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Abstract. Cochlear implant (CI) surgery is considered standard of care treat-
ment for severe hearing loss. CIs are currently programmed using a one-size-
fits-all type approach. Individualized, position-based CI programming schemes 
have the potential to significantly improve hearing outcomes. This has not been 
possible because the position of stimulation targets is unknown due to their 
small size and lack of contrast in CT. In this work, we present a segmentation 
approach that relies on a weighted active shape model created using microCT 
scans of the cochlea acquired ex-vivo in which stimulation targets are visible. 
The model is fitted to the partial information available in the conventional CTs 
and used to estimate the position of structures not visible in these images. 
Quantitative evaluation of our method results in Dice scores averaging 0.77 and 
average surface errors of 0.15 mm. These results suggest that our approach can 
be used for position-dependent image-guided CI programming methods. 

Keywords: Spiral ganglion, modiolus, cochlear implant, weighted active shape 
model segmentation. 

1 Introduction 

Cochlear Implants (CIs) are considered standard of care treatment for severe-to-
profound sensory-based hearing loss. CIs restore hearing by applying electric poten-
tial to neural stimulation sites in the cochlea with an implanted electrode array. An 
audiologist programs the CI by determining how it maps the spectrum of detected 
sound frequencies to the set of electrodes for each recipient. Programming is per-
formed based solely upon patient response to judgments of perceived loudness for 
individual electrodes. This process can be difficult and time intensive, and the  
majority of potentially adjustable parameters are typically left at the default settings 
determined by the manufacturer. Because of this one-size-fits-all approach, standard 
programming methods may not result in optimal hearing restoration for all recipients.  

In the natural hearing process, ear anatomy mechanically translates sound into vi-
brations of the basilar membrane, which separates the two principal cavities of the 
cochlea, the scala tympani and the scala vestibuli (see Figure 1). These vibrations 



422 J.H. Noble et al. 

 

stimulate nerve cells connected to the spiral ganglion (SG) and, eventually, the audi-
tory nerve. Researchers have extracted the tonotopic mapping between the frequency 
of the sound and the SG nerve cells that are stimulated, i.e., higher frequencies lead to 
stimulation of more basal SG nerve cells, whereas, lower frequencies stimulate more 
apical SG nerve cells [1]. CIs exploit this natural tonotopy by applying an electric 
field to more apical (basal) SG nerve cells to induce perceived lower (higher) fre-
quency sounds. It is widely believed that programming schemes that use more explicit 
knowledge of electrode position hold great promise for improving hearing outcomes 
and could potentially be transformative to the field of CI audiology.  

Since methods for identifying the position of implanted electrodes have already 
been established [2], the major obstacle for position-dependent programming is that 
there have been no techniques for accurately identifying the stimulation targets – the 
SG nerve cells. Identifying the SG in vivo is difficult because the nerve bundles have 
diameter on the order of microns and are too small to be visible in CT, which is the 
preferred modality for cochlear imaging due to its otherwise superior resolution (see 
Figure 1). However, the external walls of the cochlea are well contrasted in CT. Since 
the cochlea wraps around the SG, and, as shown in [3], external cochlear anatomy can 
be used to estimate the location of intra-cochlear anatomy using a statistical shape 
model (SSM); it is possible that a similar external anatomy driven SSM can be used to 
estimate the SG. In this work, we test such an approach for automatic segmentation 
and frequency mapping of the SG for computer assisted CI programming. The rest of 
this paper presents our approach.  

2 Methods 

The data set we have used in this study consists of images of six cadaveric cochlea 
specimens. For each specimen, we have acquired one μCT image volume with a 
SCANCO μCT. The voxel dimensions in these images are 36 μm isotropic. We also 
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Fig. 1. Shown in (a) and (d) are a slice of a μCT and a CT of a human cochlea. In (b) and (e), 
the scala tympani (red), scala vestibuli (blue), and bundle of nerve cells of the SG (green) are
delineated in the same slice. These structures are shown similarly in 3D in (c). In (f), the active
region of the SG is colormapped with its tonotopy (Hz), and the positions of implanted elec-
trodes are shown (gray spheres). 
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have acquired CTs of the specimens with a Xoran xCAT® fpVCT scanner. In these 
volumes, voxels are 0.3 mm isotropic. In each of the μCT volumes, the scala vestibu-
li, scala tympani, and SG were manually segmented. Figure 1 shows an example of a 
conventional CT image and its corresponding μCT image.  

2.1 Overview 

Since the SG lacks any contrast in CT, we cannot segment it directly. The goal with 
our approach is to use the location of external cochlear features to predict the position 
of the SG. To do this, we have constructed a SSM of cochlear anatomy that includes 
the SG. Prior to constructing the SSM, we identify which points in the model will 
correspond to strong cochlear edges in CT. To those points we arbitrarily assign an 
importance weighting of 1. To all others we assign a lesser weighting of 0.01. These 
weights are used to construct a point distribution model (PDM) for weighted active 
shape model (wASM) segmentation [4]. The SSM is built as a standard PDM com-
puted on the registered exemplar point sets. To segment a new image, the SSM is 
iteratively fitted in a weighted-least-squares sense to features in the target image. The 
edge points with their weight of 1 are fitted to strong edges in the CT. The non-edge 
points with low weight are fitted to the positions determined by non-rigid registration 
with an atlas image. With the weights that we have chosen, the non-edge points pro-
vide enough weak influence on the optimization to ensure that the wASM stays near 
the atlas-based initialization position, while the edge points strongly influence the 
whole wASM towards a local image gradient-based optimum for a highly accurate 
result. During model construction, the set of SG points in the model that interface 
with intra-cochlear anatomy were also identified. These points are referred to as the 
active region (AR) since they correspond to the region most likely to be stimulated by 
an implanted electrode. The tonotopic mapping of each point in the AR in the refer-
ence volume is computed based on angular depth using known equations [1]. Once a 
segmentation is completed, the tonotopic frequency labels from the model can be 
transferred to the target image. The following sub-sections detail these methods.  

2.2 Model Creation 

To model cochlear structures, we: (1) establish a point correspondence between the 
structures’ surfaces, (2) use these points to register the surfaces to each other with a 7 
degrees of freedom similarity transformation (rigid plus isotropic scaling), and (3) 
compute the eigenvectors of the registered points’ covariance matrix. Point corres-
pondence is determined using the approach described in [3]. Briefly, non-rigid regis-
tration is used to map each of the training volumes to a reference volume, and any 
errors seen in the results are manually corrected. Then, a correspondence is estab-
lished between each point on the reference surface with the closest point in each of 
the registered training surfaces. Once correspondence is established, each of the train-
ing surfaces is point registered to the reference surface. Since the cochlear edge points 
will be the highest weighted points for the wASM segmentation, identical weights are 
used to register the training shapes in a weighted-least-squares sense using standard 
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point registration techniques [5] prior to computation of the eigenspace so that the 
model will best capture the shape variations at these points. 

To build the model, the principal modes of shape variation are extracted from the 
registered training shapes. This is computed according to the procedure described by 
Cootes et. al. [6]: First, the covariance matrix of the point sets’ deviation from the 
mean shape is computed as 

ܥ  ൌ ଵே ∑ ൫ݒԦ௝ െ ҧ൯ே௝ୀଵݒ ൫ݒԦ௝ െ  ҧ൯T, (1)ݒ

where the ݒԦ௝’s are the individual shape vectors and ݒҧ is the mean shape. The shape 
vectors are constructed by stacking the 3D coordinates of all the points composing 
each structure into a vector. The modes of variation in the training set are then com-
puted as the eigenvectors ൛ݑሬԦ௝ൟ of the covariance matrix,  

 ൛ߣ௝, ሬԦ௝ݑ௝ߣ     :    ሬԦ௝ൟ௝ୀଵேିଵݑ ൌ  ሬԦ௝. (2)ݑܥ

These modes of variation are extracted for the combined shape of the scala tympani, 
scala vestibuli, and SG for all the samples in the training set. 

2.3 Weighted Active Shape Segmentation 

The procedure we use for segmentation with a wASM follows the traditional ap-
proach, i.e., (1) the model is placed in the image to initialize the segmentation; (2) 
better solutions are found while deforming the shape using weighted-least-squares 
fitting; and (3) eventually, after iterative shape adjustments, the shape converges, and 
the segmentation is complete. Initialization is performed using the atlas-based me-
thods proposed in [3].  

Once initialized, the optimal solution is found using an iterative searching proce-
dure. At each search iteration, an adjustment is found for each model point, and the 
model is fitted in a weighted-least-squares sense, as described below, to this set of 
candidate adjustment points. To find the candidate points, two approaches are used. 
For cochlear edge points, candidates are found using line searches to locate strong 
edges. At each external point ݕԦ௜, a search is performed along the vector normal to the 
surface at that point. The new candidate point is chosen to be the point with the larg-
est intensity gradient over the range of -1 to 1 mm from ݕԦ௜ along this vector. For all 
other points, it is impossible to determine the best adjustment using local image fea-
tures alone because there are no contrasting features at these points in CT. Therefore, 
the original initialization positions for these points, which were provided by atlas-
based methods, are used as the candidate positions. The atlas-based result, as our 
results will show, is sufficiently accurate to provide this useful information to the 
segmentation process. 

The next step is to fit the shape model to the candidate points. We do this in the 
conventional wASM manner. A standard 7 degree of freedom weighted point registra-
tion is performed, creating similarity transformation T, between the set of candidate 
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points {ݕԦ௜Ԣ} and the mean shape ሼݒҧ௜ሽ, where ݒҧ௜ are the 3D coordinates of the ith point 
in the mean shape. Then, the residuals 

 Ԧ݀௜ ൌ ܶሺݕԦ௜Ԣሻ െ  ҧ௜ (3)ݒ

are computed. To obtain the weighted-least-squares fit coordinates in the SSM’s ei-
genspace, we compute, 

 ሬܾԦ ൌ ሺ்்ܷܹܹܷሻିଵ்்ܷܹܹ Ԧ݀, (4) 

where Ԧ݀ is composed of ൛ Ԧ݀௜ൟ stacked into a single vector, ܷ ൌ ሾݑሬԦଵ ሬԦଶݑ …  ሬԦேିଵሿݑ
is the matrix of eigenvectors, and ܹ is a diagonal matrix with the importance point 
weightings in the appropriate entries along the diagonal. This equation results in a 
vector ሬܾԦ that represents the coordinates in the SSM space corresponding to a 
weighted-least-squares fit of the model to the candidate points. The final approxima-
tion to the shape is computed by passing the sum of the scaled eigenvectors plus the 
mean shape through the inverse transformation, equivalently, 

Ԧ௜ݕ  ൌ ܶିଵ൫ݓഥ௜ ൅ ∑ ௝ܾݑሬԦ௝,௜ேିଵ௝ୀଵ ൯, (5) 

where ݑሬԦ௝,௜ is the ith 3D coordinate of the jth eigenvector. As suggested by Cootes, the 
magnitude of the bj’s are constrained such that  

 ඨ∑ ௕ೕమఒೕேିଵ௝ୀଵ ൑ 3, (6) 

which enforces the Mahalanobis distance between the fitted shape and the mean shape 
to be no greater than 3.  

At each iteration, new candidate positions are found and the model is re-fitted to 
those candidates. The wASM converges when re-fitting the model results in no 
change to the surface. The tonotopic mapping of the SG points in the model, com-
puted when the model was built, are directly transferred to the target image via the 
corresponding points in the converged solution. A result of this is shown in Figure 1f.  

Validation. Segmentation was performed on CT’s of the cochlea specimens using a 
leave-one-out approach, i.e., the volume being segmented is left out of the model. For 
one of the six specimens a CT was not available, and it was used as the model refer-
ence volume to simplify the leave-one-out validation study. Thus, the validation study 
measures segmentation error on the remaining five specimens when using PDMs with 
four modes of variation. Because these samples were excised specimens, rather than 
whole heads, the atlas-based initialization process required manual intervention—
however, in practice the approach is fully automatic. To validate the results, we again 
exploit the set of corresponding μCT volumes. Each CT was rigidly registered to the 
corresponding μCT of the same specimen. The automatic segmentations were then 
projected from the CT to μCT space. Finally, Dice index of volume overlap [7] and 
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surface errors were computed between the registered automatic segmentations and the 
manual segmentations to validate the accuracy of our results. The distributions of 
surface error we report include distances in the forward (automatic-to-manual) direc-
tion as well as the reverse (manual-to-automatic) direction. A smaller distance be-
tween the automatic and manually segmented surfaces indicates higher accuracy. 

3 Results 

Quantitative comparisons between manual and automatic segmentations of the SG are 
shown in Figure 2. The Dice index and bi-directional mean/max surface distances 
were computed between each pair of automatic and manual segmentations. Figure 2 
shows the overall distributions of these recorded values. Surface errors were recorded 
between the whole SGs (WSG) and also between the active regions (AR). Dice indic-
es were not computed for the AR because it is not a closed surface and does not 
represent a volumetric region. The green bars, red bars, blue rectangles, and black I-
bars denote the median, mean, one standard deviation from the mean, and the overall 
range of the data set, respectively. As can be seen in the figure, the wASM achieves 
mean dice indices of approximately 0.77. For typical structures, a Dice index of 0.8 is 
considered good [8]. Here, we consistently achieve Dice indices close to 0.8 for seg-
mentation of a structure that is atypically small and lacks any contrast in the image. 
Mean surface errors are approximately 0.15 mm for both the WSG and the AR, which 
is about a half a voxel’s distance in the segmented CT. Maximum surface errors are 
above 1 mm for the WSG but are all sub-millimetric for the AR.  

Segmentations for all 5 experiments are shown color encoded with surface error in 
Figure 3. It can be seen that the wASM results in mean surface errors under 0.15 mm 
for the majority of the SG with average maximum errors of about 0.7 mm (<3 voxels). 
As can be seen in the figure, errors in the AR above 0.5 mm are rare and highly  
localized. Shown in Figure 4 are contours of a representative automatic segmentation 
overlaid with the CT (the volume on which segmentation was performed) and the cor-
responding registered μCT. It can be seen from the figure that the contours achieved by 
automatic segmentation of the CT are in excellent agreement with contours manually 

Fig. 2. Segmentation error distributions of Dice similarity scores for the whole SG (WSG) and
mean and max symmetric surface error distributions for the WSG and in the active region (AR) 
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delineated in the high resolution μCT, especially in the AR. Localization errors that are 
apparent in the μCT are less than 2 voxels width in the CT.  

4 Conclusions 

In this work, we have presented a weighted active shape based approach for identify-
ing the SG, which lacks any contrast in conventional CT. In this approach, we rely on 
high resolution images of cadaveric specimens to serve two functions. First, they 
provide information necessary to construct an SSM of the structure, permitting seg-
mentation of the structure in conventional imaging. Second, the high resolution im-
ages are used to validate the results. This is performed by transferring the automati-
cally segmented structures from the conventional images to the corresponding high 
resolution images and comparing those structures to manual segmentations.  

This work has shown that it is possible to accurately identify the location of the SG 
in conventional CT because the position of the SG varies predictably with respect to 
the cochlea. The approach we present accurately locates the SG by attracting the exte-
rior walls of the models of intra-cochlear anatomy towards the edges of the cochlea. 
This approach achieves dice indices of approximately 0.77 and sub-millimetric max-
imum error distance in the active region, which represents the region of interest for CI 
stimulation. These results suggest that our segmentation approach is accurate enough 
to be used for position-dependent, image-guided CI programming methods.  

Testing of computer assisted CI programming approaches using the presented me-
thods has begun and has been completed on one patient thus far. The fully-
automatically identified positions of the electrode and tonotopically mapped SG for 

Fig. 4. Delineations of the automatic (red/blue) and manual (green) segmentation of the SG in 
the CT (a) and μCT (b) slice from Figure 1. The active region is shown in blue 
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Fig. 3. Automatic (top row) and manual (bottom row) segmentations of the active region of the
SG in the 5 test volumes (left-to-right) color encoded with error distance (mm) 
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this patient are shown in Figure 1f. For that patient, the settings that were originally 
considered optimal by the audiologist were modified using image-based information. 
Improvements in the patient’s hearing were statistically significant using a binomial 
distribution statistic for the individual speech perception metrics tested [9-10]. The 
patient’s monosyllabic word recognition scores (a quantitative measure of hearing 
performance) jumped from 33% to 84%, and sentence recognition performance in 
noise at +10 dB signal-to-noise ratio increased from 46% to 83%. Further, the patient 
reported significant improvement in hearing and overall sound quality. While very 
preliminary, these results indicate that image-based programming, enabled by the 
approach described herein, may significantly improve hearing restoration for CI users. 
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