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Abstract. Accurate quantification of small structures in magnetic resonance
(MR) images is often limited by partial volume (PV) effects which arise when
more than one tissue type is present in a voxel. PV may be critical when dealing
with changes in brain anatomy as the considered structures such as gray matter
(GM) are of similar size as the MR spatial resolution. To overcome the limitations
imposed by PV effects and achieve subvoxel accuracy different methods have
been proposed. Here, we describe a method to compute PV by modeling the MR
signal with a biexponential linear combination representing the contribution of at
most two tissues in each voxel. In a first step, we estimated the parameters (T1, T2
and proton density) per tissue. Then, based on the bi-exponential formulation one
can retrieve fractional contents by solving a linear system of two equations with
two unknowns, namely tissue magnetizations. Preliminary tests were conducted
on images acquired on a specially designed physical phantom for the study of
PV effects. Further, the model was tested on BrainWeb simulated brain images to
estimate GM and white matter (WM) PV effects. Root mean squared error was
computed between the BrainWeb ground truth and the obtained GM and WM PV
maps. The proposed method outperformed traditionally used methods by 33%
and 34% in GM and WM, respectively.
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1 Introduction

Magnetic resonance (MR) imaging is a non-invasive imaging modality allowing to de-
tect changes in anatomy and is helpful in diagnosis of several diseases. It is particularly
used in brain anatomy as it provides a high-resolution image of the intra cranial struc-
tures. Nevertheless, several artifacts arise during the acquisition such as partial volume
effects (PVE), bias field and noise that may hamper tissue quantification. PVE may
become critical when dealing with small structures like brain cortex where subtle dif-
ferences in cortical thickness or volume can occur in presence of neurodegenerative
diseases such as Alzheimer’s disease [1] or focal cortical dysplasia [2], and may yield
to significant errors if not taken into account [3,4,5].
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Standard approaches use tissues means and variances within maximum a posteriori
classification framework to fit multiple gaussians modeling pure or even mixture of tis-
sues onto the histogram [5,6,7,8,9]. The percentage of each tissue present in each voxel
is thus a fractional content of each tissue type modeled by the statistical distributions of
pure tissue and mixture voxels in the image.

Other approaches made use of two acquisitions and model the signal intensity of a
voxel by two linear combinations of three mean pure tissue values, gray matter (GM),
white matter (WM) and cerebrospinal fluid (CSF) [10,11]. However, the mean values
estimated in the two images were not computed locally which make the method sen-
sitive to radiofrequency (RF) inhomogeneities. As the authors stated in the paper, "the
assumption that a pure tissue will give a constant signal response is a simplification in
practice, particularly as field strengths effects can produce position dependent sensitiv-
ity" [10].

Here, we describe a model which stands on the physical properties of the signal of
the acquisition, namely T1 and T2 relaxation time constants and proton density (PD)
of the tissues and the parameters of acquisition TE (Echo Time) and TR (Repetition
Time) (and TI -Inversion Time- for inversion recovery -IR- sequences). By using two
co-registered images that nowadays may be obtained in a single acquisition such as in
the new Fluid Attenuated and White matter Suppression (FLAWS) sequence [12], based
on the MP2RAGE [13] technique, a bi-exponential model for MR signal is introduced.
This model allows to retrieve the amount of GM, WM and CSF in each voxel of a
presegmented intra cranial volume (ICV). We show how this problem leads to a linear
system of two equations with two unknowns.

A direct and independent computation of GM/WM and GM/CSF fractional content
maps is performed without assumptions about statistical properties of tissue values.
This computationally inexpensive method is also robust to RF inhomogeneities as the
signal intensities of a voxel in both images are identically biased.

2 Methods

2.1 Bi-exponential Model for MR Signal

We modeled the MR signal with a linear combination of mono-exponentials with weight-
ing as unknowns and representing the magnetizations of the two tissues considered in a
voxel. Let’s first consider the Spin Echo (SE) signal function for a single tissue as

s(x, ΦSE, T ) = M0e
−TE

T2 (1 − e−
T R
T1 ) (1)

where x = {x, y, z}, ΦSE = {TE, TR}, T = {M0, T 1, T 2} describe respectively
the voxel position, the sequence parameters and tissue properties. M0 is the longitudinal
magnetization in the state of equilibrium and T 1, T 2 are respectively the longitudinal
and transversal magnetization time constants. If we now consider two magnetic contri-
butions from two different tissues α and β in a single voxel x, the acquired signal is
written as

s(x, ΦSE, Tα, Tβ) = M0αe−
TE

T2α (1 − e−
T R

T1α ) + M0βe
− T E

T2β (1 − e
− TR

T1β ) (2)
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Here, for a given voxel, M0α and M0β are two unkwnowns and T 1 and T 2 are either
known [14] or experimentally estimated. Thus, two acquisitions with different TE and
TR result in a voxel-wise two equation system:

(SSE) ⇐⇒
{

s1(x) = s(x, ΦSE1 , Tα, Tβ) = k1αM0α(x) + k1βM0β(x)
s2(x) = s(x, ΦSE2 , Tα, Tβ) = k2αM0α(x) + k2βM0β(x)

with ki,j = e
−T Ei

T2j (1 − e
−T Ri

T1j ) where i = {1, 2} denotes the acquisition number and
j = {α, β} stands for the tissue. k1α, k1β , k2α and k2β are constant values across the
image. The solution is:

(SSE) ⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M0α(x) =
k2βs1(x) − k1βs2(x)

k2βk1α − k2αk1β

M0β(x) =
k1αs2(x) − k2αs1(x)

k2βk1α − k2αk1β

This can also be done with an IR sequence of parameters ΦIR = {TR, TE, T I}. In this
case, although the signal s is slightly different as shown in eq. (3), the bi-exponential
model can still be solved as the SE system. Only k1α, k1β , k2α and k2β are different.

s(x, ΦIR, T ) = M0e
−TE

T2

(
1 − e−

T I
T1 (2 − 2e−

(T R− T E
2 )

T1 + e−
T R
T1 )

)
(3)

2.2 Estimation of the Tissue Parameters

Although brain tissue parameters are currently well known [14] a large inter-individual
variability may exist and they may need to be consequently estimated. This subsection
explains how this information can be retrieved from a pair of acquisitions.

Proton Density. To measure the PD of a tissue relatively to another tissue, one can
acquire a sequence with an infinite TR, or at least 5 times the T 1 of the considered
tissues. Then the ratio SGM

SWM
(where SGM is the signal of a pure GM tissue) should give

the same result as PDGM

PDWM
.

T1 T1 measurement of a tissue α was made by finding the solution of
g(T 1) = k1α

k2α
− μ1α

μ2α
= 0 where μiα = 1

|Ωα|
∑

x∈Ωα

si(x), i = {1, 2} is the mean of

tissue α in the ith contrast image and Ωα stands for the domain of pure tissue α.

2.3 Fractional Content Calculation

Signal magnitude M0 must be positive and hence negative values are set to zero. The
preserved M0 values are subsequently divided by the PD to compensate the difference
in water concentration among tissues, the fractional content is eventually computed as :

fα/β(x) = M0α(x)
M0α(x)+M0β(x) = k2βs1(x)−k1βs2(x)

s1(x)(k2β−k2α)−s2(x)(k1β−k1α)



234 Q. Duché et al.

fα/β(x) thereby represents the percentage of tissue α within the voxel x and it ranges
between zero and one. This value is only valid ∀x ∈ Ωα ∪ Ωβ .

The method computes the fractional content at both boundaries of the GM, namely
GM/WM and GM/CSF. To combine the two models, fGM/WM values are computed
at the intersection of dilated GM and WM ground truth binary masks (radius 1). The
aim of the study is to show the accuracy of the bi-exponential model, thus no segmen-
tation step was included in our work. Likewise on the GM/CSF boundary yielding the
fGM/CSF values. Otherwise, the fractional content in the remaining GM is computed
as max(fGM/CSF , fGM/WM ).

3 Experiments

3.1 Physical Phantom

The method was tested on a physical phantom composed of two gel-layers simulating
respectively GM and WM tissue relaxation properties. The gels were made of a combi-
nation of gadolinium chelate and distilled water (eq. (4)). R1 and Cgado are respectively
the relaxivity and the concentration of the contrast agent.

T 1 =
1

1
T1water

+ R1Cgado

(4)

Then, agar (2.5%) was added to the solution and warmed up. While cooling down, the
solution jellifies. T2 was fixed as the concentration of agar was the same for the two
gels. Thus, a DoubleLayer phantom simulating a flat GM/WM interface was obtained
by varying the concentration of gadolinium chelate in the two solutions. SE images
were done on a Bruker Biospec 4.7T scanner (Bruker Biospin, Rheinstetten, Germany).
The T1 obtained were 903ms for WM and 1130ms for GM. These values are close to
the values of brain WM and GM at 3T. Two microtubes as shown in the bottom of Fig.
1(b,c,d) are always present next to the DoubleLayer as a T1 reference.

(a) DoubleLayer phantom (b) θ0 = 0◦ (c) θ2 = 10◦ (d) θ4 = 20◦

Fig. 1. DoubleLayer physical phantom. (a) Picture (top) and SE imaging (bottom) of the phantom.
India ink was added to the GM solution to visually differentiate the two gels. (b,c,d) Acquisition
protocol to control partial volume effects. Top the tilt, bottom the resulting images for different
inclination angles (SE, TR/TE = 800/10ms, slice thickness e = 4mm, FOV = 8cm ∗ 6cm,
matrix = 128px × 128px).
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In order to vary the partial volumed zone (PVZ), a first 4mm thick slice was ac-
quired in the middle of the GM/WM interface (Fig. 1(b)). Then, the acquisition was
incrementally rotated by a 5◦ angle, progressively reducing the PVZ with θ, the in-
clination angle. Each position was acquired twice, the first image with parameters
TR1/TE1 = 800/10ms and the second image with TR2/TE2 = 3600/10ms. These
parameters were optimized by running Monte Carlo simulations and minimising the
error on fractional contents for two tissues.

The actual size d of the PVZ has a theoretical value of d = e
tan(θ) where e denotes

the slice thickness. Then, the PVZ was measured using the resulting GM fractional
content map where the values range from zero in the WM to one in the GM as we move
from left to right within the image. By denoting n the number of pixels in the slope (i.e.
fGM/WM ∈]0, 1[) and rx (0.625mm/px) the resolution in the x direction, dexp = nrx

gives an experimental value of d. In that way, the fractional content error was estimated.

3.2 Simulated MR Data

We computed the GM and WM fractional content maps for different pairs of noise
and field inhomogeneities. Then the root mean squared error (RMSE) was calculated
between our maps and the BrainWeb Fuzzy maps for all the experiments. We used the
BrainWeb Simulator [16] to build a database of FLAWS-like pairs of IR sequences such
as those appearing in Fig. 2 (a,b). Each couple of simulated images was made using the
following set of parameters: TI1/TR1/TE1 = 250/4000/2.3ms, TI2/TR2/TE2 =
900/1900/1.6ms and flip angle α = 90◦ for both images. The choice of the parameters
was based on the ones provided by the the original FLAWS paper [12]. The method
was tested using 0, 3, 5, 7 and 9% as noise values and 0, 20 and 40% as bias field
values. T1 and PD parameters were recomputed as section 2.2 describes. We found that
the estimated parameters were sligthly different from the ones provided by BrainWeb.
While a PDGM

PDWM
ratio of 1.04 is given, we estimated it at 1.12. PDGM

PDCSF
and PDW M

PDCSF
were

also different. The T1 obtained were T 1GM/T 1WM/T 1CSF = 980/556/2947ms
instead of 833/500/2569ms.

(a) (b) (c) (d)

Fig. 2. BrainWeb simulated images. (a,b) No noise and no RF inhomogeneties: example of the
two contrasts obtained by simulating the two acquisitions in a typical FLAWS sequence. Next
figures show contrast number 2 with 5% of noise, 20% of bias field (c) and 9% of noise, 40% of
bias field (d).
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4 Results

4.1 Physical Phantom

An example of a bi-exponential response for a voxel shared between GM and WM is
shown on Fig. 3, this response is clearly different from a pure GM or WM voxel. Frac-
tional content maps are shown in Fig. 4(a,b,c,d) and must be put in relation with Fig.
1. As it was expected, the greater θ, the smaller the PVZ. The table shown in Fig. 4(e)
summarizes these results and shows very good agreement between our measurements
and the results from our model. Profiles for the different angles are plotted on Fig. 4(f).
The lines intersect in the location x = x0 = 70px and the fractional content is equal to
0.47, this value is defined by the position of the first slice (θ0 = 0◦).

Fig. 3. Graphs of the bi-exponential signal compared to pure GM and WM tissues in a voxel
where fGM/WM = 0.35. The vertical lines refer to TR1 and TR2.

(a) 0◦ (b) 10◦

(c) 15◦ (d) 20◦

θ(◦) 5 10 15 20 25

d (mm) 45.72 22.69 14.92 10.99 8.58
dexp (mm) 44.38 23.75 15.00 11.25 8.13

d − dexp (mm) 1.35 1.06 0.07 0.26 0.45
d − dexp (px) >2 >1 <1 <1 <1

(e)
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(f)

Fig. 4. (a,b,c,d) GM fractional content maps on the phantom for four angles. (e) Theoretical and
experimental sizes of the PVZ for five angles. (f) Profile of the GM fractional content maps along
a few WM-GM lines on the phantom. As expected, all the curves intersect at the same location:
the center of rotation of the successive slices.
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4.2 BrainWeb MRI Data

GM fractional content maps are shown in Fig. 5, the images show a strong robust-
ness to RF inhomogeneities. As depicted on Fig. 6, our method shows a better RMSE
between fractional content maps and BrainWeb references compared to the results re-
ported by Shattuck [5], for instance maximum a posteriori (MAP) and maximum likeli-
hood (ML). These results indicate that our method is more robust to RF inhomogeneities
than standard methods.

(a) (b) (c) (d) (e) (f)

Fig. 5. GM fractional content maps on the BrainWeb phantom. Experiments with 0% noise and
0% RF (a,b), 5% noise and 20% RF (c,d), 9% noise and 40% RF (e,f).

(a) GM (b) WM

Fig. 6. RMSE obtained on the BrainWeb database for GM and WM, results from [5] are included
for comparison. N and RF stand for the percentage of noise and field inhomogeneities, respec-
tively. Our method is robust to RF inhomogeneities as we can observe plateaux when this value
increases.

5 Conclusion

We proposed a fast method to accurately estimate fractional content of tissues using a
bi-exponential model. It is intrinsically robust to RF inhomogeneities and outperforms
already existing and time-consuming approaches. Future work will include evaluation
of the current method on actual T1-weighted and T2-weighted images as provided by a
standard clinical protocol.
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