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Abstract. Mild cognitive impairment (MCI) is difficult to diagnose due to its
subtlety. Recent emergence of advanced network analysis techniques utilizing
resting-state functional Magnetic Resonance Imaging (rs-fMRI) has made the
understanding of neurological disorders more comprehensively at a whole-brain
connectivity level. However, inferring effective brain connectivity from fMRI
data is a challenging task, particularly when the ultimate goal is to obtain good
control-patient classification performance. Incorporating sparsity into connectiv-
ity modeling can potentially produce results that are biologically more mean-
ingful since most biologically networks are formed by a relatively few number
of connections. However, this constraint, when applied at an individual level, will
degrade classification performance due to inter-subject variability. To address this
problem, we consider a constrained sparse linear regression model associated
with the least absolute shrinkage and selection operator (LASSO). Specifically,
we introduced sparsity into brain connectivity via l1-norm penalization, and en-
sured consistent non-zero connections across subjects via l2-norm penalization.
Our results demonstrate that the constrained sparse network gives better classifi-
cation performance than the conventional correlation-based network, indicating
its greater sensitivity to early stage brain pathologies.

1 Introduction

Mild cognitive impairment (MCI) is an intermediate stage of brain cognitive decline be-
tween normal aging and dementia. MCI is associated with increased risk of developing
Alzheimer’s disease (AD), especially when memory loss is the predominant symptom.
Some individuals with MCI remain stable or return to normal over time, but more than
half progress to dementia within 5 years [6]. According to a latest, long-term study
of nearly 4000 participants, cognitive impairment has a significant impact on life ex-
pectancy similar to chronic conditions such as diabetes or chronic heart failure [14].
Early detection is important for possible delay of the progression of mild MCI to mod-
erate and severe stages. However, diagnosis of MCI is difficult due to its mild symptoms
of cognitive impairment, causing most computer-aided diagnosis to achieve lower than
desired performance.

Constructing functional brain connectivity from neuroimaging data holds great pro-
mise for identifying image-based markers that are important for distinguishing between
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MCI and normal aging. A large body of work on functional connectivity modeling has
been proposed based on correlation analysis [18, 19]. However, correlation only cap-
tures pairwise information and is unable to provide an adequate and complete account
of the interaction between many brain regions. Inferring effective brain connectivity
from fMRI data for biologically more meaningful interpretation and better classifica-
tion performance is a challenging task. Many spurious connections arise due to the low
frequency (< 0.1Hz) spontaneous fluctuation of blood oxygen level dependent (BOLD)
signals and physiological noise such as cardiac and respiratory cycles. Recent work [16]
has shown that certain sparsity constraints can be imposed to elucidate robust connec-
tions from a set of noisy connections. The sparsity constraint correlates with the fact
that, neurologically, a brain region predominantly interacts only with a small number
of other regions. Sparse brain connectivity for fMRI data can be constructed through
penalizing the linear regression model with l1-norm as in the least absolute shrinkage
and selection operator (LASSO) [10].

However, sparse modeling is unable to deal with inter-subject variability since l1
penalization at an individual level will result in different network structures across
subjects [20], i.e., the non-zero connections are different for each subject. This will
inevitably make the comparison between subjects difficult and thus degrade general-
ization performance of trained classifiers. To address this issue, we propose to employ
a constrained sparse linear regression model that minimizes the effect of inter-subject
variability in network representation. By this approach, the connection topology is kept
identical among subjects, while at the same time allowing individual connection param-
eters to vary between subjects. This will allow better and more direct comparison among
subjects for patient identification. To the best of our knowledge, the current study is the
first attempt to construct functional brain network using constrained sparse linear re-
gression model for the purpose of MCI classification. We seek to validate whether this
new network modeling strategy can be used to improve classification performance. We
will also identify brain regions that contribute most to the classification performance.
This paper sheds new light on the effectiveness of applying constrained sparse func-
tional network for diagnosis of progressive neurodegenerative disorders.

2 Materials and Methods

Resting-state fMRI (rs-fMRI) scans of 12 MCI patients and 25 healthy controls were
acquired using a 3 Tesla (Signa EXCITE, GE) scanner with the following parameters:
TR/TE = 2000/32 ms, flip angle = 77◦, imaging matrix = 64 × 64, FOV = 256 ×
256 mm2, 34 slices, 150 volumes, and voxel thickness = 4 mm. During scanning, all
subjects were instructed to keep their eyes open and stare at a fixation cross in the
middle of the screen to prevent them from falling into sleep and the saccade-related
activation due to eyes-closed. Informed consent was obtained from all subjects, and the
experimental protocols were approved by the institutional ethics board. Confirmation
of diagnosis for all subjects was made via expert consensus panels. Demographic and
clinical information of the participants is provided in Table 1.
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Table 1. Demographic and clinical information of the participants

Group MCI Control p-value

No. of subjects (Male/Female) 6/6 9/16 -
Age (mean ± SD) 75.0 ± 8.0 72.9 ± 7.9 0.3598a

Years of education (mean ± SD) 18.0 ± 4.1 15.8 ± 2.4 0.0491a

MMSE (mean ± SD) 28.5 ± 1.5b 29.3 ± 1.1 0.1201a

a The p value was obtained by two-sample two-tailed t-test.
b One of the patients does not have a MMSE score.

Post-processing of the fMRI images including slice timing correction and head-
motion correction were performed using the Statistical Parametric Mapping (SPM81)
software package. The images were then masked with their respective gray matter (GM)
masks, created by segmenting the GM regions from their T1-weighted images to elim-
inate the physiological noise caused by cardiac and respiratory cycles in white matter
and cerebrospinal fluid [17]. Then, we parcellated the brain space into 116 ROIs by
warping the automatic anatomical labeling (AAL) template to the GM-masked fMRI
images. The mean time series of each ROI was computed for each subject. Temporal
band-pass filtering of frequency interval (0.025 ≤ f ≤ 0.100Hz) was then performed
to minimize the effects of low-frequency drift and high-frequency noise. This frequency
interval was further decomposed into 5 equal-length spectral, enabling a more fre-
quency specific analysis of the regional mean time series [19].

2.1 Constrained Sparse Functional Brain Connectivity

Suppose we have N training subjects and M ROIs, the mean time series of p-th ROI
for n-th subject, yn

p , can be regarded as a response vector that is modeled by a linear
combination of time courses of other ROIs as
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where λ > 0 is the regularization parameter controlling the “sparsity” of the model,
with a higher value corresponding to a sparser model, i.e., more elements in αn are
zero. Note the l1-norm penalization is imposed individually on different αn

p vectors.
For multiple subjects, the objective function in Eq. (2) can be modified as
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1 http://www.fil.ion.ucl.ac.uk.spm
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where ‖αp‖2,1 is the summation of l2-norms of non-overlapping
∥
∥αn

p

∥
∥
1
. Specifically,

the l2-norm penalization is imposed on the same elements across different matrices
αp which forces the weights corresponding to certain feature across different subjects
to be grouped together. This constraint promotes group-based sparsity by keeping the
topology to be identical among subjects, while at the same time allowing variation
between subjects. This reduces inter-subject variability and allows for better and more
consistent inter-subject comparison for patient identification. The nonzero coefficients
in α matrix are treated as an indicator of functional brain connectivity. We use the SLEP
toolbox [11] to solve Eq. (3).

2.2 Feature Extraction and Feature Selection

Weighted local clustering coefficient, a measure that quantifies the cliquishness of the
nodes, is extracted from all connectivity maps as

Cp =
2×∑

q:q �=p∈ζ ep,q

kp(kp − 1)
, (4)

where kp is the number of ROIs that are connected to the p-th ROI, ζ is the subnetwork
comprising nodes directly connected to the p-th ROI, and ep,q is the parameter value
between the p-th and q-th ROIs. A total of 116 features are obtained from each map,
producing a pool of 580 features for each subject.

After feature extraction, we utilized a hybrid method to select the most relevant fea-
tures for classification. Two filter-based approaches are initially used to reduce the
number of features, followed by a wrapper-based approach to further select a sub-
set of features that is favorable to MCI classification. Specifically, in the first filter-
based approach, only those features with p-values smaller than the predefined threshold,
measured via between-group t-test, will be retained for subsequent feature selection.
Then, the minimum redundancy and maximum relevance (mRMR) algorithm [4] was
employed to further exclude redundant features. Finally, the support vector machine
(SVM) recursive feature elimination [9], a wrapper-based method, was used to select a
subset of most discriminative features for MCI classification.

2.3 Classification

SVM with linear kernel was employed to evaluate the discriminative power of the se-
lected features derived from constrained sparse networks. The optimal SVM models
as well as an unbiased estimation of the generalization performance of the complete
framework were obtained via a nested cross-validation scheme. For N total number of
subjects involved in the study, one was left out for testing, and the remaining N − 1
were used for training. From these N − 1 samples, N − 1 different training subsets
were formed by each time leaving one more sample out, giving us N − 2 subjects in
each training subset. For each training subset, feature extraction and feature selection
were performed. The performance of each combination of SVM parameters along with
the selected features was evaluated using the second left out subject. The combination
that gives the best performance was used to construct the optimal SVM model for future
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classification. This procedure was repeated N − 1 times, once for each training subset.
When the completely unseen (totally left out during the entire training and parameter
optimization process) test sample was to be classified, all N − 1 classifiers were used,
and their outcomes were combined using an averaging operator to provide the final
classification decision. This process was repeated N times, each time leaving out a dif-
ferent subject, finally leading to an overall cross-validation classification accuracy. In
this study, the optimization of λ parameter in Eq. (3) was performed via grid search.

3 Experimental Results

Constrained sparse connectivity maps of one healthy control and one MCI patient are
shown in Figure 1. Spatial connection topology of our sparse networks and the fully-
connected correlation-based networks are shown in Figure 2. It can be clearly observed
that the generated connectivity networks are significantly sparser than the fully con-
nected correlation-based networks. There are a number of findings that are biologi-
cally interesting. First, the bilateral temporal lobes show a relatively smaller amount
of intra-lobe connections than other lobes, which has been extensively reported in the
literature [16, 18]. Second, there are significantly more inter-lobe connections between
parietal and occipital lobes than any other lobe pairs [16], possibly due to compensatory
effect. These selected non-zero elements in the constrained sparse matrices reflect the
connections that are crucial for discriminating MCI patients from healthy controls.

MCI classification performance of the proposed constrained sparse network was
compared with correlation-based connectivity using single and multi-spectral charac-
terization. In the single spectrum case, feature extraction was directly performed on
the band-pass filtered BOLD signal without further frequency sub-band decomposition.
Sub-band decomposition in the multi-spectral case enables more detailed characteri-
zation of subtle changes in BOLD signal, and hence better discriminative power [19].
During evaluation, SVM classifier with the same linear kernel but different hyperpa-
rameters was used in a leave-one-out fashion due to the limited number of available
samples. MCI classification performance for constrained sparse and correlation-based

Fig. 1. Constrained sparse connectivity maps with λ = 0.15. (Red = positive connection, blue =
negative connection, green = no connection)
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Fig. 2. Constrained sparse networks with λ = 0.15 (a) and the fully-connected correlation-based
networks (b), after excluding the cerebellum

networks are summarized in Table 2. The proposed constrained sparse network with
multi-spectral characterization yields the best classification performance with an accu-
racy of 86.49%, which is an increment of at least 10% from that of the correlation-
based approach. A cross-validation estimation of the generalization performance shows
an area of 0.8333 under the receiver operating characteristic curve (AUC), indicating
good diagnostic power. Note that λ = 0.15 was found to give the optimal performance.

The most discriminant regions that were selected in the classification process include
regions located in frontal lobes (e.g. orbitofrontal cortex [8], frontal gyri [1] and rectus
gyrus [5]), temporal lobes (e.g. temporal gyri [2, 5, 15] and temporal pole [13]), and
other regions such as cingulate gyri [7], amygdala [3], angular gyrus [15], and occipital
gyri [12], which is in line with the findings that AD, strongly related to episodic memory
impairment, causes atrophies in temporal and frontal lobes at the beginning stages of
the disease. The selected regions are shown graphically in Figure 3.

Table 2. Classification performance for constrained-sparse and correlation-based networks using
single and multi-spectral characterization. (ACC = Accuracy; SEN = SENsitivity; SPE = SPEci-
ficity)

Approach ACC (%) AUC SEN SPE

Correlation + Single Spectrum 67.57 0.6633 0.0833 0.9600
Sparse + Single Spectrum 72.97 0.6200 0.2500 0.9600
Correlation + Multi-Spectral 75.68 0.7070 0.4167 0.9200
Sparse + Multi-Spectral 86.49 0.8333 0.6667 0.9600
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Left Right

Fig. 3. Most discriminant regions that were selected during MCI classification

4 Discussions and Conclusion

We proposed a novel method to infer functional connectivity networks from rs-fMRI
data for the purpose of classification. By imposing group-based sparsity, we minimize
spurious connections and inter-subject variability. This is accomplished by considering
a constrained sparse linear regression model. Specifically, we incorporate sparsity into
brain connectivity estimation via l1-norm penalization, and ensure inter-subject stability
of network structure via l2-norm penalization. This constrained sparse representation
generates topologically consistent functional connectivity networks that allow for better
comparison between subjects for classification. The experiment results validate that the
proposed method yields markedly improved classification performance compared with
the correlation-based network.
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