
Automatic Code Generation

for the Orchestration of Web Services with Reo

Sung-Shik T.Q. Jongmans1, Francesco Santini1, Mahdi Sargolzaei2,
Farhad Arbab1, and Hamideh Afsarmanesh2

1 Centrum Wiskunde & Informatica, Amsterdam, Netherlands
{S.S.T.Q.Jongmans,F.Santini,Farhad.Arbab}@cwi.nl
2 Universiteit van Amsterdam, Amsterdam, Netherlands

{H.Afsarmanesh,M.Sargolzaei}@uva.nl

Abstract. We present a compositional construction of Web Services,
using Reo and Constraint Automata as the main “glue” ingredients. Reo
is a graphical and exogenous coordination language based on channels.
We propose a framework that, taking as input the behavioral description
of services (as Constraint Automata), their WSDL interfaces, and the de-
scription of their interaction in Reo, generates all the necessary Java code
to orchestrate the services in practice. For each Web Service, we auto-
matically generate a proxy that manages the communication between
this service and the Reo circuit. Although we focus on Web Services,
we can compose different kinds of service-oriented and component tech-
nologies at the same time (e.g., CORBA, RPC, WCF), by generating
different proxies and connecting them to the same coordinator.

1 Introduction and Motivations

A Web Service (ws) can be very generally described as a software system de-
signed to support interoperable machine-to-machine interaction over a network.
The standards at the basis of wss are the Web Services Description Language
(wsdl) [18], which describes the interface in a machine-processable format, and
Simple Object Access Protocol (soap) [17], which is used to format the exchanged
messages, typically conveyed using http with an xml serialization.

Web Services are strongly loosely-coupled by definition, and therefore, two
fundamental combination paradigms have emerged in the literature, permitting
complex combinations of wss: orchestration and choreography [16]. Nowadays,
there exist many workflow-description-based languages, defined to orchestrate or
to choreograph wss, including bpel4ws [15] and ws-cdl [20] (see Sec. 2). How-
ever, such proposals remain at the description level, without providing any kind
of formal reasoning mechanisms or tool support based on the proposed notation
for checking the compatibility of wss [11]. Despite all the efforts, composition
of wss is still a critical problem.

In this paper, we orchestratewss using the graphical language Reo [1]. Several
(rather theoretical) studies on service orchestration using Reo already exist,
including [11,12,13]. We build atop ideas presented in those papers, approaching

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 S.-S.T.Q. Jongmans et al.

them from a more practical perspective: we present a tool that enables employing
Reo for orchestrating real wss, deployed and running on different servers.

The Reo language has a strong formal basis and promotes loose coupling,
distribution, mobility, exogenous coordination, and dynamic reconfigurability.
Constraint Automata (ca) [2] provide compositional formal semantics for Reo.
The formal basis of Reo guarantees possibilities for both model checking and
verification [10], as well as well-defined execution semantics of a Web Service
composition [11]. Exogenous coordination of components in Reo by channels
makes it suitable for modeling orchestration. In this modeling, wss play the role
of components and the orchestrator is the Reo circuit that coordinates them.
In other words, Reo as a modeling language for service composition can pro-
vide service connectivity, composition correctness, automatic composition, and
composition scalability, which are vital and valuable for modeling wss.

In the rest of the paper, we present how to generate all the necessary Java
code in an automated way, starting from the description of the orchestration
(given as a Reo circuit), the description of the wss interfaces (given as wsdl
files), and the description of the wss behavior (given as automata). For each
ws, we generate a proxy application that acts as an intermediary relaying mes-
sages between its ws and the Reo orchestrator, i.e., between the “ws world” and
the “Reo world.” All the output code necessary to manage the orchestration in
practice is generated automatically, in a manner completely transparent to both
client and wss developers, whose programmers do not have to be concerned with
this middleware at all. Although we focus on wss in this paper, the same frame-
work can be used to compose different kinds of service-oriented and component
technologies at the same time (e.g., corba, rpc, wcf), by generating different
proxies and connecting them to the same Reo circuit. Therefore, we make Reo
a complete language for the verification and (with this work) implementation of
ws orchestration.

The paper is organized as follows: in Sec. 2 we describe the related work
and further motivate this paper with respect to the literature. In Sec. 3, we
summarize the necessary background notions about Reo. Section 4 forms the
core of the paper, since it details the architecture of our Reo-based orchestration
platform and how we implemented it. In Sec. 5 we present two case studies of
ws combination that can be automatically generated with our tool, and in Sec. 6
we draw the final conclusions and describe our future work.

2 Related Work

In literature we can find two main coordination paradigms to combine Web
Services (ws): either through orchestration or choreography [16] languages. In
orchestration, the involved wss are under the control of a single endpoint central
process. This process coordinates the execution of different operations on thewss
participating in the process. An invoked ws neither knows nor needs to know
that it is involved in a composition process and that it is playing a role in a busi-
ness process definition. Choreography, in contrast, does not depend on a central

Automatic Code Generation for the Orchestration of Web Services with Reo 3

orchestrator. Each ws that participates in the choreography has to know exactly
when to become active and with whom to interoperate: they must be conscious
of the business process, operations to execute, messages to exchange, as well
as the timing of message exchanges. However, in real-world scenarios, corporate
entities are sometimes unwilling to delegate control of their business processes to
their integration partners. Therefore, in this paper we focus on the orchestration
paradigm, although Reo can be used to describe choreographies [11] as well.

Many languages have emerged and been proposed in academia and industry
for composition and execution of Web Services, according to the choreography
or orchestration principles: some examples are bpel4ws [15], ws-cdl [20], bpml
and wsci [19], and bpmn [6] and bpel4chor [6]. The Business Process Execu-
tion Language for Web Services (bpel4ws) is an orchestration language with an
xml-based syntax, supporting specification of processes that involve operations
provided by one or several wss. Furthermore, bpel4ws draws upon concepts
developed in the area of workflow management. When compared to languages
supported by existing workflow systems and to related standards (for example,
wsci), it relatively appears to be more expressive. bpel4chor is a choreography-
oriented version of ws-bpel instead. The W3C Web Service Choreography De-
scription Languages (ws-cdl) is a W3C candidate recommendation in the area
of service composition. Likewsci, the intent of ws-cdl is to define a language for
describing multiparty interaction scenarios (or choreographies), not necessarily
for the purpose of executing them using a central scheduler but rather with the
purpose of monitoring them and being able to detect deviations with respect to a
given specification. The Business Process Modeling Notation (bpmn) offers a rich
set of graphical notations for control flow constructs and includes the notion of
interacting processes where sequence flow (within an organization) and message
flow (between organizations) are distinguished [6]. Several formal proposals have
been made for representing wss using, for example, Labeled Transition System,
Process Algebra, Petri nets, and Reo itself [7,3,21,11].

Considering the existing implementations, we can find service-oriented work-
flow research tools, as BliteC [4] and JOLIE [14], and commercial offers, as IBM
WebSphere, BEA WebLogic Integrator, Microsoft Web Services Support, and
WF. These systems provide a design tool and an execution engine for business
processes in workflow specification languages. For example part of the BizTalk
suite (another Microsoft product) is the BizTalk Orchestration Engine, which
implements xlang (a precursor of bpel4ws). Windows Workflow Foundation
(WF) is a Microsoft technology that provides an API, an in-process workflow
engine, and a rehostable designer to implement long-running processes as work-
flows within .NET applications. BliteC [4] is a software tool that translates ser-
vice orchestrations written in Blite, into readily executable ws-bpel programs.
JOLIE [14] is a Java-based interpreter and engine for orchestration programs,
with a mathematical underlying model.

Comparing our solution with the related work presented in this section, none
of the XML-based languages in the proposed standards, e.g., bpel4ws [15] or
ws-cdl [20], comes with tools for a direct formal verification and model checking

4 S.-S.T.Q. Jongmans et al.

a b a b

sync syncdrain

a b a b
ϕ

lossysync filter(ϕ)

a b� a b�

fifo fifo(�)

(a) Channels.

A V

B W

C X

D Y

E Z

� � � �

�

(b) Circuit: Sequencer.

Fig. 1. Graphical syntax of common channels and a circuit

Name Behavior

sync Atomically fetches an item on its source end a and dispatches it on its sink end b.
syncdrain Atomically fetches (and loses) items on both of its source ends a and b.

lossysync Atomically fetches an item on its source end a and, non-deterministically, either
dispatches it on its sink end b or loses it.

filter(ϕ) Atomically fetches an item on its source end a and dispatches it on its sink end b if
this item satisfies the filter constraint ϕ; loses the item otherwise.

fifo Atomically fetches an item on its source end a and stores it in its buffer.
fifo(�) Atomically dispatches the item � on its sink end b and clears its buffer.

Fig. 2. Channel behavior

of programs or specifications in that language; therefore, verification of specifi-
cations in these languages requires a translation to a higher level of abstraction,
in contrast to other formal techniques, such as Process Algebra [3] and Petri
nets [21]. Moreover, with Reo a user is able to compose two orchestrators such
that global synchronicity emerges from the synchronous behavior of the individ-
ual orchestrators [1]. This can be useful when different coordination protocols,
designed for different services, need to be merged together in order to integrate
all of them in the same single protocol. This advantage is granted by the for-
mal definition of the join operator on two circuits [1]. Furthermore, the Reo
language yields more declarative to directly specify an interaction, while with
Process Algebra one has to define a sequence of actions to achieve the same
interaction.

3 Reo

As its main feature, Reo facilitates compositional construction of circuits : com-
munication mediums that coordinate interacting parties (in this paper, Web
Services), each built from a number of simple channels. Every channel in Reo

Automatic Code Generation for the Orchestration of Web Services with Reo 5

has exactly two ends, and each such end has exactly one of two types: a channel
end either accepts data items—a source end—or it offers data items—a sink
end.1 Figure 1a shows six different channels at the disposal of Reo users; Figure 2
describes their behavior. Interestingly, Reo does not fix which particular channels
one may use to construct circuits with. Instead, Reo supports an open-ended set
of channels, each of which exhibits a unique behavior. This feature enables users
of Reo to define their own channels, tailored to their specific needs.

We call the act of “gluing” channel ends together to build circuits composition.
One can think of composite circuits as digraphs with nodes and edges (channels)
and compare their behavior to plumbing systems. In such systems, “fluids” flow
through “pipes and tubes” past “fittings and valves.” Similarly, in Reo circuits,
“data items” flow through “channels” (along edges) past “nodes.” Usually, the
interacting parties themselves supply the data items that flow through the cir-
cuits they communicate through. To this end, every circuit defines an interface.
Such an interface consists of the boundary nodes of a circuit: parties write and
take data items only to and from boundary nodes.

Figure 1b shows a circuit, named Sequencer, that one can construct from the
channels in Fig. 1a. This circuit imposes an order on when parties can write
and take data items to and from its boundary nodes (shown as open circles):
first A and V, second B and W, . . . , fifth E and Z, subsequently A and V again,
etc. In general, one derives the behavior of a circuit from the behavior of the
channels and nodes that it consists of—circuits exhibit compositionality. We skip
the details here, however, for brevity and because they do not matter for the
rest of this paper—see [1] for details.

Importantly, there exist various semantic models to formally describe the be-
havior of circuits. These semantic models,2 among other applications, enable one
to reason about the correctness of service orchestrations. For example, Kokash
et al. employ the mCRL2 toolkit to verify the correctness of Reo translations of
business process models [10]. In this paper, however, we use formal models of
circuits for two other purposes. First, we employ Constraint Automata (ca) [2]
to automatically compile Reo circuits—i.e., orchestrators—to Java code. Second,
we formalize the behavior of wss in terms of ca (see Sec. 4).

Constraint Automata resemble classical finite state machines in the sense that
they consist of finite sets of states and transitions. States represent the inter-
nal configurations of a circuit, while transitions describe its atomic coordination
steps. Formally, we represent a transition as a tuple of four elements: a source
state, a synchronization constraint, a data constraint, and a target state. A syn-
chronization constraint specifies which nodes synchronize—i.e., through which
nodes a data item flows—in some coordination step; a data constraint specifies
which particular data items flow in such a step. Figure 3 shows the ca of the
channels and circuits in Fig. 1.

1 However, channels do not necessarily have both a source end and a sink end: they
can also have two source ends or two sink ends.

2 See [9] for a recent survey on the various semantic formalisms for Reo.

6 S.-S.T.Q. Jongmans et al.

{a, b},
[a] = [b]

{a, b},�

{a},
[a] = d

{b},
[b] = d

sync syncdrain

{a, b},
[a] = [b]

{a},�

{a, b},
[a] |= ϕ ∧ [a] = [b]

{a}, |a| �|= ϕ

lossysync filter(ϕ) fifo, fifo(�)

(a) Channels.

{A,V}, [A] = |V|

{B,W},
[B] = |W|

{C,X},
[C] = |X|

{D,Y}, [D] = |Y|

{E,Z},
[E] = |Z|

(b) Circuit: Sequencer.

Fig. 3. Constraint Automata of common channels and a circuit

4 Orchestrating Web Services with Reo

Conceptually, orchestratingWeb Services (ws) using Reo proceeds in three steps:
(i) design an orchestrator circuit, (ii) deploy and run this circuit, and (iii) connect
some wss to it. The Extensible Coordination Tools (ect),3 a collection of Eclipse
plug-ins constituting the default ide for Reo, perfectly supports step (i): it allows
users of Reo to design circuits using a drag-and-drop interface. But unfortunately,
steps (ii) and (iii) involve less straightforward activities. How can we go from a
circuit diagram to executable code? And how can we connect wss oblivious to
Reo to this executable circuit? In this section, we present two tools that address
these questions. We call these tools the Reo Compiler and the Proxy Generator :

– The Reo Compiler compiles circuit diagrams to Java, addressing step (ii).
– The Proxy Generator generates proxies for wss. Postponing the details until

Sec. 4.2, a proxy serves as an intermediary between a circuit and a ws.
Essentially, it relays data items from a circuit to aws and vice versa, bridging
the gap between them, addressing step (iii).

Figure 4 shows the architecture of our two tools and the intended workflow for
using them. We elaborate on this figure in the next three subsections.

4.1 Reo Compiler: From Circuit Diagrams to Java

The Reo Compiler works as follows. Suppose a user of Reo has drawn a circuit
diagram using the ect and wishes to compile it to Java. Internally, the ect
stores this diagram as an xml document, which subsequently serves as input to
the Reo Compiler; the box labeled “Reo Circuit” in Fig. 4 represents such an
xml document. On input of an xml document conn.xml describing some circuit
C, the Reo Compiler first parses this file; the component labeled “Reo Parser”
represents the component involved. Subsequently, the Reo Compiler computes

3 http://reo.project.cwi.nl

http://reo.project.cwi.nl

Automatic Code Generation for the Orchestration of Web Services with Reo 7

Fig. 4. Architecture of our code generation framework

the Constraint Automaton (ca) that models the behavior of C. For this purpose,
it uses functionality that the ect already ships with; the box labeled “Reo2CA”
in Fig. 4 represents the component involved. This computation has a complexity
exponential in the number of buffers—fifo channels—in C. Finally, based on the
ca just computed, the Reo Compiler generates a Java class; the boxes labeled
“CA2Java” and “Java Circuit Code” in Fig. 4, respectively, represent the compo-
nent involved and the generated class. This computation has a complexity linear
in the size of the ca. The generated class extends the Thread class, overriding
the default run() method. In particular, run() now executes a state machine
that simulates the ca computed previously, as follows.

Suppose a Java class Conn generated as described above for some circuit C.
At runtime, an instance conn of Conn awaits requests for writing or taking
data items at particular nodes. We call the concurrent data structures that
register such requests synchronization points : for each node that a circuit allows
interaction on—its boundary nodes—we have a synchronization point in the
implementation. To make a transition, conn first checks the synchronization
points of the nodes involved in that transition, i.e., the synchronization constraint
in the corresponding transition of the ca of C. This check has a complexity
linear in the size—the number of nodes—of the synchronization constraint. If
appropriate requests exist, conn invokes a simple solver to check if the data items
involved in those requests satisfy certain conditions, i.e., the data constraint in
the corresponding transition of the ca of C. If they do, the transition fires: the
requests resolve and data items flow according to the conditions checked before.

8 S.-S.T.Q. Jongmans et al.

Fig. 5. Architecture of a proxy Fig. 6. Architecture of a deployed or-
chestration

Importantly, interacting parties can communicate with compiled circuits at
runtime only through synchronization points. As detailed in Section 4.2, this
causes issues if we want to connect wss to a circuit compiled as described.

4.2 Proxy Generator: Connecting Web Services to Circuits

First, we discuss in more detail why we need proxies and how they work. There-
after, we describe the process of generating them.

Background on Proxies: Suppose a ws deployed remotely—from the view-
point of the machine on which the orchestrator runs—that we wish to include in a
service composition orchestrated by a circuit. Ideally, we would simply send this
ws the synchronization points of the boundary nodes it should connect to. Sub-
sequently, this ws would perform i/o operations directly on the synchronization
points it received. Unfortunately, however, this approach does not work: no ws
supports direct communication through circuits—to adopt this as a prerequisite
for service orchestration with Reo would constitute an unacceptable limitation.
Instead, we take a different approach for including wss in service compositions
orchestrated with Reo (including existing ones): service proxying.

In service proxying, one creates a proxy for each ws in a service composition.
These proxies then serve as intermediaries between a circuit and the orches-
trated wss.4 To a ws, however, its proxy looks just like any other client. To
explain service proxying in more detail, Fig. 5 shows the architecture of a proxy
P , together with a circuit C and a WS S. Essentially, P consists of two sides :

4 Note that the concept of service proxies works also for other orchestration languages.

Automatic Code Generation for the Orchestration of Web Services with Reo 9

a circuit side and a service side. On the circuit side, P has access to a number
of synchronization points. Thus, this side allows P to write and take data items
directly to and from C. On the service side, P has access to the network infras-
tructure that connects P with S. Thus, this side allows P to directly send and
receive messages to and from S. Essentially, P has two tasks:

– Take data items from C on its circuit side; encode these data items into
messages that it can send to S on its service side; send these messages.

– Receive messages from S on its service side; encode these messages into data
items that it can write to C on its circuit side; write these data items.

Circuit Side. The circuit side of a proxy contains synchronization points con-
nected to a Java implementation of a Constraint Automaton (ca). This ca
implementation resembles the implementation discussed in Sec. 4.1. The box
labeled “Simulation Automaton” in Fig. 5 represents this executable ca, which
simulates the behavior of the ws involved. In particular, it simulates the exter-
nal view [11] of this ws: every state represents an externally observable internal
configuration of the ws, while every transition represents the exchange of one or
more messages.5 More precisely, the synchronization points that the simulation
automaton inside a proxy has access to represent the names of the messages ex-
changed by a ws; the data items passing through these synchronization points
constitute the actual payloads. (Recall from Section 4.1 that a ca implementa-
tion has a synchronization point for each boundary node appearing in one of its
transitions.) For instance, one may have a synchronization point for a message
named addIntegersRequest and a (serialized) data item “x=1;y=2” (the actual
payload of addIntegersRequest).

Proxies require simulation automata for the following reason. First, we ob-
serve that stateful wss—wss with more than one internal configuration—may
permit the exchange of different messages in different such configurations. The
correct functioning of proxies depends crucially on this information: proxies must
know which messages their wss can exchange in each state to decide which syn-
chronization points to allow interaction on. To illustrate this, suppose a ws that
at some point permits only the receipt of a multIntegersRequest message. In
that case, it makes no sense for its proxy to take data items from the synchro-
nization point for the addIntegersRequestmessage: the proxy may try to relay
data items taken from this synchronization point, but it will certainly fail. Af-
ter all, the ws does not permit addIntegersRequest messages in its current
state! Proxies must know the present configuration of their wss to avoid such
faulty behavior. However,wss encapsulate their states and generally, they do not
provide means to share them with clients. By simulating their respective ws be-
havior, proxies compensate for this: every time a proxy exchanges a message with
its ws, its simulation automaton makes a corresponding transition. In this way,

5 We model stateless wss with singleton automata.

10 S.-S.T.Q. Jongmans et al.

a proxy can always derive which message exchanges its ws permits, namely from
its simulation automaton.6

Service Side. The service side of a proxy contains components that facilitate
network communication, e.g., using soap: a standardized protocol for exchanging
structured information in computer networks [17]. To implement this, we use
Apache Axis2 [8], because it is a very flexible and easily extensible framework.
Moreover, it supports many standards, including wsdl [18] and soap [17].

In short, Axis2 provides us the technology for exchanging messages with wss
over a network. Consequently, we had to implement only a connection between
Axis2 and the simulation automata in our proxies. The box labeled “WSCU” in
Fig. 5 represents the component of the proxy that does this, called Web Service
Communication Unit (wscu). Roughly, a wscu works as follows.

– Awscu monitors the simulation automaton. If this automaton makes a tran-
sition, it registers the data items and the synchronization points
involved. Subsequently, it packs these data items—payloads—and synchro-
nization points—message names—into an appropriate message format (using
Axis2), e.g., soap. Finally, it sends these messages over the network to the
actual ws (again using Axis2).

– Concurrently, a wscu receives messages sent by the actual ws (using Axis2).
Subsequently, it unpacks these messages (e.g., removes headers) and writes
their payload as data items on the appropriate synchronization points. Im-
portantly, a wscu forces the simulation automaton to make a corresponding
transition. Otherwise, this automaton and the actual ws can diverge.

In our current implementation, proxies of wss run on the same machine as
the circuit orchestrating them. This has a practical reason: typically, we cannot
deploy applications on the remote machines on which the wss run.

Generating Proxies. Previously, we outlined why we need proxies and how
they work. Next, we describe how the Proxy Generator generates them. To
generate a proxy for a single ws, the Proxy Generator requires two inputs: a
wsdl document and a ws behavior specification (wsbs). The wsdl document
specifies the syntax and technical details of the interface of the ws; the wsbs
formally describes its (externally observable) behavior.7

To explain in more detail how the Proxy Generator works, suppose a wsdl
document service.wsdl and a wsbs file service.wsbs. (Suppose they describe
the same ws.) The Proxy Generator proceeds in three steps.

6 Currently, we assume that a ws and a simulating automaton start and stay in sync.
Communication errors, for instance, can take the two out of sync, but a proxy can
detect such situations and recover or reset itself to reestablish its sync with its
respective actual service.

7 We assume that ws providers publish sufficient information about the externally
visible behavior of their wss to construct a faithful wsbs in some formalism. Note
that not only our approach requires such a behavioral description: generally, if ws
providers want to enable others to compose the services they provide, this comprises
essential information (especially in the case of stateful wss).

Automatic Code Generation for the Orchestration of Web Services with Reo 11

– First, the Proxy Generator parses service.wsdl using Axis2 technology;
the box labeled “WSDL Parser” in Fig. 4 represents the component involved.
(Note that both the Proxy Generator and the generated proxy use Axis2,
albeit in different ways.) Subsequently, the Proxy Generator generates a Web
Service Communication Unit (wscu) based on the previous parsing; the box
labeled “WSCU Generator” represents the component involved.

– Second, the Proxy Generator parses service.wsbs; the box labeled “WSBS
Parser” in Fig. 4 represents the component involved. More precisely, this com-
ponent parses the content of service.wsbs to a Constraint Automaton (ca).
Subsequently, similar to the Reo Compiler (see Section 4.1), the Proxy Gen-
erator generates Java code for the ca resulting from parsing service.wsbs.
In fact, the boxes labeled “CA2Java Code Generator” in the Reo Compiler
and Proxy Generator refer to the same component. Instances of the resulting
Java class serve as simulation automata at runtime, as described above.
The current version of the Proxy Generator handles wsbs files describing
ca. We aim to experiment with other languages for specifying ws behavior:
in principle, our approach supports any modeling language for which we can
devise a mapping to ca. For instance, we can use the tool presented in [5] to
automatically translate uml Sequence Diagrams to Reo circuits. Combined
with the Reo2CA component in Fig. 4, this yields ca that can serve aswsbss.
We outline this further in Sec. 5.

– Finally, the Proxy Generator combines the generated wscu and the gener-
ated simulation automaton class by adding glue code between them. More
concretely, this step yields a Java class Proxy. The box named “Java Proxy
Code” in Fig. 5 represents this class. Instances of Proxy run as proxies,
encapsulating the constituent wscu and simulation automaton.

4.3 Gluing Together Orchestrators and Proxies

We discuss how to combine generated proxies of wss with a compiled circuit
that orchestrates them—we describe the box named “Final Code Merger” in
Fig. 4. We start with some notation. Suppose an xml document conn.xml spec-
ifying a circuit C. Moreover, suppose a set of 〈wsdl, wsbs 〉-pairs ̂S represent-
ing the set of wss S that C orchestrates. Let Conn denote the Java class the
Reo Compiler yields on input of conn.xml (i.e., the box named “Java Circuit
Code”); let Proxy denote the class the Proxy Generator yields on input of some

〈service.wsdl, service.wsbs〉 ∈ ̂S (i.e., the box named “Java Proxy Code”).
The box named “Final Code Merger” in Fig. 4 represents the component that

glues together Conn and the Proxy of every ŝ ∈ ̂S. This gluing yields a collec-
tion of Java classes that, once deployed, orchestrate the wss in the set S as
desired. The “Final Code Merger” produces a gluing Java class that comprises
the following activities.

1. Create a synchronization point for each boundary node of C.
2. Create an instance conn of the class Conn generated by the Reo Compiler on

input of conn.xml. Moreover, pass the synchronization points created in the

12 S.-S.T.Q. Jongmans et al.

Fig. 7. The sequential coordination of four wss represented as a Reo circuit: the num-
bers represent the ordering of the exchanged messages

previous step to conn. These synchronization points constitute the interface
through which proxies communicate with conn (see Sec 4.1).

3. Create an instance proxy of the class Proxy generated by the Proxy
Compiler on input of ŝ = 〈service.wsdl, service.wsbs〉 for each ŝ ∈ ̂S.
Importantly, pass to this instance the appropriate synchronization points
created in step (1). The sharing of synchronization points between conn and
proxy establishes the link between the orchestrator and a ws.

5 Case Studies

In this section, we first present a simple yet nontrivial example of orchestration
to familiarize the reader, and then, we extend the Reo circuit of this first example
to show a more complex interaction protocol among (almost) the same services
of the first example, to show the expressiveness of Reo at full.

In Fig. 7 we can see the complete representation of the circuit for the orches-
tration of four wss. The image has been created with the ect. With the aid of
the Reo Compiler (see Sec. 4.1) we generated the Purchase circuit describing
the interaction among the four wss named ClientBroker, StoreOffice, SalesOf-
fice, and Bank. This scenario implements the classical purchase-online example.
The ClientBroker service takes care of interfacing the real client to the other ser-
vices, which deal with: the information about the store (i.e., the StoreOffice ser-
vice), the procedure to prepare the invoice (i.e., the SalesOffice service), and the

Automatic Code Generation for the Orchestration of Web Services with Reo 13

ClientBroker: The ClientBroker interfaces the real client with the other wss:
1. It issues the order information, for example, the product id of the object (e.g., #3,

corresponding to a pair of sport shoes), and a string of characters with a complemen-
tary description (e.g., “color blue”). Both the SalesOffice and the StoreOffice require
this information.

2. It waits for the price confirmation of the order (which comes from the SalesOffice).
3. It issues the credit card information of the client, which the Bank needs to proceed

with the payment for the order.
4. It receives the confirmation or the refusal of the payment (which comes from the

Bank).
StoreOffice: The StoreOffice checks the availability of the order request:

1. It receives the order (e.g., “id and String”), which comes from the ClientBroker.
2. It issues a confirmation that the object is in the store or not (a Boolean and a String

with additional comments), which the SalesOffice needs for further processing.
SalesOffice: The SalesOffice computes the final price (a Real) and sends the corresponding

invoice information:
1. It receives the order information, which comes from ClientBroker.
2. It receives the confirmation that the product is in the store (issued by StoreOffice),

with possible further shipping info and price.
3. It computes the final price and issues it together with the account number of the

company (an Integer), which both the ClientBroker and the Bank need to proceed
with the transaction.

4. It accepts the confirmation of the payment (or the rejection), which comes from the
Bank.

Bank: The Bank manages the payment, issued by the ClientBroker, according to the price
information issued by the SalesOffice:
1. It synchronously (thanks to the BankFifo fifo and the BankSynch syncdrain channels

in Fig. 7) receives the card info (from the Client) and the price of the transaction
(from the SalesOffice).

2. It issues back the confirmation (or the refusal) of the payment, which goes to both
the Client and the SalesOffice.

Fig. 8. Description of the services in Fig. 7

effective payment management (i.e., the Bank service). The complete high-level
behavior of these services is described in Fig. 8.

The dashed rectangle in Fig. 7 highlights a Sequencer of the messages (see
Sec. 3), i.e., a Reo subcircuit that enforces the correct ordering of the messages
exchanged among the wss. Therefore, the interaction of the wss is sequential:
the sequence consists of five steps, whose ordering is shown in Fig. 7 with ordinal
numbers beside the sink ports of the components.8

We programmed and deployed the wss on a server machine, and afterwards we
automatically generated their proxies with the help of the Proxy Generator (see
Sec. 4.2). We described the four wss as uml Sequence Diagrams as represented
in Fig. 9, where labels correspond to the types of exchanged soap messages.
From this description, we can generate the corresponding ca as described in
Sec. 4.2.

In Fig. 10, we show essentially the same purchase interaction as in Fig. 7,
albeit with a more complex behavior. The scenario in Fig. 10 is closely derived
from [15] and the related circuit is named ComplexPurchase. As in the first

8 The presence of the Sequencer in Fig. 9 may appear redundant as the wss themselves
already impose an ordering on their interactions. However, the sequencing of the
messages is also part of the protocol among the wss and should, therefore, be part
of the protocol specification—regardless of what the wss involved do.

14 S.-S.T.Q. Jongmans et al.

Fig. 9. The uml Sequence Diagrams for the four services in Fig. 7

case study, we represent a ClientBroker, a Bank, a SalesOffice, and a StoreOffice
service. Additionally, in this second case study, we include a ShippingOffice,
which accomplishes the task of controlling shipping details, e.g., a shipping fee.

The transaction is initiated by the ClientBroker, which on receiving the pur-
chase order message from the customer, initiates parallel flows to handle shipping
(ShippingOffice), invoicing (SalesOffice), and scheduling (StoreOffice), concur-
rently. While some of the activities in the transaction may proceed concurrently,
there are control and data dependencies among the services, thus coordination is
needed to execute the transaction. For example, to complete the price calculation
by the SalesOffice service, the shipping price is required. Once the parallel flow
is finished, the invoice is delivered to both the Bank and the ClientBroker. Then,
on behalf of the customer, the ClientBroker sends the credit card information
(which can be accepted or not by the filter channels, see Sec. 3) to the Bank,
which sends the outcome of the financial transaction back to the ClientBroker.

The dashed rectangle in Fig. 7 highlights a Sequencer subcircuit. The high
number of fifo channels is due to the fact that the activities of ShippingOffice,
StoreOffice, and SalesOffice run in parallel: the fifo channels are used to buffer
the messages in case one of these service is not yet ready to accept them.

Note that in this example, we adopt filter channels to check if the format of
the message is coherent with the given specifications, e.g., if the expiry date
of a credit card is after the current date or not. This shows that Reo circuits
can perform such “active” controls. They are not only passive routers of data.
One more data-aware action is performed during the final delivery of the invoice
and the credit card information to the Bank. This is carried out by a join node,
denoted by ⊕ in Fig. 10, which represents a component that accepts data items
from all connected sink ends and creates a tuple out of them: all the information
is merged into one message only, representing the complete request to the Bank.

Automatic Code Generation for the Orchestration of Web Services with Reo 15

Fig. 10. The example in Fig. 7 with a more complex interaction

6 Conclusion

In this paper, we have shown how to automatically generate an orchestration
framework for wss. The orchestration is defined by using the Reo language, and
the generated Java code is used to compose the behavior of the services in a
way transparent to the client and all the services. The input of our generation
tool consists of the externally observable behavior of each service, the wsdl
description file of each service, and the specification of the orchestration as a
Reo circuit. From all this information, it is then possible to automate the Java
code generation process from a Reo circuit and a proxy (see Sec. 4.2) for each
service. This proxy component is in charge of managing the communication
between the technology behind the service and the Reo environment.

This research can proceed in the future along different lines. Our first intention
is to be able to generate different communication units for the proxy (not only
thewscu, see Sec. 4.2), in order to include other technologies in the orchestration
of components and services, e.g., corba, rpc, wcf. We intend to have a multi-
technology platform to integrate several kinds of third-parties.

16 S.-S.T.Q. Jongmans et al.

Moreover, we would like to study different service behavioral description
schemes to generate the code of service proxies according to other kinds of input.
A possible choice can be various uml diagrams, e.g., Activity Diagrams or State
Machines.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
MSCS 14(3), 329–366 (2004)

2. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. SCP 61(2), 75–113 (2006)

3. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and Pipelines for Struc-
tured Service Programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

4. Cesari, L., Pugliese, R., Tiezzi, F.: A tool for rapid development of ws-bpel appli-
cations. SIGAPP Appl. Comput. Rev. 11(1), 27–40 (2010)

5. Changizi, B., Kokash, N., Arbab, F.: A Unified Toolset for Business Process Model
Formalization. In: Proceedings of FESCA 2010 (2010)

6. Decker, G., Kopp, O., Leymann, F., Pfitzner, K., Weske, M.: Modeling Service
Choreographies Using BPMN and BPEL4Chor. In: Bellahsène, Z., Léonard, M.
(eds.) CAiSE 2008. LNCS, vol. 5074, pp. 79–93. Springer, Heidelberg (2008)

7. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: a look behind the
curtain. In: PODS, pp. 1–14. ACM (2003)

8. Jayasinghe, D., Azeez, A.: Apache Axis2 Web Services. Packt Publishing (2011)
9. Jongmans, S.S., Arbab, F.: Overview of Thirty Semantic Formalisms for Reo.

SACS 22(1), 201–251 (2012)
10. Kokash, N., Krause, C., de Vink, E.: Reo+mCRL2: A framework for model-

checking dataflow in service compositions. FAC 24(2), 187–216 (2012)
11. Meng, S., Arbab, F.: Web Services Choreography and Orchestration in Reo and

Constraint Automata. In: Proceedings of SAC 2007, pp. 346–353 (2007)
12. Meng, S., Arbab, F.: QoS-Driven Service Selection and Composition Using Quan-

titative Constraint Automata. FI 95(1), 103–128 (2009)
13. Meng, S., Arbab, F.: A Model for Web Service Coordination in Long-Running

Transactions. In: Proceedings of SOSE 2010, pp. 121–128 (2010)
14. Montesi, F., Guidi, C., Lucchi, R., Zavattaro, G.: JOLIE: a Java Orchestration

Language Interpreter Engine. ENTCS 181, 19–33 (2007)
15. Web services business process execution language (2007),

http://docs.oasis-open.org/wsbpel/2.0/

16. Peltz, C.: Web Services Orchestration and Choreography. IEEE Computer 36(10),
46–52 (2003)

17. Simple Object Access Protocol (2000), http://www.w3.org/2000/xp/Group/
18. Web Service Description Language (2001), http://www.w3.org/TR/wsdl
19. Web Service Choreography Interface (2002), http://www.w3.org/TR/wsci/
20. Web Services Choreography Description Language (2005), http://www.w3.org/

TR/ws-cdl-10/

21. Zhang, J., Chung, J.-Y., Chang, C., Kim, S.: WS-Net: A Petri-net Based Specifi-
cation Model for Web Services. In: Proceedings of ICWS 2004, pp. 420–427 (2004)

http://docs.oasis-open.org/wsbpel/2.0/
http://www.w3.org/2000/xp/Group/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsci/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

	Automatic Code Generation for the Orchestration of Web Services with Reo
	Introduction and Motivations
	Related Work
	Reo
	Orchestrating Web Services with Reo
	Reo Compiler: From Circuit Diagrams to Java
	Proxy Generator: Connecting Web Services to Circuits
	Gluing Together Orchestrators and Proxies

	Case Studies
	Conclusion
	References

