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Preface

Temporal and spatiotemporal data are commonly encountered in a variety of areas
of applications. We are faced with data coming from numerous sensors, data feeds,
recordings coming numerous domains of application. A thorough analysis and in-
terpretation of time series associated with sound mechanisms of their interpretation
is highly demanded. While there has been a continuous progress in the area with
a truly remarkable wealth of highly diversified models of time series, some funda-
mental challenges are still vividly present today. The ongoing quest for accurate and
highly interpretable models of time series has never been that timely as in the recent
years calling for the use of advanced technologies of system modeling, especially
those emerging in Computational Intelligence.

The principles, methodology, and practical evidence of Computational Intelli-
gence have been poised to play a vital role in the analysis, design, and interpretation
of time series. As a matter of fact, it has already exhibited a visible position in this
realm. In particular, in this area we may capitalize on the important facets of learn-
ing, structural design and interpretability along with human-centricity, where all of
these facet are vigorously supported by the leading technologies of Computational
Intelligence. A quick bird’s eye view at the area done by running Google Scholar
reveals interesting figures that speak for themselves. As of the middle of July 2012,
the search returned 49,900 entries for the query “time series and Computational In-
telligence”. The significant raise of the interest in the area is reflected in the numbers
reported over time: for the same query as used above in the period of 2007–2012
the number of hits is 18,600 while just for the five years, 2000–2005 we see the
increase with the number of 10,500 hits. This speaks loudly to the rapid pace of
progress visible in the area.

Considering the vital synergy among neurocomputing, fuzzy sets and evolution-
ary optimization where this synergy plays a pivotal role in the realization of CI
constructs, the same synergistic linkages become crucial when working with time
series. The nonlinear character of time series is captured in the models originating
in the setting of neural networks and fuzzy models. Fuzzy sets and Granular Com-
puting, in general, bring a highly desirable facet of transparency of models of time
series; along with “standard” rule based-systems, we also encounter recurrent mod-
els of time series, which help capture the facet of dynamics of time series. Chaotic
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time series help gain a deeper insight into the dynamics and complexities of time
series and quantify these phenomena. Evolutionary optimization and population-
based optimization are of relevance in the context of the design of models of time se-
ries, especially when dealing with their structural optimization. We witness a broad
spectrum of applications to diversified areas of physical and human-generated phe-
nomena such as those dealing e.g., with financial markets and Internet activities.

The contributions to this volume are highly reflective of the wealth of the tech-
nologies of CI by bringing together ideas, algorithms, and numeric studies, which
convincingly demonstrate their relevance, maturity and visible usefulness.

This volume is aimed at a broad audience of researchers and practitioners. Owing
to the nature of the material being covered and a way it has been arranged, we are
convinced that it helps establish a comprehensive and timely picture of the ongoing
pursuits in the area and stimulate further progress.

We hope that this book will appeal to a broad spectrum of readers engaged in
various branches of operations research, management, social sciences, engineering,
and economics.

We would like to take this opportunity to express our sincere thanks to the authors
for reporting on their innovative research and sharing their insights into the area.
The reviewers deserve our thanks for their constructive input. We highly appreciate
a continuous support and encouragement from the Editor-in-Chief, Professor Janusz
Kacprzyk whose leadership and vision makes this book series a unique vehicle to
disseminate the most recent, highly relevant and far-fetching publications in the
domain of CI.

We hope that the readers will find this edited volume of genuine interest and
the research reported here will trigger further progress in research, education, and
numerous practical endeavors.
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Chapter 3: Intelligent Aggregation and Time Series Smoothing . . . . . . . . 53
Ronald R. Yager

Chapter 4: Financial Fuzzy Time Series Models Based on Ordered
Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Adam Marszałek, Tadeusz Burczyński
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Chapter 1
The Links between Statistical and
Fuzzy Models for Time Series Analysis
and Forecasting

José Luis Aznarte and José Manuel Beńıtez

Abstract. Traditionally, time series have been a study object for Statistics.
A number of models and techniques have been developed within the field to
cope with time series of increasing difficulty. On the other hand, fuzzy systems
have been proved quite effective in a vast area of applications. Researchers and
practitioners quickly realized that time series could also be approached with
fuzzy and other soft computing techniques. Unfortunately, for a long time
both communities have somehow ignored each other, disregarding interesting
results and procedures developed in the other area. We addressed the problem
of digging in the links between Statistical and fuzzy models for time series
analysis and forecasting. In this chapter we present some of the most relevant
results we have found in this area. In particular we introduce a new procedure
based on statistical inference to build fuzzy systems devoted to time series
modelling.

Keywords: Time series, autoregression, regime-switching, fuzzy rule-based
models, functional equivalence.

1 Introduction

Time series analysis is a prominent area within mathematical statistics, data
analysis, stochastic finance and econometrics. During the last years, it has
been a prolific field of study in terms of research and applications.

Traditionally, time series have been studied within statistics, a field where
most advances have been obtained. A milestone in the formalization of the
idea of forecasting future values of a time series as a combination of past
values, was due to Box and Jenkins and materialized into their AR, MA,
ARMA and ARIMA family of models. While it has become a standard
reference, a key limitation of ARIMA is its linear nature, which makes it
not very effective when approaching nonlinear time series. Statisticians have

W.Pedrycz& S.-M. Chen (Eds.): Time SeriesAnalysis, Model. &Applications, ISRL 47, pp. 1–30.
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2 J.L. Aznarte and J.M. Beńıtez

developed more advanced nonlinear models. A widely known family of mod-
els are Threshold AR (TAR). This is a rather extensive family of models
with increasing complexity: STAR, LSTAR, NCSTAR, . . . These models are
distinctive representatives of the statistical approach to time series analysis.

On the other hand, time series analysis is a problem which has always
attracted the attention of Computational Intelligence (CI) researchers and
practitioners. Forecasting future values of a series is usually a very complex
task, and many CI methods and models have been used to tackle it, including
Artificial Neural Networks and Fuzzy-Rule Based Systems in their various
formulations. Notwithstanding, a common characteristic of those approaches
is that they usually consider time series as just another data set which requires
some small adaptions to be cast into the regression or classification form of
which most CI models were created. They represent a data-drive approach
towards time series analysis.

Statistics and Computational Intelligence methods represent different ap-
proaches toward a common goal. In this sense, it is natural to think about
how these two approaches can interact with each other. A first step neces-
sary in this line is to deepen into the links connecting these two fields. In
particular, we have researched into the connection of TAR models and fuzzy
rule-based systems. A number of equivalence results have been found. Each
of these results is a straight link which allows us to exchange properties and
procedures between the two areas. This opens an important line of research
and applications with the cooperative combination of methods and models
from both fields much in the spirit that led to the birth of Soft Computing
from its constituent techniques.

As an example of the usefulness of the equivalence results, we show how
one can use the hypothesis testing framework to determine the number of
fuzzy rules required to model a given series.

The structure of this chapter is as follows: first we will define the notation of
the fuzzy rule-based models (FRBM) that we consider, in Section 2. In Section
3, the family of the regime-switching models is briefly described whereas in
Section 4 the relations that link those models with FRBM is established.
Section 5 covers the linearity tests developed for FRBM, which are applied
to determine the number of fuzzy rules required to model a given problem in
Section 6. Finally, the results of some experiments are shown in Section 7.1
and the chapter ends with Section 8 where the main conclusions are drawn.

2 Fuzzy Rule-Based Models for Time Series Analysis

For the sake of clarity, let us first note the expression of the fuzzy rule-based
model considered here. When dealing with time series problems (and, in gen-
eral, when dealing with any problem for which precision is more important
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than interpretability), the Takagi-Sugeno-Kang paradigm is preferred over
other variants of FRBM. A fuzzy rule of type TSK has the following shape:

If x1 is A1 and x2 is A2 and . . . and xp is Ap

THEN y = bxt = b0 + b1x1 + b2x2 + . . .+ bpxp (1)

where xi are input variables, Aj are fuzzy sets for input variables and y is a
linear output function.

Concerning the fuzzy reasoning mechanism for TSK rules, the firing
strength of the ith rule is obtained as the t-norm (usually, multiplication
operator) of the membership values of the premise part terms of the linguis-
tic variables:

μi(x) =

d∏
j=1

μAi
j
(xj), (2)

where the shape of the membership function of the linguistic terms μAi
j
can

be chosen from a wide range of functions. One of the most common is the
Gaussian bell,

μA(x) = exp
−(x− c)2

2σ2
, (3)

but it can also be a logistic function,

μA(x) =
1

1 + exp (−γ(x− c))
, (4)

and also non-derivable functions as a triangular or trapezoidal function.
The overall output is computed as a weighted average or weighted sum of

the rules output. In the case of the weighted sum, the output expression is:

yt = G(xt;ψ) =

R∑
i=1

μi(xt) · bixt, (5)

where G is the general nonlinear function with parameters ψ, and R denotes
the number of fuzzy rules included in the system. While many TSK FRBS
perform a weighted average to compute the output, additive FRBS are also
a common choice. They have been used in a large number of applications, for
example [11, 24, 26, 15].

When applied to model or forecast a univariate time series {yt}, the rules
of a TSK FRBM are expressed as:

If yt−1 is A1 and yt−2 is A2 and . . . and yt−p is Ap

THEN yt = b0 + b1yt−1 + b2yt−2 + . . .+ bpyt−p. (6)

In this rule, all the variables yt−i are lagged values of the time series, {yt}.
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3 Regime Switching Autoregressive Models

As stated above, in statistical time series modeling, one of the oldest and
most successful concepts is to forecast future values of a time series as a com-
bination of its past values. This is a quite natural idea that we apply on every
day’s life, and it was popularized in 1970 after [10]. In that work, Box and
Jenkins formalized the use of the autoregressive (AR) model, which assumes
that future values of a time series can be expressed as a linear combination
of its past values1.

An AR model of order p ≥ 1 is defined as

yt = a0 + a1yt−1 + . . .+ apyt−p + εt (7)

where {εt} ∼ N(0, σ2), usually known as Gaussian white noise (equivalent to
a random signal with a flat power spectral density). For this model we write
{yt} ∼ AR(p), and the time series {yt} generated from this model is called
the AR(p) process.

Such a simple model proved to be extremely useful and suited to series
which, at first sight, seemed to be too complex as to be linear. Applications
of the Box and Jenkins methodology spread in the following decades, covering
various scientific areas such as Biology, Astronomy or Econometrics.

However, there were still many problems which could not be addressed us-
ing linear models. In 1978, taking a step towards nonlinearity, Tong [39] pro-
posed a piece-wise linear model: the threshold autoregressive (TAR) model.
The success of this model in Econometrics gave birth to a new family of
models, the autoregressive regime switching models, which are based on the
idea of partitioning the state-space into several sub-spaces, each of which is
to be modeled by an AR model.

A general autoregressive regime switching model with k (k ≥ 2) regimes
can be defined as

yt =

k∑
i=1

a′ixt · Φi(zt;ψi) + εt, (8)

where xt = (1, yt−1, yt−2, . . . , yt−p) is an input vector containing p lagged
values of the series and ai defines the local autoregressive model i (note that
a′ixt encodes the skeleton of the autoregressive model defined by (7)). The
variable controlling the transition is zt and normally is composed of a subset
of the elements of xt (hence zt ∈ R

q with q ≤ p). The vector of parameters ψi

defines the location and shape of the transition functions Φi, whose functional
form is one of the main differences among the models of the family.

1 This section is taken from [1].
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Fig. 1 An example of TAR model

3.1 Threshold Autoregressive model (TAR)

As mentioned above, the TAR is the seminal regime switching model, and
is characterized by using the indicator function as transition function, i.e.
Φi = IAi . This function, described below in detail, marks the sharp changes
from one linear model to another through a set of thresholds defined on one of
the variables involved. This variable can be an exogenous variable associated
to the process being modeled or one of the lagged values of the series, in
which case the model is called self-exciting.

A self exciting threshold autoregressive (SETAR) model is defined as

yt =

k∑
i=1

a′ixt · IAi(yt−d) + εt, (9)

where yt−d is the value of the series at time t − d and is usually known as
the threshold variable, IAi is an indicator (or step) function (which takes the
value zero below the threshold and one above it) and {Ai} forms a partition
of (−∞,∞), with ∪k

i=1Ai = (−∞,∞) and Ai ∩Aj = ∅, ∀i �= j.
We define the interval Ai = (ci−1, ci], with −∞ = c0 < c1 < . . . < ck = ∞,

where the ci’s are called thresholds. The ordering of the thresholds is required
in order to guarantee the identifiability of the model. Figure 1 shows the
graphical representation of a two regimes SETAR model.

3.2 Smooth Transition Autoregressive Model (STAR)

A key feature of TAR models is the discontinuous nature of the AR relation-
ship as the threshold is passed. Taking into account that nature is generally
continuous, in 1994 an alternative model called smooth transition autoregres-
sive (STAR) was proposed by Teräsvirta [37]. In STAR models there is a
smooth continuous transition from one linear AR to another, rather than a
sudden jump.
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Fig. 2 An example of 2 regime STAR model using logistic transition function

In this model and variants, the indicator function is substituted by a
smooth function with sigmoid characteristics. The STAR model is defined
as

yt =
k∑

i=1

a′ixt · Φi(yt−d;ψi) + εt. (10)

The transition functions Φi(yt−d;ψi) are continuous functions, bounded be-
tween 0 and 1, with parameters ψi. The regime that occurs at time t is
determined by the observable lagged variable yt−d and the associated value
of Φi(yt−d;ψi). Different choices for the transition functions give rise to dif-
ferent types of regime-switching behaviour. A popular choice is when Φ1 = 1
(the function constantly equal to 1) and Φ2 = . . . = Φk = f , where f is the
first-order logistic function with parameters ψi = (γi, ci)

′ for regime i:

f(yt−d;ψi) = (1 + exp(−γi(yt−d − ci)))
−1

. (11)

The resultant model is called the Logistic STAR (LSTAR). Figure 2 shows a
STAR model with two regimes for which Φ1 = 1− f and Φ2 = f .

The parameters ci in (11) can be interpreted as the threshold between two
regimes, in the sense that the logistic function changes monotonically from 0
to 1 as yt−d increases and f(ci; γi, ci) = 0.5.

The parameter γi determines the smoothness of the transition from one
regime to another. As γi becomes very large, the logistic function approaches
an indicator function and hence the change of f(yt−1; γi, ci) from 0 to 1 be-
comes instantaneous at yt−d = ci. Consequently, the LSTAR nests threshold
autoregressive (TAR) models as a special case. Furthermore, when γ → 0 the
LSTAR model reduces to a linear AR model.

In the LSTAR model, the regime switches are associated with small and
large values of the transition variable yt−d relative to ci. In certain applica-
tions it may be more appropriate to specify a transition function such that
the regimes are associated with small and large absolute values of yt−d (again
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relative to ci). This can be achieved by using, for example, the exponential
function, in which case the model may be named ESTAR.

As it is the case for the TAR model, symmetries of the parameter space
cause unidentifiability of the STAR —that is, it cannot be uniquely identified.
Enforcing the ordering of the regimes (c1 < c2 < . . . < ck) partially solves this
problem. Notwithstanding, the logistic activation function (which verifies that
f(x) = 1 − f(−x)), is another source for unidentifiability, so the restriction
γi > 0 must also be respected for every i.

3.3 Autoregressive Neural Network Model (AR-NN)

After the success of Artificial Neural Networks in so many fields including
Time Series Analysis, some researchers [32, 38] considered them as statis-
tical nonlinear models and applied statistical inference to the problem of
their specification. They devised a “bottom-up” strategy which allowed for
proper statistical inference, as well as an in-sample evaluation of the esti-
mated model.

The autoregressive single hidden layer neural network (AR-NN) model [32]
is defined as

yt = a′0xt +

k∑
i=1

αiΦi(b
′
izt;ψi) + εt (12)

being αi the connection weights and bi a vector of real valued parame-
ters defining a linear transformation on zt. For this autoregressive regime-
switching model, the functions Φi are assumed to be logistic in this paper,
Φ1 = . . . = Φk = f , as defined in equation (11). Although in the Soft Com-
puting field it is frequent to take a0 = 0, the original formulation of the
AR-NN included this “linear unit.”

The geometric interpretation of this model considers that the AR-NN di-
vides the p-dimensional Euclidean space with hyper-planes (defined by b′

izt)
resulting in several polyhedral regions. It computes the output as the sum of
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the contribution of each hyper-region modulated by the smoothing function
f . Figure 3 shows an example of the shape of the function generated by an
AR-NN with two hidden units.

Following [32], an AR-NN can be either interpreted as a semi-parametric
approximation to any Borel-measurable function or as an extension of the
LSTAR model where the transition variable can be a linear combination of
stochastic variables.

Three characteristics of the model imply non-identifiability. The first one
is the interchangeability property of the elements of the AR-NN model. The
value in the likelihood function of the model remains unchanged if we permute
the hidden units. This results in k! different models that are indistinguishable
from one another and in k! equal local maxima of the log-likelihood function.
The second characteristic is that, for the transition function, f(x) = 1 −
f(−x). This yields two observationally equivalent parameterizations for each
hidden unit. Finally the presence of irrelevant hidden units is also a problem.
If model (12) has hidden units such that αi = 0 for at least one i, the
parameters bi remain unidentifiable. Conversely, if bi = 0 then αi can take
any value without the likelihood function being affected.

The approach devised by [32] overcomes these limitations by imposing
some restrictions on the parameters. The first problem is solved by enforcing
α1 > · · · > αk or b10 < · · · < bk0. The second problem is solved by enforcing
bi1 > 0 for every i. Finally, the third problem is dealt with by applying
statistical inference in the model specification.

3.4 Linear Local Global Neural Network (L2GNN)

Another member of the regime switching family, and a recent statistical ap-
proach to artificial neural networks, is the Local Global Neural Network
(LGNN) model [36]. The central idea of LGNN is to express the input-output
mapping by a piece-wise structure. The model output is constituted by a
combination of several pairs, each of those composed by an approximation
function and by an activation-level function. The activation-level functions
are equivalent to the transition function of the general autoregressive regime
switching model, and define the role of an associated approximation function
for each subset of the domain. Partial superposition of activation-level func-
tions is allowed. In this way, the problem of approximation functions is faced
through the specialization of neurons in each of the sectors of the domain.
In other words, the neurons are formed by pairs of activation-level and ap-
proximation functions that emulate the generator function in different parts
of the domain.

The LGNN is defined as

yt =
k∑

i=1

L(xt;χi)Φi(zt;ψi) + εt (13)
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where the functions L and Φi are the approximation and transition functions,
respectively.

In the original formulation [36], Φi(zt;ψi) is noted as B(zt;ψi) and is
defined as the difference between two opposed logistic functions:

B(zt;ψi) = −
(
f(b′

izt; γi, c
(1)
i )− f(b′

izt; γi, c
(2)
i )
)

(14)

where ψi =
(
bi, γi, c

(1)
i , c

(2)
i

)
, representing a linear transformation of zt en-

coded by bi, a steepness parameter γi and two location parameters (c
(1)
i , c

(2)
i ).

This model is closely related to the mixture-of-experts approach [21] and
offers a great deal of flexibility in the functional form of the approximation
function L(xt;χi). This flexibility has not been fully explored so far, but there
have been attempts to combine in the same model linear approximators with
nonlinear ones [34], for example.

A special case of the LGNN model is the Linear-Local Global Neural Net-
work (L2GNN) [36]. In this case, the approximation functions are linear, that
is, χi = ai is a vector of linear parameters and L(xt;χi) = a′ixt. Hence, the
L2GNN is closely related with the general autoregressive regime switching
model of equation (8), and is defined as

yt =

k∑
i=1

a′ixtB(zt;ψi) + εt. (15)

It is worth noting that, as the previous models, this model is neither locally
nor globally identifiable. In [36] the restrictions which ensure identifiability

are stated: for i = 1, . . . , k the ordering of the thresholds is given by c
(1)
i <

c
(1)
i+1 and c

(2)
i < c

(2)
i+1 together with c

(1)
i < c

(2)
i , whereas the identifiability

problems posed by the symmetry of the transition function are solved by
enforcing γi > 0 and bi1 > 0. Figure 4 shows a simplified L2GNN model with
two regimes.



10 J.L. Aznarte and J.M. Beńıtez

3.5 Neuro-Coefficient Smooth Transition
Autoregressive model (NCSTAR)

One of the latest developments in threshold-based models is the Neuro-
Coefficient STAR [30]. This model is a generalization of some of the pre-
viously described models and can handle multiple regimes and multiple tran-
sition variables. This model can be seen as a linear model whose parameters
change through time and are determined dynamically by a single hidden layer
feed-forward neural network.

Consider a linear model with time-varying coefficients expressed as in equa-
tion (7) and let the coefficients vary through time: a0(t), a1(t), · · · , ap(t). The
time evolution of such coefficients is given by the output of a single hidden
layer neural network with k hidden units:

aj(t) =

k∑
i=1

αijf (b′
izt; γi, ci)− α0j , (16)

where j = 0, · · · , p, αji and αj0 are real coefficients (connection weights) and
f is a logistic function as defined in expression (11).

Substituting the p realizations of (16) in the linear model, we obtain the
general form of the NCSTAR model:

yt = α
′
0xt +

k∑
i=1

α′
ixtf(b

′
izt) + εt. (17)

Similarly to ai in the previous models, αi represents a vector of real coeffi-
cients, called linear parameters. In this model, the value of the slope param-
eter γi is taken to be the norm of bi. In the limit, when the slope parameter
approaches infinity, the logistic function becomes a step function.

As happened with previous models, this model is neither locally nor glob-
ally identifiable, and this is due to the special characteristics of its functional
form that cause non-identifiability. In order to guarantee identifiability, we
need to impose some restrictions, namely ci < ci+1 and bi1 > 0. Also, it
is important to ensure that no irrelevant units are included, which can be
achieved by using the incremental building procedure proposed in [31].

The choice of the elements of zt, which determines the dynamics of the
process allows a number of special cases. An important one is when zt =
yt−d. In this case, model (17) becomes a LSTAR model with k regimes. It
should be noticed as well that this model also nests the SETAR model. When
γi → ∞ ∀i, the LSTAR model becomes a SETAR model with k regimes.

Another interesting case is when α′
i = (αi0, 0, . . . , 0), ∀i > 0. Then the

model becomes an AR-NN model with k hidden units. Finally, this model
is related to the Functional Coefficient Autoregressive (FAR) model [14], to
the Single-Index Coefficient Regression model [41], and to Fuzzy Rule-based
Models, as we shall see below.
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4 Relations with Fuzzy Rule-Based Models

As stated above, establishing the equivalence of different models has been
important in the neural networks field since its establishment, see for example
[27, 28, 23, 35, 25, 9, 13]. These results imply some useful consequences as
the possibility of interpreting one family of models in terms of the others
or the transfer of properties and algorithms. Concerning neural networks,
these results allowed to overcome the “black-box” characteristic as they led
to knowledge extraction methods.

In [5] we explored the links existing between an AR model and a fuzzy
rule used in the time series framework and that STAR models can be seen
as a particular case of a fuzzy rule-based system. In [1] we extended those
results to the neural autoregressive models listed in Section 3. Let us recall
those results.

4.1 The AR Model and the TSK Fuzzy Rules

Fuzzy rules are the core element of fuzzy systems. When applied to time se-
ries, as seen in equation (6), fuzzy rules can describe the relationship between
the lagged variables in some parts of the state-space. A close look into this
equation suggested the following

Proposition 1. When used for time series modelling, a TSK fuzzy rule can
be seen as a local AR model, applied on the state-space subset defined by the
rule antecedent.

This connection between the two models opened the possibility of an exchange
of knowledge from one field to another, enabling us to apply what we know
about AR models to fuzzy rules and vice versa. From the point of view of
Box-Jenkins models, each of these rules represents a local AR model which
is applied only when some conditions hold. These conditions are defined by
the terms in the rule antecedent. The output of the autoregressive system is
modulated by the membership degree of the lagged variables to some fuzzy
sets describing parts of the state-space domain. This scheme is closely related
to the structure of the Threshold Autoregressive family of models, as shown
below.

4.2 STAR Model and Fuzzy Rule-Based Models

After the previous result, we were able to go further in the exploration of the
relationships between threshold models and fuzzy logic-based models. On the
one hand, we have seen that AR models are good linear models applicable to
prediction problems. As well, we know that a TAR model is basically a set of
local AR models, and that it allows for some nonlinearity in its computations.
On the other hand, we have seen how a fuzzy rule relates to an AR model,
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in Proposition 1. Knowing that fuzzy rule-based models contain sets of fuzzy
rules, we were interested in considering the relationship existing between
threshold models and fuzzy rule-based models.

It is rather clear that there is some parallelism between the two afore-
mentioned families of models. At a high level, models from both sides are
composed of a set of elements (AR – fuzzy rules) which happen to be closely
related, as stated above. On a lower level, both families of models rely on
building a hyper-surface on the state-space which tries to model the relation-
ship between the lagged variables of a time series. Moreover, both define this
hyper-surface as the composition of hyper-planes which apply only in certain
parts of the state-space.

Indeed, the following

Proposition 2. The STAR model is functionally equivalent to an Additive
TSK FRBS with only one term in the rule antecedents.

was proved. For a deeper discussion on these basic facts, refer to [5].

4.3 Neural Autoregressive Models and Fuzzy
Rule-Based Systems

As described in Section 3, some of the most recent developments of the thresh-
old autoregressive family of models include the AR-NN, the LGNN and the
NCSTAR models. We will now explore the consequences of Proposition 1
regarding those models.

4.3.1 Autoregressive Neural Network (AR-NN)

Recalling equation (12), it is clear that the AR-NN is composed of an AR
linear term plus a neural network. The neural network term is a regular
multilayered perception, and, as such, is interpretable as a fuzzy additive
system, in the way shown in [9]. This work states as well that, by using
the interactive-or operator, it is possible to view artificial neural networks as
Mamdani-type fuzzy rule-based models.

Furthermore, under the FRBS paradigm, the AR term of the AR-NN can
be considered as a generic rule, that is, a rule which applies on the whole do-
main of the problem. Such generic rules, which fire unconditionally, produce
a default answer which is added to the values of the fired rules on those areas
covered by them. This type of rules has been used previously by researchers
and practitioners to encode knowledge which is domain-wide applicable.

Thus, we can prove the following

Proposition 3. The Autoregressive Neural Network (AR-NN) model is func-
tionally equivalent to a TSK FRBS with a default rule.
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Fig. 5 (a) Four local AR models (or fuzzy rules) (b) The L2GNN model (or the
fuzzy inference system) derived from them

Proof. Using the result in [9], which states that a neural network is function-
ally equivalent to an FRBS, and considering the AR term as a rule of type

IF true THEN yt = a′0xt, (18)

the proof is trivial.

Viewing the AR-NN as a combination of an AR model and a fuzzy inference
system allows for linguistic interpretation of the system. In addition, this let
us include a priori expert knowledge into the model.

4.3.2 Local Global Neural Network

The more general approach of LGNN models, closely related to mixtures of
experts model, satisfies the following

Proposition 4. Local Global Neural Networks are a generalization of Addi-
tive TSK FRBS.

Proof. It is straightforward after considering the expression of TSK rules (6),
and the expression for the LGNN (13). Since L(xt;χi) can take any form, it
can also be a linear function of the inputs, which is exactly a TSK rule. As
the aggregation rule for LGNN is additive, we can conclude that the LGNN
model is a generalization of Additive TSK FRBS.

For the same reason that after setting the general original formulation of
the LGNN, researchers straightforwardly focused on linear approximation
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functions (linear LGNN models), TSK rules are basically used with linear
consequents. It is generally preferred to keep the consequents linear and to
encode all the nonlinearity in the antecedents.

If linear consequents were used (i.e. in the L2GNN model), though, the
relationship with Additive TSK FRBS is immediate:

Proposition 5. Linear Local Global Neural Network (L2GNN) models are
functionally equivalent to Additive TSK FRBS using B(zt;ψi) as membership
function.

4.3.3 Neuro-coefficient Smooth Transition Autoregressive
Models

This kind of systems introduces time varying coefficients to combine AR mod-
els. Their mathematical formulation is quite similar to the L2GNN model,
varying only the form of their activation level functions (which has a smaller
number of parameters).

Hence, when studying the links of the NCSTAR to FRBS, we find similar
results to those obtained for the previous statistical models. They can be
expressed in terms of the following

Proposition 6. Neuro-Coefficient Smooth Transition Autoregressive (NC-
STAR) models are functionally equivalent to Additive TSK FRBS with lo-
gistic membership function.

Proof. We must recall equations (5) (Additive TSK FRBS) and (17) (NC-
STAR model). Considering that the multidimensional logistic function is ob-
tained as the product of uni-dimensional logistic functions, it is easy to see
that the firing degree of a rule is equivalent to the transition function of a
hidden unit of the NCSTAR, and hence, that both models are functionally
equivalent.

Finally, the following Theorem condenses the results drawn above:

Theorem 1. The TSK FRBS is a generalization of the regime switching au-
toregressive models TAR, STAR, AR-NN, L2GNN and NCSTAR.

Proof. Trivial in the light of propositions 1, 2, 3, 5 and 6.

5 Hypothesis Testing in the Framework of FRBM

As stated before, a fundamental objection argued by scientists with a classical
statistical background against Soft Computing models in general and neural
networks and FRBM in particular was the lack of a sound statistical theory
behind them. Not being able to prove a priori if such models had good sta-
tistical properties (related to their much widespread ‘black-box’ condition)
prevented them to be accepted by wide parts of the scientific community de-
spite its good performance in practical situations. Fuzzy-related researchers’
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and practitioners’ attitude towards this has usually been to work from an
engineering point of view and to further extend the practical applications of
the models and methods in hope that their empirical benefits were at some
point good enough as to finally convince the scientific community.

The above equivalence results have an immediate impact on this question,
as they permit the derivation of a statistical approach to a family of Soft
Computing models, namely the FRBM family, considering them as nonlinear
time series models.

This includes a priori proofs of their statistical properties, such as station-
arity or identifiability [6] which throw some light into their inner behavior and
a posteriori diagnostic checks which closely examine the residuals as shown
in [3]. Also, the use of log-likelihood based estimation methods allow us to
guarantee existence, convergence, consistence and asymptotic normality of
the estimators [1]. These properties are important for a statistical model to
be accepted. Furthermore, the development of linearity tests grant the ability
to decide, based on the data, if a series can be modeled with a single linear
autoregressive model or if an FRBM seems appropriate instead [2].

Before deriving these tests, a word on notation must be said. In the stan-
dard FRBM framework, the residuals are considered as an information source
about the ‘goodness of fit’ of the model. They are looked at once the model is
built, as they are the basis for computing the so-called error measures : mean
squared error, mean average error and so on.

In the statistical field, on the other hand, the time series formed by the
residuals, {εt}, is a fundamental piece of the modeling process, and as such
it is always included in the definition of the models. Hence, we will redefine
the Additive TSK FRBM, Equation (5), in the time series framework as

yt = G(xt;ψ) + εt =
R∑
i=1

μi(xt) · bixt,+εt, (19)

where ψ is the parameter vector, including the consequent (linear) parame-
ters, ψp = (b1, ...,br) and the antecedent (nonlinear) parameters, ψω, whose
number depends on the type of membership function, μ, used. The residuals,
εt, are hence included in the definition of the FRBM.

In this section, we will consider membership functions of Gaussian type,
being the most common derivable membership functions used in this context.
It is usually expressed as

μ(xt;ψ)) =
∏
i

exp

(
− (xi − ci)

2

2σ2

)
(20)

but we will rewrite it as

μ(xt;ψ) =
∏
i

exp
(−γ(xi − ci)

2
)
, (21)

where ψ = (γ, c).
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Since FRBM can be seen as nonlinear regression models, the standard pro-
cedures for testing parameter significance, like LM-tests, should be applicable,
in principle. To perform these tests, however, the asymptotic distribution of
the model parameters must be known [1].

In the fuzzy literature, however, no attention has been paid to hypothesis
testing up to now. While it is obvious that a linear time series should be
modeled with a linear model, i.e. a single (default) rule, to our knowledge
there is no testing procedure to avoid the mistake of using highly complex
structures to model simple problems.

The problem of deciding upon the linearity of a given problem was already
treated in [2], where an LM-based linearity test against an FRBM was pro-
posed. Next we extend the application of such test to introduce a way to
decide if a given problem can be solved using a linear model or if we need
a combination of rules to model it. Let us suppose that we have an FRBM
composed of a single linear model or default rule which applies to the whole
input space:

yt = b0xt + εt. (22)

Now we want to know if the use of an extra rule with Gaussian membership
function would increase the performance of the model. We would add that
rule as follows:

yt = G(xt;φp,φω) = b0xt + b1xtμ(xt;ψ) + εt. (23)

Our goal is to test for the significance of the extra rule, so in this case,
recalling (21), an appropriate null hypothesis could be

H0 : γ = 0, (24)

being the alternative H1 : γ > 0. Hypothesis (24) opens up the possibility of
studying linearity in the Lagrange Multiplier (LM) testing framework. Under
this null hypothesis, the contribution of the extra rule is identically equal to
a constant and merges with the intercept b00 of the default rule, that is, the
rule is not necessary.

We assume that, under (24), the maximum likelihood estimators of the
parameters of (21) are asymptotically normal and hence can be estimated
consistently.

As it was thoroughly discussed in [6], model (23) is only identifiable under
the alternative hypothesis, i.e., if the null is true, the parameters are not
locally unique and thus the estimator does not follow an asymptotic normal
distribution. This issue is known as the problem of ‘hypothesis testing when
a nuisance parameter is present only under the alternative,’ and was first
studied by [16]. In this situation the test statistic of the LM-test does not
follow a known distribution and thus the standard asymptotic distribution
theory for the likelihood ratio is not available.
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However, we can avoid this difficulty and obtain a χ2-statistic by follow-
ing the method first suggested in [29] and then widely applied to neural
network-based models by [32, 31, 36] amongst others. This method proposes
the expansion of the expression of the firing strength of a fuzzy rule into a
Taylor series around the null hypothesis γ = 0:

μ(xt; γ, c) ≈ μ(xt; 0, c) +
∂μ

∂γ

∣∣∣∣
γ=0

γ +R(xt; γ, c)

= γ
∑

(xi − ci)
2 +R(xt; γ, c) (25)

which for the expression of the contribution of the extra rule yields

C ≈ b1xt

[
γ
∑

(xi − ci)
2
]
=

q∑
i=1

θixi+

q∑
i=1

q∑
j=i

θijxixj +

q∑
i=1

q∑
j=i

q∑
k=j

θijkxixjxk.

In this case, contrary to what happens when using the sigmoid membership
function (as in the STAR model, [29]), the first order Taylor approximation
is enough for our needs, as all the θi, θij , θijk depend on the intercept, b10,
of (23). The first linear term merges with the system’s default rule, while
the remainder of the Taylor expansion adds up to the error term, becoming
ε� = ε+ b1xtR(xt; γ, c), which means that ε� = ε under the null. Thus the
expansion results in the following model:

yt = π
′xt +

q∑
i=1

q∑
j=1

θijxixj +

q∑
i=1

q∑
j=i

q∑
k=j

θijkxixjxk + ε�t . (26)

The null hypothesis can hence be defined as

H0 : θij = 0 ∧ θijk = 0 ∀ i, j, k ∈ 1, . . . , q. (27)

This null hypothesis circumvents the identification problem, and allows us
to obtain a statistical test concerning the use of the extra rule. This test
is based on the local approximation to the log-likelihood for observation t,
which takes the form (ς is the variance of ε):

lt = −1

2
ln (2π)− 1

2
ln ς2 − 1

2ς2
×⎧⎨⎩yt − π′xt −

q∑
i=1

q∑
j=1

θijxixj −
q∑

i=1

q∑
j=1

q∑
k=1

θijkxixjxk

⎫⎬⎭
2

. (28)
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Following [31], we must rely on the following assumptions:

Assumption 2. The ((r + 1) × 1) parameter vector defined by [ψ′, ς2]′ is
an interior point of the compact parameter space Ψ which is a subspace of
R

r × R
+, the r dimensional Euclidean space.

Assumption 3. Under the null hypothesis, the data generating process (DGP)
for the sequence of scalar real valued observations yt

T
t=1 is an ergodic stochas-

tic process, with true parameter vector ψ ∈ Ψ .

Assumption 4. E|zt,i|δ < ∞, ∀i ∈ {1, . . . , p} for some δ > 8.

Under H0 and Assumptions 2, 3 and 4 we can compute the standard Lagrange
Multiplier or score-type test statistic given by

LM =
1

σ̂2

T∑
t=1

ε̂τ̂t
′×⎧⎨⎩

T∑
t=1

τ̂tτ̂t
′ −

T∑
t=1

τ̂tĥ
′
t ×
(

T∑
t=1

ĥ′
tĥt

)−1

×
T∑

t=1

ĥtτ̂t
′

⎫⎬⎭×

T∑
t=1

τ̂t
′ε̂ (29)

where ε̂ = yt − π̂′xt are the residuals estimated under the null hypothesis,

ĥt =
∂G(xt;ψp,ψω)

∂ψ̂p∂ψ̂ω

∣∣∣∣∣
ψp=ψ̂p∧ψω=ψ̂ω

(30)

is the gradient of the model (in this case ĥt = xt) and τ̂t contains all the
nonlinear regressors in (26). This statistic has an asymptotic χ2 distribution
with m degrees of freedom, where m = ‖τ̂t‖.

Although it might seem complicated at first sight, this test can be easily
carried out in three stages:

1. Regress yt on xt and compute the residual sum of squares SSR0 =∑T
t=1 ς̂t

2

2. Regress ς̂t on xt and on the m nonlinear regressors of (26). Compute the

residual sum of squares SSR1 =
∑T

t=1 τ̂t
2.

3. Compute the χ2 statistic

LMl
χ2 = T

SSR0 − SSR1

SSR0

or the F version of the test (recall that p = ‖xt‖)

LMl
F =

(SSR0 − SSR1)

m

(
SSR1

(T − p− 1−m)

)−1

.

If the value of the test statistic exceeds the appropriate value of the χ2 or
F distribution, the null hypothesis is rejected.
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6 Determining the Number of Rules of an FRBM

Once we have developed the statistical theory for the FRBM, including the
linearity tests, we are closer to establishing a sound statistical procedure to
specify the structure of an FRBM. This specification includes the determi-
nation of the number of fuzzy rules that are sufficient to model a given time
series.

Knowledge included in an FRBM is represented by fuzzy rules. Obtaining
these rules is a fundamental problem in the design process of an FRBM.
When an expert on the system or domain under study is available, he or
she can deliver the rules. Its elicitation is a knowledge acquisition process
which is affected by many well-known problems described in the literature
[20] (chap. 5), [18] (chap. 3).

This is the reason why, opposed to traditional interview-based techniques,
some alternatives are proposed, based in automatic learning methods. The
idea is to use one of these techniques to capture or learn a set of examples that
describe the behaviour of the system. Later, when this set is fixed, we trans-
late this knowledge into fuzzy rules. This approach has given birth to a myriad
of procedures to extract fuzzy rules, based on diverse algorithms or machine
learning models, including classification trees, evolutionary algorithms, clus-
tering techniques, and neural networks. For a review on developments on this
issue, see [19].

Notwithstanding, one of the most common procedure for automatic rule
base determination remains the one proposed by Wang and Mendel [40] in
1992. This procedure is based in a combinatorial approach, and divides the
universe of discourse into fuzzy regions, assigning rules to those regions which
cover the available data.

Some disadvantages of this procedure are the high number of rules it pro-
duces and, again, its lack of a mathematical foundation that justifies it. In
this section, we will propose an alternative method, based on the formal de-
velopments that we have carried out throughout this Chapter, that overcomes
these limitations. The method relies on hypothesis testing and produces par-
simonious models because it proceeds in a bottom-up manner.

Suppose that we have an FRBS with a default rule and r + 1 fuzzy rules.
It can be written as follows:

yt = G(xt;ψ) + εt = b0xt +

r∑
i=1

bixt · μi (xt;ψμi)+

br+1xt · μr+1

(
xt;ψμr+1

)
+ εt, (31)

where μ(xt;ψμ) is defined as in (21). Let us assume that we have accepted
the hypothesis of model (31) containing r rules and we want to test whether
the (r + 1)-th rule is necessary. An appropriate null hypothesis could be
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H0 : γr+1 = 0, (32)

being the alternative H1 : γr+1 > 0.
As it was the case for hypothesis (24) of the linearity test, hypothesis (32)

allows us to work in the Lagrange Multiplier (LM) testing framework. Under
this null hypothesis, the contribution of the (r+1)-th rule, Cr+1, is identically
equal to a constant and merges with the intercept in the default rule, that
is, the rule is not necessary.

At this point, the test is similar to the linearity one, so we proceed in the
same way: to avoid unidentified parameters we expand the contribution of
the extra rule into a Taylor series around the null hypothesis γ = 0 as in (25),
which allows us to operate on the expression of the contribution of (r+1)-th
rule:

Cr+1 ≈ br+1xt

[
γr+1

σ2
r+1

(ωr+1x̃t − cr+1)
2

]
= . . .

= θ0 +

q∑
i=1

θixi +

q∑
i=1

q∑
j=1

θijxixj +

q∑
i=1

q∑
j=1

q∑
k=1

θijkxixjxk. (33)

The intercept θ0 and the first linear term merge with the system’s default
rule, while the remainder of the Taylor expansion adds up to the error term,
becoming ε� = ε+br+1xtR(x̃; γ,ω, c, σ), which means that ε� = ε under the
null. Thus the expansion results in the following model:

yt = π0xt +

r∑
i=1

bixtμi (xt;ψμi)

+

q∑
i=1

q∑
j=1

θijxixj +

q∑
i=1

q∑
j=1

q∑
k=1

θijkxixjxk + ε�t . (34)

The null hypothesis can hence be defined as

H0 : θij = 0 ∧ θijk = 0 ∀ i, j, k ∈ 1, . . . , q. (35)

As before, this new null hypothesis circumvents the identification problem,
and allows us to obtain a statistical test concerning the use of the r + 1-th
rule.

Under H0 and Assumptions 2, 3 and 4 we can compute the standard La-
grange Multiplier or score-type test statistic given by (29) where the residuals
estimated under the null hypothesis are

ε̂t = yt −
r∑

i=1

bixt · μi (xt;ψμi) , (36)
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while the gradient matrix ĥt (defined as in (30)) contains the gradient for
each linear and nonlinear parameter of the model under the null (that is,
the model with r rules) and τ̂ t now contains all the nonlinear regressors
corresponding to the Taylor series expansion of the new rule added in (31),
i.e. those multiplying the θij and θijk.

This statistic has an asymptotic χ2 distribution with m degrees of freedom,
beingm the number of nonlinear regressors of the model under the alternative
hypothesis, with the Taylor series expansion which leads to (33).

This test can again be carried out in stages:

1. Estimate the FRBM with a default rule and r fuzzy rules. If the data set is
small and the model is difficult to estimate, instead of regressing yt on all
the regressors of the model under the null (as we did in the linearity test),
we will use the procedure suggested by [31, 17] and regress the residuals

ε̂t on ĥt and compute the residual sum of squares SSR0 =
∑T

t=1 ε̃t
2.

This approach is known to be more robust against numerical problems
that can arise in applying the nonlinear least squares procedure. In that
case, the residual vector is not precisely orthogonal to the gradient matrix
and this has an adverse effect on the empirical size of the test.

2. Regress ε̂t on ĥt and τ̂ t. Compute the residual sum of squares SSR1 =∑T
t=1 ν̂t

2.
3. Compute the χ2 statistic

LMl
χ2 = T

SSR0 − SSR1

SSR0

or the F version of the test (p = ‖xt‖)

LMl
F =

(SSR0 − SSR1)

m

(
SSR1

(T − p− 1−m)

)−1

.

If the value of the test statistic exceeds the appropriate value of the χ2 or
F distribution, then the null hypothesis is rejected.

7 Experiments

7.1 Montecarlo Experiments

The use of synthetic data sets has been recently studied in the framework of
Soft Computing. For a detailed state-of-the-art, see [8]. Nonetheless, in the
statistical field, it is a common practice to use this type of experiments to
check the modelling capabilities of the proposals.

The basic assumption is that any series is considered to be generated by a
usually unknown data generating process (DGP) to which a noise component
is added. As a reverse result of this, to generate an artificial time series,
we need to define a DGP and a noise distribution, whose sum in iterative
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application will produce the data. This artificial series could then be studied
under the chosen modelling scheme, identifying and estimating a model for
it. If the parameters of this model are (or tend to be) equal to the parameters
of the original DGP, we obtain a clear evidence that the modelling scheme is
correct.

In order to simulate a series according to the aforementioned basic assump-
tion, we must go back again to the expression of the general model, equation
(8). The first part of the right hand side of that expression is called in this
context the model skeleton, and of course is the part which is to be modelled.
Having defined a model skeleton or DGP, we generate the series by seeding
a random starting point xt0 and successively obtaining the yt, t = 1...T , by
applying the skeleton function and adding a n.i.d. value given by the random
series εt. It is usually a good idea to discard the first N observations to avoid
initialization effects.

In this study, we generated six synthetic time series. The first five of them
are the ones used by [31], that we reuse in order to test them in the FRBM
framework. The sixth one is similar, but it only has a higher number of rules.
The experiments were run on 500 replications of each model and we applied
the iterative testing procedure to determine the number of rules needed for
each model.

7.2 Experiment 1

We start by simulating a stationary linear autoregressive model:

yt = 0.8− 0.5yt−1 + 0.3yt−2 + εt, εt ∼ NID(0, 12). (37)

Knowing that this series is linear, we first wanted to check if the null hy-
pothesis of the linearity test would be accepted or not. By using the skeleton
and the random noise series, we simulated 500 replications of the model and
applied the test to them. The results were conclusive: over the 500 series, the
null hypothesis was accepted in 95.2% of the cases. There were just 24 series
where the test failed.

Then, to compare this result with standard FRBM modelling, suppose
that, when faced to this series, we decide to apply a standard fuzzy model
like ANFIS [22], in its basic grid partitioning style. If 3 labels were assigned
to each of the two input variables, yt−1 and yt−2, the model would have 9
rules and a total of 39 parameters (9×3 linear parameters and 6×2 nonlinear
parameters).

To make the comparison more fair, we also tried to model the series with
an ANFIS using, instead of grid partition, a substractive clustering method
with default parameters to determine the number of rules. In this case, the
model ended up with just 3 fuzzy rules (also fixing 3 linguistic labels per
input), counting a total of 21 parameters (3 × 3 linear and 6× 2 nonlinear).
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Comparing the complexity of this ANFIS model with the DGP, which has
a total of 3 parameters, the importance of the linearity tests becomes evident.

7.3 Experiment 2

The second simulated model is similar to the specification studied by [37],
and is a two regime STAR model with two extreme regimes:

yt = 1.8yt−1 − 1.06yt−2+

(0.02− 0.9yt−1 + 0.795yt−2)× μS(xt;ψ) + εt,

εt ∼ NID(0, 0.022) (38)

where the nonlinear parameters are ψ = [γ,ω, c] = [20, (1, 0), 0.02].
The first regime of this model, corresponding to μS(xt;ψ) = 0, is explosive,

while the other regime, determined by μS(xt;ψ) = 1, is not. For the long term
behaviour, the model has a unique stable stationary point, y∞ = 0.036.

We applied the linearity test to this series, obtaining a 98.3% of correct
rejections of the null hypothesis. Then, assuming the alternative hypothesis
to be true, we applied the number of rules determination procedure, and
obtained the correct number of rules in the 97.7% of the cases. Over the 500
replications, only 6 were determined to have more than 2 rules.

7.4 Experiment 3

The third simulated model corresponds to a three regime STAR model:

yt = −0.1 + 0.3yt−1 + 0.2yt−2+

(−1.2yt−1 + 0.5yt−2)× μS(xt;ψ1)+

(1.8yt−1 − 1.2yt−2)× μS(xt;ψ2) + εt,

εt ∼ NID(0, 0.52) (39)

where the nonlinear parameters are ψ1 = [γ1,ω1, c1] = [20, (1, 0), −0.6] and
ψ2 = [γ2,ω2, c2] = [20, (1, 0), 0.6].

This model has three limiting regimes, of which the “lower” one corre-
sponds to μS(xt;ψ1) = μS(xt;ψ2) = 0 and is stationary, the “middle” regime
has μS(xt;ψ1) = 1 and μS(xt;ψ2) = 0 and is explosive, while the “upper”
regime is determined by μS(xt;ψ1) = μS(xt;ψ2) = 1 and is also explosive.
Concerning its long term behaviour, the model has a limit cycle with a period
of 8 time units.

In this case, the linearity test determined the nonlinearity of the series in
the 100% of the cases. On the other hand, the incremental building procedure
fixed the correct number of regimes in 90% of the cases, adding extra rules
in 49 of the 500 models.
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7.5 Experiment 4

The model simulated in this fourth experiment is a two regime NCSTAR:

yt = 0.5 + 0.8yt−1 − 0.2yt−2+

(−0.5− 1.2yt−1 + 0.8yt−2)× μS(xt;ψ) + εt

εt ∼ NID(0, 0.52) (40)

with ψ = [γ,ω, c] = [11.31, (0.7071,−0.7071), 0.1414].
This model has two extreme regimes, given by μS(xt;ψ) = 0 which is

a stationary regime and μS(xt;ψ) = 1 which has a unit root and hence is
non-stationary. Still, for its long term behaviour, the process has two stable
stationary points, 0.38 and -0.05.

In this case, the linearity test worked in the totality of the 500 runs of the
experiment and the iterative building strategy found the proper number of
rules in the 98.2% of the cases. Only 9 series were set to be modelled with
more than 2 regimes, proving again the effectiveness of the testing procedure.

7.6 Experiment 5

The fifth simulated model is a full three regime NCSTAR, given by

yt = 0.5 + 0.8yt−1 − 0.2yt−2+

(1.5− 0.6yt−1 − 0.3yt−2)× μS(xt;ψ1)+

(−0.5− 1.2yt−1 + 0.7yt−2)× μS(xt;ψ2) + εt,

εt ∼ NID(0, 12) (41)

where ψ1 = [γ1,ω1, c1] = [8.49, (0.7071,−0.7071),−1.0607] and ψ2 =
[γ2,ω2, c2] = [8.49, (0.7071,−0.7071), 1.0607].

This model also has three limiting regimes: in the “lower” one, μS(xt;ψ1) =
μS(xt;ψ2) = 0 and it is stationary. The “middle” regime, given by μS(xt;ψ1)=
1 and μS(xt;ψ2) = 0, is also stable, as well as the “upper” regime, charac-
terized by μS(xt;ψ1) = μS(xt;ψ2) = 1. This process has an unique stable
stationary point at y∞ = 0.99.

We applied the linearity test to the 500 series of this data set, and linearity
was rejected in 100% of the cases. The results were not so precise when the test
was applied iteratively to determine the appropriate number of regimes of the
model: of the 500 series, an 83.2% of the models were set to have 3 regimes,
while up to 84 models were built with only 2 regimes. This conservative
behaviour contrasts with what happened in the other 3 regime model, in
Experiment 3, where the mistaken models had more rules instead of less, and
could be related to the higher number of parameters which make estimation
harder.
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7.7 Experiment 6

The sixth model was built in order to test the behaviour of the modelling
cycle when dealing with more complicated models. It contains five regimes,
and is given by

yt = 0.5 + 0.8yt−1 − 0.2yt−2+

(1.5− 0.6yt−1 − 0.3yt−2)× μS(xt;ψ1)+

(0.2 + 0.3yt−1 − 0.9yt−2)× μS(xt;ψ2)+

(−1.2 + 0.6yt−1 + 0.8yt−2)× μS(xt;ψ3)+

(−0.5− 1.2yt−1 + 0.7yt−2)× μS(xt;ψ4) + εt,

εt ∼ NID(0, 0.22) (42)

where

ψ1 = [γ1,ω1, c1] = [8.49, (0.7071,−0.7071),−1.0607]

ψ2 = [γ1,ω1, c1] = [8.49, (0.7071,−0.7071),−0.59]

ψ1 = [γ1,ω1, c1] = [14.23, (0.7071,−0.7071), 0.59]

ψ4 = [γ2,ω2, c2] = [14.23, (0.7071,−0.7071), 1.0607].

Testing for linearity, not surprisingly 100% of the series were determined to
be nonlinear. The problem arose when determining the number of regimes,
as only in 30% of the 500 series the procedure found the correct number of
regimes.

Nevertheless, for a model with such a big number of parameters (15 lin-
ear plus 16 nonlinear), it is clear that the length of the series (500 points)
is insufficient. In order to remove the influence of the length of the series,
we created a new set of 500 series with 5000 points each. We repeated the
experiment with these longer series, and the results were much better: of the
500 series, 96% were found to have 5 regimes. There were only 21 series that
yielded models with an incorrect number of regimes, always higher than 5
except for one, which was fixed to have 4 regimes.

7.8 Real-World Examples

In order to show the applicability of the proposal in a real situation, we
have applied it to three real-world examples: the lynx captures in a period
of time in a region of Canada, the calls received in an emergency call centre
in the region of Castilla y León and the airborne pollen concentration in the
atmosphere of the city of Granada, Spain. All these series were described in
detail in [4].

For the lynx series, [33] proposed an AR(2) model considering the sample
correlogram, and second order autoregression was also chosen by [12] in a
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harmonic-autoregressive combined model and by [31] for the NCSTAR model.
We fix the order of our model also to 2, for these reasons.

The linearity test against a NCSTAR threw a p-value of 0.000259. This
indicates that the series is nonlinear and suggest the use of advanced mod-
els. The modelling cycle ended when the second regime was added, and the
estimated model has two regimes given by

yt = 0.9599 + 1.2514yt−1 − 0.3398yt−2+

(2.5466 + 0.3764yt−1 − 0.7973yt−2)μS(xt;ψS) + εt (43)

with ψS = (γ,ω, c) = (103.1266, [0.4630, 0.8863], 9.4274).
Regarding the emergency call centre problem, figure 6 shows the histogram
of the transformed series, which shows a long right tail, being the computed
kurtosis −0.5452, while the skewness had a value of 0.1285. The figure also
shows the ACF and PACF functions, of which the first one shows a clear
cyclic behaviour with period 7 and the second one shows significant par-
tial autocorrelation in the first 7 lags. Attending to these diagrams, and the
weekly nature of the series, we decided to fix to 7 the order of our models.

The linearity test against the FRBM threw a fairly low value: 1.920692e−
08. The test indicates that the series is nonlinear and that it could be ex-
plained with a complex nonlinear model.

As it was the case for the lynx problem, the modelling cycle ended up by
assigning two regimes to the model, which were fixed to:

yt = −0.0112− 0.1827yt−1 − 0.1404yt−2 − 0.1663yt−3 − 0.1643yt−4

− 0.0666yt−5 − 0.0315yt−6 + 0.1110yt−7+

(0.03271− 0.1952yt−1 − 0.3390yt−2 − 0.2442yt−3 − 0.0654yt−4

− 0.2683yt−5 − 0.09218yt−6 + 0.2282yt−7)

× μS(xt;ψS) + εt (44)

in the sigmoid case, with ψS = (γ,ω, c) = (53.5264, [0.5529, 0.4822, 0.3892,
−0.1493,
− 0.3677, 0.2943,−0.2248],−0.0114).

For the airborne polen series, we applied the same transformation as in [7].
Once the preprocessing was done, we turned our attention to variable

selection. We considered the autocorrelation function (acf) and the partial
autocorrelation function (pacf) for the transformed dataset (Figure 7). These
diagrams indicate that present values are influenced by previous days’ values,
decreasing its influence as the time lag increases. Concretely, the strongest
partial autocorrelation is found in the previous six days, while the most recent
three days are those showing a stronger ascendancy over the actual value. For
this reason, and taking into account computational efficiency considerations,
only three autocorrelation steps were considered here as inputs for the models.
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Fig. 6 Histogram, autocorrelation and partial autocorrelation functions for the
transformed call centre series
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Fig. 7 Histogram, autocorrelation and partial autocorrelation functions for the
transformed airborne pollen series

Not surprisingly, the linearity test threw a really low p-value (3.2391e−94),
so the iterative procedure was applied to fix the number of required rules.
The number of rules was found to be quite high: 11 rules were estimated in
both the NCSTAR and the NCGSTAR. This is coherent with the expected
complexity of the series.

8 Conclusions

The same spirit that inspired the philosophy behind Soft Computing is used
to to motivate the cooperation between Soft Computing and Statistics, par-
ticularly, with respect to time series analysis and forecasting. We have studied
some of the most remarkable models for time series analysis, the Threshold
Autoregressive family and researched their links with fuzzy systems. A num-
ber of functional equivalence results were discovered. These are gates which
allow the easy exchange of other results and procedures between Statistics
and Fuzzy sytems, inducing a mutual profit. In particular, fuzzy system can
get a sound foundation in the same way that statistical models are stated.
Hence the effective practical performance of fuzzy system would be backed
up by solid theory.
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As an example of the benefits of this connection, a procedure for fuzzy
system construction based on statistical inference has been proposed and its
effective work illustrated through a number of examples.
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7. Aznarte M., J.L., Beńıtez Sánchez, J.M., Nieto Lugilde, D., Linares
Fernández, C.D., Dı́az de la Guardia, C., Alba Sánchez, F.: Fore-
casting airborne pollen concentration time series with neural and
neuro-fuzzy models. Expert Syst. Appl. 32(4), 1218–1225 (2007),
doi:http://dx.doi.org/10.1016/j.eswa.2006.02.011

8. Basu, M., Ho, T.K.(eds.): Data Complexity in Pattern Recognition. Springer
(2006)
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Chapter 2

Incomplete Time Series: Imputation
through Genetic Algorithms

Juan Carlos Figueroa-Garćıa, Dusko Kalenatic, and César Amilcar López

Abstract. Uncertainty in time series can appear in many ways, and its
analysis can be performed based on different theories. An important problem
appears when time series is incomplete since the analyst should impute those
observations before any other analysis.

This chapter focuses on designing an imputation method for multiple miss-
ing observations in time series through the use of a genetic algorithm (GA),
which is designed for replacing these missed observations in the original series.
The flexibility of a GA is used for finding an adequate solution to a multi-
criteria objective, defined as the error between some key properties of the
original series and the imputed one. A comparative study between a classical
estimation method and our proposal is presented through an example.

1 Introduction and Motivation

The analysis of time series includes the handling of nonlinear behavior, het-
eroscedasticity and incomplete series. Data loss is an important problem for
univariate time series analysis since most of the available estimation methods
require either complete information or covariates to estimate missing obser-
vations. Moreover, when the series has a large number of missing observations
or there is a subset of missing observations in a row, then classical estimation
methods cannot produce a reasonable solution, so the use of GAs arises as
an alternative for problems involving multiple missing data.
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Thus, the scope of this chapter is to present an evolutionary algorithm
for imputing all missing observations of an incomplete time series. The main
focus is to preserve some key properties of available data after imputation.

Nowadays, evolutionary algorithms are efficient computational intelligence
tools which provide fast and efficient exploration of the search space of com-
plex problems. To do so, a multi-criteria fitness function derived from the
autocorrelation function, mean and variance of the series, is minimized.

This chapter is divided into six sections, Section 1 presents the Introduc-
tion and Motivation; in Section 2 some useful statistical measures for time
series analysis are introduced; in Section 3 the proposed genetic algorithm is
described and its methodological issues are presented; in Section 4, we apply
the genetic algorithm to a weather prediction case; Section 5 presents a sta-
tistical analysis to verify the obtained results; and finally in Section 6, some
concluding remarks of the proposal are presented.

1.1 A Review

The missing data problem is mainly presented in financial and biological
time series. In fact, it is an uncontrollable phenomenon which conduces to
get biased results on posterior analysis such as identification and prediction.

There exist some methods to impute missing data, some of them based
on optimal estimators, as the EM Algorithm proposed by Dempster [16] and
Gaetana & Yao [22], and its modifications. Other approaches are based on
averages, expected values or simple prediction structures, and some advanced
methods are based on both covariates and additional information of the series,
which leads to new directions to estimate those missed observations. For
further information see González, M. Rueda & A. Arcos [24], Qin, Zhang,
Zhu, Zhang & Zhang [41] Ibrahim & Molenberghs [30], Tsiatis [46], Chambers
& Skinner [15] and Hair, Black, Babin & Anderson [26].

The mathematical treatment of time series is different to multivariate or
longitudinal data since it has some special properties such as autocorrelated
structures, trend and/or seasonal components and ergodic behavior. Basi-
cally, a time series is analyzed for forecasting, so an incomplete series does
not allow to obtain the best predictors. Most of classical estimation methods
do not provide good results when there are no covariates, complementary in-
formation, multiple missing observations in multiple locations, or even when
the time series is volatile.

A univariate time series has no covariates for prediction, and in most cases
there is no additional information available. If the time series has multiple
missing data, then it is impossible to obtain its decomposition into Autorre-
gressive (AR) and Moving Average (MA) processes.

Some applications of GAs to missing data problems were reported by
Figueroa-Garćıa, Kalenatic & Lopez [19, 20], who used GAs to weather time
series; Mussa Abdella & Tshilidzi Marwala [2], who used neural networks
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trained by genetic algorithms to impute missing observations in databases;
Siripitayananon, Hui-Chuan & Jin Kang-Ren [44] treated the missing data
problem by using Neural Networks, Parveen & Green [39] solved a similar
problem using Recurrent networks and Broersen, de Waele & Bos [12] found
an optimal method to estimate missing data by means of autoregressive mod-
els and its spectral behavior.

Other interesting works are proposed by Nelwamondo, Golding and Mar-
wala [37] who use dynamic programming to train neural networks; Kalra
and Deo [32] who applied genetic algorithms for imputing missing data in
biological systems; Zhong, Lingras and Sharma [48] who compared different
imputation techniques for traffic problems; Londhe [35] who design a real-
time framework for impute missed observations of wave measures; Ssali and
Marwala [45] proposed a theoretical approach based on computational intel-
ligence tools and decision trees to missing data imputation; JiaWei, TaoYang
and YanWang [31] used fuzzy clustering for array problems; Abdella and
Marwala [1] provide basic key features for implementing neural networks and
genetic algorithms in missing data problems; and Eklund [18] computed the
confidence interval of missed observations for spatial data problems.

Given this background, we present an evolutive algorithm for imputing
multiple missing observations applied to a study case with multiple missing
observations, where classical algorithms cannot solve the problem properly.
Now, some basic definitions about time series are provided in next section.

2 Statistical Definitions for Time Series Analysis

The main purpose of a statistical analyst when analyzing a time series is to
extract information about its behavior in order to make a decision based on
the available information so far.

Now, a classical scenario starts from the definition of some basic statistical
measures which represent the properties of the series before using any fore-
casting method. This reasoning is based on the concept of a stochastic time
series process, which is defined as follows.

Definition 2.1. Consider a set of observations of the variable x, where x ∈ S
and S is a metric space in which x is measured. This set x is said to be a
Stochastic Process {Xt} if it is a random sequence of observations recorded at
a specific time t, t ∈ T where T is the time space described by its probability
density function (pdf). The pdf is a function in the form f(X ; θ|S, ω) where
ω is the probability space of f(X ; θ) and θ is a vector of parameters that
characterizes its behavior.

Remark 2.1. Indeed, a stochastic process {Xt} has the following property:
Its pdf can vary at different times t1 and t2, although the metric space S is
the same at all instants t ∈ T , then the probability that a specific value x
occurs at different times xt1 and xt2 , is different.
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As usual, the most important order statistics for obtaining optimal mod-
els as ARIMA (Autoregressive, Co-integrated and Moving Average), ARCH
(Autoregressive Conditional Heteroscedastic) and GARCH (Generalized Au-
toregressive Conditional Heteroscedastic) are the mean, the variance and the
autocorrelation function, defined as follows

Definition 2.2. The expected value of a random variable E(Xt) is a measure
of concentration of {Xt} in ω defined as:

E(X) =
∫ ∞

−∞
x f(x; θ) d(x) (1)

Let {x1, x2, · · · , xn} be observations of a time series. An unbiased estimator
of E(Xt) assuming large samples is the sample mean:

x̄ =
n∑

t=1

xt

n
(2)

where n is the sample size.

Definition 2.3. The variance of a random variable Var(X) is a measure of
form of {Xt} in ω and is defined as:

Var(Xt) =
∫ ∞

−∞
(x − E(X))2 f(x; θ) d(x) (3)

An unbiased estimator of Var(Xt) assuming large samples is:

Var(X) =
n∑

t=1

(xt − x̄)2

n − 1
(4)

On the other hand, a time series model is a model that tries to infer some key
properties of the series. According to Brockwell and Davis [10, 11], Hamilton
[27] and Anderson [3], a time series model is

Definition 2.4. A time series is a set of observations xt, each one being
recorded at a specific time t. A time series model for the observed data {xt}
is a specification of joint distribution (or possibly the means and covariances)
of a sequence of random variables {Xt} for which {xt} is postulated to be a
realization.

The sample autocovariance and sample autocorrelation of the series is a linear
relation between the variable at a specific time {xt} to itself at a lag h,
{xt+h}. Graybill & Mood [36], Wilks [47], Huber [29], Grimmet [25], Ross
[42], Brockwell and Davis [10, 11], and Harville [28] defined them as follows
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Definition 2.5. The sample autocovariance function γ̂(h) is:

γ̂(h) =
n−|h|∑
t=1

(xt+|h| − x̄)(xt − x̄)
n

, −n < h < n (5)

Definition 2.6. The sample autocorrelation function ρ̂(h) is:

ρ̂(h) =
γ̂(h)
γ̂(0)

, −n < h < n (6)

When the series is incomplete, we cannot obtain sufficient statistics, which
leads to misspecification problems of posterior models. In fact, the autocor-
relation function defined in (6) is one of the most important measures of the
behavior of the series, so the imputation of all missed observations is a key
step before computing ρ̂(h).

In the next sections, we show all methodological aspects for imputing those
missing observations through a GA. The main reason to use GAs is its flexi-
bility and speed for finding solutions to nonlinear and complex problems.

3 The Proposed Genetic Algorithm (GA)

GAs are simple structures (For further information about GAs see Kim-Fung
Man, Kit-Sang Tang & Sam Kwong [41]). An individual in a population can
be seen as a set of missed data, so it should be imputed in the incomplete
series. Figueroa-Garćıa, Kalenatic & Lopez [19, 20] use this principle to find
an adequate solution to missing data problems, and this approach improves
its fitness function based on some key properties of available data.

Our approach is based on six steps which guarantee an adequate solution:
1) a statistical preprocessing of the original series to obtain a stationary
process 2) define a fitness function for comparing all individuals 3) generate
of a population of individuals where each one is a solution of all missed
observations 4) apply evolutionary operators for exploring the search space
6) evaluate the fitness function to select the best solution.

3.1 Why GA for Imputing Missing Data in Time
Series?

An incomplete time series is a complex problem in the sense that classical
imputation algorithms depend on covariates or additional information, and
in many cases we have no this information. On the other hand, this is a
multicriteria problem, which has no easy solutions. In this way, GAs are an
interesting option for imputing multiple missing data in time series by the
following reasons:
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• Multicriteria capability.
• Nonlinear capability.
• Flexibility and computational simplicity.
• Efficiency of the solutions.

As shown in the Introduction, some learning-based techniques like neural net-
works and hill-climbing methods are commonly used to solve this problem.
We propose an alternative method which learns from statistical properties
of available data to cases where the series has multiple missed observations
and/or no covariates. Those cases are particularly complex because optimal
estimation techniques do not produce results when either multiple observa-
tions are lost or no covariates exist. Thus, evolutionary optimization arises
as a flexible tool for finding solutions to complex cases, as the proposed one.

The following sections describe some general aspects of genetic algorithms
applied to imputation in time series.

3.2 Preprocessing of Available Data

Some computational aspects should be kept in mind before applying any
genetic operator, among them we have: Linear transformations, lag operators,
seasonal and trend decompositions.

Firstly, we standardize data by using a linear transformation, removing
the effect of units, and then we apply a lag operator to remove the effect of
the mean of the process, obtaining a stationary series. These transformations
reduce the complexity of the mean, the variance and the autocorrelation
function of the series by removing its units, so its interpretation is easier and
its search space is reduced, improving the performance of the algorithm. In
this way, the following transformation is applied to available data {xa

i } in
order to obtain a new standardized series {za

i }:

za
i =

xa
i − x̄a√
Var(xa)

(7)

where {xa
i } is a vector of size (n − m) of available data of the series.

Here, the mean x̄a and variance Var(xa) of available data {xa
i } are ob-

tained by removing the missing observations from its original one, as follows:

x̄a =
n−m∑
i=1

xa
i

n − m
(8)

Var(xa) =
n−m∑
i=1

(xa
i − x̄a)2

n − m − 1
(9)
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Now, we compute a lag operator of order d, ∇d, defined as the difference
between zt and itself at period d,

∇d(zt) = zt − zt−d (10)

The main idea of this transformation is to obtain a stationary series with no
effect of the units of the series, so ∇d(zt) should be used as the target of the
genetic algorithm. To do so, the following definition is given,

Definition 3.1 (Target series). Hereinafter, we will refer to {zt} as a stan-
dardized series after applying (7) and (10) until reach a stationary series with
zero mean and if possible, constant variance.

The autocorrelation function of Zt, ρ̂(h) cannot be computed when the series
is incomplete, so we use a subset of Zt, {zl

t} defined as the largest and most
recent subset from available data, that is:

γ̂(h)l =
n2−|h|∑
t=n1

(zl
t+|h| − z̄l)(zl

t − z̄l)

n2 − n1 + 1
, (n1 − n2) � h � (n2 − n1) (11)

where n1 and n2 are lower and upper bounds of t, and γ̂(h)l is the autoco-
variance of the largest and most recent subset of Xt, denoted by l.

ρ̂(h)l =
γ̂(h)l

γ̂(0)l
(12)

In this way, ρ̂(h)l is an important statistical measure obtained from available
data, so its use as a part of the fitness function of the genetic algorithm is
essential for time series analysis.

Remark 3.1 (Index sets i and t). The index set i is related to available
data {xi}, instead of index t which is related to the series with missing data
{xt}, so we have i ∈ t ∈ T .

An elite-based strategy is combined with a multicriteria fitness function to
compose the basic structure of a genetic algorithm for imputing missing data.
Its methodological aspects are discussed in the following subsections.

3.3 The Fitness Function

A time series {zt} is said to be incomplete if there exist m missing observa-
tions located by an index vector v, where 1 � v � n. A vector of imputations
of all missed observations is called {yt}, where yt = 0 when t /∈ v and yt = zj

when t ∈ v, zj is the jth element of yt, 1 � j � m located in the vth position.
A new series where all missed observations are replaced is defined as {ẑt}:

za
t + yt = ẑt (13)
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Now, the main goal is to find a vector yt which does not change the properties
of available data. For our purposes, the autocorrelation function, mean and
variance of the available data are the goal of the genetic algorithm.

A genetic solution to the m missing observations should not change its
γ̂(h)l, z̄a and Var(za) measures. To do so, we define the fitness function of
the algorithm as a multicriteria function namely F , regarding a set of H lags
used for computing autocorrelations, as follows:

F =
∑
h∈H

∣∣ ρ̂(h)l − ρ̂(h)
∣∣ +

∣∣ z̄a − ¯̂z
∣∣ + | Var(za) − Var(ẑ) | (14)

Thus, the main goal of the algorithm is to minimize F and if possible, reach
zero as optimal solution. Note that our proposal is based on the design of a
fitness function that minimize the differences among the statistical measures
of the available data and the series after imputation ẑt in three ways:

• Significative autocorrelations, h ∈ H .
• Sample mean.
• Sample variance.

As shown in Definition 2.4, a time series can be described through its mean,
variance and covariances, so (14) tries to characterize the time series after
imputation of missing data. In this proposal, we aggregated different units in
a single function without problems, since {zt} is a standardized variable.

Remark 3.2 (Magnitude of F). It is important to note that the use of (7)
and (10) leads to obtain measures of {zt} with no effect of the mean and units
of the original series, so ρ̂(h)l, z̄a and Var(za) are standardized measures that
can be added in (14) without loss of generality.

3.4 Individuals

An individual is defined as a vector of a population indexed on a matrix
where each one is a solution itself. As always, a genetic structure contains
many individuals forming a population.

Each individual represents a complete vector of missed observations, which
will be located in zt by using yt. Thus, each individual has as much elements
(genes) as missed observations exist, indexed by v. A graphical explanation
of the genes and individuals of the algorithm is shown in Figure 1

In Figure 1, v is the index vector of the lost observations of zt. Note that
zj has the same elements than v, but v only has the tth position of the missed
observations while zj is a vector of solutions located by v, which is computed
through GAs. Finally, ẑt is defined in (13) where yt = zj located by v.
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Fig. 1 Individuals, genes, v, zt and ẑt

3.5 Populations and Number of Generations

An important part of a GA is how to generate a population (collection of indi-
viduals), and how many populations (generations) will be used for exploring
the search space. First, the population size is defined by the m missing ob-
servations and a pre-selected k ∈ K number of individuals, creating a matrix
of size k × m labelled as P g

k,m where g denotes the generation index.
Different population sizes can be selected for exploring the search space.

According to Burke et. al. [13], Goldberg [23], Bäck [8], Bagchi [9], and Fon-
seca and Fleming [21], the selection of a higher population sizes together with
fitness-based operators may reduce the performance of the algorithm, even
when the search space would be better covered.

In this way, Figueroa-Garćıa, Kalenatic & Lopez [19, 20] used three pop-
ulation sizes: k ∈ [100, 500, 1000], so based in their experimental evidence,
we recommend to use a size of k = 100 in order to increase the speed of the
algorithm, with no loss of ability of exploration of the solution space.

Another important parameter of the algorithm is the number of genera-
tions G, which is commonly used as stopping criterion. In this approach, this
parameter operates as a controller of the iterations of the algorithm, so we set
maxg = G. This parameter depends on the complexity of the problem, the
size and the nature of the missed observations, so the analyst should select
G experimentally and using knowledge of the problem.

3.6 Population Random Generator

Definition 3.1 establishes that {zt} should be a standardized series, so this
condition reduces the complexity of the algorithm, allowing us to use a stan-
dard uniform generator, which is computationally simpler than other gener-
ators e.g. Normal, exponential or mixed methods.
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The uniform random generator is called Rj . It is defined as Rj(a, b) =
a + rj(b − a)I[0,1](rj) where a is the minimun value, b is the maximum value
and rj is a random number defined by the Index Function I[0,1].

An important analysis of random number generation has been made by
Devroye [17] and Law & Kelton [33]. They concluded that the uniform num-
ber generator is an adequate method for covering the search space, so we
recommend to use a uniform generator instead of the sample distribution.

3.7 Mutation and Crossover Operators

In Figure 1 we have explained how an individual and a gene are defined. This
allows us to easily compose a population through Rj which is ranked using
an elite-based method. After that, a mutation and crossover strategy can be
applied to get a better exploration of the search space, as proposed below:

Mutation strategy:

1. Select a random position for each orderly individual in P g
k,m by its fitness

function.
2. Replace the selected position with a new individual obtained by using a

random generator Rj(a, b).
3. Repeat (2) for the c1 better individuals orderly for each population P g

k,m

at the generation g.

Crossover strategy:

1. Select the c2 first individuals in the orderly population P g
k,m by its fitness

function.
2. Generate a new individual by replacing all even genes with their respective

even gene located in the next individual.
3. Generate a new individual by replacing all odd genes with their respective

odd gene located in the next individual for each one.
4. Repeat (3) for the c2 better individuals orderly for each population P g

k,m

at the generation g.

Remark 3.3 (Ranking of the solutions). Figueroa-Garćıa, Kalenatic and
López [19, 20] used an elite-based method for ranking the individuals of the
population. Although it is a classical method which shows a good behavior, we
encourage the reader to implement other ranking methods for the sake of new
developments and improvements.

3.7.1 Completing the Population

A classical strategy for exploring the space of solutions is by replacing the
worst individuals by new ones, preserving the best ones at each population
P g

k,m. As usual, the number of best individuals is a free parameter, and in
some cases it is involved as a random part of the algorithm.
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Now, P g+1
k,m is updated by a set of random individuals, which is generated

by replacing the worst individuals with new ones, in order to find better solu-
tions. In short, the best k1 individuals are preserved for the next generation
and later it is completed by {k − k1 − c1 − c2}m new individuals.

3.8 Stopping Strategy

There are different criteria for stopping a GA. Two of the most used methods
are: A first one which uses a predefined maximum number of iterations called
G, that is g → G, and a second one which stops a GA when its fitness function
F has no a significant improvement after a specific number of iterations.

Aytug and Koehler [6, 7] proposed an alternative stopping criterion for
GAs based on a function of its mutation rate, the size of the population
strings and the population size. Bhattacharrya and Koehler [5] generalized
their results to non-binary alphabets. Pendharkar and Koehler [40] proposed
a stopping criterion based on the markovian properties of a GA, and Safe
et.al. [43] proposed entropy measures for constructing stopping operators.

The number of generations G is another degree of freedom of a GA. Usually,
as F has no improvements, then G should be reduced. Finally, the best
individual is selected by ranking F through all runs and generations, so the
best individual will be imputed in the original series to complete the series.

An elite-based approach usually gets better solutions because this ensures
the improvement of the solution through all generations. On the other hand,
different stopping criteria can be used as long as the solutions are improved.

A brief description of the algorithm is presented in the Algorithm 1.

Algorithm 1. Genetic algorithm
Require: v, n, n1, n2, m, H, c1, c2, k

1, ρ̂(h)l, z̄a,Var(z)a

Generate an initial population of size k by using Rj

for g = 1 → G do
return F For each kth individual
Index P g

k,m by F
Apply the mutation operator to the c1 better individuals
Apply the crossover operator to the c2 better individuals
return F For each kth individual
Index P g

k,m by F
Preserve the best k1 individuals, indexed by F
Complete the population with a vector of size {k − k1 − c1 − c2}m

end for
return F For each kth individual
Index P G

k,m by F
return minF
Replace P G

1,m in the original series, indexing it by using v
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Another common strategy for exploring the space of solutions is by running
the algorithm several times, Runs. The number of runs should be a function
of k, m, G and the computing time of each run, so we recommend to initialize
with small attempts before running an adequate experiment. A graphical
display of the imputation strategy is shown in Figure 2.

Preprocess {xt}

Get {zt} Define {v} Compose P
g
k,m Evaluate F

Order P
g
k,m

Mutation, Crossover
Evaluate F

Preserve the best k1

Compose P
g+1

k,m

Select the best zjCompute yt + zt = ẑt

Is {ẑt}
adequate?

Set x̂t = (ẑt)−1

No

Yes

Iterate G times

Fig. 2 Flowchart of the proposed GA

In the following section, an application of the algorithm is presented and
compared to a classical imputation algorithm.

4 Application Example

The selected study case is a weather time series that has multiple missed
observations produced by a failure in the measurement device. In this case, we
use the minimum temperature (MT) recorded at the town of Ch́ıa - Colombia
during 1368 days between 10 p.m. and 5 a.m. when maximum and minimum
levels are registered, each one measured every half an hour throughout the
night. All missed observations are displayed by discontinuities. Figure 3 shows
the original series and the series after preprocessing by applying (7) and (10),
where, a) is the original series and b) is the series after preprocessing.
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Fig. 3 Study Case measured in Ch́ıa - Colombia

4.1 Statistical Analysis

Some basic statistics obtained from available data are shown in Table 1. Its
mean and variance are used as estimations of (8), (9). We obtain ρ̂(h)l by
using (12) for H = {1, · · · , 6} in order to define the fitness function F for
each genetic structure.

Table 1 Observed statistics

Measure ρ̂(1) ρ̂(2) ρ̂(3) ρ̂(4) ρ̂(5) ρ̂(6) z̄a Var(za) min max

Value -0.339 -0.052 0.004 -0.104 0.129 -0.051 -0.027 5.053 -4.436 4.015
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In this case, we have 1367 observations (N = 1367) of the minimum tem-
perature at the town of Ch́ıa - Colombia, where 159 are lost (m = 159, n =
1208). Some randomness tests done over {za

i } are shown in Table 2.

Table 2 Tests of randomness

Tests on normality

Test. p-value p-value p-value p-value

Shapiro-Wilks 0.0023 ≈ 0 ≈ 0 ≈ 0

K-S. ≈ 0 ≈ 0 0.0014 ≈ 0

Tests on randomness

Test. p-value p-value p-value p-value

Runs Test 0.001 ≈ 0 ≈ 0 ≈ 0

Turning Points ≈ 0 ≈ 0 ≈ 0 ≈ 0

Ljung-Box b ≈ 0 ≈ 0 ≈ 0 ≈ 0

ARCH b ≈ 0 ≈ 0 ≈ 0 0.0025

b This test is made by using the first lag of the series

All tests conclude that the series is not a random variable. The Ljung-Box
and ARCH tests reject the hypothesis that the series has no serial correlation,
this means that it presents autocorrelation at least on its first lag. Both
Shapiro-Wilks and Kolmogorov-Smirnov (K-S) tests reject the hypothesis
that each series is normally distributed, which is an important constraint for
some imputation methods that are based on strong normality assumptions.

4.2 Classical Estimation Methods

One of the most popular imputation algorithms is the expectation maximiza-
tion (EM) algorithm, which is based on conditional expectations of a random
variable, obtained from a set of auxiliary variables which give an estimate of
the behavior of the missing data. Its principal objective is to maximize the
Likelihood or Log-Likelihood Function of the pdf sample, obtaining an opti-
mal estimation of the missing observations. This algorithm was proposed by
Dempster [16], and Gaetana & Yao [22] proposed a variation of the EM algo-
rithm based in a simulated annealing approach to improve its efficiency for
the multivariate case. Celeux & Diebolt [14], Levine & Casella [34], Nielsen
[38] have reported some modifications for a stochastic scenario, and Arnold
[4] estimates the parameters of a state-dependant AR model by using the
EM algorithm with no prior knowledge about state equations.

By using the EM algorithm, a maximum likelihood estimator is obtained
by replacing all v positions of {xi} by its expected value E(x), so we have
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that {xt} = E(x); and the regression method replaces all missed observations
by random residuals of available data; its results are displayed in Figure 4.

Another method is based on auxiliary regressions, which consists on esti-
mate the mean and variance of available data, and then each missed obser-
vation is replaced by the estimated mean plus a random residual obtained
from a regression of available data against auxiliary variables. In the case of
univariate series, this method is a simple estimation of its mean and variance.

In Figure 4, a) shows the results of the EM algorithm and b) presents
the results of the regression method. According to Table 3, we can conclude
that these approaches does not show desirable properties for univariate time
series. Their statistical properties are presented in Table 3.

Table 3 Results of classical estimation methods

Measure ρ̂(1) ρ̂(2) ρ̂(3) ρ̂(4) ρ̂(5) ρ̂(6) ¯̂z Var(ẑ) It. F
EM algorithm -0.302 -0.071 -0.046 -0.027 0.042 -0.0003 -0.0002 0.883 4 4.516

Regression -0.266 -0.071 -0.051 -0.018 0.044 0.005 0.0128 0.997 N.A. 4.470

By evaluating the Fitness Function F , both classical algorithms provide
great differences among the obtained mean, variance, ρ̂l(h) and their available
values. With these evidences it is clear that the EM algorithm is not the best
option to estimate missing data on a univariate time series context.

4.3 Genetic Approach

Figure 2 describes the methodology proposed in this chapter. First, we apply
(7) and (10) to standardize data, then we compute ρ(h)l using (12) for the
first H = 6 lags, and later we compute z̄a and Var(za) of available data, as
shown in Table 5.

Figueroa-Garćıa, Kalenatic and Lopez [19, 20] have found better results
with k = 100 individuals, outperforming computing time and improving the
quality of solutions. The crossover, mutation and remaining parameters used
in the GA for each series are shown in Table 4, where a and b are obtained
from the observed series as its potential maximum and minimum values. c1, c2

are free parameters which modify the mutation and crossover rates of the GA,
and G is selected by trial and error based on the behavior of F . n1 and n2 are
initial and end points of the largest and most recent complete dataset (See
“Set l” in Figure 3-b), which are needed by(11) to obtain ρ̂(h)l through the
use of (12) for H = {1, · · · , 6}.



46 J.C. Figueroa-Garćıa, D. Kalenatic, and C.A. López
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Fig. 4 Results of classical imputation methods

Table 4 Genetic algorithm parameters

Parameter k a b c1 c2 n1 n2 m G Av. time (sec)

Value 100 -5.5 5 4 4 1036 1211 159 5000 448.3

In this Table, the average time (in sec.) was obtained from 25 runs of
the algorithm. The maximum processing time was 497.3 sec and the lower
processing time was 421.1 sec. After the total 125.000 generations of the
algorithm divided into 25 runs, the best solution (minimum F), was selected.
The obtained solution is displayed in black in Figure 5 and the obtained
results for all imputed data are presented in Table 5.
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Fig. 5 Complete dataset with imputed missing data

Table 5 Results of evolutionary optimization

Measure ρ̂(1) ρ̂(2) ρ̂(3) ρ̂(4) ρ̂(5) ρ̂(6) ¯̂z Var(ẑ) F
Value -0.340 -0.052 0.004 -0.105 0.119 -0.052 -0.027 5.053 0.0112
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Fig. 6 Behavior of the GA for 25 runs
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In Figure 6, the behavior of the proposed GA is measured by the minimum,
average and maximum values of F over 25 runs, called maxg∈G{F},Fg∈G

and ming∈G{F} respectively. Note that the GA always goes to stable values
of F , and they have no a high improvement after about g = 2000 iterations.

In general, the GA solution has no great differences to original data and it
does not change its statistical properties. In this way, the proposed method
seems to be a better method for imputing multiple missing observations in
time series than other classical algorithms.

5 Output Analysis

This section focuses on analyzing the original series vs. genetic imputation.
The output analysis is based on comparisons of some interesting statistical
measures, among them we have: Tests on means, variances, autocorrelations
and experimental design. Figure 7 shows the way all of them are connected.

Output
analysis

Tests on
means

Tests on
variances

Experimental
design

Analysis of
autocorrelations

Fig. 7 Output analysis

Some descriptive statistics, randomness, differences on means, variances
and autocorrelations tests were performed, as shown in Tables 6, 8 and 9.

Table 6 Tests of normality and randomness (significance)

Test Runs Turning-point S-W K-S Ljung-Boxb ARCHb

Original series ≈ 0 ≈ 0 ≈ 0 ≈ 0 0.0001 ≈ 0

Imputed series ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

b This test is made by using the first lag of the series.

5.1 Tests on Means and Variances

The general hypotheses used for finding differences between original and im-
puted series, are as follows
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Table 7 Hypothesis on means and variances

Test on means Test on variances

H0 : ẑ = z̄a Var(ẑ) =Var(za)

Ha : ẑ �= z̄a Var(ẑ) �= Var(za)

The obtained results of the Tests on means are presented in Table 8.

Table 8 Tests on means (significance)

Test ANOVA Welch Brown-Forsythe K-S Mann-Whitney

Original vs. Imputed 0.964 0.964 0.964 ≈1 0.6404

With these statistical evidences, the hypothesis on means defined in Table
7 with a 95% confidence level, is accepted. We implement the Levene’s test
for contrasting their variances. Its results are shown in Table 9.

Table 9 Levene test

Test Levene stat Significance

Original vs. Imputed 0.00414 0.948

The ANOVA, Welch, Brown-Forsythe, K-S, Mann-Whitney and Lev-
ene tests conclude that there are no differences between ¯̂z → z̄a, and
Var(ẑ) →Var(za) respectively, this means that the genetic solution has no
statistical differences to available data. With these statistical evidences, the
hypothesis defined in Table 7 are accepted with a 95% confidence level.

Remark 5.1 (Additional analysis). Although we recommend the use of
experimental design and autocorrelation analysis (See Figure 7), we did not
perform those analysis due to the high similarity among autocorrelations and
the absence of differences between means and variances. In case where means
and/or variances have differences, it is recommended to perform an experi-
mental design for finding the causes of differences among each run of the GA
and the original series.

Roughly speaking, the GA outperforms the solution provided by classical
algorithms, in terms of the statistical properties of the series. The obtained
results have no any statistical evidence to reject H0, so we can accept them.
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6 Concluding Remarks

The following concluding remarks can be made

1. The proposed genetic algorithm outperforms classical algorithms, provid-
ing better solutions without modifying their available properties.

2. The flexibility of evolutionary methods allows us to design efficient algo-
rithms for finding missing observations in a time series context; its non-
linear capability becomes a powerful tool for exploring the search space.

3. The use of multi-criteria fitness operators are alternative tools in front to
classical imputation methods as the EM algorithm and its modifications.

4. Most of optimization techniques need additional variables to be consis-
tent. The presented approach finds successful solutions with no additional
information, which is a common issue in univariate time series.

5. Some emerging applications as multivariate data analysis, signal and image
processing problems are proposed for future applications.

Finally, we encourage the reader to improve the presented results by modi-
fying our proposal. The fitness function (F), population size, c1, c2, k

1 and g
can be modified, so other strategies can be used for getting better results in
other missing data cases.
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Chapter 3 
Intelligent Aggregation and Time Series 
Smoothing 

Ronald R. Yager* 

Abstract. Predicting future values of a variable from past observations is 
fundamental task in many modern domains.  This process, often referred to as times 
series smoothing, involves an aggregation of the past observations to predict the 
future values. Our objective here is to use recent advances in computational 
intelligence to suggest new and better approaches for performing the necessary 
aggregations. We first look at some special features associated with the types of 
aggregations needed in times series smoothing.  We show how these requirements 
impact on our choice of weights in the aggregations.  We then note the connection 
between the method of aggregation used in times series smoothing and that used in 
the intelligent type aggregation method known as the Ordered Weighted Averaging 
(OWA) operator.  We then take advantage of this connection to allow us to 
simultaneously view the problem from a times series smoothing perspective and 
OWA aggregation operations perspective.  Using this multiple view we draw upon 
the large body of work on families of OWA operators to suggest families for the 
aggregation of time series data.  A particularly notable result of this linkage is the 
introduction of the use of linear decaying weights for time series data smoothing. 

Index Terms: Time Series Smoothing, Prediction, Aggregation, OWA Operators. 

1   Introduction 

An important task in time series analysis is using a sequence of past observations 
about some variable to predict a future value for the variable [1-3].  This process, 
often referred to as times series smoothing, involves an aggregation of the past 
observations to predict the future values.  While approaches such as weighted 
average and exponential smoothing [1] have been used to perform this aggregation 
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our objective here is to use recent advances in computational intelligence  
to suggest new and better approaches for performing the required aggregations. 
We first look at the time series smoothing task and indicate some key features 
desired in the aggregation process.  Among these is a desire for an unbiased 
estimate that has minimal variance and one that gives preference to more recent 
observations to better account for a changing world.  We also desire an efficient 
aggregation process, one that can easily use previous aggregations in the 
calculations as new observations come.  We note the connection between the type 
of aggregation used in times series smoothing and that used in the intelligent type 
aggregation method known as the Ordered Weighted Averaging (OWA) operator 
[4, 5].  This connection allows us to simultaneously view this process as a time 
series-smoothing problem and OWA aggregation [6].  This multiple view allows 
us to bring tools from both perspectives to the problem of smoothing.  Here we 
draw upon the large body of work on families of OWA operators to suggest 
families for the aggregation of time series data.  A particularly notable result of 
this linkage is the introduction of the use of linear decaying weights for time series 
data smoothing.  

2   Time Series Smoothing and Aggregation 

In time series smoothing we use observations about some variable, xt for t = 1 to 

n, to predict a future value for the variable, xn + 1, based upon some aggregation 

of the earlier values.  A key factor that determines the form for the aggregation is 
our assumption about the underlying pattern generating the data.  The one we shall 
use here is that the underlying variable is almost constant and we are observing  
xt = a + et where et is some error with mean zero and constant variance.  Here we 

use the observations x1, ..., xn to obtain an estimate of a, a , and then use this 

estimate as our predictor of xn+1.  In order to obtain an unbiased estimate we use 

a mean type aggregation [7].  In this case a  = F(x1, ..., xn) = u jx j
j=1

n

  where uj 

are a collection of weights uj ∈ [0, 1] that sum to one.   

There are a number of features that are special when making these calculations 
in the framework of time series data.  One is the repetitive nature of the task.  We 
are constantly getting additional readings for xt and then using these to update our 

estimate for a .  Formally to deal with this sequential updation we shall use the 
term an to indicate our smoothed value F(x1, … , xn).  Thus an and a  at time n 

are synonyms.  Another special feature of the time series environment is that while 
we are assuming that the underlying value a is fixed it is often more realistic to 
allow for the possibility of slow drift, that is a is quasi-constant.  We shall see 
these two special features of the temporal environment play an important role in 
the determination of the weights, the uj. 
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This repetitive nature of the calculation has two immediate implications.  The 
first is that it is beneficial to make the calculation of F(x1, ..., xn) as simple as 

possible.  If we could take advantage of prior calculations this would help.  We 
should note that while beneficial, in this age of great computational power this is 
not as important as in the past.  The second implication however is more 
significant.  The repeated updation task requires we are going to implement many 
calculations of the form  

F(x1, ..., xn), F(a1, ..., an, xn+1), F(a1, ..., an+1, an+2), ....... 

where each of these is a mean aggregation.  Since that the mean operator is not 
generally associative [8] this implies there is no mandated manner for performing 
the aggregation as we add values.  However, it is important that all of these 
calculations be done in some kind of consistent manner.  Since each of these 
aggregations will involve a different number of arguments we shall be using 
weighting vectors of different dimensions.  Here then the issue of consistently 
calculating estimate of a forf different n involves an appropriate choice of 
weighting vectors of growing dimensions. 

The second special feature of time series data, the allowance for possible 
variation in the underlying value a has as an implication that not all observation 
should be treated the same.  In particular more weight should be assigned to the 
most recent observations.  Thus we have a preference for weighting vectors in 
which uj ≥ ui for j > i. 

In order to formalize this requirement we introduce a characterizing feature of a 
choice of weights called the average age of the data used.  If n is the current time 
then the age of the piece of data xt is AGE(t) = n - t.  Using this we get as the 

average of the data AGE =

u jAGE(j)
j=1

n



u j
j=1

n


.

 

  Since u j
j=1

n

 = 1 then  

AGE = u jAGE(j)
j=1

n

 = n − j u j
j=1

n

 . 

As we previously indicated we have some preference for fresh data or youthful 
data.  We have the freshest data if we select un = 1 and all other uj equal zero.  In 

this case AGE = 0.  However there is some other conflicting objective that we 
must consider.  As our observations are of the form xt = a + et where et is assumed 

to be a random noise component with mean zero and variance σ2, each piece of 

data has a variance of σ2.  Since our objective is to find a good estimate for a we 
desire to have a small variance in our estimate a . 
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With 

a = utxt =
t=1

n

 ut (a + et )
t=1

n

  

since the sum of the uj = 1 we get as our expected value, Ex[ a ] = a, thus this is an 

unbiased estimate.  To find the variance of our estimate we calculate 

Var( a ) = Ex (utxt − a)2

t=1

n














 

where Ex denotes the expected value.  Under the assumption that the observations 

are uncorrelated we obtain 

Var(a) = ut
2

t=1

n

 σ2 = σ2 ut
2

t=1

n

  

Under the objective to minimize the variance and since we have no control over 

the σ2 our problem reduces to trying to make H(u) = ut
2

t=1

n

  

We now see that our objective in choosing the weights is to try to find weights, 

μj ∈ [0, 1] summing to one that make H(u) = ut
2

t=1

n

  as small and while also 

making AGE = u j (n − j)
j=1

n

   small.  As we shall see the goals of trying to make 

H(u) and AGE small are essentially conflicting under the conditions that

 
u j

j=1

n

 and ut ∈ [0, 1].. 

We now make some relevant observations.  Let G = <g1, ..., gn> be a collection 

of weights such that g j
j=1

n

  = 1 and gi ∈ [0, 1].  Assume we are going to assign 

these weights to the uj.  That is we have some permutation function π: [1, ..., n] → 

[1, ..., n] so that uj = gπ(i).  Each of uj is assigned one of the gi.  The first 

observation we make is that the value of H(u) is independent of how we assign the 
gi to uj.  Thus H(u) just depends only on what are the elements in G.  The value of 

H(u) is the same for any function π.  On the other hand the calculation of  
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AGE(u) = u j (n − j)
j=1

n

 depends on the function π we use for associating the gi 

with uj.  It can be shown that if π is the assigning function such that uj ≥ uk for j > 

k and π is any arbitrary function assigning the gi to the uj then AGE(π) ≤ AGE(π).  

Thus for any collection of weights G we always obtain the smallest average age by 
assigning the weights such that the newer the data the more the weight, uj ≥ ui if j 

> i.  Thus any weight assignment should always satisfy this condition of having uj 

≥ uj if j < j.  Thus given a collection G there is only one way to assign them to the 

weights.  Hence the key question becomes the choice of G. 
We now investigate the issue of simultaneously trying to minimize H(u) and 

AGE(u).  Consider the function.  AGE(u) = u j (n − j)
j=1

n

 .  We see the smallest 

value of AGE(u) is obtained for the case where un = 1 and uj = 0 for j ≠ n.  In this 

case AGE(u) = 0.  On the hand under the restriction that the uj are ordered so that 

uj ≥ uk for j ≥ k we see that the largest value for AGE(u) is obtained when uj = 1
n

 

for all j.  In this case AGE(u) = (n - 1)
2

. 

Consider now the function H(u) = u j
2

j=1

n

  where the uj ∈ [0, 1] and u j
j=1

n

 = 1.  

It is well known that this attains its largest value where there is some uk = 1 and 

all others are zero.  It attains its smallest value when uj = 1
n

 for all j.  More 

generally the more diversely distributed the weights the smaller H(u). 
Here then we see the basic conflict in choosing the weights.  The function H(u) 

tries to attain its goal of being small by spreading the weights as uniformly as 
possible among the uj while the function AGE tries to attain its minimal value by 

selecting the most recent weight equal to one. 

3   Classical Parameterized Smoothing Techniques 

Using the linear smoothing approach our objective is to develop a procedure for 

obtaining the weights uj such that u jx j
j=1

n

  provides the best forecast for xn+1.  

Ideally such a procedure should be able to deal with the repeated updation 
required as a result of new incoming data.  One commonly used approach is to use 
a parameterized family of weights.  In this case the weights are generated using 
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some rule characterizing the family and the values of some associated parameters.  
The values of the parameters are learned from the data being observed.  

The use of parameterized approaches have a number of beneficial features.  
One major benefit of using a parameterized family of weights is the well-
organized way in which they determine the generation of the weights as we obtain 
more observations.  The importance of this feature can not be overestimated, for 
we note that mean operators are not generally associative which implies that the 
process of going from aggregating n pieces of data to aggregating to n + 1 pieces 
is not fixed.  By using a parameterized family of weights we are imposing a 
discipline on the process of weight generation.  Another important benefit is that 
the learning process is simplified to just the determination of the few required 
parameters.  Furthermore often because of intuitive meaning of these parameters 
the process of learning their values can be completely bypassed and a user can 
intelligently supply the required parameter values. 

However, the use of parameterized methods comes at a price.  As we indicated 
the potential to provide good smoothing is generally effected by our ability to 
simultaneously minimize the variance and use recent data.  As we noted these are 
generally conflicting objectives.  The use of a parameterized method further 
restrict are freedom to simultaneously satisfy these two conditions. 

In the following we shall compare some classic parameterized methods for 
building smoothing functions based upon their ability to simultaneously satisfy the 
two objectives, minimize the expected variance and minimize the age of the data. 

To aid in this task we shall find it useful to characterize a smoothing method by 
what we will call its flexibility.  We define the flexibility of a smoothing method 
as a curve of the Minimal Attainable Variance (MAV) vs. the Average Age (AA).  
In figure #1 we provide a prototypical example of a flexibility curve. 

Average Age
0

1

MAV

 

Fig. 1. Typical flexibility curve 

A notable feature of these flexibility curves are their monotonically decreasing 
nature, the smaller the average age the larger the minimal attainable variance.  We 
shall say that method-1 is more flexible for average age T then method-2 if the 
MAV for method-1 at average age T is less than the MAV for method-2 at 
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average age T.  More globally we shall say that method-1 is more flexible than 
method-2 if for all values of T the MAV of method-1 is at least as small as that of 
method-2.  The more flexible a method the better it can provide a good smoothing 
function. 

One classic parameterized method for obtaining the weights is the moving 
average [1].  Here we take the average of the last P observations This approach 
has as its only parameter the size of the window P.  Using this method the value of 
a at time n, an, is   

a = xn + xn - 1 + xn-2 + .... + xn - P + 1
P

  = 
1
P

xn− j
j=0

P−1

 . 

Is it assumed P ≤ n. 
In this case the associated weights are 

uj = 0 for j ≤ n - P 

      uj = 1
P

 for n - P + 1 ≤ j ≤ n 

For this type of weight allocation  

                                       

HM(u) = u j
2

j=

n

 = 1

P
 

AGEM(u) = (n − j)u j = P − 1

2
j=1

n

  

Here we see again the conflict, HM(u) can be made smaller by increasing P while 

AGEM(u) can be made smaller by decreasing P. 
Letting an-1 and an be our smoothed value after obtaining n - 1 and n pieces of 

data respectively we can express this moving average in a recursive fashion as  

an = an−1 + xn − xn−P
P

 

Here xn and xn-P are the nth and n - P observations. 

Another classic approach is the exponential smoothing method [1, 9].  Using 
this method our estimate of a at time n is defined in a recursive manner as 

an = αxn + (1 - α) an-1 

where an and an-1 are smoothed values after n and n - 1 observations respectively 

and xn is the nth observation.  Here α ∈ [0, 1], called the smoothing constant, is 

the only parameter  
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It can be shown [1] that 

an = α (1 − α)k

k=0

n−2

 xn−k + (1 − α)n−1x1  

From this we see that the weights, the uj, are 

u1 = (1 - α)n - 1 

uj = α(1 - α)n - j         for j = 2 to n 

It can be shown that these sum to one.  
Using these weights and denoting β= (1 − α) we can obtain the average age of 

the data used in this case of exponential smoothing as 

AGEE(u) = (n − j)u j
j=1

n

 = 0α + 1(αβ) + 2(αβ2) + 3(αβ3) + ............  

** AGEE (u) = α kβk + (n − 1)βn

k=0

n−2

  

Furthermore it can be shown [1] that as n gets large, n → ∞, we obtain 

AGEE(u) = 
β
α

 = 1 - α
α

 

In this case of exponential smooth the expected variance is 

HE (u) = u j
2 = (αβk )2 + (βn )2

k=0

n−2


j=1

n

  

It can be shown that as n gets large 

HE(u) = α
1 + β

 = α
2 - α

 

Again here we see the conflict, making α bigger acts to decrease AGEE(u) while 
increasing HE(u).  The satisfaction of the age criteria wants α big, close to one 
while satisfaction of the variance criteria wants α small, close to zero. 

There is an interesting relationship between these two approaches.  We have 
shown that AGEM(u) = P - 1

2
 and AGEE(u) = 1 - α

α
.
 
If we let αP be the value of α 

that makes AGEE(u) = AGEM(u) for a particular P we get αP = 2
P + 1

.  We note 

that in this case 

HE(u) =  αP
2 - αP

 = 

2
P + 1

2 - 2
P + 1

 = 2
2P

 = 1
P
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which is exactly the same value as HM(u).  Thus these two approaches have the 

same flexibility once we select the parameter. 
The moving average and the exponential smoothing techniques as just 

described do not completely specify the weights that are to be used.  In each of 
these cases we have a parameter that has to be supplied to precisely determine the 
weights.  The parameter can be obtained in particular applications by learning it 
based on the performance of the system.  For example we can measure the 
difference between an, the forecasted value for xn+1, and the actual value of xn+1 

and then use the square error minimization to obtain the parameter. 
In introducing the moving average and exponential smoothing we have 

introduced parameterized families of weighting functions to be used to aggregate 
our time series data.  The actual performance of these methods in a given 
application will depend on our ability to find values for the parameters that work 
well.  While the particular performance in an application will depend upon the 
data as we have pointed out in a global sense our ability to obtain good forecasting 
will depend upon the underlying method's ability to be able to get weights that 
simultaneously satisfy our criteria of small variance and young data.  As we have 
shown these two criteria are often conflicting. 

Given this connection between a smoothing methods ability to simultaneously 
have weights that have a small variance and small average age and its possibility 
of obtaining weights that provide a good forecast using the observed data we may 
benefit from looking for more families of parameterized weight functions.  In 
particular families that are more flexible then these two would seem to provide a 
more fertile terrain to look for forecasting methods in applications. 

With this in mind we now turn to the OWA aggregation operators [4].  These 
are a class of mean like aggregation operators in which considerable work has 
been done in obtaining families of weighting functions and as such may provide 
some interesting candidates for sequential aggregations. 

4   OWA Operators and Induced OWA Operators 

The Ordered Weighted Averaging (OWA) operator of dimension n introduced by 

Yager [4] is an aggregation operator F: Rn → R  defined as 

F(y1, y2, ..., yn) = w jb j
j=1

n

  

where bj is the jth largest of argument values and wj is a collections of weights 

such that wj ∈ [0, 1] and w j = 1
j=1

n

 .  Collectively the weights are called the OWA 

weighting vector and denoted as W.  We can represent the ordered arguments by a 
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vector B called the order argument vector in which bj is the jth component.  

Furthermore if ind is an index function such then ind(j) is the index of the jth 
largest of the argument values then bj = yind(j).  This allows us to have the 

following equivalent representations of the OWA aggregation operator 

F(y1, ..., yn) = w jb j
j=1

n

 = w jyind( j) = WTB
j=1

n

  

Thus we it is the inner product of the weighting vector and the ordered argument 
vector. 

The OWA operator is parameterized by the choice of weights.  If wi= 1 and  

wj = 0 for j ≠ 1 then F(y1, ..., yn) = yind(1).  If wn = 1 and wj = 0 for j ≠ n then 

F(y1, ..., yn) = yind(n).  If wj = 1
n

 then F(y1, ..., yn) =
1

n
yi

i=1

n

 , it is the simple 

average.  More generally if most of the weights are associated with wj's that have 

smaller indexes, then the aggregation is giving preference to the arguments with 
the  
bigger values, the bj = yind(j) with the lower j.  Conversely if most of the  

weight are associated with wj's that have higher indices, then the aggregation is 

giving preference to the argument with the smaller values, the bj = yind(j) with the 

larger j. 
Thus the OWA operator describes a family of averaging operators 

parameterized by its weighting vector W.  In [4] a measure was introduced to 
characterize an OWA operator with regard to its preference for bigger or smaller 
elements in the argument.  This measure called the attitudinal character is 
defined as 

A-C(W) = 
1

n − 1
(n − j)w j

i=1

n

  

It takes its maximal value of one for the case where w1 = 1 and its minimum value 

of zero when wn = 1.  For the case when all wj = 1
n

 it assumes the value 0.5.  

Generally if the weights tend to be at the top of the W vector A-C(W) gets closer 
to one while if the weights tend to be near the bottom A-C(W) get close to zero. 

It is interesting to note the attitudinal character itself is an OWA aggregator of a 
special argument collection using the W   In particular 

A-C(W) = F(n - 1
n - 1

, n - 2
n - 1

, n - 3
n - 1

, ..., n - n
n - 1

) 

It is the OWA aggregation of yj = n - j

n - 1
. 
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Another measure [4] associated with an OWA vector is the measure of 
dispersion or entropy  

E(W) = = - wi ln(wi)
j = 1

n
 

It can be easily shown that the OWA operator is a mean operator, it is monotonic, 
commutative and bounded, Mini[yi] ≤ F(y1, y2, ..., yn) ≤ Maxi[yi].    It is also 

idempotent, if all yi = c then F(y1, y2, ..., yn) = c. Typically mean operators are 

not associative.  This means that there is no preordained way of extending these 
operators from dimension n to n + 1. 

Thus an interesting problem associated with OWA operators is providing 
consistent ways of defining the weights associated with aggregations of different 
dimensions.  Three predominate approaches to addressing this issue can be noted.  
One approach, introduced in [10], is to provide some function, called a BUM 
function, l and use this to generate the weights.  A BUM function is a monotonic 
mapping f: [0, 1] → [0, 1] satisfying 1 f(0) = 0, 2. f(1) = 1, 3. f(x) ≥ f(y) if x > y.    
Using this BUM function consistent weights can be obtained by setting for all j  

wj = f(j
n

) - f(j - 1
n

) 

where n is the dimension of the aggregation.  Using this BUM function we are 
able to generate weights in a consistent manner for aggregations of different 
dimensions. 

Another general approach, initiated by the work of O'Hagan [11], focuses on 
determining the weights so that the attitudinal character remains the same as we 
change the dimensionality.  A third approach is to directly express the process of 
assigning the weights in such a way that it can be easily extended to any number 
of arguments.  Finding the simple average is an example of this.  Obtaining the 
Max or Min of the argument also falls in the category.  We have essentially 
described the process of determining the weight in a manner independent of the 
number of arguments. 

In the proceeding we defined the OWA operator as 

FW(y1, ......., yn ) = w j b j = WTB
j=1

n

  where bj = yind(j).  Here ind(j) is the index 

of the jth largest argument value.  This is essentially taking an average of the 
argument values where the weights associated with the different arguments are 
determined by the ordered position of the argument with respect to their value. 

An equivalent view of this operator is the following.  Let M: {1, ..., n} → {1, 
..., n} be a one to one and onto (bijective) mapping such that M(i) is the ordered 
position of the argument yi. Using this notation we have 

F(y1, ......., yn ) = wM(i)yi
i=1

n

 .  Hence M is a mapping that associates with each 
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argument a unique integer determined by is ordered argument position.  We note 

that a unique relationship exists between M and ind, ind(j) = M-1(j).  Using this 

FW(y1, ......., yn ) = w j b j
j=1

n

 where bj = yM-1(j). 

We now introduce a generalization of the OWA operator called the Induced 
OWA (IOWA) operator [12].  Behind this generalization is the realization that the 
process of ordering the arguments does not necessarily have to be guided by an 
ordering based on the value of the arguments to still result in a mean aggregation 
of the arguments.  The assignment of weights to arguments can be induced in 

other ways.  More formally WTB where B is any vector of containing all the 
arguments in any order is still a mean operator. 

Let us describe the IOWA operator.  As in the case of OWA operator with the 
IOWA operator we have a weighting vector W whose components wi sum to one 

and lie in the unit interval.  However in the case of the IOWA operator the input 
are tuples, (yi, vi), where yi is called the argument variable and vi is called the 

order inducing variable.  Here we are still interested in getting a mean aggregation 
of the yi but the process of associating the weights with the argument values, 

ordering the elements in B, is determined by the vi. 

Here we denote MV: I → J where I = J = {1, 2, ..., n}.  MV is a mapping that 

associates with each i ∈ I a unique value j ∈ J determined by the value vi.  We 

note MV is a bijective mapping, one to one and onto,. 

Using this notation we have 

FW((y1, v1), ..., ( yn, vn)) = wMV(i)
i=1

n

 yi  

or alternatively 

FW((y1, v1), ..., ( yn, vn)) = w j y
MV

−1( j)
j=1

n

  

We can then let bj = yMV
-1(j) and express this aggregation as 

FW((y1, v1), ..., ( yn, vn)) = WTBv.  We emphasize that since the wj are positive 

and sum to one we will still getting a mean of the yi. 

An example when v is a variable taking values from the real line would be to 

the mapping MV: I → J be such that MV(i) = j if the vi has the jth largest value 

for the order inducing variable.  However the ordering can be inverse, we can have 

mV(i) = j if the ith tuple has the n – j + 1 largest value for the order inducing 

variable.  Furthermore the order inducing variable v need not take its values from 
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the real line.  It can take its values from any space that has an ordering.  Thus the 
vi can be words that can be ordered such as small, medium and large. 

A particularly interesting application of the IOWA aggregation is called the last 
best model that was introduced in [12].  Assume we have n experts who predict 
the value of today's closing value of the ABC stock.  Let y

i
 be the prediction of 

the ith expect.  Our objective is to average these to get an aggregate prediction.  In 
the last best model we use an ordering based on the expert's previous day's 
performance to assign the OWA weights to the different experts.  In particular let 

Δi be absolute error in the ith expert's performance yesterday.  That is Δi = |bi - b| 

where bi was experts guess yesterday and b was the actual value that was attained 

by ABC yesterday.  In this case the input pairs to the IOWA aggregation are ((yi, 

Δi), ..., (yn, Δn)).  In the best yesterday model we induce the weight assignment 

using MΔ: I → J.  In particular we order the experts in increasing order of Δi, then 

assign mV(i) = j where i has the jth smallest of the Δi values.   

5   Using OWA Operators in Time Series 

An important special case of the IOWA aggregation is the case where the 
arguments are a sequence of values, (x1, ..., xn), and the order inducing variable is 

the position in the sequence.  Here we are aggregating F((1, x1), (2, x2), ..., (n, 

xn)) with order inducing variable vi = i.  If we choose MV to be such that MV(i) = 

vi = i then we get 

wMV(i) xi
= wi xi

i=1

n


j=1

n

  

where the wi are a collection of OWA weights, they lie in the unit interval and 

sum to one.  This then allows us to simultaneously view this aggregation process 
as a time series smoothing problem and OWA aggregation.  This multiple view 
allows to bring tools from both perspectives to the problem of smoothing.  In 
particular we shall be able to draw upon the large body of work on families of 
OWA operators to suggest families for the aggregation of time series data. 

An interesting and useful relationship can be shown between the OWA view 
and the time series view.  In the framework of the OWA operator we defined the 
attitudinal character associated with a weighting vector W as 

A-C(W) = 1
n − 1

w j(n − j)
j=1

n

  
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In the time series smoothing framework we introduced the idea of the average age 
of the data used which is expressed as 

AGE(W) = w j Age( j)
j=1

n

 = w j(n − j)
j=1

n

  

what can be easily seen is their relationship 

AGE(W) = (n -1) A-C(W) 

Thus the average age of the data is equal to the attitudinal character times n - 1.  In 
particular if W and  W  are two OWA weighting vectors such that A-C(W) ≤ A-

C( W ) then AGE(W) ≤ AGE( %W) .  As we previously noted in time series we are 

interested in obtaining aggregations in which we have a small average age.  This 
can be seen to correspond to OWA weighting vectors with A-C values tending 
toward zero.  In the framework of the ordinary OWA operator we are looking for 
weighting vectors that are "and-like". 

Another interesting correspondence exists between the measure of dispersion or 

entropy in the OWA framework, E(W) = − w j ln(w j)
j=1

n

  and the measure of 

variance in the time series framework H(W) = − w j
2

j=1

n

 , these two measures are 

cointensive in that they are formulating the same intuitive notion.  We first note 
that both are invariant with respect to the indexing of the wj.  They both attain 

their minimum value when wj = 1
n

 for all j and  both obtain their maximum value 

when wk = 1 for some arbitrary k.  They both are expandable [13, 14], if an 

element wn+1 = 0 is added to the collection [w1, ..., wn] both H(W) and -E(W) 

are unchanged .   
A key feature of both these is what we shall refer as a preference for 

equalitarism.  Let w1, ..., wn be a collection of positive weights which sum to 

one.  If one of the weights is less than 1
n

 then there must be at least one other 

weight greater than 1
n

.  Let w1 be a weight less than 1
n

 and let w2 be a weight 

greater than 1
n

.  Let ∆ be a value such that ∆ ≤ Min[|w1 - 1
n

|, |w2 - 1
n

|].  Let v1, ..., 

vn be a new set of weights such that  

 v1 = w1 + ∆ 

 v2= w2 - ∆ 

 vj = wj for j > 2 

It can be shown that H(V) ≤ H(W) and E(V) ≤ E(W), both of these have increased.  
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6   Linear Decaying Weights 

We now describe a parameterized family of weights for the OWA aggregation and 
discuss their potential role in the smoothing framework, we refer to these as 
Linearly Decaying (LD) weights.  In the following we denote our observations as 
x1, ..., xn where xn is the most recent.  We associate with the LD weights a single 

window–like parameter, an integer m such that 1 < m ≤ n.  Using this parameter 
we obtain the LD weights as 

wj = j - (n -m)
T

      n - m + 1 ≤ j ≤ n 

wj = 0 j ≤ n - m 

where T = j = m(m + 1)
2

j=1

m

 . 

In the case where m = 5 we have T = 5 + 4 + 3 + 2 + 1 = 15 and our weights are 

wn = 5/15, wn-1 = 4/15, wn-2 = 3/15, wn-3 = 2/15, wn-4 = 1/15 

wj =    0      for all others 

For the case where m = 10 we get T = ((11)(10))/2 = 55 and hence 

wn = 10/55, wn - 1 = 9/55, wn - 2 = 8/55, wn - 3 = 7/55, wn - 4 = 6/55,  

wn - 5 = 5/55, wn - 6 = 4/55, wn – 7 = 3/55, wn - 8 = 2/55, wn - 9 = 1/55 

         wj = 0 for all others. 

In figure #2 we clearly see the linearly decaying nature of the weights 

n-1n-2 nn-m n-m+1

m
T

m-1
T

m-2
T

1
T

 

Fig. 2. Linear Decaying Weights 
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The average age of the data using LD weights is 

AGE = w j(n − j) = 1
T

j=1

n

 ( j − (n − m))(n − j)
j=n−m+1

n

 = 
m − 1

3
 

The average age depends linearly on the parameter m, as m increases the average 
age increases. 

We can also calculate the associated expected variance in this case of LD 
weights 

H(W) = w j
2 = j2

T2
j=1

m


j=1

m

  = 1

T2
  4

6
 (m)(m + 1)(1 + 2m)  

                
H(W) = 4(1 + 2m)

6(m)(m + 1)
 

Here we see as the value of m increases the value of H(W) decreases. 
Let us compare the flexibility of this LD approach with the moving average.  

We observe that we get the same average age when m - 1
3

 = P - 1
2

 and hence P = 

2m + 1
3

.  With these values the variance of the moving average method is H(MA) 

= 1
P

 = 3
2m + 1

.  The variance of the LD weights approach is H(LD) = 

2
3

 (1 + 2m)

(m)(m + 1)
.  If we take the difference we get H(LD) - H(MA)  ≤ 0.  Thus the 

LD weights are more flexible than the moving average.  Since the moving average 
has the same flexibility as the exponential smoothing the LD weights are more 
flexible than exponential smoothing. 

An interesting feature of the LD weight approach to time series smoothing is 
the efficient form for the updation when going from n to n + 1 observations.  In 
the following we let LDm(n) be the smoothing value at n using LD with 

parameters m 

LDm(n) = 1
T

 (m xn + (m - 1) xn-1 + ......... + xn-m+1) 

LDm(n) = 1
T

j xn−m+ j
j=1

m

  

Let LDm(n + 1) be the updated smoothed value after receiving the n + 1 

observation 

LDm(n + 1) = 1
T

j xn+1−m+ j
j=1

m

  
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Note here we use xn+1-m+j instead of xn-m+j.  If we expand this we get  

LDm(n + 1) = 1
T

 (m xn+1 + (m - 1) xn + ......... + xn-m+2 

From the preceding we see that 

LDm(n + 1) = LDm(n) + m
T

xn+1 - 1
T

 (xn + xn-1 + ......... + xn-m+1) 

LDm(n + 1) = LDm(n) + 2
m + 1

an+1 − 2
m + 1

(
1
m

an−(m− j)
j=1

m

 )  

However we note that 
1
m

an−(m− j)
j=1

m

 = 1
m

(xn + xn−1 + ....... + xn−m+1)  is 

simply the moving average with window m and time n which we denote the 
MAm(n).  Using this notation we have  

LDm(n + 1) = LDm(n) + 2
m + 1

 [xn + 1 - MAm(n)] 

Thus we see the updation is simply obtained by adding to the last value of LDm 

the difference between the new observation and the average of the m previous 
observations divided by one half m + 1. 

Thus this provides a simple formulation for calculating an + 1 from an 

an + 1 = an + 2
m + 1

 [xn + 1 - MAm(n)] 

In a particular application the determination of the value for m can be made by the 
standard methods used in time series.  Either the parameter m can be chosen a 
priori or learned by finding the value of m that minimizes the mean square error 
between the predicted (smoothed value LDm(n)) and the observations xn + 1. 

7   Squarely Decaying Weights 

We consider another closely related weighting scheme for time series data 
smoothing based on Squarely Decaying (SD) weights.  Here again we let our 
single parameter, the integer m, be the window size.  However in this case our 
weights are 

wn = m2

T2

,  wn-1 = (m - 1)2

T2

. wn-2 = (m - 2)2

T2

, .........,wn-(m+1) = 1
T2

 

wj = 0 for j ≤ n - m 

where T2 = j2 = (
1
6

j=1

m

 )(m)(m + 1)(1 + 2m)  
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We can more successfully express these weights as 

wj = (j - (n - m))2

T2

     for j = n - m + 1 to n 

wj = 0     forj ≤ n - m 

In this case average age as a function of m is 

AGE =  1
2

 (m
2 - m)

(1 + 2m)
 

If we denote  1
2

 (m
2 - m)

(1 + 2m)
 as AGE2 and if we denote the average age for the linear 

decaying weights m - 1
3

 as AGE1 we see that 

 AGE1 - AGE2 = m - 1
3

 - 1
2

 m
2 - m

2m + 1   
= 2(m - 1)(2m + 1) - 3m2 + 3m

6(2m + 1)
 ≥ 0 

AGE2 is always less then AGE1. 

Let us now consider the variance in this case of squarely decaying weights 

H(W) = w j
2

j=1

m

 = j4

(T2 )2j=1

m

 = 1

(T2)2
 1
30

(m)(m + 1)(1 + 2m)(-1 + 3m + 3m 2) 

H(W) = 36
30

 (m)(m + 1)(1 + 2m)(-1 + 3m + 3m 2)

(m)2(m + 1)2(1 + 2m)2
  = 6

5
 (3m2 + 3m - 1)
(m)(m + 1)(1 + 2m)

 

Let us now compare this with the moving average.  For moving average with 
window P we get the same average age as the squarely decaying weights when 

P - 1
2

 = 1
2

 (m
2 - m)

(1 + 2m)
.  In this case P = m2 + m + 1

2m + 1
. 

Let us compare the variance in this for the square decay weights Ws we showed  

H(Ws) =  6
5

 (3m2 + 3m - 1)

(m)(m + 1)(1 + 2m)
 

For the moving average we have H(WMA) = 1
P

 = 2m + 1
m2 + m + 1

.  Calculating the 

difference we get  

H(Ws) -  H(WMA) ≤ 0 

Thus for a given average age the square decaying weights have a smaller variance 
then the moving average. 

More generally we can consider the case of weights with two parameters m and 
K with  
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wj = (j - (n - m))K

TK

             for n - m + 1 ≤ j ≤ n 

wj = 0                j ≤ n - m 

where TK = jK

j=1

m

  and K ≥ 0 

We observe when K = 0 we get the ordinary moving average and when K → ∞ 
we get the case where wn = 1 and all others wj = 0. 

We note that except in the cases where K = 0, 1 or ∞ the updated smoothed 
value is not easily expressed in terms of the previous value.  However given the 
current computation power the process of calculating smoothed value after each 
iteration is not difficult.  In particular since the parameters wj are already 

determined, we just require storing the last m - 1 readings plus the new reading 
and the calculation is linear. 

More generally we see that we have a two parameter class smoothing operators.  
Here the parameters are K > 0 and m is a positive integers.  We can learn the 
parameters from the data. 

8   Using Inverse Sum Weights 

We now briefly consider another data smoothing model based on using an OWA 
weighting vector introduced by Ahn in [15, 16].  Consider the OWA weights of 
dimension m defined as 

                                       wj =
1
m

1
i

i= j

m

            for j = 1 to m. 

In particular we note that  

w1 = 1
m

 (1 + 1
2

 + 1
3

 +  .... + 1
m

) 

w2 = 1
m

 (1
2

 + 1
3

 +  .... + 1
m

) 

 
wm-i = 

wm-1 = wm= 1
m

 ( 1
m

) 

We observe that for these weights wj = wj + 1 + (1
j
) 1

m
. We shall refer to these 

weights as Inverse Sum (IS) weights. 
It can be shown [15, 16] that the degree of orness obtained using these weights 

is A-C(W) =
1

m − 1
(m − j)w j = 3

4
i=1

m

 . We emphasize that this is fixed independent 
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of the dimension m.  Since AGE(W) = (n –1) A-C(W) then AGE(W) = m − 1

4
. 

Thus the average age is linearly related to our window parameter m. 
We now observe the form of the smoothing updation using these 

an = w j an− j+1
j=1

m

  

an+1 = w j an− j+2
j=1

m

  

an+1 =  w1 xn+1 + w j xn− j+2
j=2

m

 = w1 xn+1 + w j+1 xn− j+1
j=1

m−1

  

an+1 = w1 xn+1 + (w j − 1
m

1
j
)xn− j+1 + (

1

m2
j=1

m−1

 − 1

m2
)xn−m+1  

an+1 = w1 xn+1 + an − 1
jm

j=1

m

 xn+1− j  

an+1 = an + 1
m

(
1
j
(xn+1 − xn+1− j)

j=1

m

  

Thus we have this very nice form for the updation. If we get ∆j be the difference 

between the new observation and the observation j back then 

an+1 = an + 1
m

(
1
j

Δ j)
j=1

m

  

Here m the window size is our only parameter. 

9   Truncated Exponential Smoothing 

In some cases classes of probability density functions provide sources interesting 
weighting functions that can be used in data smoothing.  Here we consider the use 
the exponential type probability density function.  This type of probability density 
function is define by  

 f(x) = {
λe-λx

0
 

x ≥ 0

x < 0
 

where λ ≥ 0 is its parameter.  It is well known here that 

f(x)dx = λe−λxdx = e−aλ
a

b
a

b
 − e−bλ  and specifically f(x)dx = 1

0

∞
 . 
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Consider now using this to generate our weights in the smoothing operation.  
For simplicity in the following we shall let yj be the data reading j back from the 

present reading.  Here yo would be our most recent observation.  Using an 

aggregation of the last m readings we get as our smoothed value a = w j y j
j=0

m−1

 .  

Now let 

u j = λe−λxdx = e− jλ
j

j+1
 − e−( j+1)λ = e-jλ(1 - e-λ) 

Consider now using as our weights wj = 
uj

Km
 where Km = u j

j=0

m−1

 .  We observe 

that wj ≥ wj + 1 and hence the weights are in decreasing order, the more recent the 

data the more the associated weight.  Furthermore w j = 1
j=1

m−1

 .  We also observe 

that Km = u j
j=0

m−1

 = 1 − e−λm  

Using these weights we get 

a = w jy j = 1
Kmj=0

m−1

 e− jλ (1 − e−λ )y j
j=0

m−1

  

Letting α = (1 - e-λ) we get a = 1
Km

αe− jλy j
j=0

m−1

 . 

Consider now the updation process.  Let y-1 be the next reading and let a be the 

new smoothed value. We see that  

a = w0 y−1 + w j+1y j
j=0

m−2

  = u0
Km

y−1 + 1
Km

u j+1y j
j=0

m−2

  

Since uj = αe-jλ then uj + 1 = αe-(j+1)λ  = e-λuj and after some calculation we can 

show  

a = u0
Km

y−1 + 1
Km

u je
−λy j

j=0

m−2

  
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a = u0
Km

y−1 + 1
Km

u je
−λy j

j=0

m−2

 + e
-λum - 1ym

Km
 - e

-λum - 1y1
Km

 

 a = e-λ a + w0 y-1 - e-λ wm-1ym-1 

At this point we shall make a change in notation in the above which allows an 
easier calculation.  We denote  a = at, a = at+1, y-1 = xt + 1 and ym - 1 = xt - m + 1 

this gives us 

at+1 = e-λ at + w0 xt+1 -  e-λ wm-1 xt-m+1 

at+1 = e-λ at + u0
Km

 xt+1 -  e-λ um-1
Km

 xt-m+1 

Since uo = (1 - e-λ) and  um - 1 = e-(m - 1)λ (1 - e-λ) and Km = 1 - e-λm and we 

have denoted (1 - e-λ) = α then we get at+1 = (1 - α) at + α
1 - e-λm

 (xt+1 - e-λmxt-

m+1).  Since 1 - e-λ = α then e-λ = 1 - α and hence  e-λm = (1 - α)m = α m.  

From this we see  

at + 1 = αat + α
1 - α m

 (xt+1 - α m xt- m+1) 

This begins to look like a truncated type exponential smoothing.  Actually we see 
that if m → ∞ then α m → 0 and we get the classical exponential smoothing 
formula 

at + 1 = α at + α xt + 1 

We also observe that as λ gets bigger e-λ gets smaller and α gets bigger. 
Here then we have a smoothing method with two parameters, λ and m.  For 

which when m → ∞ we get the classical exponential smoothing. 

10   Conclusion 

We discussed the process of predicting future values of a variable from past 
observations.  This process, often referred to as times series smoothing, involve an 
aggregation of the past observations to predict the future values.  Our objective 
here was to use recent advances in computational intelligence to suggest new and 
better approaches for performing the necessary aggregations.  We first looked at 
some special features associated with the types of aggregations needed in times 
series smoothing.  We showed how these requirements impact on our choice of 
weights in the aggregations.  We then noted the connection between the method of 
aggregation used in times series smoothing and that used in the intelligent type 
aggregation method known as the Ordered Weighted Averaging (OWA) operator.  
We then took advantage of this connection to allow us to simultaneously view the 
problem from a times series smoothing perspective and OWA aggregation 
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operations perspective.  Using this multiple view we drew upon the large body of 
work on families of OWA operators to suggest families for the aggregation of 
time series data.  A particularly notable result of this linkage was the introduction 
of the use of linear decaying weights for time series data smoothing 
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Chapter 4
Financial Fuzzy Time Series Models
Based on Ordered Fuzzy Numbers

Adam Marszałek and Tadeusz Burczyński

Abstract. The purpose of this chapter is to present an original concept of financial
fuzzy time series models based on financial data in the form of Japanese Candle-
stick Charts. In this approach the Japanese Candlesticks are modeled using Ordered
Fuzzy Numbers (OFN) called further Ordered Fuzzy Candlesticks (OFC). The use
of ordered fuzzy numbers allows modeling uncertainty associated with financial
data. Thanks to well-defined arithmetic of ordered fuzzy numbers, one can con-
struct models of fuzzy time series, such as e.g. an autoregressive process, where all
input values are OFC, while the coefficients and output values are arbitrary OFN, in
the form of classical equations, without using rule-based systems. Finally, several
applications of these models for modeling and forecasting selected financial time
series are presented.

1 Introduction

It is hard to disagree with opinion that among all different sources of data, the fi-
nancial market is the most uncertain. The main reason is the fact that huge amount
of information is reflected in the financial market. What more, we can say that ev-
erything that happens in the world (e.g. in economy, politics) has an effect on quo-
tations of financial instruments. On the other hand, how the information influence
the market is decided by investors by taking a long or short position in the market.
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The investors can be simple divided into two groups. The first group of investors
decides using fundamental analysis, while the second group decides on a basis tech-
nical analysis. Both groups must make a subjective assessment of macroeconomic
factors and signals of technical analysis, respectively, so the human factor is a cause
of uncertainty as well.

The second group of investors very often uses price charts analysis to make deci-
sions. The price charts (e.g. Japanese Candlestick chart) are used to illustrate move-
ments in the price of a financial instrument over time. Notice, that using the price
chart, a large part of the information about the process is lost, e.g. using Japanese
Candlestick chart with one hour frequency, for one hour, we know only four prices,
while in this time the price must have changed hundreds of times.

In this paper we propose fuzzy logic (i.e. ordered fuzzy numbers), to model un-
certainty associated with financial data and reduce the size of lost information. Fur-
ther, we show how the concept (OFC) can be used to build models of financial time
series.

2 Financial Data

In this work as a financial data we mean the quotations of financial instruments (e.g.
stock prices or currency pair). Making investment decisions based on observation of
each single quotation is very difficult or even impossible, when price changes tens
times a minute.

In practice, quotations of financial instruments are represented using price charts
[12]. The open-high-low-close chart (also OHLC chart, or simply bar chart) and
Japanese Candlestick are most often used in technical analysis. Both types of charts
are presented in Figs. 1 and 2, respectively.

Fig. 1 Open-High-Low-Close chart of EUR/USD, four hour frequency

Each bar represents the range of price movement over a given time interval. In
both types of charts, bars are described by only four prices from given time period:
first (open), highest, lowest and last (close) price at a given time interval. In addition,
Japanese Candlestick has a body, whose color illustrates the relationship between



4 Financial Fuzzy Time Series Models Based on Ordered Fuzzy Numbers 79

Fig. 2 Japanese Candlestick chart of EUR/USD, four hour frequency

Fig. 3 The long and short OHLC bar, and long and short Japanese Candlestick

the opening and closing price. If the Candlestick closed higher than it opened, the
body is white or unfilled, else the body is black. The formation of OHLC bar and
Japanese Candlestick are shown in Fig. 3. More details about the Japanese Candle-
sticks and trading techniques based on them can be found in [13].

3 Ordered Fuzzy Numbers

One of many ways of uncertainty modeling is an approach based on fuzzy logic.
Fuzzy data analysis requires also fuzzy arithmetic. Applications of classical fuzzy
numbers (sets) [17, 18] or so-called (L,R)-numbers with two shape functions L and
R [1] lead to some drawbacks that concern properties of fuzzy algebraic operations,
as well as produce unexpected and uncontrollable results when using these opera-
tions in an iterative way [16, 17]. In the series of papers [4, 5, 6, 7, 8], W. Kosiński et
al. introduced and developed main concepts of the space of ordered fuzzy numbers
(OFN), whose arithmetic eliminates these drawbacks.
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3.1 Definition of Ordered Fuzzy Number

The concept of membership functions has been weakened by requiring a mere mem-
bership relation. Consequently, an ordered fuzzy number A is identified with an or-
dered pair of continuous real functions defined on the interval [0,1], i.e. A = ( f ,g)
with f ,g : [0,1]→R.

Fig. 4 Graphical interpretation of OFN and an OFN presented as fuzzy number in classical
meaning

Functions f and g are called the up and down-parts of the fuzzy number A, re-
spectively. The continuity of both parts implies their images are bounded intervals,
say UP and DOWN, respectively. In general, the functions f and g need not be in-
vertible, and only continuity is required. If we assume, however, that these functions
are monotonous, i.e., invertible, and add the constant function of x on the interval
[1−A ,1

+
A ] with the value equal to 1, we might define the membership function

μ(x) =

⎧⎨⎩
f−1(x) if x ∈ [ f (0), f (1)],
g−1(x) if x ∈ [g(1),g(0)],

1 if x ∈ [1−A ,1
+
A ],

(1)

if f is increasing and g is decreasing, and such that f ≤ g (pointwise). In this way, the
obtained membership function μ(x), x ∈ R represents a mathematical object which
resembles a convex fuzzy number in the classical sense. The ordered fuzzy number
and ordered fuzzy number as a fuzzy number in classical meaning are presented in
Fig. 4.

Let us note that a pair of continuous functions ( f ,g) determines different ordered
fuzzy number than the pair (g, f ). It follows from the fact that we are dealing with
an ordered pair of functions. In this way, we specified an extra feature to this ob-
ject, named the orientation. In graphical interpretation of the ordered fuzzy number,
orientation is presented by arrow. Depending on the orientation, the ordered fuzzy
numbers can be divided into two types: a positive orientation, if the direction of
ordered fuzzy number is consistent with the direction of the axis Ox and a negative
orientation, if the direction of the ordered fuzzy number is opposite to the direction
of the axis Ox, as shown in Fig. 5.
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Fig. 5 Positively and negatively oriented OFN

3.2 Operations

The basic arithmetic operations on ordered fuzzy numbers are defined as the pair-
wise operations of their elements.

Let A = ( fA,gA), B = ( fB,gB) and C = ( fC ,gC) are mathematical objects called
ordered fuzzy numbers. The sum C = A + B, subtraction C = A − B, product
C = A ·B, and division C = A÷B are defined by formula

fC(y) = fA(y)∗ fB(y), gC(y) = gA(y)∗ gB(y) (2)

where ∗ works for +, −, · and ÷, respectively, and where C = A÷B is defined,
if the functions | fB| and |gB| are bigger than zero. In a similar way, if we want to
multiply an ordered fuzzy number A by a scalar λ ∈ R, then the product C = λ ·A
is defined by formula

fC(y) = λ · fA(y), gC(y) = λ ·gA(y) (3)

Fig. 6 Sum of two opposite ordered fuzzy numbers

Notice that the subtraction of B is the same as the addition of the opposite of
B, i.e. the number (−1) ·B. If we will do B+(−1) ·B we get a numeric zero, i.e.,
an ordered fuzzy number represented by the pair of constant functions equal to
zero. In a similar way, the inverse 1/B of an ordered fuzzy number B is defined
as an ordered fuzzy number such that the product B · (1/B) gives a number, i.e.,
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Fig. 7 Product of ordered fuzzy number and its inverse

an ordered fuzzy number represented by the pair of constant functions equal to one.
This is presented in Figs. 6 and 7, respectively.

The existence of neutral elements of addition and multiplication is the most im-
portant advantage for our further consideration. This fact causes that not always the
result of an arithmetic operation is a fuzzy number with a larger support. This allows
to build fuzzy models based on ordered fuzzy numbers in the form of the classical
equations without losing the accuracy.

3.3 Defuzzification of Ordered Fuzzy Number

Let O be a universe of all ordered fuzzy numbers. O can be identified with
C 0([0,1])×C 0([0,1]), hence the space O is a Banach space [7]. A class of de-
fuzzification operators of ordered fuzzy numbers can be defined, as a linear and
continuous functionals on the Banach space O , thanks to the general representa-
tion theorem (of Banach-Kakutami-Riesz) they are uniquely determined by a pair
of Radon measures (ν1,ν2) on [0,1], as

De f (A) =

1∫

0

fAdν1 +

1∫

0

gAdν2 (4)

where De f (A) is the value of a defuzzification operator at the ordered fuzzy number
A = ( fA,gA).

The above formula gives a continuum of defuzzification operators, both linear
and nonlinear, which map ordered fuzzy numbers into reals. For example, the stan-
dard defuzzification procedure in terms of the area under membership relation can
be defined. It is realized by a linear combinations of two Lebesgue measures of
[0,1].
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4 Ordered Fuzzy Candlesticks

The aim of our research is to find a new tool for modeling of financial data. We want
to make it so easy as classical Japanese Candlesticks for observing by investors. At
the same time to allow for modeling of uncertainty associated with financial data
and also keep more information about the prices than Japanese Candlestick. Ordered
fuzzy numbers presented previously, in a simple way, satisfy our requirements.

Generally, in this approach, further as Japanese Candlestick is identified with or-
dered fuzzy number and it is called Ordered Fuzzy Candlestick (OFC). The general
idea is presented in Fig. 8. Notice, that the orientation of the ordered fuzzy number
shows whether the ordered fuzzy candlestick is long or short. While the information
about movements in the price are contained in the shape of the f and g functions.
In the following sections we will show how the ordered fuzzy candlestick can be
constructed.

Fig. 8 The Japanese Candlesticks presented as a ordered fuzzy numbers

4.1 Proposal of Global Definition of Ordered Fuzzy Candlestick

Let {Xt : t ∈ T} be a given time series and T = {1,2, . . . ,n}. The ordered fuzzy
candlestick is defined as an ordered fuzzy number C = ( f ,g) which satisfies the fol-
lowing properties 1 - 4 or 5 - 8.

Long Candlestick

1. X1 ≤ Xn

2. f : [0,1]→ R is continuous and increasing on [0,1]

3. g : [0,1]→ R is continuous and decreasing on [0,1]

4. S1 < S2, f (1) = S1, f (0) = min
t∈T

Xt −C1, g(1) = S2 and g(0) such that
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1∫
0

g(y)dy− S2

A
=

S1 −
1∫
0

f (y)dy

B
(5)

Short Candlestick

5. X1 > Xn

6. f : [0,1]→ R is continuous and decreasing on [0,1]

7. g : [0,1]→ R is continuous and increasing on [0,1]

8. S1 < S2, f (1) = S2, f (0) = max
t∈T

Xt +C2, g(1) = S1 and g(0) such that

1∫
0

f (y)dy− S2

A
=

S1 −
1∫
0

g(y)dy

B
(6)

The center of ordered fuzzy candlestick (i.e. added interval) is designated by param-

eters S1, S2 ∈
[

min
t∈T

,max
t∈T

]
, while C1 and C2 are arbitrary nonnegative real numbers.

The parameters A and B are positive real numbers, and together with equations (5)
and (6) determine the relationship between the function f and g. A selection of
parameters are discussed in greater detail in the next section.

4.2 Parameters of Ordered Fuzzy Candlesticks

Let {Xt : t ∈ T} be a given time series and T = {1,2, . . . ,n}.

Parameters S1 and S2

For to designate the center of the ordered fuzzy candlestick, we can use the average
of time series Xt . There are many types of average, the most popular ones are

Simple Average

SA =
1
n
(X1 +X2 + · · ·+Xn) (7)

Linear Weighted Average

LWA =
X1 + 2X2 + · · ·+ nXn

1+ 2+ · · ·+ n
(8)

Exponential Average

EA =
(1−α)n−1X1 +(1−α)n−2X2 + · · ·+(1−α)Xn−1+Xn

(1−α)n−1+(1−α)n−2+ · · ·+(1−α)+ 1
, α =

2
n+ 1

(9)
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Consequently we propose the following

S1, S2 ∈ {SA,LWA,EA} such that S1 ≤ S2

Determination of parameters A and B
For parameters A and B the following formula is proposed

A = 1+ S+S2 and B = 1+ S−S1

where S+S2 and S−S1 means that one of the sums from numerator in the formulas
(7), (8) or (9), calculated only for Xt ≥ S2 and Xt ≤ S1, respectively. These parame-
ters shows how much the movement is concentrated above and below parameters S1

and S2, respectively. If formula (8) or (9) is selected then we assume that the more
recent time series values are more important than the past ones, which is a natural
assumption in financial processes.

Parameters C1 and C2

The parameters C1 and C2 are defined as a standard deviation of Xt

C1 =C2 = σXt

4.3 Special Types of Ordered Fuzzy Candlesticks

In this section, some simple types of ordered fuzzy candlesticks are presented.

Trapezoid OFC
Suppose that f and g are linear functions in form

f (y) = ( f (1)− f (0))y+ f (0) (10)

g(y) = (g(1)− g(0))y+ g(0) (11)

then the ordered fuzzy candlestick C = ( f ,g) is called a trapezoid OFC, especially
if S1 = S2 then also can be called a Triangular OFC.

Let Xt be a given time series. Suppose that X1 ≤ Xn then we have

f (y) = (S1 −minXt +C1)y+minXt −C1 (12)

g(y) = (S2 − g(0))y+ g(0) (13)

where

g(0) =
A
B
(S1 −minXt +C1)+ S2 (14)
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Whereas if X1 > Xn then we have

f (y) = (S2 −maxXt +C2)y+maxXt +C2 (15)

g(y) = (S1 − g(0))y+ g(0) (16)

where

g(0) =
B
A
(S2 −maxXt −C2)+ S1 (17)

Gaussian OFC
The ordered fuzzy candlestick C =( f ,g) where the membership relation has a shape
similar to the Gaussian function is called a Gaussian OFC. It means that f and g
are given by functions

f (y) = f (z) = σ f

√
−2ln(z)+m f (18)

g(y) = g(z) = σg

√
−2ln(z)+mg (19)

where e.g. z = 0.99y+ 0.01.
Let Xt be a given time series. Suppose that X1 ≤ Xn then we have

f (z) = σ f

√
−2ln(z)+m f where m f = S1, σ f =

minXt −C1 − S1√−2ln(0.01)
≤ 0 (20)

g(z) = σg

√
−2ln(z)+mg where mg = S2, σg =−A

B
σ f (21)

Whereas if X1 > Xn then we have

f (z) = σ f

√
−2ln(z)+m f where m f = S2, σ f =

maxXt +C1 − S2√−2ln(0.01)
≥ 0 (22)

g(z) = σg

√
−2ln(z)+mg where mg = S1, σg =−B

A
σ f (23)

4.4 Experimental Studies

Let Xt be a given time series of quotations of EUR/USD for the 1-hour period ending
09.01.2011 at 7pm (236 ticks). The time series Xt and its histogram are presented in
Fig. 9. For time series Xt we have X0 = X235 = 1.2894, so this Japanese Candlestick
has no body. It is so-called Doji Candlestick. Assume that S1 = EA= 1.28972, S2 =
SA = 1.28986 and C1 =C2 = σXt = 2.23e−7. The exponential average was used in
the calculation of parameters A and B of the ordered fuzzy candlesticks, so we have
A = 60.32825 and B = 70.83852. The classical Japanese Candlestick, Trapezoid
OFC and Gaussian OFC for time series Xt are presented in Fig. 10.
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Fig. 9 The tick chart and histogram of EUR/USD

Fig. 10 Types of Candlesticks for time series Xt : a) classical Japanese Candlestick, b) Trape-
zoidal OFC, c) Gaussian OFC

Fig. 11 The tick charts of the time series Xt and Yt

Now, the two different time series Xt and Yt are presented in Fig. 11. Both
have the same Japanese Candlestick (see Fig. 12a), because the main prices (i.e.
OHLC) are the same. However, the ordered fuzzy candlesticks for time series Xt

and Yt presented in Figs. 12b and 12c are different. Therefore, we can conclude that
the ordered fuzzy candlesticks effectively contain more information than classical
Japanese Candlesticks.
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Fig. 12 Types of Candlesticks for time series Xt and Yt : a) Classical Japanese Candlestick, b)
Trapezoid OFC, c) Gaussian OFC

5 An Application of Ordered Fuzzy Candlesticks

5.1 Ordered Fuzzy Simple Moving Average (OFSMA(s))

Ordered fuzzy candlesticks can be used e.g. to construct a fuzzy version of simple
technical indicators (i.e. a indicators that require only arithmetic operations such as
addition, subtraction and multiplication by a scalar). The Simple Moving Average
is presented as an example of technical indicator.

The classical Simple Moving Average with order s at a time period t is given by
formula

SMAt(S) =
1
s
(Xt +Xt−1 + · · ·+Xt−s+1) (24)

where Xt is the observation (real) at a time period t (e.g. closing prices) [12].
Now, the Ordered Fuzzy Simple Moving Average with order s at a time period t

is also given by formula (24) but the observations Xt are OFC, i.e.

OFSMAt(S) =
1
s
(X̄t + X̄t−1 + · · ·+ X̄t−s+1) (25)

where X̄t is the ordered fuzzy candlestick at a time period t. The process of fuzzifi-
cation of the other simple technical indicators can be done by analogy.

Notice, if A and B are Trapezoidal (Gaussian) ordered fuzzy candlesticks and
λ ∈ R then ordered fuzzy candlesticks C = A+ B, C = A−B and C = λ ·A are
Trapezoidal (Gaussian) OFC as well. Moreover, if their functions are in the form of
following expressions

φ(y ;a,b) = ay+ b, for Trapezoid OFC (26)

ψ(y ;σ ,m) = ψ(z ;σ ,m) = σ
√
−2ln(z)+m, for Gaussian OFC (27)
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then we have

φ(y ;a1,b1)±φ(y ;a2,b2) = φ(y ;a1 ± a2,b1 ± b2)
ψ(y ;σ1,m1)±ψ(y ;σ2,m2) = ψ(y ;σ1 ±σ2,m1 ±m2)

(28)

λ ·φ(y ;a,b) = φ(y ;λ ·a,λ ·b)
λ ·ψ(y ;σ ,m) = ψ(y ;λ ·σ ,λ ·m)

(29)

This causes that the numerical implementation of these operations is much simpler.

Empirical Results
The practical case study was performed on data from FOREX market. The data
covering the period of 93 hours from 5pm of 09.01.2011 till 2pm of 14.01.2011 of
quotations of EUR/USD. The data set included 65376 ticks and is presented in Fig.
13. The classical Japanese Candlestick chart of 1 hour frequency for the set data is
shown in Fig. 14. The result of fuzzification of each Candlestick by Gaussian OFC
is presented in Fig. 15 by a triangle symbols. The triangles correspond to the value
of the function f and g for values 0, 0.5 and 1. Moreover, if an OFC is long then the
triangles are pointing straight up, otherwise down.

Fig. 13 Tick chart of the data set

Fig. 14 Tick chart and Japanese Candlestick chart of the data set
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Fig. 15 The ordered fuzzy candlestick chart of the data

Fig. 16 shows results of realization of classical (line with xcross symbol) and
ordered fuzzy (triangle symbols) simple moving average with order equal to 7 for
the data set. Fig. 16 also shows the ordered fuzzy simple moving average defuzzifi-
cation by center of gravity operator (line with circle symbol). In technical analysis
the moving average indicator usually is used to define the current trend. Notice that
the ordered fuzzy moving average determines the current trend by orientation of
ordered fuzzy candlesticks, if orientation is positive then trend is long else trend is
short.

Fig. 16 The Japanese Candlestick chart of the data set, realization of a classical and ordered
fuzzy simple moving average

5.2 Ordered Fuzzy Autoregressive Model

In a similar way as it is shown in the previous section we construct fuzzy financial
time series models based on ordered fuzzy numbers and candlesticks. In this section,
the autoregressive process is presented as an example.

An classical autoregressive model (AR(p)) is one where the current value of
a variable, depends upon only the values that the variable took in previous periods
plus an error term [15]. The presented approach, an ordered fuzzy autoregressive
model of order p, denoted as OFAR(p), in natural way is fully fuzzy AR(p) and can
be expressed as
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X̄t = ᾱ0 +
p

∑
i=1

ᾱiX̄t−i + ε̄t (30)

where X̄t−i are the ordered fuzzy candlesticks at a time period t, ᾱi are fuzzy coeffi-
cients given by arbitrary ordered fuzzy numbers and ε̄t is an error term.

Fuzzy Coefficients and Their Estimation
The assumption that fuzzy coefficients of OFAR are arbitrary ordered fuzzy numbers
requires the ability to approximate all possible shapes of functions f and g, and the
ability to perform arithmetic operations on them.

Fig. 17 Discretization of ordered fuzzy numbers

Furthermore, if we multiply the functions of the same class (e.g. linear) we get
a function of another class, so the output of OFAR must be represented by arbi-
trary ordered fuzzy numbers as well. The simplest of solutions, discretization and
approximation using the linear function is proposed by us and presented in Fig. 17.
Then the arithmetic operations are performed on individual points.

The Least Squares Method is proposed for estimation fuzzy parameters ᾱi in
OFAR(p) model. Rearranging the terms in (30) we obtain

ε̄t = X̄t −
(

ᾱ0 +
p

∑
i=1

ᾱiX̄t−i

)
(31)

From a least-square perspective, the problem of estimation then becomes

min∑
t

ε̄2
t = min∑

t

(
X̄t − ᾱ0 −

p

∑
i=1

ᾱiX̄t−i

)2

(32)

However, the error term ε̄t is the ordered fuzzy number so we do not know what
equation (32) mean. Therefore, the least-square method is defined using a distance
measure. The measure of the distance between two ordered fuzzy numbers is ex-
pressed by formula

d(A,B) = d (( fA,gA),( fB,gB)) = ‖ fA − fB‖L2 + ‖gA− gB‖L2 (33)
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where ‖ · ‖ is a metric induced by the L2-norm. Hence, the least-square method for
OFAR(p) is to minimize the following objective function

E = ∑
t

d

(
X̄t , ᾱ0 +

p

∑
i=1

ᾱiX̄t−i

)
(34)

So-defined function does not guarantee that received coefficients will be ordered
fuzzy numbers, so we have to control coefficients in the course of estimation.

Empirical Results
For the case study the empirical data was the same as in Section 5.1. but was di-
vided into two sets, the first 80 candlesticks are used for estimation, while the next
13 candlesticks are used to evaluate the quality of prediction. The empirical results
of several types of ordered fuzzy autoregressive processes are presented.

Model 1
First, in Fig. 18 we can see the realization of a classical autoregressive process with
order 4, where the variables Xt are selected prices. On the left side we can see AR(4)
of close prices, while on the right side we can see AR(4) of average of OHLC prices.
Estimation of AR(4) processes was performed in statistical applications Eviews. We
can notice, that the ordered fuzzy autoregressive process is natural generalization of
the classical autoregressive process in the space of ordered fuzzy numbers. Assume
that all coefficients and input values are numbers (i.e. ordered fuzzy numbers, where
functions f and g are equal and constant), then the processes OFAR and AR are
equivalent (i.e. give the same results). For the set data, it is presented in Fig. 19.

Fig. 18 Realization and static forecast of classical AR(4) processes of close prices and aver-
age of OHLC prices, respectively

Model 2
Now, assume that the coefficients still are numbers, while input values are ordered
fuzzy candlesticks. Then OFAR can be identified with the vector autoregressive
model (VAR) and we can use Eviews for estimation coefficients. The realization
OFAR(4) are presented in Fig. 20. In Fig. 20 are shown also defuzzification values
of OFAR(4) received by the center of gravity operator (black line).
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Fig. 19 Realization and static forecast of OFAR(4) (triangle symbols) and classical AR(4)
(plus and star symbols)

Fig. 20 Realization and static forecast of OFAR(4) with assumption from Model 2 (triangle
symbols) with Gaussian OFC and defuzzification values of OFAR(4) (black line)

Model 3
Finally, assume that the coefficients are ordered fuzzy numbers and input values are
ordered fuzzy candlesticks. In this case the realization of OFAR(4) are presented in
Fig. 21. In Fig. 21 are shown also defuzzification values of OFAR(4) (black line).

Fig. 21 Realization and static forecast of OFAR(4) with assumption from Model 3 (triangle
symbols) with Gaussian OFC and defuzzification values of OFAR(4) (black line)
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5.3 Ordered Fuzzy Single-Period Simple Return

In financial studies more often used are returns, instead of prices. Return series are
easier to handle than price series because they have more attractive statistical prop-
erties and for average investors they form a complete and scale-free summary of
the investment opportunity [15]. Using the concept of ordered fuzzy candlestick the
fuzzy return series can be defined in a natural way.

Let X̄t be a ordered fuzzy time series (time series of OFC) given by time series of
prices. Then ordered fuzzy time series of one period return is defined by following
formula

R̄t =
X̄t − X̄t−1

X̄t−1
(35)

Empirical Results
For the case study we take the time series of ordered fuzzy Gaussian Candlestick
obtained in section 5.1 (see Fig. 15). The time series of ordered fuzzy simple return
is presented in Fig. 22.

Fig. 22 Ordered fuzzy one period return series

6 Conclusions

The novel approach to financial time series modeling based on ordered fuzzy num-
bers is presented in this chapter. We described the representation of financial data
using concept of the ordered fuzzy candlestick. The ordered fuzzy candlestick keeps
more information about the prices than the classical Japanese Candlestick. More-
over, the proposed approach enables to build the fuzzy financial time series models
in the simple form of classical equations. It allows to reduce the size of models com-
pared to models based on fuzzy rule-based systems. It is too early to evaluate the
usefulness of ordered fuzzy candlesticks in financial engineering, however one can
expect that this approach to fuzzy modeling based on ordered fuzzy numbers will
bring a new quality. Furthermore, the time series of ordered fuzzy return presented
in section 5.3 can be used in the most interesting area of financial modeling, i.e.
modeling of volatility. Results of further experiments to validate this approach will
be reported on in the future.
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11. Łȩski, J.: Neuro-fuzzy systems. WNT, Warsaw (2008) (in Polish)
12. Murphy, J.J.: Technical Analysis of the Financial Markets. New York Institute of Fi-

nance, New York (1999)
13. Nison, S.: Japanese Candlestick Charting Techniques. New York Institute of Finance,

New York (1991)
14. Tanaka, H., Uejima, S., Asia, K.: Linear regression analysis with Fuzzy model. IEEE

Trans. Systems Man. Cybernet. 12, 903–907 (1982)
15. Tsay, R.S.: Analysis of Financial Time Series, 2nd edn. John Wiley & Sons, Inc., Hobo-

ken (2005)
16. Wagenknecht, M.: On the approximate treatment of fuzzy arithmetics by inclusion, linear

regression and information content estimation. In: Chojcan, J., Łȩski, J. (eds.) Fuzzy Sets
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Chapter 5 
Stochastic-Fuzzy Knowledge-Based Approach 
to Temporal Data Modeling  

Anna Walaszek-Babiszewska and Katarzyna Rudnik* 

Abstract. In the chapter an advanced fuzzy modeling method has been presented 
which can be useful in temporal data analysis. The method joints fuzzy and proba-
bilistic approaches. The notions of the stochastic process with fuzzy states, and 
linguistic random variable have been defined to create a knowledge representation 
of the SISO and MISO dynamic systems. As the basic description of the stochastic 
process with fuzzy states observed at fixed moments, the joint probability distribu-
tion of n linguistic random variables has been assumed. The joint, conditional and 
marginal probability distributions of the stochastic process with fuzzy states va-
luate weights of particular rules of the knowledge rule base. Also, the probability 
distributions determine the probabilistic structure of the particular steps of the 
tested process. A mean fuzzy conclusion (prediction) can be calculated by the 
proposed inference procedure.  

The implemented knowledge-based system, which creates the knowledge base 
with optimal number of elementary rules, has been also presented. The optimiza-
tion method uses a fast algorithm to find fuzzy association rules as a process of 
automatic knowledge base extraction.  

Two examples illustrate the presented methods of the knowledge base extrac-
tion from different numeric time series. 

1   Introduction     

In the topic literature there are many different approaches to time series modeling. 
The main distinguish can be made between statistical and fuzzy methods. Statis-
tical methods are well known in econometrics and in control theory areas and 
there are many identification methods of the models. The key role in ordering of 
the statistical methods in time series modeling has played the work by Box and 
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Jenkins [2]. Also fuzzy approaches or more general, neuro-fuzzy and genetic-
fuzzy approaches to time series modeling have a long history and a very large  
literature. Certain review of trends in fuzzy models and identification methods the 
interested reader can find e.g. in works [11] and [8]. 

It is often assumed, that temporal data collected from many objects of human 
activities constitute realizations of stochastic processes. Since the complete de-
scription of the stochastic process needs calculations of the series of nD probabili-
ty distributions [3, 5, 12], many types of models have been invented, which are 
sufficient under the specific assumptions. Time series models are well known as 
the models of the specific realizations of time-discrete stochastic processes. In the 
fuzzy systems theory, the fuzzy representations of time-discrete stochastic 
processes are known in forms of the linguistic rule-based models, as well as, the 
Takagi-Sugeno-Kang (TSK) fuzzy models with equations at the consequent parts 
of rules [8, 10, 19]. 

In the chapter we present the method of temporal data analysis, which joints 
fuzzy and probabilistic approaches. The notions of the stochastic process with 
fuzzy states [18], and linguistic random variable have been defined. As the basic 
description of the stochastic process with fuzzy states observed at fixed moments 

nttt ,...,, 21 , the joint probability distribution of n linguistic random variables has 

been assumed. The joint, conditional and marginal probability distributions of the 
stochastic process with fuzzy states determine  respective weights of particular 
rules of the knowledge base. Also, the probability distributions are used to deter-
mine the probabilistic structure of the particular steps of the tested process and to 
calculate a mean fuzzy conclusion (prediction) by the proposed inference proce-
dure. 

We also present the implementation of the knowledge-based system [13], 
which creates the probabilistic-fuzzy knowledge base with the optimal number of 
elementary rules. The optimization method uses a fast algorithm to find fuzzy as-
sociation rules as a process of automatic knowledge base extraction.  

Exemplary calculations are presented with results derived by using the imple-
mented knowledge-based system and chosen numeric time series. 

2   Stochastic Process with Fuzzy States      

2.1   Introduction     

According to the theory of stochastic processes, a family of time dependent 
random variables (dependent on a real parameter t), denoted as 

{ }Ω∈∈∈ ωχω ,,),,( TtXtX ,                                    (1) 

is defined as stochastic process (shortly written as X(t)), where R⊆χ  is a do-

main of the process values, RT ⊂  is a domain of  parameter t, and Ω  is an ele-
mentary events domain.  
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For each given t, tXtX =)(  is a random variable and { }xXPxF tt <=)(  is a 

distribution function of Xt. 
For any given set of parameter values, { }nttt ,...,, 21 , stochastic process )(tX  

is determined by n-D probability distribution function  

{ }nnnttt xtXxtXPxxxF
n

<<= )(,...,)(),...,,( 1121,...,, 21  

{ }ntt xXxXP
n

<<= ,...,11
.                   (2) 

Stochastic process is fully determined by a family of all n-D probability distribu-
tion functions, where n=1,2,… For any given elementary event Ω∈'ω , the func-
tion )',()( ωtXtx =  is a realization (trajectory) of the stochastic process X(t) [3, 

5, 12]. 

2.2   One Dimensional Probability Distribution of the Stochastic 
Process with Fuzzy States      

Let X(t) denotes a stochastic process, a family of time dependent random va-
riables, taking its values in R⊂χ , RTt ⊂∈ . Let (X, B, p) be a probability 

space, where B is a σ-field of Borel sets in R⊂χ  and p is a probability measure 

over (X, B).  
Let us determine, in the domain of the stochastic process values χ , a linguistic 

variable which is generated by the process X(t), at fixed t.  The linguistic variable 

is given by quintuple >< MGXLX t ,,),(, χ , where tX  is the name of the vari-

able and L(X)={LXi}, i=1,2,…,I is a collection of its linguistic values. The seman-
tic rule M assigns fuzzy event  Ai, i=1,2,…,I to every meaning of LXi , i=1,2,…,I 
[21]. Let also, membership functions ]1,0[:)( →χμ xiA  be Borel measurable 

and meet 

χμ ∈∀=
=

xx
I

i
Ai

,1)(
1

.                                         (3) 

Then, the collection of linguistic values L(X)={LXi}, i=1,2,…,I and the collection 
of corresponding fuzzy sets Ai, i=1,2,…,I defined over χ , will be called the lin-

guistic ( fuzzy) states of the stochastic process X(t).  
According to Zadeh’s definitions from [20], fuzzy states Ai, i=1,2,…,I of the 

stochastic process constitute fuzzy events in the probability space (X, B, p). Proba-
bility of the occurrence the fuzzy state Ai, can be calculated by the following Le-
besgue-Stietljes’ integral 


⊆

=
χ

μ
x

Ai dpxAP
i

)()( ,                                             (4) 
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if the integral exists [20]. The existence of the integral (4) results from the as-
sumption that )(xiAμ  is a Borel measurable function. If the universal set is a 

countable collection, X= ,...2,1},{ =nxn , and the probability function is deter-

mined for discrete process values nn pxXP == )( , such that 1=
n

np , then 

the probability of fuzzy event ( )=
n

nniAi xxA /)(μ , denoted as P(Ai) , is de-

fined as  

  n
n

nAi pxAP
i

)()( = μ .                                                (5) 

One dimensional probability distribution of linguistic values (fuzzy states) of the 
stochastic process X(t), for any fixed value t, can be defined as a set of probabili-
ties of fuzzy events 

{ } IiAPXP it ,...,2,1,()( == ,                                       (6) 

where )( iAP , i=1,2,...,I are determined according to (4) or (5) and the following 

relationships must be  fulfilled [16]: 

1)(0 ≤≤ iAP , i=1,2,…,I  ;       1)(
1

=
=

I

i
iAP .                          (7) 

2.3   nD Probability Distribution of the Stochastic Process with 
Fuzzy States     

One-dimensional probability of the stochastic process is an efficient description 
for the special type of stochastic processes, so called ‘white noise processes’.  

To determine a probability description of the stochastic process with fuzzy 
states for two fixed moments 21, tt , let us take into account two random variables 

( ))(),( 21 tXtX , determined in the probability space (X2, B, p), where 22 R⊆χ . 

Two linguistic random variables (linguistic random vector) ),(
21 tt XX  generated 

by stochastic process values in 2χ , can be defined. The simultaneous linguistic 

values ji LXLX × , i,j=1,2,…,I  and the corresponding collection of fuzzy events 

{ }
Ijiji AA

,...,1, =
×  can be determined over 2χ  by membership functions 

]1,0[:)( 2 →× χμ u
ji AA , i,j=1,2,…,I. The membership functions )(u

ji AA ×μ  in the 

linguistic vector domain, 2χ , should be Borel measurable and fulfill the following 

relationship: 
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2

1 1

)(,1)( χμ ∈∀=
=

×
=

uu
I

i
AA

I

j
ji

.                                (8) 

Then, fuzzy sets ji AA ×  determined in 2χ are the simultaneous fuzzy events and 

probability )( ji AAP × , is defined according to (4), as follows 


∈

×=×
2

)()(
χ

μ
u

AAji dpuAAP
ji

,                                        (9) 

where  

))(),(()( xxTu
jiji AAAA μμμ =× ,                                       (10) 

in particular 

)()()( xxu
jiji AAAA μμμ =× .                                                  (11) 

If universe X2 is a finite set, )},{(2
lk xx=χ , k=1,…,K, l=1,…,L, then the proba-

bility of simultaneous fuzzy event ji AA ×  is determined, according to  


∈

×=×
2),(

),(),()(
χ

μ
lk

ji
xx

lkAAlkji xxxxpAAP ,                         (12) 

where { } Llkklk xxp ,...,2,1;,...2,1),( ==  is a probability function of the discrete random 

vector variable ( ))(),( 21 tXtX , at two fixed moments 21, tt . 

The joint 2D probability distribution of the linguistic values (fuzzy states) of the 
stochastic process X(t) is determined by the collection of probabilities of simulta-
neous fuzzy events ji AA ×  

Ijijitt AAPXXP ,...,2,1,)},({),(
21 =×= ,                            (13) 

if the following relationships are fulfilled 

IjiAAP ji ,...,1,,1)(0 =∀≤×≤   and  1)(
1 1

=×
= =

ji

I

i

I

j

AAP .        (14) 

To determine the nD probability distribution of the stochastic process with fuzzy 

states, assume first, that stochastic process X(t), for a set of moments ntt ,...,1  is 

represented by a random vector ( ))(),...,( 1 ntXtX  and  (Xn, B, p) is a probability 

space.  Let the linguistic variables  

>< MGXLX t ,,),(,
1

χ ,…, >< MGXLX
nt

,,),(, χ
            

(15) 
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be generated by the stochastic process in the domain X . The same sets of the lin-
guistic values 

{ } Iiitt LXXLXLXL
n ,...,1)()(...)(

1 ===== ,                      (16) 

for particular linguistic variables are represented by fuzzy sets Ai, i=1,…,I, with 
membership functions, ]1,0[:)( →χμ xiA .  

Let the random linguistic vector variable whose name is determined by a vector 
( )

ntt XX ,...,
1

 takes simultaneous linguistic values 

{ }
niii

n LXLXLXXL ×××= ...)(
21

, Iii n ,...,1,...,1 =∀ ,               (17) 

whose meanings are represented by  the collection of  simultaneous fuzzy events 
(fuzzy states) 

{ } IiiAA nii n
,...,1,...,,)...( 11

=∀×× .                                 (18) 

Fuzzy events (18) are determined on nχ  by membership functions 
n

AA uu
nii

χμ ∈×× ),(...1
, which are Borel measurable and fulfill the relationship 

.,1)(... ...
1 1

1
1

n
AA

I

i

I

i

uu
nii

n

χμ ∈∀=××
= =
 

                                  

(19) 

Let also probabilities of the simultaneous fuzzy events (18), calculated according 
to (4) or (5), respectively, exist and fulfill the relationships 

IiiAAP nii n
,...,1,...,,1)...(0 11

=∀≤××≤ ;                    (20) 

1)...(...
1

1 1 1

=×× 
= =

n
n

ii

I

i

I

i

AAP .                                    (21) 

Then, nD joint probability distribution of linguistic values (fuzzy states) of the sto-

chastic process X(t) at moments ntt ,...,1  is a probability distribution of linguistic 

vector variable ( )
ntt XX ,...,

1
,  determined by the following collection of probabil-

ities of the simultaneous fuzzy events [16] 

IiIiiitt nnn
AAPXXP ,...,1;...;,...,1111

)}...({),...,( ==××= .                (22) 

In the nD joint probability distribution of linguistic values of the stochastic 
process X(t) we can distinguish rD , r<n marginal probability distributions, e.g. 

IiIiiii

I

i
tt nnn

n
n

AAAPXXP ,...,1;...;,...,1
1

111111
)}...({),...,( ==

=
−−−

×××=  ,    (23) 
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as well as, conditional probability distributions. Generally, nD joint probability 
distribution of linguistic values of the stochastic process X(t) can be expressed by 
using marginal and conditional probability distributions in a way 

).()/()...,...,/(),...,/(

),...,(),...,/(),...,,(

112122121

121121121

,1,

,,,

ttttttttttt

ttttttttttt

XPXXPXXXXPXXXXP

XXXPXXXXPXXXXP

nnnn

nnnnn

−−

−−−

−

==
 (24) 

2.4   Fuzzy Mean Value of the Stochastic Process with Fuzzy 
States     

Let the stochastic process X(t) takes its linguistic values L(X)={LXi}, i=1,2,…,I, 
which are represented by fuzzy events Ai, , i=1,2,…,I in χ . Let the probability dis-

tribution of the fuzzy states, { } IiAPXP it ,...,2,1,()( ==  exists. Then, a fuzzy 

mean value of the stochastic process with fuzzy states, denoted as )(XA , is a 

fuzzy set determined as 

χ∈∀= 
=

xAPAXA
I

i
ii ,)()(

1

,                                    (25) 

and the membership function is calculated as follows: 

χμμ ∈∀= 
=

xAPxx
I

i
iAA i

,)()()(
1

.                                (26) 

3   Fuzzy Knowledge Base of the Stochastic Systems     

Fuzzy rule based models of dynamic systems are being used not only when know-
ledge about the real system functioning is incomplete but also when the fuzzy rule 
based model has to approximate the real system characteristics when the system is 
too complex or nonlinear.  Those models are well known and they are described in 
the subject literature, eg. in [8, 19]. They are often connected with algorithms of 
clustering or evolving algorithms. 

The novelty in the propositions implemented into model known in subject lite-
rature through this work, is the model validation by the probability distributions 
determined by empirical data. 

Defining the fuzzy knowledge base for stochastic environment, it is necessary 
to make some assumptions about the possibility of existing multidimensional 
probability distributions of stochastic processes realizations observed in long time 
intervals. Usually, we assume also ergodicity and stationarity of the processes. 
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3.1   Fuzzy SISO Model of the Stochastic Process     

Let X(t) be a stochastic process with fuzzy states, as it was shown in paragraph 2. 
Assuming that the process was observed at two fixed moments 1221 ;, ttTtt >∈ , 

the process realizations have been used to calculate 2D empirical probability dis-
tributions of fuzzy states. 

The fuzzy knowledge representation of the stochastic process is a collection of 
the following weighted file rules, in the form [18]: 

)(XLAi ∈∀ , i=1,…,I 

iJJt

ijjt

ititi
i

wAisXAlso

wAisXAlso

wAisXThenAisXIfwR

/

/

/11
)(

)(

)(

)(])([:

2

2

21

−−−−−−−−−−−−

−−−−−−−−−−−−
,                         (27) 

where IjiXLAA ji ,...,2,1.),(, =∈ denote the fuzzy states of the process, and 

weights 

)(
1 iti AXPw == , i=1,2,…,I                                 (28) 

are the  probabilities of fuzzy events at the antecedents of the rules (marginal 
probability distribution), and weights 

)]/()[(
12/ itjtij AXAXPw === , j=1,2,…,I;  i=const  (29) 

are the conditional probabilities of the fuzzy events at the consequent part of the 
rules (conditional probability distribution). According to the probability distribu-
tion features, the following relationships are fulfilled 

1
,...,1

=
=

i
Ii

w 1/
,...,1

=
=

ij
Jj

w . 

The model can be also presented as a collection of the elementary weighted rules  

)(XLAi ∈∀ , )( XLAj ∈∀ , i,j=1,2,…,I 

)]()([:
21

),(
jtitij

ji AisXThenAisXIfwR ,                        (30) 

where  

)(),(
21 jittij AAPXXPw ×== , i,j=1,2,…,I                     (31) 

is a joint probability of fuzzy events in the rule (joint probability distribution) and 
the  following relationship must be fulfilled 
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1
,...,1,...,1

=
==

ij
JjIi

w . 

The above propositions of the knowledge representation contain weights: wi, wj/i, 
wij, which stand for the frequency of the occurrence the fuzzy events in particular 
parts of rules. The weights, real numbers from the interval [0, 1], do not change 
logic values of the sentences.  

Assuming stationarity of the process with fuzzy states, the prediction of the 
process can be determined by means of approximate reasoning.  

3.2   Inference Procedure (Prediction Procedure) from the SISO 
Model of the Stochastic Process   

For the logic analysis we take into account the following fuzzy relation 
representing file rule (30)  

)......(: 1
)(

Iji
i AAAAR ∪∪∪∪ ,                               (32) 

which can be described by membership function  

),(),(
21121)( )...( ttAAAttR

xxxx
Iii ∪∪= μμ , i=1,…,I.                      (33) 

To consider the prediction procedure, which is based on well-known procedure of 
approximate reasoning (e.g. in [8, 10, 19]), let us assume the crisp value of the 

stochastic process at moment t1, 
∗=
1

)( 1 txtX . 

Then the level of activation of the elementary rule is determined as  

)(
1

∗= tAi x
i

μτ , i=1,…,I                                               (34) 

and the fuzzy value of the conclusion )( '
/2 ijt AisX , computed e.g. based on  

Larsen’s rule of reasoning, is a fuzzy set '
/ ijA , determined by its membership 

function  

)()(
22'

/
tAitA

xx
jij

μτμ = , j=1,…,I; i=const.                         (35) 

The fuzzy conditional expected value (fuzzy conditional mean value) of the output 

of i-th rule '
1 ]})(/[))({(

2 iijt AAistXAisXE =ϕ , stands for the aggregated 

outputs of elementary rules, j=1,…,J, according to the formula [16] 

)()(
2'

/2' / tAij
j

tA
xwx

iji
μμ = .                                    (36) 
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The fuzzy expected value of the prediction, 
'*]})(/[))({(

12 1 AxtXAisXE tjt ==ϕ , computed as the aggregated outputs of 

all active i-th rules, is determined by the formula [16] 

)()()(
22'2 /' tA

j
iji

i
itA

i
itA xwwxwx

ji
μτμμ  == .                  (37) 

The prediction according to the generalized Mamdani-Assilian’s type interpreta-
tion of fuzzy models gives us the following conclusion 

))(,()(
22'

/
tAitA

xTx
jij

μτμ = , j=1,…,I; i=const.                        (38) 

Prediction determined by using the logic type interpretation of fuzzy models, gives 
us the following relationships, instead of (35) or (38): 

 ))(,()(
22'

/
tAitA

xIx
jij

μτμ = ,  j=1,…,I; i=const,                     (39) 

where T denotes a t-norm and I means the implication operator.  
The scheme of the prediction procedure from the SISO model is presented in 

Fig. 1. 

 

Fig. 1 Scheme of the prediction procedure from the SISO fuzzy model of the stochastic 
process 

3.3   Fuzzy MISO Model of the Long Memory Stochastic Process      

Let the stochastic process X(t) with fuzzy states be determined, as it has been 
shown in paragraph 2. To create the representation of knowledge base in the form 
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of fuzzy If…Then rules, the linguistic random variables have been determined 
with their collection of linguistic values, { }

kikLX , , the same for each variable.  

The meanings of linguistic values are represented by fuzzy sets, 
kikA , , k=1,…,n; 

ik=1,…,I  in χ, with the Borel measurable  membership functions 
]1,0[:)(

,
→χμ x

kikA , k=1,…,n; ik=1,…,I.  

The fuzzy sets divide the  space χn of values of samples into n-D fuzzy areas: 
)...( ,,1 1 nini AA ×× , i1=1,2,…,I;…; in=1,2,…,I.  

Assuming that the process was observed at fixed moments 

1121 ...;,...,, tttTttt nnn >>>∈ − , the process realizations have been used to 

calculate the following empirical probability distributions of fuzzy states: 

• nD joined probability distribution of the linguistic random vector variable 
( )

ntt XX ,...,
1

  

IiIiinitt nnn
AAPXXP ,...,1;...;,...,1,,1 111

)}...({),...,( ==××= ,                   (40) 

• marginal (n-1)D probability distribution of the linguistic random vector varia-
ble (of the antecedent fuzzy events) 

IiIiinittj nnn
AAPXXPw ,...,1;...;,...,1,1,1 111111

)}...({),...,( ==− −−−
××== , (41) 

• conditional probability distribution (of the consequent fuzzy events) 

)]}.../([{),...,/(
1111 ,1,1,/ −− −××==

nnnnn iniintttji AAAPXXXPw   (42) 

.,...,,;,...,2,1 121 constiiiIi nn == −  

The MISO fuzzy model, as the knowledge representation of the stochastic process, 

has the form of the collection { } Jj
jR ,...,2,1
)(

=  of weighted file rules [16]:  

)(
11,1 ti XLA ∈∀ , )(

22,2 ti XLA ∈∀ ,…, )(, nn tin XLA ∈∀ , 
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−− −

 (43) 
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j=1,2,…J ; J - number of file rules. The number of file rules, J, depends on the 
number of fuzzy (n-1)D areas in the input space Xn-1, with  non-zero probabilities 

iw ; it can be even 1−= nIJ . 

3.4   Prediction Procedure from the MISO Fuzzy Model of the 
Stochastic Process     

Assuming, that the process with fuzzy states is a stationary process, that is, the nD 
joint probability distribution does not depend on time, we can use the created 
knowledge representation for the prediction of the process.  The conclusion, fuzzy 
or numeric, determined by means of approximate reasoning represents the predic-
tion of the process.  The input data can be fuzzy or numeric in their character. 

Let us consider the prediction procedure, assuming crisp data of observations of 

the process, ∗
−

∗∗
−

===
121

)(,...,)(,)( 121 ntntt xtXxtXxtX . Then, the level of acti-

vation of j-th rule is determined by the t-norm of membership functions of fuzzy 
sets in antecedents as follows [8, 10, 19]: 

( ))(),...,(),(
11,122,211,11

∗∗∗
−−−

=
nninii tAtAtAj xxxT μμμτ , j=1,…,J. (44) 

If the values of the process at moments 121 ,...,, −nttt  are expressed by fuzzy num-

bers (linguistic values), that is  

)'(
11 ,1 it AisX  And )'(

22 ,2 it AisX And …And )'(
11 ,1 −− − nn int AisX , 

where 
kikA ,' are given by the membership functions ]1,0[:)(' , →χμ

kk tikA x , 

k=1,2,…,n-1, then the level of activation of j-th rule is expressed  as [8, 10, 19]: 
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The fuzzy conclusion, 
nn int AisX ,' , from in-th consequent part of the rule can be 

determined by one of the ways [8, 10, 19]: 

• according to Mamdani-Assilian’s rule of inference 

)()(
,

'
, n

nin
n

nin
tAjtA

xx μτμ ∧= ,                                       (46) 

• according to Larsen’s rule 

)()(
,

'
, n

nin
n

nin
tAjtA

xx μτμ = ,                                            (47) 
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• according to generalized Mamdani-Assilian’s type of interpretation 







= )(,)(

,
'
,

2 xTx
ninnin AjA

μτμ
                                                 

(48) 

• according to the logic interpretation 







= )(,)(

,
'
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nin
n

nin
tAjtA

xIx μτμ .                                            (49) 

The fuzzy conditional expected value of the conclusion '
, ninA   

( ) ( ) ( )[ ] '
/,1,1, 1111

'...'/' jnititint AAisXAisXAisXE
nn

=∩∩  (50) 

is the aggregated value (weighted sum) of conclusions from particular in-th out-
puts,  in=1,…,I (calculated according to one of relationships (46) - (49))  and the 
conditional probabilities of fuzzy events in in-th consequents, as follows 

)()( '
,

'
/

/ n
ninn

n
njn

tAji
i

tA
xwx μμ = .                                  (51) 

Taking into account all j-th active rules, the fuzzy conditional expected value of the 
prediction, An’,  

( ){ }∗
−
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−

====
121

)(,...,)(,)(/)(' 121
'

/ nn tnttjntn xtXxtXxtXAisXEA   (52) 

can be calculated as the aggregated value (weighted sum) of conclusions from par-

ticular j-th file rules, '
/ jnA , (51), and joint probabilities of fuzzy events in particu-

lar antecedents, as follows 
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xwwxwx μμμ  == . (53) 

Subscript n in An’ shows, that fuzzy conclusion is the fuzzy value of the linguistic 

random variable 
ntX . 

The discussed prediction procedure from the MISO model is presented in Fig. 2. 

The numerical value of the prediction, *
nx , can be determined as the centroid of 

An’ calculated  e.g. by the COA method  
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The fuzzy value of the prediction )( '
nt AisX

n
is a function of fuzzy propositions 

)'( , kk ikt AisX , or numerical propositions ∗=
ktk xtX )( , for k=1,2,…,n-1, on the 

input of the system, as well as the chosen procedures of inference. 

 

Fig. 2 Scheme of the prediction procedure from the MISO fuzzy model of the stochastic 
process 

3.5   Probability of Fuzzy Predictions     

We can also determine the probability of the fuzzy conclusions, fuzzy predictions, 
derived from the stochastic-fuzzy rule bases of the SISO and the MISO model.   

Since the fuzzy conclusion (prediction), determined during the reasoning pro-
cedures,  is given by its membership function in a domain of the output variable, 
and the probability distribution p(x) has been determined based on data, then, 
probability of the fuzzy prediction can be determined by the following formula 

( ) dxxpxxtXxtXAisXP
x

Atntnt
nnn

)()())(,...,)(/()( '11 11
' 

∈

∗
−

∗ ===
−

χ

μ . (55) 

4   Conception of the Knowledge-Based Inference System   

The knowledge-based systems are usually composed of the following parts [8,  
10, 19]: 

• knowledge base in the form of if-then rules (43), that contains information es-
sential to solve a given problem, 
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• fuzzification block that transforms quantitative data into qualitative data 
represented by fuzzy sets on the bases of membership grades entered in the da-
tabase,  

• inference block that utilizes the database and the implemented aggregation me-
thods and final inference (reasoning) to solve specialized problems, 

• defuzzification block  that calculates the crisp value (defuzzified value) at the 
system output on the bases of the resulting membership grades. 

The implemented knowledge base contains database and rule base. The database 
contains information defined by experts on a given application field containing lin-
guistic values of the variables accounted in the rule base and definitions of fuzzy 
sets identified with these values. On the other hand, knowledge base contains a set 
of linguistic rules created on the grounds of a modified algorithm generating fuzzy 
association rules. The algorithm makes it possible to adjust the model to measure-
ment data. The characteristic form of the rules, exposing an empirical probability 
distribution of fuzzy events enables a simple interpretation of the knowledge con-
tained in the model and additional analysis of the considered problem.  

The inference mechanism with multiple inputs and a single output enables the 
calculation of the membership function of the conclusion, on the bases of the crisp 
input data, and, in consequence, the defuzzified value of the model output. For the 
system with the rule base in the form of (43), there are many possible ways of ob-
taining crisp output results. In this conception of the knowledge-based inference 
system, we consider the methods presented in chapter 3.4. 

4.1   Methods of Fuzzy Knowledge Discovery     

The if-then rules that constitute the knowledge bases of the fuzzy system may be 
defined in two ways: 

• as logical rules constituting subjective definitions created by experts on the 
grounds of experience and knowledge of the investigated phenomenon, 

• as physical rules constituting objective knowledge models defined on the 
grounds of observations and natural research into the analyzed process (object) 
and its regularities. 

In the case of fuzzy modeling there were initially logics rules, yet, in consideration 
of machine learning a hybrid of rules was gradually implemented according to 
which initial assumptions concerning fuzzy sets and the associated rules are de-
fined following the experts’ conviction, whereas other parameters are adjusted to 
measurement data. The objective of automatic data discovery is to obtain the 
smallest set of if-then rules enabling as accurate representation of the modelled ob-
ject or phenomenon as possible. 

Methods of knowledge discovery for fuzzy systems of Mamdani type include 
[10, 19]:  

• Wang-Mendel method,  
• Nozaki-Ishibuchi-Tanaki method,  
• Sugeno-Yasukawa method, 
• template-based method of modelling fuzzy systems.  
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In order to obtain databases for fuzzy systems, data mining methods have also 
been applied. 

Data mining, considered as the main stage in knowledge discovery [4] is  
focused on non-trivial algorithms of searching “hidden”, so far unknown and  
potentially required information [6] and its records in the form of mathematical 
expressions and models. Some of the data mining methods identify zones in the 
space of system variables, which, consequently, create fuzzy events in the rules. 
This may be accomplished by searching algorithm clusters or covering algorithms, 
also called separate and conquer algorithms. Other methods, for example: fuzzy 
association rules, are based on constant division for each attribute (fuzzy grid) and 
each grid element is regarded as a potential component of the rule. As far as the 
first approach is concerned, each identified rule has its own fuzzy sets [17]. There-
fore, from the point of view of rules interpretation, the second approach seems 
more applicable [9].  

4.2   Association Rules as Ways of Fuzzy Knowledge Discovery 

Irrespective of automatic knowledge discovery, rules of the fuzzy model are ob-
tained on the bases of their optimal adjustment to experimental data. In view of 
this, the generation of the rules may be understood as a search for rules with high 
occurrence frequency, where, the frequency parameter influences the optimal rules 
adjustment. In such case, fuzzy rules may be analyzed as the co-existence of fuzzy 
variable values in experimental data, i.e.: fuzzy association rules.  

The issue of association rules was first discussed in [1]. Nowadays it is one of 
the most common data mining methods. In a formal approach, the association 
rules have the form of the following implications: 

c)(s,YX ,                                                        (56) 

where X and Y are separable variable sets (attributes) in the classic approach to 
mathematical sets, often referred to as: X – conditioning values set, Y- conditioned 
values set. 

Considering the fuzzy rules of association for the MISO model (43), the follow-
ing may be derived: 

),()(...)()(

:

1,,1,2,1 112211
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ntintitit nnn




−− −
,(57) 

where 
kikA , , k=1,…,n; ik=1,…,I  denote the fuzzy states of the process.  

Each association rule is connected with two statistical measures that determine 
the validity and power of the rule: support (s) – probability of the simultaneous in-
cidence of set ( YX ∩ ) in the set collection and confidence (c) – also called 
credibility which is conditional probability ( )|( XYP ). The issue of discovering 

fuzzy association rules involves finding, in a given database, all support and trust 
values that are higher than the association rules the support and trust of which are 
higher than the defined minimal values of support and trust given by users. 
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The first application of the association rules was in basket analysis. However, 
taking into account the fact that rules may include variables that are derived from 
diverse variables expressed in a natural language, the ranges of the application of 
the discussed method may be extended to forecasting, decision-making, planning, 
control etc. In the inference system with stochastic-fuzzy knowledge base, we 
proposed to use the idea of fuzzy association rules to knowledge discovery. 

In the topic literature we can find many algorithms of creating the association 
rules and modifications [1, 7] but they generate association rules only in non-
fuzzy version. To knowledge discovery in the form of (43) two algorithms have 
been proposed [13, 14, 17]. One is based on the Apriori algorithm and the second 
algorithm uses the FP-Growth assumption. In these algorithms the so called fre-
quent fuzzy set is a set of which the probability of the occurrence is bigger than 
the value of the assumed minimal support s. Thus, the inputs of the proposed algo-
rithm are: set of measurements used for model identification, predefined database 
(linguistic values of variables considered in the model and definitions of fuzzy sets 
identified with the values), and the threshold value of minimal support (s). 
Threshold value of the minimal confidence (c) is not in use. The output of the al-
gorithms is a rule base of a probabilistic-fuzzy knowledge representation. Fig. 3. 
presents the results of comparison of the generating time of the probabilistic-fuzzy 
knowledge base as the function of the minimal support value for the modified Ap-
riori and FP-Growth algorithms. The chart presents the advantage of modified FP-
Growth algorithm. 

 

Fig. 3 The time of generating the probabilistic-fuzzy knowledge base as the function of the 
minimal support value for the modified Apriori and FP-Growth algorithms (3 input vari-
ables, one output variable, 5 fuzzy sets for each variable, near 500 learning data) 
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5   Exemplary Calculations     

The created in the work [13] inference system has been applied to predict the val-
ues of time varying variables determining the natural phenomena such as wind 
speed and ash contents (incombustible matter) in row coal. Both variables are very 
difficult for prediction because of many random rates influence on the measure-
ments results.  

The set of 11 000 measurements of the wind speed X(t)={v(t)} t=1,2,…n were 
recorded at 1-minute samplings. The averages of measurements from 4 steps were 
researched. First 2000 measurements were treated as learning data, the remaining 
ones – test data. The forecasts of wind speed v(t) have been made on the grounds 
of the last three measurements of wind speed denoted as v(t-3), v(t-2), v(t-1). For 
each variable, in the space of process values, 9 fuzzy sets have been defined, with 
the linguistic values describing the wind speed, as: “very light”, “light”, “mild”, 
“moderate”, “fairly strong”, “strong”, “very strong”, “squally”, “very squally”, as-
suming 45 disjoint intervals of the variables values. Exemplary values of the 
membership functions for variable v(t-3) are shown in Fig. 4. 

The membership grades for other variables have been analogically defined. 

 
Fig. 4 Fuzzy sets defined for 9 linguistic values of the linguistic variable ‘speed wind’ 

In Table 1. the exemplary joint empirical probability distribution for two cho-
sen linguistic random variables has been presented. We can see that variables take 
their three from nine linguistic values and the probability distribution is ‘narrow’, 
concentrated only over the few linguistic values.  
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Table 1 Exemplary joint probability distribution of two linguistic random variables (Xt,Xt-1) 
under the conditions: ((Xt-3 is moderate) and (Xt-2 is moderate)) 

Assumption: wind X(t-3) is 'moderate' and wind X(t-2) is 'moderate' 

                  X(t)
   X(t-1) 

very light light mild moderate fairly strong strong 

very light 0 0 0 0 0 0 

light 0 0 0 0 0 0 

mild 0 0 0,0145 0,0196 0 0 

moderate 0 0 0,0223 0,0934 0,0180 0 

fairly strong 0 0 0 0,0153 0,0156 0 

strong 0 0 0 0 0 0 

The optimal model structure is derived at the minimal support value, equal to 
s=0.001, then, the root mean square error for the learning data is 0.5514 m/sec, 
whereas for the testing data it is 0.6434 m/sec. The model consists of 92 elemen-
tary rules (47 file rules). The most important file rules are: 

R1: (0.1337) IF (X(t-3) IS 'moderate') AND (X(t-2) IS 'moderate') AND (X(t-1) IS 'moderate') 
                          THEN (X(t) IS 'moderate') (0.6989) 
                          ALSO (X(t) IS 'mild') (0.1665) 
                          ALSO (X(t) IS 'fairly strong') (0.1346) 
R2: (0.0973) IF (X(t-3) IS 'fairly strong') AND (X(t-2) IS 'fairly strong') 
 AND (X(t-1) IS 'fairly strong')  
  THEN (X(t) IS 'fairly strong') (0.6827) 
                            ALSO (X(t) IS 'moderate') (0.2253) 
                            ALSO (X(t) IS 'strong') (0.0920) 
R3: (0.0749) IF (X(t-3) IS 'mild') AND (X(t-2) IS 'mild') AND (X(t-1) IS 'mild') 
                    THEN (X(t) IS 'mild') (0.6683) 
                             ALSO (X(t) IS 'moderate') (0.2131) 
                              ALSO (X(t) IS 'light') (0.1186) 

The results of predicted numeric values of the wind speed and measured data have 
been presented in Fig. 5.  

 

Fig. 5 Comparison of the prediction values and empirical data of wind speed for testing data 
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The next application of the tested inference system in dynamic system model-
ling will be shown on the example of coal parameters analysis. Measurements of 
some coal parameters, as contents of particular density fractions of grains, ash or 
sulfur contents are the bases of quality control at coal preparation plants and 
power stations. Sampling research of grain materials are used by technological 
process engineers to approximate needed coal parameters or characteristics. Sam-
ple taking is a random process, according to respective scheme of randomness. In 
the other hand, experts of technology often express some values of measurements 
in linguistic categories. These are the reasons that  knowledge base of the variation 
of empirical data concerning coal parameters is created with regards fuzziness and 
randomness. 

The interested reader can find more details on probabilistic-fuzzy modelling 
characteristics of grain materials in the work [15].  

In the example the coegsisting of two variables: the content of light grains frac-
tion, X, and the ash content in that fraction, Y, in the time series has been analyzed. 
Spaces of considerations of both variables have been divided into 40 disjoint in-
tervals and 7 triangular fuzzy sets have been defined as the representations of lin-
guistic values: {"very small", "small", "medium small", "medium", "medium 
large", "large", "very large"}, for both variables. 

Derived knowledge base for that dynamic system has a form of 779 file rules. 
The most important rules are presented below: 

R1: (0.0487) IF (X(t-2) IS 'med. large') AND (Y(t-2) IS 'small') AND (X(t-1) IS 
'med. large') AND (Y(t-1) IS 'small') THEN (Y(t) IS 'small') (0.5277) 

        ALSO (Y(t) IS 'v. small') (0.2004) 
        ALSO (Y(t) IS 'med. small') (0.1954) 
        ALSO (Y(t) IS 'medium') (0.0398) 
        ALSO (Y(t) IS 'med. large') (0.0257) 
        ALSO (Y(t) IS 'large') (0.0102) 
        ALSO (Y(t) IS 'v. large') (0.0009) 

R2: (0.0247) IF (X(t-2) IS 'medium') AND (Y(t-2) IS 'small') AND (X(t-1) IS 'med. 
large') AND (Y(t-1) IS 'small') THEN (Y(t) IS 'small') (0.4673) 

        ALSO (Y(t) IS 'med. small') (0.2454) 
        ALSO (Y(t) IS 'v. small') (0.1478) 
        ALSO (Y(t) IS 'medium') (0.1293) 
        ALSO (Y(t) IS 'med. large') (0.0075) 
        ALSO (Y(t) IS 'large') (0.0018)  
  ALSO (Y(t) IS 'v. large') (0.0009) 

In Table 2. the probability distribution of two linguistic random variables  
(Yt, Yt-1), under the conditions: ((Xt-2 is medium large) and (Yt-2 is small) and (Xt-1 is 
medium large)), has been presented. It is easy to observe that occurrence of any 
linguistic value of any variable is possible with a probability grater then zero. This 
is different distribution then in the first example. 
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Table 2 Exemplary probability distribution of two linguistic random variables (Yt, Yt-1)  
under the conditions: ((Xt-2 is medium large) and (Yt-2 is small) and (Xt-1 is medium large)) 

Assumption: X(t-2) is 'med. large' and Y(t-2) is 'small' and X(t-1) is 'med. large' 

                 Y(t)  
 Y(t-1) 

'v. small' 'small' 
'medium 
small' 

'medium' 
'medium 
large' 

'large' 'v. large' 

'v. small' 0,0047 0,0087 0,0028 0,0002 0,0004 0,0010 0,0002 

'small' 0,0097 0,0257 0,0095 0,0019 0,0012 0,0005 4,37E-05 

'med. small' 0,0029 0,0063 0,0041 0,0005 0,0002 0,0001 0 

'medium' 0,0009 0,0021 0,0008 0,0005 0,0003 9,29E-05 0 

'med. large' 0,0003 0,0003 0,0002 0,0001 9,985E-06 0 0 

'large' 2,07E-05 0,0005 5,119E-05 0 0 0 0 

'v. large' 2,099E-06 9,38E-05 8,362E-05 0 0 0 0 

The computed marginal and conditional probability distributions have been 
used in the prediction procedure. The optimal structure of the model has been de-
rived at the complete probability distribution, by using both Larsen’s inference 
rule and Fodor’s t-norm as a representation of the logic AND (see T1 in chapter 
3.4.). Than the root mean square for training data was equal to 0.87, and for test-
ing data 1.85. 

6   Conclusions   

The use of fuzzy logics in the knowledge-based system makes it possible to  
express incomplete and uncertain information in a natural language, typical for 
expression and cognition of human beings. In addition, the application of the 
probability of events expressed in linguistic categories enables the adjustment of 
the model on the grounds of numerical information derived from the data stored in 
the course of the operation of a given real processes. The created model becomes 
easier for interpretation by its users, what is very important in the strategic deci-
sion-making situations, as well as, in diagnostic systems.  
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Chapter 6 
A Novel Choquet Integral Composition 
Forecasting Model for Time Series Data Based 
on Completed Extensional L-Measure 

Hsiang-Chuan Liu* 

Abstract. In this study, based on the Choquet integral with respect to complete 
extensional L-measure and M-density, a novel composition forecasting model 
which composed the time series model , the exponential smoothing model and 
GM(1,1) forecasting model was proposed.  For evaluating this improved 
composition forecasting model, an experiment with the data of the grain 
production in Jilin during 1952 to 2007 by using the sequential mean square error 
was conducted. Based on the M-density and N- density, the performances of 
Choquet integral composition forecasting model with the completed extensional 
L-measure, extensional L-measure, L-measure, Lambda-measure and P-measure, 
respectively, a ridge regression composition forecasting model and a multiple 
linear regression composition forecasting model and the traditional linear 
weighted composition forecasting model were compared. The experimental results 
showed that the Choquet integral composition forecasting model with respect to 
the completed extensional L-measure and M-density outperforms other ones. 
Furthermore, for each fuzzy measure, including the completed extensional  
L-measure, extensional L-measure, L-measure, Lambda-measure and P-measure, 
respectively, the Choquet integral composition forecasting model based on  
M-density is better than the one based on N-density. 

Keywords: Choquet integral, composition forecasting model, M-density, 
completed extensional L-measure.  
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1   Introduction 

The composition forecasting model is first considered in the work of Bates and 
Granger (1969) [1]. They are now in a widespread use in many areas, especially in 
economic field.  Zhang Wang and Gao (2008) [2] applied the linear composition 
forecasting model which composed the time series model, the second-order 
exponential smoothing model and GM(1,1) forecasting model in the Agricultural 
Economy Research, the GM(1,1) is one of the most frequently used grey 
forecasting model, it is a time series forecasting model, encompassing a group of 
differential equations adapted for parameter variance, rather than a first order 
differential equation [3-4]. In our previous works [5-9], we extended the work of 
Zhang, Wang, and Gao by proposing some nonlinear composition forecasting 
model which also composed the time series model, the second-order exponential 
smoothing model and GM(1,1) forecasting model by using the ridge regression 
model [5] and the theory of Choquet integral with respect to some fuzzy measures, 
including Sugeno’s λ-measure [13], Zadeh’s P-measure [14] and authors’ fuzzy 
measures, L-measure, extensional L-measure and completed extensional L-
measure [6-12]. Since the first two well-known fuzzy measures are univalent 
measures, each of them has just one feasible fuzzy measure satisfying the 
conditions of its own definition, but the others proposed by our previous works are 
multivalent fuzzy measures, all of them have infinitely feasible fuzzy measures 
satisfying the conditions of their own definition. The fuzzy measure based 
Choquet integral composition forecasting models are supervised methods, by 
comparing the mean square errors between the estimated values and the 
corresponding true values, each of our multivalent fuzzy measures based 
forecasting models has more opportunity to find the better feasible fuzzy measure, 
the performances of them are always better than the one based on the univalent 
fuzzy measures, λ-measure and P-measure. In addition, the author has proved that 
the P-measure is a special case of the L-measure [7], we know that all of the 
extended multivalent fuzzy measures of L-measure are at lest as good as their 
special case P-measure. However, the λ-measure is not a special case of the L-
measure, so the improved L-measure, called extensional L-measure, was proposed 
to contain the λ-measure as a special case [7]. And then, all of the P-measure, λ-
measure and L-measure are special cases of the extensional L-measure. However, 
the extensional L-measure does not attend the largest fuzzy measure B-measure, it 
is not a completed fuzzy measure, for overcoming this drawback, an improved 
extensional L-measure, called completed extensional L-measure was proposed, all 
of other above-mentioned fuzzy measures proposed are the special cases of it. The 
real data experiment showed that the extensional L-measure Choquet integral 
based composition forecasting model is the best one. On the other hand, all of 
above mentioned Choquet integral composition forecasting models with some 
different fuzzy measures are based on N-density. From the definition of Choquet 
integral and fuzzy measures, we know that the Choquet integral can be viewed as 
a function of its fuzzy measure, and the fuzzy measure can be viewed as a function 
of its fuzzy density function,  therefore, the performance of any Choquet integral 
is predominate by its fuzzy measure, and the performance of any fuzzy measure is 
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predominate by its fuzzy density function, in other words, the performance of any 
Choquet integral is predominate by its fuzzy density function. Since the older 
fuzzy density function N-density is based on the linear correlation coefficient, the 
new fuzzy density function M-density based on the mean square error is non-
linear, the relations among the composition forecasting model and three given 
forecasting models are non-linear as well, hence, in the same Choquet integral 
with respect to the same fuzzy measure, the performance of the non-linear fuzzy 
density functions is always better than the linear fuzzy density functions.   

In this paper, a novel fuzzy measure, called the completed extensional L-
measure, and the new fuzzy density function, M-density, are considered. Based on 
the M-density and the proposed completed extensional L-measure, a novel 
composition forecasting model is also considered. For comparing the forecasting 
efficiency of two fuzzy densities M-density and N-density, is also considered. 

2   The Composition Forecasting Model 

In this paper, for evaluating the forecasting validation of forecasting model to 
sequential data, the sequential mean square error is used, its formal definition is 
listed as follows. 

Definition 1.   Sequential Mean Square Error (SMSE) [9-10] 

If t jθ + is the realized value of target variable at time ( )t j+ , |
ˆ
t j tθ + is the forecasted 

value of target variable at time ( )t j+ based on training data set from time 1 to 

time t, 

and                ( )( ) ( )2

| 1
1

1ˆ ˆ ˆ
h

h
t t j t j t j

j

SMSE
h

θ θ θ+ + − +
=

= −  (1)

then ( )( )ˆ h
tSMSE θ is called the sequential mean square error (SMSE) of the h 

forecasted values of target variable from time ( )1t + to time ( )t h+  based on 

training data set from time 1 to time t. The composition forecasting model or 
combination forecasting model can be defined as follows. 

Definition 2.   Composition Forecasting Model [9-10] 
(i) Let ty be the realized value of target variable at time t. 

(ii) Let ,1 ,2 ,, ,...,t t t mx x x be a set of m competing predictors of ty , ˆ
ty be a function f 

of ,1 ,2 ,, ,...,t t t mx x x with some parameters, denoted as 

( ),1 ,2 ,
ˆ , ,...,t t t t my f x x x=  (2) 
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(iii) Let | ,t j t kx + be the forecasted values of ty by competing predictor k at time 

( )t j+ based on training data set from time 1 to time t, and for the same function f 

as above, 

Let                  ( )| ,1 ,2 ,
ˆ , ,...,t j t t j t j t j my f x x x+ + + +=  (3)

(iv) Let            ( )( ) ( )2

| 1
1

1
ˆ ˆ

h
h

t t j t j t j
j

SMSE y y y
h + + − +

=

= −  (4)

 ( )( ) ( )2

, ,
1

1 h
h

t k t j k t j
j

SMSE x x y
h + +

=

= −  (5)

For current time t and the future h times, if 

( )( ) ( )( ),1
ˆ minh h

t t kk m
SMSE y SMSE x

≤ ≤
≤  (6) 

then ˆ
ty is called a composition forecasting model for the future h times of 

,1 ,2 ,, ,...,t t t mx x x or, in brief, a composition forecasting model of ,1 ,2 ,, ,...,t t t mx x x . 

Definition 3.   Linear Combination Forecasting Model [9-10] 

For given parameters
1

, 1
m

k k
k

Rβ β
=

∈ = , let 

,
1

ˆ
m

t k t k
k

y xβ
=

=  (7) 

If ˆ
ty is a composite forecasting model of ,1 ,2 ,, ,...,t t t mx x x then ˆ

ty is called a linear 

combination forecasting model or linear composition forecasting model, 
otherwise, it is called a non-linear combination forecasting model or non-linear 
composition forecasting model. 

Definition 4.   Ridge Regression Composition Forecasting Model [5,9,10] 

(i) Let ( )1 2, ,...,
T

tt
y y y y= be realized data vector of target variable from time 1 to 

time t, ( )1, 2, ,, , ,...,
T

k k t kt kx x x x= be a forecasted value vector of competing 

predictor k of target variable ty from time 1 to time t. 

(ii) Let tX be a forecasted value matrix of m competing predictors of target 

variable ty from time 1 to time t. 

(iii) Let                  ( )1 2
ˆ ˆ ˆ ˆ, ,...,

T

tt
y y y y=  (8)
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( ) ( ),1 ,2 ,, ,...,t t t t mf X f x x x=  (9)

(iv) Let      ( ) ( ) ( ) ( )( ) ( ) 1

,1 ,2 ,, ,...,
T

r r r r T T
t t t m t t m tt t

X X rI X yβ β β β
−

= = +  (10)

( ) ( )ˆ r
t t tt

y f X X β= =  (11)

Then                 ( ) ( )
|

ˆ r
t j t j tt j t

y f X X β+ ++
= =  (12)

( )
( ) ( )

| ,1 ,2 ,

,1 ,2 , , ,
1

ˆ , ,...,

, ,...,

t j t t j t j t j m

m
r r

t j t j t j m t k t j kt
k

y f x x x

x x x xβ β

+ + + +

+ + + +
=

=

 = =  
 (13)

For current time t and the future h times, if 

( )( ) ( )( ),1
ˆ minh h

t t kk m
SMSE y SMSE x

≤ ≤
≤  (14) 

And ridge coefficient 0r = then ˆ
ty is called a multiple linear regression 

combination forecasting model of ,1 ,2 ,, ,...,t t t mx x x . If formula (14) is satisfied 

and 0r > , then ˆ
ty is called a ridge regression composition forecasting model 

of ,1 ,2 ,, ,...,t t t mx x x . Note that Hoerl, Kenard, and Baldwin (1975) suggested that the 

ridge coefficient of ridge regression is 

( )
2

22

1

ˆ 1
ˆ ˆ,

t

i tT
i

t

m
r y y

t

σ σ
β β =

= = −  (15) 

3   Choquet Integral Composition Forecasting Model 

3.1   Fuzzy Measures [6-13] 

Definition 5.   Fuzzy Measure [6-13] 
A fuzzy measure μ on a finite set X is a set function [ ]: 2 0,1Xμ → satisfying the 

following axioms: 

( ) ( )0, 1Xμ φ μ= =            (boundary conditions) (16) 

( ) ( )A B A Bμ μ⊆  ≤         (monotonicity) (17) 
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3.2   Fuzzy Density Function [6-10] 

Definition 6.   Fuzzy Density Function, Density [6-10] 
(i) A fuzzy density function of a fuzzy measure μ on a finite set X is a function 

[ ]: 0,1d X → satisfying: 

( ) { }( ) ,d x x x Xμ= ∈  (18) 

( )d x is called the density of singleton x . 

(ii) A fuzzy density function is called a normalized fuzzy density function or a 
density if it satisfying 

( ) 1
x X

d x
∈

=  (19) 

Definition 7.   Standard Fuzzy Measure [6-10] 
A fuzzy measure is called a standard fuzzy measure, if its fuzzy density function is 
a normalized fuzzy density function. 

Definition 8.   N-density [8-10] 
Let μ be a fuzzy measure on a finite set { }1 2, ,..., nX x x x= , iy be global response of 

subject i and ( )i jf x be the evaluation of subject i for singleton jx , satisfying: 

( )0 1, 1, 2,..., , 1, 2,...,i jf x i N j n< < = =  (20)

If                   ( ) ( )( )
( )( )

1

, 1,2,...,
j

N j n

j
j

r f x
d x j n

r f x
=

= =


 (21)

Where ( )( )jr f x is the linear regression coefficient of iy on ( )jf x satisfying 
                    

( )( ) ,
0j

j

y x
j

y x

S
r f x

S S
= ≥  (22)

2

2

1 1

1 1N N

y i i
i i

S y y
N N= =

 
= −  

 
   (23)

( ) ( )
2

2

1 1

1 1
j

N N

x i j i j
i i

S f x f x
N N= =

 
= − 

  
   (24)
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( ) ( ),
1 1 1

1 1 1
j

N N N

y x i i i j i j
i i i

S y y f x f x
N N N= = =

  
= − −      
    (25)

 

then the function [ ]: 0,1Nd X → satisfying { }( ) ( ) ,Nx d x x Xμ = ∀ ∈ is a fuzzy 

density function, called N-density of μ . 

Note that 
 (i) N-density is a normalized fuzzy density function. 
 (ii) N-density is a linear fuzzy density function based on linear correlation 

coefficients 

3.3   M-Density [10] 

We know that any linear function can be viewed as a special case of some 
corresponding non-linear function, In this paper, a non-linear fuzzy density 
function based on Mean Square Error, denoted M-density, is proposed, its formal 
definition is introduced as follows: 

Definition 9.   M-density 
Let μ be a fuzzy measure on a finite set { }1 2, ,..., nX x x x= , iy be global response of 

subject i and ( )i jf x be the evaluation of subject i for singleton jx , satisfying: 

( )0 1, 1, 2,..., , 1, 2,...,i jf x i N j n< < = =  (26)

If               ( ) ( )
( )

1

1

1

, 1, 2,...,
j

M j n

j
j

MSE x
d x j n

MSE x

−

−

=

 
 = =
 
 

 (27)

Where              ( ) ( )( )2

1

1 N

j i i j
i

MSE x y f x
N =

= −  (28)

then the function [ ]: 0,1Md X → satisfying { }( ) ( ) ,Mx d x x Xμ = ∀ ∈ is a fuzzy 

density function, and called M-density of μ . 

3.4   Classification of Fuzzy Measures [6-10] 

Definition 10. Additive measure, sub-additive measure and supper- additive 
measure 
(i) A fuzzy measure μ  is called an sub-additive measure, if  

( ) ( ) ( ), ,A B X A B g A B g A g Bμ μ μφ∀ ⊂ =  < +   (29) 
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(ii)  A fuzzy measure μ  is called an additive measure, if  

( ) ( ) ( ), ,A B X A B g A B g A g Bμ μ μφ∀ ⊂ =  = +   (30) 

(iii)  A fuzzy measure μ  is called a supper-additive measure, if  

( ) ( ) ( ), ,A B X A B g A B g A g Bμ μ μφ∀ ⊂ =  > +   (31) 

(iv) A fuzzy measure is called a mixed fuzzy measure, if is not a Additive 
measure, sub-additive measure and supper- additive measure. 

Theorem 1. Let d be a given fuzzy density function of an additive measure, A-
measure, then its measure function [ ]: 2 0,1X

Ag →  satisfies 

( ) ( )A
x E

E X g E d x
∈

∀ ⊂  =  (32) 

3.4   λ-Measure [13] 

Definition 10.   λ-measure [13] 
For a given fuzzy density function d on a finite set X, X n= , a measure is called 

λ-measure, if its measure function, [ ]: 2 0,1Xgλ → , satisfying: 
 

(i)                     ( ) ( )0, 1g g Xλ λφ = =  (33)

(ii)             
( ) ( ) ( ) ( ) ( )

, 2 , ,XA B A B A B X

g A B g A g B g A g Bλ λ λ λ λ

φ
λ

∈ = ≠
 = + +

 


 (34)

(iii)             ( ) ( ) { }( )
1

1 1 0,
n

i i i
i

d x d x g xλλ λ
=

 + = + > = ∏  (35)

 

Theorem 2. Let d be a given fuzzy density function on a finite set X, X n= ,   

Under the condition ofλ-measure, the equation (35) determines the parameter λ 

uniquely: 

(i)         ( ) 1 0
x X

d x λ
∈

>  < ,λ-measure is a sub-additive measure (36)

(ii)        ( ) 1 0
x X

d x λ
∈

=  = , λ-measure is an additive measure (37)

(iii)        ( ) 1 0
x X

d x λ
∈

<  > , λ-measure is a supper-additive measure (38)
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Note that 

(i) λ-measure has just one feasible fuzzy measure satisfies the conditions of 
its own definition. 

(ii) In equation (35), the value of ( )id x  is decided first, and then to find the 

solution of the measure parameterλ, and ( )
1

1
n

i
i

d xλ
=

 + ∏  can be viewed 

as a function of its fuzzy density ( )id x . Therefore, we can say that λ-

measure is predominate by its fuzzy density function. 
(iii) λ-measure can not be a mixed fuzzy measure. 

3.5   P-Measure [14] 

Definition 11.   P-measure [14] 
For a given fuzzy density function d on a finite set X, X n= , a measure is called 

P-measure, if its measure function, [ ]: 2 0,1X
Pg → , satisfying: 

 

(i)                   ( ) ( )0, 1P Pg g Xφ = =  (39)

(ii)           ( ) ( ) { }( )2 max maxX
P P

x A x A
A g A d x g x∀

∈ ∈
∈  = =  (40)

Theorem 3. P-measure is always a sub-additive measure [6-10] 

Note that since the maximum of any finite set is unique, hence, P-measure has just  
one feasible fuzzy measure satisfies the conditions of its own definition. 

3.6   Multivalent Fuzzy Measure [6-10] 

Definition 12.   Univalent fuzzy measure, multivalent fuzzy measure [4-8] 
A fuzzy measure is called a univalent fuzzy measure, if it has just one feasible 
fuzzy measure satisfies the conditions of its own definition, otherwise, it is called 
a multivalent fuzzy measure. 

Note that both λ-measure and P-measure are univalent fuzzy measures. 

3.7   L-Measure [6-10] 

In my previous work [4], a multivalent fuzzy measure was proposed, which is 
called L-measure, since my last name is Liu. Its formal definition is as follows  

 

Definition 13.   L-measure [6-10] 
For a given fuzzy density function d on a finite set X, X n= , a measure is called 

L-measure, if its measure function, [ ]: 2 0,1X
Lg → , satisfying: 
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(i)                     ( ) ( )0, 1L Lg g Xφ = =  (41) 

(ii) [ ) ( )
( ) ( ) ( )

( ) ( )

1 1 max
0, , max

1

x A
x A

L
x A

x X

A L d x d x
L X A X g d x

n A L A d x

∈∈

∈

∈

 − −
 

∈ ∞ ≠ ⊂  = +
 − + − 




 (42) 

Theorem 4. Important Properties of L-measure [6] 
(i) For any [ )L 0,∈ ∞ , L-measure is a multivalent fuzzy measure, in other words, 

L-measure has infinite fuzzy measure solutions. 
(ii) L-measure is an increasing function on L. 
(iii) If L 0= then L-measure is just the P-measure. 
(iv) L-measure may be a mixed fuzzy measure 

Note that 

(i) P-measure is a special case of L-measure 
(ii) L-measure does not contain additive measure and λ-measure, in other 

words, additive measure and λ-measure are not special cases of L-
measure. 

3.8   Extensional L-Measure [7] 

For overcoming the drawback of L-measure, an improving multivalent fuzzy 
measure which containing additive measure and λ-measure., called extensional L-
measure, was proposed by my next previous paper [7],  Its formal definition is as 
follows; 

Definition 14.   Extensional L-measure, LE-measure [7] 
For a given fuzzy density function d on a finite set X, X n= , a measure is called 

extensional L-measure, if its measure function, [ ]: 2 0,1
E

X
Lg → , satisfying: 

 

(i)                     ( ) ( )0, 1
E EL Lg g Xφ = =  (43) 

(ii)  

[ )

( )

( ) ( ) ( ) [ ]

( )
( ) ( ) ( )

( ) ( )
( )

1, ,

1 max , 1,0

1 1

, 0,
1

E

x A
x A

L
x A x A

x A

x X

L A X

L d x L d x L

g A A L d x d x

d x L
n A L A d x

∈∈

∈ ∈

∈

∈

∈ − ∞ ⊂

 + − ∈ −

   = − −  

  + ∈ ∞
  − + − 



 




 (44) 
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Theorem 5. Important Properties of LE –measure [7] 
(i) For any [ )L 1,∈ − ∞ , LE -measure is a multivalent fuzzy measure, in other 

words, LE-measure has infinite fuzzy measure solutions. 
(ii) LE-measure is an increasing function on L. 
(iii) if L 1= − then LE-measure is just the P-measure. 
(iv) if L 0= then LE-measure is just the additive measure. 

(v) if L 0= and ( ) 1
x X

d x
∈

= , then LE-measure is just the λ-measure. 

(vi) if -1< L< 0 then LE-measure is a supper-additive measure. 

(vii) if L> 0 then LE-measure is a sub-additive measure 

Note that additive measure, λ-measure and P-measure are two special cases of LE-
measure. 

3.9   B-Measure [7] 

For considering to extend the extensional L-measure, a special fuzzy measure was 
proposed by my previous work as below; 

Definition 15.   B-measure [7] 
For a given fuzzy density function d, a B-measure, Bg , is a measure on a finite set 

X, X n= , satisfying: 

            ( )
( ) 1

1 1
x A

B

d x if A
A X g A

if A
∈

 ≤∀ ⊂  = 
>


 (45) 

Theorem 6.  Any B-measure is a supper-additive measure. 

3.10   Comparison of Two Fuzzy Measures [7-10] 

Definition 16. Comparison of two fuzzy measures [7-10] 
For a given fuzzy density function, ( )d x , on a finite set, X,  let 1μ and 2μ be two 

fuzzy measures on X,  
(i) If ( ) ( )

1 2
, ,g A g A A Xμ μ= ∀ ⊂ , then we say that 1μ -measure is equal to 

2μ -measure, denoted as 

                         1 2measure masureμ μ− = −  (46) 

(ii)    If ( ) ( )
1 2

, ,1g A g A A X A Xμ μ< ∀ ⊂ < <  then we say that 1μ -measure is 

less than 2μ -measure, or 2μ -measure is larger than 1μ -measure, denoted as 
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                         1 2measure masureμ μ− < −  (47) 

(iii) If ( ) ( )
1 2

, ,1g A g A A X A Xμ μ≤ ∀ ⊂ < < , then we say that 1μ -measure 

is not larger than 2μ -measure, or 2μ -measure is not smaller than 1μ -

measure, denoted as 

                         1 2measure masureμ μ− ≤ −  (48) 

.                            
Theorem 7.  For any given fuzzy density function, if measureμ −  is a fuzzy 

measure, then we have 

                   P measure as meaure B measureμ− ≤ − ≤ −  (49) 

 

In other words, for any given fuzzy density function, the P-measure is the smallest 
fuzzy measure, and the B-measure is the largest fuzzy measure. 

3.11  Completed Fuzzy Measure 

Definition 17. Completed fuzzy measure [8] 
If the measure function of a multivalent fuzzy measure has continuously infinite 
fuzzy measure solutions, and both P-measure and B -measure are its limit fuzzy 
measure solutions, then this multivalent fuzzy measure is called a completed fuzzy 
measure.  

Note that both the L –measure and LE –measure are not completed fuzzy 
measures, since 

( )

( ) ( )

( )
( )

( 1)
lim 1

1
x A x A

L

x Xx X

A L d x d x

d xn A A L d x
∈ ∈

→∞

∈∈

−
= ≠

 − + − 

 


, the B-measure is not a limit fuzzy 

measure of the L –measure and LE –measure 

3.12   Completed Extensional L-Measure 

Definition 18. Completed extensional L-measue, LCE –measure  
For a given fuzzy density function d on a finite set X, X n= , a measure is called 

extensional L-measure, if its measure function, [ ]: 2 0,1
CE

X
Lg → , satisfying: 

 

(i)                     ( ) ( )0, 1
CE CEL Lg g Xφ = =  (50)
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(ii)   

[ )

( )

( ) ( ) ( ) [ ]

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

1, ,

1 max , 1,0

1 1

, 0,
1

CE

x A
x A

L
x A x A

x A

x X x A

L A X

L d x L d x L

g A A L d x d x

d x L
n A d x L A d x

∈∈

∈ ∈

∈
∈ ∈

∈ − ∞ ⊂

 + − ∈ −

   = − −  

  + ∈ ∞  − + − 



 
  

 

 

 

 

 

(51) 

Theorem 7. Important Properties of LCE –measure [7] 
(i) For any [ )L 1,∈ − ∞ , LCE -measure is a multivalent fuzzy measure, in other 

words, LCE -measure has infinite fuzzy measure solutions. 
(ii) LCE -measure is an increasing function on L. 
(iii) if L 1= − then LCE -measure is just the P-measure. 
(iv) if L 0= then LCE -measure is just the additive measure. 

(v) if L 0= and ( ) 1
x X

d x
∈

= , then LCE -measure is just the λ-measure. 

(vi) if -1< L< 0 then LCE -measure is a sub-additive measure. 

(vii) if L> 0 then LCE -measure is a supper-additive measure 

(viii) L → ∞  then LCE -measure is a B- measure 

(ix) LCE -measure is a completed fuzzy measure. 
 

Note that additive measure, λ-measure, P-measure and B-measure are special 
cases of LCE -measure. 

3.13   Choquet Integral 

Definition 19.   Choquet Integral [9-10] 
Let μ be a fuzzy measure on a finite set { }1 2, ,..., mX x x x= . The Choquet integral 

of :if X R+→ with respect to μ for individual i is denoted by 

( )( ) ( )( ) ( )( )1
1

, 1,2,...,
m

i
C i i ij j j

j

f d f x f x A i Nμ μ−
=

 = − =    (52) 

where ( )( )0 0if x = , ( )( )i jf x indicates that the indices have been permuted so that 

( )( ) ( )( ) ( )( )1 20 ...i i i mf x f x f x≤ ≤ ≤ ≤ , ( ) ( ) ( ) ( ){ }1, ,...,j j j mA x x x+=  (53) 

 

Note that from Definition 19, for given integrand :if X R+→ , the Choquet 

integral can be viewed as a function of the fuzzy measure μ -measure, in other 

words, the value of Choquet integral is predominate by its fuzzy measure. 
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Theorem 8. If a λ-measure is a standard fuzzy measure on { }1 2, ,..., mX x x x= , 

and [ ]: 0,1d X → is its fuzzy density function, then the Choquet integral of 

:if X R+→ with respect to λ for individual i satisfying 

( ) ( )
1

, 1,2,...,
m

C i j i j
j

f d d x f x i Nλ
=

= =  (54) 

3.14   Choquet Integral Composition Forecasting Model 

Definition 20.   Choquet Integral Composition Forecasting Model [8] 
(i) Let ty be the realized value of target variable at time t, 

(ii) Let { }1 2, ,..., mX x x x= be the set of m competing predictors, 

(iii) Let :tf X R+→ , ( ) ( ) ( )1 2, ,...,t t t mf x f x f x be m forecasting values of ty by 

competing predictors 1 2, ,..., mx x x at time t. 

If μ is a fuzzy measure on X , , Rα β ∈ satisfying 

( ) ( )
,

1

ˆˆ , arg min
N

i C t
t

y f dgμα β
α β α β

=

 = − − 
 
   (55)

1 1

1 1ˆˆ
N N

t t
t t

y f dg
N N μα β

= =

= −  , ˆ yf

ff

S

S
β =  (56)

1 1

1 1ˆˆ
N N

t t
t t

y f dg
N N μα β

= =

= −   (57)

1 1 1

1 1

1

N N N

i t t t
t t t

yf

y y f dg f dg
N N

S
N

μ μ
= = =

  
− −  

    =
−

   
 

(58)

then ˆˆˆ , 1,2,...,t ty f dg t Nμα β= + = is called the Choquet integral regression 

composition forecasting estimator of ty , and this model is also called the Choquet 

integral regression composition forecasting model with respect to μ -measure. 

Theorem 9. If a λ-measure is a standard fuzzy measure then Choquet integral 
regression composition forecasting model with respect to λ-measure is just a linear 
combination forecasting model. 
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4   Experiments and Results 

A real data of the grain production with 3 kinds of forecasted values of the time 
series model, the exponential smoothing model and GM(1,1) forecasting model, 
respectively, in Jilin during 1952 to 2007 from the paper of Zhang, Wang and Gao 
[2],was listed in Table 2. For evaluating the proposed new density based 
composition forecasting model, an experiment with the above-mentioned data by 
using sequential mean square error was conducted. 

We arrange the first 50 years grain production and their 3 kinds of forecasted 
values as the training set and the rest data as the forecasting set. And the following 
N-density and M-density of all fuzzy measures were used 

N-density:             { }0.3331, 0.3343, 0.3326  (59)

M-density:            { }0.2770, 0.3813, 0.3417  (60)

The performances of Choquet integral composition forecasting model with 
extensional L-measure, L-measure, λ-measure and P-measure, respectively, a 
ridge regression composition forecasting model and a multiple linear regression 
composition forecasting model and the traditional linear weighted composition 
forecasting model were compared. The result is listed in Table 1. 

Table 1 SMSEs of 2 densities for 7 composition forecasting models 

Composition forecasting Models 
SMSE 

N-density M-density 

Choquet integral regression 

LCE-measure 13149.64 13217.31 

LE-measure 13939.84 13398.29 

L-measure 14147.83 13751.60 

λ-measure 21576.38 19831.86 

P-measure 16734.88 16465.98 
Ridge regression 18041.92 
Multiple linear regression 24438.29 

 
Table 1 shows that the M-density based Choquet integral composition 

forecasting model with respect to LCE-measure outperforms other composition 
forecasting models. Furthermore, for each fuzzy measure, including the LCE-
measure, LE-measure, L-measure, λ-measure and P-measure, the M-density based 
Choquet integral composition forecasting model is better than the N-density based. 

5   Conclusion 

In this paper, a new density, M-density, was proposed. Based on M-density, a 
novel composition forecasting model was also proposed. For comparing the 
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forecasting efficiency of this new density with the well-known density, N-density, 
a real data experiment was conducted. The performances of Choquet integral 
composition forecasting model with the completed extensional L-measure, 
extensional L-measure, λ-measure and P-measure, by using M-density and N-
density, respectively, a ridge regression composition forecasting model and a 
multiple linear regression composition forecasting model and the traditional linear 
weighted composition forecasting model were compared. Experimental result 
showed that for each fuzzy measure, including the LCE-measure, LE-measure, L-
measure, λ-measure and P-measure, the M-density based Choquet integral 
composition forecasting model is better than the N-density based, and the M-
density based Choquet integral composition forecasting model outperforms all of 
other composition forecasting models. 
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Council of Taiwan Government (NSC 100-2511-S-468-001). 
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Appendix 

Table 2 SMSEs of 2 densities for 6 composition forecasting models 

Years Y X1 X2 X3 X4 

1952 613.20 490.67 518.60 399.51 472.45 

1953 561.45 549.73 570.84 414.09 511.35 

1954 530.95 542.83 586.41 429.20 524.94 

1955 556.53 549.57 584.31 444.86 530.10 

1956 493.64 582.69 591.12 461.09 542.51 

1957 429.35 598.64 570.80 477.91 538.81 

1958 528.84 610.69 531.14 495.35 524.37 

1959 526.60 633.88 540.11 513.43 537.85 

1960 394.70 655.07 544.78 532.16 549.04 

1961 398.55 672.97 497.45 551.58 531.58 

1962 437.16 694.53 465.26 571.71 523.02 

1963 501.67 617.26 457.04 592.57 519.94 

1964 491.80 738.99 475.53 614.19 547.93 

1965 525.10 761.94 484.57 636.61 563.02 

1966 597.60 786.18 503.23 659.84 583.82 

1967 647.74 810.67 543.38 683.91 616.78 

1968 622.15 835.87 589.95 708.87 653.65 

1969 498.70 862.13 612.17 734.74 677.54 

1970 738.80 889.12 580.22 761.55 672.02 

1971 713.05 916.86 647.93 789.33 721.78 
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Table 2 (continued) 

1972 556.99 945.56 684.75 818.14 754.99 

1973 783.00 975.15 650.45 847.99 749.50 

1974 858.15 1005.63 711.01 878.93 796.71 

1975 906.50 1037.08 780.79 911.01 849.50 

1976 755.50 1069.53 846.59 944.25 900.60 

1977 728.35 1102.98 833.96 978.70 909.05 

1978 914.70 1137.47 813.29 1014.40 913.61 

1979 903.34 1173.05 867.92 1051.40 960.20 

1980 859.60 1209.74 900.44 1089.80 995.23 

1981 921.91 1247.58 905.13 1129.60 1015.54 

1982 1000.04 1286.60 930.45 1170.80 1047.82 

1983 1477.98 1326.84 976.21 1213.50 1092.01 

1984 1634.46 1368.34 1187.28 1257.80 1227.91 

1985 1225.26 1411.14 1391.77 1303.70 1360.87 

1986 1397.71 1455.27 1376.80 1351.30 1373.74 

1987 1675.81 1500.79 1428.01 1400.60 1423.79 

1988 1693.25 1547.73 1565.57 1451.70 1522.16 

1989 1351.29 1596.14 1664.67 1504.60 1600.13 

1990 2046.52 1646.06 1600.61 1559.50 1589.13 

1991 1898.87 1697.54 1814.80 1616.50 1732.23 

1992 1840.31 1750.64 1904.70 1675.40 1807.73 

1993 1900.90 1805.39 1940.83 1736.60 1854.61 

1994 2015.70 1861.86 1984.40 1799.90 1906.49 

1995 1992.40 1920.09 2053.78 1865.60 1973.62 

1996 2326.60 1980.15 2089.00 1933.70 2022.96 

1997 1808.30 2042.08 2235.53 2004.30 2134.67 

1998 2506.00 2105.95 2137.39 2077.40 2112.74 

1999 2305.60 2171.82 2328.13 2153.20 2251.02 

2000 1638.00 2239.75 2381.33 2231.80 2314.77 

2001 1953.40 2309.80 2161.43 2313.20 2229.36 

2002 2214.80 2382.04 2123.07 2397.60 2245.19 
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Table 2 (continued) 

2003 2259.60 2456.54 2192.19 2485.10 2321.52 

2004 2510.00 2533.38 2254.69 2575.80 2395.57 

2005 2581.21 2612.61 2390.11 2669.80 2511.18 

2006 2720.00 2694.33 2508.40 2767.20 2618.82 

2007 2454.00 2778.60 2560.38 2831.50 2677.95 

   Y: realized value of target variable 
X1: Fitting value of time series model 
X2: Fitting value of exponential smoothing model 
X3: Fitting value of GM(1,1) model 
X4: Fitting value of composition forecasting model 
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Chapter 7 
An Application of Enhanced Knowledge 
Models to Fuzzy Time Series 

Chung-Ming Own* 

Abstract. Knowledge is usually employed by domain experts to solve 
domain-specific problems. Huarng was the first to embed knowledge into 
forecasting fuzzy time series (2001). His model involved simple calculations and 
offers better prediction results once more supporting information has been 
supplied. On the other hand, Chen first proposed a high-order fuzzy time series 
model to overcome the drawback of existing fuzzy first-order forecasting models. 
Chen’s model involved limited computing and came with higher accuracy than 
some other models. For this reason, the study is focused on these two types of 
models. The first model proposed here, which is referred to as a weighted model, 
aims to overcome the deficiency of the Huarng’s model. Second, we propose 
another fuzzy time series model, called knowledge based high-order time series 
model, to deal with forecasting problems. This model aims to overcome the 
deficiency of the Chen’s model, which depends strongly on highest-order fuzzy 
time series to eliminate ambiguities at forecasting and requires a vast memory for 
data storage. Experimental study of enrollment of University Alabama and the 
forecasting of a future’s index show that the proposed models reflect fluctuations 
in fuzzy time series and provide forecast results that are more accurate than the 
ones obtained when using the to two referenced models. 

Keywords: Fuzzy time series, knowledge model, domain specific knowledge. 

1   Introduction 

The forecasting of time series is crucial in daily life. It is used in forecasting the 
weather, earthquakes, stock fluctuations, and any phenomenon indexed by 
variables that change over time. Numerous investigations have solved the 
                                                           
Chung-Ming Own 
Department of Computer and Communication Engineering, 
St. John’s University 
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associated problems by using the Moving Average, the Integrated Moving 
Average, and the Autoregressive Integrated Moving Average (Box & Jenkins, 
1976; Janacek & Swift, 1993). Song and Chissom (1993) first defined fuzzy time 
series and modeled fuzzy relationships from historical data (Song & Chissom, 
1979). The fuzzy time series is a novel concept that is used to solve forecasting 
problems that involve historical data with linguistic values. Song and Chissom 
(1993) used the fuzzy time series model to forecast enrollment at the University of 
Alabama and provided a step-by-step procedure. However, their method requires a 
large amount of computation time. 

In reference to the time-invariant and time-variant models by Song and 
Chissom, Sullivan and Woodall proposed the time-invariant Markov model with 
linguistic labels of probability distribution (Sullivan & Woodall, 1994). 
Subsequently, Chen proposed a new fuzzy time series model that yielded excellent 
forecasting results (Chen, 1996). Chen’s model simplified the complex 
computations of the models by Song and Chissom, and forecasted enrollment 
more accurately than other models. Hwang et al. (1998) proposed a method that 
focused on relation matrix computing for the variation between enrollments in the 
current year and those in past years. The Hwang et al. model was more efficient 
and simpler than most of the other models, although its accuracy was limited. 
Furthermore, Huarng (2001) solved the forecasting problem integrated the 
domain-specific knowledge into the fuzzy time series model. Knowledge is 
typically used by experts to solve domain-specific problems. In the Huarng model, 
available information was used to assist in the selection of proper fuzzy sets. 
Knowledge information can be used to solve the forecasting problem easily, and 
the resulting model outperformed previous models.  

Chen (2002) presented a new fuzzy time series model called the high-order 
fuzzy time series to overcome disadvantages of current fuzzy forecasting models 
based on the first-order model. The Chen model came with excellent forecasting 
results. However, the disadvantage of the Chen model is its high dependence on 
high-order time series preprocessing. Additional methods have been presented to 
forecast Taiwan Futures Exchanges by using fuzzy forecasting techniques 
(Huarng & Yu, 2005, 2006a, 2006b, 2008, 2010; Huarng et al., 2007; Chen, 2008; 
Cheng, 2008). Leu et al. presented the distance-based fuzzy time series model to 
forecast exchange rates. Tanuwijaya and Chen (2009a, 2009b) also presented a 
clustering method to forecast enrollments at the University of Alabama. Jilani 
(2011) proposed a new particle swarm optimization-based multivariate fuzzy time 
series forecasting method. This model involves five factors with one main factor 
of interest. This study focused on applying swarm intelligence approaches to 
forecasting-related problems. Chen et al. (2012) proposed the equal frequency 
partitioning and fast Fourier transform algorithm to forecast stock prices in 
Taiwan. The results show the improving forecasting performance, and 
demonstrated an approach to enhance the efficiency of the fuzzy time-series. 

This study proposes two enhanced models. The first model is a weighted 
model, which is an enhancement of the Huarng model. The proposed weighted 
model overcomes the disadvantage of the Huarng model, that is, the lack of an 
efficient measure of the significance of data in a series. Hence, the proposed 
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model involves straightforward computation to defuzzify fuzzy forecasting with 
the support of knowledge and a weighting measure of the historical fuzzy sets. 
The second model is a high-order fuzzy time series model, which is an extension 
of the Chen model. The proposed high-order fuzzy time series model overcomes 
the disadvantage of the Chen model, which depends strongly on the derivation of 
highest-order fuzzy time series and requires large memory for data storage. Hence, 
this model has the advantage of a higher-order model and can apply the 
knowledge to eliminate the ambiguity in forecasting. An empirical analysis 
demonstrated that the two proposed fuzzy time series models can capture 
fluctuations in fuzzy time series and provide superior forecasting results than 
those coming from other models. 

In this study, Section 2 briefly reviews basic concepts of fuzzy time series. In 
Section 3, we formulate the algorithms of the weighted knowledge and high-order 
models. Section 4 presents empirical analyses of enrollment and TAIFEX 
forecasts. Section 5 concludes this study. 

2   Fuzzy Time Series 

2.1   Basic Concept 

Basic concepts related to fuzzy time series are reviewed below. U is the universe 

of discourse, 
1 2

{ ,  ,  }
k

U x x x=  . A fuzzy set iA  of U is defined as 

1 1 2 2( ) / ( ) / ( ) /
i i ii A A A k kA x x x x x xμ μ μ= + + + , 

where 
iAμ  is the membership function of iA , : [0,  1]

iA Uμ → , and ( )
iA jxμ  

represents the grade of membership of jx  in iA , ( ) [0,  1]
iA jxμ ∈ . The symbols 

“/” and “+” indicate the “separation” and “union” of elements in the universe of 
discourse U. 
 

Definition 2.1. Let Y(t) (t=…, 0, 1, 2, …), a subset of R ( ( )Y t R⊆ ), be the 

universe of discourse in which fuzzy sets ( ) ( 1,  2,  )iu t i =  are defined. Assume 

that F(t) consists ( )i tμ  (i=1,2, …); F(t) is called a fuzzy time series on Y(t). 

From Definition 2.1, F(t) can be considered to be a linguistic variable and 
( ) ( 1,  2,  )iu t i =   can be considered to be the possible linguistic values of F(t). 

The main difference between fuzzy time series and conventional time series is that 
the observations in the former are fuzzy sets and those of the latter are real 
numbers.  

Definition 2.2. Suppose that F(t) is determined only by ( 1)F t − ; then, there 

exists a fuzzy relationship ( 1, )R t t− between F(t) and ( 1)F t − , such that 

( ) ( 1) ( 1, )F t F t R t t= − × − , 

where ×  is the composition operator. This relationship can also be represented as 
( 1) ( )F t F t− → . 
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Definition 2.3. Let ( 1)F t − = iA  and F(t)= rA ; a fuzzy relationship can be 

defined as i rA A→ . On the left-hand side of the fuzzy relationship, iA , is called 

the current state of the relationship; rA , on the right-hand side of the fuzzy 

relationship is called the next state of the relationship. 

Definition 2.4. fuzzy relationships with the same current state can be further 
grouped in a combined fuzzy relationship called the grouped fuzzy relationship. 

For example, some fuzzy relationships exist: 

1
,i rA A→  

2
,i rA A→


 

These fuzzy relationships can be grouped together with the same current state and 
so 

1 2
, ,i r rA A A→   

can be grouped together into a grouped fuzzy relationship. 

Definition 2.5. According to Definition 2.3, if F(t) is caused by more fuzzy sets, 
( )F t n− , ( 1)F t n− + , ,  and ( 1)F t − , then the fuzzy relationship can be 

represented as  

1 2
,  ,  , 

nr r r jA A A A→ , 

where 
1

( ) rF t n A− = , 
2

( 1) ,  rF t n A− + =  , and ( 1)
nr

F t A− = . This relationship 

is called the nth-order fuzzy time series forecasting model. 
1 2
,  ,  , and 

nr r rA A A  

are called as the current states of the time series, and jA  is called as the next 

state of the time series. 
Accordingly, the above equation means “If the time series in the year 1t − , 
2,  t −  , and t n−  are

1 2
,  ,  , and 

nr r rA A A , respectively, then that in the year t 

is jA ”.  

Definition 2.6. For any t, if ( 1, )R t t−  is independent of t, then F(t) is called a 

time-invariant fuzzy time series. In contrast, if ( 1, )R t t−  is estimated from most 

recent observations, then F(t) is called a time-variant fuzzy time series. 
In this study, the models are all based on a time-invariant fuzzy time series. 

2.2   Configuration of the Fuzzy Time Series 

A pure fuzzy system generally comprises four parts: the fuzzifier, the fuzzy rule 
base, the fuzzy inference engine, and the defuzzifier. The fuzzifier is the input, 
which transforms a real-valued variable into a fuzzy set. The defuzzifier is the 
output, which transforms a fuzzy set into a real-valued variable. The fuzzy rule 
base represents the collection of fuzzy IF-THEN rules from human experts or 
domain knowledge. The fuzzy inference engine combines these fuzzy IF-THEN 
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rules into a map from fuzzy sets in the input space, U, to fuzzy sets in the output 
space, V, according to the principles of fuzzy logic (Wang, 1997). 

In (Song and Chissom 1993, 1994), Song and Chissom proposed both the 
time-variant and time-invariant models to forecast enrollments of the University of 
Alabama. Song and Chissom predicted fuzzy time series using historical data, and 
the model ( ) ( 1) ( 1, )F t F t R t t= − × − . The procedures of time-variant models can 

be outlined as follows. 

Step 1. Specify the universe of discourse U in which fuzzy sets will be defined; 
Step 2. Partition the universe of discourse U into the even length intervals; 
Step 3. Define the fuzzy sets on U; 
Step 4. Fuzzify the input data 1tx −  to ( 1)F t − ; 

Step 5. Forecast by the model ( ) ( 1) ( 1, )F t F t R t t= − × − , and use the past w years 

data as a relationship; 
Step 6. Defuzzify the output. 

The main difference between the Song and Chissom’s time-invariant and 
time-variant models is that the relationship ( , 1)R t t −  of the former must be 

established by all the historical data, whereas that of the latter must be determined 
only by some of the historical data. Figure 1 is shown the configuration of the fuzzy 
system to emphasize the distinguishing features of Song and Chissom’s models. The 
fuzzifier is used to map the input to the fuzzy set F(t) (corresponding to Steps 1-4). 
The fuzzy rule base is established based on all possible relationships. The fuzzy 
inference engine is used to compute by the model ( ) ( 1) ( 1, )F t F t R t t= − × −  

(corresponding to Step 5). The defuzzifier is used to transform the resulting fuzzy 
sets into a real-valued variable y (corresponding to Step 6). 
 

Fuzzy Rule Base 

(Collection of all relationships) 

Defuzzifier Fuzzifier 

Fuzzy Inference Engine 

Input 1−tx  

F( 1−t )=Ai 

Output y 

Fig. 1 The configuration of Song and Chissom’s Model 

The derivation of Song and Chissom’s model was very tedious, and the matrix 
composition required a large amount of computation time. Chen proposed a model 
that involved straightforward knowledge reasoning to simplify the calculations in  
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Song and Chissom’s model (Song and Chissom 1993). Chen’s model not only 
applied simplified arithmetic operations rather than complicated max-min 
composition operations, but also provided more accurately forecasts than the other 
models. The procedures of Chen’s model can be outlined as follows. 

Step 1. Specify the universe of discourse U in which fuzzy sets will be defined; 
Step 2. Partition the universe of discourse U into the even length intervals; 
Step 3. Define the fuzzy sets on U, and fuzzify the data; 
Step 4. Establish the fuzzy relationships into a group; 
Step 5. Forecast; 
Step 6. Defuzzify the output by using the arithmetic average. 

Figure 2 shows the configuration of Chen’s system. The fuzzifier is the same as in 
Song and Chissom’s model (corresponding to Steps 1-4). In the fuzzy rule base, 
the important feature of Chen’s model is that the fuzzy relationships are selected 
and summarized here (corresponding to Step 5). These computations are simple 
and straightforward. The defuzzifier takes an arithmetic average operation to 
derive the result (corresponding to Step 6). For more detail, refer to the (Song and 
Chissom 1993). 

Input 1−tx  

Fuzzy Rule Base 

(Grouped fuzzy logical 

relationships) 

Defuzzifier 
Fuzzifier 

Fuzzy Inference Engine 

F( 1−t )=Ai Selected fuzzy sets 

mppp AAA , ,,
21
  

Output y 

Fig. 2 The configuration of the Chen’s model 

Huarng’s model is introduced below (Huarng 2001). Huarng improved 
forecasting by incorporating domain-specific knowledge into Chen’s model. 
Experts usually apply knowledge in solving domain-specific problems. 
Accordingly, domain-specific knowledge is used to help to obtain the proper fuzzy 
sets during the forecasting. His model was easy to calculate and provided better 
forecasts as more supporting information was used. The procedures of Huarng’s 
model can be outlined as follows. 

Step 1. Specify the universe of discourse U in which fuzzy sets will be defined; 
Step 2. Partition the universe of discourse U into the even length intervals; 
Step 3. Define the fuzzy sets on U, and fuzzify the data; 
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Step 4. Establish the fuzzy relationships into a group; 
Step 5. Forecast with knowledge assistance; 
Step 6. Defuzzify the output by using the arithmetic average. 

The inference engine uses two rule bases; one is the same as Chen’s model; 
grouped fuzzy relationships (corresponding to Step 5). The other is the base of 
domain-specific knowledge. All the other parts are the same as Chen’s model. 
Figure 3 is depicted the configuration of Huarng’s model. 

Fuzzy Rule Base 

(Grouped fuzzy logical 

relationships) 

Defuzzifier 
Fuzzifier 

Fuzzy Inference Engine 

Input 1−tx  

F( 1−t )=Ai 

Output y 

Domain-specific knowledge 

database 

(Heuristic) 

Selected fuzzy sets 

mppp AAA , ,,
21
   

Fig. 3 The configuration of the Huarng’s model 

Chen (2002) proposed the high-order fuzzy time series model to improve the 
forecasting accuracy of his model in 1996. This new model can overcome the 
deficiency of the first-order fuzzy time series, which is inefficiently to eliminate 
the ambiguity in the forecasting. The procedure of Chen’s model is outlined as 
follows. 

Step 1. Specify the universe of discourse U in which fuzzy sets will be defined, 
and partition the universe of discourse U into the even length intervals; 
Step 2. Define the fuzzy sets on U; 
Step 3. Fuzzify the input data; 
Step 4. Establish the high-order fuzzy relationship groups; 
Step 5. Forecast by selecting the appropriate nth-order fuzzy relationship; 
Step 6. Defuzzify the output with the elements in the nth-order fuzzy relationship. 

Because this model is highly depended on the establishment of high-order fuzzy 
relationship, the time complexity is O(p), where p denotes the number of grouped 
fuzzy relationship. 



146 C.-M. Own
 

3   The Proposed Model 

3.1   Weighted Knowledge Model 

This model improves the forecasts based on the Huarng model. First, the Huarng 
model was selected because it is easy to calculate. The Huarng model has the 
advantage of the straightforward model by Chen. Second, the Huarng model 
yielded superior forecasts compared to other models. Third, the Huarng model used 
problem-specific knowledge by using an extra information base to guide the search. 
However, the disadvantage of the Huarng model is its lack of an efficient measure 
of the significance of each fuzzy set in fuzzy relationships; that is, every fuzzy set 
in a grouped fuzzy relationship has the resembling trajectories in the Huarng 
model. This is reflected by the use of the arithmetic average in the defuzzifier. The 
significance of fuzzy sets can be stressed by various measures; that is, 
defuzzification varies according to the observed information. The proposed model 
is based on the weighted measure of historical information and the frequencies of 
the fuzzy sets to adjust their ratios. Hence, this study considered the support of 
weighted measures and knowledge for the proposed model, which is introduced in 
the following paragraphs. 

Step 1. Define the universe of discourse and partition the intervals. According 
to the problem domain, the universe of discourse U can be determined. Then, let 
the universe of discourse be partitioned into intervals 

1 1[ ,  ],  2u a a= 1[ ,  ],  2 2u a a=  , 1, [ ,  ]n n n u a a +=  of even length, where ui is the 

ith divided interval. The midpoints of these intervals are 1,  ,  ,2 nm m m , 

respectively. 

Step 2. Define the fuzzy sets and fuzzify the data. Subsequently, let 

1,  ,  , 2 nA A A  be fuzzy sets, all of which are labeled by possible linguistic values. 

For example, linguistic values can be applied as fuzzy sets; A1=(not many), A2= (not 
too many), A3=(many), A4=(many many), A5=(very many), A6=(too many), A7= (too 
many many). Hence, Ai is defined on as 

1 1 2 2( ) / ( ) / ( ) /
i i ii A A A n nA u u u u u uμ μ μ= + + + ,              (1) 

where ui is the interval expressed as an element of the fuzzy set, 1,  2,  ,  .i n=   

( )
iA juμ  states the degree to which uj belongs to Ai, and ( ) [0,1]

iA juμ ∈ , Then, the 

historical data are fuzzified by the intervals and expressed in the forms of linguistic 
values. Note that Eq. (1) uses interval uj as an equation element. 

Step 3. Establish and group fuzzy relationships. According to the definition of 
relationship in Definition 2.3, the fuzzy relationship can be determined. For 
instance, 
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According to Definition 2.4, the fuzzy relationships can be grouped by the same 
origin: 

, , ,

, ,
j r s t

m r q

A A A A

A A A

→

→


 

Step 4. Measure the frequency of fuzzy sets shown in the fuzzy relationships. 
Subsequently, according to the fuzzy relationships obtained in Step 3, calculates the 
frequency of each fuzzy set shown in the fuzzy relationships. For expressive 
simplicity, the frequency for fuzzy set iA  is denoted as if . 

Example 3.1: Suppose that the fuzzy relationships calculated from the data set are 
obtained below: 

1

3

1

1

2

,

,

,

,

.

r r

s r

r r

r r

r r

A A

A A

A A

A A

A A

→

→

→

→

→

 

Hence, fuzzy set 
1r

A  shown in relationship 
1r rA A→  occurs three times, denoted 

as 
1r

f =3. Fuzzy set 
2r

A  shown in relationship 
2r rA A→  occurs once, denoted 

as 
2r

f =1. Fuzzy set 
3r

A  shown in relationship 
3r rA A→  occurs once, denoted 

as 
3r

f =1. 

Step 5. Introduce knowledge and establish selection strategy. In this proposed 
model, knowledge is used to guide the selection of proper fuzzy sets. Concerning 
knowledge in this study, changes in time series are used as a variable. According 
to the changes, the trend in selection strategy specifies the difference between 
times to an increase, a decrease or no change, and the symbolization of trend, α  
is set to 1, 1−  and 0, respectively. The trend for an increase is used as a trigger 
to select whose fuzzy sets they have higher ranking in the grouped fuzzy 
relationship. On the contrary, the trend for a decrease is used to select whose fuzzy 
sets they have lower ranking. The trend for no change means to select the current 
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state of the grouped fuzzy relationship. The selection strategy is introduced as 
follows. 

Consider all the fuzzy sets 1,  ,  ,2 nA A A  are ordered in accordance. That is, 

1,  ,  ,2 nA A A  are fuzzy sets on intervals 1 2 2 3 1[ , ],  [ , ],  , [ , ]n na a a a  a a + , 

respectively, where 1 12 na a a +< < < . Suppose that ( 1) iF t A− =  and the 

grouped fuzzy relationship of iA  is 
1 2
, , , , ,

ki i i i iA A A A A→


  , where 

1 2 ki i i i< < < < <   . 

Definition 3.1. Accordingly, all the fuzzy sets are partitioned into two parts; high 
and low parts. High part includes the fuzzy sets in high ranking; on the contrary, 
low part includes the fuzzy sets in low ranking. If 1k ki i i− < < , then fuzzy sets in 

the low part are 
1 2 1

{ ,  ,  , }
ki i iA A A

−
 , and fuzzy sets in the high part are 

1
{ ,  ,  , }

k ki i iA A A
+ 
 . Otherwise, If ki i= , then fuzzy sets in the low part are 

1 2
{ ,  ,  , }

ki i iA A A , and fuzzy sets in the high part are 
1

{ ,  ,  , }
k ki i iA A A

+ 
 . Note 

that, if the low/high part is empty set, then the low/high part needs to include their 
current stat of the relationship for instead, that is iA . 

Hence, the fuzzy sets in the high part mean to be selected in higher ranking, and 
fuzzy sets in the low part mean to be selected in lower ranking. The selection 
strategy of fuzzy sets is: If the trend of time series leads to an increase, the fuzzy 
sets in the high part are all selected, else if the trend of time series leads to a 
decrease, the fuzzy sets in the low part are all selected, else if the trend of time 
series leads to no change, the existing state of affairs would be preferred, the 
origin fuzzy set iA  is selected. 

Step 6. Establish the weighted function. Suppose that the grouped fuzzy 
relationship of iA  is 

1 2
, ,..., ,..., ,...,

j k mi i i i i iA A A A A A→ , where j k m< < < . 

For the purpose to stress the significance of fuzzy sets, the weighting of each 
fuzzy set is applied as the factor during the forecasting. 

Definition 3.2. The weighting of the fuzzy set 
jiA  in the low part is computed as 

the probability of frequency defined by  

1 2

,j

j

Q

i

i
i i i

f
l

f f f
=

+ + +
                       

(2) 

where 
1

1,  if 
k k

Q k i i i−= − < < , and ,  if 
k

Q k i i= = . 
jif  is denoted as the 

frequency of fuzzy set 
jiA . On the other hand, the weighting of the fuzzy set iA


 

in the high part is computed as the probability of frequency defined by 

            
j

k m

i
i

i i

f
l

f f
=

+ +



.                       (3) 
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Hence, for each grouped fuzzy relationships, the weighted function is established 
as follows. 

1

1,0,1

, , , , 

( ) |

( 1) 2(1 )(1 ) ( 1)
,

2 2 2
Q k m

i

j j i j j

j i i j i i

h

l m m q m

αα

α α α α α α
=−

= =

=

− + − +
+ + 

 

  (4) 

where 
1

1,  if , and ,  if .
k k k

Q k i i i  Q k i i−= − < < = = Note that ( )ih α  is derived 

corresponding to the original fuzzy set iA  of each grouped fuzzy relationships, 

1,  , i n=  . α  is the variable to select the proper fuzzy sets derived from Step 

5. jm is the midpoint of the interval uj where the maximum membership value of 

fuzzy set jA  occurs. 

Example 3.2: Consider the same problem as in Example 3.1, in which five fuzzy 
relationships include. The grouped fuzzy relationships are 

1 2 1 2

3 3

, ,  (where 3,  1)

. (where 1)

r r r r r

s r r

A A A f f

A A f

→ = =

→ =
 

Hence, the weighted functions are 

1 2
1,0,1

( 1) 2(1 )(1 ) ( 1) 3 1
( ) | ( )

2 2 2 4 4
r r r r r

h m m m mα

α α α α α α
α =−

− + − +
= + + + , 

3
1,0,1

( 1) 2(1 )(1 ) ( 1)
( ) |

2 2 2
m r s s

h m m mα

α α α α α α
α =−

− + − +
= + + , 

where the ranking of fuzzy sets are 
1 2

r r r< <  and 
3

r s< . 

Step 7: Calculate the forecasted outputs. Subsequently, suppose that input 1tx −  

in time 1t −  is fuzzified to ( 1) iF t A− = , the calculations are carried out as 

follows. Because the fuzzy set is iA , then the corresponding weighted function 

( )ih α  is selected, 1,  , i n=  . In this study, the difference between time 1t −  

and t leads to an increase, a decrease or no change, denoted as parameter α =1, 

1−  and 0, respectively. Accordingly, the output is derived as 
1,0,1

( ) |
i

h αα =− . 

According to the configuration of fuzzy systems, the weighted function involves 
the parts of fuzzy inference engine and defuzzifier. Figure 4 presents the 
configuration of the weighted model. 
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Fuzzy Rule Base 

(Grouped fuzzy logical 

relationships) 

Defuzzifier Fuzzifier 

Fuzzy Inference Engine 

Input 1−tx  

F( 1−t )=Ai 

Output  

)(αih  

Domain-specific knowledge 

database 

(Heuristic) 

1 2
, ,  ,

mp p pA A A  

Weighted heuristic function 

Weighted  
measure 

 

Fig. 4 The configuration of the weighted model 

3.2   High-Order Model 

This study aimed to overcome the deficiency of the Chen model (2002), which is 
strongly dependent on the derivation of highest-order fuzzy time series and 
requires a large amount of memory. In other words, according to Chen’s 
definition, if an ambiguity occurs in the ith-order fuzzy relationship groups, the 
model seeks a higher order, such as (i+1)th-order fuzzy relationship, to perform 
the forecast. The highest-order fuzzy relationship must be computed before the 
model can conduct forecasts. Thus, the model requires a large amount of memory 
to derive the fuzzy relationships from the lowest order to the highest order. 

Knowledge was applied to the high-order fuzzy time series model to eliminate 
the computation “bottleneck.” In the domain of expert systems, knowledge is 
typically considered guides that can be used by domain experts to solve 
domain-specific problems (Russell & Norvig, 1995). Based on Huarng’s 
assumption (2001), knowledge is used to guide the search for suitable fuzzy sets 
appropriate for forecasting indices. Therefore, this study enhanced Chen’s model 
by integrating knowledge with high-order fuzzy time series to eliminate 
ambiguities in forecasting. Thus, the proposed model can be restricted to 
lower-order fuzzy time series to achieve acceptable forecast accuracy and required 
memory.  

Step 1: Define the universe of discourse and partition the intervals. According 
to the problem domain, the universe of discourse U can be determined. Then, let 
the universe of discourse be partitioned into intervals 

1 1[ ,  ],  2u a a= 1[ ,  ],  2 2u a a=  , 1[ ,  ]n n n u a a +=  of even length, where ui is the 

ith divided interval. The midpoints of these intervals are symbolized as 

1,  ,  ,2 nm m m , respectively. 
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Step 2. Define the fuzzy sets and fuzzify the data. Subsequently, let 

1,  ,  , 2 nA A A  be fuzzy sets, all of which are labeled by possible linguistic values. 

For example, linguistic values can be applied as fuzzy sets; A1=(not many), A2= (not 
too many), A3=(many), A4=(many many), A5=(very many), A6=(too many), A7= (too 
many many). Hence, Ai is defined on as  

1 1 2 2( ) / ( ) / ( ) /
i i ii A A A n nA u u u u u uμ μ μ= + + + ,              (5) 

where ui is the interval expressed as an element of the fuzzy set, 1,  2,  ,  .i n=   

( )
iA juμ  states the degree to which ju  belongs to iA , and ( )

iA juμ ∈  [0,1]. 

Then, the historical data are fuzzified by the intervals and expressed in the forms of 

linguistic values. Note that Eq. (5) uses the interval ju  as an element. 

Step 3. Establish and group the nth-order fuzzy relationships. The nth-order 
fuzzy relationships are established based on the fuzzified historical time series. 
Besides, if there are ambiguities, these fuzzy relationships are grouped together 
according to Definition 2.4. 

Step 4. Introduce knowledge and establish the knowledge function. Changes in 
time series (the trend) are used as the knowledge to specify the difference between 
times to an increase, a decrease or no change. For instance, the input in the year 

1t −  is 1tx −  and year t is tx . Then the trend leads to an increase, if 1t tx x −− >0, 

denoted as 1α =  for the simplification. The trend leads to a decrease, if 

1t tx x −− <0, denoted as 0α = . The trend leads to no change, if 1t tx x −− =0, 

denoted as 1α = − .  

Consider all the fuzzy sets 1,  ,  ,2 nA A A  are well ordered. That is, 

1,  ,  ,2 nA A A  are fuzzy sets on intervals 1 2 2 3 1[ , ],  [ , ],  , [ , ]n na a a a  a a + , 

respectively, where 1 12 na a a +< < < . Suppose that there is a certain ambiguity 

in the ith-order fuzzy relationship, and they are grouped as 

1 2 1 2
,  ,  ,  , , , , ,

i kr r r j j j jA A A A A A A→


   , 

where  jjjj k2 <<<<<1 . 

According to fuzzy set 
ir

A  at the right most side of the current states, all the 

fuzzy sets in the next states of the grouped fuzzy relationship are partitioned into 

two parts; high and low parts. If 1k i kj r j− < < , then fuzzy sets in the low part are 

1 2 1
{ ,  ,  , }

kj j jA A A
−

 , and fuzzy sets in the high part are 
1

{ ,  ,  , }
k kj j jA A A

+ 
 . 

Otherwise, if i kr j= , then fuzzy sets in the low part are 
1 2

{ ,  ,  , }
kj j jA A A , and 

fuzzy sets in the high part are 
1

{ ,  ,  , }
k kj j jA A A

+ 
 . 

Hence, the fuzzy sets in the high part mean to be selected in higher ranking, and 
fuzzy sets in the low part mean to be selected in lower ranking. The selection 
strategy is: If the trend of time series leads to an increase, the fuzzy sets in the  
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high part are all selected, else if the trend of time series leads to a decrease, the 
fuzzy sets in the low part are all selected, else if the trend of time series leads to no 
change, the existing current states are selected. According to the selection strategy, 
in this proposed model, the knowledge function accepts the relevant trend α , the 
fuzzy set of the right most current states and grouped fuzzy relationships as 
parameters. The knowledge function is established as follows: 

1 2

1 1

1

1 2

1

, , , , 

i

, , , ,

,  , ,

( ; ; , ,  , )

(1 )
, if 0 or 1, and ,

1 ( 1)

(1 )
, if 0 or 1, and ,

( 1)

1
, if 1.

i

k k

k k

i

r j j j

g g k i k

g j j g j j

g g k

g j j g j j

g

g r r r

h A A A A

m m  j r j
k k

m m  r j
k k

m
i

α

α α
α

α α
α

α

−

−
= =

= =

=

=

−
+ = < <

− − +

−
+ = =

− +

= −







 

 









 

 















  (6) 

Note that α  is the variable. 
kj

m  is the midpoint of the interval 
kj

μ where the 

maximum membership value of fuzzy set 
kj

A  occurs. 

Step 5. Calculate the forecasted outputs. The calculations are implemented as 
follows.  

(1) If the ith-order fuzzified history time series for time t are 
1 2
,  ,  ,  

ir r rA A A , 

where 2i ≥ , and there is the following fuzzy relationship in the ith grouped order 
fuzzy relationships shown as follows: 

1 2
,  ,  ,  

ir r r jA A A A→ . 

The forecasted fuzzy set at time t is jA , and the forecasting result is jm , it is the 

midpoint of the interval uj where the maximum membership value of fuzzy set jA  

occurs. 

(2) If the ith-order fuzzified history time series for time t are 
1 2
,  ,  ,  

ir r rA A A , 

where 2i ≥ , and there is the following fuzzy relationship in the ith grouped order 
fuzzy relationships shown as follows: 

1 2 1 2
,  ,  ,  , , , , ,

i kr r r j j j jA A A A A A A→


   , 

where 1 2 kj j j j< < < < <   . Then, the function is applied to eliminate the 

ambiguity and obtain the forecasting result, 
1 2

( ; ; , ,  , )
ir j j jh A A A Aα


 , where the 

difference between time t-1 and t leads to an increase, a decrease or no change, 
denoted as parameter α =1, 0 and -1, respectively. Accordingly, the output is 
derived as 

1 2 1, 0, 1( ; ; , ,  , ) |
ir j j jh A A A A αα = −

 . 
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4   Forecasting Experiment 

4.1   Forecasting Enrollment with Weighted Knowledge Model 

The proposed weighted knowledge model was applied for effective forecasting of 
university enrollments. Enrollments from 1971 to 1992 at the University of 
Alabama were already forecast in a series of experiments. The forecasting of 
enrollments using the weighted model is detailed in the following paragraphs. 

Step 1. As in Table 1, the historical data on enrollments of the University of 
Alabama yields U=[13000, 20000]. The universe of the discourse is divided into 
seven equally long intervals u1, u2, …, u7 with length 1000,  where u1=[13000,  
14000], u2=[14000, 15000], u3=[15000, 16000], u4=[16000, 17000], u5=[17000, 
18000], u6=[18000, 19000], u7=[19000, 20000]. 

Step 2. The enrollments of the University of Alabama can be represented as seven 
fuzzy sets Ai (i=1, 2, …, 7). The linguistic values are A1=(not many), A2=(not too 
many), A3=(many), A4=(many many), A5=(very many), A6=(too many) , A7=(too 
many many). Each Ai (i=1, 2, …, 7) is defined as follows. 

A1=1/u1 + 0.5/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7, 

A2=0.5/u1 + 1/u2 + 0.5/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7, 

A3=0/u1 + 0.5/u2 + 1/u3 + 0.5/u4 + 0/u5 + 0/u6 + 0/u7, 

A4=0/u1 + 0/u2 + 0.5/u3 + 1/u4 + 0.5/u5 + 0/u6 + 0/u7, 

A5=0/u1 + 0/u2 + 0/u3 + 0.5/u4 + 1/u5 + 0.5/u6 + 0/u7, 

A6=0/u1 + 0/u2 + 0 /u3 + 0/u4 + 0.5/u5 + 1/u6 + 0.5/u7, 

A7=0/u1 + 0/u2 + 0 /u3 + 0/u4 + 0/u5 + 0.5/u6 + 1/u7. 

Table 1 lists the corresponding fuzzy enrollment Ai. 

Step 3. The fuzzy relationships are established and grouped. Table 2 lists the fuzzy 
relationships derived from Table 1. Table 3 lists the grouped fuzzy relationships. 

Step 4. Subsequently, the frequency of the fuzzy set in each fuzzy relationship is 
calculated and recorded in the appendix of Table A-1. 

Step 5. The existence knowledge regarding the trend of increase or decrease in 
university enrollment is referred from the Huarng in [1]. This trend of increase or 
decrease is used as a guide in selecting the proper fuzzy sets for forecasting 
enrollment. The increase, unchanged, decrease of trends are symbolized as 1α = , 
-1 or 0, respectively. 
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Table 1 Enrollment data sets 

Years Enrollments Fuzzy Set Years Enrollments Fuzzy Set 

1971 13055 A1 1972 13563 A1 

1973 13867 A1 1974 14696 A2 

1975 15460 A3 1976 15311 A3 

1977 15603 A3 1978 15861 A3 

1979 16807 A4 1980 16919 A4 

1981 16388 A4 1982 15433 A3 

1983 15497 A3 1984 15145 A3 

1985 15163 A3 1986 15984 A3 

1987 16859 A4 1988 18150 A6 

1989 18970 A6 1990 19328 A7 

1991 19337 A7 1992 18876 A6 

1993 18909 A6 1994 18707 A6 

1995 18561 A6 1996 17572 A5 

1997 17877 A5 1998 17929 A5 

1999 18267 A6 2000 18859 A6 

2001 18735 A6 2002 19181 A7 

2003 19828 A7 2004 20512 A8 

Table 2 Enrollment of fuzzy relationships 

1 1
A A→ , 1 2A A→  

2 3A A→  

3 3
A A→ , 3 4A A→  

4 3
A A→ , 4 4A A→ , 4 6A A→  

6 6
A A→ , 6 7A A→  

7 6
A A→ , 7 7A A→  
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Table 3 Grouped fuzzy relationships 

1 1 2,A A A→  

2 3A A→  

3 3 4,A A A→  

4 3 4 6, ,A A A A→  

6 6 7,A A A→  

7 6 7,A A A→  

 

Hence, according to Definition 3.1, the selection strategy of fuzzy sets is: if the 
annual trend in university enrollment leads to an increase, then the fuzzy sets in 
the high part are all selected. Conversely, if the annual trend in university 
enrollment leads to a decrease, then the fuzzy sets in the low part are all selected, 
or the annual trend in university enrollment leads to no change, then the original 
fuzzy sets is selected. 

Step 6. According to the grouped fuzzy relationships in Table 3, the corresponding 
weighted knowledge functions can be established and are listed as follows: 

1 1,0,1 1 1 1 2
( 1) 2(1 )(1 ) ( 1) 2 1

( ) | ( )
2 2 2 3 3

h m m m mα
α α α α α αα =−

− + − += + + + , 

2 1,0,1 2 2 3

( 1) 2(1 )(1 ) ( 1)
( ) |

2 2 2
h m m mα

α α α α α α
α =−

− + − +
= + + , 

3 1,0,1 3 3 3 4

( 1) 2(1 )(1 ) ( 1) 7 2
( ) | ( )

2 2 2 9 9
h m m m mα

α α α α α α
α =−

− − + +
= + + + , 

4 1,0,1 3 4 4 4 6

( 1) 1 2 2(1 )(1 ) ( 1) 2 1
( ) | ( ) ( )

2 3 3 2 2 3 3
h m m m m mα

α α α α α α
α =−

− − + +
= + + + +  

6 1,0,1 6 6 6 7

( 1) 2(1 )(1 ) ( 1) 1 1
( ) | ( )

2 2 2 2 2
h m m m mα

α α α α α α
α =−

− − + +
= + + + , 

7 1,0,1 6 7 7 7

( 1) 1 1 2(1 )(1 ) ( 1)
( ) | ( )

2 2 2 2 2
h m m m mα

α α α α α α
α =−

− − + +
= + + + , 

where km  is the midpoint of the interval uk, and 1 13500m = , 2 14500m = , 

3m =15500, 4m =16500, 5m =17500, 6m =18500 and 7m =19500. 

Step 7: Subsequently, suppose that input 1tx −  in the year 1t − is fuzzified to 

( 1) iF t A− = , the corresponding weighted function ( )ih α  is selected. 
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Accordingly, the output is derived as 
1,0,1

( ) |
i

h αα =− . The following examples are 

used to demonstrate the procedure of selecting the corresponding weighted 
function and using the knowledge to derive the forecasts. 
[years 1972, 1973, 1974]: The enrollment in 1971 was 13055(A1), in 1972 was 
13563(A1) and in 1973 was 13867(A1). While forecasting 1972, the grouped fuzzy 
relationship of A1 is 1 1 2,A A A→ , so the weighted function 1( )h α  is selected. 

Suppose that the knowledge points to an increase for the enrollment forecasts in 
1972. Hence, α  is set to 1. The forecast in 1972 is 

1 1 1 2
2 1

( ) | 13833
3 3

h m mαα = = + = . 

That is, the enrollment forecast for the year 1972 is 13833. However, the actual 
enrollment in 1972 was 13522. Therefore, the forecasting error is 1.99%. The 
main goal in this paper is to minimize the forecasting error. Meanwhile, the trend 
in 1973 and 1974 leads the knowledge to an increase. Hence, the forecasts for 1973 
and 1974 are both 13833. 

[year 1975]: The enrollment in 1974 was 14696 (A2). The weighted function 

)(2 αh  is determined). Meanwhile, suppose that the knowledge points to an 

increase for the enrollment forecast in 1975, so α =1. Therefore, the weighted 
function is 

2 1 3( ) | 15500h mαα = = = . 

That is, the forecast for 1975 is 15500. 

[year 1976]: The enrollment of 1975 was 15460(A3). The weighted function 3( )h α  

is selected. Meanwhile, suppose that the knowledge points to a decrease for the 
enrollment forecast in 1976, so α =-1. Therefore, the weighted function is 

3 1 3
( ) | 15500h mαα =− = = . 

That is, the forecast for 1976 is 15500. 

[years 1977, 1978, 1979]: The enrollment of 1976 was 15311(A3), 1977 was 
15603(A3), and 1978 was 15861(A3). The grouped fuzzy relationship of A3 is 

3 3 4,A A A→ , so the weighted function 3( )h α  is selected for forecasting year  

1977. Meanwhile, suppose that the knowledge points to an increase for the 
enrollment forecast in 1977, so α =1. The forecast for 1977 is 

3 1 3 4

7 1
( ) | 15722.

9 9
h m mαα = = + =  

Meanwhile, the enrollment trends in 1978 and 1979 both lead the knowledge to an 
increase. Hence, the forecasts for 1978 and 1979 are both 15722. 

[year 1980]: The enrollment of 1979 was 16807(A4). The weighted function 4 ( )h α  

is selected. Meanwhile, suppose that the knowledge points to an increase for the 
enrollment forecast in 1980, so α =1. Hence, the weighted function is 
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4 1 4 6

2 1
( ) | 17167.

3 3
h m mαα = = + =  

That is, the forecast for the year 1980 is 17167. 
Table 4 shows all of the remaining forecasts, and compares various studies of 

fuzzy time series used for forecasting enrollments. Suppose that knowledge is 
available. Empirical analysis yields average forecasting errors of 3.22% and 4.38% 
by Song and Chissom’s two models, respectively (1993, 1994), 3.11% by Chen’s 
model (2002), and 2.45% by Huarng’s model (2001). This proposed weighted 
model, however, has an error of 2.24%. In enrollment forecasting, the proposed 
model outperforms the others. 

Table 4 Comparison of enrollment forecasting 

Years Enrollment 
Song-I 

[5] 

Song-II 

[11] 

Chen 

[7] 

Huarng 

[1] 

This 

proposed 

model 

1971 13055      

1972 13563 14000  14000 14000 13833 

1973 13867 14000  14000 14000 13833 

1974 14696 14000  14000 14000 13833 

1975 15460 15500 14700 15500 15500 15500 

1976 15311 16000 14800 16000 15500 15500 

1977 15603 16000 15400 16000 16000 15722 

1978 15861 16000 15500 16000 16000 15722 

1979 16807 16000 15500 16000 16000 15722 

1980 16919 16813 16800 16833 17500 17167 

1981 16388 16813 16200 16833 16000 16167 

1982 15433 16789 16400 16833 16000 16167 

1983 15497 16000 16800 16000 16000 15500 

1984 15145 16000 16400 16000 15500 15500 

1985 15163 16000 15500 16000 16000 15500 

1986 15984 16000 15500 16000 16000 15722 

1987 16859 16000 15500 16000 16000 15722 
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Table 4 (continued) 

1988 18150 16813 16800 16833 17500 17167 

1989 18970 19000 19300 19000 19000 19000 

1990 19328 19000 17800 19000 19000 19000 

1991 19337 19000 19300 19000 19500 19500 

1992 18876 
No 

forecasting
19600 19000 19000 19000 

  3.22% 4.38% 3.11% 2.45% 2.24% 

4.2   Robust Forecasting with the Memorizing Capability 

In the empirical case, the enrollments for weighted measure and performance 
forecasting were derived from the same years, and prior knowledge was 
constructed by analyzing the obtained information. This is referred to as the 
memorizing capability. Consequently, another robust capability was considered. 
To evaluate robustness, the weighted measure and performance forecasting must 
originate from different sources. Therefore, the enrollments of fuzzy relationships 
were grouped and analyzed from 1971 to 1992 at the University of Alabama, and 
robustness was tested according to the enrollments from 1993 to 2004. The 
authors used current knowledge on the annual increase or decrease in university 
enrollment. This trend of increase, decrease, or no change was used as a guide to 
select the proper fuzzy sets for forecasting enrollment. For example, forecasting 
the enrollment in the year t was dependent on the difference between years 2t −  
and 1t − . The positive difference led to an increase, and 1α = . Conversely, the 
negative difference led to a decrease, and 1α = − . A difference of less than 100 
led to no change, and 0α = . 

Enrollment forecasting using the weighted model proceeded as described.  
Table 5 shows various studies on fuzzy time series used for forecasting 
enrollment. Empirical analysis yielded average forecasting errors of 2.99% when 
using the Chen model, 2.61% when using the Huarng model, and 2.31% when 
using the proposed model. Therefore, the proposed model outperformed the other 
models in robust forecasting. 

Table 5 Comparison of enrollment forecasting with robustness (1993 ~ 2004) 

 Chen’s Model 

[7] 

Huarng’s model 

[1] 

This proposed 

model 

Average error 2.99% 2.61% 2.31% 
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4.3   Forecasting TAIFEX with Weighted Model 

Forecasting of the Taiwan Futures Exchange (TAIFEX) was used to demonstrate 
the advantages of the proposed model (Huarng, 2001). The Taiwan Stock 
Exchange Capitalization-Weighted Stock Index (TAIEX) was used as knowledge 
to evaluate the trend over a number of days. In other words, any two consecutive 
days in the TAIEX reflect gains or losses in the stock market. The TAIFEX and the 
TAIEX are highly related; therefore, differences between consecutive days in the 
TAIEX were used as knowledge to forecast the TAIFEX. 

In forecasting the TAIFEX, the data range from August 3 to September 30 1988. 
Forecasting proceeds as follows. 

Step 1. From the historical data in Table 6, U=[6100, 7700] is derived. Then, the 
universe of the discourse is divided into 16 equally long intervals u1, u2, …, u16 of 
length 100, where u1=[6100, 6200], u2=[6200, 6300], u3=[6300, 6400], u4=[6400, 
6500], u5=[6500, 6600], u6=[6600, 6700], u7=[6700, 6800], u8=[6800, 6900], 
u9=[6900, 7000], u10=[7000, 7100], u11=[7100, 7200], u12=[7200, 7300], u13=[7300, 
7400], u14=[7400, 7500], u15=[7500, 7600], u16=[7600, 7700]. 

Step 2. In this case, the linguistic variable “TAIFEX” which can be represented as 
16 fuzzy sets; Ai (i=1, 2,  , 16 ). The linguistic values are A1=(lowest), A2=(very 
very very low), A3=(very very low), A4=(very low), A5=(low), A6=(quite low) , 
A7=(low medium), A8=(medium), A9=(quite medium), A10=(medium high), 
A11=(quite high), A12=(high), A13=(very high), A14=(very very high), A15=(very very 
very high), A16=(highest). Each Ai (i=1, 2,  , 16 ) is defined in the Table 7. 

Table 6 The fuzzy sets of “TAIFEX” 

A1= 1/u1 + 0.5/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 

+ 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 

A2= 0.5/u1 + 1/u2 + 0.5/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 

0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 

A3= 0/u1 + 0.5/u2 + 1/u3 + 0.5/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 

0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 

A4= 0/u1 + 0/u2 + 0.5/u3 + 1/u4 + 0.5/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 

0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 
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Table 6 (continued) 

A14= 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 

0.5/u12 + 1/u13 + 0.5/u14 + 0/u15 + 0/u16 

A15= 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 

0/u12 + 0.5/u13 + 1/u14 + 0.5/u15 + 0/u16 

A16= 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 

0/u12 + 0/u13 + 0.5/u14 + 1/u15 + 0.5/u16 

 

The data set of TAIFEX and corresponding fuzzy sets are shown in the appendix 
of Table A-2. 

Step 3. The fuzzy relationships are established and grouped in Table 7.  

Step 4. The frequencies of fuzzy sets in each fuzzy relationship are calculated, and 
shown in Table 8. 

Step 5. Daily changes in the TAIEX are used as knowledge to select the proper 
fuzzy sets for forecasting (listed in Table 8). Hence, the trend specifies increase, 
decrease or no change. Then the variable in the weighted function is represented as 
α =1 for an increase, 1α = −  for a decrease, and α =0 for no change. 

Table 7 Grouped TAIFEX fuzzy relationship 

1A →  2A →  

3A →  4 2 4 6A A A A→  

5 4A A→  6 7A A→  

7 5 7 8 9, , ,A A A A A→  8 6 7 8 9 10, , , ,A A A A A A→  

9 7 8 9, ,A A A A→  10 8A A→  

11A →  12 7 8 9, ,A A A A→  

13 12 13,A A A→  14 14 15,A A A→  

15 13 14 15, ,A A A A→  16A →  
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Table 8 Frequency of fuzz sets in TAIFEX relationship 

4 6A A→  1 4 4A A→  1 

4 2A A→  1 5 4A A→  1 

6 7A A→  2 7 9A A→  1 

7 8A A→  2 7 7A A→  4 

7 5A A→  1 8 10A A→  1 

8 9A A→  1 8 8A A→  4 

8 7A A→  2 8 6A A→  1 

9 9A A→  2 9 8A A→  2 

9 7A A→  1 10 8A A→  1 

12 13A A→  1 12 12A A→  4 

12 9A A→  1 13 13A A→  3 

13 12A A→  2 14 15A A→  1 

14 14A A→  1 15 14A A→  1 

15 13A A→  1 15 15A A→  1 

 

Hence, according to Definition 3.1, the selection strategy of fuzzy sets is: if the 
trend in TAIEX leads to an increase, then the fuzzy sets in the high part are all 
selected. Conversely, if the trend in TAIEX leads to a decrease, then the fuzzy sets 
in the low part are all selected. Otherwise, if the trend in TAIEX leads to no 
change, then the origin fuzzy set is selected. 

Step 6. According to the grouped fuzzy relationships in Table 8, the corresponding 
weighted functions can be established and are listed as follows. 

4 1 ,0 ,1 2 4 4 4 6

( 1) 1 1 2(1 )(1 ) ( 1) 1 1
( ) | ( ) ( ),

2 2 2 2 2 2 2
h m m m m m

α

α α α α α α
α α

= −

− − + +
= + + + +

5 1 , 0 ,1 4 5 5

( 1) 2(1 )(1 ) ( 1)
( ) |

2 2 2
h m m m

α

α α α α α α
α

= −

− − + +
= + + , 

6 1 ,0 ,1 6 6 7

( 1) 2(1 )(1 ) ( 1)
( ) |

2 2 2
h m m m

α

α α α α α α
α

= −

− − + +
= + + , 
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7 1 ,0 ,1

5 7 7 7 8 9

( ) |

( 1) 1 4 2(1 )(1 ) ( 1) 4 2 1
( ) ( ),

2 5 5 2 2 7 7 7

h

m m m m m m

α
α

α α α α α α

= −
=

− − + +
+ + + + +

  

8 1 , 0 ,1

6 7 8 8 8 9 10

( ) |

( 1) 1 2 4 2(1 )(1 ) ( 1) 4 1 1
( ) ( ),

2 7 7 7 2 2 6 6 6

h

m m m m m m m

α
α

α α α α α α

= −

− − + +
= + + + + + +

9 1 ,0 ,1 7 8 9 9 9

( 1) 1 2 2 2(1 )(1 ) ( 1)
( ) | ( )

2 5 5 5 2 2
h m m m m m

α

α α α α α α
α

= −

− − + +
= + + + + , 

10 1 , 0 ,1 8 10 10

( 1) 2(1 )(1 ) ( 1)
( ) |

2 2 2
h m m m

α

α α α α α α
α

= −

− − + +
= + + , 

12 1 , 0 ,1

9 12 12 12 13

( ) |

( 1) 1 4 2(1 )(1 ) ( 1) 4 1
( ) ( ),

2 5 5 2 2 5 5

h

m m m m m

α
α

α α α α α α

= −
=

− − + +
+ + + +

 

13 1 , 0 ,1 12 13 13 13

( 1) 2 3 2(1 )(1 ) ( 1)
( ) | ( )

2 5 5 2 2
h m m m m

α

α α α α α α
α

= −

− − + +
= + + + , 

14 1 , 0 ,1 14 14 14 15

( 1) 2(1 )(1 ) ( 1) 1 1
( ) | ( )

2 2 2 2 2
h m m m m

α

α α α α α α
α

= −

− − + +
= + + +

15 1 , 0 ,1 13 14 15 15 15

( 1) 1 1 1 2(1 )(1 ) ( 1)
( ) | ( )

2 3 3 3 2 2
h m m m m m

α

α α α α α α
α

= −

− − + +
= + + + + . 

That is, km is the midpoint of the interval uk, and 1m =6150, 2m =6250, 

3m =6350, 4 6450,m = 5m =6550, 6m =6650, 7m =6750, 8m =6850, 9m =6950, 

10m =7050, 11 7150,m = 12m =7250, 13m =7350, 14m =7450, 15m =7550, 

16m =7650,  respectively. 

Step 7. Subsequently, suppose that input 1tx −  in date 1t − is fuzzified to 

( 1) iF t A− = , the corresponding weighted function ( )ih α  is selected. 

Accordingly, the output is derived as 
1,0,1

( ) |
i

h αα =− . The following examples are 

used to demonstrate the procedure of selecting the corresponding weighted 
function and using the knowledge to derive the forecasts. 

[1998/8/4]: The fuzzy set of 1998/8/3 is A15 (TAIFEX was 7552). The proper 
weighted function 15( )h α  is selected. The TAIEX was 7599 on 1998/8/3 and 7593 

on 1998/8/4. The difference between these two days is 6− , the trend leads the 
knowledge to a decrease, so α =-1. Hence, the forecast for 1998/8/4 is 
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15 1 13 14 15

1 1 1
( ) | 7450

3 3 3
h m m mαα =− = + + = . 

[1998/8/6]: The fuzzy set of 1998/8/5 is A14 (TAIFEX was 7486). The proper 
weighted function 14 ( )h α  is selected. The TAIEX were 7500 on 1998/8/3 and 

7472 on 1998/8/6. The difference between these two days is 28− , the trend leads 
the knowledge to a decrease, so α =-1. Hence, the forecast for 1998/8/6 is 

14 1 14
( ) | 7450h mαα =− = = . 

[1998/8/7]: The fuzzy set of 1998/8/6 is A14 (TAIFEX was 7462). The proper 
weighted function 14 ( )h α  is selected. The TAIEX were 7472 on 1998/8/6 and 

7530 on 1998/8/7. The difference between these two days is 58, the trend leads the 
knowledge to an increase, so α =1. Hence, the forecast for 1998/8/7 is 

14 1 14 15
1 1

( ) | 7500
2 2

h m mαα = = + = . 

[1998/8/10]: The fuzzy set of 1998/8/7 is A15 (TAIFEX was 7530). The proper 
weighted function 15( )h α  is selected. The TAIEX were 7530 on 1998/8/7 and 

77372 on 1998/8/10. The difference between these two days is 158− , the trend 
leads knowledge to a decrease, so α =-1. The forecast for 1998/8/10 is 

15
1 13 14 15

1 1 1
( ) | 7450

3 3 3
A

h m m mαα =− = + + = . 

Table A-3 in the appendix shows all of the remaining forecasts. 
Table 9 compares various studies of fuzzy time series used to forecast TAIFEX. 

From left to right, the columns in Table 10 present the forecasts by Chen (2002), by 
Huarng’s knowledge models (2001), by this proposed weighted model. The average 
forecast errors are 1.05%, 1.06%, 0.94%, respectively. Clearly, the proposed model 
outperforms Chen’s model and Huarng’s model. 

Table 9 Comparison of TAIFEX forecasts 

Data Set 

(1998) 
Index 

Chen 

[7] 

Huarng 

[1] 

This 

Proposed Model 

8/3 7552    

8/4 7560 7450 7450 7450 

8/5 7487 7450 7450 7450 

8/6 7462 7500 7450 7450 

8/7 7515 7500 7500 7500 
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Table 9 (continued) 

8/10 7365 7450 7450 7450 

8/11 7360 7300 7350 7350 

8/12 7330 7300 7300 7310 

8/13 7291 7300 7350 7350 

8/14 7320 7183.33 7100 7190 

8/15 7300 7300 7350 7350 

8/17 7219 7300 7300 7310 

8/18 7220 7183.33 7100 7190 

8/19 7285 7183.33 7300 7270 

8/20 7274 7183.33 7100 7190 

8/21 7225 7183.33 7100 7190 

8/24 6955 7183.33 7100 7190 

8/25 6949 6850 6850 6870 

8/26 6790 6850 6850 6870 

8/27 6835 6775 6650 6710 

8/28 6695 6850 6750 6792.857 

8/29 6728 6750 6750 6750 

8/31 6566 6775 6650 6710 

9/1 6409 6450 6450 6450 

9/2 6430 6450 6550 6550 

9/3 6200 6450 6350 6350 

9/4 6403.2 6450 6250 6250 

9/5 6697.5 6450 6550 6550 

9/7 6722.3 6750 6750 6750 

9/8 6859.4 6775 6850 6807.143 

9/9 6769.6 6850 6750 6792.857 

9/10 6709.75 6775 6650 6710 

9/11 6726.5 6775 6850 6807.143 
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Table 9 (continued) 

9/14 6774.55 6775 6850 6807.143 

9/15 6762 6775 6650 6710 

9/16 6952.75 6775 6850 6807.143 

9/17 6906 6850 6950 6950 

9/18 6842 6850 6850 6870 

9/19 7039 6850 6950 6900 

9/21 6861 6850 6850 6850 

9/22 6926 6850 6950 6900 

9/23 6852 6850 6850 6870 

9/24 6890 6850 6950 6900 

9/25 6871 6850 6850 6838.889 

9/28 6840 6850 6750 6792.857 

9/29 6806 6850 6750 6792.857 

9/30 6787 6850 6750 6792.857 

  1.05% 1.06% 0.94% 

4.4   Forecasting TAIFEX with High-Order Model 

According to the previous definition of TAIFEX, the author proposed the 
empirical analysis of knowledge second order model as follows. The data range 
from August 3 to September 30, 1988.  

Step 1. From the historical data in Table 8, U=[6100, 7700] is derived. Then, the 
universe of the discourse is divided into 16 equally long intervals u1, u2, …, u16 of 
length 100, where u1=[6100, 6200], u2=[6200, 6300], u3=[6300, 6400], u4=[6400, 
6500], u5=[6500, 6600], u6=[6600, 6700], u7=[6700, 6800], u8=[6800, 6900], 
u9=[6900, 7000], u10=[7000, 7100], u11=[7100, 7200], u12=[7200, 7300], u13=[7300, 
7400], u14=[7400, 7500], u15=[7500, 7600], u16=[7600, 7700]. 

Step 2. In this case, the linguistic variable “TAIFEX” which can be represented as 
16 fuzzy sets; Ai (i=1, 2, …,16). The linguistic values are A1=(lowest), A2=(very 
very very low), A3=(very very low), A4=(very low), A5=(low), A6=(quite low) , 
A7=(low medium), A8=(medium), A9=(quite medium), A10=(medium high),  
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A11=(quite high), A12=(high), A13=(very high), A14=(very very high), A15=(very very 
very high), A16=(highest). Each Ai (i=1, 2, …, 16) is defined as follows. 

A1= 1/u1 + 0.5/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 

0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16, 

A2= 0.5/u1 + 1/u2 + 0.5/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 

+ 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16, 

A3= 0/u1 + 0.5/u2 + 1/u3 + 0.5/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 

+ 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16, 

A14= 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 

0.5/u12 + 1/u13 + 0.5/u14 + 0/u15 + 0/u16, 

A15= 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 

0/u12 + 0.5/u13 + 1/u14 + 0.5/u15 + 0/u16, 

A16= 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 

0/u12 + 0/u13 + 0.5/u14 + 1/u15 + 0.5/u16. 

The data set of TAIFEX and corresponding fuzzy sets are shown in Table 8. 

Step 3. The second order fuzzy relationships are established and grouped in  
Table 10. 

Step 4. Daily changes in the TAIEX are used as the knowledge to select the proper 
fuzzy sets for forecasting (listed in the appendix of Table A-4). Hence, the trend 
specifies increase, decrease or no change. Then the variable in the weighted 
function is represented as α =1 for an increase, α =0 for a decrease, and α =-1 for 
no change. 
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Hence, if there are ambiguities in the fuzzy relationships, then the selection 
strategy is: if the trend in TAIEX leads to an increase, then the fuzzy sets in the 
high part are all selected. Otherwise, if the trend in TAIEX leads to a decrease, 
then the fuzzy sets in the low part are all selected. Otherwise, if the trend in 
TAIEX leads to no change, then the origin fuzzy set is selected. 

Table 10 Second order grouped TAIFEX fuzzy relationship 

15 15 14,  A A A→  

15 14 14,  A A A→  

15 13 13,  A A A→  

14 15 13,  A A A→  

14 14 15,  A A A→  

13 13 12 13,  ,  A A A A→  

13 12 12 13,  ,  A A A A→  

12 13 13,  A A A→  

12 12 9 12,  ,  A A A A→  

12 9 9,  A A A→  

10 8 9,  A A A→  

4 4 2,  A A A→  

4 2 4,  A A A→  

2 4 6,  A A A→  

 

Accordingly, let the grouped fuzzy relationship for forecasting tTAIFEX  

(TAIFEX at time t) be 
1 1 2
,  ,  ,  

2r r j jA A A A→  . The knowledge function is set as 

2 1 2 1, 0, 1( ;  ;  ,  ,  ) |r j jh A A A αα = − . 

Step 5. Subsequently, the second-order forecasting process of TAIFEX F(t) is 
carried out by the fuzzified input of F(t-2) and F(t-1). Some examples below are 
used to illustrate the forecasting process.  

[1998/8/5]: The TAIFEX in 1998/8/3 and 1998/8/4 were 7552 (A15) and 7560 
(A15). According to the list of second order fuzzy relationship in Table 13, the  
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current states “ 15 15,  A A ” mapping to the suitable fuzzy relationship is 

15 15 14,  A A A→ . Because the maximum membership value of the fuzzy set A14 

occurs at the interval 14u , then the midpoint of the interval 14u  is 7450. Thus, 

the forecasted TAIFEX of 1998/8/5 is equal to 7450. 

[1998/8/6]: The TAIFEX in 1998/8/4 and 1998/8/5 were 7560 (A15) and 7487 
(A14). According to the list of second order fuzzy relationship in Table 13, the 
current states “ 15 14,  A A ” mapping to the suitable fuzzy relationship is 

15 14 14,  A A A→ . Because the maximum membership value of the fuzzy set A14 

occurs at the interval 14u , then the midpoint of the interval 14u  is 7450. Thus, 

the forecasted TAIFEX of 1998/8/5 is equal to 7450 

[1998/8/12]: The TAIFEX in 1998/8/10 and 1998/8/11 were 7365 (A13) and 7360 
(A13). According to the list of second order fuzzy relationship in Table 13, the 
current states “ 13 13,  A A ” mapping to the suitable fuzzy relationships is 

13 13 12 13,  ,  A A A A→ . It means that there is an ambiguity. The TAIEX were 7384 

on 1998/8/11 and 7352 on 1998/8/12, respectively. The difference between these 
TAIEX was 32− , the trend is positive and 1α = − . Hence, the knowledge 
function is 13 12 13 1 12 13( ;  ; , ) | ( ) / 2 7300h A A A m mαα =− = + = , where 13m  is the 

midpoint of the interval 13u . 

Table 15 compares various studies of fuzzy time series used to forecast TAIFEX. 
Mean square errors (MSEs) are taken as forecasting errors: 

2

1
( _ _ )

n

i
acturall TAIFEX forecasted TAIFEX

MSE
n

=
−

=  , 

where i represents the year. From left to right, the columns in Table 15 present the 
forecasts by Chen’s model (Chen 1996), by Huarng’s two-variable model and by 
his three-variable knowledge model (Huarng 2001). The MSEs are 9668.94, 
7856.5 and 5437.38, respectively. 

Table 15 A comparison of the MSE of previous models 

 Chen’s 

model (1996) 

Huarng’s 

two variable 

model 

Huarng’s 

three variable 

model 

MSE 9668.94 7856.50 5437.58 
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Table 16 compares the MSEs of Chen’s restricted model and the proposed 
knowledge high-order fuzzy time series model. That is to say, Chen’s later model 
(2002) is restricted in lower-order fuzzy time series and lacking the ability to 
handle the ambiguity well. The averaging operation in Chen’s model (1996) is 
applied to assist to eliminate the ambiguity in Chen’s later model (2002) to 
compare the performance obtained using fuzzy time series of different orders.  

Table 16 A comparison of the MSE of Chen’s model and this proposed model by using 
different orders fuzzy time series 

Second-order Third-order Fourth-order Fifth-order 

Chen Knowledge Chen KnowledgeChen Knowledge Chen Knowledge 

5900.64 4109.09 3209.98 3052.19 1999.09 1830.2 864.64 864.64 

From the left to right, the columns in Table 16 present the MSE of Chen 
second-order model, the knowledge second-order model, Chen third-order model, 
the knowledge third-order model, Chen fourth-order model, the knowledge 
fourth-order model, Chen fifth-order model and the knowledge fifth-order model, 
respectively. The MSEs are 5900.64, 4109.09, 3209.98, 3052.19, 1999.09, 1830.2, 
864.64 and 864.64, respectively. Obviously, the forecasting accuracy is better than 
that of Chen’s model of the same order. Therefore, the knowledge high-order 
fuzzy time series model represents an improvement over the Chen’s model. 

5   Conclusions 

Most fuzzy time series models are independent of a specific domain. Among these 
models, the Chen model uses the simple and straightforward method to find the 
best forecasting results. In the field of expert systems, experts typically consider 
knowledge to solve domain-specific problems. Hence, Huarng enhanced the Chen 
model by integrating knowledge. The weighted model overcomes the disadvantage 
of the Huarng model, that is, a lack of an efficient measure of the significance of the 
knowledge. The first proposed model was based on the weighted measure of the 
fuzzy sets, which differs from the arithmetic average in the traditional defuzzifier. 
The significance of the derived fuzzy sets was considered in the defuzzification 
phase. The knowledge model is proposed to forecast time series based on the 
high-order fuzzy time series and domain-specific knowledge. The proposed model 
overcomes the deficiency of the Chen model, which is strongly dependent on the 
highest-order fuzzy time series and requires a large amount of memory. 

The results showed that the weighted models can reflect fluctuations in fuzzy 
time series and provide superior overall forecasting results compared to previous 
models. The forecasts of university enrollment and the futures index show that 
domain-specific knowledge can be used with ease to assist forecasting. The 
efficient measure of the significance of fuzzy relationships provides additional 
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information for improving forecasts. Empirical analysis showed that the proposed 
high-order model yielded more accurate forecasts than the Chen model when using 
the same orders. Therefore, the knowledge high-order fuzzy time series model 
offers the advantages of high-order time series forecasting and the elimination of 
ambiguity; that is, the forecasting model can be restricted to the acceptable-order 
fuzzy time series to reduce the amount of memory and computation time required. 
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APPENDIX 

Table A-1 Frequency of relationships 

Fuzzy  

relationship 
Frequency 

Fuzzy  

relationship 
Frequency 

1 1A A→  2 1 2A A→  1 

2 3A A→  1 3 3A A→  7 

3 4A A→  2 4 3A A→  1 

4 4A A→  2 4 6A A→  1 

6 6A A→  1 6 7A A→  1 

7 6A A→  1 7 7A A→  1 

 

Table A-2 TAIFEX data set 

Date (1998) Index Fuzzy Set Date (1998) Index Fuzzy Set 

8/3 7552 15A  8/4 7560 15A  

8/5 7487 14A  8/6 7462 14A  

8/7 7515 15A  8/10 7365 13A  

8/11 7360 13A  8/12 7330 13A  

8/13 7291 12A  8/14 7320 13A  

8/15 7300 13A  8/17 7219 12A  

8/18 7220 12A  8/19 7285 12A  

8/20 7274 12A  8/21 7225 12A  

8/24 6955 9A  8/25 6949 9A  

8/26 6790 7A  8/27 6835 8A  

8/28 6695 6A  8/29 6728 7A  

8/31 6566 5A  9/1 6409 4A  

9/2 6430 4A  9/3 6200 2A  

9/4 6403.2 4A  9/5 6697.5 6A  

9/7 6722.3 7A  9/8 6859.4 8A  

9/9 6769.6 7A  9/10 6709.75 7A  
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Table A-2 (continued) 

9/11 6726.5 7A  9/14 6774.55 7A  

9/15 6762 7A  9/16 6952.75 9A  

9/17 6906 9A  9/18 6842 8A  

9/19 7039 10A  9/21 6861 8A  

9/22 6926 9A  9/23 6852 8A  

9/24 6890 8A  9/25 6871 8A  

9/28 6840 8A  9/29 6806 8A  

9/30 6787 7A     

 

Table A-3 TAIEX data set  

Date (1998) Index  Difference Date (1998) Index  Difference 

8/3 7599  8/4 7593 -6 

8/5 7500 -93 8/6 7472 -28 

8/7 7530 58 8/10 7372 -158 

8/11 7384 12 8/12 7352 -32 

8/13 7363 11 8/14 7348 -15 

8/15 7372 24 8/17 7274 -98 

8/18 7182 -92 8/19 7293 111 

8/20 7271 -22 8/21 7213 -58 

8/24 6958 -255 8/25 6908 -50 

8/26 6814 -94 8/27 6813 -1 

8/28 6724 -89 8/29 6736 12 

8/31 6550 -186 9/1 6335 -215 

9/2 6472 137 9/3 6251 -221 

9/4 6463 212 9/5 6756 293 

9/7 6801 45 9/8 6942 141 

9/9 6895 -47 9/10 6804 -91 

9/11 6842 38 9/14 6860 18 
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Table A-3 (continued) 

9/15 6858 -2 9/16 6973 115 

9/17 7001 28 9/18 6962 -39 

9/19 7150 188 9/21 7029 -121 

9/22 7034 5 9/23 6962 -72 

9/24 6980 18 9/25 6980 0 

9/28 6911 -69 9/29 6885 -26 

9/30 6834 -51    

Table A-4 TAIEX data set 

Date (1998) Index  Difference 

8/3 7599  

8/4 7593 -6 

8/5 7500 -93 

8/6 7472 -28 

8/7 7530 58 

8/10 7372 -158 

8/11 7384 12 

8/12 7352 -32 

8/13 7363 11 

8/14 7348 -15 

8/15 7372 24 

8/17 7274 -98 

8/18 7182 -92 

8/19 7293 111 

8/20 7271 -22 

8/21 7213 -58 

8/24 6958 -255 

8/25 6908 -50 
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Table A-4 (continued) 

8/26 6814 -94 

8/27 6813 -1 

8/28 6724 -89 

8/29 6736 12 

8/31 6550 -186 

9/1 6335 -215 

9/2 6472 137 

9/3 6251 -221 

9/4 6463 212 

9/5 6756 293 

9/7 6801 45 

9/8 6942 141 

9/9 6895 -47 

9/10 6804 -91 

9/11 6842 38 

9/14 6860 18 

9/15 6858 -2 

9/16 6973 115 

9/17 7001 28 

9/18 6962 -39 

9/19 7150 188 

9/21 7029 -121 

9/22 7034 5 

9/23 6962 -72 

9/24 6980 18 

9/25 6980 0 

9/28 6911 -69 

9/29 6885 -26 

9/30 6834 -51 

 



Chapter 8
A Wavelet Transform Approach
to Chaotic Short-Term Forecasting

Yoshiyuki Matsumoto and Junzo Watada

Abstract. Chaos theory is widely employed to forecast near-term future values of
a time series using data that appear irregular. The chaotic short-term forecasting
method is based on Takens’ embedding theorem, which enables us to reconstruct
an attractor in a multi-dimensional space using data that appear random but rather
are deterministic and geometric in nature. It is difficult to forecast future values
of such data based on chaos theory if the information that the data provide cannot
be reconstructed through wavelet transformation in a sufficiently low-dimensional
space. This paper proposes a method to embed data in a small-dimensional space.
This method enables us to abstract the chaotic portion from the focal data and in-
crease forecasting precision.

Chaotic methods are employed to forecast near-term future values of uncertain
phenomena. The method makes it possible to restructure an attractor of given time-
series data set in a multidimensional space using Takens’ embedding theory. How-
ever, many types of economic time-series data are not sufficiently chaotic. In other
words, it is difficult to forecast the future trend of such economic data even based
on chaos theory. In this paper, time-series data are divided into wave components
using a wavelet transform. Some divided components of time-series data exhibit
much more chaotic behavior in the sense of correlation dimension than the origi-
nal time-series data. The highly chaotic nature of the divided components enables
us to precisely forecast the value or the movement of the time-series data in the
near future. The up-and-down movement of the TOPICS value is shown to be well
predicted by this method, with 70% accuracy.
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1 Introduction

Highly accurate and reliable forecasting systems are essential in modern society. In
management and economic activities, forecasting systems play a pivotal role. For
example, the decision making required for the development of a production sched-
ule and marketing plan is based on forecasting of sales volume. An inaccurate fore-
cast will have a serious effect on the production schedule and on marketing. When
the forecasted demand for a certain product is underestimated, the opportunities for
product sales are diminished, and the corporation will experience a loss in sales
revenue. On the contrary, when the demand for a product is overestimated, the in-
ventory quantity of the product will increase and the inventory-carrying cost for the
corporation will increase. Both of these scenarios have the potential to reduce corpo-
rate profits. In a stock market and currency exchange, the forecast will also influence
the corporate balance. Corporate inventors such as life insurance companies, other
types of insurance companies, and commercial banks commit to capital investments
with, for example, the sale or purchase of large amount of stocks and securities to
obtain profits. Companies such as these conduct forecasting using economic time-
series data and distribute their risks across various investments. Therefore, highly
accurate forecasting systems are greatly needed.

Autoregression

Time-series data vary with time. Various methods have been studied to forecast
based on time-series data. G.U. Yule, a British statistician, proposed the time-series
model to express the varying number of solar spots. This model could forecast the
number of solar spots well. The most widely used model for time-series data is the
autoregression model, defined as follows:

y(t) = μ ′+φ1y(t − 1)+φ2y(t − 2)+ · · ·+φpy(t − p)+ ut (1)

where μ ′, φ1, φ2,· · · ,φp denote parameters and ut denotes an error variable called
disturbance term.

Equation (1) consists of a weighted summation from time 1 to time p of terms
y(t − 1) to y(t − p) and the disturbance term ut . This is called a p-th order auto-
correlation model (AR(p)).

Another widely used model is the moving average (MA) model. This model is
defined as follows:

y(t) = μ + ut −θ1μt−1 −θ2μt−2 −·· ·−θqμt−q (2)

where μ , θ1, θ2,· · · , and θq are parameters and ut denotes an error variable called
the disturbance term. In Equation (2), y(t) consists of a weighted summation of the
present time to q previous time, 1, −θ1, −θ2,· · · ,and −θq. This model is called a
q-th order moving average model (MA(q)).
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A more general model is the autoregressive moving average (ARMA) model,
which combines the AR and MA models.

y(t) = μ ′+ ut +φ1y(t − 1)+φ2y(t − 2)+ · · ·+φpy(t − p)

+μt −θ1μt−1 −θ2μt−2 −·· ·−θqμt−q (3)

where μ ′, φ1, φ2,· · · ,φp, ut , θ1, θ2,· · · , and θq are parameters. Equation (3) is ob-
tained by combining Equations (1) and (2). Because the autoregressive portion of
Equation (3) has p dimensions and the moving average (MA) portion Equation (3)
has q dimensions, Equation (3) is called an ARMA(p,q) model.

When finite differences and seasonal variation are included so that the ARMA
model can be applied to non-stationary and seasonal data, it is called the ”Box-
Jenkins” model, the best-known model used in time-series forecasting.

The autoregressive moving average model exhibits random walk behavior. For
example, the simplest model, AR(1), is called a random walk model. As Equation
(4) shows, the present value is obtained by adding a random value to the value of the
previous term. This means that if we know the previous value, the present value can
be evaluated. The random term is white noise, a probabilistic variable. The random
term has a mean of 0 and some deviations σ .

y(t) = y(t − 1)+ ut (4)

Time-series data in a random-walk state are influenced only by probabilistic rules,
so it is impossible to forecast future movements. Random-walk states or approxi-
mately random-walk states are often encountered in the analysis of economic and
management time-series data.

Chaotic System

A different forecasting method is employed to forecast the future behavior based
on time-series data. In general, economic and management times-series data of-
ten exhibit complicated behaviors. When we employ linear equations such as
auto-regression models, it is necessary to include a disturbance term to explain the
complicated and irregular behaviors of time-series data. The disturbance term is
a random variable, as mentioned above, and is not predictable. Tt is well-known,
however, that a nonlinear equation in a chaotic system can express complicated
phenomena without such disturbance terms.

For instance, the following equation is called a logistic map.

x(t + 1) = 4x(t)× (1− x(t)). (5)

Even though this equation is simple and lacks additional variables, its behavior is
quite complicated. This behavior is called chaotic. A chaotic system can express
complicated behavior in a different manner than the stochastic process. The most
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important feature of behavior that can be expressed by a chaotic system is that this
behavior is deterministic.

In other words, if times-series data behave in a complicated fashion and have
chaotic characteristics, we can find the deterministic regularity. It is possible for
us to forecast future behavior based on time-series data. In the real world, many
such examples are found. For instance, the movement of the atmosphere including
climate variation, is understood as a chaotic phenomenon. N. Lorenz [12] strictly
analyzed the movement of the atmosphere using a differential equation and showed
that a simple differential equation without any random term can express compli-
cated movement. This means that, given the initial values of pressure, temperature,
wind speed and so on, the movement of the atmosphere can be deterministically
forecasted depending on physical laws. In the same way, if some economic or man-
agement time-series data can be expressed using a chaotic model, it is possible to
deterministically forecast such economic or management values. Recently, various
types of economic and management time-series data have been studied using chaos
theory view to verify their chaotic characteristics. Fluctuations in gold and silver
prices, the money supply, and GNP, among other economic indicators, have been
as possibly having low-dimensional chaotic features [2] [7] [9]. However, this view
has been rejected [1] [5] [16]. For example, most of the literature on the subject sup-
ports the position of that GNP des not exhibit chaotic behavior. This issue remains
controversial and as yet unresolved. Although the authors of this paper do not con-
sider economic and management time-series data to be low-dimensional chaotic in
nature, it is possible that it is high-dimensional chaotic in nature. That is, it is diffi-
cult to forecast such economic and management time-series data based on a chaotic
forecast model, but if we can successfully improve such chaotic forecasting models,
it might be possible to forecast such values within some margin of error. The objec-
tive of this paper is to present a wavelet transformation method for improving the
forecasting accuracy of chaotic models.

Wavelet Transform

The chaotic short-term forecasting method [8] based on time-series data enables us
to predict future values that we could not predict before for some types of data of
a chaotic nature. Nevertheless, it may still be difficult to correctly forecast values
even for the near future for types of data that are not highly chaotic. Although such
data are relatively less chaotic, it is possible to extract the partially chaotic portion
from the data [13]. In this research, a wavelet transform [6] is employed to extract
chaotic portions from original time-series data. We can identify the more highly
chaotic component of the original data by measuring these correlated dimensions.
Once we can successfully extract the highly chaotic portion from the original data,
we can improve the forecasting precision. The correlation dimension [4] [17] of
the transformed components should be smaller than that of the original data if the
divided components are more highly chaotic than the original data.
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In this research, time-series data are divided into parts using a wavelet transform.
It will be shown that the divided orthogonal elements of time-series data can be
employed to forecast more precisely than is possible with the original time-series
data. Forecasted data are rebuilt into the original form using an inverse wavelet
transform.

The remainder of this chapter consists of the following sections. Section 2 ex-
plains the basic concept of a chaotic model. The wavelet transform is explained
in Section 3. Section 4 explains correlation dimension-based wavelet component
selection for improving forecasting accuracy. The results are summerized in
Section 5.

2 Chaos Theory

The chaotic nature of phenomena is believed to have been identified in the 19th
century by H. Poincare [15]. Poincare proved that the motion equation for a system
of three stars cannot be analytically solved if those three stars have correlation with
each other. In explaining this motion, he proposed that it be characterized as a com-
plicated nonperiodic motion, that is, a type of chaotic behavior. A paper written by
N. Lorenz [12] in 1963 was the starting point in the study of chaotic phenomena.
He clarified that a deterministic system can produce nonperiodic motion and that
the error can become increasingly large with time if a small change is given as an
initial condition. The word ”chaos” was first used in reference to this type of sys-
tem in a paper written by T. Y. Li and J. A. Yorke [11]. Since then, many studies
of chaotic systems have been conducted. In this paper, we propose an application
of the chaotic model to time-series forecasting. In this section, we explain the basic
concepts of the chaotic model, including the correlation dimension that is used in
chaotic forecasting and chaotic decision making.

2.1 Chaotic Feature

The term “chaos” has its origins in Greek [χαoς , keias]. The common understand-
ing of chaos is a greatly disturbed state, different from an ordered state. Although
the scientific meaning of the term ”chaos” in science is a disturbed state, the sci-
entific meaning does not necessarily suggest a greatly disturbed state but rather a
phenomenon disturbed to a moderate degree, which changes irregularly over time
in some manner.

In other words, the scientific meaning of the term ”chaos” refers to an irregularity
of a changing phenomenon that is controlled by relatively simple rules. A typical
example of the chaos system is a logistic map. Logistic mapping can be defined
by a simple relationship. The resulting state, however, may seem to exhibit quite
random movement on a graph. One characteristic of a chaotic system is sensitivity
to the initial state.
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Fig. 1 Logistic map

When an initial state of a chaotic system is changed slightly, the mapping of
the system’s behavior by a chaotic model exhibits almost the same trajectory in
the initial state but shows a very different trajectory beyond some short time. This
phenomenon is referred to as a sensitivity to the initial state. Because of sensitivity
to the initial state, it is not appropriate to employ the chaos method in forecasting a
value in the distant future. That is, it is only possible to predict the state in the near
future that is sufficiently influenced by the present state.

The logistic map written in equation (5) follows a simple rule, but the result graph
appears to be quite a complicated movement. Equation (5) has only one variable,
x(t), but behaves in a complicated manner. Figure 1 illustrates equation (5) for an
initial value of 0.3 .

Various functions exist that show irregular movements, such as the following.

x(t + 1) = 2x(t) (0 ≤ x(t)≤ 0.5)
= 2− 2x(t) (0.5 < x(t)≤ 1)

(6)

x(t + 1) = 2x(t) (0 ≤ x(t)≤ 0.5)
= 2x(t)− 1 (0.5 < x(t)≤ 1)

(7)

Equation (6) is a tent map, and equation (7) is called a Bernoulli shift. These func-
tions exhibit irregular changes, as does a logistic map.

These functions appear complicated, but mapping them reveals simple behavior.
For example, x(t) is mapped to x(t + 1) as follows.

x(t) = f (x(t)) (8)
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Fig. 2 Logistic map
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Fig. 3 Tent map

A logistic map is shown as follows.

x(t) = f (x(t)) = 4x(t)× (1− x(t)). (9)

This map is called a one-dimensional map if the value x(t+1) is determined only by
the value of x(t) . Fig. 1 becomes Fig. 2 if the vertical axis x(t+1) and the horizontal
axis x(t) are used. In the same way, a tent map and a Bernoulli shift are illustrated
in Fig. 3 and Fig. 4, respectively. Even if, at first glance, a plot of time-series data
appears complicated, some simple regularity can often be found by applying a map.

In Figs. 2 to 4, all of the curves have two values of x(t) for the same value of
x(t + 1). This means the vurves have steep gradients at that point. That is, the two
values originated from a similar value and quickly separated. For example, let the
difference between two initial values be Δx. In the tent map and the Bernoulli shift,
the gradient of a graph is 2 at place. This simplifies the discussion. In this case,
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Fig. 4 Bernoulli shift
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Fig. 5 The comparison of two logistic function using two near initial values

one mapping produces result 2 times larger than Δx. When the difference of two
initial values is 10−5, 16 times of maps will produce Δx×216 = 10−5 ×216 = 0.66.
When the difference exceeds 0.5, it is highly possible that both of the values will
occur on both sides of x(t) = 0.5. In this case, the difference will not be double, but
the difference in behavior will be evident. This phenomenon is called initial value
sensitivity. To illustrate this phenomenon, we show two logistic graphs started with
two initial values 0.3 and 0.30001 in Fig. 5, respectively. The two graphs exhibit
similar behaviors up to t of 12. Beyond that point, the values are separated. When
t is greater than 17, the two behaviors are quite different. When the difference is
greater than 0.5, the line is folded, and the behaviors become different. ”Expanding”
and ”folding” are chaotic features.
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2.2 Chaotic Forecasting

The objectives of employing the chaos method in forecasting are the following: 1)
to find a deterministic structure in a given set of time-series data and 2) to predict a
value using this structure for a certain point in time that is in the near future from
the present state. Fig. 5 shows the comparison of two logistic functions using two
similar initial values that are sufficiently influenced . The chaos method enables
us to forecast with high precision the short-term future using time-series data that
exhibit highly unpredictable and nonperiodic changes.

This forecasting approach is based on Takens’ embedding theory, which states
that it is possible to restructure the trajectory of a dynamic system in a high-
dimensional space using only the information (that is, time-series data) of one com-
ponent dimension (variable).

Using time-series data x(t), let us define vector z(t) as follows:

z(t) = (x(t),x(t − τ),x(t − 2τ), · · · ,
x(t − (n− 1)τ)) (10)

Where τ denotes an arbitrary constant time interval. The vector z(t) shows one point
in an n-dimensional space(Data Space). Therefore, changing t generates a trajectory
in the n dimensional data space. When n is sufficiently large, this trajectory exhibits
a smooth change in the high-dimensional dynamic system. That is, if the dynamic
system has some attractor, an attractor transformed from the original one should
appear on the data space. In other words, the original attractor of the dynamic system
can be embedded in the n dimensional topological space. The number n is called an
embedded dimension. Denoting the dimension of the original dynamic system by m,
it can be proven that this n dimension is sufficiently large if n holds the following:

n = 2m+ 1 (11)

Equation (11) is a sufficient condition for the embedded dimension. It is required to
employ data with more than 3 to 4 samples over time in short-term forecasting.

Next, let us describe the deterministic structure using a restructured trajectory.
There are several methods. Figure 6 illustrates short-term forecasting using the
chaos method that is embedding discrete time-series data with the equal time in-
terval τ = 15 in embedded dimension n = 3.

Observed discrete time-series samples can be mapped into a topological space
of 3 embedded dimensions, as shown in Figure 7. As a result, the mapped vector is
denoted as follows:

z(i) = (x(i),x(i− 1),x(i− 2)) (12)

Let z(i) denote a vector of 3 dimensions in which observed data, including the most
recent time are mapped on a topological space. Figure 8 illustrates the relationship
of the data that are mapped around the neighborhood of z(i) in the 3-dimensional.
These data in the neighborhood of z(i) are the data observed in the past. The
trajectory of z(i + 1) at one step in the future is shown in Figure 8. These
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Z(i)Z(j)

Z(i+1) ?Z(j+1)

Fig. 6 Forecasting method based on chaotic model

relationships enable us to forecast behavior z(i+ 1) in the near future. The future
trajectory x(i+1) of the given time-series data {x(t),x(t −1), . . .} can be calculated
the following stepts: 1) deciding the nearest point z( j) included in the neighborhood
with diameter ε from z(i), 2) calculating the distance (It+1) between z(i+ 1) and
z( j+ 1) using the Jacobian matrix A j of the nearest point z( j) and the distance (It)
between z(i) and z( j), and 3) deciding the trajectory x(i+1) in one step in the future
of the original time-series data.

2.3 Measurement of the Correlation Dimension

Measurement of the correlation dimension is usually employed to evaluate whether
a given set of time-series data is chaotic.

The method of correlation dimension is employed in the assessment of whether
time-series data has a chaotic structure by checking whether the time-series data are
distributed in a lower-dimensional space than m dimensions, assuming that the data
are embedded in an m-dimensional space.

First, let us embed the time-series data into an m-dimensional space.
Then, we draw a circle with radius r at the center of the points that each embedded

vector has. We count how many points are included within the drawn circle and
denote this number by C. When the radius is large, the number should be included .

Therefore, as C is an increasing function of r, let us denote it as C(r).
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Fig. 7 Forecasting method based on chaotic model



188 Y. Matsumoto and J. Watada

Fig. 8 Forecasting method based on chaotic model

Fig. 9 Measurement of correlation dimension (a)
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Fig. 10 Measurement of correlation dimension (b)

If the plotted points are distributed evenly in the m-dimensional space, the num-
ber of points included within the circle should increase in proportion to the area of
the circle as r increases.

C(r) = arm (13)

In contrast, if the structure has any regularity, C(r) should increase in proportion to
a value less than the m-powered value:

C(r) = br(m−x) (14)

The value (m− x) is called the correlation dimension.
In the case of random data, regularity cannot be detected in the space even when

the embedded dimension is increased. Therefore, the correlation dimension should
increase as the embedded dimension increases.

When time-series data has a deterministic structure in the embedded space, the
correlation dimension cannot increase and should be matured at the same value,
even if the embedded dimension increases.

It is necessary to check whether time-series data follow a chaotic deterministic
rule when chaos theory is applied to the time-series data to forecast a future value.
The correlation dimension is used to check whether a set of time-series data exhibits
chaotic behavior [10]. The method checks whether same shape can be found as in
the original n-dimensional time-series data when the time-series data are embedded
in an m-dimensional space, where m is less than n. That is, the embedded space is
checked to determine whether m is less than n. When m is less than or equal to 3,
this can be determined by visual inspection. It is not possible, however, to detect
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chaotic behavior by visual inspection when m is greater than 4. Therefore, we need
a method to distinguish chaotic behavior in time-series data.

Measurement of the correlation dimension is a way to quantitatively evaluate the
embedded shape of time-series data. The correlation dimension is a type of non-
integer dimension and is widely employed because it is possible to measure the
correlation dimension even if the number of data points is comparatively small.

It is necessary to embed time-series data into an n-dimensional space to mea-
sure the correlation dimension. Let us consider embedding time-series data into 2
correlation dimensions.

C(r) ≈ ard (15)

Taking the logarithm of Equation (15), we have the following relationship:

log(C(r))≈ dlog(r)+ log(α) (16)

The gradient of the plots of log(C(r)) and log(r) shows the embedded correlation
dimension of the time-series data. This measurement is evaluated at only one point.
The correlation dimension of real time-series data should be checked to observe
the behavior of the correlation dimension average among all of the sample points
obtained.

Let us show the formulation as follows:

{x(t)}, t = 1,2, · · · ,T
Z(t) = (x(t),x(t + τ),x(t + 2τ), · · · ,x(t +(n− 1)τ)) (17)

t = 1,2, · · · ,M (M = T − (n− 1)τ)

Cn(r) =
# o f {(Z(i),Z( j))|r > |Z(i)−Z( j)|}

M2

(18)

Assume that the number of time-series data points x(t) is T . Define vector Z(t)
using the time-series data x(t) and embed Z(t) into an n-dimensional space. Let τ
denote a time interval. Let us measure the embedded correlation dimension. The
Euclidian distance between two points Z(i) and Z( j) is denoted by |Z(i)−Z( j)|. #
of {· · ·} denotes the number of elements included in set {· · ·}. Equation (18) yields
the number of the paired distances that are smaller than r divided by the number of
whole pairs M2.

3 Wavelet Transformation

Fast Fourier transform is widely employed to transform a signal into components
of different frequencies. A sine function is employed as a base function. The sine
function is an infinite smooth function. Therefore, the information obtained by the
fast Fourier transform does not include the local information such as the locations
and magnitudes of the frequencies the original signals.
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On the contrary, the wavelet transform employs a compact portion of a wavelet
as a base function. Therefore, it is a time and frequency analysis, in that it enables
us to determine the signal using time and frequency.

The mother wavelet transform (Wψ f )(b,a) of function f (x) can be defined as
follows:

(Wψ f )(b,a) =
∫ ∞

−∞

1√|α|Ψ
(

x− b
a

)
f (x)dx (19)

where a is the scale of the wavelet and b is the translate. Ψ(x) is a conjunction
of a complex number. It is also possible to recover the original signal f (x) using
a wavelet transform. That is, we can accomplish the inverse wavelet transform as
follows:

f (x) =
1

CΨ

∫ ∫
R
(Wψ f )(b,a)

1√|α|Ψ

(
x− b

a

)
∂a∂b

a2 (20)

The wavelet transform is a useful method for identifying know the characteristics
of the signal but not an efficient method because the signal has a minimum unit
and the wavelet method expresses much-duplicated information. This issue can be
resolved by discretizing a dimensional axis. Let us denote a dimension as (b,1/a)=
(2− jk,2 j). The discrete wavelet transform can be rewritten as

d( j)
k = s j

∫ ∞

−∞
Ψ(2Jx− k) f (x)dx (21)

The inverse wavelet transform is

f (x) ∼ ∑
j
∑
k

d( j)
k Ψ(2 jx− k) (22)

Let us denote the summation of the right term as

g j(x) = ∑
k

d( j)
k Ψ(2 jx− k) (23)

Then, let us define f j(x) as

f j(x) = g j−1(x)+ g j−2(x)+ · · · (24)

where an integer j is called a level. If we can denote f (x) as f0(x), then

f0(x) = g−1(x)+ g−2(x)+ · · · (25)

This equation illustrates that the function f0(x) is transformed into wavelet com-
ponents g−1(x), g−2(x), · · · . The left side must be transformed uniquely into the
right-side, and the left side should be realized by composition from the right-side
components as well. This can be accomplished using a mother wavelet Ψ as a base
function. The function f j(x) can be rewritten using a recursive forms

f j(x) = g j−1(x)+ f j−1(x) (26)
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This equation indicates that the original signal f j(x) can be transformed into
wavelet components g j−1(x) and f j−1(x). This equation enables us to decompose
the original equation into the wavelet components step by step. This process is called
multi-resolution signal decomposition.

4 Correlation Dimension of Transformed Wavelet Components

Let us transform the time-series data into frequency components by wavelet mul-
tiresolution analysis. The Spline4 shown in Fig. 11 is employed as a mother wavelet
function and the transformation is conducted until level 4. The time-series data an-
alyzed are Tokyo stock average index (TOPIX) data. The data consists of 2,048
sample points from January 1991. Figure 12 illustrates the results obtained from
the multiresolusion analysis. The first graph in Figure 12 is the original one. The
smaller value j shows the lower-frequency component.

The results of the wavelet transformation illustrate that each frequency compo-
nent of the TOPIX data are trasformed smoothly.

We measured the correlation dimension of each component decomposed by the
wavelet transform. The results are shown in Figure 13. The original TOPIX data
indicate that the correlation dimension is matured at approximately 7. However,
the wavelet component j = −1 is matured at approximately 6. The correlation di-
mension of the wavelet component whose j is less than or equal to −2 is matured
approximately 4 to 5.

These results illustrate that the transformed components are more chaotic than
the original TOPIX time-series data. The measurement of correlation dimensions
results in component time-series data that are more chaotic than the original time-
series data. Let us forecast the short-term future using the original data and the de-
composed wavelet-transformed component data and compare the results. The data
are the same TOPIX data employed above. In this discussion, the data were normal-
ized to a mean of 0 with a variance of 1. The embedded dimensions are examined
from dimensions 3 to 9. We measured the forecast errors associated with them. In

Fig. 11 Spline4: Mother wavelet
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Fig. 12 Divided Time-series Data
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Fig. 13 Measurement of the correlation dimension for the transformed component data and
the original data

Fig. 14 The prediction error of the transformed component time-series data

the forecast, we employed 100 data points from among the total of 2,048 points used
as described previously. Figure 14 shows the results for the original and the wavelet-
transformed component time-series data. The vertical axis denotes error means and
the horizontal axis shows the embedded dimension.

The transformed component data exhibit drastically lower forecasting errors than
the original data. This result indicates that the component data are much more
chaotic than the original TOPIX data.
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Fig. 15 Correct rates of up-and-down prediction

We can show that the wavelet-transformed component time-series data are more
chaotic than the original data by both the measurement of the correlation dimension
and the forecasting error.

Let us examine the forecasting of the up-and-down movements of the price of a
stock. The goal of this process is to forecast the movement of the price, i.e., the di-
rection of change from today’s price to tomorrow’s price. This forecast is conducted
only for the movement of the price, not the price itself.

Let us check the prediction of up-and-down movements of stock prices based on
the forecasted results. The up-and-down prediction was performed for the move-
ment of the price of the stocks on following day using the TOPIX data. The predic-
tion is correct if the actual and predicted directions of the movement are the same.
The percentage of correct predictions is shown for the 100 trials. In Figure 15, the
vertical axis is the correct prediction rate and the horizontal axis is the embedded
dimension.

A much better prediction rate is obtained for the component data obtained us-
ing the wavelet transform than for the original time-series data. The transformed
component of the original data better predicts the chaotic movement. In the case
of j = −4, the correct prediction rate is better than 70%, which is considered very
high.

5 Conclusions

The objective of this paper is to demonstrate that short-term forecasting can be ac-
complished using a wavelet transform applied to chaotic data. Original time-series
data are divided into components through a wavelet transform. The chaotic short-
term forecasting method is applied to the transformed component decomposed by
the wavelet transform.
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It should be noted that even if a given set of time-series data is relatively less
chaotic, we can distinguish the chaotic component of the data from the original data
using the wavelet transform. In this paper, we discussed the measurement of the
correlation dimension, forecasting error and the correct prediction rate achieved in
comparison of original TOPIX data and the wavelet-transformed component of the
data. The correlation dimension of the transformed component is lower than that
of the original data. The TOPIX data yielded lower correlation dimensions than
individual stock price data. The lower correlation dimension of the TOPIX data
means that these data are more chaotic. Analysis of TOPIX data showed that the
divided component data obtained by wavelet transform were predicted correctly at
a higher rate (up to 70This demonstrates that the wavelet transform can extract the
chaotic component well from the original data.
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Chapter 9 
Fuzzy Forecasting with Fractal Analysis  
for the Time Series of Environmental Pollution 

Wang-Kun Chen and Ping Wang* 

Abstract. Environmental pollution, which is complicated for forecasting, is a 
phenomenon related to the environmental parameters. There are many studies 
about the calculations of concentration variation on pollution time series. A new 
framework of prediction methodology using the concept of fuzzy time series with 
fractal analysis (FTFA) was introduced. The FTFA uses the concept of turbulence 
structure with the fractal dimension analysis to estimate the relationship by fuzzy 
time series. The candidate indexes of each pattern can be selected from the most 
important factors by fractal dimension analysis with autocorrelation and cross 
correlation. Based on the given approach, the relationship between the environ-
mental parameters and the pollution concentration can be evaluated. The proposed 
methodology can also serve as a basis for the future development of environmen-
tal time series prediction. For this reason, the management of environmental quali-
ty can be upgraded because of the improvement of pollution forecasting. 

Keywords: Fuzzy Theory, Fractal Analysis, Environmental Pollution, Time Series. 

1   Time Series of Environmental Phenomenon and Its Physical 
Nature  

Environmental pollution is a kind of natural phenomenon which could be 
explained by the turbulence structure of fluid dynamics. The environmental 
properties such as pollution concentration, wind velocity, ocean current and 
thermal diffusion are all the outcome of natural turbulence. The air pollution is a 
typical phenomenon caused by pollutants emitted into the atmosphere and diffused 
with the eddy.  
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The environmental phenomenon can be described by its physical properties. 

The presence of “eddies” in the environment leads to the complexity and variation 
of the outcome of observation. The length scale of “eddy” differs to several orders 
of magnitude. For example, typhoon is one of those large eddies exists in the at-
mosphere, and the sea breeze is the smaller eddy caused by the air-sea exchange. 
Thus it is very difficult to explain the difference by traditional methods. A better 
insight into the characteristics of turbulence with these “eddies” will be helpful in 
understanding the nature of these environmental phenomenon.  

The modern principle of fluid dynamics and the theory of fractal analysis are 
suitable tools to investigate the properties of environmental events. The irregularity 
and the randomness are the most important characteristics of turbulent flow. These 
characteristics make it impossible to explain the environmental events using deter-
ministic approach, except invoking statistical methods. The environmental pheno-
menon can be investigated by long term and large area monitoring. However, the 
complexity of the time series-based observation has made the interpretation more 
difficult. The models used to describe environmental turbulence should be able to 
simulate the non-linear and non-stationery properties of time series. Therefore, the 
recently developed tool, fractal analysis, can be employed to meet the needs.  

Environmental pollution is a phenomenon resulting from the presence of turbu-
lence, characterized by non-linear, randomness, irregularity, and chaos.  Thus, 
turbulence is a complex environmental phenomenon that is difficult to predict 
precisely through mathematical modeling. 

2   Interpretation of Pollution Time Series by Fractal Analysis 

Since there are so many different eddies with different scales, the concept of  
fractal analysis become useful to understand the behavior of environmental turbu-
lence. Fractal analysis, which expresses the complexity using the fractal dimen-
sion, is a contemporary method to describe the natural phenomenon. It applies the 
nontraditional mathematics in analyzing the environmental problem and has been 
used in the analysis of the scale dependence environmental phenomenon such as 
rainfall (Olsson & Niemczynowicz,1994,1996), air pollutant concentration 
(Lee,2002, Lee et al, 2003, Lee & Lin, 2008; Lee et al,2006a,), and earthquake 
(Lee et al,2006b). 

Mandelbrot has defined fractal as a special class of subsets of a complete metric 
space (Mandelbrot,1982).  The fractal dimension, DF, which is deduced from the 
scaling rule, is the key concept of fractal analysis. The complexity of environmen-
tal phenomenon is due to a change with the variation of turbulence eddies in scale. 
So it is possible to have many types of fractal dimension, DF, in an environmental 
system. These fractal dimensions can be explained in terms of measure of the 
complexity. Comparing with the change with scale in turbulence, so it is necessary 
to deduce a scaling system to represent the “patterns of complexity”  

Here a simple model is proposed for estimation of pollution concentration  
influenced by environmental turbulence. Generally, the scaling rule or fractal di-
mension, DF, can be represented by two terms, N and ε.  The term N is the num-
ber of pieces and ε is the scale used to get new pieces. The relationship can be 
written as:  
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N ∝ ε -DF
                                                      (1) 

which can be further formulated in the form of a scaling rule: 

N = A ε -DF                                  (2) 

where A is a certain constant. By taking the logarithm of both sides of (2), the 
variable DF becomes the ratio of the log of “the number of new parts (N)” to the 
log of “scale (ε)”: 

DF = log N/log ε.                               (3) 

The scaling rule of fractal dimension helps us explain the variation of pollution 
time series in the fuzzy time series prediction with fractal analysis. 

In turbulence, the attribute of correlated variable helps to characterize the phe-
nomenon. The analysis starts from the average of products, which are computed in 
the following way. (Tennekes and Lumley, 1972)~ 
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The terms consisting of a product of a mean value and a fluctuation vanish if they 
are averaged, because the mean value is a mere coefficient as far as averaging is 
concerned, and the average of a fluctuation quantity becomes zero.  

If 0≠jiuu , ui and uj are said to be a correlated; if 0=jiuu , the two varia-

ble are uncorrelated. Figure 1 illustrates the concept of correlated fluctuating vari-
able. The correlation coefficient Cij, is defined by 
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where Cij is a measure for the degree of correlation between two variable ui and uj. 

If 1±=ijC , the correlation is said to be perfect, and could be chosen as the best 

predictor for forecasting.  
In the analysis of turbulence dimension, the “standard deviation” of “root mean 

square (RMS)” amplitude is defined. For a turbulent flow field, a characteristic 
velocity, or “velocity scale”, might be defined as the mean RMS velocity taken 
across the flow field at that position. In this way velocity scale could be used as a 
precise definition in dimensional analysis.  

If the evolution of fluctuating function (t) is to be described, it is necessary to 
know that the value of u at different time is related. The question could be ans-
wered by considering a joint density for u(t) and u’(t). The time difference, or time 

lag, in the property time series is defined by tt −= 'τ . The correlation )'()( tutu  

at two different times is called the autocorrelation, and the correlation between u 
and v is called the cross-correlation. 
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Fig. 1 The example of correlated variable and uncorrelated variable. The green and blue 
line has a negative correlation; however, the red line is uncorrelated to the two variables.  

A tensor R to deal with the correlation between different location x and x+r is 
given by 

)(),( txutxuR iiij +⋅≡ ,                            (6) 

3   Representation of Environmental Phenomenon by Fuzzy 
Time Series 

After interpretation of environmental phenomenon in terms of turbulence scale 
and fractal dimension analysis, we return to the problem of predicting the time 
series value of pollution. Time series is frequently applied to the prediction of 
environmental events. An example of using time series for pollutant concentration 
is given by 

X = {x t  t = 1,……, N }                    (7) 

where t is time index and N is the total number of observations. For example, the 
time series of ozone concentration from a continuous monitoring station, the in-
stantaneous wind velocity at the meteorological observation station is considered 
as an event for a time series.  

The prediction method of fuzzy time series with fractal analysis is a scheme re-
vised from Chen’s study of fuzzy time series (Chen, 1996, 2002)(Chen and Hsu, 
2004, 2008)(Chen and Hwang, 2000)(Song and Chrisson, 1993, 1994, 2003). The 
concept of fuzzy time series has been applied to the prediction of pollutant con-
centration by Chen (Chen, 2011), which produced good results. However, it is  
still unable to describe the non-linear characteristic of the environmental system. 
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On the other hand, the database is not extensive enough to generate a complete 
inference engine to simulate all the possible variation of time series.  

In this study, due to an addition of 1440 data sets to the database for generating 
the inference engine, along with the fractal analysis of turbulence, more insight is 
given than before into the behavior of pollution concentration in the environment. 

The prediction method of fuzzy time series with fractal analysis (FTFA) can be 
implemented by the following steps: (1) Define the interval. (2) Get the statistical 
distribution of concentration in each interval. (3) Define each fuzzy set Ai based 
on the re-divided intervals ui derived in step 2. (4) Establish fuzzy logical relation-
ship based on the fuzzified concentration. (5) Use the high-order difference to 
determine the upward or downward trend. (6) Find the appropriate predictors by 
fractal analysis.  

Let U = {u1, u2, u3,……,un}, where U is the universe of discourse. Fuzzy set A, 
in the universe of discourse U, is defined as follows: 

nnni uufAuufAuufAA /)(/)(/)( 222111 +++=    ,        (8) 

where fA is the membership function of the fuzzy set A, fA : U → [0,1], fA(ui) indi-
cates the grade of membership of ui in the fuzzy set A, fA(ui)∈[0,1], and 1≦i≦n.  

Define F( t ) as the fuzzy time series of X(t) (t = ……, 0, 1, 2, ……), and X(t) (t 
= ……, 0, 1, 2, ……) is the universe of discourse in X (t). In order to extract the 
knowledge from the time series database, assume there exists a fuzzy relationship 
R (t, t-1) such that 

F(t) = F(t-1)‧R(t, t-1)                               (9) 

Where, R(t, t-1) denotes the fuzzy relationship between F(t) and F(t-1). If fuzzy 
set F(t-1)=Ai, and F(t)=Aj, the fuzzy relationship is called the first order fuzzy 
time series. 

More hidden relationships could be found in the time series database. If F(t) is 
caused by F(t-1), F(t-2), F(t-3) ……,and F(t-n), then there is a high-order fuzzy 
time series which can be represented by  

F(t-n),……,F(t-2), F(t-1) → F(t).                     (10) 

The fuzzy interval of pollution time series can be an equal-length interval (ELI) or 
an un-equal length interval (ULI). ULI is the improved model of ELI by adjusting 
the length of each interval in the universe of discourse  This is called the multi-
step fuzzy time series for the forecasting of concentration (Chen, 2008) (Chen, 
2010). The proposed method of FTFA is presented as follows: 

Step 1: Define the interval 

Let U be the universe of discourse, U = [Dmin - D1, Dmax + D2], where Dmin and  
Dmax denote the minimum and maximum concentration. 

Step 2: Form the statistical distribution of concentration in each interval.. 

Sort the interval based on the number of concentration data falling into each inter-
val in a descending sequence. 

Step 3 : Define each fuzzy set Ai based on the re-divided intervals ui derived in 
step 2, and fuzzify the historical concentration. 
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The interval with no data distributed was discarded. The interval with more data 
was divided into more sub-intervals. The idea behind the determination of interval 
and sub-interval is to divide the interval containing a higher number of historical 
concentration data into more sub-intervals to improve the accuracy of predict. 

Step 4: Establish fuzzy logical relationship based on the fuzzified concentration.  

If the fuzzified concentration of month i and i+1 are Aj and Ak, respectively, then 
construct the fuzzy logical relationship “Aj → Ak”, where Aj and Ak are called the 
current state and the next state of the concentration. 

If the fuzzified concentration of month i is Aj and the fuzzy logical relationship 
is shown as:Aj→Ak1(x1), Ak2(x2)…Akp(xp) , then the estimated concentration of month i 
is calculated as 
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where Xi denotes the number of fuzzy logical relationships “Aj   Ak” in the fuzzy 
logical relationship group, 1≦i≦p, mk1,mk2,……and mkp are the mid point of the 
intervals uk1,uk2,……and ukp respectively, and the maximum membership values 
of Ak1,Ak2,……and Akp occur at intervals uk1,uk2,…… and ukp, respectively. 

Step 5: Use the high-order difference to determine the upward or downward trend. 

The difference of the second order difference between any two neighboring time 
segments of the historical concentration can be used for forecasting the trend. The 
second order difference is calculated by the equation: Yn = Yn-1-Yn-2. 

The α-cut value determines the fuzzified concentration in the interval. It is quite 
usual to use the triangle function and chose the value of α-cut equal to 0.5 for 
estimation. Another important factor is the value of high-order difference; it will 
dominate the trend of concentration variation. 

Step 6: Selecting the appropriate predictor by fractal analysis 

There are many factors which may influence the concentration variation of time 
series. To improve the accuracy of prediction, it is better to incorporate these fac-
tors into a more advanced model. The properties of pollution, which are influ-
enced by many factors, can be described in terms of an appropriate function and α-
cut value. The triangular function, trapezoidal function, or Gaussian membership 
function are all possible choices.  

The autocorrelation and cross correlation in the knowledge space phase of frac-
tal dimension analysis help us find the best predictor. The autocorrelation coeffi-
cient between Xt and Xt-τ is calculated as follows  
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Where, τ is the time lag of the two time segments Xt and Xt-τ. The autocorrelation 
coefficient helps us define the fractal dimension of the environmental system.  
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The cross correlation help us know the relationship between two properties. It 
is calculated as  
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The fractal dimension is determined by finding the maximum and minimum val-
ues of these two correlation coefficients in the time plot. 

4   Statistical Pattern Recognition of Environmental 
Concentration in Space-Time Series 

The space-time series could be described by the average values and fluctuating 

quantities such as U and uv . It is also important to know how fluctuations are 
related to the adjacent fluctuations in time or space next to each other. The statis-
tical pattern recognition helps us examine how fluctuations are distributed around 
an average value in the space-time series. Some statistical properties are intro-
duced for the purpose of pattern recognition of environmental concentration time 
series such as probability density function and its Fourier transform, the autocorre-
lation and its Fourier transform, etc. 

A steady time series is statistically stable, calculated by the mathematical func-
tion. The probability density function )~(uB is defined by 

 Δ=Δ
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where u~ denotes the fluctuation value.  
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The mean values of the various powers of u~  are called moments. The means 
value is the first moment defined by 
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The variance, or the mean square departure,σ2, from the mean value U is the 
second moment, which is defined by 
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where σ is the standard deviation of root mean square(rms) amplitude.  
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The third moment, skewness (S), K, helps us discriminate the symmetric and 
anti symmetric parts of the time series. It is defined by 

duuBuu 
∞
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= )(33 ,                                (18) 

and the value of skewness is 
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The fourth moment, kurtosis or flatness factor K is represented as 
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The other important measurement is the Fourier transform of B(u), which is  
defined as 
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The Fourier transform of B(u) is the characteristic function which is more conve-
nient to see the pattern of flow property and behavior of pollution concentration. 

In order to examine the feasibility of this model, the numerical experiment was 
conducted. The experimental data for time series analysis were acquired from the 
observed air quality data of Taiwan Environmental Protection Administration. 
Different pollutant concentration such as carbon monoxide, sulfur dioxide, nitro-
gen oxide, PM2.5, and ozone were used. Data for analyzed were obtained from the 
year Sep, 2010, to AUG, 2011.  

The results of the pattern of space-time series was analyzed by the autocorrela-
tion to know the fractal dimension for different pollutants.  

Figure 2 is the autocorrelation coefficient time series plot of ozone concentra-
tion time series. The amplitude of autocorrelation coefficient gradually decreases 
with time lag. There are totally five peaks in five days (120hours) of monitoring 
results, which means c(t) is correlated with itself every twenty four hours. The 
maximum value, which is near 1, is close to the first hours. This result reveals that 
the best predictor for ozone concentration is the time segment prior to the time of 
prediction. 
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Fig. 2 Autocorrelation coefficient of ozone concentration time series 

Figure 3 is the autocorrelation coefficient time series plot of nitrogen dioxide 
concentration. The results exhibit a wave-like trend of decreasing amplitude. The 
reason why the trend of nitrogen dioxide is the same as that of ozone is that they 
are all photochemical pollutants. Their formations are mostly governed by solar 
radiation. Therefore, all the graphical results show the same daily cycle.  

 

Fig. 3 Autocorrelation coefficients of nitrogen dioxide concentration time series 

Figure 4 shows the plot of autocorrelation coefficient time series of carbon mo-
noxide concentration.  Two peaks, including a higher peak and a lower one, are 
found in one day. This represents two possible sources of carbon monoxide emis-
sion in the morning and in the evening. The time lag of twenty four hours has the 
highest value and the one of twelve hours has the second highest value. It is ex-
pected that the autocorrelation coefficient will approaches zero as the time lag 
approaches infinity.  
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Fig. 4 Autocorrelation coefficients of carbon monoxide concentration time series 

Figure 5 includes the autocorrelation coefficient time series plot of PM-10 con-
centration. The irregular trend fails to indicate significant correlation between u(t) 
and time lag. An assumption can be made that the correlation is significant only 
up to 8-hour time lag corresponding to the least coefficient of 0.2. 

 

Fig. 5 Autocorrelation coefficients of PM-10 concentration time series 

Figure 6 presents the autocorrelation coefficient of Non-methane hydrocarbon 
concentration. The figure reveals a very sharp decrease in the autocorrelation coef-
ficient, which means that there are many factors which influence the variation of 
non-methane hydrocarbon concentration. It is more difficult to predict the concen-
tration of non-methane hydrocarbon in time series. 
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Fig. 6 Autocorrelation coefficients of Non-methane hydrocarbon concentration time series 

5   Prediction of Environmental Pollution by Fuzzy Forecasting 

Once understood space-time series pattern by turbulence theory and fractal dimen-
sion analysis, an attempt is made to apply fuzzy forecasting approach for  
prediction. The FTFA method, including a variety of schemes with different fuzzy 
intervals, multi-step fuzzy time series and the high-order fuzzy time series, is used 
to predict pollution concentration. These methods are used to determine the trend 
of data by adjusting the length of each interval in the universe of discourse.  

The Mean Square Error was calculated as follows: 
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where Cobs denotes the actual particulate concentration of time step I, Cest denotes 
the forecasting concentration, and m denotes the historical data.  

The FTFA model is compared with other forecasting methods: 

(1) The linear regression model: This model uses a linear trend over time to esti-
mate the concentration: 

C = a X + b                                  (23) 

where C is the estimated concentration at specific time X. 

(2) The autoregressive model: The autoregressive model uses the previous data to 
estimate the concentration as follows: 

C = r1 Ct-1 + ε                               (24) 

where C denotes the regression result at time t, Ct-1 denotes the concentration at 
time t-1, r1 denotes the regression coefficient , and ε denotes the predicting error.  

The auto-regression model can be modified by the two time step estimation as 
follows: 

C = r1 Ct-1 + r2 Ct-2 +ε                            (25) 
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where r1 and Ct-1 are defined as before, Ct-2 denotes the concentration at time t-2, 
and r2 denotes the regression coefficient. 

The concentration predicted by the above FTFA method is listed in Table 1and 
graphically shown in Fig 7. As shown in table 1, the mean square error from the 
FTFA model is least, exhibiting its superiority over other models in predicting 
concentration.  

Table 1 Example of the observed concentration and fuzzy concentration Cobs : observed 
concentration;  Int : concentration intervals C fuzzy  : fuzzified concentration 

time Cobs  Int  C fuzzy 

T1 46.63 [46,47] 47 
T2 51.35 [51,52] 51 
T3 63.33 [63,64] 63 
T4 58.77 [58,59] 59 

The fuzzy logical relationship is listed in Table 2. For example, the following 
fifth-order fuzzy logical relationship: A17, A17, A16, A16, A15→A14, where the 
fuzzy logical relationship denotes the fuzzified concentration.  

Table 2 Fuzzy logical relationship 

Number of steps fuzzy logical relationship 

One step A1→A13 

Two steps  A17,A13→A20 

Three steps  A12,A15,A16→A19 

Four steps A15,A15,A16, A16, →A18 

Five steps A17,A17,A16, A16, A15, →A14 

Each interval is equally divided into four subintervals, where the points at 0.25 
and 0.75 are used as bases to make forward or backward prediction. From the fuzzy 
logical relationship described above, the forecasted concentration can be deter-
mined. The results of several different prediction methods are shown in Table 3.  

The value of mean square error for multi-steps fuzzy model (MSF) is the smal-
lest among all the prediction methods, as shown in Table 3.  It indicates that the 
proposed method is better than other models based on intervals with 10, 20 and 30 
equal spaces. The prediction results of traditional auto-regressive model and linear 
egression model are both worse than those of the FTFA model. The reason is that 
the traditional statistical method and pattern recognition are either parametric or 
non-parametric models, but the high-order fuzzy time series recognize the pattern 
in other ways.  
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There are usually some data with unknown pattern in our forecasting proce-
dure. The pattern recognition of concentration prediction is important in forecast-
ing the particulate concentration, therefore more advanced tool has to be used.  

An example is taken to compare the “patterned” and “un-patterned” data in this 
study. The method has the capability to catch the pattern of the concentration vari-
ation in the atmosphere. Also, the mean square error from the forecasted results of 
FTFA models was lower than that from the linear regression model and autore-
gressive model. Since the prediction of pollution concentration also involves hour-
ly, daily, concentration, a more sophisticated analysis should take space and time 
into account in predicting variation of concentration. 

Table 3 includes the result of comparison of different forecasting method. 

Table 3 Comparison of the results by different prediction method Note: Ĉ : actual concen-
tration A :(10) equal interval fuzzy model B: (20) equal interval fuzzy model C: (30) equal  
interval fuzzy model D: multi steps fuzzy model E: simple linear model F: AR(1) model G: 
AR(2) model σ: standard deviation MSE: mean square error 

statistical  
Property 

Ĉ forecasted concentration 
A B C D E F G 

mean 7049 7109 7064 7055 7055 7100 7321 7230 
σ 4022 4168 4055 4033 4233 8965 5655 4699 
MSE  827 143 38 34 16323 3266 6803 

 

Fig. 7 Forecasted results with different interval 
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Fig. 8Comparison of mean square error by different forecasting methods A : (10) equal 
interval fuzzy model B: (20) equal interval fuzzy model C: (30) equal  interval fuzzy mod-
el D: multi steps fuzzy model E: simple linear model F: AR(1) model G: AR(2) model 

6   Conclusions 

In this paper, an attempt has been made to predict pollution concentration by two 
methods, i.e. multi-step fuzzy time series (MSFT) and different interval fuzzy time 
series (DIFT). The MFT method was implemented by adjusting the length of each 
interval in the universe of discourse and using the “second order difference” of 
concentration to predict the variation of concentration. The characteristics of pat-
tern recognition of these two methods were discussed. The predicted results from 
those data with known pattern were better than those with unknown pattern. 

By comparing the results, it is shown that the proposed MSFT method produces 
the smallest mean square error among the seven predicting methods. That is, these 
methods give higher accuracy than traditional fuzzy time series, linear regression 
model, and auto-regressive model. Accordingly, the proposed methods are ob-
viously a better choice in predicting pollution concentration. 
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Chapter 10
Support Vector Regression with Kernel
Mahalanobis Measure for Financial Forecast

James N.K. Liu and Yan-xing Hu

Abstract. For time series forecasting which have data sets coming from an unstable
and nonlinear system such as the stock market. Support Vector Regression (SVR)
appears to be an efficient tool which has been widely used in recent years. It is also
reported to have a higher accuracy and generalization ability than other traditional
methods. The SVR method deals with the nonlinear problem by mapping the input
feature space into a high dimensional space so that it becomes a linear problem.
Kernel function is one of the crucial components in SVR algorithm as it is used to
calculate the inner product between vectors in the mapped high dimensional space.
The kernel function of Radial Basis Function (RBF), which is based on the Eu-
clidean distance, is the most commonly used kernel function in SVR. However, the
SVR algorithm may neglect the effect of correlation among the features when pro-
cessing the training data in time series forecasting problems due to the limitation
of Euclidean distance. In this chapter, a Mabalanobis distance RBF kernel is intro-
duced. It is well known that when we need to calculate similarity between two vec-
tors (samples), the use of Mahalanobis distance can take into account the correlation
among the features. Thus, the SVR with Mahalanobis distance kernel function may
follow the behavior of the data sets better so that it can give more accurate result.
From the comparative investigation, we find that in some circumstances, the Ma-
balanobis distance RBF kernel based SVR can outperform the Euclidean distance
based SVR.

1 Introduction

In the past ten years, Support Vector Regression (SVR) has been widely applied to
deal with time series forecasting problems in different domains; especially for those
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domains characterized as some complex, nonlinear and unstable discipline. For
example, it has been reported that the SVR performed well in financial forecast-
ing [1-3] and also in temperature forecasting [4,5]. When applied to these problems,
empirical results showed many advantages with the SVR algorithm; for example,
higher generalization ability and the capability of avoiding overfitting problems.
Due to its well-founded statistical learning theory, the SVR showed a better per-
formances than other methods such as, Artificial Neural Networks (ANN) or Auto-
Regressive and Moving Average (ARMA) Model in some previous works[6,7].

In 1995, Vapnik first introduced the Support Vector Machine (SVM) [8]. The
SVM was originally applied to deal with classification problems and soon extended
to regression problems [9,10]. Compared with other estimation models such as ANN
and ARMA, SVR substitutes the traditional Empirical Risk Minimization (ERM)
principle with Structure Risk Minimization (SRM) to address the overfitting prob-
lem and able to offer higher generalization ability. Accordingly, as we discussed
above, when applied in a complex, nonlinear and unstable system, the SVR can
demonstrate better performance than other methods.

The kernel function is one of the crucial components in the SVM algorithm. By
using the kernel function, we can map all the samples into high dimensional feature
space so that the nonlinear problem can be solved as the linear problem. The choice
of kernel function may affect the performance of SVM algorithm. However, till now,
there is still no guideline how to determine which kernel function can provide the
best performance of SVM. Among all the kernel functions, the Radial Basis Func-

tion (RBF) kernel K(xi,x j) = exp(
−‖xi−x j‖2

2γ2 ) is most frequently used because the
number of parameters of RBF kernel function is less than in other kernel functions.
Moreover, previous experiments also showed that in most conditions, RBF kernel
function could provide better performance than other kernel functions[11]. Many
previous experiments that used SVR to deal with time series forecasting problems
also considered RBF kernel function.

In this chapter, we introduce a new Mahalanobis distance based RBF kernel func-
tion. We focus our investigation on the comparison of SVRs with the two (Maha-
lanobis distance based and Euclidean distance based) different kinds of RBF kernel
functions and their performance on financial time series forecasting problems. It
is well known that compared with Euclidean distance, Mahalanobis distance takes
into account the correlations among attributes (features) of the data set. Based on
Euclidean distance, SVM algorithm neglects the correlations among attributes (fea-
tures) of the training samples. Some previous researches have noticed this limitation
of SVM, and subsequently introduced the Mahalanobis distance into SVM to take
into consideration of the effect of correlations among attributes (features) in the
training process. Some encouraging results have been obtained when Mahalanobis
distance based SVM is applied to deal with classification problems [12,13]. Particu-
larly, Wang and Yeung analysed some conventionally used kernel functions in SVM
and employed Mahalanobis distance to modify the kernel function so as to improve
the classification accuracy [14]. Nevertheless till now, there is little investigation on
the effect of Mahalanobis distance based SVM on regression problems.
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Since that in the calculation process of SVR, the Euclidean distance is applied to
express the distances among the sample points, the SVR algorithm will inevitably
accept the limitation of Euclidean distance: the correlations among the input vari-
ables are neglected. However, for a typical time series forecasting problem, we
have features selected according to a certain time interval, such as stock index of
(t − 1) day, stock index (t − 2) day, ... , stock index (t − n) day. Obviously, these
features are not independent from each other. When using classical SVR to deal
with such types of time series forecasting problems, the correlation influence will
be neglected. Therefore, it would be beneficial to improve the performance of SVR
if we could take into account correlation in the training process. Therefore in this
chapter, a Mahalanobis distance based RBF kernel function will be used in the SVR
to deal with the financial time series forecasting problems; and we will investigate
the performance of the proposed kernel function through a series of experiments.

The chapter is organized as follows: in Section 2 we will briefly introduce some
background, and analysis of the Mahalanobis distance based RBF kernel and the
Euclidean distance based RBF kernel in Section 3. Section 4 discusses the experi-
ments along with some comparative analysis. The last section gives the conclusion
and future work.

2 Background Knowledge

2.1 Support Vector Regression

Based on the structural risk minimization (SRM) principle, SVM method seeks to
minimize an upper bound of generalization error instead of the empirical error as
in other neural networks. Additionally, SVM models generate the regression func-
tion by applying a set of high-dimensional linear functions. The SVR function is
formulated as follows:

y = wφ(x)+ b (1)

where φ(x) is called the feature, which is nonlinear and mapped from the input
space ℜn. y is the target output value we want to estimate. The coefficients w and b
are estimated by minimizing:

R =
1
2
‖w‖2 +

1
n

C
n

∑
i=1

Lε (di,yi) (2)

where:

Lε(d,y) =

{ |d − y|− ε, |d− y| ≥ ε
0,otherwise

(3)

Eq. (2) is the risk function consisting of the empirical error and a regularization

term that is derived from the SRM principle. The term 1
n

n
∑

i=1
Lε (di,yi) in Eq. (2) is

the empirical error (risk) measured by the ε-insensitive loss function ( ε-insensitive
tube) given by Eq. (3); in the meanwhile, the term 1

2‖w‖2 is the regularization term.
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The constant C > 0 is taken as the regularized constant that determines the trade-off
between the empirical error (risk) and the regularization term. Increasing the value
of C will add importance to the empirical risk in the risk function. ε is called the tube
size of the loss function and it is equivalent to the accuracy approximation placed
on the training data points. Both C and ε are user-prescribed parameters.

Then the slack variables ζ and ζ ∗ which represent the distance from the actual
values to the corresponding boundary values of ε-insensitive tube are introduced.
With these slack variables, Eq. (3) can be transformed to the following constraint
based optimization:

Minimize:

R(w,ζ ,ζ ∗) =
1
2

wwT +C(
n

∑
i=1

(ζ + ζ ∗)) (4)

Subject to:
wφ(xi)+ bi− di ≤ ε + ζ ∗

i
di −wφ(xi)− bi ≤ ε + ζi

ζi,ζ ∗
i ≥ 0, i = 1,2, · · · ,n

(5)

Finally, by introducing the Lagrangian multipliers and maximizing the dual function
of Eq. (4), it can be changed to the following form:

R(αi −α∗
i ) =

n
∑

i=1
di(αi −α∗

i )− ε
n
∑

i=1
(αi −α∗

i )

− 1
2

n
∑

i=1

n
∑
j=1

(αi −α∗
i )× (α j −α∗

j )(Φ(xi) ·Φ(xk))
(6)

with the constraints:

n

∑
j=1

(αi −α∗
i ) = 0,0 ≤ αi ≤C,0 ≤ α∗

i ≤C, i = 1,2, · · · ,n (7)

In Eq. (7), αi and α∗
i are called Lagrangian multipliers which satisfy αi ×α∗

i = 0,
the general form of the regression estimation function can be written as:

f (x,αi,α∗
i ) =

l

∑
i=1

(αi −α∗
i )K(x,xi)+ b (8)

In this equation, K(xi · x) is called the kernel function. It is a symmetric function
K(xi · x) = (Φ(xi) ·Φ(x)) satisfying Mercer’s conditions. When the given problem
is a nonlinear problem in the primal space, we may map the sample points into a
high-dimensional feature space where the linear problem can be performed. Linear,
Polynomial, Radial Basis Function (RBF) and sigmoid are four main kernel func-
tions in use. As we discussed above, in most of the time series forecasting prob-
lems, the SVR employs RBF kernel function to estimate the nonlinear behavior of
the forecasting data set because RBF kernels tend to give good performance under
general smoothness assumptions.
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2.2 Euclidean Distance Measure verse Mahalanobis Distance
Measure

It is well known that the Euclidean distance is the most widely used measure to de-
fine the distance between two points in Euclidean space. In Euclidean space, for any
two points xi = (xi1,xi2, . . . ,xin) and x j =

(
x j1,x j2, . . . ,x jn

)
, the Euclidean distance

between these two points can be calculated as:

dE(Xi,Xj) =

√√√√ n

∑
k=1

∣∣xik − x jk

∣∣2 (9)

Although the Euclidean distance is widely used, it also has an obvious limitation.
As discussed earlier, different features of the samples are considered as equal in
the calculation of Euclidean distance; also, the correlations among the features are
neglected.

One of the methods to address the limitation of Euclidean distance is to use the
Mahalanobis distance [15]. Let X be a l×n input matrix containing l random obser-
vations xi ∈ ℜn, i= 1, . . . , l. The Mahalanobis distance dM between any two samples
xi and x j can be calculated as follows:

dM(xi,x j) =
√
(xi − x j)

T ∑−1(xi − x j) (10)

∑ is the covariance matrix which can be calculated as:

∑ =
1
l

l

∑
k=1

(xk− μ)·(xk− μ)T (11)

where μ is a mean vector of all samples.
Originally, the Mahalanobis distance can be defined as a dissimilarity measure

between two random vectors of the same distribution with covariance matrix ∑.
From the definition of Mahalanobis distance we can see that the Mahalanobis

distance is based on correlations between variables where different samples that can
be identified and analyzed. It differs from Euclidean distance based on the correla-
tions of the data set and is scale-invariant. Then again, if the covariance matrix is the
identity matrix, the Mahalanobis distance will be equal to the Euclidean distance.

Considering that samples are locally correlated, a local distance measure incor-
porating the samples’ correlation might be a better choice as a distance measure.
Mahalanobis distance can take into account the covariance among the variables in
calculating distances. Accordingly, in some circumstances, it may be a more suitable
measure to calculate the distance and evaluate the similarity between two points[13].
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3 Mahalanobis Distance RBF Kernel Based SVR

3.1 The Analysis of Kernel Functions in SVR

In SVR, to enable the nonlinear problem to be estimated by a linear function as
shown in Eq. (8), we have to map the original input feature space into a high-
dimensional feature space. Note that the mapping is Φ(x) as given in Eq. (6), we
have to calculate the inner products of every two vectors in the transformed high-
dimensional feature space. Thus, the curse of dimensionality[16] will emerge.

To deal with this problem, we can obtain a kernel function that meets this require-
ment K(xi · x j) = (Φ(xi) ·Φ(x j)) and calculate the K(xi,x j) instead of calculating
the inner products of the vectors in the transformed high-dimensional feature space.
In fact, every kernel function meeting the Mercer’s Theorem can be used in SVM al-
gorithm[9]. Usually, Linear, Polynomial, Radial Basis Function (RBF) and Sigmoid
are the four main kernel functions in use.

Table 1 shows the form of the four kernel functions.

Table 1 The main kernel functions used in SVM

Linear K(xi,x j) = xi · x j

Polynomial K(xi,x j) = (c+xi · x j)
d

Radial Basis Function (RBF) K(xi,x j) = exp(−‖xi−x j‖2

2γ2 )

Sigmoid K(xi,x j) = tanh(c(xi · x j)+θ )

The RBF kernel function is the most commonly used among the four kernel func-
tions in real applications. From what we notice of the linear kernel function, the
Polynomial kernel function and the Sigmoid kernel function are all based on the in-
ner products of the vectors. In other words, these kernel functions can be considered
as functions with the variable (xi · x j). Unlike other three kernel functions, the RBF
kernel function is based on the Euclidean distance between two points in the feature
space: having examined the format of RBF kernel function we can observe that the
variable of the RBF kernel function can be considered as the Euclidean distance
between two points denoted as

∥∥xi − x j
∥∥ [14].

In fact, the RBF kernel function is a measure of the similarity between two vec-
tors in the Euclidean feature spaces. If xi and x j are very close in Euclidean distance
(
∥∥xi − x j

∥∥ ≈ 0), the value of the RBF kernel function will tend to be 1, conversely,
if xi and x j are quite far apart in Euclidean distance (

∥∥xi − x j
∥∥ >> 0), the value of

the RBF kernel function will tend to be 0.
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3.2 Substituting Euclidean Distance with Mahalanobis Distance
in RBF

The Euclidean distance has the limitation that it neglects the correlations among the
features. From the above discussion, we can see that the RBF kernel function can be
considered as a Euclidean distance variable-based function. Accordingly, the RBF
kernel function inherits the limitation of Euclidean distance.

One possible method of addressing this limitation is the use of Mahalanobis dis-
tance instead. We substitute the Euclidean distance with Mahalanobis distance as
the variable in RBF kernel function. The Mahalanobis distance based RBF kernel
function is:

KM(xi,x j) = exp(
−((xi − x j)

T ∑−1(xi − x j))

2γ2 ) (12)

∑ is the covariance matrix which can be calculated as:

∑ =
1
l

l

∑
k=1

(xk− μ)·(xk− μ)T (13)

where μ is a mean vector of all samples. The format of linear estimate function in
Eq.(8) can now be transformed to:

f (x) =
l

∑
i=1

(αi −α∗
i )KM(x,xi)+ b (14)

By introducing the Mahalanobis distance into the RBF kernel function, we can mea-
sure the similarity between two vectors with the Mahalanobis distance rather than
Euclidean distance. The Mahalanobis distance based kernel function can take into
account the correlations among attributes of the samples in the SVM training pro-
cessing. When SVR with the proposed kernel function is applied to deal with time
series forecasting problems, it should be beneficial to the performance improvement
of the SVR forecasting result.

4 Experimental Results and Analysis

In this chapter, our investigation mainly focuses on the performance of Mahalanobis
distance RBF kernel function in SVR and its performance in financial time series
forecasting. To evaluate the performance of Mahalanobis distance BRF kernel func-
tion based SVR in time series forecasting, a series of experiments are conducted. 15
financial data sets about time series forecasting problem are applied in our exper-
iment. Three forecasting methods are used in our experiment for comparison: we
use the Mahalanobis distance RBF based SVR, Euclidean distance RBF based SVR
and the BP neural network to estimate the target values and analyze the result with
comparison.
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4.1 Data Collection

As discussed in the above, the SVR is reported to be very suitable in dealing with
complex, unstable and nonlinear forecasting problems such as problems in financial
forecasting domain. In our experiment, 15 financial datasets from the real world
are collected to evaluate the performance of the SVR. We have chosen 6 stocks
from China A share market in Shanghai and 7 stocks from China A share market in
Shenzhen. We aim to forecast the close prices of the 13 stocks. In addition, the Stock
Indexes of the two markets: Shanghai composite index and Shenzhen composite
index are also used as data sets in our experiment. This data covers the period from
the 15th, September 2006 to the 31st, December, 2009. Thus, each of the data sets
contains more than 750 samples.

Table 2 The features for the stock price forecasting in China A share markets

1 Today’s lowest price
2 Today’s highest price
3 The lowest price of the last trading day
4 The highest price of the last trading day
5 The moving average lowest price of the last 5 trading days
6 The moving average highest price of the last 5 trading days
7 Today’s open price
8 The highest price of the last trading day
9 The moving average highest price of the last 5 trading days
10 Today’s turnover
11 The turnover of the last trading day
12 The moving average turnover of the last 5 trading days
13 Today’s volume
14 The volume of the last trading day
15 The moving average volume of the last 5 trading days

Table 3 The features for the Shanghai/Shenzhen composite index forecasting

1 Today’s daily open index
2 The open index of the last trading day
3 The open index of the (t −2) trading day
4 The open index of the (t −3) trading day
5 The open index of the (t −4) trading day
6 The open index of the (t −5) trading day
7 The close index of the last trading day
8 The close index of the (t −2) trading day
9 The close index of the (t −3) trading day
10 The close index of the (t −4) trading day
11 The close index of the (t −5) trading day
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For different data types, we select different features for constructing the regres-
sion models. Table 2, shows features for the stock price forecasting in China A
share market in Shanghai and Shenzhen; Table 3, shows the input features for the
forecasting of Shanghai composite index and Shenzhen composite index.

4.2 Data Pre-processing

4.2.1 Shift Windows

In this experiment; to test the learning capability of the algorithms and to follow as
well as forecast the trend of the stock price movement, a shift window was designed.
For each of the data set, there were 30 samples in one window, approximately 5%
of the total samples, and the first 25 of these samples were used as training data and
the last 5 samples as testing data. We then shifted forward this window by the shift
step of 5 days. For example, the first shift window contains 30 trading days of data
from 15th, September, 2006 to 9th, November, 2006, in this shift window, the first
25 samples, which began on 15th, September and finished on 2nd, November, are
used as training set, and the data of the following five days, from 3rd, November
to 9th, November, are used as testing data. We predict the stock price of these five
days, and compare that with the actual price of these five days. Then we shift the
window forward and the training set started from 21st, September till 9th, Novem-
ber. The actual stock prices of these 25 samples are used as training set to predict
the following 5 day’s stock price. Analogically, we can predict all the stock prices
of our set by shifting the windows. In every window, the ratio of training samples
and testing samples is 5:1.

4.2.2 Normalization of Data

When we use Euclidean distance RBF kernel function-based SVR to do the predic-
tion, the data set should be normalized to avoid features that may contain a greater
numeric value range from dominating the features; that have smaller numeric ranges
in the process of training and regression. In this experiment, the formula we applied
to normalize the data is:

v′ =
v−minα

maxα −minα
, (15)

where v′ is the normalized value and v is the original value. After the process, all
the values of the features were normalized within the range of [0, 1].

4.3 Evaluation Criteria

The prediction performance can be evaluated by the following statistical
metrics[17]:



224 J.N.K. Liu and Y. Hu

Normalized Mean Squared Error (NMSE) measures the deviation between the
actual values and the predicted values. The smaller the values are, the closer the
predicted values to the actual values. The formula of NMSE is:

NMSE = 1/(δ 2n)
n

∑
i=1

(ai − pi)
2 (16)

where

δ 2 = 1/(n− 1)
n

∑
i=1

(ai − pi)
2 (17)

Directional symmetry (DS) indicates the correctness of the predicted direction of
predicted value in terms of percentages. The formula of DS is:

DS = (100/n)×
n

∑
i=1

di (18)

where

di =

{
1,(ai − ai−1)(pi − pi−1)≥ 0
0,otherwise

(19)

4.4 Experimental Results and Discussion

Table 4, shows the results of the experiment. The stocks which have a stock number
starting with ”6” are from China A share market in Shenzhen, the stocks which have
a stock number starting with ”0” are from China A share market in Shanghai. The
columns denoted as MRBFSVR present the results of Mahalanobis distance RBF
based SVR, the columns denoted as ERBFSVR present the results of Euclidean
distance RBF based SVR, and BPNN is short for BP neural network. Fig. 1 and Fig.
2 give the comparison results of the three methods.

The results in Fig. 1 and Fig. 2 show that both of the two SVRs, the Mahalanobis
distance RBF based SVR and Euclidean distance RBF based SVR; outperform the
BP neural network with respect to the criteria of NMSE and DS in most of the
15 data sets. Obviously, from these results, we can observe that the SVM regression
method is more suitable for time series forecasting problems in financial forecasting
than the BP neural network algorithm.

From Table 4, we cannot conclude that the Mahalanobis distance RBF based SVR
is definitely a better algorithm than the Euclidean distance RBF based SVR. We
can observe that the criteria of NMSE, the Mahalanobis distance RBF based SVR
reduces to a lower NMSE value in 8 of the 15 data sets than the Euclidean distance
RBF based SVR; although, for the criteria of DS, the Mahalanobis distance RBF
based SVR receives a higher DS value in 10 of the 15 data sets than the Euclidean
distance RBF based SVR. These results are not enough to support the conclusion
that the Mahalanobis distance RBF based SVR is superior to the Euclidean distance
RBF based SVR when applied to time series forecasting.
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Table 4 The NMSE and DS values of the three algorithms for the 15 data sets

NMSE NMSE NMSE DS DS DS
MRBFSVRERBFSVR ERBFSVR MRBFSVRERBFSVR ERBFSVR

Stock600111 1.452 2.031 3.251 0.723 0.721 0.692
stock600839 1.234 1.252 2.187 0.832 0.751 0.747
stock600644 2.122 2.574 3.145 0.765 0.862 0.691
stock600688 3.217 3.202 4.012 0.658 0.723 0.735
Stock601318 1.231 1.439 2.809 0.852 0.635 0.821
Stock600031 3.381 3.226 4.515 0.721 0.696 0.734
Stock000858 1.535 2.024 2.991 0.890 0.791 0.695
Stock000014 1.213 1.201 2.715 0.724 0.713 0.627
Stock000024 2.642 2.412 2.499 0.635 0.731 0.522
Stock000002 1.924 2.213 2.758 0.592 0.591 0.670
Stock000063 1.983 71.327 2.301 0.832 0.751 0.753
Stock000100 2.910 1.045 1.703 0.901 0.912 0.715
Stock000527 1.523 1.213 1.609 0.749 0.812 0.842
Shanghai index 1.237 2.341 2.764 0.831 0.826 0.731
Shenzhen index 1.101 1.923 2.113 0.877 0.841 0.687
Avarage 1.913 1.961 2.758 0.772 0.757 0.710

Fig. 1 The comparison of NMSE value of the three algorithms

This phenomenon can be explained by the limitation of Mahalanobis distance.
Compared with Euclidean distance, the Mahalanobis distance takes into account the
effect of correlation among the features of the training samples; but it also has the
limitation that the Mabalanobis distance may enlarge the effect of correlation among
the features. Such an enlargement might have generated some negative effect for
some data sets.

However, from Table 4, we can see that for 6 of the 15 data sets, the Mahalanobis
distance RBF based SVR outperforms the Euclidean distance RBF based SVR in
both of the criteria of NMSE and criteria of DS; and for 12 of the 15 data sets,
the Mahalanobis distance RBF based SVR gives a better performance based on at
least one criterion. With only 3 data sets, the Mahalanobis distance RBF based SVR
obtains the worst performance in both of the criteria of NMSE and criteria of DS.
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Fig. 2 The comparison of DS value of the three algorithms

What is more, for the average of the results of 15 data sets, the Mahalanobis distance
RBF based SVR shows better performance for both of the two criteria of NMSE and
criteria of DS. Hence, we can conclude that on the whole the Mahalanobis distance
RBF based SVR performs better than the Euclidean distance RBF based SVR. But
for a certain new data set, we cannot determine which one can achieve a better
performance if there is no prior knowledge.

In summary, we find that under certain circumstances when applied to time series
forecasting problems; the Mabalanobis distance RBF kernel can be a better choice
than the traditional Euclidean distance RBF kernel function for SVR. In consider-
ation of the correlation among the features, the use of Mabalanobis distance RBF
kernel appears to be beneficial to the improvement of the forecasting result.

5 Conclusion and Future Work

SVR is an efficient tool for time series forecasting problems when the data sets
stem from an unstable and nonlinear system. However, based upon the Euclidean
distance, the SVR neglects the effect of correlation among the features when pro-
cessing the training data in time series forecasting problems. Since the Mabalanobis
distance can address the limitation of Euclidean distance, a Mabalanobis distance
RBF kernel is introduced in this chapter. From the comparison investigation, we find
that in some circumstances, the Mabalanobis distance RBF kernel based SVR can
outperform the Euclidean distance based SVR. Consequently, when people use the
SVR to deal with the time series forecasting problems, the proposed Mabalanobis
distance RBF kernel based SVR is worthy for consideration.

One of the limitations of our work is that we have not yet provided the means for
determining which RBF kernel may attain better results for a certain data set. Some
of our current work reveals that there could be some influence due to the selection
and distribution of the features in the data set. This will be our further work in future.
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Chapter 11 
Neural Networks and Wavelet De-Noising  
for Stock Trading and Prediction 

Lipo Wang and Shekhar Gupta* 

Abstract. In this chapter, neural networks are used to predict the future stock 
prices and develop a suitable trading system. Wavelet analysis is used to de-noise 
the time series and the results are compared with the raw time series prediction 
without wavelet de-noising. Standard and Poor 500 (S&P 500) is used in experi-
ments. We use a gradual data sub-sampling technique, i.e., training the network 
mostly with recent data, but without neglecting past data. In addition, effects of 
NASDAQ 100 are studied on prediction of S&P 500. A daily trading strategy is 
employed to buy/sell according to the predicted prices and to calculate the direc-
tional efficiency and the rate of returns for different periods. There are numerous 
exchange traded funds (ETF’s), which attempt to replicate the performance of 
S&P 500 by holding the same stocks in the same proportions as the index, and 
therefore, giving the same percentage returns as S&P 500. Therefore, this study 
can be used to help invest in any of the various ETFs, which replicates the perfor-
mance of S&P 500. The experimental results show that neural networks, with 
appropriate training and input data, can be used to achieve high profits by invest-
ing in ETFs based on S&P 500.  

1   Introduction 

Stock prices are highly dynamic and bear a non-linear relationship with many 
variables such as time, crude oil prices, exchange rates, interest rates, as well as 
factors like political and economic climate. Hence stock prices are very hard to 
model by even the best financial models. Future stock prices can be studied mere-
ly by historical prices.  
                                                           
Lipo Wang · Shekhar Gupta 
School of Electrical and Electronic Engineering  
Nanyang Technological University  
Block S1, 50 Nanyang Avenue,  
Singapore 639798  
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With the globalization and ease of investment in international and national 
markets, many people are looking towards stock markets for gaining higher prof-
its. There is a high degree of uncertainty in the stock prices, which makes it diffi-
cult for the investors to predict price movements.  

Hence the study of prediction of stock prices has become very important for fi-
nancial analysts as well as the general public, so as to gain high profits and reduce 
investment risk. With vast investments in the equity market, there has been a huge 
motivation for a system which can predict future prices. The Efficient Market 
Hypothesis (EMH) [1] states that no information can be used to predict the stock 
market in such a way as to earn greater profits from the stock market. There have 
been studies to show the accountability of the EMH [2], but some later studies 
have implied otherwise [3].  There are various views that oppose the EMH and 
indicate the predictability of some stock markets.  

Stock prediction methods may be categorized into Fundamental Analysis and 
Technical Analysis [1]. Specific modeling techniques include multivariate regres-
sion [2] and artificial neural networks (ANN) [3,4]. This chapter is concerned only 
with ANN approaches. Rodrigues [5] used a relatively simple neural network to 
predict and trade in the Madrid Stock Market Index. Rodrigues [5] used nine 
lagged inputs to predict the prices and make buy/sell decisions, which gave evi-
dence that ANN is a superior strategy to predict the index prices as compared  
to various other analyses. Although this model did not perform well in a bullish 
market.  

Due to the ability of ANNs to form a complex model between training inputs 
and targets values, ANNs give an opportunity to model highly complex and dy-
namic relation in the stock prices [6,7]. There are many areas where the neural 
networks have been used, e.g., signal processing, speech recognition, control, and 
many types of neural networks have been created [5,6,24]. According to Chang et 
al [8], ANNs are believed to have limitations due to noise in and complexity of 
stock prices.  

Neural network prediction systems can be divided into 2 categories, i.e., using 
(1) the past prices of the index and (2) fundamental data, such as exchange rates, 
gold prices, interest rates etc. [22-26]. For example, in the first category, [9] de-
veloped a neural network model based on past prices by using three neural net-
works. They were able to obtain around 16% returns per annum with a weekly 
prediction model, but the ANNs failed in daily prediction models. In the second 
category, ANNs in [10] performed much better compared to traditional stock val-
uation systems using financial models. 

This chapter describes some of our attempts to successfully predict S&P 500 
index [11], which is then developed into a trading model, in order to achieve rela-
tively high rates of return over a long period of time. This involves the use of 
ANNs and wavelet de-noising in the input time series.   
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2   Artificial Neural Networks 

Artificial neural networks attempt to mimic the biological counterparts. A neural 
network is composed of a number of interconnected processing elements (neu-
rons) working in unison to solve specific problems. Learning involves adjustments 
to the synaptic connections between the neurons, as well as other parameters, such 
as the biases in neurons [5,6].  

In a feed-forward neural network or a multilayer perceptron, there can be 3 lay-
ers, i.e., an input layer, an output layer, and a hidden layer. The number of hidden 
layers, as well as the number of neurons in each layer, can vary according to given 
requirements. A simple 3-layer neural network is shown below:  

 

Fig. 1 A simple 3-layer neural network 

The architecture of a network consists of the number of layers, the number of 
neurons in each layer, each layer's transfer function, and the weights by which the 
layers connect to each other. The best architecture to use depends on the type of 
problem to be solved by the network [5,6,12]. 

There can be two training methodologies used in the training of the neural net-
works, namely, incremental (online) training and batch training. In incremental 
training, the weights and biases are updated after each input is presented, while in 
batch training, weights and biases are updated after all of the inputs and targets are 
presented.  
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The inputs to a neuron include its bias and the sum of its weighted inputs. The 
output oi of neuron i depends on the neuron's inputs and on the transfer function:  

1
( )

1 exp( )
f x

xβ
=

+ −
                            (1) 

( )j ji i j
i

o f w o θ= +                         (2) 

where β
 

is the gain, 
jθ
 

is the bias of neuron j, and wji is the connection weight 

from neuron i to neuron j. There are many training algorithms and different net-
work structures which can be selected according the problem requirements.  In 
our work, we use the Levenberg-Marquardt training algorithm. Sometimes, over-
training of the network can lead to poor generalization. To prevent this from hap-
pening, a technique called early stopping is used with the help of validation data.  

3   Wavelet Analysis and De-noising 

Wavelets are mathematical functions used to decompose a given function or con-
tinuous-time signal into components of different scales. Usually one can assign a 
frequency range to each scale component. A wavelet transform is the representa-
tion of a function by wavelets. The wavelets are scaled and translated copies 
(known as "daughter wavelets") of a finite-length or fast-decaying oscillating 
waveform (known as the "mother wavelet"). Wavelet transforms have advantages 
over traditional Fourier transforms for representing functions that have discontinu-
ities and sharp peaks, and for accurately deconstructing and reconstructing finite, 
non-periodic and/or non-stationary signals [13,14].   

There are two types of wavelet transform, i.e., Discrete Wavelet Transform 
(DWT) and Continuous Wavelet Transform (CWT). In CWT, during computation, 
the analyzing wavelet is shifted smoothly over the full domain of the analyzed 
function [12]. Calculating wavelet coefficients at every possible scale can be very 
tedious and data generated can be difficult to analyze. By choosing the scales by 
the power of two, the analysis can become more accurate and faster. Hence, we 
use the DWT in this study. 

There are numerous types of wavelets available for different types of series  
being analyzed.  The Daubechies (db) wavelet is used in our analysis for the re-
duction of noise in the time series, which are later fed as an input to the neural 
network for training.  

There have been research efforts on wavelet neural networks, in which  
wavelets are used as neuron transfer functions. But we will restrict ourselves to 
studying the effect of de-noising by wavelets and then feeding the reconstructed 
de-noised signal into the ANN, instead of training the neural network with wavelet 
coefficients [5,15].  
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4   Data and Experiments 

This study attempts to predict future index prices, solely on the basis of past index 
prices, along with effects of NASDAQ 100 index on the prices of S&P 500. 
Another aspect of this chapter is to study the effect of wavelet de-noising on the 
raw S&P 500 time series. The number of inputs ranges from 10 day lagged values 
to 40 day lagged values of the S&P 500 index closing prices.  

The main source of historical index prices is from the Yahoo Finance. We 
download 2 sets of data to study the effect and relevance of historical prices. The 
first set of data involves the closing prices of S&P 500 index from 9 January 1950 
to 15 January 2010. The second set of data involves the closing prices of S&P 500 
and NASDAQ 100 index from 7 January 1991 to 15 January 2010.  

Due to public holidays, there are data missing on various days in the raw time 
series, which need to be adjusted to account for the missing values. A 5-day 
lagged average is used to fill in the missing data:  

 
௧ ሻݔሺ ݁ݑ݈ܸܽ ݃݊݅ݏݏ݅ܯ  ൌ  ௫೟షభା ௫೟షమା ௫೟షయା ௫೟షరା ௫೟షఱହ    (3) 

 
The raw data are divided into 3 parts, i.e., for training, validation, and testing. 

a. Wavelet De-noising 

The wavelet toolbox of MATLAB is used to de-noise the raw S&P 500 time se-
ries. The first set of time series, i.e., from 9 January 1950 to 15 January 2010 is 
fed into the Signal Extension toolbox for the wavelet analysis, in order to make it 
compatible for stationary wavelet analysis (SWT) and de-noising. The data are 
then fed into the SWT De-noising 1-D toolbox, where the signal is decomposed by 
a db wavelet at Level 5. The de-noising tool is used to remove the white noise, 
with different thresholds for each level of decomposition and reconstruction of the 
de-noised signal. This signal is then divided into matrices of suitable sizes for 
training, validation and testing of the neural network. 

b. Neural Network Architecture and Training 

The feedforward back propagation neural network is used in this chapter, with a 
Levenberg-Marquardt training algorithm. The performance criterion used is the 
mean square error (MSE), with the TANSIG transfer function in MATLAB.  

The number of hidden layers varies from 1 to 2, with one input layer and one 
output layer. The number of neurons in the input layer varies from 10 to 40, with a 
search interval 5, that is, we try out 10, 15, 20, …, and 40 input neurons, in order 
to find the optimal number of input neurons. The output layer consists of only 1 
neuron which is the predicted price on the next working day. The number of neu-
rons in the hidden layers varies according to the number of neurons in the input 
layer.  

After creating the neural network, the raw time series is divided into 3 sets of 
data, i.e., training, validation and testing data. These data sets in the form of p*1 
matrices are divided into n*m matrices, where n is the number of inputs in the 
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neural network and m is the number of training sets in batch training. For training, 
p = 15,040, n = 10, 15, 20, or 40, and m =15,000.  

The training parameters are now selected.  Since the Levenberg-Marquardt al-
gorithm is a fast learning algorithm, the maximum number of epochs is limited to 
100. The minimum gradient is selected to be 1e-6.   

The validation data are an n*t matrix, where n = 10, 15, 20 or 40 (same as the 
training data) and t can vary according to the number of validations required, in 
our case, from 200 to 400, depending on the size of the training data. The valida-
tion is used for early stopping for the network, so as to prevent over fitting of the 
neural network and maintain its generalization. The testing for the trained network 
is done over different periods of time, ranging from 1 year to 2 years, i.e., from 
250 to 420 prediction points. The input test matrix is of the size n*u, where n = 10, 
15, 20 or 40 (same as that of the training and validation matrices, i.e., the number 
of inputs) and u varies from 250 to 420, i.e., the number of testing sets in the 
batch. The target test matrix is of the size 1*u.  

c. Neural Network Simulations of Test Data 

After the training of the neural network, the test data are used to generate the pre-
dicted outputs which are compared with the actual values. The test is done over 
various periods of time, ranging from 1 to 2 years, and with different market con-
ditions, i.e., before, during, and after recessions.  

d. Trading System 

The predicted outputs during testing are exported into a trading system, to obtain 
the directional efficiency and rate of returns for the specified period of time. The 
trading system is developed for daily trading. When the predicted price for the 
next day is less than today’s price, a sell decision is made. And when the predicted 
price for the next day is more than today’s price, then a buy decision is made. 
Based on these trading rules, the rate of returns is calculated over a period of time.  

Below is an example of the results of the trading system, which are shown in the 
cells G4:I6, i.e., directional efficiency, return, and the rate of return for the specified 
period of time. These results are calculated for different neural networks, with vary-
ing inputs, hidden layers, training data and are then compared in the next section. 

 

 

Fig. 2 An example output of the trading system 
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5   Results and Discussions 

We carry out various experiments to study the future index prices of S&P 500, i.e., 
 

a) effects of wavelet de-noising; 
b) effects of gradual sub-sampling the past data;  
c) effects of NASDAQ 100 on the S&P 500 index. 

 
We will first discuss the effects of the above mentioned factors in detail, followed 
by selecting the best results based on the returns and risk for a long period of time.  

The data set has been divided into 2 sets, i.e.,  
 

a) Data Set 1: January 1950 – January 2010 
b) Data Set 2: January 1991 – January 2010 

a.   Effects of Wavelet De-Noising 

We now use the 1st set of data, i.e., the data from January 1950 till January 2010, 
for training and testing. The training and validation data are selected from January 
1950 till April 2008. Then testing is done for 2 time intervals, i.e.,  

 
a) Period 1: May 2008 till January 2010 (1.5 years) 
b) Period 2: January 2009 till January 2010 (1 year).   

 
This experiment is done with and without wavelet de-noising and the results with 
the maximum efficiency are shown as below:  

Table 1 Results without wavelet de-noising in training from 1950 – 2008 

Network Structure 10-10-1 
10-20-1 

Period 1 2 1 2 

Rate of Return 6.3% 26.5 % 5.5% 25.2% 

Directional Effi-
ciency 51.5% 53.4% 

51.2% 52.3% 

Table 2 Results with wavelet de-noising in training from 1950 – 2008 

Network Structure 10-10-1 
10-21-1 

Period 1 2 
1 2 

Rate of Return 5.2% 23.9% 4.4% 21.1% 
Directional Effi-
ciency 51.1% 52.3% 

50.1% 50.4% 
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From the above results, it can be seen that the effect of wavelet de-noising is 
not satisfactory, as compared to the training of the neural networks by the raw 
time series. This may indicate that there exists minimum noise in the raw financial 
data. 

b.  Effects of Gradual Data Sub-Sampling 

An experiment is carried out with a novel technique of gradual data sub-sampling 
[22], whereby data of historically distant past are given less significance and re-
cent data are given more significance. This technique is applied on the 1st data set, 
i.e., from January 1950 till April 2008, during training. Originally there are 15,200 
points of training data, which are reduced to 6,700 in the following way:  

 

a) 900 training data are selected from the 1st 5,400 data; 
b) 2,000 training data are selected from the next 6,000 data; 
c) all the remaining 3,800 data are selected. 

 

This technique ensures that the historical trends are not ignored and, at the same 
time, the system is more related to the current market situations. Thus the number 
of lagged values also varies to show the effect of number of inputs as well as 
wavelet de-noising.  Again, the testing is done for Period 1 and Period 2 stated 
above.  The most efficient results are shown below:   

Table 3 Results without wavelet de-noising with gradual data sub-sampling 

Network Structure 10-5-1 15-26-1 20-22-1 
Period 1 2 1 2 1 2 
Rate of Return 8.9% 34.4% 15.3% 44.7% 3.5% 12.7% 
Directional  effi-
ciency 52.6% 50.0% 

53.9% 52.8% 52.2% 51.6% 

Table 4 Results with wavelet de-noising with gradual data sub-sampling 

Network Structure 10-18-1 15-21-1 20-24-1 
Period 1 2 1 2 1 2 
Rate of Return 6.0% 36.5% 1.6% 21.5% 9.5% 5.3% 
Directional  
efficiency 51.5% 53.2% 

50.4% 49.6% 50.9% 47.4% 

 
Again from the above results, it can be seen that wavelet de-noising is not ef-

fective in predicting the future index prices. After obtaining these results, we de-
cide not to include wavelet de-noising in further experiments in this chapter, since 
the results are much better with the raw S&P 500 time series. This may mean that 
the financial data used here are not noisy. 

Our results also show an increase in the efficiency with gradual data sub-
sampling. A comparison between the original data series and the series with gra-
dual data sub-sampling is shown in Table 5:  
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Table 5 Effect of gradual data sub-sampling without wavelet de-noising 

Network Structure 10-10-1 (Original data) 
10-5-1(Gradual Data 
Sub-sampling) 

Period 1 2 1 2 

Rate of Return 6.3 % 26.5 % 8.9% 34.3% 
Directional  effi-
ciency 51.5% 53.4% 52.6% 50.0% 

 
It is evident from Table 5 that the rates of return with gradual data sub-

sampling are much better than those with the original time series, for both Periods 
1 and 2.  

We now discuss results for data set 2, i.e., the data from January 1991 till Janu-
ary 2010, with data and without data sub-sampling. The testing period is kept the 
same as the previous section, so as to compare all the models under the same mar-
ket conditions.  

In this approach the training and validation of the neural network are done with 
data sets from January 1991 till April 2008. Again, testing is done for Period 1 and 
Period 2 stated above. The results are shown in Table 6: 

Table 6 Results with original data (no sub-sampling) from 1991 – 2010 

 Period 1 Period 2 

Network 
Rate of 

Return 

Directional 
efficiency Rate of 

Return 

Direc-
tional 
efficiency 

40-16-4-1: 11.7% 55.2 % 53.7 % 58.7 % 

40-120-80-25-1: 14.8 % 51.9 % 36.3 % 49.6 % 

40-20-1: 17.8% 54.8% 30.1% 52.4 % 

40-13-1: 19.8 % 54.0 % 32.8 % 53.6 % 

 
We now describe the results for the data set 2, i.e., from January 1991 till Janu-

ary 2010, with gradual data sub-sampling. Originally there are 4,500 data sets for 
training and validation, which are reduced to 2,900 data sets as follows: 

  
a) 800 data sets are selected from the first 2,400 data;  
b) all the remaining 2,100 data sets are selected.  

 
The above training set is used to train the network with different lagged inputs. 
Again, the testing is done for Period 1 and Period 2 stated previously. The most 
efficient results are shown below:  
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Table 7 Results with gradual data sub-sampling for Data Set 2 

Network  
Structure 40-22-1 

30-30-1 10-22-1 

Period 1 2 1 2 1 2 
Rate of Return 36.0% 47.2% 24.5% 45.6% 24.5% 30.7% 
Directional  
efficiency 55.7% 55.6% 

55.2% 56.3% 53.3% 51.6% 

 
Table 7 shows that the results with 40 lagged input values are the best. 
Now we will further reduce the historical data and give even more preference to 

the more recent data, by reducing the training and validation inputs from 2,900 to 
1,800 data sets. The most efficient results are shown in the table below:  

Table 8 Results with further sub-sampling for Data Set 2 

Network Structure 10-9-1 
Period 1 2 
Rate of Return 47.2% 44.1% 
Directional  efficiency 57.6% 54.8% 

 
The results in the above table are quite good.  
We compare the results of training with the original data, sub-sampled data, 

and further sub-sampled data in the following table:  

Table 9 Comparison between various training data sets 

Network  
Structure 

40-13-1 
(Original data) 

40-22-1 
(Data Sub-
sampling) 

10-9-1 
(Further Sub-
sampling) 

Period 1 2 1 2 1 2 

Rate of Return 19.8% 32.8% 36.0% 
47.20
% 47.2% 44.1% 

Directional  
efficiency 54.0 % 53.6% 55.7% 

55.6
% 57.6% 54.8% 

 
It can be seen that the effect of gradual data sub-sampling has a great influence 

on the directional efficiency and the rate of return. With reducing the training and 
validation data set from 4,500 to 1,800, the rate of returns increased from 19.8% to 
47.2% for period 1 and from 32.8% to 44.1% for period 2. Hence, the effect of 
data sub-sampling is of major importance.  
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c.  Effects of NASDAQ 100 Index 

In this section the training data also include the NASDAQ 100 lagged index val-
ues along with the lagged values of S&P 500 index (Data Set 2, i.e., from January 
1991 till January 2010). 4500 data points are used for training and validation, and 
there are 20 inputs to the neural network, i.e., 10 lagged values each for S&P 500 
and NASDAQ 100. The testing is again done for Period 1 and Period 2 stated 
previously. The most efficient results are shown below:  

Table 10 Results with effect of NASDAQ 100 

Network Structure 20-7-1 

Period 1 2 

Rate of Return 34.8% 72.4% 
Directional  effi-

ciency 57.9% 59.6% 

 
The above table shows that NASDAQ 100 data can be used to predict the S&P 

500 index prices and these results are comparable to the effect of gradual data sub-
sampling.  

In the next section, we will compare the best results from each of the above 
sections and discuss which model would be the best suited for prediction of S&P 
500 index, and therefore, making the maximum profit in the long run. Finally, we 
make comparisons of our results with other published work and discuss the feasi-
bility of our model for investment. 

d  Discussions of Various Models for Prediction 

Now we will discuss about the best results from the above 3 sections and compare 
them. Below is the table which consists of the best results from each section.  The 
comparison is between: 

 
a) The results obtained after the wavelet de-noising of the original data 

from January 1950 till January 2010. 
b) The results obtained after the further data sub-sampling for the data set 

from January 1991 till January 2010. 
c) The results obtained by including the NASDAQ 100 index to study the 

index movements for S&P 500, for data set from January 1991 till Janu-
ary 2010.  
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Table 11 Comparisons between Wavelet, Data sub-sampling and NASDAQ 100 

Network  
Structure 

10-10-1 
(Wavelet) 

10-9-1 
(Further Data 
Sub-sampling) 

20-7-1 
(NASDAQ 
100) 

Period 1 
2 1 

2 1 2 

Rate of Return 5.2% 23.9% 47.2% 44.1% 34.8% 
72.4
% 

Directional  
Efficiency 51.1% 52.3% 57.6% 54.8% 57.9% 

59.6
% 

 
From the above comparisons, we draw the following conclusions: 
 
a) Wavelet de-noising does not help much to predict the future index prices. 
b) The technique of gradual data sub-sampling has been proved to be effective 

in prediction of index values. 10 lagged values as inputs are optimal.  
c) NASDAQ 100 index has been proved to be effective for the prediction of 

S&P 500 index.   
 

Period 1 (May 2008 till January 2010) used in testing includes the time period 
when the economies were in and coming out of recession, and there was a very 
slow improvement in the overall index movements. Period 2 (January 2009 till 
January 2010) includes the time when the economy was recovering and coming 
out of the recession, and when the increase in index was relatively stronger than 
that in Period 1.  

Since the wavelet de-noising has been proved to be an ineffective technique to 
train the neural network with de-noised inputs, we will compare the results of data 
sub-sampling and NASDAQ 100 effects for the above mentioned 2 prediction 
periods.  

The rate of return is as high as 47% for the 1st period and 44% for the 2nd period 
for the data sub-sampling technique, and around 34% and 72%, respectively, for 
the 2 periods with NASDAQ 100 index. This shows that the technique of data 
sub-sampling can provide much more stable results over a long period of time, in 
different markets conditions.  

On the other hand, the technique of including S&P 500 index with NASDAQ 
100 also leads to good results, which varies significantly for the 2 periods of 
study. The returns are around 34% for Period 1 and 72% for Period 2. This shows 
that this model is very effective to predict prices in good market conditions and 
leads to high returns, but is not very effective to deliver stable returns over a long 
period of time.  

Table 12 Risk and return comparisons of the 2 models 

 Returns Risk 
Model 1: Data Sub-sampling Stable Returns Low Risk 
Model 2: NASDAQ 100 High Returns High Risk 
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Hence an investor who would like to take less risk and want steady returns 
would consider using the gradual data sub-sampling technique, while an investor 
who wants enormously high returns can invest using the model with NASDAQ 
100 index, if he thinks that the market conditions are relatively good.   

Table 13 Best models for investment 

Network  
Structure 

10-9-1 
(Further Data Sub-
sampling) 

20-7-1 
(NASDAQ 100) 

Period 
1 

2 1 2 

Rate of Return 47.2% 44.1% 34.8% 72.4% 
Directional 
Efficiency  57.6% 54.8% 57.9% 59.6% 

Next we show the actual vs. predicted prices for both the models. Both figures 
indicate that the actual and predicted prices coincide with each other quite well, 
which also makes it evident that these 2 model are able to predict well and provide 
good returns. 

  

 

Fig. 3 Comparison of rate of returns for Period 1 and Period 2 
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Fig. 4 Actual vs predicted values for gradual data sub-sampling (10-9-1) 

 

Fig. 5 Actual vs. predicted values with NASDAQ 100 

e.  Comparisons with Other Papers 

Another set of experiments is done to compare the results of the gradual data sub-
sampling technique and effects of NASDAQ 100 on S&P 500 with various other 
published papers.   

For this part, the 2 neural networks with the best efficiencies from the above 
sub-sections are used, i.e.:  

 

a) A network trained with the gradual data sub-sampling technique with 10 
lagged values. 

b) A network trained with the inclusion of both the NASDAQ 100 index and 
S&P 500 index, 10 lagged values each. 
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The results of our research are compared with 3 sources, i.e.,  
 
a) Trading Solutions [16], an online website for a trading software package.  
b) A model integrating a piecewise linear representation method and a neural 

network [18].  
c) A system of 3 neural networks (3-ANN) [9], one network each for bullish, 

bearish and choppy markets.  
 

The period of comparison is from January 2004 till December 2004. The results 
are as follows:  

Table 14 Comparisons of rate of return by various techniques for January - December 2004 

Technique 

Trading 
Solutions 
[16] 

IPLR [18] 3 – ANN 
System [9] 

Gradual Data 
Sub-sampling

Effect of 
NASDA
Q  

Rate of Return 11.0% 35.7% 18.4% 25.4% 16.3% 

 
It can be seen that the Trading Solutions, the 3-ANN system and the effect of 

NASDAQ are not very effective for this period. The rate of return for this period 
is the highest for the IPLR system, followed by the new technique of data sub-
sampling.   

We now show the rates of return for our gradual data sub-sampling for a num-
ber of periods:  

Table 15 Rates of return with gradual data sub-sampling for different periods 

Time of Testing 
 

January 2004 – 
December 2004 

April 2008 - 
January 2010 

January 2009 – 
January 2010 

Rate of Return 25.4% 47.2% 44.1% 

 
Although the rate of return is not very high with our technique of gradual data 

sub-sampling for the period of January – December 2004, but for the period from 
April 2008 till January 2010, the rate of return is as high as 47.2%. Data is not 
available for us to comment on the rate of return from the IPLR technique for the 
period from April 2008 till January 2010. But we can still compare the situation of 
the markets in the two periods.  

Below are the rates of return with the effect of NASDAQ 100: 

Table 16 Rate of returns with effect of NASDAQ for different periods 

Time Period 
 

January 2004 – 
December 2004 

April 2008 - 
January 2010 

January 2009 
– January 
2010 

Rate of Return 16.3% 34.8% 72.4% 
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Below are 3 graphs for the trend of S&P 500 index for the 3 periods:  

 

Fig. 6 Trend for the period from January - September 2004 

 

Fig. 7 Trend for the period from April 2008 - January 2010 
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Fig. 8 Trend for the period from January 2009 - January 2010 

From the above 3 figures, it can be concluded that:  

a) January 2004 – September 2004 was a relatively stable period.  
b) April 2008 – January 2010 involved a huge dip in price index (recession) fol-

lowed by a recovery.  
c) January 2009 – January 2010 had an increasing trend.   

Table 17 Trading models vs. investor risk profile 

 
         Model 
Risk  
Profile 

Data Sub-
sampling 

(Moderate to 
High and Stable 
Returns) 

NASDAQ 100 
(Stable Re-

turns, High Re-
turns in bullish 
market) 

IPLR 
(High Re-

turns in Stable 
Markets, Un-
known Returns 
in other market  
conditions ) 

Low     
Moderate     
High     

 
From the analysis above, it can be seen that our system with the innovative 

technique of gradual data sub-sampling is relatively stable and efficient in deliver-
ing good rates of return in all market situations and high rates of return in special 
market situations involving more movement in the index values. Also, the effect 
of NASDAQ is suitable to deliver high rates of return, i.e., around 72.4%, in good 
market conditions.  
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5   Conclusions and Discussions 

It is evident from this chapter that feed forward back propagation neural networks 
are useful in predicting the future index prices and the research also proves that 
suitable network structure and appropriate data sub-sampling could lead to max-
imization of rates of return and hence deliver large profits to investors. 

Historical data of the index, as well as historical data of other indices like 
NASDAQ 100, along with the innovative technique of data sub-sampling, are 
helpful in determining future index prices.  

Trial-and-error was used at various stages of our experiments to select the most 
suitable network architecture with optimum number of hidden layers, lagged val-
ues, and neurons.  

This trading system could be used by various financial products, such as Ex-
change Traded Funds (ETFs), which replicate the performance of the S&P 500 
index, thereby giving investors an opportunity to invest following the S&P 500 
trends. We emphasize that neural networks in this chapter are not used to get  
the exact future index prices, but is used to determine the directional trend of the 
index.   

Finally, this study shows that the technique of gradual data sub-sampling and 
the effect of NASDAQ 100 on the prediction of S&P 500 index prove to be very 
beneficial, leading to high rates of return.  

There are rooms for improvement and further research. We have studied here 
the effect of only NASDAQ 100 on S&P 500 prediction. Various other factors, 
such as crude oil prices, gold prices, other indices, exchange rates, interest rates, 
etc., could be used to study their impact on the price movements of S&P 500.  

The feed forward back propagation neural network has been used in this chap-
ter. There are various other types of neural networks, e.g., the cascaded back prop-
agation neural networks, radial basis function, etc., which could be used to study 
the index prices.   

The gradual data sub-sampling technique can be studied together with other 
systems, such as IPLR. A real time trading system could be developed, in which 
prices are downloaded live from the server. These prices are then fed into the sys-
tem to predict prices at various intervals in a particular day, which could further be 
used for intra-day trading or high frequency trading.  
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Chapter 12 
Channel and Class Dependent Time-Series 
Embedding Using Partial Mutual Information 
Improves Sensorimotor Rhythm  
Based Brain-Computer Interfaces  

Damien Coyle* 

Abstract. Mutual information has been found to be a suitable measure of depen-
dence among variables for input variable selection. For time-series prediction mu-
tual information can quantify the average amount of information contained in the 
lagged measurements of a time series. Information quantities can be used for select-
ing the optimal time lag, τ, and embedding dimension, Δ, to optimize prediction ac-
curacy. Times series modeling and prediction through traditional and computation-
al intelligence techniques such as fuzzy and recurrent neural networks (FNNs and 
RNNs) have been promoted for EEG preprocessing and feature extraction to max-
imize signal separability to improve the performance of brain-computer interface 
(BCI) systems. This work shows that spatially disparate EEG channels have differ-
ent optimal time embedding parameters which change and evolve depending on the 
class of motor imagery (movement imagination) being processed. To determine the 
optimal time embedding for each EEG channel (time-series) for each class an ap-
proach based on the estimation of partial mutual information (PMI) is employed. 
The PMI selected embedding parameters are used to embed the time series for each 
channel and class before self-organizing fuzzy neural network (SOFNN) based 
predictors are specialization to predict channel and class specific data in a predic-
tion based signal processing framework, referred to as neural-time-series-
prediction-preprocessing (NTSPP). The results of eighteen subjects show that  
subject-, channel- and class-specific optimal time embedding parameter selection 
using PMI improves the NTSPP framework, increasing time-series separability. 
The chapter also shows how a range of traditional signal processing tools can be 
combined with multiple computational intelligence based approaches including the 
SOFNN and practical swarm optimization (PSO) to develop a more autonomous 
parameter optimization setup and ultimately a novel and more accurate BCI.   
                                                           
Damien Coyle 
Intelligent Systems Research Centre,  
University of Ulster, Derry, BT48 7JL, UK 
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1   Introduction 

The human brain contains approximately 1011 neurons interconnected through 
over 100 trillion synapses. Each neuron, containing many different compartments 
made up of many different chemicals and neurotransmitters, emits tiny electrical 
pulses every millisecond. The electroencephalogram (EEG), recorded from the 
scalp surface, is a measure of the aggregate activity of many post-synaptic-
potentials (PSPs) of these neurons and includes information from many different 
brain sources along with background noise from other non-neural signals. EEG is 
therefore inherently complex and non-stationary, rendering it very difficult to as-
sociate a particular EEG time series pattern or dynamic with a specific mental 
state or thought.  

Coupling EEG dynamics to a person’s thoughts or intent, expressed in the form 
of mental imagery, is the objective of non-invasive brain-computer interface (BCI) 
technology. BCIs enable people to communicate with computers and devices 
without the need for neuromuscular control or the normal communication path-
ways and therefore have many potential applications [1]-[3]. BCI has applications 
in assistive technologies for the physically impaired [4][5], rehabilitation after 
stroke [7], awareness detection in disorders of consciousness (DoC) [6] and in 
non-medical applications such as games and entertainment [8]. Voluntarily mod-
ulation of sensorimotor rhythms (SMR) forms the basis of non-invasive (EEG-
based) motor imagery (MI) BCIs. Planning and execution of hand movement are 
known to block or desynchronize neuronal activity which is reflected in an EEG 
bandpower decrease in mu band (8-12Hz). Inhibition of motor behaviour synchro-
nizes neuronal activity [1]. During unilateral hand imagination, the preparatory 
phase is associated with a contralateral mu and central beta event related desyn-
chronization (ERD) that is preponderant during the whole imagery process [9]-
[11]. BCIs utilize a number of self-directed neurophysiological processes includ-
ing the activation of sensorimotor cortex during motor imagery (MI). However, as 
outlined, the dynamical and non-stationary patterns in the time series must be 
dealt with to ensure information can be discriminated and classified precisely so 
that BCI technology is robust enough to be made available to those who need it 
most: those who are severely physically impaired due to disease or injury. Max-
imizing the capacity for computer algorithms to separate noise from source, dis-
tinguish between two or more different mental states or one mental task  
(intentional control (IC) state) from all other possible mental states (no control 
(NC) state) has been the goal of many BCI focused researchers for the past 20 
years. Linear and non-linear approaches to classification have been applied to 
classifying the EEG signals [12]-[14]. Times series modeling and prediction 
through traditional and computational intelligence techniques such as fuzzy and 
recurrent neural networks (FNNs and RNNs) have been promoted for EEG pre-
processing and feature extraction to maximize signal separability [15]-[24].  

Coyle et al [22][23] have proposed an approach were specific self-organizing 
FNNs (SOFNN) are trained to specialize in predicting EEG time-series recorded 
from various electrode channels during different types of motor imagery (left/right  
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movement imagination). The networks become specialized on the dynamics of 
each time series and the relative difference in the predictions provided by the net-
works can produce information about the times series’ that are being fed to the 
networks e.g., if two networks are specialized on two particular time series (left or 
right motor imagery) and unlabeled time series are fed to both networks, the net-
work that produces the lowest prediction error can be indicative of the times series 
being processed and thus the information can be used to classify (or label) the un-
labeled time series. This idea has been extended to include multiple time series, 
multiple classes and integrated with a range of other signal processing techniques 
to aid in the discrimination of sensorimotor based activations for BCI. A critical 
element in the neural time-series-prediction pre-processing (NTSPP) framework 
[21]-[24] is predictor (network) specialisation. This can be achieved through net-
work optimization techniques and self-organising systems assuming that there are 
underlying differences in the time series being processed. Coyle et al [21] have 
shown in preliminary studies that subject specific time-embedding of the time-
series can assist in specializing networks to improve BCI performance but that 
generally an embedding dimension, Δ=6 and a time lag, τ=1, works well for one-
step-ahead EEG time series prediction.  

The aim of this chapter is to show that spatially disparate EEG channels have 
different optimal time embedding parameters which change and evolve depending 
on the motor imagery or mental task being processed. To determine the optimal 
time embedding for each EEG channel (time-series) a recently proposed method 
based on the estimation of partial mutual information (PMI) is employed [25][26]. 
Mutual information has been found to be a suitable measure of dependence among 
variables for input variable selection and quantifies the average amount of com-
mon information contained in Δ measurements of a time series. Information quan-
tities can be used for selecting the optimal time lag, τ, and embedding dimension, 
Δ, to optimize prediction accuracy. The PMI selected embedding parameters are 
used to embed the time series for each channel and class before SOFNN speciali-
zation is performed in the NTSPP framework. The results of eighteen subjects 
show that subject-, channel- and class-specific optimal time embedding parameter 
selection using PMI improves the NTSPP framework, increasing time-series sepa-
rability and therefore overall BCI performance. 

The following section describes the data used in the chapter to validate the pro-
posed approach. Section 3 includes a description of the methods employed where 
section 3.1 describes the BCI including the NTSPP approach and other stages of 
signal processing such as spectral filtering, common spatial patterns, feature ex-
traction and classification. Section 3.2 outlines the partial mutual information 
based input variable selection (PMIS) approach and the implications of applying 
this in the NTSPP framework for BCI. A description of how the BCI is setup and 
parameters are optimized is contained in Section 3.3. A discussion of the results 
and findings is presented in the remaining sections along with suggested future 
work for improvements to the proposed methodology.        
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2   Data Acquisition and Datasets 

Data from 18 participants partaking in BCI experiments are used in this work. All 
datasets were obtained from the fourth international BCI competitions, BCI-IV, 
[27][28], which include datasets 2A and 2B [29]. Table 1 below provides a sum-
mary of the data. 
 

Table 1 Summary of datasets used from the International BCI competition IV 

Competition  Dataset Subjects Labels Trials Classes Channels  
BCI-IV 2B  9 S1-9 720 2 3 
BCI-IV 2A 9 S10-18 576 4 22 

 

Dataset 2B - This data set consists of EEG data from 9 subjects (S1-S9). Three bi-
polar recordings (C3, Cz, and C4) were recorded with a sampling frequency of 
250 Hz (downsampled to 125Hz in this work). The placement of the three bipolar 
recordings (large or small distances, more anterior or posterior) were slightly dif-
ferent for each subject (for more details see [29][31]). The electrode position Fz 
served as EEG ground. The cue-based screening paradigm (cf. Fig 1(a).1) con-
sisted of two classes, namely the motor imagery (MI) of the left hand (class 1) and 
the right hand (class2). Each subject participated in two screening sessions without 
feedback recorded on two different days within two weeks. Each session consisted 
of six runs with ten trials each and two classes of imagery. This resulted in 20 tri-
als per run and 120 trials per session. Data of 120 repetitions of each MI class 
were available for each person in total. Prior to the first motor imagery training the 
subject executed and imagined different movements for each body part and se-
lected the one which they could imagine best (e.g., squeezing a ball or pulling a 
brake). For the three online feedback sessions four runs with smiley feedback 
were recorded whereby each run consisted of twenty trials for each type of motor 
imagery (cf. Fig 1(a) for details of the timing paradigm for each trial). Depending 
on the cue, the subjects were required to move the smiley towards the left or right 
side by imagining left or right hand movements, respectively. During the feedback 
period the smiley changed to green when moved in the correct direction, otherwise 
it became red. The distance of the smiley from the origin was set according to the 
integrated classification output over the past two seconds (more details can be 
found in [31]). The classifier output was also mapped to the curvature of the 
mouth causing the smiley to be happy (corners of the mouth upwards) or sad (cor  
ners of the mouth downwards). The subject was instructed to keep the smiley on 
the correct side for as long as possible and therefore to perform the correct MI as 
long as possible. A more detailed explanation of the dataset and recording para-
digm is available [31]. In addition to the EEG channels, the electrooculogram 
(EOG) was recorded with three monopolar electrodes and this additional data can 
be used for EOG artifact removal [32] but was not used in this study.   

Dataset 2A - This dataset consists of EEG data from 9 subjects (S10-S18). The 
cue-based BCI paradigm consisted of four different motor imagery tasks, namely 
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the imagination of movement of the left hand (class 1), right hand (class 2), both 
feet (class 3), and tongue (class 4) (only left and right hand trials are used in this 
investigation). Two sessions were recorded on different days for each subject. 
Each session is comprised of 6 runs separated by short breaks.  One run consists of 
48 trials (12 for each of the four possible classes), yielding a total of 288 trials per 
session. The timing scheme of one trial is illustrated in Fig 1(b). The subjects sat  
in a comfortable armchair in front of a computer screen. No feedback was pro-
vided but a cue arrow indicated which motor imagery to perform. The subjects 
were asked to carry out the motor imagery task according to the cue and timing 
presented in Fig 1(b). For each subject twenty-two Ag/AgCl electrodes (with in-
ter-electrode distances of 3.5 cm) were used to record the EEG; the montage is 
shown in Fig 1(c) left. All signals were recorded monopolarly with the left masto-
id serving as reference and the right mastoid as ground. The signals were sampled 
with 250 Hz (downsampled to 125Hz in this work) and bandpass filtered between 
0.5 Hz and 100 Hz. EOG channels were also recorded for the subsequent applica-
tion of artifact processing although this data was not used in this work. A visual 
inspection of all data sets was carried out by an expert and trials containing arti-
facts were marked.  

 

                                        
 

       (a)                                                             (b) 

 

                          
                                                  (c) 

Fig. 1 (a) Timing scheme of the paradigm for recording dataset 2B; 1) the first two sessions 
provided training data without feedback, and 2) the last three sessions with smiley feed-
back. (b) Timing scheme of recording for dataset 2A; (c) electrode montage for recording 
dataset 2A; For dataset 2B electrodes positions were fine-tuned around positions c3, cz and 
c4 electrodes used to derive bipolar channels for each subject [31].      

1

2
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To summarize, in this work only electrodes positioned anteriorly and posterior-
ly to positions C3, Cz and C4 are used to derive 3 bipoloar channels. These chan-
nels are located over left, right hemisphere and central sensorimotor areas – areas 
which are predominantly the most active during motor imagery. In dataset 2A on-
ly 2 of the available 4 classes are used (left and right hemisphere). As outlined all 
data was downsampled to 125 Hz in this work. The data splits (training and test-
ing) were the same as those used for the BCI Competition IV [30]. For dataset 2A, 
one session (2 classes consisting of 72 trials each) are used for training and the 
remaining session is used for final testing. For dataset 2B the first two sessions are 
not used, session 3, the first feedback session, is used for training (160 trials) and 
feedback sessions 4E and 5E are used for final testing.  All parameter selection is 
conducted on the training data using cross validation as described in section 3.3 
and the system setup is tested on the final testing sessions.   

3   Methods 

3.1   BCI Description  

3.1.1   Neural-Time-Series-Prediction-Processing (NTSPP) 

NTSPP, introduced in [21], is a framework specifically developed for preprocess-
ing EEG signals associated with motor imagery based BCI systems. NTSPP in-
creases class separability by predictive mapping and filtering the original EEG 
signals to a higher dimensional space using predictive/regression models specia-
lized (trained) on EEG signals for different brain states i.e., each type of motor 
imagery. A mixture or combination of neural network-based predictors are trained 
to predict future samples of EEG signals i.e., predict ahead the state of the EEG. 
Networks are specialized on each class of signal from each EEG channel.  Due to 
network specialization, prediction for one class of signals differ from the other 
therefore introducing discriminable characteristics into the predicted signal for 
each class of signal associated with a particular brain state. Features extracted 
from the predicted signals are more separable and thus easier to classify.  

Consider two EEG times-series, xi, i∈{1,2} drawn from two different signal 
classes ci, i∈{1,2}, respectively, assuming, in general, that the time series have 
different dynamics in terms of spectral content and signal amplitude but have 
some similarities. Consider also two prediction NNs, f1 and f2, where f1 is trained 
to predict the values of x1 at time  t+π given values of x1 up to time t (likewise, f2 
is trained on time series x2), where π is the number of samples in the prediction 
horizon. If each network is sufficiently trained to specialize on its respective train-
ing data, either x1 or x2, using a standard error-based objective function and a stan-
dard training algorithm, then each network could be considered an ideal  
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predictor for the data type on which it was trained1 i.e., specialized on a particular 
data type. If each prediction NN is an ideal predictor then each should predict the 
time-series on which it was trained perfectly, leaving only error residual equiva 
lent to white or Gaussian noise with zero mean. 

 

Fig. 2 An illustration of a generic multiclass or multichannel neural-time-series-prediction-
preprocessing (NTSPP) framework with spectral filtering, CSP, feature extraction and  
classification 

In such cases the expected value of the mean error residual given predictor f1 for 
signal x1 is E[x1–f1(x1)]=0 and the expected power of the error residual, E[x1–
f1(x)]2, would be low (i.e., in relative terms) whereas, if x2 is predicted by f1 then 
E[(x2–  f1(x2)] ≠ 0 and E[(x2–f1(x2)]

2 would be high  (i.e., again in relative terms). 
The opposite would be observed when xi, i∈{1,2}, data are predicted by predictor 
f2. Based on the above assumptions, a simple set of rules could be used to deter-
mine which signal class an unknown signal type, u, belongs too. To classify u one 
or both of the following rules could be used:- 

  
 

1. If E[u– f1(u)] = 0 & E[u– f2(u)]  ≠ 0 then u ∈  C1, otherwise u ∈  C2.   
 

2. If E[u– f1(u)]2 < E[u– f2(u)]2 then u ∈  C1, otherwise u ∈  C2.   
 

These are simple rules and may only work successfully in cases where the predic-
tors are ideal and specialized sufficiently. Due to the complexity of EEG data and 
its non-stationary characteristics, and the necessity to specify a NN architecture 
which approximates universally, predictors trained on EEG data will not consis-
tently be ideal however; when trained on EEG with different dynamics e.g., left 

                                                           
1 Multilayered feedforward NNs and adaptive-neuro-fuzzy-inference-systems (ANFIS) are 

considered universal approximators due to having the capacity to approximate any func-
tion to any desired degree of accuracy with as few as one hidden layer that has sufficient 
neurons [33][34]. 
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and right MI, predictor NNs can introduce desirable characteristics in the pre-
dicted outputs which render the predicted signals more separable than the original 
signals and thus aid in determining which brain state produced the unknown sig-
nal. This predictive filtering modulates levels of variance in the predicted signals 
for data types and most importantly manipulates the variances differently for  
different classes of data. Instead of using only one signal channel, the hypothesis 
underlying the NTSPP framework is that, if two or more channels are used for 
each signal class and advanced feature extraction techniques and classifiers are 
used instead of the simple rules outlined above, additional advantageous informa-
tion relevant to the differences introduced by the predictors for each class of signal 
can be extracted to improve overall feature separability thereby improving BCI 
performance.  

In general, the number of time-series available and the number of classes go-
verns the number of specialized predictor networks employed and the resultant 
number of predicted time-series from which to extract features, such that  

= ×P M C                                                              (1) 

where P is the number of networks (=no. of predicted time-series), M is the num-
ber of EEG channels and C is the number of classes. For prediction,  

π τ+ = − Δ −ˆ ( ) ( ), ..., ( ( 1)ci ci i ix t f x t x t
                                  (2) 

where t is the current time instant, Δ is the embedding dimension and τ is the time 
delay, π is the prediction horizon, cif  is the prediction network trained on the ith 

EEG channel, xi, i=1,..,M, for class c, c=1,..C, where C is the number of classes 
and ˆcix  is the predicted time series produced for channel i by the predictor  

for class c and channel i. An illustration of the NTSPP framework is presented in 
Fig. 2. 

Many different predictive approaches can be used for prediction in the NTSPP 
framework [21][22][24]. In this work the self-organizing fuzzy neural network 
(SOFNN) is employed [23][36][37]. The SOFNN is a powerful prediction algo-
rithm capable of self-organizing its architecture, adding and pruning neurons as 
required. New neurons are added to cluster new data that the existing neurons are 
unable to cluster while old, redundant neurons are pruned ensuring optimal net-
work size, accuracy and training speed (cf. [23] for details of the SOFNN and  
recent improvements to the SOFNN learning algorithm and its autonomous hyper-
parameter-free application in BCIs). 

Earlier work [21] has shown Δ=6 and τ=1 provide good performance in a two 
class MI-BCI however this chapter shows how NTSPP can be enhanced by select-
ing channel- and class-specific embedding parameters using partial mutual infor-
mation selection as described in section 3.2. Firstly, the other signal processing 
components of the BCI are described. 
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3.1.2   Common Spatial Patterns (CSP) 

CSP maximizes the ratio of class-conditional variances of EEG sources [38][39]. 
To utilise CSP, Σ1 and Σ2 are the pooled estimates of the covariance matrices for 
two classes, as follows: 

=
 = ∈1

1
( {1, 2})c

c

I t
c i iI i

X X c
                                        

(3) 

where Ic is the number of trials for class c and Xi is the M×N matrices containing 
the ith windowed segment of trial i;  N is the window length and M is the number 
of EEG channels – when CSP is used in conjunction with NTSPP, M=P according 
to (1). The two covariance matrices, Σ1 and Σ2, are simultaneously diagonalized 
such that the Eigenvalues sum to 1. This is achieved by calculating the generalised 
eigenvectors W:  

 =  + 
1 1 2

( )W WD
                                              

(4) 

where the diagonal matrix D contains the Eigenvalues of Σ1 and the column vec-
tors of W are the filters for the CSP projections. With this projection matrix the 
decomposition mapping of the windowed trials X is given as  

= .E WX                                                         (5) 

To generalize CSP to 3 or more classes (multiclass paradigm), spatial filters are 
produced for each class vs. the remaining classes (one vs. rest approach). If q is 
the number of filters used then there are q×C surrogate channels from which to ex-
tract features. To illustrate how CSP enhances separability among 4 classes the 
hypothetical relative variance level of the data in each of the 4 classes are shown 
in Fig. 3. 
 

 

Fig. 3 Hypothetical relative variance level of the CSP transformed surrogate data 
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(a)                      (b) 

Fig. 4 (a) Frequency band selection using PSO. The graphical representation of particles’ 
motion over progressive generations where classification  accuracy(CA) is assessed at teach 
generation ; (b) Frequency band selection over 5-folds (where ai is the probability of correct 
classification in fold I and the selected band is the weighted average (weighted by ai ) of the 
band selected for each fold).  

3.1.3   Spectral Filtering (SF) 

Prior to the calculation of the spatial filters, X can be preprocessed with NTSPP 
and/or spectrally filtered in specific frequency bands. Optimal frequency bands are 
selected autonomously in the offline training stage using particle swarm atomiza-
tion (PSO) [16][40][41] to band pass filter the data before CSP is applied. The 
search space is every possible band size in the 8 - 28Hz range as shown in Fig. 
4(a). These bands encompass the μ and β bands which are altered during sensori-
motor processing [42][43] and can be modulated via motor imagery. 

3.2   Feature Extraction and Classification  

Features are derived from the log-variance of preprocessed/surrogate signals 
within a two second sliding window:  

ω = log(var( ))E                                                  (6) 

The dimensionality of ω  depends on the number of surrogate signals used from 
E. The common practice is to use several (q between 2 and 4) eigenvectors from 
both ends of the eigenvector spectrum, i.e., the columns of W. Using NTSPP the 
dimensionality of X can increase significantly. CSP, can be used to reduce the di-
mensionality therefore the benefits of combining NTSPP with CSP are twofold; 1) 
increasing separability and 2) maintaining a tractable dimensionality [22].  

Linear Discriminant Analysis (LDA) is used to classify the features at the rate 
of the sampling interval. Linear classifiers are most commonly used for classifying 
motor imagery in BCI applications. Before describing how the parameters associat  
ed with these stages of signal processing are optimized in section 3.3, the follow-
ing section describes the main novelty of this chapter for enhancement of this 
framework where the embedding parameters are selected using PMIS. 
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3.3   Partial Mutual Information  

The selection of an optimal embedding dimension and its corresponding time lags 
is often referred to as the input variable selection (IVS) problem. The IVS problem 
is defined as the task of appropriately selecting a subset of k variables, from the in-
itial candidate set C which comprise the set of all potential inputs to the model 
(i.e., candidates) [26]. Mutual information has been found to be a suitable measure 
of dependence among variables for IVS and quantifies the average amount of 
common information contained in Δ measurements of a time series. Information 
quantities can be used for selecting the optimal τ and Δ, to optimize prediction ac-
curacy. Evaluation of mutual information and redundancy-based statistics as func-
tions of τ and Δ can further improve insight into dynamics of a system under 
study.  

In essence, two successive measurements of a random variable have no mutual 
information (in the case of more than two variables mutual information is com-
monly replaced by the term redundancy) but data based on an underlying rule may 
have some association; mutual information is proportional to the strength of that 
association. Utilising only one or two observations of a time series, x, may not 
provide enough information about a future value of x to make a reliable prediction. 
Generally, for periodic, quasi-periodic and even chaotic data redundancy tends to 
rise as each additional measurement of x (i.e., Δ is increased) is involved in the re-
dundancy calculation, at a fixed lag. Mutual information is an arbitrary measure 
and makes no assumption of the structures of dependence among variables, be 
they linear or non-linear. It has also been shown to be robust to noise and data 
transformations.     

Although mutual information is a strong candidate for IVS there are number of 
issues associated with applying the algorithm such as the ability of the selection 
algorithm to consider the inter-dependencies among variables (redundancy han-
dling) and the lack of appropriate analytical methods to determine when the op-
timal set has been selected. One method involves the estimation of marginal re-
dundancy, ς, which quantifies the average amount of information contained in the 
variables ( 1) ,...t tx xτ τ+ Δ− +  about the variable tx  and the quantity is the difference 

between two successive R calculations (ς =RΔ +1-RΔ ).  Depending on the complex-
ity of the data, usually ς increases as Δ is increased. Eventually further increases in 
Δ provide a lesser increase in ς. Finally, ς becomes approximately constant or be-
gins to decrease. A constant ς indicates that further increases in Δ does not im-
prove the ability of a sequence of measurements to predict the last measurement in 
the sequence at that value of τ (i.e., there is no advantage in increasing Δ). An-
other method of estimating the optimum value of Δ can be realised by plotting ς as 
a function of τ with Δ as a third variable. The relationship between plots of ς ver-
sus τ becomes closer as Δ is increased. The optimum Δ is chosen as the smallest Δ 
for which the plotted relations become relatively close to each other. For more in-
formation see [43][44][46][47][48]. In some cases the results from this type of re-
dundancy analysis can be subjective and may not be fully conclusive whilst the  
calculation can also be time consuming. 
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Sharma [25] proposed an alternative algorithm and one that overcomes the dif-
ficulties in terms of determining the optimal sets of variables with mutual informa-
tion by using the concept of partial mutual information (PMI). The approach was 
further assessed and developed by May et al. [26] 

3.4   Estimation of Partial Mutual Information  

The mutual information calculation stems from Shannon’s information theory [49] 
formulated in (7) 

;

( , )
( , ) log

( ) ( )Y X

p x y
I p x y

p x p y
= 

                                               
(7) 

where x and y are observations of random variables X and Y, respectively i.e., 
y Y∈  and x X∈ . Considering Y is an output variable for which there is uncer-

tainty around its observation and is dependent upon the random input variable x 
then the mutual observation of (x,y) reduces this uncertainty, since knowledge of x 
allows inferences of the values of y and vice versa. Within a practical context the 
true functional forms of the pdfs in (7) are typically unknown. In such cases the 
estimates of the densities are used instead. Substitution of the density estimates 
into a numerical approximation of the integral in (7) gives  

; 2
1 1

( , )
( , ) log

( ) ( )

N Ns s
i j

Y X i j
i j i j

p x y
I p x y

p x p y= =
=

                                
(8) 

where Ns  is the number of bins used for calculating the probability ( )ip x  of signal 

measurement x, occurring in bin xi and the probability ( )jp y  of signal measure-

ment y occurring in bin yj. ( , )i jp x y  is the joint probability of occurrence of both 

measurements of the signal. Equation (2) can be generalised to calculate redun-
dancies among variables in a time series, as shown in (3) 

( 1)

( 1)
( 1) 2

( 1)

( , ,..., )
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( , ,..., ) log
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t t t
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p x x x
p x x x

p x p x p x

τ τ

τ τ
τ τ

τ τ

+ + Δ−

+ + Δ−
+ + Δ−

+ + Δ−

=
 (9) 

where xt is the measurement of the signal sampled at time t and Nr is the number of 
phase space routes (i.e., the number of combinations). Equations (8) and (9) can 
be derived in the probability form or entropy form (H):- 

( 1) ( 1)(.) ( ) ... ( ) ( ,..., )t t t tR H x H x H x xτ τ+ Δ− + Δ−= + + −
                    

(10) 

Full derivations can be found in [45][46][47]. Depending on the number of meas-
urements of the signal and the number of bins, the joint probability, 

( 1)( , ,..., )t t tp x x xτ τ+ + Δ− , can encompass a very large number of sequence probabili-

ties. For example, if Δ =5 and Ns=20 then the number of sequence probabilities to 
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be estimated is Nr=Ns
D =3.2 x 106, increasing exponentially as Δ is increased. Es-

timating redundancies for Δ>5 can be significantly time consuming.  
Mutual information estimation is therefore largely dependent on the technique 

employed to estimate the marginal and joint pdfs. Non-parametric techniques such 
as kernel density estimation (KDE) are considered suitably robust and accurate al-
though somewhat computationally intensive compared to alternative approaches 
such as the histogram approach. Substitution of the density estimates into a nu-
merical approximation of the integral in (7) and (8) gives    

; 2
1

( , )1
( , ) log

( ) ( )

n
i j

Y X i j
i i j

f x y
I f x y

n f x f y=
≈                                (11) 

where f denotes the estimated density based on a sample of n observations of (x, 
y). The Parzen window approach is a simple KDE in which the estimator for f is 
given by  

1

1ˆ ( ) ( )
n

h i
i

f x K x x
n =

= −
                                               

(12) 

where ˆ( )f x  denotes the estimate of the pdf at x, xi{i = 1,…,n} denotes the sam-
ples observations of X, and Kh is the kernel function where h denotes the kernel 
bandwidth (or, smoothing parameter). A common choice for Kh is the Gaussian 
kernel   

2

1
exp

2( 2 )

i
h d

x x
K

hhπ

 − −
=   Σ  

                                   (13) 

where d denotes the number of dimensions of X, }ijσ{ =  is the sample covari-

ance matrix and ix x−  is the Mahalanobis distance metric given by  

1( ) ( ).T
i i ix x x x x x−− = − Σ −

                                       
(14) 

The kernel expression in (12) is used with (13) and (14) to produce the kernel es-
timator as defined below  

2
1

1ˆ ( ) exp
2( 2 )
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i

d
i

x x
f x

hn hπ =

 − −
=   Σ  


                                  

(15) 

The performance of the kernel estimator, in terms of accuracy, is dependent more 
on the choice of bandwidth as opposed to choice of kernel itself [26][50]. The op-
timal choice of bandwidth depends on the distribution of the data samples. In 
[25][26][51] the Gaussian reference bandwidth, hG, for MI estimation is adopted 
as an efficient choice. The Gaussian reference bandwidth is determined using the 
following rule proposed by Silvermann [52]  
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where σ  is the standard deviation of the data samples. The MI calculation can be 
easily extended to the multivariate case where the response/output variable Y is 
dependent on multiple input variables. For example, two input variables X and Z. 
Given X the uncertainty is reduced by a certain amount and the partial mutual in-
formation is defined as the further reduction in the uncertainty surrounding Y that 
is gained by the additional mutual observation of Z. Partial MI (PMI) is analogous 
to the partial correlation coefficient, R`ZY.X, which quantifies the linear dependence 
of Y on variable Z that is not accounted for by the input variable X. This is nor-
mally calculated by filtering Y and Z via regression on X to obtain some residuals, 
u and v, respectively [26]. Pearson’s correlation can be used to estimate X. PMI 
can be applied in a similar way to estimate the arbitrary dependence between  
variables. Using the KDE approach an estimator for the regression of Y on X is 
written as  

1
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=
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−

                               

(17) 

where ˆ ( )Ym x  is the regression estimator; n is the number of observed values (yi; 

xi); Kh is given as in (12) and [ ]E y X x=  denotes the conditional expectation of y 

given an observed x. An estimator ˆ ( )Zm x  can be similarly constructed, and the re-

siduals u and v estimated using the expressions 

ˆ ( )Yy Y m X= −                                                           (18) 

and  
ˆ ( )Zu Z m X= −                                                           (19) 

Using these residuals the PMI can then be calculated as 

.' ( ; )ZY XI I v u=                                                           (20) 

where the subscript notation .'ZY XI  or ( ; )I Z Y X  can be used. PMI allows for the 

evaluation of variables taking into account any information already provided by a 
given variable X. 

Given a candidate set C, and output variable, Y, the PMI based input variable 
selection (PMIS) algorithm proceeds at each iteration by finding the candidate, Cs, 
that maximises the PMI with respect to the output variable, conditional on the in-
puts that have been previously selected. The statistical significance of the PMI es-
timated for Cs can be assessed based on the confidence bounds drawn from the 
distribution generated by a bootstrap loop. If the input is significant, Cs¸ is added 
to S and the selection continues; otherwise there are no more significant candi-
dates remaining and the algorithm is terminated [25][26].  
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The size of the bootstrap, B, is important in the implementation of PMIS since 

it can influence both the accuracy and overall computational efficiency of the al-
gorithm. May et al [26] discuss the implications for selecting the bootstrap size in 
terms of the accuracy – computational efficiency trade-off and present a new ap-
proach which does not rely on a bootstrap or direct comparison with the critical 
value of MI (as is necessary with some of the other approaches compared, such as 
the tabulated critical values approach [26]). In [26] the use of the Hampel test cri-
terion is suggested as a termination criterion.  

3.5   Hampel Test Criterion 

Outlier detection methods are robust statistical methods for determining whether a 
given value, x, is significantly different from another within a set of values X. In 
the case of PMIS, having identified the most relevant candidate, the outlier, it is 
necessary to determine whether this candidate is statistically significantly greater 
than the others and to keep this candidate if it is.  The Z-test is a commonly 
adopted approach for outlier detection where the deviation of a single observation 
is compared with the sample mean of all observations. Based on the 3σ rule for 
Gaussian distributions, outliers lie greater than three standard deviations from the 
population mean and therefore an observed value with a Z-score greater than 3 is 
generally considered to be an outlier. The Z-test can be particularly sensitive when 
a population contains multiple outliers. One very distant outlier could disrupt the 
distribution of the population (mean and variance) resulting in other outliers not 
being identified i.e., hiding and masking outliers. The sensitivity of outlier detec-
tion methods to masking is determined based on the proportion of outliers that 
must be present to significantly alter the data distribution, referred to as the break-
down point, which is 1/n for the Z-test since only one sufficiently large outlier will 
cause the test to breakdown [26]. 

Since the candidate set of variables in the PMIS method is likely to contain 
more than one relevant variable (analogous to outliers in the aforementioned out-
lier test) a modified Z-score is necessary to improve the robustness of the test. The 
Hampel distance test proposed in [53] and compared in [26] is based on the popu-
lation median. Because the Hampel distance test breakdown point is 2/n it is con-
sidered to be one of the most robust outlier tests when the data contains multiple 
outliers. To calculate the Hampel distance, the absolute deviation from the median 
for all candidates is calculated as follows 

(50)
j C Y S C Y Sj j

d I I⋅ ⋅= −
                                                       

(21)    

where dj denotes the absolute deviation and (50)
C Y Sj

I ⋅  is the medium PMI for candi-

date set C. Taking (50)
jd

 
as the median absolute deviation (MAD), the Hampel dis-

tance (modified Z-score) for candidate Cj is      

(50) .
1.4826

j
j

j

d
Z

d
=

                                                     

(22) 
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The factor of 1.4826 scales the distance such that the rule Z>3 can be applied, as 
in the case of the conventional Z-test [26]. The value Zs is determined for candi-
date Cs and if Zs > 3, the candidate is selected and added to S; otherwise the for-
ward selection algorithm is terminated as described in the following subsection.   

PMIS algorithm using Hampel distance criterion  

  1: Let S φ→  (Initialisation)  

  2:  While  S φ≠
 
(Forward Selection) 

  3:  Construct kernel regression estimator ˆ ( )Ym S
 

  4: Calculate residual output ˆ ( )Yu Y m S= −
 

  5: For each jC C∈  

  6:  Construct kernel regression estimator ˆ ( )C j
m S

 
  7:  Calculate residual output ˆ ( )j C j

u C m S= −
 

  8:  Estimate I(v;u)  
  9: Find candidate Cs (and vs) that maximises I(v;u) 
10:  Estimate Zs for Cs 

11:  If Zs > 3 (Selection/Termination) 
12:  Move Cs to S 
13: Else 
14:  Break 
15: Return   

 
Using PMIS the optimal selection of time delayed EEG signal samples which 
minimise the uncertainty about a future output (prediction) can be estimated.  

3.6   Using PMIS to Optimize the NTSPP Framework  

For every channel, in the case of the BCI presented in sections 2 and 3.1, there is 
assumed to be an optimal selection of input variables (EEG time series embed-
ding), that will enable accurate prediction for the channel and accurate specialisa-
tion of a neural network for that channel. The optimal selection however is likely 
to differ depending on the class of data (motor imagery) being assessed. So, for a 
3 channel system with 2 classes of data there is assumed to be at least 6 optimal 
embedding configurations, one for each channel per class. When applying a BCI 
that involves time embedding the EEG for prediction, as is the case for the NTSPP 
framework, the optimal embedding for both classes cannot be applied simultane-
ously in the online BCI as the class is unknown a priori and a decision has to be 
made given data from 3 channels. It is therefore necessary to decide which em-
bedding should be applied, not necessarily to maximise the prediction accuracy for 
both classes, but to maximise the specialisation for the networks in such a way 
that the difference between signals predicted for both classes is maximal i.e., sepa-
rability is maximised. In the case where 3 channels and 2 classes are available, 
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Table 2 Different combinations of embedding dimension for three channels. For any con-
figuration each can use the embedding parameters that are optimal for either class ‘1’ or ‘2’ 
but not both.    

Configuration C3 C4 Cz 
A 1 1 1 
B 1 1 2 
C 1 2 1 
D 1 2 2 
E 2 1 1 
F 2 1 2 
G 2 2 1 
H 2 2 2 

 

 
{ }1,2C ∈ , there are 23 possible configurations for deciding which of the channel’s 

assumed optimal embedding configuration should be used as shown in Table 2. 
From Table 2, if configuration A is selected then the embedding values selected 

for class 1 on all channels would be used whereas if configuration D is selected 
the embedding parameters chosen for class 1 would be used for channel C3 and 
those chosen for class 2 would be used for channels C4 and Cz. As this chapter 
presents the first assessment of this approach, a heuristic based approach was 
adopted to determine the best configuration. The following section describes the 
complete BCI setup and parameters optimization procedure. 

3.7   Parameters Optimization and BCI Setup 

In motor imagery BCIs, the parameter search space and the available data can be 
extensive, particularly when there are multiple stages of signal processing, there-
fore a phased approach to parameter selection is conducted. In the proposed BCI 
setup it is necessary to find of the optimal combination of lagged input variables 
(embedding parameters) to train the predictor networks. An inner-outer cross-
validation (CV) is performed, where all other BCI parameters are optimized for 
each of the embedding configurations including the optimal subject-specific fre-
quency bands (shown in Fig. 4). In the outer fold, NTSPP is trained on up to 10 tri-
als randomly selected from each class (2 seconds of event related data from each 
trial resulting in 2500 samples for each channel/class) using standard time series 
embedding parameters: embedding (Δ=6) and time lag (τ=1). The trained networks 
then predict all the data from the training folds to produce a surrogate set of trials 
containing only EEG predictions. No parameter tuning is necessary at this stage as 
the SOFNN adapts autonomously to the signals [23]. The 4 training folds from the 
outer splits are then split into 5 folds on which an inner 5-fold cross validation is 
performed. Firstly, the time point of maximum separability is found for the inner 
data and, (if necessary, channel selection can be performed), both using the R2 cor-
relation analysis with a standard 8-26 Hz band [40]. Using the information regard-
ing the optimal time point, a 2 second window of data around the time point 
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of maximum separability is taken from 10 randomly chosen trials from each class 
and PMIS is applied to find the optimal embedding for each channel and each 
class. Using one of the combinations shown in table 1 the NTSPP framework is 
retrained with these embedding parameters, again using 10 randomly chosen trials 
from the outer training folds but in this case using the 2 second window of data 
around the time point of maximum separability (using the most separable data 
segments increases network specialization). A new surrogate dataset for the outer 
training fold data is obtained and the 4 training folds from the outer splits are then 
split into 5 folds on which another inner 5-fold cross validation is performed. 
Firstly, the time point of maximum separability is found for the inner data using 
the R2 correlation analysis with a standard 8-26 Hz band [40]. Using the best time 
point and best channels from the correlation analysis, a PSO based search is con-
ducted to identify the optimal frequency bands where CSP, feature extraction and 
classification is performed to determine classification accuracy levels on each of 
the folds for each of the bands selected by PSO and tested using 4 CSP surrogate 
channels [40]. After each frequency band is tested on the test fold, PSO swarm 
particles communicate the accuracy levels to one another and the algorithm con-
verges, identifying the optimal band for that test fold much quicker than searching 
the complete space of all the possible bands (cf.  Fig. 4(a) for a graphical represen-
tation of a PSO search). After optimal bands for each of the inner folds have been 
identified the finally selected band is the average classification accuracy (CA) of 
the 5 bands weighted by the CA of the test fold as illustrated in Fig. 4(b). NTSPP-
SF-CSP is then applied on the outer fold training set, where a feature set is ex-
tracted and an LDA classifier is trained at every time point across the trials and 
tested for that point on the outer test folds. The average across the five-folds is 
used to identify the optimal number of CSPs (between 1-3 from each side of W) 
and the final time point of maximum separation for the corresponding combina-
tion of PMIS selected lagged input variables. 

There are eight combinations of selected lag variable combinations as shown in 
Table 2 therefore the above process is conducted for each of the combinations. At 
the end of this process the embedding configuration which provides the best mean 
accuracy is known however it is then necessary to select which channel-specific 
embedding works best i.e., from the outer cross validation PMIS is applied for 
each of the 5 training folds and each time the exact embedding parameters may 
differ for each channel. To obtain the best setup for cross session tests (to ensure 
generalization to the unseen testing data) the complete system is retrained a further 
5 times on all the training data using the chosen parameters for each fold and 
tested on the training data 5 times. In this case the lag combination for each of the 
5 folds is tested with other BCI parameters selected in the cross-validation. The 
embedding parameters configuration and parameter combination which provides 
the highest mean accuracy across the 5 tests on the complete training data set is 
used for cross session tests. In the case where two tests produce the same results 
on one of the training data tests the parameter setup that achieves the average best 
accuracy across 8 lag configurations for a particular training test, corresponding to 
the best average lag configuration across the 5 training tests, is used to determine  
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the best setup. The system is finally tested on the unseen test/evaluation data (as 
given for the BCI competition outlined in section 2).  All parameter optimization 
is expedited using the Matlab® Parallel Processing Toolbox and a high perform-
ance computing (HPC) cluster with 384 cores. Subject analysis and 5-fold cross 
validations were run in parallel along with parallelization of parts of the kernel re-
gression estimation and PMI calculation for selecting input variables and multiple 
cross validation tests. 

4   Results  

The objective of this research was to improve the NTSPP framework, which is a 
predictive framework involving training a mixture of experts on EEG data pro-
duced for two classes of motor imagery recorded from three channels. The hypo-
thesis is that specializing the networks for a particular motor imagery (class) leads 
to improvement in the separability of the predicted output i.e., when the mixture of 
networks produce predictions for an unknown class of motor imagery, networks 
trained on that particular class of motor imagery should predict the data sufficient-
ly accurately and differently compared to the other networks which are trained on 
the other class of motor imagery. Maximizing the difference in the prediction for 
each class of motor imagery ultimately should lead to better classification accura-
cy (BCI performance) when features are extracted from the predicted signals and 
classified i.e., when all other components are merged with the predictive frame-
work. The hypothesis is based on the observation that dynamics of the EEG differs 
across channels and between motor imageries. The 2nd hypothesis is thus that each 
channel will have different and optimal embedding parameters which will optim-
ize prediction performance and enable network specialization. Therefore, selecting 
these optimal embedding parameters will result in improved NTSPP performance 
and thus improved BCI performance. For example, if PMIS selected x(t-1), x(t-3), 
and x(t-5) as the best predictors for channel C3 for class 1 and x(t-1), x(t-2), x(t-
3), and x(t-10) for the same channel but for class 2, training the networks for class 
1 and class 2 on only one of these embedding combinations for this channel, for 
example, the embedding parameters for class 1, then the class 2 network would 
not be able to specialize/train on the same channel using class 2 data as accurately, 
as the optimal embedding parameters for that channel are not been utilised i.e., for 
each channel only of the two networks trained on the channel is specialized to 
predict the channel whilst the other is not. 

To test both hypotheses the overall BCI performance and the selected embed-
ding parameters for each channel and class that produce the optimal BCI perfor-
mance are assessed. BCI performance with NTSPP and PMIS is compared with 
the case were no NTSPP is performed (only CSP and SF) and where NTSPP is 
performed with a standard embedding/time lag setup (NTSPP6). 
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Table 3 The optimal time series embedding parameters for each channel and for each class 
for all subjects. The optimal configuration for NTSPP is shown in column 2 (corresponding 
to table 2) and in bold in wide columns 3 and 4. 

 

4.1   PMIS Selected Embedding Parameters 

Table 3 shows the PMIS selected embedding/lag parameters for each of the 3 
channels for each class. The best configuration in terms of which embedding/lag 
parameters were used for each channel are shown in bold (as outlined only one 
embedding/lag setup can be used for each channel – the best training accuracy 
during system optimization as outlined above is used to determine which setup is 
used, either class 1 or class 2). As can be seen, across all subjects there are differ-
ent embedding/lag parameters chosen using PMIS. Within subjects there are dif-
ferent embedding/lag parameters for each channel and for each class. Using the 
selection method outlined above, the best configuration of embedding/lag parame-
ters differ significantly across subjects. Colum 2 shows the lag configurations cor-
responding to Table 2. For subjects 3, 7, 15, 16 and 17 the best configuration is 

Class 1 (Left Hand Motor Imagery) Class 2 (Right Hand Motor Imagery) S NTSPP 

Conf. C3 C4 Cz C3 C4 Cz 

1 C 1,2,1 x(t-1),x(t-10) x(t-1), x(t-9) x(t-1), x(t-3) x(t-1), x(t-5) x(t-1) x(t-1),x(t-10) 

2 D 1,2,2 x(t-1), x(t-2) x(t-1),x(t-2) x(t-1),x(t-2) 

x(t-5),x(t-6) 

x(t-1) x(t-1),x(t-2) x(t-1) 

3 A 1,1,1 x(t-1),x(t-2), 

x(t-4),x(t-5), 

x(t-6),x(t-7), 

x(t-10) 

x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5),x(t-6) 

x(t-1),x(t-2), 

x(t-3),x(t-5) 

 

x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5),x(t-6) 

x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5),x(t-6) 

x(t-1),x(t-2), 

x(t-3),x(t-10) 

 

4 B 1,1,2 

 

x(t-1),x(t-10) x(t-1) x(t-1),x(t-10) x(t-1), x(t-7), 

x(t-8) 

x(t-1) x(t-1),x(t-10) 

5 B 1,1,2 x(t-1) x(t-1),x(t-2), 

x(t-3),x(t-4) 

 

x(t-1), x(t-2) x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5),x(t-7) 

x(t-1), x(t-2) 

 

x(t-1),x(t-2), 

x(t-7),x(t-8) 

 

6 E  2,1,1 x(t-1),x(t-2), 

x(t-6),x(t-8), 

x(t-9) 

x(t-1), x(t-2), 

x(t-3),x(t-4), 

x(t-5) 

x(t-1),x(t-2), 

x(t-3) 

x(t-1), x(t-2), 

x(t-3), x(t-5) 

x(t-1), x(t-2), 

x(t-3), x(t-4), 

x(t-5),x(t-10) 

x(t-1),x(t-2), 

x(t-3),x(t-7), 

x(t-8) 

7 A 1,1,1 x(t-1) x(t-1) x(t-5),x(t-6) x(t-1) x(t-1) x(t-6) 

8 B 1,1,2 x(t-1) x(t-1), x(t-8) x(t-1) x(t-1) x(t-1),x(t-10) x(t-10) 

9 A 1,1,1 x(t-1) x(t-1) x(t-1) x(t-1) x(t-1) x(t-2), x(t-3) 

10 C 1,2,1 

 

x(t-1) x(t-1), x(t-2) x(t-1), x(t-2), 

x(t-3) 

x(t-1) x(t-1) x(t-1),x(t-2), 

x(t-3) 

11 D 1,2,2 x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5),x(t-6), 

x(t-8),x(t-9) 

x(t-1) 

 

x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5),x(t-6) 

x(t-1),x(t-2) x(t-1),x(t-2), 

x(t-5) 

x(t-1),x(t-2), 

x(t-7),x(t-10) 

12 C  1,2,1 x(t-1) x(t-1) x(t-1) x(t-1),x(t-10) x(t-1),x(t-10) x(t-1),x(t-8), 

x(t-9),x(t-10) 

13 H 2,2,2 x(t-1) x(t-1),x(t-8) x(t-1),x(t-2), 

x(t-8) 

x(t-1),x(t-7), 

x(t-8) 

x(t-1) x(t-1),x(t-7), 

x(t-8) 

14* G 2,2,1 

 

x(t-1),x(t-2), 

x(t-9) 

x(t-1),x(t-2) 

 

x(t-1),x(t-7), 

x(t-8),x(t-10) 

x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5) 

x(t-1),x(t-2), 

x(t-3),x(t-4), 

x(t-5) 

x(t-1),x(t-4) 

15 A 1,1,1 x(t-1),x(t-2), x(t-1),x(t-2) x(t-1),x(t-2) x(t-1) x(t-1) x(t-1),x(t-2), 

16 H 2,2,2 x(t-1) x(t-1), x(t-2), 

x(t-4),x(t-10) 

x(t-1), x(t-2), 

x(t-3),x(t-10) 

x(t-1) x(t-1), x(t-2), 

x(t-10) 

x(t-1) 

17 H 2,2,2 x(t-1) x(t-1) x(t-1) x(t-1) x(t-1) x(t-1),x(t-10) 

18 G 2,2,1 x(t-9) x(t-1) x(t-1) x(t-1), x(t-9) x(t-1) x(t-1) 
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based on the embedding/lag combinations for one class across all signals. The op-
timal setup could be derived based on one class only for a number of other sub-
jects, as the embedding/lag combination is identical for some channels regardless 
of class e.g., for subject channel Cz parameters could have been used for both 
classes and likewise for subject 18 (subject 4 could have used all class 1 parame-
ters and subject 18 could have used all class 2 parameters). This selection process 
could have chosen either in these cases. For the remaining subjects however a 
mixture of parameters have been selected between the two classes, emphasizing 
the need to assess all embedding parameters combination on a channel-, class- and 
subject-specific basis. The following subsection outlines how these subjects per-
formed in terms of overall classification accuracy using these embedding configu-
rations in the NTSPP framework.    

4.2   BCI Performance  

The cross validation (CV) performances for all subjects are presented in Figure 
6(a) whilst the cross session (x-Session) single-trial performances are presented in 
Figure 6(b). The average performances across subjects are presented in Figure   
6(c). In the majority of cases NTSPP-PMIS provides the best cross-validation per-
formance (within session) for all subjects (Fig. 6(a)). In some cases NTSPP6 out-
performs NTSPP-PMIS. Subject 10 is the only case where there is a significant 
drop in CV performance given by NTSPP-PMIS compared to No-NTSPP. There 
is a slight drop in CV performance for subjects 17 and 18 but overall the CV re-
sults indicate a slight improvement in the average within-session performance for 
NTSPP6 and a greater improvement for NTSPP-PMIS across all subjects com-
pared to No-NTSPP. The average across subjects is shown in Fig. 6(c). The aver-
ages are compared across all subjects as well as across the two competition  
groupings as both datasets have different attributes which influence performance2. 
In terms of the CV average there are slight improvements given by NTSPP-PMIS 
which are statistically significant (p<0.05) as shown in Table 4 where the results 
of two statistical tests are presented. The parametric statistical test repeated meas-
ures ANOVA (which is akin to a t-test (related) for two groups) [54] and the Wil-
coxon signed rank test [55], a non-parametric statistical test, are used for clarity 
(the results indicate from both tests are similar and correlated). The improvement 
given by NTSPP6 over No-NTSPP is not significant in the CV test but is more 
significant (not statistically) in the cross-session tests on all subjects. The cross 
session performance difference between No-NTSPP and NTSPP-PMIS is statisti-
cally significant however NTSPP–PMIS is not shown to be statistically better than 
NTSPP6 in the cross session tests. The performance of the BEST NTSPP-PMIS 
cross session results are presented here to show what is theoretically possible with  

                                                           
2 For dataset 2B (subjects 1-9), the data used for training are from a 3rd feedback session af-

ter 2 sessions without feedback and the testing data is from two further feedback sessions 
whereas the dataset for 2A (subjects 10-18) are trained and tested on 2 sessions with no 
feedback and within these sessions subjects performed another 2 motor imageries (4 class 
data acquisition; there is also a significant difference in the number or trials performed for 
both groups (cf. section 2 for further details).   
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Fig. 5 BCI performance results for all subjects and approaches: (a) average cross-validation 
classification accuracy; (b) cross-session (x-Session) classification accuracy (c) mean accu-
racies across all subjects and two groups of subjects (groups based on datasets 2A and 2B). 
Results are presented for 3 methods: No NTSPP, NTSPP6 (standard embedding dimension 
6 and time lag 1) and NTSPP with embedding selected using PMIS and configured accord-
ing to Table 3. In figures (a) and (b) the absolute best performing NTSPP PMIS embedding 
setup is shown for information only (this best setup is the accuracy that could have been ob-
tained if the absolute best embedding setup was determined from the training data i.e., in 
some cases the setup chosen did not provide the best generalization performance on the test 
data.  

the proposed NTSPP-PMIS approach if the parameters can be selected appro-
priately from the training data (i.e., these results were generated by applying all 
possible NTSPP-PMIS configurations across the sessions and viewing the best  
results). The results show that the possible best performances are statistically  
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better than those produced using the proposed heuristic configuration optimization 
method for NTSPP-PMIS.  The significance of the results is discussed in the fol-
lowing section. 

Table 4 Results of statistical tests comparing the average performance across subjects (All, 
S1-S9 and S10-S19) for each of the methods/approaches (p-values), where the average per-
formances are shown in Figure 6(c). p<0.05 indicates a statistical difference in the perfor-
mance produced by the methods compared. Results of two statistical tests (parametric and 
non-parametric) are shown for comparison and verification.    

5   Discussion  

This study presents for the first time the use of partial mutual information input 
variable selection (PMIS) for selecting channel-, class- and subject specific em-
bedding parameters from EEG time-series. The results presented in section 4.1 
show that, depending on the particular brain state (class), the channel-specific em-
bedding varies and is subject-specific. Past studies have investigated  the optimal 
subject-specific embedding parameters for BCI [15][21] but focused on using one 
set for all channels with the same embedding parameters being selected for both 
classes i.e., the embedding was optimized based on overall classification perfor-
mance without first selecting embedding parameters for particular channels. The 
results presented here show the variability in the brain and intra- and inter-subject 
differences in EEG dynamics. It is therefore recommended to optimize the channel 
specific embedding parameters when attempting to make predictions about a fu-
ture brain state, be it one step or multiple steps ahead. 

Although, in this study, the aim is not to exploit the use of advanced prediction 
of future brain states to reduce system latency (cf. next section for a discussion on 
how this may be potentially beneficial in BCI), the NTSPP approach is based on 
EEG time-series prediction and the results clearly demonstrate that there are im-
provements given by the NTSPP framework when channel- and class-specific em-
bedding configurations are deployed for each subject. The results show that within 
session cross-validation differences between NTSPP-PMIS and NTSPP6 or No 
NTSPP are statistically significant and that the cross session performance  

Methods CV  Cross Session 
Repeated Measures ANOVA All  All S1-9 S10-18 
No NTSPP vs NTSPP6 0.8714  0.1033 0.6149 0.1094 
No NTSPP vs NTSPP-PMIS 0.0046  0.0264 0.0566 0.1953 
NNTSPP6 vs NTSPP-PMIS 0.0093  0.2823 0.1271 1 
NTSPP PMIS vs BEST -  0.0052 0.0177 0.0151 
      

Wilcoxon Signed Rank Test       
No NTSPP vs NTSPP6 0.7925  0.1640 0.7969 0.1250 
No NTSPP vs NTSPP-PMIS 0.0019  0.0331 0.0742 0.2656 
NTSPP6 vs NTSPP-PMIS 0.0083  0.2366 0.1289 0.9688 
NTSPP PMIS vs BEST  -  0.0002 0.0313 0.0156 
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difference between NTSPP-PMIS and No-NTSPP is statistically significant. In 
previous work it was shown that in some cases, depending on the number of chan-
nels and classes being investigated, NTSPP6 provides significant improvement 
over No NTSPP whereas in this work the cross session differences are not shown 
to be statistically different, although an improvement is observable. The  approach 
presented in [22] involved only testing four frequency bands between 8-24Hz for 
the EEG spectral filter whereas in this work the frequency bands are subject-
specifically tuned in the setup with a fine resolution using PSO and then applied  
along with NTSPP63 i.e., the results presented here suggest that NTSPP6 is less 
effective when the subject-specific bands are tuned. However, as shown here, 
when we deploy PMIS embedding selection there are improvements even with op-
timized frequency bands in the spectral filter. With the proposed parameter confi-
guration using PMIS and a heuristic as well as computationally intelligent search 
methods (PSO and SOFNN) for other parameter combinations/settings, NTSPP-
PMIS can generalize reasonably well across sessions. This therefore is a positive 
indication that the use of NTSPP can indeed improve performance of the BCI. The 
BEST results (as outlined these are identified after viewing the testing perfor-
mance across all embedding configurations) show there can be even greater gains 
provided by the NTSPP-PMIS framework if the parameter optimization approach 
is further improved to ensure better generalization. The following subsection out-
lines why the approach used is suboptimal and other limitations of this study.   

5.1   Limitations  

In terms of PMIS and NTSPP, only 10 trials randomly selected from the available 
trials from each class are used to, firstly, identify the optimal embedding for each 
channel and then to train the SOFNNs in the NTSPP framework. Using more trials 
in the PMIS setup, only using trials which are highly separable i.e., omitting trials 
which are less separable, may improve the specificity and accuracy of the PMIS 
algorithm. Likewise, for NTSPP and the SOFNN training, using more trials and 
only those that are most separable, along with PMIS selected embedding as de-
scribed may enhance the specialization of the networks leading to increased dif-
ference in the prediction for both classes and enhanced separability. The SOFNN 
is deployed in this framework using standard hyper parameters, identified based 
on a study of a small number of subjects [37]. It is highly probable that fine tuning 
the SOFNN parameters to suit the channel-specific embedding will also lead to 
greater specialization. In addition, the data segments within the event-related por-
tion of trials on which PMIS and the SOFNN are deployed could be fine-tuned 
and assessed more closely using smaller or larger segments around the time point 
of maximum separation in trials (in this work a 2s window around the max  
separation point was used). Using more trials from which to select data may also 
improve specialization. In this study only 2 seconds of the data was used from 10 
randomly selected trials resulting in 2500 samples for PMI selection and SOFNN 
                                                           
3 Even though the same subjects are analyzed the data splits in [22] are also different (based 

on the feedback and non-feedback sessions) and therefore results presented here are not 
directly comparable to those presented in [22]. 
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training. This is a low number of trials relative to the amount of data available 
however results in a significant number of samples on which to train multiple 
networks, multiple times in a cross validation. Simply selecting data more instinc-
tively could have a major impact on PMIS and the SOFNNs in the NTSPP frame-
work without any additional parameter optimization.  

Improvements to other elements of the BCI are possible and ongoing however 
it is desirable to keep parameter tuning in the BCI setup to a minimum or indeed 
in any application therefore there is always the aim to ensure the system can be se-
tup quickly using an auto-calibrating approach, hence the reason for using compu-
tational intelligence based approaches such as the SOFNN which can adapt and 
tune its weights and structure automatically during the learning process, and the 
use of PSO to select optimal frequency bands quickly and efficiently. CSP is not 
only used here to improve separability but to help identify redundancy in the sig-
nals. The use of linear classifiers for easy training and adaptation is necessary but 
classifier performance can be improved to account for inter-session variability and 
sensorimotor learning as the subject endeavors to improve BCI performance (re-
search is ongoing in this area [56][57]). Future work will involve investigating the 
parameters that are providing the best cross-session performances and developing 
an optimized and efficient framework where optimal performance and cross ses-
sion generalization is guaranteed. For example, subject 14 in this work was poorly 
performing regardless of the method deployed but NTSPP-PMIS failed complete-
ly (~50% classification accuracy) given the parameters selected on the training da-
ta whereas the BEST performance shows that NTSPP-PMIS parameters could 
have been much better for this subject had the training data being more carefully 
used to setup the system. These issues are currently being investigated along with 
other potential benefits of the NTSPP framework as outlined in the following  
subsection. 

6   Conclusions and Future Work  

This chapter has shown for the first time that partial mutual information input va-
riable selection (PMIS) can be used to select embedding parameters for EEG time 
series prediction and by selecting channel-, class- and subject-specific embedding 
parameters predictive performance and over all classification of EEG data can be 
improved for a two class EEG-based BCI using the NTSPP framework. The PMIS 
approach can be improved by using more data and further assessment of the crite-
ria for considering whether a particular embedded sample of the time series pro-
vides information about the predicted input. This may be improved using the boot-
strapping or Akaike Information Criterion as compared by May et al [26] however 
the approach used here, involving the Hampel distance criterion, is efficient. By 
exploring better parameters for the PMIS approach, the NTSPP setup and the 
complete BCI it is expected that the BCI presented here can be improved signifi-
cantly. This work provides evidence of this potential. The PMIS approach will al-
so aid in the investigation of other BCI configurations involving the NTSPP 
framework, for example, multiclass systems and multiple channel EEG montages. 
Previous work has already shown that the performance gains provided by the 
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NTSPP framework are greater when multiple channels and multiple classes are 
used [22][55]. Channel- and class-specific embedding is likely to further increase 
that improvement. NTSPP has also been shown to have the capacity to reduce the 
latency involved in motor imagery BCIs involving continuous classification; pro-
ducing higher signal separability faster (i.e., earlier in the trial) by predicting the 
EEG times series multiple steps ahead [59]. This has the potential to reduce the 
time required (latency) for a subject to exceed a threshold with the continuous 
classifier output, as the NTSPP predicts multiple steps ahead in time characteris-
tics in the data which are more separable. Features can then be extracted from the 
predicted separable segments of the data before that separability actually is pro-
duced by the sensorimotor activity. A preliminary study of this is presented in 
[59]. Again, that preliminary study used standard embedding parameters. For mul-
tiple-step-ahead prediction the prediction error increases as the prediction horizon 
increases and therefore PMIS embedding parameter selection will be even more 
pertinent and can be exploited in such a multi-step-ahead NTSPP framework. Fur-
ther work will be carried out to verify if combining CSP and SF with the multiple-
step-ahead prediction NTSPP framework and PMIS has potential for improved  
accuracy and information transfer rate in BCI. It may also be possible that PMIS 
selected EEG embedding parameters can be used as class predictors i.e., the op-
timal selected embedding parameters can be selected on a trial-by-trial basis using 
PMIS and used as signal features. The investigation would involve determining if 
such features provided sufficient inter class variability and intra class correlation 
to enable reliable discrimination of brain states.  

In summary, this work shows how a range of traditional signal processing tools 
can be combined with multiple computational intelligence based approaches to 
develop a more autonomous parameter optimization setup and ultimately a more 
accurate BCI. Finally, the novel developments in signal processing and embedding 
selection using PMIS will be integrated with our real-time BCI, when sufficiently 
validated, for application in assistive technologies and entertainment for the phys-
ically impaired [4][5][6][8] and rehabilitation [7]. 
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Chapter 13
How to Describe and Propagate Uncertainty
When Processing Time Series: Metrological
and Computational Challenges, with Potential
Applications to Environmental Studies

Christian Servin, Martine Ceberio, Aline Jaimes,
Craig Tweedie, and Vladik Kreinovich

Abstract. Time series comes from measurements, and often, measurement inaccu-
racy needs to be taken into account, especially in such volatile application areas as
meteorology and economics. Traditionally, when we deal with an individual mea-
surement or with a sample of measurement results, we subdivide a measurement
error into random and systematic components: systematic error does not change
from measurement to measurement while random errors corresponding to different
measurements are independent. In time series, when we measure the same quantity
at different times, we can also have correlation between measurement errors cor-
responding to nearby moments of time. To capture this correlation, environmental
science researchers proposed to consider the third type of measurement errors: pe-
riodic. This extended classification of measurement error may seem ad hoc at first
glance, but it leads to a good description of the actual errors. In this paper, we pro-
vide a theoretical explanation for this semi-empirical classification, and we show
how to efficiently propagate all types of uncertainty via computations.

1 Formulation of the Problem

In many applications areas – e.g., in meteorology, in financial analysis – the value
of the important variable (temperature, stock price, etc.) changes with time. In order
to adequately predict the corresponding value, we need to analyze the observed time
series and to make a prediction based on this analysis; see, e.g., [3, 20].

All the values that form the time series come from measurements or from ex-
pert estimates. Neither measurements nor expert estimates are 100% accurate, es-
pecially in such volatile application areas as meteorology and economics. Thus, the
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actual values of the corresponding variables are, in general, slightly different from
the observed values xt . These measurement uncertainties affects the result of data
processing.

For example, in meteorological and environmental applications, we measure, at
different locations, temperature, humidity, wind speed and direction, flows of carbon
dioxide and water between the soil and atmosphere, intensity of the sunlight, reflec-
tivity of the plants, plant surface, etc. Based on these local measurement results, we
estimate the regional characteristics such as the carbon fluxes describing the region
as a whole – and then use these estimates for predictions. These predictions range
from short-term meteorological predictions of weather to short-term environmental
predictions of the distribution and survival of different ecosystems and species to
long-term predictions of climate change; see, e.g., [1, 12]. Many of these quantities
are difficult to measure accurately: for example, the random effects of turbulence
and the resulting rapidly changing wind speeds and directions strongly affect our
ability to accurately measure carbon dioxide and water flows; see, e.g., [18]. The
resulting measurement inaccuracy is one of the main reasons why it is difficult to
forecast meteorological, ecological, and climatological phenomena.

It is therefore desirable to describe how the corresponding measurement uncer-
tainty affects the result of data processing. In this paper, we analyze this problem,
describe the related challenges, and show how these challenges can be overcome.

2 Traditional Approach to Measurement Errors

When we are interested in the value x of some quantity that we can measure directly,
we apply an appropriate measuring instrument and get the measurement result x̃. In
the ideal world, the measurement result x̃ is exactly equal to the desired value x.
In practice, however, there is noise, there are imperfection, there are other factors
which influence the measurement result. As a consequence, the measurement re-
sult x̃ is, in general, different from the actual (unknown) value x of the quantity of

interest, and the measurement error Δx
def
= x̃− x is different from 0.

Because of this, if we repeatedly measure the same quantity by the same measur-
ing instrument, we get, in general, slightly different results. Some of these results
are more frequent, some less frequent. For each interval of possible values, we can
find the frequency with which the measurement result gets into this interval; at first,
some of these frequencies change a lot with each new measurement, but eventually,
once we have a large number of measurements, these frequencies stabilize – and
become probabilities of different values of x̃ and, correspondingly, probabilities of
different values of measurement error Δx. In other words, the measurement error
becomes a random variable.

Usually, it is assumed that random variables corresponding to different measure-
ment errors are statistically independent from each other. In statistics, independence
of two events A and B means that the probability of A does not depend on B, i.e.,
that the conditional probability P(A |B) of A under condition B is equal to the un-
conditional probability P(A) of the event A.
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The probability P(A) of the event A can be estimated as the ratio
N(A)

N
of the

number of cases N(A) when the event A occurred to the total number N of ob-
served cases. Similarly, the probability P(B) of the event B can be estimated as

the ratio
N(B)

N
of the number of cases N(B) when the event A occurred to the

total number N of observed cases, and the probability P(A&B) of both events A

and B can be estimated as the ratio
N(A&B)

N
of the number of cases N(A&B)

when both events A and B occurred to the total number N of observed cases.
In contrast, to estimate the conditional probability of A given B, we must only
take into account cases when B was observed. As a result, we get an estimate

P(A |B) ≈ N(A&B)
N(B)

. Since P(A&B) ≈ N(A&B)
N

and P(B) ≈ N(B)
N

, we con-

clude that N(A&B) ≈ P(A&B) ·N and N(B) ≈ P(B) ·N and therefore, P(A |B) ≈
P(A&B) ·N

P(B) ·N =
P(A&B)

P(B)
, so P(A |B)≈ P(A&B)

P(B)
. The larger the sample, the more

accurate are these estimates, so in the limit when N tends to infinity, we get the

equality P(A |B) = P(A&B)
P(B)

, i.e., equivalently, P(A&B) = P(A |B) ·P(B). For in-

dependent events, P(A |B) = P(A) and thus, P(A&B) = P(A) ·P(B).
So, under the independence assumption, if we have two different series of

measurements, resulting in measurement errors Δx and Δy, then the probability
P(Δx ∈ [x,x]&Δy ∈ [y,y]) that Δx is in an interval [x,x] and Δy is in an interval
[y,y] is equal to the product of the two probabilities:

• the probability P(Δx ∈ [x,x]) that Δx is in the interval [x,x], and
• the probability P(Δy ∈ [y,y]) that Δy is in the interval [y,y]:

P(Δx ∈ [x,x]&Δy ∈ [y,y]) = P(Δx ∈ [x,x]) ·P(Δy ∈ [y,y]).

Usually in metrology, the measurement error is divided into two components (see,
e.g., [16]):

• the systematic error component, which is defined as the expected value (mean)
E(Δx) of the measurement errors, and

• the random error component which is defined as the difference Δx−E(Δx) be-
tween the measurement error Δx and its systematic component E(Δx).

Systematic error component is usually described by the upper bound Δs on its ab-
solute value: |E(Δx)| ≤ Δs, while the random error is usually described by its mean
square value

σ =
√

E [(Δx−E(Δx))2].

In statistical terms, σ =
√

V is the standard deviation of the random variable Δx,
i.e., the square root of the variance V = E

[
(Δx−E(Δx))2

]
.

The practical meaning of these components – and the practical difference be-
tween them – can be described if, in order to improve measurement accuracy, we
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repeatedly measure the same quantity several times. Once we have several results
x̃(1), . . . , x̃(M) of measuring the same (unknown) quantity x, we can then take the
arithmetic average

x̃ =
x̃(1) + . . .+ x̃(M)

M
as the new estimate.

One can easily see that the measurement error Δx = x̃− x corresponding to this
new estimate is equal to the average of the measurement errors Δx(k) = x̃(k) − x
corresponding to individual measurements:

Δx =
Δx(1) + . . .+Δx(M)

M
.

What are the systematic and random error components of this estimate? Let us start
with the systematic error component, i.e., in mathematical terms, with the mean.
It is known that the mean of the sum is equal to the sum of the means, and that
when we divide a random variable by a constant, its mean is divided by the same
constant. All M measurements are performed by the same measuring instrument

with the same systematic error E
(

Δx(1)
)
= . . . = E

(
Δx(M)

)
. Thus, for the sum

Δx(1) + . . .+Δx(M), the mean is equal to

E
(

Δx(1) + . . .+Δx(M)
)
= E
(

Δx(1)
)
+ . . .+E

(
Δx(M)

)
= M ·E

(
Δx(k)

)
.

Therefore, the mean of the ratio Δx (which is obtained by dividing the above sum by

M) is M times smaller than the mean of the sum, i.e., equal to E(Δx) =E
(

Δx(k)
)

. In

other words, the systematic error component does not decrease if we simply repeat
the measurements.

In contrast, the random component decreases, or, to be precise, its standard devi-
ation decreases. Indeed, for independent random variables, the variance of the sum
is equal to the sum of the variances, and when we divide a random variable by a
constant, the variance is divided by the square of this constant. The variance V = σ2

of each random error component is equal to V (1) = . . .=V (M); thus, the variance of
the sum Δx(1) + . . .+Δx(M) is equal to the sum of these variances, i.e., to

V
[
Δx(1) + . . .+Δx(M)

]
=V (1) + . . .+V (M) = M ·

(
σ (k)
)2

.

Therefore, the variance of the ratio Δx (which is obtained by dividing the above sum

by M) is M2 times smaller than the variance of the sum, i.e., equal to

(
σ (k)
)2

M
. So,

the standard deviation σ (which is the square root of this variance) is equal to
σ (k)
√

M
.

In other words, the more times we repeat the measurement, the smaller the resulting
random error.
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So, when we repeat the same measurement several times, the random error dis-
appears, and the only remaining error component is the systematic error.

3 The Traditional Metrological Approach Does Not Work Well
for Time Series

In the traditional approach, we represent the measurement error as the sum of two
components:

• a systematic component which is the same for all measurements, and
• a random component which is independent for different measurements.

When we process time series, this decomposition is insufficient: e.g., usually, there
are strong correlations between measurement errors corresponding to consequent
measurements.

To achieve a better representation of measurement errors, researchers in environ-
mental science have proposed a semi-empirical idea of introducing the third com-
ponent of measurement error: the seasonal (periodic) component; see, e.g., [14].

For example, a seasonal error component can represent errors that only happen
in spring (this is where the name of this error component comes from), or errors that
only happen at night, etc.

From the purely mathematical viewpoint, we can have periodic error components
corresponding to all possible frequencies. However, from the physical viewpoint, it
makes sense to concentrate on the components with physically meaningful frequen-
cies – and with frequencies which are multiples of these frequencies, e.g., double or
triple the daily or yearly frequencies.

For example, in environmental observations, it makes sense to concentrate on
daily and yearly periodic errors. If we are interested in the effect of human activity,
then we need to add weekly errors – since human activity periodically changes from
weekdays to weekends.

The idea of using three components of measurement error works extremely well
– which leads to two related challenges:

• A metrological challenge: how can we explain this success? What is the founda-
tion of this idea?

• A computational challenge: how can we efficiently describe this new error com-
ponent and how can we efficiently propagate it through computations?

In this paper, we address both challenges:

• we provide a theoretical justification for the semi-heuristic idea of the third error
component, and

• we show a natural way for efficiently describing this error component, and show
how to efficiently propagate different error components through computations.
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4 First Result: A Theoretical Explanation of the
Three-Component Model of Measurement Error

Our objective is to analyze measurement errors Δx(t) corresponding to time series.
Namely, we want to represent a generic measurement error as a linear combination
of several error components.

This division into components can be described on different levels of granularity.
Let us consider the level where the granules are the smallest, i.e., where each gran-
ule corresponds to a finite-dimensional linear space, i.e., to the linear space whose
elements can be determined by finitely many parameters.

Each component of the measurement error is thus described by a finite-
dimensional linear space L, i.e., by the set of all the functions of the type x(t) =
c1 · x1(t)+ . . .+ cn · xn(t), where x1(t), . . . , xn(t) are given functions, and c1, . . . ,cn

are arbitrary constants.
In most applications, observed signals continuously (and even smoothly) depend

on time, so we will assume that all the functions xi(t) are smooth (differentiable).
Also, usually, there is an upper bound on the measurement error, so we will as-

sume that each of the the functions xi(t) are bounded by a constant.
Finally, for a long series of observations, we can choose a starting point arbi-

trarily. If instead of the original starting point, we take a starting point which is
t0 seconds earlier, then each moment of time which was originally described as
moment t is not described as moment t + t0. Then, for describing measurement er-
rors, instead of the original function x(t), we have a new function xt0(t) for which
xt0(t + t0) = x(t + t0). It is reasonable to require that the linear space that describes
a component of the measurement error does not not change simply because we
changed the starting point. Thus, we arrive at the following definitions.

Definition 1. We say that a function x(t) of one variable is bounded if there exists a
constant M for which |x(t)| ≤ M for all t.

Definition 2. We say that a class F of functions of one variable is shift-invariant if
for every function x(t) ∈ F and for every real number t0, the function x(t + t0) also
belongs to the class F .

Definition 3. By an error component we mean a shift-invariant finite-dimensional
linear space of functions

L = {c1 · x1(t)+ . . .+ cn · xn(t)},

where x1(t), . . . , xn(t) are given bounded smooth functions and ci are arbitrary num-
bers.

Theorem 1. Every error component is a linear combination of the functions

x(t) = sin(ω · t) and x(t) = cos(ω · t).
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Proof.

1◦. Let us first use the assumption that the linear space L is shift-invariant.

For every i from 1 to n, the corresponding function xi(t) belongs to the linear space
L. Since the error component is shift-invariant, we can conclude that for every real
number t0, the function xi(t + t0) also belongs to the same linear space. Thus, for
every i from 1 to n and for every t0, there exist values c1, . . . ,cn (possibly depending
on i and on t0) for which

xi(t + t0) = ci1(t0) · x1(t)+ . . .+ cin(t0) · xn(t). (1)

2◦. We know that the functions x1(t), . . . , xn(t) are smooth. Let us use the equation
(1) to prove that the functions ci j(t0) are also smooth (differentiable).

Indeed, if we substitute n different values t1, . . . , tn into the equation (1), then we
get a system of n linear equations with n unknowns to determine n values ci1(t0),
. . . , cin(t0):

xi(t1 + t0) = ci1(t0) · x1(t1)+ . . .+ cin(t0) · xn(t1);

. . .

xi(tn + t0) = ci1(t0) · x1(tn)+ . . .+ cin(t0) · xn(tn).

The solution of a system of linear equations – as determined by the Cramer’s rule –
is a smooth function of all the coefficients and right-hand sides. Since all the right-
hand sides xi(t j + t0) are smooth functions of t0 and since all the coefficients xi(t j)
are constants (and thus, are also smooth), we conclude that each dependence ci j(t0)
is indeed smooth.

3◦. Now that we know that all the functions xi(t) and ci j(t0) are differentiable, we
can differentiate both sides of the equation (1) with respect to t0 and then take t0 = 0.
As a result, we get the following systems of n differential equations with n unknown
functions x1(t), . . . , xn(t):

ẋi(t) = ci1 · x1(t)+ . . .+ cin · xn(t),

where ẋi(t) denotes derivative over time, and ci j denoted the value of the corre-
sponding derivative ċi j when t0 = 0.

4◦. We have shown that the functions x1(t), . . . , xn(t) satisfy a system of linear
differential equations with constant coefficients.

It is known that a general solution of such system of equations is a linear com-
bination of functions of the type tk · exp(λ · t), where k is a natural number (non-
negative integer), and λ is a complex number. Specifically, λ is an eigenvalue of the
matrix ci j, and the value k > 0 appears when we have a degenerate eigenvalue, i.e.,
an eigenvalue for which there are several linearly independent eigenvectors.

5◦. Every complex number λ has the form a+ i ·ω , where a is its real part and ω is
its imaginary part. So:
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exp(λ · t) = exp(a · t) · cos(ω · t)+ i · exp(a · t) · sin(ω · t).

Thus, every function xi(t) can be represented as a linear combination of expressions
of the types tk · exp(a · t) · cos(ω · t) and tk · exp(a · t) · sin(ω · t).
6◦. Now, we can use the requirement that the functions xi(t) are bounded.

6.1◦. Because of this requirement, we cannot have a �= 0:

• for a > 0, the function is unbounded for t →+∞, while
• for a < 0, the function is unbounded for t →−∞.

So, we must have a = 0.

6.2◦. Similarly, if k > 0, the corresponding function is unbounded. Thus, we must
have k = 0.

7◦. Thus, every function xi(t) is a linear combination of the trigonometric functions
x(t) = sin(ω · t) and x(t) = cos(ω · t).

The theorem is proven.

What are the practical conclusions of this result? We have concluded that the mea-
surement error Δx(t) can be described as a linear combination of sines and cosines
corresponding to different frequencies ω .

In practice, depending on the relation between the frequency ω and the fre-
quency f with which we perform measurements, we can distinguish between small,
medium, and large frequencies:

• frequencies ω for which ω � f are small;
• frequencies ω for which ω � f are large, and
• all other frequencies ω are medium.

Let us consider these three types of frequencies one by one.
When the frequency ω is low, the corresponding values cos(ω · t) and sin(ω · t)

practically do not change with time: the change period is much larger than the usual
observation period.

Thus, we can identify low-frequency components with systematic error compo-
nent – the error component that practically does not change with time.

When the frequency ω is high, ω � f , the phases of the values cos(ω · ti) and
cos(ω · ti+1) (or, alternatively,
sin(ω · ti) and sin(ω · ti+1)) corresponding to the two sequential measurements ti and
ti+1 differ so much that for all practical purposes, the resulting values of cosine or
sine functions are independent.

Thus, high-frequency components can be identified with random error compo-
nent – the error component for which measurement errors corresponding to different
measurements are independent.

In contrast to the cases of low and high frequencies, where the periodicity of the
corresponding cosine and sine functions is difficult to observe, components cos(ω ·
t) and sin(ω · t) corresponding to medium frequencies ω are observably periodic.
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It is therefore reasonable to identify medium-frequency error components with
seasonal (periodic) components of the measurement error.

This conclusion explains why, in addition to the original physically meaningful
frequencies, it is also reasonable to consider their multiples:

• We know that the corresponding error component is a periodic function of time,
with the physically meaningful period T0.

• It is known that every periodic function can be explained into Fourier series,
i.e., represented as a linear combination of sines and cosines with frequencies

ω which are multiples of the basic frequency ω0 =
2π
T0

corresponding to the

period T0.

Thus, we have indeed provided a justification to the semi-empirical three-component
model of measurement error.

5 Periodic Error Component: Technical Details

In the above section, we explained that the periodic error component is as fundamen-
tal as the more traditional systematic and random error components. It is therefore
necessary to extend the usual analysis of error components and their propagation to
this new type of measurement errors.

For systematic and random error components we know:

• how to describe reasonable bounds on this error component, and
• how to estimate this error component when we calibrate the measuring instru-

ment.

Specifically, the random error component is characterized by its standard deviation
σ , while a systematic error component s is characterized by the upper bound Δ :
|s| ≤ Δ .

The standard deviation σ of the measuring instrument can be estimated if we re-
peatedly measure the same quantity x by this instrument. Then, the desired standard
deviation can be estimated as the sample standard deviation of the corresponding
measurement results x̃(1), . . . , x̃(M):

σ ≈
√

1
M

·
M

∑
k=1

(
x̃(k)−E

)2
,

where E =
1
M

·
M

∑
k=1

x̃(k).

To estimate the systematic error component, it is not enough to have the given
measuring instrument, we also need to calibrate the measuring instrument, i.e., to
measure the same quantity x with an additional much more accurate (“standard”)
measuring instrument – whose measurement result x̃s is assumed to be very close
to the actual value x of the measured quantity. Here, E ≈ E(x̃) and x̃s ≈ x, so the
difference E − xs is approximately equal to E(x̃)− x = E(x̃− x) = E(Δx). Thus,
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this difference E − x̃s can be used as a good approximation to the systematic error
component.

Since we want to also take into account the periodic error component, it is desir-
able to provide answers to the above two questions for the periodic error component
as well.

How can we describe reasonable bounds for each part of the periodic error com-
ponent? For each frequency ω , the corresponding linear combination

ac · cos(ω · t)+ as · sin(ω · t)

can be equivalently represented as A · cos(ω · t +ϕ). This is the form that we will
use for describing the periodic error component.

Similarly to the systematic error, for the amplitude A, we will assume that we
know the upper bound P: |A| ≤ P.

For phase ϕ , it is natural to impose a requirement that the probability distribution
of phase be invariant with respect to shift t → t + t0. When time is thus shifted, the
phase is also shifted by ϕ0 = ω · t0. Thus, the requirement leads to the conclusion
that the probability distribution for the phase be shift-invariant, i.e., that the corre-
sponding probability density function ρ(ϕ) is shift-invariant ρ(ϕ) = ρ(ϕ +ϕ0) for
every possible shift ϕ0. This means that this probability density function must be
constant, i.e., that the phase ϕ is uniformly distributed on the interval [0,2π ].

How can we estimate the periodic error component when calibrating a measur-
ing instrument? When we compare the results of measuring the time series by our
measuring instrument and by a standard measuring instrument, we get a sequence
of differences x̃(t)− x̃s(t) that approximates the actual measurement errors Δx(t).

Periodic error components are sinusoidal components corresponding to several
frequencies. In data processing, there is a known procedure for representing each
sequence as a linear combination of sinusoids of different frequency – Fourier
transform. To find the periodic components, it is therefore reasonable to perform a
Fourier Transform; the amplitudes of the Fourier transform corresponding to physi-
cally meaningful frequencies (and their multiples) ω will then serve as estimates for
the amplitude of the corresponding periodic measurement error component.

Computing Fourier transform is fast: there is a known Fact Fourier Transform
(FFT) algorithm for this computation; see, e.g., [2].

In this process, there is a still a computational challenge. Indeed, while the
standard measuring instrument is reasonably accurate and its measurement results
x̃s(t) provide a good approximation to the actual values x(t), these results are
still somewhat different from the actual values x(t). Hence, the observed differ-
ences x̃(t)− x̃s(t) are only approximately equal to the measurement errors Δx(t) =
x̃(t)− x(t). When we apply FFT in a straightforward way, this approximation error
sometimes leads to drastic over-estimation of the results; see, e.g., [4, 13]. Because
of this fact, many researchers replaced FFT by much slower – but more accurate –
error estimation algorithms.
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In our paper [13], we showed how we can modify the FFT techniques so that
we get (almost) exact error bounds while being (almost) as fast as the original FFT.
So, to estimate the periodic error component, we need to use thus modified FFT
algorithm.

6 Because of Our Justification, the Three-Component Model of
Approximation Error Can Also Be Applied to Expert
Estimates

In many practical situations, the measurement results are not sufficient to make rea-
sonable conclusions. We need to supplement measurement results with the knowl-
edge of experts. The use of expert knowledge in processing data is one of the
important aspects of computational intelligence.

For example, when a medical doctor makes a diagnosis and/or prescribes
medicine, he or she is usually not following an algorithm that inputs the patients
stats and outputs the name of the disease and the dosage of the corresponding
medicine. If medicine was that straightforward, there would have been no need
for skilled medical doctors. A good doctor also uses his/her experience, his/her
intuition. Similarly, in environmental research, we measure temperature, humid-
ity, etc. However, to make meaningful conclusions, it is necessary to supplement
these measurement results with expert estimates of, e.g., amount of leaves on the
bushes (“low”, “medium”, “high”), state of the leaves – and many other character-
istics which are difficult to measure but which can be easily estimated by an expert.

We have mentioned that in data processing, it is important to take into account
the uncertainty of measurement results. Expert estimates are usually even much less
accurate than measurement results. So, it is even more important to take into account
the uncertainty of expert estimates.

The main idea behind most methods for dealing with uncertainty of expert es-
timates is to treat an expert as a measuring instrument and use the corresponding
metrological techniques.

One of the main techniques for describing expert uncertainty is fuzzy techniques;
see, e.g., [9, 15]. While these techniques are not exactly probabilistic, many fuzzy
techniques are similar to the probabilistic ones.

For example, one of the most widely used methods of determining the (fuzzy)
degree of belief μP(x) that a certain value x satisfies the property P (e.g., that a cer-
tain temperature is low) is to poll several experts and take, as μP(x), the proportion
of those who thing that x satisfies this property.

Good news is that in our analysis of the error components, we never used the fact
that this error comes from measurements. We can therefore apply the exact same
analysis to the approximation error of the expert estimates.

Thus, while our main current emphasis is on measurement results and measure-
ment uncertainty, it is desirable to apply the same three-component decomposition
to inaccuracies of expert estimates as well.
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7 How to Propagate Uncertainty in the Three-Component
Model

In the previous sections, we analyzed how to describe the uncertainty related to
measurements and/or expert estimates. Some quantities can be indeed directly mea-
sured or estimates. However, there are many quantities of interest which cannot be
directly measured or estimated.

An example of such a quantity is a carbon flux that describes the exchange of
carbon between the soil and the atmosphere; see, e.g., [12]. It is difficult to measure
this flux directly. Instead, we measure the humidity, wind and concentration of dif-
ferent gases at different height of a special meteorological tower, and then use the
results of these measurements to process the data.

In general, for many quantities y, it is not easy (or even impossible) to measure
them directly. Instead, we measure related quantities x1, . . . ,xn, and use the known
relation y = f (x1, . . . ,xn) between xi and y to estimate the desired quantity y.

Since measurements come with uncertainty, the resulting estimate is, in general,
somewhat different from the actual value of the desired quantity – even when the
relation y = f (x1, . . . ,xn) is known exactly. It is therefore desirable to propagate
this uncertainty, i.e., to find out how accurate is the estimate based on (approximate)
measurement results.

In practical applications, many inputs to the data processing algorithm come from
the same sensor at different moments of time. In other words, as inputs, we have the
results x̃i(ti j) of measuring the values xi(ti j) by the i-th sensor at the j-th moment
of time ti j = t0 + j ·Δ ti, where t0 is the starting moment of all the measurements,
and Δ ti is the time interval between the two consecutive measurements performed
by the i-th sensor.

The desired quantity y depends on all these values:

y = f (x1(t11),x1(t12), . . . ,x2(t21),x2(t22), . . . ,xn(tn1),xn(tn2), . . .).

Instead of the actual values xi(ti j, we only know the measurement results x̃i(ti j),
results which differ from the actual values by the corresponding measurement errors
Δxi(ti j):

x̃i(ti j) = xi(ti j)+Δxi(ti j).

After applying the data processing algorithm f to the measurement results x̃i(ti j),
we get the estimate ỹ for the desired quantity y:

ỹ = f (x̃1(t11), x̃1(t12), . . . , x̃n(tn1), x̃n(tn2), . . .).

We are interested in estimating the difference

Δy = ỹ− y = f (x̃1(t11), x̃1(t12), . . . , x̃n(tn1), x̃n(tn2), . . .)−

f (x1(t11),x1(t12), . . . ,xn(tn1),xn(tn2), . . .).
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We know that the actual (unknown) value xi(ti j) of each measured quantity is equal
to

xi(ti j) = x̃i(ti j)−Δxi(ti j).

Thus, the desired difference has the form

Δy = f (x̃1(t11), . . . , x̃n(tn1), x̃n(tn2), . . .)−

f (x̃1(t11)−Δx1(t11), . . . , x̃n(tn1)−Δxn(tn1), x̃n(tn2)−Δxn(tn2), . . .).

Our objective is to estimate this difference based on the known information about
the measurement errors Δxi(ti j).

Measurement errors are usually relatively small, so terms quadratic and of higher
order in terms of Δxi(ti j) can be safely ignored.

For example, if the measurement error is 10%, its square is 1% which is much
much smaller than 10%. If we measure with a higher accuracy, e.g., of 1%, then the
square of this value is 0.01% which is even mich more smaller than the error itself.

Thus, we can linearize the above formula, i.e., expand the dependence of Δy on
Δxi(ti j) in Taylor series and keep only linear terms in this expansion. As a result,
we arrive at the following formula:

Δy = ∑
i

∑
j

Ci j ·Δxi(ti j),

where Ci j denotes the corresponding partial derivative
∂y

∂xi(ti j)
.

As a result of this linearization, we can consider all three components separately.
Indeed, we know that each measurement errors Δxi(ti j) consists of three compo-
nents: systematic component si, random component ri j, and periodic component(s)
A�i · cos(ω� · ti j +ϕ�i) corresponding to different physically meaningful frequencies
(and their multiples) ω�:

Δxi(ti j) = si + ri j +∑
�

A�i · cos(ω� · ti j +ϕ�i).

The dependence of Δy on the measurement errors Δxi(ti j) is linear. Thus, we can
represent Δy as the sum of different components coming from, correspondingly,
systematic, random, and periodic errors:

Δy = Δys +Δyr +∑
�

Δyp�,

where
Δys = ∑

i
∑

j
Ci j · si;

Δyr = ∑
i

∑
j

Ci j · ri j;



292 C. Servin et al.

Δyp� = ∑
i

∑
j

Ci j ·A�i · cos(ω� · ti j +ϕ�i).

So, it is indeed sufficient to estimate the effect of all three types of measurement
error components separately.

In these estimations, we will make a natural assumption: that measurement errors
corresponding to different time series are independent. Indeed, as we have men-
tioned earlier,

• while measurement errors corresponding to measurement by the same sensor at
consecutive moments of time are correlated,

• measurement errors corresponding to different sensors usually come from differ-
ent factors and are, therefore, largely independent.

Because of this assumption, we arrive at the following algorithms for estimating
different components of Δy.

Propagating random component is the traditional part of error propagation. A
natural way to describe the resulting error Δyr is to use simulations (i.e., a so-called
Monte-Carlo approach).

By definition of the random error component, the values ri j and rik corresponding
to measurements by the same i-th sensor at different moments of time ti j and ti j′ are
independent. We are also assuming that the values ri j and ri′ j′ corresponding to
different sensors are independent. Thus, all the values ri j corresponding to different
pairs (i, j) are independent.

There are many such values, since each sensor performs the measurements with
a high frequency – e.g., one reading every second or every minute. The value Δyr

is thus a linear combination of a large number of independent random variables.
It is known that under reasonable conditions, the probability distribution of such a
combination tends to normal; this is what is known as the Central Limit Theorem
– one of the main reasons why normal distributions are ubiquitous in nature; see,
e.g., [19].

A normal distribution is uniquely determined by its mean and standard deviation.
We know that each measurement error ri j has mean 0 and a known standard devi-
ation σi corresponding to measurements of the i-th sensor. The mean of the linear
combination is equal to the linear combination of means. Thus, the mean of Δyr is
0. The standard deviation can be obtained if we repeatedly simulate random errors

and take a standard deviation of the corresponding empirical values Δy(1)r , Δy(2)r ,
. . . Thus, we arrive at the following algorithm.

Propagating random component: algorithm. The random component Δyr is nor-
mally distributed with zero mean. Its standard deviation can be obtained as follows:

• First, we apply the algorithm f to the measurement results x̃i(ti j) and get the
estimate ỹ.

• Then, for k = 1, . . . ,N, we do the following:

– simulate the random errors r(k)i j as independent random variables (e.g., Gaus-
sian) with 0 mean and standard deviation σi;
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– form simulated values x(k)i (ti j) = x̃i(ti j)− r(k)i j ;

– substitute the simulated values x(k)i (ti j) into the data processing algorithm f
and get the result y(k).

• Finally, we estimate the standard deviation σ of the random component Δyr as

σ =

√
1
N
·

N

∑
k=1

(
y(k)− ỹ

)2
.

Mathematical comment. The proof that this algorithm produces a correct result eas-
ily follows from the fact that for simulated values, the difference y(k)− ỹ has the form

∑
i

∑
j
Ci j ·r(k)i j and thus, has the exact same distribution as Δyr = ∑

i
∑
j
Ci j ·Δxi(ti j); see,

e.g., [10].

Metrological comment. In some practical situations, instead of the standard devi-
ations σi =

√
E[(Δx)2] that describe the absolute accuracy, practitioners often de-

scribe relative accuracy δi such as 5% or 10%. In this case, the standard deviation σi

can be obtained as σi = δi ·mi, i.e., by multiplying the given value δi and the mean
square value of the signal

mi =

√
1
Ti
·∑

j
(x̃i(ti j))

2,

where Ti is the total number of measurements performed by the i-th sensor.

Let us now consider the problem of propagating systematic component. By
definition, the systematic component Δys of the resulting error Δy is equal to
Δys = ∑

i
∑
j
Ci j · si. If we combine terms corresponding to different j, we conclude

that Δys = ∑
i

Ki · si, where Ki
def
= ∑

j
Ci j.

The values Ki can be explicitly described. Namely, one can easily see that if for
some small value δ > 0, for this sensor i, we take Δxi(ti j) = δ for all j, and for all
other sensors i′, we take Δxi′(ti′ j) = 0, then the resulting increase in y will be exactly
equal to δ ·Ki.

Once we have determined the coefficients Ki, we need to find out the smallest
and the largest possible value of the sum Δys = ∑

i
Ki · si. Each parameter si can take

any value between −Δsi and Δsi, and these parameters are independent. Thus, the
sum is the largest when each term Ki · si is the largest.

Each term is a linear function of si. A linear function is increasing or decreasing
depending on whether the coefficient Ki is positive or negative.

• When Ki ≥ 0, the linear function Ki · si is increasing and thus, its largest possible
value is attained when si attains its largest possible value Δsi. Thus, this largest
possible value is equal to Ki ·Δsi.
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• When Ki ≤ 0, the linear function Ki · si is decreasing and thus, its largest possible
value is attained when si attains its smallest possible value −Δsi. Thus, this largest
possible value is equal to −Ki ·Δsi.

In both cases, the largest possible value is equal to |Ki| ·Δsi and thus, the largest

possible value Δs of the sum Δys is equal to Δs
def
= ∑

i
|Ki| ·Δsi. Similarly, one can

prove that the smallest possible value of Δys is equal to −Δs.
Thus, we arrive at the following algorithm for computing the upper bound Δs on

the systematic component Δys.

Propagating systematic component: algorithm. The largest possible value Δs of
the systematic component Δys can be obtained as follows:

• First, we apply the algorithm f to the measurement results x̃i(ti j) and get the
estimate ỹ.

• Then, we select a small value δ and for each sensor i, we do the following:

– for this sensor i, we take x(i)i (ti j) = x̃i(ti j)+ δ for all moments j;

– for all other sensors i′ �= i, we take x(i)i′ (ti′ j) = x̃i(ti′ j);

– substitute the resulting values x(i)i′ (ti′ j) into the data processing algorithm f

and get the result y(i).

• Finally, we estimate the desired bound Δs on the systematic component Δys as

Δs = ∑
i

∣∣∣∣∣y(i)− ỹ
δ

∣∣∣∣∣ ·Δsi.

Metrological comment. In some practical situations, instead of the absolute bound
Δsi on the systematic error of the i-th sensor, practitioners often describe relative ac-
curacy δi such as 5% or 10%. In this case, a reasonable way to describe the absolute
bound is to determine it as Δsi = δi · ai, i.e., by multiplying the given value δi and
the mean absolute value of the signal

ai =
1
Ti
·∑

j

∣∣x̃i(ti j)
∣∣ .

Numerical example. Let us consider a simple case when we are estimating the dif-
ference between the average temperatures at two nearby locations. For example, we
may be estimating the effect of a tree canopy on soil temperature, by comparing
the temperature at a forest location with the temperature at a nearby clearance loca-
tion. Alternatively, we can be estimating the effect of elevation of the temperature
by comparing the temperatures at different elevations. In this case, we use the same
frequency Δ t1 = Δ t2 for both sensors, so t1 j = t2 j = t j. The difference in average
temperatures is defined as

y = f (x1(t0),x2(t0),x1(t1), . . . ,x2(t1), . . . ,x1(tn),x2(tn)) =
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x1(t0)+ . . .+ x1(tn)
n+ 1

− x2(t0)+ . . .+ x2(tn)
n+ 1

.

Let us assume that the know upper bound on the systematic error of the first sensor
is Δs1 = 0.1, and the upper bound on the systematic error of the second sensor is
Δs2 = 0.2. We perform measurements at three moments of time t = 0,1,2. During
these three moments of time, the first sensor measured temperatures x̃1(t0) = 20.0,
x̃1(t1) = 21.9, and x̃1(t2) = 18.7, and the second second measured temperatures
x̃2(t0) = 22.4, x̃2(t1) = 23.5, and x̃2(t2) = 21.0. In this case, the estimate ỹ for the
desired difference y between average temperatures is equal to

ỹ =
20.0+ 21.9+ 18.7

3
− 22.4+ 23.5+ 21.0

3
= 20.2− 22.3=−2.1.

According to our algorithm, we first select a small value δ , e.g., δ = 0.1.
Then, we modify the results of the first sensor while keeping the results of the

second sensor unchanged. As a result, we get x(1)1 (t0) = x̃1(t0)+ δ = 20.0+ 0.1 =

20.1, and similarly x(1)1 (t1)= 22.0 and x(1)1 (t2)= 18.8; we also get x(1)2 (t0)= x̃2(t0)=

22.4, and similarly x(1)2 (t1) = 23.5 and x(1)2 (t2) = 21.0. For thus modified values, we
get

y(1) =
x(1)1 (t0)+ x(1)1 (t1)+ x(1)1 (t2)

3
− x(1)2 (t0)+ x(1)2 (t1)+ x(1)2 (t2)

3
=

20.1+ 22.0+ 18.8
3

− 22.3+ 23.5+ 21.0
3

= 20.3− 22.3=−2.0.

Similarly, we modify the results of the second sensor while keeping the results of

the first sensor unchanged. As a result, we get x(2)1 (t0) = x̃1(t0) = 20.0, and similarly

x(2)1 (t1) = 21.9 and x(2)1 (t2) = 18.7; we also get x(2)2 (t0) = x̃2(t0)+δ = 22.4+0.1=

22.5, and similarly x(2)2 (t1) = 23.6 and x(2)2 (t2) = 21.1. For thus modified values, we
get

y(2) =
x(2)1 (t0)+ x(2)1 (t1)+ x(2)1 (t2)

3
− x(2)2 (t0)+ x(2)2 (t1)+ x(2)2 (t2)

3
=

20.0+ 21.9+ 18.7
3

− 22.4+ 23.6+ 21.1
3

= 20.2− 22.4=−2.2.

Finally, we estimate the desired bound Δs on the systematic component Δsy as

Δs =
|y(1)− ỹ|

δ
·Δs1 +

|y(2)− ỹ|
δ

·Δs2 =

|(−2.0)− (−2.1)|
0.1

·0.1+ |(−2.2)− (−2.1)|
0.1

·0.3 = 1 ·0.1+ 1 ·0.3= 0.4.

Finally, let us consider the problem of propagating the periodic components. By
definition, the periodic-induced component Δyp� of the resulting error Δy is equal
to
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Δyp� = ∑
i

∑
j

Ci j ·A�i · cos(ω� · ti j +ϕ�i),

i.e., to

Δyp� = ∑
i

∑
j

Ci j ·A�i · (cos(ω� · ti j) · cos(ϕ�i)− sin(ω� · ti j) · sin(ϕ�i)).

By combining the terms corresponding to different j, we conclude that

Δyp� = ∑
i

A�i ·Kci · cos(ϕ�i)+∑
i

A�i ·Ksi · sin(ϕ�i),

where Kci
def
= ∑

j
Ci j · cos(ω� · ti j) and Ksi

def
= ∑

j
Ci j · sin(ω� · ti j).

The values Kci and Ksi can be explicitly described. Namely:

• One can easily see that if for some small value δ > 0, for this sensor i, we take
Δxi(ti j) = δ ·cos(ω� · ti j) for all j, and for all other sensors i′, we take Δxi′(ti′ j) =
0, then the resulting increase in y will be exactly equal to δ ·Kci.

• Similarly, if for this sensor i, we take Δxi(ti j) = δ · sin(ω� · ti j) for all j, and for
all other sensors i′, we take Δxi′(ti′ j) = 0, then the resulting increase in y will be
exactly equal to δ ·Ksi.

Once we have determined the coefficients Kci and Ksi, we need to describe the prob-
ability distribution of the sum Δyp� = ∑

i
A�i ·Kci · cos(ϕ�i)+∑

i
A�i ·Ksi · sin(ϕ�i). We

assumed that all ϕi are independent (and uniformly distributed). Thus, for the case
of multiple sensors, we can apply the Central Limit Theorem and conclude that the
distribution of the sum Δyp� is close to normal.

In general, normal distribution is uniquely determined by its first two moments:
mean and variance (or, equivalently, standard deviation). The mean of each sine
and cosine term is 0, so the mean of the sum Δyp� is zero as well. Since the terms
corresponding to different sensors are independent, the variance of the sum is equal
to the sum of the variances of individual terms. For each i, the mean of the square

(A�i ·Kci · cos(ϕ�i)+A�i ·Ksi · sin(ϕ�i))
2 =

A2
�i · (K2

ci · cos2(ϕ�i)+K2
si · sin(ϕ�i)+ 2 ·Kci ·Ksi · cos(ϕ�i) · sin(ϕ�i))

is equal to
1
2
·A2

�i · (K2
ci +K2

si). Thus, the variance of the sum is equal to

1
2
·∑

i

A2
�i · (K2

ci +K2
si).

Each amplitude A�i can take any value from 0 to the known bound P�i. The above
expression monotonically increases with A�i, and thus, it attains its largest value
when A�i takes the largest value P�i. Thus, the largest possible value of the variance

is equal to
1
2
·∑

i
P2
�i · (K2

ci +K2
si).
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Thus, we arrive at the following algorithm for computing the upper bound σp� of
the standard deviation of the periodic-induced component Δyp� on the approxima-
tion error Δy.

Propagating periodic-induced component: algorithm. The upper bound σp� on
the standard deviation of the periodic-induced component Δyp� can be obtained as
follows:

• First, we apply the algorithm f to the measurement results x̃i(ti j) and get the
estimate ỹ.

• Then, we select a small value δ and for each sensor i, we do the following:

– for this sensor i, we take x(ci)
i (ti j) = x̃i(ti j)+δ ·cos(ω� · ti j) for all moments j;

– for all other sensors i′ �= i, we take x(ci)
i′ (ti′ j) = x̃i(ti′ j);

– substitute the resulting values x(ci)
i′ (ti′ j) into the data processing algorithm f

and get the result y(ci);

– then, for this sensor i, we take x(si)
i (ti j) = x̃i(ti j)+ δ · sin(ω� · ti j) for all mo-

ments j;
– for all other sensors i′ �= i, we take x(si)

i′ (ti′ j) = x̃i(ti′ j);

– substitute the resulting values x(si)
i′ (ti′ j) into the data processing algorithm f

and get the result y(si).

• Finally, we estimate the desired bound σp� as

σp� =

√√√√1
2
·∑

i
P2
�i ·
((

y(ci)− ỹ
δ

)2

+

(
y(si)− ỹ

δ

)2
)
.

Metrological comment. In some practical situations, instead of the absolute bound
P�i on the amplitude of the corresponding periodic error components, practitioners
often describe relative accuracy δ�i such as 5% or 10%. In this case, a reasonable
way to describe the absolute bound is to determine it as σi = δi ·mi, i.e., by multi-
plying the given value δi and the mean square value of the signal

mi =

√
1
Ti
·∑

j

(x̃i(ti j))
2.

Example. To test our algorithm, we have applied it to compute the corresponding
error component in the problem of estimating carbon and water fluxes described
in the paper [14], where such the notion of a periodic error component was first
introduced. Our numerical results are comparable with the conclusions of that paper.
In the future, we plan to apply all the above algorithms to the results obtained by
the sensors on the Jornada Experimental Range Eddy covariance tower and on the
nearby robotic tram, and by the affiliated stationary sensors [5, 6, 7, 8, 11, 17].
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8 Conclusion

In many application areas, it is necessary to process time series. In this process-
ing, it is necessary to take into account uncertainty with which we know the cor-
responding values. Traditionally, measurement uncertainty has been classified into
systematic and random components. However, for time series, this classification is
often not sufficient, especially in the analysis of seasonal meteorological and en-
vironmental time series. To describe real-life measurement uncertainty more accu-
rately, researchers have come up with a semi-empirical idea of introducing a new
type of measurement uncertainty – that corresponds to periodic errors. In this paper,
we provide a mathematical justification for this new error component, and describe
efficient algorithms for propagating the resulting three-component uncertainty.
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Chapter 14
Building a Rough Sets-Based Prediction Model
of Tick-Wise Stock Price Fluctuations

Yoshiyuki Matsumoto and Junzo Watada

Abstract. Rough sets enable us to mine knowledge in the form of IF-THEN decision
rules from a data repository, a database, a web base, and others. Decision rules are
used to reason, estimate, evaluate, and forecast. The objective of this paper is to
build the rough sets-based model for analysis of time series data with tick-wise
price fluctuations where knowledge granules are mined from the data set of tick-
wise price fluctuations. We show how a method based on rough sets helps acquire
the knowledge from time-series data. The method enables us to obtain IF-THEN
type rules for forecasting stock prices.

1 Introduction

Changes in economic time series data influence corporate profits. Therefore, various
prediction analysis methods have been proposed. In methods for analyzing stock
prices and currency exchange rates, analyses of the graphical movement of price
time series data and fundamental analyses based on the corporate performance and
economical environment are widely employed. Matsumoto and Watada applied a
chaos-based method to analyze and estimate time series data [11]. The objective of
the paper is to mine knowledge in the form of rules from economic time series data
based on rough sets theory and to apply the rules to forecast problems.

In rough sets theory [13][14] the concept of discernibility plays a pivotal role
in analyzing rough sets. When we deal with objects using finite values of finite
attributes, different objects result in their indiscernibility because of similar patterns
of the attribute values.
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This theory enables us to mine knowledge granules. We can apply the decision
rule to reason, estimate, evaluate, and forecast unknown objects. In this paper, the
rough sets model is used to analyze time series data of tick-wise price fluctua-
tions where the knowledge granules are mined from the data set of tick-wise price
fluctuations.

For example, when we describe a tomato and an apple using the two attributes
of color and shape, both have the same values of being red and round. In this case,
the tomato and the apple are indiscernible from one another. The rough sets analysis
provides a way to mine a minimal number of rules that can discern objects based on
discernible relations.

We explain a process of reduction to obtain a minimal number of attributes for
discerning among all given objects and the decision rules to discern among all
classes when including all objects. Then, employing rough sets theory, we propose
a method of analysis and forecasting of economic time series data.

The chapter has the following structure. First, the basic concepts are given in
Section 2. The prediction problem of up and down movements of stock price is
explained in Section 3. In Section 4, the changes in terms are discussed from the
perspective of knowledge acquisition. In Section 5, we build rough sets model based
on intraday trading. Finally, we give concluding remarks in Section 6.

2 Rough Set Theory

A rough set is especially useful for domains where the data collected are impre-
cise and/or incomplete about the domain objects. It provides a powerful tool for a
data analysis and data mining of imprecise and ambiguous data. A reduction is the
minimal set of attributes that preserves the indispensability relation, that is, the clas-
sification power of the original dataset [19]. Rough set theory has many advantages,
such as providing efficient algorithms for finding hidden patterns in data, finding
minimal sets of data (data reduction), evaluating the significance of data, and gener-
ating the minimal sets of decision rules from data. It is easy to understand and to of-
fer a straightforward interpretation of the results [3]. These advantages can simplfy
analyses, which is why many applications use a rough set approach as their research
method. The rough set theory is of fundamental importance in artificial intelligence
and cognitive science, especially in the areas of machine learning, knowledge ac-
quisition, decision analysis, knowledge discovery from databases, expert systems,
decision support systems, inductive reasoning, and pattern recognition [2][1][9].

Rough set theory has been applied to the management of many issues, including
expert systems, empirical study of materials data [18], machine diagnosis [4], travel
demand analysis [7], web screen design [6], IRIS data classification [8], business
failure prediction, solving linear programs, data mining [21] and α-RST [16]. An-
other paper discusses the preference-order of the attribute criteria needed to extend
the original rough set theory, such as sorting, choice and ranking problems [17], the
insurance market [15], and unifying rough set theory with fuzzy theory [5]. Rough
set theory provides a simple way to analyze data and reduct information.
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2.1 Information Systems

Generally, an information system denoted IS is defined as IS = (U,A), where uni-
verse U consists of finite objects and is named a universe and A is a finite set
of n attributes {a1,a2, · · · ,an}. Each attribute i{1,2, · · · ,n} belongs to set A, that
is,a ∈ A. An object ω(ω ∈U) has a value fa(ω) for each attribute, which is defined
as fa : U →Va. fa means that object ω in the U has a value fa(Ω)⊂∈Va for attribute
a ∈ A, where Va is a set of values of attribute a ∈ A. It is called a domain of attribute
a.

2.2 Core and Reduct of Attributes

Core and reduct attribute sets, COR(B) and RED(P), respectively, are two funda-
mental concepts of a rough set. The reduct set is a minimal subset of attributes that
can realize the same object classification as the full set of attributes. The core set is
common to all reducts [5]. The reduct set of attributes can remove the superfluous
and redundant attributes and provide the decision maker simple and clear informa-
tion. There may be more than one reduct set of attributes. If the set of attributes is
dependent, we are interested in identifying all of the possible minimal subsets of
attributes that have the same number of elementary sets (called the reducts) [5]. The
reduct set of attributes does not affect the decision-making process, and the core
attributes are the most important attributes in decision making. If a set of attributes
is indispensable, it is called the core. [5]

RED(P)⊆ A,COR(B) = ∩RED(P). (1)

2.3 Decision Rules

Decision rules can also be regarded as a set of decision (classification) rules of
the form aktod j, where ak means that the attribute ak has value 1, d j denotes the
decision attributes and the symbol ’to’ denotes propositional implication. In the
decision rule θ → ψ , formulae θ and ψ are called the condition (premise) and
decision (conclusion), respectively [10]. For the decision rules we can minimize
the set of attributes, reduce the superfluous attributes and classify elements into
different groups. In this way we can have many decision rules, where each rule
shows meaningful attributes. The stronger rule will encompass more objects and the
strength of each decision rule indicates the appropriateness of the rules.

IT-THEN type Decision rules enable us to understand the latent structure deci-
sion. This is the most different from many machine learning mechanism. Even we
can apply these rules in human decision making after the knowledge acquisition was
succeeded.

In this chapter, the decision rules obtained from tick-wise stock price fluctuation
data will be applied to forecast the future movement of stock price.
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3 Forecast of Up and Down Movements of TOPIX

3.1 A Rough Set Approach to Analyzing Time-Series Data

In this section, a rough set analysis is used to analyze time series data; the focal time
series data and the changes of related data are also analyzed due to the influence on
the focal data. Generally speaking, data treated in a rough set analysis are categor-
ical. In this paper, the change of the value is calculated from its previous single
period value and from two categories: plus and minus are defined by increases and
decreases, respectively. Such categorical data are analyzed by a rough set method.
For instance, when the information of the three past periods is analyzed, let us select
the upward or downward movements from the first to third periods for a conditional
attribute and the present change for a decision attribute. That is, the present change
is decided using the increasing and decreasing movement in the three past periods
as shown in Table 1.

When employing other time series data that may influence the decision attribute,
such time series data are additionally taken as a conditional attribute, and the present
movement is decided depending on these attributes, as shown in Table 2.

Table 1 Only one attribute time-series data

No Conditional attribute Decision attribute
1 period previous 2 period previous 3 period previous present period

1 + - - -
2 + - + +
3 + - - -
4 + + - +
5 - - + -

Table 2 Including related data

No. Conditional attribute Decision attribute
Target data Related data
1 2 3 1 2 3

pp pp pp pp pp pp Present Period
1 + — — — — — —
2 + + — + + + +
3 + — — + — — —
4 + — + — — + +
5 — + — — + + —

PP: previous period
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3.2 Analysis of TOPIX

The method described above is employed to analyze the TOPIX time series data.
The Dollar-Yen exchange rates, NY Dow-Jones Industrial Average of 30 stocks
(DJIA) and NASDAQ Index are used as a related time series rules data. Let us
forecast the changes of TOPIX by means of the knowledge acquisition from these
changes. The data employed are monthly values from 1995 to 2003. From the first
half of the data, 50 samples are used for knowledge acquisition, and from the lat-
ter half of the data, 50 samples are used for verifying the model. The increasing
and decreasing movements from 6-month periods (half a year) are employed in the
knowledge acquisition. That is, these changes of increasing and decreasing move-
ments from the first to sixth periods in the past are taken to obtain the respective
conditional attributes. However, the change of the present period is taken to ob-
tain the decision attributes. An analysis was performed for four combinations of
the above-mentioned data: 1) TOPIX, 2) TOPIX and Dol-lar-Yen exchange rates, 3)
TOPIX and NY Dow-Jones Industrial Average, and 4) TOPIX and NASDAQ index.
For the first case, the changes of TOPIX are calculated from the first period to the
sixth period, and for the other cases, the changes are calculated, and the conditional
attributes are found for the other data and TOPIX.

3.3 Results

The minimal decision rules acquired by means of a rough set analysis are shown in
Tables 3 to 10, where x( ) denotes a change of TOPIX, y( ) denotes related data such
as the Dollar-Yen exchange rate, NY Dow-Jones Industrial Average, and NASDAQ
Index. The number in the parenthesis denotes the number of changes in a period.

Table 3 shows that the decision attributes have a + movement after applying the
rules obtained from only the TOPIX time series data. Rules with a greater value of
C.I. are more reliable. Table 4 shows that decision attributes have a − movement
after implementing the rules obtained from only the time series data of TOPIX.
Table 5 shows that the decision attributes have a + movement after applying the
rules obtained from the time series data of both TOPIX and the Dollar-Yen exchange
rate. In this case, the number of obtained rules is large. Therefore, Table 3 illustrates
only the top 30 C.I. values. Table 6 shows the top 30 C.I. values from the decision
attributes that have a − movement after applying the rules obtained from only time
series data of both TOPIX and the Dollar-Yen exchange rates. Table 7 and Table 8
show the rules obtained from the TOPIX and NY Dow-Jones Industrial Average,
and Table 9 and Table 10 show the rules obtained from the TOPIX and NASDAQ
indices.

Table 11 illustrates the forecasted results based on these rules. Using the three
top rules for the C.I. value, the 50 values from the latter half of the data set are
forecasted. With respect to the C.I. values of the obtained rules, the rule obtained
using the related data is better than the one obtained from only using TOPIX. This
result shows that the related data could acquire better rules that cover a wider range.
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Fig. 2 Dollar-Yen exchange rates

The best C.I. value was observed when using the rule of (−) movement based on
TOPIX and the Dollar-Yen Exchange Rate, which covers 40% of the entire range.

With respect the forecasted results using the rules obtained, it is better to use the
related data than to use only the TOPIX times series data. Considering the result
of all increasing and decreasing movements, the NY Dow-Jones Industrial Average
shows the best result in forecasting among all of the combinations. With respect to
a single direction, the NASDAQ index in the increasing direction has the most pre-
cise forecasting among all of the combinations in both directions, but its decreasing
direction produced the worst result.



14 Building Rough Sets Based Prediction Model 307

4,000

6,000 

8,000 

10,000 

12,000 

14,000 

0 

2,000 

4,000 

1 11 21 31 41 51 61 71 81 91

Fig. 3 NY Dow-Johns Industrial Average

1,500 

2,000 

2,500 

3,000 

3,500 

4,000 

4,500 

5,000 

0 

500 

1,000 

1 11 21 31 41 51 61 71 81 91

Fig. 4 NASDAQ index

Table 12 shows the results obtained by forecasting using the decision rules ac-
quired from the decision rule analysis. It was frequently observed that the forecast-
ing precision was worse than the result using the 3 rules of the highest C.I. values.
Because decision rules with a low C.I. value are employed in forecasting, the fore-
casting precision should be worse. Nevertheless, the number of objects that fit the
obtained decision rules is larger in the case of the decision rule analysis. That is,
even though the forecasting precision is worse, the number of forecastable objects
increases.
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Table 3 Case using only TOPIX (rise)

No. Decision rules C.I.
1 x(2) - x(3) - x(6) - 0.200
2 x(1) + x(4) + x(6) - 0.160
3 x(1) - x(4) - x(5) + x(6) - 0.160
4 x(1) - x(3) + x(4) - x(5) + 0.160
5 x(1) - x(2) + x(4) - x(5) + 0.160
6 x(2) + x(3) - x(4) - x(5) + 0.120
7 x(3) - x(4) - x(5) + x(6) - 0.120
8 x(1) + x(2) - x(3) + x(5) + 0.120
9 x(1) + x(2) - x(5) + x(6) - 0.120

10 x(1) - x(2) - x(3) + x(4) - 0.120
11 x(1) - x(2) - x(4) - x(6) - 0.120
12 x(2) - x(3) + x(4) - x(5) + 0.120
13 x(1) - x(3) - x(4) - x(6) - 0.120
14 x(1) - x(3) + x(4) - x(6) + 0.080
15 x(1) - x(2) + x(3) + x(5) + 0.080
16 x(1) - x(3) + x(5) + x(6) + 0.080
17 x(1) + x(3) + x(4) + x(5) + 0.080
18 x(1) + x(2) - x(4) + x(5) + 0.080
19 x(2) - x(4) - x(5) + x(6) - 0.080
20 x(2) + x(3) + x(4) + x(6) - 0.040
21 x(2) - x(3) + x(5) + x(6) + 0.040
22 x(1) - x(2) + x(5) + x(6) + 0.040
23 x(1) + x(3) - x(5) + x(6) - 0.040
24 x(1) - x(2) - x(3) + x(6) + 0.040
25 x(1) + x(2) - x(3) - x(4) - x(5) - 0.040

In the case in which we use three rules with higher C.I. values, there are one-
third less objects that fit the rules than the number of total objects (50). However,
this number is 80% of the total number of objects that fit the rules obtained by
decision rule analysis.

3.4 Remarks

In this section, we proposed a method based on a rough set to analyze time series
data, TOPIX time series data and forecasted future changes. We employed data re-
lated to TOPIX, the Dollar-Yen Exchange Rate, Dow-Jones Industrial Average of
30 stocks and NASDAQ index. For these data, the decision rules are acquired in
terms of a rough set theory analysis. By employing rules with higher C.I. values,
the related data could obtain better results than TOPIX without any related data.
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Table 4 Case using only TOPIX (down)

No. Decision rules C.I.
1 x(1) + x(3) - x(5) - x(6) + 0.160
2 x(1) - x(2) - x(3) + x(4) + 0.120
3 x(1) - x(2) - x(3) - x(6) + 0.120
4 x(2) - x(3) - x(4) + x(6) + 0.120
5 x(1) + x(2) + x(4) - x(5) - 0.120
6 x(2) + x(3) + x(4) - x(5) - 0.120
7 x(1) + x(2) + x(4) - x(6) + 0.120
8 x(1) + x(2) + x(5) - x(6) + 0.120
9 x(2) - x(3) - x(5) - x(6) + 0.120

10 x(3) - x(4) + x(5) - x(6) + 0.120
11 x(2) + x(4) - x(5) - x(6) - 0.120
12 x(1) + x(2) + x(3) + 0.120
13 x(1) - x(3) - x(5) + x(6) + 0.080
14 x(1) - x(2) - x(4) + x(5) - 0.080
15 x(2) - x(3) + x(4) + x(5) - x(6) - 0.080
16 x(1) - x(3) - x(4) + x(6) + 0.040
17 x(2) + x(4) + x(5) + x(6) - 0.040
18 x(1) - x(4) + x(5) + x(6) + 0.040
19 x(1) - x(2) - x(4) + x(6) + 0.040
20 x(2) - x(4) + x(5) + x(6) + 0.040
21 x(1) - x(2) - x(5) - x(6) + 0.040
22 x(1) + x(3) + x(5) + x(6) + 0.040
23 x(1) - x(3) + x(4) + x(5) + 0.040
24 x(1) - x(2) + x(4) + x(5) + 0.040
25 x(1) + x(3) + x(5) - x(6) - 0.040
26 x(1) - x(2) - x(3) - x(4) - x(5) + 0.040

The combination of TOPIX with the Dow-Jones Industrial Average resulted in fore-
casting with the highest precision. Additionally, we forecasted the present values
using rules obtained by decision rule analysis. Even if the forecasting precision was
worse than in the case of using three rules with the highest C.I. values, the num-
ber of objects that fit the rules is greater than that in the case of using C.I. values.
Therefore, it is effective when we forecast data that do not fit rules with high C.I.
values. In other words, the forecasting can be mutually compensated if we forecast
time series data by using rules with higher C.I. values when the objects fit such rules
and by using rules obtained by decision rule analysis otherwise. In this application,
we employed two categories of increasing and decreasing movements of time se-
ries data. If we utilize additional categories, it may be possible to obtain additional
knowledge. Obtaining decision rules that cover entire states should also be analyzed.
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Table 5 Case of TOPIX & Dollar-Yen (rise)

No. Decision rules C.I.
1 x(3) - x(6) - y(6) + 0.280
2 x(1) + x(6) - y(2) + 0.240
3 x(6) - y(1) + y(2) + y(4) + 0.240
4 x(5) + x(6) - y(1) + y(3) + 0.240
5 x(5) + x(6) - y(1) + y(4) + 0.240
6 x(4) - x(6) - y(1) + y(2) + 0.240
7 x(6) - y(1) + y(3) + y(6) + 0.240
8 x(1) - y(1) + y(3) + y(6) + 0.240
9 x(1) - x(4) - x(5) + y(1) + 0.240

10 x(4) - y(2) + y(4) - 0.240
11 x(3) - x(4) - y(2) + 0.240
12 y(2) + y(5) - y(6) - 0.200
13 x(2) - x(3) - x(6) - 0.200
14 x(6) - y(1) + y(2) + y(6) - 0.200
15 x(1) - x(4) - y(1) + y(2) + 0.200
16 x(2) - x(4) - y(2) + y(3) - 0.200
17 x(4) - y(1) + y(2) + y(3) - 0.200
18 x(2) - x(4) - x(6) - y(2) + 0.200
19 x(5) - x(6) - y(1) + y(2) + 0.200
20 x(3) - x(5) - x(6) - y(2) + 0.200
21 x(3) - x(6) - y(1) + y(2) + 0.200
22 x(6) - y(1) + y(2) + y(3) + 0.200
23 x(3) - x(6) - y(1) + y(5) - 0.200
24 x(3) - x(5) + y(1) + y(3) + 0.200
25 x(4) - x(5) + x(6) - y(1) + 0.200
26 x(4) - x(5) + x(6) - y(2) + 0.200
27 x(2) + x(6) - y(1) + y(2) + 0.200
28 x(3) + x(4) + y(3) + y(6) + 0.200
29 x(4) + x(6) - y(3) + y(6) + 0.200
30 x(6) - y(1) + y(4) + y(6) + 0.200

4 Regression-Based Knowledge Acquisition and Difference
among Terms

4.1 Analysis by Means of Regression Line

In general, rough sets analysis deals with categorical data. Therefore, the objective
of this section is to obtain a regression line for the time series data to forecast and to
employ the increasing and decreasing trends of the regression line using the condi-
tion attributes. For example, when we analyze the past six fiscal terms, we obtain the
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Table 6 Case of TOPIX & Dollar-Yen (down)

No. Decision rules C.I.
1 x(5) - y(2) - 0.400
2 y(2) - y(6) - 0.400
3 x(3) - y(5) + y(6) - 0.240
4 x(3) - x(6) + y(2) - 0.240
5 y(1) + y(2) - y(3) - 0.200
6 x(4) + y(3) - y(5) + 0.200
7 x(4) + y(5) + y(6) - 0.200
8 x(1) + x(4) - y(2) - 0.200
9 x(2) + x(5) - x(6) + y(1) + 0.200

10 x(3) - x(5) - x(6) + y(1) + 0.200
11 x(1) - x(5) - y(5) + y(6) - 0.200
12 x(2) + x(5) - y(5) + y(6) - 0.200
13 x(4) - y(2) - y(3) - 0.160
14 x(6) + y(2) - y(3) - 0.160
15 x(4) + x(6) + y(3) - 0.160
16 x(1) + x(3) + y(5) - 0.160
17 x(3) + x(4) + y(3) - 0.160
18 x(1) - y(3) + y(6) - 0.160
19 x(3) - y(2) - y(5) + 0.160
20 x(1) + x(2) + y(2) - 0.160
21 y(1) - y(2) - y(3) + 0.160
22 x(1) + y(2) - y(5) - 0.160
23 y(2) - y(3) - y(5) + 0.160
24 x(1) + x(3) - y(2) - 0.160
25 x(5) - y(3) + y(5) + y(6) - 0.160
26 x(3) - x(6) + y(3) - y(5) + 0.160
27 x(3) - x(6) + y(1) + y(3) - 0.160
28 x(4) + y(2) + y(3) - y(6) + 0.160
29 x(3) - x(4) - x(6) + y(1) + 0.160
30 x(1) + y(4) + y(5) - y(6) + 0.160

trends of the regression line for all six terms, the former three terms and the latter
three terms. The trend a is determined as follows:

a =

n

∑
i=1

(Xi −X)(Yi −Y )

n

∑
i=1

(xi −X)2
(2)

The obtained trend is employed as a condition attribute for the rough sets analy-
sis. That is, with respect to each of the total, former and latter parts, we forecasted
whether each part has an increasing or a decreasing trend, depending on such data.
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Table 7 Case of TOPIX & DJIA (rise)

No. Decision rules
1 x(6) - y(2) + y(4) + y(6) + 0.280
2 x(6) - y(4) + y(5) + y(6) + 0.280
3 x(4) - x(5) + y(3) + y(4) + 0.240
4 x(2) - x(3) + y(2) - y(3) + 0.240
5 x(1) - x(4) - x(5) + y(3) + 0.240
6 x(2) - x(3) - x(6) - 0.200
7 x(1) + x(2) - y(2) - 0.200
8 x(3) + x(5) + y(2) - 0.200
9 x(4) - x(5) + y(2) - 0.200

10 x(3) - x(4) - x(6) - y(2) + 0.200
11 x(2) - x(3) + x(5) + y(1) + 0.200
12 x(2) - x(5) + x(6) - y(1) + 0.200
13 x(3) + x(5) + y(1) + y(4) + 0.200
14 x(3) - x(6) - y(1) + y(2) + 0.200
15 x(4) - x(5) + y(1) + y(4) + 0.200
16 x(2) - x(4) - y(2) - y(4) + 0.200
17 x(2) - x(6) - y(3) + y(4) + y(6) + 0.200
18 x(1) - x(4) - x(6) - y(2) + y(6) + 0.200
19 x(1) + x(4) + x(6) - 0.160
20 x(2) - x(4) - x(6) - y(6) + 0.160
21 x(1) + x(2) - x(4) + y(3) + 0.160
22 x(1) + x(4) + y(1) + y(3) + 0.160
23 x(1) + x(3) - x(6) - y(2) + 0.160
24 x(1) + x(3) - x(6) - y(5) + 0.160
25 x(3) - x(6) - y(1) + y(5) + 0.160
26 x(3) - x(4) - x(6) - y(5) + 0.160
27 x(5) + x(6) - y(4) + y(6) + 0.160
28 x(6) - y(1) - y(4) + y(6) + 0.160
29 x(4) - x(6) - y(1) - y(2) + 0.160
30 x(4) - y(1) - y(2) + y(3) + 0.160

In the case shown in Fig. 5, the condition attribute shows that the total trend indi-
cates +, the former part has a plus trend and the latter part indicates a minus trend.
Such values are evaluated with respect to each of the samples; we then mine the
knowledge using rough sets analysis. Table 14 illustrates this process. According to
this process, we analyzed the trend of each of the past data points and forecast the
increasing and decreasing movements of the present term depending on the data.

4.2 Hybrid Method Rough Sets Analysis with Regression

In this research, we employ linear regression to analyze time series data and to
obtain rules included in the trends of time series data through rough set analysis.
The data analyzed here are time series data sets of the stock price index (TOPIX) of
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Table 8 Case of TOPIX & DJIA (down)

No. Decision rules C.I.
1 x(6) + y(2) + y(5) + 0.360
2 x(5) - x(6) + y(5) + 0.320
3 x(3) - x(6) + y(5) + y(6) + 0.320
4 x(4) + x(6) + y(5) + 0.240
5 x(2) - x(6) + y(2) + 0.240
6 x(6) + y(3) - y(5) + 0.240
7 x(1) + x(5) - x(6) + y(2) + 0.240
8 x(1) + x(6) + y(5) + y(6) + 0.240
9 x(5) - x(6) + y(3) - 0.200

10 x(4) - x(6) + y(2) + y(6) + 0.200
11 x(3) - x(5) - x(6) + y(6) + 0.200
12 x(3) - x(6) + y(3) + y(6) + 0.200
13 x(1) + x(2) + x(6) + y(5) + 0.200
14 x(2) + x(4) - x(5) - y(5) + 0.200
15 x(1) + x(4) - y(1) + y(2) + 0.200
16 x(2) + x(4) - x(5) - y(6) + 0.200
17 x(2) - x(6) + y(5) + y(6) + 0.200
18 x(3) - x(4) - x(6) + y(6) + 0.200
19 x(2) - x(3) - x(6) + y(6) + 0.200
20 x(2) - x(6) + y(3) - 0.160
21 x(1) - x(3) - x(6) + y(6) + 0.160
22 x(2) + x(3) - x(6) + y(5) + 0.160
23 x(1) + x(2) + x(4) - y(1) + 0.160
24 x(1) + x(2) + x(5) - y(6) + 0.160
25 x(1) + x(2) + y(1) + y(3) + 0.160
26 x(1) + x(3) + x(4) - y(2) + 0.160
27 x(1) + x(4) - x(6) + y(2) + 0.160
28 x(1) + x(6) + y(2) + y(3) + 0.160
29 x(1) + x(5) - y(3) - y(6) + 0.160
30 x(1) + y(3) - y(5) + y(6) + 0.160

the Tokyo stock exchange. The objective of the paper is to mine the knowledge from
obtained trends included in the past data and to apply the knowledge to forecast the
present trend. All data employed are divided into three six-year terms (one from
1987 to 1992, a second from 1993 to 1998, and a third from 1999 to 2004). Let us
scrutinize the difference of the obtained rules of knowledge among these terms. The
data employed in mining are the trend data before one year (twelve months). The
data from the past twelve months are analyzed with respect to seven terms, including
the whole term, the former and latter six-month terms and four three-month terms.
Then, increasing and decreasing trends are analyzed, and these trends are taken as
condition attributes, and the rules of knowledge are obtained through a rough set
analysis. In this case, the present increasing and decreasing trends are taken as a
decision attribute. In this paper, each of the three kinds of terms is employed in data
mining, and the obtained rules of knowledge are compared.
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Table 9 Case of TOPIX & NASDAQ (rise)

No. Decision rules C.I.
1 x(6) - y(1) + y(5) + y(6) + 0.240
2 x(6) - y(2) + y(5) + y(6) + 0.240
3 x(5) + x(6) - y(1) + y(5) + 0.240
4 x(1) + x(2) - y(1) + y(4) + y(6) + 0.240
5 x(2) - x(3) - x(6) - 0.200
6 x(3) - x(6) - y(4) - 0.200
7 x(1) - x(5) + y(4) - 0.200
8 x(2) - x(6) - y(5) + y(6) + 0.200
9 x(2) - x(3) + x(4) - y(6) + 0.200

10 x(4) + x(6) - y(1) + y(5) + 0.200
11 x(3) - x(6) - y(1) + y(5) + 0.200
12 x(3) - x(6) - y(2) + y(3) + 0.200
13 x(4) - x(5) + y(1) + y(4) + 0.200
14 x(1) + x(5) + y(4) + y(5) + 0.200
15 x(4) - x(5) + x(6) - y(5) + 0.200
16 x(6) - y(1) - y(2) + y(6) + 0.200
17 x(2) - x(3) + x(5) + y(1) + 0.200
18 x(1) + x(2) - y(2) - y(6) + 0.200
19 x(2) - x(5) + x(6) - y(1) + 0.200
20 x(1) + y(2) - y(4) + y(6) + 0.200
21 x(5) + x(6) - y(4) - y(5) + 0.200
22 x(1) - x(4) - x(5) + y(3) + 0.200
23 x(2) - x(4) - y(1) + y(4) + y(6) + 0.200
24 x(2) - x(3) + y(1) + y(5) + y(6) + 0.200
25 x(1) + x(4) + x(6) - 0.160
26 x(2) - x(6) - y(4) - 0.160
27 x(3) - y(4) - y(6) - 0.160
28 x(3) - y(3) + y(6) - 0.160
29 x(3) - y(1) + y(6) - 0.160
30 x(2) - x(4) - x(6) - y(6) + 0.160

4.3 Rules Obtained in Each Term

Let us show the rules obtained in each of three terms in Tables 15 to 20, where
we show the cases of increasing and decreasing trends are different for the present
term, where + and − denote increasing and decreasing situations, respectively. As
the number of rules obtained is large, as shown in Table 21, we showed 10 rules
from the top according to the covering index value (C.I.), which shows the rate of
the number of covering objects over all of the objects, where the covering objects
denotes the same value for the decision attribute. The covering objects indicate that
the rule can be applicable.

Table 15 and Table 16 illustrate the rules obtained from 1987-1992. The bubble
economy and the crash of the bubble economy are included in the term. Table 15
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Table 10 Case of TOPIX & NASDAQ (down)

No. Decision rules C.I.
1 x(5) - x(6) + y(5) + 0.280
2 x(3) - x(5) - x(6) + y(6) + 0.240
3 x(1) + x(5) - x(6) + y(2) + 0.240
4 x(1) + y(2) + y(5) - 0.200
5 x(2) - x(6) + y(2) + 0.200
6 x(4) - x(6) + y(2) + y(6) + 0.200
7 x(6) + y(2) + y(3) + y(6) + 0.200
8 x(1) + x(6) + y(1) + y(2) + 0.200
9 x(2) + x(4) - x(5) - y(5) + 0.200

10 x(2) + x(4) - x(5) - y(6) + 0.200
11 x(3) - x(6) + y(1) + y(2) + y(6) + 0.200
12 x(1) + x(5) - y(2) + y(3) - y(6) + 0.200
13 x(1) + x(3) - x(5) - y(3) - y(6) + 0.200
14 x(6) + y(4) - 0.160
15 x(1) + y(4) - y(6) + 0.160
16 x(1) + x(3) - y(5) - 0.160
17 x(3) + x(5) - y(6) - 0.160
18 x(6) - y(1) + y(5) - 0.160
19 x(2) + x(6) + y(3) + y(6) + 0.160
20 x(1) + x(4) - x(5) - y(2) + 0.160
21 x(1) + x(2) + x(5) - y(4) + 0.160
22 x(1) + x(2) + x(5) - y(6) + 0.160
23 x(1) + x(2) + x(6) + y(1) + 0.160
24 x(1) + x(6) + y(2) + y(3) + 0.160
25 x(1) - x(3) - x(6) + y(5) + 0.160
26 x(1) - x(3) - x(6) + y(6) + 0.160
27 x(2) + x(4) - x(6) + y(6) + 0.160
28 x(3) - x(4) + x(6) + y(1) + 0.160
29 x(1) + x(3) - x(5) - x(6) + 0.160
30 x(3) - x(5) - x(6) + y(3) - 0.160

Table 11 Forecasted Results

Using only TOPIX (rise) 47.4%
Using only TOPIX (down) 58.3%
Using TOPIX & Dollar-yen (rise) 51.6%
Using TOPIX & Dollar-yen (down) 56.0%
Using TOPIX & DJIA (rise) 80.0%
Using TOPIX & DJIA (down) 53.8%
Using TOPIX & NASDAQ (rise) 91.7%
Using TOPIX & NASDAQ (down) 33.3%

illustrates that the present term shows an increase when the entire past year shows an
increasing TOPIX trend. However, each quarter showed a decreasing trend. When
the entire term shows an increasing trend, although each quarter partly shows a
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Table 12 Forecasted Results(Decision Rule Analysis method)

Using only TOPIX (rise) 45.5%
Using only TOPIX (down) 43.3%
Using TOPIX & Dollar-yen (rise) 52.6%
Using TOPIX & Dollar-yen (down) 50.0%
Using TOPIX & DJIA (rise) 70.0%
Using TOPIX & DJIA (down) 39.0%
Using TOPIX & NASDAQ (rise) 65.6%
Using TOPIX & NASDAQ (down) 41.0%

Table 13 Conform Rate

Using only Top 3 rules 32.3%
Using Decision Rule Analysis method 77.3%

Table 14 Trends of data

No. Condition Attribute (Trend) Decision Attribute
Total Term Former Term Latter Term Present Term

1 + + — —
2 + — + +
3 + — — —
4 + — — +
5 — — + —

decreasing one, in such cases, it is highly possible that the present term increases the
TOPIX. Table 16 shows that the fourth quarter has a more pronounced decreasing
trend, while the second and third quarters have more increasing trends. Therefore,
the fourth quarter changes from an increasing trend into a decreasing trend, and
there is a continuous decreasing trend starting from the fourth quarter.

Table 17 and Table 18 illustrate the rules obtained in the term from 1993 to 1998.
During this term, after the bubble economy burst, that is, after the asset-inflated
economy collapsed, the stock prices depressed. The rules obtained from this term
show a higher C.I. than those from the other terms and a larger volume. It can be
emphasized that the rules obtained in this term show more reliability than those
from other terms. Table 18 depicts a general decreasing trend (over the past one
year), although no other evidence is apparent. There are few rules with the same
condition attributes. Therefore, the rules obtained show a large variety.

Table 19 and Table 20 illustrate the rules obtained in the term from 1999 to 2004.
The term includes the IT bubble economy. Table 19 indicates increasing trends in
general (in the past one year), which also increase in the latter part and in the third
quarter, which means that, when an increasing trend is observed during this half-
year, the situation will continue to the present term. Table 20 illustrates that both the
former and latter halves of the year are increasing, and the fourth quarter is shown
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Fig. 6 TOPIX monthly data from 1987 to 1992

as decreasing. Even if the increasing situation appeared in the past year, in the case
in which the portion immediately prior is shown to be decreasing, there is a high
possibility that the present term continues to decrease.

4.4 Comparison of Each Term

Tables 22 to 27 illustrate the comparison of the obtained rules using a rough sets
analysis. The rules of the decision attribute obtained in each of three different types
of terms forecast the increasing and decreasing movements in the present term.
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Fig. 7 TOPIX monthly data from 1993 to 1998
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Fig. 8 TOPIX monthly data from 1999 to 2004

Carefully, we verified whether the terms have the same rules as those for different
terms. That is, we checked whether the rules obtained in a term can be applicable to
another terms. ”Increasing/decreasing” denotes that the decision attribute illustrates
the increasing and decreasing nature of the present term, respectively. The decision
attribute shows a similar movement in the compared term, that is, increasing and
increasing or decreasing and decreasing. However, the opposite situation means the
decision attribute shows the other movement to be in the opposite direction to the
compared term, that is, increasing and decreasing or decreasing and increasing. The
number of rules illustrates the ratio of the corresponding rules over all the rules.
”C.I.” indicates the total C.I. of the corresponding rules.
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Table 15 Rules (increasing state) in 1987-1992

Decision Rule C.I.
Whole Former Latter First Second Third Fourth

No. Quarter Quarter Quarter Quarter
1 - + + + 0.111
2 + - - 0.083
3 + - - 0.083
4 + - - 0.083
5 + - + 0.083
6 + - - 0.083
7 + - - 0.083
8 + - + - 0.083
9 + - - + 0.083

10 + + - - 0.083

Table 16 Rules (decreasing state) in 1987-1992

Decision Rule C.I.
Whole Former Latter First Second Third Fourth

No. Quarter Quarter Quarter Quarter
1 + + + - 0.111
2 - + + - 0.111
3 + - + + 0.083
4 - + + + 0.083
5 - - + + 0.083
6 - + - - 0.083
7 + - - - 0.083
8 - - + 0.056
9 + + + - 0.056

10 + + + - 0.056

Table 22 and Table 23 compare the obtained rules in the term from 1987 to 1992.
These tables explain that the knowledge obtained in the term from 1987 to 1992
cannot be applicable to the term from 1993 to 1998. Although the C.I. of the rules
with the same decision attribute is approximately 10%, the C.I. of the rules with
the opposite direction movement is approximately 20% to 30%. In the term from
1987 to 1992, the rules of increasing in the present term will be changed to the rules
of decreasing trends. The term from 1987 to 1992 includes the bubble economy
and the collapse of the bubble economy. It is clear that knowledge obtained from
this term will not be applicable to the term from 1993 to 1998. Compared with the
term from 1999 to 2004, the C.I. of the rules of the decision attribute with the same
decreasing trend is greater than those with a different trend. However, with respect
to the rules of increasing trends, the C.I. of the rules with the opposite trends is
greater than those with the same trend, demonstrating that the obtained knowledge
is not applicable. However, it should be noted that the knowledge in this term is
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Table 17 Rules (increasing state) in 1993-1998

Decision Rule C.I.
Whole Former Latter First Second Third Fourth

No. Quarter Quarter Quarter Quarter
1 - + + - 0.171
2 + - + + 0.114
3 + + - + - 0.114
4 + + + - 0.086
5 + + + - 0.086
6 + - - + 0.086
7 + + - - 0.086
8 + + - - 0.086
9 + - + - 0.086

10 + - + - 0.086

Table 18 Rules (decreasing state) in 1993-1998

Decision Rule C.I.
Whole Former Latter First Second Third Fourth

No. Quarter Quarter Quarter Quarter
1 + - + 0.189
2 + + + 0.189
3 - + + 0.162
4 - + + 0.135
5 - + - - 0.135
6 - + + + 0.108
7 + - - - 0.108
8 - - + - - 0.108
9 - - + - - 0.108

10 - + - - - 0.108

better than that obtained from the 1993 to 1998 term because the 1999 to 2004 term
includes the IT bubble economy, and therefore, the knowledge is coincident with
the term of the bubble economy.

Table 24 and Table 25 show the comparison of the rules obtained from the 1993
to 1998 term. The comparison with the term from 1987 to 1992 shows that the
increase resulting from the same movement is much greater than that from the op-
posite movement. The obtained knowledge in the term shows workability. However,
the decrease of the rules of the opposite movement shows more incident, that is, the
knowledge obtained is not workable. As the term from 1987 to 1992 includes a great
portion of the bubble economy, it is easy to identify increasing movement but dif-
ficult to forecast decreasing movement. The comparison of the term from 1999 to
2004 shows that the increasing movement has a larger C.I. for opposite movement,
but the decreasing movement has a larger C.I. for the same movement. Because the
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Table 19 Rules (increasing state) in 1999-2004

Decision Rule C.I.
Whole Former Latter First Second Third Fourth

No. Quarter Quarter Quarter Quarter
1 - + + 0.167
2 + + - + 0.167
3 + - + + 0.139
4 + - + 0.083
5 - + + 0.083
6 + + - + 0.083
7 - + + 0.056
8 + - - 0.056
9 + + + - 0.056

10 + + - + 0.056

Table 20 Rules (decreasing state) in 1999-2004

Decision Rule C.I.
Whole Former Latter First Second Third Fourth

No. Quarter Quarter Quarter Quarter
1 + + + - 0.139
2 + + + - 0.139
3 - + - 0.111
4 - + - 0.083
5 - + + 0.083
6 + + + - 0.083
7 + + + - 0.083
8 + - - 0.056
9 + - + 0.056

10 + - - 0.056

Table 21 Number of rules in each term

Term Up/Down No. of Rules
1987-1992 Up 46

Down 26
1993-1998 Up 52

Down 35
1999-2004 Up 33

Down 37

term from 1999 to 2004 includes the period after the bubble economy burst, it is
easier to forecast decreasing movements.

Table 26 and Table 27 illustrate the comparison of the obtained rules in the term
from 1999 to 2004. The comparison with the term from 1987 to 1992 illustrates that
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Table 22 Comparison of the term from 1987 to 1992 (increasing)

Term Increasing/decreasing Number of rules C.I.
1993-1998 The same increasing 6.5% 7.89%

Contrary decreasing 26.1% 27.63%
1999-2004 The same increasing 23.9% 28.95%

Contrary decreasing 30.4% 27.63%

Table 23 Comparison of the term from 1987 to 1992 (decreasing)

Term Increasing/decreasing Number of rules C.I.
1993-1998 The same decreasing 15.4% 8.70%

Contrary increasing 23.1% 21.74%
1999-2004 The same decreasing 38.5% 41.30%

Contrary increasing 23.1% 28.26%

Table 24 Comparison of the term from 1993 to 1998 (increasing)

Term Increasing/decreasing Number of rules C.I.
1987-1992 The same increasing 38.5% 32.69%

Contrary decreasing 11.5% 10.58%
1999-2004 The same increasing 28.8% 24.04%

Contrary decreasing 38.5% 34.62%

Table 25 Comparison with the term from 1993 to 1998 (decreasing)

Term Increasing/decreasing Number of rules C.I.
1987-1992 The same decreasing 22.9% 10.47%

Contrary increasing 40.0% 29.07%
1999-2004 The same decreasing 42.9% 27.91%

Contrary increasing 8.6% 6.98%

Table 26 Comparison with the term from 1999 to 2004 (increasing)

Term Increasing/decreasing Number of rules C.I.
1987-1992 The same increasing 30.3% 19.30%

Contrary decreasing 3.0% 8.77%
1993-1998 The same increasing 6.1% 3.51%

Contrary decreasing 12.1% 7.02%

knowledge of increasing movement is more workable, but knowledge of decreasing
movement shows an opposite movement and is unhelpful. It is the same reason as
for the term from 1993 to 1998. We can understand the increasing movement in
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Table 27 Comparison with the term from 1999 to 2004 (decreasing)

Term Increasing/decreasing Number of rules C.I.
1987-1992 The same decreasing 13.5% 16.90%

Contrary increasing 35.1% 25.35
1993-1998 The same decreasing 24.3% 19.72%

Contrary increasing 10.8% 8.45%

the bubble economy is easy to forecast, whereas the decreasing movement is not.
The comparison with the term from 1993 to 1998 does not show that the increasing
movement has a higher C.I., but the decreasing movement indicates an appropriate
C.I. to some extent.

4.5 Remarks

In this paper, we analyzed economical time series data using a rough sets model, and
TOPIX time series data were employed to forecast future trends. To obtain forecast-
ing knowledge, we divided all of the years into three terms: 1987 to 1992, 1993 to
1998 and 1999 to 2004. Then, we acquired the rules of knowledge for each term
and compared them among the different terms. The result of each term is different
depending on the term. One reason is because the terms included notable econom-
ical states, such as a bubble economy, economy recession and IT bubble economy,
which influenced stock prices. Nevertheless, it shows the difficulty of mining uni-
fied knowledge to forecast stock price movements. However, even if the knowledge
is obtained from a different term, it showed that such knowledge can still be em-
ployed in forecasting. It should be emphasized from this fact that we can separate
the knowledge into permanent or general knowledge, which can be applicable to
any term, and the specific or limited knowledge, which can be employed to only a
special term.

5 The Rough Sets Model Based on Intraday Trading Data

5.1 Intraday Trading Data

The intraday trading data are the record of all of the trading transactions that occur
in the market for all of the stocks and the yen and dollar currency trading in the
exchange market. The intraday trading data of stocks include the stock code, traded
market, date, traded time, and traded amount in units of minutes and can be em-
ployed to various stock analyses. 28 exemplifies the intraday trading data of stocks,
which included the trading change records of Fuji Heavy Industry Stock Prices on
June 2, 2008. It shows the records containing all of the traded transactions in units of
minutes in the market The stock price does not change in each transaction. The five
transactions occurred between 9:10 and 9:11, but the stock price was fixed at 495
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Table 28 Intratrading data

Date Stock Number Time Price Amount
20080602 72700 909 497 1000
20080602 72700 909 496 3000
20080602 72700 910 495 11000
20080602 72700 910 495 7000
20080602 72700 911 495 5000
20080602 72700 911 495 4000
20080602 72700 911 495 1000

485

490

495

500

505

475

480

1 51 101 151 201 251

Fig. 9 Intraday trading without duplications

JPY. It seems very reasonable to consider these transactions as one trade. Therefore,
in this paper, we considered same continuous price transactions as a single transac-
tion. Fig. 9 illustrates the data after removing duplicated transactions with the same
price.

5.2 Intraday Trading Analysis by the Rough Sets Model

The objective of this section is to mine the knowledge from intraday trading transac-
tion data of stocks using a rough sets analysis. The employed data are intraday trad-
ing data without any duplicated trading but with the same continuous price shown
in Fig. 9. The conditional attributes express how many times intraday trading oc-
curred prior to the focal stock timing. Based on the frequency of changes, we mined
the trading knowledge. For example, when we identified an increase 6 times and a
decrease 2 times out of the last 8 trading transactions, the change frequency was de-
noted as +4. When we identified an increase 3 times and a decrease 5 times out of the



14 Building Rough Sets Based Prediction Model 325

last 8 trading transactions, the change frequency was denoted as -2. The forecasted
value (decision attribute) estimates how many times the future price will increase
or decrease. Similar to the past change, we intend to evaluate how many times the
price will increase or decrease.

Table 29 and Table 30 show the data employed in the analysis. For example, let
us consider the past change frequency of a stock shown in Table 29; the present is
denoted No. 7 with a price of 494 JPY, and previously, No. 6 had a price of 495 JPY.
The present price decreased from the 1 time previous price. Then, the conditional
attribute shows that the ”1 time previous price” is ”-1.” With respect to No. 5 with
a price of 496 JPY, as the prices at No. 6 and at No. 7 decreased continuously, the
conditional attribute ”2 times previous price” is ”-2.” In the same way, we calcu-
lated how many times the change occurred for ”4 times previous change,” ”8 times
previous change” and ”16 times previous change.” In terms of these conditional at-
tributes, we acquired knowledge on future intratrading changes. We take this value
for a decision attribute and mine the forecasting knowledge. The objective of this

Table 29 The past change frequency

Previous times
No. Price 1 2 4 8 16
1 496 -1 -2 0 0 -4
2 495 -1 -2 -2 0 -4
3 496 1 0 -2 0 -4
4 495 -1 0 -2 -2 -4
5 496 1 0 0 0 -4
6 495 -1 0 0 -2 -4
7 494 -1 -2 -2 -4 -4
8 493 -1 -2 -2 -4 -4
9 492 -1 -2 -4 -4 -4

10 493 1 0 -2 -2 -4

Table 30 Future expected change frequency

Times in future
No Price 1 time 2 times 4 times
1 496 -1 0 0
2 495 1 0 0
3 496 -1 0 -2
4 495 1 0 -2
5 496 -1 -2 -4
6 495 -1 -2 -2
7 494 -1 -2 -2
8 493 -1 0 -2
9 492 1 0 -2

10 493 -1 -2 -2
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paper is to retrieve the rules on future change frequency based on past experiences.
The future expected change frequency can be evaluated in the same way. For ex-
ample, let the present state be at No. 5. The prices at No. 5 and at No. 6 are 496
JPY and 495 JPY, respectively. From No. 5, the 1 time future change frequency is
”-1.” In the same way, as the prices from No.7 to No. 9 decreased, the 2 times future
intraday trading change frequency is ”-2” and the 4 times future change is ”-4.” Let
us use this value as a decision attribute and mine the knowledge on forecasting. The
objective of this paper is to retrieve the knowledge about future change frequency
based on past experiences.

5.3 Knowledge Acquisition by Minimal Decision Rule

We employed intraday trading data of the stock price of Fuji Heavy Industry Corpo-
ration for one month in June 2008. We used the past change frequency of the stock
price as the conditional attributes and the future change frequency of the stock price
as a decision attribute. Then, we applied the rough sets analysis to obtain the mini-
mal decision rules. In this research, we acquired rules of the stock prices increasing
4 times continuously or decreasing. Table 31 to Table 34 show some of the obtained
rules. Table 31 and Table 32 show the rules obtained for ”+4” in the 4 times fu-
ture change, which indicated that the stock prices increased 4 times continuously.
Table 31 shows a necessity rule, and the cases that satisfied the rule in which the 4
times future change continuously occurred. Table 32 shows a possibility rule, and
the cases that satisfied the rule in which the 4 times future change can continuously
occur. Table 32 shows only the top seven rules with the largest covering rates.

Table 31 indicates that in June 2008, almost all of the changes were decreasing.
The rules in No. 1 show that the price decreased in 10 of 16 total cases. The rules
in No. 2 illustrate that 8 cases decreased. We can observe that the nearest values
did not change and that after the stock price continuously decreased, it continuously
increased. In Table 32, we find that the decreasing trend of a stock price is major in
the past. In the No. 3 and No. 4 cases, there are increasing trends. Even if we have
an increasing change in the past, it is possible that a stock price will continuously
increase. In the same way, Table 33 shows the necessity rules of 4 times continu-
ously decreasing, and Table 34 illustrates the possibility rules of 4 times continu-
ously decreasing. Table 34 indicates the top 5 rules with the largest covering rates.
In Table 33, the increasing trends prevail. The latest trading transactions show no
movement of the stock price or only a slight decrease. We can understand that after
stock prices continuously increase, the change in stock prices stops for a while and
then decreases. In Table 34, the past increasing trend is significant. Nevertheless, as
No.1 shows, there is no change in the stock price, and as No. 2 indicates, the change
in the stock price can continuously decrease even if it was decreasing in the past.
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Table 31 Rules of increase (Necessity Rules)

No. Conditional Attribute(n times previous intraday trading) Coverage (%)
1 (2 times = 0) (16 times = -10) 0.75%
2 (8 times = 0) (16 times = -8) 0.75%
3 (1 time = 1) (2 times = 0) (4 times = 0) (8 times = -4) (16 times = 0) 0.75%

Table 32 Rules of increase (Possibility Rules)

No. Conditional Attribute(n times previous intraday trading) Coverage (%)
1 (1 time = -1) (4 times = -2) (8 times = -2) (16 times = -4) 15.73%
2 (1 time = -1) (4 times = -2) (8 times = -4) (16 times = -4) 9.51%
3 (2 times= 0) (4 times = 2) (8 times = 2) (16 times = 4) 9.42%
4 (1 time = -1) (2 times = 0) (4 times = 0) (8 times = 2) (16 times = 4) 7.16%
5 (2 times = -2) (8 times = -4) (16 times = -6) 5.56%

Table 33 Rules of decrease (Necessity Rules)

No. Conditional Attribute(n times previous intraday trading) Coverage (%)
1 (2 times = 0) (4 times = -2) (16 times = 10) 0.78%
2 (4 times = -2) (16 times = 8) 0.78%

Table 34 Rules of decrease (Possibility Rules)

No. Conditional Attribute(n times previous intraday trading) Coverage (%)
1 (1 times = 1) (2 times = 0) (4 times = 0) (8 times = 0) (16 times = -2) 20.67%
2 (2 times = 0) (4 times = 0) (8 times = -2) (16 times = -4) 13.43%
3 (1 times = 1) (2 times = 0) (4 times = 0) (8 times = 2) (16 times = 4) 8.30%
4 (2 times = 0) (4 times = 2) (8 times = 2) (16 times = 0) 7.49%
5 (2 times = 2) (4 times = 2) (8 times = 2) (16 times = 4) 7.08%

6 Conclusions

In this research, we investigated whether we can forecast the future change fre-
quency of intraday trading transactions based on the past change frequency of intra-
day trading transactions. We used the stock price of Fuji Heavy Industry Corporation
for one month in June 2008. Using a rough sets analysis, we mine minimal decision
rules on both future and past changes. The results showed that it can successfully
forecast the future change of the intraday trading transaction based on the past. The
rules obtained in the experiment illustrate that the future change has a decreasing
trend when the past trend was increasing, and the future change has an increasing
trend when the past trend was decreasing.
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This chapter explained the rough set method to acquire the forecasting knowledge
from time-series data. The emphasis should be placed on that the rough set method
enables us to obtain IF-THEN type rules for forecasting stock prices. On the other
hand, when we mind any knowledge by means of multivariate analysis and neural
networks, only black-box type knowledge is obtained. It is not easy to understand
the latent structure of the knowledge. In the rough set method, not only a system can
forecast using decision rules, but also human employs the decision rules to forecast.
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Chapter 15 
A Best-Match Forecasting Model  
for High-Order Fuzzy Time Series  

Yi-Chung Cheng and Sheng-Tun Li* 

Abstract. An area of Fuzzy time series has attracted increasing interest in the past 
decade since Song and Chissom’s pioneering work and Chen’s milestone study. 
Various enhancements and generalizations have been subsequently proposed, 
including high-order fuzzy time series. One of the key steps in the Chen’s frame-
work is to derive fuzzy relationships existing in a fuzzy time series and to encode 
the relationships as IF-THEN production rules. A generic exact-match strategy is 
then applied to the forecasting process. However, the uncertainty and fuzziness 
characteristics inherent to the fuzzy relationships tend to be overlooked due to the 
nature of the matching strategies. This omission could lead to inferior forecasting 
outcomes, particularly in the case of high-order fuzzy time series. In this study, to 
overcome this shortcoming we propose a best-match strategy forecasting method 
based on the fuzzy similarity measure. The experiments concerning Taiwan 
Weighted Stock Index and Dow Jones Industrial Average are reported. We show 
the effectiveness of the model by running some comparative analysis using some 
models well-known in the literature.  
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similarity measure. 
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1   Introduction 

Song and Chissom (1993a, 1993b) were the first who proposed the definition of 
fuzzy time series and the framework of fuzzy time series forecasting which uses 
fuzzy relations to represent the temporal relationships in a fuzzy time series. The 
forecasting framework includes four steps: (1) determine and partition the universe 
of discourse into intervals, (2) define fuzzy sets from the universe of discourse and 
fuzzify the real time series, (3) derive fuzzy relationships existing in the fuzzified 
time series, (4) forecast and defuzzify the forecasting outputs. In order to alleviate 
the computational burden, Chen (1996) first constructed first-order fuzzy logic 
relationship as ‘IF-THEN’ rule group to modify the step (3). Various enhancing 
works based on IF-THEN rule relationship have been subsequently proposed. Chen 
(2002) extended his previous work to a high-order model. Chen and Hsu (2004) 
proposed first-order time-variant forecasting model. Own and Yu (2005) further 
modified Chen’s model as a heuristic high-order fuzzy time series model, which 
depends strongly on the trend of fuzzy time series. Lee et al. (2006) extended 
Chen’s (2002) model to allow two-variable forecasting. Lee et al. (2007) con-
structed two-factor high-order forecasting model based on fuzzy logical relation-
ships and genetic algorithms. Li and Cheng (2007) proposed a backtracking scheme 
to construct a fuzzy logic rule base which solves the problem of determination of a 
suitable order. The work Huarng et al. (2007) developed a multivariate heuristic 
function to improve the forecasting accuracy, in which the heuristic is based on 
fuzzy logical relationships. Li and Cheng (2008) applied Fuzzy C-Means to en-
hance their proposed deterministic forecasting model whereas Li and Cheng (2009) 
modified the backtracking algorithm to improve the forecasting accuracy, and 
extended it to forecasting long-term forecasting (Li et. al, 2010). Chen and Wang 
(2010) presented a method of new fuzzy-trend logical relationship groups on fuzzy 
time series forecasting, and obtains higher average forecasting accuracy rate. Li et 
al. (2011) extended Li and Cheng’s previous work from single fuzzy set forecasting 
to a fuzzy vector forecasting. Chen and Chen (2011) proposed models of rule base 
and variation scheme to enhance forecasting accuracy. 

The aforementioned forecasting models constructed the relationships in a fuzzy 
time series built on the basis of IF-THEN fuzzy logical rule and then these 
high-order models all applied a basic exact-match strategy when forecasting. 
However, such an exact-match high-order forecasting model comes with the two 
major shortcomings. First it is a so-called rule redundancy in that the rules could be 
less useful when either the number of fuzzy sets or the order increases. The low hit 
ratio of the rules indicates that the fuzzy logical relationships are likely redundant 
(Li and Cheng, 2008). Secondly, the uncertainty and fuzziness characteristics 
inherent in the fuzzy relationships are ignored as using exact-match at forecasting 
(Pappis and Karacapilidis, 1993). 

To tackle the aforementioned shortcomings, in this study, we propose a 
best-match forecasting model for high-order fuzzy time series which applies a 
similarity measure to the forecasting step. We demonstrate how the proposed  
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forecasting model works by conducting experiments with the up and down values 
of Taiwan Weighted Stock Index (TWSI) and Dow Jones Industrial Average 
(INDU).  

2   Fuzzy Time Series and Similarity Measurement 

Song and Chissom (1993b) defined fuzzy time series as follows: 

Definition 1. Let )(tY  ),2,1,0,( =t , a subset of R , be the universe of 

discourse on which fuzzy sets iA
~

 ),2,1( =i  are defined and let )(tF  be a 

collection of iA
~

. Then, )(tF  is called a fuzzy time series on )(tY  

),2,1,0,( =t . 

Song and Chissom employed fuzzy first-order (Definition 2) and mth-order 
(Definition 3) relational equations to develop their forecasting model under the 
assumption that the observations at time t are dependent only upon the accumu-
lated results of the observations at previous times, which is defined as follows: 

Definition 2. Suppose )(tF  is caused by )1( −tF  or )2( −tF  or … or 

)( mtF − ( 0>m ) only. The relation can be expressed as the following fuzzy 

relational equation: 

    ( ) ( )1,1)( −−= ttRtFtF   or ( ) ( )2,2)( −−= ttRtFtF   or … or        

    ( ) ( )mttRmtFtF −−= ,)(   

or  

    ( ) ( ) ( )( ) ( )mttRmtFtFtFtF −−∪∪−∪−= ,21)(   

where ‘ ∪ ’ is the union operator, and ‘ ’ is the composition. ( )mttR −,  is a 

relation matrix to describe the fuzzy relationship between )( mtF −  and )(tF . 

Definition 3. Suppose )(tF  is caused by )1( −tF , )2( −tF , …, and 

)( mtF − ( 0>m ). The relation can be expressed as the following fuzzy rela-

tional equation: 

    ( ) ( ) ( )( ) ( )mttRmtFtFtFtF a −−××−×−= ,21)(  .  

( )mttRa −,  is a relation matrix to describe the fuzzy relationship between 

)1( −tF , )2( −tF , …, )( mtF −  and )(tF . 
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Let fuzzy time series ( ) nt fffftF 21= , tf S∈ ,  

{ }1 2, , , , ,i mS A A A A=      . A fuzzy set 
iA

~
 in the universal of discourse U , 

{ }mIIIU ,,, 21 = , UI
m

i i =
= 1

, is presented as  

( )
[ ]( )
( ]( )









≤<
≤≤

=
otherwise

uxcwhenx

cxlwhenx

xA i
uc

i
cl

i

0

~
,

,

μ
μ

, 1, 2, ,i m=  ,   (1) 

( )iA x  is the membership function of x  belonging to fuzzy set iA . [ ]( )xi
cl ,μ  

and ( ]( )xi
uc,μ are the degree functions of fuzzy set iA  within interval 

[ ] [ ] ( ]ucclul ,,, = . 

Hsu and Chen (1996) defined the similarity between fuzzy sets, denoting it 

as ( ),i jsim A A  , 

Definition 4. The fuzzy similarity measure between two fuzzy sets iA  and jA  is 

defined as  

( )
( ) ( )( )
( ) ( )( )



∪∈

∪∈=

ji

ji

AAx

ji

AAx

ji

ji
dxxA,xA

dxxA,xA

A,Asim

~~

~~

~~
max

~~
min

~~
            (2) 

The similarity measurement ( ),i jsim A A   between fuzzy set iA
~

 and jA
~

 is 

determined by the proportion of the overlapping area to the total area. If 

( ),i jsim A A  =1, the two fuzzy sets are completely overlapping, that is, 

ji AA
~~ = ; If 0< ( ),i jsim A A  <1, the two fuzzy sets are partially overlapping; If 

( ),i jsim A A  =0, the overlapping area is zero. Therefore, ( ) 1
~

,
~

0 ≤≤ ji AAsim . 

The similarity measure ( ),i jsim A A   on a given domain 

{ }1 2, , , , ,i mS A A A A=       is a mapping [ ]10,: →× SSsim , which sa-

tisfies the following properties: 
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Reflexivity: ( ), 1i isim A A =   for all iA S∈ . 

Separability: ( ) 1
~

,
~ =ji AAsim  if and only if i jA A=   

Bounded: ( ) 1
~

,
~

0 ≤≤ ji AAsim  for all SAA ji ∈~
,

~
. 

Further, we define the similarity measure between two fuzzy sequences order in 
time.  

Definition 5. Let 1 1
k
i i i i ke f f f+ + −=   and 1 1

k
j j j j ke f f f+ + −=   be subse-

quences of ( ) nt fffftF 21=  with k successive elements ordered in 

time and starting from time i and j by suffix, respectively. 

{ }mit AAAASf
~

,,
~

,,
~

,
~

21 =∈ . The similarity measure between sequence 
k
ie  and k

je  is defined as  

( ) ( )
=

++=
1-

0

,
1

,
k

p
pjpi

k
j

k
i ffsim

k
eeSim      (3) 

( ),k k
i jSim e e  satisfies the following conditions: 

(1) ( ) 1,0 ≤≤ k
j

k
i eeSim  

(2) ( ), 1k k
i iSim e e =  or ( ), 1k k

i jSim e e =  if and only if k k
i je e= , for all fuzzy 

set k
ie  and k

je . 

3   A Best-Match Model Based on Similarity Measure for Fuzzy 
Time Series 

The novel forecasting model is developed based on the similarity measurement of 
Song and Chissom’s (1993b) proposed framework. Its design comprises the fol-
lowing steps 

Step 1: Partition the universe of discourse U  into several intervals of equal 

length. In general, U is defined as [ ]2max1min , DDDDU +−= , where minD  

and maxD  are the minimal and maximal values of the historical data, and 1D  and 

2D  are properly selected positive numbers Song and Chissom’s (1993b). Then 

U  is partitioned into m  equal intervals, mIII ,,, 21  , 
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[ ] [ ] ( ]iiiiiii ucclulI ,,, == , with length length  defined as 

( ) ( )[ ]1min2max

1
DDDD

m
length −−+= . 

Step 2: Define fuzzy sets on the universe of discourse and fuzzify the time series. 
Given a traditional real time series, one needs a fuzzification procedure to obtain the 

corresponding fuzzy time series. For this, m  fuzzy sets mAAA
~

,,
~

,
~

21   can be 

defined as Eq (1). 

( )
[ ]( )
( ]( )
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=
otherwise

uxcwhenx

cxlwhenx

xA ii
i
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ii
i
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ii

0

~
,

,

μ
μ

, mi ,,2,1 = .   (4) 

Step 3: Fuzzify the precise time series data to a fuzzy time series. Pedrycz and 
Vasilakos (1999) proposed a linguistic approach to design a new category of fuzzy 
models. In order to fairly compare to other models, such as LeeÊs model, in this 
study, the precise data are fuzzified to fuzzy ones by the method proposed by 

Song and Chissom (1993a). If the real value it Iy ∈  , then ty  is fuzzified to 

fuzzy set iA
~

, and the membership function is defined by (4). Suppose that a time 

series ( ) nt yyyyt 21Y =  is fuzzified to fuzzy time series 

( ) nt fffftF 21= , where { }mii AAAAf
~

,,
~

,,
~

,
~

21 ∈ . 

Step 4: Derive k order fuzzy logical relationships from fuzzy time series 

( ) nt fffftF 21= , the form with ‘IF-THEN’ as  

kikiii ffff +−++ →11 , for kni −= ,,2,1   

For an order k rule, the left hand side of rule is starting at time i and ending at time 
i+k-1, the right hand side of rule is next of the ending time i+k.  

Step 5: Forecasting and defuzzifying. The similarity measurement between 

fuzzy time series, ( ),k k
i jSim e e , is applied to the forecasting step. The firing rule 

as forecasting is determined by the value of ( ),k k
i jSim e e  and a threshold α . If 

( ) α≥k
j

k
i eeimS , , the rule is fired and the right hand side of firing rule is the 

forecasting result. The forecasting result jA
~

is defuzzified with the average of the 

apex value of jA
~

.  

For example, a time series of the enrollment data of the University of Alabama 
from 1971 to 1992 (Song and Chissom, 1993a), =)(tY <13055, 13563, 13867, 
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14696, 15460, 15311, 15603, 15861, 16807, 16919, 16388, 15433, 15497, 15145, 
15163, 15984, 16859, 18150, 18970, 19328, 19337, 18876>.  

Step 1: The minD =13055 and maxD =19337, [ ]20000,13000=U  is parti-

tioned into seven equal length intervals 654321 ,,,,, IIIIII , and 7I , where 

[ ]14000,130001 =I , ( ]15000,140002 =I , ( ]16000,150003 =I , 

( ]17000,160004 =I , ( ]18000,170005 =I , ( ]19000,180006 =I , and 

( ]20000,190007 =I with the interval length 1000.  

Step 2: A fuzzy set iA
~

 of U is defined as 

( ) ( )








≤<−−

≤≤

=

otherwise
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=
otherwise
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0

20000190001

190001800018000
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1

~
7  

where 1−il , ic , and 1+iu  are lower bound, median value, and upper bound of 

intervals 1−iI , iI , and 1+iI , respectively. Similar to Song and Chissom (1993a), 

the vocabulary variables are 1

~
A = (not many), 2

~
A = (not too many), 3

~
A = (many), 

4

~
A = (many many), 5

~
A = (very many), 6

~
A = (too many), 7

~
A = (too many many).  

Step 3: Fuzzify the time series )(tY . For example, the enrollment  

13055 is fuzzified as 1

~
A  since the value is located at interval 1I   

whereas the enrollment 14696 is fuzzified as 2

~
A  due to located at  

interval 2I . In such a way, the numeric series is fuzzified as 

( ) 6776643333344433332111

~~~~~~~~~~~~~~~~~~~~~~
F AAAAAAAAAAAAAAAAAAAAAAt = .  
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Step 4: Suppose that a three-order rule base is established from ( )tF  which 

contains the following rules: 

2111 A
~

A
~

A
~

A
~ → , 3211 A

~
A
~

A
~

A
~ → , 3321 A

~
A
~

A
~

A
~ → , 3332 A

~
A
~

A
~

A
~ → , 

43332 A
~

,A
~

A
~

A
~

A
~ → , 64433 A

~
,A

~
A
~

A
~

A
~ → , 4443 A

~
A
~

A
~

A
~ → ,  

3444 A
~

A
~

A
~

A
~ → , 3344 A

~
A
~

A
~

A
~ → , 3334 A

~
A
~

A
~

A
~ → , 6643 A

~
A
~

A
~

A
~ → , 

7664 A
~

A
~

A
~

A
~ → , 7766 A

~
A
~

A
~

A
~ → , and 6776 A

~
A
~

A
~

A
~ → . 

Step 5: The similarity measures, ( )ji A,Asim
~~

, between fuzzy set iA
~

 and 

jA
~

 defined in Eq. (2) for 7,,2,1, =ji  are shown in Table 1. 
 

Table 1 The similarity measure between fuzzy set iA
~

 and jA
~

  

( )ji A,Asim
~~

1A
~

 2A
~

 3A
~

 4A
~

 5A
~

 6A
~

 7A
~

 

1A
~

 1 0.3636 0 0 0 0 0 

2A
~

 0.3636 1 0.6667 0 0 0 0 

3A
~

 0 0.6667 1 0.6667 0 0 0 

4A
~

 0 0 0.6667 1 0.6667 0 0 

5A
~

 0 0 0 0.6667 1 0.6667 0 

6A
~

 0 0 0 0 0.6667 1 0.3636 

7A
~

 0 0 0 0 0 0.3636 1 

 

Assume that given an inquiry fuzzy time series 677 A
~

A
~

A
~

, one wants to forecast 

the next fuzzy set. From Eq.(3), we compute the similarity between fuzzy time 

series with order 3, the value of ( )33, ji eeSim  between 677 A
~

A
~

A
~

 and other 

fuzzy time series shown in Table 2. Suppose the threshold under consideration 

α =0.5, then the two qualified firing rules are 7664 A
~

A
~

A
~

A
~ →  and 

7766 A
~

A
~

A
~

A
~ → . Therefore, the forecasting result is 7A

~
. 

If the threshold α  is set to 0.3, then firing rules are  

6643 A
~

A
~

A
~

A
~ → , 7664 A

~
A
~

A
~

A
~ → , 7766 A

~
A
~

A
~

A
~ → , and 

6776 A
~

A
~

A
~

A
~ → .  
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The forecasting results are possibly 6A
~

 and 7A
~

 meaning the next state of 

enrollments are “too many” or “too many many”. If a numeric result of forecasting 
is necessary, then the defuzzified forecast is 19000, which is the average of the 

midpoint of 6I  and 7I  (
1

(18500 19500) 19000
2

+ = ). 

 

Table 2 The similarity measure between two fuzzy time series  

Rule 3
ie  

3
je  ( )k

j
k
i eeSim ,  

2111 A
~

A
~

A
~

A
~ →  111 A

~
A
~

A
~

 

677 A
~

A
~

A
~

 

0 

3211 A
~

A
~

A
~

A
~ →  211 A

~
A
~

A
~

 0 

3321 A
~

A
~

A
~

A
~ →  321 A

~
A
~

A
~

 0 

3332 A
~

A
~

A
~

A
~ →  332 A

~
A
~

A
~

 0 

43332 A
~

,A
~

A
~

A
~

A
~ →  332 A

~
A
~

A
~

 0 

64433 A
~

,A
~

A
~

A
~

A
~ →  433 A

~
A
~

A
~

 0 

4443 A
~

A
~

A
~

A
~ →  443 A

~
A
~

A
~

 0 

3444 A
~

A
~

A
~

A
~ →  444 A

~
A
~

A
~

 0 

3344 A
~

A
~

A
~

A
~ →  344 A

~
A
~

A
~

 0 

3334 A
~

A
~

A
~

A
~ →  334 A

~
A
~

A
~

 0 

6643 A
~

A
~

A
~

A
~ →  643 A

~
A
~

A
~

 0.3333 

7664 A
~

A
~

A
~

A
~ →  664 A

~
A
~

A
~

 0.6667 

7766 A
~

A
~

A
~

A
~ →  766 A

~
A
~

A
~

 0.5758 

6776 A
~

A
~

A
~

A
~ →  776 A

~
A
~

A
~

 0.3636 

4   Experimental Results and Their Anaylsis 

To demonstrate how the proposed forecasting model works, we conduct the expe-
riments of forecasting up and down values of Taiwan Weighted Stock Index 
(TWSI) during the period from 2004 to 2006. The data set is divided into three 
parts, i.e., that collected in 2004 is used to construct the rule base, the collected data 
in 2005 is used as the training set to train the threshold α , and the collected data in 
2006 is used as the testing set to evaluate forecasting performance. The forecasting 
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performance is then evaluated by comparing to Lee’s model (2006), considered as 
the high-order fuzzy time series benchmark in the literature. The forecasting ac-
curacy is measured in terms of mean square error (MSE) and average forecasting 
errors ratio (AFER), which are defined as follows: 

N

ValueActualValuegForecastin
MSE

N

i ii

2

1
)__( =

−
= . 

1

_ _1
100%

_

N

i

Forecasting Value Actual Value
AFER

N Actual Value=

−
= ×  

For the data set in 2004, the universe of discourse is defined as 

[ ]400,500−=U , and is partitioned into 45 intervals of equal length, namely 

)480,500[
1

−−=u , )460,480[2 −−=u , …, )380,360[44 =u  and 

]400,380[45 =u . Six kinds of high-order models, i.e. order 3, 4, …, 8, are con-

sidered and their respective rule bases are constructed. The set in 2005 is used to 
train the threshold α . Tables 3 and 4 show the results of MSE and AFER of dif-
ferent α  ranging from 0.1 to 0.9 for order 3 to 8. For all high-order models except 
order 5, the lowest MSE and AFER are obtained at α =0.1, that illustrates the 
lower α  obviously achieves better performance. Tables 5 and 6 show the com-
parison result between Lee’s model and the proposed model at α =0.1 for the  
 

Table 3 MSE of TWSI by the proposed model for the training set  

α  Order 3 Order 4 Order 5 Order 6 Order 7 Order 8 

0.9 4563.5 4613.1 4637.3 4643.1 4660.1 4613.1 

0.8 4563.5 4616.1 4620.7 4643.1 4660.1 4613.1 

0.7 4811.0 4818.0 4620.7 4643.1 4649.3 4613.1 

0.6 5855.6 4818.0 4885.7 4583.7 4649.3 4596.3 

0.5 5855.6 4663.4 4885.7 5119.8 4600.0 4679.0 

0.4 6132.5 4663.4 4108.3 5119.8 5314.4 4768.9 

0.3 2507.8 4120.3 4081.1 3513.2 3825.2 5538.9 

0.2 2507.8 2475.2 2475.8 3022.8 3196.9 3026.9 

0.1 2501.5 2475.1 2476.5 2475.6 2430.0 2389.3 
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testing data set in 2006. It indicates that the proposed model significantly outper-
forms the Lee’s model both in terms of MSE and AFER for all orders. Furthermore, 
the superiority of the proposed model is also validated when comparing to the 
traditional time series forecasting model, autoregressive integrated moving average 
(ARIMA) model. The mean square errors of ARIMA(1, 1), ARMA(1, 2), and 
ARIMA(2, 2) are 6985.23, 6983.88, and 6976.58, respectively.  

 

Table 4 AFER of TWSI by the proposed model for the training set  

α  Order 3 Order 4 Order 5 Order 6 Order 7 Order 8 

0.9 14.91% 14.94% 15.00% 15.03% 15.09% 15.15% 

0.8 14.91% 14.94% 15.00% 15.03% 15.09% 15.15% 

0.7 13.41% 14.99% 15.00% 15.03% 15.09% 15.15% 

0.6 13.46% 14.99% 15.09% 14.98% 15.09% 15.14% 

0.5 13.46% 7.14% 15.09% 15.66% 15.04% 15.13% 

0.4 13.81% 7.14% 11.24% 15.66% 15.67% 15.54% 

0.3 5.49% 7.06% 11.24% 10.81% 11.60% 17.50% 

0.2 5.49% 4.61% 4.07% 8.14% 10.68% 9.50% 

0.1 5.48% 4.61% 4.07% 2.97% 2.93% 2.78% 

 
Table 5 MSE of TWSI for the testing set at α =0 

  Order 3 Order 4 Order 5 Order 6 Order 7 Order 8 

Lee’s model  9245.0 9325.3 9277.2 9469.8 9479.2 9504.4 

The proposed 
model 

 4904.8 4829.1 4777.0 4839.0 4862.9 4809.9 
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Table 6 AFER of TWSI for the testing set at α =0.1 

 Order 3 Order 4 Order 5 Order 6 Order 7 Order 8 

Lee’s model 9.59% 9.67% 9.68% 9.71% 9.74% 9.77% 

The proposed model 2.27% 2.20% 2.16% 1.62% 1.38% 1.35% 

 
The second experiment is to forecast Dow Jones Industrial Average (INDU) 

from 2004 to 2006. Similarly to the previous experiment, the universe of discourse 
is partition into 45 intervals of equal length and the rule bases for order 3, 4, …, 8 
are constructed using the data set in 2004. The optimal value of α  is determined 
empirically by the training set of the 2005 data. Tables 7 and 8 display MSE and 
AFER by the proposed model for the year of 2005 at α =0.1, 0.2… 0.9 and orders 
from 3 to 8. The MSE and AFER achieved the lowest ones when α =0.1 for all 
orders. The results shown in Tables 9 and 10 demonstrate that the proposed model 
at α =0.1 significantly outperforms than Lee’s model (2006). 

 

Table 7 MSE of INDU of the proposed model for the 2005 data set  

α  Order 3 Order 4 Order 5 Order 6 Order 7 Order 8 

0.9 0.7276 0.8819 0.9182 0.9237 0.9391 0.9322 

0.8 0.7276 0.8819 0.6372 0.8303 0.8955 0.9249 

0.7 0.7276 0.4789 0.6372 0.8303 0.7242 0.8172 

0.6 0.4245 0.4789 0.4632 0.5451 0.7242 0.5999 

0.5 0.4245 0.4312 0.4632 0.4454 0.4697 0.4416 

0.4 0.4245 0.4312 0.4330 0.4454 0.4456 0.4416 

0.3 0.4193 0.4312 0.4330 0.4316 0.4456 0.4360 

0.2 0.4193 0.4242 0.4236 0.4316 0.4304 0.4292 

0.1 0.4193 0.4242 0.4236 0.4274 0.4282 0.4293 
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Table 8 AFER of INDU for the proposed model for the 2005 data set  

α  Order 3 Order 4 Order 5 Order 6 Order 7 Order 8 

0.9 2.47% 2.81% 3.21% 3.19% 3.25% 3.24% 

0.8 2.47% 2.81% 2.26% 2.84% 3.07% 3.23% 

0.7 2.47% 1.45% 2.26% 2.84% 2.27% 2.92% 

0.6 1.18% 1.45% 1.29% 1.72% 2.27% 1.96% 

0.5 1.18% 1.06% 1.29% 1.23% 1.59% 1.25% 

0.4 1.18% 1.06% 1.09% 1.23% 1.11% 1.25% 

0.3 1.05% 1.06% 1.09% 1.04% 1.11% 1.08% 

0.2 1.05% 1.03% 1.01% 1.04% 1.04% 1.01% 

0.1 1.05% 1.03% 1.01% 1.00% 1.01% 1.00% 
 

 

Table 9 The comparison of MSE of INDU for 2006 at α =0.1 

 Order 3 Order 4 Order 5 Order 6 Order 7 Order 8 

Lee’s model  0.70 0.84 0.77 0.75 0.75 0.74 

The proposed model 0.40 0.39 0.39 0.39 0.39 0.39 

 

 

Table 10 The comparison of AFER of INDU for 2006 at α =0.1 

 Order 3 Order 4 Order 5 Order 6 Order 7 Order 8 

Lee’s model  3.80% 4.52% 4.18% 4.09% 4.04% 3.92% 

The proposed model 1.05% 1.04% 1.02% 1.01% 1.00% 1.00% 
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5   Conclusions and Future Works 

In this study, we presented a novel forecasting model for high-order fuzzy time 
series which is based on the fuzzy similarity measurement. The proposed model is 
motivated by the shortcomings of the traditional ‘exact-match’ rule-based ap-
proaches and thus the uncertainty and fuzziness characteristics inherent in the fuzzy 
relationships are overlooked. In contrast to the exact-match, the best-match ap-
proach used in the proposed model outperforms its counterpart in terms of mean 
square errors and average forecasting errors ratio in the experiments of forecasting 
TWSI and INDU values. Future work may involve applying the proposed model to 
deal with more complicated applications and extending the model to handle the 
problem of multi-dimensional fuzzy time series. 
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Chapter 16
Building Fuzzy Autocorrelation Model and Its
Application to the Analysis of Stock Price
Time-Series Data

Yoshiyuki Yabuuchi and Junzo Watada

Abstract. The objective of economic analysis is to interpret the past, present or fu-
ture economic state by analyzing economic data. Economic analyses are typically
based on the time-series data or the cross-section data. Time-series analysis plays a
pivotal role in analyzing time-series data. Nevertheless, economic systems are com-
plex ones because they involve human behaviors and are affected by many factors.
When a system includes substantial uncertainty, such as those concerning human
behaviors, it is advantageous to employ a fuzzy system approach to such analysis.
In this paper, we compare two fuzzy time-series models, namely a fuzzy autoregres-
sive model proposed by Ozawa et al. and a fuzzy autocorrelation model proposed
by Yabuuchi and Watada. Both models are built based on the concepts of fuzzy sys-
tems. In an analysis of the Nikkei Stock Average, we compare the effectiveness of
the two models. Finally, we analyze tick-by-tick data of stock dealing by applying
fuzzy autocorrelation model.

Keywords: fuzzy AR model, fuzzy autocorrelation, possibility, economic analysis.

1 Introduction

Many econometric models including the time-series model have been proposed for
evaluating economic systems. In this paper, we propose the fuzzy time-series model,
which is employed in the analysis of an economic system.
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The objective of economic analysis is to precisely understand the past and present
states of an economic system based on the statistical data [1, 21]. However, in an
economic system, the state is closely related to many factors that are triggered by
the aggregation of numerous human behaviors [24].

Therefore, it becomes insufficient to interpret such an economic system with the
use of conventional statistical methods. Instead, it is desirable to apply the concept
of the fuzzy system theory which can handle the ambiguity of a structure when we
analyze an economic system with many vague factors.

In addition, illustrating a time-series system and making a prediction by a time-
series model, estimates are far from observed values. It is a natural interpretation of
one reason that a possibility of a time-series system makes data fluctuating. Under
the consideration that a Box-Jenkins model can describe a time-series with high
accuracy, we propose a fuzzy autocorrelation model based on a Box-Jenkins model
to describe a time-series system.

Ozawa et al. have proposed a fuzzy autoregressive model [11]. Their model de-
scribe the system in terms of error term instead of the coefficient mentioned above.
The Ozawa’s model, the autoregressive parameter is constructed by including time-
series data, minimizing the vagueness of the model, and has real values. In addition,
their model express the vagueness of the time-series system by the error term written
by fuzzy numbers. The characteristics of these two models are compared by using
numerical examples.

We analyze the Nikkei stock average by employing both the fuzzy autoregressive
model which was first proposed by Ozawa et al. [11], and the fuzzy autocorrelation
model, which is being proposed in this paper. Furthermore, the fuzzy autocorrelation
model is applied to an economic analysis by analyzing the tick-by-tick data of stock
prices. This enables us to forecast a future trend by a sequential prediction that fits
the present condition.

The structure of this chapter is organized as follows: In Section 2, a fuzzy time-
series analysis based on the fuzzy auto-correlation model will be built by expanding
the Box-Jenkins model. In Section 3, we compare the characteristics of the fuzzy
autoregressive model with those of the fuzzy autocorrelation model by analyzing
the Nikkei stock average. In Section 4, we analyze the tick-by-tick data of stocks by
applying the fuzzy autocorrelation model.

2 Fuzzy Time-Series Model

This section elaborates on various fuzzy time-series analysis models. Then, the
fuzzy autoregressive model proposed by Ozawa et al. and our fuzzy autocorrela-
tion model are described.

2.1 Various Fuzzy Time-Series Analysis Models

Let us review several fuzzy time-series models before discussing our fuzzy autocor-
relation model and the conventional fuzzy autoregressive model.
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L.A. Zadeh proposed fuzzy set theory [29] in 1965. It helps deal with qualitative
data such as linguistic ones by using membership functions.

Based on these concepts, a fuzzy time-series analysis can be built. The models are
classified into three groups: (1) a regression model-based analysis, (2) a Box-Jenkins
model-based analysis and (3) a fuzzy reasoning(If-Then rule)-based analysis.

These three groups and others are reviewed below.

2.1.1 Regressive Model-Based Analysis of Fuzzy Time-Series Data

In general, a fuzzy regression-based time-series analysis employs the fuzzy regres-
sion model proposed by Tanaka et al. [16], in which the vagueness included in the
target system is addressed with the use of the fuzzy regression coefficients

Yi = (a1,c1)xi1 +(a2,c2)xi2 + · · ·+(ap,cp)xip = (a,c)xi (1)

where, xi are explanatory variables, a = [a1,a2, · · · ,ap] denotes the center position
of the fuzzy coefficients in the vector and c = [c1,c2, · · · ,cp] are the widths of the
fuzzy coefficients. The fuzzy regression model basically deals with the vagueness
included in the system and treated with intervals that can express all of the possi-
bilities by including all of the samples. Therefore, the estimated values, Yi, of the
observed values yi are expressed as fuzzy numbers, and the coefficients are viewed
as fuzzy coefficients. In this formulation, the fuzzy coefficients (a,c) can be ob-
tained by solving a certain Linear Programming (LP) problem.

Watada et al. employ the fuzzy regression model to time-series data, and using
fuzzy coefficients, they build a fuzzy regression model that includes all the vague-
ness of time-series system [22, 23]. However, they change the formulation of the
fuzzy regression model to account the smoothing of time-series data.

2.1.2 Box-Jenkins Model-Based Analysis of Fuzzy Time-Series Data

Similarly to Box-Jenkins model, fuzzy time-series analysis includes two models
based on fuzzy numbers and one model dealing with numeric data. Models dealing
with fuzzy numbers are proposed by Yabuuchi et al. and Ozawa et al.. Yabuuchi et
al. interpreted time-series data from a possibilistic point of view, define fuzzy au-
tocorrelation coefficients based on fuzzified data, and build a fuzzy autocorrelation
model using these values [24].

The fuzzy autocorrelation model aims to capture the present state or the future
state of the time-series process by using past fuzzy time-series data similar to the
Box-Jenkins model. Therefore, the fuzzy autocorrelation model is obtained from
a fuzzy autocorrelation coefficient that expresses the relationship between fuzzy
time-series data by a fuzzy operation. The proposed fuzzy autocorrelation model is
explained below.

In contrast to the above model, Ozawa et al. proposed a fuzzy autoregressive
model [11] that expresses the possibilities of fuzzified difference sequences. The
fuzzy autoregressive model is written down as follows:
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Z̃t = φ1Zt−1 + · · ·+φpZt−p +u
Zt ⊆ Z̃t , Z̃t = (α̃t , β̃t , δ̃t)

}
(2)

A time-series data is fuzzified to be used by the fuzzy autoregressive model:

Yt =

(
zt

3
min
i=1

zt+2−i/
3

max
i=1

zt+2−i, zt , zt
3

max
i=1

zt+2−i/
3

min
i=1

zt+2−i

)
(3)

Using the differenced series Zt , which transformed fuzzy time-series data Yt to de-
trending series, a fuzzy autoregressive model is formed. The fuzzy autoregressive
model illustrate the relationship between fuzzy time-series data by a real-valued
autoregressive parameter φ , and the vagueness of the system by introducing a trian-
gular fuzzy number u = (uα ,uβ ,uγ ).

F.M. Tseng et al. proposed a fuzzy ARIMA model [18]. The fuzzy ARIMA
model expresses the possibilities of the time-series system with fuzzy coefficients
of the model, which is similar to other fuzzy time-series models.

The fuzzy ARIMA model is expressed as follows:

z̃t =(a1,c1)zt−1 + · · ·+(ap,cp)zt−p

+εt − (ap+1,cp+1)εt−1 −·· ·− (ap+q,cp+q)εt−q
(4)

where zt = ∇d(Zt − μ), αi denotes the center position of the fuzzy number and
ci stands for the vagueness of the fuzzy number. In addition, εt are independent
and identically distributed normal random variables with a zero mean and variance
of σ2.

Although the fuzzy ARIMA model does not deal with seasonal variations, the
fuzzy ARIMA model is developed as a fuzzy regression model and has fuzzy pa-
rameters [19]. Therefore, F.M. Tseng et al. proposed the fuzzy seasonal ARIMA
model to deal with the seasonal variations. The fuzzy ARIMA model combines the
fuzzy regression model and the seasonal ARIMA model [19].

This Box-Jenkins model based fuzzy time-series analysis models have a fuzzy
numbers output to illustrate the possibilities of the system. Additionally, because
these models are formulated by the LP problem, the required number of time-series
data is less than that required to construct a statistical model.

2.1.3 Fuzzy Reasoning(If-Then Rule)-Based Analysis

Song et al. proposed a fuzzy reasoning (IF-Then rule)-based model, which is based
on a fuzzy time-series model [13, 14, 15].

Song and Chisson describe the relationships between fuzzy time-series data using
IF-Then rules and build a fuzzy time-series model to express these rules [13, 14,
15]. Various models have been proposed based on Song et al.’s fuzzy time-series
model. Yu proposed the method to employ Song et al.’s fuzzy time-series model
after assigning weighs to emphasize data near to the time point in the fuzzy time-
series data [28].
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Teoh et al. improved a model to accept intuitive and subjective opinions using
fuzzy logical rules proposed by Song et al.’s model. Cheng et al. indicated that
Song et al. did not consider any logical relations among rules and proposed a novel
forecasting model that considers the similarities among fuzzy logical relations [3].

Teoh et al. created fuzzy logical relations based on rough sets theory and built a
model with the rules generated by Song et al.’s model [17].

Additional fuzzy time-series models that improve upon Song et al.’s model have
been proposed as well [2, 6]

2.1.4 Some Other Fuzzy Time-Series Models

Many other useful fuzzy time-series models have been proposed. R. Dong et al.
proposed a granular time series approach that employs a fuzzy clustering technique
to construct an original series [4]. This model uses long-term forecasting and trend
forecasting.

M. Khashei et al. proposed a hybrid model, in which the ARIMA models are
integrated with artificial neural networks and fuzzy logic to move beyond the linear-
ity of a model [8]. However, O. Valenzuela et al.’s model is an integrated ARMA
model, using both neural networks and fuzzy logic [20]. K. Lukoseviciute et al.’s
model is employed using an evolutionary algorithm [10].

T. Partal et al. proposed a method that combines a discrete wavelet transform and
a neuro-fuzzy method [12].

C.H.L. Lee et al.’s approach employs the Japanese candlestick theory [9]. The
theory assumes that the candlestick patterns reflect the psychology of the market,
and the investors can make their investment decision based on the identified candle-
stick patterns. With this approach, a vague candlestick patterns is transformed by
fuzzy linguistic variables, and the financial time series data is transformed by fuzzy
candlestick patterns. The objective of this approach is to understand the vagueness
of investors and markets, which is expressed with fuzzy linguistic variables.

J.T Yao et al. proposed the rough set model [27]. The rough set model captures
the vagueness and uncertainty of time-series data.

2.2 Fuzzy Autoregressive Model

Let us assume that all the fuzzy time-series data Zt be defined by triangular fuzzy
numbers. Triangular fuzzy numbers are defined by three parameters, and are de-
noted as Zt = (αt ,βt ,δt),(αt ≤ βt ≤ δt). The inclusion relation of triangular fuzzy
numbers is defined through the following inequalities:

Zt ⊆ Zs ⇔{αt ≥ αs, δt ≤ δs} (5)

In the same way, the arithmetic operations are defined as follows:
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Zt +Zs = (αt +αs,βt +βs,δt + δs)

Zt −Zs = (αt −αs,βt −βs,δt − δs)

p ·Zt =

{
(p×αt , p×βt , p× δt), p ≥ 0
(p× δt , p×βt , p×αt), p < 0,

where p is a real number.
A fuzzy autoregressive model is specified as follows:

Z̃t = φ1Zt−1 + · · ·+φpZt−p +u

Zt ⊆ Z̃t , Z̃t = (α̃t , β̃t , δ̃t) (6)

Based on (5) and (6), it is clear that the following relations hold.

αt ≥ α̃t ,δt ≤ δ̃t

Namely, the fuzzy time-series model includes all of the fuzzy data. The autore-
gressive parameters φ1,φ2, · · · ,φp have real values, and show the degree the fuzzy
time-series data depend on the past. An error term is the constant specific to the
model and refers to the part of the fuzzy data that do not depend on the past data.
This term is defined as a triangular fuzzy number:

u = (uα ,uβ ,uδ )

A fuzzy autoregressive model results through solving a problem of linear program-
ming that minimizes that ambiguity of the model according to the inclusion condi-
tion (6) as follows:

minimize
n

∑
t=p+1

(δ̃t − α̃t)

subject to αt ≥ α̃t ,

δt ≤ δ̃t

(t = p+ 1, p+ 2, · · · ,n)
uα ≤ uδ

(7)

2.3 Fuzzy Autocorrelation Model

Even if we had described the behavior of time-series system by using a time-series
model, the estimated values should have a near value from the observed data. The
understanding of the behavior is shaped so as that the possibility of the time-series
system is making it natural. Our model describes the possibility of the time-series
system by the coefficients. Let us employ a triangular fuzzy number here, since it is
manageable.

When different sequences are employed, trend and noise can be easily removed.
The autocorrelation makes the model describing the behaviors easily. Therefore, we
fuzzify the Box-Jenkins model.
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In the fuzzy autocorrelation model, the time-series data zt are transformed into a
fuzzy number to express the possibilities of the data. The following fuzzy equation
shows the case in which only one time point before and after the time point t is taken
into consideration in building a fuzzy number [23].

Yt = (Y L
t ,YC

t ,YU
t ) = (min(zt−1,zt ,zt+1),zt ,max(zt−1,zt ,zt+1)) (8)

Next, we employ a calculus of finite differences to filter out the time-series trend
data, which enables us to use the first-order difference-equation to write the follow-
ing:

Zt = (ZL
t ,Z

C
t ,Z

U
t ) = (min(Yt −Yt−1),Y

C
t −YC

t−1,max(Yt −Yt−1)) (9)

Generally, if we take the finite differences then we reduce the trend variation, and
only an irregular pattern is included in the difference series. However, when we use
the fuzzy operation, the ambiguity may increase, and the value of an autocorrelation
coefficient may take values not lower than 1 or not greater than -1. To solve this
problem in the case of the fuzzy operation, we adjust the width of a fuzzy number
using α-cut when determing the difference series. An α-cut level h is determined
from the value of the autocorrelation. When we calculate the fuzzy autocorrelation,
we employ the usual fuzzy operation under the condition that the fuzzy autocorre-
lation of lag 0 is set to ρ0 = λ0/λ0 = (1,1,1), which results in the following linear
programming to decide the value at the α-cut level. When we set the α-cut level to
1, the ambiguity of the fuzzy autocorrelation is the smallest, but we cannot obtain
the fuzzy autocorrelation that reflects the possibility of the system. Therefore, we
maximize the width of the autocorrelation. However, the size of the width is decided
automatically as the value of autocorrelation should be included in [-1,1].

maximize
h

p

∑
i=1

(ρU
i −ρL

i )

subject to ρU
i ≤ 1

ρL
i ≥−1

ρL
i ≤ ρC

i ≤ ρU
i

(i = 1,2, · · · , p)

(10)

We can define the fuzzy covariance and the fuzzy autocorrelation as follows:

Λk ≡Cov[ZtZt−k] = E[ZtZt−k] = [λ L
k ,λ

C
k ,λ

U
k ]

rk = Λk/Λ0 = [ρL
k ,ρ

C
k ,ρ

U
k ]

We adjust the ambiguity of the difference series by employing the α-cut level h,
which is obtained by solving the above linear programming. Using the fuzzy auto-
correlation coefficient which is calculated by employing α-cut level h, we redefine
the Yule-Walker equations as in linear programming and calculate the partial auto-
correlation.
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We form the following autoregressive process.

Zt = Φ1Zt−1 +Φ2Zt−2 + · · ·+ΦpZt−p

where Φ = [φL,φC,φU ] is a fuzzy partial autoregressive coefficient.
As mentioned above, the next observation value either exceeds the observed

value at present by the size of the value of autocorrelation or it is less than the
observed value. For this reason, autocorrelation is important to the time-series anal-
ysis. Therefore, we build a model that illustrates the ambiguity of the system cap-
tured by the fuzzy autocorrelation. The reason for the autocorrelation is also fuzzy
autocorrelation, Yule-Walker equations can also be viewed as the fuzzy equation in
the same way.

Rt = Φ1rt−1 +Φ2rt−2 + · · ·+Φprt−p (11)

Φ shown in (11) is an unknown coefficient. We are building the model in terms
of fuzzy autocorrelation which can describe the ambiguity of the system. However,
when the ambiguity of a model is large, the relationship between a model and a sys-
tem becomes ambiguous. Therefore, the possibility of the system cannot be prop-
erly described. Therefore, to obtain the fuzzy partial autocorrelation coefficient, for
which the ambiguity of a time-series model should be minimized, we have the fol-
lowing linear programming:

minimize
p

∑
i=1

(ρU
t −ρL

t )

subject to RU
t ≥ ρU

t

RC
t = ρC

t
RL

t ≤ ρL
t

ρL
t ≤ ρC

t ≤ ρU
t

(t = 1,2, · · · , p)

(12)

As mentioned above R is obtained by the fuzzy operation employing the fuzzy auto-
correlation r and fuzzy partial autocorrelation Φ . RL, RC and RU represent the lower
limit, the center, and the upper limit of R, respectively.

A fuzzy autocorrelation model expresses the possibility that the change of the
system is realized in the data, which is different from the conventional statistical
method. We are building a model that can show an ambiguous portion called a possi-
bility that has not been clearly expressed through conventional statistics techniques.

The time-series data was fuzzified by using Equation (8), and a fuzzy operation
was employed to calculate any coefficients. Then, the center of all coefficients is
coincident to the non-fuzzy coefficient. In addition that, the center of our model is
coincident to the non-fuzzy model, the autoregressive model by the constraint of LP
problem (12).
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3 A Numerical Example

In this section, we employ the Nikkei stock average which indicates the trend of the
whole stock market as an index of the Japanese stock market. We use the monthly
data from 1970 to 1998.
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Fig. 2 Autocorrelation of Nikkei Stock Average

We show the sample autocorrelation coefficient at each time lag (Figure 2) to
determine the order. Figure 2 shows the negative correlation in lags 1 and 2 where
the sign of the autocorrelation coefficient changes from minus to plus. Because of
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this result, we analyze the Nikkei stock average by employing the AR(2) model of
the second-order.

Furthermore, because of the existing seasonal variation in this data, we employ
the calculation �2 �12 zt which take the first-order seasonal difference of every 12-
month period after taking the second-order difference.

�2 �12 Z̃t = φ1 �2 �12Zt−1 +φ2 �2 �12Zt−2 +u

where the data zt in analysis are statistical data and the actual measurement. u is an
error term of the model. For the ambiguity of the time-series system to reflect these
data, we employ fuzzy numbers to deal with these data.

3.1 Fuzzy Autoregressive Model

We analyze the data by employing the fuzzy autoregressive model with the triangu-
lar fuzzy number. The following is the procedure to obtain the fuzzy autoregressive
model.

Step 1. The original series is fuzzified with the use of Equation (3) and trans-
formed difference without trends. We employ the difference ∇2∇12Zt since the
differebce series is detrending.

Step 2. In order to minimize the vagueness of the model, the autoregressive pa-
rameters φ1,φ2 and an error term (uα ,uβ ,uδ ) was determined by LP problem (7).
Here, the constraint of LP problem (7) is expressed that the time-series model can
include difference series.

Ozawa’s model is obtained by using the above procedures. The coefficients of this
model are determined as follows:

�2 �12 Z̃t =−0.749�2�12Zt−1 − 0.348�2�12Zt−2 +(−0.143,−0.013,0.117)

The model that is obtained by the fuzzy autoregressive model has a negative coeffi-
cient that is the same as the result that is obtained by the autocorrelation. An original
series and its estimate are shown in Figure 3.

Figure 3 shows that the estimated model has a large width of possible values.
Numerically, the width of the possibility of the model is 12,500JPY (on average),
41,340JPY at the maximum and 1,770JPY at the minimum. The ambiguity of this
model is extremely large.

However, the central value of the estimated value shows a value that is almost the
same as the original series. Because it showed a strongly oscillating tendency in the
past, these results are with the large width of the model estimation. This can also be
understood from the section of the error term of the model.

A result of the sequential prediction of this model is shown in Figure 4.
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Fig. 3 The result of the Fuzzy Autoregressive Model
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Fig. 4 The prediction result obtained by the Fuzzy Autoregressive Model (1999)

3.2 Fuzzy Autocorrelation Model

Next, we analyze the Nikkei stock average by employing the fuzzy autocorrelation
model which is proposed in this paper. The following is the procedure to obtain our
model.

Step 1. The original series is fuzzified by Equation (8) and transformed difference
without trends. We employ the difference ∇2∇12Zt since the differebce series is
detrending.

Step 2. The fuzzy autocorrelation coefficients was obtained by fuzzy operation.
The fuzzy autocorrelation coefficient has a large vagueness because fuzzy op-
eration. Therefore, the vagueness is managed using an α−cut method without
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removing characteristics of a fuzzy autocorrelation coefficients. The α−cut value
h is determined by LP problem (10). In this model, we set the α−cut level 0.978.
The fuzzy autocorrelation showed minus in the correlation of lag 2 is similar to
the case of the autocorrelation.

Step 3. The fuzzy autocorrelation coefficients is determined by LP problem (12).

In the estimated fuzzy autocorrelation model, the coefficient was determined as
follows:

�2 �12 Z̃t = (−1,−0.642,−0.642)�2�12Zt−1

+(−0.607,−0.380,−0.321)�2�12Zt−2

The model that is obtained by the fuzzy autocorrelation model has a negative co-
efficient that is the same as the result that is obtained by the fuzzy autoregressive
model.

The original series and estimated series are shown in Figure 6.
As shown in Figure 6, the estimated model has a small width and results in the

low level of fuzziness. Numerically, the width of the possibility of the model is
2,500JPY on average, 18,000JPY at the maximum and 100JPY at the minimum. In
Figure 6, the width of the results produced by the model is smaller than that shown
in Figure 3.

A result obtained by the sequential prediction of this model is shown in Figure 7.
There is a point that is the predicted value which differs from the original series in

Figure 7. Because the fuzzy autocorrelation model places stress on the fluctuation of
a system unlike the fuzzy autoregressive model which includes all of the possibilities
of the system, this model produces a large error.

0 1 2 3 4 5 6 7 8 9 10 11 12

Lag

−1

−0.5

0

0.5

1

Upper Limit
Center
Lower Limit

Fig. 5 Fuzzy Autocorrelation
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Fig. 7 The predicted result - Fuzzy Autocorrelation Model (1999)

Here, the difference between the fuzzy autoregressive model and our model are
summarized as followings:

The fuzzy autoregressive model The fuzzy autoregressive model is determined by
including relation between this and difference series. At that time, non-fuzzy
coefficients φ and fuzzy error term u are determined by LP in order to minimize
the vagueness of model.

Our fuzzy autocorrelation model First, the fuzzy autocorrelation coefficient is ob-
tained from fuzzy difference series by LP. Next, the fuzzy autoregressive coeffi-
cient is obtained from a fuzzy autocorrelation coefficient in order to describe the
behavior of a fuzzy difference series with high dimensional accuracy by LP.

The difference of two models is illustrated in Figures 3 and 6.
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4 Economic Analysis Based on Tick-by-Tick Data

Tick-by-tick data are the record of stock dealing transactions. Let us analyze tick-
by-tick data of stocks by applying the fuzzy autocorrelation model.

Tick-by-tick data record five items: the trading date, stock brand, traded time,
dealing price and dealing amount.

Table 1 Example of Tick-by-Tick Data

Traded date Stock name record Traded time Traded price Traded amount
20080602 13010 0900 200.000 6000
20080602 13010 0900 200.000 4000
20080602 13010 0900 200.000 10000
20080602 13010 0900 200.000 1000
20080602 13010 0900 200.000 4000

...
...

...
...

...
20080602 13010 0900 201.000 1000
20080602 13010 0900 201.000 1000
20080602 13010 0901 202.000 1000

...
...

...
...

...

We will use the stock trading record. Table 1 shows some of the tick-by-tick
data, which is the trading data from 2nd June 2008 recorded from 9 am. From the
stating time at 9 am, 6,000, 4,000 and 10,000 shares of brand code 13010 is traded
at 200JPY. We have all of the trading records. At a later time, the records have
different values. The trading variables change in real time and the stock is traded by
the real time price and amount. These real time trading situations are shown in the
tick-by-tick data.

However, it is not possible to use the tick-by-tick data directly in a time-series
analysis, and the upper, lower and average prices of the same stock at the same time
are employed to create fuzzy numbers of time-series data.

In this chapter, we employ one week tick-by-tick data from 7th July 2008 (Mon-
day) to 11th July 2008 (Friday). When nothing was traded for a certain time period,
we used the previous price.

First, we apply AR model to analyze the tick-by-tick data. When we took a 5
minutes difference of the central value, we could remove its trend. Figure 8 shows
the correlogram time series figure of the tick-by-tick data. As it shows one-time
previous value (Δ5Zt−1), two-time previous value (Δ5Zt−2) and three-time previous
value (Δ5Zt−3) have a large correlation, the following AR(3) model was employed.

Δ5Z̃t = φ1Δ5Zt−1 +φ2Δ5Zt−2 +φ3Δ5Zt−3
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Fig. 9 Tick-by-tick data and the AR(3) model

Solving the Yule-Walker equation we form the following AR(3) model.

Δ5Z̃t = 0.970Δ5Zt−1 − 0.041Δ5Zt−2 − 0.224Δ5Zt−3

φ1 = 0.970, φ2 =−0.041, φ3 =−0.224

Figure 9 shows the forecasted result based on the AR(3) model. Tick-by-tick data
are given as fuzzy numbers but when using interval values, it is not possible to
distinguish between the observed and forecasted values. Therefore, Figure 9 shows
only the center value of the traded values and the forecasted values of the AR(3)
model.
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Figure 9 highlights the success of the forecast but the forecast delay and some
error are recognized in the figure. Therefore, in the figure the movement of lines of
real prices and forecasted values appear to have thick lines. Additionally, in some
places the predicted stock prices are too high.

Figure 10 shows the forecast result by fuzzy autocorrelation model in which the
autocorrelation coefficients are shown as fuzzy numbers. A black up-pointing tri-
angle and a black down-pointing triangle in the figure denote the upper and lower
values of the autocorrelation coefficients, respectively. The circle in the boxes are
the center values of the fuzzy autocorrelation coefficients. Similar to the AR model,
the one-time previous value (Δ5Zt−1), two-time previous value (Δ5Zt−2) and three-
time previous value (Δ5Zt−3) exhibit a high correlation. Therefore, the following
fuzzy autocorrelation model, FAR(3) was employed.

Z̃t = Φ1Δ5Zt−1 +Φ2Δ5Zt−2 +Φ3Δ5Zt−3

The fuzzy autocorrelation model was obtained by solving the fuzzy Yule-Walker
equation.

Z̃t = [0.892,0.970,1]Δ5Zt−1

+[0.041,0.041,0.103]Δ5Zt−2

+[−0.224,−0.224,−0.224]Δ5Zt−3

Figure 11 shows the forecasting result obtained by the fuzzy autocorrelation model.
The figure shows the results are acceptable. The result shows that the high accuracy
of the predicted values in comparison with the results produced by the probabilistic
AR(3) model.

Φ1= [ 0.892, 0.970, 1 ]
Φ2= [−0.041,−0.041, 0.103]
Φ3= [−0.224,−0.224,−0.224]

To validate the model, we compared between the forecasted values and the real
traded result for the last 30 minutes from 14:30 to 15:00 on 11th July 2008 and the
next 30 minutes from 9:00 to 9:30 on 14th July 2008. Figures 12 and 13 show the
results of the AR(3) model and the fuzzy autocorrelation model. In these figures,
the values forecasted by the model based on the tick-by-tick data from 7th July to
11th July are applied to 14th July. Shown are the latter 30 minutes. In each figure,
the observed values are shown by a solid line and the forecasted values by a dotted
line.

First, the result using AR(3) looks one timing proceeding in Figure 12. At some
points, when the real stock price came down, the forecasted value increased. At
another points when the real stock price does not increase, the model forecasted the
increasing of the price. Additionally when the stock price fell, the forecasted stock
price decreased too rapidly.

However, Figure 13 shows the interval values because the fuzzy autocorrelation
model is an interval model. Figure 13 illustrates looks one timing proceeding similar
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Fig. 11 Center Values of Fuzzy Autocorrelation Model of Tick-by-Tick Data

to the AR(3). Furthermore, for some points, the change of stock prices is forecasted
to be too large.

For example, at the closing time on 11th July, the forecasting error looks small
at the center of the model but the vagueness of the forecasted value is large. We
interpret this as the last minute push of dealings that disturbed the forecasting of
the time series system. That is, even though the stock price stopped moving, the
forecasted value increased or decreased with the real value. This tendency of the
forecasted result explicitly shows the forecasted value of the stocks starting on 14th
July.

Overall it was found that the fuzzy autocorrelation model could describe the
movement of the time series system well.
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We can summarize the result as follows: It is difficult to employ this method to
stock trading even though the forecasted values are shown in the interval and even
though almost all the values are included in the intervals. If the fuzzy autocorrela-
tion model has the constraint RC

t = ρC
t (t = 1,2, · · · , p), then the center value of the

fuzzy autocorrelation model is coincident to the autoregressive model. Therefore,
our model illustrate the possibilities of the the time-series data.
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5 Model Interpretation

In this section, we interpret two fuzzy time-series models, the fuzzy autoregressive
model proposed by Ozawa et al. and the fuzzy autocorrelation model proposed by
Yabuuchi and Watada.

Let us compare the results between a fuzzy autoregressive model and a fuzzy au-
tocorrelation model employing the triangular fuzzy number, which are illustrated in
Figures 3 and 6. These figures show that the fuzzy autoregressive model is estimated
as the model with a large width of possibility and the fuzzy autocorrelation is esti-
mated as the model with a small width. The ambiguity of the fuzzy autocorrelation
model is little, and this model estimated the original series more correctly. However,
the fuzzy autoregressive model includes the entire fluctuation of an original series
by estimating its fluctuation with a large value.

Let us compare the results of sequential prediction which are illustrated in Fig-
ures 4 and 7. Though the width of the possibility of the fuzzy autoregressive model
was larger, it should be predicted that the estimated central value corresponds to the
actual measurement. In the case of the fuzzy autocorrelation model, the estimated
value is different from the original series at three points. Because the fuzzy autocor-
relation describes the fluctuation of a system, this is considered to be the cause that
an error produces.

The return and the amount of funds for an investor, a company, etc. are greatly
influenced by the Nikkei stock average. Therefore, if a prediction is greatly different
from a reality, it can cause great damage; in particular, in the case of a company, it
may cause a business downsizing or the laying off of company employees. Some-
times, the Japanese economy may be inactive because of the influence of a wrong
prediction. Therefore, the lower such a risk is, the more favorable it becomes for
the company and the investor when they consider the future return, future prospects,
and so on. However, the monthly fluctuation of the real Nikkei stock average is al-
most less than 10,000JPY. Therefore, for these reasons, we could regard a fuzzy
autocorrelation model as being suitable for estimation and prediction of the Nikkei
stock average.

In the case of the fuzzy autocorrelation model, we should not include all of the
economic data within the model, but we should construct the model by employing
the fuzzy autocorrelation to include the possibility of the fluctuation of data. We
could show the effectiveness of the economic analysis using the Nikkei stock aver-
age by the fuzzy autocorrelation model, because the proposed model could illustrate
the fluctuation in the system.

Next, the forecast of stock prices based on the tick-by-tick data of stocks are pro-
vided using both the autoregressive model and probabilistic autocorrelation model.

In the analysis of the tick-by-tick data of stocks, past traded data from three times,
Δ5Zt−1, Δ5Zt−2, Δ5Zt−3 were used to describe successfully the movement of stock
prices.

The purpose of employing tick-by-tick data for stock price forecasting is to val-
idate the forecasting precision of the fuzzy autocorrelation model in stock trading.
Figure 13 showed the stock prices of both the model building data and the last 30
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minutes for validation. In this validation the figures showed that the fuzzy autocor-
relation model could describe successfully the price movement of the time series
system.

6 Conclusions

In this paper, we proposed a fuzzy autocorrelation model, which is based on a Box-
Jenkins model and describes a time-series system by using fuzzy autocorrelation
coefficients. The proposed model has compared with a fuzzy autoregressive model
proposed by Ozawa et al. through numerical examples, the Nikkei stock average
and the tick-by-tick data of stocks.

We showed the width of a fuzzy autocorrelation model is smaller than the one of
a fuzzy autoregressive model in the analysis of the Nikkei stock average. But, the
center of a fuzzy autoregressive model could estimate the original series.

The fuzzy autocorrelation model had the higher accuracy of the predicted values
in the analysis of the tick-by-tick data of stock.

Finally, we can conclude that the fuzzy autocorrelation model can describe the
movement of the time-series system well.
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Chapter 17 
Predicting Hourly Ozone Concentration Time 
Series in Dali Area of Taichung City Based on 
Seven Types of GM (1, 1) Model 

Tzu-Yi Pai*, Su-Hwa Lin, Pei-Yu Yang, Dyi-Huey Chang, and Jui-Ling Kuo 

Abstract. In this study, seven types of first-order and one-variable grey differen-
tial equation model (abbreviated as GM (1, 1) model) were used to predict hourly 
ozone concentrations in Dali area of Taichung City, Taiwan. The results indicated 
that the minimum mean absolute percentage error (MAPE), mean squared error 
(MSE), root mean squared error (RMSE), and maximum correlation coefficient 
(R) were 19.00 %, 45.27, 6.73, and 0.91, respectively. All statistical values re-
vealed that the prediction performance of GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 
1, b) is better than the performance of other GM (1, 1) models. The GM (1, 1) 
model required a very small sample size, as low as four samples, but the modeling 
could result in very high prediction accuracy. It is also revealed that GM (1, 1) GM 
(1, 1) was an efficiently early warning tool to provide ozone information to inha-
bitants. 

 
Keywords: grey system theory, GM (1, 1), hourly ozone, air quality. 
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1  Introduction 

In the past two decades, air pollution has improved in most cities in Western Eu-
rope, North American as well as Japan. Air pollution reductions have resulted 
mainly from greater efficiency and pollution-control technologies in factories, 
power plants, and other facilities (Cunningham and Cunningham, 2006). Although 
improvements are also achieved in transportation, the regulation efficiencies of O3 
pollution sources are not as significant as those of other pollution sources because 
of their emitted and reactive characteristics (Faiz et al., 1995; Fischer et al., 2000; 
Kingham et al., 2000; Lipfert et al., 2006; Pai et al., 2007). 

Among all air pollutants, the elevated O3 concentrations at ground level are of 
particular concern, because of the harm to human health and vegetation. Gao and 
Niemeier (2008) indicated that ozone pollution was caused by photochemical 
reactions of precursor volatile organic compounds (often called non-methane hy-
drocarbons, NMHC) and nitrogen oxides, of which transportation emissions are 
the single major source. Several references showed that the mobile sources had a 
significant influence on ozone formation (Gao, 2007; Gao and Niemeier, 2007; 
Wang et al., 2009). In addition, the emissions of NMHC are one of the main con-
tributors to ozone formation (Delucchi et al., 1994). 

The relationship between ozone and its precursors is complicated due to the 
fact that meteorological and chemical reaction rates range from very fast to very 
slow. Such relationships between meteorological condition and ozone concentra-
tions have been explored in several studies which have utilized statistical regres-
sion, graphical analysis, fuzzy theory, and cluster analysis. 

Typically, environmental data are very complex for modeling because interre-
lations between various components result in a complicated combination of  
relations. Models providing reasonable accuracy have to consider physical and 
chemical relations among O3 and other pollutants under various meteorological 
conditions simultaneously. However, the uncertainty problem will occur when 
above modeling approaches were adopted. One of the most important problems is 
the uncertainty of input data, including source identification, meteorological con-
ditions, and relevant reaction mechanisms. No matter how good the inventory in-
vestigation was carried out in a large-scale modeling analysis, the uncertainties of 
input data in the mechanistic modeling process cannot be completely eliminated. 

Many other attempts to model the interrelations have also been carried out. Li-
near regression methods, for instance, have been widely employed for decades 
(Abdul-Wahab et al., 2005). Additionally, to adequately model complex, 
non-linear phenomena and chemical procedures, artificial neural networks (ANN) 
and fuzzy logic approach have been widely applied because of their ability to 
model  nonlinear data well (Gautam et al. 2008; Cai et al., 2009). 

Although ANNs could predict air pollutant concentrations successfully, they 
require a large amount of training data. In order to simplify statistical complexity 
and gain consistent results from the investigation data for predicting air pollutant, 
the grey system theory (GST) offers a suite of methods. 
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The GST can resolve the problem of incomplete data and has been applied in 
our previous studies (Deng, 2002, 2005; Pai et al., 2007 a, b; Pai et al., 2008 a, b, 
c; Pai et al., 2010; Pai et al., 2010 a, b). GST focuses on the relational analysis, 
model construction, and prediction of the incomplete information. It requires only 
a small amount of data and the better prediction results can be obtained.  

There are many methods of analysis in GST including grey model (GM). GM 
can be used to establish the relationship between many sequences of data. Among 
all air pollutants, the O3 concentrations at ground level are of particular concern 
because of the serious harm to human health, especially in a short-time period. If 
an efficient method could be developed to predict the short-time O3 concentra-
tions, a better control strategy could be sought. Since the hourly data of particulate 
matter (PM) were predicted successfully using GM presented in our previous 
work (Pai et al., 2011), GM could be used to predict the hourly O3 concentrations. 

The objectives of this study are as follows: (1) Construct seven types of 
first-order and one-variable grey differential equation model (abbreviated as GM 
(1, 1) model) for predicting hourly O3 concentrations in Dali area of Taichung 
City in Taiwan, (2) Compare the prediction performance of seven types of GM (1, 
1) model. 

2  Materials and Methods 

2.1  Data Set 

The monitoring data from air quality monitoring station locating in Dali area of 
Taichung City was selected in this study (Figure 1). The concentrations of O3 from 
29th of July to 16th of August 2008 were investigated. They were sampled and 
investigated every hour. The total number of data was 456. Among the data, 384 
data points were used to estimate the coefficients of the models and 72 data points 
were used as the observed values when evaluating the performance of the model. 
The maximum, minimum, mean value and standard deviation of O3 series were 
100.2, 1.1, 25.0, and 21.2 ppb, respectively. The meteorological condition was 
ignored in this study. 

2.2  Grey Modeling Process 

In a situation where information is lacking, using fewer (at least 4) system infor-
mation, one can create a GM to describe the behavior of the few outputs. By 
means of accumulated generating operation (AGO), the disorderly and the unsys-
tematic data may become exponentially behaved such that a first-order differential 
equation can be used to characterize the system behavior. Solving the differential 
equation will yield a time response solution for prediction. Through inverse  
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Fig. 1 Dali area 
 

 
accumulated generating operation (IAGO), the forecast can be transformed back 
to the sequence of original series. A grey modeling process is described as  
follows. 

Assume that a series of data with n samples is expressed as: 
 

)),n(x,),2(x),1(x(X )0()0()0(}0{ =                 (1) 

 
where the superscript (0) of X(0) represents the original series. Let X(1) be the 
first-order AGO of X(0), whose elements are generated from X(0): 

 

)),n(x,),2(x),1(x(X )1()1()1()1( =                  (2) 

 

where n,,2,1k for ),i(x)k(x
k

1i

)0()1( == 
=

. Further operation of AGO can be 

conducted to develop the r-order AGO series, X(r): 
 

)),n(x,),2(x),1(x(X )r()r()r(}r{ =                  (3) 

where n,,2,1k for ),i(x)k(x
k

1i

)1r()r( ==
=

− . The IAGO is the inverse operation of 

AGO. It transforms the AGO-operational series back to the one of a lower order. 
The operation of IAGO for the first-order series is defined as follows: 

)1(x)1(x )1()0( =  and n,2,3,k for )1k(x)k(x)k(x )1()1()0( =−−= . After ex-

tending this representation to the IAGO of r-order series, we have 
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n,2,3,k for )1k(x)k(x)k(x rr)1r( =−−=− . The tendency of AGO can be ap-

proximated by an exponential function. Its dynamic behavior resembles differen-
tial equation. The grey model GM (1, 1) thus adopts a first order differential  
equation to fit the AGO series, 

 

bax
dt

dx =+ )1(
)1(

                        (4) 

 
where the parameter a is the developing coefficient and b is the grey input. Ac-
cording to the definition, GM (1, 1) is that the order in grey differential equation is 
equal to 1 and defined as follows: 
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Transforming (6) into a matrix form, we have 
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Then the coefficients can be estimated by solving the matrix relationship, 
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Sometimes, singularity would be encountered when treating the increasingly ac-
cumulated data. Then the inverse matrix could not be determined. Once this situa-
tion occurs, Computational Intelligence techniques could be applied. In this study, 
the increasingly accumulated data would not result in singularity due to their val-
ues and numbers were not too high. Additionally, the whitening type of GM (1, 1) 
model (or in terms of GM (1, 1, W)) that can be used for prediction is described 
as: 
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e
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Additionally, there are several types of GM (1, 1) model which are derived from 
(4) as follows. 
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Grey difference type of GM (1, 1): GM (1, 1, x(1)) 
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a
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IAGO type of GM (1, 1): GM (1, 1, x(0)) 
 

)1()1()( )0()0( −−= kxkx α                     (12) 

 
Parameter-a type of GM (1, 1): GM (1, 1, a) 
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Parameter-b type of GM (1, 1): GM (1, 1, b) 
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Exponent type of GM (1, 1): GM (1, 1, e) 

 
)1ln()3()0()0( )3()( α−−= kexkx                  (15) 

 
When adopting GM (1, 1, x(0)), GM (1, 1, a), GM (1, 1, b), and GM (1, 1, e), 

)2()0(x  has to be calculated as follows: 

 

)1()2( )0()0( xx αβ −=                     (16) 

 
All seven types of the GM (1, 1) model and their denotation are summarized in 
Table 1. The detailed derivation of these GM (1, 1) models can be found in Deng 
(2002, 2005). 

2.3  Error Analysis 

In order to evaluate the prediction accuracy of GM (1, 1), the mean absolute per-
centage error (MAPE), mean square error (MSE), root mean square error (RMSE), 
and correlation coefficient (R) were employed, 
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Table 1 Seven types of GM (1, 1) model 

Type Denotation  Prediction equation 

Whitening type GM (1, 1, W) 
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b
e
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where iobs  is the observed value, ipre  is the result of prediction, obs  and 

pre  are the average values of observed values and prediction values, respectively. 

3  Results and Discussion 

3.1  Determination of Grey Parameters 

For determining the parameters of GM (1, 1), the observed O3 data were plugged 
into (6) and the grey parameters were calculated by solving (7). When predicting, 
the values of the parameters a and b were equal to -0.00090492 and 23.404, re-
spectively. According to (4), the parameter a (developing coefficient) will deter-
mine the predicting trend meanwhile parameter b (grey input) will determine the 
interception of (4). 

3.2  Simulation of O3 

Table 2 shows all the values of MAPE, MSE, RMSE and R using seven types of 
GM (1, 1) model. The 1st to 384th data were used for constructing model, 385th to 
456th data were used to evaluate the fitness. All values of the performance indexes 
revealed that the predicting performance of GM (1, 1, x(0)), GM (1, 1, a), and GM 
(1, 1, b) prevailed. Figure 2 (a), (b), and (c) depict the prediction results of O3 us-
ing seven types of GM (1, 1) model. 

As shown in Table 2, when constructing, MAPEs between the predicted and 
observed values of O3 were between 29.03 % and 29.30 % using GM (1, 1, x(0)), 
GM (1, 1, a), and GM (1, 1, b), but they were 153.60 % - 220.96 % using other 
GM (1, 1) models. When predicting, the MAPEs were 19.00 % - 19.06 % when 
adopting GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b), but they were between 
94.66 % and 147.43 % when using other GM (1, 1) models. 

The MSE values of 78.85 - 79.48 using GM (1, 1, x(0)), GM (1, 1, a), and GM 
(1, 1, b) were lower than those of 440.64 – 541.01 using other GM (1, 1) models 
when model constructing. When predicting, the values of 45.27 - 45.41 using GM 
(1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) were also lower than those of 300.11 – 
586.04 using other GM (1, 1) models. When constructing, the RMSE values of 
8.88 – 8.92 using GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) were lower than  
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Fig. 2 Prediction results of O3. (a) GM (1, 1, W), (b) GM (1, 1, C), (c) GM (1, 1, x(1)), (d) 
GM (1, 1, x(0)), (e) GM (1, 1, a), (f) GM (1, 1, b), (g) GM (1, 1, e) 

 
 

those of 20.99 – 23.26 using other GM (1, 1) models. The RMSE value of 6.73 – 
6.74 using GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) were also lower than 
those of 17.32 – 24.21 using other GM (1, 1) models when predicting. 

When constructing, R value between the predicted and observed values of O3 
was 0.91 using GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b), but they were 0.13 
– 0.14 using other GM (1, 1) models. When predicting, the R was 0.91 when 
adopting GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b), but they were between 
-0.19 and -0.17 when using other GM (1, 1) models. 

Comparable observations were similarly made by Abdul-Wahab et al. (2005). 
Abdul-Wahab et al. (2005) employed data on the concentrations of seven envi-
ronmental pollutants (CH4, NMHC, CO, CO2, NO, NO2 and SO2) and meteoro-
logical variables (WS and direction, Temp, RH and solar radiation) to predict the 
concentration of ozone in the atmosphere using both multiple linear and principal 
component regression methods. They found that R2 for the day and night periods, 
were of 0.82 and 0.76, respectively. In this study, the R of 0.84 was obtained using 
GM.  

Comparable observations were also made by Gautam et al. (2008). They pro-
posed a new algorithm to predict the chaotic time series of O3 based on the ANN 
technique. They found that the MAPEs lay between 12.26 – 24.01 % using ANN 
and 9.46 – 13.55 % even using new algorithm.  

In the study proposed by Cai et al. (2009), ANN was used to predict hourly air 
pollutant concentrations near urban arterials. The results indicated that the MAPE 
for predicting O3 fell in the range of 32.93 % and 45.15 %, RMSE were between 
9.5 and 10.3, and R lay between 0.941 and 0.951, respectively. 
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In our previous study, seven types of GM (1, 1) models were used to predict 
hourly PM including PM10 and PM2.5 concentrations in Banciao City of Taiwan (Pai 
et al., 2011). The results indicated that the minimum MAPE, MSE, RMSE, and 
maximum R was 14.10 %, 25.62, 5.06, and 0.96, respectively when predicting 
PM10. When predicting PM2.5, the minimum MAPE, MSE, RMSE, and maximum R 
value of 15.24 %, 11.57, 3.40, and 0.93, respectively could be achieved. In this 
study, the minimum MAPE, MSE, RMSE, and maximum R was 19.00 %, 45.27, 
6.73, and 0.91, respectively.  

According to both results, the GM (1, 1) model required a very small sample 
size, as little as four sample points, however the modeling could result in very 
high prediction accuracy. Furthermore, the parameter estimation in GM (1, 1) 
model was only a procedure to fit a simple regression. Therefore, GM could be 
applied successfully in predicting O3 when the information was not sufficient.  

In addition, the source identification, meteorological conditions, and relevant 
reaction mechanisms were taken as the input variables when using fuzzy or neural 
network models. But the source identification, meteorological conditions, and re-
levant reaction mechanisms did not be taken into account when using GM (1, 1). 
Although the mechanisms were unclear, the whitening part of the GM (1, 1) mod-
el could serve as useful reference to help observer realize more O3 variation. 

4  Conclusions 

Seven types of GM (1, 1) model were used to predict hourly O3 concentrations in 
Dali area of Taiwan. Their prediction performance was also compared. The con-
clusions can be drawn as follows. All statistical values revealed that the predicting 
performance of GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) outperformed other 
models. When predicting O3, the minimum MAPE, MSE, RMSE, and maximum 
R was 19.00 %, 45.27, 6.73, and 0.91, respectively. According to the results, it is 
shown that GM (1, 1) could predict the hourly O3 variation. Additionally, GM (1, 
1) was an efficiently early warning tool for providing timely O3 information. 
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Chapter 18 
Nonlinear Time Series Prediction  
of Atmospheric Visibility in Shanghai 

Jian Yao and Wei Liu* 

Abstract. Atmospheric visibility has recently become more essential to both the 
aviation safety and environmental pollution studies. Due to the characteristic of 
nonlinear time series, the visibility is difficult to predict by traditional statistical 
method. In this study, fuzzy time series models are used to predict the atmospheric 
visibility in Shanghai. The irregular dynamic of visibility was firstly investigated 
by the histogram as well as the autocorrelation analysis to identify the long-term 
memory of its behavior. Observed single-variable time series data were used to 
construct the fuzzy forecasting model. Parameters needed to construct the model 
were chosen to extract the rule of visibility variation. The results revealed that 
fuzzy time series could well predict the variation of visibility. The relative error 
between model outputs and observations was within the practically acceptable 
limits, which points out that atmospheric visibility could be explained and well 
predicted by the fuzzy time series. 

1   Introduction  

1.1   Application of Time Series Analysis to Environmental 
Research 

Prediction of air quality takes place in the environmental management. Among the 
various statistical prediction method, time series analysis is one or the most useful 
tool for simulation of pollutant concentration. Time series analysis applies the 
previous data to find the regularities and estimate future values in consecutive 
time moments. It has been widely used in the field of economics, finance, and 
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market forecasting, especially for the phenomenon with periodical cycle. Howev-
er, the way to predict the non-linear data or those without distinct relationship 
remains unclear. 

A time series is a sequence of statistical data arranged over time. It is obtained 
at determined time moments from environmental system of interest. This analysis 
is fundamental to scientific, engineering, and business research. A time series can 
be divided into two categories, single variable and multiple variables. The major 
model of single variable time series is auto-regressions model (ARs), and the 
model for multivariable time series is vector auto-regressions model (VARs). In 
mathematical expression, the stochastic process is defined as the behavior of a 
random variable { z, t € T}, where T is the range of the variable of t. If T = (-∞, 
∞), then the stochastic process can be represented by {Zt, -∞ < t < ∞}. 

A time series can be represented as follows: 

X = {xt, t = 1,…, N}                            (1) 

where t is the time index and N is the total number of observations. 
The stationary time series is an important random series with the following 

properties: 

E(Yt) = E(Tt-s) = μy                          (2) 

V(Yt) = Var(Yt-s) = σy
2                         (3) 

Cov(Yt, Yt-s) = Cov(Yt-j, Yt-j-s) = γs, for all t, t-s, t-j-s           (4) 

where μy, σy
2, andγs are some constants. If time series is not stationary, then 

the process exhibits changes over time. 
The disadvantage present in traditional time series analysis is that the time se-

ries should be converted to stationary and periodic series prior to its analysis 
(Kantz and Schreiber 1997). To alleviate this problem, we explored the fuzzy time 
series and established its inference engine. The prediction results of fuzzy time 
series were compared with those formed by the traditional time series method to 
determine the feasibility of this fuzzy time series. The visibility concentration was 
analyzed by the fuzzy time series with data mining technique, which was useful in 
extracting the hidden knowledge and characteristic pattern from existing database. 

Mining Fuzzy time series forms the focus of this paper. The main purpose of 
time series data mining is to abstract the phase space of time delay and represent it 
by mathematical equation. Fuzzy theory is broadly used to forecast the phenome-
non with uncertainty. This study presents the inference engine of fuzzy time series 
deduced from previous information or other important predictors. The fuzzy time 
series use the fuzzy interval to cope with the random perturbation of observed 
data. An important information extraction method, data mining, is the technique to 
analyze data with hidden patterns. The trend of visibility can be captured, as being 
revealed by the experimental analysis. 
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1.2   Definition of Atmospheric Visibility and Its Importance 

Visibility is defined as the greatest distance in a given direction at which an object 
can be visually identified with unaided eyes. The object could be a dark object 
positioned prominently against the sky on the horizon in the daytime, or a known, 
preferably unfocused moderately intense light source at nighttime (Wark et al. 
1998). Visibility impairment is a basic form of air pollution that people can see 
and recognize without special instruments. 

As we all known, impairment of atmospheric visibility constitutes many com-
mon and vexing problems for different public authorities in multiple countries 
throughout the world. First, low visibility is obviously a problem for traffic safety. 
Secondly, reduced visibility is a cause of delays and disruption in air, sea and 
ground transportation for passengers and freight. Of cause, impaired visibility is 
also a symptom of environmental problems because it is evidence of air pollution 
(Hyslop 2009); in addition, it has been shown that impaired visibility in urban 
environment and mortality are correlated (Thach et al. 2010). Therefore, visibility 
degradation is a major problem in atmospheric pollution in many mega cities 
around the world. Impairment of visibility is not just an aesthetic problem, but 
could also be used as a visual indicator of ambient air quality in urban areas (Wat-
son 2002). Improvement of visibility requires an understanding of what constitu-
ents in the atmosphere impair visibility as well as the origins of those constituents. 

From 1973 to 2007, visibility had decreased substantially over the globe except 
for Europe (Wang et al. 2009). In the Asian region, dozens of studies have re-
ported a severe decline in visibility (Vingarzan and Li 2006; Chang et al. 2009; 
Tsai et al. 2003). Many analysts have been conducted worldwide (Dzubay et al. 
1982; Larson et al. 1988; Johnson et al. 1990; Wilson and Suh 1997; Kim et al. 
2001; Clancy et al. 2002). Furthermore, visibility impairment due to urban aerosol 
has been the subject of numerous air pollution studies around the world over the 
past several decades (Chan et al. 1999; Lee and Sequeira 2002; Zhang et al. 2004). 
It is known that the impairment of visibility is attributed primarily to the scattering 
and absorption of visible light by suspended particles, as well as by gaseous pollu-
tants (e.g. NO2) in the atmosphere (Appel et al. 1985; Hodkinson 1966; Groblicki 
et al. 1981; Latha and Badarinath 2003). Among them, fine particulates, which 
include sulfates, nitrates, organic and elemental carbon, and soil, effectively  
scatter or absorb visible light and thus reduce visibility (Malm et al. 1994, 1996; 
Sisler and Malm1994; Latha and Badarinath 2003; Kim et al. 2006; Tan et al. 
2009a, 2009b). 

Previous studies revealed that the size, chemical composition, and mass con-
centration of airborne particles substantially affect visibility (Conner et al. 1991; 
Malm and Pitchford 1997). Although the extinction of visible light from gaseous 
species can also impair visibility, such species have a much weaker influence 
(Chan et al. 1999; Dzubay et al. 1982). Also the PM Science Assessment Report 
(North American Research Strategy for Tropospheric Ozone (NARSTO) 2004) 
published recently by the NARSTO suggested that the chemical and physical  
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properties of PM with an aerodynamic diameter less than 2.5 μm have to be  
better characterized, as they are responsible for adverse health effects linked to 
chronic respiratory diseases (Dockery and Pope 1994) and visibility impairment 
(Malm 1999). 

In addition to air pollutants, many meteorological elements such as relative 
humidity (RH), pressure, wind, and temperature may directly or indirectly contri-
bute to the degradation of visibility (Lee 1990; Green et al. 1992; Malm et al. 
1994; Raunemaa et al. 1994; Tsai and Cheng 1998, 1999). Relative humidity in 
and of itself does not reduce visibility, but as RH increases, hygroscopic particles 
progressively absorb more water, thus increasing their scattering cross section and 
proportionately reducing visibility. Therefore RH directly affects the particles that 
contribute to visibility reduction. 

However, other meteorological variables, such as wind speed, temperature, and 
barometric pressure, have little to no direct effect on visibility but may have an 
effect on the concentration of atmospheric particles because of atmospheric dis-
persive characteristics. According to studies by Chang (1999) and Tsai and Cheng 
(1999), lower wind speeds cause particulates to gather and subsequently prevent 
them from spreading, which in turn indirectly affects air quality. 

Nevertheless, either fine particulates, or meteorological parameters are hardly 
to be controlled and forecasted. It becomes necessary to explore a new method to 
predict atmospheric visibility. 

1.3   Stochastic Property for Environmental Phenomenon and 
Visibility 

The analysis of visibility time series starts from the following two definition. 

Definition 1: Visibility is a chaotic occurrence in the environmental system. 

Definition 2: Since we get the measured visibility data in the monitoring station, 
we call the observational results in time domain as a “visibility time series”. 

The chaotic nature exists in many fields such as air pollution concentration, stock 
price index, rainfall, and earthquake. The nonlinear of visibility comes from many 
reasons such as the scale-invariant and clustering characteristics. Because the 
times of visibility are a scale-dependent process, it is not easy to extract the infor-
mation by the traditional way. The irregular dynamic behavior, or chaos, could be 
explained by the influence of some non-linear interdependent parameters in the 
system. 

The chaotic behavior could be investigated by many tools such as histograms or 
spectral analysis. The chaotic indicator, the correlation dimension was the tool for 
the evaluation of pollution concentration to know the possible chaotic characteris-
tic. The autocorrelation could identify the long-term memory and the possibility of 
scale invariance. 
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2   Model Developments 

2.1   Theory of Fuzzy Time Series Analysis 

A visibility time series can be defined as the following. 

Definition 3: Visibility variation is a sequence of numerical data represented as 
follows: 

Xvis = {xvis t, t = 1,……,N }                       (5) 

Definition 4: A fuzzy time series of visibility can be estimated by the event cha-
racterization function, ECF. 

The event of time series is defined by the event characterization function, ECF, 
as follows 

ECF = g (t) = g (Xi,Xi-1,……Xl)                        (6) 

The event characterization function is defined in such a way that its value at t time 
index correlates highly with the occurrence of an event at some specified time in 
the future (Povinelli 1999). 

In analyzing the event in time series data mining, g (t) =Xi+1, the ECF can be 
chosen as: 

i

ii

X

XX
tg

−= +1)(                                (7) 

(7) offers the clear relationships of Xi+1 and Xi in predicting the visibility. 
Event characterization functions can be defined by different ways for event 

predictions at different time series. The event characterization function varies 
according to the objective of prediction. For example, if xt represents today’s mon-
itoring results and the target is to predict the change of tomorrow’s visibility, then 
the event characterization function can be defined in the form given above. 

The membership function of the fuzzy time series was specified in the form  
f(x, a, c) with two parameters a and c, and it is a mapping on a vector x. Depend-
ing on the sign of the parameter a, it is appropriate for representing concepts such 
as "very large" or "very small".  

( ) ( )
1

, ,
1 a x c

f x a c
e− −

=
+

                            (8) 

The value of Xvis at time step (n+1) is determined by the membership function f(x , 
a ,c) and the value of its previous step, as shown below. 

Xvis(tn+1)= Xvis(tn) + f(x,a,c)‧[ Xvis(tn+1) - Xvis(tn) ]              (9) 
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Fig. 1 The membership function of fuzzy time series in the interval [tn, tn+1] 

2.2   Data Mining Technique of Visibility Time Series 

How to extract the useful knowledge from time series data? The data mining could 
be a good answer. Data mining technique can extract hidden and useful informa-
tion using various effective ways using pattern recognition, machine learning, 
artificial intelligence, and statistical methods. (Han and Kambe 2005). 

Data mining is the analysis of data with the goal of uncovering hidden patterns. 
It is defined as extracting useful and meaningful information using statistic, ma-
chine learning, artificial intelligence and pattern recognition techniques from large 
data sets. (Han and Kamber  2005) Povinelli defines it as “combining of data 
mining, time series analysis and genetic (Povinelli 1999). Weiss and Indurkhya 
defined it as “the search for valuable information in large volumes of data”. 
(Weiss and Indurkhya 1998). 

Data mining is the process of discovering hidden and useful information from 
huge data. The data mining technique and nonlinear time series analysis to analyze 
a time series were combined in time series data mining. The event is considered as 
an interesting pattern when data mining is applied to time series data. The predic-
tion algorithm based on data mining of fuzzy time series is shown in figure 2.   

 
Fig. 2 The prediction algorithm of fuzzy time series with data mining technique 
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2.3   Prediction of Visibility by ARIMA Model 

The model proposed by Box-Jenkins, with the method of Autoregressive Inte-
grated Moving Average (ARIMA), is the most frequent used traditional time  
series analysis methods. A seasonal univariate ARIMA( , , )( , , )sp d q P D Q  model 
is given by 

 

( )[ ] ( )t tB y B aμΦ Δ − = Θ      t = 1,…… , N                   (10) 

Where 

( ) ( ) ( )B p B P BϕΦ = Φ                          (11) 

( ) ( ) ( )B q B Q BθΘ = Θ                         (12) 

and μ is an optional model constant. It is also called the stationary series mean, 
assuming that, after differencing, the series is stationary. An optional log scale 
transformation can be applied to ty before the model is fitted. In this section, the 

same symbol, ty , is used to denote the series either before or after log scale trans-

formation. 
Independent variables 1 2, ,..., mx x x  can also be included in the model. The 

model with independent variables is given by 

( )
1

( )
m

t i it t
i

B y c x B aμ
=

  Φ Δ − − = Θ  
  

                      (13) 

where , 1, 2,...,ic i m= , are the regression coefficients for the independent variables. 

Basically, two different estimation algorithms are used to compute maximum 
likelihood (ML) estimates for the parameters in an ARIMA model. Melard’s algo-
rithm is used for the estimation when there is no missing data in the time series. 
The algorithm computes the maximum likelihood estimates of the model parame-
ters. The details of the algorithm are described in (Melard 1984), (Pearlman 1980), 
and (Morf et al. 1974). A Kalman filtering algorithm is used for the estimation 
when some observations in the time series are missing. The algorithm efficiently 
computes the marginal likelihood of an ARIMA model with missing observations. 
The details of the algorithm are described in the following literature: (Kohn and 
Ansley 1986) and (Kohn and Ansley 1985). 

The Conditional least square, CLS, IS used as the forecasting method in the 

ARIMA model. Define  ( )ty l , the l-step-ahead forecast of 1ty +  at the time t, can 

be described as: 

 ( ) ( )  ( ) ( )  ( ) , 1
1

m

t l i i tt t l
i

y l D B y B B a c B xμ + ++
=

= + Φ + Θ + Φ Δ            (14) 

Note that 
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3   Results and Discussion of Numerical Experiment 

3.1   Experimentals 

Three experiments were performed in this study. The first is the statistical analy-
sis. The second was tradition forecasting method by ARIMA model. And the third 
was the fuzzy forecasting. The statistical analyses calculate the basic attributes of 
this time series which helps us to clarify its feature. The fuzzy forecasting applied 
the method in section 2.1 and 2.2 to find the rules in the data mine. The results 
were compared with the results from ARIMA model. Meanwhile, the trend of the 
time series was represents by the dimensionless time series together with the auto-
correlation analysis for the long term memory in the data mining.  

Model evaluation performance was compared by the observed data with the fo-
recasted data. The scattering diagram was shown and the statistical value such as 
the root mean square error (RMSE); mean absolute percentage error (MAPE); 
maximum absolute percentage error (MaxAPE); mean absolute error (MAE); and 
maximum absolute error ( MaxAE) were calculated as well.  

3.2   Study Area and Data Collection 

A time series of hourly average visibility observations, which was obtained from 
the monitoring station at Shanghai, was analyzed by descriptive statistics and sta-
tistical methods and fuzzy model to examine the temporal structures of visibility. 
The length of time for analysis was one year, which is enough to discriminate the 
most important feature of this time series.  

3.3   The Correlation between Model and Observed Values 

The model performance evaluation was accomplished by the comparison of fore-
casted value with the observed value. The correlation coefficient, which represents 
the relationship between the two quantities, was calculated as follows: 

( )( )

( ) ( )
1

2 2

1 1

n

i i
i

n n

i i
i i

X X Y Y
r

X X Y Y

=

= =

− −
=

− −



 
                       (16) 

Where X is the sample mean. 
The values of the correlation coefficient were shown in Table 1. 
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Table 1 The values of the correlation coefficient for different variables 

Parameter Description R value 
T Temperature 0.486a 
V Wind velocity 0.214a 
RH Relative Humidity 0.162a 
PM2.5 Particulate matter with diameter less than 2.5 μm -0.125a 

Note: Confidence level: a: 0.01 

3.4   The Trend of Time Series Data 

The non-dimensional time series were used to compare the trend of time series 
data. The dimensionless time series were represented by 

[ ] .ˆ,,,,ˆ
x

x
xntixX i

ii ===                          (17) 

Where, X is the domain of time series, xi is the individual value, x  is the average 
value of the time series. 

Figure 3 shows the trend of visibility and its related variables, the occurrence 
sequence of the hourly averaged visibility data in this study. This figure reveals 
that the characteristic of stochastic perturbation is obvious, and this is also the 
reason why a simple linear regression cannot be used in the prediction of atmos-
pheric visibility.  

 

 

 
 

Fig. 3 The trend of visibility (a) is the visibility observation results and (b) is the non-
dimensionless plot of the results 



394 J. Yao and W. Liu
 

 

Fig. 4 Autocorrelation coefficients of visibility time series 

The autocorrelation of this study is shown in figure 4. As shown here, the value 
of autocorrelation in decreasing. The results reveal that the long term memory 
effect is not obvious. There are probably many factors which will influence the 
variation of atmospheric visibility. The possible influence factors were listed in 
Table 1.  

3.5   Analysis of Data by Fuzzy Time Series 

The comparison of observed value and prediction results were shown in figure 5. 
The observed value is shown along the horizontal axis and the forecasted value is 
presented on the vertical axis. The results reveal that the relationship was fine. The 
fuzzy model could explain the tendency of the variation of atmospheric visibility 
time series.  The forecasting results of fuzzy model are shown in Figure 6.  

 
 

 

Fig. 5 Observed value and predicted value by fuzzy time series 
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Fig. 6 The forecasting results of fuzzy model 

3.6   Comparison of ARIMA Model 

Table 2 is the summary statistics of the results by ARIMA (1, 1, 1) model. Figure 7 
is the prediction results of ARIMA model. This figure also shows that the ARIMA 
model could also predict the atmospheric visibility time series.  

In order to have a more clear comparison of the forecasting, the errors of these 
two methods were shown in figure 8. The values of error for these two models 
were converting into a 100 percents scale.  The results produced by the fuzzy 
forecasting model are shown in grey and the ARIMA results were shown in black. 
It is seen that these two models are similar. In some place the results of fuzzy is 
better while in some place the ARIMA model is better. The results reveal that both 
models are capable to predict the non-linear characteristics of the atmospheric 
visibilities.  

Table 2 Summary statistics of the results by ARIMA model 

Summary  
Statistics Aver Min Max 

Percentile 
5 10 50 90 95 

Stationary 
R square 

.253 .253 .253 .253 .253 .253 .253 .253 

R square .959 .959 .959 .959 .959 .959 .959 .959 
RMSE 719 

.380 
719 
.380 

719 
.380 

719 
.380 

719 
.380 

719 
.380 

719 
.380 

719 
.380 

MAPE 9 
.079 

9 
.079 

9 
.079 

9 
.079 

9 
.079 

9 
.079 

9 
.079 

9 
.079 

MaxAPE 81 
.433 

81 
.433 

81 
.433 

81 
.433 

81 
.433 

81 
.433 

81 
.433 

81 
.433 

MAE 517 
.445 

517 
.445 

517 
.445 

517 
.445 

517 
.445 

517 
.445 

517 
.445 

517 
.445 

MaxAE 3096 
.390 

3096 
.390 

3096 
.390 

3096 
.390 

3096 
.390 

3096 
.390 

3096 
.390 

3096 
.390 

Normalized  
BIC 

13 
.237 

13 
.237 

13 
.237 

13 
.237 

13 
.237 

13 
.237 

13 
.237 

13 
.237 

Note: RMSE: root mean square error; MAPE: mean absolute percentage error; MaxAPE: maxi-
mum absolute percentage error; MAE: mean absolute error; MaxAE: maximum absolute error 
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Fig. 7 Observed value and predicted value by ARIMA 

 

Fig. 8 The comparison between fuzzy time series and ARIMA 

4   Conclusions 

The study presents the results of atmospheric visibility forecasting by fuzzy time 
series. The proposed method, time series data mining, is based on the fuzzy logic 
to find the hidden rule in previous data. The fuzzy inference engine was obtained  
by the event characterization function, ECF, to abstract the previous information 
of variation in this study. In order to know the performance of this method, the 
forecasting was compared with the ARIMA model. The results reveal that fuzzy 
time series can handle the non-linear characteristics as effectively as ARIMA. 
However, the prediction of environmental event by fuzzy time series is simpler 
and does not include complex relationships. Comparing to the traditional forecast-
ing method, the method can describe complicated nature of the environmental 
phenomenon, especially for non-periodical, non-cyclical data. 

References 

Appel, B.R., Tokiwa, Y., Hsu, J., Kothny, E.I., Hahn, E.: Visibility as related to atmospher-
ic aerosol constituents. Atmos. Environ. 19, 1525–1534 (1985) 

Ansley, C.F., Kohn, R.: Estimation, filtering, and smoothing in state space models with 
incompletely specified initial conditions. Ann. Stat. 13(4), 1286–1316 (1985) 



18   Nonlinear Time Series Prediction of Atmospheric Visibility in Shanghai 397
 

Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M.: 
Source apportionment of visibility degradation problems in Brisbane (Australia)—using 
the multiple linear regression techniques. Atmos. Environ. 33, 3237–3250 (1999) 

Chang, D., Song, Y., Liu, B.: Visibility trends in six megacities in China 1973–2007. At-
mos. Res. 94(2), 161–167 (2009) 

Chang, J.: The relationship of visibility with physical and chemical characteristics of sus-
pended particles in Kaohsiung City. Master Thesis, National Sun Yat-Sen University, 
Kaohsiung, Taiwan (1999) 

Clancy, L., Goodman, P., Sinclair, H., Dockery, D.W.: Effect of air-pollution control on 
death rates in Dublin, Ireland: intervention study. Lancet 360, 1210 (2002) 

Conner, W.D., Bennett, R.L., Weathers, W.S., Wilson, W.E.: Particulate characteristics and 
visual effects of the atmosphere at Research Triangle Park. J. Air Waste Manage. As-
soc. 41, 154–160 (1991) 

Dockery, D.W., Pope, C.A.: Acute respiratory effects of particulate air pollution. Annu. 
Rev. Publ. Health 15, 107–132 (1994) 

Dzubay, T.G., Stevens, R.K., Lewis, C.W., Hern, D.H., Courtney, W.J., Tesch, J.W., et al.: 
Visibility and aerosol composition in Houston, Texas. Environ. Sci. Technol. 16, 514–
525 (1982) 

Green, M.C., Flocchini, R.G., Myrup, L.O.: The relationship of the extinction coefficient 
distribution to wind field patterns in southern California. Atmos. Environ. 26, 827–840 
(1992) 

Groblicki, P.J., Wolff, G.T., Countess, R.J.: Visibility reducing species in the Denver 
Brown Cloud—1. Relationships Between Extinction and Chemical Composition. At-
mos. Environ. 15, 2473–2484 (1981) 

Han, J., Kamber, M.: Data Mining: Concepts and Techniques, p. 800. Academic Press, San 
Francisco (2005) 

Hodkinson, J.R.: Calculations of color and visibility in urban atmospheres polluted by 
gaseous NO2. Int. J. Air Water Pollut. 10, 137–144 (1966) 

Hyslop, N.P.: Impaired visibility: the air pollution people see. Atmos. Environ. 43(1), 182–
195 (2009) 

Johnson, K.G., Gideon, R.A., Luftsgaarden, D.O.: Montana air pollution study: children’s 
health effects. J. Off. Stat. 5, 391–408 (1990) 

Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis, p. 388. Cambridge University 
Press, Cambridge (1997) 

Kim, K.W., Kim, Y.J., Oh, S.J.: Visibility impairment during yellow sand periods in the 
urban atmosphere of Kwangju, Korea. Atmos. Environ. 35, 5157–5167 (2001) 

Kim, Y.J., Kim, K.W., Kim, S.D., Lee, B.K., Han, J.S.: Fine particulate matter characteris-
tics and its impact on visibility impairment at two urban sites in Korea: Seoul and In-
cheon. Atmos. Environ. 40, 593–605 (2006) 

Kohn, R., Ansley, C.F.: Estimation, prediction, and interpolation for ARIMA models with 
missing data. J. Am. Stat. Assoc. 81(395), 751–761 (1986) 

Larson, S.M., Cass, G.R., Hussey, K.J., Luce, F.: Verification of image processing based 
visibility models. Environ. Sci. Technol. 22, 629–637 (1988) 

Latha, K.M., Badarinath, K.V.S.: Black carbon aerosols over tropical urban environment—
a case study. Atmos. Res. 69, 125–133 (2003) 

Lee, D.O.: The influence of wind direction, circulation type and air pollution emissions on 
summer visibility trends in southern England. Atmos. Environ. 24A, 195–201 (1990) 

Lee, Y.L., Sequeira, R.: Water-soluble aerosol and visibility degradation in Hong Kong 
during autumn and early winter, 1998. Environ. Pollut. 116, 225–233 (2002) 



398 J. Yao and W. Liu
 

Malm, W.C.: Introduction to visibility, cooperative institute for research in the atmosphere 
(1999),  
http://vista.cira.colostate.edu/improve/Education/ 
intro_to_visibility.pdf (accessed December 15, 2011) 

Malm, W.C., Pitchford, M.L.: Comparison of calculated sulfate scattering efficiencies as 
estimated from size-resolved particle measurements at three national locations. Atmos. 
Environ. 31, 1315–1325 (1997) 

Malm, W.C., Sisler, J.F., Huffman, D., Eldred, R.A., Cahill, T.A.: Spatial and seasonal 
trends in particle concentration and optical extinction in the United States. J. Geophys. 
Res. 99 (D1), 1347–1370 (1994) 

Melard, G.: Algorithm AS 197: A fast algorithm for the exact likelihood of autoregressive-
moving average models. Appl. Stat. 33(1), 104–114 (1984) 

Morf, M., Sidhu, G.S., Kailath, T.: Some new algorithms for recursive estimation on con-
stant, linear, discrete-time systems. IEEE Trans. Auto. Control AC-19, 315–323 (1974) 

NARSTO.: Particulate Matter Assessment for Policy Makers: A NARSTO Assessment. In: 
McMurry, P., Shepherd, M., Vickery, J. (eds.). Cambridge University Press, Cambridge 
(2004) 

Raunemaa, T., Kikas, U., Bernotas, T.: Observation of submicron aerosol, black carbon and 
visibility degradation in remote area at temperature range from −24 to 20 °C. Atmos. 
Environ. 28, 865–871 (1994) 

Pearlman, J.G.: An algorithm for the exact likelihood of a high-order autoregressive-
moving average process. Viometrika 67, 232–233 (1980) 

Povinelli, R.J.: Time Series Data Mining: Identifying Temporal Patterns for Characteriza-
tion and Prediction of Time Series Events. Ph.D. Dissertation, Marquette University, 
p.180 (1999) 

Sisler, J.F., Malm, W.C.: The relative importance of soluble aerosols to spatial and seasonal 
trends of impaired visibility in the United States. Atmos. Environ. 28, 851–862 (1994) 

Tan, J.H., Duan, J.C., Chen, D.H., Wang, X.H., Guo, S.J., Bi, X.H., et al.: Chemical charac-
teristics of haze during summer and winter in Guangzhou. Atmos. Res. 94, 238–245 
(2009a) 

Tan, J.H., Duan, J.C., He, K.B., Ma, Y.L., Duan, F.K., Chen, Y., et al.: Chemical characte-
ristics of PM2.5 during a typical haze episode in Guangzhou. J. Environ. Sci. 21, 774–
781 (2009b) 

Thach, T.Q., Wong, C.M., Chan, K.P., Chau, Y.K., Chung, Y.N., Ou, C.Q., et al.: Daily 
visibility and mortality: assessment of health benefits from improved visibility in Hong 
Kong. Environ. Res. 110(6), 617–623 (2010) 

Tsai, Y.I., Cheng, M.T.: Effects of sulfate and humidity on visibility in the Taichuang har-
bor area (Taiwan). J. Aero. Sci. 29, 1213–1214 (1998) 

Tsai, Y.I., Cheng, M.T.: Visibility and aerosol chemical compositions near the coastal area 
in central Taiwan. Sci. Total Environ. 231, 37–51 (1999) 

Tsai, Y.I., Lin, Y.H., Lee, S.Z.: Visibility variation with air qualities in the metropolitan 
area in southern Taiwan. Water Air Soil Poll. 144, 22 (2003) 

Vingarzan, R., Li, S.M.: The Pacific 2001 Air Quality Study–synthesis of findings and 
policy implications. Atmos. Environ. 40(15), 2637–2649 (2006) 

Wang, K., Dickinson, R.E., Liang, S.: Clear sky visibility has decreased over land globally 
from 1973 to 2007. Science 323(5920), 1468–1470 (2009) 

Wark, K., Warner, C.F., Davis, W.T.: Air Pollution—Its Origin and Control, 3rd edn. Ad-
dison-Wesley Longman, Reading (1998) 



18   Nonlinear Time Series Prediction of Atmospheric Visibility in Shanghai 399
 

Watson, J.G.: Visibility: science and regulation. J. Air Waste Manage. Assoc. 52, 628–713 
(2002) 

Weiss, S.M., Indurkhya, N.: Predictive Data Mining: A practical Guide, p. 228. Morgan 
Kaufmann, San Fransisco (1998) 

Wilson, W.E., Suh, H.H.: Fine particles and coarse particles: concentration relationships 
relevant to epidemiologic studies. J. Air Waste Manage. Assoc. 47, 1238–1249 (1997) 

Zhang, R., Wang, M., Sheng, L., Kanai, Y., Ohta, A.: Seasonal characterization of dust 
days, mass concentration and dry deposition of atmospheric aerosols over Qingdao, 
China. China Particuology 2(5), 196–199 (2004) 

Abbreviations 

ARs  auto-regressions model  
VARs  vector auto-regressions model  
NARSTO  North American Research Strategy for Tropospheric Ozone 
RH  relative humidity  
ECF  event characterization function 
ARIMA  autoregressive integrated moving average  
ML  maximum likelihood 
CLS  Conditional least squares  
FTS  fuzzy time series  
RMSE root mean square error 
MAPE mean absolute percentage error 
MaxAPE maximum absolute percentage error 
MAE  mean absolute error 
MaxAE  maximum absolute error 
 
 



Author Index

Aznarte, José Luis 1
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