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Abstract. A clinically acceptable auto-spine detection system, i.e., lo-
calization and labeling of vertebrae and inter-vertebral discs, is required
to have high robustness, in particular to severe diseases (e.g. scoliosis)
and imaging artifacts (e.g. metal artifacts in MR). Our method aims to
achieve this goal with two novel components. First, instead of treating
vertebrae/discs as either repetitive components or completely indepen-
dent entities, we emulate a radiologist and use a hierarchial strategy to
learn detectors dedicated to anchor (distinctive) vertebrae, bundle (non-
distinctive) vertebrae and inter-vertebral discs, respectively. At run-time,
anchor vertebrae are detected concurrently to provide redundant and dis-
tributed appearance cues robust to local imaging artifacts. Bundle ver-
tebrae detectors provide candidates of vertebrae with subtle appearance
differences, whose labels are mutually determined by anchor vertebrae
to gain additional robustness. Disc locations are derived from a cloud
of responses from disc detectors, which is robust to sporadic voxel-level
errors. Second, owing to the non-rigidness of spine anatomies, we employ
a local articulated model to effectively model the spatial relations across
vertebrae and discs. The local articulated model fuses appearance cues
from different detectors in a way that is robust to abnormal spine geom-
etry resulting from severe diseases. Our method is validated by 300 MR
spine scout scans and exhibits robust performance, especially to cases
with severe diseases and imaging artifacts.

1 Introduction

As one of the major organs in the human body, spine relates to various neuro-
logical, orthopaedic and oncological studies. Magnetic resonance imaging (MR)
is often preferred for spine imaging due to the high contrast between soft tis-
sues. However, MR imaging quality is highly dependent on the position and
orientation of the slice group. For example, a high-res transversal slice group
should be positioned in parallel to inter-vertebral disc and centered at the junc-
tion of spinal cord. In current MR workflow, high-res slice group positioning is
performed manually in a 2D/3D scout scan. Compared to 2D scout, 3D scout
provides comprehensive anatomical context, which facilitates slice group posi-
tioning even in strong scoliotic cases (c.f., Fig. Bh). However, the manual posi-
tioning in 3D scout also takes more time due to cross slice navigation. Therefore,
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automatic spine detection in 3D scout becomes very desirable to improve MR
spine workflow.

Automatic spine detection work in MR can be traced back to the 1980’s [IJ,
where a heuristic algorithm is designed to detect lumbar discs in 2D MR slices.
Alomari et.al. [2] proposed a 2D lumbar vertebrae labeling system incorporating
appearance and geometrical priors. However, more complicated spine geome-
try in 3D (especially for disease cases), and smaller/challenging appearance of
cervical vertebrae, would make this approach limiting for 3D MR whole spine
labeling. One of the first 3D whole spine detection methods was proposed by
Schmidt et. al. [3]. Local appearance cues learned by random trees are combined
with non-local geometrical priors modeled by a parts-based graphical model.
Another interesting method presented in [4] focuses on learning disc location
in a nine dimensional transformation space. Iterative marginal space learning
is proposed to generate candidates comprising position, orientation, and scale,
which are further pruned by an anatomical network. In general, state-of-the-art
methods did achieve certain robustness by combining low-level appearance and
high-level geometry information. However, in the presence of severe imaging ar-
tifacts or spine diseases (see FigBh), which are more common in 3D MR scout
scans, none of existing methods provides evidence of handling these cases ro-
bustly. (Note that spine detection algorithms for other imaging modalities [5]
may not be borrowed to MR owing to the intrinsically different appearances.)

In fact, two unique characteristics of spine anatomies are mostly ignored in
previous works. First, although spine is composed of repetitive components (ver-
tebrae and discs), these components have different distinctiveness and reliability
in terms of detection. Second, spine is a non-rigid structure, where local articu-
lations exist in-between vertebrae and discs. This articulation can be quite large
in the presence of certain spine diseases. An effective geometry modeling should
not consider vertebrae detections from scoliotic cases as errors just because of the
abnormal geometry. Building upon these ideas, in this paper, we propose a spine
detection method by exploiting these two characteristics. Instead of learning
a general detector for vertebrae/discs or treating them as completely indepen-
dent entities, we use a hierarchical strategy to learn ”distinctiveness adaptive”
detectors dedicated to anchor vertebrae, bundle vertebrae and inter-vertebral
discs, respectively. These detectors are fused with a local articulated model to
propagate information from different detectors handling abnormal spine geome-
try. With the hallmarks of hierarchical learning and local articulated model, our
method becomes highly robust to severe imaging artifacts and spine diseases.

2 Method

2.1 Problem Statement

Notations: Human spine usually consists of 24 articulated vertebrae, which can
be grouped as cervical (C1-C7), thoracic (171-T12) and lumbar (Li-Ls) sections.
These 24 vertebrae plus the fused sacral vertebrae (S7) are the targets of spine
labeling in most clinical practices.
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We define vertebrae and inter-vertebral discs as V' = {v;[i = 1---N} and
D = {d;Ji = 1.--N — 1}, where v; is the i-th vertebra and d; is the inter-
vertebral disc between the i-th and i+1-th vertebra. Here, v;ER? is the vertebra
center and d;€R® includes the center, orientation and size of the disc. It is worth
noting that 7 is not a simple index but bears anatomical definition. In this paper,
without loss of generality, v; is indexed in the order of vertebrae from head to
feet, e.g., v1, Va4, Vo5 represent Cy, Ls and Sy, respectively.

Formulation: Given an image I, spine detection problem can be formulated as
the maximization of a posterior probability with respect to V' and D as:

(V*,D") = argmax P(V, DII) (1)

Certain vertebrae that appear either at the extremity of the entire vertebrae
column, e.g., C3, S1, or at the transition regions of different vertebral sections,
e.g., L1 , have much better distinguishable characteristics (red ones in Fig.[I(a)).
The identification of these vertebrae helps in the labeling of others, and are de-
fined as “anchor vertebrae”. The remaining vertebrae (blue ones in Fig. [[[a))
are grouped into a set of continuous “bundles” and hence defined as “bundle ver-
tebrae” . Vertebrae characteristics are different across bundles but similar within
a bundle, e.g., C5-C7 look similar but are very distinguishable from Tg-T75.

Denoting V4 and Vi as anchor and bundle vertebrae, the posterior in Eq. [
can be rewritten and further expanded as:

P(V,D|I) = P(Va,Vi,D|I) = P(V4|I)-P(VB|Va,I)-P(D|Va,V5,I) (2)

In this study, we use Gibbs distributions to model the probabilities. The loga-
rithm of Eq. 2l can be then derived as Eq. Bl

log[P(V, D|I)] = Ay (Vall) — P(ValI) 3)
+Ax(VBII) + S1(VB|Va) < P(Vi|Va,I)
+A3(D|I)+SQ(D|VAvVB) :P(D‘VAvaaI)

Here, A1, As and Ajz relate to the appearance characteristics of anchor, bundle
vertebrae and inter-vertebral discs. S7; and Sy describe the spatial relations of
anchor-bundle vertebrae and vertebrae-disc, respectively. It is worth noting that
the posterior of anchor vertebrae solely depends on the appearance term, while
those of bundle vertebrae and inter-vertebral discs depend on both appearance
and spatial relations. This is in accordance to the intuition: while anchor verte-
brae can be identified based on its distinctive appearance, bundle vertebrae and
inter-vertebral discs have to be identified using both appearance characteristics
and the spatial relations to anchor ones.

Fig. [[l(b) gives a schematic explanation of Eq. Bl Our framework consists of
three layers of appearance models targeting to anchor, bundle vertebrae and discs.
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Fig. 1. (a) Schematic explanation of anchor(red) and bundle(blue) vertebrae. (b) Pro-
posed spine detection framework.

The spatial relations across different anatomies “bridge” different layers (lines in
Fig.[). Note that this framework is completely different from the two-level model
of [2], which separates pixel- and object-level information. Instead, different layers
of our framework target to anatomies with different appearance distinctiveness.

2.2 Hierarchical Learning Framework

Building upon the the success of learning-based anatomy detection work [6], we
employ the Adaboost cascade classification framework along with over-complete
Haar wavelets features to model appearance characteristics of vertebrae and
discs. However, in order to model the different characteristics of vertebrae and
discs, we employ different training strategies for each scenario as discussed below.

Anchor Vertebrae: Distinctive characteristics of anchor vertebrae (red ones
in Figllf(a)) warrant that their detectors be trained in a very discriminative way
with high response only around the center of that specific vertebra.

Bundle Vertebrae: Bundle vertebrae look similar to their neighbors but differ-
ent from remote ones. Therefore, both the extremes of training a general detector
for all bundle vertebrae (including distal ones), or specific detectors for neigh-
boring vertebrae, would adversely affect the detector robustness and reliability.
For example, consider a scenario where two specific detectors are trained to dif-
ferentiate similar appearance Ty and T7( vertebrae. If local imaging artifacts are
present around Ty, Ty detector might have highest response at T, since T is
more salient than Ty in this situation. This problem is also observed in [4], where
“(standard) MSL approach may end up with detections for the most salient disks
only”. To avoid these issues, we employ a strategy in the middle to group similar
neighboring vertebrae as several “bundles” (blue ones in Fig[li(a)). Each bundle
has one detector that learns the commonality of corresponding vertebrae and
distinguishes them from other bundles.

Inter-Vertebral Discs: Compared to vertebrae detection, disc detection has
a high dimensional configuration space with 9 parameters. Different from [4],
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Table 1. Training scheme of detectors for anchor vertebrae, bundle vertebrae and
inter-vertebral discs

Detector Positive Samples Negative Samples Image Align-
ment

Anchor  Voxels close to the center Remaining voxels in the en- No alignment

vertebrae of the specific vertebrae tire volume image

Bundle Voxels close to the cen- Remaining voxels in the local Aligned by an-

vertebrae ters of any vertebrae volume image covering neigh- chor vertebrae

within the bundle boring bundles
Inter- Voxels located on the Remaining voxels in the local Aligned by two
vertebral disc volume image covering the two neighboring ver-
Discs neighboring vertebrae tebrae

which learns/detects a disc as a whole, we treat each voxel on the disc as an
individual sample. Disc locations are derived by fitting disc response maps with
principal component analysis. In this way, disc detection becomes robust to
sporadic classification errors at voxel-level. Since voxels on the same disc are
almost indistinguishable, similar to bundle vertebrae, all of them are“bundled”
in the training stage.

To summarize, the differences in training strategies primarily exist in the
selection of positive/negative samples and image alignment before feature ex-
traction, which are outlined in Table [l Moving down the table from anchor
vertebrae to inter-vertebral discs, as the targeted anatomies become less and
less distinctive, more positive samples are extracted in a more local fashion, and
the image alignment becomes more and more sophisticated.

Using the above strategy, we train detectors for anchor vertebrae, bundle
vertebrae and inter-vertebral discs as A;(F(p)), B;(F(p)), and Dr(F(p)). Here,
F(p) denotes the over-complete Haar features extracted around voxel p, and
A;, B; and Dj, are the trained Adaboost classifiers, which select and combine
a small proportion of F(p) to achieve best anatomy detection. The appearance
terms in Eq. ] are eventually concretized as A1 (Vall) = >, oy, Ai(§(vi)),

Ao (Vs|I) = 3 cvys Bi(§(v5)) and A3(DII) = 3 4, cp 2 pea, Pr(S(P))-

2.3 Local Articulated Spine Model

Recall the definition of Eq.[Bl S1(Vs|V4) and S2(D|V4, Vi) model the spatial re-
lations between anchor-bundle vertebrae and vertebrae-discs, respectively. Spine
is a flexible structure where each vertebra has freedom of local articulation (see
Fig. B). The local rigid transformation can be quite large in the presence of
certain spine diseases, e.g., scoliosis. Shape/gemetry modeling methods [7] that
treats the object as a whole can not effectively model these local variations of
the spine geometry. In our study, we employ a local articulated spine model [8][9]
to describe the spatial relations across vertebrae. Assume v; is an anchor ver-
tebra and {v;y1,-- ,vi+am} are the subsequent bundle vertebrae. As shown in
Fig.[2l the spatial relations between anchor and bundle vertebrae are modeled as
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[T;, T;0T541, - .., T;,0T410. .. 0Ty pr—1], where T; defines a local similarity trans-
formation between v; and v;y1. S1(Vg|V4) is defined as:

S1(Vs|Va) = Z6_(¢(Ti)_MTi)T5Ti(w(Ti)_MTi) +2/(1 + MTI=v(Tirnl*) (4)

(3

Here, 1(.) is an operator that converts T; to a vector space,
i.e., the rotation part of T; is converted to its quaternion.
wr, and =7, are the Frechet mean and generalized covariance
of local transformation Tj;, calculated as [8]. The first term

contains the prior information of local transformations across hg ?T

Vi

population. The second term evaluates the difference between v g,

local T; across the same spine. These two terms complement w"

each other, such that a scoliotic spine still gets a high value p ’2

of S7 , due to the continuity of its local transformations. e Ej
Spatial configurations between vertebrae and discs,

S2(D|V4, Vi), is modeled with two assumptions: 1) A ver-
tebral disc is roughly perpendicular to the line connecting
its neighboring vertebrae centers; and 2) Center of an inter-
vertebral disc is close to the mid point of the two neighboring
vertebrae centers. So(D|V4, V) is then defined in the similar
fashion as Eq. 4

Fig. 2. Local ar-
ticulation model

2.4 Hierarchical Spine Detection

As a high-dimensional and non-linear function, Eq. Blis optimized using a multi-
stage algorithm. Different stages target to anchor vertebrae, bundle vertebrae
and inter-vertebral discs, respectively. In each stage, we alternatively optimize
the appearance terms and spatial terms.

Fig. [l (a) gives a more schematic explanation of the optimization procedure.
This hierarchial detection scheme emulates a radiologists and guarantees the
robustness in three aspects: 1) Anchor vertebrae are detected concurrently to
provide redundant and distributed appearance cues. Even when some anchor
vertebrae are missed due to severe local imaging artifacts, others still provide
reliable clues for spine detection. 2) Detectors of bundle vertebrae and discs pro-
vide support cues. More specifically, instead of trying to directly derive vertebrae
labels, bundle vertebrae detectors provide a set of candidates whose labels are
mutually assigned according to relative positions to anchor vertebrae. Note that
labels assigned by different anchor vertebrae might be different, and are fused
through the maximization of S;. Disc detectors return a cloud of responses for
disc localization, which is robust to individual false classifications as well. 3)
Local articulated model propagates these appearance cues in a way robust to
abnormal spine geometry resulting from severe diseases.
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Table 2. Evaluations of spine detections. LS: LSpine, CS: CSpine, WS: WholeSpine

W/O Hierarchy W/O Articulation Proposed Method
Perfect Accept Reject Perfect Accept Reject Perfect Accept Reject

LS 85 10 5 93 5 2 98 2 0
CS 65 11 4 76 3 1 79 0 1
WS 97 16 7 106 8 6 116 2 2
All - 247 37 16 275 16 9 293 4 3

824 % 12.3% 53% 91.7% 53% 3.0% 97.7% 1.3% 1.0%

Fig. 3. Comparisons of spine detection using different methods. Curved coronal MPRs
are shown for better illustration. (a): A scoliotic case using Method2 (al) and the
proposed method (a2). (b): An artifact case using Methodl (bl) and the proposed
method (b2).

3 Results

Our experimental data includes 405 LSpine, CSpine and WholeSpine scout scans
with isotropic resolution 1.7mm. (105 for training and 300 for testing). These
datasets come from different clinical sites and were generated by different types
of Siemens MR Scanners (Avanto 1.5T, Verio 3T, Skyra 3T, etc.). Quantitative
evaluation is carried on 355 discs and 340 vertebrae from 15 WholeSpine scans.
The average translation errors of discs and vertebrae are 1.91mm and 3.07mm.
The average rotation error of discs is 2.33°.

A larger scale evaluation is performed on 300 scans (80 CSpine, 100 LSpine and
120 WholeSpine), including 43 (14.3%) with severe pathology and 36 (12.0%)
with strong imaging artifacts. Three experienced radiologists rated spine de-
tection results as “perfect” (no manual editing required), “acceptable” (minor
manual editing required) and “rejected” (major manual editing required). For
comparison, we also evaluate results from two adapted versions of the proposed
method, Method1: without hierarchical learning and Method2: without local
articulated model. As shown in Table 2| the proposed method generates “per-
fect” results in more than 97% cases, which is significantly better than the
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others (Two examples are shown in Fig.[3). In general , Method2 is better than
Method1, since the lack of articulated model mainly affects cases with abnormal
spine geometry, e.g., scoliosis, which has a small proportion in our datasets. An-
other interesting observation is that Method1 has larger impacts on CSpine than
LSpine, but Method2 is in the other way around. This phenomenon in fact re-
sults from the different sizes of cervical and lumbar vertebrae. Due to the smaller
size of cervical vertebrae, it is prone to error detections using non-hierarchical
detectors. On the other hand, the larger size of lumbar vertebrae makes the de-
tection more sensitive to abnormal spine geometry, which can only be tackled
with the local articulated model.

4 Conclusion

In this paper, we proposed a robust method to detect spine in 3D MR, scout
scans. Using hierarchical learning framework and local articulated model, our
method exhibits accurate and robust performance on 300 testing datasets.
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