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Abstract. This paper proposes an efficient algorithm to simultaneously
reconstruct multiple T1/T2-weighted images of the same anatomical
cross section from partially sampled k-space data. The simultaneous re-
construction problem is formulated as minimizing a linear combination
of three terms corresponding to a least square data fitting, joint total-
variation (TV) and group wavelet-sparsity regularization. It is rooted in
two observations: 1) the variance of image gradients should be similar for
the same spatial position across multiple contrasts; 2) the wavelet coeffi-
cients of all images from the same anatomical cross section should have
similar sparse modes. To efficiently solve this formulation, we decompose
it into group sparsity and joint TV regularization subproblems, respec-
tively. Finally, the reconstructed image is obtained from the weighted
average of solutions from two subproblems in an iterative framework.
We compare the proposed algorithm with previous methods on SRT24
multi-channel Brain Atlas Data. Experiments demonstrate its superior
performance for multi-contrast MR image reconstruction.

1 Introduction

Magnetic Resonance Imaging (MRI) has been widely used to image the same
anatomical cross section under multiple contrast settings, since the multi-contrast
MRI can achieve superior power for clinical diagnosis over individual T1, T2 or
proton-density weighted images.

Recent developments in compressive sensing (CS) theory [1] show that ac-
curate MRI reconstruction can be achieved from highly undersampled k-space
data. Motivated by the CS theory, Lustig et al. [2] proposed their pioneering
work SparseMRI for CS-MRI. They showed that the combination of gradient
and wavelet sparsity is far better than each of them separately in CS-MRI.
However, their method based on conjugate gradient (CG) is not fast enough for
practical MR images. Operator-splitting (TVCMRI [3]) and variable splitting
(RecPF [4]) techniques were proposed then to accelerate this problem. Both
of them gain time savings over the SparseMRI [2]. Recently, a composite split-
ting algorithm (FCSA [5] [6]) further accelerated this problem with convergence
guarantee O(1/

√
ε)), where ε is the accuracy. It was the best algorithm among

ones that were tested.
All above introduced methods are designed for individual MR image re-

construction. When they are directly applied to each of multi-contrast MR
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images, the CS theory guides us that the necessary measurement number is
O(TK + TKlog(n/K)) [1], where T is the contrast number, K is the spar-
sity number and n is the pixel number. However, the multi-contrast MR images
are not independent but highly correlated. If one of them has smaller values
in wavelet or gradient domain in a spatial position, all of them should likely
have smaller values in wavelet or gradient domain for the same position. So,
they should be group sparse on wavelet or gradient domain, not only stan-
dard sparse. According to the group sparsity theory for CS [7], the neces-
sary measurement number can be reduced to O(TK + Klog(n/K)) instead of
O(TK + TKlog(n/K)).

Unfortunately, no work has fully utilized these benefits so far. In [8], group
sparsity is exploited on wavelet coefficients of multi-contrast MR images to
achieve better results than standard sparsity. However, they did not consider
the group sparsity on gradients. In [9], group sparsity on gradients of multi-
contrast MRI is exploited under a multi-task Bayesian framework [10]. However,
it is unknown how to couple group wavelet-sparsity into their method. Intu-
itively, better performance can be achieved by fully exploiting group sparsity on
both wavelet and gradient domains for multi-contrast MRI.

This paper proposes an efficient algorithm to further accelerate multi-contrast
MRI by fully exploiting the group sparsity on both wavelet and gradient domain
over multi-contrast. The reconstruction problem is formulated as minimizing a
linear combination of three terms corresponding to a least square data fitting,
joint total-variation (TV) and group wavelet-sparsity regularization. A novel
algorithm FCSA-MT is developed to efficiently solve this problem. It can obtain
an ε-optimal solution in O(1/

√
ε) iterations. Extensive experiments on Multi-

contrast Brain MRI data demonstrate its superior performance over all previous
methods in term of the reconstruction accuracy and computational complexity.

2 Related Work

2.1 Compressed Sensing MRI

The CS MRI [2][3][4][5] can be formulated as follows:

x̂ = argmin
x

{1
2
‖Rx− b‖2 + α‖x‖TV + β‖Φx‖1} (1)

where α and β are two positive parameters, b is the undersampled measure-
ments of k-space data, R is a partial Fourier transform, Φ is a wavelet trans-
form and x denotes the MR image. The TV was defined discretely as ‖x‖TV =∑n

i=1

√
((∇1xi)2 + (∇2xi)2) where ∇1 and ∇2 denote the forward finite differ-

ence operators on the first and second coordinates, respectively. Several clas-
sic methods have been proposed to attack this problem, including CG [2],
TVCMRI [3], RecPF [4] and FCSA [5]. As far as we know, the FCSA is the
best in terms of both reconstruction accuracy and computational complexity.

The FCSA [5] solves the problem :minx{F (x) ≡ f(x)+g1(x)+g2(x), x ∈ Rn},
where f is a smooth convex function with Lipschitz constant Lf , and gi=1,2 are
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Algorithm 1 FCSA [5]

Input: ρ = 1
Lf

, α, β, t1 = 1 z = x0

for k = 1 to N do
y = z − ρ∇f(z)
x1 = argminx{ 1

4ρ
‖x−y‖2+α‖x‖TV }

x2 = argminx{ 1
4ρ
‖x−y‖2+β‖Φx‖1}

xk = x1+x2
2

; tk+1 =
1+

√
1+4(tk)2

2

z = xk + tk−1
tk+1 [x

k − xk−1]
end for

Algorithm 2 Proposed FCSA-MT

Input: ρ = 1
Lf

, α, β, t1 = 1 zs = x0

for k = 1 to N do
Y (:, s) = zs − ρ∇fs(zs), s = 1, . . . , T
X1 = argminX{ 1

4ρ
‖X−Y ‖2+α‖X‖JTV }

X2 = argminX{ 1
4ρ
‖X−Y ‖2+β‖ΦX‖2,1}

Xk = X1+X2
2

; tk+1 =
1+

√
1+4(tk)2

2

zs = Xk(:, s)+ tk−1
tk+1 [X

k(:, s)−Xk−1(:, s)]
end for

convex functions. ∇f(x) denotes the gradient of the function f at the point x.
x ∈ Rn is called an ε-optimal solution to the problem if F (x)−F (x∗) ≤ ε holds.

In the problem of CS-MRI, f(x) = 1
2‖Rx− b‖2, g1(x) = α‖x‖TV and g2(x) =

β‖Φx‖1. Algorithm 1 outlines the FCSA. It can obtain an ε-optimal solution in
O(1/

√
ε) iterations. Moreover, the cost of each iteration is O(n log(n)) in FCSA

for problem (1).

2.2 Multi-contrast Reconstruction

Multi-contrast MRI reconstruction means the simultaneous reconstruction of
multiple T1/T2-weighted MR images {xs}Ts=1 ∈ Rn for the same anatomical
cross section from partially sampled k-space data {bs}Ts=1. In [8], group spar-
sity is exploited on wavelet coefficients of multi-contrast MR images instead of
standard sparsity. Its formulation is as follows:

X̂ = argmin
X

‖ΦX‖2,1;
T∑

s=1

‖RsX(:, s)− bs‖2 ≤ σ2 (2)

where X = [x1, ..., xT ] ∈ Rn×T are multi-contrast images, and Rs is the mea-
surement matrix of ms×n for xs. The L21 norm term was defined as ‖ΦX‖2,1 =
∑n

i=1(
√∑T

s=1(ΦXis)2). Then, the SPGL1 [11] is directly used to solve it. How-

ever, they did not consider the group sparsity on gradients (unknown how to
add it into their framework).

In [9], group sparsity on gradients of multi-contrast MRI is exploited under
a multi-task Bayesian framework [10]. In their work, the gradients of images
are reconstructed from their measurements in k-space under a Bayesian frame-
work. Their experiments show the advantage of group sparsity on gradients over
conventional sparsity. However, due to the inherent shortcoming of Bayesian
frameworks, their method is very slow. It is also unknown how to couple group
wavelet-sparsity into their method.
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Algorithm 3 Proposed FJGP for Joint Total Variation

Input: ρ,α, Y , (Rs, Ss) = (Ps, Qs) = (0(n1−1)×n2
,0n1×(n2−1))

for k = 1 to N do

tk+1 =
1+

√
1+4(tk)2

2

for s = 1 to T do
(P k

s , Q
k
s) = Pp[(Rs, Ss) +

1
16ρα

LT
PC [Y (:, s)− 2ραL(Rs, Ss)]]

(Rs, Ss) = (P k
s , Q

k
s) +

tk−1
tk+1 (P

k
s − P k−1

s , Qk
s −Qk−1

s )
end for

end for
X(:, s) = PC [Y (:, s)− 2ραL(PK

s , QK
s )] for i = 1, ..., T

3 Fast Multi-contrast Reconstruction

3.1 Formulation and Algorithm

In the multi-contrast setting, the MR images denote MRI scans with different
image weights.We have two observations about them: 1) the variance of image
gradients should be similar for the same spatial position across multiple con-
trasts; 2) the wavelet coefficients of all MR images from the same spatial positions
have similar sparse modes. Intuitively, better performance can be achieved by
fully exploiting group sparsity on both wavelet and gradient domains for multi-
contrast MRI. Motivated by these, the simultaneous reconstruction problem can
be formulated as follows:

X̂ = argmin
X

{1
2

T∑

s=1

‖RsX(:, s)− bs‖2 + α‖X‖JTV + β‖ΦX‖2,1} (3)

where α and β are two positive parameters, bs is the undersampled measurements
of k-space data for the s-th MR image xs = X(:, s), Rs is a partial Fourier
transform for xs and Φ is a wavelet transform. The JTV was defined discretely

as ‖X‖JTV =
∑n

i=1

√∑T
s=1((∇1Xis)2 + (∇2Xis)2). Algorithm 2 outlines the

proposed algorithm for the multi-contrast reconstruction. Its efficiency is highly
dependent on how quickly we can solve the second step and third step in each
iteration. They correspond to two subproblems: JTV and group wavelet sparsity
problem.

3.2 Group Wavelet Sparsity

The step 3 in Algorithm 2 is to solve the group wavelet sparsity problem:

X̂ = argmin
X

{ 1

4ρ
‖X − Y ‖2 + β‖ΦX‖2,1} (4)
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It has a closed form solution by the soft thresholding:

(ΦX̂)i = max(1− 2ρβ

‖(ΦY )i‖2 , 0)(ΦY )i (5)

where (·)i denotes the i-th row of the matrix for i = 1, ..., n.

3.3 Joint Total Variation

The step 2 in Algorithm 2 is to solve the JTV denoising problem:

X1 = argmin
X

{ 1

4ρ
‖X − Y ‖2 + α‖X‖JTV } (6)

As far as we know, there is no closed form solution for it. The Fast Gradient
Projection (FGP) algorithm for TV [12] can not directly solve it, due to the
different formulation. Fortunately, we can develop a new method, called Fast
Joint-Gradient Projection (FJGP) algorithm, for this JTV problem by modifying
the FGP algorithm in [12].

Algorithm 3 outlines the proposed FJGP. Due to page limitation, we follow
the notations in FGP [12]. Please refer FGP [12] for more details. n1 and n2

denote the width and height of an image with n1 ∗n2 = n, L(P,Q)i,j,s = Pi,j,s−
Pi−1,j,s + Qi,j,s − Qi,j−1,s for i ∈ [1, n1], j ∈ [1, n2], s ∈ [1, T ]. The LT is
defined as LT (X) = (P,Q), where P ∈ R(n1−1)×n2×T and Q ∈ Rn1×(n2−1)×T .

The Pp is a projection operator used to ensure that
∑T

s=1(P
2
i,j,s + Q2

i,j,s) ≤ 1,
|Pi,n2,s| ≤ 1 and |Qn1,j,s| ≤ 1. The PC is a projection operator to ensure the
reconstructed X stay in the constrained set C. The proposed FJGP algorithm
has fast convergence performance, borrowed from the FGP [12]. It converges in
O(1/

√
ε) iterations. The computation cost is O(Tn) in each iteration.

3.4 Convergence and Complexity

The proposed FCSA-MT algorithm has fast convergence performance, borrowed
from the FCSA [5]. It can obtain an ε-optimal solution in O(1/

√
ε) iterations.

The cost of each iteration in the proposed algorithm is O(Tn log(n)), as con-
firmed by the following observations. The steps 4 and 5 only involve adding
vectors or scalars, and thus cost only O(Tn) or O(1). In step 1, ∇fs(zs) =
RT

s (Rszs − bs), since fs(zs) =
1
2‖Rszs − bs‖2 in this case. Thus, this step only

costsO(Tn log(n)).The second step (JTV) can be quickly solved by the proposed
FJGP with cost O(Tn); the third step (group wavelet sparsity) has a closed form
solution and can be computed with cost O(Tn log(n)).

4 Experiments

4.1 Experiment Setup

Our experiments were conducted on the multi-contrast data extracted from the
SRI24 Multi-Channel Brain Atlas Data [13]. The MR images were acquired
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Fig. 1. SRI24 Multi-Channel Brain Atlas Data [13]: a) Proton density-weighted image;
(b) T1-weighted image; (c) T2-weighted image and (d) Sampling mask

with three different contrast settings at 3T: 1) Proton density-weighted images:
they were acquired with a 2D axial dual-echo fast spin echo (FSE) sequence
(TR=10,000 ms, TE=14 ms); 2) T1-weighted images: they were acquired with
a 3D axial IR-prep Spoiled Gradient Recalled (SPGR) sequence, where TR=6.5
ms and TE=1.54 ms; and 3) T2-weighted images: they were acquired with the
same sequence as the proton density-weighted scan. However, TE equals 98 ms
in this case. The data includes 620 MR images with size 256 × 256 covering a
24-cm field-of-view.

The partial Fourier transform Rs in problem (3) consists of ms rows of a n×n
matrix corresponding to the full 2D discrete Fourier transform. The ms selected
rows correspond to the acquired bs. The sampling ratio is defined as ms/n. To
randomly select rows in k-space, we randomly obtained more samples at low
frequencies and less samples at higher frequencies. This sampling scheme is the
same as those in [2][3][4][5] and has been widely used in CS-MRI. Figure 1 shows
example images and the sampling mask.

All experiments were conducted on a 2.2GHz PC in Matlab environment.
We compared the proposed FCSA-MT 1 with conventional CS-MRI methods
(CG [2], TVCMRI [3], RecPF [4] and FCSA[5]) and two recent multi-contrast
reconstruction methods (SPGL1 [8] and Bayesian [9]). For fair comparisons,
the codes were obtained by downloading them from their websites or asking
for them from the authors. We carefully followed their experiment setup. The
regularization parameters α and β were set as 0.001 and 0.035.

4.2 Numerical Results

We first compared the proposed method with conventional CS-MRI methods
on all images. The sample ratio was set to be approximately 25%. To perform
fair comparisons, all methods ran 50 iterations, except that the CG ran only 8
iterations due to its higher complexity. To reduce the randomness, each exper-
iment ran 100 times. Figure 2(a) gives the performance comparisons between
different methods in terms of the CPU time over SNR. The proposed algorithm

1 Code available in http://ranger.uta.edu/~huang/R_CSMRI.htm

http://ranger.uta.edu/~huang/R_CSMRI.htm
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Fig. 2. Performance comparisons (CPU-Time vs. SNR): a) Conventional CS-MRI, CG
[2], TVCMRI [3],RecPF [4] and FCSA [5]; b) Multi-contrast CS-MRI:SPGL1 [8] vs.
Proposed

Table 1. Bayesian [9] vs. Proposed for Multi-contrast CS-MRI

Bayesian [9] Proposed

Iterations 1000 1500 2000 2500 3000 10 15 20 25 30
Time (s) 144 305 516 829 1199 0.4 0.5 0.7 0.9 1.1
SNR (db) 24.9 25.2 27.9 28.3 29.1 25.4 29.7 30.9 31.1 31.2
MSSIM (%) 97.75 98.62 99.05 99.30 99.47 93.32 98.75 99.25 99.44 99.63

is always the best, by achieving the highest SNR in less CPU time. The FCSA
is always inferior to the proposed FCSA-MT, which shows the effectiveness of
simultaneous reconstruction for multi-contrast MRI.

We then compared the proposed method with two multi-contrast reconstruc-
tion methods (SPGL1 [8] and Bayesian [9]) on all images. The sample ratio was
set to be approximately 25%. To reduce the randomness, each experiment ran
100 times for each parameter setting of each method. Figure 2(b) gives the per-
formance comparisons between the proposed method and SPGL1 [8] in terms
of the CPU time vs. SNR. The proposed algorithm is always better, by achiev-
ing the higher SNR in less CPU time. As the Bayesian method is too slow, we
resized the images to 128× 128. Table 1 tabulates the comparison between the
Bayesian method [9] and the proposed method on all images. Besides SNR, mean
Structural Similarity (MSSIM) [14] is also considered for result evaluation. The
proposed method is always best, in terms of both reconstruction accuracy and
computational complexity. These results are reasonable, as we consider group
sparsity on both wavelet domain and gradient domain while others only exploit
one of them. This clearly demonstrates its effectiveness and efficiency for multi-
contrast reconstruction.
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5 Conclusion

We have proposed an efficient algorithm for multi-contrast CS-MRI. The contri-
butions of our work are as follows. First, the proposed FCSA-MT achieves the
best reconstruction performance over all previous methods. Second, the compu-
tational cost of the proposed method is only O(Tn log(n)) in each iteration. It
can obtain an ε-optimal solution in O(1/

√
ε) iterations. These properties make

real-time multi-contrast CS-MRI much more feasible than before. Finally, nu-
merous experiments were conducted to show that the proposed method outper-
forms all conventional CS-MRI methods and two recent multi-contrast CS-MRI
methods in terms of accuracy and complexity.
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