to make meaningful conclusions, it is necessary to supplement
these measurement results with expert estimates of, e.g., amount of leaves on the
bushes (“low”, “medium”, “high”), state of the leaves – and many other character-
istics which are difficult to measure but which can be easily estimated by an expert.

We have mentioned that in data processing, it is important to take into account
the uncertainty of measurement results. Expert estimates are usually even much less
accurate than measurement results. So, it is even more important to take into account
the uncertainty of expert estimates.

The main idea behind most methods for dealing with uncertainty of expert es-
timates is to treat an expert as a measuring instrument and use the corresponding
metrological techniques.

One of the main techniques for describing expert uncertainty is fuzzy techniques;
see, e.g., [9, 15]. While these techniques are not exactly probabilistic, many fuzzy
techniques are similar to the probabilistic ones.

For example, one of the most widely used methods of determining the (fuzzy)
degree of belief μP(x) that a certain value x satisfies the property P (e.g., that a cer-
tain temperature is low) is to poll several experts and take, as μP(x), the proportion
of those who thing that x satisfies this property.

Good news is that in our analysis of the error components, we never used the fact
that this error comes from measurements. We can therefore apply the exact same
analysis to the approximation error of the expert estimates.

Thus, while our main current emphasis is on measurement results and measure-
ment uncertainty, it is desirable to apply the same three-component decomposition
to inaccuracies of expert estimates as well.
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7 How to Propagate Uncertainty in the Three-Component
Model

In the previous sections, we analyzed how to describe the uncertainty related to
measurements and/or expert estimates. Some quantities can be indeed directly mea-
sured or estimates. However, there are many quantities of interest which cannot be
directly measured or estimated.

An example of such a quantity is a carbon flux that describes the exchange of
carbon between the soil and the atmosphere; see, e.g., [12]. It is difficult to measure
this flux directly. Instead, we measure the humidity, wind and concentration of dif-
ferent gases at different height of a special meteorological tower, and then use the
results of these measurements to process the data.

In general, for many quantities y, it is not easy (or even impossible) to measure
them directly. Instead, we measure related quantities x1, . . . ,xn, and use the known
relation y = f (x1, . . . ,xn) between xi and y to estimate the desired quantity y.

Since measurements come with uncertainty, the resulting estimate is, in general,
somewhat different from the actual value of the desired quantity – even when the
relation y = f (x1, . . . ,xn) is known exactly. It is therefore desirable to propagate
this uncertainty, i.e., to find out how accurate is the estimate based on (approximate)
measurement results.

In practical applications, many inputs to the data processing algorithm come from
the same sensor at different moments of time. In other words, as inputs, we have the
results x̃i(ti j) of measuring the values xi(ti j) by the i-th sensor at the j-th moment
of time ti j = t0 + j ·Δ ti, where t0 is the starting moment of all the measurements,
and Δ ti is the time interval between the two consecutive measurements performed
by the i-th sensor.

The desired quantity y depends on all these values:

y = f (x1(t11),x1(t12), . . . ,x2(t21),x2(t22), . . . ,xn(tn1),xn(tn2), . . .).

Instead of the actual values xi(ti j, we only know the measurement results x̃i(ti j),
results which differ from the actual values by the corresponding measurement errors
Δxi(ti j):

x̃i(ti j) = xi(ti j)+Δxi(ti j).

After applying the data processing algorithm f to the measurement results x̃i(ti j),
we get the estimate ỹ for the desired quantity y:

ỹ = f (x̃1(t11), x̃1(t12), . . . , x̃n(tn1), x̃n(tn2), . . .).

We are interested in estimating the difference

Δy = ỹ− y = f (x̃1(t11), x̃1(t12), . . . , x̃n(tn1), x̃n(tn2), . . .)−

f (x1(t11),x1(t12), . . . ,xn(tn1),xn(tn2), . . .).
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We know that the actual (unknown) value xi(ti j) of each measured quantity is equal
to

xi(ti j) = x̃i(ti j)−Δxi(ti j).

Thus, the desired difference has the form

Δy = f (x̃1(t11), . . . , x̃n(tn1), x̃n(tn2), . . .)−

f (x̃1(t11)−Δx1(t11), . . . , x̃n(tn1)−Δxn(tn1), x̃n(tn2)−Δxn(tn2), . . .).

Our objective is to estimate this difference based on the known information about
the measurement errors Δxi(ti j).

Measurement errors are usually relatively small, so terms quadratic and of higher
order in terms of Δxi(ti j) can be safely ignored.

For example, if the measurement error is 10%, its square is 1% which is much
much smaller than 10%. If we measure with a higher accuracy, e.g., of 1%, then the
square of this value is 0.01% which is even mich more smaller than the error itself.

Thus, we can linearize the above formula, i.e., expand the dependence of Δy on
Δxi(ti j) in Taylor series and keep only linear terms in this expansion. As a result,
we arrive at the following formula:

Δy = ∑
i

∑
j

Ci j ·Δxi(ti j),

where Ci j denotes the corresponding partial derivative
∂y

∂xi(ti j)
.

As a result of this linearization, we can consider all three components separately.
Indeed, we know that each measurement errors Δxi(ti j) consists of three compo-
nents: systematic component si, random component ri j, and periodic component(s)
A�i · cos(ω� · ti j +ϕ�i) corresponding to different physically meaningful frequencies
(and their multiples) ω�:

Δxi(ti j) = si + ri j +∑
�

A�i · cos(ω� · ti j +ϕ�i).

The dependence of Δy on the measurement errors Δxi(ti j) is linear. Thus, we can
represent Δy as the sum of different components coming from, correspondingly,
systematic, random, and periodic errors:

Δy = Δys +Δyr +∑
�

Δyp�,

where
Δys = ∑

i
∑

j
Ci j · si;

Δyr = ∑
i

∑
j

Ci j · ri j;
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Δyp� = ∑
i

∑
j

Ci j ·A�i · cos(ω� · ti j +ϕ�i).

So, it is indeed sufficient to estimate the effect of all three types of measurement
error components separately.

In these estimations, we will make a natural assumption: that measurement errors
corresponding to different time series are independent. Indeed, as we have men-
tioned earlier,

• while measurement errors corresponding to measurement by the same sensor at
consecutive moments of time are correlated,

• measurement errors corresponding to different sensors usually come from differ-
ent factors and are, therefore, largely independent.

Because of this assumption, we arrive at the following algorithms for estimating
different components of Δy.

Propagating random component is the traditional part of error propagation. A
natural way to describe the resulting error Δyr is to use simulations (i.e., a so-called
Monte-Carlo approach).

By definition of the random error component, the values ri j and rik corresponding
to measurements by the same i-th sensor at different moments of time ti j and ti j′ are
independent. We are also assuming that the values ri j and ri′ j′ corresponding to
different sensors are independent. Thus, all the values ri j corresponding to different
pairs (i, j) are independent.

There are many such values, since each sensor performs the measurements with
a high frequency – e.g., one reading every second or every minute. The value Δyr

is thus a linear combination of a large number of independent random variables.
It is known that under reasonable conditions, the probability distribution of such a
combination tends to normal; this is what is known as the Central Limit Theorem
– one of the main reasons why normal distributions are ubiquitous in nature; see,
e.g., [19].

A normal distribution is uniquely determined by its mean and standard deviation.
We know that each measurement error ri j has mean 0 and a known standard devi-
ation σi corresponding to measurements of the i-th sensor. The mean of the linear
combination is equal to the linear combination of means. Thus, the mean of Δyr is
0. The standard deviation can be obtained if we repeatedly simulate random errors

and take a standard deviation of the corresponding empirical values Δy(1)r , Δy(2)r ,
. . . Thus, we arrive at the following algorithm.

Propagating random component: algorithm. The random component Δyr is nor-
mally distributed with zero mean. Its standard deviation can be obtained as follows:

• First, we apply the algorithm f to the measurement results x̃i(ti j) and get the
estimate ỹ.

• Then, for k = 1, . . . ,N, we do the following:

– simulate the random errors r(k)i j as independent random variables (e.g., Gaus-
sian) with 0 mean and standard deviation σi;
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– form simulated values x(k)i (ti j) = x̃i(ti j)− r(k)i j ;

– substitute the simulated values x(k)i (ti j) into the data processing algorithm f
and get the result y(k).

• Finally, we estimate the standard deviation σ of the random component Δyr as

σ =

√

1
N
·

N

∑
k=1

(

y(k)− ỹ
)2
.

Mathematical comment. The proof that this algorithm produces a correct result eas-
ily follows from the fact that for simulated values, the difference y(k)− ỹ has the form

∑
i

∑
j
Ci j ·r(k)i j and thus, has the exact same distribution as Δyr = ∑

i
∑
j
Ci j ·Δxi(ti j); see,

e.g., [10].

Metrological comment. In some practical situations, instead of the standard devi-
ations σi =

√

E[(Δx)2] that describe the absolute accuracy, practitioners often de-
scribe relative accuracy δi such as 5% or 10%. In this case, the standard deviation σi

can be obtained as σi = δi ·mi, i.e., by multiplying the given value δi and the mean
square value of the signal

mi =

√

1
Ti
·∑

j
(x̃i(ti j))

2,

where Ti is the total number of measurements performed by the i-th sensor.

Let us now consider the problem of propagating systematic component. By
definition, the systematic component Δys of the resulting error Δy is equal to
Δys = ∑

i
∑
j
Ci j · si. If we combine terms corresponding to different j, we conclude

that Δys = ∑
i

Ki · si, where Ki
def
= ∑

j
Ci j.

The values Ki can be explicitly described. Namely, one can easily see that if for
some small value δ > 0, for this sensor i, we take Δxi(ti j) = δ for all j, and for all
other sensors i′, we take Δxi′(ti′ j) = 0, then the resulting increase in y will be exactly
equal to δ ·Ki.

Once we have determined the coefficients Ki, we need to find out the smallest
and the largest possible value of the sum Δys = ∑

i
Ki · si. Each parameter si can take

any value between −Δsi and Δsi, and these parameters are independent. Thus, the
sum is the largest when each term Ki · si is the largest.

Each term is a linear function of si. A linear function is increasing or decreasing
depending on whether the coefficient Ki is positive or negative.

• When Ki ≥ 0, the linear function Ki · si is increasing and thus, its largest possible
value is attained when si attains its largest possible value Δsi. Thus, this largest
possible value is equal to Ki ·Δsi.
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• When Ki ≤ 0, the linear function Ki · si is decreasing and thus, its largest possible
value is attained when si attains its smallest possible value −Δsi. Thus, this largest
possible value is equal to −Ki ·Δsi.

In both cases, the largest possible value is equal to |Ki| ·Δsi and thus, the largest

possible value Δs of the sum Δys is equal to Δs
def
= ∑

i
|Ki| ·Δsi. Similarly, one can

prove that the smallest possible value of Δys is equal to −Δs.
Thus, we arrive at the following algorithm for computing the upper bound Δs on

the systematic component Δys.

Propagating systematic component: algorithm. The largest possible value Δs of
the systematic component Δys can be obtained as follows:

• First, we apply the algorithm f to the measurement results x̃i(ti j) and get the
estimate ỹ.

• Then, we select a small value δ and for each sensor i, we do the following:

– for this sensor i, we take x(i)i (ti j) = x̃i(ti j)+ δ for all moments j;

– for all other sensors i′ �= i, we take x(i)i′ (ti′ j) = x̃i(ti′ j);

– substitute the resulting values x(i)i′ (ti′ j) into the data processing algorithm f

and get the result y(i).

• Finally, we estimate the desired bound Δs on the systematic component Δys as

Δs = ∑
i

∣

∣

∣

∣

∣

y(i)− ỹ
δ

∣

∣

∣

∣

∣

·Δsi.

Metrological comment. In some practical situations, instead of the absolute bound
Δsi on the systematic error of the i-th sensor, practitioners often describe relative ac-
curacy δi such as 5% or 10%. In this case, a reasonable way to describe the absolute
bound is to determine it as Δsi = δi · ai, i.e., by multiplying the given value δi and
the mean absolute value of the signal

ai =
1
Ti
·∑

j

∣

∣x̃i(ti j)
∣

∣ .

Numerical example. Let us consider a simple case when we are estimating the dif-
ference between the average temperatures at two nearby locations. For example, we
may be estimating the effect of a tree canopy on soil temperature, by comparing
the temperature at a forest location with the temperature at a nearby clearance loca-
tion. Alternatively, we can be estimating the effect of elevation of the temperature
by comparing the temperatures at different elevations. In this case, we use the same
frequency Δ t1 = Δ t2 for both sensors, so t1 j = t2 j = t j. The difference in average
temperatures is defined as

y = f (x1(t0),x2(t0),x1(t1), . . . ,x2(t1), . . . ,x1(tn),x2(tn)) =
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x1(t0)+ . . .+ x1(tn)
n+ 1

− x2(t0)+ . . .+ x2(tn)
n+ 1

.

Let us assume that the know upper bound on the systematic error of the first sensor
is Δs1 = 0.1, and the upper bound on the systematic error of the second sensor is
Δs2 = 0.2. We perform measurements at three moments of time t = 0,1,2. During
these three moments of time, the first sensor measured temperatures x̃1(t0) = 20.0,
x̃1(t1) = 21.9, and x̃1(t2) = 18.7, and the second second measured temperatures
x̃2(t0) = 22.4, x̃2(t1) = 23.5, and x̃2(t2) = 21.0. In this case, the estimate ỹ for the
desired difference y between average temperatures is equal to

ỹ =
20.0+ 21.9+ 18.7

3
− 22.4+ 23.5+ 21.0

3
= 20.2− 22.3=−2.1.

According to our algorithm, we first select a small value δ , e.g., δ = 0.1.
Then, we modify the results of the first sensor while keeping the results of the

second sensor unchanged. As a result, we get x(1)1 (t0) = x̃1(t0)+ δ = 20.0+ 0.1 =

20.1, and similarly x(1)1 (t1)= 22.0 and x(1)1 (t2)= 18.8; we also get x(1)2 (t0)= x̃2(t0)=

22.4, and similarly x(1)2 (t1) = 23.5 and x(1)2 (t2) = 21.0. For thus modified values, we
get

y(1) =
x(1)1 (t0)+ x(1)1 (t1)+ x(1)1 (t2)

3
− x(1)2 (t0)+ x(1)2 (t1)+ x(1)2 (t2)

3
=

20.1+ 22.0+ 18.8
3

− 22.3+ 23.5+ 21.0
3

= 20.3− 22.3=−2.0.

Similarly, we modify the results of the second sensor while keeping the results of

the first sensor unchanged. As a result, we get x(2)1 (t0) = x̃1(t0) = 20.0, and similarly

x(2)1 (t1) = 21.9 and x(2)1 (t2) = 18.7; we also get x(2)2 (t0) = x̃2(t0)+δ = 22.4+0.1=

22.5, and similarly x(2)2 (t1) = 23.6 and x(2)2 (t2) = 21.1. For thus modified values, we
get

y(2) =
x(2)1 (t0)+ x(2)1 (t1)+ x(2)1 (t2)

3
− x(2)2 (t0)+ x(2)2 (t1)+ x(2)2 (t2)

3
=

20.0+ 21.9+ 18.7
3

− 22.4+ 23.6+ 21.1
3

= 20.2− 22.4=−2.2.

Finally, we estimate the desired bound Δs on the systematic component Δsy as

Δs =
|y(1)− ỹ|

δ
·Δs1 +

|y(2)− ỹ|
δ

·Δs2 =

|(−2.0)− (−2.1)|
0.1

·0.1+ |(−2.2)− (−2.1)|
0.1

·0.3 = 1 ·0.1+ 1 ·0.3= 0.4.

Finally, let us consider the problem of propagating the periodic components. By
definition, the periodic-induced component Δyp� of the resulting error Δy is equal
to
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Δyp� = ∑
i

∑
j

Ci j ·A�i · cos(ω� · ti j +ϕ�i),

i.e., to

Δyp� = ∑
i

∑
j

Ci j ·A�i · (cos(ω� · ti j) · cos(ϕ�i)− sin(ω� · ti j) · sin(ϕ�i)).

By combining the terms corresponding to different j, we conclude that

Δyp� = ∑
i

A�i ·Kci · cos(ϕ�i)+∑
i

A�i ·Ksi · sin(ϕ�i),

where Kci
def
= ∑

j
Ci j · cos(ω� · ti j) and Ksi

def
= ∑

j
Ci j · sin(ω� · ti j).

The values Kci and Ksi can be explicitly described. Namely:

• One can easily see that if for some small value δ > 0, for this sensor i, we take
Δxi(ti j) = δ ·cos(ω� · ti j) for all j, and for all other sensors i′, we take Δxi′(ti′ j) =
0, then the resulting increase in y will be exactly equal to δ ·Kci.

• Similarly, if for this sensor i, we take Δxi(ti j) = δ · sin(ω� · ti j) for all j, and for
all other sensors i′, we take Δxi′(ti′ j) = 0, then the resulting increase in y will be
exactly equal to δ ·Ksi.

Once we have determined the coefficients Kci and Ksi, we need to describe the prob-
ability distribution of the sum Δyp� = ∑

i
A�i ·Kci · cos(ϕ�i)+∑

i
A�i ·Ksi · sin(ϕ�i). We

assumed that all ϕi are independent (and uniformly distributed). Thus, for the case
of multiple sensors, we can apply the Central Limit Theorem and conclude that the
distribution of the sum Δyp� is close to normal.

In general, normal distribution is uniquely determined by its first two moments:
mean and variance (or, equivalently, standard deviation). The mean of each sine
and cosine term is 0, so the mean of the sum Δyp� is zero as well. Since the terms
corresponding to different sensors are independent, the variance of the sum is equal
to the sum of the variances of individual terms. For each i, the mean of the square

(A�i ·Kci · cos(ϕ�i)+A�i ·Ksi · sin(ϕ�i))
2 =

A2
�i · (K2

ci · cos2(ϕ�i)+K2
si · sin(ϕ�i)+ 2 ·Kci ·Ksi · cos(ϕ�i) · sin(ϕ�i))

is equal to
1
2
·A2

�i · (K2
ci +K2

si). Thus, the variance of the sum is equal to

1
2
·∑

i

A2
�i · (K2

ci +K2
si).

Each amplitude A�i can take any value from 0 to the known bound P�i. The above
expression monotonically increases with A�i, and thus, it attains its largest value
when A�i takes the largest value P�i. Thus, the largest possible value of the variance

is equal to
1
2
·∑

i
P2
�i · (K2

ci +K2
si).
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Thus, we arrive at the following algorithm for computing the upper bound σp� of
the standard deviation of the periodic-induced component Δyp� on the approxima-
tion error Δy.

Propagating periodic-induced component: algorithm. The upper bound σp� on
the standard deviation of the periodic-induced component Δyp� can be obtained as
follows:

• First, we apply the algorithm f to the measurement results x̃i(ti j) and get the
estimate ỹ.

• Then, we select a small value δ and for each sensor i, we do the following:

– for this sensor i, we take x(ci)
i (ti j) = x̃i(ti j)+δ ·cos(ω� · ti j) for all moments j;

– for all other sensors i′ �= i, we take x(ci)
i′ (ti′ j) = x̃i(ti′ j);

– substitute the resulting values x(ci)
i′ (ti′ j) into the data processing algorithm f

and get the result y(ci);

– then, for this sensor i, we take x(si)
i (ti j) = x̃i(ti j)+ δ · sin(ω� · ti j) for all mo-

ments j;
– for all other sensors i′ �= i, we take x(si)

i′ (ti′ j) = x̃i(ti′ j);

– substitute the resulting values x(si)
i′ (ti′ j) into the data processing algorithm f

and get the result y(si).

• Finally, we estimate the desired bound σp� as

σp� =

√

√

√

√

1
2
·∑

i
P2
�i ·

(

(

y(ci)− ỹ
δ

)2

+

(

y(si)− ỹ
δ

)2
)

.

Metrological comment. In some practical situations, instead of the absolute bound
P�i on the amplitude of the corresponding periodic error components, practitioners
often describe relative accuracy δ�i such as 5% or 10%. In this case, a reasonable
way to describe the absolute bound is to determine it as σi = δi ·mi, i.e., by multi-
plying the given value δi and the mean square value of the signal

mi =

√

1
Ti
·∑

j

(x̃i(ti j))
2.

Example. To test our algorithm, we have applied it to compute the corresponding
error component in the problem of estimating carbon and water fluxes described
in the paper [14], where such the notion of a periodic error component was first
introduced. Our numerical results are comparable with the conclusions of that paper.
In the future, we plan to apply all the above algorithms to the results obtained by
the sensors on the Jornada Experimental Range Eddy covariance tower and on the
nearby robotic tram, and by the affiliated stationary sensors [5, 6, 7, 8, 11, 17].
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8 Conclusion

In many application areas, it is necessary to process time series. In this process-
ing, it is necessary to take into account uncertainty with which we know the cor-
responding values. Traditionally, measurement uncertainty has been classified into
systematic and random components. However, for time series, this classification is
often not sufficient, especially in the analysis of seasonal meteorological and en-
vironmental time series. To describe real-life measurement uncertainty more accu-
rately, researchers have come up with a semi-empirical idea of introducing a new
type of measurement uncertainty – that corresponds to periodic errors. In this paper,
we provide a mathematical justification for this new error component, and describe
efficient algorithms for propagating the resulting three-component uncertainty.
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