

Lecture Notes in Computer Science 7592
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Flavio De Paoli Ernesto Pimentel
Gianluigi Zavattaro (Eds.)

Service-Oriented
and Cloud Computing

First European Conference, ESOCC 2012
Bertinoro, Italy, September 19-21, 2012
Proceedings

13

Volume Editors

Flavio De Paoli
University of Milano-Bicocca, Italy
E-mail: depaoli@disco.unimib.it

Ernesto Pimentel
University of Málaga, Spain
E-mail: ernesto@lcc.uma.es

Gianluigi Zavattaro
University of Bologna, Italy
E-mail: zavattar@cs.unibo.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33426-9 e-ISBN 978-3-642-33427-6
DOI 10.1007/978-3-642-33427-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012947011

CR Subject Classification (1998): H.3.4-5, D.2.11, D.2.m, K.6.5, K.6.3,
H.2.8, C.2.4, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The first European Conference on Service-Oriented and Cloud Computing
(ESOCC) was held in Bertinoro (Italy) on September 19–21, 2012. This was
the first meeting in a new conference series born on the past experience of the
Steering Committee with the organization of the ECOWS (European Conference
on Web Services) conference series. The start of this new series was based on the
desire to renew and broaden the original scope of ECOWS and to provide a fo-
rum where researchers and practitioners could discuss the latest advances on the
topics of service-oriented and cloud computing, and foster future collaborations
in Europe and beyond.

The program of the main conference was structured in two days (September
20th and 21st, 2011), with the presentation of selected research papers and of
three invited keynote talks by John Domingue (KMI, UK), on “Linked Services
for the Web of Data”; Bryan Stephenson (HP Labs, UK), on “Service Manage-
ment in the Cloud”, and Paolo Traverso (FBK-ICT, Italy), on “Territory-Wide
People-Centric Services”. A total of 57 submissions of research papers were re-
ceived and, after a rigorous peer review process that provided at least 3 reviews
per paper, only 12 papers were accepted, yielding an acceptance rate of 21%. In
addition, 3 short papers and 3 posters were accepted. This allowed us to select a
high-quality program with papers giving important insights on Web services and
cloud computing, which were clustered in four sessions on composition, security,
modeling, and adaptation.

The conference also hosted an industrial track, which featured seven presenta-
tions – four accepted after a peer review process led by the industrial track chairs,
and three invited talks. The industrial program was enriched by a workshop on
“Servitisation in ICT Industry”. ESOCC 2012 also hosted a PhD symposium on
September 19th, 2012, as well as a tutorial on “Smart Work Roadmap Workshop
for Business & IT: Cloud Powered”.

Three satellite workshops were also hosted:

FLACOS 6th International Workshop on Formal Languages and Analysis of
Contract-Oriented Software

WAS4FI 2nd International Workshop on Adaptive Services for the Future
Internet

Mashups 6th International Workshop on Web APIs and Service Mashups

The success of ESOCC 2012 was the result of the work of many people,
whom we would like to warmly thank for their efforts and dedication: the Local
Organization Committee, the Industrial Track Chairs Thomas Gschwind and
Sergio Gusmeroli, the Workshop Chairs Ivan Lanese and Cesare Pautasso, the

VI Preface

PhD Symposium Chair Wolf Zimmermann, the Steering Committee, the Pro-
gram Committee, the Industry Track Program Committee, as well as the addi-
tional reviewers. We also express our gratitude to the Dipartimento di Scienze
dell’Informazione, University of Bologna, for sponsoring the conference. Last but
not least, we would like to thank all of the authors of the accepted papers for
their great presentations.

We do hope that the contributions reported in this volume will be valuable
and inspiring for your work, and perhaps also encourage you to participate in
future ESOCC events.

July 2012 Flavio De Paoli
Ernesto Pimentel

Gianluigi Zavattaro

Organization

Program Committee

Marco Aiello University of Groningen
Farhad Arbab CWI and Leiden University
Luciano Baresi DEI - Politecnico di Milano
Sami Bhiri DERI, National University of Ireland
Mario Bravetti University of Bologna
Antonio Brogi University of Pisa
Christoph Bussler Xtime, Inc.
Manuel Carró IMDEA Software
Siobhan Clarke Trinity College Dublin
Flavio De Paoli University of Milano-Bicocca
Jürgen Dunkel FH Hannover - University for Applied Sciences

and Arts
Schahram Dustdar TU Wien
Rik Eshuis Eindhoven University of Technology
David Eyers University of Otago
Chris Giblin IBM Zurich Research Lab
Claude Godart LORIA
Paul Grefen Eindhoven University of Technology
Thomas Gschwind IBM Research
Reiko Heckel University of Leicester
Martin Henkel Stockholm University
Dionisis Kehagias Centre for Research and Technology Hellas
Ernö Kovacs NEC Europe Ltd.
Akhil Kumar Pennsylvania State University
Birgitta König-Ries Friedrich Schiller University of Jena
Peep Küngas University of Tartu
Frederic Lang INRIA Rhône-Alpes / VASY
Frank Leymann Institute of Architecture of Application

Systems
Welf Löwe Linnaeus University
Ingo Melzer DaimlerChrysler AG
Roy Oberhauser Aalen University
Claus Pahl Dublin City University
George Papadopoulos University of Cyprus
Ernesto Pimentel University of Malaga
Christophe Ponsard CETIC
Manfred Reichert University of Ulm

VIII Organization

Wolfgang Reisig Humboldt-Universität zu Berlin
Ulf Schreier Furtwangen University
Rainer Unland University of Duisburg-Essen, ICB
Marten J. Van Sinderen University of Twente
Erik Wilde UC Berkeley
Umit Yalcinalp Adobe Systems
Olaf Zimmermann ABB Corporate Research
Wolf Zimmermann Universität Halle

Additional Reviewers

Achilleos, Achilleas
Addanki, Ramesh
Comuzzi, Marco
Cubo, Javier
De Landtsheer, Renaud
Gierds, Christian
Herranz, Ángel
Ivanovic, Dragan
Kapitsaki, Georgia
Khosravi, Ramtin
Kloos, Reinhold
Kokash, Natalia
Leitner, Philipp
Mart́ın, José Antonio

Müller, Richard
Nguyen, Tuan Anh
Pagani, Giuliano Andrea
Panayiotou, Christoforos
Pautasso, Cesare
Prüfer, Robert
Rubio Bonilla, Daniel
Santini, Francesco
Sürmeli, Jan
Truong, Hong-Linh
Van Gorp, Pieter
Vanderfeesten, Irene
Vizzari, Giuseppe
Warriach, Ehsan

Table of Contents

Research Track

Composition

Automatic Code Generation for the Orchestration of Web Services with
Reo . 1

Sung-Shik T.Q. Jongmans, Francesco Santini, Mahdi Sargolzaei,
Farhad Arbab, and Hamideh Afsarmanesh

Reactive Service Selection in Dynamic Service Environments 17
Lina Barakat, Simon Miles, and Michael Luck

GEMBus Based Services Composition Platform for Cloud PaaS 32
Yuri Demchenko, Canh Ngo, Pedro Mart́ınez-Julia,
Elena Torroglosa, Mary Grammatikou, Jordi Jofre,
Steluta Gheorghiu, Joan A. Garcia-Espin,
Antonio D. Perez-Morales, and Cees de Laat

Interface-Based Service Composition with Aggregation 48
Mila Dalla Preda, Maurizio Gabbrielli, Claudio Guidi,
Jacopo Mauro, and Fabrizio Montesi

Security

A Framework for Modelling Security Architectures in Services
Ecosystems . 64

Matthew Collinson, David Pym, and Barry Taylor

Much Ado about Security Appeal: Cloud Provider Collaborations and
Their Risks . 80

Olga Wenge, Melanie Siebenhaar, Ulrich Lampe,
Dieter Schuller, and Ralf Steinmetz

Modeling

Formal Modeling of Resource Management for Cloud Architectures:
An Industrial Case Study . 91

Frank S. de Boer, Reiner Hähnle, Einar Broch Johnsen,
Rudolf Schlatte, and Peter Y.H. Wong

X Table of Contents

A Model-Driven Approach for Virtual Machine Image Provisioning in
Cloud Computing . 107

Tam Le Nhan, Gerson Sunyé, and Jean-Marc Jézéquel

Protocol Conformance Checking of Services with Exceptions 122
Christian Heike, Wolf Zimmermann, and Andreas Both

Adaptation

Cloud Service Localisation . 138
Claus Pahl

Quality Architecture for Resource Allocation in Cloud Computing 154
Kouessi Arafat Romaric Sagbo and Pélagie Houngue

Analysis of Revenue Improvements with Runtime Adaptation of Service
Composition Based on Conditional Request Retries 169

Miroslav Živković and Hans van den Berg

Short Papers

Performance Modeling and Analysis of a Database Server with
Write-Heavy Workload . 184

Manfred Dellkrantz, Maria Kihl, and Anders Robertsson

Mobile Cloud Computing in 3G Cellular Networks Using Pipelined
Tasks . 192

Marvin Ferber and Thomas Rauber

Cloud User-Centric Enhancements of the Simulator CloudSim to
Improve Cloud Deployment Option Analysis . 200

Florian Fittkau, Sören Frey, and Wilhelm Hasselbring

Posters

PaaSSOA: An Open PaaS Architecture for Service Oriented
Applications . 208

Claudio Guidi, Paolo Anedda, and Tullio Vardanega

Context Mediation as a Linked Service . 210
Pierre De Vettor, Michaël Mrissa, and Carlos Pedrinaci

User-Customisable Policy Monitoring for Multi-tenant Cloud
Architectures . 212

Ming-Xue Wang and Claus Pahl

Table of Contents XI

Industrial Track

Papers

Enabling Co-browsing Service across Different Browsers and Devices . . . 214
Bin Cheng, Sachin Agarwal, and Daniele Abbadessa

Device Token Protocol for Persistent Authentication Shared across
Applications . 230

John Trammel, Ümit Yalçınalp, Andrei Kalfas, James Boag, and
Dan Brotsky

Simplified Authentication and Authorization for RESTful Services in
Trusted Environments . 244

Eric Brachmann, Gero Dittmann, and Klaus-Dieter Schubert

How to Federate VISION Clouds through SAML/Shibboleth
Authentication . 259

Massimo Villari, Francesco Tusa, Antonio Celesti, and
Antonio Puliafito

Presentations

The Secure Enterprise Desktop: Changing Today’s Computing
Infrastructure . 275

Thomas Gschwind, Michael Baentsch, Andreas Schade, and
Paolo Scotton

Cloud Computing: U.S. and E.U. Government/Military Approach 277
Antonio Mauro

Smart Work Industry Best Practices for Business and IT 279
Hans-Peter Hoidn and Peter Utzinger

Author Index . 281

Automatic Code Generation

for the Orchestration of Web Services with Reo

Sung-Shik T.Q. Jongmans1, Francesco Santini1, Mahdi Sargolzaei2,
Farhad Arbab1, and Hamideh Afsarmanesh2

1 Centrum Wiskunde & Informatica, Amsterdam, Netherlands
{S.S.T.Q.Jongmans,F.Santini,Farhad.Arbab}@cwi.nl
2 Universiteit van Amsterdam, Amsterdam, Netherlands

{H.Afsarmanesh,M.Sargolzaei}@uva.nl

Abstract. We present a compositional construction of Web Services,
using Reo and Constraint Automata as the main “glue” ingredients. Reo
is a graphical and exogenous coordination language based on channels.
We propose a framework that, taking as input the behavioral description
of services (as Constraint Automata), their WSDL interfaces, and the de-
scription of their interaction in Reo, generates all the necessary Java code
to orchestrate the services in practice. For each Web Service, we auto-
matically generate a proxy that manages the communication between
this service and the Reo circuit. Although we focus on Web Services,
we can compose different kinds of service-oriented and component tech-
nologies at the same time (e.g., CORBA, RPC, WCF), by generating
different proxies and connecting them to the same coordinator.

1 Introduction and Motivations

A Web Service (ws) can be very generally described as a software system de-
signed to support interoperable machine-to-machine interaction over a network.
The standards at the basis of wss are the Web Services Description Language
(wsdl) [18], which describes the interface in a machine-processable format, and
Simple Object Access Protocol (soap) [17], which is used to format the exchanged
messages, typically conveyed using http with an xml serialization.

Web Services are strongly loosely-coupled by definition, and therefore, two
fundamental combination paradigms have emerged in the literature, permitting
complex combinations of wss: orchestration and choreography [16]. Nowadays,
there exist many workflow-description-based languages, defined to orchestrate or
to choreograph wss, including bpel4ws [15] and ws-cdl [20] (see Sec. 2). How-
ever, such proposals remain at the description level, without providing any kind
of formal reasoning mechanisms or tool support based on the proposed notation
for checking the compatibility of wss [11]. Despite all the efforts, composition
of wss is still a critical problem.

In this paper, we orchestratewss using the graphical language Reo [1]. Several
(rather theoretical) studies on service orchestration using Reo already exist,
including [11,12,13]. We build atop ideas presented in those papers, approaching

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 S.-S.T.Q. Jongmans et al.

them from a more practical perspective: we present a tool that enables employing
Reo for orchestrating real wss, deployed and running on different servers.

The Reo language has a strong formal basis and promotes loose coupling,
distribution, mobility, exogenous coordination, and dynamic reconfigurability.
Constraint Automata (ca) [2] provide compositional formal semantics for Reo.
The formal basis of Reo guarantees possibilities for both model checking and
verification [10], as well as well-defined execution semantics of a Web Service
composition [11]. Exogenous coordination of components in Reo by channels
makes it suitable for modeling orchestration. In this modeling, wss play the role
of components and the orchestrator is the Reo circuit that coordinates them.
In other words, Reo as a modeling language for service composition can pro-
vide service connectivity, composition correctness, automatic composition, and
composition scalability, which are vital and valuable for modeling wss.

In the rest of the paper, we present how to generate all the necessary Java
code in an automated way, starting from the description of the orchestration
(given as a Reo circuit), the description of the wss interfaces (given as wsdl
files), and the description of the wss behavior (given as automata). For each
ws, we generate a proxy application that acts as an intermediary relaying mes-
sages between its ws and the Reo orchestrator, i.e., between the “ws world” and
the “Reo world.” All the output code necessary to manage the orchestration in
practice is generated automatically, in a manner completely transparent to both
client and wss developers, whose programmers do not have to be concerned with
this middleware at all. Although we focus on wss in this paper, the same frame-
work can be used to compose different kinds of service-oriented and component
technologies at the same time (e.g., corba, rpc, wcf), by generating different
proxies and connecting them to the same Reo circuit. Therefore, we make Reo
a complete language for the verification and (with this work) implementation of
ws orchestration.

The paper is organized as follows: in Sec. 2 we describe the related work
and further motivate this paper with respect to the literature. In Sec. 3, we
summarize the necessary background notions about Reo. Section 4 forms the
core of the paper, since it details the architecture of our Reo-based orchestration
platform and how we implemented it. In Sec. 5 we present two case studies of
ws combination that can be automatically generated with our tool, and in Sec. 6
we draw the final conclusions and describe our future work.

2 Related Work

In literature we can find two main coordination paradigms to combine Web
Services (ws): either through orchestration or choreography [16] languages. In
orchestration, the involved wss are under the control of a single endpoint central
process. This process coordinates the execution of different operations on thewss
participating in the process. An invoked ws neither knows nor needs to know
that it is involved in a composition process and that it is playing a role in a busi-
ness process definition. Choreography, in contrast, does not depend on a central

Automatic Code Generation for the Orchestration of Web Services with Reo 3

orchestrator. Each ws that participates in the choreography has to know exactly
when to become active and with whom to interoperate: they must be conscious
of the business process, operations to execute, messages to exchange, as well
as the timing of message exchanges. However, in real-world scenarios, corporate
entities are sometimes unwilling to delegate control of their business processes to
their integration partners. Therefore, in this paper we focus on the orchestration
paradigm, although Reo can be used to describe choreographies [11] as well.

Many languages have emerged and been proposed in academia and industry
for composition and execution of Web Services, according to the choreography
or orchestration principles: some examples are bpel4ws [15], ws-cdl [20], bpml
and wsci [19], and bpmn [6] and bpel4chor [6]. The Business Process Execu-
tion Language for Web Services (bpel4ws) is an orchestration language with an
xml-based syntax, supporting specification of processes that involve operations
provided by one or several wss. Furthermore, bpel4ws draws upon concepts
developed in the area of workflow management. When compared to languages
supported by existing workflow systems and to related standards (for example,
wsci), it relatively appears to be more expressive. bpel4chor is a choreography-
oriented version of ws-bpel instead. The W3C Web Service Choreography De-
scription Languages (ws-cdl) is a W3C candidate recommendation in the area
of service composition. Likewsci, the intent of ws-cdl is to define a language for
describing multiparty interaction scenarios (or choreographies), not necessarily
for the purpose of executing them using a central scheduler but rather with the
purpose of monitoring them and being able to detect deviations with respect to a
given specification. The Business Process Modeling Notation (bpmn) offers a rich
set of graphical notations for control flow constructs and includes the notion of
interacting processes where sequence flow (within an organization) and message
flow (between organizations) are distinguished [6]. Several formal proposals have
been made for representing wss using, for example, Labeled Transition System,
Process Algebra, Petri nets, and Reo itself [7,3,21,11].

Considering the existing implementations, we can find service-oriented work-
flow research tools, as BliteC [4] and JOLIE [14], and commercial offers, as IBM
WebSphere, BEA WebLogic Integrator, Microsoft Web Services Support, and
WF. These systems provide a design tool and an execution engine for business
processes in workflow specification languages. For example part of the BizTalk
suite (another Microsoft product) is the BizTalk Orchestration Engine, which
implements xlang (a precursor of bpel4ws). Windows Workflow Foundation
(WF) is a Microsoft technology that provides an API, an in-process workflow
engine, and a rehostable designer to implement long-running processes as work-
flows within .NET applications. BliteC [4] is a software tool that translates ser-
vice orchestrations written in Blite, into readily executable ws-bpel programs.
JOLIE [14] is a Java-based interpreter and engine for orchestration programs,
with a mathematical underlying model.

Comparing our solution with the related work presented in this section, none
of the XML-based languages in the proposed standards, e.g., bpel4ws [15] or
ws-cdl [20], comes with tools for a direct formal verification and model checking

4 S.-S.T.Q. Jongmans et al.

a b a b

sync syncdrain

a b a b
ϕ

lossysync filter(ϕ)

a b� a b�

fifo fifo(�)

(a) Channels.

A V

B W

C X

D Y

E Z

� � � �

�

(b) Circuit: Sequencer.

Fig. 1. Graphical syntax of common channels and a circuit

Name Behavior

sync Atomically fetches an item on its source end a and dispatches it on its sink end b.
syncdrain Atomically fetches (and loses) items on both of its source ends a and b.

lossysync Atomically fetches an item on its source end a and, non-deterministically, either
dispatches it on its sink end b or loses it.

filter(ϕ) Atomically fetches an item on its source end a and dispatches it on its sink end b if
this item satisfies the filter constraint ϕ; loses the item otherwise.

fifo Atomically fetches an item on its source end a and stores it in its buffer.
fifo(�) Atomically dispatches the item � on its sink end b and clears its buffer.

Fig. 2. Channel behavior

of programs or specifications in that language; therefore, verification of specifi-
cations in these languages requires a translation to a higher level of abstraction,
in contrast to other formal techniques, such as Process Algebra [3] and Petri
nets [21]. Moreover, with Reo a user is able to compose two orchestrators such
that global synchronicity emerges from the synchronous behavior of the individ-
ual orchestrators [1]. This can be useful when different coordination protocols,
designed for different services, need to be merged together in order to integrate
all of them in the same single protocol. This advantage is granted by the for-
mal definition of the join operator on two circuits [1]. Furthermore, the Reo
language yields more declarative to directly specify an interaction, while with
Process Algebra one has to define a sequence of actions to achieve the same
interaction.

3 Reo

As its main feature, Reo facilitates compositional construction of circuits : com-
munication mediums that coordinate interacting parties (in this paper, Web
Services), each built from a number of simple channels. Every channel in Reo

Automatic Code Generation for the Orchestration of Web Services with Reo 5

has exactly two ends, and each such end has exactly one of two types: a channel
end either accepts data items—a source end—or it offers data items—a sink
end.1 Figure 1a shows six different channels at the disposal of Reo users; Figure 2
describes their behavior. Interestingly, Reo does not fix which particular channels
one may use to construct circuits with. Instead, Reo supports an open-ended set
of channels, each of which exhibits a unique behavior. This feature enables users
of Reo to define their own channels, tailored to their specific needs.

We call the act of “gluing” channel ends together to build circuits composition.
One can think of composite circuits as digraphs with nodes and edges (channels)
and compare their behavior to plumbing systems. In such systems, “fluids” flow
through “pipes and tubes” past “fittings and valves.” Similarly, in Reo circuits,
“data items” flow through “channels” (along edges) past “nodes.” Usually, the
interacting parties themselves supply the data items that flow through the cir-
cuits they communicate through. To this end, every circuit defines an interface.
Such an interface consists of the boundary nodes of a circuit: parties write and
take data items only to and from boundary nodes.

Figure 1b shows a circuit, named Sequencer, that one can construct from the
channels in Fig. 1a. This circuit imposes an order on when parties can write
and take data items to and from its boundary nodes (shown as open circles):
first A and V, second B and W, . . . , fifth E and Z, subsequently A and V again,
etc. In general, one derives the behavior of a circuit from the behavior of the
channels and nodes that it consists of—circuits exhibit compositionality. We skip
the details here, however, for brevity and because they do not matter for the
rest of this paper—see [1] for details.

Importantly, there exist various semantic models to formally describe the be-
havior of circuits. These semantic models,2 among other applications, enable one
to reason about the correctness of service orchestrations. For example, Kokash
et al. employ the mCRL2 toolkit to verify the correctness of Reo translations of
business process models [10]. In this paper, however, we use formal models of
circuits for two other purposes. First, we employ Constraint Automata (ca) [2]
to automatically compile Reo circuits—i.e., orchestrators—to Java code. Second,
we formalize the behavior of wss in terms of ca (see Sec. 4).

Constraint Automata resemble classical finite state machines in the sense that
they consist of finite sets of states and transitions. States represent the inter-
nal configurations of a circuit, while transitions describe its atomic coordination
steps. Formally, we represent a transition as a tuple of four elements: a source
state, a synchronization constraint, a data constraint, and a target state. A syn-
chronization constraint specifies which nodes synchronize—i.e., through which
nodes a data item flows—in some coordination step; a data constraint specifies
which particular data items flow in such a step. Figure 3 shows the ca of the
channels and circuits in Fig. 1.

1 However, channels do not necessarily have both a source end and a sink end: they
can also have two source ends or two sink ends.

2 See [9] for a recent survey on the various semantic formalisms for Reo.

6 S.-S.T.Q. Jongmans et al.

{a, b},
[a] = [b]

{a, b},�

{a},
[a] = d

{b},
[b] = d

sync syncdrain

{a, b},
[a] = [b]

{a},�

{a, b},
[a] |= ϕ ∧ [a] = [b]

{a}, |a| �|= ϕ

lossysync filter(ϕ) fifo, fifo(�)

(a) Channels.

{A,V}, [A] = |V|

{B,W},
[B] = |W|

{C,X},
[C] = |X|

{D,Y}, [D] = |Y|

{E,Z},
[E] = |Z|

(b) Circuit: Sequencer.

Fig. 3. Constraint Automata of common channels and a circuit

4 Orchestrating Web Services with Reo

Conceptually, orchestratingWeb Services (ws) using Reo proceeds in three steps:
(i) design an orchestrator circuit, (ii) deploy and run this circuit, and (iii) connect
some wss to it. The Extensible Coordination Tools (ect),3 a collection of Eclipse
plug-ins constituting the default ide for Reo, perfectly supports step (i): it allows
users of Reo to design circuits using a drag-and-drop interface. But unfortunately,
steps (ii) and (iii) involve less straightforward activities. How can we go from a
circuit diagram to executable code? And how can we connect wss oblivious to
Reo to this executable circuit? In this section, we present two tools that address
these questions. We call these tools the Reo Compiler and the Proxy Generator :

– The Reo Compiler compiles circuit diagrams to Java, addressing step (ii).
– The Proxy Generator generates proxies for wss. Postponing the details until

Sec. 4.2, a proxy serves as an intermediary between a circuit and a ws.
Essentially, it relays data items from a circuit to aws and vice versa, bridging
the gap between them, addressing step (iii).

Figure 4 shows the architecture of our two tools and the intended workflow for
using them. We elaborate on this figure in the next three subsections.

4.1 Reo Compiler: From Circuit Diagrams to Java

The Reo Compiler works as follows. Suppose a user of Reo has drawn a circuit
diagram using the ect and wishes to compile it to Java. Internally, the ect
stores this diagram as an xml document, which subsequently serves as input to
the Reo Compiler; the box labeled “Reo Circuit” in Fig. 4 represents such an
xml document. On input of an xml document conn.xml describing some circuit
C, the Reo Compiler first parses this file; the component labeled “Reo Parser”
represents the component involved. Subsequently, the Reo Compiler computes

3 http://reo.project.cwi.nl

http://reo.project.cwi.nl

Automatic Code Generation for the Orchestration of Web Services with Reo 7

Fig. 4. Architecture of our code generation framework

the Constraint Automaton (ca) that models the behavior of C. For this purpose,
it uses functionality that the ect already ships with; the box labeled “Reo2CA”
in Fig. 4 represents the component involved. This computation has a complexity
exponential in the number of buffers—fifo channels—in C. Finally, based on the
ca just computed, the Reo Compiler generates a Java class; the boxes labeled
“CA2Java” and “Java Circuit Code” in Fig. 4, respectively, represent the compo-
nent involved and the generated class. This computation has a complexity linear
in the size of the ca. The generated class extends the Thread class, overriding
the default run() method. In particular, run() now executes a state machine
that simulates the ca computed previously, as follows.

Suppose a Java class Conn generated as described above for some circuit C.
At runtime, an instance conn of Conn awaits requests for writing or taking
data items at particular nodes. We call the concurrent data structures that
register such requests synchronization points : for each node that a circuit allows
interaction on—its boundary nodes—we have a synchronization point in the
implementation. To make a transition, conn first checks the synchronization
points of the nodes involved in that transition, i.e., the synchronization constraint
in the corresponding transition of the ca of C. This check has a complexity
linear in the size—the number of nodes—of the synchronization constraint. If
appropriate requests exist, conn invokes a simple solver to check if the data items
involved in those requests satisfy certain conditions, i.e., the data constraint in
the corresponding transition of the ca of C. If they do, the transition fires: the
requests resolve and data items flow according to the conditions checked before.

8 S.-S.T.Q. Jongmans et al.

Fig. 5. Architecture of a proxy Fig. 6. Architecture of a deployed or-
chestration

Importantly, interacting parties can communicate with compiled circuits at
runtime only through synchronization points. As detailed in Section 4.2, this
causes issues if we want to connect wss to a circuit compiled as described.

4.2 Proxy Generator: Connecting Web Services to Circuits

First, we discuss in more detail why we need proxies and how they work. There-
after, we describe the process of generating them.

Background on Proxies: Suppose a ws deployed remotely—from the view-
point of the machine on which the orchestrator runs—that we wish to include in a
service composition orchestrated by a circuit. Ideally, we would simply send this
ws the synchronization points of the boundary nodes it should connect to. Sub-
sequently, this ws would perform i/o operations directly on the synchronization
points it received. Unfortunately, however, this approach does not work: no ws
supports direct communication through circuits—to adopt this as a prerequisite
for service orchestration with Reo would constitute an unacceptable limitation.
Instead, we take a different approach for including wss in service compositions
orchestrated with Reo (including existing ones): service proxying.

In service proxying, one creates a proxy for each ws in a service composition.
These proxies then serve as intermediaries between a circuit and the orches-
trated wss.4 To a ws, however, its proxy looks just like any other client. To
explain service proxying in more detail, Fig. 5 shows the architecture of a proxy
P , together with a circuit C and a WS S. Essentially, P consists of two sides :

4 Note that the concept of service proxies works also for other orchestration languages.

Automatic Code Generation for the Orchestration of Web Services with Reo 9

a circuit side and a service side. On the circuit side, P has access to a number
of synchronization points. Thus, this side allows P to write and take data items
directly to and from C. On the service side, P has access to the network infras-
tructure that connects P with S. Thus, this side allows P to directly send and
receive messages to and from S. Essentially, P has two tasks:

– Take data items from C on its circuit side; encode these data items into
messages that it can send to S on its service side; send these messages.

– Receive messages from S on its service side; encode these messages into data
items that it can write to C on its circuit side; write these data items.

Circuit Side. The circuit side of a proxy contains synchronization points con-
nected to a Java implementation of a Constraint Automaton (ca). This ca
implementation resembles the implementation discussed in Sec. 4.1. The box
labeled “Simulation Automaton” in Fig. 5 represents this executable ca, which
simulates the behavior of the ws involved. In particular, it simulates the exter-
nal view [11] of this ws: every state represents an externally observable internal
configuration of the ws, while every transition represents the exchange of one or
more messages.5 More precisely, the synchronization points that the simulation
automaton inside a proxy has access to represent the names of the messages ex-
changed by a ws; the data items passing through these synchronization points
constitute the actual payloads. (Recall from Section 4.1 that a ca implementa-
tion has a synchronization point for each boundary node appearing in one of its
transitions.) For instance, one may have a synchronization point for a message
named addIntegersRequest and a (serialized) data item “x=1;y=2” (the actual
payload of addIntegersRequest).

Proxies require simulation automata for the following reason. First, we ob-
serve that stateful wss—wss with more than one internal configuration—may
permit the exchange of different messages in different such configurations. The
correct functioning of proxies depends crucially on this information: proxies must
know which messages their wss can exchange in each state to decide which syn-
chronization points to allow interaction on. To illustrate this, suppose a ws that
at some point permits only the receipt of a multIntegersRequest message. In
that case, it makes no sense for its proxy to take data items from the synchro-
nization point for the addIntegersRequestmessage: the proxy may try to relay
data items taken from this synchronization point, but it will certainly fail. Af-
ter all, the ws does not permit addIntegersRequest messages in its current
state! Proxies must know the present configuration of their wss to avoid such
faulty behavior. However,wss encapsulate their states and generally, they do not
provide means to share them with clients. By simulating their respective ws be-
havior, proxies compensate for this: every time a proxy exchanges a message with
its ws, its simulation automaton makes a corresponding transition. In this way,

5 We model stateless wss with singleton automata.

10 S.-S.T.Q. Jongmans et al.

a proxy can always derive which message exchanges its ws permits, namely from
its simulation automaton.6

Service Side. The service side of a proxy contains components that facilitate
network communication, e.g., using soap: a standardized protocol for exchanging
structured information in computer networks [17]. To implement this, we use
Apache Axis2 [8], because it is a very flexible and easily extensible framework.
Moreover, it supports many standards, including wsdl [18] and soap [17].

In short, Axis2 provides us the technology for exchanging messages with wss
over a network. Consequently, we had to implement only a connection between
Axis2 and the simulation automata in our proxies. The box labeled “WSCU” in
Fig. 5 represents the component of the proxy that does this, called Web Service
Communication Unit (wscu). Roughly, a wscu works as follows.

– Awscu monitors the simulation automaton. If this automaton makes a tran-
sition, it registers the data items and the synchronization points
involved. Subsequently, it packs these data items—payloads—and synchro-
nization points—message names—into an appropriate message format (using
Axis2), e.g., soap. Finally, it sends these messages over the network to the
actual ws (again using Axis2).

– Concurrently, a wscu receives messages sent by the actual ws (using Axis2).
Subsequently, it unpacks these messages (e.g., removes headers) and writes
their payload as data items on the appropriate synchronization points. Im-
portantly, a wscu forces the simulation automaton to make a corresponding
transition. Otherwise, this automaton and the actual ws can diverge.

In our current implementation, proxies of wss run on the same machine as
the circuit orchestrating them. This has a practical reason: typically, we cannot
deploy applications on the remote machines on which the wss run.

Generating Proxies. Previously, we outlined why we need proxies and how
they work. Next, we describe how the Proxy Generator generates them. To
generate a proxy for a single ws, the Proxy Generator requires two inputs: a
wsdl document and a ws behavior specification (wsbs). The wsdl document
specifies the syntax and technical details of the interface of the ws; the wsbs
formally describes its (externally observable) behavior.7

To explain in more detail how the Proxy Generator works, suppose a wsdl
document service.wsdl and a wsbs file service.wsbs. (Suppose they describe
the same ws.) The Proxy Generator proceeds in three steps.

6 Currently, we assume that a ws and a simulating automaton start and stay in sync.
Communication errors, for instance, can take the two out of sync, but a proxy can
detect such situations and recover or reset itself to reestablish its sync with its
respective actual service.

7 We assume that ws providers publish sufficient information about the externally
visible behavior of their wss to construct a faithful wsbs in some formalism. Note
that not only our approach requires such a behavioral description: generally, if ws
providers want to enable others to compose the services they provide, this comprises
essential information (especially in the case of stateful wss).

Automatic Code Generation for the Orchestration of Web Services with Reo 11

– First, the Proxy Generator parses service.wsdl using Axis2 technology;
the box labeled “WSDL Parser” in Fig. 4 represents the component involved.
(Note that both the Proxy Generator and the generated proxy use Axis2,
albeit in different ways.) Subsequently, the Proxy Generator generates a Web
Service Communication Unit (wscu) based on the previous parsing; the box
labeled “WSCU Generator” represents the component involved.

– Second, the Proxy Generator parses service.wsbs; the box labeled “WSBS
Parser” in Fig. 4 represents the component involved. More precisely, this com-
ponent parses the content of service.wsbs to a Constraint Automaton (ca).
Subsequently, similar to the Reo Compiler (see Section 4.1), the Proxy Gen-
erator generates Java code for the ca resulting from parsing service.wsbs.
In fact, the boxes labeled “CA2Java Code Generator” in the Reo Compiler
and Proxy Generator refer to the same component. Instances of the resulting
Java class serve as simulation automata at runtime, as described above.
The current version of the Proxy Generator handles wsbs files describing
ca. We aim to experiment with other languages for specifying ws behavior:
in principle, our approach supports any modeling language for which we can
devise a mapping to ca. For instance, we can use the tool presented in [5] to
automatically translate uml Sequence Diagrams to Reo circuits. Combined
with the Reo2CA component in Fig. 4, this yields ca that can serve aswsbss.
We outline this further in Sec. 5.

– Finally, the Proxy Generator combines the generated wscu and the gener-
ated simulation automaton class by adding glue code between them. More
concretely, this step yields a Java class Proxy. The box named “Java Proxy
Code” in Fig. 5 represents this class. Instances of Proxy run as proxies,
encapsulating the constituent wscu and simulation automaton.

4.3 Gluing Together Orchestrators and Proxies

We discuss how to combine generated proxies of wss with a compiled circuit
that orchestrates them—we describe the box named “Final Code Merger” in
Fig. 4. We start with some notation. Suppose an xml document conn.xml spec-
ifying a circuit C. Moreover, suppose a set of 〈wsdl, wsbs 〉-pairs Ŝ represent-
ing the set of wss S that C orchestrates. Let Conn denote the Java class the
Reo Compiler yields on input of conn.xml (i.e., the box named “Java Circuit
Code”); let Proxy denote the class the Proxy Generator yields on input of some

〈service.wsdl, service.wsbs〉 ∈ Ŝ (i.e., the box named “Java Proxy Code”).
The box named “Final Code Merger” in Fig. 4 represents the component that

glues together Conn and the Proxy of every ŝ ∈ Ŝ. This gluing yields a collec-
tion of Java classes that, once deployed, orchestrate the wss in the set S as
desired. The “Final Code Merger” produces a gluing Java class that comprises
the following activities.

1. Create a synchronization point for each boundary node of C.
2. Create an instance conn of the class Conn generated by the Reo Compiler on

input of conn.xml. Moreover, pass the synchronization points created in the

12 S.-S.T.Q. Jongmans et al.

Fig. 7. The sequential coordination of four wss represented as a Reo circuit: the num-
bers represent the ordering of the exchanged messages

previous step to conn. These synchronization points constitute the interface
through which proxies communicate with conn (see Sec 4.1).

3. Create an instance proxy of the class Proxy generated by the Proxy
Compiler on input of ŝ = 〈service.wsdl, service.wsbs〉 for each ŝ ∈ Ŝ.
Importantly, pass to this instance the appropriate synchronization points
created in step (1). The sharing of synchronization points between conn and
proxy establishes the link between the orchestrator and a ws.

5 Case Studies

In this section, we first present a simple yet nontrivial example of orchestration
to familiarize the reader, and then, we extend the Reo circuit of this first example
to show a more complex interaction protocol among (almost) the same services
of the first example, to show the expressiveness of Reo at full.

In Fig. 7 we can see the complete representation of the circuit for the orches-
tration of four wss. The image has been created with the ect. With the aid of
the Reo Compiler (see Sec. 4.1) we generated the Purchase circuit describing
the interaction among the four wss named ClientBroker, StoreOffice, SalesOf-
fice, and Bank. This scenario implements the classical purchase-online example.
The ClientBroker service takes care of interfacing the real client to the other ser-
vices, which deal with: the information about the store (i.e., the StoreOffice ser-
vice), the procedure to prepare the invoice (i.e., the SalesOffice service), and the

Automatic Code Generation for the Orchestration of Web Services with Reo 13

ClientBroker: The ClientBroker interfaces the real client with the other wss:
1. It issues the order information, for example, the product id of the object (e.g., #3,

corresponding to a pair of sport shoes), and a string of characters with a complemen-
tary description (e.g., “color blue”). Both the SalesOffice and the StoreOffice require
this information.

2. It waits for the price confirmation of the order (which comes from the SalesOffice).
3. It issues the credit card information of the client, which the Bank needs to proceed

with the payment for the order.
4. It receives the confirmation or the refusal of the payment (which comes from the

Bank).
StoreOffice: The StoreOffice checks the availability of the order request:

1. It receives the order (e.g., “id and String”), which comes from the ClientBroker.
2. It issues a confirmation that the object is in the store or not (a Boolean and a String

with additional comments), which the SalesOffice needs for further processing.
SalesOffice: The SalesOffice computes the final price (a Real) and sends the corresponding

invoice information:
1. It receives the order information, which comes from ClientBroker.
2. It receives the confirmation that the product is in the store (issued by StoreOffice),

with possible further shipping info and price.
3. It computes the final price and issues it together with the account number of the

company (an Integer), which both the ClientBroker and the Bank need to proceed
with the transaction.

4. It accepts the confirmation of the payment (or the rejection), which comes from the
Bank.

Bank: The Bank manages the payment, issued by the ClientBroker, according to the price
information issued by the SalesOffice:
1. It synchronously (thanks to the BankFifo fifo and the BankSynch syncdrain channels

in Fig. 7) receives the card info (from the Client) and the price of the transaction
(from the SalesOffice).

2. It issues back the confirmation (or the refusal) of the payment, which goes to both
the Client and the SalesOffice.

Fig. 8. Description of the services in Fig. 7

effective payment management (i.e., the Bank service). The complete high-level
behavior of these services is described in Fig. 8.

The dashed rectangle in Fig. 7 highlights a Sequencer of the messages (see
Sec. 3), i.e., a Reo subcircuit that enforces the correct ordering of the messages
exchanged among the wss. Therefore, the interaction of the wss is sequential:
the sequence consists of five steps, whose ordering is shown in Fig. 7 with ordinal
numbers beside the sink ports of the components.8

We programmed and deployed the wss on a server machine, and afterwards we
automatically generated their proxies with the help of the Proxy Generator (see
Sec. 4.2). We described the four wss as uml Sequence Diagrams as represented
in Fig. 9, where labels correspond to the types of exchanged soap messages.
From this description, we can generate the corresponding ca as described in
Sec. 4.2.

In Fig. 10, we show essentially the same purchase interaction as in Fig. 7,
albeit with a more complex behavior. The scenario in Fig. 10 is closely derived
from [15] and the related circuit is named ComplexPurchase. As in the first

8 The presence of the Sequencer in Fig. 9 may appear redundant as the wss themselves
already impose an ordering on their interactions. However, the sequencing of the
messages is also part of the protocol among the wss and should, therefore, be part
of the protocol specification—regardless of what the wss involved do.

14 S.-S.T.Q. Jongmans et al.

Fig. 9. The uml Sequence Diagrams for the four services in Fig. 7

case study, we represent a ClientBroker, a Bank, a SalesOffice, and a StoreOffice
service. Additionally, in this second case study, we include a ShippingOffice,
which accomplishes the task of controlling shipping details, e.g., a shipping fee.

The transaction is initiated by the ClientBroker, which on receiving the pur-
chase order message from the customer, initiates parallel flows to handle shipping
(ShippingOffice), invoicing (SalesOffice), and scheduling (StoreOffice), concur-
rently. While some of the activities in the transaction may proceed concurrently,
there are control and data dependencies among the services, thus coordination is
needed to execute the transaction. For example, to complete the price calculation
by the SalesOffice service, the shipping price is required. Once the parallel flow
is finished, the invoice is delivered to both the Bank and the ClientBroker. Then,
on behalf of the customer, the ClientBroker sends the credit card information
(which can be accepted or not by the filter channels, see Sec. 3) to the Bank,
which sends the outcome of the financial transaction back to the ClientBroker.

The dashed rectangle in Fig. 7 highlights a Sequencer subcircuit. The high
number of fifo channels is due to the fact that the activities of ShippingOffice,
StoreOffice, and SalesOffice run in parallel: the fifo channels are used to buffer
the messages in case one of these service is not yet ready to accept them.

Note that in this example, we adopt filter channels to check if the format of
the message is coherent with the given specifications, e.g., if the expiry date
of a credit card is after the current date or not. This shows that Reo circuits
can perform such “active” controls. They are not only passive routers of data.
One more data-aware action is performed during the final delivery of the invoice
and the credit card information to the Bank. This is carried out by a join node,
denoted by ⊕ in Fig. 10, which represents a component that accepts data items
from all connected sink ends and creates a tuple out of them: all the information
is merged into one message only, representing the complete request to the Bank.

Automatic Code Generation for the Orchestration of Web Services with Reo 15

Fig. 10. The example in Fig. 7 with a more complex interaction

6 Conclusion

In this paper, we have shown how to automatically generate an orchestration
framework for wss. The orchestration is defined by using the Reo language, and
the generated Java code is used to compose the behavior of the services in a
way transparent to the client and all the services. The input of our generation
tool consists of the externally observable behavior of each service, the wsdl
description file of each service, and the specification of the orchestration as a
Reo circuit. From all this information, it is then possible to automate the Java
code generation process from a Reo circuit and a proxy (see Sec. 4.2) for each
service. This proxy component is in charge of managing the communication
between the technology behind the service and the Reo environment.

This research can proceed in the future along different lines. Our first intention
is to be able to generate different communication units for the proxy (not only
thewscu, see Sec. 4.2), in order to include other technologies in the orchestration
of components and services, e.g., corba, rpc, wcf. We intend to have a multi-
technology platform to integrate several kinds of third-parties.

16 S.-S.T.Q. Jongmans et al.

Moreover, we would like to study different service behavioral description
schemes to generate the code of service proxies according to other kinds of input.
A possible choice can be various uml diagrams, e.g., Activity Diagrams or State
Machines.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
MSCS 14(3), 329–366 (2004)

2. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. SCP 61(2), 75–113 (2006)

3. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and Pipelines for Struc-
tured Service Programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

4. Cesari, L., Pugliese, R., Tiezzi, F.: A tool for rapid development of ws-bpel appli-
cations. SIGAPP Appl. Comput. Rev. 11(1), 27–40 (2010)

5. Changizi, B., Kokash, N., Arbab, F.: A Unified Toolset for Business Process Model
Formalization. In: Proceedings of FESCA 2010 (2010)

6. Decker, G., Kopp, O., Leymann, F., Pfitzner, K., Weske, M.: Modeling Service
Choreographies Using BPMN and BPEL4Chor. In: Bellahsène, Z., Léonard, M.
(eds.) CAiSE 2008. LNCS, vol. 5074, pp. 79–93. Springer, Heidelberg (2008)

7. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: a look behind the
curtain. In: PODS, pp. 1–14. ACM (2003)

8. Jayasinghe, D., Azeez, A.: Apache Axis2 Web Services. Packt Publishing (2011)
9. Jongmans, S.S., Arbab, F.: Overview of Thirty Semantic Formalisms for Reo.

SACS 22(1), 201–251 (2012)
10. Kokash, N., Krause, C., de Vink, E.: Reo+mCRL2: A framework for model-

checking dataflow in service compositions. FAC 24(2), 187–216 (2012)
11. Meng, S., Arbab, F.: Web Services Choreography and Orchestration in Reo and

Constraint Automata. In: Proceedings of SAC 2007, pp. 346–353 (2007)
12. Meng, S., Arbab, F.: QoS-Driven Service Selection and Composition Using Quan-

titative Constraint Automata. FI 95(1), 103–128 (2009)
13. Meng, S., Arbab, F.: A Model for Web Service Coordination in Long-Running

Transactions. In: Proceedings of SOSE 2010, pp. 121–128 (2010)
14. Montesi, F., Guidi, C., Lucchi, R., Zavattaro, G.: JOLIE: a Java Orchestration

Language Interpreter Engine. ENTCS 181, 19–33 (2007)
15. Web services business process execution language (2007),

http://docs.oasis-open.org/wsbpel/2.0/

16. Peltz, C.: Web Services Orchestration and Choreography. IEEE Computer 36(10),
46–52 (2003)

17. Simple Object Access Protocol (2000), http://www.w3.org/2000/xp/Group/
18. Web Service Description Language (2001), http://www.w3.org/TR/wsdl
19. Web Service Choreography Interface (2002), http://www.w3.org/TR/wsci/
20. Web Services Choreography Description Language (2005), http://www.w3.org/

TR/ws-cdl-10/

21. Zhang, J., Chung, J.-Y., Chang, C., Kim, S.: WS-Net: A Petri-net Based Specifi-
cation Model for Web Services. In: Proceedings of ICWS 2004, pp. 420–427 (2004)

http://docs.oasis-open.org/wsbpel/2.0/
http://www.w3.org/2000/xp/Group/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsci/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

Reactive Service Selection in Dynamic Service
Environments

Lina Barakat, Simon Miles, and Michael Luck

Department of Informatics, King’s College London, London, UK
{lina.barakat,simon.miles,michael.luck}@kcl.ac.uk

Abstract. Due to the highly dynamic nature of services (web services can enter
or leave the system at any time, or change their characteristics), adaptation to
change during service composition is necessary to meet user needs. Yet current
approaches to change handling detect quality violations and service unavailability
only after their occurrence (after executing the corresponding service), resulting
in undesired situations at execution time from which recovery (usually through
costly replanning) might not always be possible. In response, this paper presents
a novel reactive selection algorithm, which adapts to changes in the environment
efficiently while performing the selection, ensuring that the selected composite
service is executable, satisfactory and optimal prior to execution. The algorithm’s
effectiveness is demonstrated via experimental results.

Keywords: service composition, adaptive service selection, quality of service.

1 Introduction

Service Oriented Architecture (SOA) is becoming widely adopted for enterprise de-
velopment, allowing seamless and dynamic integration of loosely-coupled components
(services), thus enabling more flexible distributed systems that better accommodate the
complex and changing user requirements. Web services offer a promising paradigm
for implementing SOA, by providing a set of platform-independent standards, such as
WSDL, UDDI, SOAP, and BPEL, to describe, locate, invoke, and compose services
over the web. A composite application is usually specified as a graph-based workflow,
comprising a set of abstract tasks. The allocation of web services to these tasks is per-
formed at run time, based on functional suitability, and the user’s QoS criteria specified
in service level agreements (SLAs). Such quality-based service selection is not trivial
in open environments due to the huge number of available services providing similar
functionalities with different qualities (e.g. in grid settings, each of thousands of nodes
may act as a service for performing a particular processing job, but with widely varying
speeds, robustness, storage capacity etc.), and the constantly changing service environ-
ment, where services can enter or leave the system at any time, or change their qualities.

Most current web service composition approaches assume a static environment dur-
ing selection, and handle changes by monitoring the behaviour of selected services
during execution, so that whenever service unavailability or contract violations are ob-
served, re-selection is performed for the non-executed part of the workflow. In other
words, even if service changes occur during selection, they are only detected after faulty

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 17–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

18 L. Barakat, S. Miles, and M. Luck

or quality-violating services are executed [11], resulting in undesired effects at execu-
tion time, such as reduced performance due to replanning and, in some cases, inability
to find a satisfactory solution given the already executed services. In response, this paper
presents a novel reactive selection algorithm, capable of adapting efficiently to changes
during selection, with a minimal number of modifications, thus ensuring, when execu-
tion starts, that the selected composite service is executable, satisfactory, and optimal
according to the current environment state.

This paper is organised as follows. A summary of the basic selection model (origi-
nally introduced in [12]) is provided in Section 2. Sections 3 and 4 present a motivating
example and our novel reactive selection algorithm, respectively. Experimental results
are provided in Section 5. Section 6 discusses related work and conclusions.

2 Basic Model

2.1 Planning Knowledge Model

The planning knowledge for achieving a goal task t ∈ T (T is the set of all tasks), is a
set of abstract plans, abspln(t), each representing an alternative way of decomposing
task t into smaller sub-tasks. The sub-tasks of each abstract plan are partially ordered,
and are annotated with semantic descriptions specifying their functional requirements,
e.g., in terms of OWL-S or WSDL-S. Assuming all abstract plans have a sequential
structure (other structures can be transformed to the sequential structure using exist-
ing techniques [8]), the planning knowledge for task t can be represented as a directed
graph, called plan paths graph, where the paths between the start and end nodes cor-
respond to task t’s alternative decompositions (abstract plans). An example of such a
graph for task plan holiday is shown in Figure 1, where two possible abstract plans
are available (note that sub-task B is achieved by a service providing both hotel and
sightseeing bookings as a package).

Given the set of all available services S, the candidate services for a task t ∈ T are
those services cnd(t) ⊂ S providing task t’s required functionality. These functionally
equivalent services are differentiated according to their quality of service (QoS) values
(the non-functional properties), which can be defined as a function sv(s, a) that assigns
to service s its value for the quality attribute a. QoS attributes usually have either an
increasing direction (quality increases as attribute value increases, e.g. reliability), or
a decreasing direction (quality decreases as attribute value increases, e.g. price). For
simplicity, henceforth we assume that all quality attributes are decreasing.

The abstract plans of task t ∈ T can be instantiated to a set of actual plans, actpln(t),
each representing an alternative composite service for achieving task t. More specifi-
cally, actpln(t) =

⋃
p∈abspln(t)(ins(p)), where ins(p) maps p to its possible instances

(the set of composite services replacing the task nodes in p with a particular combi-
nation of their candidate services). The value of a particular quality attribute a for an
actual plan (composite service) ps, cv(ps, a), is some aggregation function aggr of the
corresponding quality values for the component services, where the type of aggr de-
pends on the attribute. For example, the possible aggregation functions for execution
time, reliability, and throughput are the summation, multiplication and min functions,
respectively.

Reactive Service Selection in Dynamic Service Environments 19

B: book hotel &
sightseeing C: book

transportation
E: book

sightseeing

Start

D: book
hotel

End

Fig. 1. Plan paths graph for task plan holiday

2.2 Service Selection Problem

A user request can be defined in terms of three elements: the goal task to be accom-
plished rt ∈ T ; the quality constraints function rc(a), which specifies, for each quality
attribute a, an upper bound on its allowed value (note that rc(a) = undefined in case of
no restrictions on a value by the user); and the quality weights function rw(a) ∈ [0, 1],
which associates each quality attribute a with a weighting factor reflecting its relative
importance to the user, s.t.

∑
a rw(a) = 1.

The utility of an atomic service s ∈ cnd(t) with respect to the user’s request is a func-
tion su(t, s) ∈ [0, 1] s.t. su(t, s) =

∑
a(rw(a) ∗ tmx(t,a)−sv(s,a)

tmx(t,a)−tmn(t,a)), where tmx(t, a)

returns the max (and tmn(t, a) the min) value offered for quality attribute a by task
t’s candidate services. Similarly, the utility of a composite service ps ∈ actpln(rt) is
a function cu(ps) ∈ [0, 1] s.t. cu(ps) =

∑
a(rw(a) ∗ rmx(a)−cv(ps,a)

rmx(a)−rmn(a)), where rmx(a)

returns the max (and rmn(a) the min) value offered for quality attribute a by the re-
quested task’s actual plans (these max/min values can be estimated by aggregating for
each abstract plan the tmx/tmn values of its tasks, and then calculating the max/min of
these aggregated values).

Based on this, service selection problem involves finding the best actual plan (com-
posite service) to achieve the goal rt, that satisfies the user quality constraints rc, while
maximising the overall utility cu with respect to the user-defined quality weights.

2.3 Static Service Selection

We model the service selection problem as a multi-constrained optimal path selection
problem in a requested task’s plan paths graph (VPK , EPK), and we utilise the optimal
paths concept of the multi-constrained Bellman-Ford algorithm [1] to solve this prob-
lem. Moreover, to improve selection efficiency, candidate services per node (task) are
reduced such that only request-based non-dominated candidates for the current request,
denoted rcnd(v), are kept for each node v in the plan paths graph. Service sj ∈ cnd(v)
request-based dominates (r-dm) service si ∈ cnd(v) iff sj is better for all constrained
quality attributes AR, and the utility value, i.e.

(∀a ∈ AR, sv(si, a) ≥ sv(sj , a)) ∧ (su(t, si) ≤ su(t, sj))∧
([∃a ∈ AR, sv(si, a) > sv(sj , a)] ∨ [su(t, si) < su(t, sj)])

Dominated services are not candidates for the optimal solution, so their elimination will
not affect the ability to find the optimal satisfactory composite service (when it exists).

20 L. Barakat, S. Miles, and M. Luck

To illustrate, consider two composite services to achieve a task: ps = s1...si...sn and
p′s = s1...s

′
i...sn, where s′i r-dm si, and suppose the user is interested in minimising

price while satisfying a particular constraint on execution time. Given that ps satisfies
the imposed execution time constraint, p′s will also meet the same constraint (since its
execution time is shorter), but with better utility (lower price).

Besides uninteresting services, unsatisfactory abstract plans (denoted UNS) whose
available instances are all guaranteed to violate the quality constraints, are also pruned
from the planning search space prior to service selection. An abstract plan p is unsatis-
factory, i.e. p ∈ UNS, if ∃a ∈ AR, aggrt∈nds(p)(tmn(t, a)) > rc(a), where function
aggr depends on attribute a. To achieve such pruning, each node v in the plan paths
graph is associated with the set of its valid predecessors vldprd(v), which can be de-
fined as follows: given a path pv + v from the start node to v, path pv is considered a
valid predecessor of node v if there exists at least one path pi from v to the destination
node, such that pv + pi is a satisfactory abstract plan, i.e. pv + pi /∈ UNS.

Based on the above sets rcnd(v) and vldprd(v) for each node, our service selec-
tion algorithm is as follows. Each node v in the plan paths graph stores the optimal
instances, denoted as oi(v, pv), for each path pv + v discoved so far from the start node
to v such that pv ∈ vldprd(v). In order to maximise utility, the concept of optimal
paths in the original Bellman-Ford algorithm is updated so that an instance of path p is
considered optimal if no other possible instance of the same path has both better values
for all the constrained attributes and better utility. Moreover, to reduce the number of
optimal instances, only those satisfying the quality constraints are maintained in each
node. After traversing all graph nodes in topological order, the solution is the optimal
composite service that has the best utility at the destination node. More details on this
static service selection can be found in [12].

3 Motivating Example for Reactive Selection

Consider an example in which the user has issued a request to plan holiday, and is
interested in minimising price while satisfying the following constraint on execution
time (ex ≤ 100). The request-based non-dominated candidate services and the valid
predecessors of the sub-tasks in Figure 1 are shown in Figure 2. Notice that plan BC is
unsatisfactory since tmn(B, ex) + tmn(C, ex) = 105 > 100.

Now, suppose the selection algorithm visits the nodes in the following topological
order: start, B, D, E, and C. Visiting the start node start involves processing its
outgoing edge (start,D), which results in storing the request-based non-dominated
services of node D as its optimal instances (see Figure 3). Node B does not have any
valid predecessor, and thus is ignored. Next, node D is visited, and edge (D,E) is
processed by combining the optimal instances at node D with node E’s request-based
non-dominated candidate services, resulting in four possible instances of the path DE
(Figure 3, where symbol d indicates the instance is dominated by another instance).
Being dominated by the instance sD2sE1, instance sD1sE2 is not considered optimal,
and thus is not recorded at node E. Similarly, after traversing node E, four optimal
instances of the path DEC are maintained in node C.

Reactive Service Selection in Dynamic Service Environments 21

Node B C D E

rcnd sB1(90, 30) sC1(30, 30) sD1(40, 10) sE1(20, 5)
(ex, pr) sC2(15, 50) sD2(20, 30) sE2(15, 35)

vldprd ∅ SDE S SD

Fig. 2. Sets rcnd and vldprd for nodes in Figure 1 (S = start node)

Node B D E C

vldprd ∅ S SD SDE

oi ∅ sD1(40, 10) sD1sE1(60, 15) sD1sE1sC1(90, 45)
sD2(20, 30) sD1sE2(55, 45)(d) sD1sE1sC2(75, 65)(d)

sD2sE1(40, 35) sD2sE1sC1(70, 65)
sD2sE2(35, 65) sD2sE1sC2(55, 85)

sD2sE2sC1(65, 95)(d)
sD2sE2sC2(50, 115)

Fig. 3. Optimal instances estimation for nodes

Change 1: Suppose that after processing node E, the world changes and service sE1

becomes unavailable. Neglecting this change leads to the selection of the composite
service sD1sE1sC1 with the highest utility (lowest price) to perform the requested task,
which is invalid (not executable). Moreover, simply removing the optimal instances that
include service sE1 from node C results in considering service sD2sE2sC2 the solution
service. This is not optimal for price as the composite service sD1sE2sC1(85, 75) is
optimal in this case. Since the instance sD1sE2 is not recorded in nodeE (dominated by
sD2sE1), acquiring the cheapest satisfactory composite service (sD1sE2sC1) requires
updating the optimal instances of nodes E and C. Consequently, to tackle this change,
nodes D and E need to be reprocessed. Figure 4 shows the result of revisiting nodes D
and E. As can be seen, only three optimal instances are stored in node C , of which,
instance sD1sE2sC1 has the minimum price.

Node E C

vldprd SD SDE

oi sD1sE2(55, 45) sD1sE2sC1(85, 75)
sD2sE2(35, 65) sD1sE2sC2(70, 95) (d)

sD2sE2sC1(65, 95)
sD2sE2sC2(50, 115)

Fig. 4. Optimal instances reestimation in response to change 1

Change 2: Suppose that after revisiting nodes D and E, the world changes again and
a new service sB2(60, 35) joins the candidate services of task B, thus changing node
B’s minimum quality value for execution time from 90 to 60. As a result, plan BC be-
comes satisfactory, and its instance sB2sC1(90, 65) is now a better solution (regarding
price) than sD1sE2sC1(85, 75). Therefore, in order to take advantage of the path BC,
which was considered unsatisfactory before the addition of sB2, the valid predecessors

22 L. Barakat, S. Miles, and M. Luck

of nodes B and C should be modified as follows: vldprd(B) = vldprd(B) ∪ {S},
and vldprd(C) = vldprd(C) ∪ {SB}. The selection algorithm execution should then
roll-back to the start node start so that the optimal instances at nodes B and C can be
updated. Notice that, being already processed, edges (start,D), (D,E), and (E,C)
need not be reprocessed when revisiting nodes start, D, and E. Figure 5 shows the op-
timal instances of nodes B and C after processing edges (start, B) and (B,C) (symbol
ns indicates the instance is not satisfactory).

Node B C

vldprd S SB SDE

oi sB1(90, 30) sB1sC1(120, 60)(ns) sD1sE2sC1(85, 75)
sB2(60, 35) sB1sC2(105, 80)(ns) sD2sE2sC1(65, 95)

sB2sC1(90, 65) sD2sE2sC2(50, 115)
sB2sC2(75, 85)

Fig. 5. Optimal instances reestimation in response to change 2

4 Reactive Service Selection

The service selection algorithm presented in Section 2.3 assumes the space of avail-
able services for performing the different tasks remains static during service selection.
However, this is not always true in open environments in which services can enter or
leave at any time, or change their quality values. Such service changes during selection
in dynamic enough environments can affect the request-based non-dominated services
considered and, as a result, can alter the optimal instances recorded at nodes, as well as
the satisfactory abstract plans. In response, this section presents a reactive selection al-
gorithm, allowing selection of the best combination of web services in highly dynamic
environments, where potential future changes cannot be predicted in advance.

As has been seen in the example of Section 3, in order for the selection algorithm
to be reactive (capable of handling changes that occur in the environment), some nodes
already visited might require reprocessing so that the changes are reflected. To maintain
the algorithm’s efficiency, we need to ensure that only the optimal instances affected by
the change are modified when revisiting nodes. To achieve this, the valid predecessors
pv of each node v are associated with either a processed (pr) or an unprocessed (up)
status, where sts(v, pv) = pr indicates that the optimal instances of path pv + v are
already recorded at node v, so there is no need to recompute them when reprocessing
the edge (en(pv), v), and sts(v, pv) = up indicates that the optimal instances of path
pv + v require (re)calculation.

In addition to introducing the status function, responding to changes in the environ-
ment involves adding the following four steps to the selection algorithm: updating the
request-based non-dominated services of the node where the change occurred, updat-
ing the status of nodes in the plan paths graph so that the affected optimal instances are
modified, updating the valid predecessors of nodes to reflect the change (if any) in the
satisfactory plans, and identifying the node to which the algorithm should roll back. The
last step depends on the set of nodes, NTR, to be revisited as a result of the change,

Reactive Service Selection in Dynamic Service Environments 23

Algorithm 1. R-WS-Selection-Algorithm
1: generate plan paths graph gPK = (VPK , EPK)
2: assign to each node v ∈ VPK \ {vstart} its valid predecessors vldprd(v): ∀pv ∈

vldprd(v), sts(v, pv) = up
3: sort the nodes in VPK topologically
4: store the empty instance at vstart and empty service at vdest
5: nextInd ← 0
6: while nextInd < |VPK | − 1 do
7: v ← the node at position nextInd according to the topological order
8: currInd=nextInd
9: nextInd=nextInd+1

10: if v = vstart or vldprd(v) �= ∅ then
11: E = {(v, u) ∈ EPK}
12: while (not empty(E)) and (nextInd > currInd) do
13: (v, u) ← an element from E
14: E ← E \ {(v, u)}
15: r-process-edge(v,u,currInd,nextInd)
16: inssolution is the instance at vdest with the highest cu

specified in the second and third steps, and including the nodes that require reprocess-
ing in order for the change to be considered (the node from which to start reprocessing
is first in the topological order, among the nodes in NTR). This reactive selection al-
gorithm is provided in Algorithm 1, with the above four steps being summarised in
Procedure 4. The first three steps are explained next, using the following notation and
functions: αo and αn represent α before and after the occurrence of a change, nds(p)
returns the nodes of path p, en(p) returns the last node in path p, ion(p, v) returns the
index of node v in path p, es(ins) returns the last service in instance ins, and sai(ins, i)
returns the service that appears at index i in instance ins.

4.1 The Effect on Request-Based Non-dominated Services

A change to the available services for a task v ∈ VPK while processing a particular
request, can affect the task’s set of request-based non-dominated services, causing the
addition of new services (AD) while removing existing ones (RM), i.e. rcndn(v) =
(rcndo(v) \RM) ∪AD. The sets AD and RM depend on the kind of change that has
occurred (service addition, service deletion, or changes to service qualities), and thus is
specified for each case separately.

Addition of a Service. Where a new service sn joins the candidate services of task
v, i.e. cndn(v) = cndo(v) ∪ {sn}, two cases are distinguished. If ∃s ∈ rcndo(v) s.t.
s r-dm sn, no change is made to the set rcndo(v), i.e. AD = RM = ∅. Otherwise,
service sn is added to the set rcndo(v), i.e. AD = {sn}, removing from this set all the
services request-based dominated by sn, i.e. RM = {s ∈ rcndo(v) | sn r-dm s}.

Deletion of a Service. Where an existing candidate service so of task v becomes un-
available, i.e. cndn(v) = cndo(v) \ {so}, the following two cases are distinguished.

24 L. Barakat, S. Miles, and M. Luck

Procedure 2. r-process-edge(v,u,currInd,nextInd)
1: P ← {pu ∈ vldprd(u) | en(pu) = v}
2: while (not empty(P)) and (nextInd > currInd) do
3: pu ← an element from P
4: pv ← pu − v
5: P ← P \ {pu}
6: if sts(u, pu) = up then
7: for each s ∈ rcnd(u) do
8: for each optimal instance insv ∈ oi(v, pv) do
9: if ∀a ∈ AR, cv(insv + s, a) ≤ rc(a) then

10: check-instance-optimality(insv + s,u,pu)
11: sts(u, pu) ← pr
12: else
13: do-nothing
14: observe the world
15: if change occurred then
16: process-changes(nextInd)

Procedure 3. check-instance-optimality(ins,u,pu)
1: flag ← 1
2: for each optimal instance insu ∈ oi(u, pu) do
3: if insu r-dm ins then
4: flag ← 0
5: break
6: else if ins r-dm insu then
7: remove insu from the instances at oi(u, pu)
8: if flag=1 then
9: add ins to the instances oi(u, pu)

If service so is not a member of the set rcndo(v), its deletion does not affect this set,
i.e. AD = RM = ∅. Otherwise, so is removed from rcndo(v), i.e. RM = {so},
adding to it all task v’s candidate services not previously included in this set which,
as a result of eliminating so, become non-dominated according to the current request,
i.e. AD = {s ∈ sd(so) | ∀si ∈ (rcndo(v) \ {so}) ∪ sd(so),¬(si r-dm s)}, where
sd(so) = {si ∈ cndn(v) | so r-dm si} is the set of candidate services request-based
dominated by service so.

Changes in the Quality Values of a Service. Where a candidate service so of task
v changes its quality values, i.e. cndn(v) = (cndo(v) \ {so}) ∪ {sch}, with sch de-
noting this service after the change, the following two cases are distinguished. Case1:
so /∈ rcndo(v). Here, if service so r-dm sch, no change to the set rcndo(v) is re-
quired, i.e. AD = RM = ∅. Otherwise, this case is treated similarly to the addi-
tion of a new service sn = sch. Case2: so ∈ rcndo(v). Here, we have the following
three sub-cases. Case2.1: sch r-dm so. In this case, service so is replaced with ser-
vice sch, removing from rcndo(v) all the services that are request-based dominated by
sch, i.e. AD = {sch}, RM = {so} ∪ {s ∈ rcndo(v) \ {so}, sch r-dm s}. Case2.2:

Reactive Service Selection in Dynamic Service Environments 25

Procedure 4. process-changes(nextInd)
1: v ← the node where the change occurred
2: NTR ← ∅ (the nodes to be reprocessed)
3: rcnd(v) = (rcnd(v) \RM) ∪AD
4: update sts(u, pu) of each pu ∈ vldprd(u ∈ VPK \ {vstart})
5: if ∃a ∈ AR, tmnn(v, a) �= tmno(v, a) then
6: update vldprd(u) of each u ∈ VPK \ {vstart}
7: nextInd ← the smallest index among the nodes in NTR

so r-dm sch. In this case, the sets AD and RM are similar to those in the deletion
case, i.e. AD = {s ∈ sd(so) | ∀si ∈ (rcndo(v) \ {so}) ∪ sd(so),¬(si r-dm s)},
RM = {so} (notice that sch ∈ sd(so) in this case). Case2.3: sch and so are in-
comparable according to the current request. In this case, if ∃s ∈ rcndo(v) \ {so}
s.t. s r-dm sch, then the sets AD and RM are defined as in Case2.2. Otherwise, the
services to be added are service sch along with all task v’s candidate services not pre-
viously included in rcndo(v) which, as a result of replacing so with sch, become non-
dominated according to the current request, i.e. AD = {sch} ∪ {s ∈ sd(so) | ∀si ∈
(rcndo(v) \ {so}) ∪ {sch} ∪ sd(so),¬(si r-dm s)}. The services to be removed are
service so plus all the services in rcndo(v) \ {so} that are request-based dominated by
sch, i.e. RM = {so} ∪ {s ∈ rcndo(v) \ {so}, sch r-dm s}.

4.2 The Effect on Status Function

Altering the request-based non-dominated services of task vch ∈ VPK can lead to corre-
sponding changes in the optimal instances of each path containing node vch in the plan
paths graph. For instance, in Section 3, removing service sE1 from the request-based
non-dominated services of task E requires modifying the optimal instances of paths
DE and DEC. One way to take account of these changes is by recalculating the opti-
mal instances of all affected paths. More specifically, each processed valid predecessor
pv ∈ vldprd(vch), as well as the processed valid predecessors pu ∈ vldprd(u ∈ VPK)
including node vch (i.e. vch ∈ nds(pu)) are assigned an unprocessed status. Since re-
computing the optimal instances of a path pu + u requires revisiting node en(pu), the
last node of each processed valid predecessor of node vch should be added to NTR.
Finally, the status of all unprocessed valid predecessors, and those not including node
vch (whose optimal instances are not affected by the change), remains the same.

Although this way of reacting to changes is effective, it causes unnecessary full re-
calculation of the affected paths’ optimal instances. More efficient change handling can
be achieved by ensuring that only the necessary updates are made to these instances,
instead of recomputing them from scratch. For example, when a new service joins the
request-based non-dominated services of task v ∈ VPK , new instances (that include the
additional service) become available for each path containing node v. Taking account of
these additional instances requires checking their optimality against the existing optimal
instances of the affected paths, without recalculating the latter from scratch. Similarly,
when a request-based non-dominated service of task v ∈ VPK is deleted, updating
the optimal instances of an affected path involves removing all instances including the

26 L. Barakat, S. Miles, and M. Luck

deleted service, in addition to checking the optimality of all this path’s instances that
are dominated by at least one eliminated instance.

To accomplish this, the status function semantics is updated as follows: sts(u, pu) =
up indicates that the optimal instances of path pu + u are not computed yet, while
sts(u, pu) = pr indicates that these instances are already recorded at node u, but might
require some modifications specified in terms of three sets: an additional services func-
tion as(u, pu) ⊂ cnd(u) specifying what services of node u need to be joined with
path pu’s optimal instances when updating the optimal instances of path pu + u; an
additional instances function ai(u, pu, i ∈ Z+) ⊂ S specifying what optimal instances
of path pu need to be joined with node u’s services when updating the optimal instances
of path pu + u (i.e. s ∈ ai(u, pu, i) indicates that, of the additional optimal instances
ins of path pu to be combined with node u’s services, are those including service s at
position i); and a domination check function dc(u, pu) ⊂ ins(pu + u) specifying what
optimal instances of path pu + u become unavailable, thus, when updating the optimal
instances of path pu + u, all its instances previously dominated by at least one instance
in dc(u, pu) should be checked for optimality. Note that as(u, pu) = ai(u, pu, i ∈
Z
+) = dc(u, pu) = ∅, when no modifications to the optimal instances of path pu + u

are required, or when sts(u, pu) = up. Given this new semantics of the status function,
the steps in Figure 6 should replace line 13 of Procedure 2.

The sets as, ai, and dc, associated with each valid predecessor, are modified each
time a change occurs in the environment. This modification depends on the change
type, and thus is defined for each case separately.

Addition of a Service. Where a new service sn joins the candidate services of node v ∈
VPK s.t. sn ∈ AD, the sets as, ai, and dc of each valid predecessor pu ∈ vldprd(u ∈
VPK) are updated according to the following three cases. Case1: pu is not processed
yet, i.e. sts(u, pu) = up, or is not affected by this addition, i.e. (u �= v)∧(v /∈ nds(pu)).
In this case, no change is made to the sets as, ai, and dc associated with pu. Case2: pu
is a processed valid predecessor of node v, i.e. (sts(u, pu) = pr) ∧ (u = v). In this
case, only set as(u, pu) is modified, by adding to it the new service sn while removing
all the services belonging to RM , i.e. asn(u, pu) = (aso(u, pu) \ RM) ∪ AD. In
addition, all existing optimal instances ending with a service in RM are eliminated, i.e.
oin(u, pu) = oio(u, pu)\ {ins ∈ oio(u, pu) | es(ins) ∈ RM \aso(u, pu)}. Finally, to
allow the update of the optimal instances, node en(pu) is added to the set of nodes to be
revisited, i.e. NTR = NTR ∪ {en(pu)}. Case3: pu is a processed valid predecessor
including node v at position i, i.e. (sts(u, pu) = pr)∧(v ∈ nds(pu))∧(ion(pu, v) = i).
In this case, only set ai(u, pu, i) is modified, by adding to it the new service sn while
removing all the services that are members of RM , i.e. ain(u, pu, i) = (aio(u, pu, i) \
RM) ∪ AD. Like the previous case, all the optimal instances including a service from
RM at position i are eliminated, i.e. oin(u, pu) = oio(u, pu) \ {ins ∈ oio(u, pu) |
sai(ins, i) ∈ RM \ aio(u, pu, i)}.

Deletion of a Service. Where a request-based non-dominated service so of node v ∈
VPK becomes unavailable, the sets as, ai, and dc of each valid predecessor pu ∈
vldprd(u ∈ VPK) are updated according to the following five cases. Case1: pu is not
processed yet, i.e. sts(u, pu) = up, or is not affected by this deletion, i.e. (u �= v)∧(v /∈

Reactive Service Selection in Dynamic Service Environments 27

if dc(u, pu) �= ∅ then
for each s ∈ rcnd(u) \ as(u, pu) do

for each insv ∈ oi(v, pv) s.t. ∀i ∈ Z
+, sai(insv , i) /∈ ai(u, pu, i) do

if ∃ins ∈ dc(u, pu), ins r-dm insv + s then
check-instance-optimality(insv + s,u,pu)

if ∃i ∈ Z
+, ai(u, pu, i) �= ∅ then

for each insv ∈ oi(v, pv) s.t. ∃i ∈ Z
+, sai(insv , i) ∈ ai(u, pu, i) do

for each s ∈ rcnd(u) \ as(u, pu) do
if ∀a ∈ AR, cv(insv + s, a) ≤ rc(a) then

check-instance-optimality(insv + s,u,pu)
if as(u, pu) �= ∅ then

for each s ∈ as(u, pu) do
for each insv ∈ oi(v, pv) do

if ∀a ∈ AR, cv(insv + s, a) ≤ rc(a) then
check-instance-optimality(insv + s,u,pu)

as(u, pu) ← ∅; ai(u, pu, i ∈ Z
+) ← ∅; dc(u, pu) ← ∅

Fig. 6. Modification to Line 13 of Procedure 2 with new status semantics

nds(pu)). In this case, no change is made to the sets as, ai, and dc associated with pu.
Case2: pu is a processed valid predecessor of node v, i.e. (sts(u, pu) = pr) ∧ (u = v),
and the eliminated service so ∈ aso(u, pu). In this case, only set as(u, pu) is modi-
fied, by adding to it all the services in AD while eliminating the deleted service so, i.e.
asn(u, pu) = (aso(u, pu) \ RM) ∪ AD. Here, there is no need to add node en(pu)
to the set NTR, since the valid predecessor pu had not been reprocessed before the
occurrence of the current change (aso(u, pu) �= ∅). Case3: pu is a processed valid pre-
decessor of node v and service so /∈ aso(u, pu). In this case, all the existing optimal
instances ending with so, IE = {ins ∈ oio(u, pu) | es(ins) ∈ RM}, are eliminated
from oi(u, pu), i.e. oin(u, pu) = oio(u, pu) \ IE, and added to the set dc(u, pu), i.e.
dcn(u, pu) = dco(u, pu)∪IE. Additionally, the end node of pu is regarded as a node to
be revisited, i.e. NTR = NTR∪{en(pu)}. Case4: pu is a processed valid predecessor
including node v at position i, i.e. (sts(u, pu) = pr)∧(v ∈ nds(pu))∧(ion(pu, v) = i),
and the eliminated service so ∈ aio(u, pu, i). In this case, only set ai(u, pu, i) is modi-
fied, by adding to it all the services in AD, while eliminating the deleted service so, i.e.
ain(u, pu, i) = (aio(u, pu, i)\RM)∪AD. Case5: pu is a processed valid predecessor
including node v at position i and service so /∈ aio(u, pu, i). In this case, all the exist-
ing optimal instances containing service so at position i, IAI = {ins ∈ oio(u, pu) |
sai(ins, i) ∈ RM}, are eliminated from oi(u, pu), i.e. oin(u, pu) = oio(u, pu) \ IAI ,
and added to the set dc(u, pu), i.e. dcn(u, pu) = dco(u, pu) ∪ IAI .

Changes in the Quality Values of a Service. Changes in the quality values of a
request-based non-dominated service so of node v ∈ VPK , with sch denoting this ser-
vice after the change, can be defined in terms of the deletion and addition of a service,
as follows. If service so r-dm sch, or service sch /∈ AD, this case is modelled as the
deletion of service so with ADdel = AD, RMdel = RM . Therefore, the same updates
to the sets as, ai, and dc in the deletion case are applied here. Otherwise, this case
is treated similarly to the deletion of a request-based non dominated service so with

28 L. Barakat, S. Miles, and M. Luck

ADdel = AD \ {sch}, RMdel = {so}, followed by a subsequent addition of service
sch with ADadd = {sch}, RMadd = RM \ {so}.

4.3 The Effect on Valid Predecessors

A modification in the request-based non-dominated services of a task v ∈ VPK , can af-
fect the best quality values offered by this task’s services for the constrained attributes
and, as a result, might alter the set of unsatisfactory plans UNS. Hence, the valid pre-
decessors of each node u ∈ VPK should be recalculated correspondingly. Moreover,
the status of each newly added valid predecessors pu ∈ vldprdn(u) \ vldprdo(u)
(∀u ∈ VPK) is set to unprocessed, i.e. sts(u, pu) = up, and its end node is added
to the nodes to be revisited, i.e. NTR = NTR ∪ {en(pu)}.

5 Experiments and Results

In this section, we present an experimental evaluation of our reactive selection algo-
rithm, focusing on performance, in terms of execution time, and gain in utility achieved
by reacting to changes during selection. Here, the candidate services of each task are
generated randomly (each service is assumed to have 5 quality attributes). Request qual-
ity constraints and quality weights are also set to random values. For simplicity, all
quality attributes are assumed to be additional (aggr is the sum function).

To evaluate performance, four selection algorithms are compared in terms of time:
static selection (s-alg), which ignores changes during selection; reactive selection with
the first status semantics (r-fs-alg); reactive selection with the second status seman-
tics (r-ss-alg), which utilises sets as, ai and dc; and replanning from scratch (rpl-alg),
which restarts static selection whenever a change occurs. The time of each is averaged
over 20 different random requests, and 20 different graph instances, each containing 16
alternative abstract plans, with up to 16 tasks per plan (see Figure 8).

Figures 7(a), 7(b), and 7(c) show the running time of the algorithms (regarding the
candidates number per task) where a single change occurs during selection, with each
figure corresponding to a different change type (addition, deletion, or changes in the
qualities of a request-based non-dominated service for a randomly selected node). The
results indicate that both r-fs-alg and r-ss-alg significantly outperform rpl-alg which re-
quires almost twice the time required by r-ss-alg to produce the same optimal solution.
Moreover, as expected, r-ss-alg performs better than r-fs-alg, especially as the number
of candidates grows, and is only slightly less efficient than the static algorithm s-alg.
The same observations are made in Figure 7(d), where execution time corresponds to
three changes per selection (addition, deletion, and changes in qualities).

To further compare the performance of r-fs-alg and r-ss-alg in relation to the number
of changes during selection, the number of candidates per task was fixed at 1000, while
the number of changes varied between 1 and 5 (change types and locations were se-
lected randomly). As shown in Figure 7(e), the efficiency of both algorithms decreases
with the increasing environment dynamism, since more rollbacks are required as change
increases. We can also observe that r-ss-alg performs better than r-fs-alg in all cases.

To evaluate utility gain, s-alg and r-ss-alg are compared in terms of solution opti-
mality, estimated as cuact

cuopt
, where cuact and cuopt denote the algorithm’s actual utility

Reactive Service Selection in Dynamic Service Environments 29

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800 900 1000

co
m

pu
ta

tio
n

tim
e

(m
s)

number of candidate services per task

(a) Handling Service Addition During Selection

s-alg r-ss-alg
r-fs-alg rpl-alg

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800 900 1000

co
m

pu
ta

tio
n

tim
e

(m
s)

number of candidate services per task

(b) Handling Service Deletion During Selection

s-alg r-ss-alg
r-fs-alg rpl-alg

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900 1000

co
m

pu
at

at
io

n
tim

e
(m

s)

number of candidate services per task

(c) Handling Service Modification During Selection

s-alg r-ss-alg
r-fs-alg rpl-alg

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000

co
m

pu
ta

tio
n

tim
e

(m
s)

number of candidate services per task

(d) Handling Multiple Changes During Selection

s-alg r-ss-alg

r-fs-alg rpl-alg

500

700

900

1100

1300

1500

1700

1 2 3 4 5

co
m

pu
ta

tio
n

tim
e

(m
s)

number of changes per selection

(e) Handling Multiple Changes During Selection

r-ss-alg r-fs-alg

0.7

0.8

0.9

1

1 2 3 4 5

op
tim

al
ity

number of changes per selection

(f) Utility Evaluation

r-ss-alg

s-alg

Fig. 7. Evaluating the reactive selection algorithm

Start End

Fig. 8. Plan paths graph used for evaluation

30 L. Barakat, S. Miles, and M. Luck

and the optimal utility, respectively. Notice that the actual utility of s-alg’s solution
psalg may differ from that estimated, since some of psalg’s component services might
be unavailable, or have changed their quality values (which might result in the quality
constraints being no longer satisfied). Therefore, the actual utility of s-alg is calculated
as follows. If ∃a ∈ AR s.t. cvch(psalg, a) > rc(a), or ∃s ∈ nds(psalg) s.t. s is no longer
available, cuact(psalg) is set to 0. Otherwise, cuact(psalg) = cuch(psalg). Here, cvch and
cuch are the quality value and utility functions considering environment changes.

Figure 7(f) shows the optimality achieved by static and reactive selection, averaged
over 20 graph instances and 20 requests. The number of candidate services per task is
fixed at 500, while the changes during selection are varied from 1 to 5. As expected,
compared to r-ss-alg (which always produces the most optimal solution), static selec-
tion retrieves a less optimal solution, especially as the number of changes increases.

6 Related Work and Conclusions

The problem of QoS-based web service selection has gained much attention from oth-
ers. Like us, Yu et al. [2] and Li et al. [3] model it as a multi-constrained optimal path
problem, and present heuristic algorithms to improve efficiency. In contrast, Canfora
et al. [4] take a genetic algorithm approach. However, neither addresses the issue of
adaptation to changes in a dynamic world.

To minimise the quality violations at run time, Ivanovic et al. [13] present a data-
driven approach to produce more accurate quality predictions for services. Yet even with
the accurate estimation of service qualities, changes can still occur. Zeng et al. [5] solve
the selection problem by adopting Integer Programming (IP) to find the best assign-
ments of services to abstract tasks, with assignments recalculated for the non-executed
part of a workflow each time a change occurs during execution. A replanning triggering
algorithm is introduced by Canfora et al. [7], to recalculate quality values of a composite
service according to the new information at execution time (e.g. actual service qualities,
or actual number of loop iterations), and if the new qualities differ considerably from
previously estimated ones, execution is stopped and replanning is triggered for remain-
ing workflow tasks. A similar execution-time reoptimisation is presented by Ardagna et
al. [6]. Berbner et al. [9] use the H1 RELAX IP heuristic, backtracking on the results
of a relaxed integer program, to perform recomposition in a timely manner, when the
actual qualities of an executed service deviate from those expected. Finally, three error-
recovery strategies are suggested by Baresi et al. [10] to handle service unavailability or
faulty behaviour during execution: re-invoking the same service, re-binding to another
service, or trying an alternative composition plan.

To conclude, all previous approaches to handling dynamism ignore changes that
might occur during service selection, and rely on monitoring the behaviour of ser-
vices during execution. Thus, quality violations and erroneous behaviour are detected
only after their occurrence (i.e. after service execution), resulting in undesired situ-
ations and a high replanning overhead at execution time. In contrast, our algorithm
reacts to changes while performing selection with much less overhead (only a small
number of modifications are required, as opposed to existing approaches where re-
selection is performed from scratch), and without delaying detection of these changes to

Reactive Service Selection in Dynamic Service Environments 31

execution (when recovery may not be possible). This selection-time reactive algorithm
can act as a basis for efficient execution-time adaptivity.

The paper presented a novel reactive selection algorithm handling service changes
during selection. Based on request-based dominance, it identifies whether the changes
occurred could have an impact on the optimal solution, and makes corresponding mod-
ifications to the search graph. The results show that the algorithm can find the best so-
lution in highly dynamic environments with only a small overhead. Our recent work
considers service quality dependencies during selection [14], while future work in-
volves a theoretical complexity analysis and case study evaluation on real-world
datasets.

References

1. Yuan, X., Liu, X.: Heuristic algorithms for multi-constrained quality of service routing.
IEEE/ACM Trans. Netw. 10, 244–256 (2002)

2. Yu, T., Zhang, Y., Lin, K.: Efficient algorithms for Web services selection with end-to-end
QoS constraints. ACM Trans. Web. 1 (2007)

3. Li, L., Wei, J., Huang, T.: High Performance Approach for Multi-QoS Constrained Web
Services Selection. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 283–294. Springer, Heidelberg (2007)

4. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for QoS-aware service
composition based on genetic algorithms. In: 2005 Genetic and Evolutionary Computation
Conference, pp. 1069–1075 (2005)

5. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware
Middleware for Web Services Composition. IEEE Trans. Softw. Eng. 30, 311–327 (2004)

6. Ardagna, D., Pernici, B.: Adaptive Service Composition in Flexible Processes. IEEE Trans.
Softw. Eng. 33, 369–384 (2007)

7. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: QoS-Aware Replanning of Composite
Web Services. In: 2005 IEEE International Conference on Web Services, pp. 121–129 (2005)

8. Cardoso, J., Miller, J., Sheth, A., Arnold, J.: Quality of service for workflows and web service
processes. Web Semant. 1, 281–308 (2004)

9. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Dynamic Replanning of
Web Service Workflows. In: 2007 IEEE International Conference on Digital Ecosystems and
Technologies, pp. 211–216 (2007)

10. Baresi, L., Ghezzi, C., Guinea, S.: Towards Self-Healing Service Compositions. In: PriSE
2004, First Conference on the Principles of Software Engineering (2004)

11. Nitto, E.D., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to highly dynamic,
self-adaptive service-based applications. Autom. Softw. Eng. 15, 313–341 (2008)

12. Barakat, L., Miles, S., Poernomo, I., Luck, M.: Efficient Multi-granularity Service Compo-
sition. In: 2011 IEEE International Conference on Web Services, pp. 227–234 (2011)

13. Ivanovic, D., Carro, M., Hermenegildo, M.: Towards Data-Aware QoS-driven Adapta-
tion for Service Orchestrations. In: 2010 IEEE International Conference on Web Services,
pp. 107–114 (2010)

14. Barakat, L., Miles, S., Luck, M.: Efficient Correlation-aware Service Selection. In: 2012
IEEE International Conference on Web Services (to appear)

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 32–47, 2012.
© Springer-Verlag Berlin Heidelberg 2012

GEMBus Based Services Composition Platform
for Cloud PaaS

Yuri Demchenko1, Canh Ngo1, Pedro Martínez-Julia2, Elena Torroglosa2,
Mary Grammatikou3, Jordi Jofre4, Steluta Gheorghiu4, Joan A. Garcia-Espin4,

Antonio D. Perez-Morales5, and Cees de Laat1

1 University of Amsterdam, Amsterdam, Netherlands
{y.demchenko,c.t.ngo,delaat}@uva.nl

2 Dept. Information and Communication Engineering, University of Murcia, Murcia, Spain
{pedromj,emtg}@um.es

3 University of Athens, Athens, Greece
mary@netmode.ntua.gr

4 Distributed Applications and Networks Area, i2CAT Foundation, Barcelona, Spain
{jordi.jofre,steluta.gheorghiu,joan.antoni.garcia}@i2cat.net

5 RedIRIS, Madrid, Spain
antonio.perez@rediris.es

Abstract. Cloud Platform as a Service (PaaS) provides an environment for
creating and deploying applications using one of popular development
platforms. This paper presents a practical solution for building a service
composition platform based on the GEMBus (GEANT Multi-domain Bus) that
extends the industry accepted Enterprise Service Bus (ESB) platform with
automated services composition functionality and core services to support
federated network access to distributed applications and resources, primarily
targeted for GEANT research and academic community. The ESB is widely
used as a platform for SOA and Web Services based integrated enterprise
solutions. However in existing practices ESB design is still based on manual
development, configuration and integration. GEMBus with its extended
functionality and orientation on distributed resources integration can be
considered as a logical choice for creating cloud PaaS services composition and
provisioning platform. The paper describes Composable Services Architecture
that creates a basis for automated services composition and lifecycle
management and explains how this can be implemented with GEMBus. The
paper describes the combined GEMBus/ESB testbed and provides an example
of the simple services composition.

Keywords: Cloud Platform as a Service, Services Composition, Composable
Services Architecture, GEMBus (GEANT Multi-domain Bus), Enterprise
Service Bus (ESB).

1 Introduction

Cloud computing [1, 2] defines three basic service models: Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). Cloud PaaS

 GEMBus Based Services Composition Platform for Cloud PaaS 33

provides an environment for creating and deploying applications using one of popular
development platforms such as current available on the market Windows Azure,
Google App Engine, VMware Foundry, SaleForce.com’s Force.com, Flexiant’s
Flexiscale, or specialised proprietary enterprise platforms.

Customers use PaaS services to deploy applications on controlled, uniform
execution environments available through the network. IaaS gives a way to bind
hardware, operating systems, storage and network capacity over the Internet. The
cloud based service delivery model allows the customer to acquire virtualized servers
and associated services. We will first discuss how a distributed service-oriented
infrastructure can ease the deployment of service instances in the cloud, and how it
can facilitate the usage of Cloud infrastructural services as well.

The paper introduces the GEMBus, GEANT Multi-domain Bus, being developed
in the GEANT3 project JRA3 Task 3 Composable Network Services [3, 4]. GEMBus
uses SOA paradigm to provide a framework to define, discover, access and combine
services in the federated GÉANT multi-domain environment. It intends to span over
different layers, from the infrastructure up to application elements. The GEMBus
architecture is based on a general framework for composable services, founded on the
industry adopted Enterprise Service Bus (ESB) [5] and extended to support
dynamically reconfigurable virtualised services. GEMBus facilitates the deployment
of services, supports the composition of services (spanning different management
domains) and enables the automation of a particular task of business process.

The paper refers to the Composable Services Architecture (CSA) proposed by the
authors that provides a basis for flexible integration of component services [4, 6]. The
CSA provides a framework for the design and operation of composite services,
provisioned on-demand. Since it is based on the virtualisation of component services,
which in its own turn is based on the logical abstraction of the (physical) component
services and their dynamic composition, it does naturally fit in the cloud distributed
virtualization philosophy.

GEMBus is an interoperability and integration platform that extends the
functionality of traditional enterprise-wide service-oriented architectures to a
distributed multi-domain environment - therefore enabling them to be located within
the cloud. It acts as enabler for new services that can be deployed in the cloud using a
well-defined API, as well as integrating enterprise services and cloud based services.
In this way, GEMBus intends to provide a middleware platform to support the
integration of cloud-based applications, services and systems.

The paper is organised as follows. Section 2 provides general motivation for
combining SOA and cloud technologies to build the advanced community oriented
cloud PaaS platform. Section 3 describes Composable Services Architecture, on
which the GEMBus is based, and the services lifecycle management model. Section 4
describes the general architecture of GEMBus and section 5 extends on the GEMBus
component services. Section 6 provides information about GEMBus implementation
status and GEMBus/ESB testbed. And finally, section 7 discusses future development
of the GEMBus as a prospective cloud PaaS platform.

34 Y. Demchenko et al.

2 Clouds and SOA for Services Composition

There are two main directions in which mutual influence in the evolution of cloud
infrastructures and Service-Oriented Architecture (SOA) [7] can translate into
benefits for the maturity and usability of both technologies. First of all, service
deployment and operation can greatly benefit from a supporting cloud infrastructure
able to transparently provide elastically and on-demand computational and storage
resources. On the other hand, cloud infrastructure services are essentially service-
oriented and therefore suitable to take advantage from supporting services, such as
messaging, security, accounting, composition and therefore simplifying their
integration into business processes. In any of the above directions, multi-domain
issues have to be considered from the beginning: service deployment in any cloud
infrastructure beyond enterprise limits, as well as access to cloud interfaces out of
those limits require mechanisms spanning several management domains. Other, more
complicated use cases like collaborating services supported by different
infrastructures, or access to different cloud providers imply much more complicated
settings although they are clear application environments in the short term, if not
already required.

PaaS service provisioning model [1] suggests that besides actual platform for
deploying services, the PaaS platform provides also a number of automated services
management functions such as remote automatic deployment, configuration of
underlying platform/infrastructure services, elastic/dynamic computing and
storage capacities resources allocation (by PaaS platform provider), usage
statistics/accounting, and platform security such as firewalling, intrusion detection, etc.

Definition of PaaS brings benefits of creating the community oriented platform, in
particular for adopted for GEANT Research and Education community in Europe. It
can provide a basic set of infrastructure services and usage templates, in particular,
allowing integration with campus networks. On the other hand, moving to PaaS
service model will require devoted operational support facilities and staff.

3 Composable Services Architecture (CSA)

Composable Services Architecture (CSA) provides a framework for cloud based
services design, composition, deployment and operation [6, 8]. CSA allows for
flexible services integration of existing component services. The CSA infrastructure
provides functionalities related to Control and Management planes, allowing the
integration of existing distributed applications and provisioning systems, thus
simplifying their deployment across network and cloud infrastructures.

CSA provides also a basis for provisioning distributed composite services on-
demand by defining composable services lifecycle that starts from the service request
and ends with the service decommissioning. CSA is based on the virtualisation of
component services that in its own turn is based on the logical abstraction of the
component services and their dynamic composition. Composition mechanisms are
provided as CSA infrastructure services.

 GEMBu

3.1 CSA Functional Co

Fig. 1 shows the major f
interaction. The central par
which supports message e
seamless access to a set o
secure delivery and operatio

• A Service Lifecycle Me
metadata and code.

• A Registry service that h
• Security services that en
• Logging mechanisms ab

accounting purposes.

It must be noted that both
component services that can

Fig. 1. Composable

The Logical Abstraction
across highly distributed in
enabling service developer
them able to be seamlessly
& Resources” in the diagra
through the Service Compo
standard workflow manage
Layer.

us Based Services Composition Platform for Cloud PaaS

omponents

functional components of the proposed CSA and th
rt of the architecture is the CSA Middleware (CSA-MW
exchange through a normalized container that provi
of general infrastructure services supporting reliable
on of composite services:

etadata service (MD SLC) that stores service managem

holds information about service instances.
sure the proper operation of the infrastructure.
ble to provide operational information for monitoring

h logging and security services can be also provided
n be composed with other services in a regular way.

e Service Architecture and main functional components

n Layer (LAL) defined by CSA eases service relocat
nfrastructures that can span different management doma
rs to simply fit them to satisfy the requirements to m
 deployed in the cloud, as shown in “Component Servi
am above. Composite services offer compatible interfa
osition layer, which in a simple case can be provided
ement systems adapted through the Logical Abstract

35

heir
W),
ides
and

ment

and

d as

tion
ains,

make
ices
aces
d by
tion

36 Y. Demchenko et al.

3.2 Service Provisionin

While this architecture pro
making them suitable to
configurability associated w
well-defined Services Lifec
development and lifecycle
towards rather traditional h
10]. Dynamically provision
existing models and prop
provisioning process.

The proposed service lif
diagram (Fig. 2) below:

• Service Request. It rel
described in terms of Qo

• Composition/Reservati
potentially multi-domai
access control and SLA/p

• Deployment. This stage
and includes distribution
security context) and bin

• Operation. This is the
services.

• Decommissioning. It en
cleaned.

Fig. 2.

To take advantage of a distr
from the Operation stage ba
SLA requirements from its

• Re-composition or re-pla
• Recovery/Migration, can

require re-composition/m

ng Workflow and Service Lifecycle Management

ovides a good basis for creating and composing servic
o support and make advantage of the dynamical
with cloud infrastructures also requires them to rely o
cycle Management (SLM) model. Most of existing servi
e management frameworks and definitions are orien
human-driven services development and composition
ned and re-configured services will require re-thinking
posing new security mechanisms at each stage of

fecycle includes the following main stages, depicted in

lies on service metadata and supports SLA negotiati
oS and security requirements.
on. It provides support for complex reservation proces
n, multi-provider environment. This stage may requ
policy enforcement.

e begins after all component resources have been reser
n of the common composed service context (including
nding the reserved resources.
e main operational stage of the on-demand provisio

nsures that all security contexts are terminated, and data

Services Lifecycle Management Diagram

ributed infrastructure, two additional stages can be initia
ased on the running service state, such as its availability
user composite services:

anning, allowing incremental infrastructure changes.
n be initiated both by the user and the provider. It may a
modification

ces,
re-

on a
ices
nted

[9,
g of
the

the

ion,

s in
uire

rved
the

oned

are

ated
y or

also

 GEMBus Based Services Composition Platform for Cloud PaaS 37

It is important to mention that the implementation of the proposed provisioning
workflow requires a number of special services to support consistent provisioned (on-
demand) service life cycle management such as Service Lifecycle Metadata Service,
Service Repository and Service Monitor, that should be implemented as a part of the
CSA middleware.

Defining different lifecycle stages allows using different level of service
presentation and description at different stages, and addressing different aspects and
characteristics of the provisioned services. However, to ensure integrity of the service
lifecycle management, consistent service context management mechanisms should be
defined and used during the whole service lifecycle, including the corresponding
security mechanisms to protect integrity of the services context. The problem here is
that such mechanisms are generically stateful, what imposes problems for a SOA
environment, which is defined as generically stateless. The MD SLC functional
component shown in Figure 2 is intended to services lifecycle metadata.

4 GEMBus

The GEMBus framework, being developed within the GEANT project, aims to build
a multi-domain service bus for the GEANT community to provide a common
platform for integration of the existing and new GEANT services. With the GEMBus
as a development and integration platform, new services and applications can be
created by using existing services as building blocks. The foundation of the GEMBus
framework includes the necessary functionality to create composite (composed)
services and effectively use the widely accepted Service Oriented Architecture (SOA)
to building autonomic and manageable services using the provided mechanisms for
composition, adaptation, and integration of services [11, 12]. The GEMBus uses the
federation approach and mechanisms for services integration and operation that is
natively applicable for such multi-domain environment as GEANT community.
Federation preserves management independence for each party as long as they obey
the (minimum) set of common policies and technological mechanisms that define
their interoperation. Metadata constitute the backbone of such federations, as they
describe the components provided by each party and their characteristics in what
relates to the federated interfaces.

To facilitate the GEMBus based services integration and interoperability with other
cloud platforms, the core functionalities provided by GEMBus are accessible and
managed via the OCCI (Open Cloud Computing Interface) [13].

The main goal of GEMBus framework is to define, discover, access, and combine
network services of different layers (infrastructure, platform, service). Thus, the
framework will expose to the application elements both the infrastructure-level and
service-level elements. It provides the basis for a federated, multi-domain service bus
designed to integrate any services within the GEANT community, and provide
flexible negotiation of service provision capabilities interactively on mutual basis,
avoiding centralized service deployment and management.

38 Y. Demchenko et al.

Fig. 3 shows the intend
service registry and a ser
federated SOA, together w
deployed within the suppo
composition, modification
the deployed instant servi
among all participating
supports the CSA LAL thr
infrastructure services for s

The GEMBus core is co
required to maintain the
frameworks to interoperate
The GEMBus core comp
functional elements describ
frameworks connected to G

• The core components th
regard to service defin
security. These element
extending and profiling t

• A set of core services th
GEMBus, such as the S
services are invoked by
called from the code
Furthermore, as any othe
to be deployed anywhere

Fig. 3. GEM

ded use of GEMBus in a cloud infrastructure. A comm
rvice repository provide the metadata backbone for
with the deployable service code. Service instances
orting infrastructure from the repository, allowing for

and migration. Description and metadata information
ices are updated in the common registry and popula
entities (services and applications). The GEMBus c

rough a common messaging infrastructure plus support
ecurity, accounting and composition.
onstituted by those elements that provide the functiona
federation infrastructure, allowing the participant S

e in accordance with the principles previously describ
prises two types of elements, combined to provide
bed below according to the functionalities of the serv

GEMBus:

at form the federation fabric, enforcing its requirement
nition and location, routing of requests/responses
s are implemented by specific software elements and
the service frameworks to be connected.
hat provide direct support to any service to be deployed
STS or the Workflow Server described below. These c

the core elements as part of their functions. They can
e implementing any service deployed in GEMB
er service taking part in the infrastructure, they are suita
e, and integrated within composite services.

MBus as platform for cloud services integration

mon
the
are
re-

n of
ated
core
ting

ality
OA
bed.
the

vice

ts in
and

d by

d in
core
n be
Bus.
able

 GEMBus Based Services Composition Platform for Cloud PaaS 39

GEMBus includes a set of core services that jointly constitute the GEMBus
composable service platform and can be used to support user defined services:

• Federated Service Registry: stores and provides information about GEMBus
services.

• Service Repository: stores service bundles, thus allowing their deployment via
GEMBus.

• Composition Service: enables services composition and supported by the
orchestration engine.

• Security Token Service: issues, verifies and translates security tokens to allow the
authentication of requesters in a federated, multi-domain environment.

• Accounting Service: provides configurable and aggregated access to the GEMBus
login service to support monitoring, auditing, diagnostics, and troubleshooting.

• Messaging service that provides underlying infrastructure for composable services
interaction, integration and QoS management.

5 GEMBus Component Services

5.1 Composition Service

Being based on SOA principles, the ecosystem around GEMBus comprises a group of
loosely coupled, reusable, composable and distributed services, mainly coming from
the GÉANT community. Therefore, there is a need for a feasible and reliable way to
compose those services to build up more complex and smarter services. This
functionality is provided by the composition engine, a core service that enables
GEMBus to aggregate multiple general services, as well as other composed services,
into new services and applications. In summary, GEMBus allows to use existing
services as building blocks of other (bigger) services with additional functionality that
extends the aggregated functionality provided by the individual services.

To achieve this objective, the GEMBus framework follows existing procedures and
standard SOA mechanisms, and extends them to support multi-domain operations, in
particular using Business Process Execution Language (BPEL) [14] and available
ESB-based workflow execution engines to enable services orchestration. They are
connected with a specific description and control tool (first prototype implemented as
an Eclipse plug-in) based on Business Process Modeling Notation (BPMN) [15],
which is a graphical representation for Business Processes Modeling. BPMN is aimed
to fill the gap between the different stakeholders that take place from the analysis of a
business process to the implementation and management. It also provides a mapping
to the underlying constructs of execution languages (BPEL).

The most important feature of the composition aspect offered by GEMBus is the
possibility to compose any kind of services that implement standard Web Services
API. For instance, the infrastructure services available in cloud IaaS may be
composed with other computing services by using the OCCI standard. GEMBus

40 Y. Demchenko et al.

allows directly consuming the services that support OCCI by connecting them to
other services through the composition engine.

In addition to the orchestration service, a workflow management system will be
provided by integrating the Taverna [16] environment, a cross-platform set of tools
enabling users to compose not only web services, but also local Java services
(Beanshell scripts), local Java APIs, R scripts and import data from Excel or in CVS
format. The GEMBus composition service allows integration of other workflow
engine. Thus it is dynamically extended to meet the requirements of the specific
applications and services that rely on GEMBus.

5.2 Security Token Service

The GEMBus architecture bases its operation on the Security Token Services (STS)
defined in WS-Security [17] and WS-Trust [18] as a security mechanism to convey
security information between services that can also be easily extended to the federated
security required by the GEMBus composable services. The STS makes it possible to
issue and validate security tokens such as SAML [19], JWT [20], and X.509
certificates [21]. It also supports services (identity) federation and federated identity
delegation.

In the GEMBus STS, different elements support token issues and validation, as
shown in Fig. 4. The Ticket Translation Service (TTS) is responsible for generating
valid tokens in the system according to the received credentials, renewing and
converting security tokens. Token validation is performed by the Authorisation
Service (AS), which can also retrieve additional attributes or policy rules from other
sources to perform the validation.

The TTS mostly relies on external identity providers that must verify the identity
of the requester based on valid identification material. To support a large amount of
services, the application of different authentication methods must be ensured. This
must include the support of currently standardized authentication methods as well as
methods incorporated in future. In this respect, there will be a direct usage of the
eduGAIN identity federation service [22], or TERENA Certificate Service (TCS) [23]
and other accredited identity federation service.

The AS is responsible for checking the validity of the presented tokens. In this
case, the requester is usually a service that has received a token along with a request
message and needs to check the validity of the token before providing a response.
Checks carried out on the token can be related to issue date, expiration date or
signature(s). If the token is valid, the AS provides an affirmative answer to the
service. This process can also be associated with more complex authorisation
processes that involves additional attributes request and authorisation policy check.

The interaction between services in GEMBus is based on message exchanges.
Whether deployed inside GEMBus or running as an external service, the STS can be
used in a service composition to transparently provide its capabilities.

 GEMBu

Fig. 4. Authentication

5.3 GEMBus Accountin

The GEMBus multi-domai
processing meaningful acco
at every participating ESB
instance.

The Accounting Module

1. Data Collection: thi
the services. Data co
operation, as it is trig
services integrated
infrastructure to com
message exchanged
source of information

2. Data Storage: this
conjunction with dat
always followed by
Consequently, this is

3. Data Processing: th
service. In order to fu
of the metrics it sho
system. Which metri
them is out-of-scope
of a basic set provide

us Based Services Composition Platform for Cloud PaaS

and authorization processes in GEMBus security services

ng Service

in nature requires specific mechanisms for producing
ounting information. The Accounting Service is deplo
; the collected data are stored locally, within each serv

consists of the following main building blocks (see Fig.

is block is in charge of collecting basic, "raw" data ab
ollection is done at the ESB level. This is an asynchron
ggered each time a service is being called. In particular,

in GEMBus use the message-oriented middlew
mmunicate. The function of this block is to capture ev

between services, as those messages are precisely
n to evaluate GEMBus services behavior and performan
component stores the raw data. This operation occurs
ta collection; in other words, the collection operation
the operation of storing the collected raw data loca
an asynchronous operation as well.

his block computes the metrics of interest related to e
ulfill this operation, the Accounting Service must be aw
ould compute for each of the services registered with
cs are appropriate for a particular service or how to def
of our work. Instead, we assume the metrics are either p

ed by the Accounting Service itself, or they are specified

41

and
oyed
vice

5):

bout
nous
 the

ware
very

the
nce.
s in
n is
ally.

each
ware

the
fine
part
d by

42 Y. Demchenko et al.

the service provider. Data processing occurs asynchronously; by that we refer
to the fact that the raw data is processed only when a request is received.
Additionally this module performs aggregation of accounting data from all
available domains.

4. Information Reporting: this component is responsible for producing a report
in a human-readable format. Once the data processing has been concluded, the
information reporting block produces a report containing a complete view,
including data obtained across all available ESBs.

Fig. 5. Accounting service architecture

In order to support the multi-domain nature of GEMBus, the Accounting Service must
allow inter-domain data aggregation. To this end, each Accounting instance informs
the Registry on the services about which it has collected raw data. Next, when a
request about a specific service is received at one of the Accounting Services, it will
query the Registry for the list of other Accounting instances with data on that service.
Once the Registry returns the list, the Accounting will contact the other instances to
obtain the data of interest, which will further be aggregated with the local data and the
resulting report will be presented to the issuer of the request.

Let us give a short example to explain the workflow in the Accounting Service,
also illustrated in Fig. 5. We consider a situation when a system user or system
administrator from domain A/ESB A would like to get information on a certain
service, denoted by Service X. In the following, we use the term “local” to refer to the
Accounting System receiving the request, and the term “remote” to refer to other
instances that have collected data about the service under consideration.

The user/administrator issues a request to the local Accounting Service (Step 1
from Fig. 6). Next, the Accounting Service from domain A obtains from the Registry
the list of remote instances (i.e. the Accounting Service from domains B and C) with
information on Service X (Steps 2 and 3), and contacts each of them (Steps 4 and 5).

 GEMBus Based Services Composition Platform for Cloud PaaS 43

At the same time, the Data Processing component from the Accounting Service in
domain A retrieves from the Data Storage the raw data collected locally , and it
computes the metrics of interest. Once the reports from the remote Accounting
instances arrive, all data are aggregated and passed to the local Information Reporting
component. This block will further produce a final report, to be delivered to the
system user or system administrator who issued the request in the first place (step 6).

Fig. 6. Workflow in the Accounting Service

6 Testbed for ESB Based PaaS Platform

The proposed solutions and GEMBus/ESB based platform for services composition
have been implemented as a cloud PaaS tested at University of Amsterdam. The
testbed provides a facility for testing technologies and developing them as an open
cloud PaaS platform.

Fig. 7 shows the testbed structure and implementation details. The lower layer
infrastructure uses OpenNebula Virtual Machines (VM) management environment
[24]. Each VM runs a Fuse ESB [25] instance that may host one or more services that
can be provided and deployed as OSGi bundles [26].

Services interconnections is realised based on such ESB functional components as
Message Broker (based on Apache ActiveMQ [27]) and Message Router (based on
Apache Camel). Component services can be deployed in ESB environment using
VM’s with preinstalled and pre-configured ESB instances. Final services
interconnection topology can be created by pre-configuring ESB instances or
dynamically changing their configuration after deployment and during run-time, what
is supported by ESB functionality.

Communication between GEMBus domains is done either over underlying
transport network infrastructure or using dedicated network infrastructure provisioned
as Network as a Service (NaaS). In the latter case NaaS can controlled via dedicated
GEMBus service. Current testbed implementation uses only underlying transport
network infrastructure.

44 Y. Demchenko et al.

Fig. 7. Testbed for GE

In the proposed testbed
types. The first one is data
wrapped inside messages
processor, which can proce
routing mechanism allows
processor services. All serv
between different hosting c
connected into single logic
Theoretically, the testbed co
in existing VMs, but also
new VMs.

Fig. 8 provides graphic
Message Router and netwo
Broker configuration in bea

Current testbed configu
every second. The service
sources and processes them
output. Problems relating t
can be illustrated by the
generators to produce sin si
an addition function engine
demonstrator helped to r
controlling message sequ
communication delays and

The ongoing testbed de
and load balancing issues
applications. Some known
processing mechanisms a
Normalised Message Rout
multi-domain environment

EMBus/ESB based services composition as a cloud PaaS

, the deployed services which can be classified into t
generator service type, which automatically generates d
on a regular basis. The second service type is d

ess incoming data from different sources. The configura
to define data flows from data generator services to d

vices are deployed in separated VMs that can be distribu
computers and physical locations. They can be dynamica
cal topology by network of brokers as shown in Fig
ould allow to deploy as many services as possible, not o
o by extending network of brokers when provision

cal illustration of the services topology realization us
ork of Brokers. The listing provides example of Mess
an.xml for a simple demonstrator shown in Fig. 9.
ures that service data generators produce data messa
e data processor receives data messages from differ
m to produce new data and send them to the visualizat
to message transport such as delay and message order
visualization result. For example, with the service d
ignal and square signal, and the service processor realis

e, the output is a combination of sin and square signals. T
reveal the importance of services synchronisation
uencing in a distributed environment due to possi
even changed sequence of messages arrival.

evelopment addresses discovered services synchronisat
s which are particular important for industry orien
approaches deal with these problems are using mess

available in ActiveMQ Message Broker and Cam
ter, but their dynamic deployment and configuration
remain a subject of the future research.

two
data
data
able
data
uted
ally

g. 8.
only
ning

sing
sage

ages
rent
tion
ring
data
sing
The
and
ible

tion
nted
sage
mel

n in

 GEMBu

Fig. 8. Message Router an

Fig. 9. GEM

7 Conclusion and

In this paper we described t
framework as a generic SO
project Composable Servic
platform for CSA, the GE
automated services creatio
how the GEMBus can be us

It is important to ment
GÉANT project, so it inher
community of all Europea
which is currently positione
service operators. GEMBu
services from different dom
will include the deploymen

us Based Services Composition Platform for Cloud PaaS

<route>
 <from uri="jms:S1_Out"/>
 <to uri="jms:S3_Out"/>
</route>
<route>
 <from uri="jms:S2_Out"/>
 <to uri="jms:S3_Out"/>
</route>
<route>
 <from
uri="jms:queue:S3_Out"/>
 <to
uri="bean:logger?method=log”/
</route>

nd network of Brokers and example of bean.xml configuration

MBus/ESB services composition Demonstrator.

Future Development

the architecture and initial implementation of the GEMB
OA service bus implementing the proposed in the GEA
ces Architecture (CSA). Besides serving as a middlew
EMBus offers composition and orchestration services
on, deployment, and execution. The paper also descri
sed as a cloud PaaS platform.
tion that GEMBus is being developed as a part of
rits a wide base of already developed services and the u
an National Research and Education Networks (NRE
ed as a federated community of independent networks
us provides all the necessary functionality to integr

mains and resolve the inter-domain issues. The future w
nt of a GEANT wide GEMBus testbed to be provided a

45

/>

Bus
ANT
ware

for
ibes

the
user
EN)
and
rate

work
as a

46 Y. Demchenko et al.

cloud PaaS service that will allows creating new services and applications and
integrate them with the basic GEANT infrastructure services such as AutoBAHN [24]
and PerfSONAR [25] which correspondingly provide the bandwidth on-demand
service and the multi-domain monitoring service for the GÉANT network. This will
facilitate exchange of the community developed services and disseminate best
practices among GEANT members.

Finally, it is planned that the research results presented here will be contributed to
the Open Grid Forum Research Group on Infrastructure Services On-Demand
provisioning (ISOD-RG) [30], where the authors play an active role.

Acknowledgement. The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7 2007-2013) under
Grant Agreement No. 238875 (GÉANT).

References

[1] NIST SP 800-145, A NIST definition of cloud computing, http://csrc.nist.gov/
publications/drafts/800-145/Draft-SP-800-145_cloud-
definition.pdf

[2] NIST SP 500-292, Cloud Computing Reference Architecture, v1.0,
http://collaborate.nist.gov/twiki-cloud-
computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/
NIST_SP_500-292_-_090611.pdf

[3] GEANT Project, http://www.geant.net/pages/home.aspx
[4] GN3 Project JRA3 Task 3 Composable services, http://www.geant.net/

Research/Multidomain_User_Application_Research/Pages/
GEMBus.aspx

[5] Chappell, D.: Enterprise Service Bus. O’Reilly (June 2004)
[6] Grammatikou, M., Marinos, C., Demchenko, Y., Lopez, D.R., Dombek, K., Jofre, J.:

GEMBus as a Service Oriented Platform for Cloud-Based Composable Services. In: Proc.
3rd IEEE Conf. on Cloud Computing Technologies and Science (CloudCom 2011),
Athens, Greece, November 29-December 1 (2011) ISBN: 978-0-7695-4622-3

[7] OASIS Reference Architecture Foundation for Service Oriented Architecture 1.0, Committee
Draft 2 (October 14, 2009), http://docs.oasis-open.org/soa-rm/soa-ra/
v1.0/soa-ra-cd-02.pdf

[8] Generic Architecture for Cloud Infrastructure as a Service (IaaS) Provisioning
Model, Release 1. SNE Techn. Report SNE-UVA-2011-03 (April 15, 2011),
http://staff.science.uva.nl/~demch/worksinprogress/sne2011-
techreport-2011-03-clouds-iaas-architecture-release1.pdf

[9] Demchenko, Y., van der Ham, J., Ghijsen, M., Cristea, M., Yakovenko, V., de Laat, C.:
On-Demand Provisioning of Cloud and Grid based Infrastructure Services for
Collaborative Projects and Groups. In: The 2011 International Conference on
Collaboration Technologies and Systems (CTS 2011), Philadelphia, Pennsylvania, USA,
May 23-27 (2011)

[10] TMF Service Delivery Framework, http://www.tmforum.org/
servicedeliveryframework/4664/home.html

 GEMBus Based Services Composition Platform for Cloud PaaS 47

[11] Martinez-Julia, P., Lopez, D.R., Gomez-Skarmeta, A.F.: The gembus framework and its
autonomic computing services. In: Proceedings of the International Symposium on
Applications and the Internet Workshops, pp. 285–288. IEEE Computer Society,
Washington, DC (2010)

[12] Martinez-Julia, P., Marin Cerezuela, A., Gomez-Skarmeta, A.F.: A service oriented
architecture for basic autonomic network management. In: Proceedings of the IEEE
Symposium on Computers and Communications, pp. 805–807. IEEE Computer Society,
Washington, DC (2010)

[13] GFD.183: Open Cloud Computing Interface – Core. Open Grid Forum,
http://ogf.org/documents/GFD.183.pdf

[14] OASIS Web Services Business Process Execution Language (WSBPEL),
http://www.oasis-open.org/committees/wsbpel/

[15] Business Process Modelling Notation (BPMN), http://www.bpmn.org/
[16] Taverna, http://www.taverna.org.uk/
[17] WS-Security, http://www.oasis-open.org/committees/

tc_home.php?wg_abbrev=wss
[18] WS-Trust, http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/

ws-trust.html
[19] Cantor, S., et al.: Assertions and Protocols for the OASIS Security Assertion Markup

Language (SAML) V2.0 (SAML Core). OASIS Standard (2005)
[20] Jones, M., et al.: JSON Web Token (JWT) Network Working Group, Internet

Engineering Task Force (IETF) (December 2011), http://tools.ietf.org/
html/draft-jones-json-web-token

[21] Lawrence, K., Kaler, C.: Web Services Security: X.509 Certificate Token Profile 1.1.
Web Services Security (WSS) (November 2006)

[22] eduGain – Federated access in GEANT services network, http://www.geant.net/
service/edugain/pages/home.aspx

[23] TERENA Certificate Service, http://www.terena.org/activities/tcs/
[24] OpenNebula, http://opennebula.org/
[25] FUSE ESB Platform, http://fusesource.com/products/

enterprise-servicemix/
[26] OSGi Service Platform Release 4, Version 4.2, http://www.osgi.org/Download/

Release4V42
[27] Apache ActiveMQ Performance,

http://activemq.apache.org/performance.html
[28] AutoBAHN Bandwidth on-demand provisioning tool, http://www.geant.net/

service/autobahn/pages/home.aspx
[29] PerfSONAR Multidomain monitoring service for GEANT service area,

http://www.geant.net/service/perfsonar/pages/home.aspx
[30] Open Grid Forum Research Group on Infrastructure Services On-Demand provisioning

(ISOD-RG), http://www.ogf.org/gf/event_schedule/
index.php?event_id=17

Interface-Based Service Composition with Aggregation

Mila Dalla Preda1, Maurizio Gabbrielli1, Claudio Guidi2,
Jacopo Mauro1, and Fabrizio Montesi3

1 Lab. Focus, Department of Computer Science/INRIA, University of Bologna, Italy
{dallapre,gabbri,jmauro}@unibo.it

2 italianaSoftware srl, Imola, Italy
cguidi@italianasoftware.com

3 IT University of Copenhagen, Denmark
fabr@itu.dk

Abstract. Service-oriented architectures (SOAs) usually comprehend in-the-
middle entities such as proxies or service mediators that compose services ab-
stracting from the order in which they exchange messages. Although widely used,
these entities are usually implemented by means of ad-hoc solutions.

In this paper we generalise this composition mechanism by identifying the
primitive notion of aggregation. We formally define the semantics of aggregation
in terms of a process calculus. We also provide a reference implementation for
this primitive by extending the Jolie language, thus allowing for the experimen-
tation with real SOA scenarios.

1 Introduction

Service-Oriented Computing (SOC) is a programming paradigm for distributed systems
based upon the composition of services, autonomous computational entities which can
be dynamically discovered and invoked in order to form complex and loosely coupled
systems. Service-oriented systems are called Service-Oriented Architectures (SOAs).

Composition is the key aspect of SOC, and it is usually obtained through program-
ming methodologies that impose specific orders of interactions between services.
Examples are orchestration and choreography, where the order of interactions is re-
spectively specified from the point of view of a single service or from that of the whole
network. We call this kind of composition flow-based, referring to its explicit program-
ming of the interaction flows. However, mechanisms based on constraining a specific
order of interactions are not the only possible approaches to composition [13]. In prac-
tice, it is often the case that distributed networks are supported by entities such as prox-
ies and service buses, which can act as transparent intermediaries between services.
These entities are especially useful for handling the topology of an SOA, linking differ-
ent networks together, or for enacting some functionality that does not depend on the
order of interactions between the bridged services (e.g., logging). We call this kind of
composition flow-transparent.

Flow-based and flow-transparent compositions are represented by a multitude of
tools and specifications. For example, in Web Services, orchestration is usually achieved
by using WS-BPEL; choreography is addressed in terms of WS-CDL, YAWL, or BPMN.

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 48–63, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Interface-Based Service Composition with Aggregation 49

On the other hand, many commercial platforms for SOC implement flow-transparent
composition through an Enterprise Service Bus (ESB) [6], a middleware that provides
an abstraction layer to integrate different services in a single SOA. The consumer ser-
vices communicate with the ESB which translates incoming messages by using a suit-
able protocol (e.g. REST , JNI, SOAP, etc.) and then routes their translated version to
the correct service. Flow-transparent composition comprehends also all the proxy ser-
vices used for specific tasks in network architectures, such as caching proxies, reverse
proxies, and load balancers. Even though flow-transparent composition is widely used,
there is no work, to the best of our knowledge, that studies its basic characteristics at
the foundational level of a programming model. In this paper we provide such a study,
presenting an interpretation in terms of a process calculus. We identify a basic mech-
anism called aggregation for programming flow-transparent composition. Aggregation
defines a proxy entity, called aggregator, which composes aggregated services in a
flow-transparent way. Aggregators can change the topology of an SOA by exposing the
interfaces (collections of operations and their types) of some aggregated services. They
can also implement custom functionalities through the specification of code that, by
construction, abstracts from the order in which communications are performed. These
enhanced aggregators, called smart aggregators, can for instance check the content of
a message for authorization credentials and then decide whether it must be forwarded
or rejected, or it can store some logging information.

We use our model to formalise some properties that we expect in flow-transparent
composition. For example, we show that for some aggregators flow-transparent com-
position does not interfere with the behaviour of flow-based composition, i.e. the order
of communications is always preserved. Moreover, we show that aggregators are trans-
parent to operations and interfaces allowing the design of a system that could be easily
maintained and adapted to small but also even structural changes.

We show how our study can be used in practice by presenting a reference implemen-
tation that extends Jolie [18], a full-fledged service-oriented programming language for
building SOAs which is based on the formal process calculus SOCK [8]. We intro-
duce smart aggregation in Jolie building on its support to interface-based composition
and structured data types [9,16]. Our formal model is based on SOCK, ensuring that
the properties that we present are preserved in the implementation. It is worth noting
that even though Jolie was originally conceived for orchestrating services, its exten-
sion to include flow-transparent composition is rather smooth since it exploits primitive
Jolie notions such as sessions and input/output operations. The rest of this article is
structured as follows: in Section 2 we present some basic notions. In Section 3 we de-
scribe the primitive for aggregation in terms of some simple examples while in section
4 we provide its formalization in SOCK. Section 5 presents the implementation in the
Jolie language while Section 6 concludes, discussing some related work and indicating
directions for future research.

2 Network Model

In this section we describe the basic notions that we need to define the deployment of
a network of services and, therefore, to define aggregation. A network consists of some

50 M. Dalla Preda et al.

service definitions deployed at some locations and the structure of the connections be-
tween them. Our notion of connection depends on those of interfaces and communica-
tion points, which we define in the following.

We consider the following disjoint sets: the set Var of variables ranged over by x, y;
the set Val of values ranged over by v; the set Loc of locations ranged over by l; the set
O of operation names ranged over by o. Finally, we use the bold notation k to denote a
vector 〈k0, k1, . . . , kn〉.

In SOC, an interface describes the operations exposed by a service. Here we use a
simple definition inspired by the WSDL standard [3].

Definition 1 (Interface). An interface I is a set of one-way (OW) and request-response
(RR) operations with different names.

An OW operation describes an invocation that does not wait for a response; it is denoted
by o(x), where o is the name of the operation and x are its arguments. An RR operation,
denoted by o(x)(y), describes an invocation that waits for a response, so together with
the name o of the operation and its arguments x here we have also the arguments y
that are received back by the invoker. We assume that an interface I cannot contain two
operations with the same name. We write o ∈ I to indicate that an interface I contains
an operation whose name is o, omitting the arguments.

Service aggregation is based on the creation of a service (the aggregator) with an
interface that incorporates other interfaces of existing services. Therefore we introduce
a specific operation for manipulating interfaces. In particular, we introduce argument
extension, which is captured by the (overloaded) function extend that takes an (OW or
RR) operation, a list of arguments names and returns a new operation:

extend(o(x),x′) = o(xx′) extend(o(x)(y),x′) = o(xx′)(y)

The extend function can be defined over interfaces in the natural way:

extend(I,x′)={extend(o(x),x′) | o(x) ∈ I}∪{extend(o(x)(y),x′) | o(x)(y) ∈ I}

The deployment of a service S is defined in terms of its communication points.

Definition 2 (Communication point). A communication point is a pair (I, l), where I
is an interface and l is a location.

We distinguish between input and output communication points. An input communica-
tion point (I, l) defines the operations (those contained in the interface I) that a service
exposes at the location l. These are the functionalities that other services can invoke.
An output communication point (I, l), on the other hand, specifies the operations (those
in I) that a service will invoke on location l. These are the functionalities that the ser-
vice requires from a given location. Given a service S we denote with In(S) its input
communication points and with Out(S) its output communication points.

In order to define the deployment of a network we need to define how its services are
connected. Intuitively a connection between a service S and a service S ′ allows the first
to invoke the operations of the second: connections are directed. We call a connection
between different services external connection.

Interface-Based Service Composition with Aggregation 51

Definition 3 (External connection). Given services S and S ′, an external connection
is a pair of communication points (out , in) such that in = (I, l) ∈ In(S), out =
(I ′, l) ∈ Out(S ′) and I ⊆ I ′.

Next we enrich the communication capability of a service by introducing the notion
of internal connection, which consists of a link between an input and an output com-
munication point in the same service. This notion allows the programming of bridge
services that can forward messages received on an input communication point to an
output communication point (thus another service).

Definition 4 (Internal connection). Given a service S an internal connection is a pair
(in , out) where in = (I, l) ∈ In(S), out = (I ′, l′) ∈ Out(S) and there exists a list k
of names of arguments such that I = extend(I ′,k).

Observe that the interface of in ∈ In(S) can be an extension of the interface of out ∈
Out(S) because we want to be able to modify the interfaces of aggregated services.

We say that a service is directly linked to another when there exists an external con-
nection from the first to the second. More loosely, a service is linked to another, and can
therefore invoke it, if there exists a (directed) path consisting of external and internal
connections from the first to the second.

3 Some Motivating Examples

In order to highlight the key concepts and advantages of our primitives for service
aggregation we consider, as an example, the case of a printer service exposing its func-
tionalities to an intranet. The intranet is trusted, so no authentication is required for the
invokers that want to use the printer. When we extend the use of the printer service func-
tionalities to an untrusted network, say the Internet, we require that the invokers send an
authentication token together with the other data required for using the printer. We can
easily model this scenario by using a smart aggregator service that forwards calls from
the Internet to the printer service, which acts as an aggregated service. This aggregator,
for each message received from the Internet, checks the authentication token and, if it is
correct, it forwards the rest of the message to the printer service. Conversely, the mes-
sages coming from the intranet do not need any authentication, hence they are directly
sent to the printer. Note that we do not modify the printer service: the aggregator is an
external service, and the printer service is not aware of its existence.

Graphically a scenario where two printers exposing the same interface are aggregated
is depicted in the following way:

codeExample 1

C

print(doc, key)

inA

A print(doc)

outP2

A

outP1

A

print(doc)
inP1

P1

inP2

P2

52 M. Dalla Preda et al.

Now a scenario that constraints the printer at location loc1 to accept requests
only from internet users knowing the key “0000” while the printer at location loc2
can be used only by users providing the key “1111” can be implemented allowing
the aggregator service to execute the following code at every operation invocation.

if key == ”0000” then
forward loc1

else if key == ”1111” then
forward loc2

It is worth noting that aggregating services could also enhance the behavior of the ser-
vices since the aggregator could also provide new functionalities on its own. For ex-
ample, the aggregator service A in the printing setting could provide a new operation
get key(user id)(key) that, given an identifier of the client, returns the key that could
be used to exploit the printing facilities. In this scenario the client should first try to get
the key from the service A through the invocation of the operation get key and then,
by using the obtained key, it could proceed by invoking the print operation.

IP
code1

code2

Example 2

C

get key(user id)(key)

print(doc, key)

inA1

inA2

print(doc)

outA

inP

A
P

The new functionalities added by the aggregating services can be extremely useful in
practice. In the previous case, for instance, the operation get key could be exploited
for dynamically balancing the workload of the two printers.

4 The Formal Model

SOCK [8] is a process calculus for Service-Oriented Computing, featuring request-
response invocations as a native primitive. It provides the theoretical basis for the im-
plementation of the Jolie language [18]. In this section we extend SOCK with aggrega-
tion. We will omit some details that do not influence our presentation. Full definitions
can be found in [7].

First we introduce the notion of courier session, which specifies the code that has
to be executed by the aggregator before forwarding the message to the final recipient.
Next we introduce in the calculus the notion of communication points, which provide
an explicit specification of the deployment of services. This allows us to model internal
and external connections, and therefore communication among services which are not
directly linked (see the terminology introduced at the end of Section 2).

Interface-Based Service Composition with Aggregation 53

Table 1. Process Syntax

P ::= 0 null process
ε̄ output
Σiεi;Pi external choice
x := e assignment
if e then P else Q if then else

P ;P sequence
P |P parallel
Wait(c,y) wait after solicit
Exec(c, o,y, P) exec after request

output ε̄ :: = o(x)@out notification
o(x)(y)@out solicit

input ε ::= o(x) reception
o(x)(y){P} request

4.1 Session

A service in SOCK is a process that can instantiate multiple inner processes equipped
with a local state, called sessions. Sessions can send/receive messages and perform
computations. Session behaviours P,Q, . . . define the actions to be performed by ses-
sions. A selection of their syntax is reported in Table 1. We denote with P the set of
possible session behaviours. 0 is the null process; ε̄ is an output, while ε is an input;
Σiεi;Pi is a standard input-guarded choice; x := e assigns the evaluation of expres-
sion e to variable x. We leave the syntax for expressions undefined, assuming that they
are first-order expressions including variables and values in Val . if ethenP elseQ
is an if-then-else choice; P ;P and P |P represent, respectively, sequential and parallel
composition. Exec(c, o,y, P) and Wait(c,y) are runtime terms that are only used in
the semantics. Exec(c, o,y, P) represents a server-side running request-response: P
is the process computing the answer, o the name of the operation, y the vector of vari-
ables to be used for the answer, and c the private channel to use to send back the answer.
Symmetrically, Wait(c,y) is the process waiting for the response on client-side: c is
the channel used for receiving the answer and y the vector of variables to be used for
storing the answer. An input ε can either be a one-way (OW) o(x) or a request-response
(RR) o(x)(y){P}, where o is the name of the operation, x is the vector of variables
where to store the received information, and P is the process that has to be executed
before sending the information contained in y. An output ε̄ can either be the invocation
of an OW operation o(x)@out (called notification) or of an RR operation o(x)(y)@out
(called solicit-response), where o is the operation name, x is the vector of variables con-
taining the information to send, y the vector of variables to store the response, and out
specifies the output communication to invoke. An output o(x)@out (or o(x)(y)@out)
is well formed if o is contained in the interface of the used output communication point,
namely out = (I, l) implies o ∈ I .

Let σ : Var → Val be a memory map that associates values to variables and let M
denote the set of possible memory maps.

Definition 5 (Service session). A service session T is a pair (P, σ). We denote with
P = P×M the set of possible service sessions.

The semantics of a (service) session is specified by a labelled transition system (lts):
(P,LabelsP,→P). LabelsP is ranged over by α which is defined as follows:

54 M. Dalla Preda et al.

α ::= τ Silent Action ↑ o(v) �→ νc@(I, l) Solicit
o(v)@(I, l) Notification ↓ c �→ o(v) SResponse
o(v) Reception ↑ c �→ o(v) Request

↓ o(v)@c RResponse

Table 2. Session semantics

RECEPTION: (o(x), σ)
o(v)−−−→P (0, σ[v/x])

NOTIFICATION: (o(x)@out , σ)
o(σ(x))@out−−−−−−−−→P (0, σ)

SOLICIT: (o(x)(y)@out, σ)
↑o(σ(x)) �→νc@out−−−−−−−−−−−→P (Wait(c,y), σ)

SRESP: (Wait(c,y), σ)
↓c �→o(v)−−−−−→P (0, σ[v/y])

REQUEST: (o(x)(y){P}, σ) ↑c �→o(v)−−−−−→P (Exec(c, o,y, P), σ[v/x])

REXE:
(P, σ)

α−→P (P ′, σ′)

(Exec(c, o,y, P), σ)
α−→P (Exec(c, o,y, P ′), σ′)

RRESP: (Exec(c, o,y,0), σ)
↓o(σ(y))@c−−−−−−−→P (0, σ)

CHOICE: (εi,σ)
α−→P(Qi,σ

′)
(Σiεi;Pi,σ)

α−→P(Qi;Pi,σ
′)

ASSIGNMENT: [[e]]σ=v

(x:=e,σ)
τ−→P(0,σ[v/x])

τ is an internal action. o(v)@(I, l) and o(v) model respectively the delivery and the
reception of an OW operation. Label ↑ o(v) �→ νc@(I, l) models the invocation of an
RR operation to the output communication point (I, l), where νc denotes the new pri-
vate channel c created for receiving the response later, while label ↑ c �→ o(v) models
the reception of an RR operation on the private channel c. RR invocations are closed
by labels ↓ c �→ o(v) and ↓ o(v)@c, which denote respectively the reception and the
delivery of the response. The transition relation →P is the least relation that satisfies
the rules in Table 2 (we report only a selection) and that is closed up to structural equiv-
alence ≡ (namely the least congruence relation satisfying the axioms P |Q ≡ Q|P ;
P |(Q|R) ≡ (P |Q)|R; P |0 ≡ P ; 0;P ≡ P). We briefly describe the rules in Table 2.
Rules RECEPTION and NOTIFICATION model the reception and deliver of the one-way
operation o(x). Rule SOLICIT says that when a service sends a RR operation o(x)(y)
it establishes a fresh channel c on which it then waits for the answer. Once the answer
is received the results are stored in variables y as described by rule SRESP. Rule RE-
QUEST models the reception of a request for the RR operation o(x)(y){P} on channel
c: the received values are stored in variables x and then process P is executed. The ex-
ecution of process P is modeled by rule REXE. Once process P terminates the values
contained in variables y are sent back to the invoking service on channel c, as modeled
by rule RRESP. In ASSIGNMENT, [[e]]σ denotes the evaluation of expression e on σ.
The rule CHOICE is standard.

4.2 Services

We define now the semantics of a service, building on that of a service session. A ser-
vice is responsible for the creation and management of its sessions that, like threads in

Interface-Based Service Composition with Aggregation 55

processes, are the entities actually implementing the functionalities required by the in-
vokers. We introduce aggregation at the service level with the primitiveagg(List). This
primitive specifies the internal connections of the aggregator service and the courier
process. A courier C has the syntax:

C ::= o(xz) � P̂ | o(xz)(y) � P̂

where o(xz) and o(xz)(y) are the input operations that should be forwarded and P̂
is the process to be executed. The courier process P̂ differs from a standard session
process P in the fact that it cannot receive inputs, meaning that the term Σiεi;Pi can
not appear in P̂ , and in the fact that it can contain the new term forward(out) that
forwards the message that has activated the courier session to the output communication
point out. We denote by C the set of possible couriers ranged over by C, and by Δ the
parallel composition of couriers, that is: Δ = C | C|Δ. We assume that two couriers
in a Δ never start with a same operation o. We write C ∈ Δ for saying that C is in
Δ. The idea is that when an input o(xz) (resp. o(xz)(y)) arrives to the service the
corresponding courier o(xz) � P̂ (resp. o(xz)(y) � P̂) is considered and a new
session that we call courier session is created. The process of this courier session is
obtained by replacing every occurrence of the term forward(out) in P̂ by the term
o(x)@out (resp. o(x)(y)@out). We denote this substitution by P̂ [o(x)] when the input
message is an OW operation, and by P̂ [o(x)(y)] when the input is an RR operation.
Thus, when a service receives an input o(v) that matches the courier o(xz) � P̂
the service creates a courier session (P̂ [o(x)], σ⊥[v/xz]) where σ⊥ denotes a fresh
memory map. If instead the input o(v)(y) that matches the courier o(xz)(y) � P̂ is
received, the service creates a courier session (Exec(c, o,y, P̂ [o(x)(y)]), σ⊥ [v/xz])
where c is the channel to be used to send the reply.

Observe that the input operation that activates a courier session and the output op-
eration performed by the forward term are related by the extension function, indeed
o(xz) = extend(o(x), z) and o(xz)(y) = extend(o(x)(y), z). This models the fact
that the newly created session executes the process P̂ that consumes part of the input
(namely z) and then forwards the remaining information 1.

Note also that the term courier session just indicates a session that is created from
a courier process P̂ , once such a session has been created there is no difference with a
standard session.

In this paper we abstract from how a service can route an incoming message to the
right internal running session, since it is an orthogonal aspect to our presentation. The
interested reader may consult [17]. Here we simply assume that messages are delivered
to the right session. The sessions in execution at a given instant of time are specified
by the execution environment E . We will denote by ε the empty execution environment
and by T1| . . . |Tn the environment having T1, . . . , Tn (n ≥ 1) as session. Operator | is
commutative. We can now define the primitive for aggregation presented in Section 3.
The syntax is agg(I) where I is a list of tuples of the form 〈in , {out1, . . . , outn}, Δ〉
and:

1 In the actual implementation the output communication point in a forward primitive can be
omitted if it can be unambiguosly determined by looking at the deployment information of the
service.

56 M. Dalla Preda et al.

Table 3. Service semantics

START:
(P, σ⊥)

α−→P (P ′, σ)

〈In,Out〉P ⊕ agg(I)[[E]] α−→S 〈In,Out〉P ⊕ agg(I)[[E|(P ′, σ′)]]

COUR1 :
α = o(v) |v| = |xz| 〈(extend(I, z), l), {out1, . . . , outn}, Δ〉 ∈ I o ∈ I o(xz) � P̂ ∈ Δ

〈In,Out〉P ⊕ agg(I)[[E]] α−→S 〈In,Out〉P ⊕ agg(I)[[E|(P̂ [o(x)], σ⊥[v/xz])]]

COUR2 :
α =↑ c �→ o(v) |v| = |xz| 〈(extend(I, z), l), {out1, . . . , outn}, Δ〉 ∈ I o ∈ I o(xz)(y) � P̂ ∈ Δ

〈In,Out〉P ⊕ agg(I)[[E]] α−→S 〈In,Out〉P ⊕ agg(I)[[E|(Exec(c, o,y, P̂ [o(x)(y)]), σ⊥[v/xz])]]

EXE:
(Q,σ)

α−→P (Q′, σ′)

〈In,Out〉P ⊕ agg(I)[[E|(Q, σ)]]
α−→S 〈In,Out〉P ⊕ agg(I)[[E|(Q′, σ′)]]

– in = (extend(I,x), l) is an input communication point, where x denotes the array
of additional arguments that the incoming messages of interface I should provide;

– {out1, . . . , outn} = {(I, l1), . . . , (I, ln)} is a nonempty set of output communica-
tion points, sharing the same interface;

– Δ denotes the courier behaviour related to the operations of I , such that for ev-
ery forward(out) contained in the courier processes in Δ we have that out ∈
{out1, . . . , outn}.

We can finally formally define a service. We use S to denote a service and S to denote
the set of all possible services.

Definition 6 (Service). A service S is defined as:

S ::= 〈In,Out〉P ⊕ agg(I)[[E]]
where In and Out are the set of input and output communication points of the service;
P specifies the behaviour of the service sessions; agg(I) specifies the aggregating be-
haviour of the service; E is the environment of the executing sessions.

Observe that the internal connections of a service engine is specified by I. For every
element 〈in, {out1, . . . , outn}, Δ〉 in the list I we have a corresponding set of internal
connections {(in, out i) | 1 ≤ i ≤ n}. Thus, as expected, we have an internal connec-
tion every time that we perform aggregation in a service.

A service is well-formed if for every input communication point in = (I, l) in In we
have that for every operation o ∈ I exactly one of the following holds:

– P can receive in input the operation o;
– o is aggregated, namely there exists at least one tuple 〈in, {out1, . . . , outn}, Δ〉 ∈
I such that in = (I, l) ∈ In , {out1, . . . , outn} ⊆ Out , and o ∈ I .

This means that every operation declared by an input communication point of a service
engine is either implemented by the service itself or aggregated.

From the above definition we can observe that a service consists of two main com-
ponents: P and agg(I). The first one specifies the behaviour of its internally imple-
mented sessions, while the second one specifies which interfaces the service aggregates
and how the service manipulates the incoming messages before forwarding them to the
aggregated communication points. Observe that a simple form of aggregation where

Interface-Based Service Composition with Aggregation 57

Table 4. Network semantics

NOT/REC: S1

o(v)@(I,l)−−−−−−→SS′
1 S2

o(v)−−−→SS2 (I,l)∈Out(S1) (I,l)∈In(S2) o∈I

S1|S2

μ(o(v))−−−−−→N S′
1|S′

2

SOL/REQ: S1

↑o(v)�→νc@(I,l)−−−−−−−−−−→SS′
1 S2

↑c �→o(v)−−−−−→SS′
2 (I,l)∈Out(S1) (I,l)∈In(S2) o∈I

S1|S2

μ(↑o(v))−−−−−→N S′
1|S′

2

RES: S1

↓c�→o(v)−−−−−→SS′
1 S2

↓o(v)@c−−−−−→SS′
2

S1|S2

μ(↓o(v))−−−−−→N S′
1|S′

2

S-EXE: S τ−→S′

S|N τ−→NS′|N

messages are only forwarded, as in Example 2 of Section 3, can be seen as a special
case of the more general notion of smart aggregation where messages are elaborated by
the courier process. In fact, in the first case the courier is only composed by the forward
primitive (P̂ = forward(out)). Hence, without loss of generality, we can assume that
a courier is defined for every aggregated operation.

The semantics of the service engine is specified by an LTS (S,LabelsP,→S) where
→S⊆ S × LabelsP × S is the least relation that satisfies the rules in Table 3, where
σ⊥ denotes a fresh memory map, and its main features are the following. Rules START,
COUR1, and COUR2 model the creation of sessions and courier sessions. Rule START

is standard: when an operation implemented by the service is invoked a new session is
created that will handle the request. Rules COUR1 and COUR2 are structurally similar:
they create a session to handle the arrival of an aggregated operation. These sessions
run a courier code where all the forward primitives are replaced by an output primitive.
The last rule, EXE, models the execution of an existing session.

4.3 Network

Definition 7 (Network). A network N is a parallel composition of service engines:
N ::= S | N|S.

As argued above, the different services in a network can communicate when they are
connected through their input and output communication points. Table. 4 reports the
transition rules for a network of services. The first three rules model the communi-
cation between services in a network, while the rule S-EXE models the internal evo-
lution of a service in a network, namely the execution of service actions that do not
involve input/output operations. Rule NOT/REC models the one-way communication
between two services, while request-response communications are modeled through the
two rules SOL/REQ and RES which represents, respectively, the delivery and reception
of an RR operation and the delivery and reception of the answer to an RR operation. The
communication rules describe both direct communication between directly connected
services, and aggregated communication between services connected by a sequence of
external and internal connections.

4.4 Properties

We are now going to show the adequacy of our model by formalizing some propri-
eties that the flow-transparent mechanism of aggregation preserves, namely flow-based

58 M. Dalla Preda et al.

neutrality, operation transparency, and interface transparency. In the following
〈β1, . . . , βn〉 (〈β1, . . . , 〉) denotes a finite (infinite) trace. The set [[N]] of maximal finite
and infinite traces of a network N are defined as follows:

[[N1]] = {〈β1, . . . , βn〉|∃N2, . . . ,Nn+1 ∀i Ni
βi−→N Ni+1 ∧ for any β Nn+1 � β−→N} ∪

{〈β1, β2, . . . 〉|∀i > 1 ∃Ni Ni−1
βi−1−−−→N Ni}

The flow-based neutrality propriety states that the behaviour of a system of services
does not change when the messages are rerouted through an aggregator. This is guar-
anteed by the fact that a simple aggregator, i.e. an aggregator that only forwards the
messages, does not alter the flow between the invoker and the callee as stated by the
following.

Proposition 1 (Flow-based neutrality). If S1 is a service having output communica-
tion point (I, l), S2 is a service having input communication point (I, l), A aggre-
gates the interface I of S2, and S ′

1 is the service obtained from S1 by replacing all
the locations l with the locations of the A aggregator, then 〈β1, β2, . . . 〉 ∈ [[S1|S2]] iff
〈β′

1, β
′
2, . . . 〉 ∈ [[S ′

1|A|S2]] where β′
i = βi, βi if βi is a label involving an operation in

I , β′
i = βi otherwise. Analogously for the finite traces.

The property of operation transparency states that the forwarding of the messages to
aggregated services does not depend on the names of the aggregated functionalities.
This property is guaranteed by the forward(out) construct. In fact, by definition,
this construct does not depend on the name of the single operations in the aggregated
interface, but it redirects all the operations in the interface to the corresponding output
communication point.

Interface transparency means that it is possible to reuse aggregators definitions when-
ever the interfaces of the aggregated services are modified. Since addition or deletion of
operations to an interface can be seen as merge or partition of interfaces, the interface
transparency property is guaranteed by the fact that it is possible to merge two or more
aggregators providing different functionalities into one aggregator without modifying
the courier code. In the following, we denote with AI,S the aggregator that aggregates
the interface I of the service S.

Proposition 2 (Interface transparency). Assume that I1, I2 are interfaces, C, S are
services and S has input communication point (I1 ∪ I2, l). Then [[S|C|AI1,S |AI2,S]] =
[[S|C|AI1∪I2,S]].

We argue that these three properties are the basic ones that a language allowing flow-
transparent composition should observe. Indeed the programmer thanks to the flow-
based neutrality could reuse existing orchestrators, and thanks to operation and interface
transparency can forget about low level, repetitive and usually error prone details. The
combination of these three proprieties allows the development of a modular system
that can be easily and quickly modified to accommodate the need of a fast changing
environment.

Interface-Based Service Composition with Aggregation 59

5 Implementation in Jolie

In this section we substantiate our approach by showing the use of the new aggregation
primitives that have been included in the Jolie language. Here we will just outline the use
of this new primitives for the implementation of the examples introduced in Section 3,
for a detail description please see [7] instead.

In order to define the aggregator of Example 1 we need to extend the interface of the
printer by adding a new argument. The operation that allows us to extend every OW
operation of an interface with an additional argument of type KeyType can be defined
by using the (new) keyword interface extender as follows:

interface extender AuthIntExtender { OneWay: *(KeyType) }
Exploiting this new construct we can now define the new input communication point of
the aggregator in the following way

inputPort AggregatorPort {
Location: "socket://localhost:8000"
Protocol: soap
Aggregates: { Printer1Port, Printer2Port } with AuthIntExtender

}
Here the keyword Aggregates that we introduce allows us to specify which services
are aggregated. This is obtained by declaring that the output ports Printer1Port and
Printer2Port (defining the output communication points to invoke the printer services)
are aggregated in the input port AggregatorPort that defines the input communication
point of the aggregator service. The input port specifies that messages are accepted on
the port 8000 using the socket mechanism and the SOAP protocol.

The primitive Aggregates is used here to aggregate the two printers by using the
extended interface obtained through the AuthIntExtender operator.

To complete the definition of the aggregator we just need to specify the courier ses-
sion code. If IP is the interface of the printers this can be done using the new keyword
courier as follows:

courier AggregatorPort {
[interface IP(request)] {
if (request.key == "0000") {

forward Printer1Port(request)
} else if (request.key == "1111") {

forward Printer2Port(request) } } }
The reading of the previous code should be immediate.

Finally, we use Example 2 to show how functionalities can be added to an aggregator
service. Here the goal is to have an aggregator that, besides forwarding the messages
to the printer, is also able to provide the user with the key needed for accessing the
printer service. Such a key can be obtained by invoking the get key(user id)(key)
operation, which is included in the new interface defined as follows

interface AggregatorInterface
{ RequestResponse: get key(string)(string) }

60 M. Dalla Preda et al.

Suppose that the behaviour of the aggregator service that we want to model is the fol-
lowing: whenever it receives the get key(user id)(key) operation it returns the key
”0000” unless the name of the user is John, in which case it returns the key ”1010”.
This can be implemented as follows:

main {
get key(username)(key) {
if (username == "John") { key = "1010" }
else { key = "0000" } } }

Now, in order to completely define the aggregator of Example 2, we just need to modify
the input port of the aggregator in the following way.

inputPort AggregatorPort {
Location: "socket://localhost:8000"
Protocol: sodep
Interfaces: AggregatorInterface
Aggregates: Printer1Port with AuthIntExtender

}

Notice that now the input port has a new field Interfaces that specifies the additional op-
eration that the aggregator provides on its own, in addition to those that are aggregated
by using the construct Aggregates.

The Jolie code encoding the examples of Section 3 can be retrieved at [1].

6 Related Work and Conclusions

In this work we studied the foundational aspects of flow-transparent composition of
services in the context of SOA. We identified a basic mechanism, called aggregation,
that allows programmers to join service functionalities in a loosely coupled, interface
based, and behavioural transparent way. We formally defined aggregation in terms of a
process calculus and we provided a reference implementation in terms of an extension
of the Jolie language. Despite the simplicity of the examples that we provided, it should
be clear that aggregation can be used to build, in a rather easy way, large applications
along the Enterprise Integration Patterns guidelines.

To the best of our knowledge, this work is the first attempt to bring primitives for
the aggregation of services at the same level of the language that is used to define the
behavior of a service. Indeed, existing approaches provide tools that define aggrega-
tion by mixing different existing solutions. Our work goes in the opposite direction: we
englobe into a unique language, with a precise semantics, all the features needed to de-
fine services and their aggregation. This facilitates the development of correct software,
since the aggregating primitive enforces syntactic and semantic checks which allows
to easily prove relevant properties, as previously shown. This advantage is particularly
relevant when considering practical, commercial tools for services integration and com-
position: in this context often the Enterprise Application Integration (EAI) framework
[21] is used, which is usually composed by a collection of technologies and services.
On the market one can find several EAI mature technologies developed by leading IT

Interface-Based Service Composition with Aggregation 61

companies such as IBM, Oracle and Microsoft. Usually these are implemented by en-
hancing standard middleware products, often using an Enterprise Service Bus (ESB)
[6]. Differently from our approach, all these tools need to operate on top of several
existing languages and primitives: for instance, it is not usually possible [25] to im-
plement Enterprise Integration Patterns (EIPs) [10] relying solely on BPEL constructs.
This complicates the life of programmers and facilitates the introduction of errors.

Our aggregation mechanism could resemble inheritance in object-oriented languages.
However, while inheritance allows the reuse of the code of methods, in aggregation
what is reused is the executing service itself, since the computation for an aggregated
operation invocation is delegated to the aggregated service. We see this as a natural
difference, given the fact that aggregation operates in a distributed setting and, as such,
locality plays an important role.

A similar notion of aggregation is the interoperation hub [12]. This approach how-
ever differs from ours because it assumes that workflows and business process specifi-
cation are given following a data-centric paradigm.

WSDL [3] is a description language for Web Services that features communication
ports. WSDL 2.0 features interface inheritance, allowing an interface to be extended
with other operations. This recalls our mechanism of extending an interface using the
aggregation primitive. However, in WSDL one can not extend the data type of an op-
eration when using interface inheritance, but only add new operations. The literature
reports several attempts of using work-flow techniques [5,20], AIP planning [24,4],
theorem provers [19,23] to compose service in an automatic way. Usually these ap-
proaches are computationally difficult (often these problems are NP-hard), they make
a lot of strong assumptions (like the presence of a common ontology to describe the
service functionalities) and they do not scale up to larger systems. In our work we
focus on a simpler form of composition with less ambitious goals. Our aggregation
mechanism is strongly based on interfaces. There exist other models that exploit types
for describing service composition, such as those based on session types [11]. These
models, however, are mainly behavioural since they focus on aspects such as the or-
der of message exchanges used in the composed services. The aggregation mechanism,
instead, focuses on the structure of a service-oriented network and set of operations
offered by the composed services. Aggregation and typed behavioral composition play
two different, complementary, roles and as future work we plan to add behavioral types
to our framework. We also plan to introduce a type system for communication points
and connections in order to check the absence of “dangling” output communication
points. Moreover we believe that flow-transparent composition facilitates the design of
a SOA, since some architectural design decisions may be taken rather early, demanding
to the implementation of the (code in the) courier sessions some details.

Sometimes the ESB has been called also a architectural style that provides funda-
mental functionalities for integrating complex architectures via an event-driven and
standards-based messaging engine.

As another line of future work we are investigating the introduction of dynamic
aggregation of services. We would like to extend the current form of static aggrega-
tion in order to support dynamic changes of the network topology, thus allowing dy-
namic creation and deletion of communication points and connections. This could be

62 M. Dalla Preda et al.

important for the development of adaptable systems. In this context Jolie could repre-
sent an advantage for supporting session stickyness, i.e. the support to track session ref-
erences in aggregators such as load balancers, since Jolie statically defines the structure
of session references (correlation sets) along with service interfaces [17]. Finally our
aggregate primitive could be included also in other service-oriented languages based
on Web Services, such as WS-BPEL [2], or in other models that are used to formalise
service-oriented programming such as those in [15,14,22].

References

1. JOLIE Examples Files: http://www.jolie-lang.org/files/
esop2012 aggregation/example.zip

2. Web Services Business Process Execution Language Version 2.0:
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

3. Web Services Description Language (WSDL) Version 2.0: http://www.w3.org/
TR/wsdl20/

4. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of Web services via planning in
asynchronous domains. Artif. Intell. 174(3-4), 316–361 (2010)

5. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.-C.: Adaptive and Dynamic Ser-
vice Composition in eFlow. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS,
vol. 1789, pp. 13–31. Springer, Heidelberg (2000)

6. Chappell, D.A.: Enterprise Service Bus - Theory in practice. O’Reilly (2004)
7. Dalla Preda, M., Gabbrielli, M., Guidi, C., Mauro, J., Montesi, F.: A lan-

guage for (smart) service aggregation: Theory and practice of interface-based ser-
vice composition. Technical Report UBLCS-2011-11, University of Bologna (2011),
http://www.informatica.unibo.it/ricerca/ublcs/2011/
UBLCS-2011-11

8. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A Calculus for Service
Oriented Computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294,
pp. 327–338. Springer, Heidelberg (2006)

9. Guidi, C., Montesi, F.: Reasoning about a service-oriented programming paradigm. In: YR-
SOC, pp. 67–81 (2009)

10. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

11. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL, pp.
273–284 (2008)

12. Hull, R., Narendra, N.C., Nigam, A.: Facilitating Workflow Interoperation Using Artifact-
Centric Hubs. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS,
vol. 5900, pp. 1–18. Springer, Heidelberg (2009)

13. Khalaf, R., Leymann, F.: On Web Services Aggregation. In: Benatallah, B., Shan, M.-C.
(eds.) TES 2003. LNCS, vol. 2819, pp. 1–13. Springer, Heidelberg (2003)

14. Laneve, C., Zavattaro, G.: webπ at work. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005.
LNCS, vol. 3705, pp. 182–194. Springer, Heidelberg (2005)

15. Lapadula, A., Pugliese, R., Tiezzi, F.: A Formal Account of WS-BPEL. In: Lea, D., Zavat-
taro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 199–215. Springer, Heidelberg
(2008)

16. Montesi, F.: Jolie: a service-oriented programming language. Master’s thesis, University of
Bologna, Department of Computer Science (2010)

http://www.jolie-lang.org/files/esop2012_aggregation/example.zip
http://www.jolie-lang.org/files/esop2012_aggregation/example.zip
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
http://www.informatica.unibo.it/ricerca/ublcs/2011/UBLCS-2011-11
http://www.informatica.unibo.it/ricerca/ublcs/2011/UBLCS-2011-11

Interface-Based Service Composition with Aggregation 63

17. Montesi, F., Carbone, M.: Programming Services with Correlation Sets. In: Kappel, G.,
Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 125–141.
Springer, Heidelberg (2011)

18. Montesi, F., Guidi, C., Zavattaro, G.: Composing Services with JOLIE. In: ECOWS,
pp. 13–22 (2007)

19. Rao, J., Küngas, P., Matskin, M.: Logic-based Web Services Composition: From Service
Description to Process Model. In: ICWS, pp. 446–453 (2004)

20. Schuster, H., Georgakopoulos, D., Cichocki, A., Baker, D.: Modeling and Composing
Service-Based and Reference Process-Based Multi-enterprise Processes. In: Wangler, B.,
Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 247–263. Springer, Heidelberg
(2000)

21. Sherif, M.H.: Handbook of Enterprise Integration. Auerbach Publishers, Incorporated (2009)
22. Vieira, H.T., Caires, L., Seco, J.C.: The Conversation Calculus: A Model of Service-Oriented

Computation. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 269–283.
Springer, Heidelberg (2008)

23. Waldinger, R.: Web Agents Cooperating Deductively. In: Rash, J.L., Rouff, C.A.,
Truszkowski, W., Gordon, D.F., Hinchey, M.G. (eds.) FAABS 2000. LNCS (LNAI),
vol. 1871, pp. 250–262. Springer, Heidelberg (2001)

24. Wu, D., Sirin, E., Hendler, J.A., Nau, D.S., Parsia, B.: Automatic Web Services Composition
Using SHOP2. In: WWW, Posters (2003)

25. Yuan, X.: Prototype for executable EAI patterns. Master’s thesis, University of Stuttgart
(2008)

A Framework for Modelling Security Architectures
in Services Ecosystems

Matthew Collinson, David Pym, and Barry Taylor

University of Aberdeen
Scotland, U.K.

{matthew.collinson,d.j.pym,barry.taylor}@abdn.ac.uk

Abstract. We develop a compositional framework for modelling security and
business architectures based on rigorous underlying mathematical systems
modelling technology. We explain the basic architectural model, which strictly
separates declarative specification from operational implementation, and show
architectures can interact by composition, substitution, and stacking. We illus-
trate these constructions using a running example based on airport security and
an example based on (cloud-based) outsourcing, indicating how our approach can
illustrate how security controls can fail or be circumvented in these cases. We ex-
plain our motivations from mathematical modelling and security economics, and
conclude by indicating how to aim to develop a decision-support technology.

Keywords: Services Security and Privacy Systems Modelling, Architectural
Models for Cloud Computing, Economics Models and Services, Composition of
Services, Service Modelling, Service-oriented Analysis and Design.

1 Introduction

The development of utility computing platforms, such as cloud, and the business ecosys-
tems that they can support, has emphasized clearly the need for systematic approaches
to designing and reasoning about security architectures, their associated policies and
investment requirements, and their relationship with the core operational concerns of
the business model. Moreover, as such systems become integral parts of hybrid cyber-
physical systems, the need to identify unifying conceptual structures becomes pressing.

But security and business architectures (they should, of course, be considered to-
gether) cannot be understood in isolation from the underlying systems architecture. We
propose a conceptual framework (building directly on some earlier basic ideas [1]) for
describing security and business architectures that integrates directly with an underlying
account of the components of the supporting (distributed) system [2] and an associated
account of mathematical systems modelling [3–6]. Building on these foundations, we
can hope for a framework that is capable of addressing such challenging issues as how
to identify vulnerabilities, and potential attacks, that may arise from the interaction of
otherwise appropriately secure architectures. To this end, it is essential that our account
of security and business architectures be compositional.

Our approach to a conceptual architecture for security and associated business pro-
cesses is inspired by several key influences. First, a rigorous yet applicable and ro-
bust theory of mathematical systems modelling (supported by a simulation tool [4, 7])

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 64–79, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Framework for Modelling Security Architectures 65

that will support the requisite compositionality. Second, an increasingly well-developed
economics-based account of decision-making about trade-offs in security [8, 9]. Third,
a desire to deliver ontologically valuable, executable tools to support decision-makers.
Our presentation in this paper is intended to be informal but careful.

In § 2, we summarize our underlying approach to system modelling, aspects of which
are needed for our subsequent discussion. In § 3, we explain the basic model of security
architecture hierarchies that sits on top of this modelling approach. We use an example
that, whilst chosen to be familiar to most readers, illustrates that our approach, though
motivated by information architectures, is more broadly applicable. In § 4, we discuss
the various ways in which hierarchies can interact in order to combine to form more
complex architectures — and so allows us to see how complex situations are composed
of simpler ones, so allowing the sources of some security issues to be examined. In
§ 5, we extend our running example to encompass aspects of outsourcing to the cloud.
We conclude, in § 6, with a short discussion of our ongoing work in integrating our
structural and economics-based approaches into decision-support tools.

2 Systems Modelling and Systems Economics

2.1 The Core System Concepts

Our underlying approach to mathematical systems modelling builds on a body of the-
oretical work [3–6, 10], an implemented tool, Core Gnosis, [4, 7, 3], and a body of
practical modelling experience (see [3] for references). The approach builds on iden-
tifying four key concepts, which can be seen as building on a body of basic work in
the theory of distributed systems as summarized, for example, rather elegantly in [2].
The key notions are those of location, resource, process, and environment, as described
below. We mention briefly our mathematical treatment of these concepts, as captured in
Core Gnosis and reported extensively elsewhere [3, 4, 7] , but defer any detailed use of
these concepts to another occasion.

Location. Locations are the logical and/or physical places in the system architecture
at which resources are located. They are connected by links. Mathematically, our treat-
ment of location begins with some observations about some natural and basic properties
of locations [3, 5]: a collection of atomic locations — the basic places — which gen-
erate a structure of locations; a notion of (directed) connection between locations —
describing the topology of the system; a notion of sublocation (which respects connec-
tions); a notion of substitution (of a location for a sublocation) that respects connections
— substitution provides a basis for abstraction and refinement in our system models.
Leading examples are provided by various constructions on (directed) graphs.

Resource. The logical and/or physical entities that enable and are manipulated by the
processes that describe the system’s operations/services. Mathematically, our notion of
resource — which encompasses natural examples such as space, memory, and money
— is based on (ordered, partial, commutative) monoids (e.g., the non-negative integers
with addition, zero, and less-than-or-equals), which capture basic conceptual notions
of resource composition and comparison: each type of resource is based on a basic set
of resource elements; resource elements can be combined (and the combination has a
unit); resource elements can be compared.

66 M. Collinson, D. Pym, and B. Taylor

Process. Processes describe the system’s operations; the services it provides. Math-
ematically, we consider a process algebra that is similar to Milner’s SCCS [11], but
which incorporates notions of location and resource [3–5].

Environment. Such an architecture, as described in terms of location, resource, and
process, works well conceptually, but it is isolated — that is, it is not connected to the
environment within which it exists. For example, developed below, the processes that
describe an airport’s security operations apply to passengers (and their luggage) who
arrive at the terminal building from the outside world. Clearly, for our present purposes
at least, we are not interested in modelling the outside world in any detail. Nevertheless,
we must have some way of modelling passenger arrivals at the boundary of our system
of interest. In our system modelling point of view, in common with established practice
in discrete event simulation, the approach taken is to employ stochastic models of event
occurrences (cf. below, the arrival of passengers or other agents).

The incidence of events upon the system of interest is represented by an appropriate
choice of probability distribution. Once the model has been connected to its environ-
ment in this way, it can be executed, explored, and validated using discrete-event and
Monte Carlo-style simulation methods. Core Gnosis, which implements the approach to
mathematical systems modelling described above, allows the exploration of a model’s
properties by Monte Carlo-style experiments.

2.2 A Running Example

We will illustrate our approach to modelling security and other operational architectures
using a running example based on airport security. To set this up, we first explain,
informally, the underlying system model corresponding to this example, in terms of
its locations, resources, processes, and environment. The basic set-up is illustrated in
Fig. 1 (cf. [1, 12]), which describes the locations — from the public area outside of
the architecture, via airside, to the aircraft — in an airport that are significant for the
security architecture, the purpose of which is to ensure the suitability of passengers
to be admitted onto aircraft. A passenger (perhaps with luggage) must navigate from
groundside to airside, passing through a sequence of checks. These checks are processes
that are applied to, or act upon, various resources, at particular locations.

Fig. 1. Running Example: Airport Security Locations Directed Graph (Simplified)

A Framework for Modelling Security Architectures 67

The environment turns this static view into a dynamic one by introducing actors into
the system. For example, the arrival of passengers at the airport’s terminal building
might be captured by a negative exponential distribution, negexp(λ), where the rate pa-
rameter λ gives the mean time between passenger arrivals. Similarly, we might capture
the arrival of passengers carrying prohibited items with a different negexp parameter.

3 The Basic Architecture Model

Following [1], there are two key layers in our representation of a security architecture,
the Framework Layer and Instantiation Layer. Both are organized through a common
hierarchy of rôles, each rôle sub-divided into dependencies, priorities, and preferences.

The hierarchy contains all the relevant rôles that make up the organization being
modelled. Rôles are ordered by their ability to influence the security architecture of
the system. In other words, they are classified by the toolbox that is available to them
for modifying Security Objects (that characterize security tasks, defined below). The
system accepts multiple and partial orderings. For example, the top level of the model
might represent the strategic decision-makers of the organization, such as an airport’s
security managers or their regulators, while the bottom level might represent an indi-
vidual employee or user of the organization, such as an airport’s check-in staff or a
passenger navigating airport security. The rôles, representing positions in the hierarchy
that individuals can adopt, do not represent any entity themselves. They are instead pop-
ulated by actors, which are another component in the system and are described below.

Each hierarchy level contains three sections representing the dependencies, priorities
and preferences of that level. For our purposes we define the terms as follows:

– Dependencies (strong requirement): Externally enforced requirements that actors
populating the rôle must meet all of in order to function within the model. Actors
occupying this rôle have no choice in whether or not (and possibly even how) to
meet these requirements regardless of how resource inefficient they are. Dependen-
cies will often be informed by the environment within which the hierarchy exists;

– Priorities (weak requirement): Externally supplied tasks, as many as possible of
which should be met by actors in the associated rôle. Actors have some choice
in which priorities to meet and how they are approached. In a limited resource
environment, actors can select the most resource efficient priorities and methods
first. Priorities will often be informed by the rôle that the level represents;

– Preferences: Actor-generated tasks that an actor has decided are worth doing from
its own perspective — can be derived from an actor’s rôles in other hierarchies.

Dependencies, priorities, and preferences (DPP) and the hierarchy of rôles structure are
found in both the Framework Layer and the Instantiation Layer.

The use of dependencies, priorities, and preferences is inspired, as described in [1],
by utility theory and its use to study resource allocation and investment in information
security, as described in [8, 9]. Dependencies and priorities are driven by the utility of
the policy-makers that are responsible for the hierarchies (e.g., governments, regulators,
system owners/managers). Preferences, representing much weaker choices, are driven
by the users of systems (e.g., managers, employees, customers). A systematic integra-
tion of these utility-theoretic perspectives is beyond the scope of this short paper.

68 M. Collinson, D. Pym, and B. Taylor

The form and construction of the security architecture is illustrated in Fig. 2. The
key components of this diagram are the following:

1

2

3

m

m+1

Rôle Dependency Priority Dependency Priority Pref.

Framework Layer Instantiation Layer

…

Fig. 2. Security Architecture: Basic Hierarchy

– The hierarchy of rôles (far left). Rôles capture the relevant security or business
management structure of the organization being modelled. They are ordered by
their ability to influence the security architecture of the system;

– The Framework Layer (centre left). The Framework Layer is constructed top-down.
Dependencies and priorities at a given level in the hierarchy induce dependencies
and priorities at lower levels;

– Security Objects (trees within Framework Layer, with the requirements at parent
nodes being devolved to requirements at child nodes). Security Objects represent
the security tasks which, if completed, will satisfy the dependencies and priorities
with which they are associated;

– The Instantiation Layer (centre right). The Instantiation Layer is constructed
bottom-up, starting where the Framework Layer finishes (see below). The Instanti-
ation Layer is a populated image of the Framework Layer;

– Security Components (nodes of trees within Instantiation Layer). Security Compo-
nents perform the operational checks required in order to deliver Security Objects.
They do so by returning boolean values up the tree, towards the root, from parent
nodes to child nodes, thereby implementing the dependencies and requirements in
the corresponding nodes (i.e., those at the same rôle level) of the Framework Layer.
They enter the architecture when the Framework is instantiated;

– Actors (far right). Actors occupy rôles. They insert preferences into the hierarchy
of rôles at the Instantiation Layer.

A Framework for Modelling Security Architectures 69

3.1 The Framework Layer

The Framework Layer represents the underlying architecture. It is declarative, describ-
ing requirements, but informs the construction of the corresponding operational Instan-
tiation Layer, providing implementation. A Framework Layer consists in a hierarchy of
rôles (cf. RBAC models of access control), with dependencies and priorities assigned to
them. Preferences appear in the Instantiation Layer, below, not the Framework Layer.
The dependencies and priorities each have a Security Object (SO) associated with them.
SOs are a unique component of the Framework Layer and represent the security require-
ments which, if delivered, will satisfy the dependencies and priorities with which they
are associated. A typical SO will exist at multiple levels and multiple sections (de-
pendency, priority) in the Framework Layer. It will commonly be the case that an SO
created at a higher level will transition through and connect (or create) priorities and
dependencies lower in the framework.

For example, in the setting of the running example of airport security that we have
begun to introduce, examples of Security Objects include the examining of checked
luggage, the checking of hand luggage and passengers — to identify and so remove
any prohibited contents — and the tracking of the relationship between passengers and
checked luggage. These examples are developed below.

More mathematically, there are many choices of formalization of SO. Our working
choice for the purposes of this paper is, roughly speaking, the following:

– SOs are characterized by (directed) and/or forests1 2 (Fig. 2, trees in the Framework
Layer) associated with dependencies and priorities;

– Internal nodes of the trees are labelled with boolean variables, each associated with
a dependency or priority; truth conditions are inherited upwards (towards the root);

– Leaves are nodes for which a boolean instantiation (all components for conjunc-
tions, one component for disjunctions) can be determined at the next level down in
the hierarchy of rôles.

Dependencies and priorities are externally generated. In practice, a hierarchy will not
encompass all possible contributors to the framework and will be bounded at some
sensible level. In our example, we have not represented any rôle higher than the airport
security manager. To populate a hierarchy, it is necessary to determine the dependencies
and priorities that the top rôle inherits from sources external to the hierarchy. The next
step is to assign Security Objects to these dependencies and priorities: see Table 1,
where down the table one navigates down the Framework Layer along an SO.

Note, for example, that the SO ‘scan luggage and passengers’ corresponds to a tree
(in Fig. 2) in the Framework Layer. Starting as a node at the Manager’s rôle level, it
passes to two nodes at the Airport Security Staff level, and acquires a boolean value
at the Passenger rôle level (true/false that the passenger and luggage contents are per-
mitted) and will terminate. An SO must always terminate with such a compliance re-
quirement. Table 1 neglects (below the Manager’s level) the SOs related to checked
luggage.

1 A (directed) forest is a disjoint union of (directed) and/or trees.
2 A forest is required because a given SO may, in general, derive from more than one dependency

or priority.

70 M. Collinson, D. Pym, and B. Taylor

Table 1. Rôles, Dependencies, and Security Objects

Rôle Dependencies Security Objects
Airport Secu-
rity Manager

Ensure no prohibited materi-
als transit the airport

Scan checked luggage

Scan hand luggage and passengers

Track relationship between passengers and
checked luggage

Airport Secu-
rity Staff

Examine all passengers and
luggage passing through se-
curity checkpoint

Identify contents of hand luggage and ver-
ify permitted

Put passenger through metal detector

Passenger Comply with SO

3.2 The Instantiation Layer

Whereas the Framework Layer is declarative, the Instantiation Layer is operational.
Two new parts of the architecture are added during instantiation, Security Components
(SC) and actors. Actors occupy rôles and insert preferences into the hierarchy of rôles at
the Instantiation Layer. Security components combine together to form the operational
counterparts of security objects.

The Instantiation Layer is built from the bottom up. SCs lay out the processes and
resources needed to perform the boolean checks specified in corresponding SOs. SCs
start at the final ‘compliance’ level of the SO. Once the processes and resources required
at this level are in place, we check they are sufficient to complete the SO. If yes, then the
SC terminates. If not, then we move up to the rôle above and add additional processes
and resources as needed. Again, this process repeats until all SCs are closed. At this
point, the Instantiation Layer is complete.

A little more formally, corresponding to the slightly more formal view of SOs
sketched above, we can describe how SCs are combined to instantiate SOs as follows:

– SCs are combined according to the and/or forest of the SO that they instantiate;
– Each SC implements a checking process that applies to Actors at the level below;
– SCs return boolean values that instantiate internal nodes of the corresponding SO.

Working through our example again, we work upwards from Passenger until we have
sufficient processes and resources in place to return a boolean for the statement ‘the
passenger and luggage are permitted’. The SCs in this case would be as in Table 2, in
which reading up the table one navigates up the Instantiation Layer, along an SC.

In Fig. 2, the SCs correspond to the trees in the Instantiation Layer. Note that whereas
the SO terminated in a ‘compliance’ level the SC terminates at a ‘provision’ level when
it reaches a rôle that can sufficiently provide the resources required to execute the SC
without recourse to a higher rôle.

The final component of the Instantiation Layer (and the architecture) are actors. Ac-
tors exist independently of any single hierarchy, being entities that can inhabit rôles in
multiple hierarchies, this being the key difference between actors and SOs. They can
interact with any and all hierarchies present, simultaneously if necessary.

A Framework for Modelling Security Architectures 71

Table 2. SCs

Rôle Dependencies Security Components

Airport Security
Manager

Ensure no prohibited materi-
als transit the airport

Provide resources (X-ray machine,
metal detector, wands)

Provide data on prohibited materi-
als for X-ray comparison

Airport Security
Staff

Examine all passengers and
luggage passing through se-
curity checkpoint

Monitor X-ray machine and inspect
results for prohibited items

Hand-search suspect luggage

Hand-scan suspicious passengers
Passenger Comply with SO Place luggage on scanner

Walk through detector

3.3 Context and Related Approaches

The use of actors populating rôles, and of relations between rôles in organizations and
in society, has been an important theme in sociology since the mid-twentieth century
[13–15]. Indeed, much everyday language now incorporates terminology from that re-
search. The present work is influenced only indirectly — and perhaps unconsciously
— through the shared language. Indeed, the focus of the present paper is on setting
down in precise, mathematical terms the structure of organizations with a particular fo-
cus on their security function. A specific impact of this cultural heritage can be seen in
the development in computer security of RBAC, analyzed in the context of the system
modelling that underpins this work in [10].

Task Knowledge Structures (TKS) [16] provide a mechanism by which the organi-
zation of knowledge the users employ in order to solve problems can be used to support
system design, and an alternative approach to task modelling is given in [17].

An alternative approach to systems modelling is provided by System Dynamics [18]
explored in the business process modelling context in, for example, [19] and security
[20]. System Dynamics is focussed on the dynamics of system models, and does not
consider structural properties such as location or the structural properties of resource
and process. It also lacks the associated logic of states afforded by our approach [3–6]
(and needed, we submit, to consider architecture). Human factors in systems security
have been considered by many authors, (e.g., [21–23, 20] are relevant examples for this
paper) with social interactions between actors being considered in, for example, [24].

4 Interacting Architectures

The basic architecture model works well for a describing a single, clearly delineated
process, such as airport security operations or airport airside business operations. This
level of analysis was sufficient for the concerns of [1].

72 M. Collinson, D. Pym, and B. Taylor

Typically, however, organizations operate many such processes simultaneously, and
all of these processes may interact with one another, possibly in unintended ways or
with unintended consequences. For the present paper, we restrict our attention to those
forms of interaction that are mediated by actors. In the underlying system model, actors
will be represented either as resources, when they are passive components of a model
or, more typically, as processes, where they manage and navigate through architectures.

We identify three key ways in which hierarchies may interact, namely composition,
substitution, and stacking. We conjecture that, given our restriction to actor-mediated
interaction, these three forms of interaction are all that is required to describe con-
veniently and naturally the architectures commonly found in services ecosystems. This
conjecture can be formulated precisely in terms of the underlying mathematical systems
model, for which there is a rich theory of the expressiveness of concurrent composition
operators (e.g., [11, 25, 26]). The details are beyond the scope of this informal paper.

It should be noted here that, although the use of ‘actors’ is a convenient abstraction
here, it remains the case that our intended leading applications are primarily concerned
with policy assurance/compliance for organizational hierarchies, with their associated
‘human factors’. This intent influences our design decisions directly.

4.1 Composition

Composition, as illustrated in Fig. 3, is perhaps the most basic form of interaction be-
tween architectures. A key component of composition is the presence of some actors
in both hierarchies — the dotted lines in Fig. 3 indicate that some actors may populate
rôles in both hierarchies. In order for this to be possible, we must require that such
actors must be able to move themselves and/or resources between the two hierarchies.
This in turn requires that locations in the one hierarchy be connected to locations in the
other (recall locations can be logical and/or physical). Of course, the two hierarchies in
Fig. 3 might have the stronger property of sharing locations L and resources R.

For an example — illustrating the use of our framework to assess security vulnera-
bilities and possible attacks that may arise from composing architectures — consider
again our running example of airport security. Consider the security architecture as
sketched so far. Its purpose is to ensure certain integrity properties of people who get
airside (no weapons, no liquids that can be used to make bombs, etc.). Now, the airport
also exploits the airside location as part of its business process: it seeks to sell stuff to
passengers who are waiting to board aircraft, so that bottles of liquids that would be
blocked by the security process are available in airside stores.

So, as a result of composing the security architecture and the business architecture,
with shared locations, resources, and actors, we have a possible vulnerability and at-
tack. A terrorist clears security with nothing to identify her and nothing that is prohib-
ited. Similarly, an accomplice, who is a staff member in the newsagent’s airside store,
passes through security without question. However, the newsagent’s supply chain is
compromised, and there is a shrink-wrapped case of water bottles containing bomb-
making fluids, and the location of these bottles in the case is known to the staff-member
accomplice (here we assume that the fluids in the bottles for sale airside have not all
been individually tested for their chemical composition). The terrorist can then buy the
bomb-making liquids from the accomplice, so undermining the security architecture.

A Framework for Modelling Security Architectures 73

1

2

3

m

m+1

Rôle Dependency Priority Dependency Priority Pref.

Framework Layer Instantiation Layer

…

2

3

n

n+1

Pref. Dependency Priority Dependency Priority Rôle

Instantiation Layer Framework Layer

1

…

Fig. 3. Security Architecture: Composing Hierarchies

How, then, should we analyse this situation? The problem arises from the sharing
of locations and resources by the two architectures, with some actors able to be part of
both hierarchies without the integrity properties of actors and the resources to which
they have access that are required by one architecture being guaranteed by the other.
Moreover, if an actor inhabits rôles in two hierarchies, what are the conflicts between
the SOs and SCs associated with those rôles?

Our approach gives a framework within which the factors that contribute to failures
and circumventions of security policies and controls can be identified, isolated, and han-
dled. Moreover, when implemented in a simulation tool, the impact of vulnerabilities in
a range of threat scenarios can be explored. For example, for a vulnerability such as the
‘water bottles’ described above, the likelihood of a successful attack can be explored.

4.2 Substitution

The next form of interaction is substitution, illustrated in Fig 4. Here one hierarchy (the
child, on the right) is used to refine a rôle in another (the parent, on the left, rôle in
bold). We must require that the declarative and operational properties of the rôle that
is replaced are respected in the child hierarchy. Note there is no necessary requirement
here for the parent and child to share resources and locations (cf. stacking, below).

For substitution to be defined, the parent and child hierarchies must fit together prop-
erly, as described below. This definition can be given mathematically in terms of the
underlying system model; here we aim to give a precise, informal definition of how a
child hierarchy is substituted into the parent, replacing a rôle.

- In the Framework Layer, each dependency (resp. priority) that occurs in an SO in
the rôle in the parent that is replaced (�) must have a corresponding dependency

74 M. Collinson, D. Pym, and B. Taylor

1

2

3

m

m+1

Rôle Dependency Priority Dependency Priority Pref.

Framework Layer Instantiation Layer

1

2

3

n

n+1

Rôle Dependency Priority Dependency Priority Pref.

Framework Layer Instantiation Layer

…

Fig. 4. Security Architecture: Substituting Hierarchies

(respectively priority) at level 1 in an SO in the child that replaces it. Similarly,
corresponding to any dependency (resp. priority) in an SO in the parent that is
derived from a dependency (resp. priority) in the rôle that is replaced, there must
be a dependency (resp. priority) at level n+1 in the child that replaces it. Thus the
SO in the child refines the dependencies (resp. priorities) replaced in the parent.

- In the Instantiation Layer, each dependency (resp. priority) that occurs in an SC
in the rôle in the parent hierarchy that is replaced () must have a corresponding
dependency (respectively priority) at level n+ 1 in an SC in the child that replaces
it. Similarly, any dependency (resp. priority) in an SC the parent that is derived
from (going upwards, of course) on any dependency (resp. priority) in the rôle that
is replaced must have a corresponding dependency (resp. priority) at level 1 in an
SC in the child that replaces it. Thus the SC in the child refines the dependencies
(resp. priorities) replaced in the parent.

The child hierarchy must provide all of the declarative and operational capabilities as-
sociated with the dependencies and priorities in the rôle that it replaces — formally, this
is expressed in terms of processes and resources in the underlying system model, but the
details are omitted in this informal description. An example of the use of substitution,
together with the associated facility to support the identification of vulnerabilities and
associated attacks, is given in § 5.

4.3 Stacking

We can also combine hierarchies vertically — giving a natural approach to modelling
multilayered architectures — to form what we call stacks, in which one hierarchy sits
immediately below another.

A Framework for Modelling Security Architectures 75

The formation of stacks is similar to substitution, in that we can think of them as
being formed by substituting (as defined above) a child hierarchy for the bottom rôle
in the parent hierarchy. Critically, however, in stacks there may be actors that are com-
mon to both the upper and lower hierarchy with, correspondingly, shared locations and
resources. Thus stacking combines aspects of both substitution and composition. The
left-hand diagram in Fig. 5 illustrates a stack of two hierarchies.

To form this stack of (two) hierarchies, we start with a basic one, as in Fig. 2, with
layers 1 to m+1. We then substitute a second one, with its own layers labelled 1 to n+1,
at layer m+ 1, according to the definition of substitution given above. We then obtain
a hierarchy with layers 1 to m+ n+ 1, with layers m+ 1 to m+ n+ 1 corresponding
to the layers 1 to n+ 1 from the second layer. The right-hand diagram in Fig. 5 depicts
the three-layer cloud ecosystem stack, discussed below.

5 Extending the Running Example: Outsourcing to the Cloud

Having established our modelling theory using the familiar example of airport secu-
rity as an illustrative example, we now consider the example of a cloud-based services
ecosystem [27–29]. Three-layered approaches are common in designing and modelling
software system architectures (e.g., [30]) and we adopt this approach here. Specifically,
we suppose an infrastructure layer, upon which is stacked a service layer, upon which
is stacked a social layer.

The infrastructure layer provides the hardware and middleware platforms — that is,
the underlying cloud infrastructure — for the ecosystem. The service layer provides the
software — both its development and/or maintenance and sales to business users. The
social layer is where the end-user customers access services provided by the business
users — for example, a bank’s personal customers may use security software to support
internet banking, with the software being a collection of programs obtained by the bank
from a broker in the service layer who aggregates a security service.

The right-hand diagram in Fig. 5, illustrating the cloud ecosystem stack, hides the
rôle layers that were replaced when the stack was formed by substitution. For exam-
ple, the Service Layer replaces a (bottom) rôle in the Social Layer that describes the
provision of suitable software.

Table 3 illustrates the dependencies in the Service Layer. Table 4 illustrates how
priorities, for example, cross between stacked hierarchies: the SC tree connects the
priority of the SaaS Broker to that of the Business User.

To conclude this example, recall the airport security example. Suppose, as part of
the security process, some identities must be checked. The security staff may, for ex-
ample, need to use an email or other messaging service in order to obtain confirmation
of an identity. Clearly, establishing the integrity of such messages will be a dependency
for the airport’s security manager. To this end, the manager might outsource integrity
checking to a specialist (SaaS) email scanning provider. In terms of the security archi-
tecture, this will be an instance of substitution.

76 M. Collinson, D. Pym, and B. Taylor

1

2

m

m+n

m+n+1

Rôle Dependency Priority Dependency Priority Pref.

Framework Layer Instantiation Layer

Fig. 5. Security Architecture: Stacking Hierarchies (left) with Cloud Example (right)

Table 3.

Rôle Dependencies Security Components

SaaS Broker Ensure compliance for SaaS re-
quirements

Ensure availability of SaaS audit
data

Implement procedure to supply au-
dit outcomes to Regulator

Implement procedure to obtain au-
dit data from SaaS provider

SaaS Provider Ensure log data available to SaaS
Broker

Implement secure, adequately re-
trievable archiving

Table 4.

Rôle Priorities Security Components

Customer Obtain a good service
Business User Acknowledge contact from cus-

tomers promptly
Respond to customer by email
within 2 working days

SaaS Broker Contact SaaS Provider with per-
formance feedback sufficiently
promptly for feedback to be useful

Email SaaS Provider within 6
months of beginning service con-
tract

The process of sending an email intended for an airport employee is the following:
Original Email → Internet → Airport Firewall → Domain Server → Client PC →
Recipient. A SaaS offering scans email and performs a series of checks to ensure mes-
sages are free from malicious software, and their integrity is intact; that is, the apparent

A Framework for Modelling Security Architectures 77

originator is the actual sender of a message. Then the process is, essentially: Origi-
nal Email → Internet → SaaS → Email Scanned and Tagged → Internet → Airport
Firewall → Domain Server → Client PC → Recipient. Message tags are added by the
SaaS prior to forwarding: Checked (message is considered safe); Spam (unwelcome or
unsolicited source); Alert (message has failed a test). The operator has the option of
releasing the message. There is clearly a risk that a non-security aware operator will
release the message and enable malicious content to attack connected airport IT. There
is also a dependency that the SaaS be available.

A larger risk is that the integrity of the data within the email is now trusted to se-
curity controls that exist within the SaaS business model: typically, there will be less
transparency in the outsourced (i.e., substituted) setting concerning the controls that are
applied to determine which actors are used to fill which rôles. In our running example,
focus is therefore on differences between airport security controls and those of the SaaS
offering. Vetting procedures required for airport staff are in general tougher than those
for the staff employed by a SaaS operator. The relevant employee of the SaaS provider
will have access to a system able to access airport email traffic, and sign it as secure.
In the absence of tougher checks on this particular employee, there is a potential vul-
nerability that the employee could exploit in order to carry out a targeted attack. If the
service has previously performed well, and the user trusts the tags appended to checked
messages, then the resulting attack might have a high probability of success. The SaaS
provider’s ability to hold these contracts is quite tightly bound to their not allowing such
breaches, and it is not clear the contractual incentives will necessarily ensure that vet-
ting standards are well-matched to the sensitivities of the tasks determined by the SOs
and implemented by the SCs. Our framework provides a way to organize the inclusion
of appropriate standards for appropriate tasks in the contractual structure.

Thus, as in § 4.1, we see that our architectural framework provides a framework for
identifying, analyzing, and handling the vulnerabilities and associated attack vectors
related to with security design choices.

6 Modelling and Tool Support

The next stage of this work has three key aspects. First, we must provide a mathemati-
cally precise account of the relationship between the underlying system models (based
on locations, resources, and processes [4, 3]) and the architectures described here, in-
cluding the key relationship between models/architectures and their environments. We
have alluded this work here, but defer presentation of the details to another occasion.

Second, we must provide a systematic account of how utility-theoretic approaches
to resource allocation and investment decision-making in security are to be integrated
with our account of architectures [23, 31, 8, 9].

Third, we must develop tools to support the use of the architectural models described
in this paper to assess, systematically, how the interaction between different processes
can give rise to security vulnerabilities and attacks. A key aspect of this approach, build-
ing on both the first and second steps above, will be to simulate the behaviour of systems
and architectures in the presence of different threat intensities; that is, in the terms of
§ 2, different probabilities of possible attacks that are incident from the environment.

78 M. Collinson, D. Pym, and B. Taylor

Acknowledgement. We are grateful to Adam Beautement for many helpful discus-
sions related to the topics discussed herein. This paper builds on [1].

References

1. Beautement, A., Pym, D.: Structured systems economics for security management. In:
Moore, T. (ed.) Proc. WEIS 2010, Harvard (2010),
http://weis2010.econinfosec.org/papers/session6/
weis2010 beautement.pdf

2. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems: Concepts and Design, 3rd
edn. Addison Wesley (2000)

3. Collinson, M., Monahan, B., Pym, D.: A Discipline of Mathematical Systems Modelling.
College Publications (2012)

4. Collinson, M., Monahan, B., Pym, D.: Semantics for structured systems modelling and sim-
ulation. In: Proc. Simutools 2010. ACM Digital Library (2010) ISBN 78-963-9799-87-5

5. Collinson, M., Monahan, B., Pym, D.: A logical and computational theory of located re-
source. Journal of Logic and Computation 19(b), 1207–1244 (2009)

6. Collinson, M., Pym, D.: Algebra and logic for resource-based systems modelling. Mathemat-
ical Structures in Computer Science 19, 959–1027 (2009), doi:10.1017/S0960129509990077

7. Core Gnosis, http://www.hpl.hp.com/research/systems security/
gnosis.html

8. Ioannidis, C., Pym, D., Williams, J.: Investments and Trade-offs in the Economics of Infor-
mation Security. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 148–166.
Springer, Heidelberg (2009)

9. Ioannidis, C., Pym, D., Williams, J.: Information security trade-offs and optimal patching
policies. European Journal of Operational Research 216(2), 434–444 (2012)

10. Collinson, M., Pym, D.: Algebra and logic for access control [and erratum]. Formal Aspects
of Computing 22(2, 3-4), 83–104 (2010)

11. Milner, R.: Calculi for synchrony and asynchrony. TCS 25(3), 267–310 (1983)
12. Beautement, A., Pym, D.: The structure and dynamics of systems security economics,

https://www.abdn.ac.uk/˜csc335/actors.pdf
13. Parsons, T.: The Social System. Routledge (1951)
14. Merton, R.: Social Theory and Social Structure. Macmillan (1968)
15. Brown, L., Harding, A.: Social modelling and public policy: application of microsimulation

modelling in Australia. Journal of Artificial Societies and Social Simulation 5(4) (2002)
16. Johnson, H., Johnson, P.: Task knowledge structures: Psychological basis and integration

into system design. Acta Psychologica 78(1), 3–26 (1991)
17. Souchon, N., Limbourg, Q., Vanderdonckt, J.: Task Modelling in Multiple Contexts of Use.

In: Forbrig, P., Limbourg, Q., Urban, B., Vanderdonckt, J. (eds.) DSV-IS 2002. LNCS,
vol. 2545, pp. 59–73. Springer, Heidelberg (2002)

18. Sterman, J.D.: Business Dynamics: Systems thinking and modeling for a complex world.
McGraw Hill (2000)

19. Pidd, M.: Tools for Thinking: Modelling in Management Science. Wiley (2003)
20. Gonzalez, J., Sawicka, A.: A framework for human factors in information security. In:

WSEAS International Conference on Information Security, Rio de Janeiro (2002)
21. Adams, A.L., Sasse, M.A.: Users are not the enemy: Why users compromise security mech-

anisms and how to take remedial measures. Comm. ACM 42(12), 40–46 (1999)
22. Beautement, A., Sasse, M.: The compliance budget: The economics of user effort in infor-

mation security. Computer Fraud & Security 10, 8–12 (2009)

http://weis2010.econinfosec.org/papers/session6/weis2010_beautement.pdf
http://weis2010.econinfosec.org/papers/session6/weis2010_beautement.pdf
http://www.hpl.hp.com/research/systems_security/gnosis.html
http://www.hpl.hp.com/research/systems_security/gnosis.html
https://www.abdn.ac.uk/~csc335/actors.pdf

A Framework for Modelling Security Architectures 79

23. Beautement, A., Coles, R., Griffin, J., Ioannidis, C., Monahan, B., Pym, D., Sasse, A., Won-
ham, M.: Modelling the Hum. and Tech. Costs and Bens. of USB Memory Stick Sec. In:
Johnson, M.E. (ed.) Managing Inf. Risk and the Econ. of Sec., pp. 141–163. Springer (2008)

24. Kabir, M., Han, J., Colman, A.: Modeling and coordinating social interactions in pervasive
environments. In: Proc. 16th IEEE Int. Conf. on Eng. Complex Comp. Sys., pp. 243–252
(2011)

25. de Simone, R.: Higher-level synchronising devices in Meije-SCCS. TCS 37, 245–267 (1985)
26. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International (1985)
27. Baldwin, A., Pym, D., Shiu, S.: Enterprise information risk management: Dealing with cloud

computing. In: Pearson, S., Yee, G. (eds.) Privacy and Security for Cloud Computing: Se-
lected Topics. Communications and Networks. Springer (2012)

28. Wolter, C., Menzel, M., Schaad, A., Miseldine, P., Meinel, C.: Model-driven business process
security requirement specification. Journal of Systems Architecture 55(4), 211–223 (2009)

29. Menzel, M., Thomas, I., Meinel, C.: Security requirements specification in service-oriented
business process management. In: Proc. ARES 2009, pp. 41–48. IEEE (2009)

30. Blackwell, C.: A multi-layered security architecture for modelling complex systems. In:
Proc. 4th Ann. Workshop on Cybersecurity and Information Intelligence Res. ACM (2008)

31. Beres, Y., Pym, D., Shiu, S.: Decision Support for Systems Security Investment. In: Proc.
Business-driven IT Management (BDIM 2010). IEEE Xplore (2010)

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 80–90, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Much Ado about Security Appeal: Cloud Provider
Collaborations and Their Risks

Olga Wenge, Melanie Siebenhaar, Ulrich Lampe, Dieter Schuller, and Ralf Steinmetz

Multimedia Communication Lab (KOM)
Technische Universität Darmstadt, Germany

{Olga·Wenge,Melanie·Siebenhaar,Ulrich·Lampe,Dieter·Schuller,
Ralf·Steinmetz}@KOM.tu-darmstadt.de

Abstract. The lack of capacity, unplanned outages of sub-contractors, a
disaster recovery plan, acquisitions, or other financial goals may force cloud
providers to enter into collaborations with other cloud providers. However, the
cloud provider is not always fully aware of the security level of a potential
collaborative cloud provider. This can lead to security breaches and customers’
data leakage, ending in court cases and financial penalties. In our paper, we
analyze different types of cloud collaborations with respect to their security
concerns and discuss possible solutions. We also outline trusted security entities
as a feasible approach for managing security governance risks and propose our
security broker solution for ad hoc cloud collaborations. Our work provides
support in the cloud provider selection process and can be used by cloud
providers as a foundation for their initial risk assessment.

Keywords: cloud computing security, cloud collaborations, data privacy, data
protection, security broker.

1 Introduction

Nowadays, cloud computing is widely spread in very different industries due to its
efficiency, scalability and cost-saving models. The collaboration of clouds opens new
perspectives for cloud providers, helping to mitigate technical risks, assure
availability and provide customers with a larger range of services. Sometimes, cloud
providers are forced to enter collaboration immediately, because of an unplanned
disaster, as a backup solution, or because of some political and economical decisions.

However, the selection process of a potential collaborative cloud is not trivial. An
“ideal” collaborative cloud must fully meet all requirements and criteria, a cloud pro-
vider identified for the collaboration. The requirements may include technical aspects,
pricing, unique cloud services, mutual benefits, and last but not least – a big bouquet
of security requirements.

Security requirements may vary between cloud providers, depending on their
business needs, security policies and data classification. In our paper, we define and
discuss possible types of cloud collaborations and their security issues, as well as their
possible solutions.

 Much Ado about Security Appeal: Cloud Provider Collaborations and Their Risks 81

The paper is structured as follows: In Section 2, we discuss different types of
multiple clouds and give a holistic definition of cloud collaborations with respect to
security metrics. Section 3 provides an overview and evaluation of security risks in
cloud collaborations and their possible solutions. In Section 4, we outline information
security governance issues in cloud collaborations and discuss trusted security entities
(TSEs). We propose here our security broker selection process as a solution for ad hoc
collaborations. Finally, Section 5 describes our future work.

2 Security Aware Cloud Collaboration Types

In recent papers about cloud computing many different definitions can be found
related to cloud collaborations. Keahey et al. [1] define dynamically provisioned
distributed domains over several clouds as “sky computing”; Bernstein and Vjj [2]
describe “intercloud” as “a network of clouds” and Wolf et al. [3] as “Cloud of
clouds”, while Kretzschmar et al. [4] use the “multi-cloud” term for their definition;
federation of clouds is defined by Wolf et al. [3] as “a homogenous environment,
where all partners use the same standard”. Almutairi et al. [5] propose another view of
cloud collaborations with respect to security access control: federated collaborations
with a metapolicy for the cloud access control, loosely coupled collaborations with
local security policies for the access control, and ad hoc collaboration with the third
party provider as a trusted partner for access control verification. The authors in [5]
measure tradeoffs between proposed types of collaboration using the following four
metrics: level of interoperation between cloud providers, their autonomy, level of
privacy, and verification complexity of security policies.

In our paper we present a holistic security analysis and explore these three types of
cloud collaborations as proposed by Almutairi et al. [5] with respect to further
security risk metrics, which Cloud Security Alliance (CSA) considers as the critical
areas of cloud computing [6]:

─ Legal risks
─ Proprietary definitions of cloud services and deployment models
─ Compliance and audit with regulators
─ Insufficient level of security
─ Data protection risk
─ Data location risk
─ Identity and data access risks
─ Insufficient monitoring and incident response
─ Portability risk
─ Insufficient information security governance

We extend the definitions of the cloud collaborations, proposed by Almutairi et al.
[5], with respect to the classical security domains [7], and define the cloud
collaboration types as follows:

Federated collaborations presume a global metapolicy, which is conform to all
policies of all collaborative partners. Policies can include security policies, data
privacy policies, data classification policies, regulators requirements, and local laws.

82 O. Wenge et al.

Compliance of all collaborative partners leads to a strong mutual dependence and
trusted interoperation between individual clouds, i.e. all clouds within a federation
can interoperate without “security fear”.

A loosely coupled collaboration allows more autonomy and is managed by local
policies between collaborative partners, e.g. service level agreements (SLAs) or other
pre-agreed collaboration contracts, which fully meet security requirements of both
cloud providers.

An ad hoc collaboration does not set any predetermined agreement or rules
between individual clouds. The selection of a collaboration partner performs in a
dynamic “ad hoc" manner and can be denied if an individual cloud did not persuade
with his "security appeal", e.g. sufficient authentication and authorization
mechanisms, network encryption, etc. By ad hoc collaboration, cloud providers need
some kind of a trustable security interface for the security judgment, e.g. a trusted
security entity (TSE).

Fig.1 gives a graphical overview of the cloud collaboration types as described
before and tradeoffs between them.

3 Security Concerns and Solutions in Multiple Cloud
Environments

In this section, we outline security concerns and issues of the defined types of cloud
collaborations with respect to the critical areas, proposed in Section 2.

3.1 Legal Risks

The lack of international standards for data privacy and data transfer is one of the
major hurdles for cloud providers. The recent legislations in EU (European Data Pro-
tection Directive – Directive 9/46/EC) [8] and Canada (Canada's Personal Information
Protection and Electronic Document Act – PIPEDA) [9] restrict transfer of customers'
personal data to countries without "an adequate level of protection" [10].

While Europe and Canada believe society is responsible for protection of private
data, the USA considers individual users to be responsible for protecting their own
data [11]. In some countries data protection laws are still not implemented, as for
example in Malaysia [12], or only partly implemented, as in Taiwan [13].

Poor knowledge of laws can lead to privacy breaches; therefore, all cloud providers
should be aware of countries’ actual laws about data privacy, data protection and
other laws, related to their services and collaborative partners.

European Network and Information Agency (ENISA) [14] recommends a full
awareness of laws and government regulations to be prepared contractually to
cooperate with cloud providers from different legal environments. Cloud providers
can also implement their own additional privacy policies to provide the necessary
level of trust [15]. Additional policies must include directives concerning collecting,
recording, using, or storing of data and agreed upon with customers, because in some
countries, cloud providers cannot transfer data to another provider without customers'
explicit permission [11].

 Much Ado about Security Appeal: Cloud Provider Collaborations and Their Risks 83

Fig. 1. Cloud collaboration types and tradeoffs between them

Fig. 2. Evaluation of proposed security metrics in cloud collaborations (the arrow head shows
the highest value)

Adoption of international policies, such as Organization for Economic Cooperation
and Development (OECD) or Asia-Pacific Economic Cooperation (APEC) guidelines
[14] could be a feasible solution as well, especially for ad hoc collaborations [15]. An
agreement on global privacy laws could be a panacea against international cyber
security issues, but this approach is very challenging and complex, because of
heterogeneities of local laws and political situations [16].

84 O. Wenge et al.

So, the weaker the collaboration bindings, the higher the risks. We depict our
observed dependencies between the cloud collaboration types and security risk in the
Fig 2.

3.2 Proprietary Definitions of Cloud Services and Deployment Models

The variety of different non-standardized definitions of cloud computing, cloud ser-
vice models (Infrastructure-as-a-Service, Platform-as-a-Service, Software-as-a-
Service, Database-as-a-Service, Business-as-a-Service, etc.), and cloud deployment
models (private, public, community, hybrid, virtual-private hybrid, etc.) could be
another issue for proper collaboration between cloud providers, especially in ad hoc
manner. The differences on definitions can cause security discrepancy and make
the cloud provider vulnerable, e.g. if a database with related security configurations is
defined as a part of Platform-as-a-Service by one cloud provider and not by
another one.

To avoid these misunderstandings and possible trials with customers, only pre-
agreed definitions must be used in the collaboration (e.g. according to National
Institute of Standards and Technology (NIST) definitions, cloud reference model [17],
cloud taxonomy definition [6]) and documented in SLAs or other contracts [18].

3.3 Compliance and Audit with Regulators

Compliance resolutions with regulators for special industries, such as banking,
healthcare, government, must be taken into consideration by selecting a potential
collaboration partner. Different industries must be compliant with special industrial
standards and laws, e.g. financial institutions operating in the USA must be compliant
to Sarbanes-Oxley (Sox) Act [11], and in Europe – with Basel II [14]; medical
institutions in the USA must be compliant with Health Insurance Portability and
Accountability Act - HIPAA [15].

Therefore, cloud provider must be aware of these requirements and be ready to
reflect them in their contracts or contracts with third-party auditors. The complexity
of the verification of special regulations and their adoption in contacts is very high
and time-consuming, therefore not applicable for a dynamic ad hoc collaboration with
individual clouds without required compliance evidence.

In addition, proper security monitoring agreements should be established for
sufficient evidence of secure collaborations. Some effective common certification
assurance frameworks and risk assessments for (cloud) providers, such as ISO/IEC
27001/27017 [19], COBIT [20], Cloud Security Alliance Control Matrix [21],
Bundesamt für Sicherheit in der Informationstechnik (BSI, in Germany)
Recommendation for Cloud Providers [22], and Shared Assessment Program [23],
can be used as a basis for security control agreements for federative and loosely
coupled collaborations, and as a compliance evidence for individual clouds in the ad
hoc collaboration.

 Much Ado about Security Appeal: Cloud Provider Collaborations and Their Risks 85

3.4 Insufficient Level of Security

Before transferring the customers’ data to a collaboration partner, the cloud provider
must be aware of the security level of a collaborative partner to prevent the
compromising of data protection and data privacy laws.

The security assurance of a potential collaborative cloud provider can be provided
via a trusted cloud provider certification, risk assessment or information security policy
with defined security controls, necessary for a planned type of collaboration [6].

Actual security policies and risk assessments should include all relevant security
domains, recommended by security standard institutions such as NIST [24], ISO/IEC
27001/27017 [19], BSI [23] and Information Systems Audit and Control Association
(ISACA) [25]:

─ Access control
─ Encryption and key management
─ Security governance
─ Network security
─ Business continuity management and disaster recovery
─ Security monitoring
─ Application and infrastructure security
─ Physical security
─ Virtualization security

The review of policies and assessment results of collaborative partners should be
taken to identify their security level and to make a decision on a possible
interoperation. The security level of a potential collaborative partner should be at least
equal to the cloud provider’s level [22].

In the ad hoc collaboration a trusted security entity (e.g., a security broker, a
trusted third party) is necessary for a proper decision.

3.5 Data Protection Risk

The data transferring to a collaborative partner should be protected at least at the same
level as by the origin cloud provider [22]. Differences between proprietary data
protection mechanisms can lead to security gaps and compromising of data.

Agreed data classification and data labeling framework are some of the solutions to
identify the needed protection level for data flow. Watson [26] proposes an extended
Bell-LaPadula security model for cloud providers, where the permission of data
access and data transfer in the multi-level security environment depends on the
sensitivity of the data. Role-based access control (RBAC) models for cloud, defined
by Berger et al. [27] can be used for automated identification of the data protection
level and for assigning a level to a potential collaborative partner for interoperations.

To prevent data leakage and provide data integrity, collaborative cloud providers
should use pre-agreed data content patterns, encryption mechanisms and best practice
key management solutions, such as trusted platform modules (TPMs), one-time
passwords [28], etc.

86 O. Wenge et al.

An implemented data retention policy is also a “nice-to-have” solution for data
misuse after service delivery.

3.6 Data Location Risk

A cloud provider must be aware of data location if he transfers the users’ data to
another cloud provider to be compliant with customers’ SLAs and other specific
regulations described in Section 3.1 and Section 3.3. Proper defined SLAs with
collaborative partners are one of the solutions to prevent non-controlled data
movements [29].

3.7 Identity and Data Access Risks

Identity and data access in multiple cloud environments is one of the most serious
issues because of its complexity and involvement of several classical security
do-mains: encryption, key management, information security, application and
infrastructure security. The idea of the cross-cloud identity and data access is to
provide a dynamic, fast and customer friendly cloud service. The issues of non-proper
and non-secure identity and access management are non-standardized identification,
authentication and authorization mechanisms between cloud providers.

A centralized identity and access administration and governance has to be replaced
with a decentralized one, because of the overwhelming number of rules to be man-
aged [5]. Secure federated cloud access mechanisms and good access and
authentication practices, such as Security Assertion Markup Language (SAML),
secure single-sign-on [30], as possible solutions should be implemented between
cloud providers. Sabahi [31] proposes a control access to all levels, including virtual
machines (VMs), and Almutairi et al. [5] bet on a fine-grained authorization
mechanism, multi-factor authentication and distributed access control architecture.
Wolf et al. [3] propose a “message meta model for federated authentication for
heterogeneous clouds across different standards”, which can be used for ad hoc
collaboration as well.

3.8 Insufficient Monitoring and Incident Response

Security monitoring and security incident management are eminent parts of a proper
security concept for every cloud provider. An efficiently implemented security
monitoring, using a combination of preventive, detective and corrective
measurements, can save lots of money, reputation and trouble, if a cloud provider
knows what should be monitored. Many researchers are busy with the mapping of
traditional security monitoring frameworks to a cloud computing architecture, to
define gaps and provide new monitoring metrics. ENISA in “A guide to monitoring of
security service levels in cloud contracts” [32] proposes different monitoring
parameters for Infrastructure-as-a-Service, Platform-as-a-Service and Software-as-a-
Service, including requirements for log management, incidence response, and
forensics.

 Much Ado about Security Appeal: Cloud Provider Collaborations and Their Risks 87

It is strongly recommended to define all monitoring parameters and related
vulnerability and incident response processes in the SLAs with a collaborative partner
or with a third-party monitoring provider. Sufficient monitoring evidences can be
used to identify fraud, zero-day attacks and support IT forensic science. The costs of
security monitoring countermeasures are mostly high: their implementation is time-
consuming, they need a lot of storage, and they must be regularly reviewed.
Therefore, a business impact analysis (BIA) should be performed to calculate a
loss-benefit factor for assets, which need security monitoring.

3.9 Portability, Interoperation and Autonomy

Almost all cloud providers use their own proprietary (and also in addition to open
source) security solutions for their services, and do not make them public because of
intellectual property rights, hacking issues and other business concerns. The lack of
public information ends up with a provider lock-in and hampers customer’s portability
and interoperation.

ENISA [14] and CSA [6] recommend using only standard technologies and
solutions for collaboration to avoid a cloud provider lock-in, or to sign a so-called
escrow agreement in case a cloud provider stops its activity.

As we already mentioned above, federated collaborations assume a high level of
mutual interoperability and low level of autonomy, in comparison to ad hoc
collaboration. But, if any security threat occurs in the federation, it can compromise
all collaborative partners, as they use one metapolicy.

Viability and capability of a cloud provider is another very important aspect. A
potential collaborative partner should provide the existence of Plan B – a business
continuity and disaster recovery plan, which is especially critical for interoperation
with high available and sensitive data [31].

We present our evaluation of described risks in Fig.2; the arrow head shows the
highest value.

4 Information Security Governance in Cloud Collaborations

In this section, we discuss a trusted security entity (TSE) as a possible solution for
information security governance risks and propose our initial TSE approach, which
we plan to develop in our future work.

Information security governance in the federated or loosely coupled collaborations
is regulated by metapolicy, SLAs or a contracted security provider. The lack of a
standardized trusted security entity (TSE) makes the ad hoc collaboration between
clouds very difficult. Requests for the necessary security evidence of a potential
collaborative partner and responses to it cannot be provided dynamically and without
latency. A cloud provider must be fully aware of his own security requirements
(security policy, SLAs, security standards, etc) to determine security requirements and
map them against the TSE output.

88 O. Wenge et al.

To the best of our knowledge there are very different approaches of a TSE for
federated or loosely coupled cloud collaborations. Huang et al. [33] propose an
“identity federation broker”, based on an interaction of transitive federated single
sign-on principle. Goyal [34] defines a distributed security method to “end-2-end
services security for heterogeneous cloud environments”. His method does not require
a centralized infrastructure and is based on the mutual methods of trust and security
used for public key infrastructure (PKI). Ates et al. [35] bet on “an identity cloud
agent” and propose an Identity-as-a-Service approach.

The Shared Assessment Program [23] is an industrial standard self-assessment for
cloud providers and third party auditors, and can be used as a standard in the
federated collaboration.

CSA [6] recommends the following five-steps methodology to identify a potential
cloud-ready asset and a potential cloud partner: “1) Identify the asset; 2) Evaluate the
asset; 3) Map the asset to the potential cloud deployment model; 4) Evaluate potential
cloud service models and providers; and 5) Map out the potential data flow “ .

However, the proposed TSE approaches are generally hardly applicable to ad hoc
cloud collaborations. We suggest the following six-step TSE selection approach, our
security broker, which we consider to be applicable for ad hoc collaborations as well:

Step 1: Security broker performs or gathers security risk assessments of each potential
cloud provider, eager to collaborate;

Step 2: Security broker classifies risk assessments results and stores these results in
his database;

Step 3: A cloud provider X sends a specified collaboration request, which includes
cloud provider’s security requirements of the expected security level of a potential
collaborative cloud;

Step 4: Security broker analyzes and classifies requirements of a cloud provider X;

Step 5: Security broker maps the classified results with the results of security risk as-
assessments in his data base to identify an appropriate collaborative cloud provider;

Step 6: Security broker outputs a list with recommended cloud providers.

Our proposed security broker approach can be used in all types of cloud
collaborations, described in Section 2. While storing and classifying of performed
security risk assessments of cloud providers, the verification complexity can be
avoided, that makes our security broker also applicable for ad hoc collaborations. To
provide a proper selection process, our proposed approach needs to be completed with
a proper security assessment classification and with defined mapping rules, which we
aim to provide in the future.

5 Conclusion and Future Work

In our paper, we defined different types of cloud collaborations with respect to their
security issues and discussed potential solutions. We could see that the different types

 Much Ado about Security Appeal: Cloud Provider Collaborations and Their Risks 89

of cloud collaborations either tend increase or decrease described cloud security risks.
Hence, the determination of the risk level indicates whether a specific collaboration
type is appropriate or not to conduct the risk assessment.

We have also proposed the application of a trusted security entity (TSE) – our se-
curity broker - for ad hoc collaborations and a corresponding cloud provider selection
process.

In the future, we plan to analyze cloud providers’ collaboration requirements in
more details in order to define a holistic security framework for an “ideal” cloud
security broker, we outlined in Section 4.

Acknowledgement. This work is supported in part by E-Finance Lab e. V., Frankfurt
am Main, Germany (http://www.efinancelab.com).

References

1. Keahey, et al.: Sky Computing. IEEE Internet Computing, 43–51 (September/October 2009)
2. Bernstein, et al.: Intercloud Security Considerations. In: IEEE International Conference on

Cloud Computing Technology and Services, pp. 537–544 (2010)
3. Wolf, et al.: A Message Meta Model for Federated Authentication in Service-oriented

Architectures. In: IEEE International Conference on Service-Oriented Computing and
Applications (SOCA), pp. 1–8 (2009)

4. Kretzschmar, et al.: Security management Spectrum in future Multi-Provider Inter-Cloud
Environments – Method to highlight necessary further development. In: 5th International
DMTF Academic Alliance Workshop on Systems and Virtualization Management (SVM),
pp. 1–8 (2011)

5. Almutairi, A., Sarfraz, M., Basalamah, S., Aref, W., Ghafoor, A.: A Distributed Access
control Architecture for Cloud Computing. IEEE Software 29(2), 36–44 (2012)

6. CSA: Security Guidance for Critical Areas of Focus in Cloud Computing, V3.0,
https://cloudsecurityalliance.org/research/
security-guidance/

7. CISSP Domains, https://www.isc2.org/cissp-domains/default.aspx
8. European Data Protection Directive – Directive 9/46/EC, http://eurex.europa.eu/

LexUriServ/LexUriServ.do?uri=OJ:L:1995:281:0031:0050:EN:PDF
9. Canada’s Personal Information Protection and Electronic Document Act – PIPEDA,

http://www.priv.gc.ca/leg_c/leg_c_p_e.asp
10. Pearson, et al.: Privacy, Security and Trust Issues Arising from Cloud Computing. In:

IEEE 2nd International Conference on Cloud Computing Technology and Science
(CloudCom), pp. 693–702 (2010)

11. Perkins, et al.: Multinational Data-Privacy Laws: An Introduction for IT Managers. IEEE
Transactions on Professional Communication 47(2), 85–94 (2004)

12. Ho, et al.: A Guideline to Enforce Data Protection and Privacy Digital Laws in Malaysia.
In: 2nd International Conference on Computer Research and Development, pp. 3–6 (2010)

13. Chen, et al.: Legal Issues on Public Access to Remote Sensing Data in Taiwan. In:
Geosciences and Remote Sensing Symposium (2005)

14. ENISA: Security & Resilience in Governmental Clouds (2011),
http://www.enisa.europa.eu/activities/
risk-management/emerging-and-future-risk/deliverables/
security-and-resilience-in-governmental-clouds

90 O. Wenge et al.

15. Wood, K., Anderson, M.: Understanding the complexity surrounding multitenancy in
cloud computing. In: IEEE 8th International Conference on e-Business Engineering
(ICEBE), pp. 119–124 (2011)

16. Wolf, C.: The Role of Government in Commercial Cybersecurity. In: Telecom World (ITU
WT), Technical Symposium at ITU, pp. 13–18 (2011)

17. NIST SP 800-145: The NIST Definition of Cloud Computing, http://csrc.nist.gov/
publications/nistpubs/800-145/SP800-145.pdf

18. Bernsmed, K., Jaatun, M.G., Meland, P.H., Undheim, A.: Security SLAs for Federated
Cloud Services. In: 6th International Conference on Availability, Reliability and Security
(ARES), pp. 202–209 (2011)

19. ISO/IEC 27001: International Standard (2005), http://www.iso.org/iso/
catalogue_detail?csnumber=42103

20. COBIT, http://www.isaca.org/
Knowledge-Center/COBIT/Pages/Overview.aspx

21. CSA Cloud Control Matrix,
https://cloudsecurityalliance.org/research/ccm/

22. BSI-Standard 100-1, Version1.5, https://www.bsi.bund.de/ContentBSI/
Publikationen/BSI_Standard/

23. The Shared Assessment Program: Evaluation Cloud Risk for the Enterprise: A
Shared Assessment Guide (2010), http://sharedassessments.org/media/
pdf-EnterpriseCloud-SA.pdf

24. NIST: Guide for Security-Focused Configuration management of Information Systems
(2011), http://csrc.nist.gov/publications/nistpubs/
800-128/sp800-128.pdf

25. ISACA: Cloud Computing: Business Benefits With Security, Governance and Assurance
Perspectives (2011)

26. Watson, P.: A Multi-level Security Model for Partitioning Workflows over federated
Clouds. In: IEEE 3rd International Conference on Cloud Computing Technology and
Science (CloudCom), pp. 180–188 (2011)

27. Berger, et al.: Security for the Cloud Infrastructure: Trusted Virtual Data Center
Implementation. IBM Journal of Research and Development 53(4), 6:1–6:12 ((2009)

28. Wu, et al.: Alignment of Authentication Information for Trusted Federation. In: EDOC
Conference Workshop, pp. 73–80 (2007)

29. Kandukuri, B.R., Paturi, V.R., Rakshit, A.: Cloud Security Issues. In: Services Computing,
pp. 517–520 (2009)

30. OASIS-Security-Services, http://www.oasis-open.org/
31. Sabahi, F.: Cloud Computing Security Threats and Responses. In: IEEE 3rd International

Conference on Communication Software and Networks, pp. 245–249 (2011)
32. ENISA: Procure Secure: A guide to monitoring of security service levels (2012),

http://www.enisa.europa.eu/activities/
application-security/test/procure-secure-a-guide-to-
monitoring-of-security-service-levels-in-cloud-contracts

33. He, Y.H., Bin, W., Xiao, X.L., Jing, M.X.: Identity Federation Broker for Service Cloud.
In: International Conference on Service Sciences (ICSS), pp. 115–120 (2010)

34. Goyal, P.: Application of a Distributed Security Method to End-2-End Services Security in
Independent Heterogeneous Cloud Computing Environments. In: IEEE World Congress
on Services (SERVICES), pp. 379–384 (2011)

35. Ates, M., Ravet, S., Ahmat, A.M., Fayolle, J.: An Identity-Centric Internet: Identity in the
Cloud, Identity as a Service and other delights. In: 6th International Conference on
Availability, Reliability and Security (ARES), pp. 555–560 (2011)

Formal Modeling of Resource Management for
Cloud Architectures: An Industrial Case Study�

Frank S. de Boer1, Reiner Hähnle2, Einar Broch Johnsen3,
Rudolf Schlatte3, and Peter Y.H. Wong4

1 CWI, Amsterdam, The Netherlands
f.s.de.Boer@cwi.nl

2 Technical University of Darmstadt, Germany
haehnle@cs.tu-darmstadt.de

3 Dept. of Informatics, University of Oslo, Norway
{einarj,rudi}@ifi.uio.no

4 Fredhopper B.V., Amsterdam, The Netherlands
peter.wong@fredhopper.com

Abstract. We show how aspects of performance, resource consumption,
and deployment on the cloud can be formally modeled for an industrial
case study of a distributed system, using the abstract behavioral specifi-
cation language ABS. These non-functional aspects are integrated with
an existing formal model of the functional system behavior, supporting a
separation of concerns between the functional and non-functional aspects
in the integrated model. The ABS model is parameterized with respect
to deployment scenarios which capture different application-level man-
agement policies for virtualized resources. The model is validated against
the existing system’s performance characteristics and used to simulate
and compare deployment scenarios on the cloud.

1 Introduction

Virtualization is a key technology enabler for cloud computing. Although the
added value and compelling business drivers of cloud computing are undeni-
able [12], this new paradigm also poses considerable new challenges that have
to be addressed to render its usage effective for industry. Virtualization makes
elastic amounts of resources available to application-level services; for exam-
ple, the processing capacity allocated to a service may be changed according to
demand. Current software development methods, however, do not support the
modeling and validation of application-level resource management strategies for
virtualized resources in a satisfactory way. This seriously limits the potential for
fine-tuning a service to the available virtualized resources. This paper demon-
strates how to overcome this limitation by integration of resource management
into a formal, yet realistic, model that yields to simulation and analysis.

� Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Models (http://www.hats-project.eu).

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 91–106, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.hats-project.eu

92 F.S. de Boer et al.

Our long-term goal is the integration of virtualization into the development
process of general purpose software services, by leveraging resources and resource
management to the modeling of software. Our starting point in addressing this
challenge is the recently developed abstract behavioral specification language
ABS [19]. ABS is object-oriented to stay close to high-level programming lan-
guages and to be easily usable as well as accessible to software developers, and
it is executable to support full code generation and (timed) validation of models.

ABS has been extended with time and with primitives for leveraging resources
and their dynamic management to the abstraction level of software models [8,23].
The extension achieves a separation of concerns between the application model,
which requires resources, and the deployment scenario, which reflects the vir-
tualized computing environment and provides elastic resources. For example,
an application model may be analyzed with respect to deployments on virtual
machines with varying features: the amount of allocated computing or memory
resources, the choice of application-level scheduling policies for client requests,
or the distribution over different virtual machines with fixed bandwidth con-
straints. The simulation tools developed for ABS may then be used to compare
the performance of a service ranging over different deployment scenarios already
at the modeling level.

The main contribution of this paper is a large industrial case study, which
demonstrates that it is possible to model aspects of performance, resource con-
sumption, and deployment on the cloud based on this extension of ABS. The
non-functional aspects are integrated with a model of the functional system
behavior, achieving a separation of concerns between the functional and non-
functional aspects. The ABS model is parameterized over deployment scenarios
which capture different application-level management policies for virtualized re-
sources. The model is validated against the existing system’s performance char-
acteristics and used to simulate and compare deployment scenarios on the cloud.
A companion paper [22] details the modeling of the cloud provider and compares
our approach to results obtained by simulation tools.

The paper is organized as follows: In Sect. 2 we describe the case study used
in this paper; in Sect. 3 we explain how deployment scenarios are modeled in the
extended ABS; in Sect. 4 we describe the modeling of the case study in ABS,
before we discuss related work in Sect. 5 and conclude in Sect. 6.

2 The Case Study: Background

The Fredhopper Access Server (FAS) is a distributed, concurrent object-oriented
system that provides search and merchandising services to e-Commerce compa-
nies. Briefly, FAS provides to its clients structured search capabilities within
the client’s data. Each FAS installation is deployed to a customer according to
a deployment architecture; see [34] for a detailed presentation of the individ-
ual components of FAS and its deployment model. FAS consists of a set of live
environments and a single staging environment. A live environment processes
queries from client web applications via web services. FAS aims at providing a

Formal Modeling of Resource Management for Cloud Architectures 93

:ClientJob

:ConnectionThread
sendSchedule(s)

:Acceptor

loop [more items]
transferItem(item)

finish(thread)

alt [Job is a replication job]

[Job is a boot job]

getConnection(this,s)

registerItems
List<Item> items

Fig. 1. Interaction between ClientJob, Acceptor, and ConnectionThread

constant query capacity to client-side web applications. A staging environment
is responsible for receiving data updates in XML format, indexing the XML,
and distributing the resulting indices across all live environments according to
a Replication Protocol which is implemented by the Replication System. The
Replication System consists of a SyncServer at the staging environment and one
SyncClient for each live environment. The SyncServer determines the schedule
and content of replication, while a SyncClient receives data and configuration
updates.

The SyncServer communicates to SyncClients by creating ConnectionThread
objects via its Acceptor. ConnectionThreads serve as the interface to the server
side of the Replication Protocol. SyncClients schedule and create ClientJob ob-
jects to handle communications to the client-side of the Replication Protocol.
Fig. 1 is a UML sequence diagram that depicts the replication protocol between
a ClientJob, a ConnectionThread, and an Acceptor. In this paper we detail a
part of the Replication Protocol that is informally described in Fig. 2.

Relevance to Cloud Computing. FAS provides structured search and navigation
capabilities within a client’s data. For the last decade, FAS installations were
deployed as server-based products on client premises with fixed hardware re-
sources. However, on-premise deployment does not scale with increasing demand
on throughput and update frequency. This is especially visible when customers
experience drastic increase on throughput and data updates at certain time
periods. For example, retail customers might expect large throughput during
seasonal sales. In these periods, much larger amounts of purchases will be made
and stock units would need to be updated very frequently so that customers
do not receive incorrect information. Higher throughput requires a larger num-
ber of live environments and, in turn, larger number of SyncClients. On-premise
deployment cannot cope with on-demand, varying requirements without large
up-front investments in hardware which remains unused most of the time.

To cater for these requirements, FAS is deployed as a service (SaaS) over
virtualized resources that provide the necessary elasticity. To this end, virtual-
ization makes elastic amounts of resources available to application-level services;
for example, the processing capacity allocated to a service can be changed on

94 F.S. de Boer et al.

1. SyncServer starts the Acceptor, which listens for connections.
2. SyncClient schedules a Boot job, and an associated ClientJob object is

created and connected to the Acceptor. This corresponds to the message
getConnection(this,s) in Fig. 1, where s is a schedule.

3. SyncServer creates a ConnectionThread to communicate with this ClientJob.
4. The ClientJob asks the ConnectionThread for all replication schedules, denoted

by the message sendSchedule(s) in Fig. 1. Replication schedules dictate
when and where the SyncServer monitors for changes in the staging environ-
ment. These changes are replicated to the live environments through their Sync-
Clients. Each schedule specifies a replication type; i.e., the number of locations
and type of data to be replicated. The schedule also specifies the amount of
time until the replication must commence and the deadline of each replication.

5. The ClientJob receives the replication schedules and creates new ClientJob
objects representing these schedules. If the old ClientJob object represented a
Boot job, it releases the ConnectionThread and terminates.

6. When a Replication job is triggered, its associated ClientJob object connects
immediately to the Acceptor.

7. SyncServer creates a ConnectionThread to communicate with each ClientJob.
8. A ClientJob asks the ConnectionThread for its replication schedule and re-

cursively creates a new ClientJob object to deal with the next schedule.
The ClientJob then receives a sequence of file updates according to its repli-
cation type, after which it releases the ConnectionThread and terminates.
This is denoted by the message registerItems followed by zero or more
transferItem(item) messages in Fig. 1.

9. The ConnectionThread first sends a replication schedule to the ClientJob ac-
cording to the ClientJob’s replication type, then a sequence of file updates
according to this replication type, and then it terminates.

Fig. 2. Informal description of the interactions in the Replication Protocol

demand. Fig. 3 shows how an on-demand deployment architecture for the Repli-
cation System on virtual environments is implemented using cloud resources.
Virtualized resources allow the SyncServer (via the Acceptor) to elastically allo-
cate resources to each replication job based on the cost and the deadline of the
replication to be conducted by the corresponding ClientJob object.

3 ABS Deployment Architecture

ABS is an abstract, executable, object-oriented modeling language with a for-
mal semantics [19], targeting distributed systems. ABS is based on concurrent
object groups (COGs), akin to concurrent objects [15,20], Actors [1], and Erlang
processes [4]. COGs in ABS support interleaved concurrency based on guarded
commands. This allows active and reactive behavior to be easily combined, by
means of a cooperative scheduling of processes which stem from method calls.
Real-Time ABS extends ABS models with implicit time [8]; execution time is
not specified directly in terms of durations (as in, e.g., UPPAAL [25]), but rather

Formal Modeling of Resource Management for Cloud Architectures 95

Acceptor

Cloud
Provider

ClientJob

ClientJob

ClientJob

SyncClient

job(schedule)

SyncClient

SyncClient

... ...

LIVE STAGING

SyncServer create()

CLOUD

DC4

Connection
Thread

getConnection(schedule)

getConnection(schedule)

getConnection(schedule)

job(schedule)

job(schedule)

DC3

Connection
Thread

replication

DC2

Connection
Thread

replication

DC1

Connection
Thread

replication

Fig. 3. An on-demand deployment architecture for the Replication System using Cloud
resources

observed by measurements of the executing model. With implicit time, no as-
sumptions about execution times are hard-coded into the models. The execution
time of a method call depends on how quickly the call is effectuated by the server
object. In fact, the execution time of a statement varies with the capacity of the
chosen deployment architecture and on synchronization with (slower) objects.

3.1 Behavioral Modeling in ABS

ABS combines functional and imperative programming styles with a Java-like
syntax [19]. COGs execute in parallel and communicate through asynchronous
method calls. Data manipulation inside methods is modeled using a simple func-
tional language based on user-defined algebraic data types and functions. Thus,
the modeler may abstract from the details of low-level imperative implemen-
tations of data structures while maintaining an overall object-oriented design
close to the target system. The functional part of ABS consists of algebraic data
types such as the empty type Unit, booleans Bool, integers Int; parametric
data types such as sets Set<A> and maps Map<A> (for a type parameter A); and
functions over values of these data types, with support for pattern matching. In
Real-Time ABS, measurements are additionally obtained by comparing values
from a global clock, which can be read by an expression now() of type Time.

The imperative part of ABS addresses concurrency, communication, and syn-
chronization at the concurrent object level, and defines interfaces, classes, and
methods. ABS objects are active in the sense that their run method, if defined,
gets called upon creation. Communication and synchronization are decoupled in
ABS. Communication is based on asynchronous method calls, denoted by as-
signments f=o!m(e) where f is a future variable, o an object expression, and
e are (data value or object) expressions. After calling f=o!m(e), the caller may

96 F.S. de Boer et al.

proceed with its execution without blocking on the method reply. Two opera-
tions on future variables control synchronization in ABS. First, the statement
await f? suspends the active process unless a return value from the call asso-
ciated with f has arrived, allowing other processes in the same COG to execute.
Second, the return value is retrieved by the expression f.get, which blocks all
execution in the object until the return value is available. Inside a COG, ABS
also supports standard synchronous method calls o.m(e).

The active process of an object can be unconditionally suspended by the state-
ment suspend, adding this process to the queue, from which an enabled process
is then selected for execution. The guards g in await g control suspension of
the active process and consist of Boolean conditions conjoined with return tests
f? on future variables f. Just like functional expressions, guards g are side-effect
free. The remaining statements are standard; e.g., sequential composition s1; s2,
assignment x=rhs, and skip, if, while, and return constructs. Expressions
rhs include the creation of an object group new cog C(e), object creation in
the group of the creator new C(e), method calls, future dereferencing f.get,
and functional expressions e.

3.2 Deployment Modeling in ABS

The execution capacity of (virtualized) locations can be abstractly captured by
deployment components (for formal definitions, see [21]). Deployment compo-
nents share resources between their allocated objects. A deployment component
environment with unlimited resources is used for the model’s root object and,
e.g., clients. Deployment components with different capacities may be dynam-
ically created depending on the control flow of the ABS model or statically
created in the main block. Objects are by default allocated to the deployment
component of their creator, but they may also be allocated differently.

Deployment components in ABS have the type DC and are instances of the
class DeploymentComponent, which takes as parameters a location name and
a set of resource bounds. Our focus is on resources reflecting processing capacity.

The resource capacity of a deployment component is specified by the con-
structor CPUCapacity(r), where r of type Resource represents the amount
of abstract processing resources available between observable (discrete) points in
time, after which the resources are renewed. Objects are explicitly allocated to
specific deployment components via annotations. They compete for the shared
resources to execute methods and may execute until the component runs out of
resources or until they are otherwise blocked. The method total("CPU") of a
deployment component returns its total amount of allocated CPU resources.

The cost of executing statements in ABS is specified by the modeler. A default
cost for statements can be set as a compiler option (e.g., defaultcost=10).
However, this default cost does not discriminate between different statements.
More precise cost expressions are often desirable; for example, if f(x) is a complex
expression, then the statement result=f(x) should have a significantly higher
cost than skip. Fine-grained costs can be introduced via statement annotations;

Formal Modeling of Resource Management for Cloud Architectures 97

e.g., [Cost: g(size(x))] result=f(x)where the cost is given by a function
g in terms of the size of the input values x to the function f.

It is the responsibility of the modeler to specify realistic costs. A behav-
ioral model with default costs may be gradually refined to provide fine-grained
resource-sensitive behavior. On the other hand, the modeler may want to cap-
ture resource consumption at an abstract level without a fully developed model.
Cost annotations can be used to abstractly represent the cost of a computation
which is not be fully specified; e.g., [Cost: g(size(x))] skip.

4 Case Study: The ABS Model

The Replication System, introduced in Sect. 2, is part of the Fredhopper Access
Server (FAS). The current Java implementation of FAS has over 150,000 lines of
code, of which 6,500 are part of the Replication System. The functional aspects
of the Replication System have previously been modeled in detail in ABS [34].
This section describes how the model was extended to capture non-functional and
resource aspects of the Replication System. The extended model consists of 40
classes, 17 data types, and 80 user-defined functions (in total 5,000 lines of ABS
code, 25% of which capture scheduling information as well as file systems and
data bases from third party libraries not included in the Java implementation).

Fig. 4 shows the main data type and interfaces. Data type Schedule records
interval, deadline, cost, and file locations to receive updates for each type of
replication schedule. The interface ConnectionThread models its objects as
active objects (without methods). The interface ClientJob defines the method
executeJob() for executing replication schedules, and SyncClient defines
the method scheduleJob(Schedule s) for scheduling the given replication
schedule s. The getConnection(job, s) method of the Acceptor inter-
face is called from the ClientJob. The acceptor creates ConnectionThread
objects on virtual machines acquired from the CloudProvider via the method

data Schedule =
Schedule(String sn, Int il, Int dl, Int ct, List<File> files);

interface ConnectionThread { }
interface ClientJob { Unit executeJob(); }
interface SyncClient { Unit scheduleJob(Schedule s); }
interface Acceptor {

ConnectionThread getConnection(ClientJob job, Schedule s);
Unit finish(ConnectionThread thread);
Unit end();

}
interface CloudProvider {

DC createMachine(Int capacity);
Unit acquireMachine(DC vm);
Unit releaseMachine(DC vm);
Int getAccumulatedCost();

}

Fig. 4. Data types and interfaces of the Replication System

98 F.S. de Boer et al.

createMachine. The methods acquireMachine and releaseMachine are
used to start and stop virtual machines (modeled by deployment components) to
let replication schedules be conducted by ConnectThread objects. For presen-
tation purposes, we focus on the interface implementations given in the classes
CloudProvider, ConnectionThread, and Acceptor.

The CloudProvider interface (shown in Fig. 4) is implemented by a class
of the same name. Virtual machines are modeled by deployment components in
ABS, on which the client application can deploy objects. In addition, the cloud
provider keeps track of the accumulated cost incurred by the client application.
This accumulated cost is retrievable by the method getAccumulatedCost()
during execution. Accumulated cost is calculated in terms of the sum of the
processing capacities of the active virtual machines over time; i.e., a call to
acquireMachine(vm) starts the accounting for machine vm and a call to
releaseMachine(vm) stops the accounting. Inside the cloud provider, an ac-
tive run() method does the accounting for every time interval. Since we focus
on the application-level management of virtualized resources, as implemented
by the balancer, and not on a specific strategy for cloud provisioning, we do not
detail the cloud provider further.

We model and compare three potential balancing strategies offered by the
Acceptor for the application-level management of virtualized resources. An
Acceptor gets requests for replication sessions from ClientJob objects. It
deploys ConnectionThread objects on cloud instances to conduct replica-
tions with the ClientJob objects. The implementations of Acceptor reflect
different strategies for interacting with the cloud provider to achieve resource
management:

Constant balancing deploys ConnectionThread objects to a single virtual
machine sufficient for the expected load, and keeps this machine running;

As-needed balancing calculates the CPU capacity of the virtual machine
needed for a specific replication schedule with a given deadline, and deploys
ConnectionThread objects to a machine supplying the needed resources
disregarding the cost; and

Budget-aware balancing calculates the CPU capacity of the cloud instance
for a given budget. Unused funds can be “saved up” to cope with load spikes,
but the cost of running the system is still bounded by the overall budget.

The Cloud User Account. Each acceptor encapsulates an Account object that
realizes book-keeping for a cloud user account (see Fig. 5). The implementation
maintains a data structure in the field is which sorts available machines by
CPU processing capacity, the current cost per time unit costPerTimeUnit
for the cloud user account, and the time instanceStartUpTime it took the
most recent machine to start up. Method getInstance(size) either requests
a new virtual machine from the cloud provider or brings online an existing offline
machine. The method dropInstance(d) takes a machine offline when it is no
longer active.

Formal Modeling of Resource Management for Cloud Architectures 99

interface Account {
DC getInstance(Int size);
Unit dropInstance(DC d);
Int getCostPerTimeUnit();
Int getLastInstanceStartUpTime();

}

class AccountImpl implements Account {
Map<Int, Set<DC>> is = EmptyMap;
Int costPerTimeUnit = 0; Int instanceStartUpTime = 0;

DC getInstance(Int size) {
DC d = null;
Time t = now();
costPerTimeUnit = costPerTimeUnit + size;
if (hasSetFor(is, size)) {

d = takeOne(lookup(is, size));
is = removeFrom(is, size, d);
Fut<Unit> fa = provider!acquireMachine(d); await fa?;

} else {
Fut<DC> fdc = provider!createMachine(size);
await fdc?; d = fdc.get;

}
instanceStartTime = timeDifference(t, now());
return d;

}
Unit dropInstance(DC d) {
Fut<Unit> fr = provider!releaseMachine(d); await fr?;
Fut<Int> fs = d!total("CPU"); await fs?; Int size = fs.get;
costPerTimeUnit = costPerTimeUnit - size;
is = addToSet(is, size, d);

}
}

Fig. 5. The Cloud User Account

Constant balancing over-provisions by processing all replication schedules on
a single virtual machine with sufficient capacity, and is captured by the class
ConstantAcceptor in Fig. 6. The acceptor initially requests a single machine
through its cloud user account and deploys all ConnectionThread objects to
this machine after initialization, to process the replication schedules.

As-needed balancing receives a request for a connection from a ClientJob
object, calculates the resources needed by the virtual machine to fulfill the
replication schedule, and requests a machine of appropriate size through the user
account. Implementation details are omitted for brevity.

Budget-aware balancing (class BudgetAcceptor in Fig. 6) is a strategy
where the acceptor has a certain budget per time interval and may “save re-
sources” for later. The class parameter budgetPerTimeUnit determines this
budget and the field availableBudget keeps track of the accumulated (saved)
resources. When the acceptor gets a request from a ClientJob it calculates the
resources needed to fulfill the replication schedule in wantedResources and
the resources it has available on the budget in maxResources. If resources are
available on the budget, the acceptor calls getInstance(size) on the user

100 F.S. de Boer et al.

class ConstantAcceptor(SyncServer server,
Int instanceSize, Account acc) implements Acceptor {
DC dc = null;
Unit run() { dc = acc.getInstance(instanceSize); }
ConnectionThread getConnection(ClientJob job, Schedule schedule) {
Int cost = scheduleCost(schedule);
await dc != null; ConnectionThread th = null;
[DC: dc] th = new cog ConnectionThreadImpl(job,server,cost);
return th; }

Unit finish(ConnectionThread t) { }
Unit end() { acc.dropInstance(dc); }

}

class BudgetAcceptor(SyncServer server, Account acc,
Int budgetPerTimeUnit) implements Acceptor {
Int availableBudget = 1; List<Int> budgetHistory = Nil;
Unit run() {
while (True) {

Int cu = acc.getCostPerTimeUnit();
availableBudget = availableBudget + budgetPerTimeUnit - cu;
budgetHistory = Cons(availableBudget, budgetHistory);
await duration(1, 1);} }

ConnectionThread getConnection(ClientJob job, Schedule schedule) {
Int cost = scheduleCost(schedule);
Int dur = durationValue(deadline());
Int startUp = acc.getLastInstanceStartUpTime();
Int wantedResources = (cost / dur) + 1 + startUp;
Int maxResources = (budgetPerTimeUnit - costPerTimeUnit) +

(max(availableBudget, 0) / dur);
ConnectionThread th = null;
if (maxResources > 0) {

DC dc = acc.getInstance(min(wantedResources, maxResources));
[DC: dc] th = new cog ConnectionThreadImpl(job,server,cost);}

return th; }
Unit finish(ConnectionThread thread) {
Fut<DC> fdc = thread!release();
await fdc?; DC instance = fdc.get;
acc.dropInstance(instance);}

Unit end() { }
}

Fig. 6. The classes ConstantAcceptor and BudgetAcceptor

account to get the best machine according to the budget. The run() method
monitors the resource usage and updates the available budget for every time
interval. It also maintains a log budgetHistory of the available resources over
time.

4.1 Calibration

To obtain a realistic cost model of the Replication System in ABS, we measured
the execution time of replication sessions for the different schedules on the Java
implementation. We were interested in three types of replication schedules:

Search: A session replicates changes from the search index, i.e., the underlying
data structure providing search capability on a customer’s product items.

Formal Modeling of Resource Management for Cloud Architectures 101

Business rule: A session replicates changes to the business configuration; i.e.,
the presentation of search results such as the sorting of items and promotions.

Data: A session replicates changes concerning the item and navigation indices,
i.e., the core index structures and data model for providing faceted naviga-
tion on a customer’s product items.

Table 1 shows the average execution time of a single ClientJob for each sched-
ule type for one SyncClient on a reference machine (4 core CPU 2.5GHz, 8GB
memory), as well as the cost value subsequently used in the ABS model, which
is directly proportional to execution time. Based on these schedule execution
times and costs, we extend the functional ABS model of the Replication System
with resource and timing information. To determine suitable deadlines for indi-
vidual schedules and intervals between each ClientJob, we iteratively simulated
a Replication System consisting of one SyncClient and a fixed number of repli-
cation jobs on a single cloud instance with CPU capacity set to 30 and interval
to 11. With these parameters fixed, the lowest deadlines for schedules could be
determined for 100% quality of service (QoS). Table 1 also shows the results of
this initial simulation.

Table 1. Measurements on the Java implementation of the Replication System and
derived simulation parameters

Schedule Execution Time Cost Interval Deadline
Search 34.0s 14 11 3
Business rules 2.5s 1 11 2
Data 274.9s 110 11 11

We also identified a hot spot of the ConnectionThread in the Java im-
plementation of the method transferItem(fileset), which accounts for
99% of the execution time. The hot spot justifies adding a single cost anno-
tation to the ConnectionThread class of the model so that resources are
consumed upon invocation of that method. Fig. 7 sketches the implementation
of the ConnectionThread interface.

4.2 The Results

Fig. 8 shows simulation results of the different balancing strategies over the num-
ber of live environments. We simulated from 1 to 20 environments over 100 time
units; 20 environments are typically required to handle large query throughputs
over a large number of product items. For each number of environments and
scheduling strategy, the graph shows the quality of service (QoS) as a percent-
age of deadlines that have been met and the total amount of CPU resources
made available by the cloud provider during the simulation. The constant bal-
ancing strategy models machine over-provisioning as mentioned in Sect. 2, with
good QoS but the highest cost, independently of the load (QoS degrades once

102 F.S. de Boer et al.

class ConnectionThreadImpl(ClientJob job,
SyncServer server, Int cost) implements ConnectionThread {
Maybe<Command> cmd = Nothing;
Set<Schedule> schedules = EmptySet;

Unit consumeResource(Int amount) {
Int c = 0; while (c <= amount) { [Cost: 1] c = c + 1; }}

Unit run() {
await cmd != Nothing;
schedules = this.sendSchedule();
if (cmd != Just(ListSchedule)) {

...
Int size = size(filesets);
while (hasNext(filesets)) {

Pair<Set<Set<File>>,Set<File>> nfs = next(filesets);
filesets = fst(nfs); Set<File> fileset = snd(nfs);
this.transferItem(fileset);
this.consumeResource(cost/size);}

... } }
}

Fig. 7. The class ConnectionThreadImpl

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

7500

15000

22500

30000

Qo
S

Environments

Co
st

Constant As-needed Budget

Fig. 8. Simulation results: QoS as percentage of successful sessions (left scale) and
accumulated cost (right scale)

more environments are added than provisioned for). As expected, the as-needed
balancing strategy exhibits 100% QoS, albeit with rising cost. The budget-aware
balancing strategy exhibits rising cost up to the chosen budget and degrading
QoS thereafter.

To compare the simulation results against the running system, we executed
the simulation task loads on the Java implementation of the Replication System
and measured the execution time. From Fig. 9, it can be seen that there is a
direct correlation between simulated cost and measured execution time, except

Formal Modeling of Resource Management for Cloud Architectures 103

0

17.5

35

52.5

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

7500

15000

22500

30000
Ru

nn
ing

 ti
m

e
[s]

Environments

Si
m

ula
tio

n
co

st

Model simulation cost Implementation running time

Fig. 9. Comparison of the measured execution time of the implementation (left scale)
and the accumulated cost of the simulation for the as-needed policy (right scale)

for a constant factor resulting from system start-up time. Upon reflection, we
decided not to model start-up time, since this one-time cost is amortized among
all requests made during the server lifetime and hence is a negligible factor in a
long-running system such as the FAS Replication System.

5 Related Work

To reduce complexity, general-purpose modeling languages strive for abstrac-
tion [24]: descriptions primarily focus on the functional behavior and logical
composition of software, largely overlooking how the software’s deployment in-
fluences its behavior. However, by using virtualization technologies an appli-
cation can modify resources of its deployment scenario during execution; e.g.,
to dynamically create virtual processors. For cyber-physical and embedded sys-
tems, it is today accepted that modeling and programming languages need a
timed semantics [26]. The Java Real-Time Specification (RTSJ) [11] extends
Java with high-resolution time, including absolute time and relative time, and
new thread concepts to solve time-critical problems: threads in RTSJ offer more
precise scheduling than standard threads, with 28 strictly enforced priority lev-
els. The modeling and analysis of single resources is discussed in, e.g., [2,16,33].
Resource-aware programming allows users to monitor the resources consumed by
their programs, to manage such resources in the programs, and to transfer (i.e.,
add or remove) resources dynamically between distributed computations [27].

Resource constraints in the embedded systems domain led to a large body
of work on performance analysis using formal models based on, e.g., process
algebra [7], Petri Nets [31], and priced [10], timed [3], and probabilistic [6] au-
tomata and games (an overview of automata-based approaches is [33]). Related
approaches are also applied to web services and business processes with resource

104 F.S. de Boer et al.

constraints [18, 28]. These approaches typically abstract from the data flow and
declare the cost of transitions in terms of time or in terms of a single resource.
The automata-based modeling language MODEST [9] combines functional and
non-functional requirements for stochastic systems, using a process algebra with
dynamically computed weight expressions in probabilistic choice. Compared to
ABS, these approaches do not associate capacities with locations but focus on
non-functional aspects of embedded system without resource provisioning and
management of dynamically created locations as studied in our paper.

Work on the modeling of object-oriented systems with resource constraints is
scarce. The UML profile for scheduling, performance and time (SPT) describes
scheduling policies according to the underlying deployment model [17]. Using
SPT, the Core Scenario Model (CSM) [30] is informally defined to generate per-
formance models from UML. However, CSM is not executable as it only identifies
a subset of the possible system behaviors [30]. Verhoef’s extension of VDM++
for embedded real-time systems [32] is based on abstract executable specification
and models static deployment of fixed resources targeting the embedded domain,
namely CPUs and buses.

Related work on simulation tools for cloud computing is mostly reminiscent
of network simulators. Testing techniques and tools for cloud-based software sys-
tems are surveyed in [5]. In particular, CloudSim [14] and ICanCloud [29] are sim-
ulation tools using virtual machines to simulate cloud environments. CloudSim
is a mature tool which has been used for a number of papers, but it is restricted
to simulations on a single computer. In contrast, ICanCloud supports distribu-
tion on a cluster. EMUSIM [13] is an integrated tool that uses AEF (Automated
Emulation Framework) to estimate performance and costs for an application by
means of emulations to produce improved input parameters for simulations in
CloudSim. Compared to these approaches, our work aims to support the devel-
oper of client applications for cloud-based environments at an early phase in the
software engineering process and is based on a formal semantics.

In software design, no general, systematic means exists today to model and
analyze software in the context of a set of available virtualized resources, nor to
analyze resource redistribution in terms of load balancing or reflective operations.
None of the cited works directly address the challenges raised by virtualization;
in particular, they do not model quantitative resources as data inside the system
itself, which is a particular property of virtualized resources.

6 Conclusion and Future Work

In this paper we demonstrated that it is possible to model low-level software
aspects, including performance, resource consumption, and deployment, in a
suitably abstract way which is adequate for cloud computing. As an immediate
benefit this makes it possible to perform comprehensive simulations based on the
system model that allow to predict and evaluate the consequences of different
scheduling, load balancing, or deployment strategies. We demonstrated the fea-
sibility of our approach by modeling part of an industrial e-Commerce product
and by comparing the simulated model to the actual code in production.

Formal Modeling of Resource Management for Cloud Architectures 105

The modeling in this paper is based on a resource-aware extension of the ab-
stract behavioral specification language ABS [8,23]. ABS has a formal semantics
and was designed such that the models expressed in it are mechanically analyz-
able with respect to correctness, resource consumption, security, etc. Specifically,
it is possible to automatically compute symbolic worst-case bounds for resource
consumption of ABS programs [2]. We plan to generalize this approach to the
extension of ABS used here and apply it to cloud scenarios. This would make it
possible to automatically analyze the worst-case resource consumption of pro-
grams running in the cloud without actually deploying them.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. MIT Press (1986)

2. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: COSTABS: a
cost and termination analyzer for ABS. In: Proc. Partial Evaluation and Program
Manipulation (PEPM 2012), pp. 151–154. ACM (2012)

3. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: A Tool
for Schedulability Analysis and Code Generation of Real-time Systems. In: Larsen,
K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 60–72. Springer,
Heidelberg (2004)

4. Armstrong, J.: Programming Erlang. Pragmatic Bookshelf (2007)
5. Bai, X., Li, M., Chen, B., Tsai, W.-T., Gao, J.: Cloud testing tools. In: Proc.

Service Oriented System Engineering (SOSE 2011), pp. 1–12. IEEE (2011)
6. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Performance evaluation

and model checking join forces. Comm. ACM 53(9), 76–85 (2010)
7. Barbanera, F., Bugliesi, M., Dezani-Ciancaglini, M., Sassone, V.: Space-aware am-

bients and processes. TCS 373(1-2), 41–69 (2007)
8. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-

defined schedulers for real-time concurrent objects. Innovations in Systems and
Software Engineering (to appear, available online, 2012)

9. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: MODEST: A
Compositional Modeling Formalism for Hard and Softly Timed Systems. IEEE
Trans. Software Eng. 32(10), 812–830 (2006)

10. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Quantitative analysis of
real-time systems using priced timed automata. Comm. ACM 54(9), 78–87 (2011)

11. Bruno, E.J., Bollella, G.: Real-Time Java Programming: With Java RTS. Prentice
Hall (2009)

12. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6), 599–616 (2009)

13. Calheiros, R.N., Netto, M.A., Rose, C.A.F.D., Buyya, R.: EMUSIM: an integrated
emulation and simulation environment for modeling, evaluation, and validation of
performance of cloud computing applications. Software: Practice and Experience
(to appear, available online, 2012)

14. Calheiros, R.N., Ranjan, R., Beloglazov, A., Rose, C.A.F.D., Buyya, R.: CloudSim:
a toolkit for modeling and simulation of cloud computing environments and evalu-
ation of resource provisioning algorithms. Software, Practice and Experience 41(1),
23–50 (2011)

106 F.S. de Boer et al.

15. Caromel, D., Henrio, L.: A Theory of Distributed Objects. Springer (2005)
16. Chander, A., Espinosa, D., Islam, N., Lee, P., Necula, G.C.: Enforcing resource

bounds via static verification of dynamic checks. ACM TOPLAS 29(5) (2007)
17. Douglass, B.P.: Real Time UML – Advances in the UML for Real-Time Systems.

Addison-Wesley (2004)
18. Foster, H., Emmerich, W., Kramer, J., Magee, J., Rosenblum, D.S., Uchitel, S.:

Model checking service compositions under resource constraints. In: Proc. Eu-
ropean Software Engineering Conf. and Intl. Symp. on Foundations of Software
Engineering (ESEC/FSE 2007), pp. 225–234. ACM (2007)

19. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core Lan-
guage for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S., Bon-
sangue, M.M. (eds.) FMCO 2011. LNCS, vol. 6957, pp. 142–164. Springer,Heidelberg
(2011)

20. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

21. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Dynamic Resource Real-
location between Deployment Components. In: Dong, J.S., Zhu, H. (eds.) ICFEM
2010. LNCS, vol. 6447, pp. 646–661. Springer, Heidelberg (2010)

22. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Modeling Resource-Aware Virtual-
ized Applications for the Cloud in Real-Time ABS. In: Proc. Formal Engineering
Methods (ICFEM 2012). LNCS. Springer, Heidelberg (to appear, 2012)

23. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Validating Timed Models
of Deployment Components with Parametric Concurrency. In: Beckert, B., Marché,
C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 46–60. Springer, Heidelberg (2011)

24. Kramer, J.: Is abstraction the key to computing? Comm. ACM 50(4), 36–42 (2007)
25. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Intl. Journal on

Software Tools for Technology Transfer 1(1-2), 134–152 (1997)
26. Lee, E.A.: Computing needs time. Comm. ACM 52(5), 70–79 (2009)
27. Moreau, L., Queinnec, C.: Resource aware programming. ACM TOPLAS 27(3),

441–476 (2005)
28. Netjes, M., van der Aalst, W.M., Reijers, H.A.: Analysis of resource-constrained

processes with Colored Petri Nets. In: Proc. Practical Use of Coloured Petri Nets
and CPN Tools (CPN 2005), DAIMI 576. University of Aarhus (2005)

29. Nuñez, A., Vázquez-Poletti, J., Caminero, A., Castañé, G., Carretero, J., Llorente,
I.: iCanCloud: A flexible and scalable cloud infrastructure simulator. Journal of
Grid Computing 10, 185–209 (2012), doi:10.1007/s10723-012-9208-5

30. Petriu, D.B., Woodside, C.M.: An intermediate metamodel with scenarios and re-
sources for generating performance models from UML designs. Software and Sys-
tem Modeling 6(2), 163–184 (2007)

31. Sgroi, M., Lavagno, L., Watanabe, Y., Sangiovanni-Vincentelli, A.: Synthesis of
embedded software using free-choice Petri nets. In: Proc. Design Automation Con-
ference (DAC 1999), pp. 805–810. ACM (1999)

32. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Em-
bedded Real-Time Systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski,
E. (eds.) FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006)

33. Vulgarakis, A., Seceleanu, C.C.: Embedded systems resources: Views on mod-
eling and analysis. In: Proc. Computer Software and Applications Conference
(COMPSAC 2008), pp. 1321–1328. IEEE (2008)

34. Wong, P.Y.H., Diakov, N., Schaefer, I.: Modelling Adaptable Distributed Object
Oriented Systems Using the HATS Approach: A Fredhopper Case Study. In: Beck-
ert, B., Damiani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 49–66.
Springer, Heidelberg (2012)

A Model-Driven Approach for Virtual Machine

Image Provisioning in Cloud Computing

Tam Le Nhan1, Gerson Sunyé1,3, and Jean-Marc Jézéquel1,2

1 INRIA Rennes - Bretagne Atlantique, France
2 University of Rennes 1
3 University of Nantes

{tam.le nhan,gerson.sunye,jean-marc.jezequel}@inria.fr

Abstract. The Cloud Computing Infastructure-as-a-Service (IaaS)
layer provides a service for on demand virtual machine images deploy-
ment. This service provides a flexible platform for cloud users to develop,
deploy, and test their applications. However, one major issue of applica-
tion deployment is to ensure the compatibility of software components
installed in a virtual machine image. This paper describes a model-driven
approach to manage, create configurations, and deploy images for virtual
machine image provisioning in Cloud Computing. This approach consid-
ers virtual image as product lines and uses feature models to represent
their configurations. It uses model-based techniques to handle automatic
deployment and reconfiguration, making the management of virtual im-
ages more flexible and easier than traditional approaches.

Keywords: Model-driven deployment, cloud computing, virtual image
provisioning, feature models.

1 Introduction

Cloud Computing [2, 13] has been a hot topic in both of research and industry
community recently. It can be described as a new kind of computing in which
dynamically scalable and virtualized resources are provided as services over the
Internet. Cloud users can access cloud system and use the service through dif-
ferent devices and interfaces. They only have to pay what they use according
to Service Level Agreement contracts established between Cloud providers and
Cloud users [5]. One of the main features of Cloud computing is the virtualiza-
tion in which all cloud resources become transparent to the user. They do not
need any longer to control and maintain the underlying cloud infrastructure.
The virtualization in Cloud Computing combines a number of virtual machine
images (VMIs) on the top of physical machines. Each virtual image hosts a com-
plete software stack: it includes operating system, middleware, database, and
development applications. The deployment of a VMI typically involves booting
the image, as well as installation and configuration of software packages. In the
traditional approach, the creation of a VMI to fit user’s requirements and de-
ploying it in the Cloud environment are typically carried out by the technical

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 107–121, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

108 T.L. Nhan, G. Sunyé, and J.-M. Jézéquel

division of the Cloud service providers. They provide a platform as a service to
the user according to SLA contracts signed between the service provider and the
user. Usually, it is a pre-packaged platform with installed and configured software
components. The standard VMI contains many software packages, which rarely
get used and thus the image is typically larger than what would be necessary.
This can lead to several difficulties, such as wastage of storage space, memory,
operating costs, and waste of network bandwidth when cloning an image and
deploying it on the cloud nodes [1].

In the traditional approach, when a cloud user requests a new development
platform, the service provider administrators select an appropriate VMI for
cloning and deploying on cloud nodes. If there is no match found, then a new one
is created and configured to match the request. It can be generated by modifying
from the closest-fit existing VMI or from scratch. Several concerns would need
to be addressed by the cloud providers, such as: (i) How to create an optimal
configuration? (ii) Which software packages and their dependencies should be
installed? (iii) How to find the best-fit existing VMI and how to obtain a new
VMI by modifying this one?

Cloud service providers want to automate this process because the complex-
ity of interdependency between software packages, and the difficulty of mainte-
nance [7] is time-consuming for the creation of standard VMIs. In other words,
they want to give users more flexibility when choosing the appropriate VMI
to satisfy their requirements, while ensuring benefits for providers in terms of
time, operating costs, and resources. In this paper, we present an approach for
managing VMI for Cloud Computing environments, providing a way to adapt
to the needs of auto-scaling and self-configuring virtual machine images. In this
approach, we consider VMIs as a product line and use feature models to repre-
sent VMI configurations and model-based techniques to handle automatic VMI
deployment and reconfiguration. We claim that this approach makes the man-
agement (i.e., creation, configuration and adaption) of virtual image faster, more
flexible and easier than the traditional approach. We validate this approach by
an example showing that, given a base model representing all available artifacts,
one can easily derive a configuration model (a specific use of a subset of artifacts)
and generate all needed configuration scripts to generate its corresponding VMI.
The paper is organized as follows. Section 2 describes our solution of manag-
ing virtual machine image configurations by using feature models and using the
model-driven approach for virtual machine image deployment in Cloud Comput-
ing environment. Section 3 introduces an example about deploying a Java web
application development platform. Section 4 shows the experiment evaluations.
Section 5 discusses the related work, and is followed by the conclusion and future
work in Section 6.

2 Model-Driven Approach

In this section, we present a model-based approach for image provisioning. This
approach uses an image with a minimal configuration, containing the operating

A Model-Driven Approach for VMI Provisioning 109

system, some monitoring tools, and an execution model. The goal of the execution
model is to install and configure software packages, after booting the deployed
images.

2.1 Feature Modeling for VMI Configuration Management

Our approach uses feature modeling [11] to manage the configuration of virtual-
machine images. In terms of configuration derivation, a feature model describes:

– The software packages that are needed to compose a Virtual Machine Image,
represented as configuration options.

– The rules dictating the requirements, such as dependent packages and the
libraries required by each software component.

– The constraining rules, which specifies how the choice of a given component
restricts the choice of other components, in the same Virtual Machine Image.

Feature models have a tree structure, with features forming the nodes of the tree
and groups of features representing feature variability. There are four types of
feature groups: Mandatory; Optional ; Alternative; and Or. The model follows
some rules when specifying which features should be included in a variant. If a
variant contains a feature, then:

– All its mandatory child features must also be contained;
– Any number of optional child features can be included;
– Exactly one feature must be selected from an alternative group;
– At least one feature must be selected from an or group.

Feature models support two cross-tree constraints:Requires ; and Excludes. Given
two features, fa and fb: if fa requires fb, then the selection of fa implies the

Fig. 1. Feature Modeling Approach

110 T.L. Nhan, G. Sunyé, and J.-M. Jézéquel

Fig. 2. Feature Diagram Represents a Base Model

selection of fb; if fa excludes fb, then the selection of fa prevents the selection
of fb.

Our approach deals with two models: base and resolved. The base model
represents the whole product line, with all its features, their relationships, and
constraints; The resolved model is obtained after the product derivation process,
it contains selected features and their dependencies.

Base Model. The base model represents configuration options which would
be used for composing a VMI. The elements of the base model are features of
the configuration options of a VMI, they represent software packages and their
dependencies. These elements become elements of resolved models, according to
the resolutions of the corresponding selection models.

Figure 2 depicts a part of based model that represents VMI configuration fea-
tures. In this model, features and their relationships represent software packages:

– Operating System is a mandatory child feature of Virtual Machine Image,
which must be selected when Virtual Machine Image is selected.

– Operating System includes alternative child features: Windows and Linux
– When the Operating System feature is selected, then one of Windows 7 or

Ubuntu 11.10 must be selected.
– If the feature Ubuntu 11.10 is selected, then all features that requireWindows

7 cannot be selected, for instance: Visual Studio 2010, JRE 1.6 Windows,
etc.

Base models are built by IT experts of cloud providers, who have knowledge
about systems and software packages used to compose Virtual Machine Images.
The correctness of the base model relies on the correctness of the feature model
that represents the base models. Many approaches and tools were proposed to
automate analysis of feature models [16, 4, 14]. They offer to validate, check
satisfiability, detect the ”dead” features and analyze feature models. In our im-
plementation, we use constraints to ensure that the created feature model is

A Model-Driven Approach for VMI Provisioning 111

valid, and that configurations, which are derived from this feature model, are
also consistent with the base model. For example:

– Parent and child features cannot have a mutually exclusive relationship.
– Sibling features cannot be mutually exclusive.
– For two features f1 and f2, if f1 requires f2, then f2 cannot require f1.

Product Derivation. Product Derivation is a process that is responsible for
the creation of the final configuration. It supports to derive the VMI configu-
rations from the base model [19]. To create a specific configuration of a VMI,
the designer selects some features from the base model and uses a mechanism to
produce a suitable configuration. The selection of each feature is checked and val-
idated by the Product Derivation process to ensure the selection is valid. When
a feature is selected, the Product Derivation process checks its relationships.
Features connected to the selected feature by a mutually exclusive relationship
become unavailable on the base model for next selections. All of the features
that are required by the selected feature are also selected.

Fig. 3. A Resolved Model Derived by the Product Derivation Process

Resolved Models. A resolved model stores user’s feature choices of the base
model and their dependencies. It is derived from the Product Derivation process
based on user ’s selection on the base model. A resolved model corresponds to a
specific configuration of a Virtual Machine Image. Figure 3 is an example of a
resolved model that is derived from the base model presented in Figure 2 with
the following user ’s selections: operating system is Ubuntu 11.10, integrated de-
velopment environment is Eclipse 3.5, and Apache Tomcat 5.5 for application
server. According to the base model, Eclipse 5.5 requires Java Runtime. Both
features have two alternative children: Windows and Linux. However, since the
selected operating system is Ubuntu 11.10, only the Windows version is available.
Addition, since Monitoring is a mandatory feature of Virtual Machine Image it
must be selected. By using feature models, cloud providers have flexibility to

112 T.L. Nhan, G. Sunyé, and J.-M. Jézéquel

create Base models representing resources for VMI provisioning. Features rep-
resent software packages or hardware options, such as RAM or virtualization
technology (e.g., KVM or Xen). These feature could also be used to store other
informations: time, cost, memory usage, etc., to support finding optimal config-
urations. The first time for creating the base models might take time and need
experts on software packages and their dependencies. However, once the Base
model is created, it helps cloud users during the selection and the creation of VMI
configurations, reducing time, complexity, and errors during the manipulation.

2.2 Model-Based Deployment Architecture

Unlike the traditional approach, where software packages are installed and con-
figured when the VMI template is created, the model-driven deployment ap-
proach installs and configures software packages at runtime when a VMI tem-
plate is booted. The approach also supports synchronization of maintenance of
the deployed VMIs at runtime. This mechanism allows users to update, remove,
and add new components to running VMIs, without image shutdown and re-
deployment. It is more flexible than the traditional approach.

In our approach, we create models that drive the creation of VMIs instance
on demand. Every time a new virtual machine is created on the cloud node, the
cloud provider selects features of VMI, generates configurations and applies the
model to it. Figure 4 describes an overview architecture of our approach.

– VMI Repository
The VMI Repository contains basic virtual machine images that are used
as the initial VMIs: e.g., Ubuntu11.10.img, fedora15.0.img. These are

Fig. 4. An Overall Architecture of Model-Driven Approach for VMI Deployment

A Model-Driven Approach for VMI Provisioning 113

standard VMIs with minimum configuration, such as operating system and
assistance software, like monitoring tools.

– VMI Configuration Manager
The VMI Configuration Manager is responsible for the creation and the
management of configurations of virtual machine image to fulfill requested
requirements. By using the VMI configuration manager, users can easily
select the required software for creating the appropriate virtual machine. It
also helps the cloud providers to manage the preparation and provision of
resources as per client requirements.

– Execution Model
The Execution Model is responsible for reserving cloud nodes, deploying vir-
tual machines, and executing the corresponding configuration that resulted
from the reasoning of VMI Configuration Manager. It is an encapsulation of
Ruby and shell script files.

– Cloud Nodes
Cloud Nodes are reserved nodes in the cloud infrastructure for hosting and
running virtual machines.

– Software Repository
The Software Repository stores software packages used to compose a VMI.
It can be a file server inside the cloud infrastructure or other repositories
from the Internet, such as the Debian repository.

2.3 Model-Based Deployment Process

The deployment process deals with the VMI Configuration Manager, the Exe-
cution Model, the Software Repositories, and the Cloud Nodes. It includes the
following steps:

– Create a VMI configuration
In this step, cloud users interact with the VMI Configuration Manager to
select configuration options from the base model. The VMI Configuration

Fig. 5. Model-Driven Process

114 T.L. Nhan, G. Sunyé, and J.-M. Jézéquel

Manager analyzes the user’s choices and generates a resolved model (i.e., a
valid configuration of a VMI).

– Generate a deployment script file
A resolved model is transformed into a deployment script file for automatic
deployment and configuration. In the current implementation, we use Chef1

to automatic install and configure software on a virtual machine. Chef is an
installation software that cloud providers use to deploy, install, and configure
software stacks on the cloud nodes at runtime. Chef requires an input file,
describing the node configuration: the required software, as well as their role.
Actually, the input file is a Ruby or JavaScript Object Notation2 (JSON)
source code.

– Deploy a standard VMI and apply the deployment script file to
the cloud nodes
The Execution Model, based on the resolved model and deployment script
file, selects a standard VMI and launches it on the reserved nodes. After that,
it transfers the deployment script to the nodes and executes Chef. Finally,
it returns the successful nodes to the cloud user.

3 An Example of the VMI for Java Web Application

To illustrate our approach, we introduce an example of VMI provisioning for the
Java Web Application Development platform. The configuration of this VMI
includes an operating system, a web application server, a database management
system, and a programming language compiler. Cloud users select the required
features on the base model by the using VMI Configuration Manager, for exam-
ple: Ubuntu, Eclipse, Apache Tomcat, and Database. Figure 6 represents
the selection of configuration options from the base model.

A VMI includes only one operating system, so the choice of Ubuntu feature is
mutual exclusive with other operating systems and their dependencies. For ex-
ample, the users can select neither the SQL Server nor the Eclipse for Windows
because both features require Windows, which is a mutual exclusive feature of
Linux Ubuntu. The features JRE 1.6 for Linux, Chef-Linux are auto-selected be-
cause Apache Tomcat requires JRE 1.6 for Linux and Chef-Linux is a mandatory
feature.

The Product Derivation process generates a resolved model from the user’s
selections. The transformation from a resolved model into a script file helps to
automatic install and configure software stacks that are selected in the resolved
model. Figure 6 also shows the example of a resolved model and a deployment
script file, which are corresponding to the user’s selection from the base model.
The Deployment script is a JSON file, named deployscript.json. The Execution
model uses the script file for automatic installing and configuring software into
the selected virtual image. Listing 1 presents a partial Ruby code for executing
the script file on cloud nodes.

1 http://wiki.opscode.com/display/chef/About
2 http://www.json.org/

http://wiki.opscode.com/display/chef/About
http://www.json.org/

A Model-Driven Approach for VMI Provisioning 115

Fig. 6. Example of VMI Configuration Manager

Listing 1. A Partial Code in Ruby of the Execution on the Cloud Nodes

Net : : SSH : : Multi . s t a r t do | s e s s i on |
acce s s s e r v e r s v i a a gateway

s e s s i o n . v ia STRGATEWAY, CONFIG[’ u s e r n a m e ’]

deployment [" n od e s "] . each do | node |
s e s s i o n . use " r o o t @ #{ node } "

end

ur l = ’ http :// p u b l i c . g r e n o b l e . g r i d 5 0 0 0 . fr /~ t l e n h a n / T a m l n C h e f S c r i p t s / ’

s e s s i o n . exec ’ h o s t n a m e ’

s e s s i o n . loop

s e s s i o n . exec ’ m k di r � - p � / tmp / chef - solo ’

s e s s i o n . loop

s e s s i o n . exec ’ wget � ’ ur l ’ d e p l o y s c r i p t . json ’

s e s s i o n . loop

s e s s i o n . exec ’ chef - solo � - j � d e p l o y s c r i p t . json � -r � ’ ur l ’ c o o k b o o k s . tgz ’

s e s s i o n . loop

end

4 Experiment Evaluation

In this section, we present an experimental evaluation of our approach on the
easiness of manipulation and the performance of deployment, in terms of data
transfer and deployment duration. The experiment is executed on Grid50003, a
virtualization infrastructure for research in France. We use Grid5000 s tools to
reserve nodes and deploy VMIs to the nodes.

3 https://www.grid5000.fr/mediawiki/index.php

https://www.grid5000.fr/mediawiki/index.php

116 T.L. Nhan, G. Sunyé, and J.-M. Jézéquel

4.1 Scenario Description

Our simple scenario deployment generates a VMI that includes selected software
stacks in the previous example (Java, Tomcat, MySQL). We deploy this VMI
to the reserved nodes on Grid5000. We compare our approach to the traditional
approach in terms of time for setting up the environment, amount of data transfer
through the network, and operating steps. We evaluate the traditional approach
in two cases:

– Case 1: There is no existing VMI that fits the requirements. The cloud
provider needs to create a new VMI containing Java, Tomcat and MySQL.

– Case 2: There is an existing VMI that fits the requirements. It is used as
a standard VMI for deploying on the cloud nodes. However, for meeting
different user requirements, it also contains software that may not be used:
Java, Tomcat, MySQL, Apache2, Jetty, PHP5, Emacs, PostgreSQL, DB2-
Express C, Jetty, LibreOffice, etc.

4.2 Traditional Approach vs. Model-Driven Approach

Time and Operations of the Deployment. In the traditional approach most
decisions are taken by experts, because they require the knowledge of underlying

Table 1. The Operations of Model-Driven Approach and Traditional Approach

Traditional Approach Model-driven Approach
Operations Handled

by
Estimated

Time
Operations Handled

by
Estimated

Time
1. Find the existing

VMI in repository
that fit the
requirements.

• If found: go to
operation 3,

• If not found:
create a new one
or modify an
existing VMI

Expert
(Manually)

1 minute 1. Create a VMI
configuration
& Generate a
deployment script
file

Expert &
Non-

expert
(Manually)

2 minutes

2. Create a new VMI
• Boot a clean VMI
• Install and

configure software
• Save to an image

Expert
(Manually)

11
minutes

2. Reserve 50 nodes
& deploy the
standard VMI to
the nodes

Automatic 8 minutes

3. Reserve 50 cloud
nodes & deploy
the VMI to the
nodes

Expert
(Manually)

9 / 12
minutes
(*)

3. Copy the
deployment file to
the running nodes
& execute it to
install, configure
software

Automatic 2 minutes

Total time 21 / 13
minutes
(**)

Total time 14
minutes

A Model-Driven Approach for VMI Provisioning 117

systems and software dependencies. Our approach provides a graphical interface,
the VMI Configuration Manager, which guides cloud users in the selection of a
set of configuration options. After that, the Configuration Manager deploys the
new VMI on cloud nodes, making easy to update and to maintain the running
VMI. Table 1 shows a comparison between the traditional and the model-driven
approaches, in terms of operations and deployment duration. Experiments show
that the deployment duration of our approach is slightly better that the tradi-
tional approach, if there is an existing VMI that fits the requirements. However,
if there is no appropriate VMI and the cloud provider creates a new one, then
our approach is faster than the traditional approach.

Fig. 7. Data Transfer Through the Network of the VMI Deployment

Data Transfer through the Network. In our experiment, we use a clean
image Squeeze-x64-nsf4 (333.587 MB), which is available on the Grid5000 ’s
repository. This is also the standard VMI for the case 1 of the traditional ap-
proach. In our approach, we use minimal configuration images, only containing
an installation software and its dependencies (i.e., Chef). After the installation
of the minimal software, the image size is 339.955 MB. In the case 2, unused
software is installed for adapting different requirements from users. This makes
the size of a standard VMI is much bigger, 803.60 MB. Figure 7 shows that in
both cases, the model-driven approach transfers less data than the traditional
approach. Especially when the pre-packaged VMI contains more software in-
stalled, and deploy to a large number of cloud nodes. In this example, when we

4 https://www.grid5000.fr/mediawiki/index.php/Squeeze-x64-nfs-1.1

https://www.grid5000.fr/mediawiki/index.php/Squeeze-x64-nfs-1.1

118 T.L. Nhan, G. Sunyé, and J.-M. Jézéquel

deploy 100 cloud nodes, the traditional approach transfers 40.49GB of data for
case 1, and 78.48GB of data for case 2, while the model-driven approach only
transfers 32.59GB of data. The traditional approach reduces the amount of data
in 19.5% and 58.47%, comparing to cases 1 and 2, respectively.

5 Related Work

Our work is related to two areas: Configuration management and the deployment
of VMI in cloud environment.

5.1 Virtual Machine Image Configuration Management

Some research efforts use feature models to capture configuration options of
complex systems [8, 17]. Wenzel et al. [17] explain how feature models help to
simplify the selection of configuration options. Similarly to our approach, the
authors use feature models and cross cutting constraints for managing the con-
figuration. This can reduce requirement elicitation errors and support automated
choice propagation [10]. Nevertheless, they focus on creating the database of the
configuration management system, while we used feature model to manage the
configuration of VMIs for supporting the automatic deployment process in cloud
computing.

Dougherty et al. [8] present a technique to minimize the number of idle VMs
in an auto-scaling queue. The technique helps to reduce the energy consumption
and the operating cost and satisfies the constraint of response time. Their work
defines a method to represent VMI configuration options by using feature models
with constraints in the form of Constraint Solving Problems (CSP). It uses
an auto-scaling queue to store created images in idle status. This leads to an
improvement of response time when the request matches the available image in
the queue. T.Zhang et al. [18] present the concept of typical virtual appliances
(TVA) and their management. A TVA contains popular software, and the system
can provide a set of frequently used virtual appliances. It helps to minimize the
transformation time from an existing virtual appliance to a new one that fits the
request. However, in both approaches, the composition of virtual image occurs
at design time and at the administrator side, before the system copy and deploys
it into cloud nodes. This makes it difficult to synchronize the maintenance and
modification of the running images as needed when the amount of running cloud
nodes is large. For example, upgrading the software version, or installing a new
software package on the running virtual machines. Our approach composes VMI
at runtime, when the standard VMI is deployed on cloud nodes. We put the
configuration file into the running cloud nodes (they clone the standard VMI),
and the installation and configuration occurs inside these nodes. Therefore, it is
easy to maintain or modify the running images.

A Model-Driven Approach for VMI Provisioning 119

5.2 Virtual Machine Image Deployment

Konstantinou et al. [12] describe a model-driven engineering approach for virtual
image deployment in virtualized environments. They focus on reusable virtual
images and their composition. The authors introduce the concept of virtual
solution models. This concept defines the solution as a composition of multi-
ple configurable virtual images. The virtual solution model is an abstract de-
ployment plan and it is platform-independent. According to the specific cloud
platform, the model can be transformed into an executable deployment plan[9].
Chieu et al. [6, 7] and Arnold et al. [3] propose the use of virtual image templates.
Their approaches describe a provisioning system that provide pre-installed vir-
tual images according to the deployment scenario. M. Sethi et al. [15] present
an approach for automated modification of dependency configuration in SOA
deployment. In their work, the software stacks are installed and configured at
deployment time, transferring smaller VMIs through the cloud network. Sun Mi-
crosystems [1] proposes an approach to deploy applications in cloud computing
environment. Similarly to our approach, their approach uses shell-script files to
execute on running cloud nodes at runtime. However, both approaches need ex-
perts on virtual image provisioning. By using feature models to represent the
configuration options, our approach can support both experts and non-experts,
who lack knowledge about virtual image provisioning and underlying software
systems and dependencies. It can reduce errors and improve the consistency of
configurations during the composing of VMIs.

6 Conclusion and Future Work

In this paper, we presented a model-driven approach to manage and create con-
figurations, as well as deploy images for virtual machine image provisioning in
Cloud Computing. We consider virtual images as product lines, use feature mod-
els to capture their configurations, and use model-based techniques for automatic
deployment of virtual images. This approach makes the management of virtual
image more flexible and easier to use than the traditional approach. On the
implementation side, we developed a prototype for validating the approach. It
helps cloud users to select configuration options, to create virtual images and to
deploy them on cloud nodes. We used Grid5000 as a Cloud Computing environ-
ment testbed for deploying virtual images.

The framework includes two major parts: the VMI Configuration Manager
and the Execution Model. The VMI Configuration Manager helps cloud users
to select configuration options, create a valid configuration of a VMI through a
graphical user interface. It also generates deployment script files. The Execution
Model uses these files to automatically deploy and configure software into cloud
nodes at runtime without any manual intervention.

We compared our approach to the traditional cloud deployment approach in
two different scenarios, using an existing compatible VMI and creating a new
one. Experiments showed that the model-driven approach helps cloud users to

120 T.L. Nhan, G. Sunyé, and J.-M. Jézéquel

create the configurations and deploy VMIs on demand easily. It minimizes error-
prone manual operations. Additionally, our approach reduces the network data
transfer, comparing to the traditional approach. Especially, if a pre-packed VMI
contains unwanted software. In this case, experiments showed that our approach
reduces the data transfer up to 58.47%. It saves network resources during VMIs
provisioning in Cloud Computing. Our framework could be extended to sup-
port cloud users for estimating the deployment time and operational costs as
needed. Therefore, it could improve the performance of virtual machine image
provisioning. However, the reasoning engine of our Product Derivation process
is still limited with simple constraints of the configuration. It is a challenge to
deal with more elaborated configurations that have optimal requirements on the
complex constraints of multiple parameters. In the future, we plan to improve
the reasoning engine of the Product Derivation process, to deal with more com-
plex configuration options and constraints. We believe that a reasoning engine
could enhance the performance of the Product Derivation process in the VMI
configuration management. Currently, our prototype only works in the Grid5000
environment. We are improving the prototype to have the ability to work with
some open-source cloud platforms, such as OpenNebula, Nimbus, etc.

References

[1] Model-driven application deployment for cloud computing environments. White
Paper, Sun Microsystem Inc., 18 pages (January 2010),
http://www.techrepublic.com/whitepapers/

model-driven-application-deployment-for-cloud-computing-environments/

1829151
[2] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A.,

Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds:
A Berkeley view of cloud computing. Tech. Rep. UCB/EECS-2009-28, EECS De-
partment, University of California, Berkeley (2009)

[3] Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totok, A.A.: Auto-
matic Realization of SOA Deployment Patterns in Distributed Environments. In:
Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 162–179. Springer, Heidelberg (2008)

[4] Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature
Models. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 491–503. Springer, Heidelberg (2005)

[5] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6), 599–616 (2009)

[6] Chieu, T., Mohindra, A., Karve, A., Segal, A.: Solution-based deployment of com-
plex application services on a cloud. In: 2010 IEEE International Conference on
Service Operations and Logistics and Informatics (SOLI), pp. 282–287 (July 2010)

[7] Chieu, T., Mohindra, A., Karve, A., Segal, A.: Dynamic scaling of web applications
in a virtualized cloud computing environment. In: IEEE International Conference
on e-Business Engineering, ICEBE 2009, pp. 281–286 (October 2009)

[8] Dougherty, B., White, J., Schmidt, D.C.: Model-driven auto-scaling of green cloud
computing infrastructure. Future Generation Computer Systems 28(2), 371–378
(2012)

http://www.techrepublic.com/whitepapers/model-driven-application-deployment-for-cloud-computing-environments/1829151
http://www.techrepublic.com/whitepapers/model-driven-application-deployment-for-cloud-computing-environments/1829151
http://www.techrepublic.com/whitepapers/model-driven-application-deployment-for-cloud-computing-environments/1829151

A Model-Driven Approach for VMI Provisioning 121

[9] Han, R., Guo, L., Guo, Y., He, S.: A deployment platform for dynamically scaling
applications in the cloud. In: 2011 IEEE Third International Conference on Cloud
Computing Technology and Science (CloudCom), November 29-December 1,
pp. 506–510 (2011)

[10] Hubaux, A., Classen, A., Mendonca, M., Heymans, P.: A preliminary review on the
application of feature diagrams in practice. In: Proceedings of the 4th International
Workshop on Variability Modelling of Software-Intensive Systems - VaMOS (2010)

[11] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
oriented domain analysis (FODA) feasibility study. Tech. rep., Carnegie-Mellon
University Software Engineering Institute (November 1990)

[12] Konstantinou, A.V., Eilam, T., Kalantar, M., Totok, A.A., Arnold, W., Snible,
E.: An architecture for virtual solution composition and deployment in infrastruc-
ture clouds. In: Proceedings of the 3rd International Workshop on Virtualization
Technologies in Distributed Computing, VTDC 2009, pp. 9–18. ACM, New York
(2009)

[13] Mell, P., Grance, T.: The nist definition of cloud computing. Tech. rep., National
Institute of Standard and Technology - NIST (2011)

[14] Mendonça, M., Wasowski, A., Czarnecki, K.: Sat-based analysis of feature models
is easy. In: 13th International Conference on Software Product Lines (SPLC 2009),
San Francisco, CA, USA (2009)

[15] Sethi, M., Kannan, K., Sachindran, N., Gupta, M.: Rapid deployment of SOA
solutions via automated image replication and reconfiguration. In: IEEE Interna-
tional Conference on Services Computing, SCC 2008, vol. 1, pp. 155–162 (July
2008)

[16] Thüm, T., Batory, D.S., Kästner, C.: Reasoning about edits to feature models. In:
ICSE, pp. 254–264. IEEE (2009)

[17] Wenzel, S., Berger, T., Riechert, T.: How to configure a configuration manage-
ment system – an approach based on feature modeling. In: 1st International Work-
shop on Model-driven Approaches in Software Product Line Engineering (MAPLE
2009) at SPLC 2009, San Francisco, CA (August 2009)

[18] Zhang, T., Du, Z., Chen, Y., Ji, X., Wang, X.: Typical virtual appliances: An op-
timized mechanism for virtual appliances provisioning and management. Journal
of Systems and Software 84(3), 377–387 (2011)

[19] Ziadi, T., Jézéquel, J.M.: Software product line engineering with the UML: De-
riving products. In: Käkölä, T., Dueñas, J.C. (eds.) Software Product Lines,
pp. 557–588. Springer (2006)

Protocol Conformance Checking of Services

with Exceptions

Christian Heike1, Wolf Zimmermann2, and Andreas Both3

1 Zuehlke Engineering AG
Wiesenstrasse 10a, CH-8952 Schlieren, Switzerland

christian.heike@zuehlke.com
2 Universität Halle-Wittenberg, Institut für Informatik, 06099 Halle/Saale, Germany

zimmer@informatik.uni-halle.de
3 Unister GmbH

Barfußgässchen 11, 04109 Leipzig, Germany
andreas.both@unister-gmbh.de

Abstract. In our previous work we defined a conservative abstraction
of the behaviour of service-oriented systems and a contract based on
interactions (named service protocol) to be verified. We have achieved
modeling unbound concurrency and unbound recursion within this ab-
straction. However, these works are based only on services that do not
raise exceptions. In this paper, we extend our previous work such that
service protocols can be verified even if the service interface may raise
exceptions.

1 Introduction

Modern software development contains a big share of reusing previously devel-
oped software called services. Often these services are developed by third party
companies and supplied as Web Service. Our work addresses the topic compos-
ability analysis for replaceability, compatibility, and process conformance, which
was entitled as a research challenge in [20].

While stateless services have no restrictions on the order of the call of opera-
tions of the interface, stateful services may restrict this order. For example, a file
service may expect that a file is first opened for reading, then read operations
may follow, and finally the file must be closed. The aim of protocol conformance
checking is to statically verify that such protocols are obeyed. Hence, a state-
ful service should also provide a protocol. In general, this protocol is specified
as a finite state machine. However, protocol conformance checking requires to
know the behaviour of services. Often, the service providers don’t want to pro-
vide their code, business process etc., of the service’s implementation. In our
previous work, we use abstractions [3,5] of the behaviour for that purpose, i.e.,
each real behaviour corresponds to an abstract behaviour but not vice versa. In
our case, the abstract behaviour keeps track of the calls to operations provide
by all services in a service-oriented system. Thus, the abstractions must also be

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 122–137, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Protocol Conformance Checking of Services with Exceptions 123

I2

I1 I1

I3

I1

I2

I1

I2

I3

I2

I3

,

q0:
q1:
q2:
q3: (n);
q4:
q5:

q6:
q7:
q8:

service s1

(n>0){

service s2

void a (INT n){

read(n);

service s3

void a (INT n);

Exc1 Exc2

Exc1void b (INT n) raises ;
Exc2

void f (INT n){
q34: (n); q35:

void f (INT n);
void d ();

q9: sync b ;
q10:

Exc1
q20:

q11:
q13: }b (n−1);q12:
q15:c (n−1); q14:

q16: sync b ;

q19:
q18:

q23:

q21:if (n>0)

q24: if (n=0) Exc2
q26: q27:

Exc2void (INT n) raises {c
q25:

q30:
q28: sync b ;q29:

q31:
q32:

q33:

q36:
q37:
q38:

(n>0)while
read(n);

q39: q40:
q42:

INT n ;
void d (){

(n); q41:
q43:

q17:

q44:
q45:

q22:
Exc1raise ;

while

void main (){

INT n ;

(){

c

return ;
}

try {
b
c

f (n);

}

interface {

}

interface {

sync

exceptions ;
async
sync void (INT n) raisesc ;

}

interface {

a return ;
sync
sync

}

n= −1;}n

(n);
(n);

1

return ;
}

void b (INT n) raises {

{ when Exc
when Exc2 { }
finally {

return ;
}

d }

else
return ;

}

raise ;
try { b

when Exc1 f (n{
(n); }

−1); }
finally { }
return ;

}

try { c
Exc1 f (n{ when

n=n−1; }
); }

();

finally { }
return ;

}

n=0;

Fig. 1. A Service-Oriented System

published and they can be automatically derived from the source code of the
implementation [3,5]. Hence, the implementation of services can still be hidden.

Protocol Conformance Checking can be implemented by verifying the protocol
w.r.t. these abstractions. If the protocol conformance is verified, then there is no
protocol violation. Abstractions may specify more sequences of operation calls
than in the real behaviour. Thus, all real protocol violations are detected but also
false alarms are possible. The latter should be avoided as much as possible. Thus,
programming language constructs must be abstracted as adequate as possible. In
our context, we completely abstract apart from data, but under this restriction
the control-flow should be modeled precisely. Currently, abstractions are often
specified using Petri-Nets (see e.g. [26,23]), pushdown systems (see e.g. [8,9]),
finite state machines (see e.g. [19,25]), or process algebras (see e.g. [7]). Finite
state machines and process algebras only allow an adequate modeling of bound
concurrency and bound recursion, i.e., the number of parallel threads and the
recursion depth are bound by a constant, respectively. [27] shows that with re-
cursion, the language of interactions is not regular but context-free and therefore
requires a pushdown-automaton to describe it, i.e., finite state machine or those
process algebras not taking into account sequential recursion cannot model it.
Furthermore, [27] demonstrates that using finite state machines for abstraction,
protocol conformance checking may lead to false positive results if recursive call-
backs are present. Unbound recursion can be adequately modeled by pushdown
systems, but there is no adequate modeling of unbound concurrency. Petri-Nets
may model adequately unbound concurrency but not unbound recursion.

In [3] we have shown that using Mayr’s process-rewrite systems [18] both, re-
cursion and parallelism, can be adequately modeled. However, it turned out that
the protocol conformance checking problem becomes undecidable. In [3] we have
shown an approximation for this model checking problem and how it is possible
to deal with it. However, none of these works consider exception handling. As

124 C. Heike, W. Zimmermann, and A. Both

in modern programming languages interactions can also be initiated by excep-
tions, simplified abstractions are not acceptable for application in component
systems. Hence, it is important to tackle these exceptions to ensure a rugged
composition of SOAs. The contributions of this paper are (i) showing that the
previous concepts cannot deal with exceptions adequately, (ii) the generalization
of our previous work to exception handling, and (iii) providing a deeper under-
standing of abstraction concepts in terms of Mayr’s hierarchy on process-rewrite
systems [18].

Section 2 defines process-rewrite systems, protocols, and provides a running
example. In Section 3, the abstraction of exception semantics to process-rewrite
systems is demonstrated. Section 4 shows how to check protocol conformance.
Section 5 discusses related work.

2 Preliminaries

In this section, we introduce our model of services and process-rewrite systems
according to [18] which are used for describing the abstract behaviour.

A service s provides an interface Is where an interface is a set of type de-
scriptions and procedure signatures with exceptions that may be raised during
execution. The implementation of s may call procedures of other services. The
required interface Rs of s is the set of procedures of other services called by s. A
service-oriented system is a directed graph S � (WS , C) where WS is a set of
services such that each s ∈ WS , p ∈ Rs there is an edge (s, s′) ∈ C with p ∈ Is′ .
Hence, any call leaving a service s ∈ WS calls a procedure of another service
s′ ∈ WS .

There are two kinds of procedures in interfaces, asynchronous and synchronous
procedures. If a synchronous procedure is called, the caller waits until the callee
is completed. If an asynchronous procedure is called, the caller and the callee
concurrently continue their execution. There might be a synchronize statement
sync f that is a barrier waiting until the concurrently called procedure f is
completed.

Example 1. Fig. 1 shows an example of a service-oriented system consisting of
three services s1, s2, and s3 with provided interfaces I1, I2, and I3, respectively.
The provided interfaces are shown by filled circles, the required interfaces (par-
titioned to the called services) are visualized by opened unfilled circles. The
service bindings are visualized by arrows. The symbols qi represent program
points indicating each statement. Procedure b of interface I2 is the only asyn-
chronous procedure. Every other procedure is synchronous. The execution starts
with calling main of service s1.

Remark 1. The interface Is of a service can be specified using WSDL. The exceptions
are specified by the fault-part in the operations. There are several approaches on Web
Service Composition with exception handling, see e.g. [12,16]. In particular, the stub
generated from a WSDL interface description of a service s might raise exceptions that
can be handled by the client using s.

Protocol Conformance Checking of Services with Exceptions 125

Protocol A1 Protocol A3Protocol A2

a f d d

b

df

b c c

c
b

bc

b f

d

r10 r30 r31 r32r20 r21 r22

EE

Fig. 2. Protocols of the Services in Fig. 1

Let Q be a finite set. The set PEX (Q) of process-algebraic expressions over
Q is the smallest set satisfying:
(i) Q ⊆ PEX (Q)
(ii) If e, e′ ∈ PEX (Q) then e.e′ ∈ PEX (Q) and e ‖ e′ ∈ PEX (Q) (sequential

and parallel composition, respectively)

A process-rewrite system (short: PRS) is a tuple Π � (Σ,Q,→, q0, F) where
(i) Q is a finite set (atomic processes),
(ii) Σ is finite alphabet disjoint from Q (actions),
(iii) q0 ∈ Q (the initial state)
(iv) →⊆ PEX (Q)×(Σ�{λ})×PEX (Q) is a set of process-rewrite rules (λ ∈ Σ∗

is the empty word)
(v) F ⊆ Q ∪ {ε} (the set of final processes)
The PRSΠ defines a derivation relation⇒⊆ PEX (Q)×Σ∗×PEX (Q) (Σ∗ is the
set of all finite words over Σ) by the following inference rules (a ∈ Σ ∪ {λ}, x ∈
Σ∗):

q
a→ q′

q
a⇒ q′

u
a⇒ v

u.w
a⇒ v.w

u
a⇒ v

u ‖ w
a⇒ v ‖ w

u
a⇒ v

w ‖ u
a⇒ w ‖ v

u
a⇒ v v

x⇒ w

u
ax⇒ w

L(Π) � {w ∈ Σ∗ : ∃f ∈ F • q0 w⇒ f} is the language accepted by the PRS Π .
Mayr [18] classified the process-rewrite rules according to the class of process-
algebraic expressions on the left-hand side and right-hand side, respectively:
Class 1 allows only single states, class S only sequential expressions, class P
only parallel expressions, and class G allows both, sequential and parallel ex-
pressions. An (x, y)-PRS, x, y ∈ {1, S, P,G} allows only rules whose left-hand
sides belong to class x and whose right-hand sides belong to class y. Note that
(1, 1)-PRSs correspond to possibly non-deterministic finite state machines (with
λ-transitions).

In the context of this paper, we assume that a protocol of a service s is given
by a finite state machine As � (Σs, Rs,→s, r

s
0, Fs) where Σs denotes the set of

operations symbols in the interface of service s, Rs are the states of s, rs0 is the
state when s is started by a client, and Fs is the set of final states. A final state
must be reached when the client finishes the use of s. Thus, L(As) defines the
set of legal sequences of operation calls to s. Fig. 2 shows the state diagrams
of protocols of the services in Fig. 1 which are used as an example throughout
this paper (final states are indicated by squares and initial states by an arrow
without source). If the protocols A2 and A3 reach state E, respectively, then a
protocol violation occurs. Here, A2 permits only calls of b followed by a least
one call of c; all other sequences lead to an error state.

126 C. Heike, W. Zimmermann, and A. Both

f (1)
f (1)q2:

a(1) b(1)
3q

q35

3q

8q

c(1)
q34 a: (1)

9q

q27 b: (1)
 Exc1

3q

q35

: (1)bq7

b(1)

9q

 Exc1

 Exc1

9q
 Exc1

b(0)
9q

q30 f: (0)

f (0)a(0)
9q

: (0)b

q35

q31

9q

q31

q34 : (0)a

9q

: (0)c

q22 a: (0)

q8

q35

 Exc1

3q

q35

: (1)c

3q

q35

q28 :

(2) (3) (4)(1) (5)

 Exc1

3q

q35

 Exc1

3q

q35

(6)

(7)(8)(9)(10)

 Exc1

3q

q35

q7

 Exc1

3q

q35

 Exc1

3q

q35

q31

Fig. 3. A Protocol Violation in Fig. 1

Example 2. Fig. 3 shows a possible execution of the service-oriented system in
Fig. 1 when the value 1 is read. Steps (1) and (2) are synchronous calls. The
program point after the call is pushed onto the runtime stack. Step (3) is an
asynchronous call. In this case the stack forks, i.e., it has now two branches: one
for the caller and one for the callee. This kind of runtime structure is called a
cactus stack. [10,14] showed that cactus stack can be used as a runtime system
for concurrent processes. The call of b(1) raises exception Exc1. In a step, all
interleavings are possible, i.e. any top element of a stack in the cactus stack can
be taken for the next step. In our case, we take the call c(1) (Step 4). Then in
(5), b(1) is called, which also raises Exc1. Since this exception is not handled, the
synchronize statement results in Exc1 (Step (6)). Step (7) shows that now the
exception handler in the body of c is being executed and this calls f(0). Then –
as above a(0) is called. Note that the branch from q9 cannot be removed until
q9 is on the top of the (main-) stack.

This execution demonstrates that protocol A2 is violated because service s2
receives the calls b(1), c(1), b(1), b(0), i.e., A2 will be in state E after this
sequence. Furthermore, this sequence stems from the execution of an exception
handler.

Furthermore, Section 3 defines the use of a service s in service-oriented system S
by a PRS Us � (Σs, Q,→, q0, F) where Q is the set of program points in S (i.e.,
all points before the statements, cf. Fig. 1) and the set of exceptional states, q0
is the initial program point (the point where the execution starts), and F are
the program points of all statements that stop the execution. This set includes
in particular the exceptional states. The protocol conformance checking problem
checks for each service s of S whether L(Us) ⊆ L(As).

Remark 2. [3,2,5] pointed out that process-rewrite systems provide an adequate mod-
eling technique for unbound recursion and unbound parallelism: Process-algebraic ex-
pressions correspond to cactus stacks. For example, the cactus stack in Fig. 3 after
step (10) can be represented by the process-algebraic expression (((q8‖q22).q35.q31.q9)‖
qExc1).q35.q3. Thus, process-rewrite systems are an adequate modelling technique for
such runtime systems.

Protocol Conformance Checking of Services with Exceptions 127

Table 1. Abstraction of Control Structures (without Exception Handling) according
to [3,2]

Control Structure Abstraction Explanation

q : x := a; q′ : q
λ→ q′ Assignments have no interaction. q′ is the pro-

gram point of the statement being executed after
x := a.

q : if(e) q′ : · · ·
else q′′ : · · ·

q̄ : · · ·

q
λ→ q′

q
λ→ q′′

No interaction if the conditional is being decided.
q̄ is the program point of the statement being ex-
ecuted after the last statement of the then- and
else-part, respectively.

q : while(e) q′ : · · ·
q′′ : · · ·

q
λ→ q′

q
λ→ q′′

No interaction if the condition is being decided.
q is the program point of the statement being ex-
ecuted after the last statement of the loop body.

q : p(· · ·); q′ : · · ·
.
.
.
p(· · ·){q′′ : · · · }

q
λ→ q′′.q′ (p internal)

q
p→ q′′.q′ (p external)

Call of a synchronous procedure p: The program
point q′ of the statement to be executed after the
call is pushed onto the stack. The execution con-
tinues with first program point q′′ of p.

q : p(· · ·); q′ : · · ·
.
.
.
p(· · ·){q′′ : · · · }

q
λ→ q′ ‖ q′′ (p internal)

q
p→ q′ ‖ q′′ (p external)

Call of an asynchronous procedure p: The execu-
tion can be continued concurrently with the state-
ment at program point q′ after the call and the
statement at the first program point q′′ of p

p(· · ·){
· · · q : return; · · ·
}

p synchronous:

q.q′ λ→ q′

p asynchronous:

q ‖ q′ λ→ q′

q′ ‖ q
λ→ q′

The current synchronous procedure is left and
the execution continues with the statement after
the call. The corresponding program point q′ was
pushed upon call. The last program point of the
procedure is erased from the stack. If the pro-
cedure is asynchronous, the forked execution is
being joined.

q : sync p; q′ : · · ·
.
.
.
p(· · ·){· · ·
q′′ : return; · · · }

q ‖ q′′ λ→ q′ The statement after q (at program point q′) can
only be executed when the previously called asyn-
chronous procedure p returns.

3 Abstraction of Behaviour

We show how the behaviour of services can be abstracted to process-rewrite
systems. The states are all program points of the implementations of the services
in a service-oriented systems and all exceptional states. Table 1 summarizes the
abstraction rules from our previous work. The only difference is that our previous

work used q
λ→ ε for a procedure return where ε denotes the empty process. ε is

the identity w.r.t. . and ‖. Note that programming language concepts expressing
fork-join parallelism (as e.g., in BPEL) can be abstracted analogously to calling
asynchronous procedures and synchronize with them, respectively.

A service-oriented system S is abstracted to a process-rewrite system ΠS �
(Σ,Q,→, q0, F) where Σ =

⋃
s∈S

Σs is the set of all procedures in the interface

descriptions of the services of S, Q � PP ∪Exceptions , PP is the set of program
points, Exceptions � {qE : E is an exception}, → is defined by Table 1 and
Table 2, q0 is the program point where S starts, F � QF ∪ Exceptions , and QF

is the set of program points where the main program returns (i.e., the execution
of the program terminates).

128 C. Heike, W. Zimmermann, and A. Both

Remark 3. In [3], we have shown how ΠS can be constructed in a compositional way.
For each s ∈ S, a PRS Πs is derived and these are glued together to obtain ΠS. For
reasons of space, we omit this construction and refer to [3]. In addition to [3] a service-
oriented system S might also terminate in an exceptional state. Therefore, these states
are also final.

In this paper, we focus on exception handling. Before discussing the abstraction
of exception handling, its semantics must be explained. The statement raise E
raises the exception E. This means the execution is being interrupted, i.e., it is
not being continued by the execution of the next statement. If the exception E
has been raised outside of try-block, then the current procedure stops with the
exception E, i.e., the corresponding call raises E. A try statement

try { · · · }
when E1 { · · · }
...
when En { · · · }
finally { · · · }

is executed as follows (this is according to Java, C#, BPEL): The statements in
the try block are being executed as usual. If an exception E is raised, then the
block of the first exception handler when Ei { · · · } with Ei = E is executed1.
If E is different from any exceptions in the exception handlers, the try state-
ment terminates with exception E. The execution of the try statement definitely
finishes with the execution of the finally block, no matter what happens inside
the try block or the exception handler. This might lead to the fact that a return
statement doesn’t return from a procedure. For example, the return statement
at program point q10 in Fig. 1 is not executed because the finally block must be
executed. However, this would be different, if there would be no finally block. In
this case, the procedure returns as usual.

Table 2 defines the abstraction required for exception handling. Rule (1) is
straightforward, it simply rewrites the current state into the raised exceptional
state and rule (6) continues with the corresponding exception handler. Rules (2)–
(5) are required because the finally block must be executed in any case. For this
purpose, the program point q5 of the first statement of the finally-block is pushed
onto the stack. If the execution of the try block doesn’t raise an exception, then

q2 is reached, i.e. q1
w⇒ q2 for a w ∈ Σ∗. Thus, we have q

λ⇒ q1.q5
w⇒ q2.q5

λ⇒ q5.
Thus, the abstraction reaches q5 as desired. Furthermore, as mentioned above, if
a return-statement is executed in the try block, then it doesn’t return from the
procedure. Instead, the finally block is being executed. Suppose that q1 reaches
a program point q′ that executes a return-statement, i.e. q1

w⇒ q′ for a w ∈ Σ∗.
With rule (4) we have q

λ⇒ q1.q5
w⇒ q′.q5

λ⇒ q5 Therefore, the rather complicated
semantics of a return-statement within a try block is abstracted correctly.

Rules (6) and (7) have a role analogous to rules (2) and (3), respectively,
for the corresponding exception handler. However, there is no need to push
q5 onto the stack as it is already there if the handler is being executed, i.e.,

1 This can be easily extended to a subtype hierarchy of exception types.

Protocol Conformance Checking of Services with Exceptions 129

Table 2. Abstraction of Exception Handling

q : raise E; q
λ→ qE (1) Raising an exception results in the corresponding

exceptional state.

q : try {q1 : · · ·
q′ : return; · · ·

q2 : }
· · ·
when E {q3 : · · · q4 :}
· · ·
finally {q5 : · · · q6 :}

q7 : · · ·

q
λ→ q1.q5 (2)

q2.q5
λ→ q5 (3)

q′.q5
λ→ q5 (4)

q6
λ→ q7 (5)

q1 is the program point at the first statement of
the try block, q2 is the program point after the
last statement of the try block, q5 is the program
point of the first statement of the finally block,
and q6 is the program point after the last state-
ment of the finally block. A return statement in
an exception handler is abstracted to a rule anal-
ogous to (4).

qE .q5
λ→ q3.q5 (6)

q4.q5
λ→ q5 (7)

q3 is the program point at the first statement of
the exception handling block for exception E and
q4 is the program point after the last statement
of the exception handling block for E.

qE′ .q5
λ→ q5.qE′ (8)

q6.qE′
λ→ qE′ (9)

E′ is an unhandled exception, i.e., the try-block
ends with state qE′ . However, finally must be ex-
ecuted in any case.

sync p(· · ·) raises E{· · · }
· · · q : p(· · ·); q′ : · · ·

qE .q′ λ→ qE (10) q′ is the program point after the call of p. If E is
raised in the body of p and remains unhandled,
the call ends with exception E.

async p(· · ·) raises E{
· · · q′′ : return; · · · }

· · · p(· · ·); · · ·
q : sync p; q′ : · · ·

qE ‖ q
λ→ qE (11)

q ‖ qE
λ→ qE (12)

qE ‖ q′′ λ→ qE (13)

q′′ ‖ qE
λ→ qE (14)

qE ‖ qE′
λ→ qE (15)

qE′ ‖ qE
λ→ qE (16)

q′ is the program point after synchronization with
p. If E is raised in the body of p and remains
unhandled, the the call ends with exception E,
i.e., the exceptional state is kept after synchro-
nization and return, respectively. If both concur-
rent executions finish with an exception, there is
a non-deterministic choice between one of these
exceptions.

it holds q
λ⇒ q1.q5

v⇒ qE .q5
λ⇒ q3.q5

w⇒ q4.q5
λ⇒ q5 for a v, w ∈ Σ∗. The

second last step and the last step use rules (6) and (7), respectively. If a return-
statement is being executed in the exception handler, the same arguments as for
the execution of a return-statement in the try-block apply for the correctness
of the abstraction. A rule qE → q3 would lead to incorrect abstractions in case
of nested try blocks where both handle exception E. With the state q5 in the
context it is possible to identify the corresponding exception handler.

Rules (8) and (9) are needed because a try-block or an exception handler might
raise unhandled exceptions and the finally-block must alsob be executed under

these circumstances. Suppose, it holds q
λ⇒ q1.q5

v⇒ qE′ .q5 for a v ∈ Σ∗ and
q5

w⇒ q6 for a w ∈ Σ∗. Then, a correct abstraction requires q
vw⇒ qE′ , i.e., at the

end of the try block, the exceptional state is reached.Using the above observations,

we obtain q
λ⇒ q1.q5

v⇒ qE′ .q5
λ⇒ q5.qE′

w⇒ q6.qE′
λ⇒ qE′ using rules (8) and (9).

The correctness of rules (10)–(16) is already justified in Table 2.
The use of a service s can be derived from ΠS by replacing all transition rules

e
f→ e′, f �∈ Σs ∪ {λ}, by e

λ→ e′. Thus, all interactions except calls to service s
are ignored.

Example 3. Fig. 4 shows the process-rewrite rules for the abstraction of the
service-oriented system in Fig. 1. The initial state is q0, the set of final states
is F = {q9, qExc1 , qExc2}. With these rules, we can construct a derivation that
corresponds to the execution in Fig. 3 (the rule is as a lower index the arrow):

130 C. Heike, W. Zimmermann, and A. Both

procedure main:
(1) q0

λ→ q1 (2) q1
λ→ q2 (3) q1

λ→ q5 (4) q2
f→ q34.q3 (5) q3

c→ q24.q4 (6) q4
λ→ q5

procedure a:
(7) q6

λ→ q7.q16 (14) qExc2‖qExc1
λ→ qExc1 (20) qExc1 .q16

λ→ q12.q16 (26) q16 ‖ q23
λ→ q17

(8) q7
b→ q8 ‖ q20 (15) qExc1 ‖ qExc2

λ→ qExc1 (21) qExc2 .q16
λ→ q14.q16 (27) q16 ‖ qExc1

λ→ qExc1
(9) q8

c→ q24.q9 (16) qExc1 ‖ qExc1
λ→ qExc1 (22) q12

b→ q13 ‖ q20 (28) q17
d→ q36.q18

(10) q9 ‖ q23
λ→ q10 (17) q10.q22

λ→ q23 (23) q13.q16
λ→ q16 (29) q18

λ→ q19
(11) q23 ‖ q9

λ→ q10 (18) q10.q16
λ→ q16 (24) q14

c→ q24.q15 (30) q19.q23
λ→ q23

(12) qExc1 ‖ q9
λ→ qExc1 (19) q11.q16

λ→ q16 (25) q15.q16
λ→ q16 (31) q19.q35

λ→ q35
(32) q9 ‖ qExc1

λ→ qExc1
procedure b:
(33) q20

λ→ q21 (34) q20
λ→ q22 (35) q21

λ→ qExc1 (36) q22
λ→ q23

procedure c:
(37) q24

λ→ q25 (42) q28 ‖ q23
λ→ q29 (47) qExc1 .q32

λ→ q30.q32 (52) q32
λ→ q33

(38) q24
λ→ q26 (43) q23 ‖ q28

λ→ q29 (48) q30
f→ q34.q31 (53) q33.q4

λ→ q4
(39) q25

λ→ qExc2 (44) qExc1 ‖ q28
λ→ qExc1 (49) q31.q32

λ→ q32 (54) q33.q9
λ→ q9

(40) q26
λ→ q27.q32 (45) q28 ‖ qExc1

λ→ qExc1 (50) qExc2 .q32
λ→ q32.qExc2 (55) q33.q39

λ→ q39
(41) q27

b→ q28 ‖ q20 (46) q29.q32
λ→ q32 (51) q32.qExc2

λ→ qExc2
procedure f
(56) q34

a→ q6.q35 (57) q35.q3
λ→ q3 (58) q35.q31

λ→ q31 (59) q35.q43
λ→ q43

procedure d
(60) q36

λ→ q37 (64) q39
c→ q24.q40 (68) q42

f→ q34.q43 (72) q44
λ→ q45

(61) q37
λ→ q38 (65) q40

λ→ q41 (69) q43.q44
λ→ q44 (73) q45.q18

λ→ q18
(62) q37

λ→ q45 (66) q41.q44
λ→ q44 (70) qExc2 .q44

λ→ q44.qExc2
(63) q38

λ→ q39.q44 (67) qExc1 .q44
λ→ q42.q44 (71) q44.qExc2

λ→ qExc2

Fig. 4. Abstraction of the Services in Fig. 1

q0
λ⇒(2) q2

f⇒(4) q34.q3
a⇒(56) q6.q35.q3

λ⇒(7) q7.q16.q35.q3
b⇒(8) (q8‖q20).q16.q35.q3

λ⇒(33) (q8‖q21).q16.q35.q3 λ⇒(35) (q8‖qExc1).q16.q35.q3
c⇒(9) ((q24.q9)‖qExc1).q16.q35.q3λ⇒(38) ((q26.q9)‖qExc1).q16.q35.q3

λ⇒(40) ((q27.q32.q9)‖qExc1).q16.q35.q3b⇒(41) (((q28‖q20).q32.q9)‖qExc1).q16.q35.q3
λ⇒(33) (((q28‖q21).q32.q9)‖qExc1).q16.q35.q3λ⇒(35) (((q28‖qExc1

).q32.q9)‖qExc1).q16.q35.q3
λ⇒(45) ((qExc1

.q32.q9)‖qExc1).q16.q35.q3λ⇒(47) ((q30.q32.q9)‖qExc1).q16.q35.q3
f⇒(48) ((q34.q31.q32.q9)‖qExc1).q16.q35.q3a⇒(56) ((q6.q35.q31.q32.q9)‖qExc1).q16.q35.q3

λ⇒(7) ((q7.q16.q35.q31.q32.q9)‖qExc1).q16.q35.q3b⇒(8) (((q8‖q20).q16.q35.q31.q32.q9)‖qExc1).q16.q35.q3λ⇒(34) (((q8‖q22).q16.q35.q31.q32.q9)‖qExc1).q16.q35.q3

At the end of the first line, rules (9) and rules (33) are applicable. It is worth
to compare the last expression of the third line with the cactus stack in Fig. 3
after step (3). It has basically the same shape except there are program points
q32 and q16 not present in the cactus stack. These program points are the first
program points of the finally blocks and are pushed onto the stack when the
corresponding try-statement is executed.

4 Protocol Conformance Checking

For checking the conformance of a protocol of a service s in a service-oriented
system S, it must be checked whether L(Us) ⊆ L(As) where the use of s is
defined by the PRS Us � (Σs, Q,→, q0, F) and As � (Σs, Rs,→s, r

s
0, Fs) is the

finite state machine defining the protocol of s. In [3] we have shown that this
problem is undecidable for the classes of (x,G) process-rewrite systems, i.e., if
sequential compositon and parallel composition occurs in a PRS, the protocol
conformance checking becomes undecidable.

We therefore construct in a similar way a PRS K, the Combined Abstraction,
such L(K) ⊇ L(Us) ∩ (Σ∗

s \ L(As)) and check whether L(K) �= ∅. The PRS K

Protocol Conformance Checking of Services with Exceptions 131

T11 � {(r, q) α→K (r′, q′) : α ∈ Σs ∪ {λ} ∧ r, r′ ∈ Rs ∧ q, q′ ∈ Q ∧ (r
α→s r′) ∧ (q

α→ q′)}
T1S � (r, q)

α→K (r′, q′).(r′′, q′′) : α ∈ Σs ∪ {λ} ∧ r, r′, r′′ ∈ Rs∧
q, q′, q′′ ∈ Q ∧ (r

α⇒s r′) ∧ (q
α→ q′.q′′)}

TS1 � {(r, q).(r′′, q′) α→K (r′, q′′) : α ∈ Σs ∪ {λ} ∧ r, r′, r′′ ∈ Rs∧
q, q′, q′′ ∈ Q ∧ (r

α⇒s r′) ∧ (q.q′ α→ q′′)}
T1P � (r, q)

α→K (r′, q′) ‖ (r′, q′′) : α ∈ Σs ∪ {λ} ∧ r, r′ ∈ Rs∧
q, q′, q′′ ∈ Q ∧ (r

α⇒s r′) ∧ (q
α→ q′ ‖ q′′)}

TP1 � {(r, q) ‖ (r, q′) α→K (r′, q′′) : α ∈ Σs ∪ {λ} ∧ r, r′ ∈ Rs∧
q, q′, q′′ ∈ Q ∧ (r

α⇒s r′) ∧ (q ‖ q′ α→ q′′)}
T0 � {(r, q) λ→K (r′, q) : r, r′ ∈ Rs ∧ q ∈ Q ∧ ∃α ∈ Σ ∪ {λ} • r

α→s r′}

Fig. 5. Transition Rules for the Combined Abstraction

belongs to the same class of PRS as Us and it is L(K) = L(Us) ∩ (Σ∗
s \ L(As))

if Us belongs to one of the classes of (x, y)-PRSs, y ∈ {1, S}. Note that Σ∗
s \As

is the language accepted by the finite state machine Ās � (Σs, Rs,→s, r
s
0, F̄)

where F̄s � sRs \ Fs is the set of all non-final states of As.
In [3], we have defined the Combined Abstraction for the class of (1, G)-PRS

and in [2], we have extended this to the class of (P,G)-PRS. Here, we have to
extend it to the class of (G,G)-PRS. It is based on a normalized process-rewrite

system that consists only of rules of the forms q
α→ q′, q.q′ α→ q′′, q α→ q′.q′′,

q ‖ q′ α→ q′′, and q
α→ q′ ‖ q′′. In [18] it is shown that for any PRS Π there exists

a normalized PRS Π ′ with L(Π) = L(Π ′). However, Π ′ may have more atomic
processes.

In order to deal with (G,G)-PRS we slightly change the construction of [3] and
base it directly on the construction of a pushdown system in [15] that accepts the
intersection of a context-free language and a regular language. The Combined
Abstraction of Us = (Σs, Q,→, q0, F) and Ās = (Σs, Rs,→s, r

s
0, F̄s) is a PRS

K � (Σs, QK ,→K , qK0 , FK) where QK � Rs × Q, qk0 � (r0, q0), →K� T11 ∪
T1S ∪ TS1 ∪ T1P ∪ TP1 ∪ T0 as defined in Fig. 5, and FK � Fs × F .

The main idea is that for any process-algebraic expression e ∈ PEX (Q), and

any w ∈ Σ∗
s such that e

w⇒ f for a final process f ∈ F , and any r ∈ Rs such that

r
w⇒s rf for an rf ∈ Fs, there is a process-algebraic expression e′ ∈ PEX (QK)

such that e′ w⇒K f ′ for a f ′ ∈ FK . More precisely, e and e′ have the same
shape, i.e., e is obtained from e′ by removing the first component contained in
each atomic process of e′. Formally, there is function π : PEX (QK) �→ PEX (Q)
performing this mapping (π((r, q) � q and π(e ◦ e′) � π(e) ◦ π(e′) for ◦ ∈ {., ‖}).
Furthermore, the top states of e must be in state r. This can be formalized by
a partial function σ : PEX (QK) �→ Rs defined by:
σ((r, q)) � r

σ((r, q).e′) � (r, q)

σ(((r, q) ‖ (r, q′)) ◦ e′) � σ((r, q) ◦ e′)
σ(((r, q) ‖ (r′, q′)) ◦ e′) � undef if r �= r′

1,q1r2

E,q3

Fig. 6. Incon-
sistent Cactus
Stack

for any e′ ∈ PEX (QK), ◦ ∈ {., ‖}. Note that this means all states
on the top of the stacks in a cactus stack have the same protocol
state. It is undefined if the protocol state differs. The latter makes
no sense because there is only one protocol of service s.

The transition rules T11, T1S , and TS1 are a slight general-

ization of those in [15]. Note that r
λ⇒s r, and for a ∈ Σs it

132 C. Heike, W. Zimmermann, and A. Both

is r
a⇒s r′ iff r

a→s r′. The transition rules T1P and TP1 are straightforward.
The ideas stem from [3,2]. The transition rules T0 are required for maintaining
a consistent state of the protocol as demonstrated by Example 4:

Example 4. Consider the finite state machine A2 in Fig. 2 and suppose that

Us contains the following transition rules q0
b→ q1 ‖ q2, q1

c→ q3, q2
b→ q3,

q3 ‖ q3
c→ q4 where q4 is the final state. Then bbcc ∈ L(Us) \ L(A2), i.e., there

is a protocol violation. Without the rules in T0, we may construct the following

derivations: qK
λ⇒ (r20, q0) by TS
b⇒ (r21, q1) ‖ (r21, q2) by T1P
b⇒ (r21, q1) ‖ (E, q3) by T11
c⇒ (r21, q1) ‖ (E, q4) by T11
c⇒ (r22, q3) ‖ (E, q4) by T11

qK
λ⇒ (r20 , q0) by TS
b⇒ (r21 , q1) ‖ (r21, q2) by T1P
b⇒ (r21 , q1) ‖ (E, q3) by T11
c⇒ (r22 , q3) ‖ (E, q3) by T11
c⇒ (r22 , q4) ‖ (E, q3) by T11

For none of these two process-algebraic expressions, there are λ-transitions that
lead to a final state. Thus, the protocol violation is not detected. The reason
is that for both derivations, a change of the protocol state was not taken into
account. For both derivations, after the second step, the left operand of ‖ still
indicates that A2 is in state r21 although by the transitions the (final) protocol
state E is reached for the right operand. Fig. 6 shows the corresponding cactus
stack. Each top element of a cactus stack should have the same protocol state
because there is only one protocol and therefore the protocol state must be
unique. With the rules of T0 it is possible to change the protocol state of the left

operand to E before applying another transition rule. Thus (r21 , q1) ‖ (E, q3)
λ⇒

(E, q1) ‖ (E, q3)
c⇒ (E, q3) ‖ (E, q3)

c⇒ (E, q4) ∈ FK for both cases. Hence, the
protocol violation is detected.

Lemma 1 ([5]). Let Us � (Σs, Q,→, q0, F) be a PRS , Ās � (Σs, Rs,→s

, rs0, F̄s) be a finite state machine, and K � (Σs, QK ,→K , qK0 , FK) be the Com-
bined Abstraction of Us and Ās. Furthermore, let e ∈ PEX (QK) and w ∈ Σs∗
such that π(e)

w⇒ f ∈ F and r ∈ Rs such that r
w⇒ r̄ ∈ F̄s. Then there is a

unique e′ ∈ PEX (QK) such that e
λ⇒K e′, π(e′) = π(e), and σ(e′) = r.

This can be achieved by applying only rules from T0 (according to Example 4).
All protocol states in top elements of the cactus stack of the Combined Abstrac-
tions are changed to r.

Theorem 1. Let Us � (Σs, Q,→, q0, F) be a PRS , Ās � (Σs, Rs,→s, r
s
0, F̄s)

be a finite state machine, and K � (Σs, QK ,→K , qK0 , FK) be the Combined
Abstraction of Us and Ās. Then L(Us) ∩ L(Ās) ⊆ L(K)

Proof. (Sketch) The following stronger claim is proven by induction on the length
of the derivation:
For any process-algebraic expression e ∈ PEX (Q) and any state r ∈ Rs, there is a

process-algebraic expression e′ ∈ PEX (Q) with π(e′) = e and σ(e′) = r satisfying the

following property for each x ∈ Σ∗
s : If there is a final state f ∈ F such that e

x⇒ f and

there is a non-final protocol state r̄ ∈ F̄s such that r
x⇒s r̄ then there is a final state

fk ∈ FK such that e′ x⇒K fk (*)

Protocol Conformance Checking of Services with Exceptions 133

〈r2
0 , q0〉 λ⇒

T11
〈r2

0 , q1〉 λ⇒
T1S

〈r2
0 , q34〉.〈r2

0 , q3〉 λ⇒
T1S

〈r2
0 , q6〉.〈r2

0 , q35〉.〈r2
0 , q3〉

λ⇒
T1S

〈r2
0 , q7〉.〈r2

0 , q16〉.〈r2
0 , q35〉.〈r2

0 , q3〉 b⇒
T1P

(〈r2
1 , q8〉‖〈r2

1 , q20〉).〈r2
0 , q16〉.〈r2

0 , q35〉.〈r2
0 , q3〉

λ⇒
T11

(〈r2
1 , q8〉‖〈r2

1 , q21〉).〈r2
0 , q16〉.〈r2

0 , q35〉.〈r2
0 , q3〉 λ⇒

T11
(〈r2

1 , q8〉‖〈r2
1 , qExc1 〉).〈r2

0 , q16〉.〈r2
0 , q35〉.〈r2

0 , q3〉
c⇒

T1S

((〈r2
2 , q24〉.〈r2

2 , q9〉)‖〈r2
1 , qExc1 〉).〈r2

0 , q16〉.〈r2
0 , q35〉.〈r2

0 , q3〉
λ⇒

T0
((〈r2

2 , q24〉.〈r2
2 , q9〉)‖〈r2

2 , qExc1 〉).〈r2
0 , q16〉.〈r2

0 , q35〉.〈r2
0 , q3〉

λ⇒
T11

((〈r2
2 , q26〉.〈r2

2 , q9〉)‖〈r2
2 , qExc1 〉).〈r2

0 , q16〉.〈r2
0 , q35〉.〈r2

0 , q3〉
λ⇒

T1S

((〈r2
2 , q27〉.〈r2

2 , q32〉.〈r2
2 , q9〉)‖〈r2

2 , qExc1 〉).〈r2
0 , q16〉.〈r2

0 , q35〉.〈r2
0 , q3〉

b⇒
T1P

(((〈r2
1 , q28〉‖〈r2

1 , q20〉).〈r2
2 , q32〉.〈r2

2 , q9〉)‖〈r2
2 , qExc1 〉).〈r2

0 , q16〉.〈r2
0 , q35〉.〈r2

0 , q3〉
λ⇒

T0
(((〈r2

1 , q28〉‖〈r2
1 , q20〉).〈r2

2 , q32〉.〈r2
2 , q9〉)‖〈r2

1 , qExc1 〉).〈r2
0 , q16〉.〈r2

0 , q35〉.〈r2
0 , q3〉

λ⇒
T11

(((〈r2
1 , q28〉‖〈r2

1 , q21〉).〈r2
2 , q32〉.〈r2

2 , q9〉)‖〈r2
1 , qExc1 〉).〈r2

0 , q16〉.〈r2
0 , q35〉.〈r2

0 , q3〉
λ⇒

T11
(((〈r2

1 , q28〉‖〈r2
1 , qExc1 〉).〈r2

2 , q32〉.〈r2
2 , q9〉)‖〈r2

1 , qExc1 〉).〈r2
0 , q16〉.〈r2

0 , q35〉.〈r2
0 , q3〉

λ⇒
TP1

((〈r2
1 , qExc1 〉.〈r2

2 , q32〉.〈r2
2 , q9〉)‖〈r2

1 , qExc1 〉).〈r2
0 , q16〉.〈r2

0 , q35〉.〈r2
0 , q3〉

λ⇒
TSS

((〈r2
1 , q30〉.〈r2

2 , q32〉.〈r2
2 , q9〉)‖〈r2

1 , qExc1 〉).〈r2
0 , q16〉.〈r2

0 , q35〉.〈r2
0 , q3〉

λ⇒
T1S

((〈r2
1 , q34〉.〈r2

1 , q31〉.〈r2
2 , q32〉.〈r2

2 , q9〉)‖〈r2
1 , qExc1 〉).〈r2

0 , q16〉.〈r2
0 , q35〉.〈r2

0 , q3〉
λ⇒

T1S

((〈r2
1 , q6〉.〈r2

1 , q35〉.〈r2
1 , q31〉.〈r2

2 , q32〉.〈r2
2 , q9〉)‖〈r2

1 , qExc1 〉).〈r2
0 , q16〉.〈r2

0 , q35〉.〈r2
0 , q3〉

λ⇒
T1S

((〈r2
1 , q7〉.〈r2

1 , q16〉.〈r2
1 , q35〉.〈r2

1 , q31〉.〈r2
2 , q32〉.〈r2

2 , q9〉)‖〈r2
1 , qExc1 〉).〈r2

0 , q16〉.〈r2
0 , q35〉.〈r2

0 , q3〉
b⇒

T1P

(((〈E, q8〉‖〈E, q20〉).〈r2
1 , q16〉.〈r2

1 , q35〉.〈r2
1 , q31〉.〈r2

2 , q32〉.〈r2
2 , q9〉)‖〈r2

1 , qExc1 〉).〈r2
0 , q16〉.〈r2

0 , q35〉.〈r2
0 , q3〉

cbcb
=⇒ 〈E, q9〉

Fig. 7. A Derivation in a Combined Abstraction (Example 5)

If (*) holds, then the theorem is proven: Let be x ∈ L(Us) ∩ L(Ās). Then,

q0
x⇒ f for an f ∈ F and rs0

x⇒s r̄ for a r̄ ∈ F̄s by the definition of L. Thus,

(*) implies that there is a final state fk ∈ FK such that qK0 = (r0, q0)
x⇒K fK .

Hence, x ∈ L(K).

The base case is that no transition rule of Us and As is applied, i.e. f
λ⇒ f and

r̄
λ⇒s r̄. Thus, (r̄, f)

λ→K (r̄, f) ∈ FK

For the inductive case consider a derivation e
w⇒ f ∈ F and r

w⇒s r̄ ∈ F̄s.
Case: The first step applies rule q.q′ a→ q′′, a ∈ Σs: Then e = q.q′ ◦ ē for a
ē ∈ PEX (Q), ◦ ∈ {., ‖} and w = ax for a x ∈ Σ∗

s . Furthermore, q.q′ ◦ ē
a⇒

q′′ ◦ ē x⇒ f and r
a⇒s r

′′ x⇒s r̄ for a r′′ ∈ Rs. By induction hypothesis, there is a
e′ ∈ PEX (QK) such that π(e′) = q′ ◦ ē, σ(e′) = r′′, and e′ x⇒K fK for a fk ∈ FK .

Define e′′ = (r′′, q′′) ◦ ê where π(ê) = ē. By Lemma 1 it holds e′′ λ⇒K e′. Thus,
(r, q).(r′, q′) ◦ ê

a⇒K (r′′, q′′) ◦ ê λ⇒K e′ x⇒K fK since (r, q).(r′, q′) a→ (r′′, q′′) ∈
TS1. The proof of this case is completed by observing that π((r, q).(r′, q′)◦ ê) = e
and σ(r, q).(r′, q′) ◦ ê) = r.

The case where a rule q.q′ λ→ q′′ is applied at the first step is proven analo-
gously. The only difference is that r′′ = r since there is no change in the protocol
state. The cases where a rule q ‖ q′ α→ q′′ is applied at the first step are proven
analogously by using rules from TP1. The other cases can be similarly proven as
in [15] and [3].

134 C. Heike, W. Zimmermann, and A. Both

Example 5 (Combined Abstraction). The Combined Abstraction of the PRS in
Fig. 4 and the protocol automaton A2 in Fig. 2 has 220 atomic processes and
398 transition rules. For reasons of space we therefore only give a derivation
demonstrating the protocol violation discussed in Example 2 (the class of the
applied transition rule according to Fig. 5 is indicated below the derivation step,
TSS is a combination of TS1 and T1S), cf. Fig. 7. This derivation should be
compared with the derivation in Example 3. Note that all operations different
from b and c are replaced by λ since the other operations are not contained in
the interface of service s2.

5 Related Work

Many works on static protocol-checking of components consider local protocol
checking on FSMs. The same approach can also be applied to check protocols
of objects in object-oriented systems. The idea of static type checking by us-
ing FSMs goes back to Nierstrasz [19]. His approach uses regular languages to
model the dynamic behaviour of objects, which is less powerful than context-free
grammars (CFG). Therefore, the approach cannot handle recursive call-backs.
In [17] object-life cycles for the dynamic exchange of implementations of classes
and methods using a combination of the bridge/strategy pattern are considered.
This approach is also based on FSMs. It comprises dynamic as well as static con-
formance checking. Tenzer and Stevens [25] investigate approaches for checking
object-life cycles. They assume that object-life cycles of UML-classes are de-
scribed using UML state-charts and that for each method of a client, there is a
FSM that describes the calling sequence from that method. In order to deal with
recursion, Tenzer and Stevens add a rather complicated recursion mechanism to
FSMs. It is not clear whether this recursion mechanism is as powerful as push-
down automata and therefore could accept general context-free languages. All
these works are for sequential systems. Schmidt et al. [13] propose an approach
for protocol checking of concurrent component-based systems. Their approach
is also FSM-based. Thus, it is also unable to deal with recursive call-backs. [3,2]
use the restricted class of (P,G) process-rewrite systems and allows thus the
adequate modeling of unbound recursion, unbound concurrency, and explicit
synchronizations. However, exceptions are not considered in these works.

An alternative approach for an investigation of protocol conformance is the use
of process algebras such as CSP (e.g. [1]). These approaches are more powerful
than FSMs and context-free grammars. However, mechanized checking requires
some restrictions on the specification language. For example, [1] uses a subset of
CSP that allows only the specification of finite processes. At the end the confor-
mance checking is reduced to checking FSMs similar to [13]. In [21] behavioural
protocol conformance is used to describe a problem similar to ours. In contrast
to our approach the developer has to define not only the allowed receivable calls
but also the calls of the component. This approach can not handle recursive
callbacks, since the verification is reduced to finite state model checking. Many
works use process algebras as abstractions for the formal (behavioral) analysis

Protocol Conformance Checking of Services with Exceptions 135

Table 3. Rule Classes and Programming Language Concepts

Rule Language Concept Rule Class

q
α→ q′ internal state transition (1, 1)

q
α→ q′.q′′ synchronous procedure call (1, S)

q
α→ ε regular procedure return (1, 1)

q
α→ q′ ‖ q′′ asynchronous procedure call (1, P)

q ‖ q′ α→ q′′ synchronization (P, P)

q.q′ α→ q′′.q̄ exception handling (S, S)

q.q′ α→ q′′ exceptional procedure return (S, S)
α is a function symbol or empty.

of e.g. BPEL applications. [11] uses CSP, while [24] uses CCS-Process-algebras
are similar to (P,G)-PRSs. These two works do not verify the behaviour in our
sense. To the best of our knowledge, we are not aware of works in protocol confor-
mance checking taking into account unbound recursion, unbound concurrency,
and exception handling.

(b) PRS−Hierarchy and Programming Language Concepts

Recursion RecursionConcurrency

Process
Algebra Nets

(a) PRS−Hierarchy and its Expressiveness

Concurrency
Synchronization

Concurrency
Synchronization

Recursion
Exceptions

Recursion
Exceptions

Recursion
Exceptions

Concurrency
Synchronization(G,G)

(1,S)

(1,G)

(1,1)

(S,S)

(1,P)

(P,P)

(P,G)(S,G)

Recursion Concurrency

Pushdown
Systems

Context−Free
Systems

Basic Parallel
Processes

(G,G)

(1,S)

(1,1)

(S,S)

(1,P)

(P,P)

(P,G)(S,G)

Petri−Nets(1,G)

Process
Algebras

Finite State Machines

Fig. 8. PRS-Hierarchy and Expres-
siveness

Other works such as [6] use another no-
tion of behavioural conformance as we do.
Their notion of conformance basically implies
absence of deadlocks and livelocks, i.e. they
want to reach a desired state. In contrast,
protocols in this work specify sequences of op-
eration calls that must be satisfied, i.e., it is
more a safety condition rather than a liveness
condition. Furthermore, [6] doesn’t abstract
the service behaviour from an implementa-
tion. The latter is done by [22] who abstract
the service implementation to a ZING model.
They check also kind of absence of deadlocks
as [6] using a simulation relation.

6 Conclusions

In this paper we extended our previous work
of protocol conformance checking towards exception handling. This approach
is capable to represent exception handling even via service interactions. The
abstractions are computed using an automatic translation. A more rugged com-
position of SOAs is now possible. In contrast to our previous work, the most
general class of process-rewrite systems is needed for modeling exception han-
dling, unbound recursion, unbound concurrency, and explicit synchronization.
Table 3 shows an interesting correspondence between the rule classifications ac-
cording to Mayr and the adequate modelling of programming language concepts.
In particular, it shows what is required for modeling the language concepts if
one abstracts completely from data. Thus, we have the correspondence between

136 C. Heike, W. Zimmermann, and A. Both

Mayr’s hierarchy of process-rewrite systems and programming language concepts
shown in Fig. 8. In our previous work we had a correspondence to the class Pro-
cess Algebra Nets. With exception handling we have a correspondence to the
general class of process-rewrite systems.

The reachability problem is decidable for each class of PRS while the inclusion
problem to regular languages becomes undecidable in any class containing a G,
i.e., that includes parallel as well as sequential composition. In a similar way
as [3] we have defined a Combined Abstraction that approximates the inclusion
problem by a reachability problem such that the approximation is exact iff the
process-rewrite system belongs to a decidable class. The reachability problem
can be solved by the algorithm in [18].

However, this algorithm requires exponential space (and therefore at least
exponential time) in the worst case since the reachability problem for process
rewrite systems is EXPSPACE-hard [18]. It is subject to future work to apply
some heuristics to get it more efficient. For this, the same ideas as in [2,4,5] may
apply. Taking into account data is a challenge: the data types of variables must
be abstracted to finite domains. However, this leads to a severe state explosion
problem as in classical model checking. Thus, in order to consider data in protocol
conformance checking, a more goal-oriented abstraction is required.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Transac-
tions on Software Engineering and Methodology 6(3), 213–249 (1997)

2. Both, A., Zimmermann, W.: Automatic protocol conformance checking of recursive
and parallel BPEL systems. In: IEEE Sixth European Conference on Web Services,
pp. 81–91. IEEE (2008)

3. Both, A., Zimmermann, W.: Automatic Protocol Conformance Checking of Re-
cursive and Parallel Component-Based Systems. In: Chaudron, M.R.V., Szyperski,
C.A., Reussner, R. (eds.) CBSE 2008. LNCS, vol. 5282, pp. 163–179. Springer,
Heidelberg (2008)

4. Both, A., Zimmermann, W.: A step towards a more practical protocol conformance
checking algorithm. In: 35th Euromicro Conference on Software Engineering and
Advanced Applications, pp. 458–465. IEEE (2009)

5. Both, A., Zimmermann, W., Franke, R.: Model checking of component protocol
conformance – optimizations by reducing false negatives. Electron. Notes Theor.
Comput. Sci. 263, 67–94 (2010)

6. Bravetti, M., Zavattaro, G.: Contract-Based Discovery and Composition of Web
Services. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS,
vol. 5569, pp. 261–295. Springer, Heidelberg (2009)

7. Bures, T., Hnetynka, P., Plasil, F.: Sofa 2.0: Balancing advanced features in a
hierarchical component model. In: Proc. of the Fourth International Conference on
Software Engineering Research, Management and Applications, pp. 40–48. IEEE
(2006)

8. Burkart, O., Steffen, B.: Model Checking for Context-free Processes. In: Cleaveland,
W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 123–137. Springer, Heidelberg
(1992)

Protocol Conformance Checking of Services with Exceptions 137

9. Burkart, O., Steffen, B.: Pushdown Processes: Parallel Composition and Model
Checking. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836,
pp. 98–113. Springer, Heidelberg (1994)

10. Dahl, O.-J., Nygaard, K.: Simula: an algol-based simulation language. Communi-
cations of the ACM 9(9), 671–678 (1966)

11. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based analysis of Web Services.
In: ASE, pp. 152–163. IEEE (2006)

12. Gorbenko, A., Romanovsky, A., Kharchenko, V., Mikhaylichenko, A.: Experiment-
ing with exception propagation mechanisms in service-oriented architecture. In:
Proc. of the 4th International Workshop on Exception Handling, pp. 1–7. ACM
(2008)

13. Schmidt, H.W., Krämer, B.J., Poernomo, I., Reussner, R.: Predictable Component
Architectures Using Dependent Finite State Machines. In: Wirsing, M., Knapp,
A., Balsamo, S. (eds.) RISSEF 2002. LNCS, vol. 2941, pp. 310–324. Springer,
Heidelberg (2004)

14. Hauck, E.A., Dent, B.A.: Burroughs’ b6500/b7500 stack mechanism. In: AFIPS
1968 (Spring): Proc. of the April 30-May 2, 1968, Spring Joint Computer Confer-
ence, pp. 245–251. ACM (1968)

15. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation, 2nd edn. Addison-Wesley (2001)

16. Jannach, D., Gut, A.: Exception Handling in Web Service Processes. In: Kaschek,
R., Delcambre, L. (eds.) The Evolution of Conceptual Modeling. LNCS, vol. 6520,
pp. 225–253. Springer, Heidelberg (2011)

17. Löwe, W., Neumann, R., Trapp, M., Zimmermann, W.: Robust dynamic exchange
of implementation aspects. In: TOOLS 29 – Technology of Object-Oriented Lan-
guages and Systems, pp. 351–360. IEEE (1999)

18. Mayr, R.: Process rewrite systems. Information and Computation 156(1-2),
264–286 (2000)

19. Nierstrasz, O.: Regular types for active objects. In: Nierstrasz, O., Tsichritzis, D.
(eds.) Object-Oriented Software Composition, pp. 99–121. Prentice-Hall (1995)

20. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: State of the art and research challenges. Computer, Innovative Technology
for Computer Professionals 40(11), 38–45 (2007)

21. Parizek, P., Plasil, F.: Modeling of Component Environment in Presence
of Callbacks and Autonomous Activities. In: Paige, R.F., Meyer, B. (eds.)
TOOLS EUROPE 2008. LNBIP, vol. 11, pp. 2–21. Springer, Heidelberg (2008)

22. Rajamani, S.K., Rehof, J.: Models for Contract Conformance. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, pp. 181–196. Springer, Heidelberg
(2006)

23. Reisig, W.: Modeling- and Analysis Techniques for Web Services and Business
Processes. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535,
pp. 243–258. Springer, Heidelberg (2005)

24. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services
using process algebra. In: International Conference on Web Services. IEEE (2004)

25. Tenzer, J., Stevens, P.: Modelling Recursive Calls with UML State Diagrams. In:
Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 135–149. Springer, Heidelberg
(2003)

26. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

27. Zimmermann, W., Schaarschmidt, M.: Automatic Checking of Component Pro-
tocols in Component-Based Systems. In: Löwe, W., Südholt, M. (eds.) SC 2006.
LNCS, vol. 4089, pp. 1–17. Springer, Heidelberg (2006)

Cloud Service Localisation

Claus Pahl

Center for Next Generation Localisation CNGL and CloudCORE Research Centre
School of Computing, Dublin City University

Dublin, Ireland
cpahl@computing.dcu.ie

Abstract. The essence of cloud computing is the provision of software
and hardware services to a range of users in different locations. The aim
of cloud service localisation is to facilitate the internationalisation and lo-
calisation of cloud services by allowing their adaption to different locales.
We address the lingual localisation by providing service-level language
translation techniques to adopt services to different languages and reg-
ulatory localisation by providing standards-based mappings to achieve
regulatory compliance with regionally varying laws, standards and reg-
ulations. The aim is to support and enforce the explicit modelling of
aspects particularly relevant to localisation and runtime support con-
sisting of tools and middleware services to automating the deployment
based on models of locales, driven by the two localisation dimensions.
We focus here on an ontology-based conceptual information model that
integrates locale specification in a coherent way.

Keywords: Cloud services, Service localisation, Service internationali-
sation, Language and governance localisation.

1 Introduction

Web-enabled software services, particularly in the cloud computing context, can
support business and private users on a global scale [2,6]. In regions like Europe,
where a multitude of languages are spoken, services are often only developed
and deployed to support a single language or region [3]. In particular smaller
organisations do often not have the capacity and capability to carry out multi-
lingual and multi-regional development. Localisation is the process of adapting
digital resources like services and associated data and content to a locale, i.e. the
lingual and regulatory environment (restrictions, rules, settings) of a location or
region. The emergence of cloud services and the increasing trend towards end-
to-end personalisation of service offerings substantiates the need to address this
wider understanding of locale and localisation in a dynamic cloud service context.

The wider objectives of cloud service localisation are, firstly, to introduce
cloud-centric service localisation techniques, which focus on the localisation of
software and interaction at the service interface level, and, secondly, to make the
localisation techniques available at runtime for dynamic cloud service localisation
and end-to-end personalisation. As there are very few comparable activities, we

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 138–153, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Cloud Service Localisation 139

focus in this paper on defining a conceptual information model as the backbone
of a wider localisation solution. Based on this, we outline further challenges and
possible architectural solutions for this context. A significant part here is devoted
to the motivation of cloud service localisation as a new field of investigation.

Often, localisation refers to either languages only or physical locations only.
Two different locale dimension are the focus of this investigation that embrace
these and widen the concepts of localisation and locale:

– lingual localisation by providing service-level language translation techniques
to adopt services (including API, description, models) to different languages,

– regulatory localisation by providing standards-based mappings to achieve
regulatory compliance with regionally varying laws and regulations (business
rules, standardised name/value mappings, currencies and units, and legal
governance/compliance rules in relation to different regions or locations).

Progress beyond the state-of-the-art with respect to the following is aimed at:

– localisation at service interface level - classical forms of software localisation
will be expanded to address internationalisation at the interface (API) level.
Model mapping and translation form core ingredients to develop a coherent
and integrated solution across the locale dimensions here. The challenge is
a semantic model integrating heterogeneous translation, mapping and adap-
tation needs in a single, dynamically processable form.

– adaptation and integration - software adaptation at service-level will be con-
siderably improved by addressing linguistic and regulatory dimensions. This
poses a significant challenge, as the current focus of adaptation is only on
functional and software quality aspects that are software-technical in nature.

– semantics-enhanced brokering and mediation - matching of services is equally
expanded to encompass linguistic and regulatory aspects, here proposed to
be included in a locale-centric negotiation process and infrastructure, requir-
ing respective coordination protocols.

We motivate cloud service localisation in the next section. Section 3 defines the
conceptual information model and its supporting architecture. In Section 4, we
introduce specific localisation techniques. Section 5 discusses some challenges,
before we end with a wider discussion of related work and some conclusions.

2 Motivation

Our focus is a platform for service localisation that makes a step from one-
size-fits-all services towards end-to-end personalised service offerings based on
different locales. Current cloud computing for international settings suffers from
localisation and adaptability problems for multiple but different users [18,27],
which can be overcome through multi-lingual and multi-regional localisation.

140 C. Pahl

2.1 Application Scenarios and Benefits

Various possible application scenarios can illustrate the benefits of a service
localisation solution for the cloud:

– End-user media store&play cloud services. Some cloud media players are
currently available in only one language. This form of end-user oriented ser-
vice interaction would benefit from multilingual access by a mass market.
It would involve the localisation (translation) of service description values,
interaction text, and other auxiliary text. This can take place statically (pre-
pared localisation) or dynamically (ad-hoc localisation).

– Business-targeted cloud services. A data analysis and storage service as busi-
ness offerings could be adapted (localised) to be compliant with different
standards and regulations for different regional or legal environments - a
business-centric service offering requiring a high degree of customisation.

– End-user composed service processes. For instance, public sector applications
where governance and regulations are as important as lingual aspects can be
composed/configured based on several individual cloud services, adapted by
individual users to their specific needs, even dynamically.

– Mediated e-commerce offerings. Telecoms-supported consumer access ser-
vices are examples, where online shops avail of cloud-based support infras-
tructure services to allow them to manage their business online.

The second scenario shall be detailed further. A cloud-based data archiving
service might need business-oriented service localisation. Sales data from local
subsidiaries have to be stored centrally (e.g. in a private cloud) or usage of a
low-cost storage provider abroad (in a public cloud) is envisaged. With a focus
on regulatory (REG) and lingual (LING) localisation, the following is required:

– LING: translate service data between languages, e.g. from English into Ger-
man - ”Quote” to ”Angebot” - based on standards like EANCOM or
document-related attributes based on the GS1 standard for documents1,

– REG: transform data between standards or their variants, e.g. ”Quote”
translates to ”FullQuotation” based on a transformation between different
EDIFACT variants and subsets such as EANCOM, EDIKEY, or EDIFICE.
Other examples are transformations of currencies or transformation of rules
and procedures, e.g. access rights to enable regulatory compliance by en-
abling legally required recording of activities through service adaptation.

Related data validation and data archiving services might be composed by a bro-
ker, which mediates the localisation based on integrated semantically enhanced
locale policies. The requestor provides an abstract process that the broker imple-
ments - for example to offer locale-specific services abroad for roaming network

1 For illustration, we use the EDIFACT (United Nations rules for Elec-
tronic Data Interchange for Administration, Commerce and Transport,
http://www.unece.org/trade/untdid/welcome.html) and GS1 standards (supply
and demand chains globally and across multiple sectors, http://www.gs1.org/).

http://www.unece.org/trade/untdid/welcome.html
http://www.gs1.org/

Cloud Service Localisation 141

Analyse
In: Datum/Periode
In: Firma/Sektor
Out: Preis

NYSE

service
interface US

API US

Analysis
In: Date/Period
In: Company/Sector
Out: Price

localised
interface DE

localise
(at concept / attribute / variable level)

SOAP invocation
(reverts localisation)

user DE
developer/portal
program

Broker / Mediator

Interface

Interaction

Fig. 1. Localisation of Stock Market Analysis Feature - Focus on Service API

customers (if compatible) using predefined mappings that are deployed dynami-
cally. End-user composition can be applied where the end-user configures a pro-
cess of different services by different services in different languages. The business
searches for best provider internationally for both services, not necessarily as a
package. An example is sales records where data is validated for sector categories,
e.g. GS1 for sector categorisations, across different languages.

The following illustrates a range of different localisable service artefacts with
sample specifications for locales US and DE:

– API: validate(dataset):result in US maps to Validiere(Datensatz):Resultat
– Semantic Description: compliant(GS1,dataset) → validated is US maps to
einhaltend(GS1,Datensatz) → validiert in DE

– Contract: per activation = 1 USD (incl. 18% VAT) and availability = 98%
in US maps to pro Aufruf = 1.35 EUR (incl. 21% MwSt) and Verfügbarkeit
= 98% in DE

– Documentation: service validates dataset for standards compliance in US
maps to Servce validiert Datensätze aud Einhaltung von Standards in DE

Note that inter-artefact relationships exist: validate/validated/validates and
complaint/compliance as two sets of terms that are internally cross-referenced.

Some progress has been made in the past in the context of Web service in-
ternationalisation [24,29]. This has provided a broader framework, particularly
addressing data formatting and conversion (e.g. between units) aspects. More
complex, rule-based translations are, however, not included.

2.2 Use Case and Requirements

In addition to the demonstration of the need for localisation across a wide spec-
trum, we chose another use case to elicit more detailed requirements. We use
an environment that provides service-level access to stock market information
and analyses2. A German user might want to access data from the New York

2 This is based on a case study using financial stock market information services from
http://xignite.com/ and http://deutsche-boerse.com.

http://xignite.com/
http://deutsche-boerse.com

142 C. Pahl

Analyse
In: Datum/Periode
In: Firma/Sektor
Out: Preis

localised
interface US

API DE

Analysis
In: Date/Period
In: Company/Sector
Out: Price

service
interface DE

user US
developer/portal
program

Interface

Interaction

localise SOAP (data, sector, currency)

DB FRA

Fig. 2. Localisation of Stock Market Analysis Feature - extends NYSE-specific Analysis
Service to include DB-FRA

stock exchange, which is provided in an English format. We present a scenario in
which the user can implement a locale-compliant interface, i.e. one that allows
technical interaction of service interface and description aspects in German.

At the application-level, two sample calls of a stock market data analysis
service for the two locales (US-locale with English as the language and USD as
currency and DE-locale with German as the language and EUR as the currency)
could be: Analyse(10/30/2011, logistics) → 3.82 USD and Analysis(30.10.2011,
Logistik) → 4.23 EUR. Localisable artefacts in this example are

– Date: a format change is needed - which would also apply to time and col-
lation issues,

– Sector: data values describing an industry sector are localised based on a
translation between standardised terminologies - which would also apply to
product categories,

– Language: operation names (and possibly other interface and model ele-
ments) are translated between languages,

– Currency: values are converted - as would be other measurements and units.

This list can be extended: different regulatory environments based on maybe mul-
tilingual and standardised glossaries and dictionaries; calculations/conversions
based on rules (fixed) or repositories (dynamic); tax rates and customs duties
can be added if products are sold; any messages including help and error mes-
sages to which text translation would be applied. Typical examples for technical
terms that need translation in the banking or stock markets context are (aver-
age price - Durchschnittspreis), (main trading phase - Haupthandelsphase), or
(volume weighted average - volumengewichteter Durchschnitt) that are based on
accepted, often standardised terminologies. Some examples might be defined in
terms of classification and categorisation standards: (logistics - Logistik) for a
sector or (dairy - Milchprodukte) for product categories.

In the example, the user-DE can discover services based on a German specifi-
cation and can invoke them based on a German interface. A stock market analysis
provider can add a DE-locale to its default US-locale policy. This would result in
a correct match in a full negotiation process in which a user searches for services
that are provided in a locale-specific way since the provider is able to support

Cloud Service Localisation 143

US-to-DE locale mappings if required. In an architecture that implements these
localisation translations, service instrumentation would result in a process to be
generated and enacted, rather than a single SOAP request as indicated in Fig.
1. This process could comprise service invocation and logging (location) for ac-
countability where the location is a parameter, which indicates where and how
records are kept (if ruled by privacy laws). A coordination protocol then governs
the exchange of locales and the following SOAP-based application interaction.

The above scenario could be further extended to allow an American user (with
locale US) to access a German-language stock market information provider, e.g.
for Deutsche Börse, Frankfurt. Localisation can be provided on a SOAP level
primarily, see Fig. 2, for automated service activations and interactions.

3 Conceptual Framework

The localisation of possibly brokered and mediated cloud services is the appli-
cation context in which service localisation takes place - requiring a coherent
integrated information model for multi-dimensional localisation and support-
ing cloud infrastructure to deal with localisation statically and dynamically in
an automated form. Our aim is the localisation of the (automated) interac-
tion with software services as dynamic, executable artefacts. What is required
to make both software-to-software and user-to-software interaction localisable
is interface-level dynamic localisation through translation and adaptation tech-
niques. The conceptual framework we present is comprised of an information
architecture, which is essentially an ontology, a systems architecture and an
abstract process that would be enacted on the architecture [19,20].

3.1 Information Architecture - Localisable Artefacts

Localisable artefacts are service specifications and models, but also contracts and
documentation addressing aspects like interaction in the form of messages and
also licensing, usage and access rights, see Fig. 3. Translation between controlled
vocabularies is required. If services are not locale-independent, localisation is
needed. A locale model is based on locale-affected attributes like time/data for-
mat (the localisable artefact is data), language (the localisable artefact is inter-
action - text and/or dialogues), and collation/ordering (the localisable artefact
is data). The user-specific locale models (user locale policies) are applied at
the service endpoints after a locale negotiation process with the provider. Ser-
vices are described in terms of their interfaces (in WSDL): data types, data,
operations; more comprehensive models (e.g. the Unified Service Description
Language USDL - http://www.w3.org/2005/Incubator/usdl/): functionality,
quality, locale (language, currency, units, legal/tax), context (location, device,
platform), and documentation (manual, help). Consequently, localisable arte-
facts are

– service interface: data-level internationalisation and transformation for the
different locale dimensions that applies in particular to data (schema and

http://www.w3.org/2005/Incubator/usdl/

144 C. Pahl

Service Description

Service API
(CCI)

Semantic
Service

Description

Service
Contract/

SLA

Operations Data …

names: ... names: text translation or
… standards based mapping

values: text translation or
standards based mapping or
conversion

Service
Interaction

(HCI)

Service
Documentation

subsumption

composition

attributes

Fig. 3. Localisation Artefact Ontology - Excerpt with Focus on Service API

data-level translation based on EAN Identification, EANCOM/EDIFACT,
etc.) and mappings; RESTful HTTP for instance natively supports content-
type negotiation for interactions (messages).

– semantic service description and contract: aspects such as licensing, usage
and access rights, but also other metadata aspects are subject to translation
between controlled vocabularies (data-level translation).

These service descriptions are linked to the generic service description concept
through a subsumption relationship. Each of the description types is then decom-
posed (using an is part of relation) into individual description elements, which
are subject to localisation. Composition is necessary as a relationship as the
subsumption (subtype) idea does not apply between an artefact and its parts.
For the service API, operations and data (in the form of input and output pa-
rameters or messages) are these individual, localisable elements. Each localisable
element has attributes that characterise the localisation technique applied to it.
We have indicated their localisation type, which can be text (to be translated us-
ing usual MT techniques), standards-based data (where the translation is defined
in a predefined glossary) or conversions (e.g. for statically defined measurements
or dynamically defined currency conversions). For the given ontology excerpt,
the translation type attribute is given. Composition and attributes are intra-
artefact properties. There are also inter-artefact properties: is defined in and
is explained in are examples for cross-artefact properties, e.g. a contract refers
to a definition of an operation in an API or data is explained in documentation.

The localisation ontology is the foundation, on which later on rules to define
localisation policies and actions to be executed for localisation will be introduced.

3.2 Systems Architecture and Process

A service localisation solution consists of guided translations (through ontolo-
gies), which may be pre-translated. Static value mappings (cross-language or
cross-regulation) and dynamic value mappings need to be combined. A static

Cloud Service Localisation 145

Mediator

Default Policy

Service

Localised
Service

Localised
Service

dynamicstatic

Default
Service

Locale Policy Locale Policy

Mappings

Rules & Facts

Fig. 4. Localisation Systems Architecture

setting means that localisations are prepared. A system architecture should al-
low developers to prepare material for multiple locales in advance and check
their quality. An intermediary then deploys and executes respective techniques
depending on user profile and negotiation, from which SLAs are formed. These
are used to govern the invocation of services. In a dynamic setting, an interme-
diary selects suitable services (involving query translation), carries out negotia-
tion based on best mappings (closest profiles) by using localisation and quality
assurance services. Overall, the achievable quality will vary between in-advance
and fully-automated scenarios. Corresponding assurance levels will need to
be set.

These techniques can be facilitated for service localisation through process
adaptation and instrumentation [26]. An intermediary mediates between several
clients (at different locations) and several providers (at different locations) by
providing this core process with localisation adaptations [23]. Several localisation
patterns emerge. In a single-provider setting, one provider supports n (n≥1) lo-
cales; in a market-place setting, one client uses a composition of provider services
(n>1). Both enact a localisation process based on locale negotiation (brokering)
and localisation (mediation) implementing a localisation coordination protocol.

– Dynamic Generation: for regulatory localisation, aspect-oriented instrumen-
tation can be generated on-demand per defined locale, allowing the user
control over locale definition

– Configuration Management / Generation: different endpoints (and respective
bindings) for different locales are generated for a localised API to which then
localisations (translations and mappings) are applied; which of these to use
might be dynamically decided

– Negotiation and Coordination: exchange and agreement on locale policies
through SOAP headers based on [26] for coordination

– Architecture: data/information integration layer based on ontologies; ser-
vice localisation layer based on adaptation (user model) and regulatory and
lingual localisation; and management through locale negotiation

The process that governs the overall activities is Negotiation, followed by Medi-
ation & Localisation and Execution. Abstract services and locale policies are the
negotiation basis, based on which service endpoints give access to application
services or instrumented processes, which in turn needs a basis of core services
for translation LING, adaptation REG, and necessary instrumentation resulting
from these, i.e. is localisation as a service, composed into a process.

146 C. Pahl

4 Localisation Techniques for the Cloud

4.1 Policy Language and Localisation Model

At the core of the localisation techniques is a rule language [16,25,28]: an inter-
operable locale policy language is needed in addition to languages like WSDL,
which captures the functionality side of the service API, to define locale de-
scriptions for both provider and user. The policy language is based on Semantic
Web rule principles with underlying ontology support (OWL) for the concep-
tual aspects. A locale policy defines the individual rules and instrumentations
that characterise a locale. In Fig. 5, we define a layered localisation model that
connects locales and rule-based locale mappings:

1. An ontology-based base layer captures the different translation types. The
ontology defines the localisable artefacts and their relationships (see Fig. 3).
Each unit is characterised in terms of a number of attributes:
– translation unit type: API (data, operation), semantic description, SLAs,
or documentation are examples.

– translation type: standards-based, ad-hoc text translation, conversion
based on distinct repositories, called translation memories (TMs) here.

2. Basic rules are provided, like Locale or hasCurr, on which specific locales
can be defined. An example is

UKLocale(?l) ← Locale(?l) ∧ hasCurr(?l, ?c)∧?c = GPB

Higher level rules allow a locale to be inferred from partial knowledge, e.g.
?c = GBP →?l = UKLocale and to detect inconsistencies.

3. Depending on provider and consumer locales, translations might need to be
executed. Translations are guided by the locale definitions and use mappings
defined in the translations layer (either as pairwise translation units (e.g.
text) or as executable conversions (e.g. for measurements or currencies).
The overall translation is dynamically assembled from the translation base
(memory). The conversion rule for currencies can be dynamically created:

UKLocale2DELocale(?l1, ?l2)←hasCurr(?l1, ?c1) ∧ hasCurr(?l2, ?c2)∧
?c2 = convertCurr(GBP,EUR, ?c1)

Mappings appear in a primary form as a translation between locales. How-
ever, in some cases, consequential actions need to be added. For instance,
dynamic currency conversions need to be added or logging of activities for
compliance reasons needs to be added. Actions thus comprise another type
of activity than translation. Localisation might entail additional activities
such as adding logs for activities.

Locale configuration examples are the metric system of units or a tax system. A
locale mapping is compliant if it does not violate any locale configuration. While
a coherent conceptual model has been presented in Fig. 5, specific support is
needed for the two main localisation dimensions:

Cloud Service Localisation 147

TM
Free Text

TM
Standards Text

TM
Techn. Vocabulary

Unit Mappings

Loc. Artefact
Service API

Loc. Artefact
SLA

Localisable ArtefactsLayer 1:
Translations
(FACTS)

XXLocale(?l) <
Locale(?l) and
…

YYLocale(?l) <
Locale(?l) and
…

Locale(?l) < … Currency(?c) < … Base Rules

Locale Definition

Inference

Translation Actions

Layer 2:
Locales
(RULES)

Layer 3:
Translations
(MAPPINGS)

Locale
Mapping
XX > YY

…

Locale
Mapping
YY > …

c=GBP > ?l=UKLocale

Fig. 5. Conceptual Localisation Model

– Linguistic localisation and machine translation: the challenge is the localisa-
tion of service artefacts with little textual context - at design and run-time.

– Regulatory localisation and governance: integrated and coherent adaptation
to different regulatory standards and procedures based on semantic, rule-
based techniques using multi-locale modelling and discovery using ontologies;
and multi-dimensional user and service models and mappings for adaptation.

Consistency is a key motivation behind the rule-based approach. Locale
mappings need to be consistent. Inference rules in the rule layer provide the
mechanism to detect inconsistencies and enforce correct mappings. An example
is that countries use a coherent set of measurements, e.g. the metric system.
Also, currencies are linked to fiscal systems defined in a specific language. Since
locale mappings are often dynamically assembled from individual translations,
their composition needs to be checked for consistency.

4.2 Lingual Localisation and Translation

Localisation of artefacts with little textual context - in prepared and dynamic set-
tings - is the challenge. We propose the translation of technical content based on
reduced-context machine translation techniques [12]. We argue that specific tech-
niques are needed to enable reliable translations between formalised, technical
content (such as ontologies, service API and service models) [11]. Multi-lingual
ontologies form the core of the technique by providing a mapping / glossary
(as core translation memory). To enable effective processing, there is a need to
consider the merging of prepared translation material with other translations
generated on-the-fly. The key concern is the accuracy and quality of the trans-
lation, which needs to be trustworthy in automated processing environments.

148 C. Pahl

The specific solutions are ontology translations of technical and business ap-
plication domains and translation of controlled technical context with little con-
textual information [12,13]. The outcome consists of translation techniques and
supporting translation memories using predefined units (words/phrases) for stan-
dardised multilingual glossaries and variable units (words/phrases) - using sta-
tistical machine translation (SMT) techniques based on ontological proximity to
guide the free translation. XLIFF (XML Localization Interchange File Format),
an OASIS standard for localisation exchange - http://www.oasis-open.org/
committees/tc home.php?wg abbrev=xliff, is used to formulate translations.
Translations units (pairs) are kept in translation memories. A further investiga-
tion is beyond the scope here.

4.3 Regulatory Localisation and Governance

Regulatory localisation and governance through adaptation to different regula-
tory standards and procedures is based on localising regulatory concerns, which
are often captured in terms and conditions. Regulations apply for instance with
respect the identification and description of business entities or the way processes
are handled [17,26]. Furthermore, regulatory locale aspects like tax, currencies
and units need to be addressed [4,24].

The specific objective here are multi-facetted rules that are modular and com-
posable and that enable interference checking. For data object localisation, we
argue here that a multilingual, multiregional schema mapping and integration
technique is needed to adapt information to regulations in different regions (in
possibly different languages). For SLA translation, we need to enable mappings of
a SLA into a different locale that needs to consider the respective standards and
procedures. A translation technique needs to ensure quality assurance and ac-
countability of translation. We distinguish physical units like length, size, weight,
but also colour and financial aspects like pricing and payment, currency, or tax.
The outcome is a set of regulatory rule-based information translation techniques
with predefined mappings using standards conversions between lengths and other
units and consequential actions (instrumentations) needed when dynamic con-
versions (e.g. currency) or auxiliary actions (logging) are entailed. Individual
definitions are not as much the problems as is keeping consistency.

5 Infrastructures for Cloud Localisation - Directions
and Requirements

Two central infrastructure and mediation solutions are needed:

– Coordination: a localisation coordination strategy and protocol to implement
the locale negotiation and coordination of localisation for different locales -
based on a rule-based solution with a conflict resolution strategy.

– Service Mediation: a brokering and mediation architecture where an interme-
diary mediates between clients and providers at different locations. Solution
components are based on hybrid techniques for guided translation, model
mappings (cross-language/regulation) and process adaptation techniques.

http://www.oasis-open.org/committees/tc$_$home.php?wg$_$abbrev=xliff
http://www.oasis-open.org/committees/tc$_$home.php?wg$_$abbrev=xliff

Cloud Service Localisation 149

We discuss possible directions and techniques here.
The first aspect is semantic technologies for service localisation. Multi-locale

modelling and service adaptation using ontologies needs to provide a new ap-
proach to semantic service description through locale-specific domain ontologies.
Locale-specific domain models are needed. Ontologies provide the formal frame-
work. To define such ontologies, there is a need to consider a data layer and a
services layer, each with respective semantic annotations supported. A multi-
lingual, multi-ontology framework with corresponding facts, rules and mappings
is needed [9]. We suggest to adopt the linked data approach followed by other ser-
vice modelling approaches (like USDL - http://www.linked-usdl.org/). The
XLIFF translation mapping standard can be converted into RDF.

The second aspect is software brokering - adaptation and mediation of ser-
vices. Multi-dimensional user and service models and mappings need specific
techniques for service adaption and personalisation. A user model developed
around a notion of locale is needed to achieve cross-lingual and cross-regional
interoperability. To match user models and service profiles, there is a need to for-
malise and automate mappings between the different models. On the regulatory
localisation side, trustworthy conversions between formats and regulations need
to be defined, based on guidance from ontologies. On the lingual localisation
side, format/meta data translations and translation of values and text need to
be facilitated, in both guided and unguided forms.

Brokering and mediation architectures provide a framework for locale me-
diation based on negotiation and localisation implementation activities [21,22].
We argue here that a dynamic localisation engine is needed. This is made up
of services providing discovery, locale negotiation (static and dynamic, to gen-
erate SLAs and BPEL code, respectively), localisation (lingual and regulatory,
prepared and on-the-fly, with quality check). To support this engine, there is
a need to define a localisation process to govern the individual activities [15].
A repository is proposed to ensure the efficient and effective operation of the
engine, which maintains pre-translated content and data/format mappings as
translation memories. The outcome is a set of services to negotiate and localise
and a repository to keep prepared localisations and schema information.

A locale is a specific type of a context. Context- or locale-driven service pro-
vision is the aim. From a cloud provider’s perspective, this can also be seen as
a multitenancy problem, where each cloud tenant is defined by its locale. Both
aspects are further discussed in Section 6.

6 Related Work

Several areas are related to the subject here, although we provide a different
perspective compared to other research publications [10,16,18,28] and work cov-
ered by related EU-supported research projects, like SOA4All (www.soa4all.eu),
ACSI (www.acsi-project.eu/), 4Caast (4caast.morfeo-project.org/) or mOSAIC
(http://www.mosaic-cloud.eu/), which address end-user adaptivity using generic
semantic models (SOA4All), software-centric coordination and marketplaces

http://www.linked-usdl.org/

150 C. Pahl

(ACSI, 4Caast), or multi-cloud provisioning (mOSAIC). Our framework is or-
thogonal to these efforts towards end-to-end offerings, and unique in its interdis-
ciplinary character focusing on linguistic and regulatory aspects. More general,
our proposal relates to the following aspects:

– Software Localisation: localisation of software normally refers to the human
consumption, i.e. messages and dialogues produced by the software. We fo-
cus on localisation at the service interface level through internationalisation
and ontology mapping and translation. The current technology on service
internationalisation, which is the closest, is supported by the W3C Service
Internationalisation activity [24,29]. The focus there is data level localisa-
tion, specifically for dates, currencies and units and common approaches to
collation. The necessary solutions are conversions - e.g. statically defined be-
tween units or dynamically defined between currencies. Lingual aspects or
more complex regulatory or business aspects are not covered, although for
instance taxation as a sample concern is mentioned.

– Adaptation and Integration: software adaptation at service-level and data in-
tegration are common techniques. An example are schema mappings for data
integration, where consistency and semantic preservation are key concerns.
We follow ontology-based approaches, using these for semantics preservation,
but add a multi-lingual layer using ontology mappings. In a similar context,
service/process instrumentation is used to add enhanced processing abilities,
but as for data integration and adaption, our focus on lingual and regulatory
concerns within a rule-based framework is new.

Context-awareness of services is a direction that has been covered by a
range of contributions [4]. The notion of context is similar to that of locales,
reflecting properties of the execution or client environment. However, context
usually does not include lingual or regulatory aspects. We propose to adopt
and extend respective adaptation and instrumentation techniques [5,14].
Multi-tenancy is a cloud computing problem [18,27] that requires solutions
for different users with different needs to be kept separate.

– Semantic Technologies: matching of services and supporting the negotia-
tion process and infrastructure [7,10,19]. Through ontology mappings, multi-
lingual terminologies and multi-regional regulations can be captured and
dynamically processed.

7 Conclusions

Service localisation for cloud computing is a form of service personalisation and
adaptation. This focus addresses service engineering principles, methods and
tools by allowing service to be adapted to different locales. Services are en-
abled for seamless integration by providing localisation of services as software
in conjunction with related content/data processed and communicated by these
services. We have discussed techniques to enable the expansion of service offer-
ings into different markets for cloud solution and application providers, which

Cloud Service Localisation 151

is a context of significant economic advantage [1,8]. Localisation is a means to
bring products and services to markets that are otherwise inaccessible.

Multi-locale services support interoperable clouds contributing to a market of
services by allowing services to be internationalised and localised - an aspect of
crucial significance for the EU with 27 members, and even higher numbers of local
languages and regulatory systems. Service localisation adds to the availability of
platforms for easy and controlled development and deployment of value-added
services through innovative service front-ends by providing cloud infrastructure
services to localise and manage multi-locale services. Localisable services enable
lower barriers for service providers and users to develop, select, combine and use
value-added services and to allow providers to enter new markets, particularly
SMEs without in-house localisation capabilities.

The objectives of this paper were two-fold. Firstly, we presented a conceptual
framework to capture the key concerns of multi-lingual, multi-regulatory service
localisation as a rule- and ontology-based information model. Secondly, our dis-
cussion here aimed to motivate the need for research in service localisation for
the cloud to be carried out and analyse the major concerns. In this vein, we tried
to identify some directions and concerns to be addressed. The focus of our in-
vestigation was, inevitably, limited: program-level localisation, end-to-end cloud
personalisation and truly multi-lingual clouds are examples of omissions - which
we intend to investigate further. It is also clear that implementation work needs
to be done and evaluated - so far, the conceptual solution is only motivated and
justified through the discussed case studies.

Acknowledgment. This research is supported by the Science Foundation
Ireland (Grant 07/CE/I1142) as part of the Centre for Next Generation Lo-
calisation at Dublin City University.

References

1. 451 Group. Report on Cloud Computing ’As-a-service’ market sizing - Report II
(2010)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Comm. ACM 53(4), 50–58 (2009)

3. EU Commission. Report on ”The Future of Cloud Computing” - Opportunities for
European Cloud Computing Beyond 2010. EU (2010)

4. Bandara, K.Y., Wang, M.X., Pahl, C.: Context modeling and constraints binding in
web service business processes. In: Proceedings of the Workshop on Context-Aware
Software Technology and Applications, CASTA, pp. 29–32. ACM Press (2009)

5. Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 269–282. Springer, Heidelberg (2005)

6. Buyya, R., Broberg, J., Goscinski, A.: Cloud Computing - Principles and
Paradigms. Wiley (2011)

7. Doulkeridis, C., Loutas, N., Vazirgiannis, M.: A system architecture for context
aware service discovery. ENTCS, 101–116 (2006)

152 C. Pahl

8. Fingar, P.: Cloud computing and the promise of on-demand business innovation.
Intelligent Enterprise (2009)

9. Fu, B., Brennan, R., O’Sullivan, D.: Multilingual Ontology Mapping: Challenges
and a Proposed Framework. In: Workshop on Matching and Meaning - Automated
Development, Evolution and Interpretation of Ontologies (2009)

10. Fujii, K., Suda, T.: Semantics-based context-aware dynamic service composition.
ACM Trans. Auton. Adapt. Syst. 4(2), 1–31 (2009)

11. van Genabith, J.: Metaphors, Logic and Type Theory. Metaphor and Sym-
bol 16(1/2), 43–57 (2001) ISSN 1092-6488

12. van Genabith, J., Crouch, R.: Dynamic and Underspecified Semantics for LFG. In:
Dalrymple, M. (ed.) Semantics and Syntax in Lexical Functional Grammar: The
Resource Logic Approach, pp. 209–260. MIT Press (1999)

13. Graham, Y., van Genabith, J.: An Open Source Rule Induction Tool for Transfer-
Based SMT. The Prague Bulletin of Mathematical Linguistics, Special Issue: Open
Source Tools for Machine Translation 91, 37–46 (2009)

14. Kapitsaki, G., Kateros, D., Prezerakos, G., Venierris, I.: Model-driven development
of composite context-aware web applications. Information and Software Technol-
ogy 51, 1244–1260 (2009)

15. Karastoyanova, D., Leymann, F.: BPEL’n’Aspects: Adapting service orchestration
logic. In: International Conference on Web Services (2009)

16. Kharbili, M.E., Keil, T.: Bringing agility to business process management: Rules
deployment in an SOA. In: 6th IEEE European Conference on Web Services (2008)

17. Leusse, P.D., Dimitrakos, T., Brossard, D.: A governance model for SOA. In: IEEE
International Conference on Web Services (2009)

18. Mietzner, R., Unger, T., Titze, R., Leymann, F.: Combining different multi-tenancy
patterns in service-oriented applications. In: IEEE International Enterprise Dis-
tributed Object Computing Conference (2009)

19. Pahl, C., Zhu, Y.: A Semantical Framework for the Orchestration and Choreogra-
phy of Web Services. In: International Workshop on Web Languages and Formal
Methods, WLFM 2005. ENTCS (2005)

20. Pahl, C.: A Formal Composition and Interaction Model for a Web Component
Platform. In: Workshop on Formal Methods and Component Interaction, FMCI
2002 (2002)

21. Pahl, C., Giesecke, S., Hasselbring, W.: An Ontology-Based Approach for Mod-
elling Architectural Styles. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758,
pp. 60–75. Springer, Heidelberg (2007)

22. Barrett, R., Patcas, L.M., Murphy, J., Pahl, C.: Model Driven Distribution Pattern
Design for Dynamic Web Service Compositions. In: International Conference on
Web Engineering, ICWE 2006. ACM Press (2006)

23. Pahl, C.: Dynamic Adaptive Service Architecture – Towards Coordinated Service
Composition. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285,
pp. 472–475. Springer, Heidelberg (2010)

24. Phillips, A.P.: Web Services and Internationalization. Whitepaper (2005),
http://www.inter-locale.com/whitepaper/multilingual/

ml73-ws-20050524.xml

25. Rosenberg, F., Dustdar, S.: Business rules integration in BPEL - a service-oriented
approach. In: 7th IEEE Intl Conference on E-Commerce Technology (2005)

26. Wang, M.X., Bandara, K.Y., Pahl, C.: Integrated constraint violation handling
for dynamic service composition. In: IEEE International Conference on Services
Computing (2009)

http://www.inter-locale.com/whitepaper/multilingual/ml73-ws-20050524.xml
http://www.inter-locale.com/whitepaper/multilingual/ml73-ws-20050524.xml

Cloud Service Localisation 153

27. Wang, M.X., Bandara, K.Y., Pahl, C.: Process as a Service - Distributed Multi-
tenant Policy-based Process Runtime Governance. In: IEEE International Confer-
ence on Services Computing, SCC 2010. IEEE Press (2010)

28. Weigand, H., van den Heuvel, W.-J., Hiel, M.: Rule-based service composition and
service-oriented business rule management. In: Interdisciplinary Workshop Regu-
lations Modelling and Deployment (2008)

29. W3C. Web Services Internationalization Usage Scenarios (2005),
http://www.w3.org/TR/ws-i18n-scenarios/

http://www.w3.org/TR/ws-i18n-scenarios/

Quality Architecture for Resource

Allocation in Cloud Computing

Kouessi Arafat Romaric Sagbo and Pélagie Houngue

Department of Information Technology
Università Degli Studi Di Milano

26013 Crema, Italy
{kouessi.sagbo,yenukunme.houngue}@unimi.it

http://www.unimi.it

Abstract. Quality features are important to be taken into account while
allocating resource in Cloud Computing, since it allows to provide to the
users or customers, high Quality of Service (QoS) with best response time
as example and respects the Service Level Agreement (SLA) established.

Indeed, it is not easy to handle efficiently resource allocation processes
in Cloud, since, the applications deployed on Cloud present non-uniform
usage patterns, and the cloud allocation architecture needs to provide
different scenarios of resource allocation to satisfy the demands and pro-
vide quality. In order to provide the measurement of quality indexes, the
Cloud resource allocation architecture needs to be proactive and reactive.

The goal of this paper is to propose a resource allocation’ architecture
for Cloud Computing that provides the measurement of quality indica-
tors identified between the Key Performance Indicators (KPI) defined by
the Cloud Services Measurement Initiative Consortium (CSMIC). Our
architecture proposes different resource allocation policies: predictive and
reactive. The allocation decisions are taken in this architecture, accord-
ing to the SLA. Finally, the preliminary experimental results show that
our proposed architecture can improve quality in Cloud.

Keywords: Cloud Computing, Resource Allocation, Quality Architec-
ture, Quality of Service.

1 Introduction

Cloud Computing is defined by NIST [1] as: “a model for enabling convenient,
on-demand network access to a shared pool of configurable computing resources
(e.g. networks, servers, storage, applications and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction”.

There are three important services layers in cloud architecture: Software as
a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service
(IaaS) [3]. Figure 1 shows a basic cloud architecture with the three service layers.

• SaaS allows the consumer to use an application, but it does not control the
operating system, hardware or network infrastructure on which the applica-
tion is running.

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 154–168, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.unimi.it

Quality Architecture for Resource Allocation in Cloud Computing 155

Fig. 1. Cloud basic layers architecture

• PaaS allows the consumer to use a hosting environment for its applications.
It controls the applications that run in the environment, but does not control
neither the operating system nor the hardware or network infrastructure on
which they are running.

• IaaS allows the consumer to use “basic computing resources” such as process-
ing power, storage, networking components, or middleware. The consumer
can control the operating system, storage, deployed applications, and prob-
ably the networking.

Cloud system provides virtual resources as service through Internet. Then, vir-
tualization is more used in Cloud Computing to provide the resources. Many
strategies are used to provide virtual resources and they are grouped under the
term “resource allocation”.

Resource allocation in Cloud Computing needs to be done automatically and,
should have an architecture which contributes to provide quality of service in
Cloud. Quality architecture for resource allocation in Cloud Computing means
that the architecture will provide performance, scalability, reliability, availability
and security.

Our work aims to define an efficient resource allocation’ architecture for Cloud
Computing which will effectively deliver resources based on the quality metrics
defined by [2] and presented in the following sections.

This paper is structured as follows: Section 2 presents the motivations of our
work. Section 3 gives an overview of service measurement index following by
the related work in section 4. Subsequently, section 5 describes our proposed
architecture and section 6 presents the preliminary results obtained from our
tests. Finally, section 7 concludes our paper and presents some future works.

2 Motivations

Since the advent of Cloud Computing, there are a lot of cloud providers and
services, and it becomes difficult to know which of them actually fulfill the quality
requirements.

In order to have good indicators for cloud services, the Cloud Services
Measurement Initiative Consortium (CSMIC) [2] has defined some Service

156 K.A.R. Sagbo and P. Houngue

Measurement Indexes (SMI) organized following seven (7) primary service mea-
surement characteristics. These characteristics are designed to become a stan-
dard method to help organizations to measure cloud-based business services by
taking into account their specific business and technology requirements. Some
categories of indicators are defined to allow having good metrics so that to de-
liver quality of service in Cloud. Then, there is a need to define a standard
architecture to deliver this quality of service in Cloud by taking into account
these indicators during the resource allocation process. These measurements can
help the users and customers to rank cloud service offered by different providers.
But, these metrics are not easy to measure, since some are more qualitative
and then, difficult to evaluate and the others quantitative, are easy to evaluate.
The SLA is often violated during the resource allocation when a good resource
allocation procedure is not used and the decision is not taken at time.

With the measurement of these metrics related to the quality delivering in
Cloud Computing, it will be easy to know which provider respects the agreement
previously established with the users.

Our work is to define a quality architecture for resource allocation and to prove
that using this architecture, the cloud provider will fulfill the SLA regarding the
Quality of Service level defined in it. Moreover, when the resources are allocated
automatically at real-time, these quality indicators can be fulfilled, because in
Cloud, all services are based on virtual resources used to provide the services
and these resources need to be available over the time without interruption. That
gives to cloud the aspect of infinite resources provider.

We aim to show that when cloud architecture has a well-defined and various
resource allocation policies and algorithms, it can deliver quality at the end. We
do not define in this paper how these metrics are calculated.

3 Overview of Service Measurement Index

The Service Measurement Index (SMI) is a set of business-relevant Key Perfor-
mance Indicators (KPI’s) that provide a standardized method for measuring and
comparing a business service regardless whether that service is internally pro-
vided or sourced from an outside company [2]. The Service Measurement Index
is organized into the following seven (7) characteristics:

• Accountability: this category contains attributes used to measure the prop-
erties related to the service provider organization. These properties help the
customers to trust in the provider services.

• Agility: this category provides the attributes which indicate how the service
can respond quickly and precisely regarding unexpected events or demands
with minimal disruption.

• Assurance: this category includes key attributes that indicate how likely it
is that the service will be available as specified in the SLA.

• Financial: this category contains the indicators about the cost of the service
provided to the customer.

Quality Architecture for Resource Allocation in Cloud Computing 157

• Performance: this category covers the features and functions of the provided
services. It provides the indicators of performance of these services.

• Security and Privacy: this category includes attributes that indicate the
effectiveness of the provider’s controls on the services access, the protection
of data and the physical facilities from which the services are provided.

• Usability: this category contains the indicators which measure the ease of
using a service on the Cloud.

Some of these characteristics contribute to have good quality indicators in cloud
architecture. The quality features are then more provided by the key performance
indicators (attributes) of the following three characteristics: Agility, Assurance
and Performance. For simplicity reason, we do not give the definition of the at-
tributes of these characteristics, but they are available in the document provided
by the Consortium [2].
The agility characteristic has the following attributes:

• Adaptability,

• Capacity,

• Elasticity,

• Extensibility,

• Flexibility,

• Portability,

• Scalability.

The assurance characteristic has the following attributes:

• Availability,

• Maintainability,

• Recoverability,

• Reliability,

• Resiliency/Fault Tolerance,

• Service stability,

• Serviceability.

The performance characteristic has the following attributes:

• Accuracy,

• Functionality,

• Suitability,

• Interoperability,

• Service Response Time.

The cloud architecture which is able to provide these three categories of metrics
ensures the quality requirements for cloud environments.

158 K.A.R. Sagbo and P. Houngue

4 Related Works

The CSMIC [2] has defined the key performance indicators, described in the
previous section, that are important to evaluate and rank the cloud providers
services based on the SLA.

Our work points out among these indicators, those which contribute to ensure
Quality of Service in Cloud when allocating the resources to the services.

The authors of [4] propose a mechanism that evaluates the quality and ranks
the cloud provider services based on user requirements. They define some met-
rics to measure the SMI attributes in order to evaluate the QoS. They provide
the way to calculate the metrics for the measurable attributes like the service
response time, the sustainability, the suitability, the reliability, the stability and
the availability. Moreover, they propose an Analytical Hierachical Process (AHP)
based technique to evaluate and rank the cloud services and take into account
the user requirements in the SLAs. Their work shows that the attributes defined
by CSMIC are useful to compare the Quality of Service provided by the cloud
providers. However, their framework proposes to evaluate only the quality quan-
tifiable attributes and does not take into account non-quantifiable indicators.

The authors of [8] propose an architecture and the solutions for resource
provisioning oriented-SLA. They show that the resource provisioning can be done
in Cloud based on the SLA. They propose to use the SLA to define the quality
levels required by the users from the provider. Then, the provider architecture
can serve the resources depending on these requirements.

Their evaluation shows that the QoS requirements are met by allocating dy-
namically the resources and the provisioning is done by optimizing the costs and
respecting the QoS level defined in the SLA. However, their works do not ensure
the QoS requirements following the attributes defined by the CSMIC in order
to minimize the SLAs violation by providing a good level of quality.

The works of Tran et al [9] define the core QoS properties for ranking web
services. The attributes that they have defined can be useful to provide quality
in Cloud. But, the authors do not evaluate this possibility. Their approach of
ranking the web services can be used to classify the service on the Cloud, by
adding the specificities of cloud environment.

5 Our Architecture

To provide quality, cloud architecture needs to be designed with a set of re-
quirements which guaranty to this architecture to deliver the service with high
level of quality with respect to the Service Measurement Index (SMI) defined by
CSMIC in the three categories: Agility, Assurance and Performance.

Our architecture is organized in unit in such a way as to provide efficient
resource allocation in Cloud. This architecture is full-oriented availability of
resources by providing multiple scenarios of resource allocation in order to fulfill
the SLA agreed with the users and the customers.

Our architecture, depicted in figure 2, is composed by five main units which
are the following:

Quality Architecture for Resource Allocation in Cloud Computing 159

Fig. 2. Resource allocation architecture for quality in Cloud Computing

• Service Unit (SU),
• Monitoring Unit (MU),
• Allocation Unit (AU),
• Decision Unit (DU),
• Users Unit (UU).

1. The Service Unit (SU) presents the cloud services offered by the cloud
provider to the users and customers. These services are organized follow-
ing the cloud three main layers of cloud: SaaS, PaaS and IaaS. This unit
manages the virtual resources available to serve each cloud service stack. A
resource can be a software like Customer Relationship Management (CRM),
a platform such as Google App Engine (GAE) or an infrastructure to deploy
and run the virtual resources (Virtual machines and storage). The Service
Unit communicates with the Monitoring Unit and the Users Unit by provid-
ing the information about the services and their owners.

2. The Monitoring Unit (MU) monitors the cloud service and the resources. It
collects information about the services and the resources. It is related to the
allocation unit to handle the resource allocation in time to the service. This

160 K.A.R. Sagbo and P. Houngue

unit has two modules: Qualitative Measurement Module (QMM) and SLAs
Module (SM).

• The Qualitative Measurement Module (QMM) is the module which man-
ages all metrics to deliver quality in our architecture. These metrics are
defined in this module and calculated based on the monitoring informa-
tion. Since the definition of these metrics can differ from one provider
to another, this module takes into account the SLAs specification. This
means that these metrics are defined based on the information available
in the SLAs provided by the cloud provider.
The metrics calculated here are related to the quality metrics defined
in the three SMI categories mentioned above: Agility, Assurance and
Performance.

• The SLAs Module (SM) stores the information about the SLAs and
provides these inputs to the QMM to evaluate the metrics. This module
is linked with the Users Unit to keep information about each user and
the agreement, it has with the provider.

3. The Allocation Unit (AU) is the core of our architecture since all the services
in Cloud Computing turn around the resources availability. The service is
delivered with high quality to the users, when there are efficient algorithms
to handle the resource allocation.
This unit manages the resource allocation based on the information sent by
the MU by offering three possible resource allocation strategies organized in
three modules: Migration Module (MM), Reactive Module (RM) and Pre-
diction Module (PM).
Each module can interact with the others one. The migration can be done
following the information provided by the reactive module or the prediction
module.

• The Migration Module (MM) provides well-known algorithms to deliver
as a service, the migration of resources from one physical server to an-
other. The migration of resources can be used as allocation of resources
technique for the service which does not require high availability (less
than 90%) or for server consolidation to prevent future demand of ser-
vice.

• The Reactive Module (RM) provides an interface to deliver dynamic
resource allocation to the services based on the information sent by the
Migration Unit. This module provides some tested algorithms for auto-
scaling. The allocation of resources is performed based on the current
value of CPU, memory, storage or others load indicators when they reach
the predefined threshold. The RM provides common existing strategies
for resource allocation in current cloud solutions like RightScale [7] auto-
scaling Algorithm.

• The Prediction Module (PM) delivers resource allocation service using
the algorithms based on prediction model. Using the current load infor-
mation provided by the MU especially the QMM, this module predicts
the future load and scales. The prediction algorithms are defined using

Quality Architecture for Resource Allocation in Cloud Computing 161

the common prediction model such as linear regression model, autore-
gressive of order 1 model and neural network model [5][6].

This module is the most used, since it provides more efficient resource
allocation following the results presented by [5][6], and also because in
our resource allocation architecture, the main goal is to provide high
Quality of Service and the predictive approaches handle better the re-
source allocation.

The SLAs information are also taken into account in the allocation
of resources.

4. The Decision Unit (DU) is the execution unit of the strategy chosen by the
AU. This unit has three algorithms modules for each allocation category:
Migration Algorithms Module (MAM), Reactive Algorithms Module (RAM)
and Prediction Algorithms Module (PAM).
This unit is designed to use the benefits of modularity, then, the resource
allocation algorithms can be defined and tested on this architecture in each
module easily without impacting the whole architecture.

• The Migration Algorithms Module (MAM) runs the migration algo-
rithms.

• The Reactive Algorithms Module (RAM) runs the reactive algorithms.
• The Prediction Algorithms Module (PAM) runs the algorithms written
following the prediction approach.

5. The Users Unit (UU) manages the users and the customers of cloud services.
Each user is in relation with its SLA and services on the Cloud. This unit is
then linked to the Service Unit and the Monitoring Unit.

Our architecture takes into account the SLA and users needs in order to perform
the resource allocation based on the SLA. This architecture provides quality for
the end users, since, it defines the quality metrics identified by us based on the
work of CSMIC [2]. Our resource allocation architecture optimizes the quality in
Cloud Computing by increasing availability, ensuring scalability and optimizing
the response time and others important performance indicators.

In the next section, we provide the first results obtained from the evaluation
of our architecture.

6 Performance Evaluation of Our Architecture

To evaluate the performance of our architecture, we have performed a simulation
in order to test some behaviours we want to measure. The simulation helps to
make repetitive operations and to compare the results. Then, we use CloudSim
[10] to evaluate the performance of resource management policies proposed by
[11] without energy consideration.

CloudSim is a toolkit to model and simulate Cloud resources and application
scheduling. It allows the modeling of virtualized environments, supporting on-
demand resource provisioning and their management.

162 K.A.R. Sagbo and P. Houngue

Our resource allocation strategies are inspired by the work of [11]. However,
we consider in addition, the cost evaluation of the resource allocation and the
impact of migrations process on the SLAs.

A cost is associated to each VM migration. When a migration is completed,
there is also a cost for the provider. The customers pay only the VM allocated
over the simulation time. Then, we evaluated the profit for the provider as the
difference between the total cost of VM allocated and the cost associated to VM
migration. The provider uses VMs migration to avoid the saturation on the VMs
hosts and then, ensures the infrastructure stability in order to minimize SLAs
violation.

This modeling is ongoing and will be available in our future works.

6.1 Testbed

The tests with CloudSim are conducted on one virtual machine running Ubuntu
11.10 64bits, with processor Intel Xeon 4 cores x 2.6 GHz, 50 GB of storage and
8 GB of RAM, hosted by a physical machine Dell PowerEdge 6850 equipped
with 4 Intel Xeon Quad core x 2.6 GHz, 16 Gb of RAM and 6 x 146 GB Serial
Attached SCSI of storage.

In CloudSim, we have set up the following characteristics:

• A datacenter has 600 homogeneous physical hosts with the following char-
acteristics for each host: Processor Intel Xeon, 2 cores x 2.6 GHz and 4GB
of RAM.

• The VMs characteristics are similar to the instance types proposed by the
Cloud provider Amazon [12].

• As workload, we use a real system workload trace. These data are provided
by CoMon [13] which is a monitoring infrastructure for PlanetLab [14]. The
monitoring statistics we used, are about the CPU utilization of more than
thousand VMs from servers hosted around the world in more than 500 places.
The data collected by CoMon are related to the number of virtual machines
that are connected each day.
In order to perform our simulation, we use the data collected on 22 March
2011 which are available in CloudSim. These data are related to the CPU
utilization of 1516 VMs connected that day and the total average of the CPU
utilization is less than 10% for 24 hours measurements. The control time is
5 minutes and we have 288 measurements for each VM for one day. We take
also the measures for the control time of 15 minutes and 30 minutes.

• As performance metric, the threshold value of the CPU utilization is specified
in the SLA and the threshold set up for this simulation varies from 0.6
to 1.0.

• Two techniques are used for the selection of the migrating VM: the Random
Selection (RS) and the Minimum Migration Time (MMT) policies proposed
by Anton et al in [11]. The MMT policy migrates a VM that requires the
minimum time to complete a migration with respect to the other VMs al-
located to the same host. The migration time is estimated as the amount

Quality Architecture for Resource Allocation in Cloud Computing 163

of RAM utilized by the VM divided by the spare network bandwidth avail-
able for the host. The Random Selection policy selects a VM to be migrated
according to a uniformly distributed discrete random variable.

• The simulation is done also by allowing the migration of VMs and without
VMs migration, to see how our architecture can deliver Quality of Service
using the appropriate allocation algorithms and migration policies. The VMs
migration process does not migrate the storage since, in this case, the storage
solution offered by the provider is the network storage (SAN).

• Each migration’ cost is arbitrarly fixed at $0.01. The VM allocation’ cost
is fixed $10 per hour by following the example of Amazon EC2’ offers for a
dedicated instance with a small configuration.

The Table 1 below, summarizes our Testbed characteristics.

Table 1. Summary of Testbed characteristics

Simulator CloudSim

Number of Hosts 600

Host features Intel Xeon - 2 cores x 2.6GHz - 4GB of RAM

VMs features Amazon EC2 Instance types[12]

Number of VMs 1516

Workload Data CPU utilization From PlanetLab for one Day

Control Time Each 5mn - 15mn - 30mn

SLA on CPU utilization Threshold value from 0.6 to 1.0

VMs selection techniques Random and Minimum Migration Time policies

Allocation techniques Without Migration and with migration

VMs Migration cost for the provider $0.01

VMs allocation cost for one hour $10

6.2 First Results

We make the measurements for 36 configurations which are summarized in
Table 2. We consider the case with migration and without migration for the
threshold value of CPU utilization going from 0.6 to 1.0 increasing by 0.2. Then,
each line of this table corresponds to 6 simulations. The time control of 5, 15
and 30 minutes are considered.
For each simulation, we measure:

• The number of VMs deallocated before the end of the simulation and we
deduct the number of VMs which are running until the end of the simulation.

• The cost of the VMs deallocated before the end.
• The cost of VMs which are running until the end of the simulation.
• The number of Migration.
• The cost of Migration.
• The profit of provider.
• The SLA violation due to migration.

164 K.A.R. Sagbo and P. Houngue

Table 2. Simulations configurations

Time With Migration Without Migration
Threshold Policy Threshold Policy

5mn 0.6 - 0.8 - 1.0 Random 0.6 - 0.8 - 1.0 Random

5mn 0.6 - 0.8 - 1.0 MMT 0.6 - 0.8 - 1.0 MMT

15mn 0.6 - 0.8 - 1.0 Random 0.6 - 0.8 - 1.0 Random

15mn 0.6 - 0.8 - 1.0 MMT 0.6 - 0.8 - 1.0 MMT

30mn 0.6 - 0.8 - 1.0 Random 0.6 - 0.8 - 1.0 Random

30mn 0.6 - 0.8 - 1.0 MMT 0.6 - 0.8 - 1.0 MMT

The results of the simulations are shown on the pictures below.
Figures 3 (a) and 3 (b) show that the number of migration is proportional to

the threshold value of CPU utilization. When, the CPU utilization threshold is
increased, the number of migration decreases. These figures show also that the
number of migration is less important when the VM is chosen randomly than
when the Minimum Migration Time policy is used. Figure 3 (b) demonstrates
that when the control time is increased, the number of migration decreases. This
happens because the decision to migrate is taken with delay, but the positive
result is that the SLAs are taken into account.

(a)
(b)

Fig. 3. Number of Migration evolution over the control time and the CPU utilization
threshold for RS and MMT policies

Figure 4 illustrates the fact that the violation of SLA decreases when the
control time increases. The same effects are observed when the VMs migration
feature is disabled. In this case, the violation is too important. Our proposal of
using resources migration as allocation technique is then justified. The percent-
age of SLA violation decreases because the migration is done in order to fulfill
the agreement with the customers about the CPU utilization threshold.

Figure 5 confirms these observations and we can notice that when the control
time increases, there are less violations and when the CPU utilization increases,
the violations grow because there are less migrations.

Quality Architecture for Resource Allocation in Cloud Computing 165

Fig. 4. Percentage of the SLA violation over the control time for RS and MMT policies
with and without migration

Fig. 5. Percentage of the SLA violation over the CPU utilization threshold for RS and
MMT policies with and without migration

The percentage of SLA violation is multiplied by around 10 in each scenario,
when the VMs migration is not allowed. This is a positive point for what we
are expecting from our architecture. There are a little more violations with RS
policy than MMT policy.

Figure 6 illustrates the provider profit. We can notice that this profit increases
with the control time, because the decision to deallocate the VMs is taken later
and the VMs in some case run one hour more. The number of migrations also
decreases with the increase of the control time and the cost associated to the
VMs migration has less impact on the profit.

The Random Selection policy increases the profit more than the Minimum
Migration Time policy.

166 K.A.R. Sagbo and P. Houngue

These figures also show that without migration, the profit is a little bit higher
than the case with migration, but actually, we have to associate a cost to each
SLA violation and since the SLA violations are ten times more important than
the case with migration, the profit will be reduced considerably. Then, we can
still claim that the strategies allowing the use of migration and efficient resource
allocation are the best.

Fig. 6. Provider profit over the control time for RS and MMT policies with and without
migration

6.3 Analysis

The results of our simulation show that the resource allocation needs to be done
using appropriate and tested algorithms and policies. The provider profit can be
important, but the services need to be delivered with high Quality of Service.
We need to study which cost’ function we can associate to the SLA violation to
give a penalty to the provider when the SLA is violated. A tradeoff needs to be
found between the profit for the provider and the performance for the customers.
By maximizing the profit, the provider has to minimize the SLA violation. For
instance, when the control time is increased, the provider has more profit, but
this affects the performance of the service delivered.

Moreover, the results show that when the Cloud architecture has various and
tested algorithms and policies for resource allocation, the services are delivered
with high quality.

7 Conclusion

This work defines the requirements for Cloud architecture to ensure Quality of
Service following the metrics defined by CSMIC. We propose an architecture
for resource allocation oriented Quality of Service and SLAs fulfilment. The

Quality Architecture for Resource Allocation in Cloud Computing 167

architecture advocates to measure the quantifiable and non-quantifiable metrics
and to make the resource allocation based on them and the SLAs pre-established
with the customers.

This work shows that by allocating the resources using different allocation
techniques, from reactive to predictive, and efficient algorithms and policies for
the VMs migration, this architecture can deliver the service to the customers
following the SLA and with high quality.

The preliminary experimental results show that, our architecture can improve
the Quality of Service when the quality metrics are measured and the allocation
of resources are done following these metrics. Moreover, when the resources are
allocated following the SLA, the provider’s profit is more important.

In the future works, we will evaluate how the security metrics can impact the
quality. The next challenge is to define how these qualitative and quantitative
metrics can be evaluated and perform our tests in a real world Cloud platform.
Finally, we have to model the optimization problem, which will contribute to
maximize the provider profit and minimize the SLA violations.

References

1. National Institute of Standards and Technology (NIST),
http://www.nist.gov/itl/cloud/index.cfm

2. Cloud Service Measurement Initiative Consortium (CSMIC), Service Measurement
Index, http://www.cloudcommons.com/

3. Velte, A.T., Velte, T.J., Elsenpeter, R.: Cloud Computing: A Practical Approach.
McGraw-Hill (October 2009)

4. Garg, S.K., Versteeg, S., Buyya, R.: SMICloud: A Framework for Comparing and
Ranking Cloud Services. In: 4th IEEE International Conference on Utility and
Cloud Computing, pp. 210–218 (2011)

5. Chandra, A., Gong, W., Shenoy, P.: Dynamic resource allocation for shared data
centers using online measurements. In: SIGMETRICS 2003: Proceedings of the
2003 ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems (2003)

6. Caron, E., Desprez, F., Muresan, A.: Pattern Matching Based Forecast of Non-
periodic Repetitive Behavior for Cloud Clients. J. Grid Computing, 49–64 (2011)

7. Rightscale inc., http://support.rightscale.com/
8. Buyya, R., Garg, S.K., Calheiros, R.N.: SLA-Oriented Resource Provisioning for

Cloud Computing: Challenges, Architecture, and Solutions. In: Proceedings of the
2011 IEEE International Conference on Cloud and Service Computing (CSC 2011).
IEEE Press, USA (2011)

9. Tran, V., Tsuji, H., Masuda, R.: A new qos ontology and its qos-based rank-
ing algorithm for web services. Simulation Modelling Practice and Theory 17(8),
1378–1398 (2009)

10. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environ-
ments and Evaluation of Resource Provisioning Algorithms. Software: Practice and
Experience 41(1), 23–50 (2011) ISSN: 0038-0644

http://www.nist.gov/itl/cloud/index.cfm
http://www.cloudcommons.com/
 http://support.rightscale.com/

168 K.A.R. Sagbo and P. Houngue

11. Beloglazov, A., Buyya, R.: Optimal Online Deterministic Algorithms and Adaptive
Heuristics for Energy and Performance Efficient Dynamic Consolidation of Virtual
Machines in Cloud Data Centers. Concurrency and Computation: Practice and
Experience (2011), doi:10.1002/cpe.1867, ISSN: 1532-0626

12. Amazon EC2 Instance, http://aws.amazon.com/ec2/instance-types
13. Park, K., Pai, V.S.: CoMon: A mostly-scalable monitoring system for PlanetLab.

ACM SIGOPS Operating Systems Review 40(1), 65–74 (2006)
14. PlanetLab, An open platform for developing, deploying and accessing planetary-

scale services, http://planet-lab.org

http://aws.amazon.com/ec2/instance-types
http://planet-lab.org

Analysis of Revenue Improvements

with Runtime Adaptation of Service Composition
Based on Conditional Request Retries

Miroslav Živković1 and Hans van den Berg1,2

1 TNO, Brassersplein 2,
2612 CT Delft, The Netherlands
miroslav.zivkovic@tno.nl

2 University of Twente, PO Box 217,
7500 AE Enschede, The Netherlands

Abstract. In this paper we consider the runtime service adaptation
mechanism for service compositions that is based on conditional retries.
A single retry may be issued while a concrete service within composition
is executed. This retry could either invoke the same concrete service or
a functionally equivalent service implementing the same task. We deter-
mine the optimal moments to terminate the current request and replicate
it. The calculation of these moments for each task within the workflow
is based on different QoS parameters from Service Level Agreements,
like services’ response–time distributions and cost–relating parameters.
The calculations are performed taking into account the remaining ac-
tual time–to–deadline, and the benefit of conditional retry mechanism
is illustrated by simulations. We further discuss the impact of costs and
response–time distributions’ parameters to the solution at hand.

Keywords: Service Oriented Architecture, Optimal Retry Policies,
Watchdog Timer, Hazard Rate.

1 Introduction

Composite web services in a service oriented architecture (SOA) aggregate web
services that may be deployed and executed within different administrative do-
mains. In the orchestrated scenario composite web service provider acts as an
orchestrator that invokes the aggregated services according to a pre–defined
workflow. The workflow is based on an unambiguous functionality description
of a service (“abstract service”), and several alternatives (“concrete services”)
may exist that match such a description [1]. With respect to functionality, all
concrete services that match the same abstract service are identical.

For commercial success of the composite web service, it is important that the
service provider is able to offer the service at attractive price-quality ratios. To
this end, the composite service provider (CSP) negotiates Service Level Agree-
ments (SLAs) with the client and third party domains. A service level agreement

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 169–183, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

170 M. Živković and H. van den Berg

(SLA) is a legal contract that specifies the minimum expectations and obliga-
tions that exist between a service provider and a service consumer [2]. Due to
the high variability of the service environment, the SLA violations could occur
relatively often, leading to providers’ losses and customer dissatisfaction.

One of the possible approaches to mitigate the problem of SLA violations
is to optimize the running composition instances by adaptation of the compo-
sition itself at runtime. In general, the adaptations could be done by means
of service rebinding/substitution, or via structural adaptation of the composi-
tion [3], [11]. When adaptation is done by service substitution, a service within
the composition is exchanged by another one, where, in ideal case both services
are functionally equivalent. On the other hand, an interesting possibility that
may be applicable in order to satisfy the agreed SLA is to trigger the retry ac-
tion hoping that the fault was transient [4]. The two basic issues that need to
be addressed for any of the mentioned approaches are (1) when to perform the
adaptation, and (2) how much does it cost (time, money, etc.)?

We analyse the runtime adaptation of the orchestrated service composition
that is based on conditional retry mechanisms. For each task within the service
workflow a concrete service has been selected based on some end–to–end opti-
mality criteria, i.e. the service composition has been determined. Services that
are not selected are “placed” in the pool of the functionally equivalent services.
The concrete services’ SLAs contain response–time probability density function,
as well as the invocation costs, while the end–to–end SLA contains end–to–end
deadline that CSP promises to its clients, as well as reward/penalty (for CSP)
when the promised hard deadline is met/missed. We illustrate our scheme in
Figure 1. When task i is executed by the concrete service that implements it
(CSi(1)), the orchestrator starts the “watchdog timer” with the timeout count
value that is set to θi for the execution of the selected service. When the counter
expires and there is no response generated from the invoked service, the orches-
trator terminates the original request, and initiates a new service invocation for
the same task (i.e. makes a retry). The new invocation could be submitted, e.g.
to the same concrete service as illustrated in Figure 1 for task 2, when time-
out counter value θ2 becomes zero. This may be the case when there is a single
implementation of a given workflow task. In case there is more than one imple-
mentation of a given task i, the new invocation (retry) could be submitted to
another concrete service (e.g. CSi(2)). In the latter case dynamic binding may
be required, and once the response from alternative is generated, the execution
proceeds with the execution of the next service from the initial composition.
When the response from the concrete service is generated before the timeout ex-
pires, the orchestrator executes the next task within the workflow. The counter
of the timer is set to the new value, e.g. θi+1, and so on, till all tasks within
the workflow have been executed. Based on the fact whether the end–to–end
deadline is then met or not, the CSP is rewarded or penalised.

In this paper we analyse the proposed conditional request retry mechanism
when a single retry is made. This single retry for the executed service is made
when, based on service’s response–time distribution, it becomes “clear” that

Revenue Improvements with Runtime Adaptation 171

Fig. 1. Runtime service adaptation with conditional retries

the guarantees presented within SLA are jeopardized. In general case, the much
faster and more expensive alternative is then executed, which makes it possible
for CSP to claim the reward from it’s clients. We analyse how the (optimal)
values of timeout counter values θi could be determined, i.e. the procedure to
calculate the time instances when retry should be attempted. We illustrate the
impact of response–time distributions and invocation costs specified by services’
SLAs to the solution at hand. We indicate which distributions may be considered
when retry mechanism is to be applied, and the potential revenue improvements
of our scheme. For a given example we determine the optimal position of the
retry, i.e. we give an answer to the question whether it would be better to perform
the retry the sooner or later during the workflow execution.

The paper is organized as follows: in the next Section we give details of the
related work. In Section 3 we describe the system model and the assumptions
taken. In Section 4 we explain how to determine the optimal timer values. Based
on this analysis, we describe the simulation results for a couple of scenarios in
Section 5 and conclude the paper with possible directions for the future work in
Section 6.

2 Related Work

QoS–aware service composition within SOA is usually static process, i.e. it deals
with determining the “best” available service for the abstract composition during
the deployment, e.g. by maximizing some utility function [14] or by combining
the local selection and global optimization [15]. The methods an approaches deal
with the optimization in a static manner, i.e. the optimal compostion does not
change at runtime. More recent work in this area focuses on dynamic, runtime
composition solutions and adaptations [9, 10, 12]. For each task invocation, the
orchestrator dynamically binds the task of the abstract composition to an ac-
tual implementation (i.e., concrete service), selecting it from the pool of service

172 M. Živković and H. van den Berg

providers that offer it. Due to the dynamic service composition it may happen
that every composite service request is served by different composition. The ser-
vice selection is driven by the solution of a suitable optimization problem, which
is reduced to the linear optimization problem [9], or the optimization is based
on evolutionary computation [10] or is based on the principles of dynamic pro-
gramming [12]. However, none of [9,10,12] consider the possible applicability of
retry mechanisms, i.e. the possibility of service adaptation while actual task is
executed.

The retry mechanisms as self–healing solution for temporarily unavailable ser-
vices, have been identified and classified, among others, in [3,4]. The performance
of the retry mechanisms has been analysed in detail by van Moorsel, Wolter, et.
al. in [5–7]. Their work has focused on optimal retry mechanisms for a single
service in order to minimize the completion time. The number of retries could
either be finite or infinite, and the completion time when restarting must be less
than without restarting. Okamura et. al. in [8] analyse the optimal restart poli-
cies when deadline is given. First, they prove that, time–fixed restart time is the
best policy even in non–stationary control setting under the assumption of un-
bounded restart opportunities. They also analyse the problem of optimal restart
when a deadline is given and develop on–line adaptive algorithms for estimat-
ing the optimal restart time interval via reinforcement learning. The solutions
mentioned focus on minimization of completion time. None of these solutions
analyse the problem using the penalty or reward of any kind. The cost of the
retries are defined as additional time to re–issue the service request. Besides, the
retry mechanism is analysed from the single service point of view.

On the other hand, Yousefi et. al. in [13] describe a strategy for QoS aware
service selection which takes advantage of the existing variability in QoS data
to provide higher quality services with less cost compared to the conventional
QoS aware service selection methods. In their method, each request is replicated
over multiple independent services to achieve the required QoS. This strategy is
clearly sub–optimal as it implies un–necessary request replications (and there-
fore higher costs) for all those requests that meet the required QoS without
request replication. Our approach optimizes request replication from the point
of increasing the profit of composite service provider. Therefore, we aim to issue
request replication only when it is really meaningful.

3 Considered System Model

In this section we describe the model of the system that we will use for further
analysis. We furhtermore adopt some assumptions for the considered system for
the model illustrated in Figure 1.

The assumptions and the main features of our model are:

– We observe the sequential workflow that consists of N tasks to be executed
by the orchestrator. How to aggregate some of frequently used workflow
patterns and transform the workflow into the sequential one is illustrated,
e.g. in [12].

Revenue Improvements with Runtime Adaptation 173

– The selection of candiate services for each task i, i = 1, . . .N has been
performed, and there are at most Mi = 2 alternative (concrete) services
to be considered, denoted by CSi(j), j = 1, 2. We call the initial service
composition the static service composition (SSC).

– We adopt the convention that CSi(1) is the service selected for static service
composition.

– A watchdog timer with timeout value θi is associated to workflow task i.
Once the timeout expires, and there is no response from the selected service,
a retry attempt is made.

– There is only one retry attempt. When request replication is made, the timer
is not used till response is obtained.

– When the response is obtained by the orchestrator before θi expires, the next
task (i+ 1) in the workflow is executed, by service CSi+1(1)

– In case timer θi expires without response generated, the orchestrator invokes
the functionally equivalent alternative service CSi(2) (conditional request
replication). In case there is only one service implementing the particular
task, the orchestrator attempts a single retry using the same concrete service
(i.e. CSi(1)).

In model illustrated at Figure 1 we see the second task is implemented by only
one service, and therefore the retry takes place by this service. It is naturally
possible this service is temporarily unavailable, or unavailable for a longer period
of time. In the latter case multiple retries or some other mechanisms may be
applicable, but we do not consider such problem in this paper.

Each concrete service CSi(j), i = 1, . . . , N, j = 1, 2 has a response time
represented by the random variable Di,j ≥ 0. We model the response-time of
each concrete service as a black box, which means that Di,j is a random variable
for which respective cummulative distribution function (CDF), or equivalent
probability density function (PDF) is given. The CDFs and PDFs for concrete
services are denoted by Fi,j and fi,j , respectively. For each concrete service
CSi(j), i = 1, . . . , N, j = 1, . . . ,Mi, there is an SLA agreed between the indi-
vidual service provider (ISP) of that service and the composite service provider
(CSP). This SLA contains the following elements:

– The response–time cummulative distribution function, Fi,j .
– The execution cost ci,j [money unit] per single invocation. From the ISP

viewpoint, this value represents reward.

The composite service provider agrees the following SLA with its clients:

– The end-to-end response time penalty threshold δp [time unit].
– The fraction of response time realisations pe2e that should be within the

deadline δp.
– The reward R [money unit] that the CSP gets for executing a single request

within penalty deadline δp.
– The penalty V [money unit] that the CSP pays to the end customer when

the agreed end-to-end deadline is not met.

174 M. Živković and H. van den Berg

We therefore adopt a constant penalty function for the composite provider, i.e. a
constant payment needs to be made if a given end–to–end response time thresh-
old value is surpassed.

We assume that response times of concrete services are mutually indepen-
dent, as the services are usually deployed by different service providers. Under
this assumption of independence, the end–to–end response time distribution can
be determined by taking the convolution of the respective concrete service dis-
tributions. Besides, the end–to–end response time distribution of the composite
service is therefore calculated as

Fe2e = F1,1 � F2,1 � · · · � FN,1,

where � operator represents convolution. For examples how to calculate the end–
to–end response time distribution of some other frequently used workflow design
patterns, see [12].

In case of SSC, the execution costs for the composite service provider are
defined as

Ce2e = c1,1 + c2,1 + · · ·+ cN,1,

where ci,1, i = 1, . . . , N is the execution cost per individual composite service
CSi(1), i = 1, . . . , N . We take here that CSi(1) is the service selected during
service composition, as already explained.

In case that there is no conditional request replication, the party that owns
the orchestrator, i.e. composite service provider has to perform the simple cost
analysis for the given end–to–end deadline δp, parameters R, V and Ce2e. Rep-
resenting the end–to–end reponse time by random variable De2e, whose response
time distribution is Fe2e, the probability for a successful response within δp is
defined by pe2e = P{De2e ≤ δp} = Fe2e(δp). The expected revenue per request
for composite service provider in case of SSC could therefore be calculated as

E[Re2e] = −Ce2e + pe2e · R− (1− pe2e) · V =

= −Ce2e − V + pe2e · (R + V).

Our goal is to apply the runtime adaptation, i.e. dynamic service composition
(DSC) by means of conditional request replication in order to increase the rev-
enue of the composite service provider, CSP. In order to do that, we need to
identify the optimal values θ∗i , i = 1, . . . , N of the timer(s) associated with the
execution workflow. The optimality is represented as the profit merit for the
composite service provider (CSP).

4 Analysis of the Retry Mechanism

Based on the model description given in Section 3, in this section we will perform
analysis of our solution, i.e. the conditional request replication mechanism. We
will first illustrate for which response–time distributions the considered mecha-
nism could be considered. Then we perform the analysis of the request replication
for the last task in the workflow, and subsequently, we analyse the request repli-
cation for other tasks in the workflow. We define the formulae that could be used
to find the optimal timeout values.

Revenue Improvements with Runtime Adaptation 175

4.1 Response–Time Distribution

As illustrated in [5–7] when θi is restart time, and random variables D and Dθ

represent response times without and with retries, the retries could be considered
only when expected response time with retry E[Dθ] is smaller than response time
without retries E[D], which is defined as

E[D] < E[D − θ|D > θ].

Based on this condition, it may be concluded that services with heavy–tailed
response–time distributions could be considered for retries. The reason for this is
that heavy–tailed distributions have considerable probability mass for relatively
high values of response–times. The good indicator of the distributions’ suitability
for retries is hazard rate. If T is an absolutely continuous non-negative random
variable (r.v.), its hazard rate function h(t), t ≥ 0, is defined by

h(t) =
f(t)

1− F (t)
=

f(t)

F̄ (t)
,

where f(t) is probability density function (PDF) of r.v. T , F (t) is cummulative
distribution function (CDF) of T , and F̄ (t) is the so called survival function of
r.v. T . For a single service, and no costs involved, under assumptions that

– the restart of a task terminates the previous attempt
– the successive trials are independent

hazard rate is indicative whether retry may be benefitial. The retries are bene-
fitial for services with decreasing hazard rate; it does no harm to retry services
with constant hazard rate, and retries should not be done for services with in-
creasing hazard rate.

Therefore, the recommendations for the services with respect to response–time
distributions are:

– Services with heavy–tailed response–time distributions could be used for
request replication.

– When task is implemented by a single service that has no decreasing hazard
rate, whether the request replication is benefitial should be determined tak-
ing into account the costs of execution and expected reward/penalty in such
a case.

Another property that we consider for response–time distributions is so called,
bimodal, or, in general case, multi–modal distribution. A bimodal distribution
is a continuous probability distribution with two different modes, [16]. These
appear as distinct peaks (local maxima) in the probability density function,
as shown in Figure 2. It appears that number of services deployed today may
have multi–modal or bimodal reponse–time distribution, see [17]. The example
distribution at given figure indicates that majority of responses are generated
within δ = 14 seconds, and the probability this happens is 80%.When choice is to

176 M. Živković and H. van den Berg

Fig. 2. A typical bimodal response–time distribution, with 80% of the values smaller
than 14 seconds

be made between cheap alternative that has bimodal response–time distribution
and very expensive service which indicates that response is generated within 5
seconds with, e.g. 95% probability at much higher execution cost, it seems to us
reasonable to adopt the following strategy:

1. Use cheaper bimodal (or heavy–tailed) service as the first choice during
service composition

2. Set the timeout value to the value that is related to the first maximum (i.e.
slightly higher)

3. When the timeout value expires, terminate the current request, and then
execute the very expensive alternative.

In case when there is a single implementation of the workflow task, the strategy
may be:

1. Calculate the hazard rate of the response–time distribution
2. In case when response–time distribution is with decreasing hazard rate, calu-

late optimal moments for retries, and set the timeout value to one of the
calculated thresholds.

3. In case when response–time distribution is with non–decreasing hazard rate,
do not perform the retry mechanism.

In what follows, we will consider the case of expensive services with response–
time modelled as lognormal distribution. The support of this distribution are
non–negative real values, which overcomes well with the fact that the response–
time cannot be negative. Also, the choice of parameters μ and σ of this distri-
bution allow to easily model different response–time distributions.

Revenue Improvements with Runtime Adaptation 177

The PDF f(t) of the lognormal distribution is defined as

f(t) =
1

t
√
2πσ2

· e− ln t−μ

2σ2 , t ≥ 0.

where μ and σ are so called location parameter and the scale parameter, respec-
tively.

4.2 The Last Task Analysis

Let us suppose that for the example sequential workflow with N tasks, the first
N − 1 tasks have been executed with the elapsed time τ , which means the time–
to–deadline for the last task is dn = δp − τ . In order to simplify the notation,
let us write cN,i = ci, fN,i = fi, FN,i = Fi, i = 1, 2. Further, let us denote the
execution costs of the tasks already executed by CE (see Figure 3). The expected
reward E1 in case that there is no replication mechanism (SSC) is

E1 = −c1 +R · F1(dn)− V · (1− F1(dn))− CE

= −CE − c1 − V + (R + V) · F1(dn).

The expected reward consists of costs incurred for the tasks executed (CE), the
cost of the last task execution (c1), the reward R that is obtained when the task
is executed within given deadline dn with probability Fn, and the penalty V that
is paid when deadline dn is not met, with probability 1 − Fn. Naturally, when
dn <= 0 we have that Fn = 0 – in other words, there is “no chance” the deadline
would be met. When our approach is applied the expected reward denoted by
E1→2 is

E1→2 = −c1 +R·F1(θn)− CE + (1 − F1(θn))·
·{−c2 +R·F2(dn − θn)− V · (1− F2(dn − θn))}.

In this case we see that the reward is obtained either when the first service
completes the execution before timeout value θn expires, which happens with
probability F1(θn). With probability 1 − F1(θn) we make a conditional retry.
When the retry is made, the deadline for the second service is dn − θn and this
deadline is met with probability F2(dn − θn), which means that, when timeout
expires after θn and retry is made, CSP obtains reward R with probability
(1 − F1(θn)) · F2(dn − θn). The similar reasoning could be made for the case
when penalty is to be paid by CSP.

In order for our method to be applicable, there exists at least one θ such that
E1(θ) ≤ E1→2(θ), 0 < θ < dn. The optimal value θn = θ∗n is the one for which
E1→2 reaches maximum at interval (0, dn). The value θ = θ∗n for which E1→2

reaches maximum is determined by solving

∂E1→2

∂θ
|θ=θ∗

n
= 0.

Elementary transformations give the following expression

178 M. Živković and H. van den Berg

Fig. 3. The execution of the last task with the conditional request replication. Remain-
ing time to deadline is dn, and the timout value of the timer is θn.

f1(θ
∗
n)

1− F1(θ∗n)
+

c2
R+ V

· f1(θ
∗
n)

1− F1(θ∗n)
· 1

1− F2(dn − θ∗n)
=

=
f2(dn − θ∗n)

1− F2(dn − θ∗n)
.

which could also be represented as

f1(θ
∗
n)

1− F1(θ∗n)
·
{
1 +

c2
R+ V

· 1

1− F2(dn − θ∗n)

}
=

=
f2(dn − θ∗n)

1− F2(dn − θ∗n)
,

or, equivalently

h1(θ
∗
n) ·

{
1 +

c2
R + V

· 1

1− F2(dn − θ∗n)

}
= h2(dn − θ∗n),

where h1 and h2 are hazard–rate functions, represented by

h1(t) =
f1(t)

1− F1(t)

h2(t) =
f2(t)

1− F2(t)
.

We see that, other than results from [5–8] cost structure plays important role
in determining the optimal timout value θ∗n. Besides the optimal value does not
depend from the costs of the first attempt (c1 in above example). It is trivial to
determine the θ∗n when the same service (CSN (1)) is considered for the reattempt.

Revenue Improvements with Runtime Adaptation 179

4.3 Analysis of other Tasks in the Workflow

We turn our attention to other tasks in the workflow now. Due to the lack of
the space, we would consider the case when there is a single retry within the
workflow possible, and would like to determine whether it would be best to apply
the given retry scheme either for a) the first task in the workflow, b) the last
task N in the workflow or c) the task i in the workflow where i �= 1, i �= N .

In order to do the fair analysis, we would consider that all services CSi(1) have
the same execution cost c1. The response–time distributions of the first service
in case a), the last service in case b) and service i in case c) are identical and
represented by the same bimodal distribution. In all three cases the remaining
N − 1 response–time distributions are identical (not necessarily bimodal). We
want to determine the optimal position (from the revenue point of view) for the
alternative service that has execution cost c2 > c1, and which response–time
distribution is lognormal.

Let us analyse the case when retry is considered for the first task in the
workflow. Since all response time distributions are known, it is easy to calculate
the convolution distribution for the tasks 2 − N . This means that we have the
following cases:

– A: The response from the first service is generated before the retry time-
out value θ1, and end–to–end deadline δp is met. The execution costs are

−
N∑
i=1

ci,1 = −N · c1, and reward is R.

– B: The response from the first service is generated before the retry timeout
value θ1, and end–to–end deadline δp is not met. The execution costs are

−
N∑
i=1

ci,1 = −N · c1, and penalty V is incurred.

– C: The response from the first service is not generated before the retry
timeout value θ1, so alternative service is invoked. The end–to–end deadline

δp is met. The execution costs are −c2 −
N∑
i=1

ci,1 = −c2 −N · c1, and reward

is obtained.
– D: The response from the first service is not generated before the retry

timeout value θ1, , so alternative service is invoked. The end–to–end deadline

δp is not met. The execution costs are −c2 −
N∑
i=1

ci,1 = −c2 − N · c1, and
penalty V is paid.

Similar analysis could be performed when the retry is applied at the last workflow
task, or when retry is considered for workflow task i, i �= 1, i �= N . The
detailed analysis will be omitted here, but, it is no surprise that the biggest
benefit is when retry mechanism is applied for the last workflow task. This may
be explained by the following reasoning: when executing the first task, it is
possible to wait a little bit longer before the response is obtained, as the second
task, with smaller time–to–deadline is more critical. Therefore it is better to
replicate request for the latter task(s) then former. When request is replicated for

180 M. Živković and H. van den Berg

former task(s) the execution costs increase while the remaining time to deadline
decreases significantly. In other words, any longer response times for the first
task may be accounted with by the latter task(s). This holds in general for the
problem at hand, as any outliers for first task(s) in the workflow may be of
limited impact to the final outcome.

5 Experiments

Due to the limited space, we will show here just the very basic experimental
results. These apply to the last task in the workflow, and as explained in Sec-
tion 4 we consider cheap service with bimodal response–time distribution as the
one selected during the initial service composition. The alternative is expensive
service with statistically “superior” lognormal response–time distributions. The
bimodal distribution is illustrated in Figure 2 and the two modes have mean
values of 10 and 20, respectivelly. The mixture coefficient is 80%, which means
that 80% values of response time have the mean of 10, while the remaining 20%
values of response time belong to the mode with the mean value of 20. The mean
value of lognormal distribution has been set to 0.25, while the variance of this
distribution has been set to 4.

For the given deadline δp, and the last task in the workflow, the initial selection
is cheap service. When timeout θ expires, the retry is made and expensive service
is selected. We have varied the timeout value 0 ≤ θ ≤ δp and determined the
expected revenue for given θ. The overview of the simulation parameters and
their values used for the experiments are given in Table 1.

Table 1. Overview of model parameters

Parameter Definition Value

f1 Response–time distribution of CSi(1) Bimodal
f2 Response–time distribution of CSi(2) Lognormal
c1 Cost of invocation of CSi(1) 1
c2 Cost of invocation of CSi(2) 10
δp End–to–end deadline
R Reward per request within deadline δp 20
V Penalty per request not completed within deadline 50
E Expected revenue without request replication

E1→2 Expected revenue with request replication
G Gain of expected revenue
θi Timeout value for execution of the task

The relative gain of expected revenues is calculated as G = E1→2−E

E
. The value

of the deadline δp has decreased from 18 down to 3. The simulation results are
shown in the graphs presented in Figure 4 and these are also summarized in
Table 2. The following observations and conclusions could be made:

Revenue Improvements with Runtime Adaptation 181

Fig. 4. Overview of the revenue gains for conditional request replication. In clock-
wise direction, starting from the top left corner, the deadline δp is 18, 15, 9 and 12,
respectively.

– The scheme has its benefits for certain range of given deadlines, and when
applicable, a “window of opportunity” for a retry. This interval becomes
smaller as the remaining time to deadline becomes smaller.

– The gain increases as the remaining time to deadline increases. This is the
consequence of the fact that it is easier to meet the deadline with the retry
when there is more remaining time.

– The gains are possible with retry scheme even when the selected service is not
the optimal one. For example, the expected reward for more expensive service
(with lognormal response time distribution) is higher for all deadline values
≤ 20. Therefore, one may consider to select this expensive and fast service
in such a case. However, we see that, when deadline is, e.g. 18, it is better to
first select cheap and slow service, and, only when there is no response till
e.g. 13 seconds, make a retry. By applying this scheme, much more revenue
may be generated for the service provider. This is a consequence to the fact,
that a lot of requests would be served by slow service (for given example well
over 50%) and the execution costs differ 10 times.

– There is no gain of the proposed scheme when δp ≤ 9. In such a case the
initial service selection should be the fast (and expensive) service. This is
noticable from the graph given for δp - the expected reward for the whole
range of retry moments with initial choice of expensive service is bigger than
expected reward of retry scheme, which in turn is bigger than the expected
reward when initial choice is cheap (and slow) service.

182 M. Živković and H. van den Berg

Table 2. Summary of experimental results

Deadline (δp) Retry moment θ∗ Revenue: with retry without retry Revenue gain(%)

18 13.5 16.8 9.94 69.1
15 13.4 16.5 9.91 66.4
12 11.3 14.5 9.88 46.7

6 Summary and Future Work

In this paper we considered the runtime service adaptation mechanism for service
compositions that is based on conditional retries. A single retry to the same or
alternative service may be issued while task within composition is executed. We
have analysed the impact of different QoS parameters, namely response–time
distributions and cost parameters to the applicability of the scheme, and the
potential revenue gain for the composite service provider.

The analysis has been performed for a relatively simple sequential work-
flow, under assumption that response–time distributions are accurate and time–
invariant. In practise, however, these distributions change over time, e.g. due
temporary overload of the service, and need to be estimated. The estimation
is based on response–time measurements over a finite time interval, and there-
fore may change over time. This needs to be addressed by methods that would
recalculate the timeout values, with the main issue of optimal number of recal-
culations. Next to it, we plan to investigate applicability of the retry mechanism
for different workflow patterns and more complex workflows.

Yet another possibility to extend the research is to find the optimal retry
mechanisms when penalty function is linearly increasing, with or without the
cap. In such a case the minimization of the response time, even when penalty
deadline is missed may be the optimal retry scheme.

Acknowledgment. Part of this work has been carried out in the context of the
IOP GenCom project Service Optimization and Quality (SeQual), which is sup-
ported by the Dutch Ministry of Economic Affairs, Agriculture and Innovation
via its agency Agentschap NL.

References

1. Preist, C.: A Conceptual Architecture for Semantic Web Services. In: McIlraith,
S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298,
pp. 395–409. Springer, Heidelberg (2004)

2. Ward, C., Buco, M.J., Chang, R.N., Luan, L.Z.: A Generic SLA Semantic
Model for the Execution Management of E-business Outsourcing Contracts. In:
Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455,
pp. 363–376. Springer, Heidelberg (2002)

3. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A Framework
for Executing Adaptive Web-Service Processes. IEEE Software (24), 39–46 (2007)

Revenue Improvements with Runtime Adaptation 183

4. Baresi, L., Ghezzi, C., Guinea, S., Krämer, H.: Towards Self-healing Composition
of Services. In: Krämer, B.J., Halang, W.A. (eds.) Contributions to Ubiquitous
Computing. SCI, vol. 42, pp. 27–46. Springer, Heidelberg (2007)

5. van Moorsel, A., Wolter, K.: Analysis of Restart Mechanisms in Software Systems.
IEEE Trans. on Software Engineering (32), 547–558 (2006)

6. van Moorsel, A., Wolter, K.: Optimal restart times for moments of completion
time. IEEE Proc. of Software Engineering 151(5), 219–223 (2004)

7. Wolter, K.: Stochastic Models for Restart, Rejuvenation and Checkpointing. Ha-
bilitation thesis, Humboldt-University, Berlin, Germany (2008)

8. Okamura, H., Dohi, T., Trivedi, K.S.: On-Line Adaptive Algorithms in Autonomic
Restart Control. In: Xie, B., Branke, J., Sadjadi, S.M., Zhang, D., Zhou, X. (eds.)
ATC 2010. LNCS, vol. 6407, pp. 32–46. Springer, Heidelberg (2010)

9. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F.: Adaptive Management of
Composite Services under Percentile-Based Service Level Agreements. In: Maglio,
P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp.
381–395. Springer, Heidelberg (2010)

10. Leitner, P., Hummer, W., Dustdar, S.: Cost–Based Optimization of Service Com-
positions. Journal Trans. on Services Computing (TSC) (to appear)

11. Leitner, P., Hummer, W., Satzger, B., Dustdar, S.: Stepwise and Asynchronous
Runtime Optimization of Web Service Compositions. In: Bouguettaya, A.,
Hauswirth, M., Liu, L. (eds.) WISE 2011. LNCS, vol. 6997, pp. 290–297. Springer,
Heidelberg (2011)

12. Živković, M., Bosman, J.W., van den Berg, H., van der Mei, R., Meeuwissen, H.B.,
Núñez–Queija, R.: Run-time Revenue Maximization for Composite Web Services
with Response Time Commitments. In: 26th IEEE Conference on Advanced Infor-
mation Networking and Applications, AINA (2012)

13. Yousefi, A., Down, D.G.: Request Replication: An Alternative to QoS Aware Ser-
vice Selection. In: Proceedings of the 2011 IEEE Conference of Service Oriented
Computing and Applications (SOCA 2011), pp. 1–4 (2011)

14. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS–aware middleware for web services composition. IEEE Transactions on Soft-
ware Engineering 30(5), 311–327 (2004)

15. Yang, Y., Tang, S., Xu, Y., Zhang, W., Fang, L.: An Approach to QoS-Aware
Service Selection in Dynamic Web Service Composition. In: 3rd IEEE Int. Conf.
on Networking and Services (ICNS 2007), pp. 18–23 (2007)

16. Wikipedia: Bimodal distribution,
http://en.wikipedia.org/wiki/Bimodal_distribution

17. Chen, L., Yang, J., Zhang, L.: Time Based QoS Modeling and Prediction for Web
Services. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011.
LNCS, vol. 7084, pp. 532–540. Springer, Heidelberg (2011)

http://en.wikipedia.org/wiki/Bimodal_distribution

Performance Modeling and Analysis of a

Database Server with Write-Heavy Workload

Manfred Dellkrantz1, Maria Kihl2, and Anders Robertsson1

1 Department of Automatic Control, Lund University
2 Department of Electrical and Information Technology, Lund University

Box 118, 221 00 Lund, Sweden
{manfred,maria.kihl}@eit.lth.se,

andersro@control.lth.se

http://www.eit.lth.se/

Abstract. Resource-optimization of the infrastructure for service ori-
ented applications require accurate performance models. In this paper
we investigate the performance dynamics of a MySQL/InnoDB database
server with write-heavy workload. The main objective of our investiga-
tion was to understand the system dynamics due to the buffering of disk
operations that occurs in database servers with write-heavy workload. In
the paper, we characterize the traffic and its periodic anomalies caused
by flushing of the buffer. Further, we present a performance model for the
response time of the requests and show how this model can be configured
to fit with actual database measurements.

Keywords: performance modeling, service-oriented analysis, database
server, admission control.

1 Introduction

The processing and control of service-oriented applications, as web applications,
mobile service management systems, media distribution applications, etc., are
usually deployed on an infrastructure of server clusters. The rate at which the
requests arrive can vary heavily both during a single day and during longer
periods, due to user behavior patterns. Scaling for the worst traffic peaks can
be expensive though and will result in most of the capacity being unused most
of the time. Capacity planning and resource optimization is therefore needed,
which require the design of accurate performance models that capture the system
dynamics in high loads.

Previous work on control systems for service-oriented applications and sys-
tems has mainly focused on applications with CPU-intensive workload, for ex-
ample web server systems and databases with read-only requests. For CPU-
intensive workloads previous work has shown that the performance dynamics
are accurately captured by a single server queue model, see for example, [1] and
[4]. However, for applications including large databases (too large to store in
main memory), hard drive dynamics will influence the performance dynamics

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 184–191, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.eit.lth.se/

Database Server with Write-Heavy Workload 185

in high loads. Typically the application will need to read data from disk on
every database read. Write operations are however often buffered in the server
to make them more efficient. For example, in [7] the authors examine different
buffering/caching techniques for use with NFS (Network File System).

Writing to persistent media is often a slow process which should be avoided if
possible. Further, writing performance is also affected by certain rules of locality.
For example, writing sequential data to a hard drive can be many times faster
than writing to random sectors. By buffering writes and completing them in
sequential order, the writes are executed more efficiently. However, when the
buffered writes are actually flushed to disk, the response times of the normal flow
of traffic are heavily influenced. The server becomes occupied by work other than
that of the normal flow of requests. Therefore, the system dynamics of server
systems with write-heavy workload cannot be captured with the single server
queueing models proposed for CPU-intensive workload.

In this paper we examine write-heavy workload on a MySQL database server
using the engine InnoDB. The database is stored on a magnetic hard drive which
results in the database server having to employ heavy buffering to speed up the
writes. In the paper, the characteristics of write-heavy workload is examined.
We develop a model and configure the model parameters using experiments in
our testbed. We show in experiments that the model accurately captures the
periodic anomalies that occur when the system needs to empty the buffer.

In Section 2 we present the lab environment used for the database measure-
ments. In Section 3 we characterize the database traffic. In Section 4 we present
the model developed for the traffic and discuss how to configure it. We also
validate the model with lab measurements.

2 System Description

In this paper, we investigate the dynamics of database servers with write-heavy
workload. The models and methods proposed in the paper are based on the
results from experiments in our testbed. In this section, we first give an intro-
duction to dirty page caching, which is used in many operative systems and
database systems to improve the latencies when writing to disk. Further, we
describe our testbed.

2.1 Page Cache

One common way to implement write-buffering is using a page cache. The storage
is divided into fixed size pages. When data is written, the page being written
to is first read from storage and then changed in memory and marked as dirty.
Dirty pages are then kept in memory for some time before it is written back to
disk and marked clean.

MySQL has several different storage engines, among them MyISAM and Inn-
oDB. MyISAM has no built in cache for data. Instead it relies on the page
caching features of the operating system. In this paper, we have used the stor-
age engine InnoDB, which has its own system of pages which are buffered in the

186 M. Dellkrantz, M. Kihl, and A. Robertsson

so called buffer pool. Pages are written to and read from disk directly using one
of several methods for directly accessing the block storage device, bypassing the
operating system page cache. The InnoDB engine tries to estimate the speed of
the block device and the rate at which new pages are made dirty and from that
it calculates how often and how many dirty pages need to be written to disk.

2.2 Testbed

We have used an experimental testbed. The testbed consists of one computer act-
ing as traffic generator, and one database server. The computers were connected
with a standard Ethernet switch.

The traffic generator was executed on an AMD Phenom II X6 1055T at 2.8
GHz with 4 GB main memory. The operating system was 64-bit Ubuntu 10.04.4
LTS. The traffic generator was implemented in Java, using the JDBC MySQL
connector. The traffic generator used 200 working threads and generated MySQL
queries according to a Poisson process with average rate λ queries per second.
The behavior of the traffic generator was validated in order to guarantee that it
was not a bottleneck in the experiments.

The database server had a 2.0 GHz Celeron processor and 256 MB main
memory. The database files are on the system disk which is a standard 3.5" hard
drive. It runs the 32-bit version of Ubuntu 10.04.4 LTS (Linux 2.6) and MySQL
Server 5.1.41. The InnoDB engine was configured with 16 MB of buffer pool.

The structure of the relations in the database comes from the scalable Wis-
consin Benchmark [6] and it has n = 107 tuples. The structure of the queries
used all follow the following pattern:

UPDATE <relation> SET unique3=? WHERE unique1=?;

The question marks are replaced with uniformly distributed pseudo-random in-
tegers in the interval [0, n[. This query changes the value of one of the integer
attributes of a random tuple.

3 Performance Characterization

In order to investigate the dynamics of a database server with write-heavy work-
load, we performed a series of experiments in our testbed presented in Section 2.
In all the experiments, all requests included a MySQL UPDATE query, caus-
ing the system to write one database element to disk. Figure 1 illustrates the
system behavior during an experiment where the average arrival rate, λ, was
25 requests per second. The figure shows that the system periodically have to
pause the normal work and instead focus on the buffered dirty pages for some
time. While the normal response times are below 0.2 seconds, response times of
up to one second occur, because of these pauses. The number of requests that
have these high response times are affected by the fact that requests are sent
and queued up, even when the server is busy with the dirty pages.

Database Server with Write-Heavy Workload 187

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Time (s)

R
es

po
ns

e
tim

e
(s

)

pause flushing period

Fig. 1. Response time graph of the InnoDB system, UPDATEs only, with constant
Poisson-traffic, 25/s

0 20 40 60 80 100
24

25

26

27

28

29

30

31

32

33

Concurrent jobs

T
hr

ou
gh

pu
t (

/s
)

0 20 40 60 80 100
0

1

2

3

4

5

Concurrent jobs

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
)

Fig. 2. N/P graph (left) and N/T graph (right) of the InnoDB system, UPDATEs
only. Every point was run for 900 seconds.

The average response time as a function of the number of concurrent jobs is
from now on referred to as the N/T graph. The throughput as a function of the
number of concurrent jobs inside the server at all times is from now on referred
to as the N/P graph. The N/T and N/P graphs for our system are shown in
Figure 2.

It can be seen in the N/P graph that for a very small number of concurrent
requests (up to 10), the throughput is much lower than for a higher number of
concurrent requests. This is likely (to some extent, at least) because of network
delays and buffering in lower protocol layers.

During high loads, the dirty page cache will be written to disk periodically.
The period between two occurrences of disk writing, called the flushing period,
depends on the arrival rate. As can be seen in Figure 1, an arrival rate of 25
requests per second results in a flushing period of approximately 5 seconds. Fig-
ure 3 shows the response times during an experiment with an average arrival rate
of 12.5 requests per second, which results in a flushing period of approximately
10 seconds and an experiment with an average arrival rate of 18.75 requests per

188 M. Dellkrantz, M. Kihl, and A. Robertsson

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time (s)

R
es

po
ns

e
tim

e
(s

)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Time (s)

Fig. 3. Response time graph of the InnoDB system, UPDATEs only, with constant
Poisson-traffic, 12.5/s (left), 18.75/s (right)

second, which results in a flushing period of approximately 7 seconds. These
experiments show that the period between flushes of the buffer is inversely pro-
portional to the arrival rate, since

25 · 5 ≈ 12.5 · 10 ≈ 18.75 · 7 (1)

4 Performance Model

In this section, we describe our proposed performance model, which captures the
dynamics of our system.

4.1 Model Description

We propose a queuing network model shown in Figure 4. The model consists of
three parts, a Network delay (ND), a Job queue (JQ), and a Dirty page buffer
(DPB). The ND is used to model the reduced throughput at very low numbers of
concurrent requests. After passing the ND, requests enter the JQ. As requests are
processed by the server, the user is acknowledged and one dirty page equivalent
is placed in the DPB. The DPB has a fixed maximum size and when that is
reached the server stops processing requests in the JQ and starts to process
dirty pages from the DPB instead until the DPB is empty. When the DPB is
empty, the server switches back and continues to work on the JQ.

As a request enters the server it is assigned a processing time. Our experiments
have shown that the processing time for a request in the JQ and the processing

JQ

DPB

ND

Fig. 4. The Model

Database Server with Write-Heavy Workload 189

time for one dirty page equivalent (Tproc and Tdp, respectively) can be modeled
by an exponential distribution. Further, the time each request spends in the ND
(Tnd) can be modeled as a sum of a constant and an exponentially distributed
random number.

Further, the maximum size of the DPB is denoted DPBmax and it is a con-
stant integer number. The maximum length of the DPB and one dirty page
equivalent per request determine the inverse proportionality between flush pe-
riod time and arrival rate shown in Equation (1).

4.2 Parameter Configuration

The model has the following parameters which must be configured:

Tnd distribution,E [Tproc] ,E [Tdp] , DPBmax

The maximum capacity of the DPB can be determined by measuring the period
of flushes, p, for some high traffic with throughput P . Since p determines how
often the DPB needs to be flushed and P determines how fast new dirty pages
are put into the DPB, the max length of the DPB is DPBmax = P · p.

By examining some experiment with high number of concurrent requests, a
lower limit on the duration of the pause in processing (min(Tpause)) can be
determined. By measuring the time between request departures and filtering out
those that are > min(Tpause), an average on the pause duration (Tpause) can
be estimated. From these results, the mean of the dirty page processing time is
given by E [Tdp] = Tpause ·DPBmax

−1.
With the knowledge of Tdp and the throughput (P) when keeping high number

of concurrent requests, the average processing time Tproc can be determined. By
assuming that the server is always busy, the throughput can be assumed to be
inversely proportional to the total processing time spent on every request. Since
the server spends a total of Tproc + Tdp time on every request, the average for
the processing time is given by E [Tproc] = P−1 − E [Tdp] .

The distributions used for the network delay (Tnd) are determined by perform-
ing an experiment keeping one concurrent request in the system. The response
times T are measured. Since the total response time of one single request is the
sum of the network delay, the processing time plus that it has a probability of
DPBmax

−1 to get DPBmax · Tdp added, the average network delay is given by
E [Tnd] = E [T]− E [Tproc]− E [Tdp] .

4.3 Model Validation

In order to validate the proposed model, we developed a discrete-event simula-
tion program, written in Java. By using the configuration method described in
Section 4.2, we can conclude that the values in Table 1 make a good fit for our
database server described in Section 2.

In Figure 5, the cumulative distribution function of the response times from
an experiment with arrivals following the Poisson process with an average rate of

190 M. Dellkrantz, M. Kihl, and A. Robertsson

Table 1. Fitted model parameters

Tproc Exp(0.0269)

Tnd 0.0025 + Exp(0.00049)

DPBmax 111

Tdp Exp(0.00433)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Response time (s)

P
ro

ba
bi

lit
y

Real database
Simulation

Fig. 5. Cumulative distribution function of response times from InnoDB database sys-
tem, and the proposed model. Traffic is generated with a Poisson process with average
28 requests per second.

0 20 40 60 80 100
24

25

26

27

28

29

30

31

32

33

Concurrent jobs

T
hr

ou
gh

pu
t (

/s
)

0 20 40 60 80 100
0

1

2

3

4

5

Concurrent jobs

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
)

Fig. 6. N/T (top) and N/P (bottom) graph from the simulation of the model. Every
number of parallel jobs was run for 900 seconds.

28 requests per second, are shown. One graph shows the results from a testbed
experiment and one graph shows the results from the discrete-event simulation
of the model. As can be seen in the graphs, the distribution of response times
in the model fits accurately with the database experiment.

Further, the N/T and N/P graphs for the simulation is shown in Figure 6.
These graphs can be compared with the graphs of the corresponding experiments,
shown in Figure 2. The graphs show that the proposed model fits well with the
real system.

5 Conclusions

Many service-oriented applications use database servers for storing data. When
the applications have a workload that writes to a database stored on hard drives,

Database Server with Write-Heavy Workload 191

disk writing optimizations introduce performance dynamics that may be difficult
to monitor and control. Traditional queuing system models do not suffice when
the response times show these periodic anomalies. In this paper, we have devel-
oped a performance model based on queueing systems for database servers with
write-heavy workload. We validate our model using experiments in a testbed.

Acknowledgment. This work has been partly funded by the Lund Center for
Control of Complex Engineering Systems (LCCC) and the Swedish Research
Council grant VR 2010-5864.

References

1. Cao, J., Andersson, M., Nyberg, C., Kihl, M.: Web Server Performance Modeling
using an M/G/1/K*PS Queue. In: Proceedings of the 10th IEEE International Con-
ference on Telecommunications (2003)

2. Liu, X., Heo, J., Sha, L., Zhu, X.: Adaptive Control of Multi-Tiered Web Application
Using Queueing Predictor. In: Proceedings of: 10th IEEE/IFIP Network Operations
and Management Symposium, NOMS 2006 (2006)

3. Kihl, M., Robertsson, A., Andersson, M., Wittenmark, B.: Control-theoretic Anal-
ysis of Admission Control Mechanisms for Web Server Systems. World Wide Web
Journal 11, 93–116 (2008)

4. Kihl, M., Cedersjö, G., Robertsson, A., Aspernäs, B.: Performance measurements
and modeling of database servers. In: Sixth International Workshop on Feedback
Control Implementation and Design in Computing Systems and Networks, June 14
(2011)

5. Kamra, A., Misra, V., Nahum, E.M.: Yaksha: A Self-Tuning Controller for Managing
the Performance of 3-Tiered Web sites. In: Twelfth IEEE International Workshop
on Quality of Service (June 2004)

6. DeWitt, D.J.: TheWisconsin Benchmark: Past, Present, and Future. In: Proceedings
of: 9th International Conference on Very Large Data Bases, pp. 8–19. Citeseer (1991)

7. Rago, S., Bohra, A., Ungureanu, C.: Using Eager Strategies to Improve NFS I/O
Performance. In: Sixth IEEE International Conference on Networking, Architecture,
and Storage (2011)

8. Hsu, W.W., Smith, A.J., Young, H.C.: I/O Reference Behavior of Production
Database Workloads and the TPC Benchmarks — An Analysis at the Logical Level.
ACM Transactions on Database Systems 26(1), 96–143 (2001)

9. Kleinrock, L.: Queueing Systems: Theory, vol. I. Wiley Interscience, New York
(1975)

Mobile Cloud Computing in 3G Cellular
Networks Using Pipelined Tasks

Marvin Ferber and Thomas Rauber

Department of Computer Science
University of Bayreuth, Germany

{marvin.ferber,rauber}@uni-bayreuth.de

Abstract. Network latency is often high on mobile devices due to wire-
less access, e. g., via 3G cellular networks. To better use the ubiquitously
available 3G network connections, we propose a pipelining task concept
on a single encrypted channel between a mobile device and a cloud re-
source. This does not only increases wireless bandwidth occupation, it
also makes wireless communication more predictable by assuring a high
throughput even for small messages. Constantly high throughput allows
for a better data transfer time estimation and can thus lead to a more
adequate cloud resource selection to assist the mobile application. In an
experimental evaluation using streaming image processing, we investi-
gate the performance and applicability of our approach and compare it
to the widely used HTTP.

Keywords: mobile cloud computing, image processing, task parallelism,
pipelining, 3G cellular network.

1 Introduction

Mobile cloud computing has emerged aiming at assisting mobile devices in pro-
cessing computationally or data intensive tasks using cloud resources [1, 2]. In
this context, mobile image processing tasks often play an important role enabling
smart devices to better assist users in every day situations [3–5]. In contrast to
mobile computing, network access is a mandatory requirement for cloud com-
puting. The public usage of cloud resources implies a pay-per-use model and,
thus, authentication is necessary to use cloud services. As a consequence, all
communication between the mobile device and the cloud needs to be encrypted.
To make mobile cloud computing even more flexible, dynamic code offloading
techniques allow the installation of server code on demand.

Network throughput for publicly available 3G cellular networks depends on
the size of the messages transferred, especially for small data transfer. Fig. 1 (left)
illustrates the measured throughput over message size for secure SSL-socket con-
nections. This could be adverse for mobile cloud computing, because the number
of remote executions in a given period of time, and thus the expected cloud re-
source load, can often not be predicted adequately. To address these issues, we
propose a pipelining task model where remote invocations are represented as

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 192–199, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Mobile Cloud Computing in 3G Cellular Networks Using Pipelined Tasks 193

Fig. 1. Left: Wireless network characteristics of single SSL socket connections to a
VM in the Amazon datacenter in Ireland measured from different places in Bayreuth
(Germany) on a Dell Streak 7 Android Tablet. Right: Overview of the middleware
entities for the mobile cloud computing scenario considered.

tasks. Our contribution is a novel task-based mobile computing approach to ex-
ecute tasks either on the smart device or remotely. Using pipelining over a single
secured socket connection, wireless bandwidth occupation is increased signifi-
cantly and the throughput even for small tasks is almost constant and, thus,
more predictable. This can lead to a better usage of cloud resources and allows
for a better on-demand cloud resource selection strategy. Our pipelining task
model has been developed for applications that benefit from many (remote) exe-
cutions using small input/output data, e. g., mobile streaming image processing.
Furthermore, we assume the use of public Infrastructure-as-a-Service providers,
e. g., Amazon EC21, to run the server-side components. As these providers are
available for public use and 3G access is available in many places, our approach
is applicable to a broad set of applications.

Related approaches for mobile cloud computing do not take into account the
cloud resource allocation and the optimization of the bandwidth occupation
on the wireless access network. In [6], MARS is presented, a middleware for
dynamic remote code execution on mobile devices. MARS is an RPC-based
remote execution scheduler that offloads code dynamically based on parameters
like the current network connection speed, the expected remote execution time,
and the expected energy consumption. MAUI is an advanced middleware for
the .NET platform that implements dynamic code offloading for the purpose of
energy saving on mobile devices [7]. In contrast to MARS, it performs an online
application partitioning in order to select code parts for remote execution.

The rest of the article is structured as follows. In Section 2 we present a model
for the mobile cloud computing architecture considered. Section 3 introduces our
novel pipelining task approach. In Section 4, a cloud resource selection strategy is
presented. In Section 5, our prototypical middleware implementation is evaluated
using image processing tasks. Section 6 concludes the article.

1 http://aws.amazon.com/ec2/

http://aws.amazon.com/ec2/

194 M. Ferber and T. Rauber

2 Mobile Cloud Computing

Mobile cloud computing aims at assisting mobile applications in computationally
intensive task using cloud resources. We introduce a task concept, where a task
can be described as an object that stores a) input data (byte array), b) output
data (byte array), and c) a string that describes the task function. The execution
time of single task is denoted as ΔTtask for tasks that are executed on the mobile
device and ΔTremote for tasks that are executed remotely on cloud resources.

The model that we pursue in this article is illustrated in Fig. 1 (right). We
assume that a cloud resource (virtual machine VM) is used by a mobile client
multiple times. The VM allocation and remote execution is then performed in
the following sequence of steps 1) VM resource allocation, 2) authentication, 3)
dynamic code offloading and installation, 4) and the actual remote executions.
This sequence implies the presence of some kind of proxy entity (Master) that
performs the VM allocation and authentication. After a VM has been delivered,
the remote execution code is installed directly on the allocated VM. A life cycle
implementation is necessary, because each VM allocation and usage has to be
billed. As a result, an explicit destruction of the VM needs to be performed by
the client in order to stop billing.

According to our middleware model for mobile cloud computing, a sequence
of remote task executions is denoted as

∑n
i=0 ΔTremote i +ΔTdealloc. The com-

position of different ΔTremote is described in Equations (1) and (2):

ΔTremote 0 = ΔTalloc +ΔTauth +ΔToffload +ΔTcomm 0 +ΔTtask cloud 0, (1)
ΔTremote i = ΔTcomm i +ΔTtask cloud i , i = 1, . . . , n. (2)

An overhead for allocation and authentication needs to be considered for the
first remote execution ΔTremote0. Furthermore, the remote execution time for
all tasks depends on the cloud resource performance ΔTtask cloud and the net-
work communication involved ΔTcomm. ΔTalloc describes the time necessary to
allocate a VM of a given type for the mobile client. ΔTauth is necessary to au-
thenticate a mobile client in order to implement access restriction to the cloud
environment and to bill the VM usage accordingly. ΔToffload describes the time
that is consumed by a special first task that is executed on the VM. It contains
the necessary code as input data and is installed by a common installation task
function, e. g., for Java the class files are added to the class path.

The communication time depends on the throughput and the message size.
Thereby, we assume that the throughput for single socket connections is a func-
tion of the message size (msg_size) as it can be recognized in Fig. 1. The
communication time can be described as:

ΔTcomm = ΔTtransfer upload +ΔTtransfer download, (3)
ΔTtransfer = msg_size · Throughput(msg_size), (4)
msg_size = encrypt

(
marshall(payload data) + protocol

)
. (5)

Mobile Cloud Computing in 3G Cellular Networks Using Pipelined Tasks 195

 0

 10

 20

 30

 40

 50

10x 100Kb

 100x 10Kb

 1000x 1Kb

th
ro

ug
hp

ut
 in

 K
b/

s

PIPE
HTTP

Fig. 2. Left: Illustration of three equal tasks with overlapped execution using both
approaches. Middle: Measured execution times of a sequence of remote executions
using UMTS (ΔTtask cloud=100 ms). Right: Throughput (min, avg, max) for 1MB of
payload data for different task count using UMTS (ΔTtask cloud=0 s).

3 Pipelining Task Execution

Inspired by work on HTTP pipelining such as [8], we apply the pipelining tech-
nique to better use the available network bandwidth. A task intended for remote
execution is sent to the VM using the TCP output channel established. On the
server side, incoming tasks are executed according to the number of available
CPU cores. Each task is a single processor task. Results of finished tasks are
sent back to the mobile client using the same TCP connection. Thus, a constant
stream between mobile client and VM is established and bandwidth occupation
is maximized. Fig. 2 (left) shows the behavior of the task concept in contrast to
an RPC behavior. Therein, RPC calls are overlapped to increase the bandwidth
occupation. Because these overlapped calls are not synchronized, communication
time for particular calls may increase due to concurring network use.

Results showing the execution time of synthetic benchmarks consisting of a
sequence of tasks using the different concepts are shown in Fig. 2 (middle). Only
the connection between the mobile client and the VM is shown. As expected,
using the pipelining concept only the first task takes longer for completion in
contrast to the subsequent tasks that are sent via the same network stream. For
HTTP, the execution time of the different tasks stays the same or may even
increase due to concurring invocations. In Fig. 2 (right) the measured through-
put for 1 Mb of payload data and different number of tasks is shown. We have
conducted 10 measurements for each scenario. It can be seen that the overhead
for HTTP with small payload data is much higher. As a result, for the pipelin-
ing concept the real network throughput is almost fixed to a value near the
maximum for all subsequent remote task executions and thus ΔTtransfer can be
simplified for the pipelining approach to:

ΔTtransfer PIPE = msg_size · Throughputmax. (6)

This is beneficial, if a computation can be divided into many small tasks, because
fine grained progress can be reported on the mobile client.

196 M. Ferber and T. Rauber

Amazon EC2 instance type
characteristics (EU Ireland region)

ECUs Cores RAM Cost in USD ECUs/
Core

m1.large 4 2 7.5GB 0.36 2

c1.medium 5 2 1.7GB 0.186 2.5

m2.xlarge 6.5 2 17.1GB 0.506 3.25

m1.xlarge 8 4 15.0GB 0.72 2

m2.2xlarge 13 4 34.2GB 1.012 3.25

c1.xlarge 20 8 7.0GB 0.744 2.5

m2.4xlarge 26 8 68.4GB 2.024 3.25

Fig. 3. Top: Task ratemax depending on the available network quality. Bottom:
MINcores for different EC2 instance groups (ΔTtask cloud=1 s). Right: Amazon EC2
instance type characteristics (on-demand instances).

4 Cloud Resource Selection

Although the pipelining approach proposed increases network occupation, the
network connection is still the limiting factor. From a sequence of tasks that is
transferred between a mobile client and a VM (each takes ΔTcomm) a maximum
task rate can be calculated depending on the available network connection:

task ratemax =
number of tasks

s
=

1

ΔTcomm
. (7)

Fig. 3 (left) shows the maximum task rate for different network connections
using the HTTP and PIPE implementations.

To overlap task execution and data transfer to achieve 100% network occu-
pation, cloud resources with multiple CPU cores may be necessary. In contrast,
a second goal is to avoid overprovisioning and thus save money. Cloud resources
may differ in single core speed and the number of available CPU cores. Memory
is not a relevant factor in this scenario, because each VM provides much more
main memory than the mobile device itself. As an example for an IaaS provider,
we consider the selection of a suitable VM from the portfolio of the Amazon EC2
cloud computing infrastructure. Fig. 3 (right) shows the available instance types.
In Amazon EC2, the machine speed is rated in ECUs. As we only have single
processor tasks, we calculate the ECU rating per core and classify the available
instance types into three groups (2, 2.5, 3 ECUs) by taking into account that a
single task execution ΔTtask(ECUs) scales according to the number of ECUs.
When using a different IaaS provider, the rating per core and the creation of
groups of similar performance/core ratings can be done accordingly. We do not
assume that upload and download can be performed in parallel in a 3G network,
because we were not able to measure any significant speedup by doing this. As a
result, the number of cores per machine necessary for 100% network occupation
for one of the three groups can be calculated as follows:

MINcores =
ΔTtask cloud(ECUs)

ΔTcomm
. (8)

Mobile Cloud Computing in 3G Cellular Networks Using Pipelined Tasks 197

 0.1

 1

 10

SOBEL Dell Streak 7

SOBEL UM
TS PIPE

SOBEL UM
TS HTTP

SOBEL HSPA PIPE

SOBEL HSPA HTTP

FACE UM
TS PIPE

FACE UM
TS HTTP

FACE HSPA PIPE

FACE HSPA HTTP

fr
am

es
 p

er
 s

ec
on

d

320x240
640x480

1360x720
480x480

Fig. 4. Left: Illustration of the face detecting test application on a Dell Streak 7 An-
droid tablet. Right: Frame rates (min, avg, max) for the streaming image processing
application using the sobel operator and face detection.

Fig. 3 (bottom) shows MINcores for ΔTtask cloud(2ECU) = 1 s using the HSPA
connection. HTTP uses only one core in all cases and thus is not plotted. Accord-
ing to MINcores, a suitable machine can be selected from Fig. 3 (right). Using
the pipelining approach, it is sufficient to know the maximum upload/download
speed in order to predict the number of necessary cores adequately.

5 Case Studies

In our prototypical implementation, the task concept is implemented using spe-
cific Task classes for remote or for local execution. On request, this class is
installed on the cloud server using a common install task. The install task adds
the transferred precompiled class file to the Java class path of the server. An
object of the desired Task class in Java is instantiated using Class.forName().
Note that remote and local Task classes can have completely different imple-
mentations, which is necessary to support potentially different system libraries
(Standard Java API and Android API). On the Android platform, only the type
of network can be identified, such as EDGE, UMTS, or HSPA, but not the exact
network link speed. However, the current link speed can be determined by the
user using tools like Speedtest2.

To show the practical applicability of the proposed pipelining approach, we
have included image processing algorithms from Face Detection in Color Images3

and ImageProx 4 into an Android application. The application is implemented
as a streaming camera picture processing application that takes camera images,
processes them and displays the modified results in a loop. Thus, a frame rate
per second can be measured. We have used a Dell Streak 7 for the investigations.
It uses Android 3.2 and owns an Nvidia Tegra 2 Dual-core ARMv7 CPU (1 GHz)
and 512 Mb RAM.
2 http://www.speedtest.net/
3 http://sourceforge.net/projects/facedetectionin/
4 http://www.3programmers.com/mwells/research.html

http://www.speedtest.net/
http://sourceforge.net/projects/facedetectionin/
http://www.3programmers.com/mwells/research.html

198 M. Ferber and T. Rauber

Table 1. Image processing application test characteristics

Upload Download ΔTtask ΔTtask cloud task ratemax MINcores(2.5ECUs)
(2.5ECUs) (UMTS/HSPA) (UMTS/HSPA)

320x240 (Sobel) ca. 7Kb ca. 12Kb 280 ms 25ms ca. 1,5/ca. 17,8 1/1

640x480 (Sobel) ca. 22Kb ca. 29Kb 990 ms 80ms ca. 0,5/ca. 6,3 1/1

1360x720 (Sobel) ca. 54Kb ca. 85Kb 2500ms 250ms ca. 0,2/ca. 2,4 1/1

480x480 (Face) ca. 20Kb ca. 21Kb – ca. 1000ms ca. 0,6/ca. 7,5 ca. 1/ca. 7

The sobel operator [9] can be applied to all points in an image independent
from the other pixels. So, a task-based version of this algorithm works on small
buckets of the image. In contrast, the face detection algorithm can hardly be
decomposed, because it consists of a workflow of dependent operations and in-
termediate data must be kept in main memory. We were not able to execute this
kind of algorithm on the Dell Streak 7, unless image size is smaller than 64x48.

We have measured the frame rates for the different 3G configurations and have
compared them to the pure device performance using different image resolutions.
Fig. 4 shows the minimum, maximum and average values for a 100 s measurement
of the sobel operator task. The frame rates do not include the allocation and
code installing phase. For the sobel operator task, a c1.medium instance at the
Amazon EC2 datacenter in the EU region has been used. Image size in transfer
data and processing times of the tasks are given in Table 1. The results show
that the pipelining approach is much faster than the RPC approach via HTTP.
For HTTP, we have allowed up to eight parallel connections to achieve a better
bandwidth occupation. In comparison to the device speed of the Dell Streak 7,
we have been able to achieve reasonable speedups only for the HSPA scenario.
However, for another device, the results could be different.

Using the face detection algorithm based on skin color [10], we only used a
resolution of 480x480 for our investigations, because each task takes around 1 s to
process on a 2.5 ECU/core machine, which is recognized as a delay in the image
stream on the device. When decreasing the picture size the chance of detecting
faces also decreases because of the bad picture quality. Using this configuration,
we chose a c1.medium instance for UMTS and a c1.xlarge instance for HSPA.
The frame rates of the face detection application are shown in Fig. 4. We have
measured a CPU utilization of 38% on the c1.medium instance and 61% on
the c1.xlarge instance using Amazon EC2 CloudWatch. The results show that
the cloud resource selection strategy proposed is sufficient for the application
considered. A demonstration of the face detection application on the Dell Streak
7 is given in Fig. 4.

Furthermore, it could be observed that the link quality of the tested 3G con-
nections is varying over time. This can be recognized in Fig. 2 (right) and in Fig. 4
by the difference between minimum and maximum values. Moreover, when a cell
change is performed in the 3G network, the connection can be stalled for several
seconds. Thus, it is preferable not to move around, e. g. in a car, when using a
cloud-assisted mobile application.

Mobile Cloud Computing in 3G Cellular Networks Using Pipelined Tasks 199

6 Conclusion

We have presented a pipelining approach that achieves a better network occupa-
tion in 3G cellular networks than an RPC-like HTTP implementation. Based on
the communication improvements, we have also presented a strategy to select a
suitable cloud resource from Amazon EC2 based on data size and network link
speed. Tests have shown that the selected machines achieved the expected load
while the cost can be kept as low as possible. As a result, ubiquitously available
3G connections are better applicable to realize cloud-assisted mobile image pro-
cessing applications for smart devices. However, dynamic code offloading using a
public IaaS provider still needs to be initiated by the user, because cloud resource
allocation time is paying off only if the subsequent usage period is much longer,
which can hardly be known in advance. Finally, the performance in 3G cellular
networks can often not be assessed adequately, but it has significant influence
on the remote execution time and needs to be verified by the user.

References

1. Guan, L., Ke, X., Song, M., Song, J.: A Survey of Research on Mobile Cloud
Computing. In: Proc. of the 10th Int. Conf. on Computer and Information Science
(ICIS), pp. 387–392. IEEE (2011)

2. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A Survey of Mobile Cloud Computing:
Architecture, Applications, and Approaches. Wireless Communications and Mobile
Computing (2011)

3. Chen, D., Tsai, S., Hsu, C., Singh, J., Girod, B.: Mobile Augmented Reality for
Books on a Shelf. In: Proc. of the Int. Conf. on Multimedia and Expo. (ICME),
pp. 1–6. IEEE (2011)

4. Girod, B., Chandrasekhar, V., Chen, D., Cheung, N., Grzeszczuk, R., Reznik, Y.,
Takacs, G., Tsai, S., Vedantham, R.: Mobile Visual Search. IEEE Signal Processing
Magazine 28(4), 61–76 (2011)

5. Chen, D., Tsai, S., Vedantham, R., Grzeszczuk, R., Girod, B.: Streaming Mobile
Augmented Reality on Mobile Phones. In: Proc. of the Int. Symp. on Mixed and
Augmented Reality (ISMAR), pp. 181–182. IEEE (2009)

6. Cidon, A., London, T., Katti, S., Kozyrakis, C., Rosenblum, M.: MARS: Adaptive
Remote Execution for Multi-Threaded Mobile Devices. In: Proc. of the Workshop
on Networking, Systems, and Applications on Mobile Handhelds, pp. 1–6. ACM
(2011)

7. Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R.,
Bahl, P.: Maui: Making Smartphones Last Longer with Code Offload. In: Proc.
of the Int. Conf. on Mobile Systems, Applications, and Services, pp. 49–62. ACM
(2010)

8. Kaspar, D., Evensen, K., Engelstad, P., Hansen, A.: Using HTTP Pipelining to
Improve Progressive Download over Multiple Heterogeneous Interfaces. In: Proc.
of the Int. Conf. on Communications, pp. 1–5. IEEE (2010)

9. Nixon, M., Aguado, A.: Feature Extraction & Image Processing. Academic Press.
Academic (2008)

10. Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K.: Face Detection in Color Images. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24(5), 696–706 (2002)

Cloud User-Centric Enhancements

of the Simulator CloudSim to Improve
Cloud Deployment Option Analysis

Florian Fittkau, Sören Frey, and Wilhelm Hasselbring

Software Engineering Group, Christian Albrechts University of Kiel, Germany

Abstract. Cloud environments can be simulated using the toolkit Cloud-
Sim. By employing concepts such as physical servers in datacenters, vir-
tual machine allocation policies, or coarse-grained models of deployed
software, it focuses on a cloud provider perspective. In contrast, a cloud
user who wants to migrate complex systems to the cloud typically strives
to find a cloud deployment option that is best suited for its sophisti-
cated system architecture, is interested in determining the best trade-off
between costs and performance, or wants to compare runtime recon-
figuration plans, for instance. We present significant enhancements of
CloudSim that allow to follow this cloud user perspective and enable the
frictionless integration of fine-grained application models that, to a great
extent, can be derived automatically from software systems. Our quan-
titative evaluation demonstrates the applicability and accuracy of our
approach by comparing its simulation results with actual deployments
that utilize the cloud environment Amazon EC2.

1 Introduction

The toolkit CloudSim [2] can simulate cloud environments. It focuses on con-
cepts like CPU scheduling strategies, detailed physical host models, and virtual
machine (VM) allocation policies. Hence, it takes the cloud provider perspective.
However, for migrating an application into the cloud, a cloud user typically wants
to find a cloud deployment option (CDO) that delivers the best trade-off between
costs and performance, whereas many details of the underlying platform remain
unknown. In the context of deploying software on a cloud platform, a CDO can be
seen as a combination of decisions concerning the selection of a cloud provider,
the deployment of components to a number of virtual machine instances, the
virtual machine instances’ configuration, and specific runtime adaptation strate-
gies. The set of combinations of the given choices forms a huge design space
that is infeasible to test manually [5]. Thus, simulating CDOs can significantly
simplify reasoning about appropriate solutions for cloud users.

We developed the simulation tool CDOSim [3] that can simulate the costs,
response times, and SLA violations of a CDO. For these purposes, we utilized
and substantially extended the cloud simulator CloudSim by means of elasticity,

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 200–207, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Enhancing the Cloud Simulator CloudSim 201

price models, and remote calls between virtual machine instances. In this paper,
we present our enhancements to CloudSim that facilitate a dedicated cloud user
view. Our separation of these perspectives follows the definition of the cloud role
model by Armbrust et al. [1]: A cloud provider offers the cloud users the resources
in terms of the utility computing paradigm. We report on a case study that uses
the public cloud environment Amazon EC2 and demonstrates the accuracy of
our CloudSim enhancements.

The remainder of the paper is structured as follows. Section 2 overviews
CDOSim. Our CloudSim enhancements are presented in Section 3. Afterwards,
Section 4 evaluates the enhancements with the help of a case study, before the
related work is described in Section 5. The final Section 6 draws the conclusions
and outlines the future work.

2 The Cloud Deployment Option Simulator CDOSim

CDOSim builds on CloudSim [2]. It is a toolkit for the modeling and simulation of
cloud environments. With CloudSim, the simulation of distributed environments
and corresponding model entities, e.g., virtual machines, scheduling strategies,
and data centers, can be conducted using a single computer. Network connections
between data centers and data center brokers can also be simulated.

In contrast, our tool CDOSim enables the simulation of different cloud de-
ployment options for software systems that have—often automatically—been
reverse-engineered to Knowledge Discovery Metamodel (KDM)1 code models.
KDM is used for representing the architecture of the application under study.
CDOSim integrates in our cloud migration framework CloudMIG [4] and is avail-
able online as a plug-in for the corresponding tool CloudMIG Xpress.2 CloudMIG
utilizes so called cloud profiles to model, for example, the provided resources, ser-
vices, and pricing of a cloud environment. In the context of those cloud profiles,
CDOSim can simulate the occurring costs, response times, and SLA violations of
a CDO. Different VM scheduling strategies of the cloud providers are implicitly
measured by our benchmark (for details see Fittkau [3]). CDOSim utilizes Struc-
tured Metrics Meta-Model (SMM)3 models for describing workload profiles. In
SMM, the measurement, the measure, and the observation timestamps of each
call to the service are described. Furthermore, CDOSim can start or shutdown
virtual machine instances based on the average CPU utilization of allocated vir-
tual machine instances resulting from arbitrary workload patterns. Furthermore,
the initial VM instance type and the number of instances that shall be run at
the beginning of the simulation can be configured. To dynamically start and
stop VM instances and to utilize other VM instance types according to varying
workload intensities, CloudMIG Xpress provides so called runtime adaptation
rules. These rules can be simulated by CDOSim too.

1 http://www.omg.org/spec/KDM/, last accessed 2012-06-29.
2 http://www.cloudmig.org/, last accessed 2012-06-29.
3 http://www.omg.org/spec/SMM/, last accessed 2012-06-29.

http://www.omg.org/spec/KDM/
http://www.cloudmig.org/
http://www.omg.org/spec/SMM/

202 F. Fittkau, S. Frey, and W. Hasselbring

3 Cloud User-Centric Enhancements of CloudSim

The next Sections 3.1 to 3.7 describe our enhancements of CloudSim in detail.

3.1 CPU Utilization Model Per Core

CloudSim provides a pure random-based CPU utilization model because the
CPU utilization is often rather random from a cloud provider perspective. How-
ever, from the cloud user perspective we can approximate the CPU utilization
because of additional knowledge concerning an application’s structure in com-
bination with a recorded workload profile. The CPU utilization is a major pre-
dictor indicator for the performance of a VM instance. For this purpose, we
implemented a CPU utilization model that follows the conducted work for an
application call.

3.2 Starting and Stopping Virtual Machine Instances on Demand

In CloudSim, the virtual machine instances cannot be comfortably started on
demand at runtime. They have to be created before the simulation begins or
when the simulation is stopped. Hence, there exists no convenient way to simulate
automatic elasticity in CloudSim. The CloudSim authors provide a way to stop
the simulation and then change the configuration. However, using this approach
to enable elasticity would result in stopping the simulation, for example, each
minute and testing if the configuration would have to be altered. This activity
should be an internal function and as cloud users we should only need to define
adaptation rules. We implemented this feature into CloudSim.

Adaptation rules are required for starting and terminating instances on the
basis of occurring events or the exceeding of thresholds. An example for an
adaptation rule is ”start a new VM instance when for 60 seconds the average
CPU utilization of allocated nodes stays above 70 %.”

CloudSim effectively limits this amount because only a restricted quantity
of hosts can be added upfront and each host has a limited capacity as well.
We extended CloudSim such that with every virtual machine instance a new
host, that fits the needs of the virtual machine instance, is added dynamically
at runtime.

3.3 Delayed Cloudlet Creation

CloudSim requires all Cloudlets, which model an application calculation, to be
started at the beginning, if we ignore the unapt method of stopping the simu-
lation at a defined timestamp. With this behavior web applications cannot be
modeled in a realistic way because all requests would start at the beginning of the
simulation and in parallel. Hence, we enhanced CloudSim such that Cloudlets
are extended by an attribute delay, which corresponds to the time when the
Cloudlet should be sent for processing. Hence, we can now handle flexible and
realistic usage profiles.

Enhancing the Cloud Simulator CloudSim 203

3.4 Delayed Start of Virtual Machines

In CloudSim, a creation of a virtual machine results in instant availability of
the VM instance. Our conducted tests showed that there is an average delay of,
for example, one minute on our private Eucalyptus cloud which is typically not
negligible. Therefore, we implemented an event for the delayed creation of VMs.
The former creation method is triggered by this new event handler.

3.5 Configurable Timeout for Cloudlets

In web applications, there is typically a configurable response timeout. After this
timeout, an answer is useless because the client or server closed the connection.
Most web servers would recognize when a user closes the connection by timeout
and would terminate the corresponding task that calculates the answer. This
results in savings of CPU time. Hence, we also implemented a timeout for calls
to application logic. Every Cloudlet that is executing, paused, or waiting, can
get canceled after a configurable timeout.

3.6 Enhanced Debt Model

The debt model in CloudSim is kept coarse-grained and in particular, it’s imple-
mentation uses just a basic calculation mechanism. Modeling the current debt
model of Amazon EC2, for instance, is not possible with this debt model. Hence,
we implemented a debt model that follows the pricing model of CloudMIG Xpress
and takes a time span for which the debts are calculated. For instance, for mod-
eling the on demand VM instance debt model of Amazon EC2, every begun hour
the price for the running VM is added to the debts. Furthermore, the debt model
for bandwidth usage is modeled as a step function like done by Amazon EC2.
For example, the first gigabyte of traffic is free of charge, above one gigabyte to
10,000 gigabytes, every gigabyte costs 0.12$ at the time of this writing.

3.7 Method Calls and Network Traffic between Virtual Machine
Instances

In CloudSim, each Cloudlet runs on one virtual machine instance. It can be
moved to other virtual machine instances but a Cloudlet, e.g., representing an
object-oriented method, cannot “call” other Cloudlets.

We wanted to simulate the explicit calling of methods between different virtual
machine instances and on the same instance. For example, a use case for this is
the calling of web services on other virtual machine instances. For this purpose,
we had to implement a new Cloudlet scheduler. For example, assume method1
which should execute on VM1 and should synchronously call method2 on VM2.
Method1 is represented by Cloudlet1. Before Cloudlet1 is executed, the scheduler
searches in the source code of method1 for methods that are called by method1.
A call to method2 is found and the Index Service is queried for the location
where method2 is running. The Index Service returns VM2 and for method2

204 F. Fittkau, S. Frey, and W. Hasselbring

the new Cloudlet2 is created on VM2. Then, Cloudlet1 pauses itself, meaning
other Cloudlets can process on VM1. Assumemethod2 conducts no method calls.
Therefore, Cloudlet2 processes and then wakes up Cloudlet1 on finish. Cloudlet1
can now process or call other methods.

4 Case Study

We conducted a case study to show that our CloudSim enhancements perform in
a valid, realistic way. We utilized our developed tool CDOSim, which includes our
CloudSim enhancements, to reproduce a real run we conducted on Amazon EC2.
Further evaluations of CDOSim, which also show its scalability, can be found in
Fittkau [3]. We utilize iBatis JPetStore 5.04 in the case study.

4.1 Methodology

We compare the measured values with simulated values per minute. The values
we compare are CPU utilization, instance count, costs, and response times. As a
metric, we utilize the relative error for each of those aspects in percent values. For
calculating the relative error at timestamp t, the simulated value is subtracted
from the measured value and then divided by the measured value. The relative
error (RE) for the whole run is calculated by summing up the relative error
for each timestamp and then dividing the value by the number of timestamps.
For details we refer to Fittkau [3]. All percent values will be truncated after
the second decimal place. We feature four different REs. RECPU stands for
the relative error of the CPU utilization. REIC is the relative error of the VM
instance count. RECosts is the relative error of the costs output. RERT marks
the relative error of the response times. Due to space limitations, we only provide
the plots for the CPU utilization. For comparing whole runs, we introduce the
overall relative error (OverallRE) which is the arithmetical mean of the four
former described relative errors. The OverallRE should remain below 30 % to
have results that are sufficiently accurate [8].

4.2 C1: Case Study Using Single Core Instances

Goal. Our goal for this case study is to show that our CloudSim enhancements
are valid by simulating a conducted run, that used single core instances.

Experimental Setting. The workload intensity function that is used in the case
study origins from a service provider for digital photos. It represents a day-night-
cycle workload that’s pattern can be considered typical for regional websites. It
starts with a few requests at night and increases in the morning. Then, it peaks
at about 3,500 requests per minute in hour 10 and slowly decreases to about
3,000 requests per minute at noon. Afterwards, there is a second peak in hour
20 with about 5,800 requests per minute which decreases until midnight.

4 http://sf.net/projects/ibatisjpetstore/, last accessed 2012-06-29.

http://sf.net/projects/ibatisjpetstore/

Enhancing the Cloud Simulator CloudSim 205

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(a) Measured CPU utilization

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(b) Simulated CPU utilization

Fig. 1. Average CPU utilization of allocated nodes

The simulation takes place on the basis of a workload from a run that was
conducted on Amazon EC2 incorporating m1.small instances. The adaptation
strategy is 90 % CPU utilization for starting a new instance and 10 % CPU
utilization for terminating a running instance. The run starts with one instance,
which will not be terminated.

Results. Fig. 1 shows the average CPU utilization of the allocated nodes. In
Fig. 1(a), the measured CPU utilization on Amazon EC2 and in Fig. 1(b) the
simulated CPU utilization by CDOSim are presented. Over time, the instance
count in the simulation and the conducted run is approximately equal. The CPU
utilization is also roughly equal except from the beginning to hour 6. In this time
period, the simulated CPU utilization differs by an offset of about 10 %.

The relative error for the CPU utilization is RECPU = 30.64 %. The average
difference per minute is 12.04 % CPU utilization. The relative error of the in-
stance count is REIC = 1.32 %. The overall difference of the instance minutes
amounts to 28 instance minutes. The incurred costs account for 6.745$ for the
Amazon EC2 run. The simulation costs result in 7.125$, which is RECosts =
5.63 %. The relative error for the response times is RERT = 37.57 %. The av-
erage difference per minute is 120.29 milliseconds. The overall relative error for
this scenario amounts to OverallRE = 18.79 %.

Discussion of the Results. The relative error for the CPU utilization is 30.64 %
which we attribute mainly to the differences from hour 1 to hour 6 which most
probably resulted from the performance variations of m1.small instances on
Amazon EC2 [3]. The relative error of 1.32 % for the instance count shows
that the number of instances that were utilized in the conducted run can be
sufficiently well reproduced. The relative error of 5.63 % for the costs is also
low and shows that the corresponding reproduction is sufficiently accurate. The
relative error for the response times is 37.57 %. We attribute this rather high
value to the high response times that were simulated in hour 20 [3]. The overall
relative error of 18.79 % is below our 30 % threshold and thus, we conclude that
the simulation sufficiently well reproduces the conducted run in total.

206 F. Fittkau, S. Frey, and W. Hasselbring

Threats to Validity. The performance of the instances can differ with the location
where the VM instances are spawned in a public cloud. The performance can
also be influenced by the workload intensity which might have changed during
the run on the executing host. We cannot control these factors and thus, they
stay as a threat to validity.

5 Related Work

GroudSim is a tool for simulating clouds environments. It was developed by
Ostermann et al. [10] and supports the simulation of clouds and grids. The
equivalent to Cloudlets in CloudSim are GroudJobs in GroudSim. Failures of
different components can be defined in GroudSim. They are then generated in
a defined interval for a specific registered resource. In contrast to CloudSim,
GroudSim is not under active development.

Another cloud simulator is MDCSim [7]. It is especially designed for in-depth
analysis of multi-tier data centers and can estimate the throughput, response
times, and power consumption. In contrast to CloudSim, its simulation is config-
ured into three layers, namely a communication layer, kernel layer, and user-level
layer for modeling the different aspects of a cloud.

GreenCloud [6], which is an extension to the network simulator Ns2, enables
the simulation of energy-aware cloud computing data centers. It is designed for
the simulation of detailed energy consumption of data center components like
servers, switches, and links, and packet-level communication patterns. On the
contrary, CDOSim focuses on the cloud user perspective which often has no
knowledge about the internal components of a data center.

Nuñez et al. [9] developed the simulation platform iCanCloud for modeling
and simulating cloud computing architectures. It bases on the SIMCAN simula-
tion framework and can predict the trade-off between costs and performance of
a particular application in a specific cloud environment and configuration. Ex-
isting software systems can only be modeled manually with iCanCloud, whereas
CDOSim utilizes KDM models that can often be extracted automatically.

6 Conclusion and Future Work

A wide range of different cloud deployment options (CDOs) has to be assessed
by a cloud user during a cloud migration. Basic CDOs are the selection of a
cloud provider, suitable VM instance types, and runtime adaptation strategies,
for instance. Due to the infeasibility of manually testing all CDOs, the best ratio
between high performance and low costs can be found by utilizing simulators like
CloudSim. CloudSim is a very useful toolkit for simulating cloud environments.
It follows the cloud provider perspective but it lacks support for the cloud user
view, which restrains the possibilities to simulate CDOs.

Therefore, this paper presented our enhancements to CloudSim that establish
a cloud user perspective for simulating CDOs with our developed tool named
CDOSim. We presented a case study that utilizes the public cloud provider

Enhancing the Cloud Simulator CloudSim 207

Amazon EC2. It showed that the simulation results that were produced by in-
corporating our CloudSim enhancements are reasonably near to the conducted
run concerning accruing costs and performance on Amazon EC2.

Most future work lies in further adaptations to CloudSim. For enabling effi-
cient automatic CDO optimization support that requires plenty of simulations,
CloudSim should be extended to support parallel simulations.

References

[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A.,
Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds:
A Berkeley View of Cloud Computing. Tech. Rep. UCB/EECS-2009-28, EECS
Department, University of California, Berkeley (February 2009)

[2] Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
CloudSim: a toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms. Software: Practice and
Experience 41, 23–50 (2011)

[3] Fittkau, F.: Simulating Cloud Deployment Options for Software Migration Sup-
port. Master’s thesis, Software Engineering Group, University of Kiel, Kiel, Ger-
many (March 2012)

[4] Frey, S., Hasselbring, W., Schnoor, B.: Automatic Conformance Checking for
Migrating Software Systems to Cloud Infrastructures and Platforms. Jour-
nal of Software Maintenance and Evolution: Research and Practice (2012),
doi:10.1002/smr.582

[5] Grundy, J., Kaefer, G., Keong, J., Liu, A.: Guest Editors’ Introduction: Software
Engineering for the Cloud. IEEE Software 29, 26–29 (2012)

[6] Kliazovich, D., Bouvry, P., Khan, S.: GreenCloud: a packet-level simulator of
energy-aware cloud computing data centers. The Journal of Supercomputing,
1–21 (2010), doi:10.1007/s11227-010-0504-1

[7] Lim, S.H., Sharma, B., Nam, G., Kim, E.K., Das, C.: MDCSim: A multi-tier
data center simulation, platform. In: IEEE International Conference on Cluster
Computing and Workshops 2009, pp. 1–9 (August 2009)

[8] Menasce, D.A., Almeida, V.A.F.: Capacity Planning for Web Services: Metrics,
Models, and Methods. Prentice Hall International (September 2001)

[9] Nuñez, A., Vázquez-Poletti, J.L., Caminero, A.C., Carretero, J., Llorente, I.M.:
Design of a New Cloud Computing Simulation Platform. In: Murgante, B., Ger-
vasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part III.
LNCS, vol. 6784, pp. 582–593. Springer, Heidelberg (2011)

[10] Ostermann, S., Plankensteiner, K., Prodan, R., Fahringer, T.: GroudSim: An
Event-Based Simulation Framework for Computational Grids and Clouds. In:
Guarracino, M.R., Vivien, F., Träff, J.L., Cannatoro, M., Danelutto, M., Hast,
A., Perla, F., Knüpfer, A., Di Martino, B., Alexander, M. (eds.) Euro-Par- 2010
Workshop. LNCS, vol. 6586, pp. 305–313. Springer, Heidelberg (2011)

PaaSSOA: An Open PaaS Architecture

for Service Oriented Applications

Claudio Guidi1, Paolo Anedda2, and Tullio Vardanega1

1 Department of Mathematics, University of Padova, Italy
{cguidi,tullio.vardanega}@math.unipd.it
2 CRS4, Technology Park, Pula (CA), Italy

paolo.anedda@crs4.it

Abstract. In this paper we present PaaSSOA, our vision for a next-
generation PaaS layer intended for openness and federation for the sup-
port of service oriented applications in the Cloud. PaaSSOA provides for
the design of service oriented applications into the Cloud. Its architecture
follows a service oriented design style and facilitates interoperation be-
tween the PaaS and possibly heterogeneous IaaS layers. We describe the
architecture of PaaSSOA and present the early results we have obtained
from a first prototype implementation.

1 Introduction

In the context of the Cloud Computing paradigm, the Platform-as-a-Service
(PaaS) layer operates as the connection tier between the Infrastructure-as-a-
Service (IaaS) layer, where the computing, the storage and the networking in-
frastructures are multiplexed among the users through the use of virtualization
technologies, and the Software-as-a-Service (SaaS) layer, where applications be-
come available to the user. The PaaS provides all the functionalities required for
the development, the deployment and the monitoring of services as seen from the
standpoint of the SaaS. The PaaS also governs the resource requests that must
be made to the underlying IaaS to meet the service level agreements separately
defined at both the SaaS and the IaaS levels: the former between the user and
the application provider; the latter between the application provider and the
infrastructure owner.

The concept we present here is named PaaSSOA and it follows from work we
started in [1]. PaaSSOA aims at establishing a proof-of-concept initial model,
equipped with a prototype, for facilitating the development and the standardiza-
tion of PaaS frameworks by capturing the main functions which characterize the
Cloud from the PaaS perspective and the interactions the PaaS has to have with
the two adjacent levels in the Cloud SPI stack. The use of a Service Oriented Ar-
chitecture for designing a reference model for the PaaS has two main advantages:
on the one hand, it allows for a standard and well-defined separation between
PaaS and IaaS and between PaaS and SaaS; on the other hand it also guaran-
tees high flexibility, adaptability and modularity within the PaaS itself, which

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 208–209, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

PaaSSOA: An Open PaaS Architecture 209

are very desirable qualities. The architecture of PaaSSOA is built upon some
basic blocks that supply the basic services the PaaS level should provide. Tools
offer the web production tools classically available for SaaS development; Func-
tions provide the core resource management functionalities, such as for example
monitoring and Service Level Agreement (SLA) negotiation; SaaS Gateway is in
charge of publishing the deployed service for exploitation in the end-user space;
and PaaS Gateway deals with PaaS federation. Finally, the Service Container
block is in charge of hosting all the services deployed within PaaSSOA. The
hosting task is achieved by means of a service called SOABoot which is executed
in each Virtual Machine provided by the IaaS and it is able to receive service
description and execute them.

2 PaaSSOA

Figure 1 depicts a representation of the layers needed for integrating PaaSSOA
with the IaaS. Such an architecture is a fundamental facilitator to providing,
at the level of the PaaS, the needed abstraction for managing services as basic
resources without having to negotiate with the bare machines on which they
will be run. Such an abstraction is obtained by means of two layers: the vir-
tual machines and the SOABoot. As usual, the former is provided by the IaaS,
whereas the latter is a specialized service, unique to PaaSSOA, which starts at
the boot of every individual virtual machine and it is able to receive services to
be deployed and executed.

Fig. 1. PaaSSOA resources. Virtual machines (VM) are supplied by the IaaS layers,
whereas SOABoots are PaaSSOA components executing services S1, S2, S3, ..., Sn.

Reference

1. Guidi, C., Anedda, P., Vardanega, T.: Towards a new paas architecture generation.
In: CLOSER 2012 - Proceedings of the 2nd International Conference on Cloud Com-
puting and Services Science, Porto, Portugal, April 18-21, pp. 279–282. ScitePress
(2012)

Context Mediation as a Linked Service

Pierre De Vettor1, Michael Mrissa1, and Carlos Pedrinaci2

1 CNRS, Université de Lyon
LIRIS UMR5205, Université Lyon 1,

69622 Villeurbanne
pierre.de-vettor@etu.univ-lyon1.fr

2 Knowledge Media Institute, The Open University,
Milton Keynes, MK7 6AA, UK

Background and Motivation. The past few years have seen important
advances in the domain of Semantic Web Services (SWS), especially in data
mediation. Most work in the area has focused on the semantic alignement of in-
put/output concepts at design time, and on schema-level integration [1]. Correct
communication is not guaranteed even when two services are connected to each
other with compatible input/output concepts. Indeed, conceptually compatible
data may not be usable when data representation and scaling conflicts occur. To
address this problem, which we refered to as the contextual heterogeneity prob-
lem, we rely on the Minimal Service Model [2] and operate with Linked Services
as SWS that offer explicit semantics. In this paper, we present our Mediation as
a Service (MaaS) architecture and demonstrate its applicability with a running
scenario and a prototype.

Mediation as a Service. The overall idea of this paper is to provide an ar-
chitecture, accessible as a service and that enables on-the-fly mediation over
compatible services based on the automated discovery and injection of media-
tion services at runtime, i.e. services able to convert data from one context to
an other, at runtime. Such an architecture requires, at design time, (1) to pro-
vide enough semantic information to make data interpretation explicit, and at
runtime, (2) to identify data that could be subject to diverging interpretations
and (3) to trigger mediation mechanisms to perform data transformation. We
rely on semantic descriptions of services, expressed with the MSM model associ-
ated with the Quantities, Units, Dimensions and Data Types ontologies1. These
semantic annotations bring us means to formally describe exchanged data and
their contextual sensitivity, but also to add information concerning any addi-
tional restrictions about the data to be exchanged. We attach input and output
data (Message Parts) of our services to concepts of our domain ontology (e.g.
Price) and to sets of meta-attributes that represent their contextual sensitivity
(e.g. currency unit, VAT rate, etc.).

Fig. 1 illustrates the operational steps of our architecture with a purchase or-
der scenario. We consider a user, who wants to buy products from Moon via the

1 http://www.qudt.org/

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 210–211, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.qudt.org/

Context Mediation as a Linked Service 211

Fig. 1. Our MaaS architecture

Blue seller service. Our MaaS architecture builds around a service called Work-
flow Execution Service (WES), which takes as input a workflow representation
and the input data required for the composition (step 1). The WES handles
runtime analysis of the data exchanged and their contextual sensitivity in order
to detect context heterogeneity issues (step 2). For each data flow of the com-
position, it extracts contextual information from the descriptions of involved
services. Between each service execution (steps 3, 5 and 7), if the contextual
information presents an incompatibility, the WES generates discovery queries at
runtime to find services that can alleviate these incompatibilities. These queries
are send to the iServe2 platform, a Linked Service warehouse, which returns the
most relevant service to perform the mediation task, e.g. unit conversion service
(steps 4 & 6). This service is transparently injected within the workflow.

Discussion. In this paper, we define an architecture for Mediation as a Service
(MaaS). Our system provides a way to automatically interconnect services that
are compatible and to perform context-based data mediation at runtime. Our
approach benefits from the respect of the service-oriented paradigm (promoting
loose coupling, service reuse and composition), through the design of a Medi-
ation as a Service architecture available as a generic Linked Service interface,
the independence from workflow languages and the use of standard service de-
scription for semantic annotation. In our architecture, the WES automatically
generates discovery queries when detecting contextual heterogeneity. This could
serve as a basis for a truly generic and extensible infrastructure for solving run-
time mediation problems.

References

1. Nagarajan, M., Verma, K., Sheth, A.P., Miller, J., Lathem, J.: Semantic interoper-
ability of web services - challenges and experiences. In: ICWS, pp. 373–382. IEEE
Computer Society (2006)

2. Pedrinaci, C., Domingue, J.: Toward the Next Wave of Services: Linked Services for
the Web of Data. Journal of Universal Computer Science 16(13), 1694–1719 (2010)

2 http://iserve.kmi.open.ac.uk/

http://iserve.kmi.open.ac.uk/

User-Customisable Policy Monitoring

for Multi-tenant Cloud Architectures

Ming-Xue Wang and Claus Pahl

School of Computing, Dublin City University
Dublin, Ireland

{mwang,cpahl}@computing.dcu.ie

Abstract. Cloud computing needs end-user customisation and person-
alisation of multi-tenant cloud service offerings. Particularly, QoS and
governance policy management and monitoring is needed. We propose a
user-customisable policy definition solution that can be enforced in multi-
tenant cloud offerings through automated instrumentation and monitor-
ing. Service processes run by cloud and SaaS providers can be made
policy-aware in a transparent way.

Keywords: Cloud architecture, Policy customisation, Monitoring.

1 Introduction

Cloud customers should to be allowed to better control and customise cloud
offerings through specific management interfaces. This is a multi-tenancy envi-
ronment where users have varying requirements [1]. Governance and QoS issues
are concerns usually split between provider and user. This requires a monitor-
ing and enforcement platform, where these policies can be configured. Two key
objectives of our policy definition, instrumentation and monitoring solution can
be singled out. Firstly, user-configured policy management for multi-tenancy al-
lows end-user customisable cloud computing. Secondly, our process-level policy
management works not only for service-level offerings, but also for process-level
architectures, where the provider implements an offered service as a process
(cloud prosumers that provide service mashups).

2 Overview of the Framework

Our framework for user-controlled management of policies in multi-tenancy cloud
provisionings facilitates the (self-)management (specification and monitoring) of
cloud resources in order to optimise usage (the provider perspective) based on
monitoring compliancy and to ensure SLA compliance (the user perspective)
based on monitoring policies [2]. Our assumption for the service-level solution
is that services processes (rather than individual services) are enacted by SaaS
providers or users. These are customer policy-enhanced provider processes or
customer processes which are customer policy-enhanced.

A management scalability problem for multi-tenancy applications arises if dif-
ferent users have different requirements [1,3]. A configurable policy monitoring

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 212–213, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

User-Customisable Policy Monitoring for Multi-tenant Cloud Architectures 213

technique is the proposed solution [2,4]. Customisation of policy management
requires a fine-granular multi-tenancy model, where end users can configure and
enact (remotely) their specific requirements. Two types of interfaces in cloud
applications exist that are internally enacted through service proceses: the up-
load and management of resources, which can be executed by a provider BPEL
process, and functionality that the application uses as a process (the cloud acts
as middleware). Policy monitoring is a customer service.

– A policy model allow users to specify dynamic quality and governance require-
ments.Weuse rule-based contextmodelling for policies to capture user-specific
requirements and settings [5]. We have implemented user-side components for
policy customisation, instrumentation, monitoring and validation.

– A policy coordination and instrumentation software tool that instruments
cloud services at process level with the user policies for governance and
QoS monitoring [6,7]. For the process view, mashups (composition) need to
address composition of functionality as well as composition of quality aspects
and their respective policy specifications. Monitoring provides feedback for
policy customisation - implemented as a listener service for the process.

References

1. Mietzner, R., Unger, T., Titze, R., Leymann, F.: Combining different multi-tenancy
patterns in service-oriented applications. In: Intl. Enterprise Distributed Object
Computing Conf. (2009)

2. Wang, M.X., Bandara, K.Y., Pahl, C.: Integrated constraint violation handling for
dynamic service composition. In: Intl. Conf. on Services Computing (2009)

3. Erradi, A., Maheshwari, P., Tosic, V.: Policy-Driven Middleware for Self-adaptation
of Web Services Compositions. In: van Steen, M., Henning, M. (eds.) Middleware
2006. LNCS, vol. 4290, pp. 62–80. Springer, Heidelberg (2006)

4. Zeng, L., Lei, H., Jeng, J.J., Chung, J.Y., Benatallah, B.: Policy-driven exception-
management for composite web services. In: Intl. Conf. E-Comm Tech. (2005)

5. Pahl, C., Zhu, Y.: A Semantical Framework for the Orchestration and Choreogra-
phy of Web Services. In: International Workshop on Web Languages and Formal
Methods, WLFM 2005. ENTCS (2005)

6. Wu, Y., Doshi, P.: Making bpel flexible and adapting in the context of coordination
constraints using ws-bpel. In: Intl. Conf. on Services Computing (2008)

7. Pahl, C.: A Formal Composition and Interaction Model for a Web Component Plat-
form. In: Workshop on Formal Methods and Component Interaction, FMCI 2002
(2002)

Enabling Co-browsing Service

across Different Browsers and Devices

Bin Cheng, Sachin Agarwal, and Daniele Abbadessa

NEC Laboratories Europe, Heidelberg, Germany

Abstract. Co-browsing allows several users at different places to surf the
same content from the Internet at the same time. It has been widely used
in many user scenarios, for example, co-shopping with social friends or as-
sisted customer care services. To enable such a service, some recent stud-
ies propose a web-enabled approach where browser plugins/extensions or
third-party software are no longer required. However, those existing stud-
ies do not consider the diversities of browsers/devices and fail to deal with
personalized web pages. With a special focus on these issues, this paper
presents the detailed design and implementation of our web-enabled co-
browsing system, namely CoSurfen. Some important strategies for
web-based co-browsing are first discussed, for instance, cookie mapping,
event-loop detection, event reduction, and page transition. Using these
strategies, CoSurfen is able to provide an efficient web-based co-browsing
service across different browsers and devices. Our initial evalutation re-
sults demonstrate its scalability, efficiency, and usability. Based on the
current design, CoSurfen can be also extended to provide a cloud-based
co-browsing service.

1 Introduction

Co-browsing enables two or more users at different locations to browse the same
web page at the same time. It allows any user to see what the other participants
are doing on the same web page in nearly real-time. With these features, co-
browsing service can be used in many scenarios. For instance, Internet service
providers can use it for effective customer support. Also, Internet users can
use it for online shopping with their friends so that they can easily get some
opinions and recommendations from their friends about which product to buy.
Co-browsing facilitates great collaboration and communication for many Internet
applications.

Early co-browsing systems were software-enabled, usually requiring all users
to install some client software or browser plugin/extensions before the users can
start to cobrowse a web page with others. For example, MSN Messenger and
GoToMyPC [2] support co-browsing, but they require the users to first install
a client software. In reality, there are lots of barriers for users to use such a
software-enabled co-browsing. First, it requires the installation of some software,
either an native application or a browser extension. The new software installation
takes some time and might cause some software installation issues. Second, the

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 214–229, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Enabling Co-browsing Service across Different Browsers and Devices 215

users might have security concerns about the installed software, because of its
possibility to perform malicious actions to the user’s local machine after the
installation.

With recent technology, we are able to provide co-browsing as a pure web-
enabled service. That means, in order to use the co-browsing service, users do
not need to install any software except a normal browser, which is usually pre-
installed. This way to use co-browsing is also quite straightforward and secure.
Whenever the users want to establish a co-browsing session for a web page, they
just need to copy the URL of the page and click some buttons. By integrating
with existing online social networks like Facebook, the co-browsing service allows
the users to invite their trusted online friends to join the established session. As
a web service, co-browsing is executed in an isolated environment provided by
the browser. Under the security policy constraints of the browser, no damage
to the user’s local computer is possible by the co-browsing service. With all of
these features, our web-enabled co-browsing can be a convenient cloud service
for the users to use across different browsers and devices.

Web-enabled co-browsing is desirable to the users, but it is quite challenging
to implement due to the following facts.

– First, existing devices are highly diversified in terms of performance capac-
ity and properties. For instance, PCs, tablet, and smartphones are different
types of devices and they have completely different screen sizes and compu-
tation power. The same web page could have different loading times and con-
tent layout on these devices. This affects synchronization during co-browsing.
Also, major browsers are not standardized and they may have different in-
terfaces for the same functionality. We have to deal with this compatibility
issue of browsers, because co-browsing is supposed to work on all these en-
vironments in real-time and in a synchronized manner. Dealing with the
diversity across browsers and devices is the big challenge for web-enabled
co-browsing.

– Second, the content of some web pages can be highly personalized and dy-
namic, especially for online shopping web sites. Currently, browser cookies
are commonly used to identify individual users for showing them person-
alized content accordingly. However, co-browsing is supposed to show the
same content to several different users in the same session. To deal with the
personalized and dynamic web pages without any change to the user browser
and the original web site is another challenge.

Our experience shows that these issues are important for designing and deploying
a practical web-enabled co-browsing system. Although previous studies propose
some approaches to web-enabled co-browsing, none of them focus on the issues
mentioned above. To solve these issues is challenging; it requires a deep un-
derstanding on how the browsers work and a broad knowledge background of
contemporary web technologies, like HTML5 [3], CSS, jQuery, and JavaScript. In
this paper, we present methods to tackle these challenging issues and share our
experience of designing and implementing an efficient web-enabled co-browsing
service across different browsers and devices.

216 B. Cheng, S. Agarwal, and D. Abbadessa

2 Design

2.1 Architecture

As shown in Fig. 1, the whole co-browsing system consists of three components:
web proxy, cobrowser modules, and event coordinator.

Origin Web Sites

Web

Proxy

Event

Coordinator

Cobrowser

Module

Cobrowser

ModuleUser A User B

text/html

embedded external objects, like image, video, css

web pages

DOM events

session creation

page content

web browser

Fig. 1. Architecture of our co-browsing system

Web proxy works as a web server to provide a HTTP-based interface for the
user to create a co-browsing session for any given web page. Once the session
is established, web proxy will return a new URL with the generated session ID
to the user and also notify the event coordinator to be ready to receive and
propagate user events for this co-browsing session. By requesting the URL with
the session ID, users can join the session and fetch the web page that they want
to cobrowse with others. On receiving the requests from the users, the web proxy
starts to fetch the web pages from the original web site, injects the code of the
cobrowser module into the pages, and then forwards these pages to the users.

A cobrowser module is a JavaScript library running within the user browsers.
Whenever a user performs any operation on the web page and triggers events
such as mouse move, click, or page scroll, the embedded cobrowser modules cap-
ture the events, propagate them to the other users’ cobrowser modules through
the event coordinator, and also replay any events received from the event coor-
dinator.

The event coordinator is responsible for managing all the co-browsing sessions
and the associated users, ordering the received events and propagating them to
the users in the same session. In addition, in order to facilitate user communica-
tion, text-based chatting is also supported in our co-browsing service. Therefore,
the event coordinator also provides instant messaging functionality.

Enabling Co-browsing Service across Different Browsers and Devices 217

In our co-browsing service, all participants in the same session are the con-
trollers being allowed to make some changes to the current web page, either by
moving the mouse or by highlighting some lines of text on the page. We are try-
ing to synchronize the activities from all participants in nearly real time so that
we can ensure that everybody in the same session can see the same thing when
they are using different devices and different browsers. In the following sections,
we discuss the detailed challenges and explain our solutions toward achieving an
efficient and scalable co-browsing service.

2.2 Web Proxy

In order to inject some code into the web page that the users are about to
cobrowse with others, we have to let the users send their HTTP requests to our
web proxy first. To do so, we cannot expect the users to change their browsers’
proxy configurations, because in that case all HTTP requests from the user’s
browser will be forwarded to our web proxy, no matter whether they wish to use
the co-browsing service or not. Also, this violates our design goal that no changes
are required from the users. Therefore, we design the following mechanism for
users to fetch the content of the cobrowsed web pages.

Fig. 2 gives a concrete example to illustrate the HTTP request timeline
when the first user establishes the co-browsing session and starts to cobrowse
www.abc.com. First, the first user sends the web proxy a HTTP request A, which
contains a ‘create’ command and the specified page URL. Then the web proxy
returns a unique session ID (SID) to the user. Using this SID, the user generates
a ‘join’ request B and sends it to the web proxy to join the session. After that,
the web proxy will reply the user’s browser with a new cookie, which contains the
SID and a unique peer ID (PID), and then redirect it to another HTTP request
C. The unique PID is assigned by the web proxy to identify each participant in
the same session. After the cookie is set up, all of the requests from the user

Fig. 2. Workflow to establish a session and join the session

218 B. Cheng, S. Agarwal, and D. Abbadessa

side will automatically attach this cookie so that the web proxy and the event
coordinator can identify which session and which user the requests are coming
from. On receiving the request C with a separator keyword ‘cproxy’, the web
proxy will extract the real URL D of the cobrowsed web page and start to fetch
its content from the origin web site. After the content returns, the web proxy
will inject the code of the cobrowser module into it and then send the modified
content to the user. Therefore, what the user receives is the slightly modified
web page embedded with our cobrowser module.

As we see in Fig. 2, the first user automatically joins the co-browsing session
right after he/she creates the session. To join the established session, a user just
needs to open the session URL, which contains the corresponding session ID
like the request B. After that, the underlying process of joining the session is
the same for every participant. To be convenient for sharing the session URL
to other participants, our system integrates with the existing social network
Facebook. Therefore, the first user can send out the session URL to any online
friends through Facebook. For the users on mobile devices, they can also join
the session by scanning a QR-code associated with the session URL.

Request Bypassing. Notice that, for the user’s browser, the HTML document
of the requested page comes from the web proxy at the domain of ‘cobrowse.com’.
So the absolute location of any embedded objects with a relative path will be
referred to this domain name. However, to get the right location of these em-
bedded objects, we should refer to the real URL of the web page, which points
to the origin web site. The solution to this problem is to add a ‘<base>’ tag
into the header part of the web page, as the web proxy injects some code into
this web page. The added ‘<base>’ tag can specify the right base URL for all
relative URLs in this web page so that the web proxy can reconstruct the real
URL and fetch the page content from the original web site. In addition, the em-
bedded objects could be images, videos, CSS files, JS files, XMLHTTPRequest,
or iframes. For static image or video objects we do not need to modify them. As
the requests E and F in Fig. 2 illustrate, the web proxy will detect this kind of
requests and redirect them to the original web site so that we can largely offload
the traffic overhead of the web proxy.

Cookie Mapping. When the web proxy fetches the web page from the origin
web site, the returned HTTP response might contain some cookies used by the
origin web site for identifying the user and recording the context of user be-
haviors. To cobrowse the web sites with personalized and dynamic web pages,
e.g. amazon.com, this returned cookie needs to be shared among the partici-
pants. Otherwise, the participants might not see the same content even through
the page URL is the same for them. If the web proxy just passes the response
over to the user browser, the browser will not accept those cookies, because the
cookies are bound to the original web site, instead of the web proxy’s domain.
Our solution is to let the web proxy create a table to remember the mapping
between the cookies and the origin web sites. Whenever the web proxy receives

Enabling Co-browsing Service across Different Browsers and Devices 219

a request from the user, it can ascertain the right cookie from the table to com-
municate with the original web site. In addition, the following two observations
are important to make this solution work correctly. First, the web proxy needs
to send the received cookies to the user browser. That is because in some cases
the JavaScript code within the cobrowsed web page refers to the cookies for
generating the subsequent HTTP requests or URL links. Second, the web proxy
needs to send the entire cookie table to the newly-joined users so that they can
catch up with the current status of the co-browsing session.

Page Caching. Whenever one of the users in the same session triggers a new
HTTP request, the event will be propagated to all others. They are all going
to request the same web page simultaneously. In this case, caching the received
page on the web proxy can avoid repeatedly fetching the same web page from
the original web site in a short period time. This way we can not only guarantee
that the users in the same session can see the same content from the same click,
but also reduce the overhead of the web proxy.

To maintain this page cache, an important question is how to determine the
lifetime of each page. In the page cache, each page is identified by its original
page URL plus the related co-browsing session ID. In the same session, the
requests to the same original page URL might lead to different contents from
the original web site when the requests are generated at different time or in
different contexts. Therefore, we cannot simply keep the received page until the
co-browsing session ends. For the received page from the original web site, the
‘Cache-Control’ header in its HTTP response specifies whether the web page
is cacheable and how long we can cache it. If ‘Cache-Control’ is ‘private’, that
means this page is not supported to be cached. But in our case, to cache it for a
short period time is still meaningful in order to serve simultaneous requests from
all participants. In our implementation, the lifetime of a non-cacheable object is
5s. For theose cacheable objects, we remove them from the page cache after the
session ends.

2.3 Cobrowser Module

A cobrowser module is a pure JavaScript code file, injected into the requested
page by the web proxy and loaded by the user browser. When the page docu-
ment is ready, the whole page might be not fully loaded because the browser
is still requesting the external objects, such as images and iframe documents.
However, as soon as the page document is ready and its elements are displayed,
the user will be able to do some operations, like click a URL or move the mouse.
Those operations should be synchronized. Therefore we should start our co-
browse module before the page is presented to the user. Currently the cobrowser
module is bound with the ‘ready’ event of the document, which guarantees that
the cobrowser module can start to work once the document is ready.

To synchronize the user operations associated with any element in the web
page, we need a way for anybody in the same session to uniquely identify the

220 B. Cheng, S. Agarwal, and D. Abbadessa

element. There are two methods to do this. The first method is to assign a unique
ID to each element in the document. The second method is to use the route path
of each element in the document. The route path is an array to record which
child node we will choose to reach the destination element, starting from the root
element of the document. The first method is more efficient than the second one
because because it is faster and causes less network traffic. In our design we use
both methods, but the second method is used only when the targeted element
has no assigned ID, for example text elements or the newly-created dynamic
elements.

URL Modification. When a user clicks some elements in the current page, like
URLs or buttons, a HTTP request could be triggered to open a new page. To
continue to synchronize user behaviors, we should inject our co-browser module
into the new page as well. Therefore, to ensure that the HTTP request goes to
our web proxy, we need modify some properties of those elements before the
request is triggered. For example, we change the ‘href ’ or ‘action’ properties of
<a>, <button>, <area>, and <form> to make them refer to the domain of
the web proxy. Opening more than one documents for users at the same time
can cause some confusion to the users. That is because, if two users stay on two
different current web pages, they can not see the interactions from each other.
To avoid this, we also change the ‘target ’ property of each elements.

Event Capture and Reply. According to the framework behind modern web
browsers, user operations associated the web page are first captured by the
browser UI interface and then generate the UI events. These events are given
to the JavaScript Engine to update the DOM tree and further affect what we
see on the page. By synchronizing the events, we should be able to synchronize
what users can see in the same co-browsing session. There are a set of events
which can affect the content shown to the user on his device screen. To be able
to replay these events within the other user browsers, we need to capture the
required information for each event in the first place.

To be more efficient, we divide the events into two types: synchronous events
and asynchronous events. For synchronous events, we have to hijack them first
and then send them to the event coordinator for a centralized ordering, and
finally the event coordinator broadcasts them to anyone in the same session,
including the user who triggers this event. Thereafter, the synchronous events
can be replayed by all users in the same order without inconsistency. For example,
the click event to open a new page or typing event belongs to synchronous events.
For asynchronous events, we capture them and propagate them to others through
the event coordinator. But unlike synchronous events, we will immediately give
the captured asynchronous events to the local browser right after we send them
out to the event coordinator. Therefore, the propagation of asynchronous events
causes nearly no delay to the current user. For example, mousemove, the most
frequent event, is an asynchronous event. This design choice leads to much better
user experience.

Enabling Co-browsing Service across Different Browsers and Devices 221

Fig. 3. Method to avoid event-looping

Event-Looping Detection. There is an event-looping issue when we distribute
the synchronous events. As Fig. 3 shows, when the event replayer receives a syn-
chronous event message from the event coordinator through the event receiver,
it will simulate the related event and give it to the JavaScript Engine. Then the
JavaScript Engine will trigger the event capturer to propagate the same event
again, therefore forming a loop. We propose two methods to avoid this event-
looping for different type of events. For some synchronous event like clicks or
keyboard typing, we are able to call the browser’s APIs to create a new event
object to simulate it. This new event object goes to the event capturer through
the JavaScript Engine. When we create the new event object, we will attach
a flag property to it. By checking whether the captured event object has this
flag property, the event capture can determine whether the event object is from
the event replayer. If the event has this flag property, the event capturer will
discard it. Unfortunately, for some event like page scrolling, modern browsers
do not provide an interface for us to directly create the related event object.
But we are able to call some function to generate the same effect. In this case,
we come up with the second method to solve this problem. We set up a queue
between the event replayer and the event capturer. The queue saves the received
synchronous event messages. By comparing the captured event to the recorded
event messages in the queue, the event capturer can judge whether it needs to
discard this event to avoid event-looping.

Relative Positioning. The users might join the co-browsing session from dif-
ferent devices with different screen sizes or different resolutions. Given the same
HTML document from the web proxy, the page layout might be much different
on different devices, because some of the elements with relative positioning prop-
erty in the web page change their position according to the window size and the
screen resolution. In this case, using the direct position property to synchronize
the mousemove events can result in a completely wrong position on the other
users’ screens. To solve the problem above, we use a relative positioning strategy
to calculate the position of the mouse. Here is how it works. A mouse event has
two properties, clientX and clientY, which are relative to the upper-left corner
of the window. Its target element has the OffsetParent property, which repre-
sents the offset position of the current element relative to its parent element.

222 B. Cheng, S. Agarwal, and D. Abbadessa

These three properties are widely supported by all major browsers. By going
through the offsetParent property from the target element of a mouse event to
the root element, we can calculate the offset of the target element relative to the
current page, denoted as (oX,oY). Then we can further calculate the offset of
the mouse event relative to its target element, denoted as (RX, RY) = (clientX
- oX, clientY - oY). When the other participants receive RX and RY, they can
derive the position of the mouse on their own screens based on the offset of the
local target element associated with this mouse event.

2.4 Event Coordinator

The event coordinator manages all of the co-browsing sessions. As Fig. 4 shows,
within each session, we use three major objects, page, connection, and user, to
manage its web pages, data connections, and participants respectively. As the
users continue to cobrowse, a number of web pages are opened in the same ses-
sion. In some case, the opened main page might contain an embedded sub-page,
e.g. the inline iframe showing some advertisement. This means two pages could
be active at the same time in the same session. To establish the data communi-
cation between the cobrowse module and the event coordinator, a bidirectional
connection is created for each opened page, including the main page and the em-
bedded sub-page. Currently, this bidirectional connection can be implemented
based on the existing technologies, like XHR or websocket. According to our pre-
vious measurement study, XHR is more widely supported by modern browsers
but less efficient as compared to websocket. In our implementation, we prefer to
use websocket if the user’s browser can support it. As the users open web pages
from one to another, a new connection is created and the old connection is dis-
closed, which further trigger the related page objects to be created or discarded.
Also, the event coordinator maintains a user list for each session to adapt to
the joining of the new users and the leaving of the existing ones. Several timers
are also set up to check the health of these objects. In addition, the event co-
ordinator handles synchronous events and asynchronous events differently. For
synchronous events, it will send them to every user on the same page, including
the one that generates the event. For asynchronous events, it will just send them
to all the other users on the same page.

Fig. 4. Session management on the event
coordinator

Fig. 5. An example to illustrate page
transition

Enabling Co-browsing Service across Different Browsers and Devices 223

Page Transition. As the users cobrowse, the current web page is changed
from one to another. Each change is called a page transition. Several events can
fire a page transition, for example, clicking some URL, submitting a form, or
clicking the forward or backward button of the browser. The cobrowse module
can capture most of these events and further synchronize them, but it has no way
to capture the forward or backward event of the browser. When the users click
the forward, backward, or refresh button of the browse, a new HTTP request
will be directly issued by the browser and the data connection between the
cobrowse module and the event coordinator must be reestablished. This poses
two challenges. First, how can we synchronize this type of event? Because of
the security concerns, modern browsers do not provide any interface for the
JavaScript code in the web page to hook forward or backward. However, we
can detect them by checking the page transition on the event coordinator side.
This gives us the chance to further synchronize them among the participants.
Second, the bidirectional communication between the cobrowse module and the
event coordinator are based on a series of temporary connections, rather than a
persistent connection. Because whenever the user clicks the refresh, forward, or
backward button, the existing connection will be closed and a new connection
will be needed for event synchronization.

As an example, Fig. 5 shows how we deal with the synchronization of page
transition based on non-persistent connections. Suppose that two users u1 and
u2 are browsing the current page A in the same session. In the following co-
browsing procedure, several different cases might happen. Both of these two
users can trigger a page transition, either by opening a link or by clicking the
forward/backward button. A page transition is detected by the event coordinator
when a new connection is established to create a new page object. Then the new
page object becomes the current page. To notify the other users to catch up in
the same session, a NAVIGATE command will be sent to them through their
existing connection with the previous page.

Event Reduction. The reason why we need to reduce some mouse move events
comes from the following facts: 1) we target different devices, including laptop,
desktop computers and tablets and the performance of these devices is very
different. Some of them might be not powerful enough to replay all received
mouse movement events from the co-browsing server in a synchronized manner;
2) mousemove is the most frequent and intensive event, accounting for 99% of all
propagated events. For a mobile device with less computation capacity, replaying
all mousemove events in a real time and synchronized way is nearly impossible.
A naive solution to address this problem is to simply discard some mousemove
events before the events are propagated to others. The event coordinator still
receives all mousemove events from the original user who generate these events
and then decides how much of these mousemove events will be sent out to other
users, according to the capability of their devices. If the user comes with a
browser on PC, he/she will receive all mousemove events without any precision
loss. If the user comes with a browser on a slow smartphone, the selective event
reduction will be turned on for him/her.

224 B. Cheng, S. Agarwal, and D. Abbadessa

3 Implementation

Based the above design, we implemented a proof-of-concept co-browsing system,
called CoSurfen. CoSurfen is a pure web-enabled solution and does not require
users to install anything except a standard web browser. No configuration change
to the user’s browser is needed. Currently, our co-browsing service is working
with all major modern browsers, including Chrome, Firefox, Safari, and Internet
Explorer, across all major mobile devices like iOS/android based smartphone
and tablet.

CoSurfen is mainly implemented in JavaScript. The cobrowse module is writ-
ten in JavaScript, using the jQuery library. Based on the nodejs [4] platform,
we implemented our cobrowse server, which consists of the web proxy and the
event coordinator. Nodejs is a platform built on Chrome’s JavaScript runtime for
easily building fast, scalable network applications. With an event-driven, non-
blocking I/O model, nodejs is lightweight and efficient, perfect for data-intensive
real-time applications. Currently, lots of third parties libraries are available on
the nodejs platform for developers. Using nodejs, we are able to use JavaScript
to implement both the cobrowse module and the cobrowse server. To establish
the bi-directional data communication between the browse module and the co-
browse server, we used the socket.io library, which is also based on the nodejs
platform and can automatically choose a suitable way to transfer the underlying
data package according to the capability of the user’s browser.

4 Performance Evaluation

4.1 Setup

We have internally deployed CoSurfen in our lab network. The whole deploy-
ment environment consists of one Linux server and three clients with different
operating systems and hardware configurations. The Linux server is running the
cobrowse server. The clients connect to the lab network through different net-
works, running different browsers on PC, iPad, and iPhone respectively. Table 1
lists the details of the entire setup environment. Based on this setup, we evalu-
ated the performance of our system. The initial evaluation results are reported
as follows, in terms of latency, scalability and usability.

4.2 Performance

Event Messages. We monitor the size of all event messages on the cobrowse
server side. Here each event message contain the required information for re-
playing the event on the other browsers. For example, a typing event message
contains both the properities of the typing event and the associated letter typed
by the user. Totally, the cobrowse server handles 14 types of event messages.
Fig. 6 shows the average message size for each type of event. Note that the
message size across all events is 325 bytes on average, ranging from 83 bytes to
330 bytes. In addition, Fig. 7 shows the percentage of each event message. This

Enabling Co-browsing Service across Different Browsers and Devices 225

Table 1. The setup environment

Type OS Browser Hardware

Co-browse
Server

1U blade
server

Ubuntu 10.04 LTS -
2 Intel Xeon CPU 3.6GHz,
8GB memory, Ethernet

Client
PC Windows 7

Chrome, Safari,
IE, Firefox

4 Intel i7 CPU 2.7GHz,
4GB memory, Ethernet

iPad iOS 4.2 Mobile Safari
1GHz Apple A4,

256 MB memory, WiFi

iPhone iOS 4.0 Mobile Safari
1GHz Apple A4,

512MB memory, WiFi

Network
PC, blade server, and WiFi AP are connected

to the same Ethernet with the 100Mbps capacity
iPad and iPhone are connected to the same network through WiFi

result shows that mousemove, mouseover, mouseout, and touchmove are the top
4 ranked events in terms of event frequency. As we can see, the touch and mouse
events are dominated, accounting for 95% of all the generated events. Reducing
these events properly without losing too much precision can dramatically im-
prove system efficiency. This is the motivation for the event reduction algorithm
in our system.

Propagation Latency. We also measure the latency of event propagation. In
our implementation, socket.io is used to propagate the captured events. We did
a very simple PING-PONG test to calculate how much latency can be caused
in the event propagation [6]. Fig 8 shows the results when the given message
size is 325 bytes and 93 bytes respectively. Notice that the socket.io performs
differently on different browsers and networks. We have the following observa-
tions. First, Internet Explorer (IE) on the PC performs very badly because it
uses XHR-polling, instead of WebSocket. In the experiment, we use IE9, which
does not support WebSocket. Second, in terms of the performance of WebSocket
on Chrome, Safari, and Firefox, Chrome and Safari are doing much better than

Fig. 6. Size of each event message Fig. 7. Frequency of each event message

226 B. Cheng, S. Agarwal, and D. Abbadessa

Fig. 8. Speed of event propagation across different browsers

Firefox. The difference comes from either the implementation of the socket.io
library or the WebSocket implementation in the browsers. Third, the perfor-
mance of WebSocket on Mobile devices is much worse than that on PCs due to
the wireless network and the processing capacity. According to these three obser-
vations, we can clearly see the gap of event propagation latency across different
devices and browsers. This diversity indicates that dealing with the diversities
caused by different browsers and different devices in web-based co-browsing is
important and necessary. This is exactly why we propose a special design to
achieve page-level consistency in our co-browsing system. Finally, when the size
of event message goes down, the performance of WebSocket goes up, especially
for Firefox. Therefore, it helps to only put the required properties or data into
the event messages.

4.3 Usability

To measure how well CoSurfen can support the existing dynamic web sites, we
manually tested 50 online shopping web sites, which are the most popular ones
ranked by Alexa [1] in its ”shopping” category. All of these online shopping web
sites provide cookie-based personalized web pages to end users. For each web
site, we manually checked the following questions. First, whether is the layout
of the original web site changed after going through our web proxy? Second,
whether is the user interaction on the first web page of each web site captured
and synchronized? If the answers for both two questions are ”YES”, we regard
CoSurfen can support this web site. Our results show 45 of these 50 web sites
can be supported by CoSurfen. The rest 5 web sites are not supported because
they are HTTPs based.

Enabling Co-browsing Service across Different Browsers and Devices 227

5 Limitations

Based on our experience with CoSurfen, we also identify the following limitations
of web-enabled co-browsing systems.

First, the current design does not support the HTTPs-based web sites. For
HTTPs-based web sites, their web pages are encrypted by the original web server
and only the authenticated user is allowed to see the decrypted content. With
our current architecture, the intermediate web proxy is not able to inject the
code of the cobrowse module into the HTTPs-based web page.

Second, with the current system architecture and design, we have to assume
that the co-browsing service provider is fully trusted. This assumption makes
sense only when the privacy associated with the co-browsed content and user
interactions is not a concern for the users. However, in some cases, like online
banking, the user would not like any other participants to see his/her private
information on the web page, like the account number or the balance. Also, the
users do not want the co-browsing server to watch what they are doing within
the co-browsing sessions. To meet these requirements is out of the scope of this
paper. We leave it as the future work.

6 Related Work

The concept of co-browsing has occurred for more than a decade. Many studies
have been done to solve the problems related to co-browsing. Roughly, they can
be categorized into two types: Software-enabled Co-browsing and Web-enabled
Co-browsing.

For software-enabled co-browsing, users have to install something before co-
browsing, either a software client or software-enabled co-browsing browser exten-
sion/plugin. This affects its ease of use and raises some security concerns to users.
On the other hand, since the implementation of software-enabled co-browsing is
not limited by the browsers’ standard APIs, it has more capabilities to do some-
thing advanced. For example, the co-browsing client from GoToMyPC [2] prop-
agates the cobrowsed web page as an image. This method to synchronize user
behaviors on the cobrowsed web page is more generic but much more heavy than
just sending the fired DOM UI events or the update of the DOM tree, because
it causes lots of network traffic. CoFox [8] can record the user behaviors on the
cobrowsed web page and propagate them as a live video stream. Using a Firefox
browser plugin, RCB [15] can implement co-browsing without using any interme-
diate server. Similar to RCB, LiCob [13] proposed a lightweight distributed ar-
chitecture for native-application based co-browsing. Also, as a software-enabled
solution, CoLab [10] explored the topology organization issue of a distributed
co-browsing system.

For web-enabled co-browsing, its implementation is limited by browsers.
As the web technologies evolve, however, we are able to build more efficient
web-enabled applications in the browser. For example, some measurement stud-
ies [9] [6] already points out that HTML5 Websocket [5] gives us lots of oppor-
tunities to build real-time web applications. Several previous [12] [8] [11] studies

228 B. Cheng, S. Agarwal, and D. Abbadessa

have discussed how to provide web-enabled co-browsing service with different
focuses. For example, Esenther [8] first presented a web-enabled co-browsing
system, which implemented an instant co-browsing for relatively simple web
pages in the master-slaver mode. Lowet [11] proposed some general approaches
to the co-browsing of dynamic web pages. Our work is similar to them, but we
stay more focused on providing web-enabled co-browsing across different devices
and browsers. For example, we target to the situation where users in the same
co-browsing session are using different devices with different network connec-
tions, computation capacities, browsers, screen sizes and display resolutions. To
handle those diversities is the new challenge that we mainly solved in our work.
Although several previous studies [14] [7] already discussed co-browsing among
mobile devices, they all focused on the page level synchronization and did not
synchronize the detailed user interactions within the cobrowsed web page.

7 Conclusion and Future Work

In this paper we present the detailed design and implementation of our web-
enabled co-browsing system and explore the strategies to make it working across
browsers and devices in an efficient way. More specifically, we make the following
contributions.

– To make our co-browsing system adapt to different devices, we propose a
relative positioning approach to the synchronization of mousemove events,
which can more precisely show users’ mousemove positions on the screens
with different resolutions and different window sizes.

– We present several strategies to make our service more efficient. For exam-
ple, we improve the page caching mechanism to deal with cacheable and
non-cacheable pages; we use a request bypassing strategy to largely offload
our server’s overhead; we separate events into asynchronous events and syn-
chronous events and handle them differently to achieve better user expe-
rience; we implement an event reduction strategy to speed up the event
rendering on mobile devices.

– We propose a page transition detection solution to support forward and back-
ward operations for better user behavior synchronization and also present a
cookie mapping strategy to synchronize personalized web pages.

Currently, our co-browsing service can support most HTTP-based web sites,
including highly dynamic online shopping web sites. Based on the current design
and implementation, we can deploy the CoSurfen system in the cloud to have
a more scalable solution, by adding a session-based front-end scheduler. For the
future work, we are interested in investigating the way of providing web-enabled
co-browsing for HTTPS-based web sites and the related privacy-preserving issue.

Acknowledgement. We would like to thank Sabah Al-Sabea and Joao da
Silva for their initial contributions to this work.

Enabling Co-browsing Service across Different Browsers and Devices 229

References

1. alexa (2012), http://www.alexa.com/topsites/category/Top/Shopping
2. Gotomypc (2012), http://www.gotomypc.com
3. Html5 (2012), http://www.html5rocks.com
4. nodejs (2012), http://nodejs.org
5. websocket (2012), http://dev.w3.org/html5/websockets
6. Agarwal, S.: Real-time web application roadblock: Performance penalty of html

web sockets. In: Proceedings of IEEE International Conference on Communications
(June 2012)

7. Coles, A., Deliot, E., Melamed, T., Lansard, K.: A framework for coordinated multi-
modal browsing with multiple clients. In: Proceedings of the 12th International
Conference on World Wide Web,WWW 2003, pp. 718–726. ACM, New York (2003)

8. Esenther, A.W.: Instant co-browsing: Lightweight real-time collaborative web
browsing. In: Proceedings of the 18th International Conference on World Wide
Web (WWW 2002) (May 2002)

9. Gutwin, C.A., Lippold, M., Graham, T.C.N.: Real-time groupware in the browser:
testing the performance of web-based networking. In: Proceedings of the ACM 2011
Conference on Computer Supported Cooperative Work, CSCW 2011, pp. 167–176.
ACM, New York (2011)

10. Hoyos-Rivera, G., Gomes, R., Willrich, R., Courtiat, J.-P.: Colab: A new paradigm
and tool for collaboratively browsing the web. IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans 36(6), 1074–1085 (2006)

11. Lowet, D., Goergen, D.: Co-browsing dynamic web pages. In: Proceedings of the
18th International Conference on World Wide Web (WWW 2009) (March 2009)

12. Maly, K., Zubair, M., Li, L.: CoBrowser: Surfing the web using a standard browser.
In: Proceedings of World Conference on Educational Multimedia, Hypermedia and
Telecommunications, pp. 1220–1225 (June 2001)

13. Santos, R.O., Oliveira, F.F., Antunes, J.C.P., Martinello, M., Guizzardi, R.S.S.,
Gomes, R.L.: Licob: Lightweight collaborative browsing. In: IEEE/WIC/ACM In-
ternational Joint Conferences on Web Intelligence and Intelligent Agent Technolo-
gies, vol. 3, pp. 571–574 (September 2009)

14. Wiltse, H., Nichols, J.: Playbyplay: collaborative web browsing for desktop and
mobile devices. In: Proceedings of the 27th International Conference on Human
Factors in Computing Systems, CHI 2009, pp. 1781–1790. ACM, New York (2009)

15. Yue, C., Chu, Z., Wang, H.: RCB: A simple and practical framework for real-
time collaborative browsing. In: Proceedings of the USENIX Annual Technical
Conference (June 2009)

 http://www.alexa.com/topsites/category/Top/Shopping
http://www.gotomypc.com
http://www.html5rocks.com
http://nodejs.org
http://dev.w3.org/html5/websockets

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS, 7592, pp. 230–243, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Device Token Protocol for Persistent Authentication
Shared across Applications

John Trammel, Ümit Yalçınalp, Andrei Kalfas, James Boag, and Dan Brotsky

Adobe Systems Incorporated, 345 Park Avenue, San Jose, USA
{jtrammel,lyalcina,akalfas,jboag,dbrotsky}adobe.com

Abstract. This paper describes a protocol for enabling shared persistent
authentication for desktop applications that comprise a common suite by
extending the OAuth2.0 protocol. OAuth2.0 is the de facto standard for
developing and deploying federated Identity. Our extension enables the users to
authenticate and authorize on devices that host a suite of applications that are
connected to backend services and systems at Adobe. It is the backbone of our
subscription and licensing infrastructure for the Adobe Creative Suite® 6 and
Adobe Creative Cloud™. The extended protocol works without storing users
credentials on a per application basis but rather uses device identities that are
managed on a centralized server to enable increased security and management
capabilities for a set of applications on the device. We describe the protocol is
in detail, its inherent characteristics, how it extends OAuth2.0, and how it is
used in practice.

Keywords: Authentication, Identity Management, OAuth2.0, Authorization.

1 Introduction

1.1 Problem

Today, software clients and applications are available on heterogeneous devices,
including tablets, smart phones, and desktops. In addition, in a world where
companies are beginning to develop and deploy multiple applications, user access
should be accomplished in a manner that is both user-friendly and secure, and also
recognizes that specific context; the user should not be required to enter separate user
authentications for each application from the same vendor on a particular device. We
faced this issue when we needed to deploy subscription services to multiple
applications that were offered on the desktop that comprised Adobe Creative Suite
and Adobe Creative Cloud membership.

In today’s mobile applications, each application manages access control for the
user and it is configured separately. As new applications are added, access for the user
is configured anew for each application. Furthermore, a user’s credentials are
typically stored on the device via encryption rather than by identifying the device and
the authorizations of the specific user for the device.

There are many applications in the industry that are currently use stored user
credentials for authentication and authorization. Examples include email access from

 Device Token Protocol for Persistent Authentication Shared Across Applications 231

different vendors on the iPhone, twitter account settings on iOS or Android devices,
etc. These approaches require user credentials to be stored on a per application basis.

When there are multiple applications from the same vendor on the same device,
this approach becomes cumbersome and error prone. Although the user may be
governed by a centralized identity service that may also support Federated Identity,
security on the device can only achieved by replicating user credentials on the device
on a per application basis. This is clearly not desirable.

Without a centralized mechanism on the client, a management problem occurs
when the user, in a heterogeneous landscape, needs access to more devices and
applications. This is a problem space that other vendors have begun to recognize:
Google Application Manager on the Android platform [4] has centralized account
management in a single source in the client machine. However, that implementation
still stores user credentials on the client.

This leaves related areas open for further improvement: security and remote
management. Mobile devices may be broken, stolen, or lost. Therefore, the ability to
remotely manage and revoke authorizations on mobile devices is highly desirable to
reduce data security risks. In addition, companies need to be able to terminate access
for users, perhaps due to personnel changes, from a central server and have that
change take affect on all associated remote devices.

Note that several web and mobile applications keep track of user authentication
from the specific device. For example, Facebook and Bank of America Online
Banking [5] keep track of the specific devices that the user authenticates from in their
applications. Thus, device tracking is important to utilize for the added security and
management, but it has not been fully utilized in conjunction with decoupling user
credentials from the authentication and authorization process.

The OAuth2.0 Protocol [1] has become widely used for granting access to clients
of services and applications. However, a persistent token that decouples users
credentials, and that can cater to multiple client applications, rather than a single one,
has not been targeted by this protocol in the state of the art, literature or
standardization.

1.2 Solution

We developed a novel mechanism, a persistent device token, for securely persisting
authentication for a user that can be used by a set of authorized applications on a
device (laptop, desktop, mobile phone, tablet, etc.).

The device token is unique to a specific device and user and can be used by one or
many applications. It can be persisted, but it is non-transferable, meaning that it
cannot be transferred to another device or to another user. This mechanism

• is secure (because a device token is usable only on the device and by the user for
which it was issued.)

• does not require the persistence of user credentials on the device.
• enables revocation of authorizations remotely – outside of the presence of the

device on a centralized service that is dedicated to identity management.

232 J. Trammel et al.

• is configurable because it allows for server side control over which client
applications can make use of the mechanism.

An implementation of this concept has been developed and delivered as an extension
to the OAuth2 [1] + OpenID-Connect protocol [2], specifically as a new grant type.
We assume that the reader is familiar with the OAuth2.0 [1] protocol reading this
paper. This extension to OAuth2 and OpenID-Connect is currently in use within the
Adobe Creative Suite product line and Adobe Creative Cloud.

The extension presented does not currently exist in OAuth2 or OpenID-Connect
protocols, as most applications ARE NOT configured like a suite or a group of
applications on a device basis. However, this need is rapidly emerging as companies
like Adobe begin developing and deploying multiple applications for its constituent
user bases on devices.

Today, almost all Adobe software that connects to Adobe web services use a
backend service called IMS (Identity Management Service). IMS centralizes the
workflows for all clients that require authentication and authorization to various
Adobe hosted services and it provides federated identity support. IMS supports
OAuth2.0 [1] and OpenID- Connect Protocol [2]. IMS also provides centralized
common UI workflows that are targeted to clients on specific device types, such as
desktop, browser, mobile device, etc.

The protocol presented in this paper is currently being deployed worldwide as part
of the Adobe Creative Suite 6.0 and Adobe Creative Cloud [6] offerings on the
desktop. It is integrated with the Adobe Application Manager that manages single
sign on, device tokens and user authorization with IMS on the desktop for all client
applications and extensions that reside on the desktop.

2 Detailed Protocol

2.1 Overview

This protocol has the following characteristics and behaviors:

1. A new grant type, named Device Token is introduced. This grant type is similar to
the authorization grant type, with a key difference: while the authorization code is
bound to a specific client-id, the device token is bound to a specific device and a
user and may be used to create access tokens for authorized clients applications on
the same device. Note that there are many applications on the same device where
each has a different client_id.

2. This grant type is most appropriate for client applications that reside locally on the
device (native, AIR, etc.), and not appropriate for server back-ends or web-apps
that are intended to run in a system-browser.

The client-application must adhere to specific requirements in the system:

a. Client applications must be specifically authorized to use the device token

grant type and be configured in advance of deployment.

 Device Token Protocol for Persistent Authentication Shared Across Applications 233

b. Client applications must share secure access to and generation algorithms for
the device-identifier.

c. Client applications must generate the device-identifier via an algorithm, shared
by the coordinating applications, each time the application launches or intends
to use the device token.

d. Client applications must not persist the device-identifier in its final form.
3. The following recommendations apply to the generation of device-identifiers for

use on various platforms/environments. These recommendations do not represent
the actual implementation details of Adobe’s applications, but rather are illustrative
descriptions, appropriate for publication:

Part Description
platform A code specific for the platform (ios, android, win, mac, linux)
user identifier A user id that uniquely identifies a user on the specific

platform. Needed for devices that allow multiple users, where
there is a need to limit device token portability between users
on the same device.

profile identifier A unique identifier for a profile. Users may have multiple
profiles where there is need to distinguish different patterns and
entitlements of use, such as home vs. work. Needed for devices
that allow multiple users when there is a need to limit device
token portability between groups/profiles on the same device.

System device
identifier

The device identifier of the specific platform. OS or system
appropriate value.

Fig. 1. Device Token Flow Diagram with OAuth2.0

234 J. Trammel et al.

An excerpt from early documentation for the device token protocol follows and
refers to the accompanying flow diagram. It has been edited to remove some details
deemed confidential or not relevant. Terminology from OAuth2.0 is used in the flow
diagram in Figure 1 and the descriptions of the steps involved. In the detailed API
documentation that follows, the protocol described builds on top of the specific calls
of OAuth2.0 [1].

1. The client initiates the flow by directing the resource owner's user-agent to the
device authorization endpoint (at the Authorization Server). The client includes
its device identifier, client identifier, requested scope, local state, and a
redirection URI to which the authorization server will send the user-agent back
once access is granted.

2. The authorization server authenticates the resource owner (via the user-agent).
The user has the option to persist data on the device. If the user agrees to save
data on the device, the authorization server releases a device token, otherwise it
returns an authorization code.

3. Assuming the authentication is successful, the authorization server redirects the
user-agent back to the client using the redirection URI provided earlier.
Depending on the user’s consent, the redirection URI includes either a device
token or an authorization code and any local state provided earlier by the client.

4. The client, providing either a device token or an authorization code, requests an
access token from the authorization server. This transaction requires the client to
authenticate.

5. The authorization server validates the client credentials and the device token or
authorization code. If valid, it responds back with an access token.

In this flow, the authorization server depends on the user’s consent to store a device
token on the client device. This consent determines whether the device token would
be used subsequently for authentication instead of an authorization code and user
credentials. This is illustrated in the UI flow provided later in this document below. If
the user does not consent to store a device token on the device, an authorization code
is used to get an access token; this authorization code is good for only one request and
must not be persisted.

Each client application must be registered with a unique identifier called client_id.
This unique identifier is given at the time of configuration of the application prior to
deployment so that the authorization server at run time can uniquely identify the client
with its client_id. In addition, to securely transmit each client’s request, each client is
configured with a client_secret at the time of registration.

A user authenticated using this protocol may have a profile and this protocol may
also transmit additional parameters that are specified for this user using a scope. For
example, OpenID may be specified to get these specific parameters. For more
information on OpenID Connect profiles, see the reference [2].

 Device Token Protocol for Persistent Authentication Shared Across Applications 235

2.2 Detailed Protocol

Device Token Request: The client constructs the request URI by adding the
following parameters to the query component of the authorization endpoint URI using
the "application/x-www-form-urlencoded".

Parameter Mandatory Description
response_type true Must be “device”
device_id true It is up to clients to generate and provide the device

ID. Refer to SHA256 [3].
device_name false If specified, can be used to present to the user a

user-friendly name of the device.
redirect_uri false If missing, the server will use the default redirect

URI that is provisioned when the client was
registered during the configuration.

client_id true The client identifier that is provided for the
application during the registration phase.

scope true The scope of the access request expressed as a list
of comma-delimited, case sensitive strings. Details
of scope parameter values not presented.

locale false The locale to be used in the user interface, supplied
in the format language_country. Default is en_US.

state false Details around usage of state parameter not
presented.

dc false Details around usage of dc parameter not presented

Device Token Response: If the user agrees to persist data on the device, the server
issues a device token and delivers it to the client by adding the following parameters
to the query component of the redirection URI using the "application/x-www-
form-urlencoded" format:

Parameter Mandatory Description
device_token true The device token bound to the device.
state false If present in the device token request

If the user did not agree to persisting data on the device, IMS will fallback to

releasing an authorization code. The query component of the redirection URI using
the "application/x-www-form-urlencoded" will contain:

Parameter Mandatory Description
code true The authorization code.
state false If present in the device token request

236 J. Trammel et al.

Error Response: If the client identifier provided is invalid, the server informs the
resource owner of the error and does not redirect the user-agent anywhere. If the
request fails for another reason, the server informs the client by adding the following
parameters to the query component of the redirection URI using the
"application/x-www-form-urlencoded" format:

Parameter Mandatory Description
error true A single error code with the values from

bellow.
error_description false Additional information about the error.

error_code Description
access_denied If user did not authorize the client application. For

instance this can happen when the user clicks on the
Cancel button in the login screen.

access_denied_no_cookies If the server detects that cookies are disabled.

Example: In the examples below, the tokens are abbreviated for clarity and
designated by mnemonics, such as <DEV_TOKEN>.

Device Token Request

GET
/ims/authorize/v1?client_id=AXX_YYY&response_type=device&
&device_id=MA4Y2KfwV1av8soWHoOnmubOiFWhXOg-
nwePp9dExqU&device_name=Mac&redirect_uri=http%3A%2F%2Fsto
phere.adobe.com&scope=openid HTTP/1.1
Host: ims-host.adobelogin.com

Device Token Response with device token

HTTP/1.1 302 Moved Temporarily
Server: Apache-Coyote/1.1
Set-Cookie: relay=0526317f-3e77-46c1-8b19-957a06a9b2e8;
Path=/
Cache-Control: no-store
P3P: CP="IDC DSP COR CURa ADMa OUR IND PHY ONL COM STA"
X-RHH: B8E1750B964EE62AB7C147F0EDF12803
Location:
http://stophere.adobe.com?device_token=<DEV_TOKEN>
Content-Type: text/html;charset=UTF-8
Content-Language: en-US
Transfer-Encoding: chunked
Content-Encoding: gzip
Vary: Accept-Encoding
Date: Mon, 14 Nov 2011 12:50:01 GMT

 Device Token Protocol for Persistent Authentication Shared Across Applications 237

Device Token Response with authorization code

HTTP/1.1 302 Moved Temporarily
Server: Apache-Coyote/1.1
Set-Cookie: relay=08da1a84-9179-4720-95c5-c871fdc69063;
Path=/
Cache-Control: no-store
P3P: CP="IDC DSP COR CURa ADMa OUR IND PHY ONL COM STA"
X-RHH: B8E1750B964EE62AB7C147F0EDF12803
Location: http://stophere.adobe.com?code=<AUTHR_CODE>
Content-Type: text/html;charset=UTF-8
Content-Language: en-US
Transfer-Encoding: chunked
Content-Encoding: gzip
Vary: Accept-Encoding
Date: Mon, 14 Nov 2011 12:50:14 GMT

Access Token Request with a Device Token: The client makes a request to the
token endpoint by adding the following parameter using the "application/x-
www-form-urlencoded" format in the HTTP request entity-body:

Parameter Mandatory Description
grant_type true Must be “device”
device_id true It is up to clients to generate and

provide the device ID. Refer to SHA256 [3].
device_token true The device token received at the previous step.
client_id true The client_id credential received during the

registration phase.
client_secret true The client_secret credential received during the

registration phase.

Access Token Response: The server issues an access token and a refresh token, and
constructs the response by adding the following parameters to the entity body of the
HTTP response with a 200 (OK) status code.

Parameter Mandatory Description
access_token true The access token
refresh_token true The refresh token
expires_in true The lifetime in milliseconds of the access token.

For example, the value "360000" denotes that the
access token will expire in one hour from the time
the response was generated.

238 J. Trammel et al.

In addition to the above parameters, the server will include in its response
attributes from the user's profile based on the requested scope as specified in the
Device Token Request. The parameters may be included in the entity body of the
HTTP response using the appropriate media type. For example
"application/json" media type will serialize the parameters into a JSON
structure.

Error Response: The server responds with an HTTP 400 (Bad Request) status code
and includes the following parameters with the response:

Parameter Mandatory Description
error true A single error code with the values from below

error code Description
invalid request If creating an access token fails due to internal errors.
invalid_client If the client credentials are not correct.
unsupported_grant_type If the client_id does not have the appropriate

grant_type set.
access_denied If the device token is invalid or if it was released for a

different device id.

Example: Access Token Request with a device token

Access Token Request with Device Token

POST /ims/token/v1 HTTP/1.1
User-Agent: curl/7.21.4 (universal-apple-darwin11.0)
libcurl/7.21.4 OpenSSL/0.9.8r zlib/1.2.5
Host: ims-host.adobelogin.com
Accept: */*
Content-Length: 740
Content-Type: application/x-www-form-urlencoded
grant_type=device&device_id=MA4Y2KfwV1av8soWHoOnmubOiFWhX
Og-
nwePp9dExqU&device_token=<DEV_TOKEN>&client_id=<YOUR_CLIE
NT_ID>&client_secret=<CLIENT_SECRET>

Access Token Response

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: relay=0c122e22-58be-4c5d-b215-d362b9142c71;
Path=/
Cache-Control: no-store
P3P: CP="IDC DSP COR CURa ADMa OUR IND PHY ONL COM STA"
X-RHH: B8E1750B964EE62AB7C147F0EDF12803
Content-Type: application/json;charset=UTF-8

 Device Token Protocol for Persistent Authentication Shared Across Applications 239

Transfer-Encoding: chunked
Date: Mon, 14 Nov 2011 13:17:56 GMT
{"token_type":"bearer","expires_in":86399952,"refresh_tok
en":"REFRESH_TOKEN","access_token":"ACCESS_TOKEN"}

Access Token Request with an Authorization Code: The client makes a request to
the token endpoint by adding the following parameter using the "application/x-www-
form-urlencoded" format in the HTTP request entity-body:

Parameter Mandatory Description
grant_type true Must be “authorization_code”.

code true The authorization code previously received.

client_id true The client_id credential received during the
registration phase.

client_secret true The client_secret credential received during the
registration phase.

The server validates the client credentials and ensures that the authorization code

was issued to that client. Note that an authorization code may be used only once but
the device token can be stored and reused to grant access.

Example: With an authorization code a client can request an access token as follows:

POST /ims/token/v1 HTTP/1.1
Host: ims-na1-dev1.adobelogin.com
Content-Type: application/x-www-form-urlencoded
grant_type=authorization_code&client_id=THE_CLIENT_ID&cli
ent_secret=THE_CLIENT_SECRET&code=AUTHR_CODE

Access Token Response: IMS issues an access token and a refresh token, and
constructs the response by adding the following parameters to the entity body of the
HTTP response with a 200 (OK) status code.

Parameter Mandatory Description
access_token true The access token.
refresh_token true The refresh token.
expires_in true The lifetime in milliseconds of the access token. For

example, the value "360000" denotes that it will
expire in one hour from the time the response was
generated.

In addition to the above parameters, the server may include in its response

attributes from the user's profile based on the requested scope specified within the

240 J. Trammel et al.

Device Token Request. Again, the parameters are included in the entity body of the
HTTP response using the specific media-type, such as "application/json"
which will serialize the parameters into a JSON structure.

IMS will check the client credentials and the authorization code and if they are OK
it will send back a response.

Access Token Error Response: IMS responds with an HTTP 400 (Bad Request)
status code and includes the following parameters with the response:

Parameter Mandatory Description
error true A single error code with the values from below.
error_description false Additional information about the error.

error_code Description
invalid_request If creating an access token fails due to internal errors
invalid_client If the client_id was not provisioned or the client_secret does

not match.
unauthorized_client If the client_id does not have the appropriate grant_type set.
access_denied If the authorization code / refresh token is not valid or the

authorization code was released to a different client_id.

2.3 Persistence of Device Tokens

There are two different approaches in persisting device tokens on a device:

1) A client application may store the device token in the client application or user
specific storage, akin to how many applications store user credentials today
(e.g., Mac OS X Keychain). Since this approach requires each application to
implement the protocol itself, it would require duplicative, coordinated
implementations if used by multiple applications.

2) Another alternate is to develop a separate account management library that
manages device tokens and related authentication tokens for a series of
applications. This library is responsible for storing the device token on behalf
of the user as well as generating authentication tokens for specific applications
that need authentication and authorization. Basically, the client and the user-
agent in the workflow are coupled and encapsulated in a library that allows
multiple applications to use the same mechanism on the device. This approach
decouples the applications from security and persistence concerns, while
bringing the benefits of security and manageability.

There are use cases when is it desirable to disallow the storage of a local device token.
The ability to enable local storage of a device token is configurable. If the user is
allowed to store a device token locally, that option can be presented in the following
manner shown in Figure 2.

 Device Token Protocol for Persistent Authentication Shared Across Applications 241

Fig. 2. Signing In when Local Device Token Storage Enabled

In use cases where the device tokens will always be stored locally, the user can be
informed of this via a user experience as exemplified in Fig. 3.

In the case when third party identity providers (such as Google, Yahoo or
Facebook) handle authentication, the login UI is fixed and cannot be modified to
prompt for device token storage. In these cases the server will show an interstitial
page asking for consent to store the tokens locally. This is exemplified in Figure 4.

Fig. 3. Mandatory persistence on device

242 J. Trammel et al.

Fig. 4. Interstitial with third party providers

3 Conclusion

We presented a novel extension to the OAuth2.0 protocol using device tokens and a
new grant type to authenticate and authorize a user for multiple applications on a
single device. A device token is not transferable but is persistable.

Our approach has the following advantages:

• Enhanced Security. User credentials are never stored on the device and the device
token cannot be used on other devices, or for other users on the same device.

• Permanent and Revocable Authentication: The solution does not require the user to
re-authenticate and re-authorize on a per client (application) basis unless changes
occur that require re-approval of the user, such as new terms of use that need to be
agreed to, etc.

• Unified authentication and authorization experience: The solution provides a single
way of handling of authentication and authorization for multiple applications.

• Scalability of Deployment: Additional applications from a single vendor can be
added to a user's device without requiring them to provide credentials for each
additional application. Which client applications are associated with which device
tokens can even be changed after deployment since they are managed from a
central server.

• Remote Management: Tokens are remotely revocable. This makes possible the
management of all devices that are permitted to run applications for a specific user
on a centralized server.

The solution works for a single application as well as a collection of applications. The
security (not storing credentials on the client and non-transferable device tokens) and
manageability benefits apply to both configurations.

 Device Token Protocol for Persistent Authentication Shared Across Applications 243

The protocol discussed in this paper is being deployed along with the Adobe
Creative Suite 6.0 and Adobe Creative Cloud.

Acknowledgements. The Adobe Creative Suite, Adobe Create Cloud and IMS are
corporate efforts. We thank the members of the IMSLib, OOBE and CEP teams in
their endless efforts in developing, debugging and testing the client library that
enables all applications that are managed by Adobe Application Manager on the
desktop; the IMS team for supporting this protocol addition with IMS. We also thank
the Business Architecture team in reviewing and making comments to the drafts of
this paper, in particular Lois Gerber, Bob Murata, Shyama Padhi and Chris Tuller.

References

1. OAuth Working Group, Hammer, E. (ed): IETF, The OAuth2.0 Authorization Protocol
draft 28 (2012), http://tools.ietf.org/html/draft-ietf-oauth-v2-28

2. OpenId Foundation, Open ID Connect Protocol Suite (2012), http://openid.net/
connect/

3. IPSec Working Group, Frankel, S., Kelly, S.: The HMAC-SHA-256-128 Algorithm and Its
Use With IPsec (2002), http://w3.antd.nist.gov/iip_pubs/
draft-ietf-ipsec-ciph-sha-256-01.txt

4. Google, Android Account Manager API (2012), http://developer.android.com/
reference/android/accounts/AccountManager.html

5. Bank of America, Online Banking FAQ (2012), http://www.bankofamerica.com/
onlinebanking/index.cfm?template=site_key-accessolb

6. Adobe Creative CloudTM (2012), http://creative.adobe.com
7. Adobe Creative Suite® (2012),

http://www.adobe.com/products/creativesuite.html

Simplified Authentication and Authorization

for RESTful Services in Trusted Environments

Eric Brachmann1,∗, Gero Dittmann2, and Klaus-Dieter Schubert2

1 Dresden University of Technology, 01062 Dresden, Germany
eric.brachmann@tu-dresden.de

2 IBM Systems & Technology Group, 71032 Boeblingen, Germany
gero@ieee.org, kdschube@de.ibm.com

Abstract. In some trusted environments, such as an organization’s
intranet, local web services may be assumed to be trustworthy. This
property can be exploited to simplify authentication and authorization
protocols between resource providers and consumers, lowering the thresh-
old for developing services and clients. Existing security solutions for
RESTful services, in contrast, support untrusted services, a complexity-
increasing capability that is not needed on an intranet with only trusted
services.

We propose a central security service with a lean API that handles
both authentication and authorization for trusted RESTful services. A
user trades credentials for a token that facilitates access to services. The
services may query the security service for token authenticity and roles
granted to a user. The system provides fine-grained access control at
the level of resources, following the role-based access control (RBAC)
model. Resources are identified by their URLs, making the authorization
system generic. The mapping of roles to users resides with the central
security service and depends on the resource to be accessed. The mapping
of permissions to roles is implemented individually by the services. We
rely on secure channels and the trusted intermediaries characteristic for
intranets to simplify the protocols involved and to make the security
features easy to use, cutting the number of required API calls in half.

Keywords: Authentication, Authorization, Intranet, Representational
state transfer (REST), Role-based access control (RBAC), Security, Web
services.

1 Introduction

Organizations usually deploy protected intranets with restricted access. This
paper presents an approach to simplify security protocols within these trusted
environments for a gain in agility.

Consider, for instance, engineers who commonly share large amounts of data,
such as test or analysis results, across a development department. To be more

∗ Brachmann was with IBM Germany R&D at the time of this work.

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 244–258, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Simplified Authentication and Authorization 245

productive, they often write scripts and tools for this data. Sharing these tools
can increase the productivity of an entire organization. In spite of this positive
impact, providing such resources is often not part of the engineers’ job descrip-
tions. A framework to facilitate and encourage resource sharing must hence pro-
vide easy access and an instant payoff for engineers in order for the system to
be used and extended. Furthermore, access has to be possible using a wide vari-
ety of programming languages because developers often have strong and diverse
preferences and limited flexibility in this regard.

Web services meet these requirements, as they facilitate the sharing of both
data and functionality, thus supporting heterogeneity and distributed ownership.
RESTful services implemented with HTTP and XML are particularly suitable
because they leverage well-known technologies for which libraries are available in
many programming languages. The fixed API of HTTP provides a uniform way
to access all resources. Frameworks like Ruby on Rails render the generation of
RESTful services even easier. In our context, these technologies enable developers
to rapidly implement their own services and to write scripts that employ services
made available by their peers.

However, access to design data must be controlled and restricted, requiring
authentication and authorization of users. Although our target are services that
reside within the trusted internal network of an organization, certain users may
not be allowed to see, use or edit certain resources. Hence, authorization is nec-
essary to manage access rights, and authentication is needed to reliably identify
users in the first place. Incorporating such security features should not require
much initial training or knowledge of complicated protocols so that it remains
easy for developers to implement libraries for their preferred programming lan-
guages themselves.

From our aim to build our service system in an intranet environment we derive
some assumptions that help us achieve the desired simplicity of the security
framework. First, all channels are encrypted and authenticated by using the
TLS/SSL protocol. Thereby we largely eliminate the possibility of eavesdropping
and man-in-the-middle attacks. Second, we trust all services in the system: We
suppose that services perform only legitimate actions on behalf of the user. An
intranet for which these assumptions hold we call trusted.

However, we want to avoid storing user passwords on clients and sending them
to custom-built services. Furthermore, users should only have to provide their
credentials once or once every few days. After that, access to services has to be
possible without entering credentials again. Therefore, the system has to offer
single sign-on.

We propose a central security service with an API comprised of three methods.
The first method is called by users and trades the user credentials for a security
token that facilitates single sign-on to the complete service system. The token is
stored on the client and sent along with every service request. The second method
is called by services to validate a token and with it the authenticity of the request-
ing user. The thirdmethod is called by services to checkwhether the user is allowed
to act in a certain role on a certain resource. This final call determines whether

246 E. Brachmann, G. Dittmann, and K.-D. Schubert

a user has sufficient rights for a request. We use roles to bundle permissions of
groups of users and associate them with individual resources for fine-grained ac-
cess control. The security service provides the necessary mapping of users to roles
and resources, and offers functionality for their administration.

The remainder of this paper is organized as follows: Section 2 surveys existing
web service security solutions. Section 3.1 provides an overview of the architec-
ture of our framework with a brief description of all components. Sections 3.2
and 3.3 describe how we handle centralized authentication and authorization,
respectively. In Sect. 4 we elaborate on how we implemented the central security
service, and Sect. 5 concludes the paper.

2 Related Work

Security extensions for web services have been defined in the WS-Security, WS-
Trust, and WS-Federation standards. The first two specify how to secure SOAP
messages and how identification tokens can be attached and exchanged. WS-
Federation deals with the issue of propagating identity proof between disparate
security realms. These protocols add up to complex frameworks for authentica-
tion and authorization for SOAP-based web services. Similar developments for
REST, in contrast, have not yet gained momentum.

Typical RESTful services exploit the HTTP protocol. The basic means of
authentication in this context are HTTP Basic and HTTP Digest. They specify
how to send user credentials to a service. However, to resend them with every
access requires them to be stored at the client, posing a potential security risk. In
fact, we want to avoid sending such sensitive information to application services
altogether.

Web authentication protocols inspired by Kerberos[1], such as WebAuth[2] or
the Central Authentication Service (CAS)[3], achieve this by trading credentials
for tokens and transmitting them instead, providing centralized authentication
and single sign-on. Construction and exchange of their tokens follow sophisti-
cated patterns to support untrusted services. As our target services reside in
a protected intranet environment, the complexity of those protocols is an un-
necessary burden for service developers. Existing client libraries are designed for
protecting web sites, for example, by forwarding users to login forms that cannot
be used by headless clients such as automated data-processing scripts.

Web-based systems on a trusted intranet may use simpler cookie-based SSO
solutions, such as the one presented in [4]. These propositions rely on a web
browser for storing cookies and offer no centralized authorization management.

The Security Assertion Markup Language (SAML) [5] and the eXtensible Ac-
cess Control Markup Language (XACML) [6] are often used in SOAP-based
systems for authentication and authorization requests and to exchange policy
information. There is, however, no established binding of these protocols for
HTTP-based RESTful services. Moreover, we only need a fraction of the SAML
features and, therefore, have opted for a less complex and natively RESTful pro-
tocol. Nevertheless, our architecture would also work with SAML. Our autho-
rization approach follows the SAML philosophy with separate identity provider

Simplified Authentication and Authorization 247

(IdP) and service provider (SP). Our authorization system follows the XACML
architecture with a central policy decision point (PDP) and distributed policy
enforcement points (PEPs). Exchanging policy information is outside the scope
of this paper.

A RESTful interface for XACML Policy Decision Points to handle authoriza-
tion is proposed in [7]. RESTful messages are translated to SOAP and forwarded
to the central authorization component. This approach is useful for an intranet
that is already equipped with a running XACML infrastructure or for exploiting
the rich expressiveness of XACML for access control. Otherwise, there is little
gain to justify the translation overhead introduced.

In [8], a cookie scheme is combined with role-based authorization. Session
cookies stored by the client contain information about the user. These cookies
are cryptographically protected by a message authentication code so that the
user cannot change the information they contain. Authorization is implemented
by introducing user and role object classes in LDAP. Organizations already de-
ploying LDAP user directories need to change their existing LDAP schema ac-
cordingly, which might not be feasible.

Hecate [9] is a framework that provides centralized authorization for RESTful
resources. The authors propose an XML dialect to define access rules for all
available resources of the system, including the possibility of resource-aware
filtering for fine-grained access control. However, service developers need to learn
a new XML dialect for protecting their resources. Moreover, Hecate does not deal
with authentication.

OpenID [10] is a protocol offering decentralized authentication, which has
limited benefit in intranet solutions where services typically belong to the domain
of a single identity provider.

Thanks to its widespread deployment, oAuth [11] has received much attention
in the area of authentication and authorization. However, it covers the specific
use case of granting third parties access to private user resources and hence does
not fit our scenario.

Our framework offers centralized authentication with single sign-on capabil-
ities and centralized authorization, both accessed through a RESTful services
API. It exploits the properties of a trusted intranet to provide a lean protocol
API and easy access to its security features.

3 Framework

3.1 Overview

Figure 1 shows the architecture of our framework. The central components are
the services themselves. They offer resources that users access for their every-
day work. Access should be simple, and the creation of new services should
be feasible for development engineers in addition to their core responsibilities.
Therefore, our services follow a RESTful design. Simple services may just pro-
vide access to data records from a database and support handy, data-specific
queries. Composite services combine or extend the functionality of one or more

248 E. Brachmann, G. Dittmann, and K.-D. Schubert

other services. Users access either type of service via a client. A client may be a
web application or some other kind of graphical user interface. A client may also
be a command-line tool or a custom-built script that interacts with services on
behalf of the user to carry out a specific task. Authentication and authorization
are managed in a centralized manner by the security service. Users interact with
the security service to prove their identity. The security service is connected to
the organization’s user directory to check credentials. Services interact with the
security service to validate the identity of a requesting user and possibly to check
the user’s access rights for an access-restricted resource.

Fig. 1. Architecture of the security framework. Line styles represent the different types
of interaction.

In our framework authorization rules are associated with special resources
called areas. An area may be a department, a project, or a data-specific unit.
Areas serve as reference points for groups of resources in the service system. An
area directory service holds these area resources and thereby provides common
references for services and the security service to map role-area pairs to groups
of users. The notion of areas is borrowed from the Jazz platform [12].

3.2 Authentication

Authentication is the process of proving the user’s identity to the service she
attempts to interact with. It ensures that only legitimate members of the orga-
nization use the service and is the foundation for authorization. For a reliable
identification, a user and a service share a secret that only they know, i.e., the
user’s credentials. In this way, when receiving the credentials a service can be
sure that the associated user is at the sending end. To relieve the services from
managing user credentials and authentication logic themselves, we introduce a
central authority that handles authentication for all services.

Simplified Authentication and Authorization 249

Tokens. In our proposed solution, this central authority is implemented by the
security service (see Fig. 1). A user sends his credentials only to the security
service, and only once. The security service verifies the credentials against the
user directory of the organization, which stores the credentials of all employees,
for example as part of LDAP user profiles. If the credentials are valid, the security
service creates a token for the user. A token identifies a user for a certain period
of time, e.g., several days. During this time, a user does not need to present
the credentials again but presents this token instead. A security token in our
framework is an opaque string that does not carry any information itself. Instead,
the security service keeps a table that maps tokens to users and that also contains
the expiration dates of tokens. A token contains 20 random letters and digits to
prevent a brute-force attack from guessing it. Our system would also work with
cryptographic tokens, e.g., to detect manipulation attempts.

In contrast to other systems like CAS, our tokens are not bound to individual
services. The CAS protocol [3] describes several types of tokens (called tickets
there). Most important are ticket-granting tickets and service tickets. Ticket-
granting tickets are stored in a cookie on the client. The client sends them to the
CAS server to obtain service tickets. The client then attaches the service ticket
to a service request. The service checks the user’s authenticity by validating the
service ticket with the CAS server. Service tickets can only be validated once
and are bound to one service. Tickets that were eavesdropped by attackers are
therefore useless and pose no security risk.

We, however, prevent eavesdropping by using secure channels. In our case,
the restrictions that CAS places on service tickets are an unnecessary burden. If
security tokens expire after the first validation, users have to request new tokens
for every service access. Our users should have to request their security token only
once. If tokens are bound to services, composite services cannot forward them to
other services without additional communication with the security service. As
we trust our services to be uncorrupted, we want to allow them to reuse tokens
on behalf of the user for simplicity of the protocol. In this way, a composite
service can access other services on behalf of the user without requesting new
tokens. The receiving service will process the request as if it had come directly
from the user.

Accessing a Service. All services in our framework require that requests be
augmented with a security token identifying the requesting user. Access without
a token is not permitted and returns an error (see Fig. 2). Therefore, a user
without a valid token who wishes to use a service first performs an authentication
call to the security service, providing her credentials. She receives a token in
return that may be reused for several days until it expires. Now, to access a
service, she passes this token along with the HTTPS call, for example as an
additional GET parameter or as an HTTPS header.

Upon receiving a request, a service checks whether a token is provided. It
extracts the token and sends it to the security service for validation. A token is
valid if there is a corresponding entry in the token table and its expiration date
has not passed. The security service responds with the user name associated with

250 E. Brachmann, G. Dittmann, and K.-D. Schubert

Fig. 2. Authentication protocol. A service denies an unauthenticated request. The user
performs authentication by trading his credentials for a security token. The authenti-
cated request is granted.

the token, possibly together with additional user attributes that might be of use
in the domain of the service system. The security service responds with an error
code if the token cannot be found in the token table or if it has expired. Upon
receiving a positive answer, the original service processes the user request after
checking the user’s authorization if necessary (see Sect. 3.3). Once the service
has verified the identity of the user, it may establish a session with this user to
prevent unnecessary authentication calls during further communication.

3.3 Authorization

Although the identity of a user has already been verified in the preceding au-
thentication steps, a service might still have to decline a request if the resource
to be accessed is sensitive and the user lacks sufficient clearance. We manage
the required authorization at the resource level and integrate it with our central
security service to relieve services of the burden of managing user groups and as-
sociating them with authorization rules. This central authorization corresponds
to the concept of a policy decision point as defined by the XACML standard [6].
Based on the decision of the security service, the services controlling a resource
grant or deny access, acting as policy enforcement points.

User Groups, Roles and Areas. The security service manages user groups
and roles. According to the role-based access control (RBAC) model [13], a role
represents a responsibility in the context of an organization. User groups, on the
other hand, often reflect the structure of an organization. We exploit existing
user groups by assigning roles to entire groups rather than individual users, leav-
ing user management with the group owners rather than duplicating it for roles.
Our role definitions are generic and can hence be reused by multiple services for
multiple resources. We make the mapping of roles to user groups dependent on
the resources to ensure that the same generic role can be associated with dif-
ferent users for different resources. For instance, the role “admin” might require

Simplified Authentication and Authorization 251

membership in the group “management” for resource “A”, but membership in
the group “engineers” for resource “B”.

In contrast to this centralized portion of the RBAC model, the mapping of
roles to permissions stays with each individual service. Permissions denote rights
to perform particular actions1 that often depend on the service and the particular
resource. It is hence insufficient to grant or block access to a service or a function
as a whole. A user might be entitled to use a service to manipulate resource
“A” but not to do the same with resource “B”. However, when services provide
access to large amounts of data it is inconvenient to manage authorization rules
for every single resource.

We therefore have a directory service that provides a representation of the
logical structure of our organization in the form of areas (see Fig. 1). Areas are
resources that serve as authorization reference anchors. Our services associate
each resource they provide with an area, and authorization rules also refer to
areas. In this way, the area directory serves as a common dictionary for services
and the security service to map resources to authorization rules. It does not have
to implement any further functionality, but may store meta-information with the
areas.

In fact, any REST service and even multiple services might be used as area
directory as long as reference resources, i.e., areas, are provided. The difference
between arbitrary resources and areas is of a semantic nature. Any resource that
is being referenced by authorization rules becomes an area, and any service that
holds such resources becomes an area directory. The security service reflects
this flexibility by representing areas with URLs that can point to any REST
resource. Thereby, regarding authorization, we support heterogeneous organiza-
tional structures.

Each service in our system knows to which areas its resources belong. The
security service, in turn, maintains area-specific mappings of roles to user groups.
To perform a given action, a user must be assigned particular roles. For example,
instructing a service to delete data records might require the role “admin”,
whereas merely reading those same records requires the role “consumer”. The
security service implements the authorization mapping by managing lists of roles,
user groups and areas (see Fig. 3). Areas are represented by their URL, pointing
to the area directory that holds the area in question. Roles are represented only
by name; they do not carry any further information. The security service is
only responsible for answering the question whether a user has a certain role
in an area; it does not specify what a user in a certain role is allowed to do
as these permissions are service-specific. The services requiring authorization
are themselves responsible to determine the level of access a role grants. This
arrangement has the advantage that service owners don’t require the assistance
of a security-service administrator to define or change the mapping of role-area
pairs to permissions.

1 Although we deal with RESTful services, permissions are not necessarily limited to
CRUD operations.

252 E. Brachmann, G. Dittmann, and K.-D. Schubert

Fig. 3. Authorization classes. Group objects hold authorized users for unique role-area
pairs.

For each level of access we want to distinguish for an area, we define an
appropriate role and establish a relationship to the area reference via a role-area
connection (see Fig. 3). This connection contains the information which groups of
users may act on the area in that role. By holding the user group information in
the role-area connection objects, we facilitate the definition of generic, reusable
roles.

Without loss of generality we restrict our discussion to core RBAC while our
approach may be extended to also support hierarchical roles and separation-of-
duty constraints.

Accessing a Resource. When receiving a request, a service determines the
roles required to perform the requested action. It also determines the area
the accessed resource belongs to. The service then sends the security token of
the user, the URL of the area, and the role that matches the requested access
to the security service. The security service checks whether the user is a member
of all the groups that have been specified for that particular area-role combina-
tion. If the user is lacking a group membership or the role or the area cannot
be found in the first place, the security service will respond with an error code.
In this case, the original service will deny access. If the user is a member of all
the necessary groups, the security service will signal success and access will be
granted.

Figure 4 gives an example of the complete authorization process. Fig. 4a shows
the three services involved and some of the data they hold. The area directory
reflects the structure of an organization with two departments. “Department X”
runs two projects named “project foo” and “project bar”. A service offers a
“unit test report” resource that belongs to “project foo” and an “integration test

Simplified Authentication and Authorization 253

report” resource that belongs to “project bar”. For each of the four standard
REST operations, the service contains a mapping to the role that is necessary
to perform that operation on the report. The security service knows for every
area, e.g., “project foo”, which groups a user has to be member of to act in a
certain role on that area.

(a) Example data held by the services involved. Arrows between the services
and the directory represent references.

(b) Protocol sequence with example parameters

Fig. 4. Authorization example

Figure 4b shows how a user request is processed. The user wants to read the
“unit test report”. The client sends this request and the user’s token to the
service. The service determines that the “unit test report” belongs to the area
“project foo” and that the role “consumer” is necessary to read that report.
It sends a query to the security service whether the user is a “consumer” of
resources associated with “project foo”. The security service knows that a user

254 E. Brachmann, G. Dittmann, and K.-D. Schubert

has to be a member of the groups “designer” and “team alpha” to act in the
role “consumer” on “project foo”. If the user is a member of both groups, the
security service will approve the query, and the service will send the “unit test
report” to the client.

4 Prototype

4.1 Implementation

We have implemented a prototype of the proposed framework in Ruby on Rails
3.0.3. For service deployment, we use a Phusion Passenger module with enabled
TLS/SSL protection on an Apache web server.

Some of the available single sign-on (SSO) solutions come with ready-to-use
implementations. None of these solutions meet all of our requirements, but we
deploy one of them internally for the generation and the management of security
tokens as well as the connection to our user directory. We picked the Central Au-
thentication Service (CAS) because it uses opaque strings as tokens without any
cryptographic overhead, which we do not need. Furthermore, CAS implemen-
tations are available for many programming languages including Ruby, namely
rubyCAS [14]. RubyCAS directly supports LDAP user directories. However, any
CAS implementation should work.

Note that no service except the security service communicates directly with
the CAS server. The security service with its lean API wraps the CAS server
completely, making the latter an internal component of the former.

We use CAS ticket-granting tickets as security tokens as they do not expire af-
ter validations and are not bound to services. The CAS protocol does not include
the direct validation of ticket-granting tickets and, consequently, this feature is
missing in CAS implementations. Our validation process uses the ticket-granting
ticket to request an auxiliary service ticket and validates that in a second in-
ternal call. This mechanism is encapsulated within the security service, whereas
CAS service tickets would require users to issue two calls.

As discussed in Sect. 3.3, the security service contains a mapping of user
groups to roles and areas for authorization. Infrastructure for managing user
groups is typically already available in an organizations’ intranet, usually as
part of a user directory. It would therefore be redundant to implement groups
as lists of users in the security service. It is more convenient to reuse the group
infrastructure or even preexisting groups of the user directory. Our RoleArea-
Connection object (see Fig. 3) is associated with a list of LDAP groups from
our organization’s user directory. When an authorization request for a particular
user reaches the security service, the latter connects to the user directory and
retrieves all groups this user is member of. The security service then compares
these user directory groups with the list of group names associated with the
requested role and area. If the user is a member of all necessary groups, access
is granted. We decided to require the user to be member of all listed groups
to facilitate the formation of intersections of groups. Thereby, we are able to

Simplified Authentication and Authorization 255

bind access rights to user sets below the granularity of groups. This is not possi-
ble if membership in only one of the listed groups would suffice. For additional
flexibility both schemes could be combined.

4.2 API

Our overall approach results in the following API for the security service:

issue token. This method is called by a client POSTing the credentials of a user
to the security service. Credentials consist of user name and password and are
sent as POST data. If the user is found in the user directory and the password
matches, the security service responds with the HTTP status 200 OK with
the security token contained in the HTTP body. If the credentials are invalid,
the security service responds with the HTTP code 401 Unauthorized.

check token. This method is called by services checking the identity of a user
who provided a security token along with her request. The method is called
by an HTTP GET, with the security token passed as a parameter within the
query string. If the token is found in the token table and has not expired,
the security service responds with the HTTP code 200 OK. The response
body contains an XML document with the corresponding user name and
the associated list of group memberships found in the user directory. If the
token is invalid, the security service responds with the HTTP code 401

Unauthorized.
check authorization. This method is called by a service if a user requests

access-controlled resources that may only be seen by users in a certain role.
The method has three parameters: the security token of the requesting user,
the area the requested resource belongs to, and the role matching the access.
The method is called by an HTTP GET along with all three parameters. If
the security token is invalid, the security service responds with the HTTP
code 401 Unauthorized. If role or area cannot be found, the security service
responds with the HTTP code 404 Not Found. This indicates that adminis-
trative action is necessary to create a authorization mapping for the service.
If the mapping is found but the user is not a member of all required groups,
the security service responds with the HTTP code 403 Forbidden. If the
user has all required memberships, the security service responds with 200

OK.

The security service also provides an API for creating all necessary authoriza-
tion mapping objects (see Fig. 3). This API follows a RESTful design, i.e., the
individual objects are created, read, updated or deleted by using HTTP POST,
GET, PUT or DELETE, in some cases with an XML representation of the resource
in the HTTP body. Note that this API is not used by services or clients, but is
accessed only by administrators. Writing one central, convenient interface should
suffice. We have implemented a web interface for this purpose, using Ruby on
Rails.

Table 1 compares the protocol API complexity of CAS and of our proposed
framework in terms of HTTP calls to the central security service. It lists three

256 E. Brachmann, G. Dittmann, and K.-D. Schubert

Table 1. Protocol comparison of CAS and our framework. For an explanation of the
CAS tickets, see [3].

Step CAS Our Framework

Login 2 calls 1 call

(get login ticket, get ticket-
granting ticket)

(get token)

Service Access 2 calls 1 call

(get service ticket, access with
service ticket)

(access with token)

Proxy Access 2 calls + 1 passive call 1 call

(get proxy ticket, access with
proxy ticket + receive proxy-
granting ticket)

(access with token)

use cases: A user gains access to the service system in the Login case. She sends
a request to a service in the Service Access case, and a service sends a requests to
another service in the Proxy Access case. Note that this comparison does not con-
sider the authorization aspect, which is not supported by CAS. In our framework,
a service can verify user authorization with one call (see check authorization).

Compared with existing systems like CAS, our framework does not require
complex request-response interactions. A user can perform any security-related
action with one simple HTTP call. This makes it very easy to access our frame-
work from any programming language with support for HTTP and XML.

4.3 Deployment

We used our framework to implement a set of services for an internationally dis-
tributed engineering department developing high-performance processor chips.
The services are accessed via a web front-end or by command-line scripts written
in Python. The web server redirects an unauthenticated web client to a log-in
page. For shell scripts, we wrote a tool that asks the user for credentials, trades
them for a token with the security service, and stores the token in a shell en-
vironment variable from where service clients can pick it up. This mechanism
provides single sign-on from a shell and enables automatically scheduled scripts
that cannot ask any user for credentials: They can run with a token a user fetched
beforehand.

We also made available a Ruby library for service developers who build upon
the Ruby on Rails framework. This library implements the communication with
the security service and supports queries to other services within the framework.
It can also help in the creation of Ruby client scripts. A separate Python library
facilitates the creation of Python client scripts.

Simplified Authentication and Authorization 257

5 Conclusion

In this paper we have proposed a security framework for RESTful services de-
ployed in the protected domain of an intranet. A central security service handles
authentication and authorization for the services in the system, relieving services
of the burden of managing users, groups and authorization rules. Because the
services are trusted and run within the confines of a secure environment, we have
been able to simplify the API for authentication and authorization.

Users authenticate by trading their credentials for a security token which
identifies a user until it expires. The token is attached to each service call. Upon
receiving a token, a service validates it with the security service. It can also check
whether the user has been granted a particular role for the requested resource.
The security service contains a mapping of user groups to roles, and dedicated
resources called areas. Services grant access if the user has been granted the
necessary role for the requested area. As all services are trusted, the framework
enables them to use the user token to access other services on behalf of the user,
greatly simplifying service composition.

We have presented an implementation of our security service using available
software libraries. The prototype enables engineers to consume and create access-
controlled services for improved collaboration in support of their work. As the
framework is composed of simple HTTP-based RESTful services and the pre-
sented protocols cut the number of required API calls in half, we have lowered the
barrier for engineers to include security features into their custom-built scripts
and services, requiring only little training.

Acknowledgements. The authors wish to thank Chris Giblin, Olaf Zimmer-
mann and Charlotte Bolliger of IBM Research for their considerable help in
improving the original manuscript. We also thank Michael Schäfer of IBM Ger-
many R&D for his invaluable support with implementing the system described.

References

1. MIT: Kerberos: The network authentication protocol,
http://web.mit.edu/kerberos/

2. Schemers, R., Allbery, R.: WebAuth technical specification,
http://webauth.stanford.edu/protocol.html

3. Mazurek, D.: CAS protocol (May 2005), http://www.jasig.org/cas/protocol
4. Samar, V.: Single sign-on using cookies for web applications. In: Proceedings of

the 8th Intl. Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE 1999), Stanford, CA, USA, pp. 158–163. IEEE (1999)

5. OASIS: SAML specifications, http://saml.xml.org/saml-specifications
6. OASIS: OASIS eXtensible Access Control Markup Language (XACML) TC,

http://www.oasis-open.org/committees/xacml/

7. Mirza, Q.K.A.: Restful implementation of authorization mechanisms. In: Proceed-
ings of the International Conference on Technology and Business Management
(ICTBM 2011), Dubai, UAE, pp. 1001–1010. INFOMS (March 2011)

http://web.mit.edu/kerberos/
http://webauth.stanford.edu/protocol.html
http://www.jasig.org/cas/protocol
http://saml.xml.org/saml-specifications
http://www.oasis-open.org/committees/xacml/

258 E. Brachmann, G. Dittmann, and K.-D. Schubert

8. Gutzmann, K.: Access control and session management in the HTTP environment.
IEEE Internet Computing 5, 26–35 (2001)

9. Graf, S., Zholudev, V., Lewandowski, L., Waldvogel, M.: Hecate, managing autho-
rization with RESTful XML. In: Proceedings of the 2nd International Workshop
on RESTful Design (WS-REST 2011), Hyderabad, India, pp. 51–58. ACM (March
2011)

10. Recordon, D., Reed, D.: OpenID 2.0: A platform for user-centric identity manage-
ment. In: Proceedings of the 2nd Workshop on Digital Identity Management (DIM
2006), Fairfax, Virginia, USA, pp. 11–16. ACM (November 2006)

11. Hammer-Lahav, E.: The OAuth 1.0 protocol. RFC 5849, IETF (April 2010)
12. Jazz Community: Jazz, https://jazz.net/
13. ANSI: American national standard for information technology – Role based access

control. ANSI INCITS 359-2004, ANSI (February 2004)
14. Zukowski, M.: RubyCAS-Server, http://code.google.com/p/rubycas-server/

https://jazz.net/
http://code.google.com/p/rubycas-server/

How to Federate VISION Clouds

through SAML/Shibboleth Authentication

Massimo Villari, Francesco Tusa, Antonio Celesti, and Antonio Puliafito

Dept. of Mathematics, Faculty of Engineering, University of Messina,
Viale F. D’Alcontres 31, 98166, Messina, Italy

{mvillari,ftusa,acelesti,apuliafito}@unime.it
http://mdslab.unime.it

Abstract. Federation is currently finding a wide argumentation in Cloud
Computing. The federation among cloud operators should allow new op-
portunities and businesses even making the role of SMEs crucial in these
new scenarios. In this work, we provide a solution on how to federate
Storage Cloud providers, enabling the transparent and dynamic feder-
ation among storage suppliers adding new functionalities for end-users.
VISION Cloud represents the reference architecture dealing with Storage
Clouds, and our work attempts to design a solution applied on VISION,
but suitable for any similar architecture.

Keywords: Cloud Computing, VISION Cloud, Federation, Security,
Authentication, SAML, Shibboleth.

1 Introduction

Nowadays, most cloud providers can be considered as “islands in the ocean of
the cloud computing” and do not present any form of cooperation. Recently,
world wide SDOs are trying to overcome the current limitations. In particular,
all standardization boards are looking at how enforcing concepts as: interop-
erability, portability, data and services mobility, system openess, and federation.
Currently, we are assisting to a new trend in which cloud computing is dominated
by the idea to federate clouds involving computation, storage and networking.
Nevertheless, even though Federation is becoming a “buzzword” there is still
a long way to go toward the establishment of a worldwide Cloud ecosystem
including thousands of cooperating clouds.

Recently, many academic and industry organizations have tried to add feder-
ation features to their existing cloud architectures, but the process for making
these architectures federation-enabled is not so trivial at all. In fact, often clouds
are not natively conceived for cooperating with other clouds and the addition
of federation features might deeply impact their architectures. Moreover, feder-
ation can have many different meanings, and its impact on a cloud architecture
also depends on the target that cloud designers would like to achieve.

VISION Cloud [1] is a European FP7 Project, funded by EC in 2010. The
high-level goal of VISION Cloud is to increase the global competitiveness of

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 259–274, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://mdslab.unime.it

260 M. Villari et al.

the European ICT industry by introducing a virtualized infrastructure for cost-
effective delivery of data-intensive and media-rich services, providing compre-
hensive data interoperability and mobility, QoS and security guarantees.

The main contribution of this paper is firstly to discuss how federation can
affect a cloud architecture analyzing the VISION Cloud architecture, and sec-
ondly to propose a possible technical solution for the achievement of a secure
federation between different VISION Clouds leveraging the IdP/SP model and
adopting the Security Assertion Markup Language (SAML) [5] and the Shibbo-
leth [7] technologies.

The paper is organized as follows. In Section 2, we provide an overview re-
garding the general cloud federation concept. Section 3 discusses related works.
In Section 4, we introduce the VISION Cloud architecture and in Section 5,
we motivate the impact of the federation. In Section 6, we propose a solution-
enabling authentication to access federated resources deployed in different VI-
SION Clouds. In Section 7, we provide several implementation highlights using
the Shibboleth technology. Section 8 concludes the paper.

2 The Perspective of Cloud Federation

Doing a parallelism with the Internet, which is considered a network of networks,
“Cloud federation” cannot be simply considered as Cloud of Clouds. As the
networks composing the Internet are governed by the policies, which define access
control rules, also the Clouds composing a federation need to be regulated by
policies defining their relationships. But the definition of such relationships is
not simple because the cloud federation can theoretically consider many possible
scenarios, depending on the business model, which the involved Clouds want to
accomplish.

A “Cloud Federation” can be defined as a relationship between two or more
independent homogeneous/heterogeneous Cloud platforms which establish a
trusted federation agreement in order to benefit of a particular form of busi-
ness advantage. This latter definition is quite generic and does not specify which
type of relationship may be established between Clouds.

The concept of cloud federation implies several more evolved and complex
scenarios than the current ones where Clouds are independent and isolated from
each other, or where they merely use the services provided by other Clouds.
In fact, federated cloud scenario involves more than the simple provisioning of
services from a Cloud to another, and therefore it needs to rely on closer rela-
tionships between Clouds. But in order to establish such “closer relationships”
achieving a “high cooperation federation”, several issues concerning both the
compatibility among heterogeneous Cloud platforms need to be addressed.

An indispensable requirement is that the federation agreements do not have
to affect all the assets of the Clouds having relationships with other Clouds. In
fact, the federation has to respect the local management and policies, but at
the same time it has to enable the involved Clouds to control and use part or
the whole range of resources lent by other Clouds. Typically these resources are

How to Federate VISION Clouds through SAML/Shibboleth Authentication 261

storage and computational capabilities which Clouds use for the allocation of
*aaS. The access to the federated resources is regulated by a priori federation
agreements which define how each federated Cloud can “borrow” the resources
of other Clouds and how each federated Cloud can “lend” the resources to other
federated Clouds. Examples of federation scenarios include: “Capability Enlarge-
ment and Resource Optimization”, “Provisioning of Distributed *aaS”, “Service
Consolidation and Power Saving”.

3 Related Works

Hereby, we describe the current state-of-the-art in cloud computing, emphasiz-
ing federation aspects. A few works are available in literature related to cloud
federation. The main reason is that several pending issues concerning security
and privacy still have to be addressed, and a fortiori, is not clear what cloud fed-
eration actually means and what the involved issues are [3]. Nowadays, the latest
trend to federate applications over the Internet is represented by the Identity
Provider/Service Provider (IdP/SP) model [4]. Examples are SAML, Shibbo-
leth, and OpenID [6]. Such solutions, considered alone, do not solve the cloud
federation issues. In fact, the federation problem in cloud computing is greater
than the one in traditional systems. The main limit of the existing federation so-
lutions is that they are designed for static environments requiring a priori policy
agreements, whereas clouds are high-dynamic and heterogeneous environments,
which require particular security and policy arrangements. Keeping in mind the
cloud federation perspective, several security issues are already picked out. In-
teroperability in federated heterogeneous cloud environments is faced in [8], in
which the authors propose a trust model where the trust is delegated between
trustworthy parties which satisfy certain constrains. Instead, the data location
problem is treated in [9] where it is proposed a privacy manager to solve the
problems of the data compliance to the laws of different jurisdictions.

An interesting work is presented in [10]. The authors made up an identity
federation broker for service cloud. They looked at federation but considering
SaaS services in which SAML is used as the basic protocol. They introduced
a trusted third party as a trust broker to simplify the management of identity
federation in a user centric way. In our view the proposed architecture shows
good motivations but the solution is rather complex because many components,
gateways, software modules (plug-in) are introduced.

In [11], the authors provide a model for Cloud Storage RESTFul based, fol-
lowing the SNIA directives. They introduced a trust estimation system (TES),
for evaluating the level of trustiness among Cloud Service Providers (CSPs),
but it is not clear how they estimate this quality of relationship among servers.
However the work is interesting because they modified Shibboleth for supporting
their model and allowing transparent web redirections (RESTFul based) among
the parties. Ranjan and Buyya [12] describe a decentralized and distributed
cloud federation based on the Aneka middleware that combines PaaS enterprise

262 M. Villari et al.

clouds, overlay networking, and structured peer-to-peer techniques to create scal-
able wide-area networking of compute nodes for high-throughput computing. It
is interesting the work done in [18], that tries to find a SSO solution suitable
for Cloud environments. Rochwerger et al [13] address the federation between
several IaaS RESERVOIR-based clouds. An even more decentralized vision is
offered in Cloud@Home [14], a PRIN Project founded by the Italian Ministry
of Education facing the cloud federation problem from the point of view of the
volunteer computing paradigm. Another FP7 European Project is CONTRAIL
[15], which aims to develop a system with an integrated approach to virtual-
ization, offering services for IaaS Cloud Federation. Other initiatives aiming to
develop virtual infrastructure management systems with features supporting the
IaaS cloud federation are CLEVER [16] and OpenNebula [17].

4 The VISION Cloud Architecture

In this section we describe VISION Cloud, the reference architecture adopted
in the rest of the paper. The VISION Cloud (VC) architecture is aimed to
the accomplishment of an abstraction of raw massive data. The VC abstraction
allows to enrich storage service, taking into account a semantic classification and
cataloguing of data, using XML tags, systems hints, user profiles and behaviors.
In particular VC deals with the opportunity to provide new innovations:

– Raise the Abstraction Level of Storage. A new data model enabling the en-
capsulation of storage into objects with user-defined and system-defined at-
tributes.

– Computational Storage. Computational agents (storlets) released into the
cloud and activated by events on data.

– Content-Centric Storage Access. Access to data objects through information
about their content and its relationships, rather than details of underlying
storage containers

– Advanced Capabilities for Cloud-based Storage. Support multi-tenancy, guar-
antee secure and authorized access to the data and services, check compliance
with standards and regulations, optimize service provision with regard to
cost, monitor, analyze and manage SLA considering content-related terms.

– Data Mobility and Federation. A layer enabling unified access to data across
storage clouds and federation of data objects maintained by users across
different administrative domains.

As depicted in Figure 1 VC deploys its software stack inside each node com-
pounding the basic element of a cluster. As it is possible to notice in Figure 1,
at cluster level VC has servers equipped with basic software GPFS-SNC and
CASSANDRA (as intra-cluster distributed configuration) and Linux, Apache
and Tomcat (as intra-server stand-alone configuration).

How to Federate VISION Clouds through SAML/Shibboleth Authentication 263

Fig. 1. VISION Cloud Physical Model. At bottom on Right Side, the basic existing
software stack of a server composition is depicted.

5 The Federation between VISION Clouds

In the VISION Cloud model different actors exist. In the following, we will pay
more attention on Tenants, Users, and Containers that are deeply involved in
our scenario. A Tenant is an organization that subscribes for and receives stor-
age cloud services. A Tenant may represent a commercial firm, a governmental
organization, or any other organization, including any group of one or more in-
dividual persons. A user is the entity that actually uses (consumes) VISION
Cloud’s storage services. The term user may refer to a person or to an appli-
cation/program. A user belongs to one and only one Tenant. We note that a
person might own a user account in more than one Tenant, but this is opaque
to VISION Cloud. A Tenant administrator creates Users and manages them.
A user has an identifier (unique within his Tenant) and may have credentials
allowing him to authenticate himself to VISION Cloud. Data objects are stored
in containers. Each data object resides within the context of a single container.
Each Tenant has its own set of users and its own name space for its containers.

Commonly, an independent VISION Cloud stores data objects in its own con-
tainers. Federation allows to VISION Cloud providers to leverage new business
benefits. In fact, a VISION Cloud provider might decide to federate itself with
other VISION Cloud providers for different reasons including:

– Storage capability enlargement. If a VISION Cloud runs out of storage
capabilities, it can request external storage capabilities to external providers.

– Geographical data placement. Providers can require to store data objects
closer to his/her geographical location.

– Resource consolidation. In order to reduce the energy consumption, ac-
cording to target conditions, a VISION Cloud might decide to migrate data
object into another VISION Cloud.

264 M. Villari et al.

Fig. 2. Federation between two VISION Clouds in a storage capability enlargement
scenario

In the rest of the paper, in order to analyze the VISION Cloud federation, we will
focus on a storage capability enlargement scenario. Figure 2 depicts an environ-
ment including two VISION Clouds each one acts on a different administrative
domain. VISION Cloud A holds Tenants 1, 2, 3. Tenant 1 holds Containers
C01, C02,and C03. Tenant 2 holds Containers C04 and C05. Tenant 3 holds
Containers C06 and C07. As VISION Cloud A receives instantiation requests
for further containers, it decides to establish a federation with VISION Cloud B.
As consequence, VISION Cloud B creates in its data center a Tenant “VISION
Cloud A” holding Containers C11, C12, and C13. VISION Cloud B simply sees
the three Containers as data of VISION Cloud A and it is not able to deter-
mine to which particular Tenants of VISION Cloud A they belong. On the other
hand, VISION Cloud A associates Container C11 to Tenant 1, Container C12
to Tenant 2, and Container C13 to Tenant 3.

Despite the obvious advantages, the aforementioned scenario raises several
security issues:

– A VISION Cloud performs an authentication in another one in order to
establish a federation hence deploying containers.

– VISION Cloud B has not to be aware who is the effective holder of each
Container of the Tenant “VISION Cloud A”. This information hiding is very
important because it allows to avoid possible unfair competition between
different federated VISION Clouds.

Regarding Users interactions:

– The User needs to be authenticated by the corresponding Tenant gaining ac-
cess to all his own Containers hosted in both the local and external VISION
Clouds.

– The User needs to perform a Single Sign-On authentication on the Tenant,
gaining access to all its Containers without further log-in.

How to Federate VISION Clouds through SAML/Shibboleth Authentication 265

Issues related to Cloud interactions are out of the scope of this paper and will
not analyzed in the following.

6 VISION Cloud Security Infrastructure

6.1 Current Authentication in VISION Cloud

According to the VISION Cloud architectural document, Tenants, in order to
authenticate their Users, may select one of the following authentication options:

1. Authentication with an internal identity manager provided by the VISION
Cloud as part of the User Services in the Global View (GV, which provides
a set of distributed cloud-wide services that are logically global).

2. Authentication with his existing identity management server (e.g. Identity
Provider), which is located at the customer premises.

In the current VISION Cloud architecture, the only supported authentication
option is the one based on the internal identity management service, operating
on LDAP service. Figure 3 points out the process by means of a client request is
handled in VISION Cloud: upon receiving a client request, the Request Processor
will call the Access Manager to authenticate the request. The Access Manager
will call the Identity and Access Policy Services to do the actual authentication
with the relevant identity management server (lying in the User Services). In
particular, the Authentication Service is called within the Identity and Access
Policy Services for checking all data access requests and management operations
that require User identity verification. This latter is validated interacting with
the Identity and Policy Repository. The Identity and Access Policy Services also
includes a Federation Manager that will provide (in future implementations) the
interface for SAML assertions. Since the current VISION Cloud implementation
does not provide any Federation feature, this component is not used yet. In the
following Section, starting from the Identity and Access Policy Services compo-
nent, with particular attention on the Federation Manager, we will introduce
our decentralized security solution.

Fig. 3. Authentication based on the internal identity management service

266 M. Villari et al.

6.2 Authentication through Tenant IdP for Federation

According to the SAML terminology, the basic authentication system includes
three main entities: Subject, Service Provider (SP) or Relaying Party (RP), and
Identity Provider (IdP) or Asserting Party. The subject is the entity, which wants
to perform the authentication. It can be a person using a Desktop/Web/Mobile
application or a software system. The SP is the system authenticating a sub-
ject. The IdP is a system asserting authentication claims to the SP regarding a
subject. When an authentication request coming from a subject arrives to the
SP, it redirects the request to the IdP. If the subject has not been authenticated
yet, the subject needs to perform an authentication on the IdP, gaining access
to one or more SPs relaying on the IdP without further authentications (hence
achieving SSO).

Figure 4 points out a scenario involving VISION Cloud A, VISION Cloud B,
N Tenants and M Users. More specifically, services made available from Vision
Cloud A are exploited by its Tenants T1, T2, · · · , TN and T2 in turn offers ser-
vices to Users U1, U2, · · · , UM . Differently from the centralized approach, here
we assume that the User authentication is managed from each Tenant indepen-
dently through an IdP (one for each Tenant): IdPT1 , IdPT2 , · · · , IdPTN . Now, let
us consider a particular situation where VISION Cloud A run out its own re-
sources and, for matching anyway the service allocation requests coming from its
Tenants, asks further resources to an external provider VISION Cloud B. This
might be considered as a resource federation example among VISION Cloud A
and VISION Cloud B. The latter, in order to allocate resources for the former,
will create a new Tenant named V CA that logically stores all the Containers
associated to the Tenants of VISION Cloud A (V CA) that have been deployed
on VISION Cloud B (V CB). In general, Containers in VISION Cloud are iden-
tified and accessed using a mapping with the DNS as follows: C1.T2.V CA.eu
represents the Container C1 belonging to the tenant T2 on VISION Cloud A;
C1.TV CA .V CB .eu identifies the Container C1 belonging to Tenant TV CA on VI-
SION Cloud B. When building up resources federation among different VISION
Clouds, we retain the two following requirements have to be satisfied:

– a User should be allowed to access a remote federated resources transpar-
ently: he should conveniently use the same credentials exploited for authen-
ticating with his Tenant;

– the external VISION Cloud that provides additional resources must not be
aware of the Tenants to which they are allocated (because it could be con-
sidered unfair competition according to commercial laws).

How the User Access Federated Resources. In the following, the logical
steps needed by a User to access a federated resource are described using the
example referred to Figure 4. The IdP/SP authentication mechanism we intro-
duce can be still used when internal Tenant resources are accessed by a User.
Even though both scenarios can be managed with our approach, in the following
we will discuss only the one regarding resource Federation. The system behavior

How to Federate VISION Clouds through SAML/Shibboleth Authentication 267

Fig. 4. Authentication in a Federated VISION Cloud scenario

is described through logical steps that are not explicitly reported in Figure for
granting its readability. In step 1, VISION Cloud A runs out its resources (e.g.,
storage space) and, for satisfying the requests of Tenant T2, asks and receives
the rights to deploy Containers on VISION Cloud B. As consequence of this re-
source federation, a new Tenant named V CA is created on VISION Cloud B: it
will gather Containers logically belonging to Tenants of VISION Cloud A that
are actually deployed on VISION Cloud B. In this particular example, we are
assuming these external Containers are associated to Tenant T2. As the Figure
shows, on V CA, Tenant T2 includes logical Containers C1 and C2, physically
allocated on V CB, owned by Tenant TV CA .

In order to track the allocation of Containers on external VISION Clouds, the
Federation Manager of V CA, in particular its sub-component External Resource
Mapper, will maintain a resource mapping table (as represented in Table 1) where
each row consists of the following information: Container name, tenant and VC
(i.e., the external provider where the resource is deployed). For each couple of
fields [container, tenant] it is possible to compute a hash representing a unique
identifier through the SHA-1 (160 bits). Using this hash, it will be possible to

Table 1. Example of a Resource Mapping table

Container Tenant VC

C1 T2 B
C2 T2 B

268 M. Villari et al.

generate a unique identifier for all the Containers allocated on federated VISION
Clouds. Most importantly, the Tenant to which a Container is associated will be
known only from the Cloud to which the Container logically belongs (VISION
Cloud A), while the Clouds where it has been physically deployed (VISION
Cloud B) will be not aware of this information (the economic unfair competition
is avoided). Figure shows federated Containers H1 and H2 associated to Tenant
TV CA . They actually represent the physical deployment of Containers C1 and
C2 from Tenant T2 of V CA.

In the step 2, U1 tries to access Container C1 of T2 on V CA. An authentication
request will flow from the Request Processor to the Federation Manager crossing
all the security components we have already introduced earlier and depicted in
Figure 3. When the client request is received from the Authentication Service,
as Figure 4 shows, now it is redirected to the Federation Manager in order
to start the authentication process exploiting the external IdP: analyzing the
requested resource URL from the client, the FM will identify the Tenant that
holds the Container and will redirect the User to the associated Identity Provider
to prove his identity. The FM acts as a entry point for asking resources to
the service provider and through its Token Consumer sub-component will also
consume Users’s token generated by Tenants’IdP. If authentication succeeded,
U1 receives a token that can be used to access all the Containers of T2 for which
he is authorized (i.e., for which the User holds access right in the ACL). The
Token Consumer on the FM will check if the token has been issued by one of
the V CA Tenants and if the Tenant asserts the User identity. In this example,
User U1 is a valid User of Tenant T2 of VISION Cloud A and the token will lead
to a successful authentication process.

After the authentication is accomplished, in step 3 the authorization process
starts: since U1 asked for Container C1, the authorization components of V CA

will control the related access rights. Querying the Identity and Policy Reposi-
tory, the Access Enforcer verifies the access rights of U1 on the container The
FM will be notified by the Access Enforcer about the authorization response
that will be saved in a local cache. If authorization is successful, the resource
access continues. As represented in Table 1, Container C1 just represents a log-
ical map to the physical Container hash1.TVCA .V CB.eu deployed on VISION
Cloud B. This means that, once the token is consumed by the Token Consumer
in the FM, the resource will not be really accessed on V CA. U1. In order to
retrieve the physical container, VISION Cloud B has to be involved and an au-
thentication/authorization process may be performed there. U1 will need to be
authenticated from Tenant TV CA on VISION Cloud B that holds the Container
H1 associated to C1.

Before the User can be redirected on the remote VISION Cloud for accessing
the physical container, the FM has to verify how the requested Container has
been mapped on the remote federated VISION Cloud: in order to carry out
this operation, in step 4, through the External Resource Mapper component, it
will look up the Federation Resource Mapping table for retrieving the remote

How to Federate VISION Clouds through SAML/Shibboleth Authentication 269

VISION Cloud where the Container associated to the key value [Container,
Tenant] = [C1, T2] is deployed.

Right now, User U1 has been authenticated on V CA, his access rights to
Container C1 have been verified and the FM of V CA knows the remote path
where the associated physical container. Furthermore, U1 holds a token issued
by Tenant T2. Unfortunately, this token cannot be directly used to perform
authentication on the logical Tenant TV CA on VISION Cloud B, because it has
been issued by Tenant T2 of V CA. In addition, one of the requirements we
want to satisfy refers into avoid the possibility that V CB may known which
Tenants are exploiting its resources through Federation. In order to solve the
authentication problem across organizational boundaries and introducing SSO
authentication for Users, we should need a mechanism by means of Cloud A
delegates its identity for accessing Federated Resources on external Providers.

If a User holds a token issued by his Tenant IdP, the FM in V CA will generate
a new token for him: in the example, after that the U1 identity and his rights have
been verified, a new token that will be used for accessing the remote federated
resource is generated by the Token Generator asserting that:

– U1 identity is verified by one of the Tenant of VISION Cloud A but the
information about the specific Tenant identity is omitted for avoiding unfair
competition issues with the Federated Cloud.

– User U1 is authorized to access Container hash1.TVCA .V CB.eu on the Fed-
erated VISION Cloud B.

In the example pointed out in Figure 4, since the token is associated to a valid
User of Tenant T2 that, in turn represents a valid Tenant for VISION Cloud
A, the new token generation will be correctly accomplished. The new token will
state that User U1 is recognized by VISION Cloud A. The new token does not
contain any explicit reference to the Tenant to which U1 belongs but just a
reference to it that is known only from V CA . The new token will be signed
using the private key of the Federation Manager (e.g., X.509) for preventing
data tampering.

Once the token has been generated, User U1 receives it from the FM of V CA

and it is redirected to VISION Cloud B to the URL identifying the resource
that has to be accessed. In this example, the URL will be the location of the
Container hash1: hash1.TV CA .V CB .eu. User U1 forwards his Container request
to VISION Cloud B: Container hash1.TVCA .V CB.eu belongs to Tenant TV CA .

In order to access the resources, an authentication request is generated and
will be managed according to the flow we have already described above. From
the Request Processor, the request is propagated across the authentication com-
ponents and is caught from the FM of V CB. The token provided by U1 will
be consumed from the Token Consumer of the FM that will check its issuer
(verifying the token digital signature). If the issuer is equal to the name of the
logical tenant where federated resource are allocated (in this example V BA) the
asserted identity of U1 will allow the User to be recognized. Furthermore, also
the authorization assertion within the token will be checked and, in this case
will allow U1 to access the Container hash1.TVCA .V CB.eu.

270 M. Villari et al.

In the example of Figure 4 if U1 needs to access the Container C2 of Tenant
T2 will present his token to the Token Consumer of the FM. The token will
certify that U2 is a valid User of Tenant T2 and since the authentication has
been already performed, if U1 is enabled to access C2, an authorization assertion
is generated and is added to the content of the U1 The new token is digitally
signed again because its content has been modified. From now on, U1 will be
able to access both Containers C1 and C2 on the remote VISION Cloud B.

7 Secure Federation through Shibboleth Authentication

In the previous Section, we discussed how to integrate federation features within
the VISION Cloud architecture, especially focusing on authentication system
adopting the IdP/SP model. Here, we will discuss several Shibboleth [7] imple-
mentation highlights for the authentication of the Users of Tenants accessing to
Containers deployed in different federated VISION Clouds. Shibboleth is one of
the major solutions implementing the SAML protocol and the IdP/SP model.

In order to establish a federation between different VISION Cloud providers,
it is needed to perform two phases of authentication.

– Cloud Authentication. A VISION Cloud performs an authentication in an-
other VISION Cloud in order to establish a federation hence deploying con-
tainers.

– User Authentication. A User of a Tenant performs an authentication in
the Tenant’s IdP accessing all its Containers placed in both the local and
external VISION Clouds. The data object location is transparent for the
User that only interact with his/her reference local VISION Cloud.

In this Section, considering the architectural solution already discussed in the
previous Section, we specifically focus on how to achieve the “User Authentica-
tion”, discussing several implementation highlights using Shibboleth. According
to the SAML. According to our infrastructure, the Shibboleth subject is the
Tenant’s User, and the Shibboleth SP is the token consumer of the Federation
Manager component. Moreover, assertions sent by the Tenant’s IdP are caught
by the FM, rearranged by the External Resource Mapper and forwarded by the
Token Generator to the Token Consumer of the federated VISION Cloud host-
ing the containers.

7.1 The Shibboleth SP

The Shibboleth SP, in a Linux system is represented by the shibd demon in-
tegrated in the Apache Web Server by means of the mod shib module. In the
following, we report the main parameters adopted to configure the SP:

– SP - entityID: https://sp.shib.org/shibboleth
– SP - metadata: sp-metadata.xml
– SP - credentials: sp-key.pem sp-cert.pem

How to Federate VISION Clouds through SAML/Shibboleth Authentication 271

Commonly, the settings of the shibd daemon are defined by the shibboleth2.xml.
In the following several highlights of this configuration file are depicted. SP -

shibboleth2.xml

<SPConfig xmlns="urn:mace:shibboleth:2.0:native:sp:config"

xmlns:conf="urn:mace:shibboleth:2.0:native:sp:config"

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata"

logger="syslog.logger" clockSkew="180">

<!-- ... -->

<RequestMapper type="Native">

<RequestMap applicationId="default">

<Host name="sp.shib.org">

<Path name="authenticationagent/home" authType="shibboleth"

requireSession="true" requireSessionWith="Intranet"/>

</Host>

</RequestMap>

</RequestMapper>

<!-- ... -->

<ApplicationDefaults id="default" policyId="default"

entityID="https://sp.shib.org/shibboleth"

homeURL="https://sp.shib.org/authenticationagent/home"

REMOTE_USER="eppn persistent-id targeted-id"

signing="true" encryption="true">

<!-- ... -->

<Sessions lifetime="28800" timeout="3600" checkAddress="false"

handlerURL="/Shibboleth.sso" handlerSSL="true"

exportLocation="https://sp.shib.org/Shibboleth.sso/

GetAssertion" exportACL="127.0.0.1"

idpHistory="false" idpHistoryDays="7">

<SessionInitiator type="Chaining" Location="/Login"

isDefault="true" id="Intranet" relayState="cookie"

entityID="https://idp.shib.org:8443/idp/shibboleth">

<SessionInitiator type="SAML2" acsIndex="1"

template="bindingTemplate.html"/>

<SessionInitiator type="Shib1" acsIndex="5"/>

</SessionInitiator>

<!-- ... -->

<MetadataProvider type="Chaining">

<MetadataProvider type="XML" file="idp-metadata.xml"/>

<MetadataProvider type="XML" file="sp-metadata.xml"/>

</MetadataProvider>

<CredentialResolver type="File" key="sp-key.pem" certificate="sp-cert.pem"/>

</ApplicationDefaults>

More specifically, we can distinguish:

– SPConfig: It contains the name spaces of the SP configuration
– RequestMapper: It maps the quest with the associated applications.

• Host name: SP hostname.
• Path

272 M. Villari et al.

∗ name:redirect path.
∗ requireSessionWith: Associated Session Initiator id.

– ApplicationDefaults: settings for a default Session Initiator.
• entityID : SAML entityID used in the SP.
• homeURL: URL where the SP redirect the client.
• signing: if true the SAML messages will be signed.
• encryption: if true the SAML messages will be crypted.

– SessionInitiator: It checks the handlers starting the authentication process
with the SP.
• entityID : SAML entityID of the used IdP.

– MetadataProvider: It sets the sources of metadata used by the SP.
• file: path of the metadata file.

– CredentialResolver: It allows to the SP to access its credential as public
and private keys.
• key: Path of the file containing the private key in PEM format.
• certificate: path of the file containing the certificate in PEM format.

7.2 The Shibboleth IdP

The Shibboleth IdP receives authentication request from Users through SPs.
It provides information regarding the identity of Users issuing attributes (or
authentication token), interacting with a LDAP server. So that, it represents a
point of certification. In the following, we report the main parameters adopted
to configure the IdP:

– IDP - entityID: https://idp.shib.org:8443/idp/
– IDP - metadata: idp-metadata.xml
– IDP - credenziali: idp.key idp.crt
– LDAP - hostname: ldap://localhost:389
– LDAP - base dn: ou=Users,dc=shibidp,dc=home
– LDAP - user dn: cn=Manager,dc=shibidp,dc=home
– LDAP - password: shibidp

The Shibboleth IdP is released as web application that can be deployed in a
servlet container. In our testbed, we specifically used Tomcat. As already pointed
out, the Shibboleth IdP perform authentication by means of an LDAP server
containing User accounts. In our testbed, we choice to use OpenLDAP.

In the following, we report the main IdP configuration. For the deployment
of the IdP it was necessary to modify the server.xml file placed in the Tomcat
configuration directory, adding an appropriate Connector https on port 8443.
IDP - server.xml

<Connector port="8443"

protocol="org.apache.coyote.http11.Http11Protocol"

SSLImplementation="edu.internet2.middleware.security.

tomcat6.DelegateToApplicationJSSEImplementation"

How to Federate VISION Clouds through SAML/Shibboleth Authentication 273

scheme="https"

SSLEnabled="true"

clientAuth="false"

secure="true"

keystoreFile="/opt/shibboleth-idp/credentials/idp.jks"

keystorePass="administrator" />

Regarding the metadata structure, it is needed to add the IDPSSODescriptor
tag inside the EntityDescriptor tag indicating the parser which is starting the
IdP. Regarding the configuration file, it was required to enable the user authen-
tication by means of username and password. This is possible modifying the
conf/handler.xml file as follows: IDP - handler.xml

<!-- Login Handlers -->

<!--<ph:LoginHandler xsi:type="ph:RemoteUser">

<ph:AuthenticationMethod>

urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified

</ph:AuthenticationMethod>

</ph:LoginHandler>-->

<!-- Username/password login handler -->

<ph:LoginHandler xsi:type="ph:UsernamePassword"

jaasConfigurationLocation="file:///opt/shibboleth-idp/conf/login.config">

<ph:AuthenticationMethod>

urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport

</ph:AuthenticationMethod>

</ph:LoginHandler>

8 Conclusions and Remarks

Nowadays both industry and academic initiatives are trying to add federation
features in cloud architecture, but this task is not trivial at all. In this paper,
starting from the VISION Cloud architecture, we studied a methodology for the
integration of federation features. More specifically, we analyze the impact of
our solution in the original architecture, also proposing a possible implemen-
tation based on SAML/Shibboleth. Currently the VISION Cloud project is at
the second year, and one of the major objectives is the addition of federation
capabilities. Nevertheless, further issues need to be faced yet.

Acknowledgments. The research leading to the results presented in this paper
has received funding from the European Union’s Seventh Framework Programme
(FP7 2007-2013) Project VISION-Cloud under grant agreement number 217019.

References

1. Vision-Cloud Project (March 2012), http://www.visioncloud.eu/
2. Storage Networking Industry Association (SNIA): Cloud Data Management

Interface (CDMI) (September 2011), http://www.snia.org/tech activities/

publicreview/CDMI SNIA Architecture v1.0.1.pdf

 http://www.visioncloud.eu/
http://www.snia.org/tech_activities/publicreview/CDMI_SNIA_Architecture_v1.0.1.pdf
http://www.snia.org/tech_activities/publicreview/CDMI_SNIA_Architecture_v1.0.1.pdf

274 M. Villari et al.

3. Leavitt, N.: Is cloud computing really ready for prime time? Computer, 15–20
(January 2009)

4. Liberty Alleance Project, http://projectliberty.org
5. SAML V2.0 Technical Overview, OASIS (January 2012),

http://www.oasis-open.org/specs/index.php#saml

6. OpenID Authentication 2.0, OpenID Foundation (2007),
http://openid.net/specs/openid-attribute-exchange-2_0.html

7. The Shibboleth system standards (January 2012),
http://shibboleth.internet2.edu/

8. Li, W., Ping, L.: Trust Model to Enhance Security and Interoperability of Cloud
Environment. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS,
vol. 5931, pp. 69–79. Springer, Heidelberg (2009)

9. Pearson, S., Shen, Y., Mowbray, M.: A Privacy Manager for Cloud Computing.
In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931,
pp. 90–106. Springer, Heidelberg (2009)

10. Huang, H.Y., Wang, B., Liu, X.X., Xu, J.M.: Identity federation broker for service
cloud. In: 2010 International Conference on Service Sciences (ICSS), pp. 115–120
(May 2010)

11. Srinivas, M., Srinivas, B., Marx, R.: Article: A unique approach to element man-
agement and secure cloud storage backup for sensitive data. IJCA Special Issue on
Communication and Networks comnetcn, 1–5 (2011)

12. Ranjan, R., Buyya, R.: Decentralized overlay for federation of enterprise clouds.
In: Handbook of Research on Scalable Computing Technologies (2009)

13. Rochwerger, B., Breitgand, D., Epstein, A., Hadas, D., Loy, I., Nagin, K., Tordsson,
J., Ragusa, C., Villari, M., Clayman, S., Levy, E., Maraschini, A., Massonet, P.,
Munoz, H., Toffetti, G.: Reservoir - when one cloud is not enough. Computer 44,
44–51 (2011)

14. Cunsolo, V., Distefano, S., Puliafito, A., Scarpa, M.: Applying software engineering
principles for designing cloud@home. In: CCGRID, pp. 618–624 (2010)

15. Contrail, Open Computing Infrastructures for Elastic Services,
http://contrail-project.eu/

16. Tusa, F., Celesti, A., Paone, M., Villari, M., Puliafito, A.: How clever-based clouds
conceive horizontal and vertical federations. In: ISCC, pp. 167–172 (2011)

17. Milojicic, D.S., Llorente, I.M., Montero, R.S.: Opennebula: A cloud management
tool. IEEE Internet Computing 15(2), 11–14 (2011)

18. Reich, C., Rubsamen, T.: Shibboleth Web-proxy for Single Sign-on of Cloud Ser-
vices. In: CLOSER, Proceedings of the 2nd International Conference on Cloud
Computing and Services Science, Porto, Portugal, pp. 89–95 (2012)

http://projectliberty.org
http://www.oasis-open.org/specs/index.php#saml
http://openid.net/specs/openid-attribute-exchange-2_0.html
http://shibboleth.internet2.edu/
http://contrail-project.eu/

The Secure Enterprise Desktop:

Changing Today’s Computing Infrastructure

Thomas Gschwind, Michael Baentsch, Andreas Schade, and Paolo Scotton

IBM Research, Zurich, Switzerland

Abstract. An end-user computing environment is characterized by an
image which is the ensemble comprising operating system, applications
and data) and by the hardware where the image is running. One can
essentially distinguish two fundamental approaches: either the image is
installed on a given end-user owned computer or the image is run on a
server and is remotely accessed by the user through a remote desktop.
Both approaches, however, have a disadvantage. In the former case, no
network connectivity is required as the image is stored on the local com-
puter, this data is lost when the computer such as a notebook is lost or
stolen. Moreover, in an enterprise environment, it is very difficult to con-
trol that image and apply patches, check for viruses etc. While the latter
approach waives these shortcommings, a continuous network connection
is required to work with that virtual machine which may not be always
available. With the Secure Enterprise Desktop, we bridge this gap and
allow users to use their computer image locally or remotely and ensure
that their computer image is continuously synchronized.

1 Introduction

With the prevalence of cloud services, users expect more and more that their
data is accessible from all over the world and on all types of devices. This desire
is addressed with services such as Microsoft’s SkyDrive, Apple’s iCloud, or the
Google Drive but they cover only the user’s data and not the entire computing
desktop (application, preferences, printers, firewall settings, etc.), an essential
part of the protection mechanism for securing enterprise data access.

The Secure Enterprise Desktop goes one step further, it does not only store the
user’s data in the cloud (public or private) but it stores the entire desktop image
in the cloud and synchronizes that image as necessary with locally available
storage. This approach ensures that the entire desktop is replicated to any other
computer and the user does not have to worry about the availability of the
applications needed or even different computer configurations.

Maintaining the entire computer image in the cloud is also appealing to corpo-
rations. Today, many employees do their work on dedicated corporate computers.
Many corporations do not want private computers to be used because typically
they are less secure. Using our approach private computers can be used with the
corporate image stored in the cloud (Bring Your Own Device) while ensuring
the company’s security standards. This is beneficial when employees are abroad
and want to access their private and corporate data.

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 275–276, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

276 T. Gschwind et al.

2 The Secure Enterprise Desktop

Several challenges need to be solved for maintaining the entire computer image
in the cloud.

Computer Images are Large. Copying the entire computing image onto the client
computer and starting the OS would take too long. Our approach allows users to
start working in their environment while the image is being downloaded from or
synchronized with the server. We use a device driver that accesses the image from
the cloud via iSCSI running within a securely bootstrapped and encrypted con-
nection, that caches any block that has been download over the network on the
local hard drive, and that downloads all remaining blocks in the background [1].

Continuous Backup. All blocks that are modified by the user can be written
back directly into the cloud provided that there is network connectivity. When
there is no network connectivity, our device driver marks blocks written back to
the local cache as dirty and writes them back to the server when the connection
to the corporate network is reestablished. Only blocks that have been modified
by the local OS have to be written back.

Security. When a computer is started with the Secure Enterprise Desktop, for
security reasons, we cannot rely on any locally installed software as it may be
infected with viruses or not even available. The Secure Enterprise Desktop there-
fore must be booted from a boot device that cannot be tampered with and serves
as authentication key, the IBM ZTIC [2]. This boot device then starts a virtu-
alization layer into which the actual users desktop is booted. All data including
caches are encrypted and only decrypted with the ZTIC.
Bring Your Own Device. When the system is to be used with a private com-
puter we may not overwrite the data already stored on the local computer. This
limitation is addressed by requiring a part of the computers hard disk to be
unpartitioned, or by storing the encrypted cache within the normal users file
system. Both approaches have their respective advantages and disadvantages.

3 Conclusions

The migration of entire computer images into the cloud allows users to take their
desktop to wherever they go. In addition when the computer is lost, they can
buy a new computer (with or without OS), boot the computer from their mobile
trust anchor (performing secure boot and authentication) and continue where
they have left off.

References

1. Clerc, D., Garcés-Erice, L., Rooney, S.: Os streaming deployment. In: IPCCC. IEEE
(2010)

2. Weigold, T., Kramp, T., Hermann, R., Höring, F., Buhler, P., Baentsch, M.: The
Zurich Trusted Information Channel – An Efficient Defence Against Man-in-the-
Middle and Malicious Software Attacks. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M.
(eds.) TRUST 2008. LNCS, vol. 4968, pp. 75–91. Springer, Heidelberg (2008)

Cloud Computing:

U.S. and E.U. Government/Military Approach

Antonio Mauro

University of Northwest, USA
University of Modena and Reggio Emilia, Italy

Abstract. At the moment Cloud Computing is an important model to
transfer applications, data and services. Companies, Government and
private people are using the cloud for a lot of services such as backup
or data storage. The Government uses a particular approach to move
their applications into the cloud. For this reason the United State (US),
has published more documents that describe these procedures. The Eu-
ropean Union (EU) uses another approach but the topic is in continuous
evolution. To understand the Federal Cloud Computing strategy in the
US and in the EU, it is important to know some Federal documents
published by NIST, ENISA, CIO Council, etc.

1 Introduction

For government work that is related to the cloud, it is important to understand
the reference documents for Cloud Computing Standard and architecture, what
is the Cloud Computing Strategy and why and how the US and EU use the
cloud for their applications. It is likely that the same procedures and approaches
can be used for private use or Enterprice use and to get more confidence in
this technology. The US has more interesting use cases in the Government scope
and tactical while the EU has a few use cases in the healthcare, research and
academic scopes.

2 The European Approach

The Cloud Computing Strategy is an important project for the European Com-
mission [1,2,3]. In particular the focus is “The Digital Agenda” [4]. The proce-
dure is divided in three steps: legal, technical and marker. Each step has strong
implications on how to implement the technology, for instance, in the context
of privacy and data protection, forensics, security, etc. At the moment, the EU
has some important use cases in academic, research, scientific and government
environment.

3 The US Approach

The US launched the “The Cloud First Program” in 2009 and “The Cloud Com-
puting Strategy” in 2011 [5,6,7]. These programs are very different from the EU

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 277–278, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

278 A. Mauro

because the US is a federation of States and hence, it is somewhat easier to imple-
ment new guidelines. A particular working group is called “FedRAMP” (Federal
Risk and Authorization Management Program) [8]. The role of this working
group is to reduce redundant processes across government by providing security
authorizations and continuous monitoring of cloud systems, established to pro-
vide a standard approach to assessing and authorizing cloud computing services
and products. The first strategy is divided in pillars: Simplifying Acquisition of
Cloud Computing Solution, Budgeting, Cloud Computing Pilot Projects, Guid-
ance to Agencies and Policy Planning & Architecture. A new Cloud Computing
Strategy was published in July 2012.

4 Conclusions

Comparing the different approaches used by the EU and the US helps us to
better understand the methodology and procedures to move applications and
data into the cloud, especially in a governmental context. Some topics are still
open such as the Forensics procedures or the use of the cloud for crime but
the regulations mentioned so far are an important starting point to stimulate
discussion.

References

1. European Commission: Towards a European Cloud Computing Strategy,
http://ec.europa.eu/information society/activities/

cloudcomputing/index en.html

2. ENISA: Cloud Computing Risk Assessment,
http://www.enisa.europa.eu/activities/risk-management/files/

deliverables/cloud-computing-risk-assessment/

3. ENISA: Cloud Computing: Benefits, Risks and Recommendations for Information
security

4. European Commission: The European Digital Agenda, http://ec.europa.eu/

information society/digital-agenda/index en.html

5. Kundra, V.: Federal Cloud Computing Strategy (February 2011),
http://www.cio.gov/documents/federal-cloud-computing-strategy.pdf

6. Department of Defense: Cloud Computing Strategy (July 2012),
http://www.defense.gov/news/DoDCloudComputingStrategy.pdf

7. NIST: Cloud Computing Collaboration Website, http://collaborate.nist.gov/
twiki-cloud-computing/bin/view/CloudComputing/

8. US General Services Administration: FedRAMP, http://www.gsa.gov/portal/

category/102371

http://ec.europa.eu/information_society/activities/cloudcomputing/index_en.html
http://ec.europa.eu/information_society/activities/cloudcomputing/index_en.html
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment/
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment/
http://ec.europa.eu/information_society/digital-agenda/index_en.html
http://ec.europa.eu/information_society/digital-agenda/index_en.html
http://www.cio.gov/documents/federal-cloud-computing-strategy.pdf
http://www.defense.gov/news/DoDCloudComputingStrategy.pdf
http://collaborate.nist.gov/twiki-cloud-computing/bin/view/CloudComputing/
http://collaborate.nist.gov/twiki-cloud-computing/bin/view/CloudComputing/
http://www.gsa.gov/portal/category/102371
http://www.gsa.gov/portal/category/102371

Smart Work Industry Best Practices

for Business and IT

Hans-Peter Hoidn1 and Peter Utzinger2

1 IBM, Zurich, Switzerland
2 IBM, Lugano, Switzerland

Abstract. Enterprises must respond faster to changing customer ex-
pectations and business demands. The major observation is today that
we cannot just work harder, and that we cannot just dedicate more re-
sources; thus we must work smarter. Therefore the major question to
be answered is: How do businesses evolve to adapt and respond dynam-
ically? We will explain by industry examples how today’s technology
approaches enable smarter solutions. These solutions are better adapted
to business needs, and they are faster implemented.

1 Inhabiting the Smarter Planet

Global trends and economic conditions are affecting businesses around the world,
and the pace of change is accelerating. Businesses must work smarter to survive
and to succeed. Dynamic Enterprises are the heart of this smart work. They
enable faster response to changing customer expectations and business demands.
We outline how a roadmap for implementing a Smart Cloud solution can be based
on best practices for a Business Process Management life cycle, Service Oriented
Architecture practice, methodology, and governance. The solution roadmap will
focus business and IT value.

2 About the Speakers

Hans-Peter Hoidn is Executive Architect with a very strong architectural back-
ground doing architecture more than 15 years with a strong focus on Service-
Oriented Architecture (SOA) and Enterprise Architecture (EA). Peter Utzinger
is a Business Architect at IBM with focus on cloud solution architectures.

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, p. 279, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Author Index

Abbadessa, Daniele 214
Afsarmanesh, Hamideh 1
Agarwal, Sachin 214
Anedda, Paolo 208
Arbab, Farhad 1

Baentsch, Michael 275
Barakat, Lina 17
Boag, James 230
Both, Andreas 122
Brachmann, Eric 244
Brotsky, Dan 230

Celesti, Antonio 259
Cheng, Bin 214
Collinson, Matthew 64

Dalla Preda, Mila 48
de Boer, Frank S. 91
de Laat, Cees 32
Dellkrantz, Manfred 184
Demchenko, Yuri 32
De Vettor, Pierre 210
Dittmann, Gero 244

Ferber, Marvin 192
Fittkau, Florian 200
Frey, Sören 200

Gabbrielli, Maurizio 48
Garcia-Espin, Joan A. 32
Gheorghiu, Steluta 32
Grammatikou, Mary 32
Gschwind, Thomas 275
Guidi, Claudio 48, 208

Hähnle, Reiner 91
Hasselbring, Wilhelm 200
Heike, Christian 122
Hoidn, Hans-Peter 279
Houngue, Pélagie 154

Jézéquel, Jean-Marc 107
Jofre, Jordi 32
Johnsen, Einar Broch 91
Jongmans, Sung-Shik T.Q. 1

Kalfas, Andrei 230
Kihl, Maria 184

Lampe, Ulrich 80
Le Nhan, Tam 107
Luck, Michael 17

Mart́ınez-Julia, Pedro 32
Mauro, Antonio 277
Mauro, Jacopo 48
Miles, Simon 17
Montesi, Fabrizio 48
Mrissa, Michaël 210

Ngo, Canh 32

Pahl, Claus 138, 212
Pedrinaci, Carlos 210
Perez-Morales, Antonio D. 32
Puliafito, Antonio 259
Pym, David 64

Rauber, Thomas 192
Robertsson, Anders 184

Sagbo, Kouessi Arafat Romaric 154
Santini, Francesco 1
Sargolzaei, Mahdi 1
Schade, Andreas 275
Schlatte, Rudolf 91
Schubert, Klaus-Dieter 244
Schuller, Dieter 80
Scotton, Paolo 275
Siebenhaar, Melanie 80
Steinmetz, Ralf 80
Sunyé, Gerson 107

Taylor, Barry 64
Torroglosa, Elena 32

282 Author Index

Trammel, John 230
Tusa, Francesco 259

Utzinger, Peter 279

van den Berg, Hans 169
Vardanega, Tullio 208
Villari, Massimo 259

Wang, Ming-Xue 212
Wenge, Olga 80
Wong, Peter Y.H. 91

Yalçınalp, Ümit 230

Zimmermann, Wolf 122
Živković, Miroslav 169

	Title
	Preface
	Organization
	Table of Contents
	Research Track
	Composition
	Automatic Code Generation for the Orchestration of Web Services with Reo
	Introduction and Motivations
	Related Work
	Reo
	Orchestrating Web Services with Reo
	Reo Compiler: From Circuit Diagrams to Java
	Proxy Generator: Connecting Web Services to Circuits
	Gluing Together Orchestrators and Proxies

	Case Studies
	Conclusion
	References

	Reactive Service Selection in Dynamic Service Environments
	Introduction
	Basic Model
	Planning Knowledge Model
	Service Selection Problem
	Static Service Selection

	Motivating Example for Reactive Selection
	Reactive Service Selection
	The Effect on Request-Based Non-dominated Services
	The Effect on Status Function
	The Effect on Valid Predecessors

	Experiments and Results
	Related Work and Conclusions
	References

	GEMBus Based Services Composition Platform for Cloud PaaS
	Introduction
	Clouds and SOA for Services Composition
	Composable Services Architecture (CSA)
	CSA Functional Components
	Service Provisioning Workflow and Service Lifecycle Management

	GEMBus
	GEMBus Component Services
	Composition Service
	Security Token Service
	GEMBus Accounting Service

	Testbed for ESB Based PaaS Platform
	Conclusion and Future Development
	References

	Interface-Based Service Composition with Aggregation
	Introduction
	Network Model
	Some Motivating Examples
	The Formal Model
	Session
	Services
	Network
	Properties

	Implementation in Jolie
	Related Work and Conclusions
	References

	Security
	A Framework for Modelling Security Architectures in Services Ecosystems
	Introduction
	Systems Modelling and Systems Economics
	The Core System Concepts
	A Running Example

	The Basic Architecture Model
	The Framework Layer
	The Instantiation Layer
	Context and Related Approaches

	Interacting Architectures
	Composition
	Substitution
	Stacking

	Extending the Running Example: Outsourcing to the Cloud
	Modelling and Tool Support
	References

	Much Ado about Security Appeal: Cloud Provider Collaborations and Their Risks
	Introduction
	Security Aware Cloud Collaboration Types
	Security Concerns and Solutions in Multiple Cloud Environments
	Legal Risks
	Proprietary Definitions of Cloud Services and Deployment Models
	Compliance and Audit with Regulators
	Insufficient Level of Security
	Data Protection Risk
	Data Location Risk
	Identity and Data Access Risks
	Insufficient Monitoring and Incident Response
	Portability, Interoperation and Autonomy

	Information Security Governance in Cloud Collaborations
	Conclusion and Future Work
	References

	Modeling
	Formal Modeling of Resource Management for Cloud Architectures: An Industrial Case Study
	Introduction
	The Case Study: Background
	ABS Deployment Architecture
	Behavioral Modeling in ABS
	Deployment Modeling in ABS

	Case Study: The ABS Model
	Calibration
	The Results

	Related Work
	Conclusion and Future Work
	References

	A Model-Driven Approach for Virtual Machine Image Provisioning in Cloud Computing
	Introduction
	Model-Driven Approach
	Feature Modeling for VMI Configuration Management
	Model-Based Deployment Architecture
	Model-Based Deployment Process

	An Example of the VMI for Java Web Application
	Experiment Evaluation
	Scenario Description
	Traditional Approach vs. Model-Driven Approach

	Related Work
	Virtual Machine Image Configuration Management
	Virtual Machine Image Deployment

	Conclusion and Future Work
	References

	Protocol Conformance Checking of Services with Exceptions
	Introduction
	Preliminaries
	Abstraction of Behaviour
	Protocol Conformance Checking
	Related Work
	Conclusions
	References

	Adaptation
	Cloud Service Localisation
	Introduction
	Motivation
	Application Scenarios and Benefits
	Use Case and Requirements

	Conceptual Framework
	Information Architecture - Localisable Artefacts
	Systems Architecture and Process

	Localisation Techniques for the Cloud
	Policy Language and Localisation Model
	Lingual Localisation and Translation
	Regulatory Localisation and Governance

	Infrastructures for Cloud Localisation - Directions and Requirements
	Related Work
	Conclusions
	References

	Quality Architecture for Resource Allocation in Cloud Computing
	Introduction
	Motivations
	Overview of Service Measurement Index
	Related Works
	Our Architecture
	Performance Evaluation of Our Architecture
	Testbed
	First Results
	Analysis

	Conclusion
	References

	Analysis of Revenue Improvements with Runtime Adaptation of Service Composition Based on Conditional Request Retries
	Introduction
	Related Work
	Considered System Model
	Analysis of the Retry Mechanism
	Response–Time Distribution
	The Last Task Analysis
	Analysis of other Tasks in the Workflow

	Experiments
	Summary and Future Work
	References

	Short Papers
	Performance Modeling and Analysis of a Database Server with Write-Heavy Workload
	Introduction
	System Description
	Page Cache
	Testbed

	Performance Characterization
	Performance Model
	Model Description
	Parameter Configuration
	Model Validation

	Conclusions
	References

	Mobile Cloud Computing in 3G Cellular Networks Using Pipelined Tasks
	Introduction
	Mobile Cloud Computing
	Pipelining Task Execution
	Cloud Resource Selection
	Case Studies
	Conclusion
	References

	Cloud User-Centric Enhancements of the Simulator CloudSim to Improve Cloud Deployment Option Analysis
	Introduction
	The Cloud Deployment Option Simulator CDOSim
	Cloud User-Centric Enhancements of CloudSim
	CPU Utilization Model Per Core
	Starting and Stopping Virtual Machine Instances on Demand
	Delayed Cloudlet Creation
	Delayed Start of Virtual Machines
	Configurable Timeout for Cloudlets
	Enhanced Debt Model
	Method Calls and Network Traffic between Virtual Machine Instances

	Case Study
	Methodology
	C1: Case Study Using Single Core Instances

	Related Work
	Conclusion and Future Work
	References

	Posters
	PaaSSOA: An Open PaaS Architecture for Service Oriented Applications
	Introduction
	PaaSSOA
	Reference

	Context Mediation as a Linked Service
	References

	User-Customisable Policy Monitoring for Multi-tenant Cloud Architectures
	Introduction
	Overview of the Framework
	References

	Industrial Track
	Papers
	Enabling Co-browsing Service across Different Browsers and Devices
	Introduction
	Design
	Architecture
	Web Proxy
	Cobrowser Module
	Event Coordinator

	Implementation
	Performance Evaluation
	Setup
	Performance
	Usability

	Limitations
	Related Work
	Conclusion and Future Work
	References

	Device Token Protocol for Persistent Authentication Shared across Applications
	Introduction
	Problem
	Solution

	Detailed Protocol
	Overview
	Detailed Protocol
	Persistence of Device Tokens

	Conclusion
	References

	Simplified Authentication and Authorization for RESTful Services in Trusted Environments
	Introduction
	Related Work
	Framework
	Overview
	Authentication
	Authorization

	Prototype
	Implementation
	API
	Deployment

	Conclusion
	References

	How to Federate VISION Clouds through SAML/Shibboleth Authentication
	Introduction
	The Perspective of Cloud Federation
	Related Works
	The VISION Cloud Architecture
	The Federation between VISION Clouds
	VISION Cloud Security Infrastructure
	Current Authentication in VISION Cloud
	Authentication through Tenant IdP for Federation

	Secure Federation through Shibboleth Authentication
	The Shibboleth SP
	The Shibboleth IdP

	Conclusions and Remarks
	References

	Presentations
	The Secure Enterprise Desktop: Changing Today’s Computing Infrastructure
	Introduction
	The Secure Enterprise Desktop
	Conclusions
	References

	Cloud Computing: U.S. and E.U. Government/Military Approach
	Introduction
	The European Approach
	The US Approach
	Conclusions
	References

	Smart Work Industry Best Practices for Business and IT
	Inhabiting the Smarter Planet
	About the Speakers

	Author Index

