
Chapter 10
Support Vector Regression with Kernel
Mahalanobis Measure for Financial Forecast

James N.K. Liu and Yan-xing Hu

Abstract. For time series forecasting which have data sets coming from an unstable
and nonlinear system such as the stock market. Support Vector Regression (SVR)
appears to be an efficient tool which has been widely used in recent years. It is also
reported to have a higher accuracy and generalization ability than other traditional
methods. The SVR method deals with the nonlinear problem by mapping the input
feature space into a high dimensional space so that it becomes a linear problem.
Kernel function is one of the crucial components in SVR algorithm as it is used to
calculate the inner product between vectors in the mapped high dimensional space.
The kernel function of Radial Basis Function (RBF), which is based on the Eu-
clidean distance, is the most commonly used kernel function in SVR. However, the
SVR algorithm may neglect the effect of correlation among the features when pro-
cessing the training data in time series forecasting problems due to the limitation
of Euclidean distance. In this chapter, a Mabalanobis distance RBF kernel is intro-
duced. It is well known that when we need to calculate similarity between two vec-
tors (samples), the use of Mahalanobis distance can take into account the correlation
among the features. Thus, the SVR with Mahalanobis distance kernel function may
follow the behavior of the data sets better so that it can give more accurate result.
From the comparative investigation, we find that in some circumstances, the Ma-
balanobis distance RBF kernel based SVR can outperform the Euclidean distance
based SVR.

1 Introduction

In the past ten years, Support Vector Regression (SVR) has been widely applied to
deal with time series forecasting problems in different domains; especially for those
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domains characterized as some complex, nonlinear and unstable discipline. For
example, it has been reported that the SVR performed well in financial forecast-
ing [1-3] and also in temperature forecasting [4,5]. When applied to these problems,
empirical results showed many advantages with the SVR algorithm; for example,
higher generalization ability and the capability of avoiding overfitting problems.
Due to its well-founded statistical learning theory, the SVR showed a better per-
formances than other methods such as, Artificial Neural Networks (ANN) or Auto-
Regressive and Moving Average (ARMA) Model in some previous works[6,7].

In 1995, Vapnik first introduced the Support Vector Machine (SVM) [8]. The
SVM was originally applied to deal with classification problems and soon extended
to regression problems [9,10]. Compared with other estimation models such as ANN
and ARMA, SVR substitutes the traditional Empirical Risk Minimization (ERM)
principle with Structure Risk Minimization (SRM) to address the overfitting prob-
lem and able to offer higher generalization ability. Accordingly, as we discussed
above, when applied in a complex, nonlinear and unstable system, the SVR can
demonstrate better performance than other methods.

The kernel function is one of the crucial components in the SVM algorithm. By
using the kernel function, we can map all the samples into high dimensional feature
space so that the nonlinear problem can be solved as the linear problem. The choice
of kernel function may affect the performance of SVM algorithm. However, till now,
there is still no guideline how to determine which kernel function can provide the
best performance of SVM. Among all the kernel functions, the Radial Basis Func-

tion (RBF) kernel K(xi,x j) = exp(
−‖xi−x j‖2

2γ2 ) is most frequently used because the
number of parameters of RBF kernel function is less than in other kernel functions.
Moreover, previous experiments also showed that in most conditions, RBF kernel
function could provide better performance than other kernel functions[11]. Many
previous experiments that used SVR to deal with time series forecasting problems
also considered RBF kernel function.

In this chapter, we introduce a new Mahalanobis distance based RBF kernel func-
tion. We focus our investigation on the comparison of SVRs with the two (Maha-
lanobis distance based and Euclidean distance based) different kinds of RBF kernel
functions and their performance on financial time series forecasting problems. It
is well known that compared with Euclidean distance, Mahalanobis distance takes
into account the correlations among attributes (features) of the data set. Based on
Euclidean distance, SVM algorithm neglects the correlations among attributes (fea-
tures) of the training samples. Some previous researches have noticed this limitation
of SVM, and subsequently introduced the Mahalanobis distance into SVM to take
into consideration of the effect of correlations among attributes (features) in the
training process. Some encouraging results have been obtained when Mahalanobis
distance based SVM is applied to deal with classification problems [12,13]. Particu-
larly, Wang and Yeung analysed some conventionally used kernel functions in SVM
and employed Mahalanobis distance to modify the kernel function so as to improve
the classification accuracy [14]. Nevertheless till now, there is little investigation on
the effect of Mahalanobis distance based SVM on regression problems.
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Since that in the calculation process of SVR, the Euclidean distance is applied to
express the distances among the sample points, the SVR algorithm will inevitably
accept the limitation of Euclidean distance: the correlations among the input vari-
ables are neglected. However, for a typical time series forecasting problem, we
have features selected according to a certain time interval, such as stock index of
(t − 1) day, stock index (t − 2) day, ... , stock index (t − n) day. Obviously, these
features are not independent from each other. When using classical SVR to deal
with such types of time series forecasting problems, the correlation influence will
be neglected. Therefore, it would be beneficial to improve the performance of SVR
if we could take into account correlation in the training process. Therefore in this
chapter, a Mahalanobis distance based RBF kernel function will be used in the SVR
to deal with the financial time series forecasting problems; and we will investigate
the performance of the proposed kernel function through a series of experiments.

The chapter is organized as follows: in Section 2 we will briefly introduce some
background, and analysis of the Mahalanobis distance based RBF kernel and the
Euclidean distance based RBF kernel in Section 3. Section 4 discusses the experi-
ments along with some comparative analysis. The last section gives the conclusion
and future work.

2 Background Knowledge

2.1 Support Vector Regression

Based on the structural risk minimization (SRM) principle, SVM method seeks to
minimize an upper bound of generalization error instead of the empirical error as
in other neural networks. Additionally, SVM models generate the regression func-
tion by applying a set of high-dimensional linear functions. The SVR function is
formulated as follows:

y = wφ(x)+ b (1)

where φ(x) is called the feature, which is nonlinear and mapped from the input
space ℜn. y is the target output value we want to estimate. The coefficients w and b
are estimated by minimizing:

R =
1
2
‖w‖2 +

1
n

C
n

∑
i=1

Lε (di,yi) (2)

where:

Lε(d,y) =

{ |d − y|− ε, |d− y| ≥ ε
0,otherwise

(3)

Eq. (2) is the risk function consisting of the empirical error and a regularization

term that is derived from the SRM principle. The term 1
n

n
∑

i=1
Lε (di,yi) in Eq. (2) is

the empirical error (risk) measured by the ε-insensitive loss function ( ε-insensitive
tube) given by Eq. (3); in the meanwhile, the term 1

2‖w‖2 is the regularization term.
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The constant C > 0 is taken as the regularized constant that determines the trade-off
between the empirical error (risk) and the regularization term. Increasing the value
of C will add importance to the empirical risk in the risk function. ε is called the tube
size of the loss function and it is equivalent to the accuracy approximation placed
on the training data points. Both C and ε are user-prescribed parameters.

Then the slack variables ζ and ζ ∗ which represent the distance from the actual
values to the corresponding boundary values of ε-insensitive tube are introduced.
With these slack variables, Eq. (3) can be transformed to the following constraint
based optimization:

Minimize:

R(w,ζ ,ζ ∗) =
1
2

wwT +C(
n

∑
i=1

(ζ + ζ ∗)) (4)

Subject to:
wφ(xi)+ bi− di ≤ ε + ζ ∗

i
di −wφ(xi)− bi ≤ ε + ζi

ζi,ζ ∗
i ≥ 0, i = 1,2, · · · ,n

(5)

Finally, by introducing the Lagrangian multipliers and maximizing the dual function
of Eq. (4), it can be changed to the following form:

R(αi −α∗
i ) =

n
∑

i=1
di(αi −α∗

i )− ε
n
∑

i=1
(αi −α∗

i )

− 1
2

n
∑

i=1

n
∑
j=1

(αi −α∗
i )× (α j −α∗

j )(Φ(xi) ·Φ(xk))
(6)

with the constraints:

n

∑
j=1

(αi −α∗
i ) = 0,0 ≤ αi ≤C,0 ≤ α∗

i ≤C, i = 1,2, · · · ,n (7)

In Eq. (7), αi and α∗
i are called Lagrangian multipliers which satisfy αi ×α∗

i = 0,
the general form of the regression estimation function can be written as:

f (x,αi,α∗
i ) =

l

∑
i=1

(αi −α∗
i )K(x,xi)+ b (8)

In this equation, K(xi · x) is called the kernel function. It is a symmetric function
K(xi · x) = (Φ(xi) ·Φ(x)) satisfying Mercer’s conditions. When the given problem
is a nonlinear problem in the primal space, we may map the sample points into a
high-dimensional feature space where the linear problem can be performed. Linear,
Polynomial, Radial Basis Function (RBF) and sigmoid are four main kernel func-
tions in use. As we discussed above, in most of the time series forecasting prob-
lems, the SVR employs RBF kernel function to estimate the nonlinear behavior of
the forecasting data set because RBF kernels tend to give good performance under
general smoothness assumptions.
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2.2 Euclidean Distance Measure verse Mahalanobis Distance
Measure

It is well known that the Euclidean distance is the most widely used measure to de-
fine the distance between two points in Euclidean space. In Euclidean space, for any
two points xi = (xi1,xi2, . . . ,xin) and x j =

(
x j1,x j2, . . . ,x jn

)
, the Euclidean distance

between these two points can be calculated as:

dE(Xi,Xj) =

√√√√ n

∑
k=1

∣∣xik − x jk

∣∣2 (9)

Although the Euclidean distance is widely used, it also has an obvious limitation.
As discussed earlier, different features of the samples are considered as equal in
the calculation of Euclidean distance; also, the correlations among the features are
neglected.

One of the methods to address the limitation of Euclidean distance is to use the
Mahalanobis distance [15]. Let X be a l×n input matrix containing l random obser-
vations xi ∈ ℜn, i= 1, . . . , l. The Mahalanobis distance dM between any two samples
xi and x j can be calculated as follows:

dM(xi,x j) =
√
(xi − x j)

T ∑−1(xi − x j) (10)

∑ is the covariance matrix which can be calculated as:

∑ =
1
l

l

∑
k=1

(xk− μ)·(xk− μ)T (11)

where μ is a mean vector of all samples.
Originally, the Mahalanobis distance can be defined as a dissimilarity measure

between two random vectors of the same distribution with covariance matrix ∑.
From the definition of Mahalanobis distance we can see that the Mahalanobis

distance is based on correlations between variables where different samples that can
be identified and analyzed. It differs from Euclidean distance based on the correla-
tions of the data set and is scale-invariant. Then again, if the covariance matrix is the
identity matrix, the Mahalanobis distance will be equal to the Euclidean distance.

Considering that samples are locally correlated, a local distance measure incor-
porating the samples’ correlation might be a better choice as a distance measure.
Mahalanobis distance can take into account the covariance among the variables in
calculating distances. Accordingly, in some circumstances, it may be a more suitable
measure to calculate the distance and evaluate the similarity between two points[13].
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3 Mahalanobis Distance RBF Kernel Based SVR

3.1 The Analysis of Kernel Functions in SVR

In SVR, to enable the nonlinear problem to be estimated by a linear function as
shown in Eq. (8), we have to map the original input feature space into a high-
dimensional feature space. Note that the mapping is Φ(x) as given in Eq. (6), we
have to calculate the inner products of every two vectors in the transformed high-
dimensional feature space. Thus, the curse of dimensionality[16] will emerge.

To deal with this problem, we can obtain a kernel function that meets this require-
ment K(xi · x j) = (Φ(xi) ·Φ(x j)) and calculate the K(xi,x j) instead of calculating
the inner products of the vectors in the transformed high-dimensional feature space.
In fact, every kernel function meeting the Mercer’s Theorem can be used in SVM al-
gorithm[9]. Usually, Linear, Polynomial, Radial Basis Function (RBF) and Sigmoid
are the four main kernel functions in use.

Table 1 shows the form of the four kernel functions.

Table 1 The main kernel functions used in SVM

Linear K(xi,x j) = xi · x j

Polynomial K(xi,x j) = (c+xi · x j)
d

Radial Basis Function (RBF) K(xi,x j) = exp(−‖xi−x j‖2

2γ2 )

Sigmoid K(xi,x j) = tanh(c(xi · x j)+θ )

The RBF kernel function is the most commonly used among the four kernel func-
tions in real applications. From what we notice of the linear kernel function, the
Polynomial kernel function and the Sigmoid kernel function are all based on the in-
ner products of the vectors. In other words, these kernel functions can be considered
as functions with the variable (xi · x j). Unlike other three kernel functions, the RBF
kernel function is based on the Euclidean distance between two points in the feature
space: having examined the format of RBF kernel function we can observe that the
variable of the RBF kernel function can be considered as the Euclidean distance
between two points denoted as

∥∥xi − x j
∥∥ [14].

In fact, the RBF kernel function is a measure of the similarity between two vec-
tors in the Euclidean feature spaces. If xi and x j are very close in Euclidean distance
(
∥∥xi − x j

∥∥ ≈ 0), the value of the RBF kernel function will tend to be 1, conversely,
if xi and x j are quite far apart in Euclidean distance (

∥∥xi − x j
∥∥ >> 0), the value of

the RBF kernel function will tend to be 0.



10 Support Vector Regression with Kernel Mahalanobis Measure 221

3.2 Substituting Euclidean Distance with Mahalanobis Distance
in RBF

The Euclidean distance has the limitation that it neglects the correlations among the
features. From the above discussion, we can see that the RBF kernel function can be
considered as a Euclidean distance variable-based function. Accordingly, the RBF
kernel function inherits the limitation of Euclidean distance.

One possible method of addressing this limitation is the use of Mahalanobis dis-
tance instead. We substitute the Euclidean distance with Mahalanobis distance as
the variable in RBF kernel function. The Mahalanobis distance based RBF kernel
function is:

KM(xi,x j) = exp(
−((xi − x j)

T ∑−1(xi − x j))

2γ2 ) (12)

∑ is the covariance matrix which can be calculated as:

∑ =
1
l

l

∑
k=1

(xk− μ)·(xk− μ)T (13)

where μ is a mean vector of all samples. The format of linear estimate function in
Eq.(8) can now be transformed to:

f (x) =
l

∑
i=1

(αi −α∗
i )KM(x,xi)+ b (14)

By introducing the Mahalanobis distance into the RBF kernel function, we can mea-
sure the similarity between two vectors with the Mahalanobis distance rather than
Euclidean distance. The Mahalanobis distance based kernel function can take into
account the correlations among attributes of the samples in the SVM training pro-
cessing. When SVR with the proposed kernel function is applied to deal with time
series forecasting problems, it should be beneficial to the performance improvement
of the SVR forecasting result.

4 Experimental Results and Analysis

In this chapter, our investigation mainly focuses on the performance of Mahalanobis
distance RBF kernel function in SVR and its performance in financial time series
forecasting. To evaluate the performance of Mahalanobis distance BRF kernel func-
tion based SVR in time series forecasting, a series of experiments are conducted. 15
financial data sets about time series forecasting problem are applied in our exper-
iment. Three forecasting methods are used in our experiment for comparison: we
use the Mahalanobis distance RBF based SVR, Euclidean distance RBF based SVR
and the BP neural network to estimate the target values and analyze the result with
comparison.
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4.1 Data Collection

As discussed in the above, the SVR is reported to be very suitable in dealing with
complex, unstable and nonlinear forecasting problems such as problems in financial
forecasting domain. In our experiment, 15 financial datasets from the real world
are collected to evaluate the performance of the SVR. We have chosen 6 stocks
from China A share market in Shanghai and 7 stocks from China A share market in
Shenzhen. We aim to forecast the close prices of the 13 stocks. In addition, the Stock
Indexes of the two markets: Shanghai composite index and Shenzhen composite
index are also used as data sets in our experiment. This data covers the period from
the 15th, September 2006 to the 31st, December, 2009. Thus, each of the data sets
contains more than 750 samples.

Table 2 The features for the stock price forecasting in China A share markets

1 Today’s lowest price
2 Today’s highest price
3 The lowest price of the last trading day
4 The highest price of the last trading day
5 The moving average lowest price of the last 5 trading days
6 The moving average highest price of the last 5 trading days
7 Today’s open price
8 The highest price of the last trading day
9 The moving average highest price of the last 5 trading days
10 Today’s turnover
11 The turnover of the last trading day
12 The moving average turnover of the last 5 trading days
13 Today’s volume
14 The volume of the last trading day
15 The moving average volume of the last 5 trading days

Table 3 The features for the Shanghai/Shenzhen composite index forecasting

1 Today’s daily open index
2 The open index of the last trading day
3 The open index of the (t −2) trading day
4 The open index of the (t −3) trading day
5 The open index of the (t −4) trading day
6 The open index of the (t −5) trading day
7 The close index of the last trading day
8 The close index of the (t −2) trading day
9 The close index of the (t −3) trading day
10 The close index of the (t −4) trading day
11 The close index of the (t −5) trading day
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For different data types, we select different features for constructing the regres-
sion models. Table 2, shows features for the stock price forecasting in China A
share market in Shanghai and Shenzhen; Table 3, shows the input features for the
forecasting of Shanghai composite index and Shenzhen composite index.

4.2 Data Pre-processing

4.2.1 Shift Windows

In this experiment; to test the learning capability of the algorithms and to follow as
well as forecast the trend of the stock price movement, a shift window was designed.
For each of the data set, there were 30 samples in one window, approximately 5%
of the total samples, and the first 25 of these samples were used as training data and
the last 5 samples as testing data. We then shifted forward this window by the shift
step of 5 days. For example, the first shift window contains 30 trading days of data
from 15th, September, 2006 to 9th, November, 2006, in this shift window, the first
25 samples, which began on 15th, September and finished on 2nd, November, are
used as training set, and the data of the following five days, from 3rd, November
to 9th, November, are used as testing data. We predict the stock price of these five
days, and compare that with the actual price of these five days. Then we shift the
window forward and the training set started from 21st, September till 9th, Novem-
ber. The actual stock prices of these 25 samples are used as training set to predict
the following 5 day’s stock price. Analogically, we can predict all the stock prices
of our set by shifting the windows. In every window, the ratio of training samples
and testing samples is 5:1.

4.2.2 Normalization of Data

When we use Euclidean distance RBF kernel function-based SVR to do the predic-
tion, the data set should be normalized to avoid features that may contain a greater
numeric value range from dominating the features; that have smaller numeric ranges
in the process of training and regression. In this experiment, the formula we applied
to normalize the data is:

v′ =
v−minα

maxα −minα
, (15)

where v′ is the normalized value and v is the original value. After the process, all
the values of the features were normalized within the range of [0, 1].

4.3 Evaluation Criteria

The prediction performance can be evaluated by the following statistical
metrics[17]:
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Normalized Mean Squared Error (NMSE) measures the deviation between the
actual values and the predicted values. The smaller the values are, the closer the
predicted values to the actual values. The formula of NMSE is:

NMSE = 1/(δ 2n)
n

∑
i=1

(ai − pi)
2 (16)

where

δ 2 = 1/(n− 1)
n

∑
i=1

(ai − pi)
2 (17)

Directional symmetry (DS) indicates the correctness of the predicted direction of
predicted value in terms of percentages. The formula of DS is:

DS = (100/n)×
n

∑
i=1

di (18)

where

di =

{
1,(ai − ai−1)(pi − pi−1)≥ 0
0,otherwise

(19)

4.4 Experimental Results and Discussion

Table 4, shows the results of the experiment. The stocks which have a stock number
starting with ”6” are from China A share market in Shenzhen, the stocks which have
a stock number starting with ”0” are from China A share market in Shanghai. The
columns denoted as MRBFSVR present the results of Mahalanobis distance RBF
based SVR, the columns denoted as ERBFSVR present the results of Euclidean
distance RBF based SVR, and BPNN is short for BP neural network. Fig. 1 and Fig.
2 give the comparison results of the three methods.

The results in Fig. 1 and Fig. 2 show that both of the two SVRs, the Mahalanobis
distance RBF based SVR and Euclidean distance RBF based SVR; outperform the
BP neural network with respect to the criteria of NMSE and DS in most of the
15 data sets. Obviously, from these results, we can observe that the SVM regression
method is more suitable for time series forecasting problems in financial forecasting
than the BP neural network algorithm.

From Table 4, we cannot conclude that the Mahalanobis distance RBF based SVR
is definitely a better algorithm than the Euclidean distance RBF based SVR. We
can observe that the criteria of NMSE, the Mahalanobis distance RBF based SVR
reduces to a lower NMSE value in 8 of the 15 data sets than the Euclidean distance
RBF based SVR; although, for the criteria of DS, the Mahalanobis distance RBF
based SVR receives a higher DS value in 10 of the 15 data sets than the Euclidean
distance RBF based SVR. These results are not enough to support the conclusion
that the Mahalanobis distance RBF based SVR is superior to the Euclidean distance
RBF based SVR when applied to time series forecasting.
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Table 4 The NMSE and DS values of the three algorithms for the 15 data sets

NMSE NMSE NMSE DS DS DS
MRBFSVRERBFSVR ERBFSVR MRBFSVRERBFSVR ERBFSVR

Stock600111 1.452 2.031 3.251 0.723 0.721 0.692
stock600839 1.234 1.252 2.187 0.832 0.751 0.747
stock600644 2.122 2.574 3.145 0.765 0.862 0.691
stock600688 3.217 3.202 4.012 0.658 0.723 0.735
Stock601318 1.231 1.439 2.809 0.852 0.635 0.821
Stock600031 3.381 3.226 4.515 0.721 0.696 0.734
Stock000858 1.535 2.024 2.991 0.890 0.791 0.695
Stock000014 1.213 1.201 2.715 0.724 0.713 0.627
Stock000024 2.642 2.412 2.499 0.635 0.731 0.522
Stock000002 1.924 2.213 2.758 0.592 0.591 0.670
Stock000063 1.983 71.327 2.301 0.832 0.751 0.753
Stock000100 2.910 1.045 1.703 0.901 0.912 0.715
Stock000527 1.523 1.213 1.609 0.749 0.812 0.842
Shanghai index 1.237 2.341 2.764 0.831 0.826 0.731
Shenzhen index 1.101 1.923 2.113 0.877 0.841 0.687
Avarage 1.913 1.961 2.758 0.772 0.757 0.710

Fig. 1 The comparison of NMSE value of the three algorithms

This phenomenon can be explained by the limitation of Mahalanobis distance.
Compared with Euclidean distance, the Mahalanobis distance takes into account the
effect of correlation among the features of the training samples; but it also has the
limitation that the Mabalanobis distance may enlarge the effect of correlation among
the features. Such an enlargement might have generated some negative effect for
some data sets.

However, from Table 4, we can see that for 6 of the 15 data sets, the Mahalanobis
distance RBF based SVR outperforms the Euclidean distance RBF based SVR in
both of the criteria of NMSE and criteria of DS; and for 12 of the 15 data sets,
the Mahalanobis distance RBF based SVR gives a better performance based on at
least one criterion. With only 3 data sets, the Mahalanobis distance RBF based SVR
obtains the worst performance in both of the criteria of NMSE and criteria of DS.
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Fig. 2 The comparison of DS value of the three algorithms

What is more, for the average of the results of 15 data sets, the Mahalanobis distance
RBF based SVR shows better performance for both of the two criteria of NMSE and
criteria of DS. Hence, we can conclude that on the whole the Mahalanobis distance
RBF based SVR performs better than the Euclidean distance RBF based SVR. But
for a certain new data set, we cannot determine which one can achieve a better
performance if there is no prior knowledge.

In summary, we find that under certain circumstances when applied to time series
forecasting problems; the Mabalanobis distance RBF kernel can be a better choice
than the traditional Euclidean distance RBF kernel function for SVR. In consider-
ation of the correlation among the features, the use of Mabalanobis distance RBF
kernel appears to be beneficial to the improvement of the forecasting result.

5 Conclusion and Future Work

SVR is an efficient tool for time series forecasting problems when the data sets
stem from an unstable and nonlinear system. However, based upon the Euclidean
distance, the SVR neglects the effect of correlation among the features when pro-
cessing the training data in time series forecasting problems. Since the Mabalanobis
distance can address the limitation of Euclidean distance, a Mabalanobis distance
RBF kernel is introduced in this chapter. From the comparison investigation, we find
that in some circumstances, the Mabalanobis distance RBF kernel based SVR can
outperform the Euclidean distance based SVR. Consequently, when people use the
SVR to deal with the time series forecasting problems, the proposed Mabalanobis
distance RBF kernel based SVR is worthy for consideration.

One of the limitations of our work is that we have not yet provided the means for
determining which RBF kernel may attain better results for a certain data set. Some
of our current work reveals that there could be some influence due to the selection
and distribution of the features in the data set. This will be our further work in future.
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