
Accelerating Interpolants�

Hossein Hojjat1, Radu Iosif2,
Filip Konečný2,4, Viktor Kuncak1, and Philipp Rümmer3

1 Swiss Federal Institute of Technology Lausanne (EPFL)
2 Verimag, Grenoble, France

3 Uppsala University, Sweden
4 Brno University of Technology, Czech Republic

Abstract. We present Counterexample-Guided Accelerated Abstraction Refine-
ment (CEGAAR), a new algorithm for verifying infinite-state transition systems.
CEGAAR combines interpolation-based predicate discovery in counterexample-
guided predicate abstraction with acceleration technique for computing the tran-
sitive closure of loops. CEGAAR applies acceleration to dynamically discovered
looping patterns in the unfolding of the transition system, and combines over-
approximation with underapproximation. It constructs inductive invariants that
rule out an infinite family of spurious counterexamples, alleviating the prob-
lem of divergence in predicate abstraction without losing its adaptive nature.
We present theoretical and experimental justification for the effectiveness of
CEGAAR, showing that inductive interpolants can be computed from classical
Craig interpolants and transitive closures of loops. We present an implementation
of CEGAAR that verifies integer transition systems. We show that the result-
ing implementation robustly handles a number of difficult transition systems that
cannot be handled using interpolation-based predicate abstraction or acceleration
alone.

1 Introduction

This paper contributes to the fundamental problem of precise reachability analysis for
infinite-state systems. Predicate abstraction using interpolation has emerged as an effec-
tive technique in this domain. The underlying idea is to verify a program by reasoning
about its abstraction that is easier to analyse, and is defined with respect to a set of
predicates [17]. The set of predicates is refined to achieve the precision needed to prove
the absence or the presence of errors. A key difficulty in this approach is to automat-
ically find predicates to make the abstraction sufficiently precise [2]. A breakthrough
technique is to generate predicates based on Craig interpolants [13] derived from the
proof of unfeasibility of a spurious trace [19].

While empirically successful on a variety of domains, abstraction refinement us-
ing interpolants suffers from the unpredictability of interpolants computed by provers,

� Supported by the Rich Model Toolkit initiative, http://richmodels.org, the Czech Sci-
ence Foundation (projects P103/10/0306 and 102/09/H042), the Czech Ministry of Education
(COST OC10009 and MSM 0021630528), the BUT project FIT-S-12-1 and the Microsoft
Innovation Cluster for Embedded Software.

S. Chakraborty and M. Mukund (Eds.): ATVA 2012, LNCS 7561, pp. 187–202, 2012.
© Springer-Verlag Berlin Heidelberg 2012

http://richmodels.org

188 H. Hojjat et al.

which can cause the verification process to diverge and never discover a sufficient set
of predicates (even in case such predicates exist). The failure of such a refinement ap-
proach manifests in a sequence of predicates that rule out longer and longer counterex-
amples, but still fail to discover inductive invariants.

Following another direction, researchers have been making continuous progress on
techniques for computing the transitive closure of useful classes of relations on inte-
gers [7, 10, 14]. These acceleration techniques can compute closed form representation
of certain classes of loops using Presburger arithmetic.

A key contribution of this paper is an algorithmic solution to apply these specialized
analyses for particular classes of loops to rule out an infinite family of counterexamples
during predicate abstraction refinement. An essential ingredient of this approach are
interpolants that not only rule out one path, but are also inductive with respect to loops
along this path. We observe that we can start from any interpolant for a path that goes
through a loop in the control-flow graph, and apply a postcondition (or, equivalently a
weakest precondition) with respect to the transitive closure of the loop (computed using
acceleration) to generalize the interpolant and make it inductive. Unlike previous the-
oretical proposals [12], our method treats interpolant generation and transitive closure
computation as black boxes: we can start from any interpolants and strengthen it using
any loop acceleration. We call the resulting technique Counterexample-Guided Accel-
erated Abstraction Refinement, or CEGAAR for short. Our experience indicates that
CEGAAR works well in practice.

Motivating Example. To illustrate the power of the technique that we propose, con-
sider the example in Figure 1. The example is smaller than the examples we consider
in our evaluation (Section 6), but already illustrates the difficulty of applying existing
methods.

Note that the innermost loop requires a very expressive logic to describe its closed
form, so that standard techniques for computing exact transitive closure of loops do not
apply. In particular, the acceleration technique does not apply to the innermost loop,
and the presence of the innermost loop prevents the application of acceleration to the
outer loop. On the other hand, predicate abstraction with interpolation refinement also
fails to solve this example. Namely, it enters a very long refinement loop, considering

int x,y;
x = 1000; y = 0;
while(x > 0){

x−−;
while(*) {

y = 2*(x + y);
}
y = y + 2;

}
assert(y != 47 && x == 0);

0

1 2

e

x′ = 1000∧ y′ = 0

x > 0∧ x′ = x−1

y′ = y+2

¬(x > 0)∧¬(y �= 47∧ x = 0)

y′=2(x+y)∧ x′=x

(a) (b)

Fig. 1. Example Program and its Control Flow Graph with Large Block Encoding

Accelerating Interpolants 189

increasingly longer spurious paths with CFG node sequences of the form 0(12)i1e, for
0 ≤ i < 1000. The crux of the problem is that the refinement eliminates each of these
paths one by one, constructing too specific interpolants.

Our combined CEGAAR approach succeeds in proving the assertion of this program
by deriving the loop invariant y%2 == 0∧ x ≥ 0. Namely, once predicate abstraction
considers a path where the CFG node 1 repeats (such as 0121e), it applies acceleration
to this path. CEGAAR then uses the accelerated path to construct an inductive inter-
polant, which eliminates an infinite family of spurious paths. This provides predicate
abstraction with a crucial predicate y%2 = 0, which enables further progress, leading
to the discovery of the predicate x ≥ 0. Together, these predicates allow predicate ab-
straction to construct the invariant that proves program safety. Note that this particular
example focuses on proving the absence of errors, but our experience suggests that CE-
GAAR can, in many cases, find long counterexamples faster than standard predicate
abstraction.

Related Work. Predicate abstraction has proved is a rich and fruitful direction in auto-
mated verification of detailed properties of infinite-state systems [17, 19]. The pioneer-
ing work in [3] is, to the best of our knowledge, the first to propose a solution to the
divergence problem in predicate abstraction. More recently, sufficient conditions to en-
force convergence of refinement in predicate abstraction are given in [2], but it remains
difficult to enforce them in practice. A promising direction for ensuring completeness
with respect to a language of invariants is parameterizing the syntactic complexity of
predicates discovered by an interpolating split prover [21]. Because it has the flavor of
invariant enumeration, the feasibility of this approach in practice remains to be further
understood.

To alleviate relatively weak guarantees of refinement in predicate abstraction in prac-
tice, researchers introduced path invariants [5] that rule out a family of counterexam-
ples at once using constraint-based analysis. Our CEGAAR approach is similar in the
spirit, but uses acceleration [7, 10, 14] instead of constraint-based analysis, and there-
fore has complementary strengths. Acceleration naturally generates precise disjunctive
invariants, needed in many practical examples, while constraint-based invariant gen-
eration [5] resorts to an ad-hoc unfolding of the path program to generate disjunctive
invariants. Acceleration can also infer expressive predicates, in particular modulo con-
straints, which are relevant for purposes such as proving memory address alignment.

The idea of generalizing spurious error traces was introduced also in [18], by extend-
ing an infeasible trace, labeled with interpolants, into a finite interpolant automaton. The
method of [18] exploits the fact that some interpolants obtained from the infeasibility
proof happen to be inductive w.r.t. loops in the program. In our case, given a spuri-
ous trace that iterates through a program loop, we compute the needed inductive inter-
polants, combining interpolation with acceleration. The method that is probably closest
to CEGAAR is proposed in [12]. In this work the authors define inductive interpolants
and prove the existence of effectivelly computable inductive interpolants for a class of
affine loops, called poly-bounded. The approach is, however, limited to programs with
one poly-bounded affine loop, for which initial and error states are specified. We only
consider loops that are more restricted than the poly-bounded ones, namely loops for
which transitive closures are Presburger definable. On the other hand, our method is

190 H. Hojjat et al.

more general in that it does not restrict the number of loops occurring in the path pro-
gram, and benefits from regarding both interpolation and transitive closure computation
as black boxes. The ability to compute closed forms of certain loops is also exploited
in algebraic approaches [6]. These approaches can also naturally be generalized to per-
form useful over-approximation [1] and under-approximation.

2 Preliminaries

Let x = {x1, . . . ,xn} be a set of variables ranging over integer numbers, and x′ be the
set {x′1, . . . ,x′n}. A predicate is a first-order arithmetic formula P. By FV (P) we de-
note the set of free variables in P, i.e. variables not bound by a quantifier. By writ-
ing P(x) we intend that FV (P) ⊆ x. We write ⊥ and 	 for the boolean constants
false and true. A linear term t over a set of variables in x is a linear combination
of the form a0 +∑n

i=1 aixi, where a0,a1, . . . ,an ∈ Z. An atomic proposition is a pred-
icate of the form t ≤ 0, where t is a linear term. Presburger arithmetic is the first-
order logic over propositions t ≤ 0; Presburger arithmetic has quantifier elimination
and is decidable.For simplicity we consider only formulas in Presburger arithmetic
in this paper. A valuation of x is a function ν : x−→Z. If ν is a valuation of x, we
denote by ν |= P the fact that the formula obtained by replacing each occurrence
of xi with ν(xi) is valid. Similarly, an arithmetic formula R(x,x′) defining a relation
R ⊆ Z

n×Z
n is evaluated referring to two valuations ν1,ν2; the satisfaction relation is

denoted ν1,ν2 |= R. The composition of two relations R1,R2 ∈ Z
n×Z

n is denoted by
R1 ◦R2 = {(u,v) ∈ Z

n×Z
n | ∃t ∈ Z

n . (u, t) ∈ R1 and (t,v) ∈ R2}. Let ε be the iden-
tity relation {(u,u) | u ∈ Z

n×Z
n}. We define R0 = ε and Ri = Ri−1 ◦R, for any i > 0.

With these notations, R+ =
⋃∞

i=1 Ri denotes the transitive closure of R, and R∗ = R+∪ε
denotes the reflexive and transitive closure of R. We sometimes use the same symbols
to denote a relation and its defining formula. For a set of n-tuples S ⊆ Z

n and a rela-
tion R ⊆ Z

n×Z
n, let post(S,R) = {v ∈ Z

n | ∃u ∈ S . (u,v) ∈ R} denote the strongest
postcondition of S via R, and wpre(S,R) = {u ∈ Z

n | ∀v . (u,v) ∈ R→ v ∈ S} denote
the weakest precondition of S with respect to R. We use post and wpre for sets and
relations, as well as for logical formulae defining them.

We represent programs as control flow graphs. A control flow graph (CFG) is a tuple
G = 〈x,Q,−→, I,E〉 where x = {x1, . . . ,xn} is a set of variables, Q is a set of control

states, −→ is a set of edges of the form q
R−→q′, labeled with arithmetic formulae defining

relations R(x,x′), and I,E ⊆Q are sets of initial and error states, respectively. A path in
G is a sequence θ : q1

R1−→q2
R2−→q3 . . .qn−1

Rn−1−−−→qn, where q1,q2, . . . ,qn ∈Q and qi
Ri−→qi+1

is an edge in G, for each i = 1, . . . ,n− 1. We assume without loss of generality that all
variables in x∪ x′ appear free in each relation labeling an edge of G1. We denote the
relation R1 ◦R2 ◦ . . . ◦Rn−1 by ρ(θ) and assume that the set of free variables of ρ(θ)
is x∪ x′. The path θ is said to be a cycle if q1 = qn, and a trace if q1 ∈ I. The path θ
is said to be feasible if and only if there exist valuations ν1, . . . ,νn : x→ Z such that
νi,νi+1 |= Ri, for all i = 1, . . . ,n− 1. A control state is said to be reachable in G if it
occurs on a feasible trace.

1 For variables that are not modified by a transition, this can be achieved by introducing an
explicit update x′ = x.

Accelerating Interpolants 191

Acceleration. The goal of acceleration is, given a relation R in a fragment of integer
arithmetic, to compute its reflexive and transitive closure, R∗. In general, defining R∗
in a decidable fragment of integer arithmetic is not possible, even when R is definable
in a decidable fragment such as, e.g. Presburger arithmetic. In this work we consider
two fragments of arithmetic in which transitive closures of relations are Presburger
definable.

An octagonal relation is a relation defined by a constraint of the form ±x± y ≤ c,
where x and y range over the set x∪x′, and c is an integer constant. The transitive closure
of an octagonal relation has been shown to be Presburger definable and effectively com-
putable [10]. A linear affine relation is a relation of the form R (x,x′)≡Cx≥ d ∧ x′ =
Ax+b, where A ∈ Z

n×n, C ∈ Z
p×n are matrices and b ∈ Z

n, d ∈ Z
p. R is said to have

the finite monoid property if and only if the set {Ai | i≥ 0} is finite. It is known that the
finite monoid condition is decidable [7], and moreover that the transitive closure of a
finite monoid affine relation is Presburger definable and effectively computable [7, 14].

Predicate Abstraction. Informally, predicate abstraction computes an overapproxi-
mation of the transition system generated by a program and verifies whether an error
state is reachable in the abstract system. If no error occurs in the abstract system, the
algorithm reports that the original system is safe. Otherwise, if a path to an error state
(counterexample) has been found in the abstract system, the corresponding concrete
path is checked. If this latter path corresponds to a real execution of the system, then a
real error has been found. Otherwise, the abstraction is refined in order to exclude the
counterexample, and the procedure continues.

Given a CFG G = 〈x,Q,−→, I,E〉, and a (possibly infinite) set of predicates P , an
abstract reachability tree (ART) for G is a tuple T = 〈S,π,r,e〉 where S ⊆ Q× 2P\{⊥}
is a set of nodes (notice that for no node 〈q,Φ〉 in T we may have ⊥ ∈Φ), π : Q→ 2P

is a mapping associating control states with sets of predicates, i ∈ I×{	} is the root
node, e⊆ S× S is a tree-structured edge relation:

– all nodes in S are reachable from the root r
– for all n,m, p ∈ S, e(n, p)∧ e(m, p)⇒ n = m

– e(〈q1,Φ1〉,〈q2,Φ2〉) ⇒ q1
R−→q2 and Φ2 = {P ∈ π(q2) | post(

∧
Φ1,R)→ P}

We say that an ART node 〈q1,Φ1〉 is subsumed by another node 〈q2,Φ2〉 if and only if
q1 = q2 and

∧
Φ1→∧

Φ2. It is usually considered that no node in an ART is subsumed
by another node, from the same ART.

It can be easily checked that each path σ : r = 〈q1,Φ1〉,〈q2,Φ2〉, . . . ,〈qk,Φk〉, starting
from the root in T , can be mapped into a trace θ : q1

R1−→q2 . . .qk−1
Rk−1−−−→qk of G, such

that post(,ρ(θ))→∧
Φk. We say that θ is a concretization of σ, or that σ concretizes

to θ. A path in an ART is said to be spurious if none of its concretizations is feasible.

3 Interpolation-Based Abstraction Refinement

By refinement we understand the process of enriching the predicate mapping π of an
ART T = 〈S,π,r,e〉 with new predicates. The goal of refinement is to prevent spurious

192 H. Hojjat et al.

counterexamples (paths to an error state) from appearing in the ART. To this end, an
effective technique used in many predicate abstraction tools is that of interpolation.

Given an unsatisfiable conjunction A∧B, an interpolant I is a formula using the com-
mon variables of A and B, such that A→ I is valid and I∧B is unsatisfiable. Intuitively,
I is the explanation behind the unsatisfiability of A∧B. Below we introduce a slightly
more general definition of a trace interpolant.

Definition 1 ([21]). Let G = 〈x,Q,−→, I,E〉 be a CFG and

θ : q1
R1−→q2

R2−→q3 . . .qn−1
Rn−1−−−→qn

be an infeasible trace of G. An interpolant for θ is a sequence of predicates 〈I1, I2, . . . , In〉
with free variables in x, such that: I1 = 	, In = ⊥, and for all i = 1, . . . ,n − 1,
post(Ii,Ri)→ Ii+1.

Interpolants exist for many theories, including all theories with quantifier elimination,
and thus for Presburger arithmetic. Moreover, a trace is infeasible if and only if it has an
interpolant. Including any interpolant of an infeasible trace into the predicate mapping
of an ART suffices to eliminate any abstraction of the trace from the ART. We can thus
refine the ART and exclude an infeasible trace by including the interpolant that proves
the infeasibility of the trace.

Note that the refinement technique using Definition 1 only guarantees that one spu-
rious counterexample is eliminated from the ART with each refinement step. This fact
hinders the efficiency of predicate abstraction tools, which must rely on the ability of
theorem provers to produce interpolants that are general enough to eliminate more than
one spurious counterexample at the time. The following is a stronger notion of an inter-
polant, which ensures generality with respect to an infinite family of counterexamples.

Definition 2 ([12], Def. 2.4). Given a CFG G, a trace scheme in G is a sequence:

ξ : q0
Q1−→

L1
�

q1
Q2−→ . . .

Qn−1−−−→
Ln−1
�

qn−1
Qn−→

Ln
�

qn
Qn+1−−−→qn+1 (1)

where q0 ∈ I and:

– Qi = ρ(θi), for some non-cyclic paths θi of G, from qi−1 to qi

– Li =
∨ki

j=1 ρ(λi j), for some cycles λi j of G, from qi to qi

Intuitivelly, a trace scheme represents an infinite regular set of traces in G. The trace
scheme is said to be feasible if and only if at least one trace of G of the form
θ1;λ1i1 . . .λ1i j1

;θ2; . . . ;θn;λnin . . .λni jn
;θn+1 is feasible.

The trace scheme is said to be bounded if ki = 1, for all i = 1,2, . . . ,n. A bounded2

trace scheme is a regular language of traces, of the form σ1 ·λ∗1 · . . . ·σn ·λ∗n ·σn+1, where
σi are acyclic paths, and λi are cycles of G.

Definition 3 ([12], Def. 2.5). Let G = 〈x,Q,−→, I,E〉 be a CFG and ξ be an infea-
sible trace scheme of the form (1). An interpolant for ξ is a sequence of predicates
〈I0, I1, I2, . . . , In, In+1〉, with free variables in x, such that:

2 This term is used in analogy with the notion of bounded languages [16].

Accelerating Interpolants 193

1. I0 =	 and In+1 =⊥
2. post(Ii,Qi+1)→ Ii+1, for all i = 0,1, . . . ,n
3. post(Ii,Li)→ Ii, for all i = 1,2, . . . ,n

The main difference with Definition 1 is the third requirement, namely that each inter-
polant predicate (except for the first and the last one) must be inductive with respect to
the corresponding loop relation. It is easy to see that each of the two sequences:

〈	, post(,Q1 ◦L∗1), . . . , post(,Q1 ◦L∗1 ◦Q2 ◦ . . .Qn ◦L∗n)〉 (2)

〈wpre(⊥,Q1 ◦L∗1 ◦Q2 ◦ . . .Qn ◦L∗n), . . . , wpre(⊥,Qn ◦L∗n), ⊥〉 (3)

are interpolants for ξ, provided that ξ is infeasible (Lemma 2.6 in [12]). Just as for
finite trace interpolants, the existence of an inductive interpolant suffices to prove the
infeasibility of the entire trace scheme.

Lemma 4. Let G = 〈x,Q,−→, I,E〉 be a CFG and ξ be an infeasible trace scheme of G
of the form (1). If T = 〈S,π,r,e〉 is an ART for G, such that there exists an interpolant
〈Ii ∈ π(qi)〉n+1

i=0 for ξ, then no path in T concretizes to a trace in ξ.

4 Counterexample-Guided Accelerated Abstraction Refinement

This section presents the CEGAAR algorithm for predicate abstraction with interpolant-
based accelerated abstraction refinement. Since computing the interpolant of a trace
scheme is typically more expensive than computing the interpolant of a finite coun-
terexample, we apply acceleration in a demand-driven fashion. The main idea of the
algorithm is to accelerate only those counterexamples in which some cycle repeats a
certain number of times. For example, if the abstract state exploration has already ruled
out the spurious counterexamples σ · τ, σ · λ · τ and σ · λ · λ · τ, when it sees next the
spurious counterexample σ ·λ ·λ ·λ · τ, it will accelerate it into σ ·λ∗ · τ, and rule out all
traces which comply to this scheme. The maximum number of cycles that are allowed
to occur in the acyclic part of an error trace, before computing the transitive closure, is
called the delay, and is a parameter of the algorithm (here the delay was 2). A smaller
delay results in a more aggressive acceleration strategy, whereas setting the delay to
infinity is equivalent to performing predicate abstraction without acceleration.

The main procedure is CONSTRUCTART which builds an ART for a given CFG,
and an abstraction of the set of initial values (Fig. 2). CONSTRUCTART is a worklist
algorithm that expands the ART according to a certain exploration strategy (depth-first,
breadth-first, etc.) determined by the type of the structure used as a worklist. We assume
without loss of generality that the CFG has exactly one initial vertex Init. The CON-
STRUCTART procedure starts with Init and expands the tree according to the definition
of the ART (lines 11 and 12). New ART nodes are constructed using NEWARTNODE,
which receives a CFG state and a set of predicates as arguments. The algorithm back-
tracks from expanding the ART when either the current node contains ⊥ in its set of
predicates, or it is subsumed by another node in the ART (line 13). In the algorithm
(Fig. 2), we denote logical entailment by φ � ψ in order to avoid confusion.

194 H. Hojjat et al.

1 input CFG G = 〈x,Q,−→,{Init},E〉
2 output ART T = 〈S,π,Root,e〉
3 WorkList = [], S,π,e = /0, Root = nil
4 def ConstructART(Init, initialAbstraction) {
5 node = newARTnode(Init, initialAbstraction)
6 if (Root = nil) Root = node
7 WorkList.add(〈Init,node〉)
8 while (!(WorkList.empty)) {
9 〈nextCFGvertex,nextARTnode〉= WorkList.remove()

10 for (child = children(nextCFGVertex)) {
11 Let R be such that nextCFGvertex

R−→child in G
12 Φ = {p ∈ π(child) | POST(

∧
nextART node.abstraction,R) � p}

13 if (⊥∈Φ or
(∃ an ART node〈child,Ψ〉 . ∧Φ � Ψ

)
)

14 continue
15 node = newART node(child,Φ)
16 S = S∪{node}
17 e = e∪{(nextART node,node)}
18 if (child ∈ Eand checkRefineError(node))
19 report ‘‘ERROR’’
20 WorkList.add(〈child,node〉)
21 WorkList.removeAll(nodes from WorkList subsumed by node) }}}

Fig. 2. The CEGAAR algorithm (a) - High-Level Structure

The refinement step is performed by the CHECKREFINEERROR function (Fig. 3).
This function returns true if and only if a feasible error trace has been detected; oth-
erwise, further predicates are generated to refine the abstraction. First, a minimal in-
feasible ART path to node is determined (line 4). This path is generalized into a trace
scheme (line 6). The generalization function FOLD takes Path and the delay parame-
ter δ as input and produces a trace scheme which contains Path. The FOLD function
creates a trace scheme of the form (1) out of the spurious path given as argument. The
spurious path is traversed and control states are recorded in a list. When we encounter
a control state which is already in the list, we identified an elementary cycle λ. If the
current trace scheme ends with at least δ occurrences of λ, where δ ∈ N∞ is the delay
parameter, then λ is added as a loop to the trace scheme, provided that its transitive
closure can be effectivelly computed. For efficiency reasons, we syntactically check the
relation on the loop, namely we check whether the relation is syntactically compliant
to the definition of octagonal relations. Notice that a relation can be definable by an
octagonal constraint even if it is not a conjunction of octagonal constraints, i.e. it may
contain redundant atomic propositions which are not of this form. Once the folded trace
scheme is obtained, there are three possibilities:

1. If the trace scheme is not bounded (the test on line 7 passes), we compute a bounded
overapproximation of it, in an attempt to prove its infeasibility (line 8). If the test
on line 9 succeeds, the original trace scheme is proved to be infeasible and the ART
is refined using the interpolants for the overapproximated trace scheme.

Accelerating Interpolants 195

languagelanguage
1 def checkRefineError(node): Boolean {
2 traceScheme = []
3 while (the ART path Root−→·· ·−→node is spurious) {
4 Let Path = 〈q1,Φ1〉−→ . . .−→〈qn,Φn〉 be the (unique) minimal ART path with
5 pivot = 〈q1,Φ1〉 and 〈qn,Φn〉= node such that the CFG path q1−→·· ·−→qn is infeasible
6 newScheme = Fold(Path,delay)
7 if (!isBounded(newScheme)) {
8 absScheme =Concat(Overapprox(newScheme), traceScheme)
9 if (interpolateRefine(absScheme, pivot) return false

10 else newScheme =Underapprox(newScheme,Path)}
11 traceScheme =Concat(newScheme, traceScheme)
12 if (interpolateRefine(traceScheme, pivot) return false
13 node = Path.head}
14 return true }

Fig. 3. The CEGAAR algorithm (b) - Accelerated Refinement

2. Else, if the overapproximation was found to be feasible, it could be the case that
the abstraction of the scheme introduced a spurious error trace. In this case, we
compute a bounded underapproximation of the trace scheme, which contains the
initial infeasible path, and replace the current trace scheme with it (line 10). The
only requirement we impose on the UNDERAPPROX function is that the returned
bounded trace scheme contains Path, and is a subset of newScheme.

3. Finally, if the trace scheme is bounded (either because the test on line 7 failed, or
because the folded path was replaced by a bounded underapproximation on line
10) and also infeasible (the test on line 12 passes) then the ART is refined with the
interpolants computed for the scheme. If, on the other hand, the scheme is feasible,
we continue searching for an infeasible trace scheme starting from the head of Path
upwards (line 13).

Example Let θ : q1
P−→q2

Q−→q2
R−→q1

P−→q2
R−→q1 be a path. The result of applying FOLD

to this path is the trace scheme ξ shown in the left half of Fig. 4. Notice that this path
scheme is not bounded, due to the presence of two loops starting and ending with q2. A
possible bounded underapproximation of ξ, containing the original path θ, is shown in
the right half of Fig. 4. ��

The iteration stops either when a refinement is possible (lines 9, 12), in which case
CHECKREFINEERROR returns false, or when the search reaches the root of the ART
and the trace scheme is feasible, in which case CHECKREFINEERROR returns true (line

q1
P−→

Q
�

q2
R−→ q1

P ↑↓ R

q1

q1
P−→

Q
�

q2
ε−→ q2

R−→ q1

P ↑↓ R

q1

Fig. 4. Underapproximation of unbounded trace schemes. ε stands for the identity relation.

196 H. Hojjat et al.

languagelanguage
1 def InterpolateRefine(traceScheme, Pivot) : Boolean {
2 metaTrace = TransitiveClosure(traceScheme)
3 interpolant = InterpolatingProverCall(metaTrace)
4 if (interpolant = /0) return false
5 I = AccelerateInterpolant(interpolant)
6 for (ψ ∈ I) {
7 let v be the CFG vertex corresponding to ψ
8 π = π[v← (π(v)∪ψ)]
9 }

10 ConstructART(Pivot,Pivot.abstraction)
11 return true }

Fig. 5. The Interpolation Function

14) and the main algorithm in Figure 2 reports a true counterexample. Notice that, since
we update node to the head of Path (line 13), the position of node is moved upwards
in the ART. Since this cannot happen indefinitely, the main loop (lines 3-13) of the
CHECKREFINEERROR is bound to terminate.

The INTERPOLATEREFINE function is used to compute the interpolant of the trace
scheme, update the predicate mapping π of the ART, and reconstruct the subtree of the
ART whose root is the first node on Path (this is usually called the pivot node). The IN-
TERPOLATEREFINE (Fig. 5) function returns true if and only if its argument represents
an infeasible trace scheme. In this case, new predicates, obtained from the interpolant
of the trace scheme, are added to the nodes of the ART. This function uses internally the
TRANSITIVECLOSURE procedure (line 2) in order to generate the meta-trace scheme
(5). The ACCELERATEINTERPOLANT function (line 5) computes the interpolant for the
trace scheme, from the resulting meta-trace scheme. Notice that the refinement algo-
rithm is recursive, as CONSTRUCTART calls CHECKREFINEERROR (line 18), which in
turn calls INTERPOLATEREFINE (lines 9,12), which calls back CONSTRUCTART (line
10). Our procedure is sound, in the sense that whenever function CONSTRUCTART ter-
minates with a non-error result, the input program does not contain any reachable error
states. Vice versa, if a program contains a reachable error state, CONSTRUCTART is
guaranteed to eventually discover a feasible path to this state, since the use of a work
list ensures fairness when exploring ARTs.

5 Computing Accelerated Interpolants

This section describes a method of refining an ART by excluding an infinite family of
infeasible traces at once. Our method combines interpolation with acceleration in a way
which is oblivious of the particular method used to compute interpolants. For instance,
it is possible to combine proof-based [23] or constraint-based [26] interpolation with
acceleration, whenever computing the precise transitive closure of a loop is possible.
In cases when the precise computation fails, we may resort to both over- and under-
approximation of the transitive closure. In both cases, the accelerated interpolants are at

Accelerating Interpolants 197

least as general (and many times more general) than the classical interpolants extracted
from a finite counterexample trace.

5.1 Precise Acceleration of Bounded Trace Schemes

We consider first the case of bounded trace schemes of the form (1), where the control
states q1, . . . ,qn belong to some cycles labeled with relations L1, . . . ,Ln. Under some
restrictions on the syntax of the relations labeling the cycles Li, the reflexive transitive
closures L∗i are effectively computable using acceleration algorithms [7, 9, 14]. Among
the known classes of relations for which acceleration is possible we consider: octago-
nal relations and finite monoid affine transformations. These are all conjunctive linear
relations. We consider in the following that all cycle relations Li belong to one of these
classes. Under this restriction, any infeasible bounded trace scheme has an effectivelly
computable interpolant of one of the forms (2),(3).

However, there are two problems with applying definitions (2),(3) in order to obtain
interpolants of trace schemes. On one hand, relational composition typically requires
expensive quantifier eliminations. The standard proof-based interpolation techniques
(e.g. [23]) overcome this problem by extracting the interpolants directly from the proof
of infeasibility of the trace. Alternatively, constraint-based interpolation [26] reduce
the interpolant computation to a Linear Programming problem, which can be solved
by efficient algorithms. Both methods apply, however, only to finite traces, and not to
infinite sets of traces defined as trace schemes. Another, more important, problem is
related to the sizes of the interpolant predicates from (2), (3) compared to the sizes of
interpolant predicates obtained by proof-theoretic methods (e.g. [22]), as the following
example shows.

Example Let R(x,y,x′,y′) : x′ = x+ 1∧ y′ = y+ 1 and φ(x,y, . . .), ψ(x,y, . . .) be some
complex Presburger arithmetic formulae. The trace scheme:

q0
z=0∧z′=z∧φ−−−−−−−→

z′ = z+2∧R
�

q1
z=5∧ψ−−−−→q2 (4)

is infeasible, because z remains even, so it cannot become equal 5. One simple inter-
polant for this trace scheme has at program point q1 the formula z%2 = 0. On the other
hand, the strongest interpolant has (z = 0∧ z′ = x∧φ)◦ (z′ = z+2∧R)∗ at q1, which is
typically a much larger formula, because of the complex formula φ. Note however that
φ and R do not mention z, so they are irrelevant. ��

To construct useful interpolants instead of the strongest or the weakest ones, we
therefore proceed as follows. Let ξ be a bounded trace scheme of the form (1). For each
control loop qi

Ri−→qi of ξ, we define the corresponding meta-transition q′i
R∗i−→q′′i labeled

with the reflexive and transitive closure of Ri. Intuitively, firing the meta-transition has
the same effect as iterating the loop an arbitrary number of times. We first replace each
loop of ξ by the corresponding meta-transition. The result is the meta-trace:

ξ : q0
Q1−→q′1

L∗1−→q′′1
Q2−→q′2 . . . q′′n−1

Qn−→q′n
L∗n−→q′′n

Qn+1−−−→qn+1 (5)

Since we supposed that ξ is an infeasible trace scheme, the (equivalent) finite meta-
trace ξ is infeasible as well, and it has an interpolant Iξ = 〈	, I′1, I′′1 , I′2, I′′2 , . . . , I′n, I′′n ,⊥〉

198 H. Hojjat et al.

in the sense of Definition 1. This interpolant is not an interpolant of the trace scheme
ξ, in the sense of Definition 3. In particular, none of I′i , I′′i is guaranteed to be inductive
with respect to the loop relations Li. To define compact inductive interpolants based on
Iξ and the transitive closures L∗i , we consider the following sequences:

I post
ξ = 〈	, post(I′1,L

∗
1), post(I′2,L

∗
2), . . . , post(I′n,L

∗
n),⊥〉

I wpre
ξ = 〈	,wpre(I′′1 ,L

∗
1),wpre(I′′2 ,L

∗
2), . . . ,wpre(I′′n ,L

∗
n),⊥〉

The following lemma proves the correctness of this approach.

Lemma 5. Let G = 〈x,Q,−→, I,E〉 be a CFG and ξ be an infeasible trace scheme of the
form (1). Then I post

ξ and I wpre
ξ are interpolants for ξ, and moreover I wpre

ξi
→ I post

ξi
, for

all i = 1,2, . . . ,n.

Notice that computing I post
ξ and I wpre

ξ requires n relational compositions, which is,
in principle, just as expensive as computing directly one of the extremal interpolants
(2),(3). However, by re-using the meta-trace interpolants, one potentially avoids the
worst-case combinatorial explosion in the size of the formulae, which occurs when
using (2), (3) directly.

Example. Let us consider again the trace scheme (4). The corresponding infeasible
finite trace ξ is:

q0
z=0∧z′=z∧φ−−−−−−−→q′1

∃k≥0 . z′=z+2k ∧ x′=x+k ∧ y′=y+k−−−−−−−−−−−−−−−−−−−−−→q′′1
z=5∧ψ−−−−→q2

A possible interpolant for this trace is 〈	,z = 0,∃k ≥ 0 . z = 2k,⊥〉. An inductive
interpolant for the trace scheme, derived from it, is I post

ξ = 〈	, post(z = 0,∃k ≥ 0.z′ =
z+ 2k∧ x′ = x+ k∧ y′ = y+ k),⊥〉= 〈	, z%2 = 0, ⊥〉. ��

5.2 Bounded Overapproximations of Trace Schemes

Consider a trace scheme (1), not necessarily bounded, where the transitive closures of
the relations Li labeling the loops are not computable by any available acceleration
method [7, 9, 14]. One alternative is to find abstractions L�

i of the loop relations, i.e.

relations L�
i ← Li, for which transitive closures are computable. If the new abstract trace

remains infeasible, it is possible to compute an interpolant for it, which is an interpolant
for the original trace scheme. However, replacing the relations Li with their abstractions
L�

i may turn an infeasible trace scheme into a feasible one, where the traces introduced
by abstraction are spurious. In this case, we give up the overapproximation, and turn to
the underapproximation technique described in the next section.

The overapproximation method computes an interpolant for a trace scheme ξ of the
form (1) under the assumption that the abstract trace scheme:

ξ� : q0
Q1−→

L�1
�

q1
Q2−→ . . .

Qn−1−−−→
L�n−1
�

qn−1
Qn−→

L�n
�

qn
Qn+1−−−→qn+1 (6)

Accelerating Interpolants 199

is infeasible. In this case one can effectivelly compute the interpolants I post
ξ� and I wpre

ξ� ,
since the transitive closures of the abstract relations labeling the loops are computable
by acceleration. The following lemma proves that, under certain conditions, computing
an interpolant for the abstraction of a trace scheme is sound.

Lemma 6. Let G be a CFG and ξ be a trace scheme (1) such that the abstract trace
scheme ξ� (6) is infeasible. Then the interpolants I post

ξ� and I wpre
ξ� for ξ� are also inter-

polants for ξ.

5.3 Bounded Underapproximations of Trace Schemes

Let ξ be a trace scheme of the form (1), where each relation Li labeling a loop is a
disjunction Li1 ∨ . . .∨Liki of relations for which the transitive closures are effectively
computable and Presburger definable. A bounded underapproximation scheme of a trace
scheme ξ is obtained by replacing each loop qi

Li−→qi in ξ by a bounded trace scheme of
the form:

Li1
�

q1
i

ε−→
Li2
�

q2
i

ε−→ . . .

Liki
�

qki
i

where ε denotes the identity relation. Let us denote3 the result of this replacement by
ξ�. It is manifest that the set of traces ξ� is included in ξ.

Since we assumed that the reflexive and transitive closures L∗i j are effectivelly com-

putable and Presburger definable, the feasibility of ξ� is a decidable problem. If ξ� is
found to be feasible, this points to a real error trace in the system. On the other hand, if
ξ� is found to be infeasible, let Iξ� = 〈	, I1

1 , . . . , I
k1
1 , . . . , I1

n , . . . , I
kn
n ,⊥〉 be an interpolant

for ξ�. A refinement scheme using this interpolant associates the predicates {I1
i , . . . , I

ki
i }

with the control state qi from the original CFG. As the following lemma shows, this
guarantees that any trace that follows the pattern of ξ� is excluded from the ART, en-
suring that a refinement of the ART using a suitable underapproximation (that includes
a spurious counterexample) is guaranteed to make progress.

Lemma 7. Let G = 〈x,Q,−→, I,E〉 be a CFG, ξ be an infeasible trace scheme of G (1)
and ξ� a bounded underapproximation of ξ. If T = 〈S,π,r,e〉 is an ART for G, such that
{I1

i , . . . , I
ki
i } ⊆ π(qi), then no path in T concretizes to a trace in ξ�.

Notice that a refinement scheme based on underapproximation guarantees the exclu-
sion of those traces from the chosen underapproximation trace scheme, and not of all
traces from the original trace scheme. Since a trace scheme is typically obtained from
a finite counterexample, an underapproximation-based refinement still guarantees that
the particular counterexample is excluded from further searches. In other words, using
underapproximation is still better than the classical refinement method, since it can po-
tentially exclude an entire family of counterexamples (including the one generating the
underapproximation) at once.

3 The choice of the name depends on the ordering of particular paths Li1,Li2, . . . ,Liki
, however

we shall denote any such choice in the same way, in order to keep the notation simple.

200 H. Hojjat et al.

6 Experimental Results

We have implemented CEGAAR by building on the predicate abstraction engine Eldar-
ica4 [20], the FLATA verifier5 [20] based on acceleration, and the Princess interpolating
theorem prover [11, 25]. Tables in Figure 6 compares the performance of the Flata, El-
darica, static acceleration and CEGAAR on a number of benchmarks (the platorm used
for experiments is Intel® Core™2 Duo CPU P8700, 2.53GHz with 4GB of RAM).

Model
Time [s]

F. E. S. D.
(a) Examples from [21]
anubhav (C) 0.8 3.0 4.0 3.1
copy1 (E) 2.0 7.2 5.8 5.9
cousot (C) 0.6 - 6.2 5.9
loop1 (E) 1.7 7.1 5.2 5.4
loop (E) 1.8 5.9 4.8 5.4
scan (E) 3.3 - 5.1 5.0
string concat1 (E) 5.3 - 10.1 7.3
string concat (E) 4.9 - 7.0 7.5
string copy (E) 4.6 - 6.3 5.7
substring1 (E) 0.6 9.4 18.2 8.3
substring (E) 2.1 3.3 6.3 3.5
(b) Verification conditions
for array programs [9]
rotation vc.1 (C) 0.6 2.0 9.5 2.0
rotation vc.2 (C) 1.6 2.2 18.5 2.2
rotation vc.3 (C) 1.2 0.3 18.3 0.3
rotation vc.1 (E) 1.1 1.3 10.2 1.3
split vc.1 (C) 3.9 3.7 91.1 3.6
split vc.2 (C) 3.0 2.3 74.1 2.2
split vc.3 (C) 3.3 0.6 75.0 0.6
split vc.1 (E) 28.5 2.3 185.6 2.4

Model
Time [s]

F. E. S. D.
(c) Examples from [24]
boustrophedon (C) - - - 14.4
gopan (C) 0.4 - - 6.4
halbwachs (C) - - 7.3 7.0
rate limiter (C) 31.7 6.1 8.1 5.5
(d) Examples from L2CA [8]
bubblesort (E) 14.9 9.9 9.5 9.3
insdel (E) 0.1 1.3 2.5 1.4
insertsort (E) 2.0 4.2 5.0 4.0
listcounter (C) 0.3 - 1.9 3.7
listcounter (E) 0.3 1.4 1.6 1.4
listreversal (C) 4.5 3.0 6.0 3.3
listreversal (E) 0.8 2.7 8.1 2.8
mergesort (E) 1.2 7.7 21.3 7.4
selectionsort (E) 1.5 8.1 13.7 7.7
(e) NECLA benchmarks
inf1 (E) 0.2 2.0 2.0 2.0
inf4 (E) 0.9 3.7 3.7 3.7
inf6 (C) 0.1 2.0 2.0 2.0
inf8 (C) 0.3 3.6 3.4 3.9

Model
Time [s]
F. E. S. D.

(f) Examples from [15]
h1 (E) - 5.1 5.6 5.1
h1.optim (E) 0.8 2.9 5.5 2.9
h1h2 (E) - 9.4 10.1 12.2
h1h2.optim (E) 1.1 3.3 4.4 3.4
simple (E) - 6.4 7.0 8.4
simple.optim (E) 0.8 3.0 5.1 2.9
test0 (C) - 23.0 23.4 29.2
test0.optim (C) 0.3 3.2 5.4 3.2
test0 (E) - 5.4 5.9 5.7
test0.optim (E) 0.6 3.0 5.8 2.9
test1.optim (C) 0.9 4.7 5.9 7.8
test1.optim (E) 1.5 4.4 5.9 4.7
test2 1.optim (E) 1.6 5.2 5.5 5.6
test2 2.optim (E) 2.9 4.6 5.9 4.6
test2.optim (C) 6.4 27.2 30.1 30.0
wrpc.manual (C) 0.6 1.2 1.4 1.2
wrpc (E) - 7.9 8.4 8.2
wrpc.optim (E) - 5.1 8.5 5.2
(g) VHDL models from [27]
counter (C) 0.1 1.6 1.6 1.6
register (C) 0.2 1.1 1.1 1.1
synlifo (C) 16.6 22.1 21.4 22.0

Fig. 6. Benchmarks for Flata, Eldarica without acceleration, Eldarica with acceleration of loops
at the CFG level (Static) and CEGAAR (Dynamic acceleration). The letter after the model name
distinguishes Correct from models with a reachable Error state. Items with “-” led to a timeout
for the respective approach.

The benchmarks are all in the Numerical Transition Systems format6 (NTS). We
have considered seven sets of examples, extracted automatically from different sources:
(a) C programs with arrays provided as examples of divergence in predicate abstrac-
tion [21], (b) verification conditions for programs with arrays, expressed in the SIL
logic of [9] and translated to NTS, (c) small C programs with challenging loops, (d)
NTS extracted from programs with singly-linked lists by the L2CA tool [8], (e) C pro-
grams provided as benchmarks in the NECLA static analysis suite, (f) C programs with
asynchronous procedure calls translated into NTS using the approach of [15] (the ex-
amples with extension .optim are obtained via an optimized translation method [Pierre
Ganty, personal communication], and (g) models extracted from VHDL models of cir-
cuits following the method of [27]. The benchmarks are available from the home page
of our tool. The results on this benchmark set suggest that we have arrived at a fully
automated verifier that is robust in verifying automatically generated integer programs

4 http://lara.epfl.ch/w/eldarica
5 http://www-verimag.imag.fr/FLATA.html
6 http://richmodels.epfl.ch/ntscomp_ntslib

http://lara.epfl.ch/w/eldarica
http://www-verimag.imag.fr/FLATA.html
http://richmodels.epfl.ch/ntscomp_ntslib

Accelerating Interpolants 201

with a variety of looping control structure patterns. An important question we explored
is the importance of dynamic application of acceleration, as well as of overapproxima-
tion and underapproximation. We therefore also implemented static acceleration [12],
a lightweight acceleration technique generalizing large block encoding (LBE) [4] with
transitive closures. It simplifies the control flow graph prior to predicate abstraction.
In some cases, such as mergesort from the (d) benchmarks and split vc.1 from (b)
benchmarks, the acceleration overhead does not pay off. The problem is that static ac-
celeration tries to accelerate every loop in the CFG rather than accelerating the loops
occurring on spurious paths leading to error. Acceleration of inessential loops gener-
ates large formulas as the result of combining loops and composition of paths during
large block encoding. The CEGAAR algorithm is the only approach that could handle
all of our benchmarks. There are cases in which the Flata tool outperforms CEGAAR
such as test2.optim from (f) benchmarks. We attribute this deficiency to the nature of
predicate abstraction, which tries to discover the required predicates by several steps of
refinement. In the verification of benchmarks, acceleration was exact 11 times in total.
In 30 case the over-approximation of the loops was successful, and in 15 cases over-
approximation failed, so the tool resorted to under-approximation. This suggests that
all techniques that we presented are essential to obtain an effective verifier.

7 Conclusions

We have presented CEGAAR, a new automated verification algorithm for integer pro-
grams. The algorithm combines two cutting-edge analysis techniques: interpolation-
based abstraction refinement and acceleration of loops. We have implemented CE-
GAAR and presented experimental results, showing that CEGAAR handles robustly
a number of examples that cannot be handled by predicate abstraction or acceleration
alone. Because many classes of systems translate into integer programs, our advance
contributes to automated verification of infinite-state systems in general.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in Static Cost
Analysis. Journal of Automated Reasoning 46(2) (February 2011)

2. Ball, T., Podelski, A., Rajamani, S.K.: Relative Completeness of Abstraction Refinement
for Software Model Checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS,
vol. 2280, pp. 158–172. Springer, Heidelberg (2002)

3. Bensalem, S., Lakhnech, Y.: Automatic generation of invariants. Form. Methods Syst.
Des. 15(1), 75–92 (1999)

4. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model check-
ing via large-block encoding. In: FMCAD, pp. 25–32 (2009)

5. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In: PLDI, pp.
300–309 (2007)

6. Blanc, R., Henzinger, T.A., Hottelier, T., Kovács, L.: ABC: Algebraic Bound Computation
for Loops. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355, pp. 103–118.
Springer, Heidelberg (2010)

202 H. Hojjat et al.

7. Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces, PhD Thesis, vol. 189.
Collection des Publications de l’Université de Liège (1999)

8. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with Lists
Are Counter Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
517–531. Springer, Heidelberg (2006)

9. Bozga, M., Habermehl, P., Iosif, R., Konečný, F., Vojnar, T.: Automatic Verification of Integer
Array Programs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 157–
172. Springer, Heidelberg (2009)

10. Bozga, M., Iosif, R., Konečný, F.: Fast Acceleration of Ultimately Periodic Relations. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242. Springer,
Heidelberg (2010)

11. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An Interpolating Sequent Calculus for
Quantifier-Free Presburger Arithmetic. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS,
vol. 6173, pp. 384–399. Springer, Heidelberg (2010)

12. Caniart, N., Fleury, E., Leroux, J., Zeitoun, M.: Accelerating Interpolation-Based Model-
Checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.
428–442. Springer, Heidelberg (2008)

13. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. The Journal of
Symbolic Logic 22(3), 250–268 (1957)

14. Finkel, A., Leroux, J.: How to Compose Presburger-Accelerations: Applications to Broadcast
Protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 145–156.
Springer, Heidelberg (2002)

15. Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs. CoRR,
abs/1011.0551 (2010)

16. Ginsburg, S., Spanier, E.: Bounded algol-like languages. Trans. of the AMS 113(2), 333–368
(1964)

17. Graf, S., Saidi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

18. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of Trace Abstraction. In: Palsberg, J.,
Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg (2009)

19. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: 31st
POPL (2004)

20. Hojjat, H., Konečný, F., Garnier, F., Iosif, R., Kuncak, V., Rümmer, P.: A verification toolkit
for numerical transition systems (tool paper). In: FM (2012)

21. Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Refinement.
In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg
(2006)

22. Kroening, D., Leroux, J., Rümmer, P.: Interpolating Quantifier-Free Presburger Arithmetic.
In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 489–503. Springer,
Heidelberg (2010)

23. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1) (2005)
24. Monniaux, D.: Personal Communication
25. Rümmer, P.: A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arith-

metic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330,
pp. 274–289. Springer, Heidelberg (2008)

26. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint Solving for Interpolation. In: Cook,
B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg
(2007)

27. Smrčka, A., Vojnar, T.: Verifying Parametrised Hardware Designs Via Counter Automata.
In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 51–68. Springer, Heidelberg (2008)

	Accelerating Interpolants
	Introduction
	Preliminaries
	Interpolation-Based Abstraction Refinement
	Counterexample-Guided Accelerated Abstraction Refinement
	Computing Accelerated Interpolants
	Precise Acceleration of Bounded Trace Schemes
	Bounded Overapproximations of Trace Schemes
	Bounded Underapproximations of Trace Schemes

	Experimental Results
	Conclusions
	References

