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Chapter 12 
Channel and Class Dependent Time-Series 
Embedding Using Partial Mutual Information 
Improves Sensorimotor Rhythm  
Based Brain-Computer Interfaces  

Damien Coyle* 

Abstract. Mutual information has been found to be a suitable measure of depen-
dence among variables for input variable selection. For time-series prediction mu-
tual information can quantify the average amount of information contained in the 
lagged measurements of a time series. Information quantities can be used for select-
ing the optimal time lag, τ, and embedding dimension, Δ, to optimize prediction ac-
curacy. Times series modeling and prediction through traditional and computation-
al intelligence techniques such as fuzzy and recurrent neural networks (FNNs and 
RNNs) have been promoted for EEG preprocessing and feature extraction to max-
imize signal separability to improve the performance of brain-computer interface 
(BCI) systems. This work shows that spatially disparate EEG channels have differ-
ent optimal time embedding parameters which change and evolve depending on the 
class of motor imagery (movement imagination) being processed. To determine the 
optimal time embedding for each EEG channel (time-series) for each class an ap-
proach based on the estimation of partial mutual information (PMI) is employed. 
The PMI selected embedding parameters are used to embed the time series for each 
channel and class before self-organizing fuzzy neural network (SOFNN) based 
predictors are specialization to predict channel and class specific data in a predic-
tion based signal processing framework, referred to as neural-time-series-
prediction-preprocessing (NTSPP). The results of eighteen subjects show that  
subject-, channel- and class-specific optimal time embedding parameter selection 
using PMI improves the NTSPP framework, increasing time-series separability. 
The chapter also shows how a range of traditional signal processing tools can be 
combined with multiple computational intelligence based approaches including the 
SOFNN and practical swarm optimization (PSO) to develop a more autonomous 
parameter optimization setup and ultimately a novel and more accurate BCI.   
                                                           
Damien Coyle 
Intelligent Systems Research Centre,  
University of Ulster, Derry, BT48 7JL, UK 
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1   Introduction 

The human brain contains approximately 1011 neurons interconnected through 
over 100 trillion synapses. Each neuron, containing many different compartments 
made up of many different chemicals and neurotransmitters, emits tiny electrical 
pulses every millisecond. The electroencephalogram (EEG), recorded from the 
scalp surface, is a measure of the aggregate activity of many post-synaptic-
potentials (PSPs) of these neurons and includes information from many different 
brain sources along with background noise from other non-neural signals. EEG is 
therefore inherently complex and non-stationary, rendering it very difficult to as-
sociate a particular EEG time series pattern or dynamic with a specific mental 
state or thought.  

Coupling EEG dynamics to a person’s thoughts or intent, expressed in the form 
of mental imagery, is the objective of non-invasive brain-computer interface (BCI) 
technology. BCIs enable people to communicate with computers and devices 
without the need for neuromuscular control or the normal communication path-
ways and therefore have many potential applications [1]-[3]. BCI has applications 
in assistive technologies for the physically impaired [4][5], rehabilitation after 
stroke [7], awareness detection in disorders of consciousness (DoC) [6] and in 
non-medical applications such as games and entertainment [8]. Voluntarily mod-
ulation of sensorimotor rhythms (SMR) forms the basis of non-invasive (EEG-
based) motor imagery (MI) BCIs. Planning and execution of hand movement are 
known to block or desynchronize neuronal activity which is reflected in an EEG 
bandpower decrease in mu band (8-12Hz). Inhibition of motor behaviour synchro-
nizes neuronal activity [1]. During unilateral hand imagination, the preparatory 
phase is associated with a contralateral mu and central beta event related desyn-
chronization (ERD) that is preponderant during the whole imagery process [9]-
[11]. BCIs utilize a number of self-directed neurophysiological processes includ-
ing the activation of sensorimotor cortex during motor imagery (MI). However, as 
outlined, the dynamical and non-stationary patterns in the time series must be 
dealt with to ensure information can be discriminated and classified precisely so 
that BCI technology is robust enough to be made available to those who need it 
most: those who are severely physically impaired due to disease or injury. Max-
imizing the capacity for computer algorithms to separate noise from source, dis-
tinguish between two or more different mental states or one mental task  
(intentional control (IC) state) from all other possible mental states (no control 
(NC) state) has been the goal of many BCI focused researchers for the past 20 
years. Linear and non-linear approaches to classification have been applied to 
classifying the EEG signals [12]-[14]. Times series modeling and prediction 
through traditional and computational intelligence techniques such as fuzzy and 
recurrent neural networks (FNNs and RNNs) have been promoted for EEG pre-
processing and feature extraction to maximize signal separability [15]-[24].  

Coyle et al [22][23] have proposed an approach were specific self-organizing 
FNNs (SOFNN) are trained to specialize in predicting EEG time-series recorded 
from various electrode channels during different types of motor imagery (left/right  
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movement imagination). The networks become specialized on the dynamics of 
each time series and the relative difference in the predictions provided by the net-
works can produce information about the times series’ that are being fed to the 
networks e.g., if two networks are specialized on two particular time series (left or 
right motor imagery) and unlabeled time series are fed to both networks, the net-
work that produces the lowest prediction error can be indicative of the times series 
being processed and thus the information can be used to classify (or label) the un-
labeled time series. This idea has been extended to include multiple time series, 
multiple classes and integrated with a range of other signal processing techniques 
to aid in the discrimination of sensorimotor based activations for BCI. A critical 
element in the neural time-series-prediction pre-processing (NTSPP) framework 
[21]-[24] is predictor (network) specialisation. This can be achieved through net-
work optimization techniques and self-organising systems assuming that there are 
underlying differences in the time series being processed. Coyle et al [21] have 
shown in preliminary studies that subject specific time-embedding of the time-
series can assist in specializing networks to improve BCI performance but that 
generally an embedding dimension, Δ=6 and a time lag, τ=1, works well for one-
step-ahead EEG time series prediction.  

The aim of this chapter is to show that spatially disparate EEG channels have 
different optimal time embedding parameters which change and evolve depending 
on the motor imagery or mental task being processed. To determine the optimal 
time embedding for each EEG channel (time-series) a recently proposed method 
based on the estimation of partial mutual information (PMI) is employed [25][26]. 
Mutual information has been found to be a suitable measure of dependence among 
variables for input variable selection and quantifies the average amount of com-
mon information contained in Δ measurements of a time series. Information quan-
tities can be used for selecting the optimal time lag, τ, and embedding dimension, 
Δ, to optimize prediction accuracy. The PMI selected embedding parameters are 
used to embed the time series for each channel and class before SOFNN speciali-
zation is performed in the NTSPP framework. The results of eighteen subjects 
show that subject-, channel- and class-specific optimal time embedding parameter 
selection using PMI improves the NTSPP framework, increasing time-series sepa-
rability and therefore overall BCI performance. 

The following section describes the data used in the chapter to validate the pro-
posed approach. Section 3 includes a description of the methods employed where 
section 3.1 describes the BCI including the NTSPP approach and other stages of 
signal processing such as spectral filtering, common spatial patterns, feature ex-
traction and classification. Section 3.2 outlines the partial mutual information 
based input variable selection (PMIS) approach and the implications of applying 
this in the NTSPP framework for BCI. A description of how the BCI is setup and 
parameters are optimized is contained in Section 3.3. A discussion of the results 
and findings is presented in the remaining sections along with suggested future 
work for improvements to the proposed methodology.        
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2   Data Acquisition and Datasets 

Data from 18 participants partaking in BCI experiments are used in this work. All 
datasets were obtained from the fourth international BCI competitions, BCI-IV, 
[27][28], which include datasets 2A and 2B [29]. Table 1 below provides a sum-
mary of the data. 
 

Table 1 Summary of datasets used from the International BCI competition IV 

Competition  Dataset Subjects Labels Trials Classes Channels  
BCI-IV 2B  9 S1-9 720 2 3 
BCI-IV 2A 9 S10-18 576 4 22 

 

Dataset 2B - This data set consists of EEG data from 9 subjects (S1-S9). Three bi-
polar recordings (C3, Cz, and C4) were recorded with a sampling frequency of 
250 Hz (downsampled to 125Hz in this work). The placement of the three bipolar 
recordings (large or small distances, more anterior or posterior) were slightly dif-
ferent for each subject (for more details see [29][31]). The electrode position Fz 
served as EEG ground. The cue-based screening paradigm (cf. Fig 1(a).1) con-
sisted of two classes, namely the motor imagery (MI) of the left hand (class 1) and 
the right hand (class2). Each subject participated in two screening sessions without 
feedback recorded on two different days within two weeks. Each session consisted 
of six runs with ten trials each and two classes of imagery. This resulted in 20 tri-
als per run and 120 trials per session. Data of 120 repetitions of each MI class 
were available for each person in total. Prior to the first motor imagery training the 
subject executed and imagined different movements for each body part and se-
lected the one which they could imagine best (e.g., squeezing a ball or pulling a 
brake). For the three online feedback sessions four runs with smiley feedback 
were recorded whereby each run consisted of twenty trials for each type of motor 
imagery (cf. Fig 1(a) for details of the timing paradigm for each trial). Depending 
on the cue, the subjects were required to move the smiley towards the left or right 
side by imagining left or right hand movements, respectively. During the feedback 
period the smiley changed to green when moved in the correct direction, otherwise 
it became red. The distance of the smiley from the origin was set according to the 
integrated classification output over the past two seconds (more details can be 
found in [31]). The classifier output was also mapped to the curvature of the 
mouth causing the smiley to be happy (corners of the mouth upwards) or sad (cor  
ners of the mouth downwards). The subject was instructed to keep the smiley on 
the correct side for as long as possible and therefore to perform the correct MI as 
long as possible. A more detailed explanation of the dataset and recording para-
digm is available [31]. In addition to the EEG channels, the electrooculogram 
(EOG) was recorded with three monopolar electrodes and this additional data can 
be used for EOG artifact removal [32] but was not used in this study.   

Dataset 2A - This dataset consists of EEG data from 9 subjects (S10-S18). The 
cue-based BCI paradigm consisted of four different motor imagery tasks, namely 
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the imagination of movement of the left hand (class 1), right hand (class 2), both 
feet (class 3), and tongue (class 4) (only left and right hand trials are used in this 
investigation). Two sessions were recorded on different days for each subject. 
Each session is comprised of 6 runs separated by short breaks.  One run consists of 
48 trials (12 for each of the four possible classes), yielding a total of 288 trials per 
session. The timing scheme of one trial is illustrated in Fig 1(b). The subjects sat  
in a comfortable armchair in front of a computer screen. No feedback was pro-
vided but a cue arrow indicated which motor imagery to perform. The subjects 
were asked to carry out the motor imagery task according to the cue and timing 
presented in Fig 1(b). For each subject twenty-two Ag/AgCl electrodes (with in-
ter-electrode distances of 3.5 cm) were used to record the EEG; the montage is 
shown in Fig 1(c) left. All signals were recorded monopolarly with the left masto-
id serving as reference and the right mastoid as ground. The signals were sampled 
with 250 Hz (downsampled to 125Hz in this work) and bandpass filtered between 
0.5 Hz and 100 Hz. EOG channels were also recorded for the subsequent applica-
tion of artifact processing although this data was not used in this work. A visual 
inspection of all data sets was carried out by an expert and trials containing arti-
facts were marked.  

 

                                        
 

       (a)                                                             (b) 

 

                          
                                                  (c) 

Fig. 1 (a) Timing scheme of the paradigm for recording dataset 2B; 1) the first two sessions 
provided training data without feedback, and 2) the last three sessions with smiley feed-
back. (b) Timing scheme of recording for dataset 2A; (c) electrode montage for recording 
dataset 2A; For dataset 2B electrodes positions were fine-tuned around positions c3, cz and 
c4 electrodes used to derive bipolar channels for each subject [31].      

1

2
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To summarize, in this work only electrodes positioned anteriorly and posterior-
ly to positions C3, Cz and C4 are used to derive 3 bipoloar channels. These chan-
nels are located over left, right hemisphere and central sensorimotor areas – areas 
which are predominantly the most active during motor imagery. In dataset 2A on-
ly 2 of the available 4 classes are used (left and right hemisphere). As outlined all 
data was downsampled to 125 Hz in this work. The data splits (training and test-
ing) were the same as those used for the BCI Competition IV [30]. For dataset 2A, 
one session (2 classes consisting of 72 trials each) are used for training and the 
remaining session is used for final testing. For dataset 2B the first two sessions are 
not used, session 3, the first feedback session, is used for training (160 trials) and 
feedback sessions 4E and 5E are used for final testing.  All parameter selection is 
conducted on the training data using cross validation as described in section 3.3 
and the system setup is tested on the final testing sessions.   

3   Methods 

3.1   BCI Description  

3.1.1   Neural-Time-Series-Prediction-Processing (NTSPP) 

NTSPP, introduced in [21], is a framework specifically developed for preprocess-
ing EEG signals associated with motor imagery based BCI systems. NTSPP in-
creases class separability by predictive mapping and filtering the original EEG 
signals to a higher dimensional space using predictive/regression models specia-
lized (trained) on EEG signals for different brain states i.e., each type of motor 
imagery. A mixture or combination of neural network-based predictors are trained 
to predict future samples of EEG signals i.e., predict ahead the state of the EEG. 
Networks are specialized on each class of signal from each EEG channel.  Due to 
network specialization, prediction for one class of signals differ from the other 
therefore introducing discriminable characteristics into the predicted signal for 
each class of signal associated with a particular brain state. Features extracted 
from the predicted signals are more separable and thus easier to classify.  

Consider two EEG times-series, xi, i∈{1,2} drawn from two different signal 
classes ci, i∈{1,2}, respectively, assuming, in general, that the time series have 
different dynamics in terms of spectral content and signal amplitude but have 
some similarities. Consider also two prediction NNs, f1 and f2, where f1 is trained 
to predict the values of x1 at time  t+π given values of x1 up to time t (likewise, f2 
is trained on time series x2), where π is the number of samples in the prediction 
horizon. If each network is sufficiently trained to specialize on its respective train-
ing data, either x1 or x2, using a standard error-based objective function and a stan-
dard training algorithm, then each network could be considered an ideal  
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predictor for the data type on which it was trained1 i.e., specialized on a particular 
data type. If each prediction NN is an ideal predictor then each should predict the 
time-series on which it was trained perfectly, leaving only error residual equiva 
lent to white or Gaussian noise with zero mean. 

 

Fig. 2 An illustration of a generic multiclass or multichannel neural-time-series-prediction-
preprocessing (NTSPP) framework with spectral filtering, CSP, feature extraction and  
classification 

In such cases the expected value of the mean error residual given predictor f1 for 
signal x1 is E[x1–f1(x1)]=0 and the expected power of the error residual, E[x1–
f1(x)]2, would be low (i.e., in relative terms) whereas, if x2 is predicted by f1 then 
E[(x2–  f1(x2)] ≠ 0 and E[(x2–f1(x2)]

2 would be high  (i.e., again in relative terms). 
The opposite would be observed when xi, i∈{1,2}, data are predicted by predictor 
f2. Based on the above assumptions, a simple set of rules could be used to deter-
mine which signal class an unknown signal type, u, belongs too. To classify u one 
or both of the following rules could be used:- 

  
 

1. If E[u– f1(u)] = 0 & E[u– f2(u)]  ≠ 0 then u ∈  C1, otherwise u ∈  C2.   
 

2. If E[u– f1(u)]2 < E[u– f2(u)]2 then u ∈  C1, otherwise u ∈  C2.   
 

These are simple rules and may only work successfully in cases where the predic-
tors are ideal and specialized sufficiently. Due to the complexity of EEG data and 
its non-stationary characteristics, and the necessity to specify a NN architecture 
which approximates universally, predictors trained on EEG data will not consis-
tently be ideal however; when trained on EEG with different dynamics e.g., left 

                                                           
1 Multilayered feedforward NNs and adaptive-neuro-fuzzy-inference-systems (ANFIS) are 

considered universal approximators due to having the capacity to approximate any func-
tion to any desired degree of accuracy with as few as one hidden layer that has sufficient 
neurons [33][34]. 
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and right MI, predictor NNs can introduce desirable characteristics in the pre-
dicted outputs which render the predicted signals more separable than the original 
signals and thus aid in determining which brain state produced the unknown sig-
nal. This predictive filtering modulates levels of variance in the predicted signals 
for data types and most importantly manipulates the variances differently for  
different classes of data. Instead of using only one signal channel, the hypothesis 
underlying the NTSPP framework is that, if two or more channels are used for 
each signal class and advanced feature extraction techniques and classifiers are 
used instead of the simple rules outlined above, additional advantageous informa-
tion relevant to the differences introduced by the predictors for each class of signal 
can be extracted to improve overall feature separability thereby improving BCI 
performance.  

In general, the number of time-series available and the number of classes go-
verns the number of specialized predictor networks employed and the resultant 
number of predicted time-series from which to extract features, such that  

= ×P M C                                                              (1) 

where P is the number of networks (=no. of predicted time-series), M is the num-
ber of EEG channels and C is the number of classes. For prediction,  

π τ+ = − Δ −ˆ ( ) ( ), ..., ( ( 1)ci ci i ix t f x t x t
                                  (2) 

where t is the current time instant, Δ is the embedding dimension and τ is the time 
delay, π is the prediction horizon, cif  is the prediction network trained on the ith 

EEG channel, xi, i=1,..,M, for class c, c=1,..C, where C is the number of classes 
and ˆcix  is the predicted time series produced for channel i by the predictor  

for class c and channel i. An illustration of the NTSPP framework is presented in 
Fig. 2. 

Many different predictive approaches can be used for prediction in the NTSPP 
framework [21][22][24]. In this work the self-organizing fuzzy neural network 
(SOFNN) is employed [23][36][37]. The SOFNN is a powerful prediction algo-
rithm capable of self-organizing its architecture, adding and pruning neurons as 
required. New neurons are added to cluster new data that the existing neurons are 
unable to cluster while old, redundant neurons are pruned ensuring optimal net-
work size, accuracy and training speed (cf. [23] for details of the SOFNN and  
recent improvements to the SOFNN learning algorithm and its autonomous hyper-
parameter-free application in BCIs). 

Earlier work [21] has shown Δ=6 and τ=1 provide good performance in a two 
class MI-BCI however this chapter shows how NTSPP can be enhanced by select-
ing channel- and class-specific embedding parameters using partial mutual infor-
mation selection as described in section 3.2. Firstly, the other signal processing 
components of the BCI are described. 
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3.1.2   Common Spatial Patterns (CSP) 

CSP maximizes the ratio of class-conditional variances of EEG sources [38][39]. 
To utilise CSP, Σ1 and Σ2 are the pooled estimates of the covariance matrices for 
two classes, as follows: 

=
 = ∈1

1
( {1, 2})c

c

I t
c i iI i

X X c
                                        

(3) 

where Ic is the number of trials for class c and Xi is the M×N matrices containing 
the ith windowed segment of trial i;  N is the window length and M is the number 
of EEG channels – when CSP is used in conjunction with NTSPP, M=P according 
to (1). The two covariance matrices, Σ1 and Σ2, are simultaneously diagonalized 
such that the Eigenvalues sum to 1. This is achieved by calculating the generalised 
eigenvectors W:  

 =  + 
1 1 2

( )W WD
                                              

(4) 

where the diagonal matrix D contains the Eigenvalues of Σ1 and the column vec-
tors of W are the filters for the CSP projections. With this projection matrix the 
decomposition mapping of the windowed trials X is given as  

= .E WX                                                         (5) 

To generalize CSP to 3 or more classes (multiclass paradigm), spatial filters are 
produced for each class vs. the remaining classes (one vs. rest approach). If q is 
the number of filters used then there are q×C surrogate channels from which to ex-
tract features. To illustrate how CSP enhances separability among 4 classes the 
hypothetical relative variance level of the data in each of the 4 classes are shown 
in Fig. 3. 
 

 

Fig. 3 Hypothetical relative variance level of the CSP transformed surrogate data 
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(a)                      (b) 

Fig. 4 (a) Frequency band selection using PSO. The graphical representation of particles’ 
motion over progressive generations where classification  accuracy(CA) is assessed at teach 
generation ; (b) Frequency band selection over 5-folds (where ai is the probability of correct 
classification in fold I and the selected band is the weighted average (weighted by ai ) of the 
band selected for each fold).  

3.1.3   Spectral Filtering (SF) 

Prior to the calculation of the spatial filters, X can be preprocessed with NTSPP 
and/or spectrally filtered in specific frequency bands. Optimal frequency bands are 
selected autonomously in the offline training stage using particle swarm atomiza-
tion (PSO) [16][40][41] to band pass filter the data before CSP is applied. The 
search space is every possible band size in the 8 - 28Hz range as shown in Fig. 
4(a). These bands encompass the μ and β bands which are altered during sensori-
motor processing [42][43] and can be modulated via motor imagery. 

3.2   Feature Extraction and Classification  

Features are derived from the log-variance of preprocessed/surrogate signals 
within a two second sliding window:  

ω = log(var( ))E                                                  (6) 

The dimensionality of ω  depends on the number of surrogate signals used from 
E. The common practice is to use several (q between 2 and 4) eigenvectors from 
both ends of the eigenvector spectrum, i.e., the columns of W. Using NTSPP the 
dimensionality of X can increase significantly. CSP, can be used to reduce the di-
mensionality therefore the benefits of combining NTSPP with CSP are twofold; 1) 
increasing separability and 2) maintaining a tractable dimensionality [22].  

Linear Discriminant Analysis (LDA) is used to classify the features at the rate 
of the sampling interval. Linear classifiers are most commonly used for classifying 
motor imagery in BCI applications. Before describing how the parameters associat  
ed with these stages of signal processing are optimized in section 3.3, the follow-
ing section describes the main novelty of this chapter for enhancement of this 
framework where the embedding parameters are selected using PMIS. 
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3.3   Partial Mutual Information  

The selection of an optimal embedding dimension and its corresponding time lags 
is often referred to as the input variable selection (IVS) problem. The IVS problem 
is defined as the task of appropriately selecting a subset of k variables, from the in-
itial candidate set C which comprise the set of all potential inputs to the model 
(i.e., candidates) [26]. Mutual information has been found to be a suitable measure 
of dependence among variables for IVS and quantifies the average amount of 
common information contained in Δ measurements of a time series. Information 
quantities can be used for selecting the optimal τ and Δ, to optimize prediction ac-
curacy. Evaluation of mutual information and redundancy-based statistics as func-
tions of τ and Δ can further improve insight into dynamics of a system under 
study.  

In essence, two successive measurements of a random variable have no mutual 
information (in the case of more than two variables mutual information is com-
monly replaced by the term redundancy) but data based on an underlying rule may 
have some association; mutual information is proportional to the strength of that 
association. Utilising only one or two observations of a time series, x, may not 
provide enough information about a future value of x to make a reliable prediction. 
Generally, for periodic, quasi-periodic and even chaotic data redundancy tends to 
rise as each additional measurement of x (i.e., Δ is increased) is involved in the re-
dundancy calculation, at a fixed lag. Mutual information is an arbitrary measure 
and makes no assumption of the structures of dependence among variables, be 
they linear or non-linear. It has also been shown to be robust to noise and data 
transformations.     

Although mutual information is a strong candidate for IVS there are number of 
issues associated with applying the algorithm such as the ability of the selection 
algorithm to consider the inter-dependencies among variables (redundancy han-
dling) and the lack of appropriate analytical methods to determine when the op-
timal set has been selected. One method involves the estimation of marginal re-
dundancy, ς, which quantifies the average amount of information contained in the 
variables ( 1) ,...t tx xτ τ+ Δ− +  about the variable tx  and the quantity is the difference 

between two successive R calculations (ς =RΔ +1-RΔ ).  Depending on the complex-
ity of the data, usually ς increases as Δ is increased. Eventually further increases in 
Δ provide a lesser increase in ς. Finally, ς becomes approximately constant or be-
gins to decrease. A constant ς indicates that further increases in Δ does not im-
prove the ability of a sequence of measurements to predict the last measurement in 
the sequence at that value of τ (i.e., there is no advantage in increasing Δ). An-
other method of estimating the optimum value of Δ can be realised by plotting ς as 
a function of τ with Δ as a third variable. The relationship between plots of ς ver-
sus τ becomes closer as Δ is increased. The optimum Δ is chosen as the smallest Δ 
for which the plotted relations become relatively close to each other. For more in-
formation see [43][44][46][47][48]. In some cases the results from this type of re-
dundancy analysis can be subjective and may not be fully conclusive whilst the  
calculation can also be time consuming. 
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Sharma [25] proposed an alternative algorithm and one that overcomes the dif-
ficulties in terms of determining the optimal sets of variables with mutual informa-
tion by using the concept of partial mutual information (PMI). The approach was 
further assessed and developed by May et al. [26] 

3.4   Estimation of Partial Mutual Information  

The mutual information calculation stems from Shannon’s information theory [49] 
formulated in (7) 

;

( , )
( , ) log

( ) ( )Y X

p x y
I p x y

p x p y
= 

                                               
(7) 

where x and y are observations of random variables X and Y, respectively i.e., 
y Y∈  and x X∈ . Considering Y is an output variable for which there is uncer-

tainty around its observation and is dependent upon the random input variable x 
then the mutual observation of (x,y) reduces this uncertainty, since knowledge of x 
allows inferences of the values of y and vice versa. Within a practical context the 
true functional forms of the pdfs in (7) are typically unknown. In such cases the 
estimates of the densities are used instead. Substitution of the density estimates 
into a numerical approximation of the integral in (7) gives  

; 2
1 1

( , )
( , ) log

( ) ( )

N Ns s
i j

Y X i j
i j i j

p x y
I p x y

p x p y= =
=

                                
(8) 

where Ns  is the number of bins used for calculating the probability ( )ip x  of signal 

measurement x, occurring in bin xi and the probability ( )jp y  of signal measure-

ment y occurring in bin yj. ( , )i jp x y  is the joint probability of occurrence of both 

measurements of the signal. Equation (2) can be generalised to calculate redun-
dancies among variables in a time series, as shown in (3) 

( 1)

( 1)
( 1) 2

( 1)

( , ,..., )

( , ,..., )
( , ,..., ) log

( ) ( )... ( )

t t t

Nr
t t t

t t t
t t t

R x x x

p x x x
p x x x

p x p x p x

τ τ

τ τ
τ τ

τ τ

+ + Δ−

+ + Δ−
+ + Δ−

+ + Δ−

=
 (9) 

where xt is the measurement of the signal sampled at time t and Nr is the number of 
phase space routes (i.e., the number of combinations). Equations (8) and (9) can 
be derived in the probability form or entropy form (H):- 

( 1) ( 1)(.) ( ) ... ( ) ( ,..., )t t t tR H x H x H x xτ τ+ Δ− + Δ−= + + −
                    

(10) 

Full derivations can be found in [45][46][47]. Depending on the number of meas-
urements of the signal and the number of bins, the joint probability, 

( 1)( , ,..., )t t tp x x xτ τ+ + Δ− , can encompass a very large number of sequence probabili-

ties. For example, if Δ =5 and Ns=20 then the number of sequence probabilities to 
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be estimated is Nr=Ns
D =3.2 x 106, increasing exponentially as Δ is increased. Es-

timating redundancies for Δ>5 can be significantly time consuming.  
Mutual information estimation is therefore largely dependent on the technique 

employed to estimate the marginal and joint pdfs. Non-parametric techniques such 
as kernel density estimation (KDE) are considered suitably robust and accurate al-
though somewhat computationally intensive compared to alternative approaches 
such as the histogram approach. Substitution of the density estimates into a nu-
merical approximation of the integral in (7) and (8) gives    

; 2
1

( , )1
( , ) log

( ) ( )

n
i j

Y X i j
i i j

f x y
I f x y

n f x f y=
≈                                (11) 

where f denotes the estimated density based on a sample of n observations of (x, 
y). The Parzen window approach is a simple KDE in which the estimator for f is 
given by  

1

1ˆ ( ) ( )
n

h i
i

f x K x x
n =

= −
                                               

(12) 

where ˆ( )f x  denotes the estimate of the pdf at x, xi{i = 1,…,n} denotes the sam-
ples observations of X, and Kh is the kernel function where h denotes the kernel 
bandwidth (or, smoothing parameter). A common choice for Kh is the Gaussian 
kernel   

2

1
exp

2( 2 )

i
h d

x x
K

hhπ

 − −
=   Σ  

                                   (13) 

where d denotes the number of dimensions of X, }ijσ{ =  is the sample covari-

ance matrix and ix x−  is the Mahalanobis distance metric given by  

1( ) ( ).T
i i ix x x x x x−− = − Σ −

                                       
(14) 

The kernel expression in (12) is used with (13) and (14) to produce the kernel es-
timator as defined below  

2
1

1ˆ ( ) exp
2( 2 )

n
i

d
i

x x
f x

hn hπ =

 − −
=   Σ  


                                  

(15) 

The performance of the kernel estimator, in terms of accuracy, is dependent more 
on the choice of bandwidth as opposed to choice of kernel itself [26][50]. The op-
timal choice of bandwidth depends on the distribution of the data samples. In 
[25][26][51] the Gaussian reference bandwidth, hG, for MI estimation is adopted 
as an efficient choice. The Gaussian reference bandwidth is determined using the 
following rule proposed by Silvermann [52]  
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1 41
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d

Gh n
d

σ
+

− + =  +                                           
(16) 

where σ  is the standard deviation of the data samples. The MI calculation can be 
easily extended to the multivariate case where the response/output variable Y is 
dependent on multiple input variables. For example, two input variables X and Z. 
Given X the uncertainty is reduced by a certain amount and the partial mutual in-
formation is defined as the further reduction in the uncertainty surrounding Y that 
is gained by the additional mutual observation of Z. Partial MI (PMI) is analogous 
to the partial correlation coefficient, R`ZY.X, which quantifies the linear dependence 
of Y on variable Z that is not accounted for by the input variable X. This is nor-
mally calculated by filtering Y and Z via regression on X to obtain some residuals, 
u and v, respectively [26]. Pearson’s correlation can be used to estimate X. PMI 
can be applied in a similar way to estimate the arbitrary dependence between  
variables. Using the KDE approach an estimator for the regression of Y on X is 
written as  

1

1

( )1
ˆ ( ) [ ]

( )

n

i h ii
Y n

h ii

y K x x
m x E y X x

n K x x
=

=

−
= = =

−

                               

(17) 

where ˆ ( )Ym x  is the regression estimator; n is the number of observed values (yi; 

xi); Kh is given as in (12) and [ ]E y X x=  denotes the conditional expectation of y 

given an observed x. An estimator ˆ ( )Zm x  can be similarly constructed, and the re-

siduals u and v estimated using the expressions 

ˆ ( )Yy Y m X= −                                                           (18) 

and  
ˆ ( )Zu Z m X= −                                                           (19) 

Using these residuals the PMI can then be calculated as 

.' ( ; )ZY XI I v u=                                                           (20) 

where the subscript notation .'ZY XI  or ( ; )I Z Y X  can be used. PMI allows for the 

evaluation of variables taking into account any information already provided by a 
given variable X. 

Given a candidate set C, and output variable, Y, the PMI based input variable 
selection (PMIS) algorithm proceeds at each iteration by finding the candidate, Cs, 
that maximises the PMI with respect to the output variable, conditional on the in-
puts that have been previously selected. The statistical significance of the PMI es-
timated for Cs can be assessed based on the confidence bounds drawn from the 
distribution generated by a bootstrap loop. If the input is significant, Cs¸ is added 
to S and the selection continues; otherwise there are no more significant candi-
dates remaining and the algorithm is terminated [25][26].  
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The size of the bootstrap, B, is important in the implementation of PMIS since 

it can influence both the accuracy and overall computational efficiency of the al-
gorithm. May et al [26] discuss the implications for selecting the bootstrap size in 
terms of the accuracy – computational efficiency trade-off and present a new ap-
proach which does not rely on a bootstrap or direct comparison with the critical 
value of MI (as is necessary with some of the other approaches compared, such as 
the tabulated critical values approach [26]). In [26] the use of the Hampel test cri-
terion is suggested as a termination criterion.  

3.5   Hampel Test Criterion 

Outlier detection methods are robust statistical methods for determining whether a 
given value, x, is significantly different from another within a set of values X. In 
the case of PMIS, having identified the most relevant candidate, the outlier, it is 
necessary to determine whether this candidate is statistically significantly greater 
than the others and to keep this candidate if it is.  The Z-test is a commonly 
adopted approach for outlier detection where the deviation of a single observation 
is compared with the sample mean of all observations. Based on the 3σ rule for 
Gaussian distributions, outliers lie greater than three standard deviations from the 
population mean and therefore an observed value with a Z-score greater than 3 is 
generally considered to be an outlier. The Z-test can be particularly sensitive when 
a population contains multiple outliers. One very distant outlier could disrupt the 
distribution of the population (mean and variance) resulting in other outliers not 
being identified i.e., hiding and masking outliers. The sensitivity of outlier detec-
tion methods to masking is determined based on the proportion of outliers that 
must be present to significantly alter the data distribution, referred to as the break-
down point, which is 1/n for the Z-test since only one sufficiently large outlier will 
cause the test to breakdown [26]. 

Since the candidate set of variables in the PMIS method is likely to contain 
more than one relevant variable (analogous to outliers in the aforementioned out-
lier test) a modified Z-score is necessary to improve the robustness of the test. The 
Hampel distance test proposed in [53] and compared in [26] is based on the popu-
lation median. Because the Hampel distance test breakdown point is 2/n it is con-
sidered to be one of the most robust outlier tests when the data contains multiple 
outliers. To calculate the Hampel distance, the absolute deviation from the median 
for all candidates is calculated as follows 

(50)
j C Y S C Y Sj j

d I I⋅ ⋅= −
                                                       

(21)    

where dj denotes the absolute deviation and (50)
C Y Sj

I ⋅  is the medium PMI for candi-

date set C. Taking (50)
jd

 
as the median absolute deviation (MAD), the Hampel dis-

tance (modified Z-score) for candidate Cj is      

(50) .
1.4826

j
j

j

d
Z

d
=

                                                     

(22) 
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The factor of 1.4826 scales the distance such that the rule Z>3 can be applied, as 
in the case of the conventional Z-test [26]. The value Zs is determined for candi-
date Cs and if Zs > 3, the candidate is selected and added to S; otherwise the for-
ward selection algorithm is terminated as described in the following subsection.   

PMIS algorithm using Hampel distance criterion  

  1: Let S φ→  (Initialisation)  

  2:  While  S φ≠
 
(Forward Selection) 

  3:  Construct kernel regression estimator ˆ ( )Ym S
 

  4: Calculate residual output ˆ ( )Yu Y m S= −
 

  5: For each jC C∈  

  6:  Construct kernel regression estimator ˆ ( )C j
m S

 
  7:  Calculate residual output ˆ ( )j C j

u C m S= −
 

  8:  Estimate I(v;u)  
  9: Find candidate Cs (and vs) that maximises I(v;u) 
10:  Estimate Zs for Cs 

11:  If Zs > 3 (Selection/Termination) 
12:  Move Cs to S 
13: Else 
14:  Break 
15: Return   

 
Using PMIS the optimal selection of time delayed EEG signal samples which 
minimise the uncertainty about a future output (prediction) can be estimated.  

3.6   Using PMIS to Optimize the NTSPP Framework  

For every channel, in the case of the BCI presented in sections 2 and 3.1, there is 
assumed to be an optimal selection of input variables (EEG time series embed-
ding), that will enable accurate prediction for the channel and accurate specialisa-
tion of a neural network for that channel. The optimal selection however is likely 
to differ depending on the class of data (motor imagery) being assessed. So, for a 
3 channel system with 2 classes of data there is assumed to be at least 6 optimal 
embedding configurations, one for each channel per class. When applying a BCI 
that involves time embedding the EEG for prediction, as is the case for the NTSPP 
framework, the optimal embedding for both classes cannot be applied simultane-
ously in the online BCI as the class is unknown a priori and a decision has to be 
made given data from 3 channels. It is therefore necessary to decide which em-
bedding should be applied, not necessarily to maximise the prediction accuracy for 
both classes, but to maximise the specialisation for the networks in such a way 
that the difference between signals predicted for both classes is maximal i.e., sepa-
rability is maximised. In the case where 3 channels and 2 classes are available, 
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Table 2 Different combinations of embedding dimension for three channels. For any con-
figuration each can use the embedding parameters that are optimal for either class ‘1’ or ‘2’ 
but not both.    

Configuration C3 C4 Cz 
A 1 1 1 
B 1 1 2 
C 1 2 1 
D 1 2 2 
E 2 1 1 
F 2 1 2 
G 2 2 1 
H 2 2 2 

 

 
{ }1,2C ∈ , there are 23 possible configurations for deciding which of the channel’s 

assumed optimal embedding configuration should be used as shown in Table 2. 
From Table 2, if configuration A is selected then the embedding values selected 

for class 1 on all channels would be used whereas if configuration D is selected 
the embedding parameters chosen for class 1 would be used for channel C3 and 
those chosen for class 2 would be used for channels C4 and Cz. As this chapter 
presents the first assessment of this approach, a heuristic based approach was 
adopted to determine the best configuration. The following section describes the 
complete BCI setup and parameters optimization procedure. 

3.7   Parameters Optimization and BCI Setup 

In motor imagery BCIs, the parameter search space and the available data can be 
extensive, particularly when there are multiple stages of signal processing, there-
fore a phased approach to parameter selection is conducted. In the proposed BCI 
setup it is necessary to find of the optimal combination of lagged input variables 
(embedding parameters) to train the predictor networks. An inner-outer cross-
validation (CV) is performed, where all other BCI parameters are optimized for 
each of the embedding configurations including the optimal subject-specific fre-
quency bands (shown in Fig. 4). In the outer fold, NTSPP is trained on up to 10 tri-
als randomly selected from each class (2 seconds of event related data from each 
trial resulting in 2500 samples for each channel/class) using standard time series 
embedding parameters: embedding (Δ=6) and time lag (τ=1). The trained networks 
then predict all the data from the training folds to produce a surrogate set of trials 
containing only EEG predictions. No parameter tuning is necessary at this stage as 
the SOFNN adapts autonomously to the signals [23]. The 4 training folds from the 
outer splits are then split into 5 folds on which an inner 5-fold cross validation is 
performed. Firstly, the time point of maximum separability is found for the inner 
data and, (if necessary, channel selection can be performed), both using the R2 cor-
relation analysis with a standard 8-26 Hz band [40]. Using the information regard-
ing the optimal time point, a 2 second window of data around the time point 
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of maximum separability is taken from 10 randomly chosen trials from each class 
and PMIS is applied to find the optimal embedding for each channel and each 
class. Using one of the combinations shown in table 1 the NTSPP framework is 
retrained with these embedding parameters, again using 10 randomly chosen trials 
from the outer training folds but in this case using the 2 second window of data 
around the time point of maximum separability (using the most separable data 
segments increases network specialization). A new surrogate dataset for the outer 
training fold data is obtained and the 4 training folds from the outer splits are then 
split into 5 folds on which another inner 5-fold cross validation is performed. 
Firstly, the time point of maximum separability is found for the inner data using 
the R2 correlation analysis with a standard 8-26 Hz band [40]. Using the best time 
point and best channels from the correlation analysis, a PSO based search is con-
ducted to identify the optimal frequency bands where CSP, feature extraction and 
classification is performed to determine classification accuracy levels on each of 
the folds for each of the bands selected by PSO and tested using 4 CSP surrogate 
channels [40]. After each frequency band is tested on the test fold, PSO swarm 
particles communicate the accuracy levels to one another and the algorithm con-
verges, identifying the optimal band for that test fold much quicker than searching 
the complete space of all the possible bands (cf.  Fig. 4(a) for a graphical represen-
tation of a PSO search). After optimal bands for each of the inner folds have been 
identified the finally selected band is the average classification accuracy (CA) of 
the 5 bands weighted by the CA of the test fold as illustrated in Fig. 4(b). NTSPP-
SF-CSP is then applied on the outer fold training set, where a feature set is ex-
tracted and an LDA classifier is trained at every time point across the trials and 
tested for that point on the outer test folds. The average across the five-folds is 
used to identify the optimal number of CSPs (between 1-3 from each side of W) 
and the final time point of maximum separation for the corresponding combina-
tion of PMIS selected lagged input variables. 

There are eight combinations of selected lag variable combinations as shown in 
Table 2 therefore the above process is conducted for each of the combinations. At 
the end of this process the embedding configuration which provides the best mean 
accuracy is known however it is then necessary to select which channel-specific 
embedding works best i.e., from the outer cross validation PMIS is applied for 
each of the 5 training folds and each time the exact embedding parameters may 
differ for each channel. To obtain the best setup for cross session tests (to ensure 
generalization to the unseen testing data) the complete system is retrained a further 
5 times on all the training data using the chosen parameters for each fold and 
tested on the training data 5 times. In this case the lag combination for each of the 
5 folds is tested with other BCI parameters selected in the cross-validation. The 
embedding parameters configuration and parameter combination which provides 
the highest mean accuracy across the 5 tests on the complete training data set is 
used for cross session tests. In the case where two tests produce the same results 
on one of the training data tests the parameter setup that achieves the average best 
accuracy across 8 lag configurations for a particular training test, corresponding to 
the best average lag configuration across the 5 training tests, is used to determine  
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the best setup. The system is finally tested on the unseen test/evaluation data (as 
given for the BCI competition outlined in section 2).  All parameter optimization 
is expedited using the Matlab® Parallel Processing Toolbox and a high perform-
ance computing (HPC) cluster with 384 cores. Subject analysis and 5-fold cross 
validations were run in parallel along with parallelization of parts of the kernel re-
gression estimation and PMI calculation for selecting input variables and multiple 
cross validation tests. 

4   Results  

The objective of this research was to improve the NTSPP framework, which is a 
predictive framework involving training a mixture of experts on EEG data pro-
duced for two classes of motor imagery recorded from three channels. The hypo-
thesis is that specializing the networks for a particular motor imagery (class) leads 
to improvement in the separability of the predicted output i.e., when the mixture of 
networks produce predictions for an unknown class of motor imagery, networks 
trained on that particular class of motor imagery should predict the data sufficient-
ly accurately and differently compared to the other networks which are trained on 
the other class of motor imagery. Maximizing the difference in the prediction for 
each class of motor imagery ultimately should lead to better classification accura-
cy (BCI performance) when features are extracted from the predicted signals and 
classified i.e., when all other components are merged with the predictive frame-
work. The hypothesis is based on the observation that dynamics of the EEG differs 
across channels and between motor imageries. The 2nd hypothesis is thus that each 
channel will have different and optimal embedding parameters which will optim-
ize prediction performance and enable network specialization. Therefore, selecting 
these optimal embedding parameters will result in improved NTSPP performance 
and thus improved BCI performance. For example, if PMIS selected x(t-1), x(t-3), 
and x(t-5) as the best predictors for channel C3 for class 1 and x(t-1), x(t-2), x(t-
3), and x(t-10) for the same channel but for class 2, training the networks for class 
1 and class 2 on only one of these embedding combinations for this channel, for 
example, the embedding parameters for class 1, then the class 2 network would 
not be able to specialize/train on the same channel using class 2 data as accurately, 
as the optimal embedding parameters for that channel are not been utilised i.e., for 
each channel only of the two networks trained on the channel is specialized to 
predict the channel whilst the other is not. 

To test both hypotheses the overall BCI performance and the selected embed-
ding parameters for each channel and class that produce the optimal BCI perfor-
mance are assessed. BCI performance with NTSPP and PMIS is compared with 
the case were no NTSPP is performed (only CSP and SF) and where NTSPP is 
performed with a standard embedding/time lag setup (NTSPP6). 
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Table 3 The optimal time series embedding parameters for each channel and for each class 
for all subjects. The optimal configuration for NTSPP is shown in column 2 (corresponding 
to table 2) and in bold in wide columns 3 and 4. 

 

4.1   PMIS Selected Embedding Parameters 

Table 3 shows the PMIS selected embedding/lag parameters for each of the 3 
channels for each class. The best configuration in terms of which embedding/lag 
parameters were used for each channel are shown in bold (as outlined only one 
embedding/lag setup can be used for each channel – the best training accuracy 
during system optimization as outlined above is used to determine which setup is 
used, either class 1 or class 2). As can be seen, across all subjects there are differ-
ent embedding/lag parameters chosen using PMIS. Within subjects there are dif-
ferent embedding/lag parameters for each channel and for each class. Using the 
selection method outlined above, the best configuration of embedding/lag parame-
ters differ significantly across subjects. Colum 2 shows the lag configurations cor-
responding to Table 2. For subjects 3, 7, 15, 16 and 17 the best configuration is 

Class 1 (Left Hand Motor Imagery) Class 2 (Right Hand Motor Imagery) S NTSPP 

Conf. C3 C4 Cz C3 C4 Cz 

1 C 1,2,1 x(t-1),x(t-10) x(t-1), x(t-9) x(t-1), x(t-3) x(t-1), x(t-5) x(t-1) x(t-1),x(t-10) 

2 D 1,2,2 x(t-1), x(t-2) x(t-1),x(t-2) x(t-1),x(t-2) 

x(t-5),x(t-6) 

x(t-1) x(t-1),x(t-2) x(t-1) 

3 A 1,1,1 x(t-1),x(t-2), 

x(t-4),x(t-5), 

x(t-6),x(t-7), 

x(t-10) 

x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5),x(t-6) 

x(t-1),x(t-2), 

x(t-3),x(t-5) 

 

x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5),x(t-6) 

x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5),x(t-6) 

x(t-1),x(t-2), 

x(t-3),x(t-10) 

 

4 B 1,1,2 

 

x(t-1),x(t-10) x(t-1) x(t-1),x(t-10) x(t-1), x(t-7), 

x(t-8) 

x(t-1) x(t-1),x(t-10) 

5 B 1,1,2 x(t-1) x(t-1),x(t-2), 

x(t-3),x(t-4) 

 

x(t-1), x(t-2) x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5),x(t-7) 

x(t-1), x(t-2) 

 

x(t-1),x(t-2), 

x(t-7),x(t-8) 

 

6 E  2,1,1 x(t-1),x(t-2), 

x(t-6),x(t-8), 

x(t-9) 

x(t-1), x(t-2), 

x(t-3),x(t-4), 

x(t-5) 

x(t-1),x(t-2), 

x(t-3) 

x(t-1), x(t-2), 

x(t-3), x(t-5) 

x(t-1), x(t-2), 

x(t-3), x(t-4), 

x(t-5),x(t-10) 

x(t-1),x(t-2), 

x(t-3),x(t-7), 

x(t-8) 

7 A 1,1,1 x(t-1) x(t-1) x(t-5),x(t-6) x(t-1) x(t-1) x(t-6) 

8 B 1,1,2 x(t-1) x(t-1), x(t-8) x(t-1) x(t-1) x(t-1),x(t-10) x(t-10) 

9 A 1,1,1 x(t-1) x(t-1) x(t-1) x(t-1) x(t-1) x(t-2), x(t-3) 

10 C 1,2,1 

 

x(t-1) x(t-1), x(t-2) x(t-1), x(t-2), 

x(t-3) 

x(t-1) x(t-1) x(t-1),x(t-2), 

x(t-3) 

11 D 1,2,2 x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5),x(t-6), 

x(t-8),x(t-9) 

x(t-1) 

 

x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5),x(t-6) 

x(t-1),x(t-2) x(t-1),x(t-2), 

x(t-5) 

x(t-1),x(t-2), 

x(t-7),x(t-10) 

12 C  1,2,1 x(t-1) x(t-1) x(t-1) x(t-1),x(t-10) x(t-1),x(t-10) x(t-1),x(t-8), 

x(t-9),x(t-10) 

13 H 2,2,2 x(t-1) x(t-1),x(t-8) x(t-1),x(t-2), 

x(t-8) 

x(t-1),x(t-7), 

x(t-8) 

x(t-1) x(t-1),x(t-7), 

x(t-8) 

14* G 2,2,1 

 

x(t-1),x(t-2), 

x(t-9) 

x(t-1),x(t-2) 

 

x(t-1),x(t-7), 

x(t-8),x(t-10) 

x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5) 

x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5) 

x(t-1),x(t-4) 

15 A 1,1,1 x(t-1),x(t-2), x(t-1),x(t-2) x(t-1),x(t-2) x(t-1) x(t-1) x(t-1),x(t-2), 

16 H 2,2,2 x(t-1) x(t-1), x(t-2), 

x(t-4),x(t-10) 

x(t-1), x(t-2), 

x(t-3),x(t-10) 

x(t-1) x(t-1), x(t-2), 

x(t-10) 

x(t-1) 

17 H 2,2,2 x(t-1) x(t-1) x(t-1) x(t-1) x(t-1) x(t-1),x(t-10) 

18 G 2,2,1 x(t-9) x(t-1) x(t-1) x(t-1), x(t-9) x(t-1) x(t-1) 
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based on the embedding/lag combinations for one class across all signals. The op-
timal setup could be derived based on one class only for a number of other sub-
jects, as the embedding/lag combination is identical for some channels regardless 
of class e.g., for subject channel Cz parameters could have been used for both 
classes and likewise for subject 18 (subject 4 could have used all class 1 parame-
ters and subject 18 could have used all class 2 parameters). This selection process 
could have chosen either in these cases. For the remaining subjects however a 
mixture of parameters have been selected between the two classes, emphasizing 
the need to assess all embedding parameters combination on a channel-, class- and 
subject-specific basis. The following subsection outlines how these subjects per-
formed in terms of overall classification accuracy using these embedding configu-
rations in the NTSPP framework.    

4.2   BCI Performance  

The cross validation (CV) performances for all subjects are presented in Figure 
6(a) whilst the cross session (x-Session) single-trial performances are presented in 
Figure 6(b). The average performances across subjects are presented in Figure   
6(c). In the majority of cases NTSPP-PMIS provides the best cross-validation per-
formance (within session) for all subjects (Fig. 6(a)). In some cases NTSPP6 out-
performs NTSPP-PMIS. Subject 10 is the only case where there is a significant 
drop in CV performance given by NTSPP-PMIS compared to No-NTSPP. There 
is a slight drop in CV performance for subjects 17 and 18 but overall the CV re-
sults indicate a slight improvement in the average within-session performance for 
NTSPP6 and a greater improvement for NTSPP-PMIS across all subjects com-
pared to No-NTSPP. The average across subjects is shown in Fig. 6(c). The aver-
ages are compared across all subjects as well as across the two competition  
groupings as both datasets have different attributes which influence performance2. 
In terms of the CV average there are slight improvements given by NTSPP-PMIS 
which are statistically significant (p<0.05) as shown in Table 4 where the results 
of two statistical tests are presented. The parametric statistical test repeated meas-
ures ANOVA (which is akin to a t-test (related) for two groups) [54] and the Wil-
coxon signed rank test [55], a non-parametric statistical test, are used for clarity 
(the results indicate from both tests are similar and correlated). The improvement 
given by NTSPP6 over No-NTSPP is not significant in the CV test but is more 
significant (not statistically) in the cross-session tests on all subjects. The cross 
session performance difference between No-NTSPP and NTSPP-PMIS is statisti-
cally significant however NTSPP–PMIS is not shown to be statistically better than 
NTSPP6 in the cross session tests. The performance of the BEST NTSPP-PMIS 
cross session results are presented here to show what is theoretically possible with  

                                                           
2 For dataset 2B (subjects 1-9), the data used for training are from a 3rd feedback session af-

ter 2 sessions without feedback and the testing data is from two further feedback sessions 
whereas the dataset for 2A (subjects 10-18) are trained and tested on 2 sessions with no 
feedback and within these sessions subjects performed another 2 motor imageries (4 class 
data acquisition; there is also a significant difference in the number or trials performed for 
both groups (cf. section 2 for further details).   
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Fig. 5 BCI performance results for all subjects and approaches: (a) average cross-validation 
classification accuracy; (b) cross-session (x-Session) classification accuracy (c) mean accu-
racies across all subjects and two groups of subjects (groups based on datasets 2A and 2B). 
Results are presented for 3 methods: No NTSPP, NTSPP6 (standard embedding dimension 
6 and time lag 1) and NTSPP with embedding selected using PMIS and configured accord-
ing to Table 3. In figures (a) and (b) the absolute best performing NTSPP PMIS embedding 
setup is shown for information only (this best setup is the accuracy that could have been ob-
tained if the absolute best embedding setup was determined from the training data i.e., in 
some cases the setup chosen did not provide the best generalization performance on the test 
data.  

the proposed NTSPP-PMIS approach if the parameters can be selected appro-
priately from the training data (i.e., these results were generated by applying all 
possible NTSPP-PMIS configurations across the sessions and viewing the best  
results). The results show that the possible best performances are statistically  
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better than those produced using the proposed heuristic configuration optimization 
method for NTSPP-PMIS.  The significance of the results is discussed in the fol-
lowing section. 

Table 4 Results of statistical tests comparing the average performance across subjects (All, 
S1-S9 and S10-S19) for each of the methods/approaches (p-values), where the average per-
formances are shown in Figure 6(c). p<0.05 indicates a statistical difference in the perfor-
mance produced by the methods compared. Results of two statistical tests (parametric and 
non-parametric) are shown for comparison and verification.    

5   Discussion  

This study presents for the first time the use of partial mutual information input 
variable selection (PMIS) for selecting channel-, class- and subject specific em-
bedding parameters from EEG time-series. The results presented in section 4.1 
show that, depending on the particular brain state (class), the channel-specific em-
bedding varies and is subject-specific. Past studies have investigated  the optimal 
subject-specific embedding parameters for BCI [15][21] but focused on using one 
set for all channels with the same embedding parameters being selected for both 
classes i.e., the embedding was optimized based on overall classification perfor-
mance without first selecting embedding parameters for particular channels. The 
results presented here show the variability in the brain and intra- and inter-subject 
differences in EEG dynamics. It is therefore recommended to optimize the channel 
specific embedding parameters when attempting to make predictions about a fu-
ture brain state, be it one step or multiple steps ahead. 

Although, in this study, the aim is not to exploit the use of advanced prediction 
of future brain states to reduce system latency (cf. next section for a discussion on 
how this may be potentially beneficial in BCI), the NTSPP approach is based on 
EEG time-series prediction and the results clearly demonstrate that there are im-
provements given by the NTSPP framework when channel- and class-specific em-
bedding configurations are deployed for each subject. The results show that within 
session cross-validation differences between NTSPP-PMIS and NTSPP6 or No 
NTSPP are statistically significant and that the cross session performance  

Methods CV  Cross Session 
Repeated Measures ANOVA All  All S1-9 S10-18 
No NTSPP vs NTSPP6 0.8714  0.1033 0.6149 0.1094 
No NTSPP vs NTSPP-PMIS 0.0046  0.0264 0.0566 0.1953 
NNTSPP6 vs NTSPP-PMIS 0.0093  0.2823 0.1271 1 
NTSPP PMIS vs BEST -  0.0052 0.0177 0.0151 
      

Wilcoxon Signed Rank Test       
No NTSPP vs NTSPP6 0.7925  0.1640 0.7969 0.1250 
No NTSPP vs NTSPP-PMIS 0.0019  0.0331 0.0742 0.2656 
NTSPP6 vs NTSPP-PMIS 0.0083  0.2366 0.1289 0.9688 
NTSPP PMIS vs BEST  -  0.0002 0.0313 0.0156 
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difference between NTSPP-PMIS and No-NTSPP is statistically significant. In 
previous work it was shown that in some cases, depending on the number of chan-
nels and classes being investigated, NTSPP6 provides significant improvement 
over No NTSPP whereas in this work the cross session differences are not shown 
to be statistically different, although an improvement is observable. The  approach 
presented in [22] involved only testing four frequency bands between 8-24Hz for 
the EEG spectral filter whereas in this work the frequency bands are subject-
specifically tuned in the setup with a fine resolution using PSO and then applied  
along with NTSPP63 i.e., the results presented here suggest that NTSPP6 is less 
effective when the subject-specific bands are tuned. However, as shown here, 
when we deploy PMIS embedding selection there are improvements even with op-
timized frequency bands in the spectral filter. With the proposed parameter confi-
guration using PMIS and a heuristic as well as computationally intelligent search 
methods (PSO and SOFNN) for other parameter combinations/settings, NTSPP-
PMIS can generalize reasonably well across sessions. This therefore is a positive 
indication that the use of NTSPP can indeed improve performance of the BCI. The 
BEST results (as outlined these are identified after viewing the testing perfor-
mance across all embedding configurations) show there can be even greater gains 
provided by the NTSPP-PMIS framework if the parameter optimization approach 
is further improved to ensure better generalization. The following subsection out-
lines why the approach used is suboptimal and other limitations of this study.   

5.1   Limitations  

In terms of PMIS and NTSPP, only 10 trials randomly selected from the available 
trials from each class are used to, firstly, identify the optimal embedding for each 
channel and then to train the SOFNNs in the NTSPP framework. Using more trials 
in the PMIS setup, only using trials which are highly separable i.e., omitting trials 
which are less separable, may improve the specificity and accuracy of the PMIS 
algorithm. Likewise, for NTSPP and the SOFNN training, using more trials and 
only those that are most separable, along with PMIS selected embedding as de-
scribed may enhance the specialization of the networks leading to increased dif-
ference in the prediction for both classes and enhanced separability. The SOFNN 
is deployed in this framework using standard hyper parameters, identified based 
on a study of a small number of subjects [37]. It is highly probable that fine tuning 
the SOFNN parameters to suit the channel-specific embedding will also lead to 
greater specialization. In addition, the data segments within the event-related por-
tion of trials on which PMIS and the SOFNN are deployed could be fine-tuned 
and assessed more closely using smaller or larger segments around the time point 
of maximum separation in trials (in this work a 2s window around the max  
separation point was used). Using more trials from which to select data may also 
improve specialization. In this study only 2 seconds of the data was used from 10 
randomly selected trials resulting in 2500 samples for PMI selection and SOFNN 
                                                           
3 Even though the same subjects are analyzed the data splits in [22] are also different (based 

on the feedback and non-feedback sessions) and therefore results presented here are not 
directly comparable to those presented in [22]. 
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training. This is a low number of trials relative to the amount of data available 
however results in a significant number of samples on which to train multiple 
networks, multiple times in a cross validation. Simply selecting data more instinc-
tively could have a major impact on PMIS and the SOFNNs in the NTSPP frame-
work without any additional parameter optimization.  

Improvements to other elements of the BCI are possible and ongoing however 
it is desirable to keep parameter tuning in the BCI setup to a minimum or indeed 
in any application therefore there is always the aim to ensure the system can be se-
tup quickly using an auto-calibrating approach, hence the reason for using compu-
tational intelligence based approaches such as the SOFNN which can adapt and 
tune its weights and structure automatically during the learning process, and the 
use of PSO to select optimal frequency bands quickly and efficiently. CSP is not 
only used here to improve separability but to help identify redundancy in the sig-
nals. The use of linear classifiers for easy training and adaptation is necessary but 
classifier performance can be improved to account for inter-session variability and 
sensorimotor learning as the subject endeavors to improve BCI performance (re-
search is ongoing in this area [56][57]). Future work will involve investigating the 
parameters that are providing the best cross-session performances and developing 
an optimized and efficient framework where optimal performance and cross ses-
sion generalization is guaranteed. For example, subject 14 in this work was poorly 
performing regardless of the method deployed but NTSPP-PMIS failed complete-
ly (~50% classification accuracy) given the parameters selected on the training da-
ta whereas the BEST performance shows that NTSPP-PMIS parameters could 
have been much better for this subject had the training data being more carefully 
used to setup the system. These issues are currently being investigated along with 
other potential benefits of the NTSPP framework as outlined in the following  
subsection. 

6   Conclusions and Future Work  

This chapter has shown for the first time that partial mutual information input va-
riable selection (PMIS) can be used to select embedding parameters for EEG time 
series prediction and by selecting channel-, class- and subject-specific embedding 
parameters predictive performance and over all classification of EEG data can be 
improved for a two class EEG-based BCI using the NTSPP framework. The PMIS 
approach can be improved by using more data and further assessment of the crite-
ria for considering whether a particular embedded sample of the time series pro-
vides information about the predicted input. This may be improved using the boot-
strapping or Akaike Information Criterion as compared by May et al [26] however 
the approach used here, involving the Hampel distance criterion, is efficient. By 
exploring better parameters for the PMIS approach, the NTSPP setup and the 
complete BCI it is expected that the BCI presented here can be improved signifi-
cantly. This work provides evidence of this potential. The PMIS approach will al-
so aid in the investigation of other BCI configurations involving the NTSPP 
framework, for example, multiclass systems and multiple channel EEG montages. 
Previous work has already shown that the performance gains provided by the 
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NTSPP framework are greater when multiple channels and multiple classes are 
used [22][55]. Channel- and class-specific embedding is likely to further increase 
that improvement. NTSPP has also been shown to have the capacity to reduce the 
latency involved in motor imagery BCIs involving continuous classification; pro-
ducing higher signal separability faster (i.e., earlier in the trial) by predicting the 
EEG times series multiple steps ahead [59]. This has the potential to reduce the 
time required (latency) for a subject to exceed a threshold with the continuous 
classifier output, as the NTSPP predicts multiple steps ahead in time characteris-
tics in the data which are more separable. Features can then be extracted from the 
predicted separable segments of the data before that separability actually is pro-
duced by the sensorimotor activity. A preliminary study of this is presented in 
[59]. Again, that preliminary study used standard embedding parameters. For mul-
tiple-step-ahead prediction the prediction error increases as the prediction horizon 
increases and therefore PMIS embedding parameter selection will be even more 
pertinent and can be exploited in such a multi-step-ahead NTSPP framework. Fur-
ther work will be carried out to verify if combining CSP and SF with the multiple-
step-ahead prediction NTSPP framework and PMIS has potential for improved  
accuracy and information transfer rate in BCI. It may also be possible that PMIS 
selected EEG embedding parameters can be used as class predictors i.e., the op-
timal selected embedding parameters can be selected on a trial-by-trial basis using 
PMIS and used as signal features. The investigation would involve determining if 
such features provided sufficient inter class variability and intra class correlation 
to enable reliable discrimination of brain states.  

In summary, this work shows how a range of traditional signal processing tools 
can be combined with multiple computational intelligence based approaches to 
develop a more autonomous parameter optimization setup and ultimately a more 
accurate BCI. Finally, the novel developments in signal processing and embedding 
selection using PMIS will be integrated with our real-time BCI, when sufficiently 
validated, for application in assistive technologies and entertainment for the phys-
ically impaired [4][5][6][8] and rehabilitation [7]. 
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