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Abstract. Current treatments of heart rhythm troubles require careful
planning and guidance for optimal outcomes. Computational models of
cardiac electrophysiology are being proposed for therapy planning but
current approaches are either too simplified or too computationally in-
tensive for patient-specific simulations in clinical practice. This paper
presents a novel approach, LBM-EP, to solve any type of mono-domain
cardiac electrophysiology models at near real-time that is especially tai-
lored for patient-specific simulations. The domain is discretized on a
Cartesian grid with a level-set representation of patient’s heart geome-
try, previously estimated from images automatically. The cell model is
calculated node-wise, while the transmembrane potential is diffused us-
ing Lattice-Boltzmann method within the domain defined by the level-
set. Experiments on synthetic cases, on a data set from CESC’10 and on
one patient with myocardium scar showed that LBM-EP provides results
comparable to an FEM implementation, while being 10−45 times faster.
Fast, accurate, scalable and requiring no specific meshing, LBM-EP paves
the way to efficient and detailed models of cardiac electrophysiology for
therapy planning.

1 Introduction

Since the seminal work of Hodgkin and Huxley [5], a large variety of models have
been proposed to simulate the propagation of the action potential (AP) across
the heart muscle, with various degrees of complexity ([3]). Biophysical models
aim to capture the ion interactions and protein mechanisms that regulate the AP.
At a higher scale, phenomenological models have been developed to mimic the
AP without directly considering the underlying molecular mechanisms. Finally,
Eikonal models do not simulate the AP altogether but the propagation of the
electrical front directly. Since these models are generative, they may constitute
efficient tools for therapy planning. Phenomenological models provide a good
compromise between model details, being able to capture most of the patholog-
ical conditions, and complexity. Recent works demonstrated that those models

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 33–40, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



34 S. Rapaka et al.

can be personalised from clinical data [1]. However, because they solve stiff par-
tial differential equations (PDE), they are still too computationally demanding
for day-to-day clinical setups and intervention guidance. Another limitation is
the requirement of high-quality/high-resolution volume meshes, which can be
difficult to obtain from patient-specific anatomies.

In recent years, the lattice-Boltzmann method (LBM) [2] has developed as a
powerful technique for accurate simulation of a large class of partial-differential
equations. In particular, it has been successfully applied to pattern-forming
reaction-diffusion equations([4]). While originally developed from cellular au-
tomata models of fluid flows, the method has found a firm theoretical basis in
kinetic theory of weakly-compressible fluid flows. Some of the key strengths of
this method are, i) local nature of the computational algorithm, which provides
very high scalability on modern parallel computing architectures, ii) second-
order accuracy in space, and iii) simplicity of implementation on a uniform
Cartesian grid.

Motivated by the recent breakthrough in LBM, we present a novel framework,
henceforth called LBM-EP, for efficient patient-specific simulations of cardiac
electrophysiology models at near real-time. Although general, the method is
illustrated in this study on the Mitchell-Schaeffer model [6]. Sec. 2 presents
a description of the algorithms used to process the medical images, and the
lattice-Boltzmann algorithm used for propagating the action-potential. Sec. 3
compares the simulation results computed with the proposed LBM-EP with
an FEM implementation of Mitchell-Schaeffer model in synthetic scenarios, a
dataset of CESC’10 Grand Challenge and one patient with a myocardium scar,
showing an accuracy in the range of the variability reported in the literature and
a speed-up of about 10− 45× with respect to FEM. Sec. 4 concludes the paper.

2 Methods

2.1 Computational Domain Preparation from Medical Images

LBM-EP being solved on Cartesian grids (Sec. 2.3), its application to clinical
images is relatively immediate. Starting from a cardiac image (e.g. cine MRI),
the left endocardium, right endocardium and epicardium are automatically seg-
mented using a machine learning approach [11] and fused in one surface rep-
resenting the myocardium while preserving their anatomical label. A level-set
representation of that surface is then computed on an isotropic Cartesian grid.
Based on the labels, grid nodes lying at the heart endocardia are marked for
electrophysiology stimulation and synthetic fibers are computed by linearly in-
terpolating the elevation angle from −70◦ at the epicardium to +70◦ at the en-
docardium [3]. Scars can be reported in the domain through level set (Sec. 3.3).

2.2 Mitchell-Schaeffer Model of Action Potential

Mitchell-Schaeffer (M-S) model [6] is employed here although the method can
be extended to other mono-domain models. The model (Eq. (1)) relates the
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normalized transmembrane AP v(t) ∈ [0, 1] to an inward gated current Jin =
hv2(1 − v)/τin, which captures the fast acting currents using the gating vari-
able h(t), and an outward un-gated current Jout = −v/τout, which accounts for
transmembrane voltage decrease. A transient stimulus current Jstim is added to
the model to simulate electrical pacing.

∂v

∂t
= Jint + Jout + Jstim + c∇ ·D∇v (1)

The gating variable h(t) evolves according to dh
dt = 1−h

τopen
if v < vgate, otherwise

dh
dt = −h

τclose
where vgate is the change-over voltage, D = ρId + (1 − ρ)aaᵀ is the

anisotropic diffusion tensor along the fiber direction a with anisotropy ratio ρ, c
is the diffusion coefficient along the fibers. τin, τout, τopen and τclose are directly
related to the shape and duration of the AP ([6]), which makes their calibration
possible from clinical data.

2.3 Lattice-Boltzmann Model of Cardiac Electrophysiology

Eq. (1) is solved on the Cartesian grid (Sec. 2.1) using Lattice-Boltzmann method
with a 7-connectivity topology (6 connections + central position) and Neumann
boundary conditions. The gating variable h(t) is updated at every node of the
grid using a forward Euler scheme. The fundamental variable of LBM is the
vector of distribution functions f(x) = {fi(x)}i=1...7, where fi(x) represents the
probability of finding a particle travelling along the edge ei of node x. The
governing equation at x for the edge ei is composed of two successive steps:

f∗
i = fi −Aij (fj − ωjv) + δtωi(Jin + Jout + Jstim), (2)

fi(x+ ei, t+ δt) = f∗
i (x, t) (3)

where, the collision matrix A = (Aij)i,j∈�1,7� relaxes the distribution function fi
towards the local value of the potential, v, f∗

i is an intermediate, post-collision
state of the distribution function, and ωi is a weighting factor that depends
on lattice connectivity, here ωi = 1/8 for the edges to the six neighbors and
ωi = 1/4 for the central position. The transmembrane AP is related to the fi’s
through v(x, t) =

∑
i fi(x, t). For each time step δt, a strictly local collision rule

(Eq. (2)) is applied to the distribution functions at each node. Post-collision, the
distribution functions stream along their corresponding edges to the neighboring
nodes (Eq. (3)). In its simplest form, the collision matrix is diagonal with a
characteristic relaxation time τ , A = (1/τ)I, where I is the 7×7 identity matrix.

At the problem boundaries, the streaming step requires the specification of ad-
ditional incoming distribution functions to ensure proper boundary conditions. It
can be shown that the potential gradient at a node is related to the fi’s through
c∇v = (1−1/2τ)

∑
i fiei [4]. The Neumann boundary condition for potential on

a surface simplifies to
∑

i fiei · n = 0. If the boundary is normal to any edge of
the lattice, the Neumann boundary condition is automatically recovered if the
incoming distribution at the node is equal to the outgoing one. Complex geome-
tries can be handled easily by means of a level set formulation. The incoming
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distribution is calculated automatically from the distance to the wall at nodes
close to the boundary as provided by the level-set [10], thus enabling simulations
in complex domain without requiring advanced meshing algorithms.

Remarkably, this simplemodel can be shown to reproduce the reaction-diffusion
equation Eq. (1) with an isotropic diffusion coefficient of c = (2τ − 1)/8 (see [4]
for the proof). To extend the model for anisotropic diffusion, like in the heart, the
matrix A is replaced by A = M−1SM [9], where

M =

⎛

⎜
⎝

1 1 1 1 1 1 1
1 −1 0 0 0 0 0
0 0 1 −1 0 0 0
0 0 0 0 1 −1 0
1 1 1 1 1 1 −6
1 1 −1 −1 0 0 0
1 1 1 1 −2 −2 0

⎞

⎟
⎠S−1 =

⎛

⎜
⎝

τ1 0 0 0 0 0 0
0 τ11 τ12 τ13 0 0 0
0 τ21 τ22 τ23 0 0 0
0 τ31 τ32 τ33 0 0 0
0 0 0 0 τ5 0 0
0 0 0 0 0 τ6 0
0 0 0 0 0 0 τ7

⎞

⎟
⎠

The first row of M corresponds to v =
∑

i fi, while rows 2 − 4 are the three
components of the potential gradient. The relaxation times (τij)i,j∈�1,3� are re-
lated to the components of the diffusion tensor through τij = δij/2+4Dijδt/δx

2.
The relaxation times τ1 related to the potential and τ5, τ6 and τ7 related to the
higher order moments do not directly effect the diffusion solution, but effect the
stability of the method. In this work, we use τ1 = 1 and τ5 = τ6 = τ7 = 1.33.
Algo. 1 summarizes the main steps of the method.

Algorithm 1. LBM-EP: Lattice-BoltzmannModel of Cardiac Electrophysiology

Require: Cartesian grid, level-set domain boundaries, δt, nbIter, model parameters
1: for iter = 1→ nbIter do
2: t← t+ δt
3: for every node x do
4: ∀i, compute post-collision distributions f∗

i (x) (Eq. 2)
5: Update h(x)
6: for every node x do
7: ∀i, stream fi(x) and apply boundary conditions (Eq. 3)
8: return v =

∑
i fi, h.

3 Experiments and Results

All experiments were executed on a standard Windows XP desktop machine (In-
tel Xeon, 2.40GHz octo-core, 4GB RAM). LBM-EP was implemented in Fortran
with no particular optimization. A semi-implicit, anisotropic finite element im-
plementation of M-S model, called FEM-EP, was used for comparisons. FEM-EP
was based on linear tetrahedra and parallel optimization (OpenMP).

3.1 Quantitative Evaluation on Synthetic Scenarios

We first compared the performance of LBM-EP with respect to FEM-EP in
two different scenarios representing the main pathological features. To that end,
a 10 × 10 × 0.5 cm slab was discretized into 401 × 401 × 3 nodes (1,920,000
tetrahedra for FEM-EP). For both LBM-EP and FEM-EP, we used δt = 0.1ms,
τclose = 150ms, τopen = 120ms, τin = 0.3ms, τout = 6ms, vgate = 0.13,
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c = 0.0003 cm2/ms and ρ = 1 (isotropic diffusion) [6]. An electrical stimulation
was applied at the nodes (x, y = 0, z) for 1ms duration by setting v = 1 at
these nodes. Grid resolution analysis (not reported here) showed that numerical
convergence was reached for both models at that spatial and temporal resolution.

We first tested the ability of LBM-EP to capture front-bending around a
scar. A scar region was simulated within the domain (Fig. 1, left panels) by:
setting the diffusion coefficient c = 0 for FEM-EP, defining Neumann boundary
conditions for LBM-EP. From the computed depolarization times (Fig. 1, left
panels), one can see that both models yielded very similar behavior. The AP
front calculated by LBM-EP correctly rotated around the scar. Where the front
was not perturbed by the scar, both models yielded nearly identical results,
as quantified by the AP at Point 2 (0.3ms difference in depolarization time,
Fig. 1, right panel). Near the scar, slight differences could be identified, which
resulted in a difference of 9.7ms in depolarization time at Point 1. However, this
cannot be interpreted as a limitation of LBM-EP, which captured perfectly the
Neumann boundary conditions around the scar, contrary to FEM-EP.

FEM EP LBM EP Action Potentials
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Fig. 1. Left panels: Computed depolarization times (in ms) in a homogeneous medium
with scar (in black). LBM-EP captured front rotation around the scar. Right panel : ac-
tion potential at points 1 and 2, showing consistent results between both models.

We then tested the ability of LBM-EP to simulate vortex formation due to pre-
mature stimulation. For that, we set the diffusion coefficient to 0.0012 cm2/ms,
removed the scar and applied a second stimulation at the nodes (x ≤ 0.5, y =
0.5, z) at t = 452ms for both methods. As shown in Fig. 2, the patterns obtained
with LBM-EP were similar to those obtained with FEM-EP. LBM-EP could be
used to simulate complex pathologies like fibrillation or tachycardia.

Computation Time. For all experiments, FEM-EP required ≈ 700ms per
iteration whereas LBM-EP required only ≈ 80ms, about 8.75× speed-up.

3.2 Comparison with Published Results on CESC’10 Data

We evaluated LBM-EP performance in a dataset distributed during CESC’10
MICCAI Grand Challenge with respect to FEM-EP and to a recently published
benchmark [1]. Our purpose being evaluation and not personalization, we did
not adjust the parameters locally. We thus compared our results with the generic
benchmark of the ionic ten Tusscher-Panfilov model only [1]. CESC’10 dataset
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Fig. 2. LBM-EP succesfully captured vortex formation due to premature stimulation

consisted in an explanted porcine heart, and comprised optical fluorescence im-
ages of transmembrane potential and high-resolution diffusion-weighted (DW)
MRI images ([7]). The optical images contained the depolarization and repo-
larization phase of transmembrane potential under left endocardium and right
epicardium pacings at 1.1Hz. Finally, the mesh constructed from DW-MRI had
the fiber directions integrated, providing a complete model of the heart anatomy.

LBM-EP was computed on 0.5mm grid while FEM-EP was computed on
the provided tetrahedra mesh with 0.5mm average edge-length. The time steps
were set to δtLBM−EP = 0.1ms and δtFEM−EP = 0.5ms. Myocardium fibers
defined on the tetrahedra mesh were rasterized on the LBM lattice for simula-
tion. The generic M-S parameters were used for both models [6], with a diffusion
coefficient c = 0.0035 cm2/ms and anisotropy ratio ρ = 0.25. As it can be seen
from Fig. 3, LBM-EP simulation was qualitatively similar to FEM-EP for both
pacing conditions in terms of depolarization isochrone patterns. The difference
in absolute depolarization time was mostly due to the different computational
domain, in particular regarding the precise location of the excitation nodes and
the fiber orientation, which was locally altered by the rasterization. Compared
to the CESC’10 benchmark, LBM-EP provided similar depolarization patterns,
suggesting promising reproducibility and validity. Finally, while FEM-EP re-
quired ≈ 16 s per iteration, LBM-EP took only ≈ 0.35 s per iteration, which
corresponds to a speed-up of 45×. It should be noted that the computational
efficiency of our FEM implementation was similar to those reported in the liter-
ature, ≈ 1 s/iteration on the 1.5mm mesh provided by the challengers as in [8].

3.3 Real Case Example

We finally illustrate how LBM-EP can be used in a real clinical scenario on a
patient with myocardium scar due to previous surgery. Parameters were kept
generic as no electrophysiology data were available. Fast conductivity was mod-
eled on the endocardium to mimic the Purkinje fibers. The scar was represented
as a level-set to ensure Neumann boundary conditions. Fig. 4 shows the depo-
larization time isochrones, illustrating some delays at the apex due to the scar.
Elsewhere in the myocardium the isochrones presented with patterns similar to
what has been reported in the literature [3]. For this patient, one time step was
calculated in 0.2 s for a grid size of 1mm.
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Fig. 3. FEM-EP and LBM-EP simulations using Mitchell-Schaeffer model and
CESC’10 data using ten Tusscher-Panfilov model (see text for details)

Fig. 4. LBM-EP simulation on one patient with myocardium scar

4 Conclusion and Future Work

We have presented in this paper, to the best of our knowledge, the first ap-
plication of a near-real time lattice-Boltzmann model for general monodomain
models of cardiac electrophysiology. Node-based by construction, our framework
does not require advanced meshing and can be applied directly from images
by means of level-sets. Through comparisons with the traditional finite-element
method, we have empirically shown the applicability of LBM-EP to cardiac elec-
trophysiology. A comprehensive description of the theory along with detailed
studies of convergence and accuracy are being prepared as a larger contribution.
LBM-EP provides second order accuracy in space, can be easily extended to any
type of mono-domain cellular model, and, above all, offers between 10 − 45×
speed-up with respect to traditional FEM. Preliminary experiments on graphi-



40 S. Rapaka et al.

cal processing units (GPUs) showed the potential for another order-of-magnitude
improvement in computational speed. This is the first time, to the best of our
knowledge, that very fast simulations of cardiac electrophysiology is achieved
with a detailed model. Our method may thus constitute an ideal framework for
patient-specific simulations for therapy planning and real-time guidance.
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