
FunFrog: Bounded Model Checking
with Interpolation-Based Function Summarization�

Ondrej Sery1,2, Grigory Fedyukovich1, and Natasha Sharygina1

1 University of Lugano, Switzerland
name.surname@usi.ch

2 D3S, Faculty of Mathematics and Physics, Charles University, Czech Rep.

Abstract. This paper presents FunFrog, a tool that implements a function sum-
marization approach for software bounded model checking. It uses interpolation-
based function summaries as over-approximation of function calls. In every
successful verification run, FunFrog generates function summaries of the analyzed
program functions and reuses them to reduce the complexity of the successive
verification. To prevent reporting spurious errors, the tool incorporates a counter-
example-guided refinement loop. Experimental evaluation demonstrates compet-
itiveness of FunFrog with respect to state-of-the-art software model checkers.

1 Introduction

Bounded model checkers (BMC) [1] search for errors in a program within the given
bound on the maximal number of loop iterations and recursion depth. Typically, the
check is repeated for different properties to be verified and thus large amount of the
work is repeated. This raises a problem of constructing an incremental model checker.
In this paper, we present a tool, FunFrog, that serves this goal. From a successful ver-
ification run, FunFrog extracts function summaries using Craig interpolation [3]. The
summaries are then used to represent the functions in subsequent verification runs, when
the same code is analyzed again (e.g., with respect to different properties). Significant
time savings can be achieved by reusing summaries between the verification runs.

To be able to use interpolation for function summarization, FunFrog converts the
unwound program into a partitioned bounded model checking (PBMC) formula. For
each function to be summarized, this formula is partitioned into two parts. The first part
symbolically encodes the function itself and all its callee functions. The second part
encodes the remaining functions, i.e., the calling context of the function. Given the two
parts, a Craig interpolant that constitutes the function summary is then computed. Our
function summaries are over-approximations of the actual behavior of the functions. As
a result, spurious errors may occur due to a too coarse over-approximation. To discard
spurious errors, FunFrog implements a counterexample-guided refinement loop.

The paper provides an architectural description of the tool implementing the function
summarization approach to bounded model checking and discusses the tool usage and
experimentation on various benchmarks1.

� This work is partially supported by the European Community under the call FP7-ICT-2009-5
— project PINCETTE 257647.

1 Further details on interpolation-based function summarization can be found in [4].

S. Chakraborty and M. Mukund (Eds.): ATVA 2012, LNCS 7561, pp. 203–207, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



204 O. Sery, G. Fedyukovich, and N. Sharygina

Fig. 1. FunFrog architecture overview

2 Tool Architecture

The architecture of FunFrog is depicted in Fig. 1. The tool takes a C program and uses
the parser for pre-processing. The parser produces an intermediate code representation,
which is then used for encoding into a PBMC formula by PBMC encoder. Encod-
ing is achieved using symbolic execution, which unwinds the program and prepares its
static single assignment (SSA) form, SSA slicing that removes the SSA steps irrele-
vant to the property, and SAT flattening that produces the final formula by encoding it
into propositional logic. FunFrog loads function summaries from a persistent storage
and attempts to use them during encoding as over-approximations of the corresponding
program functions. The tool passes the resulting formula to a solver. If the formula is
unsatisfiable, the program is safe and FunFrog uses interpolation to generate new func-
tion summaries and stores them for use in later runs. In case of a satisfiable formula,
FunFrog asks refiner whether a refinement is necessary. If so, FunFrog continues by
precisely encoding the functions identified by the refiner. If a refinement is not neces-
sary (i.e., no summarized function call influences the property along the counterexam-
ple), the counterexample is real, and the program is proven unsafe. In the following, we
describe each step of FunFrog in more detail.

Parsing. As the first step, the source codes are parsed and transformed into a goto-
program, where the complicated conditional statements and loops are simplified using
only guards and goto statements. For this purpose, FunFrog uses goto-cc2 , i.e., a
parser specifically designed to produce intermediate representation suitable for formal
verification. Other tools from the CProver2 framework can be used to alter this repre-
sentation. For example, goto-instrument injects additional assertions (e.g., array
bound tests) to be checked during analysis.

Symbolic execution. In order to unwind the program, the intermediate representation is
symbolically executed tracking the number of iterations of loops. The result of this step
is the SSA form of the unwound program, i.e., a form where every variable is assigned
at most once. This is achieved by adding version numbers to the variables. In FunFrog,

2 http://www.cprover.org/

http://www.cprover.org/


FunFrog: Bounded Model Checking 205

this step is also influenced by the choice of an initial substitution scenario. Intuitively,
it defines how different functions should be encoded (e.g., using precise encoding or
using a summary).

Slicing. After the symbolic execution step, slicing is performed on the resulting SSA
form. It uses dependency analysis in order to figure out which variables and instruc-
tions are relevant for the property being analyzed. The dependency analysis also takes
summaries into account. Whenever an output variable of a function is not constrained
by a function summary, its dependencies need not be propagated and a more aggressive
slicing is achieved.

SAT flattening. When the SSA form is pruned, the PBMC formula is created by flatten-
ing into propositional logic. The choice of using SAT allows for bit-precise reasoning.
However, in principle, the SAT flattening step could be substituted by encoding into a
suitable SMT theory that supports interpolation.

Solving. The PBMC formula is passed to a SAT solver to decide its satisfiability. Fun-
Frog uses OpenSMT [2] in the SAT solver mode for both satisfiability checks and as an
interpolating engine. Certain performance penalties follow from the additional book-
keeping in order to produce a proof of unsatisfiability used for interpolation.

Summaries extraction. When the PBMC formula is unsatisfiable, FunFrog extracts
function summaries using interpolation using the proof of unsatisfiability. The extracted
summaries are serialized in a persistent storage so that they are available for other Fun-
Frog runs. In this step, FunFrog also compares the new summaries with any existing
summaries for the same function and the same bound, and keeps the more precise
(tighter over-approximation) one.

Refiner. The refiner is used to identify and to mark summaries directly involved in
the error trace. We call this strategy CEG (counterexample-guided). Alternatively, the
refiner can avoid identification of summaries in the error trace and can mark all sum-
maries for refinement (greedy strategy). In other words, greedy strategy falls back to
the standard BMC, when the summaries are not strong enough to prove the property.

3 Tool Usage

When running FunFrog, the user can choose the preferred initial substitution scenario,
a refinement strategy and whether summaries optimization and slicing should be per-
formed. The user can also specify the unwinding bound; the overall bound as well as
bounds for particular loops. The input code is expected to contain user provided asser-
tions to be checked for violations. The user can choose which assertion(s) should be
checked by FunFrog. Linux binaries of FunFrog as well as the benchmarks used for
evaluation are available online for other researchers3. The webpage also contains a tu-
torial explaining how to use FunFrog and explanation of the most important parameters.

Experiments. In order to evaluate FunFrog, we compared it with other state-of-the-art
C-model checkers CBMC (v4.0), SATABS (v3.0 with Cadence SMV v10-11-02p46),

3 www.verify.inf.usi.ch/funfrog

www.verify.inf.usi.ch/funfrog


206 O. Sery, G. Fedyukovich, and N. Sharygina

Table 1. Verification times [s] of FunFrog, CBMC, SATABS, and CPAchecker, where ‘∞’ is a
timeout (1h), ‘×’ - bug in safe code, ‘†’ - other failure (We notified the tool authors about the
issues), number of lines of code, preprocessed code instructions in goto-cc, function calls, and
assertions.

benchmark FunFrog details total
#L

oC

#I
ns

tr
uc

ti
on

s

#f
un

c.
ca

ll
s

#a
ss

er
ti

on
s

#r
ef

.i
te

r.

sy
m

b.
ex

.

sl
ic

in
g

fl
at

te
ni

ng

so
lv

in
g

in
te

rp
ol

.

F
un

F
ro

g

C
B

M
C

S
A

TA
B

S

C
PA

ch
ec

ke
r

floppy 10288 2164 227 8 0 4.80 0.07 6.05 2.94 0.57 14.54 19.59 918.25 383.97
kbfiltr 12247 1052 64 8 0 1.72 0.01 2.38 0.23 0.15 4.60 5.33 91.37 †
diskperf 6324 2037 182 5 0 2.41 0.01 2.31 0.42 0.36 5.60 21.42 146.82 259.26
no_sprintf 178 68 6 2 0 0.01 0.00 0.03 0.03 0.01 0.08 0.01 125.69 2.96
gd_simp 207 82 4 5 0 0.03 0.00 0.07 0.05 0.01 0.17 0.03 ∞ ×
do_loop 126 176 12 7 3 7.74 2.66 2.58 2.29 0.11 15.78 19.52 ∞ ×
goldbach 268 344 22 6 0 0.41 0.00 1.53 2.03 0.78 5.78 15.44 ∞ †

and CPAchecker (v1.1). CBMC and FunFrog are BMC tools, provided with the same
bound. We evaluated all tools (with default options) on both real-life industrial bench-
marks (including Windows device drivers) and on smaller crafted examples designed to
stress-test the implementation of our tool and verified them for user defined assertions
(separate run for each assertion). The assertions held, so FunFrog had the opportunity
to extract and reuse function summaries.

Table 1 reports the running times of all the tools4. In case of FunFrog, the summaries
were generated after the first run (for the first assertion in each group) and reused in the
consecutive runs (for the rest of (#asserts - 1) assertions). To demonstrate the perfor-
mance of FunFrog, the running times of different phases of its algorithm were summed
across all runs for the same benchmark. Note that the time spent in counterexample
analysis (i.e., the only computation, needed for refinement) is negligible, and thus not
reported in a separate column, but still included to the total.

As expected, FunFrog was outperformed by CBMC on the smaller examples with-
out many function calls, but FunFrog’s running times were still very competitive. On
majority of the larger benchmarks, FunFrog outperformed all the other tools. These
benchmarks feature large number of function calls so FunFrog benefited from function
summarization.

References

1. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

4 The complete set of experiments can be found at www.verify.inf.usi.ch/funfrog.

www.verify.inf.usi.ch/funfrog


FunFrog: Bounded Model Checking 207

2. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT Solver. In: Esparza,
J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg
(2010)

3. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof
theory. J. of Symbolic Logic, 269–285 (1957)

4. Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based Function Summaries in
Bounded Model Checking. In: HVC 2011. LNCS (2011) (to appear)


	FunFrog: Bounded Model Checking with Interpolation-Based Function Summarization
	Introduction
	Tool Architecture
	Tool Usage
	References




