
The COMICS Tool – Computing Minimal

Counterexamples for DTMCs

Nils Jansen1, Erika Ábrahám1, Matthias Volk1, Ralf Wimmer2,
Joost-Pieter Katoen1, and Bernd Becker2

1 RWTH Aachen University, Germany
2 Albert-Ludwigs-University Freiburg, Germany

Abstract. This paper presents the tool COMICS 1.0, which performs
model checking and generates counterexamples for DTMCs. For an in-
put DTMC, COMICS computes an abstract system that carries the model
checking information and uses this result to compute a critical subsys-
tem, which induces a counterexample. This abstract subsystem can be
refined and concretized hierarchically. The tool comes with a command
line version as well as a graphical user interface that allows the user to
interactively influence the refinement process of the counterexample.

1 Introduction

Discrete-time Markov chains (DTMCs) are widely used to model safety-critical
systems with uncertainties. Model checking probabilistic computation tree logic
(PCTL) properties can be performed by prominent tools like Prism [1] and
Mrmc [2]. Unfortunately, the implemented numerical methods do not provide
diagnostic information in form of counterexamples, which are very important for
debugging and are also needed for CEGAR frameworks [3].

Although different approaches [4,5,6] were proposed for probabilistic counterex-
amples, there is still a lack of efficient and user-friendly tools. To fill this gap, we
developed the tool COMICS, supporting SCC-based model checking [7] and, in case
the property is violated, the automatic generation of abstract counterexamples [5],
which can be subsequently refined either automatically or user-guided.

While most approaches represent probabilistic counterexamples as sets of
paths, we use (hierarchically abstracted) subgraphs of the input DTMC, so-
called critical subsystems. The user can refine abstract critical subsystems hi-
erarchically by choosing system parts of interest which are to be concretized
and further examined. All computation steps of the hierarchical counterexample
refinement can be guided and revised. Though refinement can be done until a
fully concrete counterexample is gained, it seems likely that the user can gain
sufficient debugging information from abstract systems considering real-world ex-
amples with millions of states. The tool’s graphical user interface (GUI) permits
visualization, reviewing and creation of test cases.

The only other available tool we are aware of is DiPro [8], which supports
both DTMCs and CTMCs but no abstract counterexamples, which is crucial for

S. Chakraborty and M. Mukund (Eds.): ATVA 2012, LNCS 7561, pp. 349–353, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



350 N. Jansen et al.

the handling of large systems. It also does not allow the user to influence the
search by using his or her expertise. Comparative experiments show that we can
compute reasonably smaller counterexamples in shorter time with our tool.

In Section 2 we give a brief introduction to the methods implemented in our
tool. We describe the features and architecture and report on benchmarks in
Section 3. We conclude the paper in Section 4. The tool, a detailed manual, and
a number of benchmarks are available at the COMICS website1.

2 Foundations

In this section we briefly explain the algorithms implemented in COMICS (see [5]
for more details). We use the standard definitions for DTMCs and PCTL.

Model checking time-unbounded PCTL properties for DTMCs can be reduced
to the following problem: Given a DTMC M with one initial state sI and a set
of target states T , decide whether the probability to reach T from sI is below an
upper bound2 λ ∈ [0, 1] ⊂ R. In case this bound is violated, a counterexample
can be given as a set of finite paths of M leading from sI to T with a cumulated
probability mass greater than λ.

In [7] we proposed a model checking approach for DTMCs based on hierar-
chical abstraction. The result is an abstract DTMC, which represents the total
probabilities of reaching target states from the initial state by single transition
probabilities. The abstraction is hierarchically refinable, where the refinement of
an abstract state might again contain abstract states. Based on this approach, in
[5] we presented a method to compute and represent counterexamples as critical
subsystems, consisting of subsets of the original DTMC’s states and transitions
such that the probability of reaching target states from the initial state within
the subsystem still exceeds the probability bound λ. We compute these subsys-
tems using path searches on the abstract DTMCs: either the global search (GS),
which searches for most probable paths from sI to T , or the local search (LS),
which connects fragments of already found paths to extend the current subsys-
tem. Abstract subsystems can be refined by selecting and concretizing abstract
states and performing path search again to reduce the number of concretized
states and transitions in the subsystem.

3 The COMICS Tool

COMICS can be used either as

SccMC GUI

Concretize
CritSubSys

Global Search Local Search

Path Set

Global Search

DTMC DTMC

Result

Result

Fig. 1. Architecture of COMICS

a command-line tool or with
a GUI, the latter allowing
the user to actively influence
the process of finding a coun-
terexample. The program
consists of approximately
20 000 lines of code in five
1 http://www-i2.informatik.rwth-aachen.de/i2/comics/
2 We only consider unbounded PCTL properties.

http://www-i2.informatik.rwth-aachen.de/i2/comics/


The COMICS Tool – Computing Minimal Counterexamples for DTMCs 351

Fig. 2. Screenshot of COMICS’s GUI with an instance of the crowds protocol

main components (see Fig. 1). The GUI is implemented in Java, all other com-
ponents in C++. The user may select exact or floating point arithmetics for the
computations.

SccMC performs model checking for an input DTMC and returns an abstract
DTMC to Concretize or to GUI. Concretize selects and concretizes some states,
either automatically or user-guided via the GUI. CritSubSys can be invoked on
the modified system to compute a critical subsystem using GS or LS. The result
is given back to Concretize for further refinement or returned as the result.
Heuristics for the number of states to concretize in a single step as well as
for the choice of states are offered. It is also possible to predefine the number
of concretization steps. Counterexample representations as sets of paths and as
critical subsystems are offered. The first case yields aminimal counterexample [4].
The GUI provides a graph editor for specifying and modifying DTMCs. A large
number of layout algorithms increase the usability even for large graphs. Both
concrete and abstract graphs can be stored, loaded, abstracted, and concretized
by the user. As the most important feature, the user is able to control the hier-
archical concretization of a counterexample. If an input graph seems too large
to display, the tool offers to operate without the graphical representation. In
this case the abstract graph can be computed and refined in order to reduce the
size. Fig. 2 shows one abstracted instance of the crowds protocol benchmark [9],
where the probability of reaching the unique target state is displayed in the in-
formation panel on the right as well as on the edge leading from the initial state
to the target state. The initial state is abstract and can therefore be expanded.

Fig. 3 provides a comparison with DiPro [8]. We applied our tool using GS,
LS and the k-shortest path (kSP) approach [4] to the crowds protocol and the
probabilistic contract signing protocol [10] for different probability thresholds all
smaller than the model checking result (total prob.). We measured the size of
the counterexample (states), the probability of reaching target states (prob.) and
the computation time excluding the initial model checking. TO denotes timeout,
MO out of memory and ERR wrong result. On the crowds protocol, GS performs



352 N. Jansen et al.

crowds contract signing

states 3515 18817 198199 485941 1058353 33790 156670 737278 1654782

transitions 6035 32677 198199 857221 1872313 34813 157693 753663 1671165

total prob. 0.2346 0.4270 0.7173 0.809 0.8731 0.5156 0.5156 0.5039 0.5039

prob. threshold 0.15 0.23 0.25 0.35 0.4 0.4 0.5 0.5 0.5 0.5

GS # states 629 1071 2036 5198 5248 5250 6827 37601 140034 369448
prob. 0.1501 0.2301 0.25 0.3503 0.4002 0.4001 0.5 0.5 0.5 0.5
time (s) 0.02 0.38 0.38 7.97 16.36 18.78 0.36 2.98 238.82 605.81

LS # states 182 900 943 4180 6368 6657 37377
prob. 0.1501 0.2302 0.2501 0.3501 0.4 TO 0.5 0.5 MO MO
time (s) 0.14 1.11 6.1 619.06 2455.46 8 54.58

kSP # states 1071 6827 37601 140034 369444
prob. 0.15 TO TO TO TO TO 0.5 0.5 0.5 0.5
time (s) 6.58 1.93 0.13 0.69 1.49

DiPro # states 938 2901 3227 9005 13311 74751
prob. 0.1675 0.2334 0.254 0.3533 ERR ERR 0.5 0.5 MO MO
time (s) 2.02 7.06 7.87 44.34 1210 7114

Fig. 3. Results for crowds and contract signing (TO > 2h)

best, while LS computes in general smaller counterexamples. kSP is the fastest
method for contract signing, however, the representation of the result consists
of a huge number of paths instead of a small subsystem of the input DTMC.

4 Conclusion and Future Work

We presented version 1.0 of our tool COMICS which generates abstract, hierar-
chically refinable counterexamples for DTMCs. In the future, we will integrate
the computation of minimal critical subsystems [6] and the adaption of our ap-
proaches to symbolic data structures. We are also working on an incremental
version of the Dijkstra algorithm for path search and on compositional coun-
terexamples .

References

1. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

2. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

3. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)

4. Han, T., Katoen, J.P., Damman, B.: Counterexample generation in probabilistic
model checking. IEEE Trans. on Software Engineering 35(2), 241–257 (2009)

5. Jansen, N., Ábrahám, E., Katelaan, J., Wimmer, R., Katoen, J.-P., Becker,
B.: Hierarchical Counterexamples for Discrete-Time Markov Chains. In: Bultan,
T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 443–452. Springer,
Heidelberg (2011)

6. Wimmer, R., Jansen, N., Ábrahám, E., Becker, B., Katoen, J.-P.: Minimal Critical
Subsystems for Discrete-Time Markov Models. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 299–314. Springer, Heidelberg (2012)



The COMICS Tool – Computing Minimal Counterexamples for DTMCs 353

7. Ábrahám, E., Jansen, N., Wimmer, R., Katoen, J.-P., Becker, B.: DTMC model
checking by SCC reduction. In: Proc. of QEST, pp. 37–46. IEEE CS (2010)

8. Aljazzar, H., Leitner-Fischer, F., Leue, S., Simeonov, D.: DiPro - A Tool for Prob-
abilistic Counterexample Generation. In: Groce, A., Musuvathi, M. (eds.) SPIN
2011. LNCS, vol. 6823, pp. 183–187. Springer, Heidelberg (2011)

9. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans.
on Information and System Security 1(1), 66–92 (1998)

10. Norman, G., Shmatikov, V.: Analysis of probabilistic contract signing. Journal of
Computer Security 14(6), 561–589 (2006)


	The COMICS Tool – Computing Minimal Counterexamples for DTMCs

	Introduction
	Foundations
	The COMICS Tool
	Conclusion and Future Work
	References





